WorldWideScience

Sample records for genetic susceptibility loci

  1. Genetic susceptibility loci, pesticide exposure and prostate cancer risk.

    Directory of Open Access Journals (Sweden)

    Stella Koutros

    Full Text Available Uncovering SNP (single nucleotide polymorphisms-environment interactions can generate new hypotheses about the function of poorly characterized genetic variants and environmental factors, like pesticides. We evaluated SNP-environment interactions between 30 confirmed prostate cancer susceptibility loci and 45 pesticides and prostate cancer risk in 776 cases and 1,444 controls in the Agricultural Health Study. We used unconditional logistic regression to estimate odds ratios (ORs and 95% confidence intervals (CIs. Multiplicative SNP-pesticide interactions were calculated using a likelihood ratio test. After correction for multiple tests using the False Discovery Rate method, two interactions remained noteworthy. Among men carrying two T alleles at rs2710647 in EH domain binding protein 1 (EHBP1 SNP, the risk of prostate cancer in those with high malathion use was 3.43 times those with no use (95% CI: 1.44-8.15 (P-interaction= 0.003. Among men carrying two A alleles at rs7679673 in TET2, the risk of prostate cancer associated with high aldrin use was 3.67 times those with no use (95% CI: 1.43, 9.41 (P-interaction= 0.006. In contrast, associations were null for other genotypes. Although additional studies are needed and the exact mechanisms are unknown, this study suggests known genetic susceptibility loci may modify the risk between pesticide use and prostate cancer.

  2. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci

    Science.gov (United States)

    Shen, Changbing; Gao, Jing; Sheng, Yujun; Dou, Jinfa; Zhou, Fusheng; Zheng, Xiaodong; Ko, Randy; Tang, Xianfa; Zhu, Caihong; Yin, Xianyong; Sun, Liangdan; Cui, Yong; Zhang, Xuejun

    2016-01-01

    Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association study (GWAS). More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWAS. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in the development of vitiligo. PMID:26870082

  3. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes.

    Science.gov (United States)

    McKay, James D; Hung, Rayjean J; Han, Younghun; Zong, Xuchen; Carreras-Torres, Robert; Christiani, David C; Caporaso, Neil E; Johansson, Mattias; Xiao, Xiangjun; Li, Yafang; Byun, Jinyoung; Dunning, Alison; Pooley, Karen A; Qian, David C; Ji, Xuemei; Liu, Geoffrey; Timofeeva, Maria N; Bojesen, Stig E; Wu, Xifeng; Le Marchand, Loic; Albanes, Demetrios; Bickeböller, Heike; Aldrich, Melinda C; Bush, William S; Tardon, Adonina; Rennert, Gad; Teare, M Dawn; Field, John K; Kiemeney, Lambertus A; Lazarus, Philip; Haugen, Aage; Lam, Stephen; Schabath, Matthew B; Andrew, Angeline S; Shen, Hongbing; Hong, Yun-Chul; Yuan, Jian-Min; Bertazzi, Pier Alberto; Pesatori, Angela C; Ye, Yuanqing; Diao, Nancy; Su, Li; Zhang, Ruyang; Brhane, Yonathan; Leighl, Natasha; Johansen, Jakob S; Mellemgaard, Anders; Saliba, Walid; Haiman, Christopher A; Wilkens, Lynne R; Fernandez-Somoano, Ana; Fernandez-Tardon, Guillermo; van der Heijden, Henricus F M; Kim, Jin Hee; Dai, Juncheng; Hu, Zhibin; Davies, Michael P A; Marcus, Michael W; Brunnström, Hans; Manjer, Jonas; Melander, Olle; Muller, David C; Overvad, Kim; Trichopoulou, Antonia; Tumino, Rosario; Doherty, Jennifer A; Barnett, Matt P; Chen, Chu; Goodman, Gary E; Cox, Angela; Taylor, Fiona; Woll, Penella; Brüske, Irene; Wichmann, H-Erich; Manz, Judith; Muley, Thomas R; Risch, Angela; Rosenberger, Albert; Grankvist, Kjell; Johansson, Mikael; Shepherd, Frances A; Tsao, Ming-Sound; Arnold, Susanne M; Haura, Eric B; Bolca, Ciprian; Holcatova, Ivana; Janout, Vladimir; Kontic, Milica; Lissowska, Jolanta; Mukeria, Anush; Ognjanovic, Simona; Orlowski, Tadeusz M; Scelo, Ghislaine; Swiatkowska, Beata; Zaridze, David; Bakke, Per; Skaug, Vidar; Zienolddiny, Shanbeh; Duell, Eric J; Butler, Lesley M; Koh, Woon-Puay; Gao, Yu-Tang; Houlston, Richard S; McLaughlin, John; Stevens, Victoria L; Joubert, Philippe; Lamontagne, Maxime; Nickle, David C; Obeidat, Ma'en; Timens, Wim; Zhu, Bin; Song, Lei; Kachuri, Linda; Artigas, María Soler; Tobin, Martin D; Wain, Louise V; Rafnar, Thorunn; Thorgeirsson, Thorgeir E; Reginsson, Gunnar W; Stefansson, Kari; Hancock, Dana B; Bierut, Laura J; Spitz, Margaret R; Gaddis, Nathan C; Lutz, Sharon M; Gu, Fangyi; Johnson, Eric O; Kamal, Ahsan; Pikielny, Claudio; Zhu, Dakai; Lindströem, Sara; Jiang, Xia; Tyndale, Rachel F; Chenevix-Trench, Georgia; Beesley, Jonathan; Bossé, Yohan; Chanock, Stephen; Brennan, Paul; Landi, Maria Teresa; Amos, Christopher I

    2017-07-01

    Although several lung cancer susceptibility loci have been identified, much of the heritability for lung cancer remains unexplained. Here 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated genome-wide association study (GWAS) analysis of lung cancer in 29,266 cases and 56,450 controls. We identified 18 susceptibility loci achieving genome-wide significance, including 10 new loci. The new loci highlight the striking heterogeneity in genetic susceptibility across the histological subtypes of lung cancer, with four loci associated with lung cancer overall and six loci associated with lung adenocarcinoma. Gene expression quantitative trait locus (eQTL) analysis in 1,425 normal lung tissue samples highlights RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer.

  4. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes

    Science.gov (United States)

    McKay, James D.; Hung, Rayjean J.; Han, Younghun; Zong, Xuchen; Carreras-Torres, Robert; Christiani, David C.; Caporaso, Neil E.; Johansson, Mattias; Xiao, Xiangjun; Li, Yafang; Byun, Jinyoung; Dunning, Alison; Pooley, Karen A.; Qian, David C.; Ji, Xuemei; Liu, Geoffrey; Timofeeva, Maria N.; Bojesen, Stig E.; Wu, Xifeng; Le Marchand, Loic; Albanes, Demetrios; Bickeböller, Heike; Aldrich, Melinda C.; Bush, William S.; Tardon, Adonina; Rennert, Gad; Teare, M. Dawn; Field, John K.; Kiemeney, Lambertus A.; Lazarus, Philip; Haugen, Aage; Lam, Stephen; Schabath, Matthew B.; Andrew, Angeline S.; Shen, Hongbing; Hong, Yun-Chul; Yuan, Jian-Min; Bertazzi, Pier Alberto; Pesatori, Angela C.; Ye, Yuanqing; Diao, Nancy; Su, Li; Zhang, Ruyang; Brhane, Yonathan; Leighl, Natasha; Johansen, Jakob S.; Mellemgaard, Anders; Saliba, Walid; Haiman, Christopher A.; Wilkens, Lynne R.; Fernandez-Somoano, Ana; Fernandez-Tardon, Guillermo; van der Heijden, Henricus F.M.; Kim, Jin Hee; Dai, Juncheng; Hu, Zhibin; Davies, Michael PA; Marcus, Michael W.; Brunnström, Hans; Manjer, Jonas; Melander, Olle; Muller, David C.; Overvad, Kim; Trichopoulou, Antonia; Tumino, Rosario; Doherty, Jennifer A.; Barnett, Matt P.; Chen, Chu; Goodman, Gary E.; Cox, Angela; Taylor, Fiona; Woll, Penella; Brüske, Irene; Wichmann, H.-Erich; Manz, Judith; Muley, Thomas R.; Risch, Angela; Rosenberger, Albert; Grankvist, Kjell; Johansson, Mikael; Shepherd, Frances A.; Tsao, Ming-Sound; Arnold, Susanne M.; Haura, Eric B.; Bolca, Ciprian; Holcatova, Ivana; Janout, Vladimir; Kontic, Milica; Lissowska, Jolanta; Mukeria, Anush; Ognjanovic, Simona; Orlowski, Tadeusz M.; Scelo, Ghislaine; Swiatkowska, Beata; Zaridze, David; Bakke, Per; Skaug, Vidar; Zienolddiny, Shanbeh; Duell, Eric J.; Butler, Lesley M.; Koh, Woon-Puay; Gao, Yu-Tang; Houlston, Richard S.; McLaughlin, John; Stevens, Victoria L.; Joubert, Philippe; Lamontagne, Maxime; Nickle, David C.; Obeidat, Ma’en; Timens, Wim; Zhu, Bin; Song, Lei; Kachuri, Linda; Artigas, María Soler; Tobin, Martin D.; Wain, Louise V.; Rafnar, Thorunn; Thorgeirsson, Thorgeir E.; Reginsson, Gunnar W.; Stefansson, Kari; Hancock, Dana B.; Bierut, Laura J.; Spitz, Margaret R.; Gaddis, Nathan C.; Lutz, Sharon M.; Gu, Fangyi; Johnson, Eric O.; Kamal, Ahsan; Pikielny, Claudio; Zhu, Dakai; Lindströem, Sara; Jiang, Xia; Tyndale, Rachel F.; Chenevix-Trench, Georgia; Beesley, Jonathan; Bossé, Yohan; Chanock, Stephen; Brennan, Paul; Landi, Maria Teresa; Amos, Christopher I.

    2017-01-01

    Summary While several lung cancer susceptibility loci have been identified, much of lung cancer heritability remains unexplained. Here, 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated GWAS analysis of lung cancer on 29,266 patients and 56,450 controls. We identified 18 susceptibility loci achieving genome wide significance, including 10 novel loci. The novel loci highlighted the striking heterogeneity in genetic susceptibility across lung cancer histological subtypes, with four loci associated with lung cancer overall and six with lung adenocarcinoma. Gene expression quantitative trait analysis (eQTL) in 1,425 normal lung tissues highlighted RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes, OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer. PMID:28604730

  5. Evaluation of shared genetic susceptibility loci between autoimmune diseases and schizophrenia based on genome-wide association studies

    DEFF Research Database (Denmark)

    Hoeffding, Louise K E; Rosengren, Anders; Thygesen, Johan H

    2017-01-01

    Background: Epidemiological studies have documented higher than expected comorbidity (or, in some cases, inverse comorbidity) between schizophrenia and several autoimmune disorders. It remains unknown whether this comorbidity reflects shared genetic susceptibility loci.  Aims: The present study a...

  6. Identification of New Genetic Susceptibility Loci for Breast Cancer Through Consideration of Gene-Environment Interactions

    Science.gov (United States)

    Schoeps, Anja; Rudolph, Anja; Seibold, Petra; Dunning, Alison M.; Milne, Roger L.; Bojesen, Stig E.; Swerdlow, Anthony; Andrulis, Irene; Brenner, Hermann; Behrens, Sabine; Orr, Nicholas; Jones, Michael; Ashworth, Alan; Li, Jingmei; Cramp, Helen; Connley, Dan; Czene, Kamila; Darabi, Hatef; Chanock, Stephen J.; Lissowska, Jolanta; Figueroa, Jonine D.; Knight, Julia; Glendon, Gord; Mulligan, Anna M.; Dumont, Martine; Severi, Gianluca; Baglietto, Laura; Olson, Janet; Vachon, Celine; Purrington, Kristen; Moisse, Matthieu; Neven, Patrick; Wildiers, Hans; Spurdle, Amanda; Kosma, Veli-Matti; Kataja, Vesa; Hartikainen, Jaana M.; Hamann, Ute; Ko, Yon-Dschun; Dieffenbach, Aida K.; Arndt, Volker; Stegmaier, Christa; Malats, Núria; Arias Perez, JoséI.; Benítez, Javier; Flyger, Henrik; Nordestgaard, Børge G.; Truong, Théresè; Cordina-Duverger, Emilie; Menegaux, Florence; Silva, Isabel dos Santos; Fletcher, Olivia; Johnson, Nichola; Häberle, Lothar; Beckmann, Matthias W.; Ekici, Arif B.; Braaf, Linde; Atsma, Femke; van den Broek, Alexandra J.; Makalic, Enes; Schmidt, Daniel F.; Southey, Melissa C.; Cox, Angela; Simard, Jacques; Giles, Graham G.; Lambrechts, Diether; Mannermaa, Arto; Brauch, Hiltrud; Guénel, Pascal; Peto, Julian; Fasching, Peter A.; Hopper, John; Flesch-Janys, Dieter; Couch, Fergus; Chenevix-Trench, Georgia; Pharoah, Paul D. P.; Garcia-Closas, Montserrat; Schmidt, Marjanka K.; Hall, Per; Easton, Douglas F.; Chang-Claude, Jenny

    2014-01-01

    Genes that alter disease risk only in combination with certain environmental exposures may not be detected in genetic association analysis. By using methods accounting for gene-environment (G × E) interaction, we aimed to identify novel genetic loci associated with breast cancer risk. Up to 34,475 cases and 34,786 controls of European ancestry from up to 23 studies in the Breast Cancer Association Consortium were included. Overall, 71,527 single nucleotide polymorphisms (SNPs), enriched for association with breast cancer, were tested for interaction with 10 environmental risk factors using three recently proposed hybrid methods and a joint test of association and interaction. Analyses were adjusted for age, study, population stratification, and confounding factors as applicable. Three SNPs in two independent loci showed statistically significant association: SNPs rs10483028 and rs2242714 in perfect linkage disequilibrium on chromosome 21 and rs12197388 in ARID1B on chromosome 6. While rs12197388 was identified using the joint test with parity and with age at menarche (P-values = 3 × 10−07), the variants on chromosome 21 q22.12, which showed interaction with adult body mass index (BMI) in 8,891 postmenopausal women, were identified by all methods applied. SNP rs10483028 was associated with breast cancer in women with a BMI below 25 kg/m2 (OR = 1.26, 95% CI 1.15–1.38) but not in women with a BMI of 30 kg/m2 or higher (OR = 0.89, 95% CI 0.72–1.11, P for interaction = 3.2 × 10−05). Our findings confirm comparable power of the recent methods for detecting G × E interaction and the utility of using G × E interaction analyses to identify new susceptibility loci. PMID:24248812

  7. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes

    NARCIS (Netherlands)

    Mckay, James D.; Hung, Rayjean J; Han, Younghun; Zong, Xuchen; Carreras-Torres, Robert; Christiani, David C.; Caporaso, Neil E.; Johansson, Mattias; Xiao, Xiangjun; Li, Yafang; Byun, Jinyoung; Dunning, Alison; Pooley, Karen A.; Qian, David C.; Ji, Xuemei; Liu, Geoffrey; Timofeeva, Maria N.; Bojesen, Stig E.; Wu, Xifeng; Le Marchand, Loic; Albanes, Demetrios; Bickeboeller, Heike; Aldrich, Melinda C.; Bush, William S.; Tardon, Adonina; Rennert, Gad; Teare, M. Dawn; Field, John K.; Kiemeney, Lambertus A.; Lazarus, Philip; Haugen, Aage; Lam, Stephen; Schabath, Matthew B.; Andrew, Angeline S.; Shen, Hongbing; Hong, Yun-Chul; Yuan, Jian-Min; Bertazzi, Pier Alberto; Pesatori, Angela C.; Ye, Yuanqing; Diao, Nancy; Su, Li; Zhang, Ruyang; Brhane, Yonathan; Leighl, Natasha; Johansen, Jakob S.; Mellemgaard, Anders; Saliba, Walid; Marcus, Michael W.; Timens, Wim

    Although several lung cancer susceptibility loci have been identified, much of the heritability for lung cancer remains unexplained. Here 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated genomewide association

  8. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes

    DEFF Research Database (Denmark)

    McKay, James D; Hung, Rayjean J; Han, Younghun

    2017-01-01

    Although several lung cancer susceptibility loci have been identified, much of the heritability for lung cancer remains unexplained. Here 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated genome-wide association ...... receptor, CHRNA2, and the telomere-related genes OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer....

  9. Characterizing genetic risk at known prostate cancer susceptibility loci in African Americans.

    Directory of Open Access Journals (Sweden)

    Christopher A Haiman

    2011-05-01

    Full Text Available GWAS of prostate cancer have been remarkably successful in revealing common genetic variants and novel biological pathways that are linked with its etiology. A more complete understanding of inherited susceptibility to prostate cancer in the general population will come from continuing such discovery efforts and from testing known risk alleles in diverse racial and ethnic groups. In this large study of prostate cancer in African American men (3,425 prostate cancer cases and 3,290 controls, we tested 49 risk variants located in 28 genomic regions identified through GWAS in men of European and Asian descent, and we replicated associations (at p≤0.05 with roughly half of these markers. Through fine-mapping, we identified nearby markers in many regions that better define associations in African Americans. At 8q24, we found 9 variants (p≤6×10(-4 that best capture risk of prostate cancer in African Americans, many of which are more common in men of African than European descent. The markers found to be associated with risk at each locus improved risk modeling in African Americans (per allele OR = 1.17 over the alleles reported in the original GWAS (OR = 1.08. In summary, in this detailed analysis of the prostate cancer risk loci reported from GWAS, we have validated and improved upon markers of risk in some regions that better define the association with prostate cancer in African Americans. Our findings with variants at 8q24 also reinforce the importance of this region as a major risk locus for prostate cancer in men of African ancestry.

  10. Genetic fine-mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

    Science.gov (United States)

    Mahajan, Anubha; Locke, Adam; Rayner, N William; Robertson, Neil; Scott, Robert A; Prokopenko, Inga; Scott, Laura J; Green, Todd; Sparso, Thomas; Thuillier, Dorothee; Yengo, Loic; Grallert, Harald; Wahl, Simone; Frånberg, Mattias; Strawbridge, Rona J; Kestler, Hans; Chheda, Himanshu; Eisele, Lewin; Gustafsson, Stefan; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Qi, Lu; Karssen, Lennart C; van Leeuwen, Elisabeth M; Willems, Sara M; Li, Man; Chen, Han; Fuchsberger, Christian; Kwan, Phoenix; Ma, Clement; Linderman, Michael; Lu, Yingchang; Thomsen, Soren K; Rundle, Jana K; Beer, Nicola L; van de Bunt, Martijn; Chalisey, Anil; Kang, Hyun Min; Voight, Benjamin F; Abecasis, Goncalo R; Almgren, Peter; Baldassarre, Damiano; Balkau, Beverley; Benediktsson, Rafn; Blüher, Matthias; Boeing, Heiner; Bonnycastle, Lori L; Borringer, Erwin P; Burtt, Noël P; Carey, Jason; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Doney, Alex SF; Dorkhan, Mozhgan; Edkins, Sarah; Eriksson, Johan G; Esko, Tonu; Eury, Elodie; Fadista, João; Flannick, Jason; Fontanillas, Pierre; Fox, Caroline; Franks, Paul W; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Gottesman, Omri; Grant, George B; Grarup, Niels; Groves, Christopher J; Hassinen, Maija; Have, Christian T; Herder, Christian; Holmen, Oddgeir L; Hreidarsson, Astradur B; Humphries, Steve E; Hunter, David J; Jackson, Anne U; Jonsson, Anna; Jørgensen, Marit E; Jørgensen, Torben; Kerrison, Nicola D; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Kovacs, Peter; Kraft, Peter; Kravic, Jasmina; Langford, Cordelia; Leander, Karin; Liang, Liming; Lichtner, Peter; Lindgren, Cecilia M; Lindholm, Eero; Linneberg, Allan; Liu, Ching-Ti; Lobbens, Stéphane; Luan, Jian’an; Lyssenko, Valeriya; Männistö, Satu; McLeod, Olga; Meyer, Julia; Mihailov, Evelin; Mirza, Ghazala; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Navarro, Carmen; Nöthen, Markus M; Oskolkov, Nikolay N; Owen, Katharine R; Palli, Domenico; Pechlivanis, Sonali; Perry, John RB; Platou, Carl GP; Roden, Michael; Ruderfer, Douglas; Rybin, Denis; van der Schouw, Yvonne T; Sennblad, Bengt; Sigurðsson, Gunnar; Stančáková, Alena; Steinbach, Gerald; Storm, Petter; Strauch, Konstantin; Stringham, Heather M; Sun, Qi; Thorand, Barbara; Tikkanen, Emmi; Tonjes, Anke; Trakalo, Joseph; Tremoli, Elena; Tuomi, Tiinamaija; Wennauer, Roman; Wood, Andrew R; Zeggini, Eleftheria; Dunham, Ian; Birney, Ewan; Pasquali, Lorenzo; Ferrer, Jorge; Loos, Ruth JF; Dupuis, Josée; Florez, Jose C; Boerwinkle, Eric; Pankow, James S; van Duijn, Cornelia; Sijbrands, Eric; Meigs, James B; Hu, Frank B; Thorsteinsdottir, Unnur; Stefansson, Kari; Lakka, Timo A; Rauramaa, Rainer; Stumvoll, Michael; Pedersen, Nancy L; Lind, Lars; Keinanen-Kiukaanniemi, Sirkka M; Korpi-Hyövälti, Eeva; Saaristo, Timo E; Saltevo, Juha; Kuusisto, Johanna; Laakso, Markku; Metspalu, Andres; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne; Ripatti, Samuli; Salomaa, Veikko; Ingelsson, Erik; Boehm, Bernhard O; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Koistinen, Heikki; Tuomilehto, Jaakko; Hveem, Kristian; Njølstad, Inger; Deloukas, Panagiotis; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; de Faire, Ulf; Hamsten, Anders; Illig, Thomas; Peters, Annette; Cauchi, Stephane; Sladek, Rob; Froguel, Philippe; Hansen, Torben; Pedersen, Oluf; Morris, Andrew D; Palmer, Collin NA; Kathiresan, Sekar; Melander, Olle; Nilsson, Peter M; Groop, Leif C; Barroso, Inês; Langenberg, Claudia; Wareham, Nicholas J; O’Callaghan, Christopher A; Gloyn, Anna L; Altshuler, David; Boehnke, Michael; Teslovich, Tanya M; McCarthy, Mark I; Morris, Andrew P

    2015-01-01

    We performed fine-mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in/near KCNQ1. “Credible sets” of variants most likely to drive each distinct signal mapped predominantly to non-coding sequence, implying that T2D association is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine-mapping implicated rs10830963 as driving T2D association. We confirmed that this T2D-risk allele increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D-risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease. PMID:26551672

  11. Using case-control designs for genome-wide screening for associations between genetic markers and disease susceptibility loci.

    Science.gov (United States)

    Yang, Q; Khoury, M J; Atkinson, M; Sun, F; Cheng, R; Flanders, W D

    1999-01-01

    We used a case-control design to scan the genome for any associations between genetic markers and disease susceptibility loci using the first two replicates of the Mycenaean population from the GAW11 (Problem 2) data. Using a case-control approach, we constructed a series of 2-by-3 tables for each allele of every marker on all six chromosomes. Odds ratios (ORs) and 95% confidence intervals (95% CI) were estimated for all alleles of every marker. We selected the one allele for which the estimated OR had the minimum p-value to plot in the graph. Among these selected ORs, we calculated 95% CI for those that had a p-value Mycenaean population, the case-control design identified allele number 1 of marker 24 on chromosome 1 to be associated with a disease susceptibility gene, OR = 2.10 (95% CI 1.66-2.62). Our approach failed to show any other significant association between case-control status and genetic markers. Stratified analysis on the environmental risk factor (E1) provided no further evidence of significant association other than allele 1 of marker 24 on chromosome 1. These data indicate the absence of linkage disequilibrium for markers flanking loci A, B, and C. Finally, we examined the effect of gene x environment (G x E) interaction for the identified allele. Our results provided no evidence of G x E interaction, but suggested that the environmental exposure alone was a risk factor for the disease.

  12. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

    NARCIS (Netherlands)

    K. Gaulton (Kyle); T. Ferreira (Teresa); Y. Lee (Yeji); A. Raimondo (Anne); R. Mägi (Reedik); M.E. Reschen (Michael E.); A. Mahajan (Anubha); A. Locke (Adam); N.W. Rayner (Nigel William); N.R. Robertson (Neil); R.A. Scott (Robert); I. Prokopenko (Inga); L.J. Scott (Laura); T. Green (Todd); T. Sparsø (Thomas); D. Thuillier (Dorothee); L. Yengo (Loic); H. Grallert (Harald); S. Wahl (Simone); M. Frånberg (Mattias); R.J. Strawbridge (Rona); H. Kestler (Hans); H. Chheda (Himanshu); L. Eisele (Lewin); S. Gustafsson (Stefan); V. Steinthorsdottir (Valgerdur); G. Thorleifsson (Gudmar); L. Qi (Lu); L.C. Karssen (Lennart); E.M. van Leeuwen (Elisa); S.M. Willems (Sara); M. Li (Man); H. Chen (Han); C. Fuchsberger (Christian); P. Kwan (Phoenix); C. Ma (Clement); M. Linderman (Michael); Y. Lu (Yingchang); S.K. Thomsen (Soren K.); J.K. Rundle (Jana K.); N.L. Beer (Nicola L.); M. van de Bunt (Martijn); A. Chalisey (Anil); H.M. Kang (Hyun Min); B.F. Voight (Benjamin); G.R. Abecasis (Gonçalo); P. Almgren (Peter); D. Baldassarre (Damiano); B. Balkau (Beverley); R. Benediktsson (Rafn); M. Blüher (Matthias); H. Boeing (Heiner); L.L. Bonnycastle (Lori); E.P. Bottinger (Erwin P.); N.P. Burtt (Noël); J. Carey (Jason); G. Charpentier (Guillaume); P.S. Chines (Peter); M. Cornelis (Marilyn); D.J. Couper (David J.); A. Crenshaw (Andrew); R.M. van Dam (Rob); A.S.F. Doney (Alex); M. Dorkhan (Mozhgan); T. Edkins (Ted); J.G. Eriksson (Johan G.); T. Esko (Tõnu); E. Eury (Elodie); J. Fadista (João); J. Flannick (Jason); P. Fontanillas (Pierre); C.S. Fox (Caroline); P.W. Franks (Paul W.); K. Gertow (Karl); C. Gieger (Christian); B. Gigante (Bruna); R.F. Gottesman (Rebecca); G.B. Grant (George); N. Grarup (Niels); C.J. Groves (Christopher J.); M. Hassinen (Maija); C.T. Have (Christian T.); C. Herder (Christian); O.L. Holmen (Oddgeir); A.B. Hreidarsson (Astradur); S.E. Humphries (Steve E.); D.J. Hunter (David J.); A.U. Jackson (Anne); A. Jonsson (Anna); M.E. Jørgensen (Marit E.); T. Jørgensen (Torben); W.H.L. Kao (Wen); N.D. Kerrison (Nicola D.); L. Kinnunen (Leena); N. Klopp (Norman); A. Kong (Augustine); P. Kovacs (Peter); P. Kraft (Peter); J. Kravic (Jasmina); C. Langford (Cordelia); K. Leander (Karin); L. Liang (Liming); P. Lichtner (Peter); C.M. Lindgren (Cecilia M.); B. Lindholm (Bengt); A. Linneberg (Allan); C.-T. Liu (Ching-Ti); S. Lobbens (Stéphane); J. Luan (Jian'fan); V. Lyssenko (Valeriya); S. Männistö (Satu); O. McLeod (Olga); J. Meyer (Jobst); E. Mihailov (Evelin); G. Mirza (Ghazala); T.W. Mühleisen (Thomas); M. Müller-Nurasyid (Martina); C. Navarro (Carmen); M.M. Nöthen (Markus); N.N. Oskolkov (Nikolay N.); K.R. Owen (Katharine); D. Palli (Domenico); S. Pechlivanis (Sonali); L. Peltonen (Leena Johanna); J.R.B. Perry (John); C.P. Platou (Carl); M. Roden (Michael); D. Ruderfer (Douglas); D. Rybin (Denis); Y.T. Van Der Schouw (Yvonne T.); B. Sennblad (Bengt); G. Sigurosson (Gunnar); A. Stancáková (Alena); D. Steinbach; P. Storm (Petter); K. Strauch (Konstantin); H.M. Stringham (Heather); Q. Sun; B. Thorand (Barbara); E. Tikkanen (Emmi); A. Tönjes (Anke); J. Trakalo (Joseph); E. Tremoli (Elena); T. Tuomi (Tiinamaija); R. Wennauer (Roman); S. Wiltshire (Steven); A.R. Wood (Andrew); E. Zeggini (Eleftheria); I. Dunham (Ian); E. Birney (Ewan); L. Pasquali (Lorenzo); J. Ferrer (Jorge); R.J.F. Loos (Ruth); J. Dupuis (Josée); J.C. Florez (Jose); E.A. Boerwinkle (Eric); J.S. Pankow (James); C.M. van Duijn (Cornelia); E.J.G. Sijbrands (Eric); J.B. Meigs (James B.); F.B. Hu (Frank B.); U. Thorsteinsdottir (Unnur); J-A. Zwart (John-Anker); T.A. Lakka (Timo); R. Rauramaa (Rainer); M. Stumvoll (Michael); N.L. Pedersen (Nancy L.); L. Lind (Lars); S. Keinanen-Kiukaanniemi (Sirkka); E. Korpi-Hyövälti (Eeva); T. Saaristo (Timo); J. Saltevo (Juha); J. Kuusisto (Johanna); M. Laakso (Markku); A. Metspalu (Andres); R. Erbel (Raimund); K.-H. Jöckel (Karl-Heinz); S. Moebus (Susanne); S. Ripatti (Samuli); V. Salomaa (Veikko); E. Ingelsson (Erik); B.O. Boehm (Bernhard); R.N. Bergman (Richard N.); F.S. Collins (Francis S.); K.L. Mohlke (Karen L.); H. Koistinen (Heikki); J. Tuomilehto (Jaakko); K. Hveem (Kristian); I. Njølstad (Inger); P. Deloukas (Panagiotis); P.J. Donnelly (Peter J.); T.M. Frayling (Timothy); A.T. Hattersley (Andrew); U. de Faire (Ulf); A. Hamsten (Anders); T. Illig (Thomas); A. Peters (Annette); S. Cauchi (Stephane); R. Sladek (Rob); P. Froguel (Philippe); T. Hansen (Torben); O. Pedersen (Oluf); A.D. Morris (Andrew); C.N.A. Palmer (Collin N. A.); S. Kathiresan (Sekar); O. Melander (Olle); P.M. Nilsson (Peter M.); L. Groop (Leif); I.E. Barroso (Inês); C. Langenberg (Claudia); N.J. Wareham (Nicholas J.); C.A. O'Callaghan (Christopher A.); A.L. Gloyn (Anna); D. Altshuler (David); M. Boehnke (Michael); T.M. Teslovich (Tanya M.); M.I. McCarthy (Mark); A.P. Morris (Andrew)

    2015-01-01

    textabstractWe performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each

  13. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

    NARCIS (Netherlands)

    Gaulton, Kyle J; Ferreira, Teresa; Lee, Yeji; Raimondo, Anne; Mägi, Reedik; Reschen, Michael E; Mahajan, Anubha; Locke, Adam; William Rayner, N; Robertson, Neil; Scott, Robert A; Prokopenko, Inga; Scott, Laura J; Green, Todd; Sparso, Thomas; Thuillier, Dorothee; Yengo, Loic; Grallert, Harald; Wahl, Simone; Frånberg, Mattias; Strawbridge, Rona J; Kestler, Hans; Chheda, Himanshu; Eisele, Lewin; Gustafsson, Stefan; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Qi, Lu; Karssen, Lennart C; van Leeuwen, Elisabeth M; Willems, Sara M; Li, Man; Chen, Han; Fuchsberger, Christian; Kwan, Phoenix; Ma, Clement; Linderman, Michael; Lu, Yingchang; Thomsen, Soren K; Rundle, Jana K; Beer, Nicola L; van de Bunt, Martijn; Chalisey, Anil; Kang, Hyun Min; Voight, Benjamin F; Abecasis, Gonçalo R; Almgren, Peter; Baldassarre, Damiano; Balkau, Beverley; Benediktsson, Rafn; Blüher, Matthias; Boeing, Heiner; Bonnycastle, Lori L; Bottinger, Erwin P; Burtt, Noël P; Carey, Jason; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Doney, Alex S F; Dorkhan, Mozhgan; Edkins, Sarah; Eriksson, Johan G; Esko, Tonu; Eury, Elodie; Fadista, João; Flannick, Jason; Fontanillas, Pierre; Fox, Caroline; Franks, Paul W; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Gottesman, Omri; Grant, George B; Grarup, Niels; Groves, Christopher J; Hassinen, Maija; Have, Christian T; Herder, Christian; Holmen, Oddgeir L; Hreidarsson, Astradur B; Humphries, Steve E; Hunter, David J; Jackson, Anne U; Jonsson, Anna; Jørgensen, Marit E; Jørgensen, Torben; Kao, Wen-Hong L; Kerrison, Nicola D; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Kovacs, Peter; Kraft, Peter; Kravic, Jasmina; Langford, Cordelia; Leander, Karin; Liang, Liming; Lichtner, Peter; Lindgren, Cecilia M; Lindholm, Eero; Linneberg, Allan; Liu, Ching-Ti; Lobbens, Stéphane; Luan, Jian'an; Lyssenko, Valeriya; Männistö, Satu; McLeod, Olga; Meyer, Julia; Mihailov, Evelin; Mirza, Ghazala; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Navarro, Carmen; Nöthen, Markus M; Oskolkov, Nikolay N; Owen, Katharine R; Palli, Domenico; Pechlivanis, Sonali; Peltonen, Leena; Perry, John R B; Platou, Carl G P; Roden, Michael; Ruderfer, Douglas; Rybin, Denis; van der Schouw, Yvonne T; Sennblad, Bengt; Sigurðsson, Gunnar; Stančáková, Alena; Steinbach, Gerald; Storm, Petter; Strauch, Konstantin; Stringham, Heather M; Sun, Qi; Thorand, Barbara; Tikkanen, Emmi; Tonjes, Anke; Trakalo, Joseph; Tremoli, Elena; Tuomi, Tiinamaija; Wennauer, Roman; Wiltshire, Steven; Wood, Andrew R; Zeggini, Eleftheria; Dunham, Ian; Birney, Ewan; Pasquali, Lorenzo; Ferrer, Jorge; Loos, Ruth J F; Dupuis, Josée; Florez, Jose C; Boerwinkle, Eric; Pankow, James S; van Duijn, Cornelia; Sijbrands, Eric; Meigs, James B; Hu, Frank B; Thorsteinsdottir, Unnur; Stefansson, Kari; Lakka, Timo A; Rauramaa, Rainer; Stumvoll, Michael; Pedersen, Nancy L; Lind, Lars; Keinanen-Kiukaanniemi, Sirkka M; Korpi-Hyövälti, Eeva; Saaristo, Timo E; Saltevo, Juha; Kuusisto, Johanna; Laakso, Markku; Metspalu, Andres; Erbel, Raimund; Jöcke, Karl-Heinz; Moebus, Susanne; Ripatti, Samuli; Salomaa, Veikko; Ingelsson, Erik; Boehm, Bernhard O; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Koistinen, Heikki; Tuomilehto, Jaakko; Hveem, Kristian; Njølstad, Inger; Deloukas, Panagiotis; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; de Faire, Ulf; Hamsten, Anders; Illig, Thomas; Peters, Annette; Cauchi, Stephane; Sladek, Rob; Froguel, Philippe; Hansen, Torben; Pedersen, Oluf; Morris, Andrew D; Palmer, Collin N A; Kathiresan, Sekar; Melander, Olle; Nilsson, Peter M; Groop, Leif C; Barroso, Inês; Langenberg, Claudia; Wareham, Nicholas J; O'Callaghan, Christopher A; Gloyn, Anna L; Altshuler, David; Boehnke, Michael; Teslovich, Tanya M; McCarthy, Mark I; Morris, Andrew P

    2015-01-01

    We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct

  14. Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-analysis.

    Science.gov (United States)

    Peters, Ulrike; Jiao, Shuo; Schumacher, Fredrick R; Hutter, Carolyn M; Aragaki, Aaron K; Baron, John A; Berndt, Sonja I; Bézieau, Stéphane; Brenner, Hermann; Butterbach, Katja; Caan, Bette J; Campbell, Peter T; Carlson, Christopher S; Casey, Graham; Chan, Andrew T; Chang-Claude, Jenny; Chanock, Stephen J; Chen, Lin S; Coetzee, Gerhard A; Coetzee, Simon G; Conti, David V; Curtis, Keith R; Duggan, David; Edwards, Todd; Fuchs, Charles S; Gallinger, Steven; Giovannucci, Edward L; Gogarten, Stephanie M; Gruber, Stephen B; Haile, Robert W; Harrison, Tabitha A; Hayes, Richard B; Henderson, Brian E; Hoffmeister, Michael; Hopper, John L; Hudson, Thomas J; Hunter, David J; Jackson, Rebecca D; Jee, Sun Ha; Jenkins, Mark A; Jia, Wei-Hua; Kolonel, Laurence N; Kooperberg, Charles; Küry, Sébastien; Lacroix, Andrea Z; Laurie, Cathy C; Laurie, Cecelia A; Le Marchand, Loic; Lemire, Mathieu; Levine, David; Lindor, Noralane M; Liu, Yan; Ma, Jing; Makar, Karen W; Matsuo, Keitaro; Newcomb, Polly A; Potter, John D; Prentice, Ross L; Qu, Conghui; Rohan, Thomas; Rosse, Stephanie A; Schoen, Robert E; Seminara, Daniela; Shrubsole, Martha; Shu, Xiao-Ou; Slattery, Martha L; Taverna, Darin; Thibodeau, Stephen N; Ulrich, Cornelia M; White, Emily; Xiang, Yongbing; Zanke, Brent W; Zeng, Yi-Xin; Zhang, Ben; Zheng, Wei; Hsu, Li

    2013-04-01

    Heritable factors contribute to the development of colorectal cancer. Identifying the genetic loci associated with colorectal tumor formation could elucidate the mechanisms of pathogenesis. We conducted a genome-wide association study that included 14 studies, 12,696 cases of colorectal tumors (11,870 cancer, 826 adenoma), and 15,113 controls of European descent. The 10 most statistically significant, previously unreported findings were followed up in 6 studies; these included 3056 colorectal tumor cases (2098 cancer, 958 adenoma) and 6658 controls of European and Asian descent. Based on the combined analysis, we identified a locus that reached the conventional genome-wide significance level at less than 5.0 × 10(-8): an intergenic region on chromosome 2q32.3, close to nucleic acid binding protein 1 (most significant single nucleotide polymorphism: rs11903757; odds ratio [OR], 1.15 per risk allele; P = 3.7 × 10(-8)). We also found evidence for 3 additional loci with P values less than 5.0 × 10(-7): a locus within the laminin gamma 1 gene on chromosome 1q25.3 (rs10911251; OR, 1.10 per risk allele; P = 9.5 × 10(-8)), a locus within the cyclin D2 gene on chromosome 12p13.32 (rs3217810 per risk allele; OR, 0.84; P = 5.9 × 10(-8)), and a locus in the T-box 3 gene on chromosome 12q24.21 (rs59336; OR, 0.91 per risk allele; P = 3.7 × 10(-7)). In a large genome-wide association study, we associated polymorphisms close to nucleic acid binding protein 1 (which encodes a DNA-binding protein involved in DNA repair) with colorectal tumor risk. We also provided evidence for an association between colorectal tumor risk and polymorphisms in laminin gamma 1 (this is the second gene in the laminin family to be associated with colorectal cancers), cyclin D2 (which encodes for cyclin D2), and T-box 3 (which encodes a T-box transcription factor and is a target of Wnt signaling to β-catenin). The roles of these genes and their products in cancer pathogenesis warrant further

  15. High density genetic mapping identifies new susceptibility loci for rheumatoid arthritis

    Science.gov (United States)

    Eyre, Steve; Bowes, John; Diogo, Dorothée; Lee, Annette; Barton, Anne; Martin, Paul; Zhernakova, Alexandra; Stahl, Eli; Viatte, Sebastien; McAllister, Kate; Amos, Christopher I.; Padyukov, Leonid; Toes, Rene E.M.; Huizinga, Tom W.J.; Wijmenga, Cisca; Trynka, Gosia; Franke, Lude; Westra, Harm-Jan; Alfredsson, Lars; Hu, Xinli; Sandor, Cynthia; de Bakker, Paul I.W.; Davila, Sonia; Khor, Chiea Chuen; Heng, Khai Koon; Andrews, Robert; Edkins, Sarah; Hunt, Sarah E; Langford, Cordelia; Symmons, Deborah; Concannon, Pat; Onengut-Gumuscu, Suna; Rich, Stephen S; Deloukas, Panos; Gonzalez-Gay, Miguel A.; Rodriguez-Rodriguez, Luis; Ärlsetig, Lisbeth; Martin, Javier; Rantapää-Dahlqvist, Solbritt; Plenge, Robert; Raychaudhuri, Soumya; Klareskog, Lars; Gregersen, Peter K; Worthington, Jane

    2012-01-01

    Summary Using the Immunochip custom single nucleotide polymorphism (SNP) array, designed for dense genotyping of 186 genome wide association study (GWAS) confirmed loci we analysed 11,475 rheumatoid arthritis cases of European ancestry and 15,870 controls for 129,464 markers. The data were combined in meta-analysis with GWAS data from additional independent cases (n=2,363) and controls (n=17,872). We identified fourteen novel loci; nine were associated with rheumatoid arthritis overall and 5 specifically in anti-citrillunated peptide antibody positive disease, bringing the number of confirmed European ancestry rheumatoid arthritis loci to 46. We refined the peak of association to a single gene for 19 loci, identified secondary independent effects at six loci and association to low frequency variants (minor allele frequency <0.05) at 4 loci. Bioinformatic analysis of the data generated strong hypotheses for the causal SNP at seven loci. This study illustrates the advantages of dense SNP mapping analysis to inform subsequent functional investigations. PMID:23143596

  16. Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease.

    Science.gov (United States)

    Baillie, J Kenneth; Bretherick, Andrew; Haley, Christopher S; Clohisey, Sara; Gray, Alan; Neyton, Lucile P A; Barrett, Jeffrey; Stahl, Eli A; Tenesa, Albert; Andersson, Robin; Brown, J Ben; Faulkner, Geoffrey J; Lizio, Marina; Schaefer, Ulf; Daub, Carsten; Itoh, Masayoshi; Kondo, Naoto; Lassmann, Timo; Kawai, Jun; Mole, Damian; Bajic, Vladimir B; Heutink, Peter; Rehli, Michael; Kawaji, Hideya; Sandelin, Albin; Suzuki, Harukazu; Satsangi, Jack; Wells, Christine A; Hacohen, Nir; Freeman, Thomas C; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Hume, David A

    2018-03-01

    Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn's disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits.

  17. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis

    NARCIS (Netherlands)

    Eyre, Steve; Bowes, John; Diogo, Dorothee; Lee, Annette; Barton, Anne; Martin, Paul; Zhernakova, Alexandra; Stahl, Eli; Viatte, Sebastien; McAllister, Kate; Amos, Christopher I.; Padyukov, Leonid; Toes, Rene E. M.; Huizinga, Tom W. J.; Wijmenga, Cisca; Trynka, Gosia; Franke, Lude; Westra, Harm-Jan; Alfredsson, Lars; Hu, Xinli; Sandor, Cynthia; de Bakker, Paul I. W.; Davila, Sonia; Khor, Chiea Chuen; Heng, Khai Koon; Andrews, Robert; Edkins, Sarah; Hunt, Sarah E.; Langford, Cordelia; Symmons, Deborah; Concannon, Pat; Onengut-Gumuscu, Suna; Rich, Stephen S.; Deloukas, Panos; Gonzalez-Gay, Miguel A.; Rodriguez-Rodriguez, Luis; Arlsetig, Lisbeth; Martin, Javier; Rantapaa-Dahlqvist, Solbritt; Plenge, Robert M.; Raychaudhuri, Soumya; Klareskog, Lars; Gregersen, Peter K.; Worthington, Jane

    2012-01-01

    Using the Immunochip custom SNP array, which was designed for dense genotyping of 186 loci identified through genome-wide association studies (GWAS), we analyzed 11,475 individuals with rheumatoid arthritis (cases) of European ancestry and 15,870 controls for 129,464 markers. We combined these data

  18. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

    DEFF Research Database (Denmark)

    Gaulton, Kyle J; Ferreira, Teresa; Lee, Yeji

    2015-01-01

    We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct...... signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping...... implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele...

  19. Identification of new genetic susceptibility loci for breast cancer through consideration of gene-environment interactions

    DEFF Research Database (Denmark)

    Schoeps, Anja; Rudolph, Anja; Seibold, Petra

    2014-01-01

    recently proposed hybrid methods and a joint test of association and interaction. Analyses were adjusted for age, study, population stratification, and confounding factors as applicable. Three SNPs in two independent loci showed statistically significant association: SNPs rs10483028 and rs2242714......,475 cases and 34,786 controls of European ancestry from up to 23 studies in the Breast Cancer Association Consortium were included. Overall, 71,527 single nucleotide polymorphisms (SNPs), enriched for association with breast cancer, were tested for interaction with 10 environmental risk factors using three...... in perfect linkage disequilibrium on chromosome 21 and rs12197388 in ARID1B on chromosome 6. While rs12197388 was identified using the joint test with parity and with age at menarche (P-values = 3 × 10(-07)), the variants on chromosome 21 q22.12, which showed interaction with adult body mass index (BMI) in 8...

  20. Genetics of susceptibility to leishmaniasis in mice: four novel loci and functional heterogeneity of gene effects

    Czech Academy of Sciences Publication Activity Database

    Havelková, Helena; Badalová, Jana; Svobodová, M.; Vojtíšková, Jarmila; Kurey, Irina; Vladimirov, Vladimir; Demant, P.; Lipoldová, Marie

    2006-01-01

    Roč. 7, č. 3 (2006), s. 220-233 ISSN 1466-4879 R&D Projects: GA ČR(CZ) GA310/03/1381; GA ČR(CZ) GD310/03/H147 Grant - others:HHMI(US) 55000323 Institutional research plan: CEZ:AV0Z50520514 Keywords : leishmania sis * host response * gene effect Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.533, year: 2006

  1. Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease

    DEFF Research Database (Denmark)

    Baillie, J. Kenneth; Bretherick, Andrew; Haley, Christopher S.

    2018-01-01

    Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcrip...

  2. Genome-wide linkage meta-analysis identifies susceptibility loci at 2q34 and 13q31.3 for genetic generalized epilepsies.

    Science.gov (United States)

    Leu, Costin; de Kovel, Carolien G F; Zara, Federico; Striano, Pasquale; Pezzella, Marianna; Robbiano, Angela; Bianchi, Amedeo; Bisulli, Francesca; Coppola, Antonietta; Giallonardo, Anna Teresa; Beccaria, Francesca; Trenité, Dorothée Kasteleijn-Nolst; Lindhout, Dick; Gaus, Verena; Schmitz, Bettina; Janz, Dieter; Weber, Yvonne G; Becker, Felicitas; Lerche, Holger; Kleefuss-Lie, Ailing A; Hallman, Kerstin; Kunz, Wolfram S; Elger, Christian E; Muhle, Hiltrud; Stephani, Ulrich; Møller, Rikke S; Hjalgrim, Helle; Mullen, Saul; Scheffer, Ingrid E; Berkovic, Samuel F; Everett, Kate V; Gardiner, Mark R; Marini, Carla; Guerrini, Renzo; Lehesjoki, Anna-Elina; Siren, Auli; Nabbout, Rima; Baulac, Stephanie; Leguern, Eric; Serratosa, Jose M; Rosenow, Felix; Feucht, Martha; Unterberger, Iris; Covanis, Athanasios; Suls, Arvid; Weckhuysen, Sarah; Kaneva, Radka; Caglayan, Hande; Turkdogan, Dilsad; Baykan, Betul; Bebek, Nerses; Ozbek, Ugur; Hempelmann, Anne; Schulz, Herbert; Rüschendorf, Franz; Trucks, Holger; Nürnberg, Peter; Avanzini, Giuliano; Koeleman, Bobby P C; Sander, Thomas

    2012-02-01

    Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% with heritability estimates of 80%. A considerable proportion of families with siblings affected by GGEs presumably display an oligogenic inheritance. The present genome-wide linkage meta-analysis aimed to map: (1) susceptibility loci shared by a broad spectrum of GGEs, and (2) seizure type-related genetic factors preferentially predisposing to either typical absence or myoclonic seizures, respectively. Meta-analysis of three genome-wide linkage datasets was carried out in 379 GGE-multiplex families of European ancestry including 982 relatives with GGEs. To dissect out seizure type-related susceptibility genes, two family subgroups were stratified comprising 235 families with predominantly genetic absence epilepsies (GAEs) and 118 families with an aggregation of juvenile myoclonic epilepsy (JME). To map shared and seizure type-related susceptibility loci, both nonparametric loci (NPL) and parametric linkage analyses were performed for a broad trait model (GGEs) in the entire set of GGE-multiplex families and a narrow trait model (typical absence or myoclonic seizures) in the subgroups of JME and GAE families. For the entire set of 379 GGE-multiplex families, linkage analysis revealed six loci achieving suggestive evidence for linkage at 1p36.22, 3p14.2, 5q34, 13q12.12, 13q31.3, and 19q13.42. The linkage finding at 5q34 was consistently supported by both NPL and parametric linkage results across all three family groups. A genome-wide significant nonparametric logarithm of odds score of 3.43 was obtained at 2q34 in 118 JME families. Significant parametric linkage to 13q31.3 was found in 235 GAE families assuming recessive inheritance (heterogeneity logarithm of odds = 5.02). Our linkage results support an oligogenic predisposition of familial GGE syndromes. The genetic risk factor at 5q34 confers risk to a broad spectrum of familial GGE syndromes, whereas susceptibility loci at 2q34 and 13q31

  3. Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease

    DEFF Research Database (Denmark)

    Baillie, J Kenneth; Bretherick, Andrew; Haley, Christopher S

    2018-01-01

    Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns...... the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes...... in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn's disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely...

  4. Genetic susceptibility loci, environmental exposures, and Parkinson's disease: a case-control study of gene-environment interactions.

    Science.gov (United States)

    Chung, Sun Ju; Armasu, Sebastian M; Anderson, Kari J; Biernacka, Joanna M; Lesnick, Timothy G; Rider, David N; Cunningham, Julie M; Ahlskog, J Eric; Frigerio, Roberta; Maraganore, Demetrius M

    2013-06-01

    Prior studies causally linked mutations in SNCA, MAPT, and LRRK2 genes with familial Parkinsonism. Genome-wide association studies have demonstrated association of single nucleotide polymorphisms (SNPs) in those three genes with sporadic Parkinson's disease (PD) susceptibility worldwide. Here we investigated the interactions between SNPs in those three susceptibility genes and environmental exposures (pesticides application, tobacco smoking, coffee drinking, and alcohol drinking) also associated with PD susceptibility. Pairwise interactions between environmental exposures and 18 variants (16 SNPs and two variable number tandem repeats, or "VNTRs") in SNCA, MAPT and LRRK2, were investigated using data from 1098 PD cases from the upper Midwest, USA and 1098 matched controls. Environmental exposures were assessed using a validated telephone interview script. Five pairwise interactions had uncorrected P-values coffee drinking × MAPT H1/H2 haplotype or MAPT rs16940806, and alcohol drinking × MAPT rs2435211. None of these interactions remained significant after Bonferroni correction. Secondary analyses in strata defined by type of control (sibling or unrelated), sex, or age at onset of the case also did not identify significant interactions after Bonferroni correction. This study documented limited pairwise interactions between established genetic and environmental risk factors for PD; however, the associations were not significant after correction for multiple testing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci.

    Science.gov (United States)

    Aung, Tin; Ozaki, Mineo; Lee, Mei Chin; Schlötzer-Schrehardt, Ursula; Thorleifsson, Gudmar; Mizoguchi, Takanori; Igo, Robert P; Haripriya, Aravind; Williams, Susan E; Astakhov, Yury S; Orr, Andrew C; Burdon, Kathryn P; Nakano, Satoko; Mori, Kazuhiko; Abu-Amero, Khaled; Hauser, Michael; Li, Zheng; Prakadeeswari, Gopalakrishnan; Bailey, Jessica N Cooke; Cherecheanu, Alina Popa; Kang, Jae H; Nelson, Sarah; Hayashi, Ken; Manabe, Shin-Ichi; Kazama, Shigeyasu; Zarnowski, Tomasz; Inoue, Kenji; Irkec, Murat; Coca-Prados, Miguel; Sugiyama, Kazuhisa; Järvelä, Irma; Schlottmann, Patricio; Lerner, S Fabian; Lamari, Hasnaa; Nilgün, Yildirim; Bikbov, Mukharram; Park, Ki Ho; Cha, Soon Cheol; Yamashiro, Kenji; Zenteno, Juan C; Jonas, Jost B; Kumar, Rajesh S; Perera, Shamira A; Chan, Anita S Y; Kobakhidze, Nino; George, Ronnie; Vijaya, Lingam; Do, Tan; Edward, Deepak P; de Juan Marcos, Lourdes; Pakravan, Mohammad; Moghimi, Sasan; Ideta, Ryuichi; Bach-Holm, Daniella; Kappelgaard, Per; Wirostko, Barbara; Thomas, Samuel; Gaston, Daniel; Bedard, Karen; Greer, Wenda L; Yang, Zhenglin; Chen, Xueyi; Huang, Lulin; Sang, Jinghong; Jia, Hongyan; Jia, Liyun; Qiao, Chunyan; Zhang, Hui; Liu, Xuyang; Zhao, Bowen; Wang, Ya-Xing; Xu, Liang; Leruez, Stéphanie; Reynier, Pascal; Chichua, George; Tabagari, Sergo; Uebe, Steffen; Zenkel, Matthias; Berner, Daniel; Mossböck, Georg; Weisschuh, Nicole; Hoja, Ursula; Welge-Luessen, Ulrich-Christoph; Mardin, Christian; Founti, Panayiota; Chatzikyriakidou, Anthi; Pappas, Theofanis; Anastasopoulos, Eleftherios; Lambropoulos, Alexandros; Ghosh, Arkasubhra; Shetty, Rohit; Porporato, Natalia; Saravanan, Vijayan; Venkatesh, Rengaraj; Shivkumar, Chandrashekaran; Kalpana, Narendran; Sarangapani, Sripriya; Kanavi, Mozhgan R; Beni, Afsaneh Naderi; Yazdani, Shahin; Lashay, Alireza; Naderifar, Homa; Khatibi, Nassim; Fea, Antonio; Lavia, Carlo; Dallorto, Laura; Rolle, Teresa; Frezzotti, Paolo; Paoli, Daniela; Salvi, Erika; Manunta, Paolo; Mori, Yosai; Miyata, Kazunori; Higashide, Tomomi; Chihara, Etsuo; Ishiko, Satoshi; Yoshida, Akitoshi; Yanagi, Masahide; Kiuchi, Yoshiaki; Ohashi, Tsutomu; Sakurai, Toshiya; Sugimoto, Takako; Chuman, Hideki; Aihara, Makoto; Inatani, Masaru; Miyake, Masahiro; Gotoh, Norimoto; Matsuda, Fumihiko; Yoshimura, Nagahisa; Ikeda, Yoko; Ueno, Morio; Sotozono, Chie; Jeoung, Jin Wook; Sagong, Min; Park, Kyu Hyung; Ahn, Jeeyun; Cruz-Aguilar, Marisa; Ezzouhairi, Sidi M; Rafei, Abderrahman; Chong, Yaan Fun; Ng, Xiao Yu; Goh, Shuang Ru; Chen, Yueming; Yong, Victor H K; Khan, Muhammad Imran; Olawoye, Olusola O; Ashaye, Adeyinka O; Ugbede, Idakwo; Onakoya, Adeola; Kizor-Akaraiwe, Nkiru; Teekhasaenee, Chaiwat; Suwan, Yanin; Supakontanasan, Wasu; Okeke, Suhanya; Uche, Nkechi J; Asimadu, Ifeoma; Ayub, Humaira; Akhtar, Farah; Kosior-Jarecka, Ewa; Lukasik, Urszula; Lischinsky, Ignacio; Castro, Vania; Grossmann, Rodolfo Perez; Sunaric Megevand, Gordana; Roy, Sylvain; Dervan, Edward; Silke, Eoin; Rao, Aparna; Sahay, Priti; Fornero, Pablo; Cuello, Osvaldo; Sivori, Delia; Zompa, Tamara; Mills, Richard A; Souzeau, Emmanuelle; Mitchell, Paul; Wang, Jie Jin; Hewitt, Alex W; Coote, Michael; Crowston, Jonathan G; Astakhov, Sergei Y; Akopov, Eugeny L; Emelyanov, Anton; Vysochinskaya, Vera; Kazakbaeva, Gyulli; Fayzrakhmanov, Rinat; Al-Obeidan, Saleh A; Owaidhah, Ohoud; Aljasim, Leyla Ali; Chowbay, Balram; Foo, Jia Nee; Soh, Raphael Q; Sim, Kar Seng; Xie, Zhicheng; Cheong, Augustine W O; Mok, Shi Qi; Soo, Hui Meng; Chen, Xiao Yin; Peh, Su Qin; Heng, Khai Koon; Husain, Rahat; Ho, Su-Ling; Hillmer, Axel M; Cheng, Ching-Yu; Escudero-Domínguez, Francisco A; González-Sarmiento, Rogelio; Martinon-Torres, Frederico; Salas, Antonio; Pathanapitoon, Kessara; Hansapinyo, Linda; Wanichwecharugruang, Boonsong; Kitnarong, Naris; Sakuntabhai, Anavaj; Nguyn, Hip X; Nguyn, Giang T T; Nguyn, Trình V; Zenz, Werner; Binder, Alexander; Klobassa, Daniela S; Hibberd, Martin L; Davila, Sonia; Herms, Stefan; Nöthen, Markus M; Moebus, Susanne; Rautenbach, Robyn M; Ziskind, Ari; Carmichael, Trevor R; Ramsay, Michele; Álvarez, Lydia; García, Montserrat; González-Iglesias, Héctor; Rodríguez-Calvo, Pedro P; Fernández-Vega Cueto, Luis; Oguz, Çilingir; Tamcelik, Nevbahar; Atalay, Eray; Batu, Bilge; Aktas, Dilek; Kasım, Burcu; Wilson, M Roy; Coleman, Anne L; Liu, Yutao; Challa, Pratap; Herndon, Leon; Kuchtey, Rachel W; Kuchtey, John; Curtin, Karen; Chaya, Craig J; Crandall, Alan; Zangwill, Linda M; Wong, Tien Yin; Nakano, Masakazu; Kinoshita, Shigeru; den Hollander, Anneke I; Vesti, Eija; Fingert, John H; Lee, Richard K; Sit, Arthur J; Shingleton, Bradford J; Wang, Ningli; Cusi, Daniele; Qamar, Raheel; Kraft, Peter; Pericak-Vance, Margaret A; Raychaudhuri, Soumya; Heegaard, Steffen; Kivelä, Tero; Reis, André; Kruse, Friedrich E; Weinreb, Robert N; Pasquale, Louis R; Haines, Jonathan L; Thorsteinsdottir, Unnur; Jonasson, Fridbert; Allingham, R Rand; Milea, Dan; Ritch, Robert; Kubota, Toshiaki; Tashiro, Kei; Vithana, Eranga N; Micheal, Shazia; Topouzis, Fotis; Craig, Jamie E; Dubina, Michael; Sundaresan, Periasamy; Stefansson, Kari; Wiggs, Janey L; Pasutto, Francesca; Khor, Chiea Chuen

    2017-07-01

    Exfoliation syndrome (XFS) is the most common known risk factor for secondary glaucoma and a major cause of blindness worldwide. Variants in two genes, LOXL1 and CACNA1A, have previously been associated with XFS. To further elucidate the genetic basis of XFS, we collected a global sample of XFS cases to refine the association at LOXL1, which previously showed inconsistent results across populations, and to identify new variants associated with XFS. We identified a rare protective allele at LOXL1 (p.Phe407, odds ratio (OR) = 25, P = 2.9 × 10 -14 ) through deep resequencing of XFS cases and controls from nine countries. A genome-wide association study (GWAS) of XFS cases and controls from 24 countries followed by replication in 18 countries identified seven genome-wide significant loci (P < 5 × 10 -8 ). We identified association signals at 13q12 (POMP), 11q23.3 (TMEM136), 6p21 (AGPAT1), 3p24 (RBMS3) and 5q23 (near SEMA6A). These findings provide biological insights into the pathology of XFS and highlight a potential role for naturally occurring rare LOXL1 variants in disease biology.

  6. Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation.

    Science.gov (United States)

    Andlauer, Till F M; Buck, Dorothea; Antony, Gisela; Bayas, Antonios; Bechmann, Lukas; Berthele, Achim; Chan, Andrew; Gasperi, Christiane; Gold, Ralf; Graetz, Christiane; Haas, Jürgen; Hecker, Michael; Infante-Duarte, Carmen; Knop, Matthias; Kümpfel, Tania; Limmroth, Volker; Linker, Ralf A; Loleit, Verena; Luessi, Felix; Meuth, Sven G; Mühlau, Mark; Nischwitz, Sandra; Paul, Friedemann; Pütz, Michael; Ruck, Tobias; Salmen, Anke; Stangel, Martin; Stellmann, Jan-Patrick; Stürner, Klarissa H; Tackenberg, Björn; Then Bergh, Florian; Tumani, Hayrettin; Warnke, Clemens; Weber, Frank; Wiendl, Heinz; Wildemann, Brigitte; Zettl, Uwe K; Ziemann, Ulf; Zipp, Frauke; Arloth, Janine; Weber, Peter; Radivojkov-Blagojevic, Milena; Scheinhardt, Markus O; Dankowski, Theresa; Bettecken, Thomas; Lichtner, Peter; Czamara, Darina; Carrillo-Roa, Tania; Binder, Elisabeth B; Berger, Klaus; Bertram, Lars; Franke, Andre; Gieger, Christian; Herms, Stefan; Homuth, Georg; Ising, Marcus; Jöckel, Karl-Heinz; Kacprowski, Tim; Kloiber, Stefan; Laudes, Matthias; Lieb, Wolfgang; Lill, Christina M; Lucae, Susanne; Meitinger, Thomas; Moebus, Susanne; Müller-Nurasyid, Martina; Nöthen, Markus M; Petersmann, Astrid; Rawal, Rajesh; Schminke, Ulf; Strauch, Konstantin; Völzke, Henry; Waldenberger, Melanie; Wellmann, Jürgen; Porcu, Eleonora; Mulas, Antonella; Pitzalis, Maristella; Sidore, Carlo; Zara, Ilenia; Cucca, Francesco; Zoledziewska, Magdalena; Ziegler, Andreas; Hemmer, Bernhard; Müller-Myhsok, Bertram

    2016-06-01

    We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis.

  7. Characteristics of Japanese inflammatory bowel disease susceptibility loci.

    Science.gov (United States)

    Arimura, Yoshiaki; Isshiki, Hiroyuki; Onodera, Kei; Nagaishi, Kanna; Yamashita, Kentaro; Sonoda, Tomoko; Matsumoto, Takayuki; Takahashi, Atsushi; Takazoe, Masakazu; Yamazaki, Keiko; Kubo, Michiaki; Fujimiya, Mineko; Imai, Kohzoh; Shinomura, Yasuhisa

    2014-08-01

    There are substantial differences in inflammatory bowel disease (IBD) genetics depending on the populations examined. We aimed to identify Japanese population-specific or true culprit susceptibility genes through a meta-analysis of past genetic studies of Japanese IBD. For this study, we reviewed 2,703 articles. The review process consisted of three screening stages: we initially searched for relevant studies and then relevant single nucleotide polymorphisms (SNPs). Finally, we adjusted them for the meta-analysis. To maximize our chances of analysis, we introduced proxy SNPs during the first stage. To minimize publication bias, no significant SNPs and solitary SNPs without pairs were combined to be reconsidered during the third stage. Additionally, two SNPs were newly genotyped. Finally, we conducted a meta-analysis of 37 published studies in 50 SNPs located at 22 loci corresponding to the total number of 4,853 Crohn's disease (CD), 5,612 ulcerative colitis (UC) patients, and 14,239 healthy controls. We confirmed that the NKX2-3 polymorphism is associated with common susceptibility to IBD and that HLA-DRB1*0450 alleles increase susceptibility to CD but reduce risk for UC while HLA-DRB1*1502 alleles increase susceptibility to UC but reduce CD risk. Moreover, we found individual disease risk loci: TNFSF15 and TNFα to CD and HLA-B*5201, and NFKBIL1 to UC. The genetic risk of HLA was substantially high (odds ratios ranged from 1.54 to 2.69) while that of common susceptibility loci to IBD was modest (odds ratio ranged from 1.13 to 1.24). Results indicate that Japanese IBD susceptibility loci identified by the meta-analysis are closely associated with the HLA regions.

  8. Novel genetic susceptibility loci for diabetic end-stage renal disease identified through robust naive Bayes classification

    DEFF Research Database (Denmark)

    Sambo, Francesco; Malovini, Alberto; Sandholm, Niina

    2014-01-01

    in diabetic patients. Our aim was to detect novel genetic variants associated with diabetic nephropathy and ESRD. METHODS: We exploited a novel algorithm, 'Bag of Naive Bayes', whose marker selection strategy is complementary to that of conventional genome-wide association models based on univariate...

  9. Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci

    DEFF Research Database (Denmark)

    Aung, Tin; Ozaki, Mineo; Lee, Mei Chin

    2017-01-01

    Exfoliation syndrome (XFS) is the most common known risk factor for secondary glaucoma and a major cause of blindness worldwide. Variants in two genes, LOXL1 and CACNA1A, have previously been associated with XFS. To further elucidate the genetic basis of XFS, we collected a global sample of XFS c...

  10. Genetic susceptibility to Grave's disease.

    Science.gov (United States)

    Li, Hong; Chen, Qiuying

    2013-06-01

    The variety of clinical presentations of eye changes in patients with Graves' disease (GD) suggests that complex interactions between genetic, environmental, endogenous and local factors influence the severity of Graves' ophthalmopathy (GO). It is thought that the development of GO might be influenced by genetic factors and environmental factors, such as cigarette smoking. At present, however, the role of genetic factors in the development of GO is not known. On the basis of studies with candidate genes and other genetic approaches, several susceptibility loci in GO have been proposed, including immunological genes, human leukocyte antigen (HLA), cytotoxic T-lymphocyte antigen-4 (CTLA-4), regulatory T-cell genes and thyroid-specific genes. This review gives a brief overview of the current range of major susceptibility genes found for GD.

  11. Genetic variants near TIMP3 and high-density lipoprotein–associated loci influence susceptibility to age-related macular degeneration

    Science.gov (United States)

    Chen, Wei; Stambolian, Dwight; Edwards, Albert O.; Branham, Kari E.; Othman, Mohammad; Jakobsdottir, Johanna; Tosakulwong, Nirubol; Pericak-Vance, Margaret A.; Campochiaro, Peter A.; Klein, Michael L.; Tan, Perciliz L.; Conley, Yvette P.; Kanda, Atsuhiro; Kopplin, Laura; Li, Yanming; Augustaitis, Katherine J.; Karoukis, Athanasios J.; Scott, William K.; Agarwal, Anita; Kovach, Jaclyn L.; Schwartz, Stephen G.; Postel, Eric A.; Brooks, Matthew; Baratz, Keith H.; Brown, William L.; Brucker, Alexander J.; Orlin, Anton; Brown, Gary; Ho, Allen; Regillo, Carl; Donoso, Larry; Tian, Lifeng; Kaderli, Brian; Hadley, Dexter; Hagstrom, Stephanie A.; Peachey, Neal S.; Klein, Ronald; Klein, Barbara E. K.; Gotoh, Norimoto; Yamashiro, Kenji; Ferris, Frederick; Fagerness, Jesen A.; Reynolds, Robyn; Farrer, Lindsay A.; Kim, Ivana K.; Miller, Joan W.; Cortón, Marta; Carracedo, Angel; Sanchez-Salorio, Manuel; Pugh, Elizabeth W.; Doheny, Kimberly F.; Brion, Maria; DeAngelis, Margaret M.; Weeks, Daniel E.; Zack, Donald J.; Chew, Emily Y.; Heckenlively, John R.; Yoshimura, Nagahisa; Iyengar, Sudha K.; Francis, Peter J.; Katsanis, Nicholas; Seddon, Johanna M.; Haines, Jonathan L.; Gorin, Michael B.; Abecasis, Gonçalo R.; Swaroop, Anand; Johnson, Robert N.; Ai, Everett; McDonald, H. Richard; Stolarczuk, Margaret; Pavan, Peter Reed; Billiris, Karina K.; Iyer, Mohan; Menosky, Matthew M.; Pautler, Scott E.; Millard, Sharon M.; Hubbard, Baker; Aaberg, Thomas; DuBois, Lindy; Lyon, Alice; Anderson-Nelson, Susan; Jampol, Lee M.; Weinberg, David V.; Muñana, Annie; Rozenbajgier, Zuzanna; Orth, David; Cohen, Jack; MacCumber, Matthew; MacCumber, Matthew; Figliulo, Celeste; Porcz, Liz; Folk, James; Boldt, H. Culver; Russell, Stephen R.; Ivins, Rachel; Hinz, Connie J.; Barr, Charles C.; Bloom, Steve; Jaegers, Ken; Kritchman, Brian; Whittington, Greg; Heier, Jeffrey; Frederick, Albert R.; Morley, Michael G.; Topping, Trexler; Davis, Heather L.; Bressler, Susan B.; Bressler, Neil M.; Doll, Warren; Trese, Michael; Capone, Antonio; Garretson, Bruce R.; Hassan, Tarek S.; Ruby, Alan J.; Osentoski, Tammy; McCannel, Colin A.; Ruszczyk, Margaret J.; Grand, Gilbert; Blinder, Kevin; Holekamp, Nancy M.; Joseph, Daniel P.; Shah, Gaurav; Nobel, Ginny S.; Antoszyk, Andrew N.; Browning, David J.; Stallings, Alison H; Singerman, Lawrence J.; Miller, David; Novak, Michael; Pendergast, Scott; Zegarra, Hernando; Schura, Stephanie A.; Smith-Brewer, Sheila; Davidorf, Frederick H.; Chambers, Robert; Chorich, Louis; Salerno, Jill; Dreyer, Richard F.; Ma, Colin; Kopfer, Marcia R.; Klein, Michael L.; Wilson, David J.; Nolte, Susan K.; Grunwald, Juan E.; Brucker, Alexander J.; Dunaief, Josh; Fine, Stuart L.; Maguire, Albert M.; Stoltz, Robert A.; McRay, Monique N.; Fish, Gary Edd; Anand, Rajiv; Spencer, Rand; Arnwine, Jean; Chandra, Suresh R.; Altaweel, Michael; Blodi, Barbara; Gottlieb, Justin; Ip, Michael; Nork, T. Michael; Perry-Raymond, Jennie; Fine, Stuart L.; Maguire, Maureen G.; Brightwell-Arnold, Mary; Harkins, Sandra; Peskin, Ellen; Ying, Gui-Shuang; Kurinij, Natalie

    2010-01-01

    We executed a genome-wide association scan for age-related macular degeneration (AMD) in 2,157 cases and 1,150 controls. Our results validate AMD susceptibility loci near CFH (P < 10−75), ARMS2 (P < 10−59), C2/CFB (P < 10−20), C3 (P < 10−9), and CFI (P < 10−6). We compared our top findings with the Tufts/Massachusetts General Hospital genome-wide association study of advanced AMD (821 cases, 1,709 controls) and genotyped 30 promising markers in additional individuals (up to 7,749 cases and 4,625 controls). With these data, we identified a susceptibility locus near TIMP3 (overall P = 1.1 × 10−11), a metalloproteinase involved in degradation of the extracellular matrix and previously implicated in early-onset maculopathy. In addition, our data revealed strong association signals with alleles at two loci (LIPC, P = 1.3 × 10−7; CETP, P = 7.4 × 10−7) that were previously associated with high-density lipoprotein cholesterol (HDL-c) levels in blood. Consistent with the hypothesis that HDL metabolism is associated with AMD pathogenesis, we also observed association with AMD of HDL-c—associated alleles near LPL (P = 3.0 × 10−3) and ABCA1 (P = 5.6 × 10−4). Multilocus analysis including all susceptibility loci showed that 329 of 331 individuals (99%) with the highest-risk genotypes were cases, and 85% of these had advanced AMD. Our studies extend the catalog of AMD associated loci, help identify individuals at high risk of disease, and provide clues about underlying cellular pathways that should eventually lead to new therapies. PMID:20385819

  12. Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation

    Science.gov (United States)

    Andlauer, Till F. M.; Buck, Dorothea; Antony, Gisela; Bayas, Antonios; Bechmann, Lukas; Berthele, Achim; Chan, Andrew; Gasperi, Christiane; Gold, Ralf; Graetz, Christiane; Haas, Jürgen; Hecker, Michael; Infante-Duarte, Carmen; Knop, Matthias; Kümpfel, Tania; Limmroth, Volker; Linker, Ralf A.; Loleit, Verena; Luessi, Felix; Meuth, Sven G.; Mühlau, Mark; Nischwitz, Sandra; Paul, Friedemann; Pütz, Michael; Ruck, Tobias; Salmen, Anke; Stangel, Martin; Stellmann, Jan-Patrick; Stürner, Klarissa H.; Tackenberg, Björn; Then Bergh, Florian; Tumani, Hayrettin; Warnke, Clemens; Weber, Frank; Wiendl, Heinz; Wildemann, Brigitte; Zettl, Uwe K.; Ziemann, Ulf; Zipp, Frauke; Arloth, Janine; Weber, Peter; Radivojkov-Blagojevic, Milena; Scheinhardt, Markus O.; Dankowski, Theresa; Bettecken, Thomas; Lichtner, Peter; Czamara, Darina; Carrillo-Roa, Tania; Binder, Elisabeth B.; Berger, Klaus; Bertram, Lars; Franke, Andre; Gieger, Christian; Herms, Stefan; Homuth, Georg; Ising, Marcus; Jöckel, Karl-Heinz; Kacprowski, Tim; Kloiber, Stefan; Laudes, Matthias; Lieb, Wolfgang; Lill, Christina M.; Lucae, Susanne; Meitinger, Thomas; Moebus, Susanne; Müller-Nurasyid, Martina; Nöthen, Markus M.; Petersmann, Astrid; Rawal, Rajesh; Schminke, Ulf; Strauch, Konstantin; Völzke, Henry; Waldenberger, Melanie; Wellmann, Jürgen; Porcu, Eleonora; Mulas, Antonella; Pitzalis, Maristella; Sidore, Carlo; Zara, Ilenia; Cucca, Francesco; Zoledziewska, Magdalena; Ziegler, Andreas; Hemmer, Bernhard; Müller-Myhsok, Bertram

    2016-01-01

    We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis. PMID:27386562

  13. Identification of 64 Novel Genetic Loci Provides an Expanded View on the Genetic Architecture of Coronary Artery Disease

    NARCIS (Netherlands)

    van der Harst, Pim; Verweij, Niek

    2018-01-01

    Rationale: Coronary artery disease (CAD) is a complex phenotype driven by genetic and environmental factors. Ninety-seven genetic risk loci have been identified to date, but the identification of additional susceptibility loci might be important to enhance our understanding of the genetic

  14. Overlap of disease susceptibility loci for rheumatoid arthritis and juvenile idiopathic arthritis

    Science.gov (United States)

    Hinks, Anne; Eyre, Steve; Ke, Xiayi; Barton, Anne; Martin, Paul; Flynn, Edward; Packham, Jon; Worthington, Jane; Thomson, Wendy

    2010-01-01

    Background Genome-wide association studies (GWAS) have been extremely successful in the search for susceptibility risk factors for complex genetic autoimmune diseases. As more studies are published, evidence is emerging of considerable overlap of loci between these diseases. In juvenile idiopathic arthritis (JIA), another complex genetic autoimmune disease, the strategy of using information from autoimmune disease GWAS or candidate gene studies to help in the search for novel JIA susceptibility loci has been successful, with confirmed association with two genes, PTPN22 and IL2RA. Rheumatoid arthritis (RA) is an autoimmune disease that shares similar clinical and pathological features with JIA and, therefore, recently identified confirmed RA susceptibility loci are also excellent JIA candidate loci. Objective To determine the overlap of disease susceptibility loci for RA and JIA. Methods Fifteen single nucleotide polymorphisms (SNPs) at nine RA-associated loci were genotyped in Caucasian patients with JIA (n=1054) and controls (n=3531) and tested for association with JIA. Allele and genotype frequencies were compared between cases and controls using the genetic analysis software, PLINK. Results Two JIA susceptibility loci were identified, one of which was a novel JIA association (STAT4) and the second confirmed previously published associations of the TRAF1/C5 locus with JIA. Weak evidence of association of JIA with three additional loci (Chr6q23, KIF5A and PRKCQ) was also obtained, which warrants further investigation. Conclusion All these loci are good candidates in view of the known pathogenesis of JIA, as genes within these regions (TRAF1, STAT4, TNFAIP3, PRKCQ) are known to be involved in T-cell receptor signalling or activation pathways. PMID:19674979

  15. Genetic susceptibility of periodontitis

    NARCIS (Netherlands)

    Laine, M.L.; Crielaard, W.; Loos, B.G.

    2012-01-01

    In this systematic review, we explore and summarize the peer-reviewed literature on putative genetic risk factors for susceptibility to aggressive and chronic periodontitis. A comprehensive literature search on the PubMed database was performed using the keywords ‘periodontitis’ or ‘periodontal

  16. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity

    NARCIS (Netherlands)

    Tsoi, Lam C.; Spain, Sarah L.; Knight, Jo; Ellinghaus, Eva; Stuart, Philip E.; Capon, Francesca; Ding, Jun; Li, Yanming; Tejasvi, Trilokraj; Gudjonsson, Johann E.; Kang, Hyun M.; Allen, Michael H.; McManus, Ross; Novelli, Giuseppe; Samuelsson, Lena; Schalkwijk, Joost; Stahle, Mona; Burden, A. David; Smith, Catherine H.; Cork, Michael J.; Estivill, Xavier; Bowcock, Anne M.; Krueger, Gerald G.; Weger, Wolfgang; Worthington, Jane; Tazi-Ahnini, Rachid; Nestle, Frank O.; Hayday, Adrian; Hoffmann, Per; Winkelmann, Juliane; Wijmenga, Cisca; Langford, Cordelia; Edkins, Sarah; Andrews, Robert; Blackburn, Hannah; Strange, Amy; Band, Gavin; Pearson, Richard D.; Vukcevic, Damjan; Spencer, Chris C. A.; Deloukas, Panos; Mrowietz, Ulrich; Schreiber, Stefan; Weidinger, Stephan; Koks, Sulev; Kingo, Kuelli; Esko, Tonu; Metspalu, Andres; Ricaño Ponce, Isis; Trynka, Gosia

    2012-01-01

    To gain further insight into the genetic architecture of psoriasis, we conducted a meta-analysis of 3 genome-wide association studies (GWAS) and 2 independent data sets genotyped on the Immunochip, including 10,588 cases and 22,806 controls. We identified 15 new susceptibility loci, increasing to 36

  17. Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma

    NARCIS (Netherlands)

    Cerhan, James R.; Berndt, Sonja I.; Vijai, Joseph; Ghesquières, Hervé; McKay, James; Wang, Sophia S.; Wang, Zhaoming; Yeager, Meredith; Conde, Lucia; De Bakker, Paul I W; Nieters, Alexandra; Cox, David; Burdett, Laurie; Monnereau, Alain; Flowers, Christopher R.; De Roos, Anneclaire J.; Brooks-Wilson, Angela R.; Lan, Qing; Severi, Gianluca; Melbye, Mads; Gu, Jian; Jackson, Rebecca D.; Kane, Eleanor; Teras, Lauren R.; Purdue, Mark P.; Vajdic, Claire M.; Spinelli, John J.; Giles, Graham G.; Albanes, Demetrius; Kelly, Rachel S.; Zucca, Mariagrazia; Bertrand, Kimberly A.; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Hutchinson, Amy; Zhi, Degui; Habermann, Thomas M.; Link, Brian K.; Novak, Anne J.; Dogan, Ahmet; Asmann, Yan W.; Liebow, Mark; Thompson, Carrie A.; Ansell, Stephen M.; Witzig, Thomas E.; Weiner, George J.; Veron, Amelie S.; Zelenika, Diana; Tilly, Hervé; Haioun, Corinne; Molina, Thierry Jo; Hjalgrim, Henrik; Glimelius, Bengt; Adami, Hans Olov; Bracci, Paige M.; Riby, Jacques; Smith, Martyn T.; Holly, Elizabeth A.; Cozen, Wendy; Hartge, Patricia; Morton, Lindsay M.; Severson, Richard K.; Tinker, Lesley F.; North, Kari E.; Becker, Nikolaus; Benavente, Yolanda; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; Staines, Anthony; Lightfoot, Tracy; Crouch, Simon; Smith, Alex; Roman, Eve; Diver, W. Ryan; Offit, Kenneth; Zelenetz, Andrew; Klein, Robert J.; Villano, Danylo J.; Zheng, Tongzhang; Zhang, Yawei; Holford, Theodore R.; Kricker, Anne; Turner, Jenny; Southey, Melissa C.; Clavel, Jacqueline; Virtamo, Jarmo; Weinstein, Stephanie; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Trichopoulos, Dimitrios; Vermeulen, Roel C H; Boeing, Heiner; Tjonneland, Anne; Angelucci, Emanuele; Di Lollo, Simonetta; Rais, Marco; Birmann, Brenda M.; Laden, Francine; Giovannucci, Edward; Kraft, Peter; Huang, Jinyan; Ma, Baoshan; Ye, Yuanqing; Chiu, Brian C H; Sampson, Joshua; Liang, Liming; Park, Ju Hyun; Chung, Charles C.; Weisenburger, Dennis D.; Chatterjee, Nilanjan; Fraumeni, Joseph F.; Slager, Susan L.; Wu, Xifeng; De Sanjose, Silvia; Smedby, Karin E.; Salles, Gilles; Skibola, Christine F.; Rothman, Nathaniel; Chanock, Stephen J.

    2014-01-01

    Diffuse large B cell lymphoma (DLBCL) is the most common lymphoma subtype and is clinically aggressive. To identify genetic susceptibility loci for DLBCL, we conducted a meta-analysis of 3 new genome-wide association studies (GWAS) and 1 previous scan, totaling 3,857 cases and 7,666 controls of

  18. Linkage analysis: Inadequate for detecting susceptibility loci in complex disorders?

    Energy Technology Data Exchange (ETDEWEB)

    Field, L.L.; Nagatomi, J. [Univ. of Calgary, Alberta (Canada)

    1994-09-01

    Insulin-dependent diabetes mellitus (IDDM) may provide valuable clues about approaches to detecting susceptibility loci in other oligogenic disorders. Numerous studies have demonstrated significant association between IDDM and a VNTR in the 5{prime} flanking region of the insulin (INS) gene. Paradoxically, all attempts to demonstrate linkage of IDDM to this VNTR have failed. Lack of linkage has been attributed to insufficient marker locus information, genetic heterogeneity, or high frequency of the IDDM-predisposing allele in the general population. Tyrosine hydroxylase (TH) is located 2.7 kb from INS on the 5` side of the VNTR and shows linkage disequilibrium with INS region loci. We typed a highly polymorphic microsatellite within TH in 176 multiplex families, and performed parametric (lod score) linkage analysis using various intermediate reduced penetrance models for IDDM (including rare and common disease allele frequencies), as well as non-parametric (affected sib pair) linkage analysis. The scores significantly reject linkage for recombination values of .05 or less, excluding the entire 19 kb region containing TH, the 5{prime} VNTR, the INS gene, and IGF2 on the 3{prime} side of INS. Non-parametric linkage analysis also provided no significant evidence for linkage (mean TH allele sharing 52.5%, P=.12). These results have important implications for efforts to locate genes predisposing to complex disorders, strongly suggesting that regions which are significantly excluded by linkage methods may nevertheless contain predisposing genes readily detectable by association methods. We advocate that investigators routinely perform association analyses in addition to linkage analyses.

  19. Immunochip analysis identification of 6 additional susceptibility loci for Crohn's disease in Koreans.

    Science.gov (United States)

    Yang, Suk-Kyun; Hong, Myunghee; Choi, Hyunchul; Zhao, Wanting; Jung, Yusun; Haritunians, Talin; Ye, Byong Duk; Kim, Kyung-Jo; Park, Sang Hyoung; Lee, Inchul; Kim, Won Ho; Cheon, Jae Hee; Kim, Young-Ho; Jang, Byung Ik; Kim, Hyun-Soo; Choi, Jai Hyun; Koo, Ja Seol; Lee, Ji Hyun; Jung, Sung-Ae; Shin, Hyoung Doo; Kang, Daehee; Youn, Hee-Shang; Taylor, Kent D; Rotter, Jerome I; Liu, Jianjun; McGovern, Dermot P B; Song, Kyuyoung

    2015-01-01

    Crohn's disease (CD) is an intractable inflammatory bowel disease of unknown cause. Recent genome-wide association studies of CD in Korean and Japanese populations suggested marginal sharing of susceptibility loci between Caucasian and Asian populations. As the 7 identified loci altogether explain 5.31% of the risk for CD, the objective of this study was to identify additional CD susceptibility loci in the Korean population. Using the ImmunoChip custom single-nucleotide polymorphism array designed for dense genotyping of 186 loci identified through GWAS, we analyzed 722 individuals with CD and 461 controls for 96,048 SNP markers in the discovery stage, followed by validation in an additional 948 affected individuals and 977 controls. We confirmed 6 previously reported loci in Caucasian: GPR35 at 2q37 (rs3749172; P = 5.30 × 10, odds ratio [OR] = 1.45), ZNF365 at 10q21 (rs224143; P = 2.20 × 10, OR = 1.38), ZMIZ1 at 10q22 (rs1250569; P = 3.05 × 10, OR = 1.30), NKX2-3 at 10q24 (rs4409764; P = 7.93 × 10, OR = 1.32), PTPN2 at 18p11 (rs514000; P = 9.00 × 10, OR = 1.33), and USP25 at 21q11 (rs2823256; P = 2.49 × 10, OR = 1.35), bringing the number of known CD loci (including 3 in the HLA) in Koreans to 15. The 6 additional loci increased the total genetic variance for CD risk from 5.31% to 7.27% in Koreans. Although the different genetic backgrounds of CD between Asian and Western countries has been well established for the major susceptibility genes, our findings of overlapping associations offer new insights into the genetic architecture of CD.

  20. Gene-environment interaction involving recently identified colorectal cancer susceptibility loci

    Science.gov (United States)

    Kantor, Elizabeth D.; Hutter, Carolyn M.; Minnier, Jessica; Berndt, Sonja I.; Brenner, Hermann; Caan, Bette J.; Campbell, Peter T.; Carlson, Christopher S.; Casey, Graham; Chan, Andrew T.; Chang-Claude, Jenny; Chanock, Stephen J.; Cotterchio, Michelle; Du, Mengmeng; Duggan, David; Fuchs, Charles S.; Giovannucci, Edward L.; Gong, Jian; Harrison, Tabitha A.; Hayes, Richard B.; Henderson, Brian E.; Hoffmeister, Michael; Hopper, John L.; Jenkins, Mark A.; Jiao, Shuo; Kolonel, Laurence N.; Le Marchand, Loic; Lemire, Mathieu; Ma, Jing; Newcomb, Polly A.; Ochs-Balcom, Heather M.; Pflugeisen, Bethann M.; Potter, John D.; Rudolph, Anja; Schoen, Robert E.; Seminara, Daniela; Slattery, Martha L.; Stelling, Deanna L.; Thomas, Fridtjof; Thornquist, Mark; Ulrich, Cornelia M.; Warnick, Greg S.; Zanke, Brent W.; Peters, Ulrike; Hsu, Li; White, Emily

    2014-01-01

    BACKGROUND Genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) that are associated with risk of colorectal cancer (CRC). Prior research has evaluated the presence of gene-environment interaction involving the first 10 identified susceptibility loci, but little work has been conducted on interaction involving SNPs at recently identified susceptibility loci, including: rs10911251, rs6691170, rs6687758, rs11903757, rs10936599, rs647161, rs1321311, rs719725, rs1665650, rs3824999, rs7136702, rs11169552, rs59336, rs3217810, rs4925386, and rs2423279. METHODS Data on 9160 cases and 9280 controls from the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) and Colon Cancer Family Registry (CCFR) were used to evaluate the presence of interaction involving the above-listed SNPs and sex, body mass index (BMI), alcohol consumption, smoking, aspirin use, post-menopausal hormone (PMH) use, as well as intake of dietary calcium, dietary fiber, dietary folate, red meat, processed meat, fruit, and vegetables. Interaction was evaluated using a fixed-effects meta-analysis of an efficient Empirical Bayes estimator, and permutation was used to account for multiple comparisons. RESULTS None of the permutation-adjusted p-values reached statistical significance. CONCLUSIONS The associations between recently identified genetic susceptibility loci and CRC are not strongly modified by sex, BMI, alcohol, smoking, aspirin, PMH use, and various dietary factors. IMPACT Results suggest no evidence of strong gene-environment interactions involving the recently identified 16 susceptibility loci for CRC taken one at a time. PMID:24994789

  1. Three ulcerative colitis susceptibility loci are associated with primary sclerosing cholangitis and indicate a role for IL2, REL, and CARD9

    NARCIS (Netherlands)

    Janse, Marcel; Lamberts, Laetitia E.; Franke, Lude; Raychaudhuri, Soumya; Ellinghaus, Eva; Muri Boberg, Kirsten; Melum, Espen; Folseraas, Trine; Schrumpf, Erik; Bergquist, Annika; Björnsson, Einar; Fu, Jingyuan; Jan Westra, Harm; Groen, Harry J. M.; Fehrmann, Rudolf S. N.; Smolonska, Joanna; van den Berg, Leonard H.; Ophoff, Roel A.; Porte, Robert J.; Weismüller, Tobias J.; Wedemeyer, Jochen; Schramm, Christoph; Sterneck, Martina; Günther, Rainer; Braun, Felix; Vermeire, Severine; Henckaerts, Liesbet; Wijmenga, Cisca; Ponsioen, Cyriel Y.; Schreiber, Stefan; Karlsen, Tom H.; Franke, Andre; Weersma, Rinse K.

    2011-01-01

    Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by inflammation and fibrosis of the bile ducts. Both environmental and genetic factors contribute to its pathogenesis. To further clarify its genetic background, we investigated susceptibility loci recently

  2. Three Ulcerative Colitis Susceptibility Loci Are Associated with Primary Sclerosing Cholangitis and Indicate a Role for IL2, REL, and CARD9

    NARCIS (Netherlands)

    Janse, Marcel; Lamberts, Laetitia E.; Franke, Lude; Raychaudhuri, Soumya; Ellinghaus, Eva; Boberg, Kirsten Muri; Melum, Espen; Folseraas, Trine; Schrumpf, Erik; Bergquist, Annika; Bjornsson, Einar; Fu, Jingyuan; Westra, Harm Jan; Groen, Harry J. M.; Fehrmann, Rudolf S. N.; Smolonska, Joanna; van den Berg, Leonard H.; Ophoff, Roel A.; Porte, Robert J.; Weismueller, Tobias J.; Wedemeyer, Jochen; Schramm, Christoph; Sterneck, Martina; Guenther, Rainer; Braun, Felix; Vermeire, Severine; Henckaerts, Liesbet; Wijmenga, Cisca; Ponsioen, Cyriel Y.; Schreiber, Stefan; Karlsen, Tom H.; Franke, Andre; Weersma, Rinse K.

    Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by inflammation and fibrosis of the bile ducts. Both environmental and genetic factors contribute to its pathogenesis. To further clarify its genetic background, we investigated susceptibility loci recently

  3. Investigation of potential non-HLA rheumatoid arthritis susceptibility loci in a European cohort increases the evidence for nine markers

    NARCIS (Netherlands)

    Plant, Darren; Flynn, Edward; Mbarek, Hamdi; Dieudé, Philippe; Cornelis, François; Arlestig, Lisbeth; Dahlqvist, Solbritt Rantapää; Goulielmos, George; Boumpas, Dimitrios T; Sidiropoulos, Prodromos; Johansen, Julia S; Ørnbjerg, Lykke M; Hetland, Merete Lund; Klareskog, Lars; Filer, Andrew; Buckley, Christopher D; Raza, Karim; Witte, Torsten; Schmidt, Reinhold E; Worthington, Jane

    BACKGROUND: Genetic factors have a substantial role in determining development of rheumatoid arthritis (RA), and are likely to account for 50-60% of disease susceptibility. Genome-wide association studies have identified non-human leucocyte antigen RA susceptibility loci which associate with RA with

  4. Novel genetic loci associated with hippocampal volume

    OpenAIRE

    Hibar, Derrek P.; Adams, Hieab H. H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivieres, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf

    2017-01-01

    International audience; The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal ...

  5. Genetic variation of twenty autosomal STR loci and evaluate the ...

    African Journals Online (AJOL)

    SAM

    2014-03-12

    Mar 12, 2014 ... the second objective of the study was to evaluate the importance of these loci for forensic genetic purposes. ... of discrimination values for all tested loci was from 75 to 96%; therefore, those loci can be safely used to establish a ..... lists the frequency distribution of individual alleles within a given genetic ...

  6. Novel genetic loci associated with hippocampal volume.

    Science.gov (United States)

    Hibar, Derrek P; Adams, Hieab H H; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L; Hofer, Edith; Renteria, Miguel E; Bis, Joshua C; Arias-Vasquez, Alejandro; Ikram, M Kamran; Desrivières, Sylvane; Vernooij, Meike W; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H; Beiser, Alexa; Bernard, Manon; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Gutman, Boris A; Hass, Johanna; Haukvik, Unn K; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre F; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; McKay, David R; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C; Nyquist, Paul; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Saremi, Arvin; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Lee, Sven J; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Craen, Anton J M; De Geus, Eco J C; De Jager, Philip L; De Zubicaray, Greig I; Deary, Ian J; Debette, Stéphanie; DeCarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Francis J; McMahon, Katie L; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J A; Van Haren, Neeltje E M; van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Vellas, Bruno; Veltman, Dick J; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, Ronald H; Zonderman, Alan B; Martin, Nicholas G; Van Duijn, Cornelia M; Wright, Margaret J; Longstreth, W T; Schumann, Gunter; Grabe, Hans J; Franke, Barbara; Launer, Lenore J; Medland, Sarah E; Seshadri, Sudha; Thompson, Paul M; Ikram, M Arfan

    2017-01-18

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r g =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.

  7. Genome-wide linkage meta-analysis identifies susceptibility loci at 2q34 and 13q31.3 for genetic generalized epilepsies

    DEFF Research Database (Denmark)

    Leu, Costin; de Kovel, Carolien G F; Zara, Federico

    2012-01-01

    Purpose: Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% with heritability estimates of 80%. A considerable proportion of families with siblings affected by GGEs presumably display an oligogenic inheritance. The present genome-wide linkage meta-analysis aimed to map: (1) ...

  8. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine.

    Science.gov (United States)

    Gormley, Padhraig; Anttila, Verneri; Winsvold, Bendik S; Palta, Priit; Esko, Tonu; Pers, Tune H; Farh, Kai-How; Cuenca-Leon, Ester; Muona, Mikko; Furlotte, Nicholas A; Kurth, Tobias; Ingason, Andres; McMahon, George; Ligthart, Lannie; Terwindt, Gisela M; Kallela, Mikko; Freilinger, Tobias M; Ran, Caroline; Gordon, Scott G; Stam, Anine H; Steinberg, Stacy; Borck, Guntram; Koiranen, Markku; Quaye, Lydia; Adams, Hieab H H; Lehtimäki, Terho; Sarin, Antti-Pekka; Wedenoja, Juho; Hinds, David A; Buring, Julie E; Schürks, Markus; Ridker, Paul M; Hrafnsdottir, Maria Gudlaug; Stefansson, Hreinn; Ring, Susan M; Hottenga, Jouke-Jan; Penninx, Brenda W J H; Färkkilä, Markus; Artto, Ville; Kaunisto, Mari; Vepsäläinen, Salli; Malik, Rainer; Heath, Andrew C; Madden, Pamela A F; Martin, Nicholas G; Montgomery, Grant W; Kurki, Mitja I; Kals, Mart; Mägi, Reedik; Pärn, Kalle; Hämäläinen, Eija; Huang, Hailiang; Byrnes, Andrea E; Franke, Lude; Huang, Jie; Stergiakouli, Evie; Lee, Phil H; Sandor, Cynthia; Webber, Caleb; Cader, Zameel; Muller-Myhsok, Bertram; Schreiber, Stefan; Meitinger, Thomas; Eriksson, Johan G; Salomaa, Veikko; Heikkilä, Kauko; Loehrer, Elizabeth; Uitterlinden, Andre G; Hofman, Albert; van Duijn, Cornelia M; Cherkas, Lynn; Pedersen, Linda M; Stubhaug, Audun; Nielsen, Christopher S; Männikkö, Minna; Mihailov, Evelin; Milani, Lili; Göbel, Hartmut; Esserlind, Ann-Louise; Christensen, Anne Francke; Hansen, Thomas Folkmann; Werge, Thomas; Kaprio, Jaakko; Aromaa, Arpo J; Raitakari, Olli; Ikram, M Arfan; Spector, Tim; Järvelin, Marjo-Riitta; Metspalu, Andres; Kubisch, Christian; Strachan, David P; Ferrari, Michel D; Belin, Andrea C; Dichgans, Martin; Wessman, Maija; van den Maagdenberg, Arn M J M; Zwart, John-Anker; Boomsma, Dorret I; Smith, George Davey; Stefansson, Kari; Eriksson, Nicholas; Daly, Mark J; Neale, Benjamin M; Olesen, Jes; Chasman, Daniel I; Nyholt, Dale R; Palotie, Aarno

    2016-08-01

    Migraine is a debilitating neurological disorder affecting around one in seven people worldwide, but its molecular mechanisms remain poorly understood. There is some debate about whether migraine is a disease of vascular dysfunction or a result of neuronal dysfunction with secondary vascular changes. Genome-wide association (GWA) studies have thus far identified 13 independent loci associated with migraine. To identify new susceptibility loci, we carried out a genetic study of migraine on 59,674 affected subjects and 316,078 controls from 22 GWA studies. We identified 44 independent single-nucleotide polymorphisms (SNPs) significantly associated with migraine risk (P < 5 × 10(-8)) that mapped to 38 distinct genomic loci, including 28 loci not previously reported and a locus that to our knowledge is the first to be identified on chromosome X. In subsequent computational analyses, the identified loci showed enrichment for genes expressed in vascular and smooth muscle tissues, consistent with a predominant theory of migraine that highlights vascular etiologies.

  9. Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors

    DEFF Research Database (Denmark)

    Nickels, Stefan; Truong, Thérèse; Hein, Rebecca

    2013-01-01

    Various common genetic susceptibility loci have been identified for breast cancer; however, it is unclear how they combine with lifestyle/environmental risk factors to influence risk. We undertook an international collaborative study to assess gene-environment interaction for risk of breast cance...

  10. Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors

    NARCIS (Netherlands)

    Nickels, S.; Truong, T.; Hein, R.; Stevens, K.; Buck, K.; Behrens, S.; Eilber, U.; Schmidt, M.; Haberle, L.; Vrieling, A.; Gaudet, M.; Figueroa, J.; Schoof, N.; Spurdle, A.B.; Rudolph, A.; Fasching, P.A.; Hopper, J.L.; Makalic, E.; Schmidt, D.F.; Southey, M.C.; Beckmann, M.W.; Ekici, A.B.; Fletcher, O.; Gibson, L.; Idos, S. Silva; Peto, J.; Humphreys, M.K.; Wang, J; Cordina-Duverger, E.; Menegaux, F.; Nordestgaard, B.G.; Bojesen, S.E.; Lanng, C.; Anton-Culver, H.; Ziogas, A.; Bernstein, L.; Clarke, C.A.; Brenner, H.; Muller, H.; Arndt, V.; Stegmaier, C.; Brauch, H.; Bruning, T.; Harth, V.; Genica, N.; Mannermaa, A.; Kataja, V.; Kosma, V.M.; Hartikainen, J.M.; Lambrechts, D.; Smeets, D.; Neven, P.; Paridaens, R.; Flesch-Janys, D.; Obi, N.; Wang-Gohrke, S.; Couch, F.J.; Olson, J.E.; Vachon, C.M.; Giles, G.G.; Severi, G.; Baglietto, L.; Offit, K.; John, E.M.; Miron, A.; Andrulis, I.L.; Knight, J.A.; Glendon, G.; Mulligan, A.M.; Chanock, S.J.; Lissowska, J.; Liu, J.; Cox, A; Cramp, H.; Connley, D.; Balasubramanian, S.; Dunning, A.M.; Shah, M.; Trentham-Dietz, A.; Newcomb, P.; Titus, L.; Egan, K.; Cahoon, E.K.; Rajaraman, P.; Sigurdson, A.J.; Doody, M.M.; Guenel, P.; Pharoah, P.D.; Schmidt, M.K.; Hall, P.; Easton, D.F.; Garcia-Closas, M.; Milne, R.L.; Chang-Claude, J.; et al.,

    2013-01-01

    Various common genetic susceptibility loci have been identified for breast cancer; however, it is unclear how they combine with lifestyle/environmental risk factors to influence risk. We undertook an international collaborative study to assess gene-environment interaction for risk of breast cancer.

  11. Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32

    DEFF Research Database (Denmark)

    Steffens, M.; Leu, C.; Ruppert, A. K.

    2012-01-01

    Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3 and account for 2030 of all epilepsies. Despite their high heritability of 80, the genetic factors predisposing to GGEs remain elusive. To identify susceptibility variants shared across common GGE syndromes, we carried out a ...

  12. Genetic loci for retinal arteriolar microcirculation.

    Directory of Open Access Journals (Sweden)

    Xueling Sim

    Full Text Available Narrow arterioles in the retina have been shown to predict hypertension as well as other vascular diseases, likely through an increase in the peripheral resistance of the microcirculatory flow. In this study, we performed a genome-wide association study in 18,722 unrelated individuals of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium and the Blue Mountain Eye Study, to identify genetic determinants associated with variations in retinal arteriolar caliber. Retinal vascular calibers were measured on digitized retinal photographs using a standardized protocol. One variant (rs2194025 on chromosome 5q14 near the myocyte enhancer factor 2C MEF2C gene was associated with retinal arteriolar caliber in the meta-analysis of the discovery cohorts at genome-wide significance of P-value <5×10(-8. This variant was replicated in an additional 3,939 individuals of European ancestry from the Australian Twins Study and Multi-Ethnic Study of Atherosclerosis (rs2194025, P-value = 2.11×10(-12 in combined meta-analysis of discovery and replication cohorts. In independent studies of modest sample sizes, no significant association was found between this variant and clinical outcomes including coronary artery disease, stroke, myocardial infarction or hypertension. In conclusion, we found one novel loci which underlie genetic variation in microvasculature which may be relevant to vascular disease. The relevance of these findings to clinical outcomes remains to be determined.

  13. Identification of six new susceptibility loci for invasive epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Kuchenbaecker, Karoline B; Ramus, Susan J; Tyrer, Jonathan

    2015-01-01

    associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded......Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed...

  14. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer

    DEFF Research Database (Denmark)

    Couch, Fergus J; Kuchenbaecker, Karoline B; Michailidou, Kyriaki

    2016-01-01

    Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci...

  15. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer

    NARCIS (Netherlands)

    Couch, Fergus J; Kuchenbaecker, Karoline B; Michailidou, Kyriaki; Mendoza-Fandino, Gustavo A; Nord, Silje; Lilyquist, Janna; Olswold, Curtis; Hallberg, Emily; Agata, Simona; Ahsan, Habibul; Aittomäki, Kristiina; Ambrosone, Christine; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Arun, Banu K; Arver, Brita; Barile, Monica; Barkardottir, Rosa B; Barrowdale, Daniel; Beckmann, Lars; Beckmann, Matthias W; Benitez, Javier; Blank, Stephanie V; Blomqvist, Carl; Bogdanova, Natalia V; Bojesen, Stig E; Bolla, Manjeet K; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Burwinkel, Barbara; Buys, Saundra S; Caldes, Trinidad; Caligo, Maria A; Canzian, Federico; Carpenter, Jane; Chang-Claude, Jenny; Chanock, Stephen J; Chung, Wendy K; Claes, Kathleen B M; Cox, Angela; Cross, Simon S; Cunningham, Julie M; Czene, Kamila; Daly, Mary B; Damiola, Francesca; Darabi, Hatef; de la Hoya, Miguel; Devilee, Peter; Diez, Orland; Ding, Yuan C; Dolcetti, Riccardo; Domchek, Susan M; Dorfling, Cecilia M; Dos-Santos-Silva, Isabel; Dumont, Martine; Dunning, Alison M; Eccles, Diana M; Ehrencrona, Hans; Ekici, Arif B; Eliassen, Heather; Ellis, Steve; Fasching, Peter A; Figueroa, Jonine; Flesch-Janys, Dieter; Försti, Asta; Fostira, Florentia; Foulkes, William D; Friebel, Tara; Friedman, Eitan; Frost, Debra; Gabrielson, Marike; Gammon, Marilie D; Ganz, Patricia A; Gapstur, Susan M; Garber, Judy; Gaudet, Mia M; Gayther, Simon A; Gerdes, Anne-Marie; Ghoussaini, Maya; Giles, Graham G; Glendon, Gord; Godwin, Andrew K; Goldberg, Mark S; Goldgar, David E; González-Neira, Anna; Greene, Mark H; Gronwald, Jacek; Guénel, Pascal; Gunter, Marc; Haeberle, Lothar; Haiman, Christopher A; Hamann, Ute; Hansen, Thomas V O; Hart, Steven; Healey, Sue; Heikkinen, Tuomas; Henderson, Brian E; Herzog, Josef; Hogervorst, Frans B L; Hollestelle, Antoinette; Hooning, Maartje J; Hoover, Robert N; Hopper, John L; Humphreys, Keith; Hunter, David J; Huzarski, Tomasz; Imyanitov, Evgeny N; Isaacs, Claudine; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jensen, Uffe Birk; John, Esther M; Jones, Michael; Kabisch, Maria; Kar, Siddhartha; Karlan, Beth Y; Khan, Sofia; Khaw, Kay-Tee; Kibriya, Muhammad G; Knight, Julia A; Ko, Yon-Dschun; Konstantopoulou, Irene; Kosma, Veli-Matti; Kristensen, Vessela; Kwong, Ava; Laitman, Yael; Lambrechts, Diether; Lazaro, Conxi; Lee, Eunjung; Le Marchand, Loic; Lester, Jenny; Lindblom, Annika; Lindor, Noralane; Lindstrom, Sara; Liu, Jianjun; Long, Jirong; Lubinski, Jan; Mai, Phuong L; Makalic, Enes; Malone, Kathleen E; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Marme, Frederik; Martens, John W M; McGuffog, Lesley; Meindl, Alfons; Miller, Austin; Milne, Roger L; Miron, Penelope; Montagna, Marco; Mazoyer, Sylvie; Mulligan, Anna M; Muranen, Taru A; Nathanson, Katherine L; Neuhausen, Susan L; Nevanlinna, Heli; Nordestgaard, Børge G; Nussbaum, Robert L; Offit, Kenneth; Olah, Edith; Olopade, Olufunmilayo I; Olson, Janet E; Osorio, Ana; Park, Sue K; Peeters, Petra H; Peissel, Bernard; Peterlongo, Paolo; Peto, Julian; Phelan, Catherine M; Pilarski, Robert; Poppe, Bruce; Pylkäs, Katri; Radice, Paolo; Rahman, Nazneen; Rantala, Johanna; Rappaport, Christine; Rennert, Gad; Richardson, Andrea; Robson, Mark; Romieu, Isabelle; Rudolph, Anja; Rutgers, Emiel J; Sanchez, Maria-Jose; Santella, Regina M; Sawyer, Elinor J; Schmidt, Daniel F; Schmidt, Marjanka K; Schmutzler, Rita K; Schumacher, Fredrick; Scott, Rodney; Senter, Leigha; Sharma, Priyanka; Simard, Jacques; Singer, Christian F; Sinilnikova, Olga M; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Stenmark-Askmalm, Marie; Stoppa-Lyonnet, Dominique; Swerdlow, Anthony; Szabo, Csilla I; Tamimi, Rulla; Tapper, William; Teixeira, Manuel R; Teo, Soo-Hwang; Terry, Mary B; Thomassen, Mads; Thompson, Deborah; Tihomirova, Laima; Toland, Amanda E; Tollenaar, Robert A E M; Tomlinson, Ian; Truong, Thérèse; Tsimiklis, Helen; Teulé, Alex; Tumino, Rosario; Tung, Nadine; Turnbull, Clare; Ursin, Giski; van Deurzen, Carolien H M; van Rensburg, Elizabeth J; Varon-Mateeva, Raymonda; Wang, Zhaoming; Wang-Gohrke, Shan; Weiderpass, Elisabete; Weitzel, Jeffrey N; Whittemore, Alice; Wildiers, Hans; Winqvist, Robert; Yang, Xiaohong R; Yannoukakos, Drakoulis; Yao, Song; Zamora, M Pilar; Zheng, Wei; Hall, Per; Kraft, Peter; Vachon, Celine; Slager, Susan; Chenevix-Trench, Georgia; Pharoah, Paul D P; Monteiro, Alvaro A N; García-Closas, Montserrat; Easton, Douglas F; Antoniou, Antonis C

    2016-01-01

    Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci,

  16. Genetic architecture of intrinsic antibiotic susceptibility.

    Directory of Open Access Journals (Sweden)

    Hany S Girgis

    2009-05-01

    Full Text Available Antibiotic exposure rapidly selects for more resistant bacterial strains, and both a drug's chemical structure and a bacterium's cellular network affect the types of mutations acquired.To better characterize the genetic determinants of antibiotic susceptibility, we exposed a transposon-mutagenized library of Escherichia coli to each of 17 antibiotics that encompass a wide range of drug classes and mechanisms of action. Propagating the library for multiple generations with drug concentrations that moderately inhibited the growth of the isogenic parental strain caused the abundance of strains with even minor fitness advantages or disadvantages to change measurably and reproducibly. Using a microarray-based genetic footprinting strategy, we then determined the quantitative contribution of each gene to E. coli's intrinsic antibiotic susceptibility. We found both loci whose removal increased general antibiotic tolerance as well as pathways whose down-regulation increased tolerance to specific drugs and drug classes. The beneficial mutations identified span multiple pathways, and we identified pairs of mutations that individually provide only minor decreases in antibiotic susceptibility but that combine to provide higher tolerance.Our results illustrate that a wide-range of mutations can modulate the activity of many cellular resistance processes and demonstrate that E. coli has a large mutational target size for increasing antibiotic tolerance. Furthermore, the work suggests that clinical levels of antibiotic resistance might develop through the sequential accumulation of chromosomal mutations of small individual effect.

  17. Genetic evidence of multiple loci in dystocia - difficult labour

    Directory of Open Access Journals (Sweden)

    Westgren Magnus

    2010-06-01

    Full Text Available Abstract Background Dystocia, difficult labour, is a common but also complex problem during childbirth. It can be attributed to either weak contractions of the uterus, a large infant, reduced capacity of the pelvis or combinations of these. Previous studies have indicated that there is a genetic component in the susceptibility of experiencing dystocia. The purpose of this study was to identify susceptibility genes in dystocia. Methods A total of 104 women in 47 families were included where at least two sisters had undergone caesarean section at a gestational length of 286 days or more at their first delivery. Study of medical records and a telephone interview was performed to identify subjects with dystocia. Whole-genome scanning using Affymetrix genotyping-arrays and non-parametric linkage (NPL analysis was made in 39 women exhibiting the phenotype of dystocia from 19 families. In 68 women re-sequencing was performed of candidate genes showing suggestive linkage: oxytocin (OXT on chromosome 20 and oxytocin-receptor (OXTR on chromosome 3. Results We found a trend towards linkage with suggestive NPL-score (3.15 on chromosome 12p12. Suggestive linkage peaks were observed on chromosomes 3, 4, 6, 10, 20. Re-sequencing of OXT and OXTR did not reveal any causal variants. Conclusions Dystocia is likely to have a genetic component with variations in multiple genes affecting the patient outcome. We found 6 loci that could be re-evaluated in larger patient cohorts.

  18. Genetic evidence of multiple loci in dystocia - difficult labour

    Science.gov (United States)

    2010-01-01

    Background Dystocia, difficult labour, is a common but also complex problem during childbirth. It can be attributed to either weak contractions of the uterus, a large infant, reduced capacity of the pelvis or combinations of these. Previous studies have indicated that there is a genetic component in the susceptibility of experiencing dystocia. The purpose of this study was to identify susceptibility genes in dystocia. Methods A total of 104 women in 47 families were included where at least two sisters had undergone caesarean section at a gestational length of 286 days or more at their first delivery. Study of medical records and a telephone interview was performed to identify subjects with dystocia. Whole-genome scanning using Affymetrix genotyping-arrays and non-parametric linkage (NPL) analysis was made in 39 women exhibiting the phenotype of dystocia from 19 families. In 68 women re-sequencing was performed of candidate genes showing suggestive linkage: oxytocin (OXT) on chromosome 20 and oxytocin-receptor (OXTR) on chromosome 3. Results We found a trend towards linkage with suggestive NPL-score (3.15) on chromosome 12p12. Suggestive linkage peaks were observed on chromosomes 3, 4, 6, 10, 20. Re-sequencing of OXT and OXTR did not reveal any causal variants. Conclusions Dystocia is likely to have a genetic component with variations in multiple genes affecting the patient outcome. We found 6 loci that could be re-evaluated in larger patient cohorts. PMID:20587075

  19. Genome-wide association study identifies novel breast cancer susceptibility loci

    Science.gov (United States)

    Easton, Douglas F.; Pooley, Karen A.; Dunning, Alison M.; Pharoah, Paul D. P.; Thompson, Deborah; Ballinger, Dennis G.; Struewing, Jeffery P.; Morrison, Jonathan; Field, Helen; Luben, Robert; Wareham, Nicholas; Ahmed, Shahana; Healey, Catherine S.; Bowman, Richard; Meyer, Kerstin B.; Haiman, Christopher A.; Kolonel, Laurence K.; Henderson, Brian E.; Marchand, Loic Le; Brennan, Paul; Sangrajrang, Suleeporn; Gaborieau, Valerie; Odefrey, Fabrice; Shen, Chen-Yang; Wu, Pei-Ei; Wang, Hui-Chun; Eccles, Diana; Evans, D. Gareth; Peto, Julian; Fletcher, Olivia; Johnson, Nichola; Seal, Sheila; Stratton, Michael R.; Rahman, Nazneen; Chenevix-Trench, Georgia; Bojesen, Stig E.; Nordestgaard, Børge G.; Axelsson, Christen K.; Garcia-Closas, Montserrat; Brinton, Louise; Chanock, Stephen; Lissowska, Jolanta; Peplonska, Beata; Nevanlinna, Heli; Fagerholm, Rainer; Eerola, Hannaleena; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Ahn, Sei-Hyun; Hunter, David J.; Hankinson, Susan E.; Cox, David G.; Hall, Per; Wedren, Sara; Liu, Jianjun; Low, Yen-Ling; Bogdanova, Natalia; Schürmann, Peter; Dörk, Thilo; Tollenaar, Rob A. E. M.; Jacobi, Catharina E.; Devilee, Peter; Klijn, Jan G. M.; Sigurdson, Alice J.; Doody, Michele M.; Alexander, Bruce H.; Zhang, Jinghui; Cox, Angela; Brock, Ian W.; MacPherson, Gordon; Reed, Malcolm W. R.; Couch, Fergus J.; Goode, Ellen L.; Olson, Janet E.; Meijers-Heijboer, Hanne; van den Ouweland, Ans; Uitterlinden, André; Rivadeneira, Fernando; Milne, Roger L.; Ribas, Gloria; Gonzalez-Neira, Anna; Benitez, Javier; Hopper, John L.; McCredie, Margaret; Southey, Melissa; Giles, Graham G.; Schroen, Chris; Justenhoven, Christina; Brauch, Hiltrud; Hamann, Ute; Ko, Yon-Dschun; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Mannermaa, Arto; Kosma, Veli-Matti; Kataja, Vesa; Hartikainen, Jaana; Day, Nicholas E.; Cox, David R.; Ponder, Bruce A. J.; Luccarini, Craig; Conroy, Don; Shah, Mitul; Munday, Hannah; Jordan, Clare; Perkins, Barbara; West, Judy; Redman, Karen; Driver, Kristy; Aghmesheh, Morteza; Amor, David; Andrews, Lesley; Antill, Yoland; Armes, Jane; Armitage, Shane; Arnold, Leanne; Balleine, Rosemary; Begley, Glenn; Beilby, John; Bennett, Ian; Bennett, Barbara; Berry, Geoffrey; Blackburn, Anneke; Brennan, Meagan; Brown, Melissa; Buckley, Michael; Burke, Jo; Butow, Phyllis; Byron, Keith; Callen, David; Campbell, Ian; Chenevix-Trench, Georgia; Clarke, Christine; Colley, Alison; Cotton, Dick; Cui, Jisheng; Culling, Bronwyn; Cummings, Margaret; Dawson, Sarah-Jane; Dixon, Joanne; Dobrovic, Alexander; Dudding, Tracy; Edkins, Ted; Eisenbruch, Maurice; Farshid, Gelareh; Fawcett, Susan; Field, Michael; Firgaira, Frank; Fleming, Jean; Forbes, John; Friedlander, Michael; Gaff, Clara; Gardner, Mac; Gattas, Mike; George, Peter; Giles, Graham; Gill, Grantley; Goldblatt, Jack; Greening, Sian; Grist, Scott; Haan, Eric; Harris, Marion; Hart, Stewart; Hayward, Nick; Hopper, John; Humphrey, Evelyn; Jenkins, Mark; Jones, Alison; Kefford, Rick; Kirk, Judy; Kollias, James; Kovalenko, Sergey; Lakhani, Sunil; Leary, Jennifer; Lim, Jacqueline; Lindeman, Geoff; Lipton, Lara; Lobb, Liz; Maclurcan, Mariette; Mann, Graham; Marsh, Deborah; McCredie, Margaret; McKay, Michael; McLachlan, Sue Anne; Meiser, Bettina; Milne, Roger; Mitchell, Gillian; Newman, Beth; O'Loughlin, Imelda; Osborne, Richard; Peters, Lester; Phillips, Kelly; Price, Melanie; Reeve, Jeanne; Reeve, Tony; Richards, Robert; Rinehart, Gina; Robinson, Bridget; Rudzki, Barney; Salisbury, Elizabeth; Sambrook, Joe; Saunders, Christobel; Scott, Clare; Scott, Elizabeth; Scott, Rodney; Seshadri, Ram; Shelling, Andrew; Southey, Melissa; Spurdle, Amanda; Suthers, Graeme; Taylor, Donna; Tennant, Christopher; Thorne, Heather; Townshend, Sharron; Tucker, Kathy; Tyler, Janet; Venter, Deon; Visvader, Jane; Walpole, Ian; Ward, Robin; Waring, Paul; Warner, Bev; Warren, Graham; Watson, Elizabeth; Williams, Rachael; Wilson, Judy; Winship, Ingrid; Young, Mary Ann; Bowtell, David; Green, Adele; deFazio, Anna; Chenevix-Trench, Georgia; Gertig, Dorota; Webb, Penny

    2009-01-01

    Breast cancer exhibits familial aggregation, consistent with variation in genetic susceptibility to the disease. Known susceptibility genes account for less than 25% of the familial risk of breast cancer, and the residual genetic variance is likely to be due to variants conferring more moderate risks. To identify further susceptibility alleles, we conducted a two-stage genome-wide association study in 4,398 breast cancer cases and 4,316 controls, followed by a third stage in which 30 single nucleotide polymorphisms (SNPs) were tested for confirmation in 21,860 cases and 22,578 controls from 22 studies. We used 227,876 SNPs that were estimated to correlate with 77% of known common SNPs in Europeans at r2>0.5. SNPs in five novel independent loci exhibited strong and consistent evidence of association with breast cancer (P<10−7). Four of these contain plausible causative genes (FGFR2, TNRC9, MAP3K1 and LSP1). At the second stage, 1,792 SNPs were significant at the P<0.05 level compared with an estimated 1,343 that would be expected by chance, indicating that many additional common susceptibility alleles may be identifiable by this approach. PMID:17529967

  20. Further Evidence of Subphenotype Association with Systemic Lupus Erythematosus Susceptibility Loci: A European Cases Only Study

    Science.gov (United States)

    Alonso-Perez, Elisa; Suarez-Gestal, Marian; Calaza, Manuel; Ordi-Ros, Josep; Balada, Eva; Bijl, Marc; Papasteriades, Chryssa; Carreira, Patricia; Skopouli, Fotini N.; Witte, Torsten; Endreffy, Emöke; Marchini, Maurizio; Migliaresi, Sergio; Sebastiani, Gian Domenico; Santos, Maria Jose; Suarez, Ana; Blanco, Francisco J.; Barizzone, Nadia; Pullmann, Rudolf; Ruzickova, Sarka; Lauwerys, Bernard R.; Gomez-Reino, Juan J.; Gonzalez, Antonio

    2012-01-01

    Introduction Systemic Lupus Erythematosus (SLE) shows a spectrum of clinical manifestations that complicate its diagnosis, treatment and research. This variability is likely related with environmental exposures and genetic factors among which known SLE susceptibility loci are prime candidates. The first published analyses seem to indicate that this is the case for some of them, but results are still inconclusive and we aimed to further explore this question. Methods European SLE patients, 1444, recruited at 17 centres from 10 countries were analyzed. Genotypes for 26 SLE associated SNPs were compared between patients with and without each of 11 clinical features: ten of the American College of Rheumatology (ACR) classification criteria (except ANAs) and age of disease onset. These analyses were adjusted for centre of recruitment, top ancestry informative markers, gender and time of follow-up. Overlap of samples with previous studies was excluded for assessing replication. Results There were three new associations: the SNPs in XKR6 and in FAM167A-BLK were associated with lupus nephritis (OR = 0.76 and 1.30, Pcorr = 0.007 and 0.03, respectively) and the SNP of MECP2, which is in chromosome X, with earlier age of disease onset in men. The previously reported association of STAT4 with early age of disease onset was replicated. Some other results were suggestive of the presence of additional associations. Together, the association signals provided support to some previous findings and to the characterization of lupus nephritis, autoantibodies and age of disease onset as the clinical features more associated with SLE loci. Conclusion Some of the SLE loci shape the disease phenotype in addition to increase susceptibility to SLE. This influence is more prominent for some clinical features than for others. However, results are only partially consistent between studies and subphenotype specific GWAS are needed to unravel their genetic component. PMID:23049788

  1. Novel Association Between Immune-Mediated Susceptibility Loci and Persistent Autoantibody Positivity in Type 1 Diabetes

    DEFF Research Database (Denmark)

    Brorsson, Caroline A; Onengut, Suna; Chen, Wei-Min

    2015-01-01

    Islet autoantibodies detected at disease onset in patients with type 1 diabetes are signs of an autoimmune destruction of the insulin-producing β-cells. To further investigate the genetic determinants of autoantibody positivity, we performed dense immune-focused genotyping on the Immunochip array...... and tested for association with seven disease-specific autoantibodies in a large cross-sectional cohort of 6,160 type 1 diabetes-affected siblings. The genetic association with positivity for GAD autoantibodies (GADAs), IA2 antigen (IA-2A), zinc transporter 8, thyroid peroxidase, gastric parietal cells (PCAs...... and constitute candidates for early screening. Major susceptibility loci for islet autoantibodies are separate from type 1 diabetes risk, which may have consequences for intervention strategies to reduce autoimmunity....

  2. Identification of six new susceptibility loci for invasive epithelial ovarian cancer.

    Science.gov (United States)

    Kuchenbaecker, Karoline B; Ramus, Susan J; Tyrer, Jonathan; Lee, Andrew; Shen, Howard C; Beesley, Jonathan; Lawrenson, Kate; McGuffog, Lesley; Healey, Sue; Lee, Janet M; Spindler, Tassja J; Lin, Yvonne G; Pejovic, Tanja; Bean, Yukie; Li, Qiyuan; Coetzee, Simon; Hazelett, Dennis; Miron, Alexander; Southey, Melissa; Terry, Mary Beth; Goldgar, David E; Buys, Saundra S; Janavicius, Ramunas; Dorfling, Cecilia M; van Rensburg, Elizabeth J; Neuhausen, Susan L; Ding, Yuan Chun; Hansen, Thomas V O; Jønson, Lars; Gerdes, Anne-Marie; Ejlertsen, Bent; Barrowdale, Daniel; Dennis, Joe; Benitez, Javier; Osorio, Ana; Garcia, Maria Jose; Komenaka, Ian; Weitzel, Jeffrey N; Ganschow, Pamela; Peterlongo, Paolo; Bernard, Loris; Viel, Alessandra; Bonanni, Bernardo; Peissel, Bernard; Manoukian, Siranoush; Radice, Paolo; Papi, Laura; Ottini, Laura; Fostira, Florentia; Konstantopoulou, Irene; Garber, Judy; Frost, Debra; Perkins, Jo; Platte, Radka; Ellis, Steve; Godwin, Andrew K; Schmutzler, Rita Katharina; Meindl, Alfons; Engel, Christoph; Sutter, Christian; Sinilnikova, Olga M; Damiola, Francesca; Mazoyer, Sylvie; Stoppa-Lyonnet, Dominique; Claes, Kathleen; De Leeneer, Kim; Kirk, Judy; Rodriguez, Gustavo C; Piedmonte, Marion; O'Malley, David M; de la Hoya, Miguel; Caldes, Trinidad; Aittomäki, Kristiina; Nevanlinna, Heli; Collée, J Margriet; Rookus, Matti A; Oosterwijk, Jan C; Tihomirova, Laima; Tung, Nadine; Hamann, Ute; Isaccs, Claudine; Tischkowitz, Marc; Imyanitov, Evgeny N; Caligo, Maria A; Campbell, Ian G; Hogervorst, Frans B L; Olah, Edith; Diez, Orland; Blanco, Ignacio; Brunet, Joan; Lazaro, Conxi; Pujana, Miquel Angel; Jakubowska, Anna; Gronwald, Jacek; Lubinski, Jan; Sukiennicki, Grzegorz; Barkardottir, Rosa B; Plante, Marie; Simard, Jacques; Soucy, Penny; Montagna, Marco; Tognazzo, Silvia; Teixeira, Manuel R; Pankratz, Vernon S; Wang, Xianshu; Lindor, Noralane; Szabo, Csilla I; Kauff, Noah; Vijai, Joseph; Aghajanian, Carol A; Pfeiler, Georg; Berger, Andreas; Singer, Christian F; Tea, Muy-Kheng; Phelan, Catherine M; Greene, Mark H; Mai, Phuong L; Rennert, Gad; Mulligan, Anna Marie; Tchatchou, Sandrine; Andrulis, Irene L; Glendon, Gord; Toland, Amanda Ewart; Jensen, Uffe Birk; Kruse, Torben A; Thomassen, Mads; Bojesen, Anders; Zidan, Jamal; Friedman, Eitan; Laitman, Yael; Soller, Maria; Liljegren, Annelie; Arver, Brita; Einbeigi, Zakaria; Stenmark-Askmalm, Marie; Olopade, Olufunmilayo I; Nussbaum, Robert L; Rebbeck, Timothy R; Nathanson, Katherine L; Domchek, Susan M; Lu, Karen H; Karlan, Beth Y; Walsh, Christine; Lester, Jenny; Hein, Alexander; Ekici, Arif B; Beckmann, Matthias W; Fasching, Peter A; Lambrechts, Diether; Van Nieuwenhuysen, Els; Vergote, Ignace; Lambrechts, Sandrina; Dicks, Ed; Doherty, Jennifer A; Wicklund, Kristine G; Rossing, Mary Anne; Rudolph, Anja; Chang-Claude, Jenny; Wang-Gohrke, Shan; Eilber, Ursula; Moysich, Kirsten B; Odunsi, Kunle; Sucheston, Lara; Lele, Shashi; Wilkens, Lynne R; Goodman, Marc T; Thompson, Pamela J; Shvetsov, Yurii B; Runnebaum, Ingo B; Dürst, Matthias; Hillemanns, Peter; Dörk, Thilo; Antonenkova, Natalia; Bogdanova, Natalia; Leminen, Arto; Pelttari, Liisa M; Butzow, Ralf; Modugno, Francesmary; Kelley, Joseph L; Edwards, Robert P; Ness, Roberta B; du Bois, Andreas; Heitz, Florian; Schwaab, Ira; Harter, Philipp; Matsuo, Keitaro; Hosono, Satoyo; Orsulic, Sandra; Jensen, Allan; Kjaer, Susanne Kruger; Hogdall, Estrid; Hasmad, Hanis Nazihah; Azmi, Mat Adenan Noor; Teo, Soo-Hwang; Woo, Yin-Ling; Fridley, Brooke L; Goode, Ellen L; Cunningham, Julie M; Vierkant, Robert A; Bruinsma, Fiona; Giles, Graham G; Liang, Dong; Hildebrandt, Michelle A T; Wu, Xifeng; Levine, Douglas A; Bisogna, Maria; Berchuck, Andrew; Iversen, Edwin S; Schildkraut, Joellen M; Concannon, Patrick; Weber, Rachel Palmieri; Cramer, Daniel W; Terry, Kathryn L; Poole, Elizabeth M; Tworoger, Shelley S; Bandera, Elisa V; Orlow, Irene; Olson, Sara H; Krakstad, Camilla; Salvesen, Helga B; Tangen, Ingvild L; Bjorge, Line; van Altena, Anne M; Aben, Katja K H; Kiemeney, Lambertus A; Massuger, Leon F A G; Kellar, Melissa; Brooks-Wilson, Angela; Kelemen, Linda E; Cook, Linda S; Le, Nhu D; Cybulski, Cezary; Yang, Hannah; Lissowska, Jolanta; Brinton, Louise A; Wentzensen, Nicolas; Hogdall, Claus; Lundvall, Lene; Nedergaard, Lotte; Baker, Helen; Song, Honglin; Eccles, Diana; McNeish, Ian; Paul, James; Carty, Karen; Siddiqui, Nadeem; Glasspool, Rosalind; Whittemore, Alice S; Rothstein, Joseph H; McGuire, Valerie; Sieh, Weiva; Ji, Bu-Tian; Zheng, Wei; Shu, Xiao-Ou; Gao, Yu-Tang; Rosen, Barry; Risch, Harvey A; McLaughlin, John R; Narod, Steven A; Monteiro, Alvaro N; Chen, Ann; Lin, Hui-Yi; Permuth-Wey, Jenny; Sellers, Thomas A; Tsai, Ya-Yu; Chen, Zhihua; Ziogas, Argyrios; Anton-Culver, Hoda; Gentry-Maharaj, Aleksandra; Menon, Usha; Harrington, Patricia; Lee, Alice W; Wu, Anna H; Pearce, Celeste L; Coetzee, Gerry; Pike, Malcolm C; Dansonka-Mieszkowska, Agnieszka; Timorek, Agnieszka; Rzepecka, Iwona K; Kupryjanczyk, Jolanta; Freedman, Matt; Noushmehr, Houtan; Easton, Douglas F; Offit, Kenneth; Couch, Fergus J; Gayther, Simon; Pharoah, Paul P; Antoniou, Antonis C; Chenevix-Trench, Georgia

    2015-02-01

    Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.

  3. Genetic susceptibility to environmental toxicants

    DEFF Research Database (Denmark)

    2001-01-01

    The toxicological challenges to the chemical industry have in recent years been greatly affected by the rapid innovation and development of analytical, molecular and genetic technologies. ECETOC recognises the importance of developing the technical and intellectual skill bases in academia...... and industrial based laboratories to meet the rapid development of the science base of toxicology. As the technology to determine genetic susceptibility develops, so scientist will be able to describe altered gene expression provoked by chemicals long before they are able to offer valid interpretations...... to take toxicological data and both interpret and extrapolate it in a manner as to cause exaggerated concern. The challenge to the toxicologist is to explain what data means and in a way that inspires the confidence in those who have to apply data to the assessment of hazard and risk management. It seems...

  4. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer

    DEFF Research Database (Denmark)

    Pharoah, Paul D P; Tsai, Ya-Yu; Ramus, Susan J

    2013-01-01

    Genome-wide association studies (GWAS) have identified four susceptibility loci for epithelial ovarian cancer (EOC), with another two suggestive loci reaching near genome-wide significance. We pooled data from a GWAS conducted in North America with another GWAS from the UK. We selected the top 24...

  5. Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes

    DEFF Research Database (Denmark)

    Broeks, Annegien; Schmidt, Marjanka K; Sherman, Mark E

    2011-01-01

    Breast cancers demonstrate substantial biological, clinical and etiological heterogeneity. We investigated breast cancer risk associations of eight susceptibility loci identified in GWAS and two putative susceptibility loci in candidate genes in relation to specific breast tumor subtypes. Subtype...... stratification might help in the identification and characterization of novel risk factors for breast cancer subtypes. This may eventually result in further improvements in prevention, early detection and treatment.......Breast cancers demonstrate substantial biological, clinical and etiological heterogeneity. We investigated breast cancer risk associations of eight susceptibility loci identified in GWAS and two putative susceptibility loci in candidate genes in relation to specific breast tumor subtypes. Subtypes...... were defined by five markers (ER, PR, HER2, CK5/6, EGFR) and other pathological and clinical features. Analyses included up to 30 040 invasive breast cancer cases and 53 692 controls from 31 studies within the Breast Cancer Association Consortium. We confirmed previous reports of stronger associations...

  6. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers

    DEFF Research Database (Denmark)

    Onengut-Gumuscu, Suna; Chen, Wei-Min; Burren, Oliver

    2015-01-01

    Genetic studies of type 1 diabetes (T1D) have identified 50 susceptibility regions, finding major pathways contributing to risk, with some loci shared across immune disorders. To make genetic comparisons across autoimmune disorders as informative as possible, a dense genotyping array...... and significantly least similar to ulcerative colitis, and provided support for three additional new T1D risk loci. Using a Bayesian approach, we defined credible sets for the T1D-associated SNPs. The associated SNPs localized to enhancer sequences active in thymus, T and B cells, and CD34(+) stem cells. Enhancer-promoter......, the Immunochip, was developed, from which we identified four new T1D-associated regions (P comparative analysis with 15 immune diseases showed that T1D is more similar genetically to other autoantibody-positive diseases, significantly most similar to juvenile idiopathic arthritis...

  7. Individual and cumulative effects of GWAS susceptibility loci in lung cancer: associations after sub-phenotyping for COPD.

    Directory of Open Access Journals (Sweden)

    Robert P Young

    2011-02-01

    Full Text Available Epidemiological studies show that approximately 20-30% of chronic smokers develop chronic obstructive pulmonary disease (COPD while 10-15% develop lung cancer. COPD pre-exists lung cancer in 50-90% of cases and has a heritability of 40-77%, much greater than for lung cancer with heritability of 15-25%. These data suggest that smokers susceptible to COPD may also be susceptible to lung cancer. This study examines the association of several overlapping chromosomal loci, recently implicated by GWA studies in COPD, lung function and lung cancer, in (n = 1400 subjects sub-phenotyped for the presence of COPD and matched for smoking exposure. Using this approach we show; the 15q25 locus confers susceptibility to lung cancer and COPD, the 4q31 and 4q22 loci both confer a reduced risk to both COPD and lung cancer, the 6p21 locus confers susceptibility to lung cancer in smokers with pre-existing COPD, the 5p15 and 1q23 loci both confer susceptibility to lung cancer in those with no pre-existing COPD. We also show the 5q33 locus, previously associated with reduced FEV(1, appears to confer susceptibility to both COPD and lung cancer. The 6p21 locus previously linked to reduced FEV(1 is associated with COPD only. Larger studies will be needed to distinguish whether these COPD-related effects may reflect, in part, associations specific to different lung cancer histology. We demonstrate that when the "risk genotypes" derived from the univariate analysis are incorporated into an algorithm with clinical variables, independently associated with lung cancer in multivariate analysis, modest discrimination is possible on receiver operator curve analysis (AUC = 0.70. We suggest that genetic susceptibility to lung cancer includes genes conferring susceptibility to COPD and that sub-phenotyping with spirometry is critical to identifying genes underlying the development of lung cancer.

  8. Novel genetic loci associated with hippocampal volume

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); H.H.H. Adams (Hieab); N. Jahanshad (Neda); G. Chauhan (Ganesh); J.L. Stein; E. Hofer (Edith); M.E. Rentería (Miguel); J.C. Bis (Joshua); A. Arias-Vásquez (Alejandro); Ikram, M.K. (M. Kamran); S. Desrivières (Sylvane); M.W. Vernooij (Meike); L. Abramovic (Lucija); S. Alhusaini (Saud); N. Amin (Najaf); M. Andersson (Micael); K. Arfanakis (Konstantinos); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); L. Athanasiu (Lavinia); T. Axelsson (Tomas); A.H. Beecham (Ashley); A. Beiser (Alexa); M. Bernard (Manon); S.H. Blanton (Susan H.); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.M. Brickman (Adam M.); Carmichael, O. (Owen); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); V. Chouraki (Vincent); G. Cuellar-Partida (Gabriel); F. Crivello (Fabrice); A. den Braber (Anouk); Doan, N.T. (Nhat Trung); S.M. Ehrlich (Stefan); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); R.F. Gottesman (Rebecca); O. Grimm (Oliver); M.D. Griswold (Michael); T. Guadalupe (Tulio); Gutman, B.A. (Boris A.); J. Hass (Johanna); U.K. Haukvik (Unn); D. Hoehn (David); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); Jørgensen, K.N. (Kjetil N.); N. Karbalai (Nazanin); D. Kasperaviciute (Dalia); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil); D.C. Liewald (David C.); L.M. Lopez (Lorna); M. Luciano (Michelle); C. MacAre (Christine); Marquand, A.F. (Andre F.); M. Matarin (Mar); R. Mather; M. Mattheisen (Manuel); McKay, D.R. (David R.); Milaneschi, Y. (Yuri); S. Muñoz Maniega (Susana); K. Nho (Kwangsik); A.C. Nugent (Allison); P. Nyquist (Paul); Loohuis, L.M.O. (Loes M. Olde); J. Oosterlaan (Jaap); M. Papmeyer (Martina); Pirpamer, L. (Lukas); B. Pütz (Benno); A. Ramasamy (Adaikalavan); Richards, J.S. (Jennifer S.); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); N. Rommelse (Nanda); S. Ropele (Stefan); E.J. Rose (Emma); N.A. Royle (Natalie); T. Rundek (Tatjana); P.G. Sämann (Philipp); Saremi, A. (Arvin); C.L. Satizabal (Claudia L.); L. Schmaal (Lianne); N.J. Schork (Nicholas); Shen, L. (Li); J. Shin (Jean); Shumskaya, E. (Elena); A.V. Smith (Albert Vernon); R. Sprooten (Roy); L.T. Strike (Lachlan); A. Teumer (Alexander); D. Tordesillas-Gutierrez (Diana); R. Toro (Roberto); D. Trabzuni (Danyah); S. Trompet (Stella); D. Vaidya (Dhananjay); J. van der Grond (Jeroen); S.J. van der Lee (Sven); Van Der Meer, D. (Dennis); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); T.G.M. van Erp (Theo G.); Van Rooij, D. (Daan); E. Walton (Esther); L.T. Westlye (Lars); C.D. Whelan (Christopher); B.G. Windham (B Gwen); A.M. Winkler (Anderson); K. Wittfeld (Katharina); G. Woldehawariat (Girma); A. Björnsson (Asgeir); Wolfers, T. (Thomas); L.R. Yanek (Lisa); Yang, J. (Jingyun); A.P. Zijdenbos; M.P. Zwiers (Marcel); I. Agartz (Ingrid); L. Almasy (Laura); D.J. Ames (David); Amouyel, P. (Philippe); O.A. Andreassen (Ole); S. Arepalli (Sampath); A.A. Assareh; S. Barral (Sandra); M.E. Bastin (Mark); Becker, D.M. (Diane M.); J.T. Becker (James); D.A. Bennett (David A.); J. Blangero (John); H. van Bokhoven (Hans); D.I. Boomsma (Dorret); H. Brodaty (Henry); R.M. Brouwer (Rachel); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan); K. Bulayeva (Kazima); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); D.M. Cannon (Dara); G. Cavalleri (Gianpiero); Cheng, C.-Y. (Ching-Yu); S. Cichon (Sven); M.R. Cookson (Mark); A. Corvin (Aiden); B. Crespo-Facorro (Benedicto); J.E. Curran (Joanne); M. Czisch (Michael); A.M. Dale (Anders); G.E. Davies (Gareth); A.J. de Craen (Anton); E.J.C. de Geus (Eco); P.L. de Jager (Philip); G.I. de Zubicaray (Greig); I.J. Deary (Ian J.); S. Debette (Stéphanie); C. DeCarli (Charles); N. Delanty; C. Depondt (Chantal); A.L. DeStefano (Anita); A. Dillman (Allissa); S. Djurovic (Srdjan); D.J. Donohoe (Dennis); D.A. Drevets (Douglas); Duggirala, R. (Ravi); M.D. Dyer (Matthew); C. Enzinger (Christian); S. Erk; T. Espeseth (Thomas); Fedko, I.O. (Iryna O.); Fernández, G. (Guillén); L. Ferrucci (Luigi); S.E. Fisher (Simon); D. Fleischman (Debra); I. Ford (Ian); M. Fornage (Myriam); T. Foroud (Tatiana); P.T. Fox (Peter); C. Francks (Clyde); Fukunaga, M. (Masaki); Gibbs, J.R. (J. Raphael); D.C. Glahn (David); R.L. Gollub (Randy); H.H.H. Göring (Harald H.); R.C. Green (Robert C.); O. Gruber (Oliver); V. Gudnason (Vilmundur); S. Guelfi (Sebastian); Håberg, A.K. (Asta K.); N.K. Hansell (Narelle); J. Hardy (John); C.A. Hartman (C.); Hashimoto, R. (Ryota); K. Hegenscheid (Katrin); J. Heinz (Judith); S. Le Hellard (Stephanie); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); Ho, B.-C. (Beng-Choon); P.J. Hoekstra (Pieter); W. Hoffmann (Wolfgang); A. Hofman (Albert); F. Holsboer (Florian); G. Homuth (Georg); N. Hosten (Norbert); J.J. Hottenga (Jouke Jan); M.J. Huentelman (Matthew); H.H. Pol; Ikeda, M. (Masashi); Jack, C.R. (Clifford R.); S. Jenkinson (Sarah); R. Johnson (Robert); Jönsson, E.G. (Erik G.); J.W. Jukema; R. Kahn (René); Kanai, R. (Ryota); I. Kloszewska (Iwona); Knopman, D.S. (David S.); P. Kochunov (Peter); Kwok, J.B. (John B.); S. Lawrie (Stephen); H. Lemaître (Herve); X. Liu (Xinmin); D.L. Longo (Dan L.); O.L. Lopez (Oscar L.); S. Lovestone (Simon); Martinez, O. (Oliver); J.-L. Martinot (Jean-Luc); V.S. Mattay (Venkata S.); McDonald, C. (Colm); A.M. McIntosh (Andrew); McMahon, F.J. (Francis J.); McMahon, K.L. (Katie L.); P. Mecocci (Patrizia); I. Melle (Ingrid); Meyer-Lindenberg, A. (Andreas); S. Mohnke (Sebastian); Montgomery, G.W. (Grant W.); D.W. Morris (Derek W); T.H. Mosley (Thomas H.); T.W. Mühleisen (Thomas); B. Müller-Myhsok (B.); M.A. Nalls (Michael); M. Nauck (Matthias); T.E. Nichols (Thomas); W.J. Niessen (Wiro); M.M. Nöthen (Markus); L. Nyberg (Lars); Ohi, K. (Kazutaka); R.L. Olvera (Rene); R.A. Ophoff (Roel); M. Pandolfo (Massimo); T. Paus (Tomas); Z. Pausova (Zdenka); B.W.J.H. Penninx (Brenda); Pike, G.B. (G. Bruce); S.G. Potkin (Steven); B.M. Psaty (Bruce); S. Reppermund; M. Rietschel (Marcella); J.L. Roffman (Joshua); N. Seiferth (Nina); J.I. Rotter (Jerome I.); M. Ryten (Mina); Sacco, R.L. (Ralph L.); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); R. Schmidt (Reinhold); Schmidt, H. (Helena); C.J. Schofield (Christopher); Sigursson, S. (Sigurdur); Simmons, A. (Andrew); A. Singleton (Andrew); S.M. Sisodiya (Sanjay); Smith, C. (Colin); J.W. Smoller; H. Soininen (H.); V.M. Steen (Vidar); D.J. Stott (David J.); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); M. Tsolaki (Magda); C. Tzourio (Christophe); A.G. Uitterlinden (André); Hernández, M.C.V. (Maria C. Valdés); M.P. van der Brug (Marcel); A. van der Lugt (Aad); N.J. van der Wee (Nic); N.E.M. van Haren (Neeltje E.); D. van 't Ent (Dennis); M.J.D. van Tol (Marie-José); B.N. Vardarajan (Badri); B. Vellas (Bruno); D.J. Veltman (Dick); H. Völzke (Henry); H.J. Walter (Henrik); J. Wardlaw (Joanna); A.M.J. Wassink (Annemarie); M.E. Weale (Michael); Weinberger, D.R. (Daniel R.); Weiner, M.W. (Michael W.); Wen, W. (Wei); E. Westman (Eric); T.J.H. White (Tonya); Wong, T.Y. (Tien Y.); Wright, C.B. (Clinton B.); R.H. Zielke (Ronald H.); A.B. Zonderman; N.G. Martin (Nicholas); C.M. van Duijn (Cornelia); M.J. Wright (Margaret); W.T. Longstreth Jr; G. Schumann (Gunter); H.J. Grabe (Hans Jörgen); B. Franke (Barbara); L.J. Launer (Lenore); S.E. Medland (Sarah Elizabeth); S. Seshadri (Sudha); P.M. Thompson (Paul); M.K. Ikram (Kamran)

    2017-01-01

    textabstractThe hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic

  9. Novel genetic loci associated with hippocampal volume

    NARCIS (Netherlands)

    Hibar, Derrek P.; Adams, Hieab H. H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivières, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S.; Armstrong, Nicola J.; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H.; Beiser, Alexa; Bernard, Manon; Blanton, Susan H.; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brickman, Adam M.; Carmichael, Owen; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L.; Gottesman, Rebecca F.; Grimm, Oliver; Griswold, Michael E.; Guadalupe, Tulio; Gutman, Boris A.; Hass, Johanna; Haukvik, Unn K.; Hoehn, David; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N.; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Liewald, David C. M.; Lopez, Lorna M.; Luciano, Michelle; Macare, Christine; Marquand, Andre F.; Matarin, Mar; Mather, Karen A.; Mattheisen, Manuel; McKay, David R.; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C.; Nyquist, Paul; Loohuis, Loes M. Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S.; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J.; Royle, Natalie A.; Rundek, Tatjana; Sämann, Philipp G.; Saremi, Arvin; Satizabal, Claudia L.; Schmaal, Lianne; Schork, Andrew J.; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V.; Sprooten, Emma; Strike, Lachlan T.; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; van der Grond, Jeroen; van der Lee, Sven J.; van der Meer, Dennis; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; van Erp, Theo G. M.; van Rooij, Daan; Walton, Esther; Westlye, Lars T.; Whelan, Christopher D.; Windham, Beverly G.; Winkler, Anderson M.; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R.; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P.; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A.; Arepalli, Sampath; Assareh, Amelia A.; Barral, Sandra; Bastin, Mark E.; Becker, Diane M.; Becker, James T.; Bennett, David A.; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I.; Brodaty, Henry; Brouwer, Rachel M.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Bulayeva, Kazima B.; Cahn, Wiepke; Calhoun, Vince D.; Cannon, Dara M.; Cavalleri, Gianpiero L.; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R.; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E.; Czisch, Michael; Dale, Anders M.; Davies, Gareth E.; de Craen, Anton J. M.; de Geus, Eco J. C.; de Jager, Philip L.; de Zubicaray, Greig I.; Deary, Ian J.; Debette, Stéphanie; Decarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C.; Duggirala, Ravi; Dyer, Thomas D.; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O.; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E.; Fleischman, Debra A.; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M.; Fox, Peter T.; Francks, Clyde; Fukunaga, Masaki; Gibbs, J. Raphael; Glahn, David C.; Gollub, Randy L.; Göring, Harald H. H.; Green, Robert C.; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K.; Hansell, Narelle K.; Hardy, John; Hartman, Catharina A.; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G.; Heslenfeld, Dirk J.; Ho, Beng-Choon; Hoekstra, Pieter J.; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Pol, Hilleke E. Hulshoff; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G.; Jukema, J. Wouter; Kahn, René S.; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L.; Lopez, Oscar L.; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S.; McDonald, Colm; McIntosh, Andrew M.; McMahon, Francis J.; McMahon, Katie L.; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W.; Morris, Derek W.; Mosley, Thomas H.; Mühleisen, Thomas W.; Müller-Myhsok, Bertram; Nalls, Michael A.; Nauck, Matthias; Nichols, Thomas E.; Niessen, Wiro J.; Nöthen, Markus M.; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L.; Ophoff, Roel A.; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W. J. H.; Pike, G. Bruce; Potkin, Steven G.; Psaty, Bruce M.; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L.; Romanczuk-Seiferth, Nina; Rotter, Jerome I.; Ryten, Mina; Sacco, Ralph L.; Sachdev, Perminder S.; Saykin, Andrew J.; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R.; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M.; Smith, Colin; Smoller, Jordan W.; Soininen, Hilkka; Steen, Vidar M.; Stott, David J.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G.; Hernández, Maria C. Valdés; van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J. A.; van Haren, Neeltje E. M.; van 't Ent, Dennis; van Tol, Marie-Jose; Vardarajan, Badri N.; Vellas, Bruno; Veltman, Dick J.; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M.; Wassink, Thomas H.; Weale, Michael E.; Weinberger, Daniel R.; Weiner, Michael W.; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y.; Wright, Clinton B.; Zielke, Ronald H.; Zonderman, Alan B.; Martin, Nicholas G.; van Duijn, Cornelia M.; Wright, Margaret J.; Longstreth, W. T.; Schumann, Gunter; Grabe, Hans J.; Franke, Barbara; Launer, Lenore J.; Medland, Sarah E.; Seshadri, Sudha; Thompson, Paul M.; Ikram, M. Arfan

    2017-01-01

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of

  10. Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci.

    Science.gov (United States)

    Coetzee, Simon G; Shen, Howard C; Hazelett, Dennis J; Lawrenson, Kate; Kuchenbaecker, Karoline; Tyrer, Jonathan; Rhie, Suhn K; Levanon, Keren; Karst, Alison; Drapkin, Ronny; Ramus, Susan J; Couch, Fergus J; Offit, Kenneth; Chenevix-Trench, Georgia; Monteiro, Alvaro N A; Antoniou, Antonis; Freedman, Matthew; Coetzee, Gerhard A; Pharoah, Paul D P; Noushmehr, Houtan; Gayther, Simon A

    2015-07-01

    Understanding the regulatory landscape of the human genome is a central question in complex trait genetics. Most single-nucleotide polymorphisms (SNPs) associated with cancer risk lie in non-protein-coding regions, implicating regulatory DNA elements as functional targets of susceptibility variants. Here, we describe genome-wide annotation of regions of open chromatin and histone modification in fallopian tube and ovarian surface epithelial cells (FTSECs, OSECs), the debated cellular origins of high-grade serous ovarian cancers (HGSOCs) and in endometriosis epithelial cells (EECs), the likely precursor of clear cell ovarian carcinomas (CCOCs). The regulatory architecture of these cell types was compared with normal human mammary epithelial cells and LNCaP prostate cancer cells. We observed similar positional patterns of global enhancer signatures across the three different ovarian cancer precursor cell types, and evidence of tissue-specific regulatory signatures compared to non-gynecological cell types. We found significant enrichment for risk-associated SNPs intersecting regulatory biofeatures at 17 known HGSOC susceptibility loci in FTSECs (P = 3.8 × 10(-30)), OSECs (P = 2.4 × 10(-23)) and HMECs (P = 6.7 × 10(-15)) but not for EECs (P = 0.45) or LNCaP cells (P = 0.88). Hierarchical clustering of risk SNPs conditioned on the six different cell types indicates FTSECs and OSECs are highly related (96% of samples using multi-scale bootstrapping) suggesting both cell types may be precursors of HGSOC. These data represent the first description of regulatory catalogues of normal precursor cells for different ovarian cancer subtypes, and provide unique insights into the tissue specific regulatory variation with respect to the likely functional targets of germline genetic susceptibility variants for ovarian cancer. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array

    Science.gov (United States)

    Eeles, Rosalind A; Olama, Ali Amin Al; Benlloch, Sara; Saunders, Edward J; Leongamornlert, Daniel A; Tymrakiewicz, Malgorzata; Ghoussaini, Maya; Luccarini, Craig; Dennis, Joe; Jugurnauth-Little, Sarah; Dadaev, Tokhir; Neal, David E; Hamdy, Freddie C; Donovan, Jenny L; Muir, Ken; Giles, Graham G; Severi, Gianluca; Wiklund, Fredrik; Gronberg, Henrik; Haiman, Christopher A; Schumacher, Fredrick; Henderson, Brian; Le Marchand, Loic; Lindstrom, Sara; Kraft, Peter; Hunter, David J; Gapstur, Susan; Chanock, Stephen J; Berndt, Sonja I; Albanes, Demetrius; Andriole, Gerald; Schleutker, Johanna; Weischer, Maren; Canzian, Federico; Riboli, Elio; Key, Tim J; Travis, Ruth; Campa, Daniele; Ingles, Sue A; John, Esther M; Hayes, Richard B; Pharoah, Paul DP; Pashayan, Nora; Khaw, Kay-Tee; Stanford, Janet; Ostrander, Elaine A; Signorello, Lisa B; Thibodeau, Stephen N; Schaid, Dan; Maier, Christiane; Vogel, Walther; Kibel, Adam S; Cybulski, Cezary; Lubinski, Jan; Cannon-Albright; Brenner, Hermann; Park, Jong Y; Kaneva, Radka; Batra, Jyotsna; Spurdle, Amanda B; Clements, Judith A; Teixeira, Manuel R; Dicks, Ed; Lee, Andrew; Dunning, Alison; Baynes, Caroline; Conroy, Don; Maranian, Melanie J; Ahmed, Shahana; Govindasami, Koveela; Guy, Michelle; Wilkinson, Rosemary A; Sawyer, Emma J; Morgan, Angela; Dearnaley, David P; Horwich, Alan; Huddart, Robert A; Khoo, Vincent S; Parker, Christopher C; Van As, Nicholas J; Woodhouse, J; Thompson, Alan; Dudderidge, Tim; Ogden, Chris; Cooper, Colin; Lophatananon, Artitaya; Cox, Angela; Southey, Melissa; Hopper, John L; English, Dallas R; Aly, Markus; Adolfsson, Jan; Xu, Jiangfeng; Zheng, Siqun; Yeager, Meredith; Kaaks, Rudolf; Diver, W Ryan; Gaudet, Mia M; Stern, Mariana; Corral, Roman; Joshi, Amit D; Shahabi, Ahva; Wahlfors, Tiina; Tammela, Teuvo J; Auvinen, Anssi; Virtamo, Jarmo; Klarskov, Peter; Nordestgaard, Børge G; Røder, Andreas; Nielsen, Sune F; Bojesen, Stig E; Siddiq, Afshan; FitzGerald, Liesel; Kolb, Suzanne; Kwon, Erika; Karyadi, Danielle; Blot, William J; Zheng, Wei; Cai, Qiuyin; McDonnell, Shannon K; Rinckleb, Antje; Drake, Bettina; Colditz, Graham; Wokolorczyk, Dominika; Stephenson, Robert A; Teerlink, Craig; Muller, Heiko; Rothenbacher, Dietrich; Sellers, Thomas A; Lin, Hui-Yi; Slavov, Chavdar; Mitev, Vanio; Lose, Felicity; Srinivasan, Srilakshmi; Maia, Sofia; Paulo, Paula; Lange, Ethan; Cooney, Kathleen A; Antoniou, Antonis; Vincent, Daniel; Bacot, François; Tessier; Kote-Jarai, Zsofia; Easton, Douglas F

    2013-01-01

    Prostate cancer is the most frequently diagnosed cancer in males in developed countries. To identify common prostate cancer susceptibility alleles, we genotyped 211,155 SNPs on a custom Illumina array (iCOGS) in blood DNA from 25,074 prostate cancer cases and 24,272 controls from the international PRACTICAL Consortium. Twenty-three new prostate cancer susceptibility loci were identified at genome-wide significance (P < 5 × 10−8). More than 70 prostate cancer susceptibility loci, explaining ~30% of the familial risk for this disease, have now been identified. On the basis of combined risks conferred by the new and previously known risk loci, the top 1% of the risk distribution has a 4.7-fold higher risk than the average of the population being profiled. These results will facilitate population risk stratification for clinical studies. PMID:23535732

  12. A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11

    NARCIS (Netherlands)

    Siddiq, Afshan; Couch, Fergus J.; Chen, Gary K.; Lindström, Sara; Eccles, Diana; Millikan, Robert C.; Michailidou, Kyriaki; Stram, Daniel O.; Beckmann, Lars; Rhie, Suhn Kyong; Ambrosone, Christine B.; Aittomäki, Kristiina; Amiano, Pilar; Apicella, Carmel; Baglietto, Laura; Bandera, Elisa V.; Beckmann, Matthias W.; Berg, Christine D.; Bernstein, Leslie; Blomqvist, Carl; Brauch, Hiltrud; Brinton, Louise; Bui, Quang M.; Buring, Julie E.; Buys, Saundra S.; Campa, Daniele; Carpenter, Jane E.; Chasman, Daniel I.; Chang-Claude, Jenny; Chen, Constance; Clavel-Chapelon, Françoise; Cox, Angela; Cross, Simon S.; Czene, Kamila; Deming, Sandra L.; Diasio, Robert B.; Diver, W. Ryan; Dunning, Alison M.; Durcan, Lorraine; Ekici, Arif B.; Fasching, Peter A.; Feigelson, Heather Spencer; Fejerman, Laura; Figueroa, Jonine D.; Fletcher, Olivia; Flesch-Janys, Dieter; Gaudet, Mia M.; Gerty, Susan M.; Rodriguez-Gil, Jorge L.; Giles, Graham G.; van Gils, Carla H.; Godwin, Andrew K.; Graham, Nikki; Greco, Dario; Hall, Per; Hankinson, Susan E.; Hartmann, Arndt; Hein, Rebecca; Heinz, Judith; Hoover, Robert N.; Hopper, John L.; Hu, Jennifer J.; Huntsman, Scott; Ingles, Sue A.; Irwanto, Astrid; Isaacs, Claudine; Jacobs, Kevin B.; John, Esther M.; Justenhoven, Christina; Kaaks, Rudolf; Kolonel, Laurence N.; Coetzee, Gerhard A.; Lathrop, Mark; Le Marchand, Loic; Lee, Adam M.; Lee, I.-Min; Lesnick, Timothy; Lichtner, Peter; Liu, Jianjun; Lund, Eiliv; Makalic, Enes; Martin, Nicholas G.; McLean, Catriona A.; Meijers-Heijboer, Hanne; Meindl, Alfons; Miron, Penelope; Monroe, Kristine R.; Montgomery, Grant W.; Müller-Myhsok, Bertram; Nickels, Stefan; Nyante, Sarah J.; Olswold, Curtis; Overvad, Kim; Palli, Domenico; Park, Daniel J.; Palmer, Julie R.; Pathak, Harsh; Peto, Julian; Pharoah, Paul; Rahman, Nazneen; Rivadeneira, Fernando; Schmidt, Daniel F.; Schmutzler, Rita K.; Slager, Susan; Southey, Melissa C.; Stevens, Kristen N.; Sinn, Hans-Peter; Press, Michael F.; Ross, Eric; Riboli, Elio; Ridker, Paul M.; Schumacher, Fredrick R.; Severi, Gianluca; dos Santos Silva, Isabel; Stone, Jennifer; Sund, Malin; Tapper, William J.; Thun, Michael J.; Travis, Ruth C.; Turnbull, Clare; Uitterlinden, Andre G.; Waisfisz, Quinten; Wang, Xianshu; Wang, Zhaoming; Weaver, Joellen; Schulz-Wendtland, Rüdiger; Wilkens, Lynne R.; van den Berg, David; Zheng, Wei; Ziegler, Regina G.; Ziv, Elad; Nevanlinna, Heli; Easton, Douglas F.; Hunter, David J.; Henderson, Brian E.; Chanock, Stephen J.; Garcia-Closas, Montserrat; Kraft, Peter; Haiman, Christopher A.; Vachon, Celine M.

    2012-01-01

    Genome-wide association studies (GWAS) of breast cancer defined by hormone receptor status have revealed loci contributing to susceptibility of estrogen receptor (ER)-negative subtypes. To identify additional genetic variants for ER-negative breast cancer, we conducted the largest meta-analysis of

  13. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2

    DEFF Research Database (Denmark)

    Ahmed, Shahana; Thomas, Gilles; Ghoussaini, Maya

    2009-01-01

    Genome-wide association studies (GWAS) have identified seven breast cancer susceptibility loci, but these explain only a small fraction of the familial risk of the disease. Five of these loci were identified through a two-stage GWAS involving 390 familial cases and 364 controls in the first stage......, and 3,990 cases and 3,916 controls in the second stage. To identify additional loci, we tested over 800 promising associations from this GWAS in a further two stages involving 37,012 cases and 40,069 controls from 33 studies in the CGEMS collaboration and Breast Cancer Association Consortium. We found...

  14. Multiple susceptibility loci for radiation-induced mammary tumorigenesis in F2[Dahl S x R]-intercross rats.

    Directory of Open Access Journals (Sweden)

    Victoria L Herrera

    Full Text Available Although two major breast cancer susceptibility genes, BRCA1 and BRCA2, have been identified accounting for 20% of breast cancer genetic risk, identification of other susceptibility genes accounting for 80% risk remains a challenge due to the complex, multi-factorial nature of breast cancer. Complexity derives from multiple genetic determinants, permutations of gene-environment interactions, along with presumptive low-penetrance of breast cancer predisposing genes, and genetic heterogeneity of human populations. As with other complex diseases, dissection of genetic determinants in animal models provides key insight since genetic heterogeneity and environmental factors can be experimentally controlled, thus facilitating the detection of quantitative trait loci (QTL. We therefore, performed the first genome-wide scan for loci contributing to radiation-induced mammary tumorigenesis in female F2-(Dahl S x R-intercross rats. Tumorigenesis was measured as tumor burden index (TBI after induction of rat mammary tumors at forty days of age via ¹²⁷Cs-radiation. We observed a spectrum of tumor latency, size-progression, and pathology from poorly differentiated ductal adenocarcinoma to fibroadenoma, indicating major effects of gene-environment interactions. We identified two mammary tumorigenesis susceptibility quantitative trait loci (Mts-QTLs with significant linkage: Mts-1 on chromosome-9 (LOD-2.98 and Mts-2 on chromosome-1 (LOD-2.61, as well as two Mts-QTLs with suggestive linkage: Mts-3 on chromosome-5 (LOD-1.93 and Mts-4 on chromosome-18 (LOD-1.54. Interestingly, Chr9-Mts-1, Chr5-Mts-3 and Chr18-Mts-4 QTLs are unique to irradiation-induced mammary tumorigenesis, while Chr1-Mts-2 QTL overlaps with a mammary cancer susceptibility QTL (Mcs 3 reported for 7,12-dimethylbenz-[α]antracene (DMBA-induced mammary tumorigenesis in F2[COP x Wistar-Furth]-intercross rats. Altogether, our results suggest at least three distinct susceptibility QTLs for

  15. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer

    Science.gov (United States)

    Pharoah, Paul D. P.; Tsai, Ya-Yu; Ramus, Susan J.; Phelan, Catherine M.; Goode, Ellen L.; Lawrenson, Kate; Price, Melissa; Fridley, Brooke L.; Tyrer, Jonathan P.; Shen, Howard; Weber, Rachel; Karevan, Rod; Larson, Melissa C.; Song, Honglin; Tessier, Daniel C.; Bacot, François; Vincent, Daniel; Cunningham, Julie M.; Dennis, Joe; Dicks, Ed; Aben, Katja K.; Anton-Culver, Hoda; Antonenkova, Natalia; Armasu, Sebastian M.; Baglietto, Laura; Bandera, Elisa V.; Beckmann, Matthias W.; Birrer, Michael J.; Bloom, Greg; Bogdanova, Natalia; Brenton, James D.; Brinton, Louise A.; Brooks-Wilson, Angela; Brown, Robert; Butzow, Ralf; Campbell, Ian; Carney, Michael E; Carvalho, Renato S.; Chang-Claude, Jenny; Chen, Y. Anne; Chen, Zhihua; Chow, Wong-Ho; Cicek, Mine S.; Coetzee, Gerhard; Cook, Linda S.; Cramer, Daniel W.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Despierre, Evelyn; Doherty, Jennifer A; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Edwards, Robert; Ekici, Arif B.; Fasching, Peter A.; Fenstermacher, David; Flanagan, James; Gao, Yu-Tang; Garcia-Closas, Montserrat; Gentry-Maharaj, Aleksandra; Giles, Graham; Gjyshi, Anxhela; Gore, Martin; Gronwald, Jacek; Guo, Qi; Halle, Mari K; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hillemanns, Peter; Hoatlin, Maureen; Høgdall, Estrid; Høgdall, Claus K.; Hosono, Satoyo; Jakubowska, Anna; Jensen, Allan; Kalli, Kimberly R.; Karlan, Beth Y.; Kelemen, Linda E.; Kiemeney, Lambertus A.; Kjaer, Susanne Krüger; Konecny, Gottfried E.; Krakstad, Camilla; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Nathan; Lee, Janet; Leminen, Arto; Lim, Boon Kiong; Lissowska, Jolanta; Lubiński, Jan; Lundvall, Lene; Lurie, Galina; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B.; Nakanishi, Toru; Narod, Steven A.; Ness, Roberta B.; Nevanlinna, Heli; Nickels, Stefan; Noushmehr, Houtan; Odunsi, Kunle; Olson, Sara; Orlow, Irene; Paul, James; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jenny; Pike, Malcolm C; Poole, Elizabeth M; Qu, Xiaotao; Risch, Harvey A.; Rodriguez-Rodriguez, Lorna; Rossing, Mary Anne; Rudolph, Anja; Runnebaum, Ingo; Rzepecka, Iwona K; Salvesen, Helga B.; Schwaab, Ira; Severi, Gianluca; Shen, Hui; Shridhar, Vijayalakshmi; Shu, Xiao-Ou; Sieh, Weiva; Southey, Melissa C.; Spellman, Paul; Tajima, Kazuo; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J; Timorek, Agnieszka; Tworoger, Shelley S.; van Altena, Anne M.; Berg, David Van Den; Vergote, Ignace; Vierkant, Robert A.; Vitonis, Allison F.; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S.; Wik, Elisabeth; Winterhoff, Boris; Woo, Yin Ling; Wu, Anna H; Yang, Hannah P.; Zheng, Wei; Ziogas, Argyrios; Zulkifli, Famida; Goodman, Marc T.; Hall, Per; Easton, Douglas F; Pearce, Celeste L; Berchuck, Andrew; Chenevix-Trench, Georgia; Iversen, Edwin; Monteiro, Alvaro N.A.; Gayther, Simon A.; Schildkraut, Joellen M.; Sellers, Thomas A.

    2013-01-01

    Genome wide association studies (GWAS) have identified four susceptibility loci for epithelial ovarian cancer (EOC) with another two loci being close to genome-wide significance. We pooled data from a GWAS conducted in North America with another GWAS from the United Kingdom. We selected the top 24,551 SNPs for inclusion on the iCOGS custom genotyping array. Follow-up genotyping was carried out in 18,174 cases and 26,134 controls from 43 studies from the Ovarian Cancer Association Consortium. We validated the two loci at 3q25 and 17q21 previously near genome-wide significance and identified three novel loci associated with risk; two loci associated with all EOC subtypes, at 8q21 (rs11782652, P=5.5×10-9) and 10p12 (rs1243180; P=1.8×10-8), and another locus specific to the serous subtype at 17q12 (rs757210; P=8.1×10-10). An integrated molecular analysis of genes and regulatory regions at these loci provided evidence for functional mechanisms underlying susceptibility that implicates CHMP4C in the pathogenesis of ovarian cancer. PMID:23535730

  16. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    NARCIS (Netherlands)

    J.F. Felix (Janine); J.P. Bradfield (Jonathan); C. Monnereau; R.J.P. van der Valk (Ralf); E. Stergiakouli (Evie); A. Chesi (Alessandra); R. Gaillard (Romy); B. Feenstra (Bjarke); E. Thiering (Elisabeth); E. Kreiner-Møller (Eskil); A. Mahajan (Anubha); Niina Pitkänen; R. Joro (Raimo); A. Cavadino (Alana); V. Huikari (Ville); S. Franks (Steve); M. Groen-Blokhuis (Maria); D.L. Cousminer (Diana); J.A. Marsh (Julie); T. Lehtimäki (Terho); J.A. Curtin (John); J. Vioque (Jesus); T.S. Ahluwalia (Tarunveer Singh); R. Myhre (Ronny); T.S. Price (Thomas); Natalia Vilor-Tejedor; L. Yengo (Loic); N. Grarup (Niels); I. Ntalla (Ioanna); W.Q. Ang (Wei); M. Atalay (Mustafa); H. Bisgaard (Hans); A.I.F. Blakemore (Alexandra); A. Bonnefond (Amélie); L. Carstensen (Lisbeth); J.G. Eriksson (Johan G.); C. Flexeder (Claudia); L. Franke (Lude); F. Geller (Frank); M. Geserick (Mandy); A.L. Hartikainen; C.M.A. Haworth (Claire M.); J.N. Hirschhorn (Joel N.); A. Hofman (Albert); J.-C. Holm (Jens-Christian); M. Horikoshi (Momoko); J.J. Hottenga (Jouke Jan); J. Huang (Jian); H.N. Kadarmideen (Haja N.); M. Kähönen (Mika); W. Kiess (Wieland); T.A. Lakka (Timo); T.A. Lakka (Timo); A. Lewin (Alex); L. Liang (Liming); L.-P. Lyytikäinen (Leo-Pekka); B. Ma (Baoshan); P. Magnus (Per); S.E. McCormack (Shana E.); G. Mcmahon (George); F.D. Mentch (Frank); C.M. Middeldorp (Christel); C.S. Murray (Clare S.); K. Pahkala (Katja); T.H. Pers (Tune); R. Pfäffle (Roland); D.S. Postma (Dirkje); C. Power (Christine); A. Simpson (Angela); V. Sengpiel (Verena); C. Tiesler (Carla); M. Torrent (Maties); A.G. Uitterlinden (André); J.B.J. van Meurs (Joyce); R. Vinding (Rebecca); J. Waage (Johannes); J. Wardle (Jane); E. Zeggini (Eleftheria); B.S. Zemel (Babette S.); G.V. Dedoussis (George); O. Pedersen (Oluf); P. Froguel (Philippe); J. Sunyer (Jordi); R. Plomin (Robert); B. Jacobsson (Bo); T. Hansen (Torben); J.R. Gonzalez (Juan R.); A. Custovic; O.T. Raitakari (Olli T.); C.E. Pennell (Craig); Elisabeth Widén; D.I. Boomsma (Dorret); G.H. Koppelman (Gerard); S. Sebert (Sylvain); M.-R. Jarvelin (Marjo-Riitta); E. Hypponen (Elina); M.I. McCarthy (Mark); V. Lindi (Virpi); N. Harri (Niinikoski); A. Körner (Antje); K. Bønnelykke (Klaus); J. Heinrich (Joachim); M. Melbye (Mads); F. Rivadeneira Ramirez (Fernando); H. Hakonarson (Hakon); S.M. Ring (Susan); G.D. Smith; T.I.A. Sørensen (Thorkild I.A.); N.J. Timpson (Nicholas); S.F.A. Grant (Struan); V.W.V. Jaddoe (Vincent); H.J. Kalkwarf (Heidi J.); J.M. Lappe (Joan M.); V. Gilsanz (Vicente); S.E. Oberfield (Sharon E.); J.A. Shepherd (John A.); A. Kelly (Andrea)

    2016-01-01

    textabstractA large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown.We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation

  17. Genome-wide meta-analysis identifies new susceptibility loci for migraine.

    Science.gov (United States)

    Anttila, Verneri; Winsvold, Bendik S; Gormley, Padhraig; Kurth, Tobias; Bettella, Francesco; McMahon, George; Kallela, Mikko; Malik, Rainer; de Vries, Boukje; Terwindt, Gisela; Medland, Sarah E; Todt, Unda; McArdle, Wendy L; Quaye, Lydia; Koiranen, Markku; Ikram, M Arfan; Lehtimäki, Terho; Stam, Anine H; Ligthart, Lannie; Wedenoja, Juho; Dunham, Ian; Neale, Benjamin M; Palta, Priit; Hamalainen, Eija; Schürks, Markus; Rose, Lynda M; Buring, Julie E; Ridker, Paul M; Steinberg, Stacy; Stefansson, Hreinn; Jakobsson, Finnbogi; Lawlor, Debbie A; Evans, David M; Ring, Susan M; Färkkilä, Markus; Artto, Ville; Kaunisto, Mari A; Freilinger, Tobias; Schoenen, Jean; Frants, Rune R; Pelzer, Nadine; Weller, Claudia M; Zielman, Ronald; Heath, Andrew C; Madden, Pamela A F; Montgomery, Grant W; Martin, Nicholas G; Borck, Guntram; Göbel, Hartmut; Heinze, Axel; Heinze-Kuhn, Katja; Williams, Frances M K; Hartikainen, Anna-Liisa; Pouta, Anneli; van den Ende, Joyce; Uitterlinden, Andre G; Hofman, Albert; Amin, Najaf; Hottenga, Jouke-Jan; Vink, Jacqueline M; Heikkilä, Kauko; Alexander, Michael; Muller-Myhsok, Bertram; Schreiber, Stefan; Meitinger, Thomas; Wichmann, Heinz Erich; Aromaa, Arpo; Eriksson, Johan G; Traynor, Bryan; Trabzuni, Daniah; Rossin, Elizabeth; Lage, Kasper; Jacobs, Suzanne B R; Gibbs, J Raphael; Birney, Ewan; Kaprio, Jaakko; Penninx, Brenda W; Boomsma, Dorret I; van Duijn, Cornelia; Raitakari, Olli; Jarvelin, Marjo-Riitta; Zwart, John-Anker; Cherkas, Lynn; Strachan, David P; Kubisch, Christian; Ferrari, Michel D; van den Maagdenberg, Arn M J M; Dichgans, Martin; Wessman, Maija; Smith, George Davey; Stefansson, Kari; Daly, Mark J; Nyholt, Dale R; Chasman, Daniel; Palotie, Aarno

    2013-08-01

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and 95,425 population-matched controls. We identified 12 loci associated with migraine susceptibility (P<5×10(-8)). Five loci are new: near AJAP1 at 1p36, near TSPAN2 at 1p13, within FHL5 at 6q16, within C7orf10 at 7p14 and near MMP16 at 8q21. Three of these loci were identified in disease subgroup analyses. Brain tissue expression quantitative trait locus analysis suggests potential functional candidate genes at four loci: APOA1BP, TBC1D7, FUT9, STAT6 and ATP5B.

  18. Identification of six new susceptibility loci for invasive epithelial ovarian cancer

    NARCIS (Netherlands)

    Kuchenbaecker, K.B.; Ramus, S.J.; Tyrer, J.; Lee, A.; Shen, H.C.; Beesley, J.; Lawrenson, K.; McGuffog, L.; Healey, S.; Lee, J.M.; Spindler, T.J.; Lin, Y.G.; Pejovic, T.; Bean, Y.; Li, Q.; Coetzee, S.; Hazelett, D.; Miron, A.; Southey, M.; Terry, M.B.; Goldgar, D.E.; Buys, S.S.; Janavicius, R.; Dorfling, C.M.; Rensburg, E.J. van; Neuhausen, S.L.; Ding, Y.C.; Hansen, T.V.; Jonson, L.; Gerdes, A.M.; Ejlertsen, B.; Barrowdale, D.; Dennis, J.; Benitez, J.; Osorio, A.; Garcia, M.J.; Komenaka, I.; Weitzel, J.N.; Ganschow, P.; Peterlongo, P.; Bernard, L.; Viel, A.; Bonanni, B.; Peissel, B.; Manoukian, S.; Radice, P.; Papi, L.; Ottini, L.; Fostira, F.; Konstantopoulou, I.; Garber, J.; Frost, D.; Perkins, J.; Platte, R.; Ellis, S.; Embrace, .; Godwin, A.K.; Schmutzler, R.K.; Meindl, A.; Engel, C.; Sutter, C.; Sinilnikova, O.M.; Damiola, F.; Mazoyer, S.; Stoppa-Lyonnet, D.; Claes, K.; Leeneer, K. De; Kirk, J.; Rodriguez, G.C.; Piedmonte, M.; O'Malley, D.M.; Hoya, M. de la; Caldes, T.; Aittomaki, K.; Nevanlinna, H.; Collee, J.M.; Rookus, M.A.; Oosterwijk, J.C; Tihomirova, L.; Tung, N.; Hamann, U.; Isaccs, C.; Tischkowitz, M.; Imyanitov, E.N.; Caligo, M.A.; Campbell, I.G.; Hogervorst, F.B.; Olah, E.; Diez, O.; Blanco, I.; Brunet, J.; Lazaro, C.; Pujana, M.A.; Jakubowska, A.; Gronwald, J.; Lubinski, J.; Sukiennicki, G.; Massuger, L.F.A.G.; Altena, A.M. van; Aben, K.K.H.; Kiemeney, B.; Mensenkamp, A.R.; Kets, M.; Hoogerbrugge, N.; Ligtenberg, M.J.L.; et al.,

    2015-01-01

    Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed

  19. Identification of six new susceptibility loci for invasive epithelial ovarian cancer

    NARCIS (Netherlands)

    K.B. Kuchenbaecker (Karoline); S.J. Ramus (Susan); J.P. Tyrer (Jonathan); A. Lee (Andrew); H.C. Shen (Howard C.); J. Beesley (Jonathan); K. Lawrenson (Kate); L. McGuffog (Lesley); S. Healey (Sue); J.M. Lee (Janet M.); T.J. Spindler (Tassja J.); Y.G. Lin (Yvonne G.); T. Pejovic (Tanja); Y. Bean (Yukie); Q. Li (Qiyuan); S. Coetzee (Simon); D. Hazelett (Dennis); A. Miron (Alexander); M.C. Southey (Melissa); M.B. Terry (Mary Beth); D. Goldgar (David); S.S. Buys (Saundra); R. Janavicius (Ramunas); C.M. Dorfling (Cecilia); E.J. van Rensburg (Elizabeth); S.L. Neuhausen (Susan); Y.C. Ding (Yuan); T.V.O. Hansen (Thomas); L. Jønson (Lars); A.-M. Gerdes (Anne-Marie); B. Ejlertsen (Bent); D. Barrowdale (Daniel); J. Dennis (Joe); J. Benítez (Javier); A. Osorio (Ana); M.J. Garcia (Maria Jose); I. Komenaka (Ian); J.N. Weitzel (Jeffrey); P. Ganschow (Pamela); P. Peterlongo (Paolo); L. Bernard (Loris); A. Viel (Alessandra); B. Bonnani (Bernardo); B. Peissel (Bernard); S. Manoukian (Siranoush); P. Radice (Paolo); L. Papi (Laura); L. Ottini (Laura); F. Fostira (Florentia); I. Konstantopoulou (I.); J. Garber (Judy); D. Frost (Debra); J. Perkins (Jo); R. Platte (Radka); S.D. Ellis (Steve); A.K. Godwin (Andrew K.); R.K. Schmutzler (Rita); A. Meindl (Alfons); C. Engel (Christoph); C. Sutter (Christian); O. Sinilnikova (Olga); F. Damiola (Francesca); S. Mazoyer (Sylvie); D. Stoppa-Lyonnet (Dominique); K.B.M. Claes (Kathleen B.M.); K. De Leeneer (Kim); J. Kirk (Judy); G. Rodriguez (Gustavo); M. Piedmonte (Marion); D.M. O'Malley (David M.); M. de La Hoya (Miguel); T. Caldes (Trinidad); K. Aittomäki (Kristiina); H. Nevanlinna (Heli); J.M. Collée (Margriet); M.A. Rookus (Matti); J.C. Oosterwijk (Jan); L. Tihomirova (Laima); N. Tung (Nadine); U. Hamann (Ute); C. Isaccs (Claudine); M. Tischkowitz (Marc); E.N. Imyanitov (Evgeny); M.A. Caligo (Maria); I. Campbell (Ian); F.B.L. Hogervorst (Frans); E. Olah; O. Díez (Orland); I. Blanco (Ignacio); J. Brunet (Joan); C. Lazaro (Conxi); M.A. Pujana (Miguel); A. Jakubowska (Anna); J. Gronwald (Jacek); J. Lubinski (Jan); G. Sukiennicki (Grzegorz); R.B. Barkardottir (Rosa); M. Plante (Marie); J. Simard (Jacques); P. Soucy (Penny); M. Montagna (Marco); S. Tognazzo (Silvia); P.J. Teixeira; V.S. Pankratz (Shane); X. Wang (Xianshu); N.M. Lindor (Noralane); C. Szabo (Csilla); N. Kauff (Noah); J. Vijai (Joseph); C.A. Aghajanian (Carol A.); G. Pfeiler (Georg); A. Berger (Andreas); C.F. Singer (Christian); M.-K. Tea; C. Phelan (Catherine); M.H. Greene (Mark H.); P.L. Mai (Phuong); G. Rennert (Gad); A.-M. Mulligan (Anna-Marie); S. Tchatchou (Sandrine); I.L. Andrulis (Irene); G. Glendon (Gord); A.E. Toland (Amanda); U.B. Jensen (Uffe Birk); T.A. Kruse (Torben); M. Thomassen (Mads); A. Bojesen (Anders); J. Zidan (Jamal); E. Friedman (Eitan); Y. Laitman (Yael); M. Soller (Maria); A. Liljegren (Annelie); B. Arver (Brita Wasteson); Z. Einbeigi (Zakaria); M. Stenmark-Askmalm (Marie); O.I. Olopade (Olufunmilayo I.); R.L. Nussbaum (Robert L.); T.R. Rebbeck (Timothy R.); K.L. Nathanson (Katherine); S.M. Domchek (Susan); K.H. Lu (Karen); B.Y. Karlan (Beth Y.); C. Walsh (Christine); K.J. Lester (Kathryn); R. Hein (Rebecca); A.B. Ekici (Arif); M.W. Beckmann (Matthias); P.A. Fasching (Peter); D. Lambrechts (Diether); E. Van Nieuwenhuysen (Els); I. Vergote (Ignace); S. Lambrechts (Sandrina); E. Dicks (Ed); J.A. Doherty (Jennifer A.); K.G. Wicklund (Kristine G.); M.A. Rossing (Mary Anne); A. Rudolph (Anja); J. Chang-Claude (Jenny); S. Wang-Gohrke (Shan); U. Eilber (Ursula); K.B. Moysich (Kirsten B.); K. Odunsi (Kunle); L. Sucheston (Lara); S. Lele (Shashi); L. Wilkens (Lynne); M.T. Goodman (Marc); P.J. Thompson (Pamela J.); Y.B. Shvetsov (Yurii B.); I.B. Runnebaum (Ingo); M. Dürst (Matthias); P. Hillemanns (Peter); T. Dörk (Thilo); N.N. Antonenkova (Natalia); N.V. Bogdanova (Natalia); A. Leminen (Arto); L.M. Pelttari (Liisa); R. Butzow (Ralf); F. Modugno (Francesmary); J.L. Kelley (Joseph L.); R. Edwards (Robert); R.B. Ness (Roberta); A. Du Bois (Andreas); P.U. Heitz; I. Schwaab (Ira); P. Harter (Philipp); K. Matsuo (Keitaro); N. Hosono (Naoya); S. Orsulic (Sandra); A. Jensen (Allan); M. Kjaer (Michael); E. Høgdall (Estrid); H.N. Hasmad (Hanis Nazihah); M.A. Noor Azmi (Mat Adenan); S.-H. Teo (Soo-Hwang); Y.L. Woo (Yin Ling); B.L. Fridley (Brooke); E.L. Goode (Ellen); J.M. Cunningham (Julie); R.A. Vierkant (Robert); F. Bruinsma (Fiona); G.G. Giles (Graham G.); D. Liang (Dong); M.A.T. Hildebrandt (Michelle A.T.); X. Wu (Xifeng); D.A. Levine (Douglas); M. Bisogna (Maria); A. Berchuck (Andrew); E. Iversen (Erik); J.M. Schildkraut (Joellen); P. Concannon (Patrick); R.P. Weber (Rachel Palmieri); D.W. Cramer (Daniel); K.L. Terry (Kathryn); E.M. Poole (Elizabeth); S. Tworoger (Shelley); E.V. Bandera (Elisa); I. Orlow (Irene); S.H. Olson (Sara); C. Krakstad (Camilla); H.B. Salvesen (Helga); I.L. Tangen (Ingvild L.); L. Bjorge (Line); A.M. van Altena (Anne); K.K.H. Aben (Katja); L.A.L.M. Kiemeney (Bart); L.F. Massuger (Leon); M. Kellar (Melissa); A. Brooks-Wilson (Angela); L.E. Kelemen (Linda); L.S. Cook (Linda S.); N.D. Le (Nhu D.); C. Cybulski (Cezary); H. Yang (Hannah); J. Lissowska (Jolanta); L.A. Brinton (Louise); N. Wentzensen (N.); C.K. Høgdall (Claus); L. Lundvall (Lene); L. Nedergaard (Lotte); H. Baker (Helen); H. Song (Honglin); D. Eccles (Diana); I. McNeish (Ian); J. Paul (James); K. Carty (Karen); N. Siddiqui (Nadeem); R. Glasspool (Rosalind); A.S. Whittemore (Alice S.); J.H. Rothstein (Joseph H.); W.P. McGuire; W. Sieh (Weiva); B.-T. Ji (Bu-Tian); W. Zheng (Wei); X.-O. Shu (Xiao-Ou); Y. Gao; B. Rosen (Barry); H. Risch (Harvey); J. McLaughlin (John); S.A. Narod (Steven A.); A.N.A. Monteiro (Alvaro N.); A. Chen (Ann); H.-Y. Lin (Hui-Yi); J. Permuth-Wey (Jenny); T.F. Sellers; Y.-Y. Tsai (Ya-Yu); Z. Chen (Zhihua); A. Ziogas (Argyrios); H. Anton-Culver (Hoda); A. Gentry-Maharaj (Aleksandra); U. Menon (Usha); P. harrington (Patricia); A.W. Lee (Alice W.); A.H. Wu (Anna H.); C.L. Pearce (Celeste); G. Coetzee (Gerry); M.C. Pike (Malcolm C.); A. Dansonka-Mieszkowska (Agnieszka); A. Timorek (Agnieszka); I.K. Rzepecka (Iwona); J. Kupryjanczyk (Jolanta); M. Freedman (Matthew); H. Noushmehr (Houtan); D.F. Easton (Douglas F.); K. Offit (Kenneth); F.J. Couch (Fergus); S.A. Gayther (Simon); P.P.D.P. Pharoah (Paul P.D.P.); A.C. Antoniou (Antonis C.); G. Chenevix-Trench (Georgia)

    2015-01-01

    textabstractGenome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we

  20. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer

    NARCIS (Netherlands)

    Phelan, Catherine M.; Kuchenbaecker, Karoline B.; Tyrer, Jonathan P.; Kar, Siddhartha P.; Lawrenson, Kate; Winham, Stacey J.; Dennis, Joe; Pirie, Ailith; Riggan, Marjorie J.; Chornokur, Ganna; Earp, Madalene A.; Lyra, Paulo C.; Lee, Janet M.; Coetzee, Simon; Beesley, Jonathan; McGuffog, Lesley; Soucy, Penny; Dicks, Ed; Lee, Andrew; Barrowdale, Daniel; Lecarpentier, Julie; Leslie, Goska; Aalfs, Cora M.; Aben, Katja K. H.; Adams, Marcia; Adlard, Julian; Andrulis, Irene L.; Anton-Culver, Hoda; Antonenkova, Natalia; Aravantinos, Gerasimos; Arnold, Norbert; Arun, Banu K.; Arver, Brita; Azzollini, Jacopo; Balmaña, Judith; Banerjee, Susana N.; Barjhoux, Laure; Barkardottir, Rosa B.; Bean, Yukie; Beckmann, Matthias W.; Beeghly-Fadiel, Alicia; Benitez, Javier; Bermisheva, Marina; Bernardini, Marcus Q.; Birrer, Michael J.; Bjorge, Line; Black, Amanda; Blankstein, Kenneth; Blok, Marinus J.; Bodelon, Clara; Bogdanova, Natalia; Bojesen, Anders; Bonanni, Bernardo; Borg, Åke; Bradbury, Angela R.; Brenton, James D.; Brewer, Carole; Brinton, Louise; Broberg, Per; Brooks-Wilson, Angela; Bruinsma, Fiona; Brunet, Joan; Buecher, Bruno; Butzow, Ralf; Buys, Saundra S.; Caldes, Trinidad; Caligo, Maria A.; Campbell, Ian; Cannioto, Rikki; Carney, Michael E.; Cescon, Terence; Chan, Salina B.; Chang-Claude, Jenny; Chanock, Stephen; Chen, Xiao Qing; Chiew, Yoke-Eng; Chiquette, Jocelyne; Chung, Wendy K.; Claes, Kathleen B. M.; Conner, Thomas; Cook, Linda S.; Cook, Jackie; Cramer, Daniel W.; Cunningham, Julie M.; D'Aloisio, Aimee A.; Daly, Mary B.; Damiola, Francesca; Damirovna, Sakaeva Dina; Dansonka-Mieszkowska, Agnieszka; Dao, Fanny; Davidson, Rosemarie; Defazio, Anna; Delnatte, Capucine; Doheny, Kimberly F.; Diez, Orland; Ding, Yuan Chun; Doherty, Jennifer Anne; Domchek, Susan M.; Dorfling, Cecilia M.; Dörk, Thilo; Dossus, Laure; Duran, Mercedes; Dürst, Matthias; Dworniczak, Bernd; Eccles, Diana; Edwards, Todd; Eeles, Ros; Eilber, Ursula; Ejlertsen, Bent; Ekici, Arif B.; Ellis, Steve; Elvira, Mingajeva; Eng, Kevin H.; Engel, Christoph; Evans, D. Gareth; Fasching, Peter A.; Ferguson, Sarah; Ferrer, Sandra Fert; Flanagan, James M.; Fogarty, Zachary C.; Fortner, Renée T.; Fostira, Florentia; Foulkes, William D.; Fountzilas, George; Fridley, Brooke L.; Friebel, Tara M.; Friedman, Eitan; Frost, Debra; Ganz, Patricia A.; Garber, Judy; García, María J.; Garcia-Barberan, Vanesa; Gehrig, Andrea; Gentry-Maharaj, Aleksandra; Gerdes, Anne-Marie; Giles, Graham G.; Glasspool, Rosalind; Glendon, Gord; Godwin, Andrew K.; Goldgar, David E.; Goranova, Teodora; Gore, Martin; Greene, Mark H.; Gronwald, Jacek; Gruber, Stephen; Hahnen, Eric; Haiman, Christopher A.; Håkansson, Niclas; Hamann, Ute; Hansen, Thomas V. O.; Harrington, Patricia A.; Harris, Holly R.; Hauke, Jan; Hein, Alexander; Henderson, Alex; Hildebrandt, Michelle A. T.; Hillemanns, Peter; Hodgson, Shirley; Høgdall, Claus K.; Høgdall, Estrid; Hogervorst, Frans B. L.; Holland, Helene; Hooning, Maartje J.; Hosking, Karen; Huang, Ruea-Yea; Hulick, Peter J.; Hung, Jillian; Hunter, David J.; Huntsman, David G.; Huzarski, Tomasz; Imyanitov, Evgeny N.; Isaacs, Claudine; Iversen, Edwin S.; Izatt, Louise; Izquierdo, Angel; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jernetz, Mats; Jensen, Allan; Jensen, Uffe Birk; John, Esther M.; Johnatty, Sharon; Jones, Michael E.; Kannisto, Päivi; Karlan, Beth Y.; Karnezis, Anthony; Kast, Karin; Kennedy, Catherine J.; Khusnutdinova, Elza; Kiemeney, Lambertus A.; Kiiski, Johanna I.; Kim, Sung-Won; Kjaer, Susanne K.; Köbel, Martin; Kopperud, Reidun K.; Kruse, Torben A.; Kupryjanczyk, Jolanta; Kwong, Ava; Laitman, Yael; Lambrechts, Diether; Larrañaga, Nerea; Larson, Melissa C.; Lazaro, Conxi; Le, Nhu D.; Le Marchand, Loic; Lee, Jong Won; Lele, Shashikant B.; Leminen, Arto; Leroux, Dominique; Lester, Jenny; Lesueur, Fabienne; Levine, Douglas A.; Liang, Dong; Liebrich, Clemens; Lilyquist, Jenna; Lipworth, Loren; Lissowska, Jolanta; Lu, Karen H.; Lubinński, Jan; Luccarini, Craig; Lundvall, Lene; Mai, Phuong L.; Mendoza-Fandiño, Gustavo; Manoukian, Siranoush; Massuger, Leon F. A. G.; May, Taymaa; Mazoyer, Sylvie; McAlpine, Jessica N.; McGuire, Valerie; McLaughlin, John R.; McNeish, Iain; Meijers-Heijboer, Hanne; Meindl, Alfons; Menon, Usha; Mensenkamp, Arjen R.; Merritt, Melissa A.; Milne, Roger L.; Mitchell, Gillian; Modugno, Francesmary; Moes-Sosnowska, Joanna; Moffitt, Melissa; Montagna, Marco; Moysich, Kirsten B.; Mulligan, Anna Marie; Musinsky, Jacob; Nathanson, Katherine L.; Nedergaard, Lotte; Ness, Roberta B.; Neuhausen, Susan L.; Nevanlinna, Heli; Niederacher, Dieter; Nussbaum, Robert L.; Odunsi, Kunle; Olah, Edith; Olopade, Olufunmilayo I.; Olsson, Håkan; Olswold, Curtis; O'Malley, David M.; Ong, Kai-Ren; Onland-Moret, N. Charlotte; Orr, Nicholas; Orsulic, Sandra; Osorio, Ana; Palli, Domenico; Papi, Laura; Park-Simon, Tjoung-Won; Paul, James; Pearce, Celeste L.; Pedersen, Inge Søkilde; Peeters, Petra H. M.; Peissel, Bernard; Peixoto, Ana; Pejovic, Tanja; Pelttari, Liisa M.; Permuth, Jennifer B.; Peterlongo, Paolo; Pezzani, Lidia; Pfeiler, Georg; Phillips, Kelly-Anne; Piedmonte, Marion; Pike, Malcolm C.; Piskorz, Anna M.; Poblete, Samantha R.; Pocza, Timea; Poole, Elizabeth M.; Poppe, Bruce; Porteous, Mary E.; Prieur, Fabienne; Prokofyeva, Darya; Pugh, Elizabeth; Pujana, Miquel Angel; Pujol, Pascal; Radice, Paolo; Rantala, Johanna; Rappaport-Fuerhauser, Christine; Rennert, Gad; Rhiem, Kerstin; Rice, Patricia; Richardson, Andrea; Robson, Mark; Rodriguez, Gustavo C.; Rodríguez-Antona, Cristina; Romm, Jane; Rookus, Matti A.; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Salvesen, Helga B.; Sandler, Dale P.; Schoemaker, Minouk J.; Senter, Leigha; Setiawan, V. Wendy; Severi, Gianluca; Sharma, Priyanka; Shelford, Tameka; Siddiqui, Nadeem; Side, Lucy E.; Sieh, Weiva; Singer, Christian F.; Sobol, Hagay; Song, Honglin; Southey, Melissa C.; Spurdle, Amanda B.; Stadler, Zsofia; Steinemann, Doris; Stoppa-Lyonnet, Dominique; Sucheston-Campbell, Lara E.; Sukiennicki, Grzegorz; Sutphen, Rebecca; Sutter, Christian; Swerdlow, Anthony J.; Szabo, Csilla I.; Szafron, Lukasz; Tan, Yen Y.; Taylor, Jack A.; tea, Muy-Kheng; Teixeira, Manuel R.; teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Thomsen, Liv Cecilie Vestrheim; Thull, Darcy L.; Tihomirova, Laima; Tinker, Anna V.; Tischkowitz, Marc; Tognazzo, Silvia; Toland, Amanda Ewart; Tone, Alicia; Trabert, Britton; Travis, Ruth C.; Trichopoulou, Antonia; Tung, Nadine; Tworoger, Shelley S.; van Altena, Anne M.; van den Berg, David; van der Hout, Annemarie H.; van der Luijt, Rob B.; van Heetvelde, Mattias; van Nieuwenhuysen, Els; van Rensburg, Elizabeth J.; Vanderstichele, Adriaan; Varon-Mateeva, Raymonda; Vega, Ana; Edwards, Digna Velez; Vergote, Ignace; Vierkant, Robert A.; Vijai, Joseph; Vratimos, Athanassios; Walker, Lisa; Walsh, Christine; Wand, Dorothea; Wang-Gohrke, Shan; Wappenschmidt, Barbara; Webb, Penelope M.; Weinberg, Clarice R.; Weitzel, Jeffrey N.; Wentzensen, Nicolas; Whittemore, Alice S.; Wijnen, Juul T.; Wilkens, Lynne R.; Wolk, Alicja; Woo, Michelle; Wu, Xifeng; Wu, Anna H.; Yang, Hannah; Yannoukakos, Drakoulis; Ziogas, Argyrios; Zorn, Kristin K.; Narod, Steven A.; Easton, Douglas F.; Amos, Christopher I.; Schildkraut, Joellen M.; Ramus, Susan J.; Ottini, Laura; Goodman, Marc T.; Park, Sue K.; Kelemen, Linda E.; Risch, Harvey A.; Thomassen, Mads; Offit, Kenneth; Simard, Jacques; Schmutzler, Rita Katharina; Hazelett, Dennis; Monteiro, Alvaro N.; Couch, Fergus J.; Berchuck, Andrew; Chenevix-Trench, Georgia; Goode, Ellen L.; Sellers, Thomas A.; Gayther, Simon A.; Antoniou, Antonis C.; Pharoah, Paul D. P.

    2017-01-01

    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC

  1. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study

    DEFF Research Database (Denmark)

    Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G

    2011-01-01

    Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. We conducted a multi-stage genome-wide association study for PrCa and previously reported the results of the first two stages, which identified 16 PrCa susceptibility loci. We report here the results of st...

  2. Genome-wide Association Study Identifies Five Susceptibility Loci for Follicular Lymphoma outside the HLA Region

    NARCIS (Netherlands)

    Skibola, Christine F.; Berndt, Sonja I.; Vijai, Joseph; Conde, Lucia; Wang, Zhaoming; Yeager, Meredith; de Bakker, Paul I. W.; Birmann, Brenda M.; Vajdic, Claire M.; Foo, Jia-Nee; Bracci, Paige M.; Vermeulen, Roel C. H.; Slager, Susan L.; de Sanjose, Silvia; Wang, Sophia S.; Linet, Martha S.; Salles, Gilles; Lan, Qing; Severi, Gianluca; Hjalgrim, Henrik; Lightfoot, Tracy; Melbye, Mads; Gu, Jian; Ghesquieres, Herve; Link, Brian K.; Morton, Lindsay M.; Holly, Elizabeth A.; Smith, Alex; Tinker, Lesley F.; Teras, Lauren R.; Kricker, Anne; Becker, Nikolaus; Purdue, Mark P.; Spinelli, John J.; Zhang, Yawei; Giles, Graham G.; Vineis, Paolo; Monnereau, Alain; Bertrand, Kimberly A.; Albanes, Demetrius; Zeleniuch-Jacquotte, Anne; Gabbas, Attilio; Chung, Charles C.; Burdett, Laurie; Hutchinson, Amy; Lawrence, Charles; Montalvan, Rebecca; Liang, Liming; Huang, Jinyan; Ma, Baoshan; Liu, Jianjun; Adami, Hans-Olov; Glimelius, Bengt; Ye, Yuanqing; Nowakowski, Grzegorz S.; Dogan, Ahmet; Thompson, Carrie A.; Habermann, Thomas M.; Novak, Anne J.; Liebow, Mark; Witzig, Thomas E.; Weiner, George J.; Schenk, Maryjean; Hartge, Patricia; De Roos, Anneclaire J.; Cozen, Wendy; Zhi, Degui; Akers, Nicholas K.; Riby, Jacques; Smith, Martyn T.; Lacher, Mortimer; Villano, Danylo J.; Maria, Ann; Roman, Eve; Kane, Eleanor; Jackson, Rebecca D.; North, Kari E.; Diver, W. Ryan; Turner, Jenny; Armstrong, Bruce K.; Benavente, Yolanda; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; Staines, Anthony; McKay, James; Brooks-Wilson, Angela R.; Zheng, Tongzhang; Holford, Theodore R.; Chamosa, Saioa; Kaaks, Rudolph; Kelly, Rachel S.; Ohlsson, Bodil; Travis, Ruth C.; Weiderpass, Elisabete; Clave, Jacqueline; Giovannucci, Edward; Kraft, Peter; Virtamo, Jarmo; Mazza, Patrizio; Cocco, Pierluigi; Ennas, Maria Grazia; Chiu, Brian C. H.; Fraumeni, Joseph R.; Nieters, Alexandra; Offit, Kenneth; Wu, Xifeng; Cerhan, James R.; Smedby, Karin E.; Chanock, Stephen J.; Rothman, Nathaniel

    2014-01-01

    Genome-wide association studies (GWASs) of follicular lymphoma (FL) have previously identified human leukocyte antigen (HLA) gene variants. To identify additional FL susceptibility loci, we conducted a large-scale two-stage GWAS in 4,523 case subjects and 13,344 control subjects of European

  3. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    DEFF Research Database (Denmark)

    Ghoussaini, Maya; Fletcher, Olivia; Michailidou, Kyriaki

    2012-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ∼8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS...

  4. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Phelan, Catherine M; Kuchenbaecker, Karoline B; Tyrer, Jonathan P

    2017-01-01

    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous E...

  5. Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer

    Czech Academy of Sciences Publication Activity Database

    Wolpin, B. M.; Rizzato, C.; Kraft, P.; Kooperberg, Ch.; Petersen, G. M.; Wang, Z.; Arslan, A. A.; Beane-Freeman, L.; Bracci, P. M.; Buring, J.; Canzian, F.; Duell, E. J.; Gallinger, S.; Giles, G.G.; Goodman, G. E.; Goodman, P. J.; Jacobs, E. J.; Kamineni, A.; Klein, A. P.; Kolonel, L. N.; Kulke, M. H.; Li, D.; Malats, N.; Olson, S. H.; Risch, H. A.; Sesso, H. D.; Visvanathan, K.; White, E.; Zheng, W.; Abnet, Ch. C.; Albanes, D.; Andreotti, G.; Austin, M. A.; Barfield, R.; Basso, D.; Berndt, S. I.; Boutron-Ruault, M. Ch.; Brotzman, M.; Büchler, M. W.; Bueno-de-Mesquita, H. B.; Bugert, P.; Burdette, L.; Campa, D.; Caporaso, N. E.; Capurso, G.; Chung, Ch.; Cotterchio, M.; Costello, E.; Elena, J.; Funel, N.; Gaziano, J. M.; Giese, N. A.; Giovannucci, E. L.; Goggins, M.; Gorman, M. J.; Gross, M.; Haiman, Ch. A.; Hassan, M.; Helzlsouer, K. J.; Henderson, B. E.; Holly, E. A.; Hu, N.; Hunter, D. J.; Innocenti, F.; Jenab, M.; Kaaks, R.; Key, T. J.; Khaw, K. T.; Klein, E. A.; Kogevinas, M.; Krogh, V.; Kupcinskas, J.; Kurtz, R. C.; LaCroix, A.; Landi, M. T.; Landi, S.; Le Marchand, L.; Mambrini, A.; Mannisto, S.; Milne, R. L.; Nakamura, Y.; Oberg, A. L.; Owzar, K.; Patel, A. V.; Peeters, P. H. M.; Peters, U.; Pezzilli, R.; Piepoli, A.; Porta, M.; Real, F. X.; Riboli, E.; Rothman, N.; Scarpa, A.; Shu, X. O.; Silverman, D. T.; Souček, P.; Sund, M.; Talar-Wojnarowska, R.; Taylor, P. R.; Theodoropoulos, G. E.; Thornquist, M.; Tjonneland, A.; Tobias, G. S.; Trichopoulos, D.; Vodička, Pavel; Wactawski-Wende, J.; Wentzensen, N.; Wu, Ch.; Yu, H.; Yu, K.; Zeleniuch-Jacquotte, A.; Hoover, R.; Hartge, P.; Fuchs, Ch.; Chanock, S. J.; Stolzenberg-Solomon, R. S.; Amundadottir, L. T.

    2014-01-01

    Roč. 46, č. 9 (2014), s. 994-1000 ISSN 1061-4036 Institutional support: RVO:68378041 Keywords : disease * variants * genetic susceptibility Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 29.352, year: 2014

  6. Genome-wide association study identifies novel breast cancer susceptibility loci

    NARCIS (Netherlands)

    Easton, Douglas F.; Pooley, Karen A.; Dunning, Alison M.; Pharoah, Paul D. P.; Thompson, Deborah; Ballinger, Dennis G.; Struewing, Jeffery P.; Morrison, Jonathan; Field, Helen; Luben, Robert; Wareham, Nicholas; Ahmed, Shahana; Healey, Catherine S.; Bowman, Richard; Meyer, Kerstin B.; Haiman, Christopher A.; Kolonel, Laurence K.; Henderson, Brian E.; Le Marchand, Loic; Brennan, Paul; Sangrajrang, Suleeporn; Gaborieau, Valerie; Odefrey, Fabrice; Shen, Chen-Yang; Wu, Pei-Ei; Wang, Hui-Chun; Eccles, Diana; Evans, D. Gareth; Peto, Julian; Fletcher, Olivia; Johnson, Nichola; Seal, Sheila; Stratton, Michael R.; Rahman, Nazneen; Chenevix-Trench, Georgia; Bojesen, Stig E.; Nordestgaard, Børge G.; Axelsson, Christen K.; Garcia-Closas, Montserrat; Brinton, Louise; Chanock, Stephen; Lissowska, Jolanta; Peplonska, Beata; Nevanlinna, Heli; Fagerholm, Rainer; Eerola, Hannaleena; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Ahn, Sei-Hyun; Hunter, David J.; Hankinson, Susan E.; Cox, David G.; Hall, Per; Wedren, Sara; Liu, Jianjun; Low, Yen-Ling; Bogdanova, Natalia; Schürmann, Peter; Dörk, Thilo; Tollenaar, Rob A. E. M.; Jacobi, Catharina E.; Devilee, Peter; Klijn, Jan G. M.; Sigurdson, Alice J.; Doody, Michele M.; Alexander, Bruce H.; Zhang, Jinghui; Cox, Angela; Brock, Ian W.; MacPherson, Gordon; Reed, Malcolm W. R.; Couch, Fergus J.; Goode, Ellen L.; Olson, Janet E.; Meijers-Heijboer, Hanne; van den Ouweland, Ans; Uitterlinden, André; Rivadeneira, Fernando; Milne, Roger L.; Ribas, Gloria; Gonzalez-Neira, Anna; Benitez, Javier; Hopper, John L.; McCredie, Margaret; Southey, Melissa; Giles, Graham G.; Schroen, Chris; Justenhoven, Christina; Brauch, Hiltrud; Hamann, Ute; Ko, Yon-Dschun; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Mannermaa, Arto; Kosma, Veli-Matti; Kataja, Vesa; Hartikainen, Jaana; Day, Nicholas E.; Cox, David R.; Ponder, Bruce A. J.

    2007-01-01

    Breast cancer exhibits familial aggregation, consistent with variation in genetic susceptibility to the disease. Known susceptibility genes account for less than 25% of the familial risk of breast cancer, and the residual genetic variance is likely to be due to variants conferring more moderate

  7. Further Evidence of Subphenotype Association with Systemic Lupus Erythematosus Susceptibility Loci: A European Cases Only Study

    Czech Academy of Sciences Publication Activity Database

    Alonso-Perez, E.; Suarez-Gestal, M.; Calaza, M.; Ordi-Ros, J.; Bijl, M.; Papasteriades, Ch.; Carreira, P.; Skopouli, F.N.; Witte, T.; Marchini, M.; Migliaresi, S.; Santos, M.J.; Růžičková, Šárka; Pullmann, R.; Sebastiani, G.D.; Suarez, A.; Blanco, F.J.

    2012-01-01

    Roč. 7, č. 9 (2012), e45356 E-ISSN 1932-6203 Institutional research plan: CEZ:AV0Z50520701 Keywords : GENOME-WIDE ASSOCIATION * GENETIC SUSCEPTIBILITY * DISEASE SUSCEPTIBILITY Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.730, year: 2012

  8. Genome-wide high-density SNP linkage search for glioma susceptibility loci: results from the Gliogene Consortium

    DEFF Research Database (Denmark)

    Shete, Sanjay; Lau, Ching C; Houlston, Richard S

    2011-01-01

    .S. families and obtained a maximum NPL score of 1.26 (P = 0.008) and the Z-score of 1.47 (P = 0.035). Accounting for the genetic heterogeneity using the ordered subset analysis approach, the combined analyses of 75 families resulted in a maximum NPL score of 3.81 (P = 0.00001). The genomic regions we have...... implicated in this study may offer novel insights into glioma susceptibility, focusing future work to identify genes that cause familial glioma.......-fold increased risk of glioma, the search for susceptibility loci in familial forms of the disease has been challenging because the disease is relatively rare, fatal, and heterogeneous, making it difficult to collect sufficient biosamples from families for statistical power. To address this challenge...

  9. Volumetric mammographic density: heritability and association with breast cancer susceptibility loci.

    Science.gov (United States)

    Brand, Judith S; Humphreys, Keith; Thompson, Deborah J; Li, Jingmei; Eriksson, Mikael; Hall, Per; Czene, Kamila

    2014-12-01

    Mammographic density is a strong heritable trait, but data on its genetic component are limited to area-based and qualitative measures. We studied the heritability of volumetric mammographic density ascertained by a fully-automated method and the association with breast cancer susceptibility loci. Heritability of volumetric mammographic density was estimated with a variance component model in a sib-pair sample (N pairs = 955) of a Swedish screening based cohort. Associations with 82 established breast cancer loci were assessed in an independent sample of the same cohort (N = 4025 unrelated women) using linear models, adjusting for age, body mass index, and menopausal status. All tests were two-sided, except for heritability analyses where one-sided tests were used. After multivariable adjustment, heritability estimates (standard error) for percent dense volume, absolute dense volume, and absolute nondense volume were 0.63 (0.06) and 0.43 (0.06) and 0.61 (0.06), respectively (all P associated with rs10995190 (ZNF365; P = 9.0 × 10(-6) and 8.9 × 10(-7), respectively) and rs9485372 (TAB2; P = 1.8 × 10(-5) and 1.8 × 10(-3), respectively). We also observed associations of rs9383938 (ESR1) and rs2046210 (ESR1) with the absolute dense volume (P = 2.6 × 10(-4) and 4.6 × 10(-4), respectively), and rs6001930 (MLK1) and rs17356907 (NTN4) with the absolute nondense volume (P = 6.7 × 10(-6) and 8.4 × 10(-5), respectively). Our results support the high heritability of mammographic density, though estimates are weaker for absolute than percent dense volume. We also demonstrate that the shared genetic component with breast cancer is not restricted to dense tissues only. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Genetic loci involved in antibody response to Mycobacterium avium ssp. paratuberculosis in cattle.

    Directory of Open Access Journals (Sweden)

    Giulietta Minozzi

    Full Text Available BACKGROUND: Mycobacterium avium subsp. paratuberculosis (MAP causes chronic enteritis in a wide range of animal species. In cattle, MAP causes a chronic disease called Johne's disease, or paratuberculosis, that is not treatable and the efficacy of vaccine control is controversial. The clinical phase of the disease is characterised by diarrhoea, weight loss, drop in milk production and eventually death. Susceptibility to MAP infection is heritable with heritability estimates ranging from 0.06 to 0.10. There have been several studies over the last few years that have identified genetic loci putatively associated with MAP susceptibility, however, with the availability of genome-wide high density SNP maker panels it is now possible to carry out association studies that have higher precision. METHODOLOGY/PRINCIPAL FINDINGS: The objective of the current study was to localize genes having an impact on Johne's disease susceptibility using the latest bovine genome information and a high density SNP panel (Illumina BovineSNP50 BeadChip to perform a case/control, genome-wide association analysis. Samples from MAP case and negative controls were selected from field samples collected in 2007 and 2008 in the province of Lombardy, Italy. Cases were defined as animals serologically positive for MAP by ELISA. In total 966 samples were genotyped: 483 MAP ELISA positive and 483 ELISA negative. Samples were selected randomly among those collected from 119 farms which had at least one positive animal. CONCLUSION/SIGNIFICANCE: THE ANALYSIS OF THE GENOTYPE DATA IDENTIFIED SEVERAL CHROMOSOMAL REGIONS ASSOCIATED WITH DISEASE STATUS: a region on chromosome 12 with high significance (P<5x10(-6, while regions on chromosome 9, 11, and 12 had moderate significance (P<5x10(-5. These results provide evidence for genetic loci involved in the humoral response to MAP. Knowledge of genetic variations related to susceptibility will facilitate the incorporation of this information

  11. Enrichment of putative PAX8 target genes at serous epithelial ovarian cancer susceptibility loci

    DEFF Research Database (Denmark)

    Kar, Siddhartha P; Adler, Emily; Tyrer, Jonathan

    2017-01-01

    BACKGROUND: Genome-wide association studies (GWAS) have identified 18 loci associated with serous ovarian cancer (SOC) susceptibility but the biological mechanisms driving these findings remain poorly characterised. Germline cancer risk loci may be enriched for target genes of transcription factors...... (TFs) critical to somatic tumorigenesis. METHODS: All 615 TF-target sets from the Molecular Signatures Database were evaluated using gene set enrichment analysis (GSEA) and three GWAS for SOC risk: discovery (2196 cases/4396 controls), replication (7035 cases/21 693 controls; independent from discovery...... to interact with PAX8 in the literature to the PAX8-target set and applying an alternative to GSEA, interval enrichment, further confirmed this association (P=0.006). Fifteen of the 157 genes from this expanded PAX8 pathway were near eight loci associated with SOC risk at P

  12. Mapping autism risk loci using genetic linkage and chromosomal rearrangements

    Science.gov (United States)

    Szatmari, Peter; Paterson, Andrew; Zwaigenbaum, Lonnie; Roberts, Wendy; Brian, Jessica; Liu, Xiao-Qing; Vincent, John; Skaug, Jennifer; Thompson, Ann; Senman, Lili; Feuk, Lars; Qian, Cheng; Bryson, Susan; Jones, Marshall; Marshall, Christian; Scherer, Stephen; Vieland, Veronica; Bartlett, Christopher; Mangin, La Vonne; Goedken, Rhinda; Segre, Alberto; Pericak-Vance, Margaret; Cuccaro, Michael; Gilbert, John; Wright, Harry; Abramson, Ruth; Betancur, Catalina; Bourgeron, Thomas; Gillberg, Christopher; Leboyer, Marion; Buxbaum, Joseph; Davis, Kenneth; Hollander, Eric; Silverman, Jeremy; Hallmayer, Joachim; Lotspeich, Linda; Sutcliffe, James; Haines, Jonathan; Folstein, Susan; Piven, Joseph; Wassink, Thomas; Sheffield, Val; Geschwind, Daniel; Bucan, Maja; Brown, Ted; Cantor, Rita; Constantino, John; Gilliam, Conrad; Herbert, Martha; Lajonchere, Clara; Ledbetter, David; Lese-Martin, Christa; Miller, Janet; Nelson, Stan; Samango-Sprouse, Carol; Spence, Sarah; State, Matthew; Tanzi, Rudolph; Coon, Hilary; Dawson, Geraldine; Devlin, Bernie; Estes, Annette; Flodman, Pamela; Klei, Lambertus; Mcmahon, William; Minshew, Nancy; Munson, Jeff; Korvatska, Elena; Rodier, Patricia; Schellenberg, Gerard; Smith, Moyra; Spence, Anne; Stodgell, Chris; Tepper, Ping Guo; Wijsman, Ellen; Yu, Chang-En; Rogé, Bernadette; Mantoulan, Carine; Wittemeyer, Kerstin; Poustka, Annemarie; Felder, Bärbel; Klauck, Sabine; Schuster, Claudia; Poustka, Fritz; Bölte, Sven; Feineis-Matthews, Sabine; Herbrecht, Evelyn; Schmötzer, Gabi; Tsiantis, John; Papanikolaou, Katerina; Maestrini, Elena; Bacchelli, Elena; Blasi, Francesca; Carone, Simona; Toma, Claudio; Van Engeland, Herman; De Jonge, Maretha; Kemner, Chantal; Koop, Frederieke; Langemeijer, Marjolein; Hijmans, Channa; Staal, Wouter; Baird, Gillian; Bolton, Patrick; Rutter, Michael; Weisblatt, Emma; Green, Jonathan; Aldred, Catherine; Wilkinson, Julie-Anne; Pickles, Andrew; Le Couteur, Ann; Berney, Tom; Mcconachie, Helen; Bailey, Anthony; Francis, Kostas; Honeyman, Gemma; Hutchinson, Aislinn; Parr, Jeremy; Wallace, Simon; Monaco, Anthony; Barnby, Gabrielle; Kobayashi, Kazuhiro; Lamb, Janine; Sousa, Ines; Sykes, Nuala; Cook, Edwin; Guter, Stephen; Leventhal, Bennett; Salt, Jeff; Lord, Catherine; Corsello, Christina; Hus, Vanessa; Weeks, Daniel; Volkmar, Fred; Tauber, Maïté; Fombonne, Eric; Shih, Andy; Meyer, Kacie

    2007-01-01

    Autism spectrum disorders (ASD) are common, heritable neurodevelopmental conditions. The genetic architecture of ASD is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASD by using Affymetrix 10K single nucleotide polymorphism (SNP) arrays and 1168 families with ≥ 2 affected individuals to perform the largest linkage scan to date, while also analyzing copy number variation (CNV) in these families. Linkage and CNV analyses implicate chromosome 11p12-p13 and neurexins, respectively, amongst other candidate loci. Neurexins team with previously-implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for ASD. PMID:17322880

  13. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    Science.gov (United States)

    Felix, Janine F.; Bradfield, Jonathan P.; Monnereau, Claire; van der Valk, Ralf J.P.; Stergiakouli, Evie; Chesi, Alessandra; Gaillard, Romy; Feenstra, Bjarke; Thiering, Elisabeth; Kreiner-Møller, Eskil; Mahajan, Anubha; Pitkänen, Niina; Joro, Raimo; Cavadino, Alana; Huikari, Ville; Franks, Steve; Groen-Blokhuis, Maria M.; Cousminer, Diana L.; Marsh, Julie A.; Lehtimäki, Terho; Curtin, John A.; Vioque, Jesus; Ahluwalia, Tarunveer S.; Myhre, Ronny; Price, Thomas S.; Vilor-Tejedor, Natalia; Yengo, Loïc; Grarup, Niels; Ntalla, Ioanna; Ang, Wei; Atalay, Mustafa; Bisgaard, Hans; Blakemore, Alexandra I.; Bonnefond, Amelie; Carstensen, Lisbeth; Eriksson, Johan; Flexeder, Claudia; Franke, Lude; Geller, Frank; Geserick, Mandy; Hartikainen, Anna-Liisa; Haworth, Claire M.A.; Hirschhorn, Joel N.; Hofman, Albert; Holm, Jens-Christian; Horikoshi, Momoko; Hottenga, Jouke Jan; Huang, Jinyan; Kadarmideen, Haja N.; Kähönen, Mika; Kiess, Wieland; Lakka, Hanna-Maaria; Lakka, Timo A.; Lewin, Alexandra M.; Liang, Liming; Lyytikäinen, Leo-Pekka; Ma, Baoshan; Magnus, Per; McCormack, Shana E.; McMahon, George; Mentch, Frank D.; Middeldorp, Christel M.; Murray, Clare S.; Pahkala, Katja; Pers, Tune H.; Pfäffle, Roland; Postma, Dirkje S.; Power, Christine; Simpson, Angela; Sengpiel, Verena; Tiesler, Carla M. T.; Torrent, Maties; Uitterlinden, André G.; van Meurs, Joyce B.; Vinding, Rebecca; Waage, Johannes; Wardle, Jane; Zeggini, Eleftheria; Zemel, Babette S.; Dedoussis, George V.; Pedersen, Oluf; Froguel, Philippe; Sunyer, Jordi; Plomin, Robert; Jacobsson, Bo; Hansen, Torben; Gonzalez, Juan R.; Custovic, Adnan; Raitakari, Olli T.; Pennell, Craig E.; Widén, Elisabeth; Boomsma, Dorret I.; Koppelman, Gerard H.; Sebert, Sylvain; Järvelin, Marjo-Riitta; Hyppönen, Elina; McCarthy, Mark I.; Lindi, Virpi; Harri, Niinikoski; Körner, Antje; Bønnelykke, Klaus; Heinrich, Joachim; Melbye, Mads; Rivadeneira, Fernando; Hakonarson, Hakon; Ring, Susan M.; Smith, George Davey; Sørensen, Thorkild I.A.; Timpson, Nicholas J.; Grant, Struan F.A.; Jaddoe, Vincent W.V.

    2016-01-01

    A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10−8) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10−10) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index. PMID:26604143

  14. Genetic maps of polymorphic DNA loci on rat chromosome 1

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yan-Ping; Remmers, E.F.; Longman, R.E. [National Institutes of Health, Bethesda, MD (United States)] [and others

    1996-09-01

    Genetic linkage maps of loci defined by polymorphic DNA markers on rat chromosome 1 were constructed by genotyping F2 progeny of F344/N x LEW/N, BN/SsN x LEW/N, and DA/Bkl x F344/Hsd inbred rat strains. In total, 43 markers were mapped, of which 3 were restriction fragment length polymorphisms and the others were simple sequence length polymorphisms. Nineteen of these markers were associated with genes. Six markers for five genes, {gamma}-aminobutyric acid receptor {beta}3 (Gabrb3), syntaxin 2 (Stx2), adrenergic receptor {beta}3 (Gabrb3), syntaxin 2 (Stx2), adrenergic receptor {beta}1 (Adrb1), carcinoembryonic antigen gene family member 1 (Cgm1), and lipogenic protein S14 (Lpgp), and 20 anonymous loci were not previously reported. Thirteen gene loci (Myl2, Aldoa, Tnt, Igf2, Prkcg, Cgm4, Calm3, Cgm3, Psbp1, Sa, Hbb, Ins1, and Tcp1) were previously mapped. Comparative mapping analysis indicated that the large portion of rat chromosome 1 is homologous to mouse chromosome 7, although the homologous to mouse chromosome 7, although the homologs of two rat genes are located on mouse chromosomes 17 and 19. Homologs of the rat chromosome 1 genes that we mapped are located on human chromosomes 6, 10, 11, 12, 15, 16, and 19. 38 refs., 1 fig., 3 tabs.

  15. Susceptibility loci for sporadic brain arteriovenous malformation; a replication study and meta-analysis

    NARCIS (Netherlands)

    Kremer, P.H.; Koeleman, B.P.C.; Rinkel, G.J.; Diekstra, F.P.; Berg, L.H. van den; Veldink, J.H.; Klijn, C.J.M.

    2016-01-01

    BACKGROUND: Case-control studies have reported multiple genetic loci to be associated with sporadic brain arteriovenous malformations (AVMs) but most of these have not been replicated in independent populations. The aim of this study was to find additional evidence for these reported associations

  16. Evaluation of two putative susceptibility loci for oral clefts in the Danish population

    DEFF Research Database (Denmark)

    Mitchell, L E; Murray, J C; O'Brien, S

    2001-01-01

    . The present study evaluated potential associations between CL+/-P and CP and two putative clefting susceptibility loci, MSX1 and TGFB3, using data from a nationwide case-control study conducted in Denmark from 1991 to 1994. The potential effects of interactions between these genes and two common environmental......-environment interactions involving MSX1 or TGFB3 and either first trimester exposure to maternal cigarette smoke or alcohol consumption....

  17. Large scale association analysis identifies three susceptibility loci for coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Stephanie Saade

    Full Text Available Genome wide association studies (GWAS and their replications that have associated DNA variants with myocardial infarction (MI and/or coronary artery disease (CAD are predominantly based on populations of European or Eastern Asian descent. Replication of the most significantly associated polymorphisms in multiple populations with distinctive genetic backgrounds and lifestyles is crucial to the understanding of the pathophysiology of a multifactorial disease like CAD. We have used our Lebanese cohort to perform a replication study of nine previously identified CAD/MI susceptibility loci (LTA, CDKN2A-CDKN2B, CELSR2-PSRC1-SORT1, CXCL12, MTHFD1L, WDR12, PCSK9, SH2B3, and SLC22A3, and 88 genes in related phenotypes. The study was conducted on 2,002 patients with detailed demographic, clinical characteristics, and cardiac catheterization results. One marker, rs6922269, in MTHFD1L was significantly protective against MI (OR=0.68, p=0.0035, while the variant rs4977574 in CDKN2A-CDKN2B was significantly associated with MI (OR=1.33, p=0.0086. Associations were detected after adjustment for family history of CAD, gender, hypertension, hyperlipidemia, diabetes, and smoking. The parallel study of 88 previously published genes in related phenotypes encompassed 20,225 markers, three quarters of which with imputed genotypes The study was based on our genome-wide genotype data set, with imputation across the whole genome to HapMap II release 22 using HapMap CEU population as a reference. Analysis was conducted on both the genotyped and imputed variants in the 88 regions covering selected genes. This approach replicated HNRNPA3P1-CXCL12 association with CAD and identified new significant associations of CDKAL1, ST6GAL1, and PTPRD with CAD. Our study provides evidence for the importance of the multifactorial aspect of CAD/MI and describes genes predisposing to their etiology.

  18. Genome-wide association study of susceptibility loci for breast cancer in Sardinian population.

    Science.gov (United States)

    Palomba, Grazia; Loi, Angela; Porcu, Eleonora; Cossu, Antonio; Zara, Ilenia; Budroni, Mario; Dei, Mariano; Lai, Sandra; Mulas, Antonella; Olmeo, Nina; Ionta, Maria Teresa; Atzori, Francesco; Cuccuru, Gianmauro; Pitzalis, Maristella; Zoledziewska, Magdalena; Olla, Nazario; Lovicu, Mario; Pisano, Marina; Abecasis, Gonçalo R; Uda, Manuela; Tanda, Francesco; Michailidou, Kyriaki; Easton, Douglas F; Chanock, Stephen J; Hoover, Robert N; Hunter, David J; Schlessinger, David; Sanna, Serena; Crisponi, Laura; Palmieri, Giuseppe

    2015-05-10

    Despite progress in identifying genes associated with breast cancer, many more risk loci exist. Genome-wide association analyses in genetically-homogeneous populations, such as that of Sardinia (Italy), could represent an additional approach to detect low penetrance alleles. We performed a genome-wide association study comparing 1431 Sardinian patients with non-familial, BRCA1/2-mutation-negative breast cancer to 2171 healthy Sardinian blood donors. DNA was genotyped using GeneChip Human Mapping 500 K Arrays or Genome-Wide Human SNP Arrays 6.0. To increase genomic coverage, genotypes of additional SNPs were imputed using data from HapMap Phase II. After quality control filtering of genotype data, 1367 cases (9 men) and 1658 controls (1156 men) were analyzed on a total of 2,067,645 SNPs. Overall, 33 genomic regions (67 candidate SNPs) were associated with breast cancer risk at the p <  0(-6) level. Twenty of these regions contained defined genes, including one already associated with breast cancer risk: TOX3. With a lower threshold for preliminary significance to p < 10(-5), we identified 11 additional SNPs in FGFR2, a well-established breast cancer-associated gene. Ten candidate SNPs were selected, excluding those already associated with breast cancer, for technical validation as well as replication in 1668 samples from the same population. Only SNP rs345299, located in intron 1 of VAV3, remained suggestively associated (p-value, 1.16 x 10(-5)), but it did not associate with breast cancer risk in pooled data from two large, mixed-population cohorts. This study indicated the role of TOX3 and FGFR2 as breast cancer susceptibility genes in BRCA1/2-wild-type breast cancer patients from Sardinian population.

  19. Genome-wide association study of susceptibility loci for breast cancer in Sardinian population

    International Nuclear Information System (INIS)

    Palomba, Grazia; Loi, Angela; Porcu, Eleonora; Cossu, Antonio; Zara, Ilenia

    2015-01-01

    Despite progress in identifying genes associated with breast cancer, many more risk loci exist. Genome-wide association analyses in genetically-homogeneous populations, such as that of Sardinia (Italy), could represent an additional approach to detect low penetrance alleles. We performed a genome-wide association study comparing 1431 Sardinian patients with non-familial, BRCA1/2-mutation-negative breast cancer to 2171 healthy Sardinian blood donors. DNA was genotyped using GeneChip Human Mapping 500 K Arrays or Genome-Wide Human SNP Arrays 6.0. To increase genomic coverage, genotypes of additional SNPs were imputed using data from HapMap Phase II. After quality control filtering of genotype data, 1367 cases (9 men) and 1658 controls (1156 men) were analyzed on a total of 2,067,645 SNPs. Overall, 33 genomic regions (67 candidate SNPs) were associated with breast cancer risk at the p < 10 −6 level. Twenty of these regions contained defined genes, including one already associated with breast cancer risk: TOX3. With a lower threshold for preliminary significance to p < 10 −5 , we identified 11 additional SNPs in FGFR2, a well-established breast cancer-associated gene. Ten candidate SNPs were selected, excluding those already associated with breast cancer, for technical validation as well as replication in 1668 samples from the same population. Only SNP rs345299, located in intron 1 of VAV3, remained suggestively associated (p-value, 1.16x10 −5 ), but it did not associate with breast cancer risk in pooled data from two large, mixed-population cohorts. This study indicated the role of TOX3 and FGFR2 as breast cancer susceptibility genes in BRCA1/2-wild-type breast cancer patients from Sardinian population. The online version of this article (doi:10.1186/s12885-015-1392-9) contains supplementary material, which is available to authorized users

  20. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    NARCIS (Netherlands)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J.; Maranian, Mel J.; Bolla, Manjeet K.; Wang, Qin; Shah, Mitul; Perkins, Barbara J.; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S.; Bojesen, Stig E.; Nordestgaard, Borge G.; Flyger, Henrik; Nielsen, Sune F.; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A.; Aittomaki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G.; Whittemore, Alice S.; John, Esther M.; Malone, Kathleen E.; Gammon, Marilie D.; Santella, Regina M.; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F.; Casey, Graham; Hunter, David J.; Gapstur, Susan M.; Gaudet, Mia M.; Diver, W. Ryan; Haiman, Christopher A.; Schumacher, Fredrick; Henderson, Brian E.; Le Marchand, Loic; Berg, Christine D.; Chanock, Stephen J.; Figueroa, Jonine; Hoover, Robert N.; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K.; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J.; Olson, Janet E.; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A.; van der Luijt, Rob B.; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K.; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guenel, Pascal; Truong, Therese; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H.; Tseng, Chiu-chen; Van den Berg, David; Stram, Daniel O.; Gonzalez-Neira, Anna; Benitez, Javier; Zamora, M. Pilar; Arias Perez, Jose Ignacio; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S.; Reed, Malcolm W. R.; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; Tan, Gie-Hooi; Hooning, Maartje J.; Hollestelle, Antoinette; Martens, John W. M.; Collee, J. Margriet; Blot, William; Signorello, Lisa B.; Cai, Qiuyin; Hopper, John L.; Southey, Melissa C.; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N.; Nord, Silje; Alnaes, Grethe I. Grenaker; Giles, Graham G.; Milne, Roger L.; McLean, Catriona; Canzian, Federico; Trichopoulos, Dimitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J.; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K.; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A.; Hein, Alexander; Beckmann, Matthias W.; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J.; Swerdlow, Anthony J.; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L.; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S.; Labreche, France; Dumont, Martine; Winqvist, Robert; Pylkas, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Bruening, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V.; Doerk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Devilee, Peter; Tollenaar, Robert A. E. M.; Seynaeve, Caroline; Van Asperen, Christi J.; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; Mckay, James; Slager, Susan; Toland, Amanda E.; Ambrosone, Christine B.; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L.; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S.; Tessier, Daniel C.; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Rosario Alonso, M.; Alvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul P. D. P.; Kraft, Peter; Dunning, Alison M.; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F.

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining similar to 14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising

  1. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    NARCIS (Netherlands)

    K. Michailidou (Kyriaki); J. Beesley (Jonathan); S. Lindstrom (Stephen); S. Canisius (Sander); J. Dennis (Joe); M. Lush (Michael); M. Maranian (Melanie); M.K. Bolla (Manjeet); Q. Wang (Qing); M. Shah (Mitul); B. Perkins (Barbara); K. Czene (Kamila); M. Eriksson (Mikael); H. Darabi (Hatef); J.S. Brand (Judith S.); S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); H. Flyger (Henrik); S.F. Nielsen (Sune); N. Rahman (Nazneen); C. Turnbull (Clare); O. Fletcher (Olivia); J. Peto (Julian); L.J. Gibson (Lorna); I. dos Santos Silva (Isabel); J. Chang-Claude (Jenny); D. Flesch-Janys (Dieter); A. Rudolph (Anja); U. Eilber (Ursula); T.W. Behrens (Timothy); H. Nevanlinna (Heli); T.A. Muranen (Taru); K. Aittomäki (Kristiina); C. Blomqvist (Carl); S. Khan (Sofia); K. Aaltonen (Kirsimari); H. Ahsan (Habibul); M.G. Kibriya (Muhammad); A.S. Whittemore (Alice S.); E.M. John (Esther M.); K.E. Malone (Kathleen E.); M.D. Gammon (Marilie); R.M. Santella (Regina M.); G. Ursin (Giske); E. Makalic (Enes); D.F. Schmidt (Daniel); G. Casey (Graham); D.J. Hunter (David J.); S.M. Gapstur (Susan M.); M.M. Gaudet (Mia); W.R. Diver (Ryan); C.A. Haiman (Christopher A.); F.R. Schumacher (Fredrick); B.E. Henderson (Brian); L. Le Marchand (Loic); C.D. Berg (Christine); S.J. Chanock (Stephen); J.D. Figueroa (Jonine); R.N. Hoover (Robert N.); D. Lambrechts (Diether); P. Neven (Patrick); H. Wildiers (Hans); E. van Limbergen (Erik); M.K. Schmidt (Marjanka); A. Broeks (Annegien); S. Verhoef; S. Cornelissen (Sten); F.J. Couch (Fergus); J.E. Olson (Janet); B. Hallberg (Boubou); C. Vachon (Celine); Q. Waisfisz (Quinten); E.J. Meijers-Heijboer (Hanne); M.A. Adank (Muriel); R.B. van der Luijt (Rob); J. Li (Jingmei); J. Liu (Jianjun); M.K. Humphreys (Manjeet); D. Kang (Daehee); J.-Y. Choi (Ji-Yeob); S.K. Park (Sue K.); K.Y. Yoo; K. Matsuo (Keitaro); H. Ito (Hidemi); H. Iwata (Hiroji); K. Tajima (Kazuo); P. Guénel (Pascal); T. Truong (Thérèse); C. Mulot (Claire); M. Sanchez (Marie); B. Burwinkel (Barbara); F. Marme (Federick); H. Surowy (Harald); C. Sohn (Christof); A.H. Wu (Anna H); C.-C. Tseng (Chiu-chen); D. Van Den Berg (David); D.O. Stram (Daniel O.); A. González-Neira (Anna); J. Benítez (Javier); M.P. Zamora (Pilar); J.I.A. Perez (Jose Ignacio Arias); X.-O. Shu (Xiao-Ou); W. Lu (Wei); Y. Gao; H. Cai (Hui); A. Cox (Angela); S.S. Cross (Simon); M.W.R. Reed (Malcolm); I.L. Andrulis (Irene); J.A. Knight (Julia); G. Glendon (Gord); A.-M. Mulligan (Anna-Marie); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); M. Kerin (Michael); N. Miller (Nicola); A. Lindblom (Annika); S. Margolin (Sara); S.H. Teo (Soo Hwang); C.H. Yip (Cheng Har); N.A.M. Taib (Nur Aishah Mohd); G.-H. Tan (Gie-Hooi); M.J. Hooning (Maartje); A. Hollestelle (Antoinette); J.W.M. Martens (John); J.M. Collée (Margriet); W.J. Blot (William); L.B. Signorello (Lisa B.); Q. Cai (Qiuyin); J. Hopper (John); M.C. Southey (Melissa); H. Tsimiklis (Helen); C. Apicella (Carmel); C-Y. Shen (Chen-Yang); C.-N. Hsiung (Chia-Ni); P.-E. Wu (Pei-Ei); M.-F. Hou (Ming-Feng); V. Kristensen (Vessela); S. Nord (Silje); G.G. Alnæs (Grethe); G.G. Giles (Graham G.); R.L. Milne (Roger); C.A. McLean (Catriona Ann); F. Canzian (Federico); D. Trichopoulos (Dimitrios); P.H.M. Peeters; E. Lund (Eiliv); R. Sund (Reijo); K.T. Khaw; M.J. Gunter (Marc J.); D. Palli (Domenico); L.M. Mortensen (Lotte Maxild); L. Dossus (Laure); J.-M. Huerta (Jose-Maria); A. Meindl (Alfons); R.K. Schmutzler (Rita); C. Sutter (Christian); R. Yang (Rongxi); K. Muir (Kenneth); A. Lophatananon (Artitaya); S. Stewart-Brown (Sarah); P. Siriwanarangsan (Pornthep); J.M. Hartman (Joost); X. Miao; K.S. Chia (Kee Seng); C.W. Chan (Ching Wan); P.A. Fasching (Peter); R. Hein (Rebecca); M.W. Beckmann (Matthias); L. Haeberle (Lothar); H. Brenner (Hermann); A.K. Dieffenbach (Aida Karina); V. Arndt (Volker); C. Stegmaier (Christa); A. Ashworth (Alan); N. Orr (Nick); M. Schoemaker (Minouk); A.J. Swerdlow (Anthony ); L.A. Brinton (Louise); M. García-Closas (Montserrat); W. Zheng (Wei); S.L. Halverson (Sandra L.); M. Shrubsole (Martha); J. Long (Jirong); M.S. Goldberg (Mark); F. Labrèche (France); M. Dumont (Martine); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); H. Brauch (Hiltrud); U. Hamann (Ute); T. Brüning (Thomas); P. Radice (Paolo); P. Peterlongo (Paolo); S. Manoukian (Siranoush); L. Bernard (Loris); N.V. Bogdanova (Natalia); T. Dörk (Thilo); A. Mannermaa (Arto); V. Kataja (Vesa); V-M. Kosma (Veli-Matti); J.M. Hartikainen (J.); P. Devilee (Peter); R.A.E.M. Tollenaar (Rob); C.M. Seynaeve (Caroline); C.J. van Asperen (Christi); A. Jakubowska (Anna); J. Lubinski (Jan); K. Jaworska (Katarzyna); T. Huzarski (Tomasz); S. Sangrajrang (Suleeporn); V. Gaborieau (Valerie); P. Brennan (Paul); J.D. McKay (James); S. Slager (Susan); A.E. Toland (Amanda); C.B. Ambrosone (Christine); D. Yannoukakos (Drakoulis); M. Kabisch (Maria); D. Torres (Diana); S.L. Neuhausen (Susan); H. Anton-Culver (Hoda); C. Luccarini (Craig); C. Baynes (Caroline); S. Ahmed (Shahana); S. Healey (Sue); D.C. Tessier (Daniel C.); D. Vincent (Daniel); F. Bacot (Francois); G. Pita (Guillermo); M.R. Alonso (Rosario); N. Álvarez (Nuria); D. Herrero (Daniel); J. Simard (Jacques); P.P.D.P. Pharoah (Paul P.D.P.); P. Kraft (Peter); A.M. Dunning (Alison); G. Chenevix-Trench (Georgia); P. Hall (Per); D.F. Easton (Douglas)

    2015-01-01

    textabstractGenome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS,

  2. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    DEFF Research Database (Denmark)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara

    2015-01-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748...

  3. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.

    Science.gov (United States)

    Phelan, Catherine M; Kuchenbaecker, Karoline B; Tyrer, Jonathan P; Kar, Siddhartha P; Lawrenson, Kate; Winham, Stacey J; Dennis, Joe; Pirie, Ailith; Riggan, Marjorie J; Chornokur, Ganna; Earp, Madalene A; Lyra, Paulo C; Lee, Janet M; Coetzee, Simon; Beesley, Jonathan; McGuffog, Lesley; Soucy, Penny; Dicks, Ed; Lee, Andrew; Barrowdale, Daniel; Lecarpentier, Julie; Leslie, Goska; Aalfs, Cora M; Aben, Katja K H; Adams, Marcia; Adlard, Julian; Andrulis, Irene L; Anton-Culver, Hoda; Antonenkova, Natalia; Aravantinos, Gerasimos; Arnold, Norbert; Arun, Banu K; Arver, Brita; Azzollini, Jacopo; Balmaña, Judith; Banerjee, Susana N; Barjhoux, Laure; Barkardottir, Rosa B; Bean, Yukie; Beckmann, Matthias W; Beeghly-Fadiel, Alicia; Benitez, Javier; Bermisheva, Marina; Bernardini, Marcus Q; Birrer, Michael J; Bjorge, Line; Black, Amanda; Blankstein, Kenneth; Blok, Marinus J; Bodelon, Clara; Bogdanova, Natalia; Bojesen, Anders; Bonanni, Bernardo; Borg, Åke; Bradbury, Angela R; Brenton, James D; Brewer, Carole; Brinton, Louise; Broberg, Per; Brooks-Wilson, Angela; Bruinsma, Fiona; Brunet, Joan; Buecher, Bruno; Butzow, Ralf; Buys, Saundra S; Caldes, Trinidad; Caligo, Maria A; Campbell, Ian; Cannioto, Rikki; Carney, Michael E; Cescon, Terence; Chan, Salina B; Chang-Claude, Jenny; Chanock, Stephen; Chen, Xiao Qing; Chiew, Yoke-Eng; Chiquette, Jocelyne; Chung, Wendy K; Claes, Kathleen B M; Conner, Thomas; Cook, Linda S; Cook, Jackie; Cramer, Daniel W; Cunningham, Julie M; D'Aloisio, Aimee A; Daly, Mary B; Damiola, Francesca; Damirovna, Sakaeva Dina; Dansonka-Mieszkowska, Agnieszka; Dao, Fanny; Davidson, Rosemarie; DeFazio, Anna; Delnatte, Capucine; Doheny, Kimberly F; Diez, Orland; Ding, Yuan Chun; Doherty, Jennifer Anne; Domchek, Susan M; Dorfling, Cecilia M; Dörk, Thilo; Dossus, Laure; Duran, Mercedes; Dürst, Matthias; Dworniczak, Bernd; Eccles, Diana; Edwards, Todd; Eeles, Ros; Eilber, Ursula; Ejlertsen, Bent; Ekici, Arif B; Ellis, Steve; Elvira, Mingajeva; Eng, Kevin H; Engel, Christoph; Evans, D Gareth; Fasching, Peter A; Ferguson, Sarah; Ferrer, Sandra Fert; Flanagan, James M; Fogarty, Zachary C; Fortner, Renée T; Fostira, Florentia; Foulkes, William D; Fountzilas, George; Fridley, Brooke L; Friebel, Tara M; Friedman, Eitan; Frost, Debra; Ganz, Patricia A; Garber, Judy; García, María J; Garcia-Barberan, Vanesa; Gehrig, Andrea; Gentry-Maharaj, Aleksandra; Gerdes, Anne-Marie; Giles, Graham G; Glasspool, Rosalind; Glendon, Gord; Godwin, Andrew K; Goldgar, David E; Goranova, Teodora; Gore, Martin; Greene, Mark H; Gronwald, Jacek; Gruber, Stephen; Hahnen, Eric; Haiman, Christopher A; Håkansson, Niclas; Hamann, Ute; Hansen, Thomas V O; Harrington, Patricia A; Harris, Holly R; Hauke, Jan; Hein, Alexander; Henderson, Alex; Hildebrandt, Michelle A T; Hillemanns, Peter; Hodgson, Shirley; Høgdall, Claus K; Høgdall, Estrid; Hogervorst, Frans B L; Holland, Helene; Hooning, Maartje J; Hosking, Karen; Huang, Ruea-Yea; Hulick, Peter J; Hung, Jillian; Hunter, David J; Huntsman, David G; Huzarski, Tomasz; Imyanitov, Evgeny N; Isaacs, Claudine; Iversen, Edwin S; Izatt, Louise; Izquierdo, Angel; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jernetz, Mats; Jensen, Allan; Jensen, Uffe Birk; John, Esther M; Johnatty, Sharon; Jones, Michael E; Kannisto, Päivi; Karlan, Beth Y; Karnezis, Anthony; Kast, Karin; Kennedy, Catherine J; Khusnutdinova, Elza; Kiemeney, Lambertus A; Kiiski, Johanna I; Kim, Sung-Won; Kjaer, Susanne K; Köbel, Martin; Kopperud, Reidun K; Kruse, Torben A; Kupryjanczyk, Jolanta; Kwong, Ava; Laitman, Yael; Lambrechts, Diether; Larrañaga, Nerea; Larson, Melissa C; Lazaro, Conxi; Le, Nhu D; Le Marchand, Loic; Lee, Jong Won; Lele, Shashikant B; Leminen, Arto; Leroux, Dominique; Lester, Jenny; Lesueur, Fabienne; Levine, Douglas A; Liang, Dong; Liebrich, Clemens; Lilyquist, Jenna; Lipworth, Loren; Lissowska, Jolanta; Lu, Karen H; Lubinński, Jan; Luccarini, Craig; Lundvall, Lene; Mai, Phuong L; Mendoza-Fandiño, Gustavo; Manoukian, Siranoush; Massuger, Leon F A G; May, Taymaa; Mazoyer, Sylvie; McAlpine, Jessica N; McGuire, Valerie; McLaughlin, John R; McNeish, Iain; Meijers-Heijboer, Hanne; Meindl, Alfons; Menon, Usha; Mensenkamp, Arjen R; Merritt, Melissa A; Milne, Roger L; Mitchell, Gillian; Modugno, Francesmary; Moes-Sosnowska, Joanna; Moffitt, Melissa; Montagna, Marco; Moysich, Kirsten B; Mulligan, Anna Marie; Musinsky, Jacob; Nathanson, Katherine L; Nedergaard, Lotte; Ness, Roberta B; Neuhausen, Susan L; Nevanlinna, Heli; Niederacher, Dieter; Nussbaum, Robert L; Odunsi, Kunle; Olah, Edith; Olopade, Olufunmilayo I; Olsson, Håkan; Olswold, Curtis; O'Malley, David M; Ong, Kai-Ren; Onland-Moret, N Charlotte; Orr, Nicholas; Orsulic, Sandra; Osorio, Ana; Palli, Domenico; Papi, Laura; Park-Simon, Tjoung-Won; Paul, James; Pearce, Celeste L; Pedersen, Inge Søkilde; Peeters, Petra H M; Peissel, Bernard; Peixoto, Ana; Pejovic, Tanja; Pelttari, Liisa M; Permuth, Jennifer B; Peterlongo, Paolo; Pezzani, Lidia; Pfeiler, Georg; Phillips, Kelly-Anne; Piedmonte, Marion; Pike, Malcolm C; Piskorz, Anna M; Poblete, Samantha R; Pocza, Timea; Poole, Elizabeth M; Poppe, Bruce; Porteous, Mary E; Prieur, Fabienne; Prokofyeva, Darya; Pugh, Elizabeth; Pujana, Miquel Angel; Pujol, Pascal; Radice, Paolo; Rantala, Johanna; Rappaport-Fuerhauser, Christine; Rennert, Gad; Rhiem, Kerstin; Rice, Patricia; Richardson, Andrea; Robson, Mark; Rodriguez, Gustavo C; Rodríguez-Antona, Cristina; Romm, Jane; Rookus, Matti A; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Salvesen, Helga B; Sandler, Dale P; Schoemaker, Minouk J; Senter, Leigha; Setiawan, V Wendy; Severi, Gianluca; Sharma, Priyanka; Shelford, Tameka; Siddiqui, Nadeem; Side, Lucy E; Sieh, Weiva; Singer, Christian F; Sobol, Hagay; Song, Honglin; Southey, Melissa C; Spurdle, Amanda B; Stadler, Zsofia; Steinemann, Doris; Stoppa-Lyonnet, Dominique; Sucheston-Campbell, Lara E; Sukiennicki, Grzegorz; Sutphen, Rebecca; Sutter, Christian; Swerdlow, Anthony J; Szabo, Csilla I; Szafron, Lukasz; Tan, Yen Y; Taylor, Jack A; Tea, Muy-Kheng; Teixeira, Manuel R; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Thomsen, Liv Cecilie Vestrheim; Thull, Darcy L; Tihomirova, Laima; Tinker, Anna V; Tischkowitz, Marc; Tognazzo, Silvia; Toland, Amanda Ewart; Tone, Alicia; Trabert, Britton; Travis, Ruth C; Trichopoulou, Antonia; Tung, Nadine; Tworoger, Shelley S; van Altena, Anne M; Van Den Berg, David; van der Hout, Annemarie H; van der Luijt, Rob B; Van Heetvelde, Mattias; Van Nieuwenhuysen, Els; van Rensburg, Elizabeth J; Vanderstichele, Adriaan; Varon-Mateeva, Raymonda; Vega, Ana; Edwards, Digna Velez; Vergote, Ignace; Vierkant, Robert A; Vijai, Joseph; Vratimos, Athanassios; Walker, Lisa; Walsh, Christine; Wand, Dorothea; Wang-Gohrke, Shan; Wappenschmidt, Barbara; Webb, Penelope M; Weinberg, Clarice R; Weitzel, Jeffrey N; Wentzensen, Nicolas; Whittemore, Alice S; Wijnen, Juul T; Wilkens, Lynne R; Wolk, Alicja; Woo, Michelle; Wu, Xifeng; Wu, Anna H; Yang, Hannah; Yannoukakos, Drakoulis; Ziogas, Argyrios; Zorn, Kristin K; Narod, Steven A; Easton, Douglas F; Amos, Christopher I; Schildkraut, Joellen M; Ramus, Susan J; Ottini, Laura; Goodman, Marc T; Park, Sue K; Kelemen, Linda E; Risch, Harvey A; Thomassen, Mads; Offit, Kenneth; Simard, Jacques; Schmutzler, Rita Katharina; Hazelett, Dennis; Monteiro, Alvaro N; Couch, Fergus J; Berchuck, Andrew; Chenevix-Trench, Georgia; Goode, Ellen L; Sellers, Thomas A; Gayther, Simon A; Antoniou, Antonis C; Pharoah, Paul D P

    2017-05-01

    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC.

  4. Characterization of new microsatellite loci for population genetic studies in the Smooth Cauliflower Coral (Stylophora sp.)

    KAUST Repository

    Banguera-Hinestroza, E.

    2013-01-09

    A total of one hundred microsatellites loci were selected from the draft genome of Stylophora pistillata and evaluated in previously characterized samples of Stylophora cf pistillata from the Red Sea. 17 loci were amplified successfully and tested in 24 individuals from samples belonging to a single population from the central region of the Red Sea. The number of alleles ranged from 3 to 15 alleles per locus, while observed heterozygosity ranged from 0. 292 to 0. 95. Six of these loci showed significant deviations from Hardy-Weinberg equilibrium (HWE) expectations, and 4/136 paired loci comparisons suggested linkage disequilibrium after Bonferroni corrections. After excluding loci with significant HWE deviation and evidence of null alleles, average genetic diversity over loci in the population studied (N = 24, Nloci = 11) was 0. 701 ± 0. 380. This indicates that these loci can be used effectively to evaluate genetic diversity and undertake population genetics studies in Stylophora sp. populations. 2013 The Author(s).

  5. Genetic changes associated with testicular cancer susceptibility.

    Science.gov (United States)

    Pyle, Louise C; Nathanson, Katherine L

    2016-10-01

    Testicular germ cell tumor (TGCT) is a highly heritable cancer primarily affecting young white men. Genome-wide association studies (GWAS) have been particularly effective in identifying multiple common variants with strong contribution to TGCT risk. These loci identified through association studies have implicated multiple genes as associated with TGCT predisposition, many of which are unique among cancer types, and regulate processes such as pluripotency, sex specification, and microtubule assembly. Together these biologically plausible genes converge on pathways involved in male germ cell development and maturation, and suggest that perturbation of them confers susceptibility to TGCT, as a developmental defect of germ cell differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Identification of twelve new susceptibility loci for different histotypes of epithelial ovarian cancer

    Science.gov (United States)

    Phelan, Catherine M.; Kuchenbaecker, Karoline B.; Tyrer, Jonathan P.; Kar, Siddhartha P.; Lawrenson, Kate; Winham, Stacey J.; Dennis, Joe; Pirie, Ailith; Riggan, Marjorie; Chornokur, Ganna; Earp, Madalene A.; Lyra, Paulo C.; Lee, Janet M.; Coetzee, Simon; Beesley, Jonathan; McGuffog, Lesley; Soucy, Penny; Dicks, Ed; Lee, Andrew; Barrowdale, Daniel; Lecarpentier, Julie; Leslie, Goska; Aalfs, Cora M.; Aben, Katja K.H.; Adams, Marcia; Adlard, Julian; Andrulis, Irene L.; Anton-Culver, Hoda; Antonenkova, Natalia; Aravantinos, Gerasimos; Arnold, Norbert; Arun, Banu K.; Arver, Brita; Azzollini, Jacopo; Balmaña, Judith; Banerjee, Susana N.; Barjhoux, Laure; Barkardottir, Rosa B.; Bean, Yukie; Beckmann, Matthias W.; Beeghly-Fadiel, Alicia; Benitez, Javier; Bermisheva, Marina; Bernardini, Marcus Q.; Birrer, Michael J.; Bjorge, Line; Black, Amanda; Blankstein, Kenneth; Blok, Marinus J.; Bodelon, Clara; Bogdanova, Natalia; Bojesen, Anders; Bonanni, Bernardo; Borg, Åke; Bradbury, Angela R.; Brenton, James D.; Brewer, Carole; Brinton, Louise; Broberg, Per; Brooks-Wilson, Angela; Bruinsma, Fiona; Brunet, Joan; Buecher, Bruno; Butzow, Ralf; Buys, Saundra S.; Caldes, Trinidad; Caligo, Maria A.; Campbell, Ian; Cannioto, Rikki; Carney, Michael E.; Cescon, Terence; Chan, Salina B.; Chang-Claude, Jenny; Chanock, Stephen; Chen, Xiao Qing; Chiew, Yoke-Eng; Chiquette, Jocelyne; Chung, Wendy K.; Claes, Kathleen B.M.; Conner, Thomas; Cook, Linda S.; Cook, Jackie; Cramer, Daniel W.; Cunningham, Julie M.; D’Aloisio, Aimee A.; Daly, Mary B.; Damiola, Francesca; Damirovna, Sakaeva Dina; Dansonka-Mieszkowska, Agnieszka; Dao, Fanny; Davidson, Rosemarie; DeFazio, Anna; Delnatte, Capucine; Doheny, Kimberly F.; Diez, Orland; Ding, Yuan Chun; Doherty, Jennifer Anne; Domchek, Susan M.; Dorfling, Cecilia M.; Dörk, Thilo; Dossus, Laure; Duran, Mercedes; Dürst, Matthias; Dworniczak, Bernd; Eccles, Diana; Edwards, Todd; Eeles, Ros; Eilber, Ursula; Ejlertsen, Bent; Ekici, Arif B.; Ellis, Steve; Elvira, Mingajeva; Eng, Kevin H.; Engel, Christoph; Evans, D. Gareth; Fasching, Peter A.; Ferguson, Sarah; Ferrer, Sandra Fert; Flanagan, James M.; Fogarty, Zachary C.; Fortner, Renée T.; Fostira, Florentia; Foulkes, William D.; Fountzilas, George; Fridley, Brooke L.; Friebel, Tara M.; Friedman, Eitan; Frost, Debra; Ganz, Patricia A.; Garber, Judy; García, María J.; Garcia-Barberan, Vanesa; Gehrig, Andrea; Gentry-Maharaj, Aleksandra; Gerdes, Anne-Marie; Giles, Graham G.; Glasspool, Rosalind; Glendon, Gord; Godwin, Andrew K.; Goldgar, David E.; Goranova, Teodora; Gore, Martin; Greene, Mark H.; Gronwald, Jacek; Gruber, Stephen; Hahnen, Eric; Haiman, Christopher A.; Håkansson, Niclas; Hamann, Ute; Hansen, Thomas V.O.; Harrington, Patricia A.; Harris, Holly R; Hauke, Jan; Hein, Alexander; Henderson, Alex; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hodgson, Shirley; Høgdall, Claus K.; Høgdall, Estrid; Hogervorst, Frans B.L.; Holland, Helene; Hooning, Maartje J.; Hosking, Karen; Huang, Ruea-Yea; Hulick, Peter J.; Hung, Jillian; Hunter, David J.; Huntsman, David G.; Huzarski, Tomasz; Imyanitov, Evgeny N.; Isaacs, Claudine; Iversen, Edwin S.; Izatt, Louise; Izquierdo, Angel; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jernetz, Mats; Jensen, Allan; Jensen, Uffe Birk; John, Esther M.; Johnatty, Sharon; Jones, Michael E.; Kannisto, Päivi; Karlan, Beth Y.; Karnezis, Anthony; Kast, Karin; Kennedy, Catherine J.; Khusnutdinova, Elza; Kiemeney, Lambertus A.; Kiiski, Johanna I.; Kim, Sung-Won; Kjaer, Susanne K.; Köbel, Martin; Kopperud, Reidun K.; Kruse, Torben A.; Kupryjanczyk, Jolanta; Kwong, Ava; Laitman, Yael; Lambrechts, Diether; Larrañaga, Nerea; Larson, Melissa C.; Lazaro, Conxi; Le, Nhu D.; Le Marchand, Loic; Lee, Jong Won; Lele, Shashikant B.; Leminen, Arto; Leroux, Dominique; Lester, Jenny; Lesueur, Fabienne; Levine, Douglas A.; Liang, Dong; Liebrich, Clemens; Lilyquist, Jenna; Lipworth, Loren; Lissowska, Jolanta; Lu, Karen H.; Lubiński, Jan; Luccarini, Craig; Lundvall, Lene; Mai, Phuong L.; Mendoza-Fandiño, Gustavo; Manoukian, Siranoush; Massuger, Leon F.A.G.; May, Taymaa; Mazoyer, Sylvie; McAlpine, Jessica N.; McGuire, Valerie; McLaughlin, John R.; McNeish, Iain; Meijers-Heijboer, Hanne; Meindl, Alfons; Menon, Usha; Mensenkamp, Arjen R.; Merritt, Melissa A.; Milne, Roger L.; Mitchell, Gillian; Modugno, Francesmary; Moes-Sosnowska, Joanna; Moffitt, Melissa; Montagna, Marco; Moysich, Kirsten B.; Mulligan, Anna Marie; Musinsky, Jacob; Nathanson, Katherine L.; Nedergaard, Lotte; Ness, Roberta B.; Neuhausen, Susan L.; Nevanlinna, Heli; Niederacher, Dieter; Nussbaum, Robert L.; Odunsi, Kunle; Olah, Edith; Olopade, Olufunmilayo I.; Olsson, Håkan; Olswold, Curtis; O’Malley, David M.; Ong, Kai-ren; Onland-Moret, N. Charlotte; Orr, Nicholas; Orsulic, Sandra; Osorio, Ana; Palli, Domenico; Papi, Laura; Park-Simon, Tjoung-Won; Paul, James; Pearce, Celeste L.; Pedersen, Inge Søkilde; Peeters, Petra H.M.; Peissel, Bernard; Peixoto, Ana; Pejovic, Tanja; Pelttari, Liisa M.; Permuth, Jennifer B.; Peterlongo, Paolo; Pezzani, Lidia; Pfeiler, Georg; Phillips, Kelly-Anne; Piedmonte, Marion; Pike, Malcolm C.; Piskorz, Anna M.; Poblete, Samantha R.; Pocza, Timea; Poole, Elizabeth M.; Poppe, Bruce; Porteous, Mary E.; Prieur, Fabienne; Prokofyeva, Darya; Pugh, Elizabeth; Pujana, Miquel Angel; Pujol, Pascal; Radice, Paolo; Rantala, Johanna; Rappaport-Fuerhauser, Christine; Rennert, Gad; Rhiem, Kerstin; Rice, Patricia; Richardson, Andrea; Robson, Mark; Rodriguez, Gustavo C.; Rodríguez-Antona, Cristina; Romm, Jane; Rookus, Matti A.; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Salvesen, Helga B.; Sandler, Dale P.; Schoemaker, Minouk J.; Senter, Leigha; Setiawan, V. Wendy; Severi, Gianluca; Sharma, Priyanka; Shelford, Tameka; Siddiqui, Nadeem; Side, Lucy E.; Sieh, Weiva; Singer, Christian F.; Sobol, Hagay; Song, Honglin; Southey, Melissa C.; Spurdle, Amanda B.; Stadler, Zsofia; Steinemann, Doris; Stoppa-Lyonnet, Dominique; Sucheston-Campbell, Lara E.; Sukiennicki, Grzegorz; Sutphen, Rebecca; Sutter, Christian; Swerdlow, Anthony J.; Szabo, Csilla I.; Szafron, Lukasz; Tan, Yen Y.; Taylor, Jack A.; Tea, Muy-Kheng; Teixeira, Manuel R.; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Thomsen, Liv Cecilie Vestrheim; Thull, Darcy L.; Tihomirova, Laima; Tinker, Anna V.; Tischkowitz, Marc; Tognazzo, Silvia; Toland, Amanda Ewart; Tone, Alicia; Trabert, Britton; Travis, Ruth C.; Trichopoulou, Antonia; Tung, Nadine; Tworoger, Shelley S.; van Altena, Anne M.; Van Den Berg, David; van der Hout, Annemarie H.; van der Luijt, Rob B.; Van Heetvelde, Mattias; Van Nieuwenhuysen, Els; van Rensburg, Elizabeth J.; Vanderstichele, Adriaan; Varon-Mateeva, Raymonda; Ana, Vega; Edwards, Digna Velez; Vergote, Ignace; Vierkant, Robert A.; Vijai, Joseph; Vratimos, Athanassios; Walker, Lisa; Walsh, Christine; Wand, Dorothea; Wang-Gohrke, Shan; Wappenschmidt, Barbara; Webb, Penelope M.; Weinberg, Clarice R.; Weitzel, Jeffrey N.; Wentzensen, Nicolas; Whittemore, Alice S.; Wijnen, Juul T.; Wilkens, Lynne R.; Wolk, Alicja; Woo, Michelle; Wu, Xifeng; Wu, Anna H.; Yang, Hannah; Yannoukakos, Drakoulis; Ziogas, Argyrios; Zorn, Kristin K.; Narod, Steven A.; Easton, Douglas F.; Amos, Christopher I.; Schildkraut, Joellen M.; Ramus, Susan J.; Ottini, Laura; Goodman, Marc T.; Park, Sue K.; Kelemen, Linda E.; Risch, Harvey A.; Thomassen, Mads; Offit, Kenneth; Simard, Jacques; Schmutzler, Rita Katharina; Hazelett, Dennis; Monteiro, Alvaro N.; Couch, Fergus J.; Berchuck, Andrew; Chenevix-Trench, Georgia; Goode, Ellen L.; Sellers, Thomas A.; Gayther, Simon A.; Antoniou, Antonis C.; Pharoah, Paul D.P.

    2017-01-01

    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3, 9q31.1) and one for endometrioid EOC (5q12.3). We then meta-analysed the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified an additional three loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a novel susceptibility gene for low grade/borderline serous EOC. PMID:28346442

  7. Genetic analysis of two STR loci (VWA and TPOX in the Iranian province of Khuzestan

    Directory of Open Access Journals (Sweden)

    Ali Mohammad Foroughmand

    2014-08-01

    Conclusion: The examined STR loci in this study have proven a relatively high genetic variation in the Iranian population. The data could be used for construction of a forensic genetic database for the Iranian population.

  8. GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes.

    Science.gov (United States)

    Nakayama, Akiyoshi; Nakaoka, Hirofumi; Yamamoto, Ken; Sakiyama, Masayuki; Shaukat, Amara; Toyoda, Yu; Okada, Yukinori; Kamatani, Yoichiro; Nakamura, Takahiro; Takada, Tappei; Inoue, Katsuhisa; Yasujima, Tomoya; Yuasa, Hiroaki; Shirahama, Yuko; Nakashima, Hiroshi; Shimizu, Seiko; Higashino, Toshihide; Kawamura, Yusuke; Ogata, Hiraku; Kawaguchi, Makoto; Ohkawa, Yasuyuki; Danjoh, Inaho; Tokumasu, Atsumi; Ooyama, Keiko; Ito, Toshimitsu; Kondo, Takaaki; Wakai, Kenji; Stiburkova, Blanka; Pavelka, Karel; Stamp, Lisa K; Dalbeth, Nicola; Sakurai, Yutaka; Suzuki, Hiroshi; Hosoyamada, Makoto; Fujimori, Shin; Yokoo, Takashi; Hosoya, Tatsuo; Inoue, Ituro; Takahashi, Atsushi; Kubo, Michiaki; Ooyama, Hiroshi; Shimizu, Toru; Ichida, Kimiyoshi; Shinomiya, Nariyoshi; Merriman, Tony R; Matsuo, Hirotaka

    2017-05-01

    A genome-wide association study (GWAS) of gout and its subtypes was performed to identify novel gout loci, including those that are subtype-specific. Putative causal association signals from a GWAS of 945 clinically defined gout cases and 1213 controls from Japanese males were replicated with 1396 cases and 1268 controls using a custom chip of 1961 single nucleotide polymorphisms (SNPs). We also first conducted GWASs of gout subtypes. Replication with Caucasian and New Zealand Polynesian samples was done to further validate the loci identified in this study. In addition to the five loci we reported previously, further susceptibility loci were identified at a genome-wide significance level (pgout cases, and NIPAL1 and FAM35A for the renal underexcretion gout subtype. While NIPAL1 encodes a magnesium transporter, functional analysis did not detect urate transport via NIPAL1, suggesting an indirect association with urate handling. Localisation analysis in the human kidney revealed expression of NIPAL1 and FAM35A mainly in the distal tubules, which suggests the involvement of the distal nephron in urate handling in humans. Clinically ascertained male patients with gout and controls of Caucasian and Polynesian ancestries were also genotyped, and FAM35A was associated with gout in all cases. A meta-analysis of the three populations revealed FAM35A to be associated with gout at a genome-wide level of significance (p meta =3.58×10 -8 ). Our findings including novel gout risk loci provide further understanding of the molecular pathogenesis of gout and lead to a novel concept for the therapeutic target of gout/hyperuricaemia. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. Genetic polymorphisms of 20 autosomal STR loci in the Vietnamese population from Yunnan Province, Southwest China.

    Science.gov (United States)

    Zhang, Xiufeng; Hu, Liping; Du, Lei; Nie, Aiting; Rao, Min; Pang, Jing Bo; Nie, Shengjie

    2017-05-01

    The genetic polymorphisms of 20 autosomal short tandem repeat (STR) loci included in the PowerPlex® 21 kit were evaluated in 522 healthy unrelated Vietnamese from Yunnan, China. All of the loci reached the Hardy-Weinberg equilibrium. These loci were examined to determine allele frequencies and forensic statistical parameters. The combined discrimination power and probability of excluding paternity of the 20 STR loci were 0.999999999999999999999991 26 and 0.999999975, respectively. Results suggested that the 20 STR loci are highly polymorphic, which is suitable for forensic personal identification and paternity testing.

  10. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease

    Science.gov (United States)

    Lambert, Jean-Charles; Ibrahim-Verbaas, Carla A; Harold, Denise; Naj, Adam C; Sims, Rebecca; Bellenguez, Céline; Jun, Gyungah; DeStefano, Anita L; Bis, Joshua C; Beecham, Gary W; Grenier-Boley, Benjamin; Russo, Giancarlo; Thornton-Wells, Tricia A; Jones, Nicola; Smith, Albert V; Chouraki, Vincent; Thomas, Charlene; Ikram, M Arfan; Zelenika, Diana; Vardarajan, Badri N; Kamatani, Yoichiro; Lin, Chiao-Feng; Gerrish, Amy; Schmidt, Helena; Kunkle, Brian; Dunstan, Melanie L; Ruiz, Agustin; Bihoreau, Marie-Thérèse; Choi, Seung-Hoan; Reitz, Christiane; Pasquier, Florence; Hollingworth, Paul; Ramirez, Alfredo; Hanon, Olivier; Fitzpatrick, Annette L; Buxbaum, Joseph D; Campion, Dominique; Crane, Paul K; Baldwin, Clinton; Becker, Tim; Gudnason, Vilmundur; Cruchaga, Carlos; Craig, David; Amin, Najaf; Berr, Claudine; Lopez, Oscar L; De Jager, Philip L; Deramecourt, Vincent; Johnston, Janet A; Evans, Denis; Lovestone, Simon; Letenneur, Luc; Morón, Francisco J; Rubinsztein, David C; Eiriksdottir, Gudny; Sleegers, Kristel; Goate, Alison M; Fiévet, Nathalie; Huentelman, Matthew J; Gill, Michael; Brown, Kristelle; Kamboh, M Ilyas; Keller, Lina; Barberger-Gateau, Pascale; McGuinness, Bernadette; Larson, Eric B; Green, Robert; Myers, Amanda J; Dufouil, Carole; Todd, Stephen; Wallon, David; Love, Seth; Rogaeva, Ekaterina; Gallacher, John; St George-Hyslop, Peter; Clarimon, Jordi; Lleo, Alberto; Bayer, Anthony; Tsuang, Debby W; Yu, Lei; Tsolaki, Magda; Bossù, Paola; Spalletta, Gianfranco; Proitsi, Petroula; Collinge, John; Sorbi, Sandro; Sanchez-Garcia, Florentino; Fox, Nick C; Hardy, John; Deniz Naranjo, Maria Candida; Bosco, Paolo; Clarke, Robert; Brayne, Carol; Galimberti, Daniela; Mancuso, Michelangelo; Matthews, Fiona; Moebus, Susanne; Mecocci, Patrizia; Zompo, Maria Del; Maier, Wolfgang; Hampel, Harald; Pilotto, Alberto; Bullido, Maria; Panza, Francesco; Caffarra, Paolo; Nacmias, Benedetta; Gilbert, John R; Mayhaus, Manuel; Lannfelt, Lars; Hakonarson, Hakon; Pichler, Sabrina; Carrasquillo, Minerva M; Ingelsson, Martin; Beekly, Duane; Alvarez, Victoria; Zou, Fanggeng; Valladares, Otto; Younkin, Steven G; Coto, Eliecer; Hamilton-Nelson, Kara L; Gu, Wei; Razquin, Cristina; Pastor, Pau; Mateo, Ignacio; Owen, Michael J; Faber, Kelley M; Jonsson, Palmi V; Combarros, Onofre; O’Donovan, Michael C; Cantwell, Laura B; Soininen, Hilkka; Blacker, Deborah; Mead, Simon; Mosley, Thomas H; Bennett, David A; Harris, Tamara B; Fratiglioni, Laura; Holmes, Clive; de Bruijn, Renee F A G; Passmore, Peter; Montine, Thomas J; Bettens, Karolien; Rotter, Jerome I; Brice, Alexis; Morgan, Kevin; Foroud, Tatiana M; Kukull, Walter A; Hannequin, Didier; Powell, John F; Nalls, Michael A; Ritchie, Karen; Lunetta, Kathryn L; Kauwe, John S K; Boerwinkle, Eric; Riemenschneider, Matthias; Boada, Mercè; Hiltunen, Mikko; Martin, Eden R; Schmidt, Reinhold; Rujescu, Dan; Wang, Li-san; Dartigues, Jean-François; Mayeux, Richard; Tzourio, Christophe; Hofman, Albert; Nöthen, Markus M; Graff, Caroline; Psaty, Bruce M; Jones, Lesley; Haines, Jonathan L; Holmans, Peter A; Lathrop, Mark; Pericak-Vance, Margaret A; Launer, Lenore J; Farrer, Lindsay A; van Duijn, Cornelia M; Van Broeckhoven, Christine; Moskvina, Valentina; Seshadri, Sudha; Williams, Julie; Schellenberg, Gerard D; Amouyel, Philippe

    2013-01-01

    Eleven susceptibility loci for late-onset Alzheimer’s disease (LOAD) were identified by previous studies; however, a large portion of the genetic risk for this disease remains unexplained. We conducted a large, two-stage meta-analysis of genome-wide association studies (GWAS) in individuals of European ancestry. In stage 1, we used genotyped and imputed data (7,055,881 SNPs) to perform meta-analysis on 4 previously published GWAS data sets consisting of 17,008 Alzheimer’s disease cases and 37,154 controls. In stage 2,11,632 SNPs were genotyped and tested for association in an independent set of 8,572 Alzheimer’s disease cases and 11,312 controls. In addition to the APOE locus (encoding apolipoprotein E), 19 loci reached genome-wide significance (P < 5 × 10−8) in the combined stage 1 and stage 2 analysis, of which 11 are newly associated with Alzheimer’s disease. PMID:24162737

  11. Meta-analysis identifies seven susceptibility loci involved in the atopic march.

    Science.gov (United States)

    Marenholz, Ingo; Esparza-Gordillo, Jorge; Rüschendorf, Franz; Bauerfeind, Anja; Strachan, David P; Spycher, Ben D; Baurecht, Hansjörg; Margaritte-Jeannin, Patricia; Sääf, Annika; Kerkhof, Marjan; Ege, Markus; Baltic, Svetlana; Matheson, Melanie C; Li, Jin; Michel, Sven; Ang, Wei Q; McArdle, Wendy; Arnold, Andreas; Homuth, Georg; Demenais, Florence; Bouzigon, Emmanuelle; Söderhäll, Cilla; Pershagen, Göran; de Jongste, Johan C; Postma, Dirkje S; Braun-Fahrländer, Charlotte; Horak, Elisabeth; Ogorodova, Ludmila M; Puzyrev, Valery P; Bragina, Elena Yu; Hudson, Thomas J; Morin, Charles; Duffy, David L; Marks, Guy B; Robertson, Colin F; Montgomery, Grant W; Musk, Bill; Thompson, Philip J; Martin, Nicholas G; James, Alan; Sleiman, Patrick; Toskala, Elina; Rodriguez, Elke; Fölster-Holst, Regina; Franke, Andre; Lieb, Wolfgang; Gieger, Christian; Heinzmann, Andrea; Rietschel, Ernst; Keil, Thomas; Cichon, Sven; Nöthen, Markus M; Pennell, Craig E; Sly, Peter D; Schmidt, Carsten O; Matanovic, Anja; Schneider, Valentin; Heinig, Matthias; Hübner, Norbert; Holt, Patrick G; Lau, Susanne; Kabesch, Michael; Weidinger, Stefan; Hakonarson, Hakon; Ferreira, Manuel A R; Laprise, Catherine; Freidin, Maxim B; Genuneit, Jon; Koppelman, Gerard H; Melén, Erik; Dizier, Marie-Hélène; Henderson, A John; Lee, Young Ae

    2015-11-06

    Eczema often precedes the development of asthma in a disease course called the 'atopic march'. To unravel the genes underlying this characteristic pattern of allergic disease, we conduct a multi-stage genome-wide association study on infantile eczema followed by childhood asthma in 12 populations including 2,428 cases and 17,034 controls. Here we report two novel loci specific for the combined eczema plus asthma phenotype, which are associated with allergic disease for the first time; rs9357733 located in EFHC1 on chromosome 6p12.3 (OR 1.27; P=2.1 × 10(-8)) and rs993226 between TMTC2 and SLC6A15 on chromosome 12q21.3 (OR 1.58; P=5.3 × 10(-9)). Additional susceptibility loci identified at genome-wide significance are FLG (1q21.3), IL4/KIF3A (5q31.1), AP5B1/OVOL1 (11q13.1), C11orf30/LRRC32 (11q13.5) and IKZF3 (17q21). We show that predominantly eczema loci increase the risk for the atopic march. Our findings suggest that eczema may play an important role in the development of asthma after eczema.

  12. Evolution, revolution and heresy in the genetics of infectious disease susceptibility

    Science.gov (United States)

    Hill, Adrian V. S.

    2012-01-01

    Infectious pathogens have long been recognized as potentially powerful agents impacting on the evolution of human genetic diversity. Analysis of large-scale case–control studies provides one of the most direct means of identifying human genetic variants that currently impact on susceptibility to particular infectious diseases. For over 50 years candidate gene studies have been used to identify loci for many major causes of human infectious mortality, including malaria, tuberculosis, human immunodeficiency virus/acquired immunodeficiency syndrome, bacterial pneumonia and hepatitis. But with the advent of genome-wide approaches, many new loci have been identified in diverse populations. Genome-wide linkage studies identified a few loci, but genome-wide association studies are proving more successful, and both exome and whole-genome sequencing now offer a revolutionary increase in power. Opinions differ on the extent to which the genetic component to common disease susceptibility is encoded by multiple high frequency or rare variants, and the heretical view that most infectious diseases might even be monogenic has been advocated recently. Review of findings to date suggests that the genetic architecture of infectious disease susceptibility may be importantly different from that of non-infectious diseases, and it is suggested that natural selection may be the driving force underlying this difference. PMID:22312051

  13. Evolution, revolution and heresy in the genetics of infectious disease susceptibility.

    Science.gov (United States)

    Hill, Adrian V S

    2012-03-19

    Infectious pathogens have long been recognized as potentially powerful agents impacting on the evolution of human genetic diversity. Analysis of large-scale case-control studies provides one of the most direct means of identifying human genetic variants that currently impact on susceptibility to particular infectious diseases. For over 50 years candidate gene studies have been used to identify loci for many major causes of human infectious mortality, including malaria, tuberculosis, human immunodeficiency virus/acquired immunodeficiency syndrome, bacterial pneumonia and hepatitis. But with the advent of genome-wide approaches, many new loci have been identified in diverse populations. Genome-wide linkage studies identified a few loci, but genome-wide association studies are proving more successful, and both exome and whole-genome sequencing now offer a revolutionary increase in power. Opinions differ on the extent to which the genetic component to common disease susceptibility is encoded by multiple high frequency or rare variants, and the heretical view that most infectious diseases might even be monogenic has been advocated recently. Review of findings to date suggests that the genetic architecture of infectious disease susceptibility may be importantly different from that of non-infectious diseases, and it is suggested that natural selection may be the driving force underlying this difference.

  14. Genome Wide Identification of SARS-CoV Susceptibility Loci Using the Collaborative Cross.

    Directory of Open Access Journals (Sweden)

    Lisa E Gralinski

    2015-10-01

    Full Text Available New systems genetics approaches are needed to rapidly identify host genes and genetic networks that regulate complex disease outcomes. Using genetically diverse animals from incipient lines of the Collaborative Cross mouse panel, we demonstrate a greatly expanded range of phenotypes relative to classical mouse models of SARS-CoV infection including lung pathology, weight loss and viral titer. Genetic mapping revealed several loci contributing to differential disease responses, including an 8.5Mb locus associated with vascular cuffing on chromosome 3 that contained 23 genes and 13 noncoding RNAs. Integrating phenotypic and genetic data narrowed this region to a single gene, Trim55, an E3 ubiquitin ligase with a role in muscle fiber maintenance. Lung pathology and transcriptomic data from mice genetically deficient in Trim55 were used to validate its role in SARS-CoV-induced vascular cuffing and inflammation. These data establish the Collaborative Cross platform as a powerful genetic resource for uncovering genetic contributions of complex traits in microbial disease severity, inflammation and virus replication in models of outbred populations.

  15. Identification of genetic loci required for Campylobacter resistance to fowlicidin-1, a chicken host defense peptide

    Directory of Open Access Journals (Sweden)

    Ky Van Hoang

    2012-03-01

    Full Text Available Antimicrobial peptides (AMPs are critical components of host defense limiting bacterial infections at the gastrointestinal mucosal surface. Bacterial pathogens have co-evolved with host innate immunity and developed means to counteract the effect of endogenous AMPs. However, molecular mechanisms of AMP resistance in Campylobacter, an important human food borne pathogen with poultry as a major reservoir, are still largely unknown. In this study, random transposon mutagenesis and targeted site-directed mutagenesis approaches were used to identify genetic loci contributing Campylobacter resistance to fowlicidin-1, a chicken AMP belonging to cathelicidin family. An efficient transposon mutagenesis approach (EZ::TNTM Transposome in conjunction with a microtiter plate screening identified three mutants whose susceptibilities to fowlicidin-1 were significantly increased. Backcrossing of the transposon mutations into parent strain confirmed that the AMP-sensitive phenotype in each mutant was linked to the specific transposon insertion. Direct sequencing showed that these mutants have transposon inserted in the genes encoding two-component regulator CbrR, transporter CjaB, and putative trigger factor Tig. Genomic analysis also revealed an operon (Cj1580c-1584c that is homologous to sapABCDF, an operon conferring resistance to AMP in other pathogens. Insertional inactivation of Cj1583c (sapB significantly increased susceptibility of Campylobacter to fowlicidin-1. The sapB as well as tig and cjaB mutants were significantly impaired in their ability to compete with their wild-type strain 81-176 to colonize the chicken cecum. Together, this study identified four genetic loci in Campylobacter that will be useful for characterizing molecular basis of Campylobacter resistance to AMPs, a significant knowledge gap in Campylobacter pathogenesis.

  16. Genome-wide Meta-analyses of Breast, Ovarian and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by At Least Two Cancer Types

    Science.gov (United States)

    Kar, Siddhartha P.; Beesley, Jonathan; Al Olama, Ali Amin; Michailidou, Kyriaki; Tyrer, Jonathan; Kote-Jarai, ZSofia; Lawrenson, Kate; Lindstrom, Sara; Ramus, Susan J.; Thompson, Deborah J.; Kibel, Adam S.; Dansonka-Mieszkowska, Agnieszka; Michael, Agnieszka; Dieffenbach, Aida K.; Gentry-Maharaj, Aleksandra; Whittemore, Alice S.; Wolk, Alicja; Monteiro, Alvaro; Peixoto, Ana; Kierzek, Andrzej; Cox, Angela; Rudolph, Anja; Gonzalez-Neira, Anna; Wu, Anna H.; Lindblom, Annika; Swerdlow, Anthony; Ziogas, Argyrios; Ekici, Arif B.; Burwinkel, Barbara; Karlan, Beth Y.; Nordestgaard, Børge G.; Blomqvist, Carl; Phelan, Catherine; McLean, Catriona; Pearce, Celeste Leigh; Vachon, Celine; Cybulski, Cezary; Slavov, Chavdar; Stegmaier, Christa; Maier, Christiane; Ambrosone, Christine B.; Høgdall, Claus K.; Teerlink, Craig C.; Kang, Daehee; Tessier, Daniel C.; Schaid, Daniel J.; Stram, Daniel O.; Cramer, Daniel W.; Neal, David E.; Eccles, Diana; Flesch-Janys, Dieter; Velez Edwards, Digna R.; Wokozorczyk, Dominika; Levine, Douglas A.; Yannoukakos, Drakoulis; Sawyer, Elinor J.; Bandera, Elisa V.; Poole, Elizabeth M.; Goode, Ellen L.; Khusnutdinova, Elza; Høgdall, Estrid; Song, Fengju; Bruinsma, Fiona; Heitz, Florian; Modugno, Francesmary; Hamdy, Freddie C.; Wiklund, Fredrik; Giles, Graham G.; Olsson, Håkan; Wildiers, Hans; Ulmer, Hans-Ulrich; Pandha, Hardev; Risch, Harvey A.; Darabi, Hatef; Salvesen, Helga B.; Nevanlinna, Heli; Gronberg, Henrik; Brenner, Hermann; Brauch, Hiltrud; Anton-Culver, Hoda; Song, Honglin; Lim, Hui-Yi; McNeish, Iain; Campbell, Ian; Vergote, Ignace; Gronwald, Jacek; Lubiński, Jan; Stanford, Janet L.; Benítez, Javier; Doherty, Jennifer A.; Permuth, Jennifer B.; Chang-Claude, Jenny; Donovan, Jenny L.; Dennis, Joe; Schildkraut, Joellen M.; Schleutker, Johanna; Hopper, John L.; Kupryjanczyk, Jolanta; Park, Jong Y.; Figueroa, Jonine; Clements, Judith A.; Knight, Julia A.; Peto, Julian; Cunningham, Julie M.; Pow-Sang, Julio; Batra, Jyotsna; Czene, Kamila; Lu, Karen H.; Herkommer, Kathleen; Khaw, Kay-Tee; Matsuo, Keitaro; Muir, Kenneth; Offitt, Kenneth; Chen, Kexin; Moysich, Kirsten B.; Aittomäki, Kristiina; Odunsi, Kunle; Kiemeney, Lambertus A.; Massuger, Leon F.A.G.; Fitzgerald, Liesel M.; Cook, Linda S.; Cannon-Albright, Lisa; Hooning, Maartje J.; Pike, Malcolm C.; Bolla, Manjeet K.; Luedeke, Manuel; Teixeira, Manuel R.; Goodman, Marc T.; Schmidt, Marjanka K.; Riggan, Marjorie; Aly, Markus; Rossing, Mary Anne; Beckmann, Matthias W.; Moisse, Matthieu; Sanderson, Maureen; Southey, Melissa C.; Jones, Michael; Lush, Michael; Hildebrandt, Michelle A. T.; Hou, Ming-Feng; Schoemaker, Minouk J.; Garcia-Closas, Montserrat; Bogdanova, Natalia; Rahman, Nazneen; Le, Nhu D.; Orr, Nick; Wentzensen, Nicolas; Pashayan, Nora; Peterlongo, Paolo; Guénel, Pascal; Brennan, Paul; Paulo, Paula; Webb, Penelope M.; Broberg, Per; Fasching, Peter A.; Devilee, Peter; Wang, Qin; Cai, Qiuyin; Li, Qiyuan; Kaneva, Radka; Butzow, Ralf; Kopperud, Reidun Kristin; Schmutzler, Rita K.; Stephenson, Robert A.; MacInnis, Robert J.; Hoover, Robert N.; Winqvist, Robert; Ness, Roberta; Milne, Roger L.; Travis, Ruth C.; Benlloch, Sara; Olson, Sara H.; McDonnell, Shannon K.; Tworoger, Shelley S.; Maia, Sofia; Berndt, Sonja; Lee, Soo Chin; Teo, Soo-Hwang; Thibodeau, Stephen N.; Bojesen, Stig E.; Gapstur, Susan M.; Kjær, Susanne Krüger; Pejovic, Tanja; Tammela, Teuvo L.J.; Dörk, Thilo; Brüning, Thomas; Wahlfors, Tiina; Key, Tim J.; Edwards, Todd L.; Menon, Usha; Hamann, Ute; Mitev, Vanio; Kosma, Veli-Matti; Setiawan, Veronica Wendy; Kristensen, Vessela; Arndt, Volker; Vogel, Walther; Zheng, Wei; Sieh, Weiva; Blot, William J.; Kluzniak, Wojciech; Shu, Xiao-Ou; Gao, Yu-Tang; Schumacher, Fredrick; Freedman, Matthew L.; Berchuck, Andrew; Dunning, Alison M.; Simard, Jacques; Haiman, Christopher A.; Spurdle, Amanda; Sellers, Thomas A.; Hunter, David J.; Henderson, Brian E.; Kraft, Peter; Chanock, Stephen J.; Couch, Fergus J.; Hall, Per; Gayther, Simon A.; Easton, Douglas F.; Chenevix-Trench, Georgia; Eeles, Rosalind; Pharoah, Paul D.P.; Lambrechts, Diether

    2016-01-01

    Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P cancer meta-analysis. PMID:27432226

  17. Genetics analysis of 38 STR loci in Uygur population from Southern Xinjiang of China.

    Science.gov (United States)

    Yuan, Li; Liu, Haibo; Liao, Qinxiang; Xu, Xu; Chen, Wen; Hao, Shicheng

    2016-05-01

    The allele frequencies and statistical parameters of 38 autosomal short tandem repeat (STR) loci were analyzed in the Uygur population from Southern Xinjiang of China with 290 unrelated individuals. The results show these 38 STR loci have high or medium power of discrimination and probabilities of exclusion. All loci are in Hardy-Weinberg equilibrium. The genetic distances between the Uygur population and other Chinese populations were also estimated.

  18. Eleven loci with new reproducible genetic associations with allergic disease risk

    NARCIS (Netherlands)

    Ferreira, Manuel A.R.; Vonk, Judith M; Baurecht, Hansjörg; Marenholz, Ingo; Tian, Chao; Hoffman, Joshua D; Helmer, Quinta; Tillander, Annika; Ullemar, Vilhelmina; Lu, Yi; Rüschendorf, Franz; Hinds, David A; Hübner, Norbert; Weidinger, Stephan; Magnusson, Patrik Ke; Jorgenson, Eric; Lee, Young-Ae; Boomsma, Dorret I; Karlsson, Robert; Almqvist, Catarina; Koppelman, Gerard H; Paternoster, Lavinia

    2018-01-01

    BACKGROUND: A recent genome-wide association study (GWAS) identified 99 loci that contain genetic risk variants shared between asthma, hay fever and eczema. Many more risk loci shared between these common allergic diseases remain to be discovered, which could point to new therapeutic opportunities.

  19. A major genetic component of BSE susceptibility

    Science.gov (United States)

    Juling, Katrin; Schwarzenbacher, Hermann; Williams, John L; Fries, Ruedi

    2006-01-01

    Background Coding variants of the prion protein gene (PRNP) have been shown to be major determinants for the susceptibility to transmitted prion diseases in humans, mice and sheep. However, to date, the effects of polymorphisms in the coding and regulatory regions of bovine PRNP on bovine spongiform encephalopathy (BSE) susceptibility have been considered marginal or non-existent. Here we analysed two insertion/deletion (indel) polymorphisms in the regulatory region of bovine PRNP in BSE affected animals and controls of four independent cattle populations from UK and Germany. Results In the present report, we show that two previously reported 23- and 12-bp insertion/deletion (indel) polymorphisms in the regulatory region of bovine PRNP are strongly associated with BSE incidence in cattle. Genotyping of BSE-affected and control animals of UK Holstein, German Holstein, German Brown and German Fleckvieh breeds revealed a significant overrepresentation of the deletion alleles at both polymorphic sites in diseased animals (P = 2.01 × 10-3 and P = 8.66 × 10-5, respectively). The main effect on susceptibility is associated with the 12-bp indel polymorphism. Compared with non-carriers, heterozygous and homozygous carriers of the 12-bp deletion allele possess relatively higher risks of having BSE, ranging from 1.32 to 4.01 and 1.74 to 3.65 in the different breeds. These values correspond to population attributable risks ranging from 35% to 53%. Conclusion Our results demonstrate a substantial genetic PRNP associated component for BSE susceptibility in cattle. Although the BSE risk conferred by the deletion allele of the 12-bp indel in the regulatory region of PRNP is substantial, the main risk factor for BSE in cattle is environmental, i.e. exposure to feedstuffs contaminated with the infectious agent. PMID:17014722

  20. A major genetic component of BSE susceptibility

    Directory of Open Access Journals (Sweden)

    Williams John L

    2006-10-01

    Full Text Available Abstract Background Coding variants of the prion protein gene (PRNP have been shown to be major determinants for the susceptibility to transmitted prion diseases in humans, mice and sheep. However, to date, the effects of polymorphisms in the coding and regulatory regions of bovine PRNP on bovine spongiform encephalopathy (BSE susceptibility have been considered marginal or non-existent. Here we analysed two insertion/deletion (indel polymorphisms in the regulatory region of bovine PRNP in BSE affected animals and controls of four independent cattle populations from UK and Germany. Results In the present report, we show that two previously reported 23- and 12-bp insertion/deletion (indel polymorphisms in the regulatory region of bovine PRNP are strongly associated with BSE incidence in cattle. Genotyping of BSE-affected and control animals of UK Holstein, German Holstein, German Brown and German Fleckvieh breeds revealed a significant overrepresentation of the deletion alleles at both polymorphic sites in diseased animals (P = 2.01 × 10-3 and P = 8.66 × 10-5, respectively. The main effect on susceptibility is associated with the 12-bp indel polymorphism. Compared with non-carriers, heterozygous and homozygous carriers of the 12-bp deletion allele possess relatively higher risks of having BSE, ranging from 1.32 to 4.01 and 1.74 to 3.65 in the different breeds. These values correspond to population attributable risks ranging from 35% to 53%. Conclusion Our results demonstrate a substantial genetic PRNP associated component for BSE susceptibility in cattle. Although the BSE risk conferred by the deletion allele of the 12-bp indel in the regulatory region of PRNP is substantial, the main risk factor for BSE in cattle is environmental, i.e. exposure to feedstuffs contaminated with the infectious agent.

  1. Genotyping of the MTL loci and susceptibility to two antifungal agents of Candida glabrata clinical isolates

    Directory of Open Access Journals (Sweden)

    María Teresa Lavaniegos-Sobrino

    2009-08-01

    Full Text Available The opportunistic fungal pathogen Candida glabrata is the second most common isolate from bloodstream infections worldwide and is naturally less susceptible to the antifungal drug fluconazole than other Candida species. C. glabrata is a haploid yeast that contains three mating-type like loci (MTL, although no sexual cycle has been described. Strains containing both types of mating information at the MTL1 locus are found in clinical isolates, but it is thought that strains containing type a information are more common. Here we investigated if a particular combination of mating type information at each MTLlocus is more prevalent in clinical isolates from hospitalized patients in Mexico and if there is a correlation between mating information and resistance to fluconazole and 5-fluorocytosine. We found that while both types of information at MTL1 are equally represented in a collection of 64 clinical isolates, the vast majority of isolates contain a-type information at MTL2 and α-type at MTL3. We also found no correlation of the particular combination of mating type information at the three MTL loci and resistance to fluconazole.

  2. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis

    Science.gov (United States)

    Beecham, Ashley H; Patsopoulos, Nikolaos A; Xifara, Dionysia K; Davis, Mary F; Kemppinen, Anu; Cotsapas, Chris; Shahi, Tejas S; Spencer, Chris; Booth, David; Goris, An; Oturai, Annette; Saarela, Janna; Fontaine, Bertrand; Hemmer, Bernhard; Martin, Claes; Zipp, Frauke; D’alfonso, Sandra; Martinelli-Boneschi, Filippo; Taylor, Bruce; Harbo, Hanne F; Kockum, Ingrid; Hillert, Jan; Olsson, Tomas; Ban, Maria; Oksenberg, Jorge R; Hintzen, Rogier; Barcellos, Lisa F; Agliardi, Cristina; Alfredsson, Lars; Alizadeh, Mehdi; Anderson, Carl; Andrews, Robert; Søndergaard, Helle Bach; Baker, Amie; Band, Gavin; Baranzini, Sergio E; Barizzone, Nadia; Barrett, Jeffrey; Bellenguez, Céline; Bergamaschi, Laura; Bernardinelli, Luisa; Berthele, Achim; Biberacher, Viola; Binder, Thomas M C; Blackburn, Hannah; Bomfim, Izaura L; Brambilla, Paola; Broadley, Simon; Brochet, Bruno; Brundin, Lou; Buck, Dorothea; Butzkueven, Helmut; Caillier, Stacy J; Camu, William; Carpentier, Wassila; Cavalla, Paola; Celius, Elisabeth G; Coman, Irène; Comi, Giancarlo; Corrado, Lucia; Cosemans, Leentje; Cournu-Rebeix, Isabelle; Cree, Bruce A C; Cusi, Daniele; Damotte, Vincent; Defer, Gilles; Delgado, Silvia R; Deloukas, Panos; di Sapio, Alessia; Dilthey, Alexander T; Donnelly, Peter; Dubois, Bénédicte; Duddy, Martin; Edkins, Sarah; Elovaara, Irina; Esposito, Federica; Evangelou, Nikos; Fiddes, Barnaby; Field, Judith; Franke, Andre; Freeman, Colin; Frohlich, Irene Y; Galimberti, Daniela; Gieger, Christian; Gourraud, Pierre-Antoine; Graetz, Christiane; Graham, Andrew; Grummel, Verena; Guaschino, Clara; Hadjixenofontos, Athena; Hakonarson, Hakon; Halfpenny, Christopher; Hall, Gillian; Hall, Per; Hamsten, Anders; Harley, James; Harrower, Timothy; Hawkins, Clive; Hellenthal, Garrett; Hillier, Charles; Hobart, Jeremy; Hoshi, Muni; Hunt, Sarah E; Jagodic, Maja; Jelčić, Ilijas; Jochim, Angela; Kendall, Brian; Kermode, Allan; Kilpatrick, Trevor; Koivisto, Keijo; Konidari, Ioanna; Korn, Thomas; Kronsbein, Helena; Langford, Cordelia; Larsson, Malin; Lathrop, Mark; Lebrun-Frenay, Christine; Lechner-Scott, Jeannette; Lee, Michelle H; Leone, Maurizio A; Leppä, Virpi; Liberatore, Giuseppe; Lie, Benedicte A; Lill, Christina M; Lindén, Magdalena; Link, Jenny; Luessi, Felix; Lycke, Jan; Macciardi, Fabio; Männistö, Satu; Manrique, Clara P; Martin, Roland; Martinelli, Vittorio; Mason, Deborah; Mazibrada, Gordon; McCabe, Cristin; Mero, Inger-Lise; Mescheriakova, Julia; Moutsianas, Loukas; Myhr, Kjell-Morten; Nagels, Guy; Nicholas, Richard; Nilsson, Petra; Piehl, Fredrik; Pirinen, Matti; Price, Siân E; Quach, Hong; Reunanen, Mauri; Robberecht, Wim; Robertson, Neil P; Rodegher, Mariaemma; Rog, David; Salvetti, Marco; Schnetz-Boutaud, Nathalie C; Sellebjerg, Finn; Selter, Rebecca C; Schaefer, Catherine; Shaunak, Sandip; Shen, Ling; Shields, Simon; Siffrin, Volker; Slee, Mark; Sorensen, Per Soelberg; Sorosina, Melissa; Sospedra, Mireia; Spurkland, Anne; Strange, Amy; Sundqvist, Emilie; Thijs, Vincent; Thorpe, John; Ticca, Anna; Tienari, Pentti; van Duijn, Cornelia; Visser, Elizabeth M; Vucic, Steve; Westerlind, Helga; Wiley, James S; Wilkins, Alastair; Wilson, James F; Winkelmann, Juliane; Zajicek, John; Zindler, Eva; Haines, Jonathan L; Pericak-Vance, Margaret A; Ivinson, Adrian J; Stewart, Graeme; Hafler, David; Hauser, Stephen L; Compston, Alastair; McVean, Gil; De Jager, Philip; Sawcer, Stephen; McCauley, Jacob L

    2013-01-01

    Using the ImmunoChip custom genotyping array, we analysed 14,498 multiple sclerosis subjects and 24,091 healthy controls for 161,311 autosomal variants and identified 135 potentially associated regions (p-value multiple sclerosis subjects and 26,703 healthy controls. In these 80,094 individuals of European ancestry we identified 48 new susceptibility variants (p-value multiple sclerosis risk variants in 103 discrete loci outside of the Major Histocompatibility Complex. With high resolution Bayesian fine-mapping, we identified five regions where one variant accounted for more than 50% of the posterior probability of association. This study enhances the catalogue of multiple sclerosis risk variants and illustrates the value of fine-mapping in the resolution of GWAS signals. PMID:24076602

  3. Fine mapping of breast cancer genome-wide association studies loci in women of African ancestry identifies novel susceptibility markers.

    Science.gov (United States)

    Zheng, Yonglan; Ogundiran, Temidayo O; Falusi, Adeyinka G; Nathanson, Katherine L; John, Esther M; Hennis, Anselm J M; Ambs, Stefan; Domchek, Susan M; Rebbeck, Timothy R; Simon, Michael S; Nemesure, Barbara; Wu, Suh-Yuh; Leske, Maria Cristina; Odetunde, Abayomi; Niu, Qun; Zhang, Jing; Afolabi, Chibuzor; Gamazon, Eric R; Cox, Nancy J; Olopade, Christopher O; Olopade, Olufunmilayo I; Huo, Dezheng

    2013-07-01

    Numerous single nucleotide polymorphisms (SNPs) associated with breast cancer susceptibility have been identified by genome-wide association studies (GWAS). However, these SNPs were primarily discovered and validated in women of European and Asian ancestry. Because linkage disequilibrium is ancestry-dependent and heterogeneous among racial/ethnic populations, we evaluated common genetic variants at 22 GWAS-identified breast cancer susceptibility loci in a pooled sample of 1502 breast cancer cases and 1378 controls of African ancestry. None of the 22 GWAS index SNPs could be validated, challenging the direct generalizability of breast cancer risk variants identified in Caucasians or Asians to other populations. Novel breast cancer risk variants for women of African ancestry were identified in regions including 5p12 (odds ratio [OR] = 1.40, 95% confidence interval [CI] = 1.11-1.76; P = 0.004), 5q11.2 (OR = 1.22, 95% CI = 1.09-1.36; P = 0.00053) and 10p15.1 (OR = 1.22, 95% CI = 1.08-1.38; P = 0.0015). We also found positive association signals in three regions (6q25.1, 10q26.13 and 16q12.1-q12.2) previously confirmed by fine mapping in women of African ancestry. In addition, polygenic model indicated that eight best markers in this study, compared with 22 GWAS-identified SNPs, could better predict breast cancer risk in women of African ancestry (per-allele OR = 1.21, 95% CI = 1.16-1.27; P = 9.7 × 10(-16)). Our results demonstrate that fine mapping is a powerful approach to better characterize the breast cancer risk alleles in diverse populations. Future studies and new GWAS in women of African ancestry hold promise to discover additional variants for breast cancer susceptibility with clinical implications throughout the African diaspora.

  4. Replication of genome wide association studies on hepatocellular carcinoma susceptibility loci of STAT4 and HLA-DQ in a Korean population.

    Science.gov (United States)

    Kim, Lyoung Hyo; Cheong, Hyun Sub; Namgoong, Suhg; Kim, Ji On; Kim, Jeong-Hyun; Park, Byung Lae; Cho, Sung Won; Park, Neung Hwa; Cheong, Jae Youn; Koh, InSong; Shin, Hyoung Doo; Kim, Yoon-Jun

    2015-07-01

    A recent genome-wide association study (GWAS) for hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) identified two loci (rs7574865 in STAT4 and rs9275319 in HLA-DQ) in a Chinese population. We attempted to replicate the associations between the two SNP loci and the risk of HCC in a Korean population. The rs7574865 in STAT4 and rs9275319 in HLA-DQ were genotyped in a total of 3838 Korean subjects composed of 287 HBV-related hepatocellular carcinoma patients, 671 chronic hepatitis B virus (CHB) patients, and 2880 population controls using TaqMan genotyping assay. Gene expression was measured by microarray. A logistic regression analysis revealed that rs7574865 in STAT4 and rs9275319 in HLA-DQ were associated with the risk of CHB (OR = 1.25, P = 0.0002 and OR = 1.57, P= 1.44 × 10(-10), respectively). However, these loci were no association with the risk of HBV-related HCC among CHB patients. In the gene expression analyses, although no significant differences in mRNA expression of nearby genes according to genotypes were detected, a significantly decreased mRNA expression in HCC subjects was observed in STAT4, HLA-DQA1, and HLA-DQB1. Although the genetic effects of two HCC susceptibility loci were not replicated, the two loci were found to exert susceptibility effects on the risk of CHB in a Korean population. In addition, the decreased mRNA expression of STAT4, HLA-DQA1, and HLA-DQB1 in HCC tissue might provide a clue to understanding their role in the progression to HCC. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Awareness of Cancer Susceptibility Genetic Testing

    Science.gov (United States)

    Mai, Phuong L.; Vadaparampil, Susan Thomas; Breen, Nancy; McNeel, Timothy S.; Wideroff, Louise; Graubard, Barry I.

    2014-01-01

    Background Genetic testing for several cancer susceptibility syndromes is clinically available; however, existing data suggest limited population awareness of such tests. Purpose To examine awareness regarding cancer genetic testing in the U.S. population aged ≥25 years in the 2000, 2005, and 2010 National Health Interview Surveys. Methods The weighted percentages of respondents aware of cancer genetic tests, and percent changes from 2000–2005 and 2005–2010, overall and by demographic, family history, and healthcare factors were calculated. Interactions were used to evaluate the patterns of change in awareness between 2005 and 2010 among subgroups within each factor. To evaluate associations with awareness in 2005 and 2010, percentages were adjusted for covariates using multiple logistic regression. The analysis was performed in 2012. Results Awareness decreased from 44.4% to 41.5% (pAwareness increased between 2005 and 2010 in most subgroups, particularly among individuals in the South (p-interaction=0.03) or with a usual place of care (p-interaction=0.01). In 2005 and 2010, awareness was positively associated with personal or family cancer history and high perceived cancer risk, and inversely associated with racial/ethnic minorities, age 25–39 or ≥60 years, male gender, lower education and income levels, public or no health insurance, and no provider contact in 12 months. Conclusions Despite improvement from 2005 to 2010, ≤50% of the U.S. adult population was aware of cancer genetic testing in 2010. Notably, disparities persist for racial/ethnic minorities and individuals with limited health care access or income. PMID:24745633

  6. Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease

    DEFF Research Database (Denmark)

    Zhao, Wei; Rasheed, Asif; Tikkanen, Emmi

    2017-01-01

    To evaluate the shared genetic etiology of type 2 diabetes (T2D) and coronary heart disease (CHD), we conducted a genome-wide, multi-ancestry study of genetic variation for both diseases in up to 265,678 subjects for T2D and 260,365 subjects for CHD. We identify 16 previously unreported loci for ...

  7. Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer.

    Science.gov (United States)

    Klein, Alison P; Wolpin, Brian M; Risch, Harvey A; Stolzenberg-Solomon, Rachael Z; Mocci, Evelina; Zhang, Mingfeng; Canzian, Federico; Childs, Erica J; Hoskins, Jason W; Jermusyk, Ashley; Zhong, Jun; Chen, Fei; Albanes, Demetrius; Andreotti, Gabriella; Arslan, Alan A; Babic, Ana; Bamlet, William R; Beane-Freeman, Laura; Berndt, Sonja I; Blackford, Amanda; Borges, Michael; Borgida, Ayelet; Bracci, Paige M; Brais, Lauren; Brennan, Paul; Brenner, Hermann; Bueno-de-Mesquita, Bas; Buring, Julie; Campa, Daniele; Capurso, Gabriele; Cavestro, Giulia Martina; Chaffee, Kari G; Chung, Charles C; Cleary, Sean; Cotterchio, Michelle; Dijk, Frederike; Duell, Eric J; Foretova, Lenka; Fuchs, Charles; Funel, Niccola; Gallinger, Steven; M Gaziano, J Michael; Gazouli, Maria; Giles, Graham G; Giovannucci, Edward; Goggins, Michael; Goodman, Gary E; Goodman, Phyllis J; Hackert, Thilo; Haiman, Christopher; Hartge, Patricia; Hasan, Manal; Hegyi, Peter; Helzlsouer, Kathy J; Herman, Joseph; Holcatova, Ivana; Holly, Elizabeth A; Hoover, Robert; Hung, Rayjean J; Jacobs, Eric J; Jamroziak, Krzysztof; Janout, Vladimir; Kaaks, Rudolf; Khaw, Kay-Tee; Klein, Eric A; Kogevinas, Manolis; Kooperberg, Charles; Kulke, Matthew H; Kupcinskas, Juozas; Kurtz, Robert J; Laheru, Daniel; Landi, Stefano; Lawlor, Rita T; Lee, I-Min; LeMarchand, Loic; Lu, Lingeng; Malats, Núria; Mambrini, Andrea; Mannisto, Satu; Milne, Roger L; Mohelníková-Duchoňová, Beatrice; Neale, Rachel E; Neoptolemos, John P; Oberg, Ann L; Olson, Sara H; Orlow, Irene; Pasquali, Claudio; Patel, Alpa V; Peters, Ulrike; Pezzilli, Raffaele; Porta, Miquel; Real, Francisco X; Rothman, Nathaniel; Scelo, Ghislaine; Sesso, Howard D; Severi, Gianluca; Shu, Xiao-Ou; Silverman, Debra; Smith, Jill P; Soucek, Pavel; Sund, Malin; Talar-Wojnarowska, Renata; Tavano, Francesca; Thornquist, Mark D; Tobias, Geoffrey S; Van Den Eeden, Stephen K; Vashist, Yogesh; Visvanathan, Kala; Vodicka, Pavel; Wactawski-Wende, Jean; Wang, Zhaoming; Wentzensen, Nicolas; White, Emily; Yu, Herbert; Yu, Kai; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Kraft, Peter; Li, Donghui; Chanock, Stephen; Obazee, Ofure; Petersen, Gloria M; Amundadottir, Laufey T

    2018-02-08

    In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 × 10 -8 ). Replication of 10 promising signals in up to 2737 patients and 4752 controls from the PANcreatic Disease ReseArch (PANDoRA) consortium yields new genome-wide significant loci: rs13303010 at 1p36.33 (NOC2L, P = 8.36 × 10 -14 ), rs2941471 at 8q21.11 (HNF4G, P = 6.60 × 10 -10 ), rs4795218 at 17q12 (HNF1B, P = 1.32 × 10 -8 ), and rs1517037 at 18q21.32 (GRP, P = 3.28 × 10 -8 ). rs78417682 is not statistically significantly associated with pancreatic cancer in PANDoRA. Expression quantitative trait locus analysis in three independent pancreatic data sets provides molecular support of NOC2L as a pancreatic cancer susceptibility gene.

  8. Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci

    NARCIS (Netherlands)

    Betz, Regina C; Petukhova, Lynn; Ripke, Stephan; Huang, Hailiang; Menelaou, Androniki; Redler, Silke; Becker, Tim; Heilmann, Stefanie; Yamany, Tarek; Duvic, Madeliene; Hordinsky, Maria; Norris, David; Price, Vera H; Mackay-Wiggan, Julian; de Jong, Annemieke; DeStefano, Gina M; Moebus, Susanne; Böhm, Markus; Blume-Peytavi, Ulrike; Wolff, Hans; Lutz, Gerhard; Kruse, Roland; Bian, Li; Amos, Christopher I; Lee, Annette; Gregersen, Peter K; Blaumeiser, Bettina; Altshuler, David; Clynes, Raphael; de Bakker, Paul I W; Nöthen, Markus M; Daly, Mark J; Christiano, Angela M

    2015-01-01

    Alopecia areata (AA) is a prevalent autoimmune disease with 10 known susceptibility loci. Here we perform the first meta-analysis of research on AA by combining data from two genome-wide association studies (GWAS), and replication with supplemented ImmunoChip data for a total of 3,253 cases and

  9. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer

    DEFF Research Database (Denmark)

    Al Olama, Ali Amin; Kote-Jarai, Zsofia; Berndt, Sonja I

    2014-01-01

    Genome-wide association studies (GWAS) have identified 76 variants associated with prostate cancer risk predominantly in populations of European ancestry. To identify additional susceptibility loci for this common cancer, we conducted a meta-analysis of > 10 million SNPs in 43,303 prostate cancer...

  10. Identification of Two Additional Susceptibility Loci for Inflammatory Bowel Disease in a Chinese Population

    Directory of Open Access Journals (Sweden)

    Xiucai Lan

    2017-04-01

    Full Text Available Background/Aims: To investigate the associations between the rs1250569 (zinc finger MIZ-type containing 1, ZMIZ1, rs1042522 (tumour protein p53, TP53, and rs10114470 (tumour necrosis factor-like cytokine 1A, TL1A polymorphisms and the development of inflammatory bowel disease (IBD in a Chinese (Han population. We analysed the expression of genes that predispose patients to Crohn’s disease (CD and ulcerative colitis (UC. Methods: A total of 381 IBD patients and 517 healthy controls were recruited into our study. Polymorphisms at the three loci were genotyped using polymerase chain reaction-ligation detection reactions (PCR-LDR. Genotype-phenotype correlations were analysed. Blood and gut samples were obtained and analysed using quantitative real-time PCR (qRT-PCR, western blot analysis, and immunohistochemistry to investigate the mRNA and protein levels and in situ expression of genes found to predispose patients to IBD. Furthermore, the expression of susceptible genes was further verified using a mouse dextran sulphate sodium (DSS-induced acute colitis model. Results: No significant association was detected between rs1250569 and rs1042522 genotypes and CD or UC susceptibility. However, the frequency of allele A of rs1250569 was much higher in CD patients than that in healthy controls (55.03% vs. 48.48%, respectively; p = 0.044. The mutation rates at rs10114470 were dramatically lower at both the genotype and allele level in patients than those in healthy controls (p = 0.002 at both the genotype and allele level. Additionally, increased ZMIZ1 and TL1A levels were detected in intestinal samples obtained from both IBD patients and DSS-treated mice. Conclusion: rs1250569 (ZMIZ1 and rs10114470 (TL1A are two novel loci that indicate susceptibility to IBD in Han-Chinese patients. Consistent with previous studies, TL1A expression levels were higher in Chinese Han IBD patients and DSS-treated mice. Most importantly, we found that ZMIZ1 expression was

  11. The combination of two Sle2 lupus-susceptibility loci and Cdkn2c deficiency leads to T cell-mediated pathology in B6.Faslpr mice

    Science.gov (United States)

    Xu, Zhiwei; Croker, Byron P.; Morel, Laurence

    2013-01-01

    The NZM2410 Sle2c1 lupus susceptibility locus is responsible for the expansion of the B1a cell compartment and for the induction of T-cell induced renal and skin pathology on a CD95 deficient (Faslpr)-background. We have previously shown that deficiency in cyclin-dependent kinase inhibitor p18INK4c (p18) was responsible for the B1a cell expansion but was not sufficient to account for the pathology in B6.lpr mice. This study was designed to map the additional Sle2c1 loci responsible for autoimmune pathology when co-expressed with CD95 deficiency. The production, fine-mapping and phenotypic characterization of five recombinant intervals indicated that three interacting sub-loci were responsive for inducting autoimmune pathogenesis in B6.lpr mice. One of these sub-loci corresponds most likely to p18-deficiency. Another major locus mapping to a 2 Mb region at the telomeric end of Sle2c1 is necessary to both renal and skin pathology. Finally, a third locus centromeric to p18 enhances the severity of lupus nephritis. These results provide new insights into the genetic interactions leading to SLE disease presentation, and represent a major step towards the identification of novel susceptibility genes involved in T-cell mediated organ damage. PMID:23698709

  12. Investigation of Caucasian rheumatoid arthritis susceptibility loci in African patients with the same disease

    Science.gov (United States)

    2012-01-01

    Introduction The largest genetic risk to develop rheumatoid arthritis (RA) arises from a group of alleles of the HLA DRB1 locus ('shared epitope', SE). Over 30 non-HLA single nucleotide polymorphisms (SNPs) predisposing to disease have been identified in Caucasians, but they have never been investigated in West/Central Africa. We previously reported a lower prevalence of the SE in RA patients in Cameroon compared to European patients and aimed in the present study to investigate the contribution of Caucasian non-HLA RA SNPs to disease susceptibility in Black Africans. Methods RA cases and controls from Cameroon were genotyped for Caucasian RA susceptibility SNPs using Sequenom MassArray technology. Genotype data were also available for 5024 UK cases and 4281 UK controls and for 119 Yoruba individuals in Ibadan, Nigeria (YRI, HapMap). A Caucasian aggregate genetic-risk score (GRS) was calculated as the sum of the weighted risk-allele counts. Results After genotyping quality control procedures were performed, data on 28 Caucasian non-HLA susceptibility SNPs were available in 43 Cameroonian RA cases and 44 controls. The minor allele frequencies (MAF) were tightly correlated between Cameroonian controls and YRI individuals (correlation coefficient 93.8%, p = 1.7E-13), and they were pooled together. There was no correlation between MAF of UK and African controls; 13 markers differed by more than 20%. The MAF for markers at PTPN22, IL2RA, FCGR2A and IL2/IL21 was below 2% in Africans. The GRS showed a strong association with RA in the UK. However, the GRS did not predict RA in Africans (OR = 0.71, 95% CI 0.29 - 1.74, p = 0.456). Random sampling from the UK cohort showed that this difference in association is unlikely to be explained by small sample size or chance, but is statistically significant with p<0.001. Conclusions The MAFs of non-HLA Caucasian RA susceptibility SNPs are different between Caucasians and Africans, and several polymorphisms are barely detectable in

  13. Genetic susceptibility to mammary carcinogenesis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Kenji; Nitta, Yumiko [Hiroshima Univ. (Japan). Research Inst. for Radiation Biology and Medicine

    1999-06-01

    The Copenhagen (COP) rat strain has previously been shown to be genetically resistant to chemical induction of breast cancer, while Wistar/Furth (WF) and Fischer 344 (F344) animals are relatively susceptible. We have compared the carcinogenic response of these three strains of rats to N-methyl-N-nitrosourea (MNU) with that to {sup 60}Co gamma rays. High incidences of mammary carcinomas were induced by MNU in the F344 and WF rats (100%), whereas the COP strain proved resistant (11.8%). In contrast, radiation-induced mammary carcinomas in COP rats developed in a similar incidence (37.0%) to those in the F344 (22.6%) and WF (26.9%) strains. The low incidence of papillary carcinomas in MNU-treated COP rats appeared to be directly related to the COP genetic resistance controlled by the Mcs genes. Ionizing radiation did, however, induce papillary carcinomas in all the three strains of rats. These carcinomas were more differentiated than MNU-induced cancers with regard to the two mammary differentiation markers, rat milk fat globule membrane (R-MFGM) and {alpha}-smooth muscle actin ({alpha}-SMA). Furthermore, ionizing radiation but not MNU induced mammary adenomas in all three strains, especially in COP rats. Such adenomas had differentiation marker profiles similar to these of carcinomas induced by {sup 60}Co gamma rays. When transplanted into syngenic hosts, growth of adenomas was 17 {beta}-estradiol (E{sub 2})-dependent and they progressed to carcinomas. Furthermore, one microcarcinoma was observed to develop from adenoma tissue in a radiation-exposed COP rat. The findings suggest that radiation and chemical carcinogens are likely to induce mammary cancers through different pathways or from different cell populations. The induction of relatively high incidences of mammary carcinomas and adenomas by radiation in COP rats may correlate with the genetically modulated and highly differentiated physiological status of their mammary glands. (author)

  14. Identification of genetic loci shared between schizophrenia and the Big Five personality traits.

    Science.gov (United States)

    Smeland, Olav B; Wang, Yunpeng; Lo, Min-Tzu; Li, Wen; Frei, Oleksandr; Witoelar, Aree; Tesli, Martin; Hinds, David A; Tung, Joyce Y; Djurovic, Srdjan; Chen, Chi-Hua; Dale, Anders M; Andreassen, Ole A

    2017-05-22

    Schizophrenia is associated with differences in personality traits, and recent studies suggest that personality traits and schizophrenia share a genetic basis. Here we aimed to identify specific genetic loci shared between schizophrenia and the Big Five personality traits using a Bayesian statistical framework. Using summary statistics from genome-wide association studies (GWAS) on personality traits in the 23andMe cohort (n = 59,225) and schizophrenia in the Psychiatric Genomics Consortium cohort (n = 82,315), we evaluated overlap in common genetic variants. The Big Five personality traits neuroticism, extraversion, openness, agreeableness and conscientiousness were measured using a web implementation of the Big Five Inventory. Applying the conditional false discovery rate approach, we increased discovery of genetic loci and identified two loci shared between neuroticism and schizophrenia and six loci shared between openness and schizophrenia. The study provides new insights into the relationship between personality traits and schizophrenia by highlighting genetic loci involved in their common genetic etiology.

  15. Molecular and genetic analyses of potato cyst nematode resistance loci

    NARCIS (Netherlands)

    Bakker, E.H.

    2003-01-01

    This thesis describes the genomic localisation and organisation of loci that harbour resistance to the potato cyst nematode species Globodera pallida and G. rostochiensis . Resistance to the potato cyst nematodes G. pallida and G. rostochiensis is an important aspect in potato breeding. To gain

  16. Biological insights from 108 schizophrenia-associated genetic loci

    DEFF Research Database (Denmark)

    Ripke, Stephan; Neale, Benjamin M.; Corvin, Aiden

    2014-01-01

    and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain, providing biological plausibility for the findings. Many...

  17. Common breast cancer susceptibility loci are associated with triple negative breast cancer

    Science.gov (United States)

    Stevens, Kristen N.; Vachon, Celine M.; Lee, Adam M.; Slager, Susan; Lesnick, Timothy; Olswold, Curtis; Fasching, Peter A.; Miron, Penelope; Eccles, Diana; Carpenter, Jane E.; Godwin, Andrew K.; Ambrosone, Christine; Winqvist, Robert; Schmidt, Marjanka K.; Cox, Angela; Cross, Simon S.; Sawyer, Elinor; Hartmann, Arndt; Beckmann, Matthias W.; Schulz-Wendtland, Rüdiger; Ekici, Arif B.; Tapper, William J; Gerty, Susan M; Durcan, Lorraine; Graham, Nikki; Hein, Rebecca; Nickels, Stephan; Flesch-Janys, Dieter; Heinz, Judith; Sinn, Hans-Peter; Konstantopoulou, Irene; Fostira, Florentia; Pectasides, Dimitrios; Dimopoulos, Athanasios M.; Fountzilas, George; Clarke, Christine L.; Balleine, Rosemary; Olson, Janet E.; Fredericksen, Zachary; Diasio, Robert B.; Pathak, Harsh; Ross, Eric; Weaver, JoEllen; Rüdiger, Thomas; Försti, Asta; Dünnebier, Thomas; Ademuyiwa, Foluso; Kulkarni, Swati; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Ko, Yon-Dschun; Van Limbergen, Erik; Janssen, Hilde; Peto, Julian; Fletcher, Olivia; Giles, Graham G.; Baglietto, Laura; Verhoef, Senno; Tomlinson, Ian; Kosma, Veli-Matti; Beesley, Jonathan; Greco, Dario; Blomqvist, Carl; Irwanto, Astrid; Liu, Jianjun; Blows, Fiona M.; Dawson, Sarah-Jane; Margolin, Sara; Mannermaa, Arto; Martin, Nicholas G.; Montgomery, Grant W; Lambrechts, Diether; dos Santos Silva, Isabel; Severi, Gianluca; Hamann, Ute; Pharoah, Paul; Easton, Douglas F.; Chang-Claude, Jenny; Yannoukakos, Drakoulis; Nevanlinna, Heli; Wang, Xianshu; Couch, Fergus J.

    2012-01-01

    Triple negative breast cancers are an aggressive subtype of breast cancer with poor survival, but there remains little known about the etiological factors which promote its initiation and development. Commonly inherited breast cancer risk factors identified through genome wide association studies (GWAS) display heterogeneity of effect among breast cancer subtypes as defined by estrogen receptor (ER) and progesterone receptor (PR) status. In the Triple Negative Breast Cancer Consortium (TNBCC), 22 common breast cancer susceptibility variants were investigated in 2,980 Caucasian women with triple negative breast cancer and 4,978 healthy controls. We identified six single nucleotide polymorphisms (SNPs) significantly associated with risk of triple negative breast cancer, including rs2046210 (ESR1), rs12662670 (ESR1), rs3803662 (TOX3), rs999737 (RAD51L1), rs8170 (19p13.11) and rs8100241 (19p13.11). Together, our results provide convincing evidence of genetic susceptibility for triple negative breast cancer. PMID:21844186

  18. Mapping of murine radiation-induced acute myeloid leukaemia susceptibility loci

    International Nuclear Information System (INIS)

    Darakhshan, F.

    2001-01-01

    Studies on radiation-induced AML have shown characteristic phenotypic variation in susceptibility amongst inbred mouse strains, suggesting the involvement of genetic factors in determining the development of AML post-irradiation exposure. The main objective of the present study therefore was to identify and map markers in linkage disequilibrium with gene variants associated with influencing susceptibility to radiation induced AML in mice. Given Chr 2 abnormalities are characteristic of AML in mice, this feature was exploited in an effort to overcome the long latency for AML development. Analysis of Chr 2 aberrations at 24 and 48 h following irradiation established a positive correlation between Chr 2 radiosensitivity and radiation-AML susceptibility thus validating the choice of substitute assay. The analysis also resulted in the identification of a further trait, additional to Chr 2 radiosensitivity, termed overall chromosome radiosensitivity. Genetic mapping of Chr 2 radiosensitivity using public domain microsatellite database information resulted in the definition of cluster regions on 7 different chromosomes. Further genotyping reduced the candidate regions to 3 specific regions of interest. A test of allelic association could not ascertain a conclusive link between markers at these regions and the Chr 2 radiosensitivity/radiation-AML susceptibility phenotype. However, a region on Chr 4 around D4Mit221 appears to be most strongly associated. Similar studies identified three chromosomal regions of interest (on Chrs 4, 8 and 16) associated with overall chromosome radiosensitivity trait. An independent mapping strategy using F3 RCS confirmed the likely involvement of two of the candidate Chr 2 radiosensitivity regions identified by the inbred analysis including that on Chr 4 and also highlighted phenotypic heterogeneity amongst resistant RC strains, suggesting the influence of multiple alleles in specific phenotypes. RFLP analysis of candidate genes, localised on

  19. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer.

    OpenAIRE

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J; Maranian, Mel J; Bolla, Manjeet K; Wang, Qin; Shah, Mitulkumar Nandlal; Perkins, Barbara J; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S

    2015-01-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ~14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of Europea...

  20. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    OpenAIRE

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Stephen; Canisius, Sander; Dennis, Joe; Lush, Michael; Maranian, Melanie; Bolla, Manjeet; Wang, Qing; Shah, Mitul; Perkins, Barbara; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S.

    2015-01-01

    textabstractGenome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to wome...

  1. Genetic susceptibility to type 2 diabetes and obesity

    DEFF Research Database (Denmark)

    Grarup, Niels; Sandholt, Camilla H; Hansen, Torben

    2014-01-01

    During the past 7 years, genome-wide association studies have shed light on the contribution of common genomic variants to the genetic architecture of type 2 diabetes, obesity and related intermediate phenotypes. The discoveries have firmly established more than 175 genomic loci associated...... with these phenotypes. Despite the tight correlation between type 2 diabetes and obesity, these conditions do not appear to share a common genetic background, since they have few genetic risk loci in common. The recent genetic discoveries do however highlight specific details of the interplay between the pathogenesis...... progress as regards the concepts, methodologies and derived outcomes of studies of the genetics of type 2 diabetes and obesity, and discuss avenues to be investigated in the future within this research field....

  2. Effects of multiple genetic loci on the pathogenesis from serum urate to gout.

    Science.gov (United States)

    Dong, Zheng; Zhou, Jingru; Jiang, Shuai; Li, Yuan; Zhao, Dongbao; Yang, Chengde; Ma, Yanyun; Wang, Yi; He, Hongjun; Ji, Hengdong; Yang, Yajun; Wang, Xiaofeng; Xu, Xia; Pang, Yafei; Zou, Hejian; Jin, Li; Wang, Jiucun

    2017-03-02

    Gout is a common arthritis resulting from increased serum urate, and many loci have been identified that are associated with serum urate and gout. However, their influence on the progression from elevated serum urate levels to gout is unclear. This study aims to explore systematically the effects of genetic variants on the pathogenesis in approximately 5,000 Chinese individuals. Six genes (PDZK1, GCKR, TRIM46, HNF4G, SLC17A1, LRRC16A) were determined to be associated with serum urate (P FDR  gene, SLC17A4, contributed to the development of gout from hyperuricemia (OR = 1.56, P FDR  = 3.68E-09; OR = 1.27, P FDR  = 0.013, respectively). Also, HNF4G is a novel gene associated with susceptibility to gout (OR = 1.28, P FDR  = 1.08E-03). In addition, A1CF and TRIM46 were identified as associated with gout in the Chinese population for the first time (P FDR  gout and suggests that urate-associated genes functioning as urate transporters may play a specific role in the pathogenesis of gout. Furthermore, two novel gout-associated genes (HNF4G and SLC17A4) were identified.

  3. Lead-Related Genetic Loci, Cumulative Lead Exposure and Incident Coronary Heart Disease: The Normative Aging Study

    Science.gov (United States)

    Weisskopf, Marc G.; Sparrow, David; Schwartz, Joel; Hu, Howard; Park, Sung Kyun

    2016-01-01

    Background Cumulative exposure to lead is associated with cardiovascular outcomes. Polymorphisms in the δ-aminolevulinic acid dehydratase (ALAD), hemochromatosis (HFE), heme oxygenase-1 (HMOX1), vitamin D receptor (VDR), glutathione S-transferase (GST) supergene family (GSTP1, GSTT1, GSTM1), apolipoprotein E (APOE),angiotensin II receptor-1 (AGTR1) and angiotensinogen (AGT) genes, are believed to alter toxicokinetics and/or toxicodynamics of lead. Objectives We assessed possible effect modification by genetic polymorphisms in ALAD, HFE, HMOX1, VDR, GSTP1, GSTT1, GSTM1, APOE, AGTR1 and AGT individually and as the genetic risk score (GRS) on the association between cumulative lead exposure and incident coronary heart disease (CHD) events. Methods We used K-shell-X-ray fluorescence to measure bone lead levels. GRS was calculated on the basis of 22 lead-related loci. We constructed Cox proportional hazard models to compute adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for incident CHD. We applied inverse probability weighting to account for potential selection bias due to recruitment into the bone lead sub-study. Results Significant effect modification was found by VDR, HMOX1, GSTP1, APOE, and AGT genetic polymorphisms when evaluated individually. Further, the bone lead-CHD associations became larger as GRS increases. After adjusting for potential confounders, a HR of CHD was 2.27 (95%CI: 1.50–3.42) with 2-fold increase in patella lead levels, among participants in the top tertile of GRS. We also detected an increasing trend in HRs across tertiles of GRS (p-trend = 0.0063). Conclusions Our findings suggest that lead-related loci as a whole may play an important role in susceptibility to lead-related CHD risk. These findings need to be validated in a separate cohort containing bone lead, lead-related genetic loci and incident CHD data. PMID:27584680

  4. Identification of 19 new risk loci and potential regulatory mechanisms influencing susceptibility to testicular germ cell tumor.

    Science.gov (United States)

    Litchfield, Kevin; Levy, Max; Orlando, Giulia; Loveday, Chey; Law, Philip J; Migliorini, Gabriele; Holroyd, Amy; Broderick, Peter; Karlsson, Robert; Haugen, Trine B; Kristiansen, Wenche; Nsengimana, Jérémie; Fenwick, Kerry; Assiotis, Ioannis; Kote-Jarai, ZSofia; Dunning, Alison M; Muir, Kenneth; Peto, Julian; Eeles, Rosalind; Easton, Douglas F; Dudakia, Darshna; Orr, Nick; Pashayan, Nora; Bishop, D Timothy; Reid, Alison; Huddart, Robert A; Shipley, Janet; Grotmol, Tom; Wiklund, Fredrik; Houlston, Richard S; Turnbull, Clare

    2017-07-01

    Genome-wide association studies (GWAS) have transformed understanding of susceptibility to testicular germ cell tumors (TGCTs), but much of the heritability remains unexplained. Here we report a new GWAS, a meta-analysis with previous GWAS and a replication series, totaling 7,319 TGCT cases and 23,082 controls. We identify 19 new TGCT risk loci, roughly doubling the number of known TGCT risk loci to 44. By performing in situ Hi-C in TGCT cells, we provide evidence for a network of physical interactions among all 44 TGCT risk SNPs and candidate causal genes. Our findings implicate widespread disruption of developmental transcriptional regulators as a basis of TGCT susceptibility, consistent with failed primordial germ cell differentiation as an initiating step in oncogenesis. Defective microtubule assembly and dysregulation of KIT-MAPK signaling also feature as recurrently disrupted pathways. Our findings support a polygenic model of risk and provide insight into the biological basis of TGCT.

  5. Joint effects of colorectal cancer susceptibility loci, circulating 25-hydroxyvitamin D and risk of colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Linda T Hiraki

    Full Text Available Genome wide association studies (GWAS have identified several SNPs associated with colorectal cancer (CRC susceptibility. Vitamin D is also inversely associated with CRC risk.We examined main and joint effects of previously GWAS identified genetic markers of CRC and plasma 25-hydroxyvitamin D (25(OHD on CRC risk in three prospective cohorts: the Nurses' Health Study (NHS, the Health Professionals Follow-up Study (HPFS, and the Physicians' Health Study (PHS. We included 1895 CRC cases and 2806 controls with genomic DNA. We calculated odds ratios and 95% confidence intervals for CRC associated with additive genetic risk scores (GRSs comprised of all CRC SNPs and subsets of these SNPs based on proximity to regions of increased vitamin D receptor binding to vitamin D response elements (VDREs, based on published ChiP-seq data. Among a subset of subjects with additional prediagnostic 25(OHD we tested multiplicative interactions between plasma 25(OHD and GRS's. We used fixed effects models to meta-analyze the three cohorts.The per allele multivariate OR was 1.12 (95% CI, 1.06-1.19 for GRS-proximalVDRE; and 1.10 (95% CI, 1.06-1.14 for GRS-nonproxVDRE. The lowest quartile of plasma 25(OHD compared with the highest, had a multivariate OR of 0.63 (95% CI, 0.48-0.82 for CRC. We did not observe any significant interactions between any GRSs and plasma 25(OHD.We did not observe evidence for the modification of genetic susceptibility for CRC according to vitamin D status, or evidence that the effect of common CRC risk alleles differed according to their proximity to putative VDR binding sites.

  6. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk

    Science.gov (United States)

    Dupuis, Josée; Langenberg, Claudia; Prokopenko, Inga; Saxena, Richa; Soranzo, Nicole; Jackson, Anne U; Wheeler, Eleanor; Glazer, Nicole L; Bouatia-Naji, Nabila; Gloyn, Anna L; Lindgren, Cecilia M; Mägi, Reedik; Morris, Andrew P; Randall, Joshua; Johnson, Toby; Elliott, Paul; Rybin, Denis; Thorleifsson, Gudmar; Steinthorsdottir, Valgerdur; Henneman, Peter; Grallert, Harald; Dehghan, Abbas; Hottenga, Jouke Jan; Franklin, Christopher S; Navarro, Pau; Song, Kijoung; Goel, Anuj; Perry, John R B; Egan, Josephine M; Lajunen, Taina; Grarup, Niels; Sparsø, Thomas; Doney, Alex; Voight, Benjamin F; Stringham, Heather M; Li, Man; Kanoni, Stavroula; Shrader, Peter; Cavalcanti-Proença, Christine; Kumari, Meena; Qi, Lu; Timpson, Nicholas J; Gieger, Christian; Zabena, Carina; Rocheleau, Ghislain; Ingelsson, Erik; An, Ping; O’Connell, Jeffrey; Luan, Jian'an; Elliott, Amanda; McCarroll, Steven A; Payne, Felicity; Roccasecca, Rosa Maria; Pattou, François; Sethupathy, Praveen; Ardlie, Kristin; Ariyurek, Yavuz; Balkau, Beverley; Barter, Philip; Beilby, John P; Ben-Shlomo, Yoav; Benediktsson, Rafn; Bennett, Amanda J; Bergmann, Sven; Bochud, Murielle; Boerwinkle, Eric; Bonnefond, Amélie; Bonnycastle, Lori L; Borch-Johnsen, Knut; Böttcher, Yvonne; Brunner, Eric; Bumpstead, Suzannah J; Charpentier, Guillaume; Chen, Yii-Der Ida; Chines, Peter; Clarke, Robert; Coin, Lachlan J M; Cooper, Matthew N; Cornelis, Marilyn; Crawford, Gabe; Crisponi, Laura; Day, Ian N M; de Geus, Eco; Delplanque, Jerome; Dina, Christian; Erdos, Michael R; Fedson, Annette C; Fischer-Rosinsky, Antje; Forouhi, Nita G; Fox, Caroline S; Frants, Rune; Franzosi, Maria Grazia; Galan, Pilar; Goodarzi, Mark O; Graessler, Jürgen; Groves, Christopher J; Grundy, Scott; Gwilliam, Rhian; Gyllensten, Ulf; Hadjadj, Samy; Hallmans, Göran; Hammond, Naomi; Han, Xijing; Hartikainen, Anna-Liisa; Hassanali, Neelam; Hayward, Caroline; Heath, Simon C; Hercberg, Serge; Herder, Christian; Hicks, Andrew A; Hillman, David R; Hingorani, Aroon D; Hofman, Albert; Hui, Jennie; Hung, Joe; Isomaa, Bo; Johnson, Paul R V; Jørgensen, Torben; Jula, Antti; Kaakinen, Marika; Kaprio, Jaakko; Kesaniemi, Y Antero; Kivimaki, Mika; Knight, Beatrice; Koskinen, Seppo; Kovacs, Peter; Kyvik, Kirsten Ohm; Lathrop, G Mark; Lawlor, Debbie A; Le Bacquer, Olivier; Lecoeur, Cécile; Li, Yun; Lyssenko, Valeriya; Mahley, Robert; Mangino, Massimo; Manning, Alisa K; Martínez-Larrad, María Teresa; McAteer, Jarred B; McCulloch, Laura J; McPherson, Ruth; Meisinger, Christa; Melzer, David; Meyre, David; Mitchell, Braxton D; Morken, Mario A; Mukherjee, Sutapa; Naitza, Silvia; Narisu, Narisu; Neville, Matthew J; Oostra, Ben A; Orrù, Marco; Pakyz, Ruth; Palmer, Colin N A; Paolisso, Giuseppe; Pattaro, Cristian; Pearson, Daniel; Peden, John F; Pedersen, Nancy L.; Perola, Markus; Pfeiffer, Andreas F H; Pichler, Irene; Polasek, Ozren; Posthuma, Danielle; Potter, Simon C; Pouta, Anneli; Province, Michael A; Psaty, Bruce M; Rathmann, Wolfgang; Rayner, Nigel W; Rice, Kenneth; Ripatti, Samuli; Rivadeneira, Fernando; Roden, Michael; Rolandsson, Olov; Sandbaek, Annelli; Sandhu, Manjinder; Sanna, Serena; Sayer, Avan Aihie; Scheet, Paul; Scott, Laura J; Seedorf, Udo; Sharp, Stephen J; Shields, Beverley; Sigurðsson, Gunnar; Sijbrands, Erik J G; Silveira, Angela; Simpson, Laila; Singleton, Andrew; Smith, Nicholas L; Sovio, Ulla; Swift, Amy; Syddall, Holly; Syvänen, Ann-Christine; Tanaka, Toshiko; Thorand, Barbara; Tichet, Jean; Tönjes, Anke; Tuomi, Tiinamaija; Uitterlinden, André G; van Dijk, Ko Willems; van Hoek, Mandy; Varma, Dhiraj; Visvikis-Siest, Sophie; Vitart, Veronique; Vogelzangs, Nicole; Waeber, Gérard; Wagner, Peter J; Walley, Andrew; Walters, G Bragi; Ward, Kim L; Watkins, Hugh; Weedon, Michael N; Wild, Sarah H; Willemsen, Gonneke; Witteman, Jaqueline C M; Yarnell, John W G; Zeggini, Eleftheria; Zelenika, Diana; Zethelius, Björn; Zhai, Guangju; Zhao, Jing Hua; Zillikens, M Carola; Borecki, Ingrid B; Loos, Ruth J F; Meneton, Pierre; Magnusson, Patrik K E; Nathan, David M; Williams, Gordon H; Hattersley, Andrew T; Silander, Kaisa; Salomaa, Veikko; Smith, George Davey; Bornstein, Stefan R; Schwarz, Peter; Spranger, Joachim; Karpe, Fredrik; Shuldiner, Alan R; Cooper, Cyrus; Dedoussis, George V; Serrano-Ríos, Manuel; Morris, Andrew D; Lind, Lars; Palmer, Lyle J; Hu, Frank B.; Franks, Paul W; Ebrahim, Shah; Marmot, Michael; Kao, W H Linda; Pankow, James S; Sampson, Michael J; Kuusisto, Johanna; Laakso, Markku; Hansen, Torben; Pedersen, Oluf; Pramstaller, Peter Paul; Wichmann, H Erich; Illig, Thomas; Rudan, Igor; Wright, Alan F; Stumvoll, Michael; Campbell, Harry; Wilson, James F; Hamsten, Anders; Bergman, Richard N; Buchanan, Thomas A; Collins, Francis S; Mohlke, Karen L; Tuomilehto, Jaakko; Valle, Timo T; Altshuler, David; Rotter, Jerome I; Siscovick, David S; Penninx, Brenda W J H; Boomsma, Dorret; Deloukas, Panos; Spector, Timothy D; Frayling, Timothy M; Ferrucci, Luigi; Kong, Augustine; Thorsteinsdottir, Unnur; Stefansson, Kari; van Duijn, Cornelia M; Aulchenko, Yurii S; Cao, Antonio; Scuteri, Angelo; Schlessinger, David; Uda, Manuela; Ruokonen, Aimo; Jarvelin, Marjo-Riitta; Waterworth, Dawn M; Vollenweider, Peter; Peltonen, Leena; Mooser, Vincent; Abecasis, Goncalo R; Wareham, Nicholas J; Sladek, Robert; Froguel, Philippe; Watanabe, Richard M; Meigs, James B; Groop, Leif; Boehnke, Michael; McCarthy, Mark I; Florez, Jose C; Barroso, Inês

    2010-01-01

    Circulating glucose levels are tightly regulated. To identify novel glycemic loci, we performed meta-analyses of 21 genome-wide associations studies informative for fasting glucose (FG), fasting insulin (FI) and indices of β-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 non-diabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with FG/HOMA-B and two associated with FI/HOMA-IR. These include nine new FG loci (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and FAM148B) and one influencing FI/HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB/TMEM195 with type 2 diabetes (T2D). Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify T2D risk loci, as well as loci that elevate FG modestly, but do not cause overt diabetes. PMID:20081858

  7. Genetic data for 15 STR loci in a Kadazan-Dusun population from East Malaysia.

    Science.gov (United States)

    Kee, B P; Lian, L H; Lee, P C; Lai, T X; Chua, K H

    2011-04-26

    Allele frequencies of 15 short tandem repeat (STR) loci, namely D5S818, D7S820, D13S317, D16S539, TH01, TPOX, Penta D, Penta E, D3S1358, D8S1179, D18S51, D21S11, CSF1PO, vWA, and FGA, were determined for 154 individuals from the Kadazan-Dusun tribe, an indigenous population of East Malaysia. All loci were amplified by polymerase chain reaction, using the Powerplex 16 system. Alleles were typed using a gene analyzer and the Genemapper ID software. Various statistical parameters were calculated and the combined power of discrimination for the 15 loci in the population was calculated as 0.999999999999999. These loci are thus, informative and can be used effectively in forensic and genetic studies of this indigenous population.

  8. Identification of genomic loci associated with Rhodococcus equi susceptibility in foals.

    Directory of Open Access Journals (Sweden)

    Cole M McQueen

    Full Text Available Pneumonia caused by Rhodococcus equi is a common cause of disease and death in foals. Although agent and environmental factors contribute to the incidence of this disease, the genetic factors influencing the clinical outcomes of R. equi pneumonia are ill-defined. Here, we performed independent single nucleotide polymorphism (SNP- and copy number variant (CNV-based genome-wide association studies to identify genomic loci associated with R. equi pneumonia in foals. Foals at a large Quarter Horse breeding farm were categorized into 3 groups: 1 foals with R. equi pneumonia (clinical group [N = 43]; 2 foals with ultrasonographic evidence of pulmonary lesions that never developed clinical signs of pneumonia (subclinical group [N = 156]; and, 3 foals without clinical signs or ultrasonographic evidence of pneumonia (unaffected group [N = 49]. From each group, 24 foals were randomly selected and used for independent SNP- and CNV-based genome-wide association studies (GWAS. The SNP-based GWAS identified a region on chromosome 26 that had moderate evidence of association with R. equi pneumonia when comparing clinical and subclinical foals. A joint analysis including all study foals revealed a 3- to 4-fold increase in odds of disease for a homozygous SNP within the associated region when comparing the clinical group with either of the other 2 groups of foals or their combination. The region contains the transient receptor potential cation channel, subfamily M, member 2 (TRPM2 gene, which is involved in neutrophil function. No associations were identified in the CNV-based GWAS. Collectively, these data identify a region on chromosome 26 associated with R. equi pneumonia in foals, providing evidence that genetic factors may indeed contribute to this important disease of foals.

  9. Association between glioma susceptibility loci and tumour pathology defines specific molecular etiologies.

    Science.gov (United States)

    Di Stefano, Anna Luisa; Enciso-Mora, Victor; Marie, Yannick; Desestret, Virginie; Labussière, Marianne; Boisselier, Blandine; Mokhtari, Karima; Idbaih, Ahmed; Hoang-Xuan, Khe; Delattre, Jean-Yves; Houlston, Richard S; Sanson, Marc

    2013-05-01

    Genome-wide association studies have identified single-nucleotide polymorphisms (SNPs) at 7 loci influencing glioma risk: rs2736100 (TERT), rs11979158 and rs2252586 (EGFR), rs4295627 (CCDC26), rs4977756 (CDKN2A/CDKN2B), rs498872 (PHLDB1), and rs6010620 (RTEL1). We studied the relationship among these 7 glioma-risk SNPs and characteristics of tumors from 1374 patients, including grade, IDH (ie IDH1 or IDH2) mutation, EGFR amplification, CDKN2A-p16-INK4a homozygous deletion, 9p and 10q loss, and 1p-19q codeletion. rs2736100 (TERT) and rs6010620 (RTEL1) risk alleles were associated with high-grade disease, EGFR amplification, CDKN2A-p16-INK4a homozygous deletion, and 9p and 10q deletion; rs4295627 (CCDC26) and rs498872 (PHLDB1) were associated with low-grade disease, IDH mutation, and 1p-19q codeletion. In contrast, rs4977756 (CDKN2A/B), rs11979158 (EGFR), and to a lesser extent, rs2252586 (EGFR) risk alleles were independent of tumor grade and genetic profile. Adjusting for tumor grade showed a significant association between rs2736100 and IDH status (P = .01), 10q loss (P = .02); rs4295627 and 1p-19q codeletion (P = .04), rs498872 and IDH (P = .02), 9p loss (P = .04), and 10q loss (P = .02). Case-control analyses stratified into 4 molecular classes (defined by 1p-19q status, IDH mutation, and EGFR amplification) showed an association of rs4295627 and rs498872 with IDH-mutated gliomas (P RTEL1, CCDC26, and PHLDB1 variants were associated with different genetic profiles that annotate distinct molecular pathways. Our findings provide further insight into the biological basis of glioma etiology.

  10. Genetic mapping of quantitative trait loci (QTLs) with effects on ...

    African Journals Online (AJOL)

    SERVER

    2008-02-05

    Feb 5, 2008 ... This paper reports on the development of a genetic ... RILs along with the two parental lines were evaluated in the screen- .... A genetic linkage map of cowpea showing the QTLs (in green) that is associated with the resistance.

  11. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer

    NARCIS (Netherlands)

    F.J. Couch (Fergus); K.B. Kuchenbaecker (Karoline); K. Michailidou (Kyriaki); G.A. Mendoza-Fandino (Gustavo A.); S. Nord (Silje); J. Lilyquist (Janna); C. Olswold (Curtis); B. Hallberg (Boubou); S. Agata (Simona); H. Ahsan (Habibul); K. Aittomäki (Kristiina); C.B. Ambrosone (Christine); I.L. Andrulis (Irene); H. Anton-Culver (Hoda); V. Arndt (Volker); B.K. Arun (Banu); B. Arver (Brita Wasteson); M. Barile (Monica); R.B. Barkardottir (Rosa); D. Barrowdale (Daniel); L. Beckmann (Lars); M.W. Beckmann (Matthias); J. Benítez (Javier); S.V. Blank (Stephanie); C. Blomqvist (Carl); N.V. Bogdanova (Natalia); S.E. Bojesen (Stig); M.K. Bolla (Manjeet); B. Bonnani (Bernardo); H. Brauch (Hiltrud); H. Brenner (Hermann); B. Burwinkel (Barbara); S.S. Buys (Saundra S.); T. Caldes (Trinidad); M.A. Caligo (Maria); F. Canzian (Federico); T.A. Carpenter (Adrian); J. Chang-Claude (Jenny); S.J. Chanock (Stephen J.); W.K. Chung (Wendy K.); K.B.M. Claes (Kathleen B.M.); A. Cox (Angela); S.S. Cross (Simon); J.M. Cunningham (Julie); K. Czene (Kamila); M.B. Daly (Mary B.); F. Damiola (Francesca); H. Darabi (Hatef); M. de La Hoya (Miguel); P. Devilee (Peter); O. Díez (Orland); Y.C. Ding (Yuan); R. Dolcetti (Riccardo); S.M. Domchek (Susan); C.M. Dorfling (Cecilia); I. dos Santos Silva (Isabel); M. Dumont (Martine); A.M. Dunning (Alison); D. Eccles (Diana); H. Ehrencrona (Hans); A.B. Ekici (Arif); H. Eliassen (Heather); S.D. Ellis (Steve); P.A. Fasching (Peter); J.D. Figueroa (Jonine); D. Flesch-Janys (Dieter); A. Försti (Asta); F. Fostira (Florentia); W.D. Foulkes (William); M.O.W. Friebel (Mark ); E. Friedman (Eitan); D. Frost (Debra); M. Gabrielson (Marike); M. Gammon (Marilie); P.A. Ganz (Patricia A.); S.M. Gapstur (Susan M.); J. Garber (Judy); M.M. Gaudet (Mia); S.A. Gayther (Simon); A-M. Gerdes (Anne-Marie); M. Ghoussaini (Maya); G.G. Giles (Graham); G. Glendon (Gord); A.K. Godwin (Andrew K.); M.S. Goldberg (Mark); D. Goldgar (David); A. González-Neira (Anna); M.H. Greene (Mark H.); J. Gronwald (Jacek); P. Guénel (Pascal); M.J. Gunter (Marc J.); L. Haeberle (Lothar); C.A. Haiman (Christopher A.); U. Hamann (Ute); T.V.O. Hansen (Thomas); S. Hart (Stewart); S. Healey (Sue); T. Heikkinen (Tuomas); B.E. Henderson (Brian); J. Herzog (Josef); F.B.L. Hogervorst (Frans); A. Hollestelle (Antoinette); M.J. Hooning (Maartje); R.N. Hoover (Robert); J.L. Hopper (John); K. Humphreys (Keith); D. Hunter (David); T. Huzarski (Tomasz); E.N. Imyanitov (Evgeny N.); C. Isaacs (Claudine); A. Jakubowska (Anna); M. James (Margaret); R. Janavicius (Ramunas); U.B. Jensen; E.M. John (Esther); M. Jones (Michael); M. Kabisch (Maria); S. Kar (Siddhartha); B.Y. Karlan (Beth Y.); S. Khan (Sofia); K.T. Khaw; M.G. Kibriya (Muhammad); J.A. Knight (Julia); Y.-D. Ko (Yon-Dschun); I. Konstantopoulou (I.); V-M. Kosma (Veli-Matti); V. Kristensen (Vessela); A. Kwong (Ava); Y. Laitman (Yael); D. Lambrechts (Diether); C. Lazaro (Conxi); E. Lee (Eunjung); L. Le Marchand (Loic); K.J. Lester (Kathryn); A. Lindblom (Annika); N.M. Lindor (Noralane); S. Lindstrom (Stephen); J. Liu (Jianjun); J. Long (Jirong); J. Lubinski (Jan); P.L. Mai (Phuong); E. Makalic (Enes); K.E. Malone (Kathleen E.); A. Mannermaa (Arto); S. Manoukian (Siranoush); S. Margolin (Sara); F. Marme (Federick); J.W.M. Martens (John); L. McGuffog (Lesley); A. Meindl (Alfons); A. Miller (Austin); R.L. Milne (Roger); P. Miron (Penelope); M. Montagna (Marco); S. Mazoyer (Sylvie); A.-M. Mulligan (Anna-Marie); T.A. Muranen (Taru); K.L. Nathanson (Katherine); S.L. Neuhausen (Susan); H. Nevanlinna (Heli); B.G. Nordestgaard (Børge); R. Nussbaum (Robert); K. Offit (Kenneth); E. Olah; O.I. Olopade (Olufunmilayo I.); J.E. Olson (Janet); A. Osorio (Ana); S.K. Park (Sue K.); P.H.M. Peeters; B. Peissel (Bernard); P. Peterlongo (Paolo); J. Peto (Julian); C. Phelan (Catherine); R. Pilarski (Robert); B. Poppe (Bruce); K. Pykäs (Katri); P. Radice (Paolo); N. Rahman (Nazneen); J. Rantala (Johanna); C. Rappaport (Christine); G. Rennert (Gad); A.L. Richardson (Andrea); M. Robson (Mark); I. Romieu (Isabelle); A. Rudolph (Anja); E.J.T. Rutgers (Emiel); M.-J. Sanchez (Maria-Jose); R. Santella (Regina); E.J. Sawyer (Elinor); D.F. Schmidt (Daniel); M.K. Schmidt (Marjanka); R.K. Schmutzler (Rita); F.R. Schumacher (Fredrick); R.J. Scott (Rodney); L. Senter (Leigha); P. Sharma (Priyanka); J. Simard (Jacques); C.F. Singer (Christian); O. Sinilnikova (Olga); P. Soucy (Penny); M.C. Southey (Melissa); D. Steinemann (Doris); M. Stenmark-Askmalm (Marie); D. Stoppa-Lyonnet (Dominique); A.J. Swerdlow (Anthony ); C. Szabo (Csilla); R. Tamimi (Rulla); W. Tapper (William); P.J. Teixeira; S.-H. Teo (Soo-Hwang); M.B. Terry (Mary Beth); M. Thomassen (Mads); D. Thompson (Deborah); L. Tihomirova (Laima); A.E. Toland (Amanda); R.A.E.M. Tollenaar (Rob); I.P. Tomlinson (Ian); T. Truong (Thérèse); H. Tsimiklis (Helen); A. Teulé (A.); R. Tumino (Rosario); N. Tung (Nadine); C. Turnbull (Clare); G. Ursin (Giski); C.H.M. van Deurzen (Carolien); E.J. van Rensburg (Elizabeth); R. Varon-Mateeva (Raymonda); Z. Wang (Zhaoming); S. Wang-Gohrke (Shan); E. Weiderpass (Elisabete); J.N. Weitzel (Jeffrey); A.S. Whittemore (Alice S.); H. Wildiers (Hans); R. Winqvist (Robert); X.R. Yang (Xiaohong R.); D. Yannoukakos (Drakoulis); S. Yao (Song); M.P. Zamora (Pilar); W. Zheng (Wei); P. Hall (Per); P. Kraft (Peter); C. Vachon (Celine); S. Slager (Susan); G. Chenevix-Trench (Georgia); P.D.P. Pharoah (Paul); A.A.N. Monteiro (Alvaro A. N.); M. García-Closas (Montserrat); D.F. Easton (Douglas F.); A.C. Antoniou (Antonis C.)

    2016-01-01

    textabstractCommon variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10-8) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative

  12. Identification of novel susceptibility Loci for kawasaki disease in a Han chinese population by a genome-wide association study.

    Directory of Open Access Journals (Sweden)

    Fuu-Jen Tsai

    Full Text Available Kawasaki disease (KD is an acute systemic vasculitis syndrome that primarily affects infants and young children. Its etiology is unknown; however, epidemiological findings suggest that genetic predisposition underlies disease susceptibility. Taiwan has the third-highest incidence of KD in the world, after Japan and Korea. To investigate novel mechanisms that might predispose individuals to KD, we conducted a genome-wide association study (GWAS in 250 KD patients and 446 controls in a Han Chinese population residing in Taiwan, and further validated our findings in an independent Han Chinese cohort of 208 cases and 366 controls. The most strongly associated single-nucleotide polymorphisms (SNPs detected in the joint analysis corresponded to three novel loci. Among these KD-associated SNPs three were close to the COPB2 (coatomer protein complex beta-2 subunit gene: rs1873668 (p = 9.52×10⁻⁵, rs4243399 (p = 9.93×10⁻⁵, and rs16849083 (p = 9.93×10⁻⁵. We also identified a SNP in the intronic region of the ERAP1 (endoplasmic reticulum amino peptidase 1 gene (rs149481, p(best = 4.61×10⁻⁵. Six SNPs (rs17113284, rs8005468, rs10129255, rs2007467, rs10150241, and rs12590667 clustered in an area containing immunoglobulin heavy chain variable regions genes, with p(best-values between 2.08×10⁻⁵ and 8.93×10⁻⁶, were also identified. This is the first KD GWAS performed in a Han Chinese population. The novel KD candidates we identified have been implicated in T cell receptor signaling, regulation of proinflammatory cytokines, as well as antibody-mediated immune responses. These findings may lead to a better understanding of the underlying molecular pathogenesis of KD.

  13. A genome-wide association study in chronic obstructive pulmonary disease (COPD: identification of two major susceptibility loci.

    Directory of Open Access Journals (Sweden)

    Sreekumar G Pillai

    2009-03-01

    Full Text Available There is considerable variability in the susceptibility of smokers to develop chronic obstructive pulmonary disease (COPD. The only known genetic risk factor is severe deficiency of alpha(1-antitrypsin, which is present in 1-2% of individuals with COPD. We conducted a genome-wide association study (GWAS in a homogenous case-control cohort from Bergen, Norway (823 COPD cases and 810 smoking controls and evaluated the top 100 single nucleotide polymorphisms (SNPs in the family-based International COPD Genetics Network (ICGN; 1891 Caucasian individuals from 606 pedigrees study. The polymorphisms that showed replication were further evaluated in 389 subjects from the US National Emphysema Treatment Trial (NETT and 472 controls from the Normative Aging Study (NAS and then in a fourth cohort of 949 individuals from 127 extended pedigrees from the Boston Early-Onset COPD population. Logistic regression models with adjustments of covariates were used to analyze the case-control populations. Family-based association analyses were conducted for a diagnosis of COPD and lung function in the family populations. Two SNPs at the alpha-nicotinic acetylcholine receptor (CHRNA 3/5 locus were identified in the genome-wide association study. They showed unambiguous replication in the ICGN family-based analysis and in the NETT case-control analysis with combined p-values of 1.48 x 10(-10, (rs8034191 and 5.74 x 10(-10 (rs1051730. Furthermore, these SNPs were significantly associated with lung function in both the ICGN and Boston Early-Onset COPD populations. The C allele of the rs8034191 SNP was estimated to have a population attributable risk for COPD of 12.2%. The association of hedgehog interacting protein (HHIP locus on chromosome 4 was also consistently replicated, but did not reach genome-wide significance levels. Genome-wide significant association of the HHIP locus with lung function was identified in the Framingham Heart study (Wilk et al., companion article

  14. Replication study for the association of 9 East Asian GWAS-derived loci with susceptibility to type 2 diabetes in a Japanese population.

    Directory of Open Access Journals (Sweden)

    Kensuke Sakai

    Full Text Available AIMS: East Asian genome-wide association studies (GWAS for type 2 diabetes identified 8 loci with genome-wide significance, and 2 loci with a borderline association. However, the associations of these loci except MAEA locus with type 2 diabetes have not been evaluated in independent East Asian cohorts. We performed a replication study to investigate the association of these susceptibility loci with type 2 diabetes in an independent Japanese population. METHODS: We genotyped 7,379 Japanese participants (5,315 type 2 diabetes and 2,064 controls for each of the 9 single nucleotide polymorphisms (SNPs, rs7041847 in GLIS3, rs6017317 in FITM2-R3HDML-HNF4A, rs6467136 near GCCI-PAX4, rs831571 near PSMD6, rs9470794 in ZFAND3, rs3786897 in PEPD, rs1535500 in KCNK16, rs16955379 in CMIP, and rs17797882 near WWOX. Because the sample size in this study was not sufficient to replicate single SNP associations, we constructed a genetic risk score (GRS by summing a number of risk alleles of the 9 SNPs, and examined the association of the GRS with type 2 diabetes using logistic regression analysis. RESULTS: With the exception of rs1535500 in KCNK16, all SNPs had the same direction of effect (odds ratio [OR]>1.0 as in the original reports. The GRS constructed from the 9 SNPs was significantly associated with type 2 diabetes in the Japanese population (p = 4.0 × 10(-4, OR = 1.05, 95% confidence interval: 1.02-1.09. In quantitative trait analyses, rs16955379 in CMIP was nominally associated with a decreased homeostasis model assessment of β-cell function and with increased fasting plasma glucose, but neither the individual SNPs nor the GRS showed a significant association with the glycemic traits. CONCLUSIONS: These results indicate that 9 loci that were identified in the East Asian GWAS meta-analysis have a significant effect on the susceptibility to type 2 diabetes in the Japanese population.

  15. Genetic diversity of Pinus halepensis Mill. populations detected by RAPD loci

    OpenAIRE

    Gómez , Aránzazu; Alía , Ricardo; Bueno , María

    2001-01-01

    International audience; Genetic diversity of Pinus halepensis Mill. was analysed in nine populations (six Spanish populations and one each from Tunisia, France and Greece). Twenty four RAPD loci were amplified with 60 megagametophyte DNA samples from each population. Populations' contribution to Nei gene diversity and to allelic richness were calculated. Results showed higher within population genetic variation but also a $G_{{\\rm ST}} = 13.6\\%$ higher than those detected in previous studies ...

  16. Genetic diversity of disease-associated loci in Turkish population.

    Science.gov (United States)

    Karaca, Sefayet; Cesuroglu, Tomris; Karaca, Mehmet; Erge, Sema; Polimanti, Renato

    2015-04-01

    Many consortia and international projects have investigated the human genetic variation of a large number of ethno-geographic groups. However, populations with peculiar genetic features, such as the Turkish population, are still absent in publically available datasets. To explore the genetic predisposition to health-related traits of the Turkish population, we analyzed 34 genes associated with different health-related traits (for example, lipid metabolism, cardio-vascular diseases, hormone metabolism, cellular detoxification, aging and energy metabolism). We observed relevant differences between the Turkish population and populations with non-European ancestries (that is, Africa and East Asia) in some of the investigated genes (that is, AGT, APOE, CYP1B1, GNB3, IL10, IL6, LIPC and PON1). As most complex traits are highly polygenic, we developed polygenic scores associated with different health-related traits to explore the genetic diversity of the Turkish population with respect to other human groups. This approach showed significant differences between the Turkish population and populations with non-European ancestries, as well as between Turkish and Northern European individuals. This last finding is in agreement with the genetic structure of European and Middle East populations, and may also agree with epidemiological evidences about the health disparities of Turkish communities in Northern European countries.

  17. [Relationship between genetic polymorphisms of 3 SNP loci in 5-HTT gene and paranoid schizophrenia].

    Science.gov (United States)

    Xuan, Jin-Feng; Ding, Mei; Pang, Hao; Xing, Jia-Xin; Sun, Yi-Hua; Yao, Jun; Zhao, Yi; Li, Chun-Mei; Wang, Bao-Jie

    2012-12-01

    To investigate the population genetic data of 3 SNP loci (rs25533, rs34388196 and rs1042173) of 5-hydroxytryptamine transporter (5-HTT) gene and the association with paranoid schizophrenia. Three SNP loci of 5-HTT gene were examined in 132 paranoid schizophrenia patients and 150 unrelated healthy individuals of Northern Chinese Han population by PCR-RFLP technique. The Hardy-Weinberg equilibrium test was performed using the chi-square test and the data of haplotype frequency and population genetics parameters were statistically analyzed. Among these three SNP loci, four haplotypes were obtained. There were no statistically significant differences between the patient group and the control group (P > 0.05). The DP values of the 3 SNP loci were 0.276, 0.502 and 0.502. The PIC of them were 0.151, 0.281 and 0.281. The PE of them were 0.014, 0.072 and 0.072. The three SNP loci and four haplotypes of 5-HTT gene have no association with paranoid schizophrenia, while the polymorphism still have high potential application in forensic practice.

  18. Personalized Genetic Testing and Norovirus Susceptibility

    Directory of Open Access Journals (Sweden)

    Natalie Prystajecky

    2014-01-01

    Full Text Available BACKGROUND: The availability of direct-to-consumer personalized genetic testing has enabled the public to access and interpret their own genetic information. Various genetic traits can be determined including resistance to norovirus through a nonsense mutation (G428A in the FUT2 gene. Although this trait is believed to confer resistance to the most dominant norovirus genotype (GII.4, the spectrum of resistance to other norovirus strains is unknown. The present report describes a cluster of symptomatic norovirus GI.6 infection in a family identified to have norovirus resistance through personalized genetic testing.

  19. Exploration of genetic susceptibility factors for Parkinson's disease

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 89; Issue 2. Exploration of genetic susceptibility factors for Parkinson's disease in a South American sample. Bruno A. Benitez Diego A. Forero Gonzalo H. Arboleda Luis A. Granados Juan J. Yunis William Fernandez Humberto Arboleda. Research Note Volume 89 Issue 2 ...

  20. Integrating mechanistic and polymorphism data to characterize human genetic susceptibility for environmental chemical risk assessment in the 21st century

    International Nuclear Information System (INIS)

    Mortensen, Holly M.; Euling, Susan Y.

    2013-01-01

    Response to environmental chemicals can vary widely among individuals and between population groups. In human health risk assessment, data on susceptibility can be utilized by deriving risk levels based on a study of a susceptible population and/or an uncertainty factor may be applied to account for the lack of information about susceptibility. Defining genetic susceptibility in response to environmental chemicals across human populations is an area of interest in the NAS' new paradigm of toxicity pathway-based risk assessment. Data from high-throughput/high content (HT/HC), including -omics (e.g., genomics, transcriptomics, proteomics, metabolomics) technologies, have been integral to the identification and characterization of drug target and disease loci, and have been successfully utilized to inform the mechanism of action for numerous environmental chemicals. Large-scale population genotyping studies may help to characterize levels of variability across human populations at identified target loci implicated in response to environmental chemicals. By combining mechanistic data for a given environmental chemical with next generation sequencing data that provides human population variation information, one can begin to characterize differential susceptibility due to genetic variability to environmental chemicals within and across genetically heterogeneous human populations. The integration of such data sources will be informative to human health risk assessment

  1. Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors.

    Directory of Open Access Journals (Sweden)

    Stefan Nickels

    Full Text Available Various common genetic susceptibility loci have been identified for breast cancer; however, it is unclear how they combine with lifestyle/environmental risk factors to influence risk. We undertook an international collaborative study to assess gene-environment interaction for risk of breast cancer. Data from 24 studies of the Breast Cancer Association Consortium were pooled. Using up to 34,793 invasive breast cancers and 41,099 controls, we examined whether the relative risks associated with 23 single nucleotide polymorphisms were modified by 10 established environmental risk factors (age at menarche, parity, breastfeeding, body mass index, height, oral contraceptive use, menopausal hormone therapy use, alcohol consumption, cigarette smoking, physical activity in women of European ancestry. We used logistic regression models stratified by study and adjusted for age and performed likelihood ratio tests to assess gene-environment interactions. All statistical tests were two-sided. We replicated previously reported potential interactions between LSP1-rs3817198 and parity (Pinteraction = 2.4 × 10(-6 and between CASP8-rs17468277 and alcohol consumption (Pinteraction = 3.1 × 10(-4. Overall, the per-allele odds ratio (95% confidence interval for LSP1-rs3817198 was 1.08 (1.01-1.16 in nulliparous women and ranged from 1.03 (0.96-1.10 in parous women with one birth to 1.26 (1.16-1.37 in women with at least four births. For CASP8-rs17468277, the per-allele OR was 0.91 (0.85-0.98 in those with an alcohol intake of <20 g/day and 1.45 (1.14-1.85 in those who drank ≥ 20 g/day. Additionally, interaction was found between 1p11.2-rs11249433 and ever being parous (Pinteraction = 5.3 × 10(-5, with a per-allele OR of 1.14 (1.11-1.17 in parous women and 0.98 (0.92-1.05 in nulliparous women. These data provide first strong evidence that the risk of breast cancer associated with some common genetic variants may vary with environmental risk factors.

  2. Estimation of genetic parameters and detection of quantitative trait loci for metabolites in Danish Holstein milk

    DEFF Research Database (Denmark)

    Buitenhuis, Albert Johannes; Sundekilde, Ulrik; Poulsen, Nina Aagaard

    2013-01-01

    Small components and metabolites in milk are significant for the utilization of milk, not only in dairy food production but also as disease predictors in dairy cattle. This study focused on estimation of genetic parameters and detection of quantitative trait loci for metabolites in bovine milk. F...... for lactic acid to >0.8 for orotic acid and β-hydroxybutyrate. A single SNP association analysis revealed 7 genome-wide significant quantitative trait loci [malonate: Bos taurus autosome (BTA)2 and BTA7; galactose-1-phosphate: BTA2; cis-aconitate: BTA11; urea: BTA12; carnitine: BTA25...

  3. High-Resolution Genome-Wide Linkage Mapping Identifies Susceptibility Loci for BMI in the Chinese Population

    DEFF Research Database (Denmark)

    Zhang, Dong Feng; Pang, Zengchang; Li, Shuxia

    2012-01-01

    The genetic loci affecting the commonly used BMI have been intensively investigated using linkage approaches in multiple populations. This study aims at performing the first genome-wide linkage scan on BMI in the Chinese population in mainland China with hypothesis that heterogeneity in genetic...... linkage could exist in different ethnic populations. BMI was measured from 126 dizygotic twins in Qingdao municipality who were genotyped using high-resolution Affymetrix Genome-Wide Human SNP arrays containing about 1 million single-nucleotide polymorphisms (SNPs). Nonparametric linkage analysis...... in western countries. Multiple loci showing suggestive linkage were found on chromosome 1 (lod score 2.38 at 242 cM), chromosome 8 (2.48 at 95 cM), and chromosome 14 (2.2 at 89.4 cM). The strong linkage identified in the Chinese subjects that is consistent with that found in populations of European origin...

  4. Novel loci controlling lymphocyte proliferative response to cytokines and their clustering with loci controlling autoimmune reactions, macrophage function and lung tumor susceptibility

    Czech Academy of Sciences Publication Activity Database

    Lipoldová, Marie; Havelková, Helena; Badalová, Jana; Demant, P.

    2005-01-01

    Roč. 114, č. 3 (2005), s. 394-399 ISSN 0020-7136 R&D Projects: GA ČR(CZ) GA310/03/1381 Grant - others:European Commission(XE) CIPA-CT940040; Howard Hughes Medical Institute(US) 55000323 Institutional research plan: CEZ:AV0Z5052915 Keywords : lymphocyte activation * interleukin * lung cancer susceptibility Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.700, year: 2005

  5. Genetic Mapping of Novel Loci Affecting Canine Blood Phenotypes.

    Directory of Open Access Journals (Sweden)

    Michelle E White

    Full Text Available Since the publication of the dog genome and the construction of high-quality genome-wide SNP arrays, thousands of dogs have been genotyped for disease studies. For many of these dogs, additional clinical phenotypes are available, such as hematological and clinical chemistry results collected during routine veterinary care. Little is known about the genetic basis of variation in blood phenotypes, but this variation may play an important role in the etiology and progression of many diseases. From a cohort of dogs that had been previously genotyped on a semi-custom Illumina CanineHD array for various genome-wide association studies (GWAS at Cornell University Hospital for Animals, we chose 353 clinically healthy, adult dogs for our analysis of clinical pathologic test results (14 hematological tests and 25 clinical chemistry tests. After correcting for age, body weight and sex, genetic associations were identified for amylase, segmented neutrophils, urea nitrogen, glucose, and mean corpuscular hemoglobin. Additionally, a strong genetic association (P = 8.1×10-13 was evident between a region of canine chromosome 13 (CFA13 and alanine aminotransferase (ALT, explaining 23% of the variation in ALT levels. This region of CFA13 encompasses the GPT gene that encodes the transferase. Dogs homozygous for the derived allele exhibit lower ALT activity, making increased ALT activity a less useful marker of hepatic injury in these individuals. Overall, these associations provide a roadmap for identifying causal variants that could improve interpretation of clinical blood tests and understanding of genetic risk factors associated with diseases such as canine diabetes and anemia, and demonstrate the utility of holistic phenotyping of dogs genotyped for disease mapping studies.

  6. Genetic Mapping of Novel Loci Affecting Canine Blood Phenotypes.

    Science.gov (United States)

    White, Michelle E; Hayward, Jessica J; Stokol, Tracy; Boyko, Adam R

    2015-01-01

    Since the publication of the dog genome and the construction of high-quality genome-wide SNP arrays, thousands of dogs have been genotyped for disease studies. For many of these dogs, additional clinical phenotypes are available, such as hematological and clinical chemistry results collected during routine veterinary care. Little is known about the genetic basis of variation in blood phenotypes, but this variation may play an important role in the etiology and progression of many diseases. From a cohort of dogs that had been previously genotyped on a semi-custom Illumina CanineHD array for various genome-wide association studies (GWAS) at Cornell University Hospital for Animals, we chose 353 clinically healthy, adult dogs for our analysis of clinical pathologic test results (14 hematological tests and 25 clinical chemistry tests). After correcting for age, body weight and sex, genetic associations were identified for amylase, segmented neutrophils, urea nitrogen, glucose, and mean corpuscular hemoglobin. Additionally, a strong genetic association (P = 8.1×10-13) was evident between a region of canine chromosome 13 (CFA13) and alanine aminotransferase (ALT), explaining 23% of the variation in ALT levels. This region of CFA13 encompasses the GPT gene that encodes the transferase. Dogs homozygous for the derived allele exhibit lower ALT activity, making increased ALT activity a less useful marker of hepatic injury in these individuals. Overall, these associations provide a roadmap for identifying causal variants that could improve interpretation of clinical blood tests and understanding of genetic risk factors associated with diseases such as canine diabetes and anemia, and demonstrate the utility of holistic phenotyping of dogs genotyped for disease mapping studies.

  7. Identification of seventeen microsatellite loci for conservation genetic studies of the endemic wrasse Coris bulbifrons

    KAUST Repository

    Van Der Meer, Martin H.

    2012-11-08

    Coral reefs around the world are in decline, in part due to various anthropogenic factors, including fishing pressure. Coris bulbifrons is a large wrasse endemic to only four oceanic locations off Australia\\'s east coast: Middleton Reef, Elizabeth Reef, Lord Howe Island and Norfolk Island. The species is listed as vulnerable by the IUCN due to the potential threat of overfishing. Although these remote locations, some within Marine protected Areas, experience limited fishing pressure, populations may quickly decline with minimal fishing effort as seen in the overfishing of other large wrasses. We developed primers for 17 microsatellite loci to examine gene flow, population genetic structure, and genetic diversity within and among these four locations. Observed heterozygosities ranged 0. 126-0. 752 in 37 individuals from Lord Howe Island indicating that these loci will be useful in C. bulbifrons population genetic studies. © 2012 Springer Science+Business Media Dordrecht.

  8. New susceptibility loci associated with kidney disease in type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Niina Sandholm

    2012-09-01

    Full Text Available Diabetic kidney disease, or diabetic nephropathy (DN, is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D. Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE consortium, we have undertaken a meta-analysis of genome-wide association studies (GWAS of T1D DN comprising ~2.4 million single nucleotide polymorphisms (SNPs imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P = 1.2 × 10(-8 and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P = 2.0 × 10(-9. Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-β1 pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P = 2.1 × 10(-7, a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.

  9. Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic leukemia

    Science.gov (United States)

    Ellinghaus, E; Stanulla, M; Richter, G; Ellinghaus, D; te Kronnie, G; Cario, G; Cazzaniga, G; Horstmann, M; Panzer Grümayer, R; Cavé, H; Trka, J; Cinek, O; Teigler-Schlegel, A; ElSharawy, A; Häsler, R; Nebel, A; Meissner, B; Bartram, T; Lescai, F; Franceschi, C; Giordan, M; Nürnberg, P; Heinzow, B; Zimmermann, M; Schreiber, S; Schrappe, M; Franke, A

    2012-01-01

    Acute lymphoblastic leukemia (ALL) is a malignant disease of the white blood cells. The etiology of ALL is believed to be multifactorial and likely to involve an interplay of environmental and genetic variables. We performed a genome-wide association study of 355 750 single-nucleotide polymorphisms (SNPs) in 474 controls and 419 childhood ALL cases characterized by a t(12;21)(p13;q22) — the most common chromosomal translocation observed in childhood ALL — which leads to an ETV6–RUNX1 gene fusion. The eight most strongly associated SNPs were followed-up in 951 ETV6-RUNX1-positive cases and 3061 controls from Germany/Austria and Italy, respectively. We identified a novel, genome-wide significant risk locus at 3q28 (TP63, rs17505102, PCMH=8.94 × 10−9, OR=0.65). The separate analysis of the combined German/Austrian sample only, revealed additional genome-wide significant associations at 11q11 (OR8U8, rs1945213, P=9.14 × 10−11, OR=0.69) and 8p21.3 (near INTS10, rs920590, P=6.12 × 10−9, OR=1.36). These associations and another association at 11p11.2 (PTPRJ, rs3942852, P=4.95 × 10−7, OR=0.72) remained significant in the German/Austrian replication panel after correction for multiple testing. Our findings demonstrate that germline genetic variation can specifically contribute to the risk of ETV6–RUNX1-positive childhood ALL. The identification of TP63 and PTPRJ as susceptibility genes emphasize the role of the TP53 gene family and the importance of proteins regulating cellular processes in connection with tumorigenesis. PMID:22076464

  10. Immunogenetics and genetic susceptibility in the pathogenesis of autoimmune hepatitis

    Directory of Open Access Journals (Sweden)

    Das Anup K

    2014-11-01

    Full Text Available vAutoimmune hepatitis is a progressive liver disease. Its pathogenesis is unclear, but needs a ‘trigger’ to initiate the disease in a genetically susceptible person. The susceptibility is partly related to MHCII class genes, and more so with human leukocyte antigen (HLA. Several mechanisms have been proposed which, however, cannot fully explain the immunologic findings in autoimmune hepatitis. The susceptibility to any autoimmune disease is determined by several factors where genetic and immunological alterations, along with, environmental factor are active. MHCII antigens as a marker for AIH, or a predictor of treatment response and prognosis has been investigated. Since MHCII antigens show significant ethnic heterogeneity, mutations in MHCII may merely act as only precursors of the surface markers of immune cells, which can be of significance, because the changes in HLA and MHC are missing in certain populations. One such marker is the CTLA-4 (CD152 gene mutation, reported in the phenotypes representing susceptibility to AIH. Other candidate genes of cytokines, TNF, TGF-beta1 etc, have also been investigated but with unvalidated results. Paediatric AIH show differences in genetic susceptibility. Genetic susceptibility or resistance to AIH may be associated with polypeptides in DRB1 with certain amino-acid sequences. Understanding which genes are implicated in genesis and/or disease progression will obviously help to identify key pathways in AIH and provide better insights into its pathogenesis. But studies to identify responsible genes are complex because of the complex trait of AIH.

  11. Genetic susceptibility and neurotransmitters in Tourette syndrome.

    Science.gov (United States)

    Paschou, Peristera; Fernandez, Thomas V; Sharp, Frank; Heiman, Gary A; Hoekstra, Pieter J

    2013-01-01

    Family studies have consistently shown that Tourette syndrome (TS) is a familial disorder and twin studies have clearly indicated a genetic contribution in the etiology of TS. Whereas early segregation studies of TS suggested a single-gene autosomal dominant disorder, later studies have pointed to more complex models including additive and multifactorial inheritance and likely interaction with genetic factors. While the exact cellular and molecular base of TS is as yet elusive, neuroanatomical and neurophysiological studies have pointed to the involvement of cortico-striato-thalamocortical circuits and abnormalities in dopamine, glutamate, gamma-aminobutyric acid, and serotonin neurotransmitter systems, with the most consistent evidence being available for involvement of dopamine-related abnormalities, that is, a reduction in tonic extracellular dopamine levels along with hyperresponsive spike-dependent dopamine release, following stimulation. Genetic and gene expression findings are very much supportive of involvement of these neurotransmitter systems. Moreover, intriguingly, genetic work on a two-generation pedigree has opened new research pointing to a role for histamine, a so far rather neglected neurotransmitter, with the potential of the development of new treatment options. Future studies should be aimed at directly linking neurotransmitter-related genetic and gene expression findings to imaging studies (imaging genetics), which enables a better understanding of the pathways and mechanisms through which the dynamic interplay of genes, brain, and environment shapes the TS phenotype. © 2013 Elsevier Inc. All rights reserved.

  12. Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics.

    Directory of Open Access Journals (Sweden)

    Montserrat Garcia-Closas

    2008-04-01

    Full Text Available A three-stage genome-wide association study recently identified single nucleotide polymorphisms (SNPs in five loci (fibroblast growth receptor 2 (FGFR2, trinucleotide repeat containing 9 (TNRC9, mitogen-activated protein kinase 3 K1 (MAP3K1, 8q24, and lymphocyte-specific protein 1 (LSP1 associated with breast cancer risk. We investigated whether the associations between these SNPs and breast cancer risk varied by clinically important tumor characteristics in up to 23,039 invasive breast cancer cases and 26,273 controls from 20 studies. We also evaluated their influence on overall survival in 13,527 cases from 13 studies. All participants were of European or Asian origin. rs2981582 in FGFR2 was more strongly related to ER-positive (per-allele OR (95%CI = 1.31 (1.27-1.36 than ER-negative (1.08 (1.03-1.14 disease (P for heterogeneity = 10(-13. This SNP was also more strongly related to PR-positive, low grade and node positive tumors (P = 10(-5, 10(-8, 0.013, respectively. The association for rs13281615 in 8q24 was stronger for ER-positive, PR-positive, and low grade tumors (P = 0.001, 0.011 and 10(-4, respectively. The differences in the associations between SNPs in FGFR2 and 8q24 and risk by ER and grade remained significant after permutation adjustment for multiple comparisons and after adjustment for other tumor characteristics. Three SNPs (rs2981582, rs3803662, and rs889312 showed weak but significant associations with ER-negative disease, the strongest association being for rs3803662 in TNRC9 (1.14 (1.09-1.21. rs13281615 in 8q24 was associated with an improvement in survival after diagnosis (per-allele HR = 0.90 (0.83-0.97. The association was attenuated and non-significant after adjusting for known prognostic factors. Our findings show that common genetic variants influence the pathological subtype of breast cancer and provide further support for the hypothesis that ER-positive and ER-negative disease are biologically distinct. Understanding

  13. Detecting Major Genetic Loci Controlling Phenotypic Variability in Experimental Crosses

    Science.gov (United States)

    Rönnegård, Lars; Valdar, William

    2011-01-01

    Traditional methods for detecting genes that affect complex diseases in humans or animal models, milk production in livestock, or other traits of interest, have asked whether variation in genotype produces a change in that trait’s average value. But focusing on differences in the mean ignores differences in variability about that mean. The robustness, or uniformity, of an individual’s character is not only of great practical importance in medical genetics and food production but is also of scientific and evolutionary interest (e.g., blood pressure in animal models of heart disease, litter size in pigs, flowering time in plants). We describe a method for detecting major genes controlling the phenotypic variance, referring to these as vQTL. Our method uses a double generalized linear model with linear predictors based on probabilities of line origin. We evaluate our method on simulated F2 and collaborative cross data, and on a real F2 intercross, demonstrating its accuracy and robustness to the presence of ordinary mean-controlling QTL. We also illustrate the connection between vQTL and QTL involved in epistasis, explaining how these concepts overlap. Our method can be applied to a wide range of commonly used experimental crosses and may be extended to genetic association more generally. PMID:21467569

  14. Genetic Loci Governing Grain Yield and Root Development under Variable Rice Cultivation Conditions

    Directory of Open Access Journals (Sweden)

    Margaret Catolos

    2017-10-01

    Full Text Available Drought is the major abiotic stress to rice grain yield under unpredictable changing climatic scenarios. The widely grown, high yielding but drought susceptible rice varieties need to be improved by unraveling the genomic regions controlling traits enhancing drought tolerance. The present study was conducted with the aim to identify quantitative trait loci (QTLs for grain yield and root development traits under irrigated non-stress and reproductive-stage drought stress in both lowland and upland situations. A mapping population consisting of 480 lines derived from a cross between Dular (drought-tolerant and IR64-21 (drought susceptible was used. QTL analysis revealed three major consistent-effect QTLs for grain yield (qDTY1.1, qDTY1.3, and qDTY8.1 under non-stress and reproductive-stage drought stress conditions, and 2 QTLs for root traits (qRT9.1 for root-growth angle and qRT5.1 for multiple root traits, i.e., seedling-stage root length, root dry weight and crown root number. The genetic locus qDTY1.1 was identified as hotspot for grain yield and yield-related agronomic and root traits. The study identified significant positive correlations among numbers of crown roots and mesocotyl length at the seedling stage and root length and root dry weight at depth at later stages with grain yield and yield-related traits. Under reproductive stage drought stress, the grain yield advantage of the lines with QTLs ranged from 24.1 to 108.9% under upland and 3.0–22.7% under lowland conditions over the lines without QTLs. The lines with QTL combinations qDTY1.3+qDTY8.1 showed the highest mean grain yield advantage followed by lines having qDTY1.1+qDTY8.1 and qDTY1.1+qDTY8.1+qDTY1.3, across upland/lowland reproductive-stage drought stress. The identified QTLs for root traits, mesocotyl length, grain yield and yield-related traits can be immediately deployed in marker-assisted breeding to develop drought tolerant high yielding rice varieties.

  15. Population genetic testing for cancer susceptibility: founder mutations to genomes.

    Science.gov (United States)

    Foulkes, William D; Knoppers, Bartha Maria; Turnbull, Clare

    2016-01-01

    The current standard model for identifying carriers of high-risk mutations in cancer-susceptibility genes (CSGs) generally involves a process that is not amenable to population-based testing: access to genetic tests is typically regulated by health-care providers on the basis of a labour-intensive assessment of an individual's personal and family history of cancer, with face-to-face genetic counselling performed before mutation testing. Several studies have shown that application of these selection criteria results in a substantial proportion of mutation carriers being missed. Population-based genetic testing has been proposed as an alternative approach to determining cancer susceptibility, and aims for a more-comprehensive detection of mutation carriers. Herein, we review the existing data on population-based genetic testing, and consider some of the barriers, pitfalls, and challenges related to the possible expansion of this approach. We consider mechanisms by which population-based genetic testing for cancer susceptibility could be delivered, and suggest how such genetic testing might be integrated into existing and emerging health-care structures. The existing models of genetic testing (including issues relating to informed consent) will very likely require considerable alteration if the potential benefits of population-based genetic testing are to be fully realized.

  16. Analysis of genetic stability at SSR loci during somatic embryogenesis in maritime pine (Pinus pinaster).

    Science.gov (United States)

    Marum, Liliana; Rocheta, Margarida; Maroco, João; Oliveira, M Margarida; Miguel, Célia

    2009-04-01

    Somatic embryogenesis (SE) is a propagation tool of particular interest for accelerating the deployment of new high-performance planting stock in multivarietal forestry. However, genetic conformity in in vitro propagated plants should be assessed as early as possible, especially in long-living trees such as conifers. The main objective of this work was to study such conformity based on genetic stability at simple sequence repeat (SSR) loci during somatic embryogenesis in maritime pine (Pinus pinaster Ait.). Embryogenic cell lines (ECLs) subjected to tissue proliferation during 6, 14 or 22 months, as well as emblings regenerated from several ECLs, were analyzed. Genetic variation at seven SSR loci was detected in ECLs under proliferation conditions for all time points, and in 5 out of 52 emblings recovered from somatic embryos. Three of these five emblings showed an abnormal phenotype consisting mainly of plagiotropism and loss of apical dominance. Despite the variation found in somatic embryogenesis-derived plant material, no correlation was established between genetic stability at the analyzed loci and abnormal embling phenotype, present in 64% of the emblings. The use of microsatellites in this work was efficient for monitoring mutation events during the somatic embryogenesis in P. pinaster. These molecular markers should be useful in the implementation of new breeding and deployment strategies for improved trees using SE.

  17. Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Science.gov (United States)

    Adams, Hieab HH; Hibar, Derrek P; Chouraki, Vincent; Stein, Jason L; Nyquist, Paul A; Rentería, Miguel E; Trompet, Stella; Arias-Vasquez, Alejandro; Seshadri, Sudha; Desrivières, Sylvane; Beecham, Ashley H; Jahanshad, Neda; Wittfeld, Katharina; Van der Lee, Sven J; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beiser, Alexa; Bernard, Manon; Bis, Joshua C; Blanken, Laura ME; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chauhan, Ganesh; Chen, Qiang; Ching, Christopher RK; Cuellar-Partida, Gabriel; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Filippi, Irina; Ge, Tian; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Greven, Corina U; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Hass, Johanna; Haukvik, Unn K; Hilal, Saima; Hofer, Edith; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liao, Jiemin; Liewald, David CM; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; Mazoyer, Bernard; McKay, David R; McWhirter, Rebekah; Milaneschi, Yuri; Mirza-Schreiber, Nazanin; Muetzel, Ryan L; Maniega, Susana Muñoz; Nho, Kwangsik; Nugent, Allison C; Olde Loohuis, Loes M; Oosterlaan, Jaap; Papmeyer, Martina; Pappa, Irene; Pirpamer, Lukas; Pudas, Sara; Pütz, Benno; Rajan, Kumar B; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Thomson, Russell; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Meer, Dennis; Van Donkelaar, Marjolein MJ; Van Eijk, Kristel R; Van Erp, Theo GM; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Xu, Bing; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Aggarwal, Neelum T; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Chen, Christopher; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Geus, Eco JC; De Jager, Philip L; de Zubicaray, Greig I; Delanty, Norman; Depondt, Chantal; DeStefano, Anita L; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Espeseth, Thomas; Evans, Denis A; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald HH; Grabe, Hans J; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Ikram, M Kamran; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Longstreth, WT; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Katie L; McMahon, Francis J; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda WJH; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schofield, Peter R; Sigurdsson, Sigurdur; Simmons, Andy; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Srikanth, Velandai; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Tiemeier, Henning; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Tzourio, Christophe; Uitterlinden, Andre G; Valdés Hernández, Maria C; Van der Brug, Marcel; Van der Lugt, Aad; Van der Wee, Nic JA; Van Duijn, Cornelia M; Van Haren, Neeltje EM; Van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Veltman, Dick J; Vernooij, Meike W; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, H Ronald; Zonderman, Alan B; Deary, Ian J; DeCarli, Charles; Schmidt, Helena; Martin, Nicholas G; De Craen, Anton JM; Wright, Margaret J; Launer, Lenore J; Schumann, Gunter; Fornage, Myriam; Franke, Barbara; Debette, Stéphanie; Medland, Sarah E; Ikram, M Arfan; Thompson, Paul M

    2016-01-01

    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth. PMID:27694991

  18. Seventy-five genetic loci influencing the human red blood cell.

    Science.gov (United States)

    van der Harst, Pim; Zhang, Weihua; Mateo Leach, Irene; Rendon, Augusto; Verweij, Niek; Sehmi, Joban; Paul, Dirk S; Elling, Ulrich; Allayee, Hooman; Li, Xinzhong; Radhakrishnan, Aparna; Tan, Sian-Tsung; Voss, Katrin; Weichenberger, Christian X; Albers, Cornelis A; Al-Hussani, Abtehale; Asselbergs, Folkert W; Ciullo, Marina; Danjou, Fabrice; Dina, Christian; Esko, Tõnu; Evans, David M; Franke, Lude; Gögele, Martin; Hartiala, Jaana; Hersch, Micha; Holm, Hilma; Hottenga, Jouke-Jan; Kanoni, Stavroula; Kleber, Marcus E; Lagou, Vasiliki; Langenberg, Claudia; Lopez, Lorna M; Lyytikäinen, Leo-Pekka; Melander, Olle; Murgia, Federico; Nolte, Ilja M; O'Reilly, Paul F; Padmanabhan, Sandosh; Parsa, Afshin; Pirastu, Nicola; Porcu, Eleonora; Portas, Laura; Prokopenko, Inga; Ried, Janina S; Shin, So-Youn; Tang, Clara S; Teumer, Alexander; Traglia, Michela; Ulivi, Sheila; Westra, Harm-Jan; Yang, Jian; Zhao, Jing Hua; Anni, Franco; Abdellaoui, Abdel; Attwood, Antony; Balkau, Beverley; Bandinelli, Stefania; Bastardot, François; Benyamin, Beben; Boehm, Bernhard O; Cookson, William O; Das, Debashish; de Bakker, Paul I W; de Boer, Rudolf A; de Geus, Eco J C; de Moor, Marleen H; Dimitriou, Maria; Domingues, Francisco S; Döring, Angela; Engström, Gunnar; Eyjolfsson, Gudmundur Ingi; Ferrucci, Luigi; Fischer, Krista; Galanello, Renzo; Garner, Stephen F; Genser, Bernd; Gibson, Quince D; Girotto, Giorgia; Gudbjartsson, Daniel Fannar; Harris, Sarah E; Hartikainen, Anna-Liisa; Hastie, Claire E; Hedblad, Bo; Illig, Thomas; Jolley, Jennifer; Kähönen, Mika; Kema, Ido P; Kemp, John P; Liang, Liming; Lloyd-Jones, Heather; Loos, Ruth J F; Meacham, Stuart; Medland, Sarah E; Meisinger, Christa; Memari, Yasin; Mihailov, Evelin; Miller, Kathy; Moffatt, Miriam F; Nauck, Matthias; Novatchkova, Maria; Nutile, Teresa; Olafsson, Isleifur; Onundarson, Pall T; Parracciani, Debora; Penninx, Brenda W; Perseu, Lucia; Piga, Antonio; Pistis, Giorgio; Pouta, Anneli; Puc, Ursula; Raitakari, Olli; Ring, Susan M; Robino, Antonietta; Ruggiero, Daniela; Ruokonen, Aimo; Saint-Pierre, Aude; Sala, Cinzia; Salumets, Andres; Sambrook, Jennifer; Schepers, Hein; Schmidt, Carsten Oliver; Silljé, Herman H W; Sladek, Rob; Smit, Johannes H; Starr, John M; Stephens, Jonathan; Sulem, Patrick; Tanaka, Toshiko; Thorsteinsdottir, Unnur; Tragante, Vinicius; van Gilst, Wiek H; van Pelt, L Joost; van Veldhuisen, Dirk J; Völker, Uwe; Whitfield, John B; Willemsen, Gonneke; Winkelmann, Bernhard R; Wirnsberger, Gerald; Algra, Ale; Cucca, Francesco; d'Adamo, Adamo Pio; Danesh, John; Deary, Ian J; Dominiczak, Anna F; Elliott, Paul; Fortina, Paolo; Froguel, Philippe; Gasparini, Paolo; Greinacher, Andreas; Hazen, Stanley L; Jarvelin, Marjo-Riitta; Khaw, Kay Tee; Lehtimäki, Terho; Maerz, Winfried; Martin, Nicholas G; Metspalu, Andres; Mitchell, Braxton D; Montgomery, Grant W; Moore, Carmel; Navis, Gerjan; Pirastu, Mario; Pramstaller, Peter P; Ramirez-Solis, Ramiro; Schadt, Eric; Scott, James; Shuldiner, Alan R; Smith, George Davey; Smith, J Gustav; Snieder, Harold; Sorice, Rossella; Spector, Tim D; Stefansson, Kari; Stumvoll, Michael; Tang, W H Wilson; Toniolo, Daniela; Tönjes, Anke; Visscher, Peter M; Vollenweider, Peter; Wareham, Nicholas J; Wolffenbuttel, Bruce H R; Boomsma, Dorret I; Beckmann, Jacques S; Dedoussis, George V; Deloukas, Panos; Ferreira, Manuel A; Sanna, Serena; Uda, Manuela; Hicks, Andrew A; Penninger, Josef Martin; Gieger, Christian; Kooner, Jaspal S; Ouwehand, Willem H; Soranzo, Nicole; Chambers, John C

    2012-12-20

    Anaemia is a chief determinant of global ill health, contributing to cognitive impairment, growth retardation and impaired physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide association study of haemoglobin concentration and related parameters in up to 135,367 individuals. Here we identify 75 independent genetic loci associated with one or more red blood cell phenotypes at P < 10(-8), which together explain 4-9% of the phenotypic variance per trait. Using expression quantitative trait loci and bioinformatic strategies, we identify 121 candidate genes enriched in functions relevant to red blood cell biology. The candidate genes are expressed preferentially in red blood cell precursors, and 43 have haematopoietic phenotypes in Mus musculus or Drosophila melanogaster. Through open-chromatin and coding-variant analyses we identify potential causal genetic variants at 41 loci. Our findings provide extensive new insights into genetic mechanisms and biological pathways controlling red blood cell formation and function.

  19. Genetic Susceptibility and Neurotransmitters in Tourette Syndrome

    NARCIS (Netherlands)

    Paschou, Peristera; Fernandez, Thomas V.; Sharp, Frank; Heiman, Gary A.; Hoekstra, Pieter J.; Martino, D; Cavanna, AE

    2013-01-01

    Family studies have consistently shown that Tourette syndrome (TS) is a familial disorder and twin studies have clearly indicated a genetic contribution in the etiology of TS. Whereas early segregation studies of TS suggested a single-gene autosomal dominant disorder, later studies have pointed to

  20. Novel genetic loci identified for the pathophysiology of childhood obesity in the Hispanic population

    Science.gov (United States)

    Genetic variants responsible for susceptibility to obesity and its comorbidities among Hispanic children have not been identified. The VIVA LA FAMILIA Study was designed to genetically map childhood obesity and associated biological processes in the Hispanic population. A genome-wide association stu...

  1. GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes

    NARCIS (Netherlands)

    Nakayama, A.; Nakaoka, H.; Yamamoto, K.; Sakiyama, M.; Shaukat, A.; Toyoda, Y.; Okada, Y.; Kamatani, Y.; Nakamura, T.; Takada, T.; Inoue, K.; Yasujima, T.; Yuasa, H.; Shirahama, Y.; Nakashima, H.; Shimizu, S.; Higashino, T.; Kawamura, Y.; Ogata, H.; Kawaguchi, M.; Ohkawa, Y.; Danjoh, I.; Tokumasu, A.; Ooyama, K.; Ito, T.; Kondo, T.; Wakai, K.; Stiburkova, B.; Pavelka, K.; Stamp, L.K.; Dalbeth, N.; Sakurai, Y.; Suzuki, H; Hosoyamada, M.; Fujimori, S.; Yokoo, T.; Hosoya, T.; Inoue, I.; Takahashi, A.; Kubo, M.; Ooyama, H.; Shimizu, T.; Ichida, K.; Shinomiya, N.; Merriman, T.R.; Matsuo, H.; Andres, M; Joosten, L.A.; Janssen, M.C.H.; Jansen, T.L.; Liote, F.; Radstake, T.R.; Riches, P.L.; So, A.; Tauches, A.K.

    2017-01-01

    OBJECTIVE: A genome-wide association study (GWAS) of gout and its subtypes was performed to identify novel gout loci, including those that are subtype-specific. METHODS: Putative causal association signals from a GWAS of 945 clinically defined gout cases and 1213 controls from Japanese males were

  2. Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics

    DEFF Research Database (Denmark)

    Garcia-Closas, M.; Hall, P.; Nevanlinna, H.

    2008-01-01

    A three-stage genome-wide association study recently identified single nucleotide polymorphisms ( SNPs) in five loci ( fibroblast growth receptor 2 ( FGFR2), trinucleotide repeat containing 9 ( TNRC9), mitogen-activated protein kinase 3 K1 (MAP3K1), 8q24, and lymphocyte- specific protein 1 ( LSP1...

  3. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma

    DEFF Research Database (Denmark)

    Mitchell, Jonathan S; Li, Ni; Weinhold, Niels

    2016-01-01

    Multiple myeloma (MM) is a plasma cell malignancy with a significant heritable basis. Genome-wide association studies have transformed our understanding of MM predisposition, but individual studies have had limited power to discover risk loci. Here we perform a meta-analysis of these GWAS, add a ...

  4. Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics

    NARCIS (Netherlands)

    Garcia-Closas, Montserrat; Hall, Per; Nevanlinna, Heli; Pooley, Karen; Morrison, Jonathan; Richesson, Douglas A.; Bojesen, Stig E.; Nordestgaard, Børge G.; Axelsson, Christen K.; Arias, Jose I.; Milne, Roger L.; Ribas, Gloria; González-Neira, Anna; Benítez, Javier; Zamora, Pilar; Brauch, Hiltrud; Justenhoven, Christina; Hamann, Ute; Ko, Yon-Dschun; Bruening, Thomas; Haas, Susanne; Dörk, Thilo; Schürmann, Peter; Hillemanns, Peter; Bogdanova, Natalia; Bremer, Michael; Karstens, Johann Hinrich; Fagerholm, Rainer; Aaltonen, Kirsimari; Aittomäki, Kristiina; von Smitten, Karl; Blomqvist, Carl; Mannermaa, Arto; Uusitupa, Matti; Eskelinen, Matti; Tengström, Maria; Kosma, Veli-Matti; Kataja, Vesa; Chenevix-Trench, Georgia; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Devilee, Peter; van Asperen, Christi J.; Jacobi, Catharina E.; Tollenaar, Rob A. E. M.; Huijts, Petra E. A.; Klijn, Jan G. M.; Chang-Claude, Jenny; Kropp, Silke; Slanger, Tracy; Flesch-Janys, Dieter; Mutschelknauss, Elke; Salazar, Ramona; Wang-Gohrke, Shan; Couch, Fergus; Goode, Ellen L.; Olson, Janet E.; Vachon, Celine; Fredericksen, Zachary S.; Giles, Graham G.; Baglietto, Laura; Severi, Gianluca; Hopper, John L.; English, Dallas R.; Southey, Melissa C.; Haiman, Christopher A.; Henderson, Brian E.; Kolonel, Laurence N.; Le Marchand, Loic; Stram, Daniel O.; Hunter, David J.; Hankinson, Susan E.; Cox, David G.; Tamimi, Rulla; Kraft, Peter; Sherman, Mark E.; Chanock, Stephen J.; Lissowska, Jolanta; Brinton, Louise A.; Peplonska, Beata; Hooning, Maartje J.; Meijers-Heijboer, Han; Collee, J. Margriet; van den Ouweland, Ans; Uitterlinden, Andre G.; Liu, Jianjun; Lin, Low Yen; Yuqing, Li; Humphreys, Keith; Czene, Kamila; Cox, Angela; Balasubramanian, Sabapathy P.; Cross, Simon S.; Reed, Malcolm W. R.; Blows, Fiona; Driver, Kristy; Dunning, Alison; Tyrer, Jonathan; Ponder, Bruce A. J.; Sangrajrang, Suleeporn; Brennan, Paul; McKay, James; Odefrey, Fabrice; Gabrieau, Valerie; Sigurdson, Alice; Doody, Michele; Struewing, Jeffrey P.; Alexander, Bruce; Easton, Douglas F.; Pharoah, Paul D.

    2008-01-01

    A three-stage genome-wide association study recently identified single nucleotide polymorphisms (SNPs) in five loci (fibroblast growth receptor 2 (FGFR2), trinucleotide repeat containing 9 (TNRC9), mitogen-activated protein kinase 3 K1 (MAP3K1), 8q24, and lymphocyte-specific protein 1 (LSP1))

  5. Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics

    NARCIS (Netherlands)

    M. García-Closas (Montserrat); P. Hall (Per); H. Nevanlinna (Heli); K.A. Pooley (Karen); J. Morrison (Jonathan); D.A. Richesson (Douglas); S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); C.K. Axelsson (Christen); J.I. Arias Pérez (José Ignacio); R.L. Milne (Roger); G. Ribas (Gloria); A. González-Neira (Anna); J. Benítez (Javier); P. Zamora (Pilar); H. Brauch (Hiltrud); C. Justenhoven (Christina); U. Hamann (Ute); Y-D. Ko (Yon-Dschun); T. Bruening (Thomas); S. Haas (Susanne); T. Dörk (Thilo); P. Schürmann (Peter); P. Hillemanns (Peter); N.V. Bogdanova (Natalia); M. Bremer (Michael); J.H. Karstens (Johann); R. Fagerholm (Rainer); K. Aaltonen (Kirsimari); K. Aittomäki (Kristiina); K. von Smitten (Karl); C. Blomqvist (Carl); A. Mannermaa (Arto); M. Uusitupa (Matti); M. Eskelinen (Matti); M. Tengström (Maria); V-M. Kosma (Veli-Matti); V. Kataja (Vesa); G. Chenevix-Trench (Georgia); A.B. Spurdle (Amanda); J. Beesley (Jonathan); X. Chen (Xiaoqing); P. Devilee (Peter); C.J. van Asperen (Christi); C.E. Jacobi (Catharina); R.A.E.M. Tollenaar (Rob); P. Huijts (Petra); J.G.M. Klijn (Jan); J. Chang-Claude (Jenny); S. Kropp (Silke); T. Slanger (Tracy); D. Flesch-Janys (Dieter); E. Mutschelknauss (Elke); R. Salazar (Ramona); S. Wang-Gohrke (Shan); F.J. Couch (Fergus); E.L. Goode (Ellen); J.E. Olson (Janet); C. Vachon (Celine); Z. Fredericksen (Zachary); G.G. Giles (Graham); L. Baglietto (Laura); G. Severi (Gianluca); J.L. Hopper (John); D.R. English (Dallas); M.C. Southey (Melissa); C.A. Haiman (Christopher); B.E. Henderson (Brian); L.N. Kolonel (Laurence); L. Le Marchand (Loic); D.O. Stram (Daniel); D. Hunter (David); S.E. Hankinson (Susan); A. Cox (Angela); R. Tamimi (Rulla); P. Kraft (Peter); M.E. Sherman (Mark); S.J. Chanock (Stephen); J. Lissowska (Jolanta); L.A. Brinton (Louise); B. Peplonska (Beata); M.J. Hooning (Maartje); E.J. Meijers-Heijboer (Hanne); J.M. Collée (Margriet); A.M.W. van den Ouweland (Ans); A.G. Uitterlinden (André); J. Liu (Jianjun); Y.L. Low; L. Yuqing (Li); M.K. Humphreys (Manjeet); K. Czene (Kamila); S. Balasubramanian (Sabapathy); S.S. Cross (Simon); M.W.R. Reed (Malcolm); F. Blows (Fiona); K. Driver (Kristy); A.M. Dunning (Alison); J.P. Tyrer (Jonathan); B.A.J. Ponder (Bruce); S. Sangrajrang (Suleeporn); P. Brennan (Paul); J.D. McKay (James); F. Odefrey (Fabrice); V. Gabrieau (Valerie); A.J. Sigurdson (Alice); M. Doody (Michele); J.P. Struewing (Jeffrey); B.H. Alexander (Bruce); D.F. Easton (Douglas); P.D.P. Pharoah (Paul)

    2008-01-01

    textabstractA three-stage genome-wide association study recently identified single nucleotide polymorphisms (SNPs) in five loci (fibroblast growth receptor 2 (FGFR2), trinucleotide repeat containing 9 (TNRC9), mitogen-activated protein kinase 3 K1 (MAP3K1), 8q24, and lymphocyte-specific protein 1

  6. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer.

    Science.gov (United States)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J; Maranian, Mel J; Bolla, Manjeet K; Wang, Qin; Shah, Mitul; Perkins, Barbara J; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S; Bojesen, Stig E; Nordestgaard, Børge G; Flyger, Henrik; Nielsen, Sune F; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G; Whittemore, Alice S; John, Esther M; Malone, Kathleen E; Gammon, Marilie D; Santella, Regina M; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F; Casey, Graham; Hunter, David J; Gapstur, Susan M; Gaudet, Mia M; Diver, W Ryan; Haiman, Christopher A; Schumacher, Fredrick; Henderson, Brian E; Le Marchand, Loic; Berg, Christine D; Chanock, Stephen J; Figueroa, Jonine; Hoover, Robert N; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J; Olson, Janet E; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A; van der Luijt, Rob B; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guénel, Pascal; Truong, Thérèse; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O; González-Neira, Anna; Benitez, Javier; Zamora, M Pilar; Perez, Jose Ignacio Arias; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S; Reed, Malcolm W R; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; Tan, Gie-Hooi; Hooning, Maartje J; Hollestelle, Antoinette; Martens, John W M; Collée, J Margriet; Blot, William; Signorello, Lisa B; Cai, Qiuyin; Hopper, John L; Southey, Melissa C; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N; Nord, Silje; Alnaes, Grethe I Grenaker; Giles, Graham G; Milne, Roger L; McLean, Catriona; Canzian, Federico; Trichopoulos, Dimitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A; Hein, Alexander; Beckmann, Matthias W; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J; Swerdlow, Anthony J; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V; Dörk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; Van Asperen, Christi J; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S; Tessier, Daniel C; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Alonso, M Rosario; Álvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul P D P; Kraft, Peter; Dunning, Alison M; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F

    2015-04-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of European ancestry. We generated genotypes for more than 11 million SNPs by imputation using the 1000 Genomes Project reference panel, and we identified 15 new loci associated with breast cancer at P association analysis with ChIP-seq chromatin binding data in mammary cell lines and ChIA-PET chromatin interaction data from ENCODE, we identified likely target genes in two regions: SETBP1 at 18q12.3 and RNF115 and PDZK1 at 1q21.1. One association appears to be driven by an amino acid substitution encoded in EXO1.

  7. Genome-wide association analysis reveals putative Alzheimer's disease susceptibility loci in addition to APOE.

    Science.gov (United States)

    Bertram, Lars; Lange, Christoph; Mullin, Kristina; Parkinson, Michele; Hsiao, Monica; Hogan, Meghan F; Schjeide, Brit M M; Hooli, Basavaraj; Divito, Jason; Ionita, Iuliana; Jiang, Hongyu; Laird, Nan; Moscarillo, Thomas; Ohlsen, Kari L; Elliott, Kathryn; Wang, Xin; Hu-Lince, Diane; Ryder, Marie; Murphy, Amy; Wagner, Steven L; Blacker, Deborah; Becker, K David; Tanzi, Rudolph E

    2008-11-01

    Alzheimer's disease (AD) is a genetically complex and heterogeneous disorder. To date four genes have been established to either cause early-onset autosomal-dominant AD (APP, PSEN1, and PSEN2(1-4)) or to increase susceptibility for late-onset AD (APOE5). However, the heritability of late-onset AD is as high as 80%, (6) and much of the phenotypic variance remains unexplained to date. We performed a genome-wide association (GWA) analysis using 484,522 single-nucleotide polymorphisms (SNPs) on a large (1,376 samples from 410 families) sample of AD families of self-reported European descent. We identified five SNPs showing either significant or marginally significant genome-wide association with a multivariate phenotype combining affection status and onset age. One of these signals (p = 5.7 x 10(-14)) was elicited by SNP rs4420638 and probably reflects APOE-epsilon4, which maps 11 kb proximal (r2 = 0.78). The other four signals were tested in three additional independent AD family samples composed of nearly 2700 individuals from almost 900 families. Two of these SNPs showed significant association in the replication samples (combined p values 0.007 and 0.00002). The SNP (rs11159647, on chromosome 14q31) with the strongest association signal also showed evidence of association with the same allele in GWA data generated in an independent sample of approximately 1,400 AD cases and controls (p = 0.04). Although the precise identity of the underlying locus(i) remains elusive, our study provides compelling evidence for the existence of at least one previously undescribed AD gene that, like APOE-epsilon4, primarily acts as a modifier of onset age.

  8. Analysis of genetic polymorphism of nine short tandem repeat loci in ...

    African Journals Online (AJOL)

    This study was carried out to investigate the genetic polymorphism of nine short tandem repeat (STR) loci including D2S1772, D6S1043, D7S3048, D8S1132, D11S2368, D12S391, D13S325, D18S1364 and D22GATA198B05 in Chinese Han population of Henan province and to assess its value in forensic science.

  9. Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci.

    Science.gov (United States)

    Betz, Regina C; Petukhova, Lynn; Ripke, Stephan; Huang, Hailiang; Menelaou, Androniki; Redler, Silke; Becker, Tim; Heilmann, Stefanie; Yamany, Tarek; Duvic, Madeliene; Hordinsky, Maria; Norris, David; Price, Vera H; Mackay-Wiggan, Julian; de Jong, Annemieke; DeStefano, Gina M; Moebus, Susanne; Böhm, Markus; Blume-Peytavi, Ulrike; Wolff, Hans; Lutz, Gerhard; Kruse, Roland; Bian, Li; Amos, Christopher I; Lee, Annette; Gregersen, Peter K; Blaumeiser, Bettina; Altshuler, David; Clynes, Raphael; de Bakker, Paul I W; Nöthen, Markus M; Daly, Mark J; Christiano, Angela M

    2015-01-22

    Alopecia areata (AA) is a prevalent autoimmune disease with 10 known susceptibility loci. Here we perform the first meta-analysis of research on AA by combining data from two genome-wide association studies (GWAS), and replication with supplemented ImmunoChip data for a total of 3,253 cases and 7,543 controls. The strongest region of association is the major histocompatibility complex, where we fine-map four independent effects, all implicating human leukocyte antigen-DR as a key aetiologic driver. Outside the major histocompatibility complex, we identify two novel loci that exceed the threshold of statistical significance, containing ACOXL/BCL2L11(BIM) (2q13); GARP (LRRC32) (11q13.5), as well as a third nominally significant region SH2B3(LNK)/ATXN2 (12q24.12). Candidate susceptibility gene expression analysis in these regions demonstrates expression in relevant immune cells and the hair follicle. We integrate our results with data from seven other autoimmune diseases and provide insight into the alignment of AA within these disorders. Our findings uncover new molecular pathways disrupted in AA, including autophagy/apoptosis, transforming growth factor beta/Tregs and JAK kinase signalling, and support the causal role of aberrant immune processes in AA.

  10. Genetic polymorphisms of nine X-STR loci in four population groups from Inner Mongolia, China.

    Science.gov (United States)

    Hou, Qiao-Fang; Yu, Bin; Li, Sheng-Bin

    2007-02-01

    Nine short tandem repeat (STR) markers on the X chromosome (DXS101, DXS6789, DXS6799, DXS6804, DXS7132, DXS7133, DXS7423, DXS8378, and HPRTB) were analyzed in four population groups (Mongol, Ewenki, Oroqen, and Daur) from Inner Mongolia, China, in order to learn about the genetic diversity, forensic suitability, and possible genetic affinities of the populations. Frequency estimates, Hardy-Weinberg equilibrium, and other parameters of forensic interest were computed. The results revealed that the nine markers have a moderate degree of variability in the population groups. Most heterozygosity values for the nine loci range from 0.480 to 0.891, and there are evident differences of genetic variability among the populations. A UPGMA tree constructed on the basis of the generated data shows very low genetic distance between Mongol and Han (Xi'an) populations. Our results based on genetic distance analysis are consistent with the results of earlier studies based on linguistics and the immigration history and origin of these populations. The minisatellite loci on the X chromosome studied here are not only useful in showing significant genetic variation between the populations, but also are suitable for human identity testing among Inner Mongolian populations.

  11. Genetic Susceptibility to Head and Neck Squamous Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Lacko, Martin [Department of Otorhinolaryngology—Head and Neck Surgery, Maastricht University Medical Center, Maastricht (Netherlands); Braakhuis, Boudewijn J.M. [Department of Otolaryngology—Head and Neck Surgery, VU University Medical Center, Amsterdam (Netherlands); Sturgis, Erich M. [Department of Head and Neck Surgery and Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Boedeker, Carsten C. [Department of Otorhinolaryngology—Head and Neck Surgery, Albert-Ludwigs-University, Freiburg, Germany and Department of Otorhinolaryngology - Head and Neck Surgery, HELIOS Hanseklinikum Stralsund, Stralsund (Germany); Suárez, Carlos [Department of Otolaryngology, Hospital Universitario Central de Asturias, Oviedo (Spain); Instituto Universitario de Oncología del Principado de Asturias, Oviedo (Spain); Rinaldo, Alessandra; Ferlito, Alfio [ENT Clinic, University of Udine, Udine (Italy); Takes, Robert P., E-mail: robert.takes@radboudumc.nl [Department of Otolaryngology—Head and Neck Surgery, Radboud University Nijmegen Medical Center, Nijmegen (Netherlands)

    2014-05-01

    Head-and-neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, and its incidence is growing. Although environmental carcinogens and carcinogenic viruses are the main etiologic factors, genetic predisposition obviously plays a risk-modulating role, given that not all individuals exposed to these carcinogens experience the disease. This review highlights some aspects of genetic susceptibility to HNSCC: among others, genetic polymorphisms in biotransformation enzymes, DNA repair pathway, apoptotic pathway, human papillomavirus-related pathways, mitochondrial polymorphisms, and polymorphism related to the bilirubin-metabolized pathway. Furthermore, epigenetic variations, familial forms of HNSCC, functional assays for HNSCC risk assessment, and the implications and perspectives of research on genetic susceptibility in HNSCC are discussed.

  12. Genetic Susceptibility to Head and Neck Squamous Cell Carcinoma

    International Nuclear Information System (INIS)

    Lacko, Martin; Braakhuis, Boudewijn J.M.; Sturgis, Erich M.; Boedeker, Carsten C.; Suárez, Carlos; Rinaldo, Alessandra; Ferlito, Alfio; Takes, Robert P.

    2014-01-01

    Head-and-neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, and its incidence is growing. Although environmental carcinogens and carcinogenic viruses are the main etiologic factors, genetic predisposition obviously plays a risk-modulating role, given that not all individuals exposed to these carcinogens experience the disease. This review highlights some aspects of genetic susceptibility to HNSCC: among others, genetic polymorphisms in biotransformation enzymes, DNA repair pathway, apoptotic pathway, human papillomavirus-related pathways, mitochondrial polymorphisms, and polymorphism related to the bilirubin-metabolized pathway. Furthermore, epigenetic variations, familial forms of HNSCC, functional assays for HNSCC risk assessment, and the implications and perspectives of research on genetic susceptibility in HNSCC are discussed

  13. Gene interaction at seed-awning loci in the genetic background of wild rice.

    Science.gov (United States)

    Ikemoto, Mai; Otsuka, Mitsuharu; Thanh, Pham Thien; Phan, Phuong Dang Thai; Ishikawa, Ryo; Ishii, Takashige

    2017-09-12

    Seed awning is one of the important traits for successful propagation in wild rice. During the domestication of rice by ancient humans, plants with awnless seeds may have been selected because long awns hindered collection and handling activities. To investigate domestication of awnless rice, QTL analysis for seed awning was first carried out using backcross recombinant inbred lines between Oryza sativa Nipponbare (recurrent parent) and O. rufipogon W630 (donor parent). Two strong QTLs were detected in the same regions as known major seed-awning loci, An-1 and RAE2. Subsequent causal mutation surveying and fine mapping confirmed that O. rufipogon W630 has functional alleles at both loci. The gene effects and interactions at these loci were examined using two backcross populations with reciprocal genetic backgrounds of O. sativa Nipponbare and O. rufipogon W630. As awn length in wild rice varied among seeds even in the same plant, awn length was measured based on spikelet position. In the genetic background of cultivated rice, the wild alleles at An-1 and RAE2 had awning effects, and plants having both wild homozygous alleles produced awns whose length was about 70% of those of the wild parent. On the other hand, in the genetic background of wild rice, the substitution of cultivated alleles at An-1 and RAE2 contributed little to awn length reduction. These results indicate that the domestication process of awnless seeds was complicated because many genes are involved in awn formation in wild rice.

  14. EXPRESSION OF GENETIC LOCI IN THE PERIPHERAL BLOOD MONONUCLEAR FRACTION FROM PATIENTS WITH PROSTATE CANCER

    Directory of Open Access Journals (Sweden)

    M. I. Kogan

    2014-08-01

    Full Text Available The early diagnosis and radical treatment of aggressive prostate cancers (PC is an effective way of improving survival and quality of life in patients. To develop mini-invasive tests is one of the ways of solving the problem. The cells of a peripheral blood mononuclear fraction in the expression patterns of their genetic loci reflect the presence or absence of cancers, including information on therapeutic effectiveness. RT-PRC was used to study the relative expression of 15 genetic loci in a chromosome and one locus of mitochondrial DNA in the cells of the peripheral blood mononuclear fraction in patients with PC or benign prostate hyperplasia and in healthy men. The genetic locus patterns whose change may be of informative value for differential diagnosis in patients with different stages of PC were revealed. The authors studied the relationship and showed the prognostic role and non-relationship of the altered transcriptional activity of loci in the TP53, GSTP1, and IL10 genes in PC to the changes in prostate-specific antigen the level with 90 % specificity and 93 % specificity.

  15. Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2

    DEFF Research Database (Denmark)

    Orr, Nick; Dudbridge, Frank; Dryden, Nicola

    2015-01-01

    We recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and a further...

  16. Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2

    NARCIS (Netherlands)

    N. Orr (Nick); F. Dudbridge (Frank); N. Dryden (Nicola); S. Maguire (Sarah); D. Novo (Daniela); E. Perrakis (Eleni); N. Johnson (Nichola); M. Ghoussaini (Maya); J. Hopper (John); M.C. Southey (Melissa); C. Apicella (Carmel); J. Stone (Jennifer); M.K. Schmidt (Marjanka); A. Broeks (Annegien); L.J. van 't Veer (Laura); F.B.L. Hogervorst (Frans); P.A. Fasching (Peter); L. Haeberle (Lothar); A.B. Ekici (Arif); M.W. Beckmann (Matthias); L.J. Gibson (Lorna); A. Aitken; H. Warren (Helen); E.J. Sawyer (Elinor); I.P. Tomlinson (Ian); M. Kerin (Michael); N. Miller (Nicola); B. Burwinkel (Barbara); F. Marme (Federick); A. Schneeweiss (Andreas); C. Sohn (Chistof); P. Guénel (Pascal); T. Truong (Thérèse); E. Cordina-Duverger (Emilie); M. Sanchez (Marie); S.E. Bojesen (Stig); B.G. Nordestgaard (Børge); S.F. Nielsen (Sune); H. Flyger (Henrik); J. Benítez (Javier); M.P. Zamora (Pilar); J.I.A. Perez (Jose Ignacio Arias); P. Menéndez (Primitiva); H. Anton-Culver (Hoda); S.L. Neuhausen (Susan); H. Brenner (Hermann); A.K. Dieffenbach (Aida Karina); V. Arndt (Volker); C. Stegmaier (Christa); U. Hamann (Ute); H. Brauch (Hiltrud); C. Justenhoven (Christina); T. Brüning (Thomas); Y.-D. Ko (Yon-Dschun); H. Nevanlinna (Heli); K. Aittomäki (Kristiina); C. Blomqvist (Carl); S. Khan (Sofia); N.V. Bogdanova (Natalia); T. Dörk (Thilo); A. Lindblom (Annika); S. Margolin (Sara); A. Mannermaa (Arto); V. Kataja (Vesa); V-M. Kosma (Veli-Matti); J.M. Hartikainen (J.); G. Chenevix-Trench (Georgia); J. Beesley (Jonathan); D. Lambrechts (Diether); M. Moisse (Matthieu); O.A.M. Floris; B. Beuselinck (B.); J. Chang-Claude (Jenny); A. Rudolph (Anja); P. Seibold (Petra); D. Flesch-Janys (Dieter); P. Radice (Paolo); P. Peterlongo (Paolo); B. Peissel (Bernard); V. Pensotti (Valeria); F.J. Couch (Fergus); J.E. Olson (Janet); S. Slettedahl (Seth); C. Vachon (Celine); G.G. Giles (Graham G.); R.L. Milne (Roger L.); C.A. McLean (Catriona Ann); C.A. Haiman (Christopher); B.E. Henderson (Brian); F.R. Schumacher (Fredrick); L. Le Marchand (Loic); J. Simard (Jacques); M.S. Goldberg (Mark); F. Labrèche (France); M. Dumont (Martine); V. Kristensen (Vessela); G.G. Alnæs (Grethe); S. Nord (Silje); A.-L. Borresen-Dale (Anne-Lise); W. Zheng (Wei); S.L. Deming-Halverson (Sandra); M. Shrubsole (Martha); J. Long (Jirong); R. Winqvist (Robert); K. Pykäs (Katri); A. Jukkola-Vuorinen (Arja); M. Grip (Mervi); I.L. Andrulis (Irene); J.A. Knight (Julia); G. Glendon (Gord); S. Tchatchou (Sandrine); P. Devilee (Peter); R.A.E.M. Tollenaar (Robertus A. E. M.); C.M. Seynaeve (Caroline); C.J. van Asperen (Christi); M. García-Closas (Montserrat); J.D. Figueroa (Jonine); S.J. Chanock (Stephen); J. Lissowska (Jolanta); K. Czene (Kamila); H. Darabi (Hatef); M. Eriksson (Mikael); D. Klevebring (Daniel); M.J. Hooning (Maartje); A. Hollestelle (Antoinette); C.H.M. van Deurzen (Carolien); M. Kriege (Mieke); P. Hall (Per); J. Li (Jingmei); J. Liu (Jianjun); M.K. Humphreys (Manjeet); A. Cox (Angela); S.S. Cross (Simon); M.W.R. Reed (Malcolm); P.D.P. Pharoah (Paul); A.M. Dunning (Alison); M. Shah (Mitul); B. Perkins (Barbara); A. Jakubowska (Anna); J. Lubinski (Jan); K. Jaworska-Bieniek (Katarzyna); K. Durda (Katarzyna); A. Ashworth (Alan); A.J. Swerdlow (Anthony ); M. Jones (Michael); M. Schoemaker (Minouk); A. Meindl (Alfons); R.K. Schmutzler (Rita); C. Olswold (Curtis); S. Slager (Susan); A.E. Toland (Amanda); D. Yannoukakos (Drakoulis); K.R. Muir (K.); A. Lophatananon (Artitaya); S. Stewart-Brown (Sarah); P. Siriwanarangsan (Pornthep); K. Matsuo (Keitaro); H. Ito (Hidema); H. Iwata (Hisato); J. Ishiguro (Junko); A.H. Wu (Anna H.); C.-C. Tseng (Chiu-chen); D. Van Den Berg (David); D.O. Stram (Daniel O.); S.-H. Teo (Soo-Hwang); C.H. Yip (Cheng Har); P. Kang (Peter); M.K. Ikram (Kamran); X.-O. Shu (Xiao-Ou); W. Lu (Wei); Y. Gao; H. Cai (Hui); D. Kang (Daehee); J.-Y. Choi (J.); S.K. Park (Sue); D-Y. Noh (Dong-Young); J.M. Hartman (Joost); X. Miao; W.-Y. Lim (Wei-Yen); S.C. Lee (Soo Chin); S. Sangrajrang (Suleeporn); V. Gaborieau (Valerie); P. Brennan (Paul); J.D. McKay (James); P.-E. Wu (Pei-Ei); M.-F. Hou (Ming-Feng); J-C. Yu (Jyh-Cherng); C-Y. Shen (Chen-Yang); W.J. Blot (William); Q. Cai (Qiuyin); L.B. Signorello (Lisa B.); C. Luccarini (Craig); C. Bayes (Caroline); S. Ahmed (Shahana); M. Maranian (Melanie); S. Healey (Sue); A. González-Neira (Anna); G. Pita (Guillermo); M. Rosario Alonso; N. Álvarez (Nuria); D. Herrero (Daniel); D.C. Tessier (Daniel C.); D. Vincent (Daniel); F. Bacot (Francois); D. Hunter (David); S. Lindstrom (Stephen); J. Dennis (Joe); K. Michailidou (Kyriaki); M.K. Bolla (Manjeet); D.F. Easton (Douglas); I. dos Santos Silva (Isabel); O. Fletcher (Olivia); J. Peto (Julian)

    2015-01-01

    textabstractWe recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and

  17. Comprehensive assessment of rheumatoid arthritis susceptibility loci in a large psoriatic arthritis cohort.

    LENUS (Irish Health Repository)

    Bowes, John

    2012-08-01

    A number of rheumatoid arthritis (RA) susceptibility genes have been identified in recent years. Given the overlap in phenotypic expression of synovial joint inflammation between RA and psoriatic arthritis (PsA), the authors explored whether RA susceptibility genes are also associated with PsA.

  18. Genetic effects at pleiotropic loci are context-dependent with consequences for the maintenance of genetic variation in populations.

    Directory of Open Access Journals (Sweden)

    Heather A Lawson

    2011-09-01

    Full Text Available Context-dependent genetic effects, including genotype-by-environment and genotype-by-sex interactions, are a potential mechanism by which genetic variation of complex traits is maintained in populations. Pleiotropic genetic effects are also thought to play an important role in evolution, reflecting functional and developmental relationships among traits. We examine context-dependent genetic effects at pleiotropic loci associated with normal variation in multiple metabolic syndrome (MetS components (obesity, dyslipidemia, and diabetes-related traits. MetS prevalence is increasing in Western societies and, while environmental in origin, presents substantial variation in individual response. We identify 23 pleiotropic MetS quantitative trait loci (QTL in an F(16 advanced intercross between the LG/J and SM/J inbred mouse strains (Wustl:LG,SM-G16; n = 1002. Half of each family was fed a high-fat diet and half fed a low-fat diet; and additive, dominance, and parent-of-origin imprinting genotypic effects were examined in animals partitioned into sex, diet, and sex-by-diet cohorts. We examine the context-dependency of the underlying additive, dominance, and imprinting genetic effects of the traits associated with these pleiotropic QTL. Further, we examine sequence polymorphisms (SNPs between LG/J and SM/J as well as differential expression of positional candidate genes in these regions. We show that genetic associations are different in different sex, diet, and sex-by-diet settings. We also show that over- or underdominance and ecological cross-over interactions for single phenotypes may not be common, however multidimensional synthetic phenotypes at loci with pleiotropic effects can produce situations that favor the maintenance of genetic variation in populations. Our findings have important implications for evolution and the notion of personalized medicine.

  19. GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes

    OpenAIRE

    Nakayama, Akiyoshi; Nakaoka, Hirofumi; Yamamoto, Ken; Sakiyama, Masayuki; Shaukat, Amara; Toyoda, Yu; Okada, Yukinori; Kamatani, Yoichiro; Nakamura, Takahiro; Takada, Tappei; Inoue, Katsuhisa; Yasujima, Tomoya; Yuasa, Hiroaki; Shirahama, Yuko; Nakashima, Hiroshi

    2016-01-01

    Objective A genome-wide association study (GWAS) of gout and its subtypes was performed to identify novel gout loci, including those that are subtype-specific. Methods Putative causal association signals from a GWAS of 945 clinically defined gout cases and 1213 controls from Japanese males were replicated with 1396 cases and 1268 controls using a custom chip of 1961 single nucleotide polymorphisms (SNPs). We also first conducted GWASs of gout subtypes. Replication with Caucasian and New Zeala...

  20. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    DEFF Research Database (Denmark)

    Felix, Janine F; Bradfield, Jonathan P; Monnereau, Claire

    2016-01-01

    to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B, and rs13387838 near ADAM23. Per additional risk allele, body mass index...

  1. Identification of nine new susceptibility loci for testicular cancer, including variants near DAZL and PRDM14

    Science.gov (United States)

    Ruark, Elise; Seal, Sheila; McDonald, Heather; Zhang, Feng; Elliot, Anna; Lau, KingWai; Perdeaux, Elizabeth; Rapley, Elizabeth; Eeles, Rosalind; Peto, Julian; Kote-Jarai, Zsofia; Muir, Kenneth; Nsengimana, Jeremie; Shipley, Janet; Bishop, D. Timothy; Stratton, Michael R; Easton, Douglas F; Huddart, Robert A; Rahman, Nazneen; Turnbull, Clare

    2013-01-01

    Testicular germ cell tumor (TGCT) is the most common cancer in young men and is notable for its high familial risks1,2. To date, six loci associated with TGCT have been reported3-7. From GWAS analysis of 307,291 SNPs in 986 cases and 4,946 controls, we selected for follow-up 694 SNPs, which we genotyped in a further 1,064 TGCT cases and 10,082 controls from the UK. We identified SNPs at nine new loci showing association with TGCT (P<5×10−8), at 1q22, 1q24.1, 3p24.3, 4q24, 5q31.1, 8q13.3, 16q12.1, 17q22 and 21q22.3, which together account for an additional 4-6% of the familial risk of TGCT. The loci include genes plausibly related to TGCT development. PRDM14, at 8q13.3, is essential for early germ cell specification8 whilst DAZL, at 3p24.3, is required for regulation of germ cell development9. Furthermore, PITX1, at 5q31.1 regulates TERT expression, and is the third TGCT locus implicated in telomerase regulation10. PMID:23666240

  2. Genetic diversity and in vitro antibiotic susceptibility profile of ...

    African Journals Online (AJOL)

    We assessed the genetic diversity of forty Salmonella isolates obtained from selected domestic water and waste water sources in the Eastern Cape Province of South Africa using DNA fingerprinting and antibiotic susceptibility profile as test indices. Restriction digests and SDS/PAGE as well as the DNA dendograms of the ...

  3. Comparative study of genetic influence on the susceptibility of exotic ...

    African Journals Online (AJOL)

    This study investigated comparatively the genetic influence on the susceptibility of exotic cockerels, pullets and broilers to natural infection with infectious bursal disease (IBD) virus in a flock of 150 seven-week-old exotic breed of chickens comprising of 50 Black Harco cockerels, 50 Black Harco pullets and 50 White ...

  4. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia.

    NARCIS (Netherlands)

    Lan, Q.; Hsiung, C.A.; Matsuo, K.; Hong, Y.C.; Seow, A.; Wang, Z.; Hosgood, H.D.; Chen, K.; Wang, J.C.; Chatterjee, N.; Hu, W.; Wong, M.P.; Zheng, W.; Caporaso, N.; Park, J.Y.; Chen, C.J.; Kim, Y.H.; Kim, Y.T.; Landi, M.T.; Shen, H.; Lawrence, C.; Burdett, L.; Yeager, M.; Yuenger, J.; Jacobs, K.B.; Chang, I.S.; Mitsudomi, T.; Kim, H.N.; Chang, G.C.; Bassig, B.A.; Tucker, M.; Wei, F.; Yin, Y.; Wu, C.; An, S.J.; Qian, B.; Lee, V.H.; Lu, D.; Liu, J.; Jeon, H.S.; Hsiao, C.F.; Sung, J.S.; Kim, J.H.; Gao, Y.T.; Tsai, Y.H.; Jung, Y.J.; Guo, H.; Hu, Z.; Hutchinson, A.; Wang, W.C.; Klein, R.; Chung, C.C.; Oh, I.J.; Chen, K.Y.; Berndt, S.I.; He, X.; Wu, W.; Chang, J.; Zhang, X.C.; Huang, M.S.; Zheng, H.; Wang, J.; Zhao, X.|info:eu-repo/dai/nl/413577805; Li, Y.; Choi, J.E.; Su, W.C.; Park, K.H.; Sung, S.W.; Shu, X.O.; Chen, Y.M.; Liu, L.; Kang, C.H.; Hu, L.; Chen, C.H.; Pao, W.; Kim, Y.C.; Yang, T.Y.; Xu, J.; Guan, P.; Tan, W.; Su, J.; Wang, C.L.; Li, H.; Sihoe, A.D.; Zhao, Z.|info:eu-repo/dai/nl/304120995; Chen, Y.; Choi, Y.Y.; Hung, J.Y.; Kim, J.S.; Yoon, H.I.; Cai, Q.; Lin, C.C.; Park, I.K.; Xu, P.; Dong, J.; Kim, C.; He, Q; Perng, R.P.; Kohno, T.; Kweon, S.S.; Chen, C.Y.; Vermeulen, R.|info:eu-repo/dai/nl/216532620; Wu, J.; Lim, W.Y.; Chen, K.C.; Chow, W.H.; Ji, B.T.; Chan, J.K.; Chu, M.; Li, Y.J.; Yokota, J.; Li, J.; Chen, H.; Xiang, Y.B.; Yu, C.J.; Kunitoh, H.; Wu, G.; Jin, L.; Lo, Y.L.; Shiraishi, K.; Chen, Y.H.; Lin, H.C.; Wu, T.; WU, Y.; Yang, P.C.; Zhou, B.; Shin, M.H.; Fraumeni, J.F.; Lin, D.; Chanock, S.J.; Rothman, N.

    2012-01-01

    To identify common genetic variants that contribute to lung cancer susceptibility, we conducted a multistage genome-wide association study of lung cancer in Asian women who never smoked. We scanned 5,510 never-smoking female lung cancer cases and 4,544 controls drawn from 14 studies from mainland

  5. Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci.

    Directory of Open Access Journals (Sweden)

    Sjur Reppe

    Full Text Available Bone Mineral Density (BMD is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR method to identify single nucleotide polymorphisms (SNPs associated with BMD by leveraging cardiovascular disease (CVD associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity.

  6. Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease

    Science.gov (United States)

    Zhao, Wei; Rasheed, Asif; Tikkanen, Emmi; Lee, Jung-Jin; Butterworth, Adam S; Howson, Joanna MM; Assimes, Themistocles L; Chowdhury, Rajiv; Orho-Melander, Marju; Damrauer, Scott; Small, Aeron; Asma, Senay; Imamura, Minako; Yamauch, Toshimasa; Chambers, John C; Chen, Peng; Sapkota, Bishwa R; Shah, Nabi; Jabeen, Sehrish; Surendran, Praveen; Lu, Yingchang; Zhang, Weihua; Imran, Atif; Abbas, Shahid; Majeed, Faisal; Trindade, Kevin; Qamar, Nadeem; Mallick, Nadeem Hayyat; Yaqoob, Zia; Saghir, Tahir; Rizvi, Syed Nadeem Hasan; Memon, Anis; Rasheed, Syed Zahed; Memon, Fazal-ur-Rehman; Mehmood, Khalid; Ahmed, Naveeduddin; Qureshi, Irshad Hussain; Tanveer-us-Salam; Iqbal, Wasim; Malik, Uzma; Mehra, Narinder; Kuo, Jane Z; Sheu, Wayne H-H; Guo, Xiuqing; Hsiung, Chao A; Juang, Jyh-Ming J; Taylor, Kent D; Hung, Yi-Jen; Lee, Wen-Jane; Quertermous, Thomas; Lee, I-Te; Hsu, Chih-Cheng; Bottinger, Erwin P.; Ralhan, Sarju; Teo, Yik Ying; Wang, Tzung-Dau; Alam, Dewan S; Di Angelantonio, Emanuele; Epstein, Steve; Nielsen, Sune F; Nordestgaard, Børge G; Tybjaerg-Hansen, Anne; Young, Robin; Benn, Marianne; Frikke-Schmidt, Ruth; Kamstrup, Pia R; Biobank, Michigan; Jukema, J Wouter; Sattar, Naveed; Smit, Roelof; Chung, Ren-Hua; Liang, Kae-Woei; Anand, Sonia; Sanghera, Dharambir K; Ripatti, Samuli; Loos, Ruth J.F.; Kooner, Jaspal S; Tai, E Shyong; Rotter, Jerome I; Chen, Yii-Der Ida; Frossard, Philippe; Maeda, Shiro; Kadowaki, Takashi; Reilly, Muredach; Pare, Guillaume; Melander, Olle; Salomaa, Veikko; Rader, Daniel J; Danesh, John; Voight, Benjamin F; Saleheen, Danish

    2018-01-01

    To evaluate the shared genetic etiology of type-2 diabetes (T2D) and coronary heart disease (CHD), we conducted a multi-ethnic study of genetic variation genome-wide for both diseases in up to 265,678 subjects for T2D and 260,365 subjects for CHD. We identify 16 previously unreported loci for T2D and one for CHD, including a novel T2D association at a missense variant in HLA-DRB5 (OR=1.29). We show that genetically mediated increase in T2D risk also confers higher CHD risk. Joint analysis of T2D loci demonstrated that 24% are associated with CHD, highlighting eight variants - two of which are coding - where T2D and CHD associations appear to co-localize, and a novel joint T2D/CHD association which also replicated for T2D. Variants associated with both outcomes implicate several novel pathways including cellular proliferation and cardiovascular development. PMID:28869590

  7. A genetic risk score combining ten psoriasis risk loci improves disease prediction.

    Directory of Open Access Journals (Sweden)

    Haoyan Chen

    2011-04-01

    Full Text Available Psoriasis is a chronic, immune-mediated skin disease affecting 2-3% of Caucasians. Recent genetic association studies have identified multiple psoriasis risk loci; however, most of these loci contribute only modestly to disease risk. In this study, we investigated whether a genetic risk score (GRS combining multiple loci could improve psoriasis prediction. Two approaches were used: a simple risk alleles count (cGRS and a weighted (wGRS approach. Ten psoriasis risk SNPs were genotyped in 2815 case-control samples and 858 family samples. We found that the total number of risk alleles in the cases was significantly higher than in controls, mean 13.16 (SD 1.7 versus 12.09 (SD 1.8, p = 4.577×10(-40. The wGRS captured considerably more risk than any SNP considered alone, with a psoriasis OR for high-low wGRS quartiles of 10.55 (95% CI 7.63-14.57, p = 2.010×10(-65. To compare the discriminatory ability of the GRS models, receiver operating characteristic curves were used to calculate the area under the curve (AUC. The AUC for wGRS was significantly greater than for cGRS (72.0% versus 66.5%, p = 2.13×10(-8. Additionally, the AUC for HLA-C alone (rs10484554 was equivalent to the AUC for all nine other risk loci combined (66.2% versus 63.8%, p = 0.18, highlighting the dominance of HLA-C as a risk locus. Logistic regression revealed that the wGRS was significantly associated with two subphenotypes of psoriasis, age of onset (p = 4.91×10(-6 and family history (p = 0.020. Using a liability threshold model, we estimated that the 10 risk loci account for only 11.6% of the genetic variance in psoriasis. In summary, we found that a GRS combining 10 psoriasis risk loci captured significantly more risk than any individual SNP and was associated with early onset of disease and a positive family history. Notably, only a small fraction of psoriasis heritability is captured by the common risk variants identified to date.

  8. Shared susceptibility loci at 2q33 region for lung and esophageal cancers in high-incidence areas of esophageal cancer in northern China.

    Directory of Open Access Journals (Sweden)

    Xue Ke Zhao

    Full Text Available Cancers from lung and esophagus are the leading causes of cancer-related deaths in China and share many similarities in terms of histological type, risk factors and genetic variants. Recent genome-wide association studies (GWAS in Chinese esophageal cancer patients have demonstrated six high-risk candidate single nucleotide polymorphisms (SNPs. Thus, the present study aimed to determine the risk of these SNPs predisposing to lung cancer in Chinese population.A total of 1170 lung cancer patients and 1530 normal subjects were enrolled in this study from high-incidence areas for esophageal cancer in Henan, northern China. Five milliliters of blood were collected from all subjects for genotyping. Genotyping of 20 high-risk SNP loci identified from genome-wide association studies (GWAS on esophageal, lung and gastric cancers was performed using TaqMan allelic discrimination assays. Polymorphisms were examined for deviation from Hardy-Weinberg equilibrium (HWE using Х2 test. Bonferroni correction was performed to correct the statistical significance of 20 SNPs with the risk of lung cancer. The Pearson's Х2 test was used to compare the distributions of gender, TNM stage, histopathological type, smoking and family history by lung susceptibility genotypes. Kaplan-Meier and Cox regression analyses were carried out to evaluate the associations between genetic variants and overall survival.Four of the 20 SNPs identified as high-risk SNPs in Chinese esophageal cancer showed increased risk for Chinese lung cancer, which included rs3769823 (OR = 1.26; 95% CI = 1.107-1.509; P = 0.02, rs10931936 (OR = 1.283; 95% CI = 1.100-1.495; P = 0.04, rs2244438 (OR = 1.294; 95% CI = 1.098-1.525; P = 0.04 and rs13016963 (OR = 1.268; 95% CI = 1.089-1.447; P = 0.04. All these SNPs were located at 2q33 region harboringgenes of CASP8, ALS2CR12 and TRAK2. However, none of these susceptibility SNPs was observed to be significantly associated with gender, TNM stage

  9. Shared susceptibility loci at 2q33 region for lung and esophageal cancers in high-incidence areas of esophageal cancer in northern China.

    Science.gov (United States)

    Zhao, Xue Ke; Mao, Yi Min; Meng, Hui; Song, Xin; Hu, Shou Jia; Lv, Shuang; Cheng, Rang; Zhang, Tang Juan; Han, Xue Na; Ren, Jing Li; Qi, Yi Jun; Wang, Li Dong

    2017-01-01

    Cancers from lung and esophagus are the leading causes of cancer-related deaths in China and share many similarities in terms of histological type, risk factors and genetic variants. Recent genome-wide association studies (GWAS) in Chinese esophageal cancer patients have demonstrated six high-risk candidate single nucleotide polymorphisms (SNPs). Thus, the present study aimed to determine the risk of these SNPs predisposing to lung cancer in Chinese population. A total of 1170 lung cancer patients and 1530 normal subjects were enrolled in this study from high-incidence areas for esophageal cancer in Henan, northern China. Five milliliters of blood were collected from all subjects for genotyping. Genotyping of 20 high-risk SNP loci identified from genome-wide association studies (GWAS) on esophageal, lung and gastric cancers was performed using TaqMan allelic discrimination assays. Polymorphisms were examined for deviation from Hardy-Weinberg equilibrium (HWE) using Х2 test. Bonferroni correction was performed to correct the statistical significance of 20 SNPs with the risk of lung cancer. The Pearson's Х2 test was used to compare the distributions of gender, TNM stage, histopathological type, smoking and family history by lung susceptibility genotypes. Kaplan-Meier and Cox regression analyses were carried out to evaluate the associations between genetic variants and overall survival. Four of the 20 SNPs identified as high-risk SNPs in Chinese esophageal cancer showed increased risk for Chinese lung cancer, which included rs3769823 (OR = 1.26; 95% CI = 1.107-1.509; P = 0.02), rs10931936 (OR = 1.283; 95% CI = 1.100-1.495; P = 0.04), rs2244438 (OR = 1.294; 95% CI = 1.098-1.525; P = 0.04) and rs13016963 (OR = 1.268; 95% CI = 1.089-1.447; P = 0.04). All these SNPs were located at 2q33 region harboringgenes of CASP8, ALS2CR12 and TRAK2. However, none of these susceptibility SNPs was observed to be significantly associated with gender, TNM stage, histopathological type

  10. Genetic analysis of 20 autosomal STR loci in the Miao ethnic group from Yunnan Province, Southwest China.

    Science.gov (United States)

    Zhang, Xiufeng; Hu, Liping; Du, Lei; Nie, Aiting; Rao, Min; Pang, Jing Bo; Xiran, Zeng; Nie, Shengjie

    2017-05-01

    The genetic polymorphisms of 20 autosomal short tandem repeat (STR) loci included in the PowerPlex ® 21 kit were evaluated from 748 unrelated healthy individuals of the Miao ethnic minority living in the Yunnan province in southwestern China. All of the loci reached Hardy-Weinberg equilibrium. These loci were examined to determine allele frequencies and forensic statistical parameters. The genetic relationship between the Miao population and other Chinese populations were also estimated. The combined discrimination power and probability of excluding paternity of the 20 STR loci were 0.999 999 999 999 999 999 999 991 26 and 0.999 999 975, respectively. The results suggested that the 20 STR loci were highly polymorphic, which makes them suitable for forensic personal identification and paternity testing. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Population genetic data of the NGM SElect STR loci in Chinese Han population from Zhejiang region, China.

    Science.gov (United States)

    Zhou, Anju; Wu, Weiwei; Liu, Qiuling; Wu, Yeda; Lu, Dejian

    2013-03-01

    Genetic variations of the 17 NGM SElect STR loci in Chinese Han samples from the Zhejiang region were analyzed. The results show that the NGM SElect is a highly genetic informative system in Zhejiang Han, and this population shows quite different genetic data from other major populations in the world with the exception of the Fujian Han.

  12. Genetic polymorphism of six DNA loci in six population groups of India.

    Science.gov (United States)

    Ahmad, Shazia; Seshadri, M

    2007-08-01

    The genetic profile based on autosomal markers, four microsatellite DNA markers (D8S315, FES, D8S592, and D2S1328) and two minisatellite DNA markers (TPMT and PDGFA), were analyzed in six endogamous populations to examine the effect of geographic and linguistic affiliation on the genetic affinities among the groups. The six populations are from three different states of India and are linguistically different. Marathas from western India speak Marathi, an Indo-European language. Arayas, Muslims, Ezhavas, and Nairs from Kerala state of South India speak Malayalam, and Iyers from Tamil Nadu state speak Tamil. Genomic DNA was extracted from peripheral blood samples of random, normal, healthy individuals. Locus-specific PCR amplification was carried out, followed by electrophoresis of the amplicons and genotyping. All the loci were highly polymorphic and followed Hardy-Weinberg equilibrium, except for loci D8S315 and PDGFA in Iyers and Marathas, respectively. All six loci had high heterozygosity (average heterozygosity ranged from 0.73 to 0.76) and high polymorphism information content (0.57-0.90). The extent of gene differentiation among the six populations (G(ST) = 0.030) was greater than that for four Kerala populations (G(ST) = 0.011), suggesting proximity between the four Kerala populations. This result conforms with the cultural and linguistic background of the populations. The extent of diversity found among the populations probably resulted from the strict endogamous practices that they follow.

  13. Identification of novel genetic risk loci in Maltese dogs with necrotizing meningoencephalitis and evidence of a shared genetic risk across toy dog breeds.

    Science.gov (United States)

    Schrauwen, Isabelle; Barber, Renee M; Schatzberg, Scott J; Siniard, Ashley L; Corneveaux, Jason J; Porter, Brian F; Vernau, Karen M; Keesler, Rebekah I; Matiasek, Kaspar; Flegel, Thomas; Miller, Andrew D; Southard, Teresa; Mariani, Christopher L; Johnson, Gayle C; Huentelman, Matthew J

    2014-01-01

    Necrotizing meningoencephalitis (NME) affects toy and small breed dogs causing progressive, often fatal, inflammation and necrosis in the brain. Genetic risk loci for NME previously were identified in pug dogs, particularly associated with the dog leukocyte antigen (DLA) class II complex on chromosome 12, but have not been investigated in other susceptible breeds. We sought to evaluate Maltese and Chihuahua dogs, in addition to pug dogs, to identify novel or shared genetic risk factors for NME development. Genome-wide association testing of single nucleotide polymorphisms (SNPs) in Maltese dogs with NME identified 2 regions of genome-wide significance on chromosomes 4 (chr4:74522353T>A, p = 8.1×10-7) and 15 (chr15:53338796A>G, p = 1.5×10-7). Haplotype analysis and fine-mapping suggests that ILR7 and FBXW7, respectively, both important for regulation of immune system function, could be the underlying associated genes. Further evaluation of these regions and the previously identified DLA II locus across all three breeds, revealed an enrichment of nominal significant SNPs associated with chromosome 15 in pug dogs and DLA II in Maltese and Chihuahua dogs. Meta-analysis confirmed effect sizes the same direction in all three breeds for both the chromosome 15 and DLA II loci (p = 8.6×10-11 and p = 2.5×10-7, respectively). This suggests a shared genetic background exists between all breeds and confers susceptibility to NME, but effect sizes might be different among breeds. In conclusion, we identified the first genetic risk factors for NME development in the Maltese, chromosome 4 and chromosome 15, and provide evidence for a shared genetic risk between breeds associated with chromosome 15 and DLA II. Last, DLA II and IL7R both have been implicated in human inflammatory diseases of the central nervous system such as multiple sclerosis, suggesting that similar pharmacotherapeutic targets across species should be investigated.

  14. Identification of novel genetic risk loci in Maltese dogs with necrotizing meningoencephalitis and evidence of a shared genetic risk across toy dog breeds.

    Directory of Open Access Journals (Sweden)

    Isabelle Schrauwen

    Full Text Available Necrotizing meningoencephalitis (NME affects toy and small breed dogs causing progressive, often fatal, inflammation and necrosis in the brain. Genetic risk loci for NME previously were identified in pug dogs, particularly associated with the dog leukocyte antigen (DLA class II complex on chromosome 12, but have not been investigated in other susceptible breeds. We sought to evaluate Maltese and Chihuahua dogs, in addition to pug dogs, to identify novel or shared genetic risk factors for NME development. Genome-wide association testing of single nucleotide polymorphisms (SNPs in Maltese dogs with NME identified 2 regions of genome-wide significance on chromosomes 4 (chr4:74522353T>A, p = 8.1×10-7 and 15 (chr15:53338796A>G, p = 1.5×10-7. Haplotype analysis and fine-mapping suggests that ILR7 and FBXW7, respectively, both important for regulation of immune system function, could be the underlying associated genes. Further evaluation of these regions and the previously identified DLA II locus across all three breeds, revealed an enrichment of nominal significant SNPs associated with chromosome 15 in pug dogs and DLA II in Maltese and Chihuahua dogs. Meta-analysis confirmed effect sizes the same direction in all three breeds for both the chromosome 15 and DLA II loci (p = 8.6×10-11 and p = 2.5×10-7, respectively. This suggests a shared genetic background exists between all breeds and confers susceptibility to NME, but effect sizes might be different among breeds. In conclusion, we identified the first genetic risk factors for NME development in the Maltese, chromosome 4 and chromosome 15, and provide evidence for a shared genetic risk between breeds associated with chromosome 15 and DLA II. Last, DLA II and IL7R both have been implicated in human inflammatory diseases of the central nervous system such as multiple sclerosis, suggesting that similar pharmacotherapeutic targets across species should be investigated.

  15. A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11

    Science.gov (United States)

    Siddiq, Afshan; Couch, Fergus J.; Chen, Gary K.; Lindström, Sara; Eccles, Diana; Millikan, Robert C.; Michailidou, Kyriaki; Stram, Daniel O.; Beckmann, Lars; Rhie, Suhn Kyong; Ambrosone, Christine B.; Aittomäki, Kristiina; Amiano, Pilar; Apicella, Carmel; Baglietto, Laura; Bandera, Elisa V.; Beckmann, Matthias W.; Berg, Christine D.; Bernstein, Leslie; Blomqvist, Carl; Brauch, Hiltrud; Brinton, Louise; Bui, Quang M.; Buring, Julie E.; Buys, Saundra S.; Campa, Daniele; Carpenter, Jane E.; Chasman, Daniel I.; Chang-Claude, Jenny; Chen, Constance; Clavel-Chapelon, Françoise; Cox, Angela; Cross, Simon S.; Czene, Kamila; Deming, Sandra L.; Diasio, Robert B.; Diver, W. Ryan; Dunning, Alison M.; Durcan, Lorraine; Ekici, Arif B.; Fasching, Peter A.; Feigelson, Heather Spencer; Fejerman, Laura; Figueroa, Jonine D.; Fletcher, Olivia; Flesch-Janys, Dieter; Gaudet, Mia M.; Gerty, Susan M.; Rodriguez-Gil, Jorge L.; Giles, Graham G.; van Gils, Carla H.; Godwin, Andrew K.; Graham, Nikki; Greco, Dario; Hall, Per; Hankinson, Susan E.; Hartmann, Arndt; Hein, Rebecca; Heinz, Judith; Hoover, Robert N.; Hopper, John L.; Hu, Jennifer J.; Huntsman, Scott; Ingles, Sue A.; Irwanto, Astrid; Isaacs, Claudine; Jacobs, Kevin B.; John, Esther M.; Justenhoven, Christina; Kaaks, Rudolf; Kolonel, Laurence N.; Coetzee, Gerhard A.; Lathrop, Mark; Le Marchand, Loic; Lee, Adam M.; Lee, I-Min; Lesnick, Timothy; Lichtner, Peter; Liu, Jianjun; Lund, Eiliv; Makalic, Enes; Martin, Nicholas G.; McLean, Catriona A.; Meijers-Heijboer, Hanne; Meindl, Alfons; Miron, Penelope; Monroe, Kristine R.; Montgomery, Grant W.; Müller-Myhsok, Bertram; Nickels, Stefan; Nyante, Sarah J.; Olswold, Curtis; Overvad, Kim; Palli, Domenico; Park, Daniel J.; Palmer, Julie R.; Pathak, Harsh; Peto, Julian; Pharoah, Paul; Rahman, Nazneen; Rivadeneira, Fernando; Schmidt, Daniel F.; Schmutzler, Rita K.; Slager, Susan; Southey, Melissa C.; Stevens, Kristen N.; Sinn, Hans-Peter; Press, Michael F.; Ross, Eric; Riboli, Elio; Ridker, Paul M.; Schumacher, Fredrick R.; Severi, Gianluca; dos Santos Silva, Isabel; Stone, Jennifer; Sund, Malin; Tapper, William J.; Thun, Michael J.; Travis, Ruth C.; Turnbull, Clare; Uitterlinden, Andre G.; Waisfisz, Quinten; Wang, Xianshu; Wang, Zhaoming; Weaver, JoEllen; Schulz-Wendtland, Rüdiger; Wilkens, Lynne R.; Van Den Berg, David; Zheng, Wei; Ziegler, Regina G.; Ziv, Elad; Nevanlinna, Heli; Easton, Douglas F.; Hunter, David J.; Henderson, Brian E.; Chanock, Stephen J.; Garcia-Closas, Montserrat; Kraft, Peter; Haiman, Christopher A.; Vachon, Celine M.

    2012-01-01

    Genome-wide association studies (GWAS) of breast cancer defined by hormone receptor status have revealed loci contributing to susceptibility of estrogen receptor (ER)-negative subtypes. To identify additional genetic variants for ER-negative breast cancer, we conducted the largest meta-analysis of ER-negative disease to date, comprising 4754 ER-negative cases and 31 663 controls from three GWAS: NCI Breast and Prostate Cancer Cohort Consortium (BPC3) (2188 ER-negative cases; 25 519 controls of European ancestry), Triple Negative Breast Cancer Consortium (TNBCC) (1562 triple negative cases; 3399 controls of European ancestry) and African American Breast Cancer Consortium (AABC) (1004 ER-negative cases; 2745 controls). We performed in silico replication of 86 SNPs at P ≤ 1 × 10-5 in an additional 11 209 breast cancer cases (946 with ER-negative disease) and 16 057 controls of Japanese, Latino and European ancestry. We identified two novel loci for breast cancer at 20q11 and 6q14. SNP rs2284378 at 20q11 was associated with ER-negative breast cancer (combined two-stage OR = 1.16; P = 1.1 × 10−8) but showed a weaker association with overall breast cancer (OR = 1.08, P = 1.3 × 10–6) based on 17 869 cases and 43 745 controls and no association with ER-positive disease (OR = 1.01, P = 0.67) based on 9965 cases and 22 902 controls. Similarly, rs17530068 at 6q14 was associated with breast cancer (OR = 1.12; P = 1.1 × 10−9), and with both ER-positive (OR = 1.09; P = 1.5 × 10−5) and ER-negative (OR = 1.16, P = 2.5 × 10−7) disease. We also confirmed three known loci associated with ER-negative (19p13) and both ER-negative and ER-positive breast cancer (6q25 and 12p11). Our results highlight the value of large-scale collaborative studies to identify novel breast cancer risk loci. PMID:22976474

  16. Common genetic variation and novel loci associated with volumetric mammographic density.

    Science.gov (United States)

    Brand, Judith S; Humphreys, Keith; Li, Jingmei; Karlsson, Robert; Hall, Per; Czene, Kamila

    2018-04-17

    Mammographic density (MD) is a strong and heritable intermediate phenotype of breast cancer, but much of its genetic variation remains unexplained. We conducted a genetic association study of volumetric MD in a Swedish mammography screening cohort (n = 9498) to identify novel MD loci. Associations with volumetric MD phenotypes (percent dense volume, absolute dense volume, and absolute nondense volume) were estimated using linear regression adjusting for age, body mass index, menopausal status, and six principal components. We also estimated the proportion of MD variance explained by additive contributions from single-nucleotide polymorphisms (SNP-based heritability [h 2 SNP ]) in 4948 participants of the cohort. In total, three novel MD loci were identified (at P associated with breast cancer in available meta-analysis data including 122,977 breast cancer cases and 105,974 control subjects (P < 0.05). h 2 SNP (SE) estimates for percent dense, absolute dense, and nondense volume were 0.29 (0.07), 0.31 (0.07), and 0.25 (0.07), respectively. Corresponding ratios of h 2 SNP to previously observed narrow-sense h 2 estimates in the same cohort were 0.46, 0.72, and 0.41, respectively. These findings provide new insights into the genetic basis of MD and biological mechanisms linking MD to breast cancer risk. Apart from identifying three novel loci, we demonstrate that at least 25% of the MD variance is explained by common genetic variation with h 2 SNP /h 2 ratios varying between dense and nondense MD components.

  17. Replication of genome wide association studies on hepatocellular carcinoma susceptibility loci in a Chinese population.

    Directory of Open Access Journals (Sweden)

    Kangmei Chen

    Full Text Available BACKGROUND: Genome-wide association studies (GWAS have identified three loci (rs17401966 in KIF1B, rs7574865 in STAT4, rs9275319 in HLA-DQ as being associated with hepatitis B virus-related hepatocellular carcinoma (HBV-related HCC in a Chinese population, two loci (rs2596542 in MICA, rs9275572 located between HLA-DQA and HLA-DQB with hepatitis C virus-related HCC (HCV-related HCC in a Japanese population. In the present study, we sought to determine whether these SNPs are predictive for HBV-related HCC development in other Chinese population as well. METHOD AND FINDINGS: We genotyped 4 SNPs, rs2596542, rs9275572, rs17401966, rs7574865, in 506 HBV-related HCC patients and 772 chronic hepatitis B (CHB patients in Han Chinese by TaqMan methods. Odds ratio(ORand 95% confidence interval (CI were calculated by logistic regression. In our case-control study, significant association between rs9275572 and HCC were observed (P = 0.02, OR = 0.73, 95% CI = 0.56-0.95. In the further haplotype analysis between rs2596542 at 6p21.33 and rs9275572 at 6p21.3, G-A showed a protective effect on HBV-related HCC occurrence (P<0.001, OR = 0.66, 95% CI = 0.52-0.84. CONCLUSION: These findings provided convincing evidence that rs9275572 significantly associated with HBV-related HCC.

  18. Replication of genome wide association studies on hepatocellular carcinoma susceptibility loci in a Chinese population.

    Science.gov (United States)

    Chen, Kangmei; Shi, Weimei; Xin, Zhenhui; Wang, Huifen; Zhu, Xilin; Wu, Xiaopan; Li, Zhuo; Li, Hui; Liu, Ying

    2013-01-01

    Genome-wide association studies (GWAS) have identified three loci (rs17401966 in KIF1B, rs7574865 in STAT4, rs9275319 in HLA-DQ) as being associated with hepatitis B virus-related hepatocellular carcinoma (HBV-related HCC) in a Chinese population, two loci (rs2596542 in MICA, rs9275572 located between HLA-DQA and HLA-DQB) with hepatitis C virus-related HCC (HCV-related HCC) in a Japanese population. In the present study, we sought to determine whether these SNPs are predictive for HBV-related HCC development in other Chinese population as well. We genotyped 4 SNPs, rs2596542, rs9275572, rs17401966, rs7574865, in 506 HBV-related HCC patients and 772 chronic hepatitis B (CHB) patients in Han Chinese by TaqMan methods. Odds ratio(OR)and 95% confidence interval (CI) were calculated by logistic regression. In our case-control study, significant association between rs9275572 and HCC were observed (P = 0.02, OR = 0.73, 95% CI = 0.56-0.95). In the further haplotype analysis between rs2596542 at 6p21.33 and rs9275572 at 6p21.3, G-A showed a protective effect on HBV-related HCC occurrence (P<0.001, OR = 0.66, 95% CI = 0.52-0.84). These findings provided convincing evidence that rs9275572 significantly associated with HBV-related HCC.

  19. IL12A, MPHOSPH9/CDK2AP1 and RGS1 are novel multiple sclerosis susceptibility loci

    DEFF Research Database (Denmark)

    Sørensen, Per Soelberg

    2010-01-01

    and the same direction of effect observed in the discovery phase. Three loci exceeded genome-wide significance in the joint analysis: RGS1 (P value=3.55 x 10(-9)), IL12A (P=3.08 x 10(-8)) and MPHOSPH9/CDK2AP1 (P=3.96 x 10(-8)). The RGS1 risk allele is shared with celiac disease (CD), and the IL12A risk allele......A recent meta-analysis identified seven single-nucleotide polymorphisms (SNPs) with suggestive evidence of association with multiple sclerosis (MS). We report an analysis of these polymorphisms in a replication study that includes 8,085 cases and 7,777 controls. A meta-analysis across...... the replication collections and a joint analysis with the discovery data set were performed. The possible functional consequences of the validated susceptibility loci were explored using RNA expression data. For all of the tested SNPs, the effect observed in the replication phase involved the same allele...

  20. Investigation of gene-environment interactions between 47 newly identified breast cancer susceptibility loci and environmental risk factors

    DEFF Research Database (Denmark)

    Rudolph, Anja; Milne, Roger L; Truong, Thérèse

    2015-01-01

    and overall BC risk was stronger for women who had had four or more pregnancies (OR = 0.85, p = 2.0 × 10(-4) ), and absent in women who had had just one (OR = 0.96, p = 0.19, pint = 6.1 × 10(-4) ). SNP rs11242675 was inversely associated with overall BC risk in never/former smokers (OR = 0.93, p = 2.8 × 10......(-5) ), but no association was observed in current smokers (OR = 1.07, p = 0.14, pint = 3.4 × 10(-4) ). In conclusion, recently identified BC susceptibility loci are not strongly modified by established risk factors and the observed potential interactions require confirmation in independent studies....

  1. Relationship between HTRA1 polymorphism and genetic susceptibility of wet age-related macular degeneration in Han population

    Directory of Open Access Journals (Sweden)

    Nan Yang

    2018-05-01

    Full Text Available AIM: To investigate the relationship between high temperature essential factor A-1(HTRA1polymorphism and genetic susceptibility of wet age-related macular degeneration(AMDin Han population. METHODS: Totally 201 patients of wet AMD in Han population were selected from May 2014 to January 2017 in our hospital as disease group, and 201 healthy persons of Han were selected as health group. Blood samples of peripheral vein were collected and genomic DNA was extracted. HTRA1 polymorphism loci were detected, and the rs11200638 and rs2248799 loci of HTRA1 gene were detected by Sequenom mass spectrometry platform. Then the relationship between HTRA1 polymorphism and genetic susceptibility of wet AMD were analyzed. RESULTS: The grade distributions of the genotype of the rs11200638 and rs2248799 loci in the two groups subjects had significant differences(PPPOR values of rs11200638 genotype AA and AG were respectively 5.36 and 3.45, which were the risk factors of wet AMD(POR values of rs2248799 genotype TT and TC were respectively 2.36 and 1.98, which were the risk factors of wet AMD(PCONCLUSION: The rs11200638 and rs2248799 polymorphisms of HTRA1 gene are associated with the incidence of wet AMD, and the genotype AA and TT are closely related to the risk of wet AMD in Han population, of which the higher frequencies can increase the risk of wet AMD.

  2. Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer

    NARCIS (Netherlands)

    Klein, Alison P.; Wolpin, Brian M.; Risch, Harvey A.; Stolzenberg-Solomon, Rachael Z.; Mocci, Evelina; Zhang, Mingfeng; Canzian, Federico; Childs, Erica J.; Hoskins, Jason W.; Jermusyk, Ashley; Zhong, Jun; Chen, Fei; Albanes, Demetrius; Andreotti, Gabriella; Arslan, Alan A.; Babic, Ana; Bamlet, William R.; Beane-Freeman, Laura; Berndt, Sonja I.; Blackford, Amanda; Borges, Michael; Borgida, Ayelet; Bracci, Paige M.; Brais, Lauren; Brennan, Paul; Brenner, Hermann; Bueno-de-Mesquita, Bas; Buring, Julie; Campa, Daniele; Capurso, Gabriele; Cavestro, Giulia Martina; Chaffee, Kari G.; Chung, Charles C.; Cleary, Sean; Cotterchio, Michelle; Dijk, Frederike; Duell, Eric J.; Foretova, Lenka; Fuchs, Charles; Funel, Niccola; Gallinger, Steven; M Gaziano, J. Michael; Gazouli, Maria; Giles, Graham G.; Giovannucci, Edward; Goggins, Michael; Goodman, Gary E.; Goodman, Phyllis J.; Hackert, Thilo; Haiman, Christopher; Hartge, Patricia; Hasan, Manal; Hegyi, Peter; Helzlsouer, Kathy J.; Herman, Joseph; Holcatova, Ivana; Holly, Elizabeth A.; Hoover, Robert; Hung, Rayjean J.; Jacobs, Eric J.; Jamroziak, Krzysztof; Janout, Vladimir; Kaaks, Rudolf; Khaw, Kay-Tee; Klein, Eric A.; Kogevinas, Manolis; Kooperberg, Charles; Kulke, Matthew H.; Kupcinskas, Juozas; Kurtz, Robert J.; Laheru, Daniel; Landi, Stefano; Lawlor, Rita T.; Lee, I.-Min; Lemarchand, Loic; Lu, Lingeng; Malats, Núria; Mambrini, Andrea; Mannisto, Satu; Milne, Roger L.; Mohelníková-Duchoňová, Beatrice; Neale, Rachel E.; Neoptolemos, John P.; Oberg, Ann L.; Olson, Sara H.; Orlow, Irene; Pasquali, Claudio; Patel, Alpa V.; Peters, Ulrike; Pezzilli, Raffaele; Porta, Miquel; Real, Francisco X.; Rothman, Nathaniel; Scelo, Ghislaine; Sesso, Howard D.; Severi, Gianluca; Shu, Xiao-Ou; Silverman, Debra; Smith, Jill P.; Soucek, Pavel; Sund, Malin; Talar-Wojnarowska, Renata; Tavano, Francesca; Thornquist, Mark D.; Tobias, Geoffrey S.; van den Eeden, Stephen K.; Vashist, Yogesh; Visvanathan, Kala; Vodicka, Pavel; Wactawski-Wende, Jean; Wang, Zhaoming; Wentzensen, Nicolas; White, Emily; Yu, Herbert; Yu, Kai; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Kraft, Peter; Li, Donghui; Chanock, Stephen; Obazee, Ofure; Petersen, Gloria M.; Amundadottir, Laufey T.

    2018-01-01

    In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic

  3. Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer.

    NARCIS (Netherlands)

    Klein, Alison P; Wolpin, Brian M; Risch, Harvey A; Stolzenberg-Solomon, Rachael Z; Mocci, Evelina; Zhang, Mingfeng; Canzian, Federico; Childs, Erica J; Hoskins, Jason W; Jermusyk, Ashley; Zhong, Jun; Sund, Malin; Talar-Wojnarowska, Renata; Tavano, Francesca; Thornquist, Mark D; Tobias, Geoffrey S; Van Den Eeden, Stephen K; Vashist, Yogesh; Visvanathan, Kala; Vodicka, Pavel; Wactawski-Wende, Jean; Chen, Fei; Wang, Zhaoming; Wentzensen, Nicolas; White, Emily; Yu, Herbert; Yu, Kai; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Kraft, Peter; Li, Donghui; Chanock, Stephen; Albanes, Demetrius; Obazee, Ofure; Petersen, Gloria M; Amundadottir, Laufey T; Andreotti, Gabriella; Arslan, Alan A; Babic, Ana; Bamlet, William R; Beane-Freeman, Laura; Berndt, Sonja I; Blackford, Amanda; Borges, Michael; Borgida, Ayelet; Bracci, Paige M; Brais, Lauren; Brennan, Paul; Brenner, Hermann; Bueno-de-Mesquita, Bas; Buring, Julie; Campa, Daniele; Capurso, Gabriele; Cavestro, Giulia Martina; Chaffee, Kari G; Chung, Charles C; Cleary, Sean; Cotterchio, Michelle; Dijk, Frederike; Duell, Eric J; Foretova, Lenka; Fuchs, Charles; Funel, Niccola; Gallinger, Steven; M Gaziano, J Michael; Gazouli, Maria; Giles, Graham G; Giovannucci, Edward; Goggins, Michael; Goodman, Gary E; Goodman, Phyllis J; Hackert, Thilo; Haiman, Christopher; Hartge, Patricia; Hasan, Manal; Hegyi, Peter; Helzlsouer, Kathy J; Herman, Joseph; Holcatova, Ivana; Holly, Elizabeth A; Hoover, Robert; Hung, Rayjean J; Jacobs, Eric J; Jamroziak, Krzysztof; Janout, Vladimir; Kaaks, Rudolf; Khaw, Kay-Tee; Klein, Eric A; Kogevinas, Manolis; Kooperberg, Charles; Kulke, Matthew H; Kupcinskas, Juozas; Kurtz, Robert J; Laheru, Daniel; Landi, Stefano; Lawlor, Rita T; Lee, I-Min; LeMarchand, Loic; Lu, Lingeng; Malats, Núria; Mambrini, Andrea; Mannisto, Satu; Milne, Roger L; Mohelníková-Duchoňová, Beatrice; Neale, Rachel E; Neoptolemos, John P; Oberg, Ann L; Olson, Sara H; Orlow, Irene; Pasquali, Claudio; Patel, Alpa V; Peters, Ulrike; Pezzilli, Raffaele; Porta, Miquel; Real, Francisco X; Rothman, Nathaniel; Scelo, Ghislaine; Sesso, Howard D; Severi, Gianluca; Shu, Xiao-Ou; Silverman, Debra; Smith, Jill P; Soucek, Pavel

    2018-01-01

    In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European ancestry from the Pancreatic

  4. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array

    DEFF Research Database (Denmark)

    Eeles, Rosalind A; Olama, Ali Amin Al; Benlloch, Sara

    2013-01-01

    Prostate cancer is the most frequently diagnosed cancer in males in developed countries. To identify common prostate cancer susceptibility alleles, we genotyped 211,155 SNPs on a custom Illumina array (iCOGS) in blood DNA from 25,074 prostate cancer cases and 24,272 controls from the internationa...

  5. Genetic structure of seven Mexican indigenous populations based on five polymarker loci.

    Science.gov (United States)

    Buentello-Malo, Leonora; Peñaloza-Espinosa, Rosenda I; Loeza, Francisco; Salamanca-Gomez, Fabio; Cerda-Flores, Ricardo M

    2003-01-01

    This descriptive study investigates the genetic structure of seven Mexican indigenous populations (Mixteca Alta, Mixteca Baja, Otomies, Purepecha, Nahuas-Guerrero, Nahuas-Xochimilco, and Tzeltales) on the basis of five PCR-based polymorphic DNA loci: LDLR, GYPA, HBGG, D7S8, and GC. Genetic distance and diversity analyses indicate that these Mexican indigenous are similar and that more than 96% of the total gene diversity (H(T)) can be attributed to individual variation within populations. Mixteca-Alta, Mixteca-Baja, and Nahuas-Xochimilco show indications of higher admixture with European-derived persons. The demonstration of a relative genetic homogeneity of Mexican Indians for the markers studied suggests that this population is suitable for studying disease-marker associations in the search for candidate genes of complex diseases. Copyright 2002 Wiley-Liss, Inc.

  6. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity

    Science.gov (United States)

    Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I.; Taylor, Kent D.; Azziz, Ricardo; Goodarzi, Mark O.

    2015-01-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS. PMID:26305227

  7. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity.

    Directory of Open Access Journals (Sweden)

    Michelle R Jones

    2015-08-01

    Full Text Available Genome wide association studies (GWAS have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS, a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.

  8. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity.

    Science.gov (United States)

    Jones, Michelle R; Brower, Meredith A; Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I; Taylor, Kent D; Azziz, Ricardo; Goodarzi, Mark O

    2015-08-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.

  9. New Genetic Susceptibility Factors for Sjögren's Syndrome Revealed

    Science.gov (United States)

    ... Spotlight on Research Spotlight on Research New Genetic Susceptibility Factors for Sjögren’s Syndrome Revealed By Kirstie Saltsman, ... swallowing and speaking. “The identification of these genetic susceptibility factors opens up new avenues for understanding how ...

  10. Computational Integration of Human Genetic Data to Evaluate AOP-Specific Susceptibility

    Science.gov (United States)

    There is a need for approaches to efficiently evaluate human genetic variability and susceptibility related to environmental chemical exposure. Direct estimation of the genetic contribution to variability in susceptibility to environmental chemicals is only possible in special ca...

  11. Computational Integration of Human Genetic and Toxicological Data to Evaluate AOP-Specific Susceptibility

    Science.gov (United States)

    Susceptibility to environmental chemicals can be modulated by genetic differences. Direct estimation of the genetic contribution to variability in susceptibility to environmental chemicals is only possible in special cases where there is an observed association between exposure a...

  12. Pleiotropy among common genetic loci identified for cardiometabolic disorders and C-reactive protein.

    Directory of Open Access Journals (Sweden)

    Symen Ligthart

    Full Text Available Pleiotropic genetic variants have independent effects on different phenotypes. C-reactive protein (CRP is associated with several cardiometabolic phenotypes. Shared genetic backgrounds may partially underlie these associations. We conducted a genome-wide analysis to identify the shared genetic background of inflammation and cardiometabolic phenotypes using published genome-wide association studies (GWAS. We also evaluated whether the pleiotropic effects of such loci were biological or mediated in nature. First, we examined whether 283 common variants identified for 10 cardiometabolic phenotypes in GWAS are associated with CRP level. Second, we tested whether 18 variants identified for serum CRP are associated with 10 cardiometabolic phenotypes. We used a Bonferroni corrected p-value of 1.1×10-04 (0.05/463 as a threshold of significance. We evaluated the independent pleiotropic effect on both phenotypes using individual level data from the Women Genome Health Study. Evaluating the genetic overlap between inflammation and cardiometabolic phenotypes, we found 13 pleiotropic regions. Additional analyses showed that 6 regions (APOC1, HNF1A, IL6R, PPP1R3B, HNF4A and IL1F10 appeared to have a pleiotropic effect on CRP independent of the effects on the cardiometabolic phenotypes. These included loci where individuals carrying the risk allele for CRP encounter higher lipid levels and risk of type 2 diabetes. In addition, 5 regions (GCKR, PABPC4, BCL7B, FTO and TMEM18 had an effect on CRP largely mediated through the cardiometabolic phenotypes. In conclusion, our results show genetic pleiotropy among inflammation and cardiometabolic phenotypes. In addition to reverse causation, our data suggests that pleiotropic genetic variants partially underlie the association between CRP and cardiometabolic phenotypes.

  13. Genetic structure and gene flow among Komodo dragon populations inferred by microsatellite loci analysis.

    Science.gov (United States)

    Ciofi, C; Bruford, M W

    1999-12-01

    A general concern for the conservation of endangered species is the maintenance of genetic variation within populations, particularly when they become isolated and reduced in size. Estimates of gene flow and effective population size are therefore important for any conservation initiative directed to the long-term persistence of a species in its natural habitat. In the present study, 10 microsatellite loci were used to assess the level of genetic variability among populations of the Komodo dragon Varanus komodoensis. Effective population size was calculated and gene flow estimates were compared with palaeogeographic data in order to assess the degree of vulnerability of four island populations. Rinca and Flores, currently separated by an isthmus of about 200 m, retained a high level of genetic diversity and showed a high degree of genetic similarity, with gene flow values close to one migrant per generation. The island of Komodo showed by far the highest levels of genetic divergence, and its allelic distinctiveness was considered of great importance in the maintenance of genetic variability within the species. A lack of distinct alleles and low levels of gene flow and genetic variability were found for the small population of Gili Motang island, which was identified as vulnerable to stochastic threats. Our results are potentially important for both the short- and long-term management of the Komodo dragon, and are critical in view of future re-introduction or augmentation in areas where the species is now extinct or depleted.

  14. Bayesian variable selection for post-analytic interrogation of susceptibility loci.

    Science.gov (United States)

    Chen, Siying; Nunez, Sara; Reilly, Muredach P; Foulkes, Andrea S

    2017-06-01

    Understanding the complex interplay among protein coding genes and regulatory elements requires rigorous interrogation with analytic tools designed for discerning the relative contributions of overlapping genomic regions. To this aim, we offer a novel application of Bayesian variable selection (BVS) for classifying genomic class level associations using existing large meta-analysis summary level resources. This approach is applied using the expectation maximization variable selection (EMVS) algorithm to typed and imputed SNPs across 502 protein coding genes (PCGs) and 220 long intergenic non-coding RNAs (lncRNAs) that overlap 45 known loci for coronary artery disease (CAD) using publicly available Global Lipids Gentics Consortium (GLGC) (Teslovich et al., 2010; Willer et al., 2013) meta-analysis summary statistics for low-density lipoprotein cholesterol (LDL-C). The analysis reveals 33 PCGs and three lncRNAs across 11 loci with >50% posterior probabilities for inclusion in an additive model of association. The findings are consistent with previous reports, while providing some new insight into the architecture of LDL-cholesterol to be investigated further. As genomic taxonomies continue to evolve, additional classes such as enhancer elements and splicing regions, can easily be layered into the proposed analysis framework. Moreover, application of this approach to alternative publicly available meta-analysis resources, or more generally as a post-analytic strategy to further interrogate regions that are identified through single point analysis, is straightforward. All coding examples are implemented in R version 3.2.1 and provided as supplemental material. © 2016, The International Biometric Society.

  15. Evaluation of a 13-loci STR multiplex system for Cannabis sativa genetic identification.

    Science.gov (United States)

    Houston, Rachel; Birck, Matthew; Hughes-Stamm, Sheree; Gangitano, David

    2016-05-01

    Marijuana (Cannabis sativa) is the most commonly used illicit substance in the USA. The development of a validated method using Cannabis short tandem repeats (STRs) could aid in the individualization of samples as well as serve as an intelligence tool to link multiple cases. For this purpose, a modified 13-loci STR multiplex method was optimized and evaluated according to ISFG and SWGDAM guidelines. A real-time PCR quantification method for C. sativa was developed and validated, and a sequenced allelic ladder was also designed to accurately genotype 199 C. sativa samples from 11 U.S. Customs and Border Protection seizures. Distinguishable DNA profiles were generated from 127 samples that yielded full STR profiles. Four duplicate genotypes within seizures were found. The combined power of discrimination of this multilocus system is 1 in 70 million. The sensitivity of the multiplex STR system is 0.25 ng of template DNA. None of the 13 STR markers cross-reacted with any of the studied species, except for Humulus lupulus (hops) which generated unspecific peaks. Phylogenetic analysis and case-to-case pairwise comparison of 11 cases using F st as genetic distance revealed the genetic association of four groups of cases. Moreover, due to their genetic similarity, a subset of samples (N = 97) was found to form a homogeneous population in Hardy-Weinberg and linkage equilibrium. The results of this research demonstrate the applicability of this 13-loci STR system in associating Cannabis cases for intelligence purposes.

  16. Distinct high resolution genome profiles of early onset and late onset colorectal cancer integrated with gene expression data identify candidate susceptibility loci

    Directory of Open Access Journals (Sweden)

    Merok Marianne A

    2010-05-01

    Full Text Available Abstract Background Estimates suggest that up to 30% of colorectal cancers (CRC may develop due to an increased genetic risk. The mean age at diagnosis for CRC is about 70 years. Time of disease onset 20 years younger than the mean age is assumed to be indicative of genetic susceptibility. We have compared high resolution tumor genome copy number variation (CNV (Roche NimbleGen, 385 000 oligo CGH array in microsatellite stable (MSS tumors from two age groups, including 23 young at onset patients without known hereditary syndromes and with a median age of 44 years (range: 28-53 and 17 elderly patients with median age 79 years (range: 69-87. Our aim was to identify differences in the tumor genomes between these groups and pinpoint potential susceptibility loci. Integration analysis of CNV and genome wide mRNA expression data, available for the same tumors, was performed to identify a restricted candidate gene list. Results The total fraction of the genome with aberrant copy number, the overall genomic profile and the TP53 mutation spectrum were similar between the two age groups. However, both the number of chromosomal aberrations and the number of breakpoints differed significantly between the groups. Gains of 2q35, 10q21.3-22.1, 10q22.3 and 19q13.2-13.31 and losses from 1p31.3, 1q21.1, 2q21.2, 4p16.1-q28.3, 10p11.1 and 19p12, positions that in total contain more than 500 genes, were found significantly more often in the early onset group as compared to the late onset group. Integration analysis revealed a covariation of DNA copy number at these sites and mRNA expression for 107 of the genes. Seven of these genes, CLC, EIF4E, LTBP4, PLA2G12A, PPAT, RG9MTD2, and ZNF574, had significantly different mRNA expression comparing median expression levels across the transcriptome between the two groups. Conclusions Ten genomic loci, containing more than 500 protein coding genes, are identified as more often altered in tumors from early onset versus late

  17. Comparative radiobiology of genetic loci of eukaryots as the basis of the general theory of mutations

    International Nuclear Information System (INIS)

    Aleksandrov, I.D.

    1983-01-01

    One of the fundamental problems of modern molecular cellular radiobiology is to reveal general and peculiar processes of the formation of gene mutations and chromosome aberrations in each stage of their formation in the irradiated genome of the higher eukaryots. The solution of the problems depends on the development of research within the framework of comparative radiobiology of genetic loci of the higher eukaryots that makes it possible to study quantitative regularities in the formation of gene (point) mutations and chromosome aberrations in one object and in the same experiment

  18. Effects of multiple genetic loci on the pathogenesis from serum urate to gout

    OpenAIRE

    Zheng Dong; Jingru Zhou; Shuai Jiang; Yuan Li; Dongbao Zhao; Chengde Yang; Yanyun Ma; Yi Wang; Hongjun He; Hengdong Ji; Yajun Yang; Xiaofeng Wang; Xia Xu; Yafei Pang; Hejian Zou

    2017-01-01

    Gout is a common arthritis resulting from increased serum urate, and many loci have been identified that are associated with serum urate and gout. However, their influence on the progression from elevated serum urate levels to gout is unclear. This study aims to explore systematically the effects of genetic variants on the pathogenesis in approximately 5,000 Chinese individuals. Six genes (PDZK1, GCKR, TRIM46, HNF4G, SLC17A1, LRRC16A) were determined to be associated with serum urate (P FDR?

  19. Evolution of branched regulatory genetic pathways: directional selection on pleiotropic loci accelerates developmental system drift.

    Science.gov (United States)

    Johnson, Norman A; Porter, Adam H

    2007-01-01

    Developmental systems are regulated by a web of interacting loci. One common and useful approach in studying the evolution of development is to focus on classes of interacting elements within these systems. Here, we use individual-based simulations to study the evolution of traits controlled by branched developmental pathways involving three loci, where one locus regulates two different traits. We examined the system under a variety of selective regimes. In the case where one branch was under stabilizing selection and the other under directional selection, we observed "developmental system drift": the trait under stabilizing selection showed little phenotypic change even though the loci underlying that trait showed considerable evolutionary divergence. This occurs because the pleiotropic locus responds to directional selection and compensatory mutants are then favored in the pathway under stabilizing selection. Though developmental system drift may be caused by other mechanisms, it seems likely that it is accelerated by the same underlying genetic mechanism as that producing the Dobzhansky-Muller incompatibilities that lead to speciation in both linear and branched pathways. We also discuss predictions of our model for developmental system drift and how different selective regimes affect probabilities of speciation in the branched pathway system.

  20. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture

    Science.gov (United States)

    Berndt, Sonja I.; Gustafsson, Stefan; Mägi, Reedik; Ganna, Andrea; Wheeler, Eleanor; Feitosa, Mary F.; Justice, Anne E.; Monda, Keri L.; Croteau-Chonka, Damien C.; Day, Felix R.; Esko, Tõnu; Fall, Tove; Ferreira, Teresa; Gentilini, Davide; Jackson, Anne U.; Luan, Jian’an; Randall, Joshua C.; Vedantam, Sailaja; Willer, Cristen J.; Winkler, Thomas W.; Wood, Andrew R.; Workalemahu, Tsegaselassie; Hu, Yi-Juan; Lee, Sang Hong; Liang, Liming; Lin, Dan-Yu; Min, Josine L.; Neale, Benjamin M.; Thorleifsson, Gudmar; Yang, Jian; Albrecht, Eva; Amin, Najaf; Bragg-Gresham, Jennifer L.; Cadby, Gemma; den Heijer, Martin; Eklund, Niina; Fischer, Krista; Goel, Anuj; Hottenga, Jouke-Jan; Huffman, Jennifer E.; Jarick, Ivonne; Johansson, Åsa; Johnson, Toby; Kanoni, Stavroula; Kleber, Marcus E.; König, Inke R.; Kristiansson, Kati; Kutalik, Zoltán; Lamina, Claudia; Lecoeur, Cecile; Li, Guo; Mangino, Massimo; McArdle, Wendy L.; Medina-Gomez, Carolina; Müller-Nurasyid, Martina; Ngwa, Julius S.; Nolte, Ilja M.; Paternoster, Lavinia; Pechlivanis, Sonali; Perola, Markus; Peters, Marjolein J.; Preuss, Michael; Rose, Lynda M.; Shi, Jianxin; Shungin, Dmitry; Smith, Albert Vernon; Strawbridge, Rona J.; Surakka, Ida; Teumer, Alexander; Trip, Mieke D.; Tyrer, Jonathan; Van Vliet-Ostaptchouk, Jana V.; Vandenput, Liesbeth; Waite, Lindsay L.; Zhao, Jing Hua; Absher, Devin; Asselbergs, Folkert W.; Atalay, Mustafa; Attwood, Antony P.; Balmforth, Anthony J.; Basart, Hanneke; Beilby, John; Bonnycastle, Lori L.; Brambilla, Paolo; Bruinenberg, Marcel; Campbell, Harry; Chasman, Daniel I.; Chines, Peter S.; Collins, Francis S.; Connell, John M.; Cookson, William; de Faire, Ulf; de Vegt, Femmie; Dei, Mariano; Dimitriou, Maria; Edkins, Sarah; Estrada, Karol; Evans, David M.; Farrall, Martin; Ferrario, Marco M.; Ferrières, Jean; Franke, Lude; Frau, Francesca; Gejman, Pablo V.; Grallert, Harald; Grönberg, Henrik; Gudnason, Vilmundur; Hall, Alistair S.; Hall, Per; Hartikainen, Anna-Liisa; Hayward, Caroline; Heard-Costa, Nancy L.; Heath, Andrew C.; Hebebrand, Johannes; Homuth, Georg; Hu, Frank B.; Hunt, Sarah E.; Hyppönen, Elina; Iribarren, Carlos; Jacobs, Kevin B.; Jansson, John-Olov; Jula, Antti; Kähönen, Mika; Kathiresan, Sekar; Kee, Frank; Khaw, Kay-Tee; Kivimaki, Mika; Koenig, Wolfgang; Kraja, Aldi T.; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Laitinen, Jaana H.; Lakka, Timo A.; Langenberg, Claudia; Launer, Lenore J.; Lind, Lars; Lindström, Jaana; Liu, Jianjun; Liuzzi, Antonio; Lokki, Marja-Liisa; Lorentzon, Mattias; Madden, Pamela A.; Magnusson, Patrik K.; Manunta, Paolo; Marek, Diana; März, Winfried; Mateo Leach, Irene; McKnight, Barbara; Medland, Sarah E.; Mihailov, Evelin; Milani, Lili; Montgomery, Grant W.; Mooser, Vincent; Mühleisen, Thomas W.; Munroe, Patricia B.; Musk, Arthur W.; Narisu, Narisu; Navis, Gerjan; Nicholson, George; Nohr, Ellen A.; Ong, Ken K.; Oostra, Ben A.; Palmer, Colin N.A.; Palotie, Aarno; Peden, John F.; Pedersen, Nancy; Peters, Annette; Polasek, Ozren; Pouta, Anneli; Pramstaller, Peter P.; Prokopenko, Inga; Pütter, Carolin; Radhakrishnan, Aparna; Raitakari, Olli; Rendon, Augusto; Rivadeneira, Fernando; Rudan, Igor; Saaristo, Timo E.; Sambrook, Jennifer G.; Sanders, Alan R.; Sanna, Serena; Saramies, Jouko; Schipf, Sabine; Schreiber, Stefan; Schunkert, Heribert; Shin, So-Youn; Signorini, Stefano; Sinisalo, Juha; Skrobek, Boris; Soranzo, Nicole; Stančáková, Alena; Stark, Klaus; Stephens, Jonathan C.; Stirrups, Kathleen; Stolk, Ronald P.; Stumvoll, Michael; Swift, Amy J.; Theodoraki, Eirini V.; Thorand, Barbara; Tregouet, David-Alexandre; Tremoli, Elena; Van der Klauw, Melanie M.; van Meurs, Joyce B.J.; Vermeulen, Sita H.; Viikari, Jorma; Virtamo, Jarmo; Vitart, Veronique; Waeber, Gérard; Wang, Zhaoming; Widén, Elisabeth; Wild, Sarah H.; Willemsen, Gonneke; Winkelmann, Bernhard R.; Witteman, Jacqueline C.M.; Wolffenbuttel, Bruce H.R.; Wong, Andrew; Wright, Alan F.; Zillikens, M. Carola; Amouyel, Philippe; Boehm, Bernhard O.; Boerwinkle, Eric; Boomsma, Dorret I.; Caulfield, Mark J.; Chanock, Stephen J.; Cupples, L. Adrienne; Cusi, Daniele; Dedoussis, George V.; Erdmann, Jeanette; Eriksson, Johan G.; Franks, Paul W.; Froguel, Philippe; Gieger, Christian; Gyllensten, Ulf; Hamsten, Anders; Harris, Tamara B.; Hengstenberg, Christian; Hicks, Andrew A.; Hingorani, Aroon; Hinney, Anke; Hofman, Albert; Hovingh, Kees G.; Hveem, Kristian; Illig, Thomas; Jarvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Keinanen-Kiukaanniemi, Sirkka M.; Kiemeney, Lambertus A.; Kuh, Diana; Laakso, Markku; Lehtimäki, Terho; Levinson, Douglas F.; Martin, Nicholas G.; Metspalu, Andres; Morris, Andrew D.; Nieminen, Markku S.; Njølstad, Inger; Ohlsson, Claes; Oldehinkel, Albertine J.; Ouwehand, Willem H.; Palmer, Lyle J.; Penninx, Brenda; Power, Chris; Province, Michael A.; Psaty, Bruce M.; Qi, Lu; Rauramaa, Rainer; Ridker, Paul M.; Ripatti, Samuli; Salomaa, Veikko; Samani, Nilesh J.; Snieder, Harold; Sørensen, Thorkild I.A.; Spector, Timothy D.; Stefansson, Kari; Tönjes, Anke; Tuomilehto, Jaakko; Uitterlinden, André G.; Uusitupa, Matti; van der Harst, Pim; Vollenweider, Peter; Wallaschofski, Henri; Wareham, Nicholas J.; Watkins, Hugh; Wichmann, H.-Erich; Wilson, James F.; Abecasis, Goncalo R.; Assimes, Themistocles L.; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B.; Deloukas, Panos; Fox, Caroline S.; Frayling, Timothy; Groop, Leif C.; Haritunian, Talin; Heid, Iris M.; Hunter, David; Kaplan, Robert C.; Karpe, Fredrik; Moffatt, Miriam; Mohlke, Karen L.; O’Connell, Jeffrey R.; Pawitan, Yudi; Schadt, Eric E.; Schlessinger, David; Steinthorsdottir, Valgerdur; Strachan, David P.; Thorsteinsdottir, Unnur; van Duijn, Cornelia M.; Visscher, Peter M.; Di Blasio, Anna Maria; Hirschhorn, Joel N.; Lindgren, Cecilia M.; Morris, Andrew P.; Meyre, David; Scherag, André; McCarthy, Mark I.; Speliotes, Elizabeth K.; North, Kari E.; Loos, Ruth J.F.; Ingelsson, Erik

    2014-01-01

    Approaches exploiting extremes of the trait distribution may reveal novel loci for common traits, but it is unknown whether such loci are generalizable to the general population. In a genome-wide search for loci associated with upper vs. lower 5th percentiles of body mass index, height and waist-hip ratio, as well as clinical classes of obesity including up to 263,407 European individuals, we identified four new loci (IGFBP4, H6PD, RSRC1, PPP2R2A) influencing height detected in the tails and seven new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3, ZZZ3) for clinical classes of obesity. Further, we show that there is large overlap in terms of genetic structure and distribution of variants between traits based on extremes and the general population and little etiologic heterogeneity between obesity subgroups. PMID:23563607

  1. Genetic susceptibility to feline infectious peritonitis in Birman cats.

    Science.gov (United States)

    Golovko, Lyudmila; Lyons, Leslie A; Liu, Hongwei; Sørensen, Anne; Wehnert, Suzanne; Pedersen, Niels C

    2013-07-01

    Genetic factors are presumed to influence the incidence of feline infectious peritonitis (FIP), especially among pedigreed cats. However, proof for the existence of such factors has been limited and mainly anecdotal. Therefore, we sought evidence for genetic susceptibility to FIP using feline high density single nucleotide polymorphism (SNP) arrays in a genome-wide association study (GWAS). Birman cats were chosen for GWAS because they are highly inbred and suffer a high incidence of FIP. DNA from 38 Birman cats that died of FIP and 161 healthy cats from breeders in Denmark and USA were selected for genotyping using 63K SNPs distributed across the feline genome. Danish and American Birman cats were closely related and the populations were therefore combined and analyzed in two manners: (1) all cases (FIP) vs. all controls (healthy) regardless of age, and (2) cases 1½ years of age and younger (most susceptible) vs. controls 2 years of age and older (most resistant). GWAS of the second cohort was most productive in identifying significant genome-wide associations between case and control cats. Four peaks of association with FIP susceptibility were identified, with two being identified on both analyses. Five candidate genes ELMO1, RRAGA, TNFSF10, ERAP1 and ERAP2, all relevant to what is known about FIP virus pathogenesis, were identified but no single association was fully concordant with the disease phenotype. Difficulties in doing GWAS in cats and interrogating complex genetic traits were discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Multiple common susceptibility variants near BMP pathway loci GREM1, BMP4, and BMP2 explain part of the missing heritability of colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Ian P M Tomlinson

    2011-06-01

    Full Text Available Genome-wide association studies (GWAS have identified 14 tagging single nucleotide polymorphisms (tagSNPs that are associated with the risk of colorectal cancer (CRC, and several of these tagSNPs are near bone morphogenetic protein (BMP pathway loci. The penalty of multiple testing implicit in GWAS increases the attraction of complementary approaches for disease gene discovery, including candidate gene- or pathway-based analyses. The strongest candidate loci for additional predisposition SNPs are arguably those already known both to have functional relevance and to be involved in disease risk. To investigate this proposition, we searched for novel CRC susceptibility variants close to the BMP pathway genes GREM1 (15q13.3, BMP4 (14q22.2, and BMP2 (20p12.3 using sample sets totalling 24,910 CRC cases and 26,275 controls. We identified new, independent CRC predisposition SNPs close to BMP4 (rs1957636, P = 3.93×10(-10 and BMP2 (rs4813802, P = 4.65×10(-11. Near GREM1, we found using fine-mapping that the previously-identified association between tagSNP rs4779584 and CRC actually resulted from two independent signals represented by rs16969681 (P = 5.33×10(-8 and rs11632715 (P = 2.30×10(-10. As low-penetrance predisposition variants become harder to identify-owing to small effect sizes and/or low risk allele frequencies-approaches based on informed candidate gene selection may become increasingly attractive. Our data emphasise that genetic fine-mapping studies can deconvolute associations that have arisen owing to independent correlation of a tagSNP with more than one functional SNP, thus explaining some of the apparently missing heritability of common diseases.

  3. Human red cell 2,3-diphosphoglycerate mutase and monophosphoglycerate mutase: genetic evidence for two separate loci.

    Science.gov (United States)

    Chen, S H; Anderson, J E; Giblett, E R

    1977-01-01

    Rare genetic variants of human red cell 2,3-diphosphoglycerate mutase (DPGM) and monophosphoglycerate mutase (MPGM) were compared by starch gel electrophoresis. The isozyme patterns showed that genetic variation of the enzymes were independent from each other, thus DPGM and MPGM must be controlled by two separate loci. Images Fig. 1 PMID:195467

  4. Standing genetic variation in contingency loci drives the rapid adaptation of Campylobacter jejuni to a novel host.

    Directory of Open Access Journals (Sweden)

    John P Jerome

    2011-01-01

    Full Text Available The genome of the food-borne pathogen Campylobacter jejuni contains multiple highly mutable sites, or contingency loci. It has been suggested that standing variation at these loci is a mechanism for rapid adaptation to a novel environment, but this phenomenon has not been shown experimentally. In previous work we showed that the virulence of C. jejuni NCTC11168 increased after serial passage through a C57BL/6 IL-10(-/- mouse model of campylobacteriosis. Here we sought to determine the genetic basis of this adaptation during passage. Re-sequencing of the 1.64 Mb genome to 200-500 X coverage allowed us to define variation in 23 contingency loci to an unprecedented depth both before and after in vivo adaptation. Mutations in the mouse-adapted C. jejuni were largely restricted to the homopolymeric tracts of thirteen contingency loci. These changes cause significant alterations in open reading frames of genes in surface structure biosynthesis loci and in genes with only putative functions. Several loci with open reading frame changes also had altered transcript abundance. The increase in specific phases of contingency loci during in vivo passage of C. jejuni, coupled with the observed virulence increase and the lack of other types of genetic changes, is the first experimental evidence that these variable regions play a significant role in C. jejuni adaptation and virulence in a novel host.

  5. Replication and meta-analysis of GWAS identified susceptibility loci in Kawasaki disease confirm the importance of B lymphoid tyrosine kinase (BLK in disease susceptibility.

    Directory of Open Access Journals (Sweden)

    Chia-Jung Chang

    Full Text Available The BLK and CD40 loci have been associated with Kawasaki disease (KD in two genome-wide association studies (GWAS conducted in a Taiwanese population of Han Chinese ancestry (Taiwanese and in Japanese cohorts. Here we build on these findings with replication studies of the BLK and CD40 loci in populations of Korean and European descent. The BLK region was significantly associated with KD susceptibility in both populations. Within the BLK gene the rs2736340-located linkage disequilibrium (LD comprising the promoter and first intron was strongly associated with KD, with the combined results of Asian studies including Taiwanese, Japanese, and Korean populations (2,539 KD patients and 7,021 controls providing very compelling evidence of association (rs2736340, OR = 1.498, 1.354-1.657; P = 4.74×10(-31. We determined the percentage of B cells present in the peripheral blood mononuclear cell (PBMC population and the expression of BLK in the peripheral blood leukocytes (leukocytes of KD patients during the acute and convalescent stages. The percentage of B cells in the PBMC population and the expression of BLK in leukocytes were induced in patients in the acute stage of KD. In B cell lines derived from KD patients, and in purified B cells from KD patients obtained during the acute stage, those with the risk allele of rs2736340 expressed significantly lower levels of BLK. These results suggest that peripheral B cells play a pathogenic role during the acute stage of KD. Decreased BLK expression in peripheral blood B cells may alter B cell function and predispose individuals to KD. These associative data suggest a role for B cells during acute KD. Understanding the functional implications may facilitate the development of B cell-mediated therapy for KD.

  6. Confirmation of TNIP1 and IL23A as susceptibility loci for psoriatic arthritis.

    LENUS (Irish Health Repository)

    Bowes, John

    2011-09-01

    To investigate a shared genetic aetiology for skin involvement in psoriasis and psoriatic arthritis (PsA) by genotyping single-nucleotide polymorphisms (SNPs), reported to be associated in genome-wide association studies of psoriasis, in patients with PsA.

  7. Genomewide Linkage Screen for Waldenström Macroglobulinemia Susceptibility Loci in High-Risk Families

    Science.gov (United States)

    McMaster, Mary L.; Goldin, Lynn R.; Bai, Yan; Ter-Minassian, Monica; Boehringer, Stefan; Giambarresi, Therese R.; Vasquez, Linda G.; Tucker, Margaret A.

    2006-01-01

    Waldenström macroglobulinemia (WM), a distinctive subtype of non-Hodgkin lymphoma that features overproduction of immunoglobulin M (IgM), clearly has a familial component; however, no susceptibility genes have yet been identified. We performed a genomewide linkage analysis in 11 high-risk families with WM that were informative for linkage, for a total of 122 individuals with DNA samples, including 34 patients with WM and 10 patients with IgM monoclonal gammopathy of undetermined significance (IgM MGUS). We genotyped 1,058 microsatellite markers (average spacing 3.5 cM), performed both nonparametric and parametric linkage analysis, and computed both two-point and multipoint linkage statistics. The strongest evidence of linkage was found on chromosomes 1q and 4q when patients with WM and with IgM MGUS were both considered affected; nonparametric linkage scores were 2.5 (P=.0089) and 3.1 (P=.004), respectively. Other locations suggestive of linkage were found on chromosomes 3 and 6. Results of two-locus linkage analysis were consistent with independent effects. The findings from this first linkage analysis of families at high risk for WM represent important progress toward identifying gene(s) that modulate susceptibility to WM and toward understanding its complex etiology. PMID:16960805

  8. Elucidating novel dysfunctional pathways in Alzheimer's disease by integrating loci identified in genetic and epigenetic studies

    Directory of Open Access Journals (Sweden)

    Adam R. Smith

    2016-06-01

    Full Text Available Alzheimer's disease is a complex neurodegenerative disorder. A large number of genome-wide association studies have been performed, which have been supplemented more recently by the first epigenome-wide association studies, leading to the identification of a number of novel loci altered in disease. Twin studies have shown monozygotic twin discordance for Alzheimer's disease (Gatz et al., 2006, leading to the conclusion that a combination of genetic and epigenetic mechanisms is likely to be involved in disease etiology (Lunnon & Mill, 2013. This review focuses on identifying overlapping pathways between published genome-wide association studies and epigenome-wide association studies, highlighting dysfunctional synaptic, lipid metabolism, plasma membrane/cytoskeleton, mitochondrial, and immune cell activation pathways. Identifying common pathways altered in genetic and epigenetic studies will aid our understanding of disease mechanisms and identify potential novel targets for pharmacological intervention.

  9. Molecular Diversity Analysis and Genetic Mapping of Pod Shatter Resistance Loci in Brassica carinata L.

    Directory of Open Access Journals (Sweden)

    Rosy Raman

    2017-11-01

    Full Text Available Seed lost due to easy pod dehiscence at maturity (pod shatter is a major problem in several members of Brassicaceae family. We investigated the level of pod shatter resistance in Ethiopian mustard (Brassica carinata and identified quantitative trait loci (QTL for targeted introgression of this trait in Ethiopian mustard and its close relatives of the genus Brassica. A set of 83 accessions of B. carinata, collected from the Australian Grains Genebank, was evaluated for pod shatter resistance based on pod rupture energy (RE. In comparison to B. napus (RE = 2.16 mJ, B. carinata accessions had higher RE values (2.53 to 20.82 mJ. A genetic linkage map of an F2 population from two contrasting B. carinata selections, BC73526 (shatter resistant with high RE and BC73524 (shatter prone with low RE comprising 300 individuals, was constructed using a set of 6,464 high quality DArTseq markers and subsequently used for QTL analysis. Genetic analysis of the F2 and F2:3 derived lines revealed five statistically significant QTL (LOD ≥ 3 that are linked with pod shatter resistance on chromosomes B1, B3, B8, and C5. Herein, we report for the first time, identification of genetic loci associated with pod shatter resistance in B. carinata. These characterized accessions would be useful in Brassica breeding programs for introgression of pod shatter resistance alleles in to elite breeding lines. Molecular markers would assist marker-assisted selection for tracing the introgression of resistant alleles. Our results suggest that the value of the germplasm collections can be harnessed through genetic and genomics tools.

  10. Genetic Diversity of Three Spotted Seahorse, Hippocampus trimaculatus (Leach, 1814 in India Using Four Microsatellite Loci

    Directory of Open Access Journals (Sweden)

    Muthusamy THANGARAJ

    2012-11-01

    Full Text Available Seahorse populations are declining year by year not only in India but also throughout the world, because of over-fishing and increasing demand in Chinese market. The three spotted seahorse, Hippocampus trimaculatus is one of the dominant species and distributed all along the Indian coast. To study the genetic structure is very essential to conserve these species effectively. Hippocampus trimaculatus samples (n = 60/population were collected from Mullimunai in Palk Bay, Tuticorin in Gulf of Mannar and Vizhinjam in south Malabar in India as by-catch in small trawlnets. Microsatellites are being widely applied in animal genome mapping and phylogenetic analysis because of their co-dominant inheritance and high degree of polymorphism. The molecular polymorphism of microsatellite DNA has proved to be a potent tool in the analysis of several aspects of population genetics. In the present study, four microsatellite primers were used to investigate the genetic difference and structure of three selected populations of H. trimaculatus. The result showed the overall FST value (0.0989 of the microsatellite loci between Mullimunai and Vizhinjam was significantly different. The genetic distance between Mullimunai and Tuticorin was 0.183; between Tuticorin and Vizhinjam was 0.461; and Mullimunai and Vizhinjam was 0.837. There was no statistical evidence of recent severe bottlenecks in any of the three populations. Continuous monitoring of microsatellite variations within the populations of all the three locations was suggested to determine whether genetic variation within the populations is stabilized between year classes.

  11. Admixture mapping of 15,280 African Americans identifies obesity susceptibility loci on chromosomes 5 and X.

    Directory of Open Access Journals (Sweden)

    Ching-Yu Cheng

    2009-05-01

    Full Text Available The prevalence of obesity (body mass index (BMI > or =30 kg/m(2 is higher in African Americans than in European Americans, even after adjustment for socioeconomic factors, suggesting that genetic factors may explain some of the difference. To identify genetic loci influencing BMI, we carried out a pooled analysis of genome-wide admixture mapping scans in 15,280 African Americans from 14 epidemiologic studies. Samples were genotyped at a median of 1,411 ancestry-informative markers. After adjusting for age, sex, and study, BMI was analyzed both as a dichotomized (top 20% versus bottom 20% and a continuous trait. We found that a higher percentage of European ancestry was significantly correlated with lower BMI (rho = -0.042, P = 1.6x10(-7. In the dichotomized analysis, we detected two loci on chromosome X as associated with increased African ancestry: the first at Xq25 (locus-specific LOD = 5.94; genome-wide score = 3.22; case-control Z = -3.94; and the second at Xq13.1 (locus-specific LOD = 2.22; case-control Z = -4.62. Quantitative analysis identified a third locus at 5q13.3 where higher BMI was highly significantly associated with greater European ancestry (locus-specific LOD = 6.27; genome-wide score = 3.46. Further mapping studies with dense sets of markers will be necessary to identify the alleles in these regions of chromosomes X and 5 that may be associated with variation in BMI.

  12. High mutation rates explain low population genetic divergence at copy-number-variable loci in Homo sapiens.

    Science.gov (United States)

    Hu, Xin-Sheng; Yeh, Francis C; Hu, Yang; Deng, Li-Ting; Ennos, Richard A; Chen, Xiaoyang

    2017-02-22

    Copy-number-variable (CNV) loci differ from single nucleotide polymorphic (SNP) sites in size, mutation rate, and mechanisms of maintenance in natural populations. It is therefore hypothesized that population genetic divergence at CNV loci will differ from that found at SNP sites. Here, we test this hypothesis by analysing 856 CNV loci from the genomes of 1184 healthy individuals from 11 HapMap populations with a wide range of ancestry. The results show that population genetic divergence at the CNV loci is generally more than three times lower than at genome-wide SNP sites. Populations generally exhibit very small genetic divergence (G st  = 0.05 ± 0.049). The smallest divergence is among African populations (G st  = 0.0081 ± 0.0025), with increased divergence among non-African populations (G st  = 0.0217 ± 0.0109) and then among African and non-African populations (G st  = 0.0324 ± 0.0064). Genetic diversity is high in African populations (~0.13), low in Asian populations (~0.11), and intermediate in the remaining 11 populations. Few significant linkage disequilibria (LDs) occur between the genome-wide CNV loci. Patterns of gametic and zygotic LDs indicate the absence of epistasis among CNV loci. Mutation rate is about twice as large as the migration rate in the non-African populations, suggesting that the high mutation rates play dominant roles in producing the low population genetic divergence at CNV loci.

  13. A search for susceptibility loci for anorexia nervosa: methods and sample description.

    Science.gov (United States)

    Kaye, W H; Lilenfeld, L R; Berrettini, W H; Strober, M; Devlin, B; Klump, K L; Goldman, D; Bulik, C M; Halmi, K A; Fichter, M M; Kaplan, A; Woodside, D B; Treasure, J; Plotnicov, K H; Pollice, C; Rao, R; McConaha, C W

    2000-05-01

    Eating disorders have not traditionally been viewed as heritable illnesses; however, recent family and twin studies lend credence to the potential role of genetic transmission. The Price Foundation funded an international, multisite study to identify genetic factors contributing to the pathogenesis of anorexia nervosa (AN) by recruiting affective relative pairs. This article is an overview of study methods and the clinical characteristics of the sample. All probands met modified DSM-IV criteria for AN; all affected first, second, and third degree relatives met DSM-IV criteria for AN, bulimia nervosa (BN), or eating disorder not otherwise specified (NOS). Probands and affected relatives were assessed diagnostically with the Structured Interview for Anorexia and Bulimia. DNA was collected from probands, affected relatives and a subset of their biological parents. Assessments were obtained from 196 probands and 237 affected relatives, over 98% of whom are of Caucasian ancestry. Overall, there were 229 relative pairs who were informative for linkage analysis. Of the proband-relative pairs, 63% were AN-AN, 20% were AN-BN, and 16% were AN-NOS. For family-based association analyses, DNA has been collected from both biological parents of 159 eating-disordered subjects. Few significant differences in demographic characteristics were found between proband and relative groups. The present study represents the first large-scale molecular genetic investigation of AN. Our successful recruitment of over 500 subjects, consisting of affected probands, affected relatives, and their biological parents, will provide the basis to investigate genetic transmission of eating disorders via a genome scan and assessment of candidate genes.

  14. Genetic diversity and antifungal susceptibility of Fusarium isolates in onychomycosis.

    Science.gov (United States)

    Rosa, Priscila D; Heidrich, Daiane; Corrêa, Carolina; Scroferneker, Maria Lúcia; Vettorato, Gerson; Fuentefria, Alexandre M; Goldani, Luciano Z

    2017-09-01

    Fusarium species have emerged as an important human pathogen in skin disease, onychomycosis, keratitis and invasive disease. Onychomycosis caused by Fusarium spp. The infection has been increasingly described in the immunocompetent and immunosuppressed hosts. Considering onychomycosis is a difficult to treat infection, and little is known about the genetic variability and susceptibility pattern of Fusarium spp., further studies are necessary to understand the pathogenesis and better to define the appropriate antifungal treatment for this infection. Accordingly, the objective of this study was to describe the in vitro susceptibility to different antifungal agents and the genetic diversity of 35 Fusarium isolated from patients with onychomycosis. Fusarium spp. were isolated predominantly from female Caucasians, and the most frequent anatomical location was the nail of the hallux. Results revealed that 25 (71.4%) of isolates belonged to the Fusarium solani species complex, followed by 10 (28.5%) isolates from the Fusarium oxysporum species complex. Noteworthy, the authors report the first case of Neocosmospora rubicola isolated from a patient with onychomycosis. Amphotericin B was the most effective antifungal agent against the majority of isolates (60%, MIC ≤4 μg/mL), followed by voriconazole (34.2%, MIC ≤4 μg/mL). In general, Fusarium species presented MIC values >64 μg/mL for fluconazole, itraconazole and terbinafine. Accurate pathogen identification, characterisation and susceptibility testing provide a better understanding of pathogenesis of Fusarium in onychomycosis. © 2017 Blackwell Verlag GmbH.

  15. Identification of a shared genetic susceptibility locus for coronary heart disease and periodontitis.

    Directory of Open Access Journals (Sweden)

    Arne S Schaefer

    2009-02-01

    Full Text Available Recent studies indicate a mutual epidemiological relationship between coronary heart disease (CHD and periodontitis. Both diseases are associated with similar risk factors and are characterized by a chronic inflammatory process. In a candidate-gene association study, we identify an association of a genetic susceptibility locus shared by both diseases. We confirm the known association of two neighboring linkage disequilibrium regions on human chromosome 9p21.3 with CHD and show the additional strong association of these loci with the risk of aggressive periodontitis. For the lead SNP of the main associated linkage disequilibrium region, rs1333048, the odds ratio of the autosomal-recessive mode of inheritance is 1.99 (95% confidence interval 1.33-2.94; P = 6.9 x 10(-4 for generalized aggressive periodontitis, and 1.72 (1.06-2.76; P = 2.6 x 10(-2 for localized aggressive periodontitis. The two associated linkage disequilibrium regions map to the sequence of the large antisense noncoding RNA ANRIL, which partly overlaps regulatory and coding sequences of CDKN2A/CDKN2B. A closely located diabetes-associated variant was independent of the CHD and periodontitis risk haplotypes. Our study demonstrates that CHD and periodontitis are genetically related by at least one susceptibility locus, which is possibly involved in ANRIL activity and independent of diabetes associated risk variants within this region. Elucidation of the interplay of ANRIL transcript variants and their involvement in increased susceptibility to the interactive diseases CHD and periodontitis promises new insight into the underlying shared pathogenic mechanisms of these complex common diseases.

  16. Genetic diversity of 21 autosomal STR loci in the Han population from Sichuan province, Southwest China.

    Science.gov (United States)

    He, Guanglin; Li, Ye; Wang, Zheng; Liang, Weibo; Luo, Haibo; Liao, Miao; Zhang, Ji; Yan, Jing; Li, Yingbi; Hou, Yiping; Wu, Jin

    2017-11-01

    Exploration of the ethnic origin and genetic differentiation of 56 Chinese officially recognized nationalities populations played a fundamental role in the research field of population genetics, forensic science, linguistics, anthropology, and archaeology. In the present study, population data of 21 autosomal STR loci (CSF1PO, D10S1248, D12S391, D13S317, D16S539, D18S51, D19S433, D21S11, D2S1338, D2S441, D3S1358, D5S818, D6S1043, D7S820, D8S1179, FGA, Penta D, Penta E, TH01, TPOX, and vWA) included in the AGCU EX22 kit in 2793 Southwest Han Chinese individuals was obtained and population genetic relationships among 28 Chinese populations were investigated. Our study indicated that the twenty-one autosomal STRs are highly polymorphic in the Sichuan Han population and can be used as a powerful tool in the routine forensic usage. MDS and phylogenetic analysis suggested that the Sichuan Han population kept a close genetic relationship with the southwest populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Unique genetic loci identified for emotional behavior in control and chronic stress conditions.

    Directory of Open Access Journals (Sweden)

    Kimberly AK Carhuatanta

    2014-10-01

    Full Text Available An individual’s genetic background affects their emotional behavior and response to stress. Although studies have been conducted to identify genetic predictors for emotional behavior or stress response, it remains unknown how prior stress history alters the interaction between an individual’s genome and their emotional behavior. Therefore, the purpose of this study is to identify chromosomal regions that affect emotional behavior and are sensitive to stress exposure. We utilized the BXD behavioral genetics mouse model to identify chromosomal regions that predict fear learning and emotional behavior following exposure to a control or chronic stress environment. 62 BXD recombinant inbred strains and C57BL/6 and DBA/2 parental strains underwent behavioral testing including a classical fear conditioning paradigm and the elevated plus maze. Distinct quantitative trait loci (QTLs were identified for emotional learning, anxiety and locomotion in control and chronic stress populations. Candidate genes, including those with already known functions in learning and stress were found to reside within the identified QTLs. Our data suggest that chronic stress history reveals novel genetic predictors of emotional behavior.

  18. Additional mechanisms conferring genetic susceptibility to Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Miguel eCalero

    2015-04-01

    Full Text Available Familial Alzheimer's disease (AD, mostly associated with early onset, is caused by mutations in three genes (APP, PSEN1 and PSEN2 involved in the production of the amyloid  peptide. In contrast, the molecular mechanisms that trigger the most common late onset sporadic AD remain largely unknown. With the implementation of an increasing number of case-control studies and the upcoming of large-scale genome-wide association studies (GWAS there is a mounting list of genetic risk factors associated to common genetic variants that have been associated to sporadic AD. Besides APOE, that presents a strong association with the disease (OR~4, the rest of these genes have moderate or low degrees of association, with OR ranging from 0.88 to 1.23. Taking together, these genes may account only for a fraction of the attributable AD risk and therefore, rare variants and epistastic gene interactions should be taken into account in order to get the full picture of the genetic risks associated to AD. Here, we review recent whole-exome studies looking for rare variants, somatic brain mutations with a strong association to the disease, and several studies dealing with epistasis as additional mechanisms conferring genetic susceptibility to AD. Altogether, recent evidence underlines the importance of defining molecular and genetic pathways and networks rather than the contribution of specific genes.

  19. Population genetic study of 10 short tandem repeat loci from 600 domestic dogs in Korea.

    Science.gov (United States)

    Moon, Seo Hyun; Jang, Yoon-Jeong; Han, Myun Soo; Cho, Myung-Haing

    2016-09-30

    Dogs have long shared close relationships with many humans. Due to the large number of dogs in human populations, they are often involved in crimes. Occasionally, canine biological evidence such as saliva, bloodstains and hairs can be found at crime scenes. Accordingly, canine DNA can be used as forensic evidence. The use of short tandem repeat (STR) loci from biological evidence is valuable for forensic investigations. In Korea, canine STR profiling-related crimes are being successfully analyzed, leading to diverse crimes such as animal cruelty, dog-attacks, murder, robbery, and missing and abandoned dogs being solved. However, the probability of random DNA profile matches cannot be analyzed because of a lack of canine STR data. Therefore, in this study, 10 STR loci were analyzed in 600 dogs in Korea (344 dogs belonging to 30 different purebreds and 256 crossbred dogs) to estimate canine forensic genetic parameters. Among purebred dogs, a separate statistical analysis was conducted for five major subgroups, 97 Maltese, 47 Poodles, 31 Shih Tzus, 32 Yorkshire Terriers, and 25 Pomeranians. Allele frequencies, expected (Hexp) and observed heterozygosity (Hobs), fixation index (F), probability of identity (P(ID)), probability of sibling identity (P(ID)sib) and probability of exclusion (PE) were then calculated. The Hexp values ranged from 0.901 (PEZ12) to 0.634 (FHC2079), while the P(ID)sib values were between 0.481 (FHC2079) and 0.304 (PEZ12) and the P(ID)sib was about 3.35 × 10(-)⁵ for the combination of all 10 loci. The results presented herein will strengthen the value of canine DNA to solving dog-related crimes.

  20. Patterns of genetic diversity at the nine forensically approved STR loci in the Indian populations.

    Science.gov (United States)

    Dutta, Ranjan; Reddy, B Mohan; Chattopadhyay, P; Kashyap, V K; Sun, Guangyun; Deka, Ranjan

    2002-02-01

    Genetic diversity at the nine short tandem repeat (STR) loci, which are universally approved and widely used for forensic investigations, has been studied among nine Indian populations with diverse ethnic, linguistic, and geographic backgrounds. The nine STR loci were profiled on 902 individuals using fluorescent detection methods on an ABI377 System, with the aid of an Amp-F1 Profiler Plus Kit. The studied populations include two upper castes, Brahmin and Kayastha; a tribe, Garo, from West Bengal; a Hindu caste, Meitei, with historical links to Bengal Brahmins; a migrant group of Muslims; three tribal groups, Naga, Kuki and Hmar, from Manipur in northeast India; and a middle-ranking caste, Golla, who are seminomadic herders from Andhra Pradesh. Gene diversity analysis suggests that the average heterozygosity is uniformly high (>0.8) in the studied populations, with the coefficient of gene differentiation at 0.050 +/- 0.0054. Both neighbor-joining (NJ) and unweighted pair group method with arithmetic mean (UPGMA) trees based on DA distances bring out distinct clusters that are consistent with ethnic, linguistic, and/or geographic backgrounds of the populations. The fit of the Harpending and Ward model of regression of average heterozygosity on the gene frequency centroid is found to be good, and the observed outliers are consistent with the population structure and history of the studied populations. Our study suggests that the nine STR loci, used so far mostly for forensic investigations, can be used fruitfully for microevolutionary studies as well, and for reconstructing the phylogenetic history of human populations, at least at the local level.

  1. Genetic control of susceptibility to apoptosis of thymocytes

    International Nuclear Information System (INIS)

    Mori, N.; Okumoto, M.; Morimoto, J.; Imai, S.; Matsuyama, T.; Takamori, Y.; Yagasaki, O.

    1992-01-01

    Genetic control of the susceptibility of thymocytes to radiation-induced apoptosis in mice was investigated by counting dead cells in a selected area of thymic cortex on histological specimens after whole-body X-irradiation. The number of dead cells increased almost linearly with doses in BALB/cHeA and STS/A mice. However, dead cell counts in BALB/cHeA mice were more than twice those in STS/A mice at each dose. C57BL/6N and B10.BR mice exhibited a sensitive phenotype similar to BALB/cHeA mice, while C3H/HeMsNrs and NFS/N mice showed a resistant phenotype similar to STS/A mice. Sex difference in the susceptibility of thymocytes to cell death was not recognized in BALB/cHeA and STS/A mice. Resistance was dominant over susceptibility in the progenies of reciprocal crosses between the two strains, indicating an autosomal inheritance. The segregation ratio of susceptible to resistant phenotype in the backcrosses of (BALB/cHeA X STS/A)F 1 with BALB/cHeA was not significantly different from 1 : 1 and all backcrosses of (BALB/cHeA X STS/A)F 1 with STS/A exhibited a resistant phenotype. The results demonstrated that the difference in the susceptibility of thymocytes to radiation-induced apoptosis in the two strains of mice is due to one major autosomal allele. (author)

  2. New susceptibility loci associated with kidney disease in type 1 diabetes

    DEFF Research Database (Denmark)

    Sandholm, Niina; Salem, Rany M; McKnight, Amy Jayne

    2012-01-01

    Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion...... mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genome-wide association studies (GWAS) of T1D DN comprising ~2...... SNP in the ERBB4 gene (rs7588550, P = 2.1 × 10(-7)), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN....

  3. [Linkage analysis of susceptibility loci in 2 target chromosomes in pedigrees with paranoid schizophrenia and undifferentiated schizophrenia].

    Science.gov (United States)

    Zeng, Li-ping; Hu, Zheng-mao; Mu, Li-li; Mei, Gui-sen; Lu, Xiu-ling; Zheng, Yong-jun; Li, Pei-jian; Zhang, Ying-xue; Pan, Qian; Long, Zhi-gao; Dai, He-ping; Zhang, Zhuo-hua; Xia, Jia-hui; Zhao, Jing-ping; Xia, Kun

    2011-06-01

    To investigate the relationship of susceptibility loci in chromosomes 1q21-25 and 6p21-25 and schizophrenia subtypes in Chinese population. A genomic scan and parametric and non-parametric analyses were performed on 242 individuals from 36 schizophrenia pedigrees, including 19 paranoid schizophrenia and 17 undifferentiated schizophrenia pedigrees, from Henan province of China using 5 microsatellite markers in the chromosome region 1q21-25 and 8 microsatellite markers in the chromosome region 6p21-25, which were the candidates of previous studies. All affected subjects were diagnosed and typed according to the criteria of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revised (DSM-IV-TR; American Psychiatric Association, 2000). All subjects signed informed consent. In chromosome 1, parametric analysis under the dominant inheritance mode of all 36 pedigrees showed that the maximum multi-point heterogeneity Log of odds score method (HLOD) score was 1.33 (α = 0.38). The non-parametric analysis and the single point and multi-point nonparametric linkage (NPL) scores suggested linkage at D1S484, D1S2878, and D1S196. In the 19 paranoid schizophrenias pedigrees, linkage was not observed for any of the 5 markers. In the 17 undifferentiated schizophrenia pedigrees, the multi-point NPL score was 1.60 (P= 0.0367) at D1S484. The single point NPL score was 1.95(P= 0.0145) and the multi-point NPL score was 2.39 (P= 0.0041) at D1S2878. Additionally, the multi-point NPL score was 1.74 (P= 0.0255) at D1S196. These same three loci showed suggestive linkage during the integrative analysis of all 36 pedigrees. In chromosome 6, parametric linkage analysis under the dominant and recessive inheritance and the non-parametric linkage analysis of all 36 pedigrees and the 17 undifferentiated schizophrenia pedigrees, linkage was not observed for any of the 8 markers. In the 19 paranoid schizophrenias pedigrees, parametric analysis showed that under recessive

  4. Population genetics of 26 Y-STR loci for the Han ethnic in Hunan province, China.

    Science.gov (United States)

    Jiang, Weibo; Gong, Zheng; Rong, Haibo; Guan, Hua; Zhang, Tao; Zhao, Yihe; Fu, Xiaoliang; Zha, Lagabaiyila; Jin, Chuan; Ding, Yanjun

    2017-01-01

    To study the population data of Y-chromosome STRs (Y-STRs) of Han population resided in Hunan province, we analyzed haplotypes of 26 Y-STRs (DYS19, DYS385a/b, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS481, DYS533, DYS549, DYS570, DYS576, DYS635, DYS643, DYS388, DYS449, DYS460, and YGATAH4) in 310 unrelated male individuals using a commercially available Goldeneye® DNA ID 26Y system. The calculated average gene diversity values ranged from 0.4211 to 0.9590 for DYS438 and DYS385a/b loci, respectively. The discriminatory capacity was 96.77 % with 300 observed haplotypes. Population relationships between Hunan Han and eight other populations available from Y-chromosome haplotype reference database (YHRD) were compared. The results showed that the Han population resided in the Hunan district is significantly different from other populations. Our results also indicated that these 26 Y-STR loci were highly genetically polymorphic in the Hunan Han population and of great value in forensic application.

  5. Murine Lupus Susceptibility Locus Sle2 Activates DNA-Reactive B Cells through Two Sub-Loci with Distinct Phenotypes

    Science.gov (United States)

    Zeumer, Leilani; Sang, Allison; Niu, Haitao; Morel, Laurence

    2010-01-01

    The NZM2410-derived Sle2 lupus susceptibility locus induces an abnormal B cell differentiation which most prominently leads to the expansion of autoreactive B1a cells. We have mapped the expansion of B1a cells to three Sle2 sub-loci, Sle2a, Sle2b, and Sle2c. Sle2 also enhances the breach of B cell tolerance to nuclear antigens in the 56R anti-DNA immunoglobulin transgenic (Tg) model. This study used the Sle2 sub-congenic strains to map the activation of 56R Tg B cells. Sle2c strongly sustained the breach of tolerance and the activation of anti-DNA B cells. The production of Tg-encoded anti-DNA antibodies was more modest in Sle2a expressing mice, but Sle2a was responsible for the recruitment for Tg B cells to the marginal zone, a phenotype that has been found for 56R Tg B cells in mice expressing the whole Sle2 interval. In addition, Sle2a promoted the production of endogenously encoded anti-DNA antibodies. Overall, this study showed that at least two Sle2 genes are involved in the activation of anti-DNA B cells, and excluded more than two-thirds of the Sle2 interval from contributing to this phenotype. This constitutes an important step toward the identification of novel genes that play a critical role in B cell tolerance. PMID:21270826

  6. Development of polymorphic microsatellite loci for conservation genetic studies of the coral reef fish Centropyge bicolor

    KAUST Repository

    Herrera Sarrias, Marcela

    2015-08-14

    A total of 23 novel polymorphic microsatellite marker loci were developed for the angelfish Centropyge bicolor through 454 sequencing, and further tested on two spatially separated populations (90 individuals each) from Kimbe Bay in Papua New Guinea. The mean ± s.e. number of alleles per locus was 14·65 ± 1·05, and mean ± s.e. observed (HO) and expected (HE) heterozygosity frequencies were 0·676 ± 0·021 and 0·749 ± 0·018, respectively. The markers reported here constitute the first specific set for this genus and will be useful for future conservation genetic studies in the Indo-Pacific region. © 2015 The Fisheries Society of the British Isles.

  7. Development of polymorphic microsatellite loci for conservation genetic studies of the coral reef fish Centropyge bicolor

    KAUST Repository

    Herrera Sarrias, Marcela; Saenz-Agudelo, P.; Nanninga, Gerrit B.; Berumen, Michael L.

    2015-01-01

    A total of 23 novel polymorphic microsatellite marker loci were developed for the angelfish Centropyge bicolor through 454 sequencing, and further tested on two spatially separated populations (90 individuals each) from Kimbe Bay in Papua New Guinea. The mean ± s.e. number of alleles per locus was 14·65 ± 1·05, and mean ± s.e. observed (HO) and expected (HE) heterozygosity frequencies were 0·676 ± 0·021 and 0·749 ± 0·018, respectively. The markers reported here constitute the first specific set for this genus and will be useful for future conservation genetic studies in the Indo-Pacific region. © 2015 The Fisheries Society of the British Isles.

  8. Genetic susceptibility to radiation: which impact on medical practice?

    Energy Technology Data Exchange (ETDEWEB)

    Alapetite, C.; Cosset, J.M. [Institut Curie, Dept. de Radiotherapie, 75 - Paris (France); Bourguignon, M.H.; Masse, R. [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2001-07-01

    Recent progress especially in the field of gene identification and expression have raised more attention on genetic susceptibility to cancer possibly enhanced by radiations. Radiation therapists are mostly concerned by this question since hypersensitive patients may suffer from adverse effects in normal tissues following a standard radiation therapy and normally sensitive patients could benefit from higher doses of radiations for a better cure of their malignant tumors. Although only a small percentage of individuals are 'hypersensitive' to radiation effects, all medical specialists using ionising radiations should be aware of these new progress in medical knowledge. The present paper reviews the main pathologies (diseases, syndromes...) known or strongly suspected to be associated with a hypersensitivity to ionizing radiations. Then the main tests capable to detect in advance such pathologies are analyzed and compared. Finally guidelines are provided, especially to the radiation therapists to limit the risk of severe complications (or even deaths) for these specific subset of patients suffering from a genetic disorder with a susceptibility to radiations. (author)

  9. Radiation-sensitive genetically susceptible pediatric sub-populations

    Energy Technology Data Exchange (ETDEWEB)

    Kleinerman, Ruth A. [National Cancer Institute, NIH, DHHS, Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Rockville, MD (United States)

    2009-02-15

    Major advances in pediatric cancer treatment have resulted in substantial improvements in survival. However, concern has emerged about the late effects of cancer therapy, especially radiation-related second cancers. Studies of childhood cancer patients with inherited cancer syndromes can provide insights into the interaction between radiation and genetic susceptibility to multiple cancers. Children with retinoblastoma (Rb), neurofibromatosis type 1 (NF1), Li-Fraumeni syndrome (LFS), and nevoid basal cell carcinoma syndrome (NBCCS) are at substantial risk of developing radiation-related second and third cancers. A radiation dose-response for bone and soft-tissue sarcomas has been observed in hereditary Rb patients, with many of these cancers occurring in the radiation field. Studies of NF1 patients irradiated for optic pathway gliomas have reported increased risks of developing another cancer associated with radiotherapy. High relative risks for second and third cancers were observed for a cohort of 200 LFS family members, especially children, possibly related to radiotherapy. Children with NBCCS are very sensitive to radiation and develop multiple basal cell cancers in irradiated areas. Clinicians following these patients should be aware of their increased genetic susceptibility to multiple primary malignancies enhanced by sensitivity to ionizing radiation. (orig.)

  10. Genetic susceptibility to radiations. Which impact on medical practice

    International Nuclear Information System (INIS)

    Alapetite, C.; Cosset, J. M.; Bourguignon, M. H.; Masse, R.

    2000-01-01

    Recent progress especially in the field of gene identification and expression have raised more attention on genetic susceptibility to cancer possibly enhanced by radiation. Radiation therapists are mostly concerned by this question since hypersensitive patients may suffer from adverse effects in normal tissues following a standard radiation therapy and normally sensitive patients could benefit from higher doses of radiation for better treatment of their malignant tumors. Although only a small percentage of individuals are hypersensitive to radiation effects, all medical specialists using ionising radiation should be aware of this new progress in medical knowledge. The present paper reviews the main pathologies (diseases, syndromes ...) known or strongly suspected to be associated with a hypersensitivity to ionizing radiation. Then the main tests capable of detecting in advance such pathologies are analyzed and compared. Finally guidelines are provided, especially to the radiation therapists to limit the risk of severe complications (or even deaths) for this specific subset of patients suffering from a genetic disorder with a susceptibility to radiation

  11. Genetic susceptibility to radiation: which impact on medical practice?

    International Nuclear Information System (INIS)

    Alapetite, C.; Cosset, J.M.; Bourguignon, M.H.; Masse, R.

    2001-01-01

    Recent progress especially in the field of gene identification and expression have raised more attention on genetic susceptibility to cancer possibly enhanced by radiations. Radiation therapists are mostly concerned by this question since hypersensitive patients may suffer from adverse effects in normal tissues following a standard radiation therapy and normally sensitive patients could benefit from higher doses of radiations for a better cure of their malignant tumors. Although only a small percentage of individuals are 'hypersensitive' to radiation effects, all medical specialists using ionising radiations should be aware of these new progress in medical knowledge. The present paper reviews the main pathologies (diseases, syndromes...) known or strongly suspected to be associated with a hypersensitivity to ionizing radiations. Then the main tests capable to detect in advance such pathologies are analyzed and compared. Finally guidelines are provided, especially to the radiation therapists to limit the risk of severe complications (or even deaths) for these specific subset of patients suffering from a genetic disorder with a susceptibility to radiations. (author)

  12. Pollinator choice in Petunia depends on two major genetic Loci for floral scent production.

    Science.gov (United States)

    Klahre, Ulrich; Gurba, Alexandre; Hermann, Katrin; Saxenhofer, Moritz; Bossolini, Eligio; Guerin, Patrick M; Kuhlemeier, Cris

    2011-05-10

    Differences in floral traits, such as petal color, scent, morphology, or nectar quality and quantity, can lead to specific interactions with pollinators and may thereby cause reproductive isolation. Petunia provides an attractive model system to study the role of floral characters in reproductive isolation and speciation. The night-active hawkmoth pollinator Manduca sexta relies on olfactory cues provided by Petunia axillaris. In contrast, Petunia exserta, which displays a typical hummingbird pollination syndrome, is devoid of scent. The two species can easily be crossed in the laboratory, which makes it possible to study the genetic basis of the evolution of scent production and the importance of scent for pollinator behavior. In an F2 population derived from an interspecific cross between P. axillaris and P. exserta, we identified two quantitative trait loci (QTL) that define the difference between the two species' ability to produce benzenoid volatiles. One of these loci was identified as the MYB transcription factor ODORANT1. Reciprocal introgressions of scent QTL were used for choice experiments under controlled conditions. These experiments demonstrated that the hawkmoth M. sexta prefers scented plants and that scent determines choice at a short distance. When exposed to conflicting cues of color versus scent, the insects display no preference, indicating that color and scent are equivalent cues. Our results show that scent is an important flower trait that defines plant-pollinator interactions at the level of individual plants. The genetic basis underlying such a major phenotypic difference appears to be relatively simple and may enable rapid loss or gain of scent through hybridization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Genetic and Molecular Mechanisms of Quantitative Trait Loci Controlling Maize Inflorescence Architecture.

    Science.gov (United States)

    Li, Manfei; Zhong, Wanshun; Yang, Fang; Zhang, Zuxin

    2018-03-01

    The establishment of inflorescence architecture is critical for the reproduction of flowering plant species. The maize plant generates two types of inflorescences, the tassel and the ear, and their architectures have a large effect on grain yield and yield-related traits that are genetically controlled by quantitative trait loci (QTLs). Since ear and tassel architecture are deeply affected by the activity of inflorescence meristems, key QTLs and genes regulating meristematic activity have important impacts on inflorescence development and show great potential for optimizing grain yield. Isolation of yield trait-related QTLs is challenging, but these QTLs have direct application in maize breeding. Additionally, characterization and functional dissection of QTLs can provide genetic and molecular knowledge of quantitative variation in inflorescence architecture. In this review, we summarize currently identified QTLs responsible for the establishment of ear and tassel architecture and discuss the potential genetic control of four ear-related and four tassel-related traits. In recent years, several inflorescence architecture-related QTLs have been characterized at the gene level. We review the mechanisms of these characterized QTLs.

  14. Commentary on "identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array." COGS-Cancer Research UK GWAS-ELLIPSE (part of GAME-ON) Initiative; Australian Prostate Cancer Bioresource; UK Genetic Prostate Cancer Study Collaborators/British Association

    DEFF Research Database (Denmark)

    Olumi, Aria F; Nordestgaard, Børge G.

    2014-01-01

    Prostate cancer is the most frequently diagnosed cancer in males in developed countries. To identify common prostate cancer susceptibility alleles, we genotyped 211,155 SNPs on a custom Illumina array (iCOGS) in blood DNA from 25,074 prostate cancer cases and 24,272 controls from the internationa...

  15. Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum.

    Science.gov (United States)

    Carter, Andrew T; Paul, Catherine J; Mason, David R; Twine, Susan M; Alston, Mark J; Logan, Susan M; Austin, John W; Peck, Michael W

    2009-03-19

    Proteolytic Clostridium botulinum is the causative agent of botulism, a severe neuroparalytic illness. Given the severity of botulism, surprisingly little is known of the population structure, biology, phylogeny or evolution of C. botulinum. The recent determination of the genome sequence of C. botulinum has allowed comparative genomic indexing using a DNA microarray. Whole genome microarray analysis revealed that 63% of the coding sequences (CDSs) present in reference strain ATCC 3502 were common to all 61 widely-representative strains of proteolytic C. botulinum and the closely related C. sporogenes tested. This indicates a relatively stable genome. There was, however, evidence for recombination and genetic exchange, in particular within the neurotoxin gene and cluster (including transfer of neurotoxin genes to C. sporogenes), and the flagellar glycosylation island (FGI). These two loci appear to have evolved independently from each other, and from the remainder of the genetic complement. A number of strains were atypical; for example, while 10 out of 14 strains that formed type A1 toxin gave almost identical profiles in whole genome, neurotoxin cluster and FGI analyses, the other four strains showed divergent properties. Furthermore, a new neurotoxin sub-type (A5) has been discovered in strains from heroin-associated wound botulism cases. For the first time, differences in glycosylation profiles of the flagella could be linked to differences in the gene content of the FGI. Proteolytic C. botulinum has a stable genome backbone containing specific regions of genetic heterogeneity. These include the neurotoxin gene cluster and the FGI, each having evolved independently of each other and the remainder of the genetic complement. Analysis of these genetic components provides a high degree of discrimination of strains of proteolytic C. botulinum, and is suitable for clinical and forensic investigations of botulism outbreaks.

  16. Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum

    Directory of Open Access Journals (Sweden)

    Twine Susan M

    2009-03-01

    Full Text Available Abstract Background Proteolytic Clostridium botulinum is the causative agent of botulism, a severe neuroparalytic illness. Given the severity of botulism, surprisingly little is known of the population structure, biology, phylogeny or evolution of C. botulinum. The recent determination of the genome sequence of C. botulinum has allowed comparative genomic indexing using a DNA microarray. Results Whole genome microarray analysis revealed that 63% of the coding sequences (CDSs present in reference strain ATCC 3502 were common to all 61 widely-representative strains of proteolytic C. botulinum and the closely related C. sporogenes tested. This indicates a relatively stable genome. There was, however, evidence for recombination and genetic exchange, in particular within the neurotoxin gene and cluster (including transfer of neurotoxin genes to C. sporogenes, and the flagellar glycosylation island (FGI. These two loci appear to have evolved independently from each other, and from the remainder of the genetic complement. A number of strains were atypical; for example, while 10 out of 14 strains that formed type A1 toxin gave almost identical profiles in whole genome, neurotoxin cluster and FGI analyses, the other four strains showed divergent properties. Furthermore, a new neurotoxin sub-type (A5 has been discovered in strains from heroin-associated wound botulism cases. For the first time, differences in glycosylation profiles of the flagella could be linked to differences in the gene content of the FGI. Conclusion Proteolytic C. botulinum has a stable genome backbone containing specific regions of genetic heterogeneity. These include the neurotoxin gene cluster and the FGI, each having evolved independently of each other and the remainder of the genetic complement. Analysis of these genetic components provides a high degree of discrimination of strains of proteolytic C. botulinum, and is suitable for clinical and forensic investigations of botulism

  17. Confirmation of dyslexia susceptibility loci on chromosomes 1p and 2p, but not 6p in a Dutch sib-pair collection.

    NARCIS (Netherlands)

    Kovel, C.G.F. de; Franke, B.; Hol, F.A.; Lebrec, J.J.; Maassen, B.A.M.; Brunner, H.G.; Padberg, G.W.A.M.; Platko, J.; Pauls, D.

    2008-01-01

    In this study, we attempted to confirm genetic linkage to developmental dyslexia and reading-related quantitative traits of loci that have been shown to be associated with dyslexia in previous studies. In our sample of 108 Dutch nuclear families, the categorical trait showed strongest linkage to

  18. [A population genetic study of 22 autosomal loci of single nucleotide polymorphisms].

    Science.gov (United States)

    Tang, Jian-pin; Jiang, Feng-hui; Shi, Mei-sen; Xu, Chuan-chao; Chen, Rui; Lai, Xiao-pin

    2012-12-01

    To evaluate polymorphisms and forensic efficiency of 22 non-binary single nucleotide polymorphism (SNP) loci. One hundred ethnic Han Chinese individuals were recruited from Dongguan, Guangdong. The 22 loci were genotyped with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Nine loci were found with a single allele, 4 loci were found to be biallelic, whilst 9 loci were found to have 3 alleles. For 13 polymorphic loci, the combined discrimination power and power of exclusion were 0.999 98 and 0.9330, respectively. For the 9 non-biallelic loci, the combined discrimination power and power of exclusion were 0.9998 and 0.8956, respectively. For motherless cases, the combined power of exclusion was 0.6405 for 13 polymorphic SNPs and 0.6405 for 9 non-binary SNPs. Non-binary loci have a greater discrimination power and exclusion power per SNP.

  19. Androgenetic Alopecia: Identification of Four Genetic Risk Loci and Evidence for the Contribution of WNT Signaling to Its Etiology

    NARCIS (Netherlands)

    Heilmann, S.; Kiefer, A.K.; Fricker, N.; Drichel, D.; Hillmer, A.M.; Herold, C.; Tung, J.Y.; Eriksson, N.; Redler, S.; Betz, R.C.; Li, R.; Karason, A.; Nyholt, D.R.; Song, K.; Vermeulen, S.; Kanoni, S.; Dedoussis, G.; Martin, N.G.; Kiemeney, L.A.L.M.; Mooser, V.; Stefansson, K.; Richards, J.B.; Becker, T.; Brockschmidt, F.F.; Hinds, D.A.; Nothen, M.M.

    2013-01-01

    The pathogenesis of androgenetic alopecia (AGA, male-pattern baldness) is driven by androgens, and genetic predisposition is the major prerequisite. Candidate gene and genome-wide association studies have reported that single-nucleotide polymorphisms (SNPs) at eight different genomic loci are

  20. Amplified fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the yellow fever mosquito Aedes aegypti.

    Science.gov (United States)

    Zhong, Daibin; Menge, David M; Temu, Emmanuel A; Chen, Hong; Yan, Guiyun

    2006-07-01

    The yellow fever mosquito Aedes aegypti has been the subject of extensive genetic research due to its medical importance and the ease with which it can be manipulated in the laboratory. A molecular genetic linkage map was constructed using 148 amplified fragment length polymorphism (AFLP) and six single-strand conformation polymorphism (SSCP) markers. Eighteen AFLP primer combinations were used to genotype two reciprocal F2 segregating populations. Each primer combination generated an average of 8.2 AFLP markers eligible for linkage mapping. The length of the integrated map was 180.9 cM, giving an average marker resolution of 1.2 cM. Composite interval mapping revealed a total of six QTL significantly affecting Plasmodium susceptibility in the two reciprocal crosses of Ae. aegypti. Two common QTL on linkage group 2 were identified in both crosses that had similar effects on the phenotype, and four QTL were unique to each cross. In one cross, the four main QTL accounted for 64% of the total phenotypic variance, and digenic epistasis explained 11.8% of the variance. In the second cross, the four main QTL explained 66% of the variance, and digenic epistasis accounted for 16% of the variance. The actions of these QTL were either dominance or underdominance. Our results indicated that at least three new QTL were mapped on chromosomes 1 and 3. The polygenic nature of susceptibility to P. gallinaceum and epistasis are important factors for significant variation within or among mosquito strains. The new map provides additional information useful for further genetic investigation, such as identification of new genes and positional cloning.

  1. Replication and meta-analysis of GWAS identified susceptibility loci in Kawasaki disease confirm the importance of B lymphoid tyrosine kinase (BLK) in disease susceptibility

    NARCIS (Netherlands)

    Chang, Chia-Jung; Kuo, Ho-Chang; Chang, Jeng-Sheng; Lee, Jong-Keuk; Tsai, Fuu-Jen; Khor, Chiea Chuen; Chang, Li-Ching; Chen, Shih-Ping; Ko, Tai-Ming; Liu, Yi-Min; Chen, Ying-Ju; Hong, Young Mi; Jang, Gi Young; Hibberd, Martin L.; Kuijpers, Taco; Burgner, David; Levin, Michael; Burns, Jane C.; Davila, Sonia; Chen, Yuan-Tsong; Chen, Chien-Hsiun; Wu, Jer-Yuarn; Lee, Yi-Ching; Liang, Chi-Di; Hwang, Kao-Pin; Chang, Luan-Yin; Huang, Li-Min; Chen, Ming-Ren; Chi, Hsin; Huang, Fu-Yuan; Chiu, Nan-Chang; Lee, Meng-Luen; Huang, Yhu-Chering; Hwang, Betau; Lee, Pi-Chang; Yoo, Jeong-Jin; Park, In-Sook; Hong, Soo-Jong; Kim, Kwi-Joo; Kim, Jae-Jung; Sohn, Saejung; Young Jang, Gi; Ha, Kee-Soo; Nam, Hyo-Kyoung; Byeon, Jung-Hye; Yun, Sin Weon; Han, Myung Ki; Kuipers, Irene M.; Ottenkamp, Jaap J.; Biezeveld, Maarten

    2013-01-01

    The BLK and CD40 loci have been associated with Kawasaki disease (KD) in two genome-wide association studies (GWAS) conducted in a Taiwanese population of Han Chinese ancestry (Taiwanese) and in Japanese cohorts. Here we build on these findings with replication studies of the BLK and CD40 loci in

  2. PERMANENT GENETIC RESOURCES: Isolation and characterization of polymorphic microsatellite loci in common evening primrose (Oenothera biennis).

    Science.gov (United States)

    Larson, E L; Bogdanowicz, S M; Agrawal, A A; Johnson, M T J; Harrison, R G

    2008-03-01

    We developed nine polymorphic microsatellite loci for evening primrose (Oenothera biennis). These loci have two to 18 alleles per locus and observed heterozygosities ranging from 0 to 0.879 in a sample of 34 individuals. In a pattern consistent with the functionally asexual reproductive system of this species, 17/36 pairs of loci revealed significant linkage disequilibrium and three loci showed significant deviations from Hardy-Weinberg equilibrium. The loci will be informative in identifying genotypes in multigenerational field studies to assess changes in genotype frequencies. © 2007 The Authors.

  3. A Simple Test of Class-Level Genetic Association Can Reveal Novel Cardiometabolic Trait Loci.

    Directory of Open Access Journals (Sweden)

    Jing Qian

    Full Text Available Characterizing the genetic determinants of complex diseases can be further augmented by incorporating knowledge of underlying structure or classifications of the genome, such as newly developed mappings of protein-coding genes, epigenetic marks, enhancer elements and non-coding RNAs.We apply a simple class-level testing framework, termed Genetic Class Association Testing (GenCAT, to identify protein-coding gene association with 14 cardiometabolic (CMD related traits across 6 publicly available genome wide association (GWA meta-analysis data resources. GenCAT uses SNP-level meta-analysis test statistics across all SNPs within a class of elements, as well as the size of the class and its unique correlation structure, to determine if the class is statistically meaningful. The novelty of findings is evaluated through investigation of regional signals. A subset of findings are validated using recently updated, larger meta-analysis resources. A simulation study is presented to characterize overall performance with respect to power, control of family-wise error and computational efficiency. All analysis is performed using the GenCAT package, R version 3.2.1.We demonstrate that class-level testing complements the common first stage minP approach that involves individual SNP-level testing followed by post-hoc ascribing of statistically significant SNPs to genes and loci. GenCAT suggests 54 protein-coding genes at 41 distinct loci for the 13 CMD traits investigated in the discovery analysis, that are beyond the discoveries of minP alone. An additional application to biological pathways demonstrates flexibility in defining genetic classes.We conclude that it would be prudent to include class-level testing as standard practice in GWA analysis. GenCAT, for example, can be used as a simple, complementary and efficient strategy for class-level testing that leverages existing data resources, requires only summary level data in the form of test statistics, and

  4. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix.

    Science.gov (United States)

    Friedman, Lisa; Kolter, Roberto

    2004-07-01

    Pseudomonas aeruginosa forms biofilms, which are cellular aggregates encased in an extracellular matrix. Molecular genetics studies of three common autoaggregative phenotypes, namely wrinkled colonies, pellicles, and solid-surface-associated biofilms, led to the identification of two loci, pel and psl, that are involved in the production of carbohydrate-rich components of the biofilm matrix. The pel gene cluster is involved in the production of a glucose-rich matrix material in P. aeruginosa strain PA14 (L. Friedman and R. Kolter, Mol. Microbiol. 51:675-690, 2004). Here we investigate the role of the pel gene cluster in P. aeruginosa strain ZK2870 and identify a second genetic locus, termed psl, involved in the production of a mannose-rich matrix material. The 11 predicted protein products of the psl genes are homologous to proteins involved in carbohydrate processing. P. aeruginosa is thus able to produce two distinct carbohydrate-rich matrix materials. Either carbohydrate-rich matrix component appears to be sufficient for mature biofilm formation, and at least one of them is required for mature biofilm formation in P. aeruginosa strains PA14 and ZK2870. Copyright 2004 American Society for Microbiology

  5. Genetic loci simultaneously controlling lignin monomers and biomass digestibility of rice straw.

    Science.gov (United States)

    Hu, Zhen; Zhang, Guifen; Muhammad, Ali; Samad, Rana Abdul; Wang, Youmei; Walton, Jonathan D; He, Yuqing; Peng, Liangcai; Wang, Lingqiang

    2018-02-26

    Lignin content and composition are crucial factors affecting biomass digestibility. Exploring the genetic loci simultaneously affecting lignin-relevant traits and biomass digestibility is a precondition for lignin genetic manipulation towards energy crop breeding. In this study, a high-throughput platform was employed to assay the lignin content, lignin composition and biomass enzymatic digestibility of a rice recombinant inbred line population. Correlation analysis indicated that the absolute content of lignin monomers rather than lignin content had negative effects on biomass saccharification, whereas the relative content of p-hydroxyphenyl unit and the molar ratio of p-hydroxyphenyl unit to guaiacyl unit exhibited positive roles. Eight QTL clusters were identified and four of them affecting both lignin composition and biomass digestibility. The additive effects of clustered QTL revealed consistent relationships between lignin-relevant traits and biomass digestibility. Pyramiding rice lines containing the above four positive alleles for increasing biomass digestibility were selected and showed comparable lignin content, decreased syringyl or guaiacyl unit and increased molar percentage of p-hydroxyphenyl unit, the molar ratio of p-hydroxyphenyl unit to guaiacyl unit and sugar releases. More importantly, the lodging resistance and eating/cooking quality of pyramiding lines were not sacrificed, indicating the QTL information could be applied to select desirable energy rice lines.

  6. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility

    DEFF Research Database (Denmark)

    Mahajan, Anubha; Go, Min Jin; Zhang, Weihua

    2014-01-01

    To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS), including 26,488 cases and 83,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry. We obs...... and characterization of complex trait loci and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry....... observed a significant excess in the directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls...

  7. Identification of Genetic Loci Associated with Quality Traits in Almond via Association Mapping.

    Directory of Open Access Journals (Sweden)

    Carolina Font i Forcada

    Full Text Available To design an appropriate association study, we need to understand population structure and the structure of linkage disequilibrium within and among populations as well as in different regions of the genome in an organism. In this study, we have used a total of 98 almond accessions, from five continents located and maintained at the Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA; Spain, and 40 microsatellite markers. Population structure analysis performed in 'Structure' grouped the accessions into two principal groups; the Mediterranean (Western-Europe and the non-Mediterranean, with K = 3, being the best fit for our data. There was a strong subpopulation structure with linkage disequilibrium decaying with increasing genetic distance resulting in lower levels of linkage disequilibrium between more distant markers. A significant impact of population structure on linkage disequilibrium in the almond cultivar groups was observed. The mean r2 value for all intra-chromosomal loci pairs was 0.040, whereas, the r2 for the inter-chromosomal loci pairs was 0.036. For analysis of association between the markers and phenotypic traits, five models comprising both general linear models and mixed linear models were selected to test the marker trait associations. The mixed linear model (MLM approach using co-ancestry values from population structure and kinship estimates (K model as covariates identified a maximum of 16 significant associations for chemical traits and 12 for physical traits. This study reports for the first time the use of association mapping for determining marker-locus trait associations in a world-wide almond germplasm collection. It is likely that association mapping will have the most immediate and largest impact on the tier of crops such as almond with the greatest economic value.

  8. Haplotype and genetic relationship of 27 Y-STR loci in Han population of Chaoshan area of China

    Directory of Open Access Journals (Sweden)

    Qing-hua TIAN

    2017-04-01

    Full Text Available Objective  To investigate the genetic polymorphisms of 27 Y-chromosomal short tandem repeats (Y-STR loci included in Yfiler® Plus kit in Han population of Chaoshan area, and explore the population genetic relationships and evaluate its application value on forensic medicine. Methods  By detecting 795 unrelated Chaoshan Han males with Yfiler® Plus kit, haplotype frequencies and population genetics parameters of the 27 Y-STR loci were statistically analyzed and compared with available data of other populations from different races and regions for analyzing the genetic distance and clustering relation of Chaoshan Han population. Results  Seven hundred and eighty-seven different haplotypes were observed in 795 unrelated male individuals, of which 779 haplotypes were unique, and 8 haplotypes occurred twice. The haplotype diversity (HD was 0.999975 with discriminative capacity (DC of 98.99%. The gene diversity (GD at the 27 Y-STR loci ranged from 0.3637(DYS391 to 0.9559(DYS385a/b. Comparing with Asian reference populations, the genetic distance (Rst between Chaoshan Han and Guangdong Han was the smallest (0.0036, while it was relatively larger between Chaoshan Han and Gansu Tibetan population (0.0935. The multi-dimensional scaling (MDS plot based on Rst values was similar to the results of clustering analysis. Conclusion  Multiplex detection of the 27 Y-STR loci reveals a highly polymorphic genetic distribution in Chaoshan Han population, which demonstrates the important significance of Yfiler® Plus kit for establishing a Y-STR database, studying population genetics, and for good practice in forensic medicine. DOI: 10.11855/j.issn.0577-7402.2017.03.08

  9. Genetic susceptibility to pancreatic cancer and its functional characterisation: The PANcreatic Disease ReseArch (PANDoRA) consortium

    Czech Academy of Sciences Publication Activity Database

    Campa, D.; Rizzato, C.; Capurso, G.; Giese, N.; Funel, N.; Greenhalf, W.; Souček, P.; Gazouli, M.; Pezzilli, R.; Pasquali, C.; Talar-Wojnarowska, R.; Cantore, M.; Andriulli, A.; Scarpa, A.; Jamroziak, K.; Delle Fave, G.; Costello, E.; Khaw, K. T.; Heller, A.; Key, T. K.; Theodoropoulos, G.; Malecka-Panas, E.; Mambrini, A.; Bambi, F.; Landi, S.; Pedrazzoli, S.; Bassi, C.; Pacetti, P.; Piepoli, A.; Tavano, F.; di Sebastiano, P.; Vodičková, Ludmila; Basso, D.; Plebani, M.; Fogar, P.; Buechler, M. W.; Bugert, P.; Vodička, Pavel; Boggi, U.; Neoptolemos, J. P.; Werner, J.; Canzian, F.

    2013-01-01

    Roč. 45, č. 2 (2013), s. 95-99 ISSN 1590-8658 Institutional support: RVO:68378041 Keywords : cancer susceptibility * genetic polymorphisms * genetic susceptibility Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.889, year: 2013

  10. Genetic susceptibility factors for multiple chemical sensitivity revisited

    DEFF Research Database (Denmark)

    Berg, Nikolaj Drimer; Rasmussen, Henrik Berg; Linneberg, Allan

    2010-01-01

    of this study was to investigate genetic susceptibility factors for MCS and self-reported chemical sensitivity in a population sample. Ninety six MCS patients and 1,207 controls from a general population divided into four severity groups of chemical sensitivity were genotyped for variants in the genes encoding......Multiple chemical sensitivity (MCS) is characterised by adverse effects due to exposure to low levels of chemical substances. Various genes, especially genes of importance to the metabolism of xenobiotic compounds, have been associated with MCS, but findings are inconsistent. The purpose...... significant (OR=1.2, p=0.28). Fast arylamine N-acetyltransferase 2 metaboliser status was associated with severity of chemical sensitivity only in the most severely affected group in the population sample (OR=3.1, p=0.04). The cholecystokinin 2 receptor allele with 21 CT repeats was associated with MCS when...

  11. Genetic susceptibility to HPV infection and cervical cancer

    Directory of Open Access Journals (Sweden)

    Maciag P.C.

    1999-01-01

    Full Text Available Squamous cell carcinoma of the cervix (SCCC is one of the leading causes of death in developing countries. Infection with high-risk human papillomavirus (HPV is the major risk factor to develop malignant lesions in the cervix. Polymorphisms of the MHC and p53 genes seem to influence the outcome of HPV infection and progression to SCCC, although controversial data have been reported. MHC are highly polymorphic genes that encode molecules involved in antigen presentation, playing a key role in immune regulation, while p53 is a tumor suppressor gene that regulates cell proliferation. The HPV E6 protein from high-risk types binds p53 and mediates its degradation by the ubiquitin pathway. The role of these polymorphisms in genetic susceptibility to HPV infection and to SCCC remains under investigation.

  12. Genetic variants of CD209 associated with Kawasaki disease susceptibility.

    Directory of Open Access Journals (Sweden)

    Ho-Chang Kuo

    Full Text Available BACKGROUND: Kawasaki disease (KD is a systemic vasculitis with unknown etiology mainly affecting children in Asian countries. Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN, CD209 in humans was showed to trigger an anti-inflammatory cascade and associated with KD susceptibility. This study was conducted to investigate the association between genetic polymorphisms of CD209 and the risk KD. METHODS: A total of 948 subjects (381 KD and 567 controls were recruited. Nine tagging SNPs (rs8112310, rs4804800, rs11465421, rs1544766, rs4804801, rs2287886, rs735239, rs735240, rs4804804 were selected for TaqMan allelic discrimination assay. Clinical phenotypes, coronary artery lesions (CAL and intravenous immunoglobulin (IVIG treatment outcomes were collected for analysis. RESULTS: Significant associations were found between CD209 polymorphisms (rs4804800, rs2287886, rs735240 and the risk of KD. Haplotype analysis for CD209 polymorphisms showed that A/A/G haplotype (P = 0.0002, OR = 1.61 and G/A/G haplotype (P = 0.0365, OR = 1.52 had higher risk of KD as compared with G/G/A haplotype in rs2287886/rs735239/rs735240 pairwise allele analysis. There were no significant association in KD with regards to CAL formation and IVIG treatment responses. CONCLUSION: CD209 polymorphisms were responsible for the susceptibility of KD, but not CAL formation and IVIG treatment responsiveness.

  13. Genetic Variants of CD209 Associated with Kawasaki Disease Susceptibility

    Science.gov (United States)

    Kuo, Ho-Chang; Huang, Ying-Hsien; Chien, Shu-Chen; Yu, Hong-Ren; Hsieh, Kai-Sheng; Hsu, Yu-Wen; Chang, Wei-Chiao

    2014-01-01

    Background Kawasaki disease (KD) is a systemic vasculitis with unknown etiology mainly affecting children in Asian countries. Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN, CD209) in humans was showed to trigger an anti-inflammatory cascade and associated with KD susceptibility. This study was conducted to investigate the association between genetic polymorphisms of CD209 and the risk KD. Methods A total of 948 subjects (381 KD and 567 controls) were recruited. Nine tagging SNPs (rs8112310, rs4804800, rs11465421, rs1544766, rs4804801, rs2287886, rs735239, rs735240, rs4804804) were selected for TaqMan allelic discrimination assay. Clinical phenotypes, coronary artery lesions (CAL) and intravenous immunoglobulin (IVIG) treatment outcomes were collected for analysis. Results Significant associations were found between CD209 polymorphisms (rs4804800, rs2287886, rs735240) and the risk of KD. Haplotype analysis for CD209 polymorphisms showed that A/A/G haplotype (P = 0.0002, OR = 1.61) and G/A/G haplotype (P = 0.0365, OR = 1.52) had higher risk of KD as compared with G/G/A haplotype in rs2287886/rs735239/rs735240 pairwise allele analysis. There were no significant association in KD with regards to CAL formation and IVIG treatment responses. Conclusion CD209 polymorphisms were responsible for the susceptibility of KD, but not CAL formation and IVIG treatment responsiveness. PMID:25148534

  14. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis

    NARCIS (Netherlands)

    Hobbs, Brian D.; de Jong, Kim; Lamontagne, Maxime; Bosse, Yohan; Shrine, Nick; Artigas, Maria Soler; Wain, Louise V.; Hall, Ian P.; Jackson, Victoria E.; Wyss, Annah B.; London, Stephanie J.; North, Kari E.; Franceschini, Nora; Strachan, David P.; Beaty, Terri H.; Hokanson, John E.; Crapo, James D.; Castaldi, Peter J.; Chase, Robert P.; Bartz, Traci M.; Heckbert, Susan R.; Psaty, Bruce M.; Gharib, Sina A.; Zanen, Pieter; Lammers, Jan W.; Oudkerk, Matthijs; Groen, H. J.; Locantore, Nicholas; Tal-Singer, Ruth; Rennard, Stephen I.; Vestbo, Jurgen; Timens, Wim; Pare, Peter D.; Latourelle, Jeanne C.; Dupuis, Josee; O'Connor, George T.; Wilk, Jemma B.; Kim, Woo Jin; Lee, Mi Kyeong; Oh, Yeon-Mok; Vonk, Judith M.; de Koning, Harry J.; Leng, Shuguang; Belinsky, Steven A.; Tesfaigzi, Yohannes; Manichaikul, Ani; Wang, Xin-Qun; Rich, Stephen S.; Postma, Dirkje S.; Boezen, H. Marike

    Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide(1). We performed a genetic association study in 15,256 cases and 47,936 controls, with replication of select top results (P <5 x 10(-6)) in 9,498 cases and 9,748 controls. In the combined meta-analysis, we

  15. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis

    NARCIS (Netherlands)

    Hobbs, Brian D; de Jong, Kim; Lamontagne, Maxime; Bossé, Yohan; Shrine, Nick; Artigas, María Soler; Wain, Louise V; Hall, Ian P; Jackson, Victoria E; Wyss, Annah B; London, Stephanie J; North, Kari E; Franceschini, Nora; Strachan, David P; Beaty, Terri H; Hokanson, John E; Crapo, James D; Castaldi, Peter J; Chase, Robert P; Bartz, Traci M; Heckbert, Susan R; Psaty, Bruce M; Gharib, Sina A; Zanen, Pieter; Lammers, Jan W; Oudkerk, Matthijs; Groen, H J; Locantore, Nicholas; Tal-Singer, Ruth; Rennard, Stephen I; Vestbo, Jørgen; Timens, Wim; Paré, Peter D; Latourelle, Jeanne C; Dupuis, Josée; O'Connor, George T; Wilk, Jemma B; Kim, Woo Jin; Lee, Mi Kyeong; Oh, Yeon-Mok; Vonk, Judith M; de Koning, Harry J; Leng, Shuguang; Belinsky, Steven A; Tesfaigzi, Yohannes; Manichaikul, Ani; Wang, Xin-Qun; Rich, Stephen S; Barr, R Graham; Sparrow, David; Litonjua, Augusto A; Bakke, Per; Gulsvik, Amund; Lahousse, Lies; Brusselle, Guy G; Stricker, Bruno H; Uitterlinden, André G; Ampleford, Elizabeth J; Bleecker, Eugene R; Woodruff, Prescott G; Meyers, Deborah A; Qiao, Dandi; Lomas, David A; Yim, Jae-Joon; Kim, Deog Kyeom; Hawrylkiewicz, Iwona; Sliwinski, Pawel; Hardin, Megan; Fingerlin, Tasha E; Schwartz, David A; Postma, Dirkje S; MacNee, William; Tobin, Martin D; Silverman, Edwin K; Boezen, H Marike; Cho, Michael H

    Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide. We performed a genetic association study in 15,256 cases and 47,936 controls, with replication of select top results (P < 5 × 10(-6)) in 9,498 cases and 9,748 controls. In the combined meta-analysis, we

  16. Association of genetic susceptibility variants for type 2 diabetes with breast cancer risk in women of European ancestry.

    Science.gov (United States)

    Zhao, Zhiguo; Wen, Wanqing; Michailidou, Kyriaki; Bolla, Manjeet K; Wang, Qin; Zhang, Ben; Long, Jirong; Shu, Xiao-Ou; Schmidt, Marjanka K; Milne, Roger L; García-Closas, Montserrat; Chang-Claude, Jenny; Lindstrom, Sara; Bojesen, Stig E; Ahsan, Habibul; Aittomäki, Kristiina; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Beckmann, Matthias W; Beeghly-Fadiel, Alicia; Benitez, Javier; Blomqvist, Carl; Bogdanova, Natalia V; Børresen-Dale, Anne-Lise; Brand, Judith; Brauch, Hiltrud; Brenner, Hermann; Burwinkel, Barbara; Cai, Qiuyin; Casey, Graham; Chenevix-Trench, Georgia; Couch, Fergus J; Cox, Angela; Cross, Simon S; Czene, Kamila; Dörk, Thilo; Dumont, Martine; Fasching, Peter A; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Flyger, Henrik; Fostira, Florentia; Gammon, Marilie; Giles, Graham G; Guénel, Pascal; Haiman, Christopher A; Hamann, Ute; Harrington, Patricia; Hartman, Mikael; Hooning, Maartje J; Hopper, John L; Jakubowska, Anna; Jasmine, Farzana; John, Esther M; Johnson, Nichola; Kabisch, Maria; Khan, Sofia; Kibriya, Muhammad; Knight, Julia A; Kosma, Veli-Matti; Kriege, Mieke; Kristensen, Vessela; Le Marchand, Loic; Lee, Eunjung; Li, Jingmei; Lindblom, Annika; Lophatananon, Artitaya; Luben, Robert; Lubinski, Jan; Malone, Kathleen E; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Marme, Frederik; McLean, Catriona; Meijers-Heijboer, Hanne; Meindl, Alfons; Miao, Hui; Muir, Kenneth; Neuhausen, Susan L; Nevanlinna, Heli; Neven, Patrick; Olson, Janet E; Perkins, Barbara; Peterlongo, Paolo; Phillips, Kelly-Anne; Pylkäs, Katri; Rudolph, Anja; Santella, Regina; Sawyer, Elinor J; Schmutzler, Rita K; Schoemaker, Minouk; Shah, Mitul; Shrubsole, Martha; Southey, Melissa C; Swerdlow, Anthony J; Toland, Amanda E; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; Ursin, Giske; Van Der Luijt, Rob B; Verhoef, Senno; Wang-Gohrke, Shan; Whittemore, Alice S; Winqvist, Robert; Pilar Zamora, M; Zhao, Hui; Dunning, Alison M; Simard, Jacques; Hall, Per; Kraft, Peter; Pharoah, Paul; Hunter, David; Easton, Douglas F; Zheng, Wei

    2016-05-01

    Type 2 diabetes (T2D) has been reported to be associated with an elevated risk of breast cancer. It is unclear, however, whether this association is due to shared genetic factors. We constructed a genetic risk score (GRS) using risk variants from 33 known independent T2D susceptibility loci and evaluated its relation to breast cancer risk using the data from two consortia, including 62,328 breast cancer patients and 83,817 controls of European ancestry. Unconditional logistic regression models were used to derive adjusted odds ratios (ORs) and 95 % confidence intervals (CIs) to measure the association of breast cancer risk with T2D GRS or T2D-associated genetic risk variants. Meta-analyses were conducted to obtain summary ORs across all studies. The T2D GRS was not found to be associated with breast cancer risk, overall, by menopausal status, or for estrogen receptor positive or negative breast cancer. Three T2D associated risk variants were individually associated with breast cancer risk after adjustment for multiple comparisons using the Bonferroni method (at p associated with the risk of both T2D and breast cancer. However, overall genetic susceptibility to T2D may not be related to breast cancer risk.

  17. Identification of multiple genetic loci in the mouse controlling immobility time in the tail suspension and forced swimming tests.

    Science.gov (United States)

    Abou-Elnaga, Ahmed F; Torigoe, Daisuke; Fouda, Mohamed M; Darwish, Ragab A; Abou-Ismail, Usama A; Morimatsu, Masami; Agui, Takashi

    2015-05-01

    Depression is one of the most famous psychiatric disorders in humans in all over the countries and considered a complex neurobehavioral trait and difficult to identify causal genes. Tail suspension test (TST) and forced swimming test (FST) are widely used for assessing depression-like behavior and antidepressant activity in mice. A variety of antidepressant agents are known to reduce immobility time in both TST and FST. To identify genetic determinants of immobility duration in both tests, we analyzed 101 F2 mice from an intercross between C57BL/6 and DBA/2 strains. Quantitative trait locus (QTL) mapping using 106 microsatellite markers revealed three loci (two significant and one suggestive) and five suggestive loci controlling immobility time in the TST and FST, respectively. Results of QTL analysis suggest a broad description of the genetic architecture underlying depression, providing underpinnings for identifying novel molecular targets for antidepressants to clear the complex genetic mechanisms of depressive disorders.

  18. Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types

    DEFF Research Database (Denmark)

    Kar, Siddhartha P; Beesley, Jonathan; Amin Al Olama, Ali

    2016-01-01

    UNLABELLED: Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112...... (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell......-type-specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P cancer meta-analysis. SIGNIFICANCE...

  19. Genetic variation and selection of MHC class I loci differ in two congeneric frogs.

    Science.gov (United States)

    Kiemnec-Tyburczy, Karen M; Tracy, Karen E; Lips, Karen R; Zamudio, Kelly R

    2018-04-01

    Major histocompatibility complex (MHC) genes encode proteins in the acquired immune response pathway that often show distinctive selection-driven patterns in wild vertebrate populations. We examined genetic variation and signatures of selection in the MHC class I alpha 1 (A1)- and alpha 2 (A2)-domain encoding exons of two frog congeners [Agalychnis callidryas (n = 20) and A. lemur (n = 20)] from a single locality in Panama. We also investigated how historical demographic processes may have impacted MHC genetic diversity by analyzing a neutral mitochondrial marker. We found that both MHC domains were highly variable in both species, with both species likely expressing three loci. Our analyses revealed different signatures of selection between the two species, most notably that the A. callidryas A2 domain had experienced positive selection while the A2 domain of A. lemur had not. Diversifying selection acted on the same number of A1 and A2 allelic lineages, but on a higher percentage of A1 sites compared to A2 sites. Neutrality tests of mitochondrial haplotypes predominately indicated that the two species were at genetic equilibrium when the samples were collected. In addition, two historical tests of demography indicated both species have had relatively stable population sizes over the past 100,000 years; thus large population size changes are unlikely to have greatly influenced MHC diversity in either species during this time period. In conclusion, our results suggest that the impact of selection on MHC diversity varied between these two closely related species, likely due to a combination of distinct ecological conditions and past pathogenic pressures.

  20. PERMANENT GENETIC RESOURCES: Isolation and characterization of microsatellite loci from the Arctic cisco (Coregonus autumnalis).

    Science.gov (United States)

    Ramey, A; Graziano, S L; Nielsen, J L

    2008-03-01

    Eight polymorphic microsatellite loci were isolated and characterized for the Arctic cisco, Coregonus autumnalis. Loci were evaluated in 21 samples from the Colville River subsistence fishery. The number of alleles per locus ranged from two to 18. Observed heterozygosity of loci varied from 0.10 to 1.00, and expected heterozygosity ranged from 0.09 to 0.92. All eight microsatellite markers were in Hardy-Weinberg equilibrium. The loci presented here will be useful in describing population structure and exploring populations of origin for Arctic cisco. © 2007 Blackwell Publishing Ltd No claim to original US government works.

  1. T-cell receptor variable genes and genetic susceptibility to celiac disease: an association and linkage study.

    Science.gov (United States)

    Roschmann, E; Wienker, T F; Gerok, W; Volk, B A

    1993-12-01

    Genetic susceptibility of celiac disease is primarily associated with a particular combination of and HLA-DQA1/DQB1 gene; however, this does not fully account for the genetic predisposition. Therefore, the aim of this study was to examine whether T-cell receptor (TCR) genes may be susceptibility genes in celiac disease. HLA class II typing was performed by polymerase chain reaction amplification in combination with sequence-specific oligonucleotide hybridization. TCR alpha (TCRA), TCR gamma (TCRG), and TCR beta (TCRB) loci were investigated by restriction fragment length polymorphism analysis. Allelic frequencies of TCRA, TCRG, and TCRB variable genes were compared between patients with celiac disease (n = 53) and control patients (n = 67), and relative risk (RR) estimates were calculated. The RR was 1.67 for allele C1 at TCRA1, 3.35 for allele D2 at TCRA2, 1.66 for allele B2 at TCRG, and 1.35 for allele B at TCRB, showing no significant association. Additionally, linkage analysis was performed in 23 families. The logarithm of odd scores for celiac disease vs. the TCR variable genes at TCRA, TCRG, and TCRB showed no significant linkage. These data suggest that the analyzed TCR variable gene segments V alpha 1.2, V gamma 11, and V beta 8 do not play a major role in susceptibility to celiac disease.

  2. A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci.

    Science.gov (United States)

    Yang, Luming; Li, Dawei; Li, Yuhong; Gu, Xingfang; Huang, Sanwen; Garcia-Mas, Jordi; Weng, Yiqun

    2013-03-25

    Cucumber is an important vegetable crop that is susceptible to many pathogens, but no disease resistance (R) genes have been cloned. The availability of whole genome sequences provides an excellent opportunity for systematic identification and characterization of the nucleotide binding and leucine-rich repeat (NB-LRR) type R gene homolog (RGH) sequences in the genome. Cucumber has a very narrow genetic base making it difficult to construct high-density genetic maps. Development of a consensus map by synthesizing information from multiple segregating populations is a method of choice to increase marker density. As such, the objectives of the present study were to identify and characterize NB-LRR type RGHs, and to develop a high-density, integrated cucumber genetic-physical map anchored with RGH loci. From the Gy14 draft genome, 70 NB-containing RGHs were identified and characterized. Most RGHs were in clusters with uneven distribution across seven chromosomes. In silico analysis indicated that all 70 RGHs had EST support for gene expression. Phylogenetic analysis classified 58 RGHs into two clades: CNL and TNL. Comparative analysis revealed high-degree sequence homology and synteny in chromosomal locations of these RGH members between the cucumber and melon genomes. Fifty-four molecular markers were developed to delimit 67 of the 70 RGHs, which were integrated into a genetic map through linkage analysis. A 1,681-locus cucumber consensus map including 10 gene loci and spanning 730.0 cM in seven linkage groups was developed by integrating three component maps with a bin-mapping strategy. Physically, 308 scaffolds with 193.2 Mbp total DNA sequences were anchored onto this consensus map that covered 52.6% of the 367 Mbp cucumber genome. Cucumber contains relatively few NB-LRR RGHs that are clustered and unevenly distributed in the genome. All RGHs seem to be transcribed and shared significant sequence homology and synteny with the melon genome suggesting conservation of

  3. Identification of Novel Genetic Loci Associated with Thyroid Peroxidase Antibodies and Clinical Thyroid Disease

    DEFF Research Database (Denmark)

    Medici, Marco; Porcu, Eleonora; Pistis, Giorgio

    2014-01-01

    , goiter and thyroid cancer were studied. Individuals with a high genetic risk score had, besides an increased risk of TPOAb-positivity (OR: 2.18, 95% CI 1.68-2.81, P = 8.1×10(-8)), a higher risk of increased thyroid-stimulating hormone levels (OR: 1.51, 95% CI 1.26-1.82, P = 2.9×10(-6)), as well......Autoimmune thyroid diseases (AITD) are common, affecting 2-5% of the general population. Individuals with positive thyroid peroxidase antibodies (TPOAbs) have an increased risk of autoimmune hypothyroidism (Hashimoto's thyroiditis), as well as autoimmune hyperthyroidism (Graves' disease.......12-1.39, P = 6.2×10(-5)). The MAGI3 variant was also associated with an increased risk of hypothyroidism (OR: 1.57, 95% CI 1.18-2.10, P = 1.9×10(-3)). This first GWAS meta-analysis for TPOAbs identified five newly associated loci, three of which were also associated with clinical thyroid disease...

  4. Differential Impact of Genetic Loci on Age at Thelarche and Menarche in Healthy Girls

    DEFF Research Database (Denmark)

    Busch, Alexander S; Hagen, Casper P; Assens, Maria

    2018-01-01

    ) were followed through puberty and genotyped for FSHB c.-211G>T (rs10835638), FSHR c.-29G>A (rs1394205), FSHR c.2039A>G (rs6116), LIN28B (rs7759938), INHA (rs4141153), MKRN3 (rs12148769), TMEM38B (rs10453225), and ZNF483 (rs10980921). Main Outcome Measures: Clinical pubertal staging and anthropometric...... data. Results: We observed an association of LIN28B (rs7759938) with age at thelarche (P year, 95% confidence interval: 0.12 to 0.42) and age at menarche (P = 0.005, 0.17 year, 0.05 to 0.29). FSHB c.-211G>T (rs10835638) and FSHR c.-29G>A (rs1394205) minor allele count...... was associated with age at thelarche (P = 0.004, 0.19 year, 0.06 to 0.31) but not with age at menarche (P = 0.97; all adjusted for body mass index z scores). Conclusion: Our results indicate a differential impact of specific genetic loci on age at thelarche and menarche in healthy girls....

  5. Genetic Loci Governing Androgenic Capacity in Perennial Ryegrass (Lolium perenne L.

    Directory of Open Access Journals (Sweden)

    Rachel F. Begheyn

    2018-06-01

    Full Text Available Immature pollen can be induced to switch developmental pathways from gametogenesis to embryogenesis and subsequently regenerate into homozygous, diploid plants. Such androgenic production of doubled haploids is particularly useful for species where inbreeding is hampered by effective self-incompatibility systems. Therefore, increasing the generally low androgenic capacity of perennial ryegrass (Lolium perenne L. germplasm would enable the efficient production of homozygous plant material, so that a more effective exploitation of heterosis through hybrid breeding schemes can be realized. Here, we present the results of a genome-wide association study in a heterozygous, multiparental population of perennial ryegrass (n = 391 segregating for androgenic capacity. Genotyping-by-sequencing was used to interrogate gene- dense genomic regions and revealed over 1,100 polymorphic sites. Between one and 10 quantitative trait loci (QTL were identified for anther response, embryo and total plant production, green and albino plant production and regeneration. Most traits were under polygenic control, although a major QTL on linkage group 5 was associated with green plant regeneration. Distinct genetic factors seem to affect green and albino plant recovery. Two intriguing candidate genes, encoding chromatin binding domains of the developmental phase transition regulator, Polycomb Repressive Complex 2, were identified. Our results shed the first light on the molecular mechanisms behind perennial ryegrass microspore embryogenesis and enable marker-assisted introgression of androgenic capacity into recalcitrant germplasm of this forage crop of global significance.

  6. Impact of genetic risk loci for multiple sclerosis on expression of proximal genes in patients

    KAUST Repository

    James, Tojo

    2018-01-06

    Despite advancements in genetic studies, it is difficult to understand and characterize the functional relevance of disease-associated genetic variants, especially in the context of a complex multifactorial disease such as Multiple Sclerosis (MS). Since a large proportion of expression quantitative trait loci (eQTLs) are context-specific, we performed RNA-Seq in peripheral blood mononuclear cells (PBMCs) from MS patients (n=145) to identify eQTLs in regions centered on 109 MS risk SNPs and seven associated HLA variants. We identified 77 statistically significant eQTL associations, including pseudogenes and non-coding RNAs. Thirty-eight out of 40 testable eQTL effects were colocalised with the disease association signal. Since many eQTLs are tissue specific, we aimed to detail their significance in different cell types. Approximately 70% of the eQTLs were replicated and characterized in at least one major PBMC derived cell type. Furthermore, 40% of eQTLs were found to be more pronounced in MS patients compared to noninflammatory neurological diseases patients. In addition, we found two SNPs to be significantly associated with the proportions of three different cell types. Mapping to enhancer histone marks and predicted transcription factor binding sites added additional functional evidence for eight eQTL regions. As an example, we found that rs71624119, shared with three other autoimmune diseases and located in a primed enhancer (H3K4me1) with potential binding for STAT transcription factors, significantly associates with ANKRD55 expression. This study provides many novel and validated targets for future functional characterization of MS and other diseases.

  7. Analysis of autism susceptibility gene loci on chromosomes 1p, 4p, 6q, 7q, 13q, 15q, 16p, 17q, 19q and 22q in Finnish multiplex families.

    Science.gov (United States)

    Auranen, M; Nieminen, T; Majuri, S; Vanhala, R; Peltonen, L; Järvelä, I

    2000-05-01

    The role of genetic factors in the etiology of the autistic spectrum of disorders has clearly been demonstrated. Ten chromosomal regions, on chromosomes 1p, 4p, 6q, 7q, 13q, 15q, 16p, 17q, 19q and 22q have potentially been linked to autism.1-8 We have analyzed these chromosomal regions in a total of 17 multiplex families with autism originating from the isolated Finnish population by pairwise linkage analysis and sib-pair analysis. Mild evidence for putative contribution was found only with the 1p chromosomal region in the susceptibility to autism. Our data suggest that additional gene loci exist for autism which will be detectable in and even restricted to the isolated Finnish population.

  8. High genetic diversity and fine-scale spatial structure in the marine flagellate Oxyrrhis marina (Dinophyceae uncovered by microsatellite loci.

    Directory of Open Access Journals (Sweden)

    Chris D Lowe

    2010-12-01

    Full Text Available Free-living marine protists are often assumed to be broadly distributed and genetically homogeneous on large spatial scales. However, an increasing application of highly polymorphic genetic markers (e.g., microsatellites has provided evidence for high genetic diversity and population structuring on small spatial scales in many free-living protists. Here we characterise a panel of new microsatellite markers for the common marine flagellate Oxyrrhis marina. Nine microsatellite loci were used to assess genotypic diversity at two spatial scales by genotyping 200 isolates of O. marina from 6 broad geographic regions around Great Britain and Ireland; in one region, a single 2 km shore line was sampled intensively to assess fine-scale genetic diversity. Microsatellite loci resolved between 1-6 and 7-23 distinct alleles per region in the least and most variable loci respectively, with corresponding variation in expected heterozygosities (H(e of 0.00-0.30 and 0.81-0.93. Across the dataset, genotypic diversity was high with 183 genotypes detected from 200 isolates. Bayesian analysis of population structure supported two model populations. One population was distributed across all sampled regions; the other was confined to the intensively sampled shore, and thus two distinct populations co-occurred at this site. Whilst model-based analysis inferred a single UK-wide population, pairwise regional F(ST values indicated weak to moderate population sub-division (0.01-0.12, but no clear correlation between spatial and genetic distance was evident. Data presented in this study highlight extensive genetic diversity for O. marina; however, it remains a substantial challenge to uncover the mechanisms that drive genetic diversity in free-living microorganisms.

  9. Genetic susceptibility factors for alcohol-induced chronic pancreatitis.

    Science.gov (United States)

    Aghdassi, Ali A; Weiss, F Ulrich; Mayerle, Julia; Lerch, Markus M; Simon, Peter

    2015-07-01

    Chronic pancreatitis is a progressive inflammatory disease of the pancreas and frequently associated with immoderate alcohol consumption. Since only a small proportion of alcoholics eventually develop chronic pancreatitis genetic susceptibility factors have long been suspected to contribute to the pathogenesis of the disease. Smaller studies in ethnically defined populations have found that not only polymorphism in proteins involved in the metabolism of ethanol, such as Alcohol Dehydrogenase and Aldehyde Dehydrogenase, can confer a risk for developing chronic pancreatitis but also mutations that had previously been reported in association with idiopathic pancreatitis, such as SPINK1 mutations. In a much broader approach employing genome wide search strategies the NAPS study found that polymorphisms in the Trypsin locus (PRSS1 rs10273639), and the Claudin 2 locus (CLDN2-RIPPLY1-MORC4 locus rs7057398 and rs12688220) confer an increased risk of developing alcohol-induced pancreatitis. These results from North America have now been confirmed by a European consortium. In another genome wide approach polymorphisms in the genes encoding Fucosyltransferase 2 (FUT2) non-secretor status and blood group B were not only found in association with higher serum lipase levels in healthy volunteers but also to more than double the risk for developing alcohol-associated chronic pancreatitis. These novel genetic associations will allow to investigate the pathophysiological and biochemical basis of alcohol-induced chronic pancreatitis on a cellular level and in much more detail than previously possible. Copyright © 2015 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  10. Identification of novel genetic loci for osteoporosis and/or rheumatoid arthritis using cFDR approach.

    Directory of Open Access Journals (Sweden)

    Rou Zhou

    Full Text Available There are co-morbidity between osteoporosis (OP and rheumatoid arthritis (RA. Some genetic risk factors have been identified for these two phenotypes respectively in previous research; however, they accounted for only a small portion of the underlying total genetic variances. Here, we sought to identify additional common genetic loci associated with OP and/or RA. The conditional false discovery rate (cFDR approach allows detection of additional genetic factors (those respective ones as well as common pleiotropic ones for the two associated phenotypes. We collected and analyzed summary statistics provided by large, multi-center GWAS studies of FNK (femoral neck BMD (a major risk factor for osteoporosis (n = 53,236 and RA (n = 80,799. The conditional quantile-quantile (Q-Q plots can assess the enrichment of SNPs related to FNK BMD and RA, respectively. Furthermore, we identified shared loci between FNK BMD and RA using conjunction cFDR (ccFDR. We found strong enrichment of p-values in FNK BMD when conditional Q-Q was done on RA and vice versa. We identified 30 novel OP-RA associated pleiotropic loci that have not been reported in previous OP or RA GWAS, 18 of which located in the MHC (major histocompatibility complex region previously reported to play an important role in immune system and bone health. We identified some specific novel polygenic factors for OP and RA respectively, and identified 30 novel OP-RA associated pleiotropic loci. These discovery findings may offer novel pathobiological insights, and suggest new targets and pathways for drug development in OP and RA patients.

  11. Genetic polymorphisms in 18 autosomal STR loci in the Tibetan population living in Tibet Chamdo, Southwest China.

    Science.gov (United States)

    Li, Zhenghui; Zhang, Jian; Zhang, Hantao; Lin, Ziqing; Ye, Jian

    2018-05-01

    Short tandem repeats (STRs) play a vitally important role in forensics. Population data is needed to improve the field. There is currently no large population data-based data set in Chamdo Tibetan. In our study, the allele frequencies and forensic statistical parameters of 18 autosomal STR loci (D5S818, D21S11, D7S820, CSF1PO, D2S1338, D3S1358, VWA, D8S1179, D16S539, PentaE, TPOX, TH01, D19S433, D18S51, FGA, D6S1043, D13S317, and D12S391) included in the DNATyper™19 kit were investigated in 2249 healthy, unrelated Tibetan subjects living in Tibet Chamdo, Southwest China. The combined power of discrimination and the combined probability of exclusion of all 18 loci were 0.9999999999999999999998174 and 0.99999994704, respectively. Furthermore, the genetic relationship between our Tibetan group and 33 previously published populations was also investigated. Phylogenetic analyses revealed that the Chamdo Tibetan population is more closely related genetically with the Lhasa Tibetan group. Our results suggest that these autosomal STR loci are highly polymorphic in the Tibetan population living in Tibet Chamdo and can be used as a powerful tool in forensics, linguistics, and population genetic analyses.

  12. Genetic variation for maternal effects on parasite susceptibility.

    Science.gov (United States)

    Stjernman, M; Little, T J

    2011-11-01

    The expression of infectious disease is increasingly recognized to be impacted by maternal effects, where the environmental conditions experienced by mothers alter resistance to infection in offspring, independent of heritability. Here, we studied how maternal effects (high or low food availability to mothers) mediated the resistance of the crustacean Daphnia magna to its bacterial parasite Pasteuria ramosa. We sought to disentangle maternal effects from the effects of host genetic background by studying how maternal effects varied across 24 host genotypes sampled from a natural population. Under low-food conditions, females produced offspring that were relatively resistant, but this maternal effect varied strikingly between host genotypes, i.e. there were genotype by maternal environment interactions. As infection with P. ramosa causes a substantial reduction in host fecundity, this maternal effect had a large effect on host fitness. Maternal effects were also shown to impact parasite fitness, both because they prevented the establishment of the parasites and because even when parasites did establish in the offspring of poorly fed mothers, and they tended to grow more slowly. These effects indicate that food stress in the maternal generation can greatly influence parasite susceptibility and thus perhaps the evolution and coevolution of host-parasite interactions. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  13. Genetic susceptibility for specific cancers. Medical liability of the clinician.

    Science.gov (United States)

    Severin, M J

    1999-12-01

    The use of genetic profiling techniques to detect individuals with an increased susceptibility to heritable cancers has provoked recent legal interest in the duties of the attending physician and in the rights of patients and their families. In the current study specific prima facie and recently litigated cases are presented and explored to delineate the issues facing physicians and to illustrate the prerogatives of patients who are caught up in a heritable cancer enigma. Various courts have attempted to answer questions involving lawsuits in which incidents of breast/ovarian carcinoma and colon carcinoma have provoked claims of negligence against health care providers. Health care workers involved in the care of these patients have specific duties to these individuals. It would appear that physicians are being forced to assume the additional duty of delving into a patient's family history of cancer through multiple generations. This duty is followed by a responsibility to provide detailed counseling to those patients in whom such activity impacts the diagnosis and management of familial cancer.

  14. Comparative mapping of Phytophthora resistance loci in pepper germplasm: evidence for conserved resistance loci across Solanaceae and for a large genetic diversity.

    Science.gov (United States)

    Thabuis, A; Palloix, A; Pflieger, S; Daubèze, A-M; Caranta, C; Lefebvre, V

    2003-05-01

    Phytophthora capsici Leonian, known as the causal agent of the stem, collar and root rot, is one of the most serious problems limiting the pepper crop in many areas in the world. Genetic resistance to the parasite displays complex inheritance. Quantitative trait locus (QTL) analysis was performed in three intraspecific pepper populations, each involving an unrelated resistant accession. Resistance was evaluated by artificial inoculations of roots and stems, allowing the measurement of four components involved in different steps of the plant-pathogen interaction. The three genetic maps were aligned using common markers, which enabled the detection of QTLs involved in each resistance component and the comparison of resistance factors existing among the three resistant accessions. The major resistance factor was found to be common to the three populations. Another resistance factor was found conserved between two populations, the others being specific to a single cross. This comparison across intraspecific germplasm revealed a large variability for quantitative resistance loci to P. capsici. It also provided insights both into the allelic relationships between QTLs across pepper germplasm and for the comparative mapping of resistance factors across the Solanaceae.

  15. Population genetic analysis of the GlobalFiler STR loci in 748 individuals from the Kazakh population of Xinjiang in northwest China.

    Science.gov (United States)

    Zhang, Honghua; Yang, Shuping; Guo, Wei; Ren, Bo; Pu, Liwen; Ma, Teng; Xia, Mingying; Jin, Li; Li, Liming; Li, Shilin

    2016-09-01

    The six-dye GlobalFiler™ Express PCR amplification kit incorporates 21 commonly used autosomal short tandem repeat (STR) loci and three gender determination loci. In this study, we analyzed the GlobalFiler STR loci on 748 unrelated individuals from a Chinese Kazakh population of Xinjiang, China. No significant deviations from Hardy-Weinberg equilibrium and linkage disequilibrium were observed within and between 21 autosomal STR loci. SE33 showed the greatest power of discrimination in Kazakh population. The combined power of discrimination of Kazakh was 99.999999999999999999999996797 %. No significant differences of allele frequencies were observed between Kazakh and Uyghur at all 15 tested STR loci, as well as Mongolian. Significant differences were only observed between Kazakh and the other Chinese populations at TH01. Multiple STR loci showed significant differences between Kazakh and Arab, as well as South Portuguese. The multidimensional scaling plot (MDS) plot and neighbor-joining tree also showed Kazakh is genetically close to Uyghur.

  16. Ethical issues of genetic susceptibility testing for occupational diseases: opinions of trainees in a high-risk job

    NARCIS (Netherlands)

    Visser, M. J.; Rhebergen, M. D. F.; Kezic, S.; van Dijk, F. J. H.; Willems, D. L.; Verberk, M. M.

    2013-01-01

    Genetic research has opened up possibilities for identification of persons with an increased susceptibility for occupational disease. However, regulations considering the ethical issues that are inevitably associated with the use of genetic tests for susceptibility for occupational diseases are

  17. Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO type 2 diabetes and obesity susceptibility locus.

    Directory of Open Access Journals (Sweden)

    Christopher G Bell

    2010-11-01

    Full Text Available Recent multi-dimensional approaches to the study of complex disease have revealed powerful insights into how genetic and epigenetic factors may underlie their aetiopathogenesis. We examined genotype-epigenotype interactions in the context of Type 2 Diabetes (T2D, focussing on known regions of genomic susceptibility. We assayed DNA methylation in 60 females, stratified according to disease susceptibility haplotype using previously identified association loci. CpG methylation was assessed using methylated DNA immunoprecipitation on a targeted array (MeDIP-chip and absolute methylation values were estimated using a Bayesian algorithm (BATMAN. Absolute methylation levels were quantified across LD blocks, and we identified increased DNA methylation on the FTO obesity susceptibility haplotype, tagged by the rs8050136 risk allele A (p = 9.40×10(-4, permutation p = 1.0×10(-3. Further analysis across the 46 kb LD block using sliding windows localised the most significant difference to be within a 7.7 kb region (p = 1.13×10(-7. Sequence level analysis, followed by pyrosequencing validation, revealed that the methylation difference was driven by the co-ordinated phase of CpG-creating SNPs across the risk haplotype. This 7.7 kb region of haplotype-specific methylation (HSM, encapsulates a Highly Conserved Non-Coding Element (HCNE that has previously been validated as a long-range enhancer, supported by the histone H3K4me1 enhancer signature. This study demonstrates that integration of Genome-Wide Association (GWA SNP and epigenomic DNA methylation data can identify potential novel genotype-epigenotype interactions within disease-associated loci, thus providing a novel route to aid unravelling common complex diseases.

  18. Novel microsatellite loci for studies of Thamnophis Gartersnake genetic identity and hybridization

    Science.gov (United States)

    Sloss, Brian L.; Schuurman, Gregor W.; Paloski, Rori A.; Boyle, Owen D.; Kapfer, Joshua M.

    2012-01-01

    Butler’s Gartersnakes (BGS; Thamnophis butleri) are confined to open and semi-open canopy wetlands and adjacent uplands, habitats under threat of development in Wisconsin. To address issues of species identity and putative hybridization with congeneric snakes, a suite of 18 microsatellite loci capable of cross-species amplification of Plains Gartersnakes (T. radix) and Common Gartersnakes (T. sirtalis) was developed. All loci were polymorphic in BGS with mean number of alleles per locus of 16.11 (range = 3–41) and mean observed heterozygosity of 0.659 (range = 0.311–0.978). Loci amplified efficiently in the congeneric species with high levels of intra- and inter-specific variation. These loci will aid ongoing efforts to effectively identify and manage BGS in Wisconsin.

  19. Identification of novel genetic Loci associated with thyroid peroxidase antibodies and clinical thyroid disease.

    Directory of Open Access Journals (Sweden)

    Marco Medici

    2014-02-01

    Full Text Available Autoimmune thyroid diseases (AITD are common, affecting 2-5% of the general population. Individuals with positive thyroid peroxidase antibodies (TPOAbs have an increased risk of autoimmune hypothyroidism (Hashimoto's thyroiditis, as well as autoimmune hyperthyroidism (Graves' disease. As the possible causative genes of TPOAbs and AITD remain largely unknown, we performed GWAS meta-analyses in 18,297 individuals for TPOAb-positivity (1769 TPOAb-positives and 16,528 TPOAb-negatives and in 12,353 individuals for TPOAb serum levels, with replication in 8,990 individuals. Significant associations (P<5×10(-8 were detected at TPO-rs11675434, ATXN2-rs653178, and BACH2-rs10944479 for TPOAb-positivity, and at TPO-rs11675434, MAGI3-rs1230666, and KALRN-rs2010099 for TPOAb levels. Individual and combined effects (genetic risk scores of these variants on (subclinical hypo- and hyperthyroidism, goiter and thyroid cancer were studied. Individuals with a high genetic risk score had, besides an increased risk of TPOAb-positivity (OR: 2.18, 95% CI 1.68-2.81, P = 8.1×10(-8, a higher risk of increased thyroid-stimulating hormone levels (OR: 1.51, 95% CI 1.26-1.82, P = 2.9×10(-6, as well as a decreased risk of goiter (OR: 0.77, 95% CI 0.66-0.89, P = 6.5×10(-4. The MAGI3 and BACH2 variants were associated with an increased risk of hyperthyroidism, which was replicated in an independent cohort of patients with Graves' disease (OR: 1.37, 95% CI 1.22-1.54, P = 1.2×10(-7 and OR: 1.25, 95% CI 1.12-1.39, P = 6.2×10(-5. The MAGI3 variant was also associated with an increased risk of hypothyroidism (OR: 1.57, 95% CI 1.18-2.10, P = 1.9×10(-3. This first GWAS meta-analysis for TPOAbs identified five newly associated loci, three of which were also associated with clinical thyroid disease. With these markers we identified a large subgroup in the general population with a substantially increased risk of TPOAbs. The results provide insight into why

  20. Novel genetic loci underlying human intracranial volume identified through genome-wide association

    OpenAIRE

    Adams, Hieab HH; Hibar, Derrek P; Chouraki, Vincent; Stein, Jason L; Nyquist, Paul A; Renter��a, Miguel E; Trompet, Stella; Arias-Vasquez, Alejandro; Seshadri, Sudha; Desrivi��res, Sylvane; Beecham, Ashley H; Jahanshad, Neda; Wittfeld, Katharina; Van der Lee, Sven J; Abramovic, Lucija

    2016-01-01

    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjus...

  1. Genetic dissection of milk yield traits and mastitis resistance quantitative trait loci on chromosome 20 in dairy cattle.

    Science.gov (United States)

    Kadri, Naveen K; Guldbrandtsen, Bernt; Lund, Mogens S; Sahana, Goutam

    2015-12-01

    Intense selection to increase milk yield has had negative consequences for mastitis incidence in dairy cattle. Due to low heritability of mastitis resistance and an unfavorable genetic correlation with milk yield, a reduction in mastitis through traditional breeding has been difficult to achieve. Here, we examined quantitative trait loci (QTL) that segregate for clinical mastitis and milk yield on Bos taurus autosome 20 (BTA20) to determine whether both traits are affected by a single polymorphism (pleiotropy) or by multiple closely linked polymorphisms. In the latter but not the former situation, undesirable genetic correlation could potentially be broken by selecting animals that have favorable variants for both traits. First, we performed a within-breed association study using a haplotype-based method in Danish Holstein cattle (HOL). Next, we analyzed Nordic Red dairy cattle (RDC) and Danish Jersey cattle (JER) with the goal of determining whether these QTL identified in Holsteins were segregating across breeds. Genotypes for 12,566 animals (5,966 HOL, 5,458 RDC, and 1,142 JER) were determined by using the Illumina Bovine SNP50 BeadChip (50K; Illumina, San Diego, CA), which identifies 1,568 single nucleotide polymorphisms on BTA20. Data were combined, phased, and clustered into haplotype states, followed by within- and across-breed haplotype-based association analyses using a linear mixed model. Association signals for both clinical mastitis and milk yield peaked in the 26- to 40-Mb region on BTA20 in HOL. Single-variant association analyses were carried out in the QTL region using whole sequence level variants imputed from references of 2,036 HD genotypes (BovineHD BeadChip; Illumina) and 242 whole-genome sequences. The milk QTL were also segregating in RDC and JER on the BTA20-targeted region; however, an indication of differences in the causal factor(s) was observed across breeds. A previously reported F279Y mutation (rs385640152) within the growth hormone

  2. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk

    DEFF Research Database (Denmark)

    Dupuis, Josée; Langenberg, Claudia; Prokopenko, Inga

    2010-01-01

    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up...... to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA......2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell...

  3. Association of Genetic Susceptibility Variants for Type 2 Diabetes with Breast Cancer Risk in Women of European Ancestry

    Science.gov (United States)

    Zhao, Zhiguo; Wen, Wanqing; Michailidou, Kyriaki; Bolla, Manjeet K.; Wang, Qin; Zhang, Ben; Long, Jirong; Shu, Xiao-Ou; Schmidt, Marjanka K.; Milne, Roger L.; García-Closas, Montserrat; Chang-Claude, Jenny; Lindstrom, Sara; Bojesen, Stig E.; Ahsan, Habibul; Aittomäki, Kristiina; Andrulis, Irene L.; Anton-Culver, Hoda; Arndt, Volker; Beckmann, Matthias W.; Beeghly-Fadiel, Alicia; Benitez, Javier; Blomqvist, Carl; Bogdanova, Natalia V.; Børresen-Dale, Anne-Lise; Brand, Judith; Brauch, Hiltrud; Brenner, Hermann; Burwinkel, Barbara; Cai, Qiuyin; Casey, Graham; Chenevix-Trench, Georgia; Couch, Fergus J.; Cox, Angela; Cross, Simon S.; Czene, Kamila; Dörk, Thilo; Dumont, Martine; Fasching, Peter A.; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Flyger, Henrik; Fostira, Florentia; Gammon, Marilie; Giles, Graham G.; Guénel, Pascal; Haiman, Christopher A.; Hamann, Ute; Harrington, Patricia; Hartman, Mikael; Hooning, Maartje J.; Hopper, John L.; Jakubowska, Anna; Jasmine, Farzana; John, Esther M.; Johnson, Nichola; Kabisch, Maria; Khan, Sofia; Kibriya, Muhammad; Knight, Julia A.; Kosma, Veli-Matti; Kriege, Mieke; Kristensen, Vessela; Le Marchand, Loic; Lee, Eunjung; Li, Jingmei; Lindblom, Annika; Lophatananon, Artitaya; Luben, Robert; Lubinski, Jan; Malone, Kathleen E.; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Marme, Frederik; McLean, Catriona; Meijers-Heijboer, Hanne; Meindl, Alfons; Miao, Hui; Muir, Kenneth; Neuhausen, Susan L.; Nevanlinna, Heli; Neven, Patrick; Olson, Janet E.; Perkins, Barbara; Peterlongo, Paolo; Phillips, Kelly-Anne; Pylkäs, Katri; Rudolph, Anja; Santella, Regina; Sawyer, Elinor J.; Schmutzler, Rita K.; Schoemaker, Minouk; Shah, Mitul; Shrubsole, Martha; Southey, Melissa C.; Swerdlow, Anthony J; Toland, Amanda E.; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; Ursin, Giske; Van Der Luijt, Rob B.; Verhoef, Senno; Wang-Gohrke, Shan; Whittemore, Alice S.; Winqvist, Robert; Zamora, M. Pilar; Zhao, Hui; Dunning, Alison M.; Simard, Jacques; Hall, Per; Kraft, Peter; Pharoah, Paul; Hunter, David; Easton, Douglas F.; Zheng, Wei

    2016-01-01

    Purpose Type 2 diabetes (T2D) has been reported to be associated with an elevated risk of breast cancer. It is unclear, however, whether this association is due to shared genetic factors. Methods We constructed a genetic risk score (GRS) using risk variants from 33 known independent T2D susceptibility loci and evaluated its relation to breast cancer risk using the data from two consortia, including 62,328 breast cancer patients and 83,817 controls of European ancestry. Unconditional logistic regression models were used to derive adjusted odds ratios (OR) and 95% confidence intervals (CI) to measure the association of breast cancer risk with T2D GRS or T2D-associated genetic risk variants. Meta-analyses were conducted to obtain summary ORs across all studies. Results The T2D GRS was not found to be associated with breast cancer risk, overall, by menopausal status, or for estrogen receptor positive or negative breast cancer. Three T2D associated risk variants were individually associated with breast cancer risk after adjustment for multiple comparisons using the Bonferroni method (at P < 0.001), rs9939609 (FTO) (OR = 0.94, 95% CI = 0.92 – 0.95, P = 4.13E-13), rs7903146 (TCF7L2) (OR = 1.04, 95% CI = 1.02 – 1.06, P = 1.26E-05), and rs8042680 (PRC1) (OR = 0.97, 95% CI = 0.95 – 0.99, P = 8.05E-04). Conclusions We have shown that several genetic risk variants were associated with the risk of both T2D and breast cancer. However, overall genetic susceptibility to T2D may not be related to breast cancer risk. PMID:27053251

  4. Susceptibility Genes in Thyroid Autoimmunity

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Ban

    2005-01-01

    Full Text Available The autoimmune thyroid diseases (AITD are complex diseases which are caused by an interaction between susceptibility genes and environmental triggers. Genetic susceptibility in combination with external factors (e.g. dietary iodine is believed to initiate the autoimmune response to thyroid antigens. Abundant epidemiological data, including family and twin studies, point to a strong genetic influence on the development of AITD. Various techniques have been employed to identify the genes contributing to the etiology of AITD, including candidate gene analysis and whole genome screening. These studies have enabled the identification of several loci (genetic regions that are linked with AITD, and in some of these loci, putative AITD susceptibility genes have been identified. Some of these genes/loci are unique to Graves' disease (GD and Hashimoto's thyroiditis (HT and some are common to both the diseases, indicating that there is a shared genetic susceptibility to GD and HT. The putative GD and HT susceptibility genes include both immune modifying genes (e.g. HLA, CTLA-4 and thyroid specific genes (e.g. TSHR, Tg. Most likely, these loci interact and their interactions may influence disease phenotype and severity.

  5. Genetic polymorphisms of 18 short tandem repeat loci in 3550 individuals from the Han population of Changchun, Northeast China.

    Science.gov (United States)

    Feng, Zhen; Xia, Mingying; Bao, Helai; Wang, Linlin; Jin, Li; Li, Liming; Li, Shilin

    2016-11-01

    In this study, we analyzed 18 autosomal STRs on 3550 unrelated individuals collected from the Han population of Changchun. No significant deviation from Hardy-Weinberg equilibrium was observed at all STR loci, and the expected heterozygosity ranged from 0.6275 to 0.9207. The combined match probability (CMP) was 2.42 × 10 - 22 , and the combined power of discrimination (CPD) was 99.9999999999999999999758 %. Changchun Han showed no significant difference between northern and eastern Han populations at nearly all STR loci, but had significant differences between southern Han at multiple STRs, as well as other Chinese ethnic populations. The phylogenetic analysis also showed that Changchun Han is genetically close to northern Hans, suggesting that the Han population of Changchun could mainly come from northern China.

  6. New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism

    DEFF Research Database (Denmark)

    Horikoshi, Momoko; Yaghootkar, Hanieh; Mook-Kanamori, Dennis O

    2013-01-01

    -wide significance to 7, accounting for a similar proportion of variance as maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes, ADRB1 with adult blood pressure and HMGA2 and LCORL with adult height. Our findings highlight genetic links between...... diabetes and a second variant, near CCNL1, with no obvious link to adult traits. In an expanded genome-wide association meta-analysis and follow-up study of birth weight (of up to 69,308 individuals of European descent from 43 studies), we have now extended the number of loci associated at genome......Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood. Previous genome-wide association studies of birth weight identified a variant in the ADCY5 gene associated both with birth weight and type 2...

  7. An X chromosome association scan of the Norfolk Island genetic isolate provides evidence for a novel migraine susceptibility locus at Xq12.

    Directory of Open Access Journals (Sweden)

    Bridget H Maher

    Full Text Available Migraine is a common and debilitating neurovascular disorder with a complex envirogenomic aetiology. Numerous studies have demonstrated a preponderance of women affected with migraine and previous pedigree linkage studies in our laboratory have identified susceptibility loci on chromosome Xq24-Xq28. In this study we have used the genetic isolate of Norfolk Island to further analyse the X chromosome for migraine susceptibility loci.An association approach was employed to analyse 14,124 SNPs spanning the entire X chromosome. Genotype data from 288 individuals comprising a large core-pedigree, of which 76 were affected with migraine, were analysed. Although no SNP reached chromosome-wide significance (empirical α = 1 × 10(-5 ranking by P-value revealed two primary clusters of SNPs in the top 25. A 10 SNP cluster represents a novel migraine susceptibility locus at Xq12 whilst a 11 SNP cluster represents a previously identified migraine susceptibility locus at Xq27. The strongest association at Xq12 was seen for rs599958 (OR = 1.75, P = 8.92 × 10(-4, whilst at Xq27 the strongest association was for rs6525667 (OR = 1.53, P = 1.65 × 10(-4. Further analysis of SNPs at these loci was performed in 5,122 migraineurs from the Women's Genome Health Study and provided additional evidence for association at the novel Xq12 locus (P<0.05.Overall, this study provides evidence for a novel migraine susceptibility locus on Xq12. The strongest effect SNP (rs102834, joint P = 1.63 × 10(-5 is located within the 5'UTR of the HEPH gene, which is involved in iron homeostasis in the brain and may represent a novel pathway for involvement in migraine pathogenesis.

  8. Loci controlling lymphocyte production of interferon gamma after alloantigen stimulation in vitro and their co-localization with genes controlling lymphocyte infiltration of tumors and tumor susceptibility

    Czech Academy of Sciences Publication Activity Database

    Lipoldová, Marie; Havelková, Helena; Badalová, Jana; Vojtíšková, Jarmila; Quan, L.; Krulová, Magdalena; Sohrabi, Yahya; Stassen, A. P. M.; Demant, P.

    2010-01-01

    Roč. 59, č. 2 (2010), s. 203-213 ISSN 0340-7004 R&D Projects: GA MŠk(CZ) LC06009; GA AV ČR IAA500520606; GA ČR GD310/08/H077 Institutional research plan: CEZ:AV0Z50520514 Keywords : Tumor susceptibility * Genetic control of interferon gamma production * Lymphocyte infiltration of tumors Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.293, year: 2010

  9. Behavioural Susceptibility Theory: Professor Jane Wardle and the Role of Appetite in Genetic Risk of Obesity.

    Science.gov (United States)

    Llewellyn, Clare H; Fildes, Alison

    2017-03-01

    There is considerable variability in human body weight, despite the ubiquity of the 'obesogenic' environment. Human body weight has a strong genetic basis and it has been hypothesised that genetic susceptibility to the environment explains variation in human body weight, with differences in appetite being implicated as the mediating mechanism; so-called 'behavioural susceptibility theory' (BST), first described by Professor Jane Wardle. This review summarises the evidence for the role of appetite as a mediator of genetic risk of obesity. Variation in appetitive traits is observable from infancy, drives early weight gain and is highly heritable in infancy and childhood. Obesity-related common genetic variants identified through genome-wide association studies show associations with appetitive traits, and appetite mediates part of the observed association between genetic risk and adiposity. Obesity results from an interaction between genetic susceptibility to overeating and exposure to an 'obesogenic' food environment.

  10. Retrospective genetic study of germinative mutations in Str loci of individuals potentially exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Costa, Emilia Oliveira Alves

    2010-01-01

    The Brazilian radiological accident that occurred in 1987, in Goiania, it was a terrible radiation episode. As a consequence, hundreds of people were contaminated due to the Cesium-137 radiation. Recently, many studies had shown that genome instabilities, such as, mutations, chromosomal aberrations, micronuclei formation and micro satellite instability and a delay on cellular death are usually reported on mammal cells exposed to ionizing radiation, being considered as a manly risk to humans. Mutations can be spontaneous, and the occurrence is dependent on the organism, or, induced, being associated to mutagenic exposition. Ionizing radiations are an example of physical and mutagenic agents that could harm the cell repair and could cause the development of many types of cancer. The evaluation of the biological effects of the ionizing radiation, in somatic and germ line cells, with a consequent determination of the radio-induced mutations, it is extremely important to estimate the genetic risks, manly in population exposed to radiation. The analyses of repetitive DNA sequences have been demonstrated that such sequences are prone to high rates of spontaneous mutations. The minisatellites and microsatellites have been used to demonstrate the induction of germ line mutation rates on mouse, humans, among others organisms. The aim of the present study was to analyze the frequency of microsatellite alterations to determine the mutation rates occurred in germ cells of the parents exposed to the ionizing radiation of the Cesium-137. The studied group was constitute of 10 families of individuals accidentally exposed to Cesium-137 and by the control group constituted by 645 healthy individuals who carried out paternity tests on 2009. We found only one mutation of paternal origin in the D8S1179 locus on the exposed group, being the mutation rate of 0.002. In the control group, we found 01 mutation on D16S539 loei and on D3S1358; 02 mutations on Penta E loeus; 04 mutations on D

  11. Identification of Novel Genetic Loci Associated with Thyroid Peroxidase Antibodies and Clinical Thyroid Disease

    Science.gov (United States)

    Teumer, Alexander; Brown, Suzanne J.; Jensen, Richard A.; Rawal, Rajesh; Roef, Greet L.; Plantinga, Theo S.; Vermeulen, Sita H.; Lahti, Jari; Simmonds, Matthew J.; Husemoen, Lise Lotte N.; Freathy, Rachel M.; Shields, Beverley M.; Pietzner, Diana; Nagy, Rebecca; Broer, Linda; Chaker, Layal; Korevaar, Tim I. M.; Plia, Maria Grazia; Sala, Cinzia; Völker, Uwe; Richards, J. Brent; Sweep, Fred C.; Gieger, Christian; Corre, Tanguy; Kajantie, Eero; Thuesen, Betina; Taes, Youri E.; Visser, W. Edward; Hattersley, Andrew T.; Kratzsch, Jürgen; Hamilton, Alexander; Li, Wei; Homuth, Georg; Lobina, Monia; Mariotti, Stefano; Soranzo, Nicole; Cocca, Massimiliano; Nauck, Matthias; Spielhagen, Christin; Ross, Alec; Arnold, Alice; van de Bunt, Martijn; Liyanarachchi, Sandya; Heier, Margit; Grabe, Hans Jörgen; Masciullo, Corrado; Galesloot, Tessel E.; Lim, Ee M.; Reischl, Eva; Leedman, Peter J.; Lai, Sandra; Delitala, Alessandro; Bremner, Alexandra P.; Philips, David I. W.; Beilby, John P.; Mulas, Antonella; Vocale, Matteo; Abecasis, Goncalo; Forsen, Tom; James, Alan; Widen, Elisabeth; Hui, Jennie; Prokisch, Holger; Rietzschel, Ernst E.; Palotie, Aarno; Feddema, Peter; Fletcher, Stephen J.; Schramm, Katharina; Rotter, Jerome I.; Kluttig, Alexander; Radke, Dörte; Traglia, Michela; Surdulescu, Gabriela L.; He, Huiling; Franklyn, Jayne A.; Tiller, Daniel; Vaidya, Bijay; de Meyer, Tim; Jørgensen, Torben; Eriksson, Johan G.; O'Leary, Peter C.; Wichmann, Eric; Hermus, Ad R.; Psaty, Bruce M.; Ittermann, Till; Hofman, Albert; Bosi, Emanuele; Schlessinger, David; Wallaschofski, Henri; Pirastu, Nicola; Aulchenko, Yurii S.; de la Chapelle, Albert; Netea-Maier, Romana T.; Gough, Stephen C. L.; Meyer zu Schwabedissen, Henriette; Frayling, Timothy M.; Kaufman, Jean-Marc; Linneberg, Allan; Räikkönen, Katri; Smit, Johannes W. A.; Kiemeney, Lambertus A.; Rivadeneira, Fernando; Uitterlinden, André G.; Walsh, John P.; Meisinger, Christa; den Heijer, Martin; Visser, Theo J.; Spector, Timothy D.; Wilson, Scott G.; Völzke, Henry; Cappola, Anne; Toniolo, Daniela; Sanna, Serena; Naitza, Silvia; Peeters, Robin P.

    2014-01-01

    Autoimmune thyroid diseases (AITD) are common, affecting 2-5% of the general population. Individuals with positive thyroid peroxidase antibodies (TPOAbs) have an increased risk of autoimmune hypothyroidism (Hashimoto's thyroiditis), as well as autoimmune hyperthyroidism (Graves' disease). As the possible causative genes of TPOAbs and AITD remain largely unknown, we performed GWAS meta-analyses in 18,297 individuals for TPOAb-positivity (1769 TPOAb-positives and 16,528 TPOAb-negatives) and in 12,353 individuals for TPOAb serum levels, with replication in 8,990 individuals. Significant associations (Phyperthyroidism, goiter and thyroid cancer were studied. Individuals with a high genetic risk score had, besides an increased risk of TPOAb-positivity (OR: 2.18, 95% CI 1.68–2.81, P = 8.1×10−8), a higher risk of increased thyroid-stimulating hormone levels (OR: 1.51, 95% CI 1.26–1.82, P = 2.9×10−6), as well as a decreased risk of goiter (OR: 0.77, 95% CI 0.66–0.89, P = 6.5×10−4). The MAGI3 and BACH2 variants were associated with an increased risk of hyperthyroidism, which was replicated in an independent cohort of patients with Graves' disease (OR: 1.37, 95% CI 1.22–1.54, P = 1.2×10−7 and OR: 1.25, 95% CI 1.12–1.39, P = 6.2×10−5). The MAGI3 variant was also associated with an increased risk of hypothyroidism (OR: 1.57, 95% CI 1.18–2.10, P = 1.9×10−3). This first GWAS meta-analysis for TPOAbs identified five newly associated loci, three of which were also associated with clinical thyroid disease. With these markers we identified a large subgroup in the general population with a substantially increased risk of TPOAbs. The results provide insight into why individuals with thyroid autoimmunity do or do not eventually develop thyroid disease, and these markers may therefore predict which TPOAb-positives are particularly at risk of developing clinical thyroid dysfunction. PMID:24586183

  12. Family system characteristics and psychological adjustment to cancer susceptibility genetic testing: a prospective study.

    NARCIS (Netherlands)

    Oostrom, I.I.H. van; Meijers-Heijboer, H.; Duivenvoorden, H.J.; Brocker-Vriends, A.H.; Asperen, C.J. van; Sijmons, R.H.; Seynaeve, C.; Gool, A.R. van; Klijn, J.G.M.; Tibben, A.

    2007-01-01

    This study examined prospectively the contribution of family functioning, differentiation to parents, family communication and support from relatives to psychological distress in individuals undergoing genetic susceptibility testing for a known familial pathogenic BRCA1/2 or Hereditary nonpolyposis

  13. Family system characteristics and psychological adjustment to cancer susceptibility genetic testing: a prospective study

    NARCIS (Netherlands)

    van Oostrom, I.; Meijers-Heijboer, H.; Duivenvoorden, H. J.; Bröcker-Vriends, A. H. J. T.; van Asperen, C. J.; Sijmons, R. H.; Seynaeve, C.; van Gool, A. R.; Klijn, J. G. M.; Tibben, A.

    2007-01-01

    This study examined prospectively the contribution of family functioning, differentiation to parents, family communication and support from relatives to psychological distress in individuals undergoing genetic susceptibility testing for a known familial pathogenic BRCA1/2 or Hereditary nonpolyposis

  14. Family system characteristics and psychological adjustment to cancer susceptibility genetic testing : a prospective study

    NARCIS (Netherlands)

    van Oostrom, I.; Meijers-Heijboer, H.; Duivenvoorden, H. J.; Brocker-Vriends, A. H. J. T.; van Asperen, C. J.; Sijmons, R. H.; Seynaeve, C.; Van Gool, A. R.; Klijn, J. G. M.; Tibben, A.

    This study examined prospectively the contribution of family functioning, differentiation to parents, family communication and support from relatives to psychological distress in individuals undergoing genetic susceptibility testing for a known familial pathogenic BRCA1/2 or Hereditary nonpolyposis

  15. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis

    NARCIS (Netherlands)

    Paternoster, Lavinia; Standl, Marie; Waage, Johannes; Baurecht, Hansjoerg; Hotze, Melanie; Strachan, David P.; Curtin, John A.; Bonnelykke, Klaus; Tian, Chao; Takahashi, Atsushi; Esparza-Gordillo, Jorge; Alves, Alexessander Couto; Thyssen, Jacob P.; den Dekker, Herman T.; Ferreira, Manuel A.; Altmaier, Elisabeth; Sleiman, Patrick M. A.; Xiao, Feng Li; Gonzalez, Juan R.; Marenholz, Ingo; Kalb, Birgit; Pino-Yanes, Maria; Xu, Chengjian; Carstensen, Lisbeth; Groen-Blokhuis, Maria M.; Venturini, Cristina; Pennell, Craig E.; Barton, Sheila J.; Levin, Albert M.; Curjuric, Ivan; Bustamante, Mariona; Kreiner-Moller, Eskil; Lockett, Gabrielle A.; Bacelis, Jonas; Bunyavanich, Supinda; Myers, Rachel A.; Matanovic, Anja; Kumar, Ashish; Tung, Joyce Y.; Hirota, Tomomitsu; Kubo, Michiaki; McArdle, Wendy L.; Henderson, A. John; Kemp, John P.; Zheng, Jie; Smith, George Davey; Rueschendorf, Franz; Postma, Dirkje S.; Weiss, Scott T.; Koppelman, Gerard H.

    2015-01-01

    Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common, complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases

  16. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis

    DEFF Research Database (Denmark)

    Paternoster, Lavinia; Standl, Marie; Waage, Johannes

    2015-01-01

    Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common, complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases...

  17. A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease

    DEFF Research Database (Denmark)

    Amin Al Olama, Ali; Kote-Jarai, Zsofia; Schumacher, Fredrick R

    2013-01-01

    Genome-wide association studies (GWAS) have identified multiple common genetic variants associated with an increased risk of prostate cancer (PrCa), but these explain less than one-third of the heritability. To identify further susceptibility alleles, we conducted a meta-analysis of four GWAS inc...

  18. Genetic variants in pachyonychia congenita-associated keratins increase susceptibility to tooth decay.

    Science.gov (United States)

    Duverger, Olivier; Carlson, Jenna C; Karacz, Chelsea M; Schwartz, Mary E; Cross, Michael A; Marazita, Mary L; Shaffer, John R; Morasso, Maria I

    2018-01-01

    Pachyonychia congenita (PC) is a cutaneous disorder primarily characterized by nail dystrophy and painful palmoplantar keratoderma. PC is caused by mutations in KRT6A, KRT6B, KRT6C, KRT16, and KRT17, a set of keratin genes expressed in the nail bed, palmoplantar epidermis, oral mucosal epithelium, hair follicle and sweat gland. RNA-seq analysis revealed that all PC-associated keratins (except for Krt6c that does exist in the mouse genome) are expressed in the mouse enamel organ. We further demonstrated that these keratins are produced by ameloblasts and are incorporated into mature human enamel. Using genetic and intraoral examination data from 573 adults and 449 children, we identified several missense polymorphisms in KRT6A, KRT6B and KRT6C that lead to a higher risk for dental caries. Structural analysis of teeth from a PC patient carrying a p.Asn171Lys substitution in keratin-6a (K6a) revealed disruption of enamel rod sheaths resulting in altered rod shape and distribution. Finally, this PC-associated substitution as well as more frequent caries-associated SNPs, found in two of the KRT6 genes, that result in p.Ser143Asn substitution (rs28538343 in KRT6B and rs151117600 in KRT6C), alter the assembly of K6 filaments in ameloblast-like cells. These results identify a new set of keratins involved in tooth enamel formation, distinguish novel susceptibility loci for tooth decay and reveal additional clinical features of pachyonychia congenita.

  19. Comprehensive Clinical Phenotyping and Genetic Mapping for the Discovery of Autism Susceptibility Genes

    Science.gov (United States)

    2013-03-14

    behavioral teaching strategies and best practice for teaching students with autism spectrum disorders 4.52 Learn strategies for incorporating IEP goals...AFRL-SA-WP-TR-2013-0013 Comprehensive Clinical Phenotyping and Genetic Mapping for the Discovery of Autism Susceptibility Genes...Genetic Mapping for the Discovery of Autism Susceptibility Genes 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6

  20. Genetic diversity and in vitro antibiotic susceptibility profile of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-06

    Apr 6, 2009 ... and waste water sources in the Eastern Cape Province of South Africa using DNA fingerprinting and antibiotic susceptibility profile as test indices. Restriction digests ... fever they cause with human and animal excreta acting.

  1. Population genetics for 23 Y-STR loci in Tibetan in China and confirmation of DYS448 null allele.

    Science.gov (United States)

    Ye, Yi; Gao, Jingshang; Fan, Guangyao; Liao, Linchuan; Hou, Yiping

    2015-05-01

    Tibetan is one of 56 ethnic groups in China, where a level of genetic sub-structure might be expected. Although a global analysis of Y-chromosomal haplotype diversity for 23 STR loci and Y-STR databases with PPY23 kit were created with collaborative effort, there was a lack of data for Tibetan population. In this study we evaluated 248 unrelated male individuals of Chinese Tibetan living in the Tibet Autonomous Region to explore the underlying genetic structure of Tibetan populations. These samples were typed for 23 short-tandem repeat (STR) loci (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385ab, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS635, GATAH4, DYS481, DYS533, DYS549, DYS570, DYS576, and DYS643) by using PPY23 kit. A total of 224 different haplotypes were found. Haplotype diversity was 0.9990. Both Rst pairwise analyses and multidimensional scaling plot showed the genetic structure of Tibetan population was significantly different from some of Chinese ethnic groups and neighboring populations. There were few interesting null features at DYS448 observed by PPY23 that deserved some comment. It revealed that PPY23 marker set provided substantially stronger discriminatory power in Tibetan population. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Genetic and Physiological Characterization of Two Clusters of Quantitative Trait Loci Associated With Seed Dormancy and Plant Height in Rice

    OpenAIRE

    Ye, Heng; Beighley, Donn H.; Feng, Jiuhuan; Gu, Xing-You

    2013-01-01

    Seed dormancy and plant height have been well-studied in plant genetics, but their relatedness and shared regulatory mechanisms in natural variants remain unclear. The introgression of chromosomal segments from weedy into cultivated rice (Oryza sativa) prompted the detection of two clusters (qSD1-2/qPH1 and qSD7-2/qPH7) of quantitative trait loci both associated with seed dormancy and plant height. Together, these two clusters accounted for >96% of the variances for plant height and ~71% of t...

  3. [Analysis of genetic polymorphisms and mutations of 20 frequently used STR loci among ethnic Hans from Henan].

    Science.gov (United States)

    Wang, Hongdan; Kang, Bing; Gao, Yue; Huo, Xiaodong; Li, Tao; Guo, Qiannan; Zhu, Bofeng; Liao, Shixiu

    2017-04-10

    To study the genetic polymorphisms and mutations of 20 frequently used autosomal microsatellites among ethnic Hans from Henan. Peripheral blood samples of 2604 individuals were collected. DNA was amplified and genotyped using a PowerPlex(TM) 21 system. The frequencies, forensic parameters and mutation rates of the 20 short tandem repeat (STR) loci were analyzed. A total of 323 alleles were found in this population and the allelic frequencies have ranged from 0.0003 to 0.5144. Except for D3S1358, TH01 and TPOX, mutations have been found in all of the remaining 17 STR loci, which totaled 47, with mutation rates ranging from 0 to 3.46 × 10 -3 . The 20 STR loci selected by the PowerPlex(TM) 21 system are highly polymorphic among ethnic Hans from Henan, and may be of great value in forensic and human population studies. As no similar study has been carried out previously, above results may be of great value for individual discrimination and paternal testing.

  4. Genetic Diversity and Sequence Variations at Growth Hormone Loci among Composite and Hereford Populations of Beef Cattle

    Directory of Open Access Journals (Sweden)

    ALAN J. LYMBERY

    2000-07-01

    Full Text Available A total of 194 Hereford and 235 composite breed cattle from Wokalup Research Station were used in this study. The aims of the study were to: Investigate polymorphisms in the growth hormone gene in the composite and purebred Hereford herds from the Wokalup selection experiment, compare genetic diversity in the growth hormone gene of the breeds, sequencing and compare the sequences of growth hormone loci between composite and purebred Hereford herds with published sequence from Genebank. The genomic DNA was extracted using Wizard genomic DNA purification system from Promega. Two fragments of growth hormone gene were amplified using PCR and continued with RFLP. Each genotype in both loci was sequenced. PCR products of each genotypes were cloned into PCR II, transformed, colonies selection, plasmid DNA extraction continued with cycle sequencing. Polymorphisms were found in both breeds of cattle in both loci of GH-L1 and GH-L2 of the growth hormone gene by PCR-RFLP analysis. Sequencing analysis confirmed the RFLPs data, polymorphism detected using AluI at GH-L1 is due to substitution between leusin/ valine at position 127, while polymorphism at the MspI restriction site was caused by transition of C to T at +837 position.

  5. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk

    NARCIS (Netherlands)

    Dupuis, J.; Langenberg, C.; Prokopenko, I.; Saxena, R.; Soranzo, N.; Jackson, A.U.; Wheeler, E.; Glazer, N.L.; Bouatia-Naji, N.; Gloyn, A.L.; Lindgren, C.M.; Mägi, R.; Morris, A.P.; Randall, J.; Johnson, T.; Hottenga, J.J.; de Geus, E.J.C.; Kaprio, J.; Kyvik, K.O.; Pedersen, N.L.; Perola, M.; Posthuma, D.; Rivadeneira, F.; Uitterlinden, A.G.; Willems van Dijk, K.; van Hoek, M.; Vogelzangs, N.; Willemsen, G.; Witteman, J.C.M.; Zillikens, M.C.; Penninx, B.W.J.H.; Boomsma, D.I.; van Duijn, C.M.; Aulchenko, Y.S.; Waterworth, D.; Vollenweider, P.; Peltonen, L.; Mooser, V.; Abecasis, G.R.; Wareham, N.J.; Sladek, R.; Froguel, P.; Watanabe, R.M.; Meigs, J.B.; Groop, L.C.; Boehnke, M.; McCarthy, M.I.; Florez, J.C.; Barroso, I.

    2010-01-01

    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up

  6. Characterization of new microsatellite loci for population genetic studies in the Smooth Cauliflower Coral (Stylophora sp.)

    KAUST Repository

    Banguera-Hinestroza, E.; Saenz-Agudelo, P.; Bayer, T.; Berumen, Michael L.; Voolstra, Christian R.

    2013-01-01

    in 24 individuals from samples belonging to a single population from the central region of the Red Sea. The number of alleles ranged from 3 to 15 alleles per locus, while observed heterozygosity ranged from 0. 292 to 0. 95. Six of these loci showed

  7. Genetic sub-structure in western Mediterranean populations revealed by 12 Y-chromosome STR loci

    DEFF Research Database (Denmark)

    Rodríguez, V; Tomas Mas, Carmen; Sánchez, J J

    2008-01-01

    Haplotype and allele frequencies of 12 Y-chromosome short tandem repeat (Y-STR) loci (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385 a/b, DYS437, DYS438 and DYS439) included in the Powerplex(R) Y System were determined in seven western Mediterranean populations from Valencia, Ma...

  8. Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    DEFF Research Database (Denmark)

    Amin Al Olama, Ali; Dadaev, Tokhir; Hazelett, Dennis J

    2015-01-01

    associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated...... identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have...

  9. Genetic architecture for susceptibility to gout in the KARE cohort study.

    Science.gov (United States)

    Shin, Jimin; Kim, Younyoung; Kong, Minyoung; Lee, Chaeyoung

    2012-06-01

    This study aimed to identify functional associations of cis-regulatory regions with gout susceptibility using data resulted from a genome-wide association study (GWAS), and to show a genetic architecture for gout with interaction effects among genes within each of the identified functions. The GWAS was conducted with 8314 control subjects and 520 patients with gout in the Korea Association REsource cohort. However, genetic associations with any individual nucleotide variants were not discovered by Bonferroni multiple testing in the GWAS (P>1.42 × 10(-7)). Genomic regions enrichment analysis was employed to identify functional associations of cis-regulatory regions. This analysis revealed several biological processes associated with gout susceptibility, and they were quite different from those with serum uric acid level. Epistasis for susceptibility to gout was estimated using entropy decomposition with selected genes within each biological process identified by the genomic regions enrichment analysis. Some epistases among nucleotide sequence variants for gout susceptibility were found to be larger than their individual effects. This study provided the first evidence that genetic factors for gout susceptibility greatly differed from those for serum uric acid level, which may suggest that research endeavors for identifying genetic factors for gout susceptibility should not be heavily dependent on pathogenesis of uric acid. Interaction effects between genes should be examined to explain a large portion of phenotypic variability for gout susceptibility.

  10. Multicenter dizygotic twin cohort study confirms two linkage susceptibility loci for body mass index at 3q29 and 7q36 and identifies three further potential novel loci

    DEFF Research Database (Denmark)

    Kettunen, J; Perola, M; Martin, N G

    2009-01-01

    OBJECTIVE: To identify common loci and potential genetic variants affecting body mass index (BMI, kg m(-2)) in study populations originating from Europe. DESIGN: We combined genome-wide linkage scans of six cohorts from Australia, Denmark, Finland, the Netherlands, Sweden and the United Kingdom...... with an approximately 10-cM microsatellite marker map. Variance components linkage analysis was carried out with age, sex and country of origin as covariates. SUBJECTS: The GenomEUtwin consortium consists of twin cohorts from eight countries (Australia, Denmark, the Netherlands, Finland, Italy, Norway, Sweden...... and the United Kingdom) with a total data collection of more than 500,000 monozygotic and dizygotic (DZ) twin pairs. Variance due to early-life events and the environment is reduced within twin pairs, which makes DZ pairs highly valuable for linkage studies of complex traits. This study totaled 4401 European-originated...

  11. The role of copy number variation in susceptibility to amyotrophic lateral sclerosis: genome-wide association study and comparison with published loci.

    Directory of Open Access Journals (Sweden)

    Louise V Wain

    2009-12-01

    Full Text Available The genetic contribution to sporadic amyotrophic lateral sclerosis (ALS has not been fully elucidated. There are increasing efforts to characterise the role of copy number variants (CNVs in human diseases; two previous studies concluded that CNVs may influence risk of sporadic ALS, with multiple rare CNVs more important than common CNVs. A little-explored issue surrounding genome-wide CNV association studies is that of post-calling filtering and merging of raw CNV calls. We undertook simulations to define filter thresholds and considered optimal ways of merging overlapping CNV calls for association testing, taking into consideration possibly overlapping or nested, but distinct, CNVs and boundary estimation uncertainty.In this study we screened Illumina 300K SNP genotyping data from 730 ALS cases and 789 controls for copy number variation. Following quality control filters using thresholds defined by simulation, a total of 11321 CNV calls were made across 575 cases and 621 controls. Using region-based and gene-based association analyses, we identified several loci showing nominally significant association. However, the choice of criteria for combining calls for association testing has an impact on the ranking of the results by their significance. Several loci which were previously reported as being associated with ALS were identified here. However, of another 15 genes previously reported as exhibiting ALS-specific copy number variation, only four exhibited copy number variation in this study. Potentially interesting novel loci, including EEF1D, a translation elongation factor involved in the delivery of aminoacyl tRNAs to the ribosome (a process which has previously been implicated in genetic studies of spinal muscular atrophy were identified but must be treated with caution due to concerns surrounding genomic location and platform suitability.Interpretation of CNV association findings must take into account the effects of filtering and combining

  12. Microsatellite analysis of chloroquine resistance associated alleles and neutral loci reveal genetic structure of Indian Plasmodium falciparum

    Science.gov (United States)

    Mallick, Prashant K.; Sutton, Patrick L.; Singh, Ruchi; Singh, Om P.; Dash, Aditya P.; Singh, Ashok K.; Carlton, Jane M.; Bhasin, Virendra K.

    2013-01-01

    Efforts to control malignant malaria caused by Plasmodium falciparum are hampered by the parasite’s acquisition of resistance to antimalarial drugs, e.g., chloroquine. This necessitates evaluating the spread of chloroquine resistance in any malaria-endemic area. India displays highly variable malaria epidemiology and also shares porous international borders with malaria-endemic Southeast Asian countries having multi-drug resistant malaria. Malaria epidemiology in India is believed to be affected by two major factors: high genetic diversity and evolving drug resistance in P. falciparum. How transmission intensity of malaria can influence the genetic structure of chloroquine-resistant P. falciparum population in India is unknown. Here, genetic diversity within and among P. falciparum populations is analyzed with respect to their prevalence and chloroquine resistance observed in 13 different locations in India. Microsatellites developed for P. falciparum, including three putatively neutral and seven microsatellites thought to be under a hitchhiking effect due to chloroquine selection were used. Genetic hitchhiking is observed in five of seven microsatellites flanking the gene responsible for chloroquine resistance. Genetic admixture analysis and F-statistics detected genetically distinct groups in accordance with transmission intensity of different locations and the probable use of chloroquine. A large genetic break between the chloroquine-resistant parasite of the Northeast-East-Island group and Southwest group (FST = 0.253, P<0.001) suggests a long period of isolation or a possibility of different origin between them. A pattern of significant isolation by distance was observed in low transmission areas (r = 0.49, P=0.003, N = 83, Mantel test). An unanticipated pattern of spread of hitchhiking suggests genetic structure for Indian P. falciparum population. Overall, the study suggests that transmission intensity can be an efficient driver for genetic differentiation

  13. Exploration of genetic susceptibility factors for Parkinson's disease ...

    Indian Academy of Sciences (India)

    1Neurosciences Research Group, School of Medicine and Institute of Genetics, Universidad Nacional de Colombia, Bogotá ... factors for Parkinson's disease in a South American sample. J. Genet. 89, ... In the current work, we report the results of a system- ..... Synaptic dysfunction and oxidative stress in Alzheimer's disease:.

  14. Genetic polymorphism of 23 Y-STR loci in the Zhuang minority population in Guangxi of China.

    Science.gov (United States)

    Luo, Haibo; Song, Feng; Zhang, Lushun; Hou, Yiping

    2015-07-01

    In the present study, 23 Y-STR loci (DYS576, DYS389I, DYS389 II, DYS448, DYS19, DYS391, DYS481, DYS549, DYS533, DYS438, DYS437, DYS570, DYS635, DYS390, DYS439, DYS392, DYS393, DYS458 DYS456, DYS643, YGATAH4, and DYS385ab) were investigated in 266 unrelated, healthy autochthonous individuals from the Zhuang minority population residing in the Guangxi Zhuang Autonomous Region, China. One hundred and eighty-nine alleles and 245 haplotypes were found in the Zhuang group. Two hundred and twenty-four haplotypes among them were unique, and the remaining 21 haplotypes were found in two individuals. Discrimination capacity was 0.9211. Haplotype diversity was 0.9993 and gene diversity ranged from 0.4173 (DYS437) to 0.9678 (DYS385ab). Populations' differentia was calculated and compared with Tibetan, Bai, Dai, Minnan Han, Beijing Han, Chengdu Han, Xuanwei Han, and Southern Han ethnic groups in China, the Singapore Han population, and the Kinh group from Ho Chi Minh City, Vietnam, in the same 23 Y-STR loci. Our results showed that these 23 Y-STRs are highly genetically polymorphic in the Zhuang group and can also enrich Chinese ethnic genetic information.

  15. Carriage, antimicrobial susceptibility profiles and genetic diversity of ...

    African Journals Online (AJOL)

    All isolates were susceptible to nitrofurantoin and linezolid and resistant in high numbers (194, 81.9%) to ampicillin. Resistances to amoxicillin-clavulanic acid, erythromycin, chloramphenicol, gentamicin, ciprofloxacin, norfloxacin and trimethoprimsulfamethoxazole were below 20%. The overall prevalence of MRSA among ...

  16. Genetic susceptibility of newborn daughters to oxidative stress

    DEFF Research Database (Denmark)

    Decordier, Ilse; De Bont, Kelly; De Bock, Kirsten

    2007-01-01

    A central question in risk assessment is whether newborns' susceptibility to mutagens is different from that of adults. Therefore we investigated whether genotype and/or the DNA strand break repair phenotype in combination with the MN assay would allow estimation of the relative sensitivity of a ...

  17. Genetic mapping of xenotropic murine leukemia virus-inducing loci in five mouse strains.

    Science.gov (United States)

    Kozak, C A; Rowe, W P

    1980-07-01

    A single mendelian gene was identified for induction of the endogenous xenotropic murine leukemia virus in five mouse strains (C57BL/10, C57L, C57BR, AKR, and BALB/c). This locus, designated Bxv-1, mapped to the same site on chromosome 1 in all strains: Id-1-Pep-3-[Bxv-1-Lp]. Thus, inducibility loci for xenotropic virus are more limited in number and chromosomal distribution than ecotropic inducibility loci. Virus expression in mice with Bxv-1 was induced by treatment of fibroblasts with 5-iododeoxyuridine or by exposure of spleen cells to a B cell mitogen, bacterial lipopolysaccharide. An analysis of the hamster X mouse somatic cell hybrids indicated that chromosome 1, alone, was sufficient for virus induction.

  18. A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24

    DEFF Research Database (Denmark)

    Goode, Ellen L; Chenevix-Trench, Georgia; Song, Honglin

    2010-01-01

    Ovarian cancer accounts for more deaths than all other gynecological cancers combined. To identify common low-penetrance ovarian cancer susceptibility genes, we conducted a genome-wide association study of 507,094 SNPs in 1,768 individuals with ovarian cancer (cases) and 2,354 controls, with foll...

  19. Population genetic data for 15 STR loci (Identifiler kit) in Bolivia.

    Science.gov (United States)

    Rocabado, Omar; Taboada, Patricia; Inda, Francisco Javier; Yurrebaso, Inaki; García, Oscar

    2009-11-01

    Allele frequencies for 15 STR autosomal loci (D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, VWA, TPOX, D18S51, D5S818 and FGA) were obtained from a sample of 200 unrelated individuals from Bolivia, South America.

  20. Population genetic data for 15 STR loci (Identifiler kit) in Honduras.

    Science.gov (United States)

    Matamoros, Mireya; Pinto, Yessica; Inda, Francisco Javier; García, Oscar

    2008-09-01

    Allele frequencies for 15 STR autosomal loci (D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, VWA, TPOX, D18S51, D5S818 and FGA) were obtained from a sample of 198 unrelated individuals from Honduras, Central America.

  1. A comparison of genetic map distance and linkage disequilibrium between 15 polymorphic dinucleotide repeat loci in two populations

    Energy Technology Data Exchange (ETDEWEB)

    Urbanek, M.; Goldman, D.; Long, J.C. [Lab. of Neurogenetics, Rockville, MD (United States)

    1994-09-01

    Linkage disequilibrium has recently been used to map the diastrophic dysplasia gene in a Finnish sample. One advantage of this method is that the large pedigrees required by some other methods are unnecessary. Another advantage is that linkage disequilibrium mapping capitalizes on the cumulative history of recombination events, rather than those occurring within the sampled individuals. A potential limitation of linkage disequilibrium mapping is that linkage equilibrium is likely to prevail in all but the most isolated populations, e.g., those which have recently experienced founder effects or severe population bottlenecks. In order to test the method`s generality, we examined patterns of linkage disequilibrium between pairs of loci within a known genetic map. Two populations were analyzed. The first population, Navajo Indians (N=45), is an isolate that experienced a severe bottleneck in the 1860`s. The second population, Maryland Caucasians (N=45), is cosmopolitan. We expected the Navajo sample to display more linkage disequilibrium than the Caucasian sample, and possibly that the Navajo disequilibrium pattern would reflect the genetic map. Linkage disequilibrium coefficients were estimated between pairs of alleles at different loci using maximum likelihood. The genetic isolate structure of Navajo Indians is confirmed by the DNA typings. Heterozygosity is lower than in the Caucasians, and fewer different alleles are observed. However, a relationship between genetic map distance and linkage disequilibrium could be discerned in neither the Navajo nor the Maryland samples. Slightly more linkage disequilibrium was observed in the Navajos, but both data sets were characterized by very low disequilibrium levels. We tentatively conclude that linkage disequilibrium mapping with dinucleotide repeats will only be useful with close linkage between markers and diseases, even in very isolated populations.

  2. Genetic susceptibility to bilateral tinnitus in a Swedish twin cohort.

    Science.gov (United States)

    Maas, Iris Lianne; Brüggemann, Petra; Requena, Teresa; Bulla, Jan; Edvall, Niklas K; Hjelmborg, Jacob V B; Szczepek, Agnieszka J; Canlon, Barbara; Mazurek, Birgit; Lopez-Escamez, Jose A; Cederroth, Christopher R

    2017-09-01

    Genetic contributions to tinnitus have been difficult to determine due to the heterogeneity of the condition and its broad etiology. Here, we evaluated the genetic and nongenetic influences on self-reported tinnitus from the Swedish Twin Registry (STR). Cross-sectional data from the STR was obtained. Casewise concordance rates (the risk of one twin being affected given that his/her twin partner has tinnitus) were compared for monozygotic (MZ) and dizygotic (DZ) twin pairs (N = 10,464 concordant and discordant twin pairs) and heritability coefficients (the proportion of the total variance attributable to genetic factors) were calculated using biometrical model fitting procedures. Stratification of tinnitus cases into subtypes according to laterality (unilateral versus bilateral) revealed that heritability of bilateral tinnitus was 0.56; however, it was 0.27 for unilateral tinnitus. Heritability was greater in men (0.68) than in women (0.41). However, when female pairs younger than 40 years of age were selected, heritability of 0.62 was achieved with negligible effects of shared environment. Unlike unilateral tinnitus, bilateral tinnitus is influenced by genetic factors and might constitute a genetic subtype. Overall, our study provides the initial evidence for a tinnitus phenotype with a genetic influence.Genet Med advance online publication 23 March 2017.

  3. Microsatellite analysis of chloroquine resistance associated alleles and neutral loci reveal genetic structure of Indian Plasmodium falciparum.

    Science.gov (United States)

    Mallick, Prashant K; Sutton, Patrick L; Singh, Ruchi; Singh, Om P; Dash, Aditya P; Singh, Ashok K; Carlton, Jane M; Bhasin, Virendra K

    2013-10-01

    Efforts to control malignant malaria caused by Plasmodium falciparum are hampered by the parasite's acquisition of resistance to antimalarial drugs, e.g., chloroquine. This necessitates evaluating the spread of chloroquine resistance in any malaria-endemic area. India displays highly variable malaria epidemiology and also shares porous international borders with malaria-endemic Southeast Asian countries having multi-drug resistant malaria. Malaria epidemiology in India is believed to be affected by two major factors: high genetic diversity and evolving drug resistance in P. falciparum. How transmission intensity of malaria can influence the genetic structure of chloroquine-resistant P. falciparum population in India is unknown. Here, genetic diversity within and among P. falciparum populations is analyzed with respect to their prevalence and chloroquine resistance observed in 13 different locations in India. Microsatellites developed for P. falciparum, including three putatively neutral and seven microsatellites thought to be under a hitchhiking effect due to chloroquine selection were used. Genetic hitchhiking is observed in five of seven microsatellites flanking the gene responsible for chloroquine resistance. Genetic admixture analysis and F-statistics detected genetically distinct groups in accordance with transmission intensity of different locations and the probable use of chloroquine. A large genetic break between the chloroquine-resistant parasite of the Northeast-East-Island group and Southwest group (FST=0.253, Pstructure for Indian P. falciparum population. Overall, the study suggests that transmission intensity can be an efficient driver for genetic differentiation at both neutral and adaptive loci across India. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Impact of genetic risk loci for multiple sclerosis on expression of proximal genes in patients

    KAUST Repository

    James, Tojo; Lindé n, Magdalena; Morikawa, Hiromasa; Fernandes, Sunjay Jude; Ruhrmann, Sabrina; Huss, Mikael; Brandi, Maya; Piehl, Fredrik; Jagodic, Maja; Tegner, Jesper; Khademi, Mohsen; Olsson, Tomas; Gomez-Cabrero, David; Kockum, Ingrid

    2018-01-01

    Despite advancements in genetic studies, it is difficult to understand and characterize the functional relevance of disease-associated genetic variants, especially in the context of a complex multifactorial disease such as Multiple Sclerosis (MS

  5. Genetic Counseling for Breast Cancer Susceptibility in African American Women

    National Research Council Canada - National Science Library

    Hughes, Chanita

    2004-01-01

    .... The objectives of this study are to develop a Culturally Tailored Genetic (CTGC) protocol for African American women and evaluate its impact on decision-making and satisfaction about BRCAl/2 testing, quality of life, and cancer control practices...

  6. Genetic polymorphism of 21 non-CODIS STR loci in Chengdu Han population and its interpopulation analysis between 25 populations in China.

    Science.gov (United States)

    Li, Ye; Li, Hepei; He, Guanglin; Liang, Weibo; Luo, Haibo; Liao, Miao; Zhang, Ji; Yan, Jing; Li, Yingbi; Hou, Yiping; Wu, Jin

    2018-03-01

    AGCU 21+1 STR kit contains 21 non-combined DNA index system (non-CODIS) short tandem repeats (STR) loci and a sex-determining locus amelogenin. In this study, we evaluated the genetic diversity and forensically relevant population statistics of 21 non-CODIS loci in 210 Chinese Han individuals from Chengdu city, Sichuan province, Southwest China. No significant deviations from Hardy-Weinberg equilibrium were observed within the 21 non-CODIS STR loci. The combined power of discrimination (CPD) and combined power of exclusion (CPE) were 0.99999999999999999994278, 0.999999355 respectively. To reveal interpopulation differentiations of mainland population of China, a neighbor-joining (N-J) phylogenetic tree was constructed based on Nei's genetic distances among Chengdu Han and 25 published populations. The phylogenetic analyses indicated that Chengdu Han population keeps a close genetic relationship with other Han populations. Copyright © 2017. Published by Elsevier B.V.

  7. Development of a multiplex PCR assay for fine-scale population genetic analysis of the Komodo monitor Varanus komodoensis based on 18 polymorphic microsatellite loci.

    Science.gov (United States)

    Ciofi, Claudio; Tzika, Athanasia C; Natali, Chiara; Watts, Phillip C; Sulandari, Sri; Zein, Moch S A; Milinkovitch, Michel C

    2011-05-01

    Multiplex PCR assays for the coamplification of microsatellite loci allow rapid and cost-effective genetic analyses and the production of efficient screening protocols for international breeding programs. We constructed a partial genomic library enriched for di-nucleotide repeats and characterized 14 new microsatellite loci for the Komodo monitor (or Komodo dragon, Varanus komodoensis). Using these novel microsatellites and four previously described loci, we developed multiplex PCR assays that may be loaded on a genetic analyser in three separate panels. We tested the novel set of microsatellites for polymorphism using 69 individuals from three island populations and evaluated the resolving power of the entire panel of 18 loci by conducting (i) a preliminary assignment test to determine population(s) of origin and (ii) a parentage analysis for 43 captive Komodo monitors. This panel of polymorphic loci proved useful for both purposes and thus can be exploited for fine-scale population genetic analyses and as part of international captive breeding programs directed at maintaining genetically viable ex situ populations and reintroductions. © 2011 Blackwell Publishing Ltd.

  8. Dynamics of genetic variation at gliadin-coding loci in bread wheat cultivars developed in small grains research center (Kragujevac during last 35 years

    Directory of Open Access Journals (Sweden)

    Novosljska-Dragovič Aleksandra

    2005-01-01

    Full Text Available Multiple alleles of gliadin-coding loci are well-known genetic markers of common wheat genotypes. Based on analysis of gliadin patterns in common wheat cultivars developed at the Small Grains Research Center in Kragujevac dynamics of genetic variability at gliadin-coding loci has been surveyed for the period of 35 years. It was shown that long-term breeding of the wheat cultivars involved gradual replacement of ancient alleles for those widely spread in some regions in the world, which belong to well-known cultivars-donor of some important traits. Developing cultivars whose pedigree involved much new foreign genetic material has increased genetic diversity as well as has changed frequency of alleles of gliadin-coding loci. So we can conclude that the genetic profile of modern Serbian cultivars has changed considerably. Genetic formula of gliadin was made for each the cultivar studied. The most frequent alleles of gliadin-coding loci among modern cultivars should be of great interest of breeders because these alleles are probably linked with genes that confer advantage to their carriers at present.

  9. Linkage analysis using co-phenotypes in the BRIGHT study reveals novel potential susceptibility loci for hypertension.

    Science.gov (United States)

    Wallace, Chris; Xue, Ming-Zhan; Newhouse, Stephen J; Marcano, Ana Carolina B; Onipinla, Abiodun K; Burke, Beverley; Gungadoo, Johannie; Dobson, Richard J; Brown, Morris; Connell, John M; Dominiczak, Anna; Lathrop, G Mark; Webster, John; Farrall, Martin; Mein, Charles; Samani, Nilesh J; Caulfield, Mark J; Clayton, David G; Munroe, Patricia B

    2006-08-01

    Identification of the genetic influences on human essential hypertension and other complex diseases has proved difficult, partly because of genetic heterogeneity. In many complex-trait resources, additional phenotypic data have been collected, allowing comorbid intermediary phenotypes to be used to characterize more genetically homogeneous subsets. The traditional approach to analyzing covariate-defined subsets has typically depended on researchers' previous expectations for definition of a comorbid subset and leads to smaller data sets, with a concomitant attrition in power. An alternative is to test for dependence between genetic sharing and covariates across the entire data set. This approach offers the advantage of exploiting the full data set and could be widely applied to complex-trait genome scans. However, existing maximum-likelihood methods can be prohibitively computationally expensive, especially since permutation is often required to determine significance. We developed a less computationally intensive score test and applied it to biometric and biochemical covariate data, from 2,044 sibling pairs with severe hypertension, collected by the British Genetics of Hypertension (BRIGHT) study. We found genomewide-significant evidence for linkage with hypertension and several related covariates. The strongest signals were with leaner-body-mass measures on chromosome 20q (maximum LOD = 4.24) and with parameters of renal function on chromosome 5p (maximum LOD = 3.71). After correction for the multiple traits and genetic locations studied, our global genomewide P value was .046. This is the first identity-by-descent regression analysis of hypertension to our knowledge, and it demonstrates the value of this approach for the incorporation of additional phenotypic information in genetic studies of complex traits.

  10. Candidate genes and favoured loci: strategies for molecular genetic research into schizophrenia, manic depression, autism, alcoholism and Alzheimer's disease.

    Science.gov (United States)

    Gurling, H

    1986-01-01

    It is argued that further research to achieve more detailed diagnostic systems in many psychiatric disorders is unlikely to be productive without taking genetic effects into account. Even when this is done, for example when carrying out segregation analysis to determine a mode of genetic transmission, mental illnesses often pose specific problems that preclude accurate analysis. Because techniques in molecular biology and genetics have made it possible to study gene effects in human disease systematically it should now be possible to specify the genes that are involved. When this has been achieved then a diagnostic system based on genetic causation can develop. This will have the advantage of helping to pinpoint environmental factors more accurately. Specific strategies will need to be adopted to overcome uncertain modes of inheritance, incomplete or non-penetrance of disease alleles and disease heterogeneity. Highly speculative hypotheses can be put forward for a locus causing Alzheimer's disease on a portion of the long arm of chromosome 21. For autism it is plausible that there is a disease locus at or near the fragile X site on the X chromosome. A locus for manic depression has been very tentatively mapped using DNA markers to chromosome 11 and in a small proportion of families DNA markers have also shown some evidence for X linkage. Schizophrenia does not seem to be associated with any favoured loci. Candidate genes for schizophrenia include those encoding dopamine, other neurotransmitter receptors or enzymes and various neuropeptides such as enkephalin and beta endorphin.

  11. Genetic susceptibility to bilateral tinnitus in a Swedish twin cohort

    DEFF Research Database (Denmark)

    Maas, Iris Lianne; Brüggemann, Petra; Requena, Teresa

    2017-01-01

    PURPOSE: Genetic contributions to tinnitus have been difficult to determine due to the heterogeneity of the condition and its broad etiology. Here, we evaluated the genetic and nongenetic influences on self-reported tinnitus from the Swedish Twin Registry (STR). METHODS: Cross-sectional data from...... the STR was obtained. Casewise concordance rates (the risk of one twin being affected given that his/her twin partner has tinnitus) were compared for monozygotic (MZ) and dizygotic (DZ) twin pairs (N = 10,464 concordant and discordant twin pairs) and heritability coefficients (the proportion of the total...... variance attributable to genetic factors) were calculated using biometrical model fitting procedures. RESULTS: Stratification of tinnitus cases into subtypes according to laterality (unilateral versus bilateral) revealed that heritability of bilateral tinnitus was 0.56; however, it was 0.27 for unilateral...

  12. Adaptive genetic variation at three loci in South African vervet monkeys (Chlorocebus pygerythrus and the role of selection within primates

    Directory of Open Access Journals (Sweden)

    Willem G. Coetzer

    2018-06-01

    Full Text Available Vervet monkeys (Chlorocebus pygerythrus are one of the most widely distributed non-human primate species found in South Africa. They occur across all the South African provinces, inhabiting a large variety of habitats. These habitats vary sufficiently that it can be assumed that various factors such as pathogen diversity could influence populations in different ways. In turn, these factors could lead to varied levels of selection at specific fitness linked loci. The Toll-like receptor (TLR gene family, which play an integral role in vertebrate innate immunity, is a group of fitness linked loci which has been the focus of much research. In this study, we assessed the level of genetic variation at partial sequences of two TLR loci (TLR4 and 7 and a reproductively linked gene, acrosin (ACR, across the different habitat types within the vervet monkey distribution range. Gene variation and selection estimates were also made among 11–21 primate species. Low levels of genetic variation for all three gene regions were observed within vervet monkeys, with only two polymorphic sites identified for TLR4, three sites for TLR7 and one site for ACR. TLR7 variation was positively correlated with high mean annual rainfall, which was linked to increased pathogen abundance. The observed genetic variation at TLR4 might have been influenced by numerous factors including pathogens and climatic conditions. The ACR exonic regions showed no variation in vervet monkeys, which could point to the occurrence of a selective sweep. The TLR4 and TLR7 results for the among primate analyses was mostly in line with previous studies, indicating a higher rate of evolution for TLR4. Within primates, ACR coding regions also showed signs of positive selection, which was congruent with previous reports on mammals. Important additional information to the already existing vervet monkey knowledge base was gained from this study, which can guide future research projects on this highly

  13. Network-directed cis-mediator analysis of normal prostate tissue expression profiles reveals downstream regulatory associations of prostate cancer susceptibility loci.

    Science.gov (United States)

    Larson, Nicholas B; McDonnell, Shannon K; Fogarty, Zach; Larson, Melissa C; Cheville, John; Riska, Shaun; Baheti, Saurabh; Weber, Alexandra M; Nair, Asha A; Wang, Liang; O'Brien, Daniel; Davila, Jaime; Schaid, Daniel J; Thibodeau, Stephen N

    2017-10-17

    Large-scale genome-wide association studies have identified multiple single-nucleotide polymorphisms associated with risk of prostate cancer. Many of these genetic variants are presumed to be regulatory in nature; however, follow-up expression quantitative trait loci (eQTL) association studies have to-date been restricted largely to cis -acting associations due to study limitations. While trans -eQTL scans suffer from high testing dimensionality, recent evidence indicates most trans -eQTL associations are mediated by cis -regulated genes, such as transcription factors. Leveraging a data-driven gene co-expression network, we conducted a comprehensive cis -mediator analysis using RNA-Seq data from 471 normal prostate tissue samples to identify downstream regulatory associations of previously identified prostate cancer risk variants. We discovered multiple trans -eQTL associations that were significantly mediated by cis -regulated transcripts, four of which involved risk locus 17q12, proximal transcription factor HNF1B , and target trans -genes with known HNF response elements ( MIA2 , SRC , SEMA6A , KIF12 ). We additionally identified evidence of cis -acting down-regulation of MSMB via rs10993994 corresponding to reduced co-expression of NDRG1 . The majority of these cis -mediator relationships demonstrated trans -eQTL replicability in 87 prostate tissue samples from the Gene-Tissue Expression Project. These findings provide further biological context to known risk loci and outline new hypotheses for investigation into the etiology of prostate cancer.

  14. SOX2 and p63 colocalize at genetic loci in squamous cell carcinomas.

    Science.gov (United States)

    Watanabe, Hideo; Ma, Qiuping; Peng, Shouyong; Adelmant, Guillaume; Swain, Danielle; Song, Wenyu; Fox, Cameron; Francis, Joshua M; Pedamallu, Chandra Sekhar; DeLuca, David S; Brooks, Angela N; Wang, Su; Que, Jianwen; Rustgi, Anil K; Wong, Kwok-kin; Ligon, Keith L; Liu, X Shirley; Marto, Jarrod A; Meyerson, Matthew; Bass, Adam J

    2014-04-01

    The transcription factor SOX2 is an essential regulator of pluripotent stem cells and promotes development and maintenance of squamous epithelia. We previously reported that SOX2 is an oncogene and subject to highly recurrent genomic amplification in squamous cell carcinomas (SCCs). Here, we have further characterized the function of SOX2 in SCC. Using ChIP-seq analysis, we compared SOX2-regulated gene profiles in multiple SCC cell lines to ES cell profiles and determined that SOX2 binds to distinct genomic loci in SCCs. In SCCs, SOX2 preferentially interacts with the transcription factor p63, as opposed to the transcription factor OCT4, which is the preferred SOX2 binding partner in ES cells. SOX2 and p63 exhibited overlapping genomic occupancy at a large number of loci in SCCs; however, coordinate binding of SOX2 and p63 was absent in ES cells. We further demonstrated that SOX2 and p63 jointly regulate gene expression, including the oncogene ETV4, which was essential for SOX2-amplified SCC cell survival. Together, these findings demonstrate that the action of SOX2 in SCC differs substantially from its role in pluripotency. The identification of the SCC-associated interaction between SOX2 and p63 will enable deeper characterization the downstream targets of this interaction in SCC and normal squamous epithelial physiology.

  15. Genetic variation in the extended major histocompatibility complex and susceptibility to childhood acute lymphoblastic leukemia: a review of the evidence

    Directory of Open Access Journals (Sweden)

    Kevin Y Urayama

    2013-12-01

    Full Text Available The enduring suspicion that infections and immunologic response may play a role in the etiology of childhood leukemia, particularly acute lymphoblastic leukemia (ALL, is now supported, albeit still indirectly, by numerous epidemiological studies. The cumulative evidence includes, for example, descriptive observations of a peculiar peak incidence at age 2-5 years for ALL in economically developed countries, clustering of cases in situations of population mixing associated with unusual patterns of personal contacts, associations with various proxy measures for immune modulatory exposures early in life, and genetic susceptibility conferred by variation in genes involved in the immune system. In this review, our focus is the extended major histocompatibility complex (xMHC, an approximately 7.6 megabase region that is well-known for its high density of expressed genes, extensive polymorphisms exhibiting complex linkage disequilibrium patterns, and its disproportionately large number of immune-related genes, including human leukocyte antigen (HLA. First discovered through the role they play in transplant rejection, the classical HLA class I (HLA-A, -B, and -C and class II (HLA-DR, HLA-DQ, and HLA-DP molecules reside at the epicenter of the immune response pathways and are now the targets of many disease susceptibility studies, including those for childhood leukemia. The genes encoding the HLA molecules are only a minority of the over 250 expressed genes in the xMHC, and a growing number of studies are beginning to evaluate other loci through targeted investigations or utilizing a mapping approach with a comprehensive screen of the entire region. Here, we review the current epidemiologic evidence available to date regarding genetic variation contained within this highly unique region of the genome and its relationship with childhood ALL risk.

  16. Genetic selection for coping style predicts stressor susceptibility

    NARCIS (Netherlands)

    Veenema, AH; Meijer, OC; de Kloet, ER; Koolhaas, JM

    Genetically selected aggressive (SAL) and nonaggressive (LAL) male wild house-mice which show distinctly different coping styles, also display a differential regulation of the hypothalamic-pituitary-adrenal axis after exposure to an acute stressor. To test the hypothesis that coping style predicts

  17. Genetic basis of interindividual susceptibility to cancer cachexia

    Indian Academy of Sciences (India)

    Cancer cachexia is a complex and multifactorial disease. Evolving definitions highlight the fact that a diverse range of biological processes contribute to cancer cachexia. Part of the variation in who will and who will not develop cancer cachexia may be genetically determined. As new definitions, classifications and biological ...

  18. Association of susceptible genetic markers and autoantibodies in ...

    Indian Academy of Sciences (India)

    antigen (HLA) locus accounting for at least 30% of overall genetic risk. Non-HLA genes, i.e. ..... to specific regions of DNA and helps control the activity of certain genes. Encodes a transcription factor ..... The cost of such an extensive panel may ...

  19. Genetic Counseling for Breast Cancer Susceptibility in African American Women

    National Research Council Canada - National Science Library

    Hughes, Chanita

    2005-01-01

    .... The objectives of this study are to develop a Culturally Tailored Genetic (CTGC) protocol for African American women and evaluate its impact on decision-making and satisfaction about BRCA1/2 testing, quality of life, and cancer control practices...

  20. Systematic genotype-phenotype analysis of autism susceptibility loci implicates additional symptoms to co-occur with autism

    NARCIS (Netherlands)

    Buizer-Voskamp, Jacobine E.; Franke, Lude; Staal, Wouter G.; van Daalen, Emma; Kemner, Chantal; Ophoff, Roel A.; Vorstman, Jacob A. S.; van Engeland, Herman; Wijmenga, Cisca

    2010-01-01

    Many genetic studies in autism have been performed, resulting in the identification of multiple linkage regions and cytogenetic aberrations, but little unequivocal evidence for the involvement of specific genes exists. By identifying novel symptoms in these patients, enhanced phenotyping of autistic

  1. Susceptibility to .I.Leishmania major ./I.infection in mice: multiple loci and heterogeneity of immunopathological phenotypes

    Czech Academy of Sciences Publication Activity Database

    Lipoldová, Marie; Svobodová, M.; Krulová, Magdalena; Havelková, Helena; Badalová, Jana; Nohýnková, E.; Holáň, Vladimír; Hart, A.; Volf, P.; Demant, P.

    2000-01-01

    Roč. 1, č. 3 (2000), s. 200-206 ISSN 1466-4879 R&D Projects: GA MZd NM28; GA MZd IZ4122 Institutional research plan: CEZ:AV0Z5052915 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.222, year: 2000

  2. Association and Genetic Identification of Loci for Four Fruit Traits in Tomato Using InDel Markers

    Directory of Open Access Journals (Sweden)

    Xiaoxi Liu

    2017-07-01

    Full Text Available Tomato (Solanum lycopersicum fruit weight (FW, soluble solid content (SSC, fruit shape and fruit color are crucial for yield, quality and consumer acceptability. In this study, a 192 accessions tomato association panel comprising a mixture of wild species, cherry tomato, landraces, and modern varieties collected worldwide was genotyped with 547 InDel markers evenly distributed on 12 chromosomes and scored for FW, SSC, fruit shape index (FSI, and color parameters over 2 years with three replications each year. The association panel was sorted into two subpopulations. Linkage disequilibrium ranged from 3.0 to 47.2 Mb across 12 chromosomes. A set of 102 markers significantly (p < 1.19–1.30 × 10−4 associated with SSC, FW, fruit shape, and fruit color was identified on 11 of the 12 chromosomes using a mixed linear model. The associations were compared with the known gene/QTLs for the same traits. Genetic analysis using F2 populations detected 14 and 4 markers significantly (p < 0.05 associated with SSC and FW, respectively. Some loci were commonly detected by both association and linkage analysis. Particularly, one novel locus for FW on chromosome 4 detected by association analysis was also identified in F2 populations. The results demonstrated that association mapping using limited number of InDel markers and a relatively small population could not only complement and enhance previous QTL information, but also identify novel loci for marker-assisted selection of fruit traits in tomato.

  3. New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism

    Science.gov (United States)

    Horikoshi, Momoko; Yaghootkar, Hanieh; Mook-Kanamori, Dennis O.; Sovio, Ulla; Taal, H. Rob; Hennig, Branwen J.; Bradfield, Jonathan P.; St. Pourcain, Beate; Evans, David M.; Charoen, Pimphen; Kaakinen, Marika; Cousminer, Diana L.; Lehtimäki, Terho; Kreiner-Møller, Eskil; Warrington, Nicole M.; Bustamante, Mariona; Feenstra, Bjarke; Berry, Diane J.; Thiering, Elisabeth; Pfab, Thiemo; Barton, Sheila J.; Shields, Beverley M.; Kerkhof, Marjan; van Leeuwen, Elisabeth M.; Fulford, Anthony J.; Kutalik, Zoltán; Zhao, Jing Hua; den Hoed, Marcel; Mahajan, Anubha; Lindi, Virpi; Goh, Liang-Kee; Hottenga, Jouke-Jan; Wu, Ying; Raitakari, Olli T.; Harder, Marie N.; Meirhaeghe, Aline; Ntalla, Ioanna; Salem, Rany M.; Jameson, Karen A.; Zhou, Kaixin; Monies, Dorota M.; Lagou, Vasiliki; Kirin, Mirna; Heikkinen, Jani; Adair, Linda S.; Alkuraya, Fowzan S.; Al-Odaib, Ali; Amouyel, Philippe; Andersson, Ehm Astrid; Bennett, Amanda J.; Blakemore, Alexandra I.F.; Buxton, Jessica L.; Dallongeville, Jean; Das, Shikta; de Geus, Eco J. C.; Estivill, Xavier; Flexeder, Claudia; Froguel, Philippe; Geller, Frank; Godfrey, Keith M.; Gottrand, Frédéric; Groves, Christopher J.; Hansen, Torben; Hirschhorn, Joel N.; Hofman, Albert; Hollegaard, Mads V.; Hougaard, David M.; Hyppönen, Elina; Inskip, Hazel M.; Isaacs, Aaron; Jørgensen, Torben; Kanaka-Gantenbein, Christina; Kemp, John P.; Kiess, Wieland; Kilpeläinen, Tuomas O.; Klopp, Norman; Knight, Bridget A.; Kuzawa, Christopher W.; McMahon, George; Newnham, John P.; Niinikoski, Harri; Oostra, Ben A.; Pedersen, Louise; Postma, Dirkje S.; Ring, Susan M.; Rivadeneira, Fernando; Robertson, Neil R.; Sebert, Sylvain; Simell, Olli; Slowinski, Torsten; Tiesler, Carla M.T.; Tönjes, Anke; Vaag, Allan; Viikari, Jorma S.; Vink, Jacqueline M.; Vissing, Nadja Hawwa; Wareham, Nicholas J.; Willemsen, Gonneke; Witte, Daniel R.; Zhang, Haitao; Zhao, Jianhua; Wilson, James F.; Stumvoll, Michael; Prentice, Andrew M.; Meyer, Brian F.; Pearson, Ewan R.; Boreham, Colin A.G.; Cooper, Cyrus; Gillman, Matthew W.; Dedoussis, George V.; Moreno, Luis A; Pedersen, Oluf; Saarinen, Maiju; Mohlke, Karen L.; Boomsma, Dorret I.; Saw, Seang-Mei; Lakka, Timo A.; Körner, Antje; Loos, Ruth J.F.; Ong, Ken K.; Vollenweider, Peter; van Duijn, Cornelia M.; Koppelman, Gerard H.; Hattersley, Andrew T.; Holloway, John W.; Hocher, Berthold; Heinrich, Joachim; Power, Chris; Melbye, Mads; Guxens, Mònica; Pennell, Craig E.; Bønnelykke, Klaus; Bisgaard, Hans; Eriksson, Johan G.; Widén, Elisabeth; Hakonarson, Hakon; Uitterlinden, André G.; Pouta, Anneli; Lawlor, Debbie A.; Smith, George Davey; Frayling, Timothy M.; McCarthy, Mark I.; Grant, Struan F.A.; Jaddoe, Vincent W.V.; Jarvelin, Marjo-Riitta; Timpson, Nicholas J.; Prokopenko, Inga; Freathy, Rachel M.

    2012-01-01

    Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood1. Previous genome-wide association studies identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes, and a second variant, near CCNL1, with no obvious link to adult traits2. In an expanded genome-wide association meta-analysis and follow-up study (up to 69,308 individuals of European descent from 43 studies), we have now extended the number of genome-wide significant loci to seven, accounting for a similar proportion of variance to maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes; ADRB1 with adult blood pressure; and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism. PMID:23202124

  4. Genome-wide association mapping reveals a rich genetic architecture of stripe rust resistance loci in emmer wheat (Triticum turgidum ssp. dicoccum).

    Science.gov (United States)

    Liu, Weizhen; Maccaferri, Marco; Chen, Xianming; Laghetti, Gaetano; Pignone, Domenico; Pumphrey, Michael; Tuberosa, Roberto

    2017-11-01

    SNP-based genome scanning in worldwide domesticated emmer germplasm showed high genetic diversity, rapid linkage disequilibrium decay and 51 loci for stripe rust resistance, a large proportion of which were novel. Cultivated emmer wheat (Triticum turgidum ssp. dicoccum), one of the oldest domesticated crops in the world, is a potentially rich reservoir of variation for improvement of resistance/tolerance to biotic and abiotic stresses in wheat. Resistance to stripe rust (Puccinia striiformis f. sp. tritici) in emmer wheat has been under-investigated. Here, we employed genome-wide association (GWAS) mapping with a mixed linear model to dissect effective stripe rust resistance loci in a worldwide collection of 176 cultivated emmer wheat accessions. Adult plants were tested in six environments and seedlings were evaluated with five races from the United States and one from Italy under greenhouse conditions. Five accessions were resistant across all experiments. The panel was genotyped with the wheat 90,000 Illumina iSelect single nucleotide polymorphism (SNP) array and 5106 polymorphic SNP markers with mapped positions were obtained. A high level of genetic diversity and fast linkage disequilibrium decay were observed. In total, we identified 14 loci associated with field resistance in multiple environments. Thirty-seven loci were significantly associated with all-stage (seedling) resistance and six of them were effective against multiple races. Of the 51 total loci, 29 were mapped distantly from previously reported stripe rust resistance genes or quantitative trait loci and represent newly discovered resistance loci. Our results suggest that GWAS is an effective method for characterizing genes in cultivated emmer wheat and confirm that emmer wheat is a rich source of stripe rust resistance loci that can be used for wheat improvement.

  5. Genetic variation observed at three tetrameric short tandem repeat loci HumTHO1, TPOX, and CSF1PO--in five ethnic population groups of northeastern India.

    Science.gov (United States)

    Ranjan, D; Kashyap, V K

    2001-01-01

    This paper portrays the genetic variation observed at three tetrameric short tandem repeat (STR) loci HumTHO1, TPOX, and CSF1PO in five ethnic population groups from northeastern India. The study also specifies the suitability of use of these markers for forensic testing. The populations studied included three tribal groups (Kuki, Naga and Hmar), one Mongoloid caste group (Meitei), and a religious caste group (Manipuri Muslims). The loci were highly polymorphic in the populations, and all loci met Hardy-Weinberg expectations. No evidence for association of alleles among the loci was detected. The probability of match for the three loci of the most frequent genotype in the five population groups ranged between 2.6 x 10(-4) and 6.6 x 10(-5). The average heterozygosity among the population groups was approximately 70% with the overall extent of gene differentiation among the five groups being high (Gst = 0.046). Genetic affinity among the populations reveal very close association between the Kuki, Hmar, Naga, and Meitei. The Manipuri Muslims, despite being found in the same region, have had no admixture with these populations and maintain a substantial distance with the other groups. The genetic polymorphism data suggest that the studied systems can be used for human identity testing to estimate the frequency of a multiple locus STR DNA profile in population groups of northeastern India.

  6. Analysis of genetic polymorphism of nine short tandem repeat loci in ...

    African Journals Online (AJOL)

    Yomi

    2012-03-15

    Mar 15, 2012 ... Key words: short tandem repeat, repeat motif, genetic polymorphism, Han population, forensic genetics. INTRODUCTION. Short tandem repeat (STR) is widely .... Data analysis. The exact test of Hardy-Weinberg equilibrium was conducted with. Arlequin version 3.5 software (Computational and Molecular.

  7. Genetic structure of Mexican Mestizo women with breast cancer based on three STR loci.

    Science.gov (United States)

    Calderón-Garcidueñas, Ana L; Rivera-Prieto, Roxana A; Ortíz-Lopez, Rocio; Rivas, Fernando; Barrera-Saldaña, Hugo A; Peñaloza-Espinosa, Rosenda I; Cerda-Flores, Ricardo M

    2008-01-01

    The aim of this population genetics study was to compare the genetic structure of Mexican women with breast cancer (BrCa) with previously reported data of four random populations (Nuevo León, Hispanics, Chihuahua, and Central Region of Mexico). A sample of 115 unrelated women with BrCa and whose four grandparents were born in five zones of Mexico were interviewed at a reference hospital in Northeastern Mexico. Noncodifying STRs D7S820, D13S317, and D16S39 were analyzed; genotype distribution was in agreement with Hardy-Weinberg expectations for all three markers. Similar allele frequencies among four random populations and this selected population were found. According with this and previous studies using molecular and nonmolecular nuclear DNA markers not associated with any disease, Mexican Mestizo population is genetically homogeneous and therefore, genetic causes of BrCa are less heterogeneous, simplifying genetic epidemiologic studies.

  8. Global and local genetic diversity at two microsatellite loci in Plasmodium vivax parasites from Asia, Africa and South America

    DEFF Research Database (Denmark)

    Schousboe, Mette L; Ranjitkar, Samir; Rajakaruna, Rupika S

    2014-01-01

    diversity are vital to the evaluation of drug and vaccine efficacy, tracking of P. vivax outbreaks, and assessing geographical differentiation between parasite populations. METHODS: The genetic diversity of eight P. vivax populations (n = 543) was investigated by using two microsatellites (MS), m1501 and m......3502, chosen because of their seven and eight base-pair (bp) repeat lengths, respectively. These were compared with published data of the same loci from six other P. vivax populations. RESULTS: In total, 1,440 P. vivax samples from 14 countries on three continents were compared. There was highest...... heterozygosity within Asian populations, where expected heterozygosity (He) was 0.92-0.98, and alleles with a high repeat number were more common. Pairwise FST revealed significant differentiation between most P. vivax populations, with the highest divergence found between Asian and South American populations...

  9. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index

    NARCIS (Netherlands)

    Speliotes, Elizabeth K.; Willer, Cristen J.; Berndt, Sonja I.; Monda, Keri L.; Thorleifsson, Gudmar; Jackson, Anne U.; Allen, Hana Lango; Lindgren, Cecilia M.; Luan, Jian'an; Maegi, Reedik; Randall, Joshua C.; Vedantam, Sailaja; Winkler, Thomas W.; Qi, Lu; Workalemahu, Tsegaselassie; Heid, Iris M.; Steinthorsdottir, Valgerdur; Stringham, Heather M.; Weedon, Michael N.; Wheeler, Eleanor; Wood, Andrew R.; Ferreira, Teresa; Weyant, Robert J.; Segre, Ayellet V.; Estrada, Karol; Liang, Liming; Nemesh, James; Park, Ju-Hyun; Gustafsson, Stefan; Kilpelaenen, Tuomas O.; Yang, Jian; Bouatia-Naji, Nabila; Esko, Tonu; Feitosa, Mary F.; Kutalik, Zoltan; Mangino, Massimo; Raychaudhuri, Soumya; Scherag, Andre; Smith, Albert Vernon; Welch, Ryan; Zhao, Jing Hua; Aben, Katja K.; Absher, Devin M.; Amin, Najaf; Dixon, Anna L.; Fisher, Eva; Glazer, Nicole L.; Goddard, Michael E.; Heard-Costa, Nancy L.; van Meurs, Joyce B. J.

    2010-01-01

    Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and similar to 2.8 million SNPs in up to 123,865 individuals with targeted follow up of

  10. Longitudinal Analysis of Genetic Susceptibility and BMI Throughout Adult Life.

    Science.gov (United States)

    Song, Mingyang; Zheng, Yan; Qi, Lu; Hu, Frank B; Chan, Andrew T; Giovannucci, Edward L

    2018-02-01

    Little is known about the genetic influence on BMI trajectory throughout adulthood. We created a genetic risk score (GRS) comprising 97 adult BMI-associated variants among 9,971 women and 6,405 men of European ancestry. Serial measures of BMI were assessed from 18 (women) or 21 (men) years to 85 years of age. We also examined BMI change in early (from 18 or 21 to 45 years of age), middle (from 45 to 65 years of age), and late adulthood (from 65 to 80 years of age). GRS was positively associated with BMI across all ages, with stronger associations in women than in men. The associations increased from early to middle adulthood, peaked at 45 years of age in men and at 60 years of age in women (0.91 and 1.35 kg/m 2 per 10-allele increment, respectively) and subsequently declined in late adulthood. For women, each 10-allele increment in the GRS was associated with an average BMI gain of 0.54 kg/m 2 in early adulthood, whereas no statistically significant association was found for BMI change in middle or late adulthood or for BMI change in any life period in men. Our findings indicate that genetic predisposition exerts a persistent effect on adiposity throughout adult life and increases early adulthood weight gain in women. © 2017 by the American Diabetes Association.

  11. Hepatitis B Virus Infection, Genetic Susceptibility and Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Juan Wen

    2015-12-01

    Full Text Available Liver cancer is a sever cancer burden in the world, especially in developing countries. Its late diagnosis and high mortality rate urges early prediction. Hepatocellular carcinoma (HCC is the major histopathological type of liver cancer. Chronic infection with hepatitis B virus (HBV is a well-established risk factor for HCC. On one side, HBV sequence variation may influence the outcome of HBV infection and the development of HCC. At least ten HBV genotypes (A to J are identified. Several HBV genotypes and mutations in pre-S and pre-core/core promoter regions are closely associated with HCC pathogenesis, and have been regarded as biomarkers to predict the occurrence of HCC. On the other side, only a small fraction of chronic hepatitis B patients developed HCC, and some HCC cases were diagnosed with no known predisposing risk factors, suggesting host genetic variations may also play important roles in the carcinogenesis. In this review, we summarized current findings of HBV genotypes and mutations, host genetic variations and their interactions involved in HCC carcinogenesis. Understanding the key viral and host genetic variations is essential for generating effective predictive biomarkers for HCC development.

  12. Comparative genomic analysis of the gut bacterium Bifidobacterium longum reveals loci susceptible to deletion during pure culture growth

    OpenAIRE

    Lee, Ju-Hoon; Karamychev, VN; Kozyavkin, SA; Mills, D; Pavlov, AR; Pavlova, NV; Polouchine, NN; Richardson, PM; Shakhova, VV; Slesarev, AI; Weimer, B; O'Sullivan, DJ

    2008-01-01

    Abstract Background Bifidobacteria are frequently proposed to be associated with good intestinal health primarily because of their overriding dominance in the feces of breast fed infants. However, clinical feeding studies with exogenous bifidobacteria show they don't remain in the intestine, suggesting they may lose competitive fitness when grown outside the gut. Results To further the understanding of genetic attenuation that may be occurring in bifidobacteria cultures, we obtained the compl...

  13. Lifestyle may modify the glucose-raising effect of genetic loci. A study in the Greek population.

    Science.gov (United States)

    Marouli, E; Kanoni, S; Dimitriou, M; Kolovou, G; Deloukas, P; Dedoussis, G

    2016-03-01

    Lifestyle habits including dietary intake and physical activity are closely associated with multiple body processes including glucose metabolism and are known to affect human health. Recent genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) associated with glucose levels. The hypothesis tested here is whether a healthy lifestyle assessed via a score is associated with glycaemic traits and whether there is an interaction between the lifestyle and known glucose-raising genetic variants in association with glycaemic traits. Participants of Greek descent from the THISEAS study were included in this analysis. We developed a glucose preventive score (GPS) including dietary and physical activity characteristics. We also modelled a weighted genetic risk score (wGRS), based on 20 known glucose-raising loci, in order to investigate the impact of lifestyle-gene interaction on glucose levels. The GPS was observed to be significantly associated with lower glucose concentrations (β ± SE: -0.083 ± 0.021 mmol/L, P = 1.6 × 10(-04)) and the wGRS, as expected, with increased glucose levels (β ± SE: 0.020 ± 0.007 mmol/L, P = 8.4 × 10(-3)). The association of the wGRS with glucose levels was attenuated after interaction with the GPS. A higher GPS indicated decreasing glucose levels in the presence of an increasing wGRS (β interaction ± SE: -0.019 ± 0.007 mmol/L, P = 0.014). Our results indicate that lower glucose levels underlie a healthier lifestyle and also support an interaction between the wGRS for known glycaemic loci and GPS associated with lower glucose levels. These scores could be useful tools for monitoring glucose metabolism. Copyright © 2016. Published by Elsevier B.V.

  14. Genetic Diversity and Differentiation of Colletotrichum spp. Isolates Associated with Leguminosae Using Multigene Loci, RAPD and ISSR

    Directory of Open Access Journals (Sweden)

    Farshid Mahmodi

    2014-03-01

    Full Text Available Genetic diversity and differentiation of 50 Colletotrichum spp. isolates from legume crops studied through multigene loci, RAPD and ISSR analysis. DNA sequence comparisons by six genes (ITS, ACT, Tub2, CHS-1, GAPDH, and HIS3 verified species identity of C. truncatum, C. dematium and C. gloeosporiodes and identity C. capsici as a synonym of C. truncatum. Based on the matrix distance analysis of multigene sequences, the Colletotrichum species showed diverse degrees of intera and interspecific divergence (0.0 to 1.4% and (15.5–19.9, respectively. A multilocus molecular phylogenetic analysis clustered Colletotrichum spp. isolates into 3 well-defined clades, representing three distinct species; C. truncatum, C. dematium and C. gloeosporioides. The ISSR and RAPD and cluster analysis exhibited a high degree of variability among different isolates and permitted the grouping of isolates of Colletotrichum spp. into three distinct clusters. Distinct populations of Colletotrichum spp. isolates were genetically in accordance with host specificity and inconsistent with geographical origins. The large population of C. truncatum showed greater amounts of genetic diversity than smaller populations of C. dematium and C. gloeosporioides species. Results of ISSR and RAPD markers were congruent, but the effective maker ratio and the number of private alleles were greater in ISSR markers.

  15. Immunochip analysis identifies novel susceptibility loci in the human leukocyte antigen region for acquired thrombotic thrombocytopenic purpura.

    Science.gov (United States)

    Mancini, I; Ricaño-Ponce, I; Pappalardo, E; Cairo, A; Gorski, M M; Casoli, G; Ferrari, B; Alberti, M; Mikovic, D; Noris, M; Wijmenga, C; Peyvandi, F

    2016-12-01

    Essentials Genetic predisposition to acquired thrombotic thrombocytopenic purpura (aTTP) is mainly unknown. Genetic risk factors for aTTP were studied by Immunochip analysis and replication study. Human leukocyte antigen (HLA) variant rs6903608 conferred a 2.5-fold higher risk of developing aTTP. rs6903608 and HLA-DQB1*05:03 may explain most of the HLA association signal in aTTP. Click to hear Dr Cataland's presentation on acquired thrombotic thrombocytopenic purpura SUMMARY: Background Acquired thrombotic thrombocytopenic purpura (TTP) is a rare, life-threatening thrombotic microangiopathy associated with the development of autoantibodies against the von Willebrand factor-cleaving protease ADAMTS-13. Similarly to what has been found for other autoimmune disorders, there is evidence of a genetic contribution, including the association of the human leukocyte antigen (HLA) class II complex with disease risk. Objective To identify novel genetic risk factors in acquired TTP. Patients/Methods We undertook a case-control genetic association study in 190 European-origin TTP patients and 1255 Italian healthy controls by using the Illumina Immunochip. Replication analysis in 88 Italian cases and 456 controls was performed with single-nucleotide polymorphism (SNP) TaqMan assays. Results and conclusion We identified one common variant (rs6903608) located within the HLA class II locus that was independently associated with acquired TTP at genome-wide significance and conferred a 2.6-fold increased risk of developing a TTP episode (95% confidence interval [CI] 2.02-3.27, P = 1.64 × 10 -14 ). We also found five non-HLA variants mapping to chromosomes 2, 6, 8 and X that were suggestively associated with the disease: rs9490550, rs115265285, rs5927472, rs7823314, and rs1334768 (nominal P-values ranging from 1.59 × 10 -5 to 7.60 × 10 -5 ). Replication analysis confirmed the association of HLA variant rs6903608 with acquired TTP (pooled P = 3.95 × 10 -19 ). Imputation of classic

  16. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study.

    Science.gov (United States)

    Dehghan, Abbas; Köttgen, Anna; Yang, Qiong; Hwang, Shih-Jen; Kao, Wh Linda; Rivadeneira, Fernando; Boerwinkle, Eric; Levy, Daniel; Hofman, Albert; Astor, Brad C; Benjamin, Emelia J; van Duijn, Cornelia M; Witteman, Jacqueline C; Coresh, Josef; Fox, Caroline S

    2008-12-06

    Hyperuricaemia, a highly heritable trait, is a key risk factor for gout. We aimed to identify novel genes associated with serum uric acid concentration and gout. Genome-wide association studies were done for serum uric acid in 7699 participants in the Framingham cohort and in 4148 participants in the Rotterdam cohort. Genome-wide significant single nucleotide polymorphisms (SNPs) were replicated in white (n=11 024) and black (n=3843) individuals who took part in the study of Atherosclerosis Risk in Communities (ARIC). The SNPs that reached genome-wide significant association with uric acid in either the Framingham cohort (pgout. The results obtained in white participants were combined using meta-analysis. Three loci in the Framingham cohort and two in the Rotterdam cohort showed genome-wide association with uric acid. Top SNPs in each locus were: missense rs16890979 in SLC2A9 (p=7.0 x 10(-168) and 2.9 x 10(-18) for white and black participants, respectively); missense rs2231142 in ABCG2 (p=2.5 x 10(-60) and 9.8 x 10(-4)), and rs1165205 in SLC17A3 (p=3.3 x 10(-26) and 0.33). All SNPs were direction-consistent with gout in white participants: rs16890979 (OR 0.59 per T allele, 95% CI 0.52-0.68, p=7.0 x 10(-14)), rs2231142 (1.74, 1.51-1.99, p=3.3 x 10(-15)), and rs1165205 (0.85, 0.77-0.94, p=0.002). In black participants of the ARIC study, rs2231142 was direction-consistent with gout (1.71, 1.06-2.77, p=0.028). An additive genetic risk score of high-risk alleles at the three loci showed graded associations with uric acid (272-351 mumol/L in the Framingham cohort, 269-386 mumol/L in the Rotterdam cohort, and 303-426 mumol/L in white participants of the ARIC study) and gout (frequency 2-13% in the Framingham cohort, 2-8% in the Rotterdam cohort, and 1-18% in white participants in the ARIC study). We identified three genetic loci associated with uric acid concentration and gout. A score based on genes with a putative role in renal urate handling showed a substantial risk

  17. Seasonal fluctuation in susceptibility to insecticides within natural populations of Drosophila melanogaster. II. Features of genetic variation in susceptibility to organophosphate insecticides within natural populations of D. melanogaster.

    Science.gov (United States)

    Miyo, Takahiro; Oguma, Yuzuru; Charlesworth, Brian

    2006-08-01

    To elucidate genetic variation in susceptibility to organophosphate insecticides within natural populations of Drosophila melanogaster, we conducted an analysis of variance for mortality data sets of isofemale lines (10-286 lines) used in the previous studies. Susceptibility of isofemale lines to the three organophosphate insecticides was continuously distributed within each natural population, ranging from susceptible to resistant. Analysis of variance showed highly significant variation among isofemale lines in susceptibility to each insecticide for each natural population. Significant genetic variances in susceptibility to the three chemicals were estimated for the Katsunuma population; 0.0529-0.2722 for malathion, 0.0492-0.1603 for prothiophos, and 0.0469-0.1696 for fenitrothion. Contrary to the consistent seasonal tendency towards an increase in mean susceptibility in the fall, reported in the previous study, genetic variances in susceptibility to the three organophosphates did not change significantly in 1997 but tended to increase by 2- to 5-times in 1998. We tested whether both the observed situations, maintenance and increase in genetic variance in organophosphate resistance, can be generated under circumstances in which the levels of resistance to the three organophosphates tended to decrease, by conducting a simulation analysis, based on the hypothesis that resistant genotypes have lower fitnesses than susceptible ones under the density-independent condition. The simulation analysis generally explained the pattern in the mean susceptibility and genetic variances in susceptibility to the three organophosphates, observed in the Katsunuma population of D. melanogaster. It was suggested that the differences in the frequencies of resistance genes in the summer population could affect the patterns in genetic variance in organophosphate resistance in the fall population.

  18. The role of host genetics in susceptibility to influenza: a systematic review.

    Directory of Open Access Journals (Sweden)

    Peter Horby

    Full Text Available The World Health Organization has identified studies of the role of host genetics on susceptibility to severe influenza as a priority. A systematic review was conducted to summarize the current state of evidence on the role of host genetics in susceptibility to influenza (PROSPERO registration number: CRD42011001380.PubMed, Web of Science, the Cochrane Library, and OpenSIGLE were searched using a pre-defined strategy for all entries up to the date of the search. Two reviewers independently screened the title and abstract of 1,371 unique articles, and 72 full text publications were selected for inclusion. Mouse models clearly demonstrate that host genetics plays a critical role in susceptibility to a range of human and avian influenza viruses. The Mx genes encoding interferon inducible proteins are the best studied but their relevance to susceptibility in humans is unknown. Although the MxA gene should be considered a candidate gene for further study in humans, over 100 other candidate genes have been proposed. There are however no data associating any of these candidate genes to susceptibility in humans, with the only published study in humans being under-powered. One genealogy study presents moderate evidence of a heritable component to the risk of influenza-associated death, and while the marked familial aggregation of H5N1 cases is suggestive of host genetic factors, this remains unproven.The fundamental question "Is susceptibility to severe influenza in humans heritable?" remains unanswered. Not because of a lack of genotyping or analytic tools, nor because of insufficient severe influenza cases, but because of the absence of a coordinated effort to define and assemble cohorts of cases. The recent pandemic and the ongoing epizootic of H5N1 both represent rapidly closing windows of opportunity to increase understanding of the pathogenesis of severe influenza through multi-national host genetic studies.

  19. Land, language, and loci: mtDNA in Native Americans and the genetic history of Peru.

    Science.gov (United States)

    Lewis, Cecil M; Tito, Raúl Y; Lizárraga, Beatriz; Stone, Anne C

    2005-07-01

    Despite a long history of complex societies and despite extensive present-day linguistic and ethnic diversity, relatively few populations in Peru have been sampled for population genetic investigations. In order to address questions about the relationships between South American populations and about the extent of correlation between genetic distance, language, and geography in the region, mitochondrial DNA (mtDNA) hypervariable region I sequences and mtDNA haplogroup markers were examined in 33 individuals from the state of Ancash, Peru. These sequences were compared to those from 19 American Indian populations using diversity estimates, AMOVA tests, mismatch distributions, a multidimensional scaling plot, and regressions. The results show correlations between genetics, linguistics, and geographical affinities, with stronger correlations between genetics and language. Additionally, the results suggest a pattern of differential gene flow and drift in western vs. eastern South America, supporting previous mtDNA and Y chromosome investigations. (c) 2004 Wiley-Liss, Inc

  20. THE MITOCHONDRIAL PARADIGM FOR CARDIOVASCULAR DISEASE SUSCEPTIBILITY AND CELLULAR FUNCTION: A COMPLEMENTARY CONCEPT TO MENDELIAN GENETICS

    OpenAIRE

    Kryzwanski, David M.; Moellering, Douglas; Fetterman, Jessica L.; Dunham-Snary, Kimberly J.; Sammy, Melissa J.; Ballinger, Scott W.

    2011-01-01

    While there is general agreement that cardiovascular disease (CVD) development is influenced by a combination of genetic, environmental, and behavioral contributors, the actual mechanistic basis of how these factors initiate or promote CVD development in some individuals while others with identical risk profiles do not, is not clearly understood. This review considers the potential role for mitochondrial genetics and function in determining CVD susceptibility from the standpoint that the orig...

  1. Unique genetic loci identified for emotional behavior in control and chronic stress conditions

    OpenAIRE

    Carhuatanta, Kimberly A. K.; Shea, Chloe J. A.; Herman, James P.; Jankord, Ryan

    2014-01-01

    An individual's genetic background affects their emotional behavior and response to stress. Although studies have been conducted to identify genetic predictors for emotional behavior or stress response, it remains unknown how prior stress history alters the interaction between an individual's genome and their emotional behavior. Therefore, the purpose of this study is to identify chromosomal regions that affect emotional behavior and are sensitive to stress exposure. We utilized the BXD behav...

  2. Genetic structure of Mexican Mestizos with type 2 diabetes mellitus based on three STR loci.

    Science.gov (United States)

    Cerda-Flores, Ricardo M; Rivera-Prieto, Roxana A; Pereyra-Alférez, Benito; Calderón-Garcidueñas, Ana L; Barrera-Saldaña, Hugo A; Gallardo-Blanco, Hugo L; Ortiz-López, Rocío; Flores-Peña, Yolanda; Cárdenas-Villarreal, Velia M; Rivas, Fernando; Figueroa, Andrés; Kshatriya, Gautam

    2013-08-01

    The aims of this population genetics study were: 1) to ascertain whether Mexicans with type 2 diabetes mellitus (DM) were genetically homogeneous and 2) to compare the genetic structure of this selected population with the previously reported data of four random populations (Nuevo León, Hispanics, Chihuahua, and Central Region of Mexico). A sample of 103 unrelated individuals with DM and whose 4 grandparents were born in five zones of Mexico was interviewed in 32 Medical Units in the Mexican Institute of Social Security (IMSS). The non-coding STRs D16S539, D7S820, and D13S317 were analyzed. Genotype distribution was in agreement with Hardy-Weinberg expectations for all three markers. Allele frequencies were found to be similar between the selected population and the four random populations. Gene diversity analysis suggested that more than 99.57% of the total gene diversity could be attributed to variation between individuals within the population and 0.43% between the populations. According to the present and previous studies using molecular and non-molecular nuclear DNA markers not associated with any disease, the Mexican Mestizo population is found to be genetically homogeneous and therefore the genetic causes of DM are less heterogeneous, thereby simplifying genetic epidemiological studies as has been found in a previous study with the same design in Mexican women with breast cancer. Published by Elsevier B.V.

  3. Genetic polymorphisms, forensic efficiency and phylogenetic analysis of 15 autosomal STR loci in the Kazak population of Ili Kazak Autonomous Prefecture, northwestern China.

    Science.gov (United States)

    Feng, Chunmei; Wang, Xin; Wang, Xiaolong; Yu, Hao; Zhang, Guohua

    2018-03-01

    We investigated the frequencies of 15 autosomal STR loci in the Kazak population of the Ili Kazak Autonomous Prefecture with the aim of expanding the available population information in human genetic databases and for forensic DNA analysis. Genetic polymorphisms of 15 autosomal short tandem repeat (STR) loci were analysed in 456 individuals of the Kazak population from Ili Kazakh Autonomous Prefecture, northwestern China. A total of 173 alleles at 15 autosomal STR loci were found; the allele frequencies ranged from 0.5022-0.0011. The combined power of discrimination and exclusion statistics for the 15 STR loci were 0.999 999 999 85 and 0.999 998 800 65, respectively. In addition, phylogenetic analysis involving the Ili Uygur population and other relevant populations was carried out. A neighbour-joining tree and multidimensional scaling plot were generated based on Nei's standard genetic distance. Results of the population comparison indicated that the Ili Uygur population was most closely related genetically to the Uygur populations from other regions in China. These findings are consistent with the historical and geographic backgrounds of these populations.

  4. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation

    NARCIS (Netherlands)

    N. Kato (Norihiro); M. Loh (Marie); F. Takeuchi (Fumihiko); N. Verweij (Niek); X. Wang (Xu); W. Zhang (Weihua); T. NKelly (Tanika); D. Saleheen; B. Lehne (Benjamin); I.M. Leach (Irene Mateo); A. Drong (Alexander); J. Abbott (James); S. Wahl (Simone); S.-T. Tan (Sian-Tsung); W.R. Scott (William R.); G. Campanella (Gianluca); M. Chadeau-Hyam (Marc); U. Afzal (Uzma); T.S. Ahluwalia (Tarunveer Singh); M.J. Bonder (Marc); P. Chen (Ping); A. Dehghan (Abbas); T.L. Edwards (Todd L.); T. Esko (Tõnu); M.J. Go (Min Jin); S.E. Harris (Sarah); J. Hartiala (Jaana); S. Kasela (Silva); A. Kasturiratne (Anuradhani); C.C. Khor; M.E. Kleber (Marcus); H. Li (Huaixing); Z.Y. Mok (Zuan Yu); M. Nakatochi (Masahiro); N.S. Sapari (Nur Sabrina); R. Saxena (Richa); A.F. Stewart (Alexandre F.); L. Stolk (Lisette); Y. Tabara (Yasuharu); A.L. Teh (Ai Ling); Y. Wu (Ying); J.-Y. Wu (Jer-Yuarn); Y. Zhang (Yi); I. Aits (Imke); A. Da Silva Couto Alves (Alexessander); S. Das (Shikta); R. Dorajoo (Rajkumar); J. CHopewell (Jemma); Y.K. Kim (Yun Kyoung); R. WKoivula (Robert); J. Luan (Jian'An); L.-P. Lyytikäinen (Leo-Pekka); Q. NNguyen (Quang); M.A. Pereira (Mark A); D. Postmus (Douwe); O. TRaitakari (Olli); M. Scannell Bryan (Molly); R.A. Scott (Robert); R. Sorice; V. Tragante (Vinicius); M. Traglia (Michela); J. White (Jon); K. Yamamoto (Ken); Y. Zhang (Yonghong); L.S. Adair (Linda); A. Ahmed (Alauddin); K. Akiyama (Koichi); R. Asif (Rasheed); T. Aung (Tin); I.E. Barroso (Inês); A. Bjonnes (Andrew); T.R. Braun (Timothy R.); H. Cai (Hui); L.-C. Chang (Li-Ching); C.-H. Chen; C-Y. Cheng (Ching-Yu); Y.-S. Chong (Yap-Seng); F.S. Collins (Francis); R. Courtney (Regina); G. Davies (Gail); G. Delgado; L.D. Do (Loi D.); P.A. Doevendans (Pieter); R.T. Gansevoort (Ron); Y. Gao; T.B. Grammer (Tanja B); N. Grarup (Niels); J. Grewal (Jagvir); D. Gu (D.); G. SWander (Gurpreet); A.L. Hartikainen; S.L. Hazen (Stanley); J. He (Jing); C.K. Heng (Chew-Kiat); E.J.A. Hixso (E. James Ames); A. Hofman (Albert); C. Hsu (Chris); W. Huang (Wei); L.L.N. Husemoen (Lise Lotte); J.-Y. Hwang (Joo-Yeon); S. Ichihara (Sahoko); M. Igase (Michiya); M. Isono (Masato); J.M. Justesen (Johanne M.); T. Katsuya (Tomohiro); M. GKibriya (Muhammad); Y.J. Kim; M. Kishimoto (Miyako); W.-P. Koh (Woon-Puay); K. Kohara (Katsuhiko); M. Kumari (Meena); K. Kwek (Kenneth); N.R. Lee (Nanette); J. Lee (Jeannette); J. Liao (Jie); W. Lieb (Wolfgang); D.C. Liewald (David C.); T. Matsubara (Tatsuaki); Y. Matsushita (Yumi); T. Meitinger (Thomas); E. Mihailov (Evelin); L. Milani (Lili); R. Mills (Rebecca); K. Mononen (Kari); M. Müller-Nurasyid (Martina); T. Nabika (Toru); E. Nakashima (Eitaro); H.K. Ng (Hong Kiat); K. Nikus (Kjell); T. Nutile; T. Ohkubo (Takayoshi); K. Ohnaka (Keizo); S. Parish (Sarah); L. Paternoster (Lavinia); H. Peng (Hao); A. Peters (Annette); S. TPham (Son); M.J. Pinidiyapathirage (Mohitha J.); M. Rahman (Mahfuzar); H. Rakugi (Hiromi); O. Rolandsson (Olov); M.A. Rozario (Michelle Ann); D. Ruggiero; C. Sala (Cinzia); R. Sarju (Ralhan); K. Shimokawa (Kazuro); H. Snieder (Harold); T. Sparsø (Thomas); W. Spiering (Wilko); J.M. Starr (John); D.J. Stott (David J.); D. OStram (Daniel); T. Sugiyama (Takao); S. Szymczak (Silke); W.H.W. Tang (W.H. Wilson); L. Tong (Lin); S. Trompet (Stella); V. Turjanmaa (Väinö); H. Ueshima (Hirotsugu); A.G. Uitterlinden (André); S. Umemura (Satoshi); M. Vaarasmaki (Marja); R.M. Dam (Rob Mvan); W.H. van Gilst (Wiek); D.J. van Veldhuisen (Dirk); J. Viikari (Jorma); M. Waldenberger (Melanie); Y. Wang (Yiqin); A. Wang (Aili); R. Wilson (Rory); T.Y. Wong (Tien Yin); Y.-B. Xiang (Yong-Bing); S. Yamaguchi (Shuhei); X. Ye (Xingwang); R. Young (Robin); T.L. Young (Terri); J.-M. Yuan (Jian-Min); X. Zhou (Xueya); F.W. Asselbergs (Folkert); M. Ciullo; R. Clarke (Robert); P. Deloukas (Panagiotis); A. Franke (Andre); W.F. Paul (W. Frank); S. Franks (Steve); Y. Friedlander (Yechiel); M.D. Gross (Myron D.); Z. Guo (Zhirong); T. Hansen (T.); M.-R. Jarvelin (Marjo-Riitta); T. Jørgensen (Torben); J.W. Jukema (Jan Wouter); M. Kähönen (Mika); H. Kajio (Hiroshi); M. Kivimaki (Mika); J.-Y. Lee (Jong-Young); T. Lehtimäki (Terho); A. Linneberg (Allan); T. Miki (Tetsuro); O. Pedersen (Oluf); N.J. Samani (Nilesh); T.I.A. Sørensen (Thorkild); R. Takayanagi (Ryoichi); D. Toniolo (Daniela); H. Ahsan (Habibul); H. Allayee (Hooman); Y.-T. Chen (Yuan-Tsong); J. Danesh (John); I.J. Deary (Ian J.); O.H. Franco (Oscar); L. Franke (Lude); B. THeijman (Bastiaan); J.D. Holbrook (Joanna D.); A.J. Isaacs (Aaron); B.-J. Kim (Bong-Jo); X. Lin (Xu); J. Liu (Jianjun); W. März (Winfried); A. Metspalu (Andres); K.L. Mohlke (Karen); K. Sangher; D. Harambir (Dharambir); X.-O. Shu (Xiao-Ou); J.B.J. van Meurs (Joyce); E.N. Vithana (Eranga); A.R. Wickremasinghe (Ananda); C. Wijmenga (Cisca); B.H.W. Wolffenbuttel (Bruce H.W.); M. Yokota (Mitsuhiro); W. Zheng (Wei); D. Zhu (Dingliang); P. Vineis (Paolo); S.