WorldWideScience

Sample records for genetic noise control

  1. Genetic noise control via protein oligomerization

    Energy Technology Data Exchange (ETDEWEB)

    Ghim, C; Almaas, E

    2008-06-12

    Gene expression in a cell entails random reaction events occurring over disparate time scales. Thus, molecular noise that often results in phenotypic and population-dynamic consequences sets a fundamental limit to biochemical signaling. While there have been numerous studies correlating the architecture of cellular reaction networks with noise tolerance, only a limited effort has been made to understand the dynamical role of protein-protein associations. We have developed a fully stochastic model for the positive feedback control of a single gene, as well as a pair of genes (toggle switch), integrating quantitative results from previous in vivo and in vitro studies. In particular, we explicitly account for the fast protein binding-unbinding kinetics, RNA polymerases, and the promoter/operator sequences of DNA. We find that the overall noise-level is reduced and the frequency content of the noise is dramatically shifted to the physiologically irrelevant high-frequency regime in the presence of protein dimerization. This is independent of the choice of monomer or dimer as transcription factor and persists throughout the multiple model topologies considered. For the toggle switch, we additionally find that the presence of a protein dimer, either homodimer or heterodimer, may significantly reduce its intrinsic switching rate. Hence, the dimer promotes the robust function of bistable switches by preventing the uninduced (induced) state from randomly being induced (uninduced). The specific binding between regulatory proteins provides a buffer that may prevent the propagation of fluctuations in genetic activity. The capacity of the buffer is a non-monotonic function of association-dissociation rates. Since the protein oligomerization per se does not require extra protein components to be expressed, it provides a basis for the rapid control of intrinsic or extrinsic noise. The stabilization of phenotypically important toggle switches, and nested positive feedback loops in

  2. Genetic noise control via protein oligomerization

    Directory of Open Access Journals (Sweden)

    Almaas Eivind

    2008-11-01

    Full Text Available Abstract Background Gene expression in a cell entails random reaction events occurring over disparate time scales. Thus, molecular noise that often results in phenotypic and population-dynamic consequences sets a fundamental limit to biochemical signaling. While there have been numerous studies correlating the architecture of cellular reaction networks with noise tolerance, only a limited effort has been made to understand the dynamic role of protein-protein interactions. Results We have developed a fully stochastic model for the positive feedback control of a single gene, as well as a pair of genes (toggle switch, integrating quantitative results from previous in vivo and in vitro studies. In particular, we explicitly account for the fast binding-unbinding kinetics among proteins, RNA polymerases, and the promoter/operator sequences of DNA. We find that the overall noise-level is reduced and the frequency content of the noise is dramatically shifted to the physiologically irrelevant high-frequency regime in the presence of protein dimerization. This is independent of the choice of monomer or dimer as transcription factor and persists throughout the multiple model topologies considered. For the toggle switch, we additionally find that the presence of a protein dimer, either homodimer or heterodimer, may significantly reduce its random switching rate. Hence, the dimer promotes the robust function of bistable switches by preventing the uninduced (induced state from randomly being induced (uninduced. Conclusion The specific binding between regulatory proteins provides a buffer that may prevent the propagation of fluctuations in genetic activity. The capacity of the buffer is a non-monotonic function of association-dissociation rates. Since the protein oligomerization per se does not require extra protein components to be expressed, it provides a basis for the rapid control of intrinsic or extrinsic noise. The stabilization of regulatory circuits

  3. Intrinsic Noise Profoundly Alters the Dynamics and Steady State of Morphogen-Controlled Bistable Genetic Switches.

    Directory of Open Access Journals (Sweden)

    Ruben Perez-Carrasco

    2016-10-01

    Full Text Available During tissue development, patterns of gene expression determine the spatial arrangement of cell types. In many cases, gradients of secreted signalling molecules-morphogens-guide this process by controlling downstream transcriptional networks. A mechanism commonly used in these networks to convert the continuous information provided by the gradient into discrete transitions between adjacent cell types is the genetic toggle switch, composed of cross-repressing transcriptional determinants. Previous analyses have emphasised the steady state output of these mechanisms. Here, we explore the dynamics of the toggle switch and use exact numerical simulations of the kinetic reactions, the corresponding Chemical Langevin Equation, and Minimum Action Path theory to establish a framework for studying the effect of gene expression noise on patterning time and boundary position. This provides insight into the time scale, gene expression trajectories and directionality of stochastic switching events between cell states. Taking gene expression noise into account predicts that the final boundary position of a morphogen-induced toggle switch, although robust to changes in the details of the noise, is distinct from that of the deterministic system. Moreover, the dramatic increase in patterning time close to the boundary predicted from the deterministic case is substantially reduced. The resulting stochastic switching introduces differences in patterning time along the morphogen gradient that result in a patterning wave propagating away from the morphogen source with a velocity determined by the intrinsic noise. The wave sharpens and slows as it advances and may never reach steady state in a biologically relevant time. This could explain experimentally observed dynamics of pattern formation. Together the analysis reveals the importance of dynamical transients for understanding morphogen-driven transcriptional networks and indicates that gene expression noise can

  4. Adjusting phenotypes by noise control.

    Directory of Open Access Journals (Sweden)

    Kyung H Kim

    2012-01-01

    Full Text Available Genetically identical cells can show phenotypic variability. This is often caused by stochastic events that originate from randomness in biochemical processes involving in gene expression and other extrinsic cellular processes. From an engineering perspective, there have been efforts focused on theory and experiments to control noise levels by perturbing and replacing gene network components. However, systematic methods for noise control are lacking mainly due to the intractable mathematical structure of noise propagation through reaction networks. Here, we provide a numerical analysis method by quantifying the parametric sensitivity of noise characteristics at the level of the linear noise approximation. Our analysis is readily applicable to various types of noise control and to different types of system; for example, we can orthogonally control the mean and noise levels and can control system dynamics such as noisy oscillations. As an illustration we applied our method to HIV and yeast gene expression systems and metabolic networks. The oscillatory signal control was applied to p53 oscillations from DNA damage. Furthermore, we showed that the efficiency of orthogonal control can be enhanced by applying extrinsic noise and feedback. Our noise control analysis can be applied to any stochastic model belonging to continuous time Markovian systems such as biological and chemical reaction systems, and even computer and social networks. We anticipate the proposed analysis to be a useful tool for designing and controlling synthetic gene networks.

  5. Multi-Objective Genetic Algorithm Optimisation Approach for the Geometrical Design of an Active Noise Control Systems

    Directory of Open Access Journals (Sweden)

    N. Jafferi

    2009-09-01

    Full Text Available This paper focuses on the geometrical design of active noise control (ANC in free- field propagation medium. The development and performance assessment uses genetic optimisation techniques to arrange system components so as to satisfy several performance requirements, such as physical extent of cancellation, controller design restriction and system stability. The ANC system design can be effectively addressed if it is considered as multi – objective optimisation problems. The multi-objective genetic algorithms (MOGAs are well suited to the design of an ANC system and the approach used for it is based on a multi - objective method, with which the physical extent of cancellation and relative stability assessment are dealt with simultaneously.

  6. Active Noise Control for Dishwasher noise

    Science.gov (United States)

    Lee, Nokhaeng; Park, Youngjin

    2016-09-01

    The dishwasher is a useful home appliance and continually used for automatically washing dishes. It's commonly placed in the kitchen with built-in style for practicality and better use of space. In this environment, people are easily exposed to dishwasher noise, so it is an important issue for the consumers, especially for the people living in open and narrow space. Recently, the sound power levels of the noise are about 40 - 50 dBA. It could be achieved by removal of noise sources and passive means of insulating acoustical path. For more reduction, such a quiet mode with the lower speed of cycle has been introduced, but this deteriorates the washing capacity. Under this background, we propose active noise control for dishwasher noise. It is observed that the noise is propagating mainly from the lower part of the front side. Control speakers are placed in the part for the collocation. Observation part of estimating sound field distribution and control part of generating the anti-noise are designed for active noise control. Simulation result shows proposed active noise control scheme could have a potential application for dishwasher noise reduction.

  7. Active noise control primer

    CERN Document Server

    Snyder, Scott D

    2000-01-01

    Active noise control - the reduction of noise by generating an acoustic signal that actively interferes with the noise - has become an active area of basic research and engineering applications. The aim of this book is to present all of the basic knowledge one needs for assessing how useful active noise control will be for a given problem and then to provide some guidance for designing, setting up, and tuning an active noise-control system. Written for students who have no prior knowledge of acoustics, signal processing, or noise control but who do have a reasonable grasp of basic physics and mathematics, the book is short and descriptive. It leaves for more advanced texts or research monographs all mathematical details and proofs concerning vibrations, signal processing and the like. The book can thus be used in independent study, in a classroom with laboratories, or in conjunction with a kit for experiment or demonstration. Topics covered include: basic acoustics; human perception and sound; sound intensity...

  8. Controlled Noise Seismology

    KAUST Repository

    Hanafy, Sherif M.

    2015-08-19

    We use controlled noise seismology (CNS) to generate surface waves, where we continuously record seismic data while generating artificial noise along the profile line. To generate the CNS data we drove a vehicle around the geophone line and continuously recorded the generated noise. The recorded data set is then correlated over different time windows and the correlograms are stacked together to generate the surface waves. The virtual shot gathers reveal surface waves with moveout velocities that closely approximate those from active source shot gathers.

  9. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing

    Directory of Open Access Journals (Sweden)

    Chen Bor-Sen

    2012-10-01

    Full Text Available Abstract Background Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Results Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI. We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI-based design problem

  10. 基于遗传算法的有源消声系统设计%Design of active noise control system based on genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    江华丽

    2012-01-01

    It is introduced the adaptive active noise control model based on genetic algorithm, introduces the principle of active noise control system, the adaptive control system lies in its control algorithm to adjust the filter coefficients. The main factors must be considered in the muffler system error, the sound delay, sound attenuation, and the formula by adding the phase change. The system combines neural networks to improve the precision and accuracy, can be used to optimize the structure of the neural network weights. Experiment proves that adaptive active noise control system based on neural network algorithm has a good effect,the system is stable.%建立了基于遗传算法的自适应有源消声模型,介绍有源消声系统原理,自适应控制系统的关键在于其控制算法,用算法来调整滤波器的系数.在消声系统里必须考虑的因素主要有误差、声音的延迟、声音的衰减、在公式中适当的加入相位变化等.该系统结合神经网络算法,遗传算法和BP算法结合并改进提高了精度和准确性,可以用来优化神经网络的结构及其权值.实验分别从单音和复音情况进行,实验结果证明了基于神经网络算法的自适应有源消声系统有良好的消声效果,该系统稳定性较强.

  11. Development of Active Noise Control System for Quieting Transformer Noise

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bok Kyu; Song, Seik Young; Choi, Huo Yul [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Yun, Dae Hea; Lee, Hyuk Jae [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    1997-12-31

    The passive noise control technique made use of sound-absorbing or soundproofing materials, so it required a large area and high cost for installation and had a drawback of poor performance at low frequency. Compared to this, the Active Noise Control attenuates noise sound pressure by using secondary source which has same performance ay low-frequency. Furthermore, it is able to save space and expenses. - research on adaptive algorithms - evaluation of global attenuation of the control - computer simulation - real-time Active Noise Control System Hardware Implementation - ANC system setting in the noisy area.

  12. Development of Active Noise Control System for Quieting Transformer Noise

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bok Kyu; Song, Seik Young; Choi, Huo Yul [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Yun, Dae Hea; Lee, Hyuk Jae [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    1997-12-31

    The passive noise control technique made use of sound-absorbing or soundproofing materials, so it required a large area and high cost for installation and had a drawback of poor performance at low frequency. Compared to this, the Active Noise Control attenuates noise sound pressure by using secondary source which has same performance ay low-frequency. Furthermore, it is able to save space and expenses. - research on adaptive algorithms - evaluation of global attenuation of the control - computer simulation - real-time Active Noise Control System Hardware Implementation - ANC system setting in the noisy area.

  13. Noise in the Library: Effects and Control.

    Science.gov (United States)

    Eagan, Ann

    1991-01-01

    Describes the physiological and psychological effects of noise in libraries and suggests methods of controlling noise from telephones, computers, printers, and photocopiers. Hearing loss and stress-related problems are discussed, the effects of noise on performance are described, and planning is emphasized as a method of avoiding noise problems.…

  14. Active Noise Control for Vehicle Exhaust Noise Reduction

    Institute of Scientific and Technical Information of China (English)

    李克强; 杨殿阁; 郑四发; 连小珉; 田中丈晴

    2003-01-01

    An active noise control (ANC) method was developed for exhaust noise reduction for medium-duty diesel trucks. A modified variable step size least mean squares (LMS) algorithm was used for the controller in a variable environment that considered the vehicle's acceleration characteristics. The variable step size time-based synchronized filtered-x LMS method (SFX-TB) used an adaptive algorithm that was more efficient than the conventional filtered-x LMS algorithm. The simulation and the experimental tests show that the control trackability and stability provided by the algorithm during acceleration enable the ANC system to effectively reduce the vehicle exhaust noise.

  15. Active Noise Control of Radiated Noise from Jets Originating NASA

    Science.gov (United States)

    Doty, Michael J.; Fuller, Christopher R.; Schiller, Noah H.; Turner, Travis L.

    2013-01-01

    The reduction of jet noise using a closed-loop active noise control system with highbandwidth active chevrons was investigated. The high frequency energy introduced by piezoelectrically-driven chevrons was demonstrated to achieve a broadband reduction of jet noise, presumably due to the suppression of large-scale turbulence. For a nozzle with one active chevron, benefits of up to 0.8 dB overall sound pressure level (OASPL) were observed compared to a static chevron nozzle near the maximum noise emission angle, and benefits of up to 1.9 dB OASPL were observed compared to a baseline nozzle with no chevrons. The closed-loop actuation system was able to effectively reduce noise at select frequencies by 1-3 dB. However, integrated OASPL did not indicate further reduction beyond the open-loop benefits, most likely due to the preliminary controller design, which was focused on narrowband performance.

  16. Developing active noise control systems for noise attenuation in ducts

    Science.gov (United States)

    Campos, Rosely V.; Ivo, Rodrigo C.; Medeiros, Eduardo B.

    2002-11-01

    The present work describes some of the research effort on Active Noise Control (ANC) being jointly developed by the Catholic University of Minas Gerais (PUC-MINAS) and the Federal University of Minas Gerais (UFMG). Considerations about the implementation of Digital Signal Processing for noise control in ducts has been presented. The objective is to establish a study on Active Noise Control in ducts combining geometry and acoustic parameters modification together with adaptive digital filtering implementation. Both algorithm and digital signal processing details are also discussed. The main results for a typical application where real attenuation has been obtained are presented and considered according to their use in developing real applications. The authors also believe that the present text should provide an interesting overview for both designers and students concerned about Active Noise Control in ducts. (To be presented in Portuguese.)

  17. Control strategies for aircraft airframe noise reduction

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Xunnian; Zhang Dejiu

    2013-01-01

    With the development of low-noise aircraft engine,airframe noise now represents a major noise source during the commercial aircraft's approach to landing phase.Noise control efforts have therefore been extensively focused on the airframe noise problems in order to further reduce aircraft overall noise.In this review,various control methods explored in the last decades for noise reduction on airframe components including high-lift devices and landing gears are summarized.We introduce recent major achievements in airframe noise reduction with passive control methods such as fairings,deceleration plates,splitter plates,acoustic liners,slat cove cover and side-edge replacements,and then discuss the potential and control mechanism of some promising active flow control strategies for airframe noise reduction,such as plasma technique and air blowing/suction devices.Based on the knowledge gained throughout the extensively noise control testing,a few design concepts on the landing gear,high-lift devices and whole aircraft are provided for advanced aircraft low-noise design.Finally,discussions and suggestions are given for future research on airframe noise reduction.

  18. Noise Control in Gene Regulatory Networks with Negative Feedback.

    Science.gov (United States)

    Hinczewski, Michael; Thirumalai, D

    2016-07-01

    Genes and proteins regulate cellular functions through complex circuits of biochemical reactions. Fluctuations in the components of these regulatory networks result in noise that invariably corrupts the signal, possibly compromising function. Here, we create a practical formalism based on ideas introduced by Wiener and Kolmogorov (WK) for filtering noise in engineered communications systems to quantitatively assess the extent to which noise can be controlled in biological processes involving negative feedback. Application of the theory, which reproduces the previously proven scaling of the lower bound for noise suppression in terms of the number of signaling events, shows that a tetracycline repressor-based negative-regulatory gene circuit behaves as a WK filter. For the class of Hill-like nonlinear regulatory functions, this type of filter provides the optimal reduction in noise. Our theoretical approach can be readily combined with experimental measurements of response functions in a wide variety of genetic circuits, to elucidate the general principles by which biological networks minimize noise.

  19. Controlling neuronal noise using chaos control

    CERN Document Server

    Christini, D J; Christini, David J; Collins, James J

    1995-01-01

    Chaos control techniques have been applied to a wide variety of experimental systems, including magneto-elastic ribbons, lasers, chemical reactions, arrhythmic cardiac tissue, and spontaneously bursting neuronal networks. An underlying assumption in all of these studies is that the system being controlled is chaotic. However, the identification of chaos in experimental systems, particularly physiological systems, is a difficult and often misleading task. Here we demonstrate that the chaos criteria used in a recent study can falsely classify a noise-driven, non-chaotic neuronal model as being chaotic. We apply chaos control, periodic pacing, and anticontrol to the non-chaotic model and obtain results which are similar to those reported for apparently chaotic, {\\em in vitro} neuronal networks. We also obtain similar results when we apply chaos control to a simple stochastic system. These novel findings challenge the claim that the aforementioned neuronal networks were chaotic and suggest that chaos control tech...

  20. A noise-controlled dynamic bifurcation

    CERN Document Server

    Lythe, G D

    1997-01-01

    We consider a slow passage through a point of loss of stability. If the passage is sufficiently slow, the dynamics are controlled by additive random disturbances, even if they are extremely small. We derive expressions for the `exit value' distribution when the parameter is explicitly a function of time and the dynamics are controlled by additive Gaussian noise. We derive a new expression for the small correction introduced if the noise is coloured (exponentially correlated). There is good agreement with results obtained from simulation of sample paths of the appropriate stochastic differential equations. Multiplicative noise does not produce noise-controlled dynamics in this fashion.

  1. Noise suppression by quantum control before and after the noise

    Science.gov (United States)

    Wakamura, Hiroaki; Kawakubo, Ryûitirô; Koike, Tatsuhiko

    2017-02-01

    We discuss the possibility of protecting the state of a quantum system that goes through noise by measurements and operations before and after the noise process. The aim is to seek the optimal protocol that makes the input and output states as close as possible and to clarify the role of the measurements therein. We consider two cases: one can perform quantum measurements and operations (i) only after the noise process and (ii) both before and after. We prove in a two-dimensional Hilbert space that, in case (i), the noise suppression is essentially impossible for all types of noise and, in case (ii), the optimal protocol for the depolarizing noise is either the "do nothing" protocol or the "discriminate and reprepare" protocol. These protocols are not "truly quantum" and can be considered as classical. They involve no measurement or only use the measurement outcomes. These results describe the fundamental limitations in quantum mechanics from the viewpoint of control theory. Finally, we conjecture that a statement similar to case (ii) holds for higher-dimensional Hilbert spaces and present some numerical evidence.

  2. Proceedings of the 1987 national conference on noise control engineering: High technology for noise control

    Energy Technology Data Exchange (ETDEWEB)

    Tichy, J.; Hayek, S.

    1987-01-01

    This book consists of nine sections, each containing several papers. The section titles are: Emission: Noise Sources; Physical Phenomena; Noise Control Elements; Vibration: Generation, Transmission, Isolation and Reduction; Immission: Physical Aspects of Environmental Noise; Immission: Effects of Noise; Analysis; Requirements; and Biomedical Uses of Acoustics.

  3. Active Control of Fan Noise

    Institute of Scientific and Technical Information of China (English)

    Nobuhiko YAMASAKI; Hirotoshi TAJIMA

    2008-01-01

    In the wake-rotor interaction fan noise, a number of the interacting modes at the blade passing frequency (BPF)and its harmonics are generated which are prescribed by the number of stator and rotor blades etc. In the present study, the dominant mode is tried to be suppressed by the secondary sound from the loudspeaker actuators. One of the novel features of the present system is the adoption of the control board with the Field Programmable Gate Array (FPGA) hardware and the LabVIEW software to synchronize the circumferentially installed loudspeaker actuators with the relative location of rotational blades under arbitrary fan rotational speeds. The experiments were conducted under the conditions of three rotational speeds of 2004, 3150, and 4002 [rpm]. The reduction in the sound pressure level (SPL) was observed for all three rotational speeds. The sound pressure level at the BPF was reduced approximately 13 [dB] for 2004 [rpm] case, but not so large reduction was attained for other cases probably due to the inefficiency of the loudspeaker actuators at high frequencies

  4. Period doubling induced by thermal noise amplification in genetic circuits

    KAUST Repository

    Ruocco, G.

    2014-11-18

    Rhythms of life are dictated by oscillations, which take place in a wide rage of biological scales. In bacteria, for example, oscillations have been proven to control many fundamental processes, ranging from gene expression to cell divisions. In genetic circuits, oscillations originate from elemental block such as autorepressors and toggle switches, which produce robust and noise-free cycles with well defined frequency. In some circumstances, the oscillation period of biological functions may double, thus generating bistable behaviors whose ultimate origin is at the basis of intense investigations. Motivated by brain studies, we here study an “elemental” genetic circuit, where a simple nonlinear process interacts with a noisy environment. In the proposed system, nonlinearity naturally arises from the mechanism of cooperative stability, which regulates the concentration of a protein produced during a transcription process. In this elemental model, bistability results from the coherent amplification of environmental fluctuations due to a stochastic resonance of nonlinear origin. This suggests that the period doubling observed in many biological functions might result from the intrinsic interplay between nonlinearity and thermal noise.

  5. Helicopter internal noise control: Three case histories

    Science.gov (United States)

    Edwards, B. D.; Cox, C. R.

    1978-01-01

    Case histories are described in which measurable improvements in the cabin noise environments of the Bell 214B, 206B, and 222 were realized. These case histories trace the noise control efforts followed in each vehicle. Among the design approaches considered, the addition of a fluid pulsation damper in a hydraulic system and the installation of elastomeric engine mounts are highlighted. It is concluded that substantial weight savings result when the major interior noise sources are controlled by design, both in altering the noise producing mechanism and interrupting the sound transmission paths.

  6. The application of active noise control technology to reduce noise from air pollution control equipment

    Energy Technology Data Exchange (ETDEWEB)

    Depies, C. R.; Kapsos, D. W.

    1996-08-01

    The basic concept of active noise control, i. e. to create a noise field in a space in order to destructively interfere with an existing noise, and in the process create a quieter space, was explained. The manner in which noise control technology can be used in air pollution control equipment was described and guidelines for application were provided. A number of case studies were used to illustrate the suitability of active noise control for low frequency noise problems, especially in the area of air pollution control equipment. Impressive reduction of low frequency noise, energy efficiency, ability to retrofit into an existing duct system, and the hardware`s insensitivity to dirty exhaust environments were cited as the principal reasons for the success of active noise control technology over more traditional in-line passive silencers. 1 ref., 8 figs.

  7. Neural Control Adaptation to Motor Noise Manipulation

    Directory of Open Access Journals (Sweden)

    Christopher J Hasson

    2016-03-01

    Full Text Available Antagonistic muscular co-activation can compensate for movement variability induced by motor noise at the expense of increased energetic costs. Greater antagonistic co-activation is commonly observed in older adults, which could be an adaptation to increased motor noise. The present study tested this hypothesis by manipulating motor noise in twelve young subjects while they practiced a goal-directed task using a myoelectric virtual arm, which was controlled by their biceps and triceps muscle activity. Motor noise was increased by increasing the coefficient of variation of the myoelectric signals. As hypothesized, subjects adapted by increasing antagonistic co-activation, and this was associated with reduced noise-induced performance decrements. A second hypothesis was that a virtual decrease in motor noise, achieved by smoothing the myoelectric signals, would have the opposite effect: co-activation would decrease and motor performance would improve. However, the results showed that a decrease in noise made performance worse instead of better, with no change in co-activation. Overall, these findings suggest that the nervous system adapts to virtual increases in motor noise by increasing antagonistic co-activation, and this preserves motor performance. Reducing noise may have failed to benefit performance due to characteristics of the filtering process itself, e.g. delays are introduced and muscle activity bursts are attenuated. The observed adaptations to increased noise may explain in part why older adults and many patient populations have greater antagonistic co-activation, which could represent an adaptation to increased motor noise, along with a desire for increased joint stability.

  8. Cooperating or Fighting with Control Noise in the Optimal Manipulation of Quantum Dynamics

    CERN Document Server

    Shuang, F; Shuang, Feng; Rabitz, Herschel

    2004-01-01

    This paper investigates the impact of control field noise on the optimal manipulation of quantum dynamics. Simulations are performed on several multilevel quantum systems with the goal of population transfer in the presence of significant control noise. The noise enters as run-to-run variations in the control amplitude and phase with the observation being an ensemble average over many runs as is commonly done in the laboratory. A genetic algorithm with an improved elitism operator is used to find the optimal field that either fights against or cooperates with control field noise. When seeking a high control yield it is possible to find fields that successfully fight with the noise while attaining good quality stable results. When seeking modest control yields, fields can be found which are optimally shaped to cooperate with the noise and thereby drive the dynamics more efficiently. In general, noise reduces the coherence of the dynamics, but the results indicate that population transfer objectives can be met ...

  9. Noise-control needs in the developing energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Keast, D.N.

    1978-03-01

    The noise characteristics of existing energy conversion technologies, e.g., from obtaining and processing fossil fuels to power plants operations, and of developing energy technologies (wind, geothermal sources, solar energy or fusion systems) are discussed in terms of the effects of noise on humans, animals, structures, and equipment and methods for noise control. Regulations for noise control are described. Recommendations are made for further research on noise control and noise effects. (LCL)

  10. Noise control considerations for patient rooms

    Science.gov (United States)

    Davenny, Benjamin

    2005-09-01

    The patient room envelope is a path between outside noise sources and the patient receiver. Within the patient room there are several sources including televisions, clinical monitor alarms, medical pumps, etc. Noise control in patient rooms relies on a combination of the sound transmission loss of the patient room envelope and the level of background sound at the patient's head. Guidelines published by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), American Institute of Architects (AIA), and the U.S. Department of Defense for background noise and sound transmission loss in patient rooms will be discussed. Appropriate levels, spectra, and temporal characteristics of background sound at the patient head location may be helpful in raising the threshold of annoying sounds. Various means of personal hearing protection for patients will be discussed. Sound-pressure levels in patient rooms reported in previous literature will also be discussed.

  11. Mathematical Fundamentals for the Noise Immunity of the Genetic Code.

    Science.gov (United States)

    Fimmel, Elena; Strüngmann, Lutz

    2017-09-13

    Symmetry is one of the essential and most visible patterns that can be seen in nature. Starting from the left-right symmetry of the human body, all types of symmetry can be found in crystals, plants, animals and nature as a whole. Similarly, principals of symmetry are also some of the fundamental and most useful tools in modern mathematical natural science that play a major role in theory and applications. As a consequence, it is not surprising that the desire to understand the origin of life, based on the genetic code, forces us to involve symmetry as a mathematical concept. The genetic code can be seen as a key to biological self-organisation. All living organisms have the same molecular bases - an alphabet consisting of four letters (nitrogenous bases): adenine, cytosine, guanine, and thymine. Linearly ordered sequences of these bases contain the genetic information for synthesis of proteins in all forms of life. Thus, one of the most fascinating riddles of nature is to explain why the genetic code is as it is. Genetic coding possesses noise immunity which is the fundamental feature that allows to pass on the genetic information from parents to their descendants. Hence, since the time of the discovery of the genetic code, scientists have tried to explain the noise immunity of the genetic information. In this chapter we will discuss recent results in mathematical modelling of the genetic code with respect to noise immunity, in particular error-detection and error-correction. We will focus on two central properties: Degeneracy and frameshift correction. Different amino acids are encoded by different quantities of codons and a connection between this degeneracy and the noise immunity of genetic information is a long standing hypothesis. Biological implications of the degeneracy have been intensively studied and whether the natural code is a frozen accident or a highly optimised product of evolution is still controversially discussed. Symmetries in the structure of

  12. Automotive active noise control (ANC) system. Jidoshayo active noise control (ANC) system

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, S. (Nissan Motor Co. Ltd., Tokyo (Japan))

    1992-11-25

    This paper introduces a successful development of an active noise control (ANC) system that selects and controls noise in an automobile compartment. This is a system that Nissan has developed for practical use for the first time in the world by using an adaptive control theory and a digital signal processor (DSP) that uses ultra-high speed operating elements. The principle for noise silencing in the ANC system utilizes interference of cyclic amplitude of sound with opposite phase. Sounds in an automobile include informative sounds, agreeable sounds, and noise, and combinations of these sounds work complexly on people in a car, of which extent varies depending on individuals. The adaptive control minimizes sounds picked up by a microphone into controlled speaker sound via an multiple error filtered algorithm (MEF-[sub X]LMS) and an adaptive digital filter. Major components of the system include a microphone, a speaker, and a control unit (comprising the adaptive algorithm and the adaptive filter), all having been developed newly. A DSP that operates on ultra-high speed operating elements was used for speedy compliance with complex algorithms, so that the controlled sound combined of engine noise with compartment sound field can be calculated. The noise was reduced by more than 10 dB at maximum. 7 figs.

  13. 49 CFR 227.113 - Noise operational controls.

    Science.gov (United States)

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION OCCUPATIONAL NOISE EXPOSURE Occupational Noise Exposure for Railroad Operating Employees. § 227.113 Noise operational controls. (a) Railroads may use noise operational controls at any sound level to reduce exposures to levels below those required by Table A-1 of appendix A...

  14. Stochastic gene expression in single cells: exploring the importance of noise in genetic networks

    Science.gov (United States)

    van Oudenaarden, Alexander

    2003-03-01

    Cells are intrinsically noisy biochemical reactors. This leads to random cell to cell variation (noise) in gene expression levels. First, I will address the source of this noise at the level of transcription and translation of a single gene. Our experimental results demonstrate that the intrinsic noise of a single gene is predominantly controlled at the translational level, and that increased translational efficiency leads to increased noise strength. This observation is consistent with a theoretical model in which proteins are randomly produced in sharp bursts followed by periods of slow decay. Second, I will explore the importance of genetic noise for a naturally occuring network: the lac operon. The classic lactose utilization network of E. coli has been under investigation for several decades and, in its simplest form the network may be modeled as a single positive feedback module. However, this simplicity is deceptive, as even this basic network is capable of complex metabolic behavior, including adaptation, amplification, and graded-to-binary response conversion. I will present single cell measurements on the expression of key genes in lactose uptake network and explore the importance of genetic noise on the regulation of these genes.

  15. Holistic control of ship noise emissions

    OpenAIRE

    Borelli Davide; Gaggero Tomaso; Rizzuto Enrico; Schenone Corrado

    2016-01-01

    The sustainability of anthropogenic activities at sea is recently gaining more and more attention. As regards shipping, emissions from ships into the environment of various nature (engine exhaust gases, anti-fouling paints leaching, ballast exchange, releases at sea of oil and other noxious liquid or solid cargoes, of sewage and of garbage) have been recognized as sources of pollution and therefore controlled and limited since a long time. The subject of noise emission...

  16. Active Noise Control of the Heavy Truck Interior Cab

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to control the noise of the heavy truck interior cab effectively, the active noise control methods are employed. First, an interior noise field test for the heavy truck is performed, and frequencies of interior noise of this vehicle are analyzed. According to the spectrum analysis of acquired noise signal, it is found out that the main frequencies of interior noise are less than 800Hz. Then the least squares lattice (LSL) algorithm is used as signal processing algorithm of the controller and a closed-loop control DSP system, based on TMS 320VC5416, is developed. The residual signal at driver's ear is used as feedback signal. Lastly, the developed ANC system is loaded into the heavy truck cab, and controlling the noise at driver's ear for that truck at different driving speeds is attempted. The noise control test results indicate that the cab interior noise is reduced averagely by 0.9 dBA at different driving speeds.

  17. A noise immunity controlled quantum teleportation protocol

    Science.gov (United States)

    Li, Dong-fen; Wang, Rui-jin; Zhang, Feng-li; Baagyere, Edward; Qin, Zhen; Xiong, Hu; Zhan, Huayi

    2016-08-01

    With the advent of the Internet and information and communication technology, quantum teleportation has become an important field in information security and its application areas. This is because quantum teleportation has the ability to attain a timely secret information delivery and offers unconditional security. And as such, the field of quantum teleportation has become a hot research topic in recent years. However, noise has serious effect on the safety of quantum teleportation within the aspects of information fidelity, channel capacity and information transfer. Therefore, the main purpose of this paper is to address these problems of quantum teleportation. Firstly, in order to resist collective noise, we construct a decoherence-free subspace under different noise scenarios to establish a two-dimensional fidelity quantum teleportation models. And also create quantum teleportation of multiple degree of freedom, and these models ensure the accuracy and availability of the exchange of information and in multiple degree of freedom. Secondly, for easy preparation, measurement and implementation, we use super dense coding features to build an entangled quantum secret exchange channel. To improve the channel utilization and capacity, an efficient super dense coding method based on ultra-entanglement exchange is used. Thirdly, continuous variables of the controlled quantum key distribution were designed for quantum teleportation; in addition, we perform Bell-basis measurement under the collective noise and also prepare the storage technology of quantum states to achieve one-bit key by three-photon encoding to improve its security and efficiency. We use these two methods because they conceal information, resist a third party attack and can detect eavesdropping. Our proposed methods, according to the security analysis, are able to solve the problems associated with the quantum teleportation under various noise environments.

  18. A noise immunity controlled quantum teleportation protocol

    Science.gov (United States)

    Li, Dong-fen; Wang, Rui-jin; Zhang, Feng-li; Baagyere, Edward; Qin, Zhen; Xiong, Hu; Zhan, Huayi

    2016-11-01

    With the advent of the Internet and information and communication technology, quantum teleportation has become an important field in information security and its application areas. This is because quantum teleportation has the ability to attain a timely secret information delivery and offers unconditional security. And as such, the field of quantum teleportation has become a hot research topic in recent years. However, noise has serious effect on the safety of quantum teleportation within the aspects of information fidelity, channel capacity and information transfer. Therefore, the main purpose of this paper is to address these problems of quantum teleportation. Firstly, in order to resist collective noise, we construct a decoherence-free subspace under different noise scenarios to establish a two-dimensional fidelity quantum teleportation models. And also create quantum teleportation of multiple degree of freedom, and these models ensure the accuracy and availability of the exchange of information and in multiple degree of freedom. Secondly, for easy preparation, measurement and implementation, we use super dense coding features to build an entangled quantum secret exchange channel. To improve the channel utilization and capacity, an efficient super dense coding method based on ultra-entanglement exchange is used. Thirdly, continuous variables of the controlled quantum key distribution were designed for quantum teleportation; in addition, we perform Bell-basis measurement under the collective noise and also prepare the storage technology of quantum states to achieve one-bit key by three-photon encoding to improve its security and efficiency. We use these two methods because they conceal information, resist a third party attack and can detect eavesdropping. Our proposed methods, according to the security analysis, are able to solve the problems associated with the quantum teleportation under various noise environments.

  19. Active noise control: A tutorial for HVAC designers

    Energy Technology Data Exchange (ETDEWEB)

    Gelin, L.J.

    1997-08-01

    This article will identify the capabilities and limitations of ANC in its application to HVAC noise control. ANC can be used in ducted HVAC systems to cancel ductborne, low-frequency fan noise by injecting sound waves of equal amplitude and opposite phase into an air duct, as close as possible to the source of the unwanted noise. Destructive interference of the fan noise and injected noise results in sound cancellation. The noise problems that it solves are typically described as rumble, roar or throb, all of which are difficult to address using traditional noise control methods. This article will also contrast the use of active against passive noise control techniques. The main differences between the two noise control measures are acoustic performance, energy consumption, and design flexibility. The article will first present the fundamentals and basic physics of ANC. The application to real HVAC systems will follow.

  20. Distributed Absorber for Noise and Vibration Control

    Directory of Open Access Journals (Sweden)

    Michel Azoulay

    2011-01-01

    Full Text Available An approach to a wide-band frequency passive vibration attenuation is introduced in this paper. This aims to suppress noise and vibration of extended multimode objects like plates, panels and shells. The absorber is arranged in the form of a single-layer assembly of small inertial bodies (balls being distributed and moulded within the light visco-elastic media (e.g. silicone resin. The absorber as a whole is embedded into object face covering the critical patches of the system surface. For the purpose of characterization, the authors introduced the complex frequency response function relating the volume velocity produced by the vibrating object surface (response stimulated by a point-wise force (stimulus applied to a particular point. The simulation and optimization of the main frequency characteristics has been performed using a full scale 3-dimensional Finite Element model. These revealed some new dynamic features of absorber's structures, which can contribute to vibration attenuation. A full-scale physical experimentation with synthesised absorber's structures confirmed the main results of simulation and has shown significant noise reduction over a staggering 0–20 kHz frequency band. This was achieved with a negligible weight and volume penalty due to the addition of the absorber. The results can find multiple applications in noise and vibration control of different structures. Some examples of such applications are presented.

  1. Binaural Integrated Active Noise Control and Noise Reduction in Hearing Aids

    DEFF Research Database (Denmark)

    Serizel, Romain; Moonen, Marc; Wouters, Jan;

    2013-01-01

    This paper presents a binaural approach to integrated active noise control and noise reduction in hearing aids and aims at demonstrating that a binaural setup indeed provides significant advantages in terms of the number of noise sources that can be compensated for and in terms of the causality...

  2. [Optimally control urban railway noise by sound propagation path].

    Science.gov (United States)

    Di, Guo-qing; Li, Zheng-guang; Chen, Yu; Zhang, Bang-jun

    2008-08-01

    In order to control railway noise pollution in urban areas, the residential district located near the Zhegan railway in Hangzhou urban was taken for example, and some controlling measures were proposed based on the investigation in railway noise impact as well as the planning of the district, the environmental scene and the project devises. The measures included setting man-made soil slopes, noise barriers and virescence. Combining some of them could be a typical noise reduction scheme. The professional software Cadna/A was used to predict the noise reduction results of every scheme. Results show that the maximal difference of noise reduction is 19.4 dB and the noise reduction effect of the second scheme is best. However, if only railway noise influence is considered, the first scheme is best. The research results can provide reference for residential districts planning and noise control near the railway in urban areas.

  3. Analysis of noise control measures on outdoor machinery using EQUIP+

    NARCIS (Netherlands)

    Dittrich, M.G.

    2006-01-01

    Noise control of different types of outdoor machinery covered by EU Directive 2000/14/EC such as construction machines, generators and other equipment powered by internal combustion engines requires knowledge of the noise path model and the potential noise control measures. As there is often a

  4. Application of Adaptive Filters to Active Noise Control

    Institute of Scientific and Technical Information of China (English)

    PEI Bingnan; LI Chuanguang

    2001-01-01

    A modified LMS algorithm for noise-control is suggested after a mathematical model ofsound-cancellation is established, on the basis of thesound wave interference principle and the physicalmodel of progressive waves in a duct. Its applicationin controlling noise with the frequency range from 100to 800 Hz can be implemented by using the adaptivedigital signal processing technique. The experimentson a pink noise, a broadband noise and a noise takenfrom a tank were made, which show that there existsan attenuation of 11 dB at the frequency of 500 Hzor so, and that the proposed adaptive noise controltechnique is very effective and valid.

  5. Active Noise Feedback Control Using a Neural Network

    Directory of Open Access Journals (Sweden)

    Zhang Qizhi

    2001-01-01

    Full Text Available The active noise control (ANC is discussed. Many digital ANC systems often based on the filter-x algorithm for finite impulse response (FIR filter use adaptive filtering techniques. But if the primary noise path is nonlinear, the control system based on adaptive filter technology will be invalid. In this paper, an adaptive active nonlinear noise feedback control approach using a neural network is derived. The feedback control system drives a secondary signal to destructively interfere with the original noise to cut down the noise power. An on-line learning algorithm based on the error gradient descent method was proposed, and the local stability of closed loop system is proved using the discrete Lyapunov function. A nonlinear simulation example shows that the adaptive active noise feedback control method based on a neural network is very effective to the nonlinear noise control.

  6. Active noise control using noise source having adaptive resonant frequency tuning through stiffness variation

    Science.gov (United States)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by a plurality of force transmitting mechanisms which contact the noise radiating element. Each one of the force transmitting mechanisms includes an expandable element and a spring in contact with the noise radiating element so that excitation of the element varies the spring force applied to the noise radiating element. The elements are actuated by a controller which receives input of a signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the elements and causes the spring force applied to the noise radiating element to be varied. The force transmitting mechanisms can be arranged to either produce bending or linear stiffness variations in the noise radiating element.

  7. Noise reduction in selective computational ghost imaging using genetic algorithm

    Science.gov (United States)

    Zafari, Mohammad; Ahmadi-Kandjani, Sohrab; Kheradmand, Reza

    2017-03-01

    Recently, we have presented a selective computational ghost imaging (SCGI) method as an advanced technique for enhancing the security level of the encrypted ghost images. In this paper, we propose a modified method to improve the ghost image quality reconstructed by SCGI technique. The method is based on background subtraction using genetic algorithm (GA) which eliminates background noise and gives background-free ghost images. Analyzing the universal image quality index by using experimental data proves the advantage of this modification method. In particular, the calculated value of the image quality index for modified SCGI over 4225 realization shows an 11 times improvement with respect to SCGI technique. This improvement is 20 times in comparison to conventional CGI technique.

  8. Noise Control in Propeller-Driven Aircraft

    Science.gov (United States)

    Rennison, D. C.; Wilby, J. F.

    1983-01-01

    Analytical model predicts noise levels inside propeller-driven aircraft during cruise at mach 0.8. Double wall sidewalls minimize interior noise and weight. Model applied to three aircraft with fuselages of different size (wide-body, narrow-body, and small-diameter) to determine noise reductions required to achieve A-weighted sound level not to exceed 80 dB.

  9. On-line Monitoring and Active Control for Transformer Noise

    Science.gov (United States)

    Liang, Jiabi; Zhao, Tong; Tian, Chun; Wang, Xia; He, Zhenhua; Duan, Lunfeng

    This paper introduces the system for on-line monitoring and active noise control towards the transformer noise based on LabVIEW and the hardware equipment including the hardware and software. For the hardware part, it is mainly focused on the composition and the role of hardware devices, as well as the mounting location in the active noise control experiment. And the software part introduces the software flow chats, the measurement and analysis module for the sound pressure level including A, B, C weighting methods, the 1/n octave spectrum and the power spectrum, active noise control module and noise data access module.

  10. Active Noise Feedback Control Using a Neural Network

    OpenAIRE

    Zhang Qizhi; Jia Yongle

    2001-01-01

    The active noise control (ANC) is discussed. Many digital ANC systems often based on the filter-x algorithm for finite impulse response (FIR) filter use adaptive filtering techniques. But if the primary noise path is nonlinear, the control system based on adaptive filter technology will be invalid. In this paper, an adaptive active nonlinear noise feedback control approach using a neural network is derived. The feedback control system drives a secondary signal to destructively interfere with ...

  11. Active Aircraft Pylon Noise Control System

    Science.gov (United States)

    Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elmiligui, Alaa A. (Inventor)

    2017-01-01

    An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.

  12. Model based monitoring for industrial and traffic noise control

    NARCIS (Netherlands)

    Eerden, F.J.M. van der; Binnerts, B.; Graafland, F.

    2015-01-01

    Noise control starts by understanding the actual noise situation. Especially for situations where the distance between industrial and traffic noise sources and a local community is in the order of one kilometer or more, it may not be clear what sources are the main contributors to annoyance. Then a

  13. Traffic noise and vehicle movement at a controlled intersection

    NARCIS (Netherlands)

    Salomons, E.M.

    2014-01-01

    Traffic noise at an intersection controlled by traffic lights shows noise level variations due to the alternating green and red lights for the different trafficstreams. Noise peaks caused by automobiles pulling up or passing by at highspeed may be quite annoying for people living near the intersecti

  14. Research on Noise Control for Ventilators with Resonance

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A study was carried out to control the noise produced by the ventilators at the Luling coalmine, which had caused serious noise pollution to the residents living around the mine for a long time. The main noise source was found to be the dynamic noise at the outlet of the diffuser. The frequency of its peak value was 250 Hz. A special brick with a resonant frequency of 250 Hz was designed to eliminate this noise. The diffusion of a lower frequency noise has been successfully controlled by the installation of a noise-eliminating tower above the diffuser outlet. The detection results show that the noise in the nearby residential area has been lowered to an average 55.3dB(A) in the daytime from 69.8dB(A) and to 48.4dB(A) at night from 65.8dB(A).

  15. Underwater vehicle sonar self-noise prediction based on genetic algorithms and neural network

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-guang; SHI Zhong-kun

    2006-01-01

    The factors that influence underwater vehicle sonar self-noise are analyzed, and genetic algorithms and a back propagation (BP) neural network are combined to predict underwater vehicle sonar self-noise. The experimental results demonstrate that underwater vehicle sonar self-noise can be predicted accurately by a GA-BP neural network that is based on actual underwater vehicle sonar data.

  16. Active noise control: a review of the field.

    Science.gov (United States)

    Gordon, R T; Vining, W D

    1992-11-01

    Active noise control (ANC) is the application of the principle of the superposition of waves to noise attenuation problems. Much progress has been made toward applying ANC to narrow-band, low-frequency noise in confined spaces. During this same period, the application of ANC to broad-band noise or noise in three-dimensional spaces has seen little progress because of the recent quantification of serious physical limitations, most importantly, noncausality, stability, spatial mismatch, and the infinite gain controller requirement. ANC employs superposition to induce destructive interference to affect the attenuation of noise. ANC was believed to utilize the mechanism of phase cancellation to achieve the desired attenuation. However, current literature points to other mechanisms that may be operating in ANC. Categories of ANC are one-dimensional field and duct noise, enclosed spaces and interior noise, noise in three-dimensional spaces, and personal hearing protection. Development of active noise control stems from potential advantages in cost, size, and effectiveness. There are two approaches to ANC. In the first, the original sound is processed and injected back into the sound field in antiphase. The second approach is to synthesize a cancelling waveform. ANC of turbulent flow in pipes and ducts is the largest area in the field. Much work into the actual mechanism involved and the causal versus noncausal aspects of system controllers has been done. Fan and propeller noise can be divided into two categories: noise generated directly as the blade passing tones and noise generated as a result of blade tip turbulence inducing vibration in structures. Three-dimensional spaces present a noise environment where physical limitations are magnified and the infinite gain controller requirement is confronted. Personal hearing protection has been shown to be best suited to the control of periodic, low-frequency noise.

  17. Active noise control using noise source having adaptive resonant frequency tuning through stress variation

    Science.gov (United States)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by an expandable ring embedded in the noise radiating element. Excitation of the ring causes expansion or contraction of the ring, thereby varying the stress in the noise radiating element. The ring is actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the ring, causing the ring to expand or contract. Instead of a single ring embedded in the noise radiating panel, a first expandable ring can be bonded to one side of the noise radiating element, and a second expandable ring can be bonded to the other side.

  18. Air injection vacuum blower noise control

    Energy Technology Data Exchange (ETDEWEB)

    Mose, Tyler L.A.; Faszer, Andrew C. [Noise Solutions Inc. (Canada)], email: tmose@noisesolutions.com, email: afaszer@noisesolutions.com

    2011-07-01

    Air injection vacuum blowers, with applications in waste removal, central vacuum systems, and aeration systems, are widely used when high vacuum levels are required. Noise generated by those blowers must be addressed for operator health and residential disturbance. This paper describes a project led by Noise Solutions Inc., to identify noise sources in a blower, and design and test a noise mitigation system. First the predominant noise sources in the blower must be determined, this is done with a sound level meter used to quantify the contribution of each individual noise source and the dominant tonal noise from the blower. Design of a noise abatement system must take into account constraints arising from blower mobile use, blower optimal performance, and the resulting overall vibration of the structure. The design was based on calculations from the sound attenuation of a reactive expansion chamber and two prototypes of custom silencers were then tested, showing a significant noise reduction both in total sound levels and tonal noise.

  19. Cooperating or fighting with control noise in the optimal manipulation of quantum dynamics.

    Science.gov (United States)

    Shuang, Feng; Rabitz, Herschel

    2004-11-15

    This paper investigates the impact of control field noise on the optimal manipulation of quantum dynamics. Simulations are performed on several multilevel quantum systems with the goal of population transfer in the presence of significant control noise. The noise enters as run-to-run variations in the control amplitude and phase with the observation being an ensemble average over many runs as is commonly done in the laboratory. A genetic algorithm with an improved elitism operator is used to find the optimal field that either fights against or cooperates with control field noise. When seeking a high control yield it is possible to find fields that successfully fight with the noise while attaining good quality stable results. When seeking modest control yields, fields can be found which are optimally shaped to cooperate with the noise and thereby drive the dynamics more efficiently. In general, noise reduces the coherence of the dynamics, but the results indicate that population transfer objectives can be met by appropriately either fighting or cooperating with noise, even when it is intense.

  20. Study on noise prediction model and control schemes for substation.

    Science.gov (United States)

    Chen, Chuanmin; Gao, Yang; Liu, Songtao

    2014-01-01

    With the government's emphasis on environmental issues of power transmission and transformation project, noise pollution has become a prominent problem now. The noise from the working transformer, reactor, and other electrical equipment in the substation will bring negative effect to the ambient environment. This paper focuses on using acoustic software for the simulation and calculation method to control substation noise. According to the characteristics of the substation noise and the techniques of noise reduction, a substation's acoustic field model was established with the SoundPLAN software to predict the scope of substation noise. On this basis, 4 reasonable noise control schemes were advanced to provide some helpful references for noise control during the new substation's design and construction process. And the feasibility and application effect of these control schemes can be verified by using the method of simulation modeling. The simulation results show that the substation always has the problem of excessive noise at boundary under the conventional measures. The excess noise can be efficiently reduced by taking the corresponding noise reduction methods.

  1. Quality control in digital mammography: the noise components

    Energy Technology Data Exchange (ETDEWEB)

    Leyton, Fernando [Universidade de Tarapaca, Arica (Chile). Centro de Estudios en Ciencias Radiologicas; Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Nogueira, Maria do Socorro, E-mail: mnogue@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Duran, Maria Paz [Clinica Alemana, Santiago (Chile). Dept. de Radiologia; Dantas, Marcelino, E-mail: marcelino@inb.gov.b [Industrias Nucleares do Brasil (INB), Caldas, MG (Brazil). Unidade de Tratamento de Minerios; Ubeda, Carlos, E-mail: cubeda@uta.c [Universidade de Tarapaca, Arica (Chile). Fac. de Ciencias de la Salud

    2011-07-01

    To measure the linearity of the detector and determine the noise components (quantum, electronic and structural noise) that contributed to losing image quality and to determine the signal noise ratio (SNR) and contrast noise ratio (CNR). This paper describes the results of the implementation of a protocol for quality control in digital mammography performed in two direct digital mammography equipment (Hologic, Selenia) in Santiago of Chile. Shows the results of linearity and noise analysis of the images which establishes the main cause of noise in the image of the mammogram to ensure the quality and optimize procedures. The study evaluated two digital mammography's Selenia, Hologic (DR) from Santiago, Chile. We conducted the assessment of linearity of the detector, the signal noise ratio, contrast noise ratio and was determined the contribution of different noise components (quantum, electronics and structural noise). Used different thicknesses used in clinical practice according to the protocol for quality control in digital mammography of Spanish society of medical physics and NHSBSP Equipment Report 0604 Version 3. The Selenia mammography software was used for the analysis of images and Unfors Xi detector for measuring doses. The mammography detector has a linear performance, the CNR and SNR did not comply with the Protocol for the thicknesses of 60 and 70 mm. The main contribution of the noise corresponds to the quantum noise, therefore it is necessary to adjust and optimize the mammography system. (author)

  2. Active noise control using noise source having adaptive resonant frequency tuning through variable ring loading

    Science.gov (United States)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of noise radiating structure is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating structure is tuned by a plurality of drivers arranged to contact the noise radiating structure. Excitation of the drivers causes expansion or contraction of the drivers, thereby varying the edge loading applied to the noise radiating structure. The drivers are actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the drivers, causing them to expand or contract. The noise radiating structure may be either the outer shroud of the engine or a ring mounted flush with an inner wall of the shroud or disposed in the interior of the shroud.

  3. Novel active noise-reducing headset using earshell vibration control.

    Science.gov (United States)

    Rafaely, Boaz; Carrilho, Joao; Gardonio, Paolo

    2002-10-01

    Active noise-reducing (ANR) headsets are available commercially in applications varying from aviation communication to consumer audio. Current ANR systems use passive attenuation at high frequencies and loudspeaker-based active noise control at low frequencies to achieve broadband noise reduction. This paper presents a novel ANR headset in which the external noise transmitted to the user's ear via earshell vibration is reduced by controlling the vibration of the earshell using force actuators acting against an inertial mass or the earshell headband. Model-based theoretical analysis using velocity feedback control showed that current piezoelectric actuators provide sufficient force but require lower stiffness for improved low-frequency performance. Control simulations based on experimental data from a laboratory headset showed that good performance can potentially be achieved in practice by a robust feedback controller, while a single-frequency real-time control experiment verified that noise reduction can be achieved using earshell vibration control.

  4. Mechanisms of active control for noise inside a vibrating cylinder

    Science.gov (United States)

    Lester, Harold C.; Fuller, Chris R.

    1987-01-01

    The active control of propeller-induced noise fields inside a flexible cylinder is studied with attention given to the noise reduction mechanisms inherent in the present coupled acoustic shell model. The active noise control model consists of an infinitely long aluminum cylinder with a radius of 0.4 m and a thickness of 0.001 m. Pressure maps are shown when the two external sources are driven in-phase at a frequency corresponding to Omega = 0.22.

  5. Multichannel active noise control systems and algorithms for reduction on broadband noise

    NARCIS (Netherlands)

    Berkhoff, A.P.; Wesselink, J.M.

    2007-01-01

    Active noise contral systems for braadband noise reduction require substantial computing power, especially for multichannel systems and adaptive controllers. Furthermore, speed of convergence can be an issue as weil. In this paper, methods and techniques are described that are able to reduce the com

  6. A genetic timer through noise-induced stabilization of an unstable state.

    Science.gov (United States)

    Turcotte, Marc; Garcia-Ojalvo, Jordi; Süel, Gürol M

    2008-10-14

    Stochastic fluctuations affect the dynamics of biological systems. Typically, such noise causes perturbations that can permit genetic circuits to escape stable states, triggering, for example, phenotypic switching. In contrast, studies have shown that noise can surprisingly also generate new states, which exist solely in the presence of fluctuations. In those instances noise is supplied externally to the dynamical system. Here, we present a mechanism in which noise intrinsic to a simple genetic circuit effectively stabilizes a deterministically unstable state. Furthermore, this noise-induced stabilization represents a unique mechanism for a genetic timer. Specifically, we analyzed the effect of noise intrinsic to a prototypical two-component gene-circuit architecture composed of interacting positive and negative feedback loops. Genetic circuits with this topology are common in biology and typically regulate cell cycles and circadian clocks. These systems can undergo a variety of bifurcations in response to parameter changes. Simulations show that near one such bifurcation, noise induces oscillations around an unstable spiral point and thus effectively stabilizes this unstable fixed point. Because of the periodicity of these oscillations, the lifetime of the noise-dependent stabilization exhibits a polymodal distribution with multiple, well defined, and regularly spaced peaks. Therefore, the noise-induced stabilization presented here constitutes a minimal mechanism for a genetic circuit to function as a timer that could be used in the engineering of synthetic circuits.

  7. A genetically encoded, high-signal-to-noise maltose sensor

    Energy Technology Data Exchange (ETDEWEB)

    Marvin, Jonathan S.; Schreiter, Eric R.; Echevarría, Ileabett M.; Looger, Loren L. (Puerto Rico); (HHMI)

    2012-10-23

    We describe the generation of a family of high-signal-to-noise single-wavelength genetically encoded indicators for maltose. This was achieved by insertion of circularly permuted fluorescent proteins into a bacterial periplasmic binding protein (PBP), Escherichia coli maltodextrin-binding protein, resulting in a four-color family of maltose indicators. The sensors were iteratively optimized to have sufficient brightness and maltose-dependent fluorescence increases for imaging, under both one- and two-photon illumination. We demonstrate that maltose affinity of the sensors can be tuned in a fashion largely independent of the fluorescent readout mechanism. Using literature mutations, the binding specificity could be altered to moderate sucrose preference, but with a significant loss of affinity. We use the soluble sensors in individual E. coli bacteria to observe rapid maltose transport across the plasma membrane, and membrane fusion versions of the sensors on mammalian cells to visualize the addition of maltose to extracellular media. The PBP superfamily includes scaffolds specific for a number of analytes whose visualization would be critical to the reverse engineering of complex systems such as neural networks, biosynthetic pathways, and signal transduction cascades. We expect the methodology outlined here to be useful in the development of indicators for many such analytes.

  8. Nonlinear software sensor for monitoring genetic regulation processes with noise and modeling errors

    CERN Document Server

    Ibarra-Junquera, V; Rosu, H C; Arguello, G; Collado-Vides, J

    2004-01-01

    Nonlinear control techniques by means of a software sensor that are commonly used in chemical engineering could be also applied to genetic regulation processes. We provide here a realistic formulation of this procedure by introducing an additive white Gaussian noise, which is usually found in experimental data. Besides, we include model errors, meaning that we assume we do not know the nonlinear regulation function of the process. In order to illustrate this procedure, we employ the Goodwin dynamics of the concentrations (1963) in the simple form recently discussed by De Jong (2002), which involves the dynamics of the mRNA a, given protein A, and metabolite K concentrations. However instead of considering their full dynamics, we use only the data of metabolite K and a designed software sensor. We also show, more generally, that it is possible to rebuild the complete set of n concentrations despite the uncertainties in the regulation function and the perturbation due to the additive white Gaussian noise

  9. Cost effective noise control in the oil and gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Meredith, Dave [Kinetics Noise Control Inc. (United States)], email: dmeredith@kineticsnoise.com

    2011-07-01

    Infrastructures in the oil and gas industry are often sources of excessive noise and vibration. This paper focuses on the work of Kinetics Noise Control, Inc. (KNC), an independent consulting firm specialized in corrective noise and vibration control products, to ensure that their clients' operations meet government and industry regulations. Using examples of different projects that KNC has been involved with in the oil and gas industry, the author presents new designs and approaches for reducing noise pollution. Noise and vibration control strategy should be integral parts of the concept design phase and aim at meeting regulatory requirements without loss of overall efficiency. To do this, specific elements, such as an extensive analysis of noise and vibration sources, site environmental conditions, the acoustics of the infrastructures, and of the materials used must be taken into account.

  10. Stability of Controlled Hamilton Systems Excited by Gaussian White Noise

    Institute of Scientific and Technical Information of China (English)

    SHANG Mei; GUO Yong-xin; MEI Feng-xiang

    2008-01-01

    A new method is introduced in this paper. This method can be used to study the stability of controlled holonomic Hamilton systems under disturbance of Gaussian white noise. At first, the motion equation of controlled holonomic Hamilton systems excited by Gaussian noise is formulated. A theory to stabilize the system is provided. Finally, one example is given to illustrate the application procedures.

  11. Adaptive Intelligent Ventilation Noise Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA need for quiet on-orbit crew quarters (CQ), Physical Optics Corporation (POC) proposes to develop a new Adaptive Intelligent Ventilation Noise...

  12. Adaptive Intelligent Ventilation Noise Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA needs for quiet crew volumes in a space habitat, Physical Optics Corporation (POC) proposes to develop a new Adaptive Intelligent Ventilation Noise...

  13. Brownian Ratchets: Transport Controlled by Thermal Noise

    Science.gov (United States)

    Kula, J.; Czernik, T.; Łuczka, J.

    1998-02-01

    We analyze directed transport of overdamped Brownian particles in a 1D spatially periodic potential that are subjected to both zero-mean thermal equilibrium Nyquist noise and zero-mean exponentially correlated dichotomous fluctuations. We show that particles can reverse the direction of average motion upon a variation of noise parameters if two fundamental symmetries, namely, the reflection symmetry of the spatial periodic structure, and the statistical symmetry of dichotomous fluctuations, are broken. There is a critical thermal noise intensity Dc, or equivalently a critical temperature Tc, at which the mean velocity of particles is zero. Below Tc and above Tc particles move in opposite directions. At fixed temperature, there is a region of noise parameters in which particles of different linear size are transported in opposite directions.

  14. Controlling noise in plasmonic structures with gain

    Science.gov (United States)

    Vyshnevyy, A. A.; Fedyanin, D. Yu.

    2017-09-01

    Loss compensation by gain medium gives the possibility to exploit subwavelength confinement of light in plasmonic nanostructures and construct nanoscale plasmonic circuits. However, due to fundamentally unavoidable spontaneous emission from the gain medium, lossless waveguides suffer from strong photonic noise, which limits their practical applications. Here we demonstrate the possibility of significant decrease of the noise level while preserving physical dimensions of lossless plasmonic waveguides with gain. Our findings are aimed at extending the communication capabilities of on-chip plasmonic networks.

  15. Perception Neural Networks for Active Noise Control Systems

    Directory of Open Access Journals (Sweden)

    Wang Xiaoli

    2012-11-01

    Full Text Available In a response to a growing demand for environments of 70dB or less noise levels, many industrial sectors have focused with some form of noise control system. Active noise control (ANC has proven to be the most effective technology. This paper mainly investigates application of neural network on self-adaptation system in active noise control (ANC. An active silencing control system is made which adopts a motional feedback loudspeaker as not a noise controlling source but a detecting sensor. The working fundamentals and the characteristics of the motional feedback loudspeaker are analyzed in detail. By analyzing each acoustical path, identification based adaptive linear neural network is built. This kind of identifying method can be achieved conveniently. The estimated result of each sound channel matches well with its real sound character, respectively.

  16. Numerical evaluation of the performance of active noise control systems

    Science.gov (United States)

    Mollo, C. G.; Bernhard, R. J.

    1990-01-01

    This paper presents a generalized numerical technique for evaluating the optimal performance of active noise controllers. In this technique, the indirect BEM numerical procedures are used to derive the active noise controllers for optimal control of enclosed harmonic sound fields where the strength of the noise sources or the description of the enclosure boundary may not be known. The performance prediction for a single-input single-output system is presented, together with the analysis of the stability and observability of an active noise-control system employing detectors. The numerical procedures presented can be used for the design of both the physical configuration and the electronic components of the optimal active noise controller.

  17. Distinguishing Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia-Associated Mutations From Background Genetic Noise

    NARCIS (Netherlands)

    Kapplinger, Jamie D.; Landstrom, Andrew P.; Salisbury, Benjamin A.; Callis, Thomas E.; Pollevick, Guido D.; Tester, David J.; Cox, Moniek G. P. J.; Bhuiyan, Zahir; Bikker, Hennie; Wiesfeld, Ans C. P.; Hauer, Richard N. W.; van Tintelen, J. Peter; Jongbloed, Jan D. H.; Calkins, Hugh; Judge, Daniel P.; Wilde, Arthur A. M.; Ackerman, Michael J.

    2011-01-01

    Objectives The aims of this study were to determine the spectrum and prevalence of "background genetic noise" in the arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC) genetic test and to determine genetic associations that can guide the interpretation of a positive test result. Backgr

  18. Analysis and control of computer cooling fan noise

    Science.gov (United States)

    Wong, Kam

    This thesis is divided into three parts: the study of the source mechanisms and their separation, passive noise control, and active noise control. The mechanisms of noise radiated by a typical computer cooling fan is investigated both theoretically and experimentally focusing on the dominant rotor-stator interaction. The unsteady force generated by the aerodynamic interaction between the rotor blades and struts is phase locked with the blade rotation and radiates tonal noise. Experimentally, synchronous averaging with the rotation signal extracts the tones made by the deterministic part of the rotor-strut interaction mechanism. This averaged signal is called the rotary noise. The difference between the overall noise and rotary noise is defined as random noise which is broadband in the spectrum. The deterministic tonal peaks are certainly more annoying than the broadband, so the suppression of the tones is the focus of this study. Based on the theoretical study of point force formulation, methods are devised to separate the noise radiated by the two components of drag and thrust forces on blades and struts. The source separation is also extended to the leading and higher order modes of the spinning pressure pattern. By using the original fan rotor and installing it in various casings, the noise sources of the original fan are decomposed into elementary sources through directivity measurements. Details of the acoustical directivity for the original fan and its various modifications are interpreted. For the sample fan, two common features account for most of the tonal noise radiated. The two features are the inlet flow distortion caused by the square fan casing, and the large strut carrying the electric wires for the motor. When the inlet bellmouth is installed and the large strut is trimmed down to size, a significant reduction of 12 dB in tonal sound power is achieved. These structural corrections constitute the passive noise control. However, the end product still

  19. Numerical investigation of tandem-cylinder aerodynamic noise and its control with application to airframe noise

    Science.gov (United States)

    Eltaweel, Ahmed

    Prediction and reduction of airframe noise are critically important to the development of quieter civil transport aircraft. The key to noise reduction is a full understanding of the underlying noise source mechanisms. In this study, tandem cylinders in cross-flow as an idealization of a complex aircraft landing gear configuration are considered to investigate the noise generation and its reduction by flow control using single dielectric barrier discharge plasma actuators. The flow over tandem cylinders at ReD = 22, 000 with and without plasma actuation is computed using large-eddy simulation. The plasma effect is modeled as a body force obtained from a semi-empirical model. The flow statistics and surface pressure frequency spectra show excellent agreement with previous experimental measurements. For acoustic calculations, a boundary-element method is implemented to solve the convected Lighthill equation. The solution method is validated in a number of benchmark problems including flows over a cylinder, a rod-airfoil configuration, and a sphere. With validated flow field and acoustic solver, acoustic analysis is performed for the tandem-cylinder configuration to extend the experimental results and understand the mechanisms of noise generation and its control. Without flow control, the acoustic field is dominated by the interaction between the downstream cylinder and the upstream wake. Through suppression of vortex shedding from the upstream cylinder, the interaction noise is reduced drastically by the plasma flow control, and the vortex-shedding noise from the downstream cylinder becomes equally important. At a free-stream Mach number of 0.2, the peak sound pressure level is reduced by approximately 16 dB. This suggests the viability of plasma actuation for active control of airframe noise. The numerical investigation is extended to the noise from a realistic landing gear experimental model. Coarse-mesh computations are performed, and preliminary results are

  20. Industrial noise control: Some case histories, volume 1

    Science.gov (United States)

    Hart, F. D.; Neal, C. L.; Smetana, F. O.

    1974-01-01

    A collection of solutions to industrial noise problems is presented. Each problem is described in simple terms, with noise measurements where available, and the solution is given, often with explanatory figures. Where the solution rationale is not obvious, an explanatory paragraph is usually appended. As a preface to these solutions, a short exposition is provided of some of the guiding concepts used by noise control engineers in devising their solutions.

  1. Control of noise - systems for compact HVAC units

    DEFF Research Database (Denmark)

    Pedersen, Steffen; Møller, Henrik

    2012-01-01

    This paper discusses noise control systems for implementation in compact HVAC units. The control of low-frequency noise presents different problems than at higher frequencies. This is mainly related to the long wavelength, which means that passive solutions require a significant volume of space......, often not available in compact HVAC units. Active control can provide attenuation over a significant frequency range, including low frequencies, while requiring a more limited space. While the concept of active noise control is simple, a number of limitations in the acoustical, electrical and control...... systems affect the performance of implementations. The source pressure and the impedance of a centrifugal fan were measured, and a number of configurations for noise control were investigated. The performance of a simple analogue feedback control was tested in a physical prototype. An adaptive digital...

  2. Application of Feedforward Adaptive Active-Noise Control for Reducing Blade Passing Noise in Centrifugal Fans

    Science.gov (United States)

    WU, J.-D.; BAI, M. R.

    2001-02-01

    This paper describes two configurations of feedforward adaptive active-noise control (ANC) technique for reducing blade passing noise in centrifugal fans. In one configuration, the control speaker is installed at the cut-off region of the fan, while in the other configuration at the exit duct. The proposed ANC system is based on the filtered-x least-mean-squares (FXLMS) algorithm with multi-sine synthesized reference signal and frequency counting and is implemented by using a digital signal processor (DSP). Experiments are carried out to evaluate the proposed system for reducing the noise at the blade passing frequency (BPF) and its harmonics at various flow speeds. The results of the experiment indicated that the ANC technique is effective in reducing the blade passing noise for two configurations by using the feedforward adaptive control.

  3. Noise control for rapid transit cars on elevated structures

    Science.gov (United States)

    Hanson, C. E.

    1983-03-01

    Noise control treatments for the propulsion motor noise of rapid transit cars on concrete elevated structures and the noise reduction from barrier walls were investigated by using acoustical scale models and supplemented by field measurements of noise from trains operated by the Port Authority Transportation Corporation (PATCO) in New Jersey. The results show that vehicle skirts and undercar sound absorption can provide substantial cost-effective reductions in propulsion noise at the wayside of transit systems with concrete elevated guideways. The acoustical scale model noise reductions applied to PATCO vehicles on concrete elevated structures show reductions in the A-weighted noise levels of 5 dB for undercar sound absorption, 5 dB for vehicle skirts, and 10 dB for combined undercar absorption and vehicle skirts. Acoustical scale model results for sound barrier walls lined with absorptive treatment showed reductions from 7 dB to 12 dB of noise from vehicles in the far track, depending on the height of the wall, and reductions from 12 dB to 20 dB of noise from vehicles on the near track. Transit vehicles at high speeds where propulsion system noise dominates are 7 dB(A) noisier at 50 ft on concrete elevated structures than on at-grade on tie and ballast. Of this amount, 3 dB is due to loss of ground effect, and 4 dB is due to the absence of undercar absorption provided by ballast.

  4. Active noise control technology. Active soon seigyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, M.; Kokubo, F.; Tanaka, S.; Yao, K. (Sharp Corp., Osaka (Japan))

    1994-05-10

    The signal processing method of the Active Noise Control (ANC) system was studied. The principle of ANC is to output secondary sound waves having opposite phase, identical amplitude from the control point of the sound wave of the primary sound source, and eliminate the noise by interference. As application fields, there are air conditioner ducts and compressors as one dimensional noise source, and automobile and axial fan as three dimensional noise source. In order to improve the stability of coefficient renewal algorithm of Adaptive Digital Filter (ADF), for generation of opposite phase noise, DC-LMS algorithm which can control the rise in gain of specified frequency zone was proposed. Furthermore, with the purpose of reducing the amount of operation, the introduction of lattice type AR filter was tested for the stability of the filter in IIR-ADF (Infinite Impulse Response Adaptive Digital Filter) and its application process. The applicability studies of these improved methods on the noise inside of ducts were actually measured, and the effect was verified. For the multi-channel control of 3 dimensional noise source, reference scanning method to reduce the filter operation was proposed. In the partial space noise eliminating experiment, it was made clear that it possesses equivalent effect to error scanning method. 11 refs., 14 figs., 1 tab.

  5. Active noise control in fuselage design

    NARCIS (Netherlands)

    Krakers, L.A.; Tooren, M.J.L. van; Beukers, A.; Berkhof, A.P.; Goeje, M.P. de

    2003-01-01

    To achieve comfortable noise levels inside the passenger cabin, sound damping measures have to be taken to improve the sound insulation properties of the bare airframe. Usually the sound insulation requirements of a passenger cabin are met after the mechanical design of the fuselage structure is alr

  6. AIR DISTRIBUTION NOISE CONTROL IN CRITICAL AUDITORIUMS.

    Science.gov (United States)

    HOOVER, R.M.

    THE ACHIEVEMENT OF EXTREMELY LOW AIR-CONDITIONING NOISE LEVELS REQUIRED FOR MODERN AUDITORIUMS ARE THE RESULT OF CAREFUL PLANNING AND THOROUGH DETAILING. PROBLEMS FACED AND TECHNIQUES USED IN ARRIVING AT LEVELS AS LOW AS NC-15 FOR A SINGLE SYSTEM SERVING A HALL ARE DESCRIBED. SIX CASE HISTORIES ARE EXAMINED AND THE FOLLOWING OBSERVATIONS ARE…

  7. Optimization of Resilient Wheels for Rolling Noise Control

    Science.gov (United States)

    BOUVET, PASCAL; VINCENT, NICOLAS; COBLENTZ, ARNAUD; DEMILLY, FRANÇOIS

    2000-03-01

    Resilient wheels are currently used on light rail systems such as tramways to prevent squealing noise and to reduce impact noise. On the other hand, they are rarely found on main lines (passenger rolling stock and freight rolling stock). Although manufacturers often claim that resilient wheels are favourable for rolling noise control, no extensive theoretical investigation confirming this statement has been published to date. In this paper, it is shown how resilient wheels can be effectively optimised in order to reduce rolling noise emission, compared to a conventional monobloc wheel. A preliminary analysis of the physical phenomena accounting for rolling noise generation emphasizes the key design parameters affecting both wheel and radiation. These parameters are the radial dynamic stiffness and damping loss factor of the rubber layer. The tread mass is also relevant. The influence of these design parameters is then qualified by a parametric study performed with the TWINS software. An optimum radial dynamic stiffness of the resilient layer is found which depends on operating conditions. Reductions in overall rolling noise up to 3 dB(A) are calculated for the configurations investigated. However, poor selection of the design parameters can lead to a noise increase compared to a standard monobloc wheel. It is also shown that a proper design for rolling noise control will not affect wheel efficiency with regard to squeal noise.

  8. A new approach to control noise from entertainment facilities: Active control and measurement of amplified community noise

    Science.gov (United States)

    Peppin, Richard J.; Casamajó, Joan

    2003-04-01

    While traffic noise is perhaps the most pervasive of community noises, much of the contribution now comes from amplified sound: live music, discos, theme parks, and exercise studios. Those producing the sound or music want it loud and those not interested want to be protected against noise. Noise limits at the receiving or producing property line must be met for the minimum community acceptance. However the time-, and perhaps the spatially-, varying sound in entertainment facilities is often constantly modified (and maybe monitored) near the source of the sound. Hence it is hard to relate and to control the sound at the property line. This paper presents a unique noise control device. It is based on the octave band ``transfer function'' between the sound produced in the entertainment area and the noise received at the property line. The overall insulation can be measured and is input to the instrument. When a noise level limit is exceeded at the receiver, due to the amplified interior noise at the facility, the sound output of the device is automatically controlled to reduce the noise. The paper provides details of the design and possible abatement scenarios with examples.

  9. Active noise control: A panacea for noise pollution. AntiGeluid: Een panacee tegen geluidsoverlast

    Energy Technology Data Exchange (ETDEWEB)

    Van den Dool, T.C. (Afdeling AntiGeluid, TNO Technisch Physische Dienst, Eindhoven (Netherlands))

    1994-09-01

    Active noise control (ANC) has a number of advantages compared to passive silencers, although it is not suitable for large noise pollution sources or large spaces, because many microphones, loudspeakers and much processing power is needed in these cases. ANC products include head sets, exhaust silencers, HVAC systems and systems for narrow enclosures with tonal noise pollution like cars and aeroplanes. The price of dedicated electronic systems is still decreasing which will positively affect the cost of ANC. 5 figs., 2 ills., 3 refs.

  10. Quelling Cabin Noise in Turboprop Aircraft via Active Control

    Science.gov (United States)

    Kincaid, Rex K.; Laba, Keith E.; Padula, Sharon L.

    1997-01-01

    Cabin noise in turboprop aircraft causes passenger discomfort, airframe fatigue, and employee scheduling constraints due to OSHA standards for exposure to high levels of noise. The noise levels in the cabins of turboprop aircraft are typically 10 to 30 decibels louder than commercial jet noise levels. However. unlike jet noise the turboprop noise spectrum is dominated by a few low frequency tones. Active structural acoustic control is a method in which the control inputs (used to reduce interior noise) are applied directly to a vibrating structural acoustic system. The control concept modeled in this work is the application of in-plane force inputs to piezoceramic patches bonded to the wall of a vibrating cylinder. The goal is to determine the force inputs and locations for the piezoceramic actuators so that: (1) the interior noise is effectively damped; (2) the level of vibration of the cylinder shell is not increased; and (3) the power requirements needed to drive the actuators are not excessive. Computational experiments for data taken from a computer generated model and from a laboratory test article at NASA Langley Research Center are provided.

  11. Exponential sensitivity of noise-driven switching in genetic networks

    Science.gov (United States)

    Mehta, Pankaj; Mukhopadhyay, Ranjan; Wingreen, Ned S.

    2008-06-01

    There is increasing experimental evidence that cells can utilize biochemical noise to switch probabilistically between distinct gene-expression states. In this paper, we demonstrate that such noise-driven switching is dominated by tails of probability distributions and is therefore exponentially sensitive to changes in physiological parameters such as transcription and translation rates. Exponential sensitivity limits the robustness of noise-driven switching, suggesting cells may use other mechanisms in order to switch reliably. We discuss our results in the context of competence in the bacterium Bacillus subtilis.

  12. Development of a Voice Activity Controlled Noise Canceller

    Directory of Open Access Journals (Sweden)

    Aini Hussain

    2012-05-01

    Full Text Available In this paper, a variable threshold voice activity detector (VAD is developed to control the operation of a two-sensor adaptive noise canceller (ANC. The VAD prohibits the reference input of the ANC from containing some strength of actual speech signal during adaptation periods. The novelty of this approach resides in using the residual output from the noise canceller to control the decisions made by the VAD. Thresholds of full-band energy and zero-crossing features are adjusted according to the residual output of the adaptive filter. Performance evaluation of the proposed approach is quoted in terms of signal to noise ratio improvements as well mean square error (MSE convergence of the ANC. The new approach showed an improved noise cancellation performance when tested under several types of environmental noise. Furthermore, the computational power of the adaptive process is reduced since the output of the adaptive filter is efficiently calculated only during non-speech periods.

  13. Noise control zone for a periodic ducted Helmholtz resonator system.

    Science.gov (United States)

    Cai, Chenzhi; Mak, Cheuk Ming

    2016-12-01

    This paper presents a theoretical study of the dispersion characteristics of sound wave propagation in a periodic ducted Helmholtz resonator (HR) system. The predicted result fits well with a numerical simulation using a finite element method. This study indicates that for the same system, no matter how many HRs are connected or what the periodic distance is, the area under average transmission loss T L¯ curves is always the same. The broader the noise attenuation band, the lower the peak attenuation amplitude. A noise control zone compromising the attenuation bandwidth or peak amplitude is proposed for noise control optimization.

  14. Noise and vibration control in aircraft: A global approach

    Science.gov (United States)

    Berhault, J.-P.; Venet, G.; Fontenot, J.

    This paper proposes an approach to noise and vibration control in new and existing aircraft, employing a global approach; that is, considering all source and effects in development of the control plan. The approach employs acoustic imaging of the engines and the cabin internal space and a vibration analysis model to describe the entire system. Completion of the global analysis leads to the treatment plan, which may include various passive mounts tecnologies and/or an active noise system.

  15. Using VAPEPS for noise control on Space Station Freedom

    Science.gov (United States)

    Badilla, Gloria; Bergen, Thomas; Scharton, Terry

    1991-01-01

    Noise environmental control is an important design consideration for Space Station Freedom (SSF), both for crew safety and productivity. Acoustic noise requirements are established to eliminate fatigue and potential hearing loss by crew members from long-term exposure and to facilitate speech communication. VAPEPS (VibroAcoustic Payload Environment Prediction System) is currently being applied to SSF for prediction of the on-orbit noise and vibration environments induced in the 50 to 10,000 Hz frequency range. Various sources such as fans, pumps, centrifuges, exercise equipment, and other mechanical devices are used in the analysis. The predictions will be used in design tradeoff studies and to provide confidence that requirements will be met. Preliminary predictions show that the required levels will be exceeded unless substantial noise control measures are incorporated in the SSF design. Predicted levels for an SSF design without acoustic control treatments exceed requirements by 25 dB in some one-third octave frequency bands.

  16. Model independent control of lightly damped noise/vibration systems.

    Science.gov (United States)

    Yuan, Jing

    2008-07-01

    Feedforward control is a popular strategy of active noise/vibration control. In well-damped noise/vibration systems, path transfer functions from actuators to sensors can be modeled by finite impulse response (FIR) filters with negligible errors. It is possible to implement noninvasive model independent feedforward control by a recently proposed method called orthogonal adaptation. In lightly damped noise/vibration systems, however, path transfer functions have infinite impulse responses (IIRs) that cause difficulties in design and implementation of broadband feedforward controllers. A major source of difficulties is model error if IIR path transfer functions are approximated by FIR filters. In general, active control performance deteriorates as model error increases. In this study, a new method is proposed to design and implement model independent feedforward controllers for broadband in lightly damped noise/vibration systems. It is shown analytically that the proposed method is able to drive the convergence of a noninvasive model independent feedforward controller to improve broadband control in lightly damped noise/vibration systems. The controller is optimized in the minimum H2 norm sense. Experiment results are presented to verify the analytical results.

  17. Inter-noise 89 - Engineering for environmental noise control; Proceedings of the International Conference on Noise Control Engineering, Newport Beach, CA, Dec. 4-6, 1989. Vols. 1 & 2

    Science.gov (United States)

    Maling, George C., Jr.

    Recent advances in noise analysis and control theory and technology are discussed in reviews and reports. Topics addressed include noise generation; sound-wave propagation; noise control by external treatments; vibration and shock generation, transmission, isolation, and reduction; multiple sources and paths of environmental noise; noise perception and the physiological and psychological effects of noise; instrumentation, signal processing, and analysis techniques; and noise standards and legal aspects. Diagrams, drawings, graphs, photographs, and tables of numerical data are provided.

  18. M-matrix-based stability conditions for genetic regulatory networks with time-varying delays and noise perturbations.

    Science.gov (United States)

    Tian, Li-Ping; Shi, Zhong-Ke; Liu, Li-Zhi; Wu, Fang-Xiang

    2013-10-01

    Stability is essential for designing and controlling any dynamic systems. Recently, the stability of genetic regulatory networks has been widely studied by employing linear matrix inequality (LMI) approach, which results in checking the existence of feasible solutions to high-dimensional LMIs. In the previous study, the authors present several stability conditions for genetic regulatory networks with time-varying delays, based on M-matrix theory and using the non-smooth Lyapunov function, which results in determining whether a low-dimensional matrix is a non-singular M-matrix. However, the previous approach cannot be applied to analyse the stability of genetic regulatory networks with noise perturbations. Here, the authors design a smooth Lyapunov function quadratic in state variables and employ M-matrix theory to derive new stability conditions for genetic regulatory networks with time-varying delays. Theoretically, these conditions are less conservative than existing ones in some genetic regulatory networks. Then the results are extended to genetic regulatory networks with time-varying delays and noise perturbations. For genetic regulatory networks with n genes and n proteins, the derived conditions are to check if an n × n matrix is a non-singular M-matrix. To further present the new theories proposed in this study, three example regulatory networks are analysed.

  19. Colored Noise Induced Bistable Switch in the Genetic Toggle Switch Systems.

    Science.gov (United States)

    Wang, Pei; Lü, Jinhu; Yu, Xinghuo

    2015-01-01

    Noise can induce various dynamical behaviors in nonlinear systems. White noise perturbed systems have been extensively investigated during the last decades. In gene networks, experimentally observed extrinsic noise is colored. As an attempt, we investigate the genetic toggle switch systems perturbed by colored extrinsic noise and with kinetic parameters. Compared with white noise perturbed systems, we show there also exists optimal colored noise strength to induce the best stochastic switch behaviors in the single toggle switch, and the best synchronized switching in the networked systems, which demonstrate that noise-induced optimal switch behaviors are widely in existence. Moreover, under a wide range of system parameter regions, we find there exist wider ranges of white and colored noises strengths to induce good switch and synchronization behaviors, respectively; therefore, white noise is beneficial for switch and colored noise is beneficial for population synchronization. Our observations are very robust to extrinsic stimulus strength, cell density, and diffusion rate. Finally, based on the Waddington's epigenetic landscape and the Wiener-Khintchine theorem, physical mechanisms underlying the observations are interpreted. Our investigations can provide guidelines for experimental design, and have potential clinical implications in gene therapy and synthetic biology.

  20. Noise controlled synchronization in potassium coupled neural models

    DEFF Research Database (Denmark)

    Postnov, Dmitry E; Ryazanova, Ludmila S; Zhirin, Roman A;

    2007-01-01

    The paper applies biologically plausible models to investigate how noise input to small ensembles of neurons, coupled via the extracellular potassium concentration, can influence their firing patterns. Using the noise intensity and the volume of the extracellular space as control parameters, we...... show that potassium induced depolarization underlies the formation of noise-induced patterns such as delayed firing and synchronization. These phenomena are associated with the appearance of new time scales in the distribution of interspike intervals that may be significant for the spatio...

  1. Studying the Noise Control Engineering Protocols in Industry

    Directory of Open Access Journals (Sweden)

    Hamid Golshah

    1999-03-01

    Full Text Available Today, sound is one of the detrimental factors in the workplace and its harmful impact has been so important that scientists have named it “Noise Pollutions”. Hearing is one of the five senses of human being which is also a medium for communicating with other s and enjoying the pleasant feeling of listening to a piece of music. In spite of this, changes in the intensity and frequency of sound can make it annoying. Using Sound Level Meter to measure the dB of noise in the workplace and noise control principles will be discussed here.

  2. Design and control of noise-induced synchronization patterns

    CERN Document Server

    Kurebayashi, Wataru; Hasegawa, Mikio; Nakao, Hiroya

    2015-01-01

    We propose a method for controlling synchronization patterns of limit-cycle oscillators by common noisy inputs, i.e., by utilizing noise-induced synchronization. Various synchronization patterns, including fully synchronized and clustered states, can be realized by using linear filters that generate appropriate common noisy signals from given noise. The optimal linear filter can be determined from the linear phase response property of the oscillators and the power spectrum of the given noise. The validity of the proposed method is confirmed by numerical simulations.

  3. Optimizing a Multi-Channel ANC System for Broadband Noise Cancellation in a Telephone Kiosk Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Allahyar Montazeri

    2009-01-01

    Full Text Available The problem of optimizing an active noise control system for the implementation of a multi-channel ANC system with the aim of global reduction of broadband noise in a telephone kiosk is addressed in this paper. This optimization involves finding best locations for loudspeakers and microphones, and optimizing control signals. The problem of finding a proper size for control system, i.e. the number of loudspeakers and microphones involved in the control system is also investigated. The mean of acoustic potential energy in the enclosure in a frequency range of 50 Hz to 300 Hz is selected as a measure for optimization. Several genetic algorithms are proposed and compared to find the global minimum of this performance index. In order to have a better performance in reaching the global minimum, the parameters of these genetic algorithms are tuned, and the best genetic algorithm is selected among them. Numerical simulations of the acoustical potential energy and also sound pressure at the height where the head of a person may be located, confirms the optimality of the locations proposed by the genetic algorithm. Besides, the robustness of the optimized control system with respect to eventual changes in the location of primary and secondary loudspeakers and also microphones is shown with several simulations.

  4. Distinguishing Hypertrophic Cardiomyopathy-Associated Mutations from Background Genetic Noise

    Science.gov (United States)

    Kapplinger, Jamie D.; Landstrom, Andrew P.; Bos, J. Martijn; Salisbury, Benjamin A.; Callis, Thomas E.; Ackerman, Michael J.

    2014-01-01

    Despite the significant progress that has been made in identifying disease-associated mutations, the utility of the Hypertrophic Cardiomyopathy (HCM) genetic test is limited by a lack of understanding of the background genetic variation inherent to these sarcomeric genes in seemingly healthy subjects. This study represents the first comprehensive analysis of genetic variation in 427 ostensibly healthy individuals for the HCM genetic test using the “Gold Standard” Sanger sequencing method validating the background rate identified in the publically available exomes. While mutations are clearly over-represented in disease, a background rate as high as ~5% among healthy individuals prevents diagnostic certainty. To this end, we have identified a number of estimated predictive value-based associations including gene-specific, topology, and conservation methods generating an algorithm aiding in the probabilistic interpretation of an HCM genetic test. PMID:24510615

  5. Method and System for Active Noise Control of Tiltrotor Aircraft

    Science.gov (United States)

    Betzina, Mark D. (Inventor); Nguyen, Khanh Q. (Inventor)

    2003-01-01

    Methods and systems for reducing noise generated by rotating blades of a tiltrotor aircraft. A rotor-blade pitch angle associated with the tiltrotor aircraft can be controlled utilizing a swashplate connected to rotating blades of the tiltrotor aircraft. One or more Higher Harmonic Control (HHC) signals can be transmitted and input to a swashplate control actuator associated with the swashplate. A particular blade pitch oscillation (e.g., four cycles per revolution) is there-after produced in a rotating frame of reference associated with the rotating blades in response to input of an HHC signal to the swashplate control actuator associated with the swashplate to thereby reduce noise associated with the rotating blades of the tiltrotor aircraft. The HHC signal can be transmitted and input to the swashplate control actuator to reduce noise of the tiltrotor aircraft in response to a user input utilizing an open-loop configuration.

  6. Noise

    Science.gov (United States)

    Noise is all around you, from televisions and radios to lawn mowers and washing machines. Normally, you ... sensitive structures of the inner ear and cause noise-induced hearing loss. More than 30 million Americans ...

  7. Noise Pollution Control System in the Hospital Environment

    Science.gov (United States)

    Figueroa Gallo, LM; Olivera, JM

    2016-04-01

    Problems related to environmental noise are not a new subject, but they became a major issue to solve because of the increasing, in complexity and intensity, of human activities due technological advances. Numerous international studies had dealt with the exposure of critical patients to noisy environment such as the Neonatal Intensive Care Units; their results show that there are difficulties in the organization in the developing brain, it can damage the delicate auditory structures and can cause biorhythm disorders, specially in preterm infants. The objective of this paper is to present the development and implementation of a control system that includes technical-management-training aspects to regulate the levels of specific noise sources in the neonatal hospitalization environment. For this purpose, there were applied different tools like: observations, surveys, procedures, an electronic control device and a training program for a Neonatal Service Unit. As a result, all noise sources were identified -some of them are eliminable-; all the service stable staff categories participated voluntarily; environmental noise measurements yielded values between 62.5 and 64.6 dBA and maximum were between 86.1 and 89.7 dBA; it was designed and installed a noise control device and the staff is being trained in noise reduction best practices.

  8. Hybrid Active Noise Control using Adjoint LMS Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun Do; Hong, Sik Ki [Dankook University (Korea, Republic of)

    1998-07-01

    A multi-channel hybrid active noise control(MCHANC) is derived by combining hybrid active noise control techniques and adjoint LMS algorithms, and this algorithm is applied to an active noise control system in a three dimensional enclosure. A MCHANC system uses feed forward and feedback filters simultaneously to cancel noises in an enclosure. The adjoint LMs algorithm, in which the error is filtered through an adjoint filter of the secondary channel, is also used to reduce the computational burden of adaptive filters. The overall attenuation performance and convergence characteristics of MCHANC algorithm is better than both multiple-channel feed forward algorithms and multiple-channel feedback algorithms. In a large enclosure, the acoustic reverberation can be very long, which means a very high order feed forward filter must be used to cancel the reverberation noises. Strong reverberation noises are generally narrow band and low frequency, which can be effectively predicted and canceled by a feedback adaptive filters. So lower order feed forward filter taps can be used in MCHANC algorithm which combines advantages of fast convergence and small excess mean square error. In this paper, computer simulations and real time implementations is carried out on a TMS320C31 processor to evaluate the performance of the MCHANC systems. (author). 11 refs., 11 figs., 1 tab.

  9. On spatial spillover in feedforward and feedback noise control

    Science.gov (United States)

    Xie, Antai; Bernstein, Dennis

    2017-03-01

    Active feedback noise control for rejecting broadband disturbances must contend with the Bode integral constraint, which implies that suppression over some frequency range gives rise to amplification over another range at the performance microphone. This is called spectral spillover. The present paper deals with spatial spillover, which refers to the amplification of noise at locations where no microphone is located. A spatial spillover function is defined, which is valid for both feedforward and feedback control with scalar and vector control inputs. This function is numerically analyzed and measured experimentally. Obstructions are introduced in the acoustic space to investigate their effect on spatial spillover.

  10. First Test of Fan Active Noise Control (ANC) Completed

    Science.gov (United States)

    2005-01-01

    With the advent of ultrahigh-bypass engines, the space available for passive acoustic treatment is becoming more limited, whereas noise regulations are becoming more stringent. Active noise control (ANC) holds promise as a solution to this problem. It uses secondary (added) noise sources to reduce or eliminate the offending noise radiation. The first active noise control test on the low-speed fan test bed was a General Electric Company system designed to control either the exhaust or inlet fan tone. This system consists of a "ring source," an induct array of error microphones, and a control computer. Fan tone noise propagates in a duct in the form of spinning waves. These waves are detected by the microphone array, and the computer identifies their spinning structure. The computer then controls the "ring source" to generate waves that have the same spinning structure and amplitude, but 180 out of phase with the fan noise. This computer generated tone cancels the fan tone before it radiates from the duct and is heard in the far field. The "ring source" used in these tests is a cylindrical array of 16 flat-plate acoustic radiators that are driven by thin piezoceramic sheets bonded to their back surfaces. The resulting source can produce spinning waves up to mode 7 at levels high enough to cancel the fan tone. The control software is flexible enough to work on spinning mode orders from -6 to 6. In this test, the fan was configured to produce a tone of order 6. The complete modal (spinning and radial) structure of the tones was measured with two builtin sets of rotating microphone rakes. These rakes provide a measurement of the system performance independent from the control system error microphones. In addition, the far-field noise was measured with a semicircular array of 28 microphones. This test represents the first in a series of tests that demonstrate different active noise control concepts, each on a progressively more complicated modal structure. The tests are

  11. Applications of active adaptive noise control to jet engines

    Science.gov (United States)

    Shoureshi, Rahmat; Brackney, Larry

    1993-01-01

    During phase 2 research on the application of active noise control to jet engines, the development of multiple-input/multiple-output (MIMO) active adaptive noise control algorithms and acoustic/controls models for turbofan engines were considered. Specific goals for this research phase included: (1) implementation of a MIMO adaptive minimum variance active noise controller; and (2) turbofan engine model development. A minimum variance control law for adaptive active noise control has been developed, simulated, and implemented for single-input/single-output (SISO) systems. Since acoustic systems tend to be distributed, multiple sensors, and actuators are more appropriate. As such, the SISO minimum variance controller was extended to the MIMO case. Simulation and experimental results are presented. A state-space model of a simplified gas turbine engine is developed using the bond graph technique. The model retains important system behavior, yet is of low enough order to be useful for controller design. Expansion of the model to include multiple stages and spools is also discussed.

  12. Noise-aided Logic in an Electronic Analog of Synthetic Genetic Networks

    CERN Document Server

    Hellen, Edward H; Kurths, Jurgen; Sinha, Sudeshna

    2012-01-01

    We report the experimental verification of noise-enhanced logic behaviour in an electronic analog of a synthetic genetic network, composed of two repressors and two constructive promoters. We observe good agreement between circuit measurements and numerical prediction, with the circuit allowing for robust logic operations in an optimal window of noise. Namely, the input-output characteristics of a logic gate is reproduced faithfully under moderate noise, which is a manifestation of the phenomenon known as Logical Stochastic Resonance. Interestingly, the two dynamical variables in the system yield complementary logic behaviour simultaneously, indicating strong potential for parallel processing.

  13. Nonlinear software sensor for monitoring genetic regulation processes with noise and modeling errors

    Science.gov (United States)

    Ibarra-Junquera, V.; Torres, L. A.; Rosu, H. C.; Argüello, G.; Collado-Vides, J.

    2005-07-01

    Nonlinear control techniques by means of a software sensor that are commonly used in chemical engineering could be also applied to genetic regulation processes. We provide here a realistic formulation of this procedure by introducing an additive white Gaussian noise, which is usually found in experimental data. Besides, we include model errors, meaning that we assume we do not know the nonlinear regulation function of the process. In order to illustrate this procedure, we employ the Goodwin dynamics of the concentrations [B. C. Goodwin, Temporal Oscillations in Cells (Academic, New York, 1963)] in the simple form recently applied to single gene systems and some operon cases [H. De Jong, J. Comput. Biol. 9, 67 (2002)], which involves the dynamics of the mRNA, given protein and metabolite concentrations. Further, we present results for a three gene case in coregulated sets of transcription units as they occur in prokaryotes. However, instead of considering their full dynamics, we use only the data of the metabolites and a designed software sensor. We also show, more generally, that it is possible to rebuild the complete set of nonmeasured concentrations despite the uncertainties in the regulation function or, even more, in the case of not knowing the mRNA dynamics. In addition, the rebuilding of concentrations is not affected by the perturbation due to the additive white Gaussian noise and also we managed to filter the noisy output of the biological system.

  14. Active control of road booming noise in automotive interiors.

    Science.gov (United States)

    Oh, Shi-Hwan; Kim, Hyoun-suk; Park, Youngjin

    2002-01-01

    An active feedforward control system has been developed to reduce the road booming noise that has strong nonlinear characteristics. Four acceleration transducers were attached to the suspension system to detect reference vibration and two loudspeakers were used to attenuate the noise near the headrests of two front seats. A leaky constraint multiple filtered-X LMS algorithm with an IIR-based filter that has fast convergence speed and frequency selective controllability was proposed to increase the control efficiency in computing power and memory usage. During the test drive on the rough asphalt and turtle-back road at a constant speed of 60 km/h, we were able to achieve a reduction of around 6 dB of A-weighted sound pressure level in the road booming noise range with the proposed algorithm, which could not be obtained with the conventional multiple filtered-X LMS algorithm.

  15. Isolating intrinsic noise sources in a stochastic genetic switch

    CERN Document Server

    Newby, Jay

    2011-01-01

    The stochastic mutual repressor model is analysed using perturbation methods. This simple model of a gene circuit consists of two genes and three promotor states. Either of the two protein products can dimerize, forming a repressor molecule that binds to the promotor of the other gene. When the repressor is bound to a promotor, the corresponding gene is not transcribed and no protein is produced. Either one of the promotors can be repressed at any given time or both can be unrepressed, leaving three possible promotor states. This model is analysed in its bistable regime in which the deterministic limit exhibits two stable fixed points and an unstable saddle, and the case of small noise is considered. On small time scales, the stochastic process fluctuates near one of the stable fixed points, and on large time scales, a metastable transition can occur, where fluctuations drive the system past the unstable saddle to the other stable fixed point. To explore how different intrinsic noise sources affect these tran...

  16. A Review of Virtual Sensing Algorithms for Active Noise Control

    Directory of Open Access Journals (Sweden)

    Danielle Moreau

    2008-11-01

    Full Text Available Traditional local active noise control systems minimise the measured acoustic pressure to generate a zone of quiet at the physical error sensor location. The resulting zone of quiet is generally limited in size and this requires the physical error sensor be placed at the desired location of attenuation, which is often inconvenient. To overcome this, a number of virtual sensing algorithms have been developed for active noise control. Using the physical error signal, the control signal and knowledge of the system, these virtual sensing algorithms estimate the error signal at a location that is remote from the physical error sensor, referred to as the virtual location. Instead of minimising the physical error signal, the estimated error signal is minimised with the active noise control system to generate a zone of quiet at the virtual location. This paper will review a number of virtual sensing algorithms developed for active noise control. Additionally, the performance of these virtual sensing algorithms in numerical simulations and in experiments is discussed and compared.

  17. Low Dimensional Methods for Jet Noise Control

    Science.gov (United States)

    2007-11-02

    and is capable of operating in temperatures of up to 26000 F (14500 C) with minimal growth. The pressure drop through a 3.2in. (8.13cm.) substrate...6, 50% to 100% Figure 10. New base SPL conditions with fan blade speeds. MUA unit at 85%, eductor fan on, T~f = 750 In accordance with ISO 3745...heater, control valve). Therefore, we do not anticipate any changes and will not wait for the facility’s ISO validation to continue further with this

  18. Active control of aerodynamic noise; Active control ni yoru furyoku soon no seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, M. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    1996-10-01

    This paper introduces summary and examples of active noise control (ANC) and active flow control (AFC) as the aerodynamic noise control techniques. The ANC is a technique to generate noise of a reverse phase which cancels the original noise. Noise reduced especially effectively by the ANC is noise from fans and ducts used for engine air supply and exhaust. The ANC is effective in low frequencies, and when used with a passive method, a compact exhaust silencer can be realized, which has high noise reducing performance over the whole frequency band and has low pressure loss. Signal processing in active noise reduction system is always so adjusted that noise is discharged from a secondary noise source in which signals detected by a detection microphone is given a digital filter treatment, and output from an error microphone is minimized. The AFC has been incapable of realizing a reverse phase over a wide frequency band when depended on analog treatment. However, the authors have developed an adaptive type feedback control system, and verified that the system can be applied to any frequency variation and control it in a stable manner. 15 refs., 9 figs., 1 tab.

  19. Concurrent mechatronic design approach for active control of cavity noise

    Science.gov (United States)

    de Oliveira, L. P. R.; da Silva, M. M.; Sas, P.; Van Brussel, H.; Desmet, W.

    2008-07-01

    Active control is a potential solution to many noise and vibration problems for improving the low-frequency performance. Cavity noise reduction as encountered for instance in aircraft cabins and vehicle interiors is a typical example. However, the conventional design of these active solutions may lead to suboptimal products, since the interaction between the vibro-acoustic plant dynamics and control dynamics is usually not considered. A proper way to design such active systems would be considering control and plant parameters concurrently. To cope with this approach, a methodology to derive a fully coupled mechatronic model that deals with both the vibro-acoustic plant dynamics as well as the control parameters is proposed. The inclusion of sensor and actuator models is investigated, since it contributes to the model accuracy as it can confer frequency, phase or amplitude limitations to the control performance. The proposed methodology provides a reduced state-space model derived from a fully coupled vibro-acoustic finite element model. Experimental data on a vibro-acoustic vehicle cabin mock-up are used to validate the model reduction procedure. Regarding noise reduction, optimization results are presented considering both vibro-acoustic plant features, such as thicknesses, and control parameters, such as sensor and actuator placement and control gains. A collocated sensor/actuator pair is considered in a velocity feedback control strategy. The benefits of a concurrent mechatronic design when dealing with active structural-acoustic control solutions are addressed, illustrated and experimentally validated.

  20. Coupled dynamic systems and Le Chatelier's principle in noise control

    Science.gov (United States)

    Maidanik, G.; Becker, K. J.

    2004-05-01

    Investigation of coupling an externally driven dynamic system-a master dynamic system-to a passive one-an adjunct dynamic system-reveals that the response of the adjunct dynamic system affects the precoupled response of the master dynamic system. The responses, in the two dynamic systems when coupled, are estimated by the stored energies (Es) and (E0), respectively. Since the adjunct dynamic system, prior to coupling, was with zero (0) stored energy, E0s=0, the precoupled stored energy (E00) in the master dynamic system is expected to be reduced to (E0) when coupling is instituted; i.e., one expects E0noise control of the master dynamic system would result from the coupling. It is argued that the change in the disposition of the stored energies as just described may not be the only change. The coupling may influence the external input power into the master dynamic system which may interfere with the expected noise control. Indeed, the coupling may influence the external input power such that the expected beneficial noise control may not materialize. Examples of these kinds of noise control reversals are cited.

  1. Multi-channel Kalman filters for active noise control

    NARCIS (Netherlands)

    Ophem, S. van; Berkhoff, A.P.

    2013-01-01

    By formulating the feed-forward broadband active noise control problem as a state estimation problem it is possible to achieve a faster rate of convergence than the filtered reference least mean squares algorithm and possibly also a better tracking performance. A multiple input/multiple output

  2. Multi-channel Kalman filters for active noise control

    NARCIS (Netherlands)

    van Ophem, S.; Berkhoff, Arthur P.

    By formulating the feed-forward broadband active noise control problem as a state estimation problem it is possible to achieve a faster rate of convergence than the filtered reference least mean squares algorithm and possibly also a better tracking performance. A multiple input/multiple output

  3. The Effect of fMRI (Noise) on Cognitive Control

    Science.gov (United States)

    Hommel, Bernhard; Fischer, Rico; Colzato, Lorenza S.; van den Wildenberg, Wery P. M.; Cellini, Cristiano

    2012-01-01

    Stressful situations, the aversiveness of events, or increases in task difficulty (e.g., conflict) have repeatedly been shown to be capable of triggering attentional control adjustments. In the present study we tested whether the particularity of an fMRI testing environment (i.e., EPI noise) might result in such increases of the cognitive control…

  4. Rapidly converging multichannel controllers for broadband noise and vibrations

    NARCIS (Netherlands)

    Berkhoff, A.P.

    2010-01-01

    Applications are given of a preconditioned adaptive algorithm for broadband multichannel active noise control. Based on state-space descriptions of the relevant transfer functions, the algorithm uses the inverse of the minimum-phase part of the secondary path in order to improve the speed of converg

  5. Global Mode-Based Control of Supersonic Jet Noise

    Science.gov (United States)

    Natarajan, Mahesh; Freund, Jonathan; Bodony, Daniel

    2015-11-01

    The loudest source of high-speed jet noise appears to be describable by unsteady wavepackets that resemble instabilities. We seek to reduce their acoustic impact by developing a novel control strategy that uses global modes to model their dynamics and structural sensitivity of the linearized compressible Navier-Stokes operator to determine effective linear feedback control. Using co-located actuators and sensors we demonstrate the method on an axisymmetric Mach 1.5 fitted with a nozzle. Direct numerical simulations using this control show significant noise reduction, with additional reduction with increase in control gain. Eigenanalysis of the uncontrolled and controlled mean flows reveal fundamental changes in the spectrum at frequencies lower than that used by the control. The non-normality of the global modes is shown to enable this control to affect a wide range of frequencies. The low-frequency wavepacket components are made less acoustically efficient, which is reflected in the far-field noise spectrum. Mean flow alterations are minor near the nozzle and only become apparent further downstream. Office of Naval Research and National Science Foundation.

  6. A Novel Method to Predict Circulation Control Noise

    Science.gov (United States)

    2016-03-17

    dimensional motion of the flow at a moderate Reynolds number. Then , a high Reynolds number flow over a circulation control airfoil is investigated. This...of Sound and Vibration . 200 BAUR, T . & KONGETER, J . 1999 PIV with high temporal resolution for the determina- tion of local pressure reductions ...rotors utilizing circulation control . Journal of Aircraft 20, 946-952. MUNRO, S. E ., AHUJA , K. K. & ENGLAR, R. J . 2001 Noise reduction through

  7. NOISE CONTROL IN GAS STATIONS – CASE STUDY

    Directory of Open Access Journals (Sweden)

    Flávio Eduardo Amaral Herzer

    2010-01-01

    Full Text Available The high noise level in urban has changed, in the last decades, in some way of pollution that has worried the health agents. The value registered accused levels of so high discomfort that the urban sound pollution passed to be considered as a kind of pollution that hit the outnumbered people. There are efficient measures in its control, but still there are few companies that adopt measure control and auditive conservation program. This way, the objective of the work was to evaluate the noise level in which the employees and users of the gas station are daily exposed. The survey of quantitative datum was done measuring the noise level right in the emission source and making arithmetic means with the gotten sample. The average obtained revealed that the working environment isn’t appropriate, that means the noise can affect straight to communication and working production. With the prevention objective or stabilizing the auditive lost in witch the workers and the frequenters are submitted to the referred place were proposed measures to the implantation of a Auditive Conservation Program (ACP.

  8. Expectation-Based Control of Noise and Chaos

    Science.gov (United States)

    Zak, Michael

    2006-01-01

    A proposed approach to control of noise and chaos in dynamic systems would supplement conventional methods. The approach is based on fictitious forces composed of expectations governed by Fokker-Planck or Liouville equations that describe the evolution of the probability densities of the controlled parameters. These forces would be utilized as feedback control forces that would suppress the undesired diffusion of the controlled parameters. Examples of dynamic systems in which the approach is expected to prove beneficial include spacecraft, electronic systems, and coupled lasers.

  9. Mechanisms of noise-resistance in genetic oscillators

    CERN Document Server

    Gómez-Vilar, J M; Barkai, N; Leibler, S; Vilar, Jose M.G.; Kueh, Hao Yuan; Barkai, Naama; Leibler, Stanislas

    2002-01-01

    A wide range of organisms use circadian clocks to keep internal sense of daily time and regulate their behavior accordingly. Most of these clocks use intracellular genetic networks based on positive and negative regulatory elements. The integration of these "circuits" at the cellular level imposes strong constraints on their functioning and design. Here we study a recently proposed model [N. Barkai and S. Leibler, Nature, 403:267--268, 2000] that incorporates just the essential elements found experimentally. We show that this type of oscillator is driven mainly by two elements: the concentration of a repressor protein and the dynamics of an activator protein forming an inactive complex with the repressor. Thus the clock does not need to rely on mRNA dynamics to oscillate, which makes it especially resistant to fluctuations. Oscillations can be present even when the time average of the number of mRNA molecules goes below one. Under some conditions, this oscillator is not only resistant to but paradoxically als...

  10. Design of Low Noise 16-bit CMOS Digitally Controlled Oscillator

    Directory of Open Access Journals (Sweden)

    Nitin Kumar

    2012-02-01

    Full Text Available In this paper, a new differential delay cell is proposed and 16-bit Digital Controlled Oscillator (DCO based on proposed delay cell is designed. The 16-bit DCO consist of 4-stages differential delay cell in ring structure and a digital control scheme has been used to improved noise characteristics. The structure of the DCO utilizes dual delay path techniques to achieve high oscillation frequency and awide tuning range. The DCO circuit has been simulated in SPICE with 0.5μm technology operating with supply voltage of 5V. DCO achieved a controllable frequency range of [1.7324-4.8649] GHz with a tuningrange of 3.1325GHz (≈64%. The measured output noise is -161.2dB/Hz and the total harmonic distortion have been found 75.4865dB with 6666H control word. The phase noise in proposed DCO design is -179.4dB/Hz at a frequency of 1.7324GHz.

  11. Predicting Modeling Method of Ship Radiated Noise Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Guohui Li

    2016-01-01

    Full Text Available Because the forming mechanism of underwater acoustic signal is complex, it is difficult to establish the accurate predicting model. In this paper, we propose a nonlinear predicting modeling method of ship radiated noise based on genetic algorithm. Three types of ship radiated noise are taken as real underwater acoustic signal. First of all, a basic model framework is chosen. Secondly, each possible model is done with genetic coding. Thirdly, model evaluation standard is established. Fourthly, the operation of genetic algorithm such as crossover, reproduction, and mutation is designed. Finally, a prediction model of real underwater acoustic signal is established by genetic algorithm. By calculating the root mean square error and signal error ratio of underwater acoustic signal predicting model, the satisfactory results are obtained. The results show that the proposed method can establish the accurate predicting model with high prediction accuracy and may play an important role in the further processing of underwater acoustic signal such as noise reduction and feature extraction and classification.

  12. BARRIER DESIGN STRATEGIES TO CONTROL NOISE INGRESS INTO DOMESTIC BUILDINGS

    Directory of Open Access Journals (Sweden)

    Christina E. Mediastika

    2003-01-01

    Full Text Available Noise source for buildings adjacent to streets is traffic-generated predominantly. Where people are mostly spend their time indoors, it is important for buildings to have screening or blocking to control noise intrusion into living spaces. But this blocking should also permit airflow. This is important for middle to low-cost domestic buildings, which do not employ conditioned ventilation. A common feature of Indonesian buildings, fence, is studied to perform noise barrier. The fence -a barrier to be- should obey three factors: position, dimension, and material. All these three factors were studied to seek compromised design for acoustic performance and natural ventilation purpose. Domestic building situated in the urban area of Yogyakarta was studying to see the most possible design of the barrier to be. There are two calculation methods employed to investigate the proposed design. The study shows that it is possible to gain minimum of 10 dB noise reduction by placing windows within the shadow effect of approximately 1.5 height fence-barrier.

  13. Current control in inertial Brownian motors by noise recycling

    Science.gov (United States)

    Jia, Zheng-Lin; Li, Kai-Yi; Li, Chun; Yang, Chun-Yan; Mei, Dong-Cheng

    2015-03-01

    The transport properties of an inertial Brownian motor were numerically studied in the presence of recycled noise, which is obtained by re-injecting a fraction of the primary white noise after a processing time, being introduced into the system in a multiplicative way. The simulation results indicate that various parameters such as the external driving force, the friction coefficient, the mass of the particle, the recycling strength, and the delay time can induce the current reversal phenomenon when the sign of the recycling strength is in agreement with the sign of the external bias force, otherwise the current reversal cannot be observed. Additionally, the asymptotic mean velocity as a function of the delay time of the recycled noise always shows a resonance-like behavior with the presence of a maximum current. These results demonstrate that the delay time and the recycling strength of the recycled noise can be used as the feasible and flexible control parameters for the amplitude and direction of the current.

  14. Study on the application of digital signal processor (DSP) to adaptive control. 2. Active noise control to noise from a duct; DSP ni yoru tekio seigyo. 2. Duct kaikotan no soon eno active noise control

    Energy Technology Data Exchange (ETDEWEB)

    Kino, N.; Kitagawa, T.; Aoki, K. [Shizuoka Industrial Research Institute of Shizuoka prefecture, Shizuoka (Japan)

    1995-09-01

    Recent developments in signal processing technology, computer and LSI technology, especially DSP technology have made it possible to process sampled and quantized sound signals in real time. So sound field processing technology and sound field control technology have been made rapid progress. Active noise control technology is one of the sound field control technologies. And it can be applied to low frequency noise reduction problems that we couldn`t cope with in usual way. So we developed an experimental device of active noise control. We report how we developed this device and refer to the experimental results about a random frequency noise in this report. 5 refs., 18 figs., 1 tab.

  15. Passive control of rotorcraft high-speed impulsive noise

    Science.gov (United States)

    Szulc, O.; Doerffer, P.; Tejero, F.

    2016-10-01

    A strong, normal shock wave, terminating a local supersonic area located at the tip of a helicopter blade, not only limits the aerodynamic performance, but also constitutes an origin of the High-Speed Impulsive (HSI) noise. The application of a passive control device (a shallow cavity covered by a perforated plate) just beneath the interaction region weakens the compression level, thus reducing the main source of the HSI noise. The numerical investigation based on the URANS approach and Bohning/Doerffer (BD) transpiration law (SPARC code) confirms a large potential of the new method. Two exemplary implementations, adapted to model helicopter rotors tested at NASA Ames facility in transonic conditions: Caradonna-Tung (lifting, transonic hover) and Caradonna-Laub-Tung (non-lifting, high-speed forward flight), demonstrate the possible gains in terms of the reduction of acoustic pressure fluctuations in the near-field of the blade tip. The CFD results are validated against the experimental data obtained for the reference configurations (no control), while the analysis of the passive control arrangement is based on a purely numerical research. The normal shock wave is effectively eliminated by the wall ventilation exerting a positive impact on the generated level of the HSI noise.

  16. Stochastic resonance in a voltage-controlled MEMS-slider: increasing the signal-to-noise ratio with noise

    NARCIS (Netherlands)

    Droogendijk, H.; de Boer, Meint J.; Brookhuis, Robert Anton; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    2013-01-01

    We demonstrate that, using stochastic resonance (SR) in a voltage-controlled MEMS-slider, the signal-to-noise ratio can be increased by adding white noise. Using a Silicon-on-Insulator (SOI) based process, we realised a slider structure with periodic capacitive structures to obtain tunable unstable

  17. Advance Noise Control Fan II: Test Rig Fan Risk Management Study

    Science.gov (United States)

    Lucero, John

    2013-01-01

    Since 1995 the Advanced Noise Control Fan (ANCF) has significantly contributed to the advancement of the understanding of the physics of fan tonal noise generation. The 9'x15' WT has successfully tested multiple high speed fan designs over the last several decades. This advanced several tone noise reduction concepts to higher TRL and the validation of fan tone noise prediction codes.

  18. Genome-wide screening for genetic loci associated with noise-induced hearing loss.

    Science.gov (United States)

    White, Cory H; Ohmen, Jeffrey D; Sheth, Sonal; Zebboudj, Amina F; McHugh, Richard K; Hoffman, Larry F; Lusis, Aldons J; Davis, Richard C; Friedman, Rick A

    2009-04-01

    Noise-induced hearing loss (NIHL) is one of the more common sources of environmentally induced hearing loss in adults. In a mouse model, Castaneous (CAST/Ei) is an inbred strain that is resistant to NIHL, while the C57BL/6J strain is susceptible. We have used the genome-tagged mice (GTM) library of congenic strains, carrying defined segments of the CAST/Ei genome introgressed onto the C57BL/6J background, to search for loci modifying the noise-induced damage seen in the C57BL/6J strain. NIHL was induced by exposing 6-8-week old mice to 108 dB SPL intensity noise. We tested the hearing of each mouse strain up to 23 days after noise exposure using auditory brainstem response (ABR). This study identifies a number of genetic loci that modify the initial response to damaging noise, as well as long-term recovery. The data suggest that multiple alleles within the CAST/Ei genome modify the pathogenesis of NIHL and that screening congenic libraries for loci that underlie traits of interest can be easily carried out in a high-throughput fashion.

  19. Performance of PRD Welled Surfaces in T Shape Noise Barriers for Controlling Environmental Noise

    Directory of Open Access Journals (Sweden)

    S Momen Bellah

    2010-07-01

    Full Text Available "n "n "nBackgrounds and Objectives: There is a considerable notice in the use of noise barriers in recent years. Noise barriers as a control noise solution can increase the insertion loss to protect receivers. This paper presents the results of an investigation about the acoustic efficiency of primitive root sequence diffuser (PRD on environmental single T-shape barrier."nMaterials and Methods: A 2D boundary element method (BEM is used to predict the insertion loss of the tested barriers. The results of rigid and with quadratic residue diffuser (QRD coverage are also predicted for comparison."nResults: It is found that decreasing the design frequency of PRD shifts the frequency effects towards lower frequencies, and therefore the overall A-weighted insertion loss is improved. It is also found that using wire mesh with reasonably efficient resistivity on the top surface of PRD improves the efficiency of the reactive barriers; however utilizing wire meshes with flow resistivity higher than specific acoustic impedance of air on the PRD top of a diffuser barrier significantly reduces the performance of the barrier within the frequency bandwidth of the diffuser. The performance of PRD covered T-shape barrier at 200 Hz was found to be higher than that of its equivalent QRD barriers in both the far field and areas close to the ground. The amount of improvement compared made by PRD barrier compared with its equivalent rigid barrier at far field is about 2 to 3 dB, while this improvement relative to barrier model .QR4. can reach up to 4- 6 dB."nConclusion: Employing PRD on the top surface of T-shape barrier is found to improve the performance of barriers compared with using rigid and QRD coverage at the examined receiver locations.

  20. Combined MIMO adaptive and decentralized controllers for broadband active noise and vibration control

    NARCIS (Netherlands)

    Berkhoff, A.P.; Wesselink, J.M.

    2009-01-01

    Recent implementations of multiple-input multiple-output adaptive controllers for reduction of broadband noise and vibrations provide considerably improved performance over traditional adaptive algorithms. The most significant performance improvements are in terms of speed of convergence, the amount

  1. Combined MIMO adaptive and decentralized controllers for broadband active noise and vibration control

    NARCIS (Netherlands)

    Berkhoff, Arthur P.; Wesselink, J.M.

    2009-01-01

    Recent implementations of multiple-input multiple-output adaptive controllers for reduction of broadband noise and vibrations provide considerably improved performance over traditional adaptive algorithms. The most significant performance improvements are in terms of speed of convergence, the amount

  2. Evaluation of Noise Control Technology and Alternative Noise Certification Procedures for Propeller-Driven Small Airplanes.

    Science.gov (United States)

    1982-05-01

    Lower Noise Levels for Turboprop Aircraft vs Piston Engine Aircraft. .. .... .... 52 15 Carpet Plots Relating Noise Level, Propeller Diameter...and empiricized the so-called "vortex noise" which occurred at higher frequencies. It was rapidly found that these guidelines were totally inadequate...blade rotational tip Mach number. Various attempts have been made to rationalize the relationships between A- weighted noise level, propeller blade tip

  3. Active Control of Fan Noise: Feasibility Study. Volume 4; Flyover System Noise Studies

    Science.gov (United States)

    Kraft, R. E.; Janardan, B. A.; Gliebe, P. R.; Kontos, G. C.

    1996-01-01

    An extension of a prior study has been completed to examine the potential reduction of aircraft flyover noise by the method of active noise control (ANC). It is assumed that the ANC system will be designed such that it cancels discrete tones radiating from the engine fan inlet or fan exhaust duct, at least to the extent that they no longer protrude above the surrounding broadband noise levels. Thus, without considering the engineering details of the ANC system design, tone levels am arbitrarily removed from the engine component noise spectrum and the flyover noise EPNL levels are compared with and without the presence of tones. The study was conducted for a range of engine cycles, corresponding to fan pressure ratios of 1.3, 1.45, 1.6, and 1.75. This report is an extension of an effort reported previously. The major conclusions drawn from the prior study, which was restricted to fan pressure ratios of 1.45 and 1.75, are that, for a fan pressure ratio of 1.75, ANC of tones gives about the same suppression as acoustic treatment without ANC. For a fan pressure ratio of 1.45, ANC appears to offer less effectiveness from passive treatment. In the present study, the other two fan pressure ratios are included in a more detailed examination of the benefits of the ANC suppression levels. The key results of this extended study are the following observations: (1) The maximum overall benefit obtained from suppression of BPF alone was 2.5 EPNdB at high fan speeds. The suppression benefit increases with increase in fan pressure ratio (FPR), (2) The maximum overall benefit obtained from suppression of the first three harmonics was 3 EPNdB at high speeds. Suppression benefit increases with increase in FPR, (3) At low FPR, only about 1.0 EPNdB maximum reduction was obtained. Suppression is primarily from reduction of BPF at high FPR values and from the combination of tones at low FPR, (4) The benefit from ANC is about the same as the benefit from passive treatment at fan pressure

  4. Fan Noise Control Using Herschel-quincke Resonators

    Science.gov (United States)

    Burdisso, Ricardo A.; Ng, Wing F.; Provenza, Andrew (Technical Monitor)

    2003-01-01

    The research effort proposed for this NASA NRA is mainly experimental. In addition, Virginia Tech is working in partnership with Goodrich Aerospace, Aerostructures Group for the analytical development needed to support the experimental endeavor, i.e. model development, design, and system studies. In this project, Herschel-Quincke (HQ)liner technology experiments will be performed at the NASA Glenn Active Noise Control Fan (ANCF) facility. A schematic of both inlet and aft HQ-liner systems installed in the ANCF rig as well as a picture of the Glenn facility is shown. The main goal is to simultaneously test in both the inlet and bypass duct sections. The by-pass duct will have HQ-systems in both the inner and outer duct walls. The main advantages of performing tests at the ANCF facility are that the effect of the inlet HQ-system on the by-pass HQ-system and vice versa, can be accurately determined from the in-duct modal data. Another significant advantage is that it offers the opportunity to assess (on a common basis) the proposed noise reduction concept on the ANCF rig which in the past has been used for assessing other active and passive noise reduction strategies.

  5. Performing Active Noise Control and Acoustic Experiments Remotely

    Directory of Open Access Journals (Sweden)

    Imran Khan

    2012-12-01

    Full Text Available This paper presents a novel and advanced remotely controlled laboratory for conducting Active Noise Control (ANC, acoustic and Digital Signal Processing (DSP experiments. The laboratory facility, recently developed by Blekinge Institute of Technology (BTH Sweden, supports remote learning through internet covering beginners level such as simple experimental measurements to advanced users and even researchers such as algorithm development and their performance evaluation on DSP. The required software development for ANC algorithms and equipment control are carried out anywhere in the world remotely from an internet-connected client PC using a standard web browser. The paper describes in detail how ANC, acoustic and DSP experiments can be performed remotely The necessary steps involved in an ANC experiment such as validity of ANC, forward path estimation and active control applied to a broad band random noise [0-200Hz] in a ventilation duct will be described in detail. The limitations and challenges such as the forward path and nonlinearities pertinent to the remote laboratory setup will be described for the guidance of the user. Based on the acoustic properties of the ventilation duct some of the possible acoustic experiments such as mode shapes analysis and standing waves analysis etc. will also be discussed in the paper.

  6. Foundations of Active Control - Active Noise Reduction Helmets

    DEFF Research Database (Denmark)

    Elmkjær, Torsten Haaber Leth

    2008-01-01

    This Ph.D. thesis includes fundamental considerations about topologies, algorithms, implementations, methods etc., that can enter in the next generation of active control (AC) systems. Specifically, a new variant of feedforward control referred to as confined feedforward active control (CFFAC......-output (MIMO) system that facilitates both feedforward and feedback control. The general system is then referred to as hybrid MIMO confined-feedforward feedback (HMIMOCFFFB) active noise reduction (ANR) system. The investigation of a multi-channel ANR system with hybrid feedforward and feedback topologies...... be computational intensive takes place at an even slower sampling rate hereby relaxing the requirements on a high bandwidth. It is demonstrated that computational savings as high as 40% can be achieved in a 192, 24, 3 kHz triple-rate system as compared with a 24 kHz single-rate system without sacrificing the ANR...

  7. Controlling Risk Exposure in Periodic Environments: A Genetic Algorithm Approach

    CERN Document Server

    Navarro, Emeterio

    2007-01-01

    In this paper, we compare the performance of different agent's investment strategies in an investment scenario with periodic returns and different types and levels of noise. We consider an investment model, where an agent decides the percentage of budget to risk at each time step. Afterwards, agent's investment is evaluated in the market via a return on investment (RoI), which we assume is a stochastic process with unknown periodicities and different levels of noise. To control the risk exposure, we investigate approaches based on: technical analysis (Moving Least Squares, MLS), and evolutionary computation (Genetic Algorithms, GA). In our comparison, we also consider two reference strategies for zero-knowledge and complete-knowledge behaviors, respectively. In our approach, the performance of a strategy corresponds to the average budget that can be obtained with this strategy over a certain number of time steps. To this end, we perform some computer experiments, where for each strategy the budget obtained af...

  8. Active structural acoustic control of helicopter interior multifrequency noise using input-output-based hybrid control

    Science.gov (United States)

    Ma, Xunjun; Lu, Yang; Wang, Fengjiao

    2017-09-01

    This paper presents the recent advances in reduction of multifrequency noise inside helicopter cabin using an active structural acoustic control system, which is based on active gearbox struts technical approach. To attenuate the multifrequency gearbox vibrations and resulting noise, a new scheme of discrete model predictive sliding mode control has been proposed based on controlled auto-regressive moving average model. Its implementation only needs input/output data, hence a broader frequency range of controlled system is modelled and the burden on the state observer design is released. Furthermore, a new iteration form of the algorithm is designed, improving the developing efficiency and run speed. To verify the algorithm's effectiveness and self-adaptability, experiments of real-time active control are performed on a newly developed helicopter model system. The helicopter model can generate gear meshing vibration/noise similar to a real helicopter with specially designed gearbox and active struts. The algorithm's control abilities are sufficiently checked by single-input single-output and multiple-input multiple-output experiments via different feedback strategies progressively: (1) control gear meshing noise through attenuating vibrations at the key points on the transmission path, (2) directly control the gear meshing noise in the cabin using the actuators. Results confirm that the active control system is practical for cancelling multifrequency helicopter interior noise, which also weakens the frequency-modulation of the tones. For many cases, the attenuations of the measured noise exceed the level of 15 dB, with maximum reduction reaching 31 dB. Also, the control process is demonstrated to be smoother and faster.

  9. Fundamental study of noise reduction by active noise control. Active soon seigyo ni yoru soon taisaku no kiso kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, T.; Naganawa, A. (Chubu Electric Power Co. Inc., Nagoya (Japan))

    1994-05-01

    Fundamental experiments were conducted on active noise control as sound insulation fence. This control method generates a sound source with the same amplitude and opposite phase as noise, and reduces noise through the interference of acoustic wave from the source. However, this method has too many problems with the three-dimensional sound field to be actually exploited in this environment. The following experiments were conducted to apply the active noise control to the sound insulation fence: one method of installing a geometric path along the inner side of the sound insulation fence used the acoustic delay process generated on the source side to attenuate the sound pressure level on top of the fence through interference of routing difference sound. The other method used an additional sound source attached to the bottom of the geometric path above to obtain a higher attenuation than using the simple sound insulation fence. At the second step, the active control duct model was used for the test. Then, the three-dimensional model test was conducted for active control of the sound insulation fence. The results of these fundamental experiments have indicated that each method can reduce the relative sound pressure level and the active noise control system using the acoustic phase difference can effectively reduce noise with dominant components in a low frequency band. There are still several problems with the three-dimensional mock-up model. 4 refs., 18 figs., 2 tabs.

  10. Study of active noise control system for a commercial HVAC unit

    Science.gov (United States)

    Devineni, Naga

    Acoustic noise is a common problem in everyday life. If the appliances that are present in the work and living areas generate noise then it's a serious problem. One such appliance is the Heating, Ventilation and Air-conditioning system (HVAC) in which blower fan and compressor units are housed together. Operation of a HVAC system creates two kinds of noise. One is the noise due to the air flow and the other is the result of the compressor. Both of them exhibit different signal properties and need different strategies to control them. There has been previous efforts in designing noise control systems that can control noise from the HVAC system. These include passive methods which use sound absorption materials to attenuate noise and active methods which cancel noise by generating anti-noise. Passive methods are effective in limiting the high frequency noise, but are inefficient in controlling low frequency noise from the compressor. Compressor noise is one of the strong low frequency components that propagate through the walls, therefore there is need for deploying active signal processing methods that consider the signal properties into consideration to cancel the noise acoustically. The quasi periodic nature of the compressor noise is exploited in noise modeling which aids in implementing an adaptive linear prediction filter in estimating the anti noise [12]. In this thesis, a multi channel architecture has been studied for a specific HVAC system in order to improve noise cancellation by creating larger quiet zone. In addition to the multi-channel architecture, a real time narrow band Active Noise Control (ANC) was employed to cancel noise under practical conditions.

  11. Phasor Representation for Narrowband Active Noise Control Systems

    Directory of Open Access Journals (Sweden)

    Chen Fu-Kun

    2008-01-01

    Full Text Available The phasor representation is introduced to identify the characteristic of the active noise control (ANC systems. The conventional representation, transfer function, cannot explain the fact that the performance will be degraded at some frequency for the narrowband ANC systems. This paper uses the relationship of signal phasors to illustrate geometrically the operation and the behavior of two-tap adaptive filters. In addition, the best signal basis is therefore suggested to achieve a better performance from the viewpoint of phasor synthesis. Simulation results show that the well-selected signal basis not only achieves a better convergence performance but also speeds up the convergence for narrowband ANC systems.

  12. Phasor Representation for Narrowband Active Noise Control Systems

    Directory of Open Access Journals (Sweden)

    Fu-Kun Chen

    2008-05-01

    Full Text Available The phasor representation is introduced to identify the characteristic of the active noise control (ANC systems. The conventional representation, transfer function, cannot explain the fact that the performance will be degraded at some frequency for the narrowband ANC systems. This paper uses the relationship of signal phasors to illustrate geometrically the operation and the behavior of two-tap adaptive filters. In addition, the best signal basis is therefore suggested to achieve a better performance from the viewpoint of phasor synthesis. Simulation results show that the well-selected signal basis not only achieves a better convergence performance but also speeds up the convergence for narrowband ANC systems.

  13. Active control of propeller induced noise fields inside a flexible cylinder

    Science.gov (United States)

    Lester, H. C.; Fuller, C. R.

    1986-01-01

    An active noise control model has been evaluated for reducing aircraft interior noise. The structural noise transmission properties of an aircraft fuselage were modelled as a flexible cylinder excited by external acoustic dipoles simulating the noise produced by twin propellers. The amplitudes of an internal distribution of monopole control sources were determined such that the area-weighted mean square acoustic pressure was minimized in the propeller plane. The noise control model was evaluated at low frequencies corresponding to the blade passage frequency and first few harmonics of a typical turbo-prop aircraft. Interior noise reductions of 20 25 dB were achieved, over a substantial region of the cylindrical cross-section, with just a few monopole control sources. The most favorable interior noise reductions were achieved when the active noise control model was used in combination with propeller source phasing.

  14. Hybrid Feedforward-Feedback Noise Control Using Virtual Sensors

    Science.gov (United States)

    Bean, Jacob; Fuller, Chris; Schiller, Noah

    2016-01-01

    Several approaches to active noise control using virtual sensors are evaluated for eventual use in an active headrest. Specifically, adaptive feedforward, feedback, and hybrid control structures are compared. Each controller incorporates the traditional filtered-x least mean squares algorithm. The feedback controller is arranged in an internal model configuration to draw comparisons with standard feedforward control theory results. Simulation and experimental results are presented that illustrate each controllers ability to minimize the pressure at both physical and virtual microphone locations. The remote microphone technique is used to obtain pressure estimates at the virtual locations. It is shown that a hybrid controller offers performance benefits over the traditional feedforward and feedback controllers. Stability issues associated with feedback and hybrid controllers are also addressed. Experimental results show that 15-20 dB reduction in broadband disturbances can be achieved by minimizing the measured pressure, whereas 10-15 dB reduction is obtained when minimizing the estimated pressure at a virtual location.

  15. Trade-offs and noise tolerance in signal detection by genetic circuits.

    Directory of Open Access Journals (Sweden)

    Raúl Guantes

    Full Text Available Genetic circuits can implement elaborated tasks of amplitude or frequency signal detection. What type of constraints could circuits experience in the performance of these tasks, and how are they affected by molecular noise? Here, we consider a simple detection process-a signal acting on a two-component module-to analyze these issues. We show that the presence of a feedback interaction in the detection module imposes a trade-off on amplitude and frequency detection, whose intensity depends on feedback strength. A direct interaction between the signal and the output species, in a type of feed-forward loop architecture, greatly modifies these trade-offs. Indeed, we observe that coherent feed-forward loops can act simultaneously as good frequency and amplitude noise-tolerant detectors. Alternatively, incoherent feed-forward loop structures can work as high-pass filters improving high frequency detection, and reaching noise tolerance by means of noise filtering. Analysis of experimental data from several specific coherent and incoherent feed-forward loops shows that these properties can be realized in a natural context. Overall, our results emphasize the limits imposed by circuit structure on its characteristic stimulus response, the functional plasticity of coherent feed-forward loops, and the seemingly paradoxical advantage of improving signal detection with noisy circuit components.

  16. Combined MIMO adaptive and decentralized controllers for broadband active noise and vibration control

    NARCIS (Netherlands)

    Berkhoff, A.P.; Wesselink, J.M.

    2011-01-01

    Model errors in multiple-input multiple-output adaptive controllers for reduction of broadband noise and vibrations may lead to unstable systems or increased error signals. In this paper, a combination of high-authority control (HAC) and low-authority control (LAC) is considered for improved perform

  17. Vortex shedding noise control in idling circular saws using air ejection at the teeth

    Science.gov (United States)

    Yanagimoto, K.; Mote, C. D.; Ichimiya, R.

    1994-04-01

    Aerodynamically induced noise from an idling circular saw can be very intense. The purpose of the present investigation is noise reduction through vortex shedding control in idling circular saws. Reduction of aerodynamic noise in idling circular saws may be possible by controlling the shed vortices and flow structures in the space between teeth, based on the earlier observations.

  18. Using noise to control heterogeneity of isogenic populations in homogenous environments

    Science.gov (United States)

    Szymańska, Paulina; Gritti, Nicola; Keegstra, Johannes M.; Soltani, Mohammad; Munsky, Brian

    2015-07-01

    We explore the extent to which the phenotypes of individual, genetically identical cells can be controlled independently from each other using only a single homogeneous environmental input. We show that such control is theoretically impossible if restricted to a deterministic setting, but it can be achieved readily if one exploits heterogeneities introduced at the single-cell level due to stochastic fluctuations in gene regulation. Using stochastic analyses of a bistable genetic toggle switch, we develop a control strategy that maximizes the chances that a chosen cell will express one phenotype, while the rest express another. The control mechanism uses UV radiation to enhance identically protein degradation in all cells. Control of individual cells is made possible only by monitoring stochastic protein fluctuations and applying UV control at favorable times and levels. For two identical cells, our stochastic control law can drive protein expression of a chosen cell above its neighbor with a better than 99% success rate. In a population of 30 identical cells, we can drive a given cell to remain consistently within the top 20%. Although cellular noise typically impairs predictability for biological responses, our results show that it can also simultaneously improve controllability for those same responses.

  19. Genetic Control of Potassium Channels.

    Science.gov (United States)

    Amin, Ahmad S; Wilde, Arthur A M

    2016-06-01

    Approximately 80 genes in the human genome code for pore-forming subunits of potassium (K(+)) channels. Rare variants (mutations) in K(+) channel-encoding genes may cause heritable arrhythmia syndromes. Not all rare variants in K(+) channel-encoding genes are necessarily disease-causing mutations. Common variants in K(+) channel-encoding genes are increasingly recognized as modifiers of phenotype in heritable arrhythmia syndromes and in the general population. Although difficult, distinguishing pathogenic variants from benign variants is of utmost importance to avoid false designations of genetic variants as disease-causing mutations.

  20. Active Control of Fan Noise: Feasibility Study. Volume 3; Active Fan Noise Cancellation in the NASA Lewis Active Noise Control Fan Facility

    Science.gov (United States)

    Pla, Frederic G.; Hu, Ziqiang; Sutliff, Daniel L.

    1996-01-01

    This report describes the Active Noise Cancellation (ANC) System designed by General Electric and tested in the NASA Lewis Research Center's (LERC) 48 inch Active Noise Control Fan (ANCF). The goal of this study is to assess the feasibility of using wall mounted secondary acoustic sources and sensors within the duct of a high bypass turbofan aircraft engine for global active noise cancellation of fan tones. The GE ANC system is based on a modal control approach. A known acoustic mode propagating in the fan duct is canceled using an array of flush-mounted compact sound sources. The canceling modal signal is generated by a modal controller. Inputs to the controller are signals from a shaft encoder and from a microphone array which senses the residual acoustic mode in the duct. The key results are that the (6,0) was completely eliminated at the 920 Hz design frequency and substantially reduced elsewhere. The total tone power was reduced 6.8 dB (out of a possible 9.8 dB). Farfield reductions of 15 dB (SPL) were obtained. The (4,0) and (4,1) modes were reduced simultaneously yielding a 15 dB PWL decrease. The results indicate that global attenuation of PWL at the target frequency was obtained in the aft quadrant using an ANC actuator and sensor system totally contained within the duct. The quality of the results depended on precise mode generation. High spillover into spurious modes generated by the ANC actuator array caused less than optimum levels of PWL reduction. The variation in spillover is believed to be due to calibration procedure, but must be confirmed in subsequent tests.

  1. Noise from high speed maglev systems: Noise sources, noise criteria, preliminary design guidelines for noise control, and recommendations for acoustical test facility for maglev research

    Science.gov (United States)

    Hanson, C. E.; Abbot, P.; Dyer, I.

    1993-01-01

    Noise levels from magnetically-levitated trains (maglev) at very high speed may be high enough to cause environmental noise impact in residential areas. Aeroacoustic sources dominate the sound at high speeds and guideway vibrations generate noticeable sound at low speed. In addition to high noise levels, the startle effect as a result of sudden onset of sound from a rapidly moving nearby maglev vehicle may lead to increased annoyance to neighbors of a maglev system. The report provides a base for determining the noise consequences and potential mitigation for a high speed maglev system in populated areas of the United States. Four areas are included in the study: (1) definition of noise sources; (2) development of noise criteria; (3) development of design guidelines; and (4) recommendations for a noise testing facility.

  2. Smart materials and active noise and vibration control in vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Doppenberg, E.J.J.; Berkhoff, A.P.; Overbeek, M. van [TNO Institute of Applied Physics, Delft (Netherlands)

    2001-07-01

    Results are presented for the reduction of sound radiated from a structure using different control methodologies. Two approaches for active structural acoustic control are mentioned to reduce sound radiated by the structure: the acoustic approach or the vibro-acoustic approach. In both cases integrated actuators in structure materials are necessary to realise feasible products. Furthermore the development of an efficient shaker for Active Isolation techniques is described. The prototype of TNO TPD can produce a force of 400 N up to 250 Hz at a good performance-volume ratio. To enhance the robustness of the active control applications, the use of the subspace identification based control methods are developed. The robustness property of subspace identification methods forms the basis of an accurate model updating mechanism, using small size data batches. The performed simulations reveal excellent robustness performance under very general noise conditions or during operation of the control system. Furthermore the development of the techniques can be exploited to realise sound comfort requirements to enhance audible communications of vehicle related applications. To anticipate to these developments in the automotive industry, TNO has set up a Sound and Vibrations Research Centre with Twente University and a research program on Smart Panels with the Delft University. To investigate the potential markets and applications for sound comfort in the means of transportation, TNO-TPD and the Institute of Sound and Vibration Research in England (ISVR) have agreed on a cooperative venture to develop and realise 'active control of electroacoustics' (ACE). (orig.)

  3. Effect of Poisson noise on adiabatic quantum control

    Science.gov (United States)

    Kiely, A.; Muga, J. G.; Ruschhaupt, A.

    2017-01-01

    We present a detailed derivation of the master equation describing a general time-dependent quantum system with classical Poisson white noise and outline its various properties. We discuss the limiting cases of Poisson white noise and provide approximations for the different noise strength regimes. We show that using the eigenstates of the noise superoperator as a basis can be a useful way of expressing the master equation. Using this, we simulate various settings to illustrate different effects of Poisson noise. In particular, we show a dip in the fidelity as a function of noise strength where high fidelity can occur in the strong-noise regime for some cases. We also investigate recent claims [J. Jing et al., Phys. Rev. A 89, 032110 (2014), 10.1103/PhysRevA.89.032110] that this type of noise may improve rather than destroy adiabaticity.

  4. Application of High Order X-LMS Filter for Active Noise Control

    Directory of Open Access Journals (Sweden)

    N.V.K.Mahalakshmi

    2014-06-01

    Full Text Available In this paper active noise is controlled by using higher order X-LMS (least mean square filter. This technique is based on X-NLMS (normalized least mean square, also known as traditional acoustic noise cancellation (ANC scheme. It cancels the wideband noise from the corrupted speech signal. The active noise reducing headphone is probably the most successful application of active control of sound – the technology of cancelling sound with sound i.e., by using anti-noise signal. This report presents an outlined technical review of noise cancellation in headphones. The principles of passive noise attenuation are presented after which active attenuation is introduced showing how the two complement the attenuation performance. In real-time environment, the number of different applications in which adaptive techniques are being successfully used that are echo cancellation, equalization of dispersive channels, system identification, signal enhancement, noise cancelling and control.

  5. Noise controlled pattern for- mation in subexcitable media

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The numerical simulation on a reaction-diffu- sion system indicates that different patterns can be obtained by tuning the strength of parameter noise in subexcitable media. With the increase of noise intensity, the waves sustained by noise are not broken up as usual, they evolve orderly, and the period of the waves decreases, the survival time of waves varies. The time interval of inputting noise also influences the process of pattern formation and the survival time of waves.

  6. Digitally controlled active noise reduction with integrated speech communication

    NARCIS (Netherlands)

    Steeneken, H.J.M.; Verhave, J.A.

    2004-01-01

    Active noise reduction is a successful addition to passive ear-defenders for improvement of the sound attenuation at low frequencies. Design and assessment methods are discussed, focused on subjective and objective attenuation measurements, stability, and high noise level applications. Active noise

  7. Digitally controlled active noise reduction with integrated speech communication

    NARCIS (Netherlands)

    Steeneken, H.J.M.; Verhave, J.A.

    2004-01-01

    Active noise reduction is a successful addition to passive ear-defenders for improvement of the sound attenuation at low frequencies. Design and assessment methods are discussed, focused on subjective and objective attenuation measurements, stability, and high noise level applications. Active noise

  8. An efficient feedback active noise control algorithm based on reduced-order linear predictive modeling of FMRI acoustic noise.

    Science.gov (United States)

    Kannan, Govind; Milani, Ali A; Panahi, Issa M S; Briggs, Richard W

    2011-12-01

    Functional magnetic resonance imaging (fMRI) acoustic noise exhibits an almost periodic nature (quasi-periodicity) due to the repetitive nature of currents in the gradient coils. Small changes occur in the waveform in consecutive periods due to the background noise and slow drifts in the electroacoustic transfer functions that map the gradient coil waveforms to the measured acoustic waveforms. The period depends on the number of slices per second, when echo planar imaging (EPI) sequencing is used. Linear predictability of fMRI acoustic noise has a direct effect on the performance of active noise control (ANC) systems targeted to cancel the acoustic noise. It is shown that by incorporating some samples from the previous period, very high linear prediction accuracy can be reached with a very low order predictor. This has direct implications on feedback ANC systems since their performance is governed by the predictability of the acoustic noise to be cancelled. The low complexity linear prediction of fMRI acoustic noise developed in this paper is used to derive an effective and low-cost feedback ANC system.

  9. High Temperature Supersonic Jet Noise - Fundamental Studies and Control using Advanced Actuation Methods

    Science.gov (United States)

    2016-08-24

    decades, however methods of measurably controlling -reducing jet noise in an efficient and robust manner remain evasive. Previous research has shown...2016 1-May-2013 30-Apr-2016 High Temperature Supersonic Jet Noise - Fundamental Studies and Control using Advanced Actuation Methods The views...and Control using Advanced Actuation Methods Report Title Understanding and controlling jet noise has been the focus of analytical, computational and

  10. A study of the prediction of cruise noise and laminar flow control noise criteria for subsonic air transports

    Science.gov (United States)

    Swift, G.; Mungur, P.

    1979-01-01

    General procedures for the prediction of component noise levels incident upon airframe surfaces during cruise are developed. Contributing noise sources are those associated with the propulsion system, the airframe and the laminar flow control (LFC) system. Transformation procedures from the best prediction base of each noise source to the transonic cruise condition are established. Two approaches to LFC/acoustic criteria are developed. The first is a semi-empirical extension of the X-21 LFC/acoustic criteria to include sensitivity to the spectrum and directionality of the sound field. In the second, the more fundamental problem of how sound excites boundary layer disturbances is analyzed by deriving and solving an inhomogeneous Orr-Sommerfeld equation in which the source terms are proportional to the production and dissipation of sound induced fluctuating vorticity. Numerical solutions are obtained and compared with corresponding measurements. Recommendations are made to improve and validate both the cruise noise prediction methods and the LFC/acoustic criteria.

  11. CONTROLLING RISK DUE TO NOISE ON FERRY BOAT

    Directory of Open Access Journals (Sweden)

    Aleksandar Nikolic

    2013-07-01

    Full Text Available Environmental and occupational noise is common nuisance that affects the health of employees. Performed health checks of employees engaged by Company “Pomorski Saobraćaj” showed that 5% of examined sailors had hearing loss. The results were a trigger for starting experiment on noise risk assessment with objective to discover possibilities of noise pollution presence, precise significant noise sources and describe solutions for eliminating negative effects. Several measurements on five positions were performed on ferry boat “KAMENARI”, according to EC Physical Agents Directive and Merchant Shipping and Fishing Vessels Regulations 2007. Noise on selected positions exceeded the limit for about 1-5dB. Noise exposure level was 84.5dB. Diesel engine, exhaust system and structural noise were main sources of excessive noise. Experiment shows noise presence as nuisance that affects sailors. Noise presents a serious threat for sailor’s health. It interferes with crew communication and jeopardizes navigation safety. Technical measures, crew health checks and noise monitoring could prevent all negative effects.

  12. Subjective annoyance caused by indoor low-level and low frequency noise and control method

    Institute of Scientific and Technical Information of China (English)

    DI Guo-qing; ZHANG Bang-jun; SHANG Qi

    2005-01-01

    The influence of low-level noise has not been widely noticed. This paper discovered that low-level and low frequency noise(Aweighted equivalent level Leq < 45 dB) causes higher probability of subjective annoyance. The fuzzy mathematic principle was applied to deal with the threshold level of subjective annoyance from noise in this study; there is preferable relationship between the indoor noise and noise annoyance at low frequency noise level. Study indicated at the same centered noise level, the change of annoyance probability is mainly caused by the change of the frequency spectrum characteristic of the indoor noise. Under low noise level environment, without change of the medium-low frequency noise, the slight increase of medium-high frequency noise level with the help of noise sheltering effect can significantly reduce the noise annoyance. This discovery brings a new resolution on how to improve the environmental quality of working or living places. A noise control model is given in this study according to the acoustic analysis.

  13. Sequentially Adapted Parallel Feedforward Active Noise Control of Noisy Sinusoidal Signals

    Directory of Open Access Journals (Sweden)

    Govind Kannan

    2009-01-01

    Full Text Available A large class of acoustic noise sources has an underlying periodic process that generates a periodic noise component, and thus their acoustic noise can in general be modeled as the sum of a periodic signal and a randomly fluctuating signal (usually a broadband background noise. Active control of periodic noise (i.e., for a mixture of sinusoids is more effective than that of random noise. For mixtures of sinusoids in a background broadband random noise, conventional FXLMS-based single filter method does not reach the maximum achievable Noise Attenuation Level (NALmax⁡. In this paper, an alternative approach is taken and the idea of a parallel active noise control (ANC architecture for cancelling mixtures of periodic and random signals is presented. The proposed ANC system separates the noise into periodic and random components and generates corresponding antinoises via separate noise cancelling filters, and tends to reach NALmax⁡ consistently. The derivation of NALmax⁡ is presented. Both the separation and noise cancellation are based on adaptive filtering. Experimental results verify the analytical development by showing superior performance of the proposed method, over the single-filter approach, for several cases of sinusoids in white noise.

  14. Noise contributions in an inducible genetic switch: a whole-cell simulation study.

    Directory of Open Access Journals (Sweden)

    Elijah Roberts

    2011-03-01

    Full Text Available Stochastic expression of genes produces heterogeneity in clonal populations of bacteria under identical conditions. We analyze and compare the behavior of the inducible lac genetic switch using well-stirred and spatially resolved simulations for Escherichia coli cells modeled under fast and slow-growth conditions. Our new kinetic model describing the switching of the lac operon from one phenotype to the other incorporates parameters obtained from recently published in vivo single-molecule fluorescence experiments along with in vitro rate constants. For the well-stirred system, investigation of the intrinsic noise in the circuit as a function of the inducer concentration and in the presence/absence of the feedback mechanism reveals that the noise peaks near the switching threshold. Applying maximum likelihood estimation, we show that the analytic two-state model of gene expression can be used to extract stochastic rates from the simulation data. The simulations also provide mRNA-protein probability landscapes, which demonstrate that switching is the result of crossing both mRNA and protein thresholds. Using cryoelectron tomography of an E. coli cell and data from proteomics studies, we construct spatial in vivo models of cells and quantify the noise contributions and effects on repressor rebinding due to cell structure and crowding in the cytoplasm. Compared to systems without spatial heterogeneity, the model for the fast-growth cells predicts a slight decrease in the overall noise and an increase in the repressors rebinding rate due to anomalous subdiffusion. The tomograms for E. coli grown under slow-growth conditions identify the positions of the ribosomes and the condensed nucleoid. The smaller slow-growth cells have increased mRNA localization and a larger internal inducer concentration, leading to a significant decrease in the lifetime of the repressor-operator complex and an increase in the frequency of transcriptional bursts.

  15. Hybrid Genetic Algorithms with Fuzzy Logic Controller

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, a new implementation of genetic algorithms (GAs) is developed for the machine scheduling problem, which is abundant among the modern manufacturing systems. The performance measure of early and tardy completion of jobs is very natural as one's aim, which is usually to minimize simultaneously both earliness and tardiness of all jobs. As the problem is NP-hard and no effective algorithms exist, we propose a hybrid genetic algorithms approach to deal with it. We adjust the crossover and mutation probabilities by fuzzy logic controller whereas the hybrid genetic algorithm does not require preliminary experiments to determine probabilities for genetic operators. The experimental results show the effectiveness of the GAs method proposed in the paper.``

  16. Active impulsive noise control using maximum correntropy with adaptive kernel size

    Science.gov (United States)

    Lu, Lu; Zhao, Haiquan

    2017-03-01

    The active noise control (ANC) based on the principle of superposition is an attractive method to attenuate the noise signals. However, the impulsive noise in the ANC systems will degrade the performance of the controller. In this paper, a filtered-x recursive maximum correntropy (FxRMC) algorithm is proposed based on the maximum correntropy criterion (MCC) to reduce the effect of outliers. The proposed FxRMC algorithm does not requires any priori information of the noise characteristics and outperforms the filtered-x least mean square (FxLMS) algorithm for impulsive noise. Meanwhile, in order to adjust the kernel size of FxRMC algorithm online, a recursive approach is proposed through taking into account the past estimates of error signals over a sliding window. Simulation and experimental results in the context of active impulsive noise control demonstrate that the proposed algorithms achieve much better performance than the existing algorithms in various noise environments.

  17. Active vibrations and noise control for turboprop application research program activities

    Science.gov (United States)

    Paonessa, A.; Concilio, A.; Lecce, Leonardo V.

    1992-01-01

    The objectives of this work include the following: (1) development of active noise control techniques to alleviate inefficiencies and drawbacks of passive noise control approach especially at low frequencies; (2) reduction of structurally radiated noise applying external forces to the vibrating structure by means of force actuators made of piezoelectric material; and (3) reduction of fuselage vibration levels in propeller driven aircraft by means of distributed piezoelectric actuators that are actively controlled.

  18. Efficient Control of Nonlinear Noise-Corrupted Systems Using a Novel Model Predictive Control Framework

    OpenAIRE

    Weissel, Florian; Huber, Marco F.; Hanebeck, Uwe D.

    2007-01-01

    Model identification and measurement acquisition is always to some degree uncertain. Therefore, a framework for Nonlinear Model Predictive Control (NMPC) is proposed that explicitly considers the noise influence on nonlinear dynamic systems with continuous state spaces and a finite set of control inputs in order to significantly increase the control quality. Integral parts of NMPC are the prediction of system states over a finite horizon as well as the problem specific modeling of reward func...

  19. Experimental validation of tonal noise control from subsonic axial fans using flow control obstructions

    Science.gov (United States)

    Gérard, Anthony; Berry, Alain; Masson, Patrice; Gervais, Yves

    2009-03-01

    This paper presents the acoustic performance of a novel approach for the passive adaptive control of tonal noise radiated from subsonic fans. Tonal noise originates from non-uniform flow that causes circumferentially varying blade forces and gives rise to a considerably larger radiated dipolar sound at the blade passage frequency (BPF) and its harmonics compared to the tonal noise generated by a uniform flow. The approach presented in this paper uses obstructions in the flow to destructively interfere with the primary tonal noise arising from various flow conditions. The acoustic radiation of the obstructions is first demonstrated experimentally. Indirect on-axis acoustic measurements are used to validate the analytical prediction of the circumferential spectrum of the blade unsteady lift and related indicators generated by the trapezoidal and sinusoidal obstructions presented in Ref. [A. Gérard, A. Berry, P. Masson, Y. Gervais, Modelling of tonal noise control from subsonic axial fans using flow control obstructions, Journal of Sound and Vibration (2008), this issue, doi: 10.1016/j.jsv.2008.09.027.] and also by cylindrical obstructions used in the literature. The directivity and sound power attenuation are then given in free field for the control of the BPF tone generated by rotor/outlet guide vane (OGV) interaction and the control of an amplified BPF tone generated by the rotor/OGV interaction with an added triangular obstruction between two outlet guide vanes to enhance the primary non-uniform flow. Global control was demonstrated in free field, attenuation up to 8.4 dB of the acoustic power at BPF has been measured. Finally, the aerodynamic performances of the automotive fan used in this study are almost not affected by the presence of the control obstruction.

  20. H~ Estimation Approach to Active Noise Control: Theory, Algorithm and Real-Time Implementation

    Directory of Open Access Journals (Sweden)

    Bambang Riyanto

    2003-11-01

    Full Text Available This paper presents an H¥ estimation approach to active control of acoustic noise inside an enclosure. It is shown how H¥ filter theory and algorithm can be effectively applied to active noise control to provide important robustness property. Real-time implementation of the algorithm is performed on Digital Signal Processor. Experimental comparison to conventional FxLMS algorithm for active noise control is presented for both single channel and multichannel cases. While providing some new results, this paper also serves as a brief review on H¥ filter theory and on active noise control.

  1. Foundations for Cooperating with Control Noise in the Manipulation of Quantum Dynamics

    CERN Document Server

    Shuang, F; Rabitz, H; Dykman, Mark; Rabitz, Herschel; Shuang, Feng

    2006-01-01

    This paper develops the theoretical foundations for the ability of a control field to cooperate with noise in the manipulation of quantum dynamics. The noise enters as run-to-run variations in the control amplitudes, phases and frequencies with the observation being an ensemble average over many runs as is commonly done in the laboratory. Weak field perturbation theory is developed to show that noise in the amplitude and frequency components of the control field can enhance the process of population transfer in a multilevel ladder system. The analytical results in this paper support the point that under suitable conditions an optimal field can cooperate with noise to improve the control outcome.

  2. 'NASA Invention of the Year' Controls Noise and Vibration

    Science.gov (United States)

    2007-01-01

    Developed at NASA's Langley Research Center, the Macro-Fiber Composite (MFC) is designed to control vibration, noise, and deflections in composite structural beams and panels. Smart Material Corporation specializes in the development of piezocomposite components, and licensed the MFC technology from Langley in 2002. To date, Smart Material Corporation has sold MFCs to over 120 customers, including such industry giants as Volkswagen, Toyota, Honda, BMW, General Electric, and the tennis company, HEAD. The company estimates that its customers have filed at least 100 patents for their various unique uses of the technology. In addition, the company's product portfolio has grown to include piezoceramic fibers and fiber composites, piezoceramic actuators and sensors, and test equipment for these products. It also offers a compact, lightweight power system for MFC testing and validation. Consumer applications already on the market include piezoelectric systems as part of audio speakers, phonograph cartridges and microphones, and recreational products requiring vibration control, such as skis, snowboards, baseball bats, hockey sticks, and tennis racquets.

  3. GENETIC BASED PLUS INTEGRAL CONTROLLER FOR PMBLDC MOTOR CONTROL USING RESONANT POLE INVERTER

    Directory of Open Access Journals (Sweden)

    Muruganantham

    2012-01-01

    Full Text Available Permanent Magnet Brushless DC (PMBLDC motor drives are increasingly popular in industrial applications due to rapid progress of technologies in power electronics and the growing demand for energy saving. The increasing demand of energy saving from society is the external force for the development of PMBLDC motor drives. It is however driven by a hard-switching Pulse Width Modulation (PWM inverter, which has low switching frequency, high switching loss, high Electro-Magnetic Interference (EMI, high acoustic noise and low efficiency, etc. To solve these problems of the hard-switching inverter, many soft-switching inverters have been designed in the past. Unfortunately, high device voltage stress, large dc link voltage ripples, complex control scheme and so on are noticed in the soft-switching inverters. This study introduces a novel genetic-proportional Plus Integral (PI controller based resonant pole inverter using transformer, which can generate dc link voltage notches during chopping which minimize the drawbacks of soft-switching. Hence all switches work in zero-voltage switching condition. The performance of the genetic-based PI controller is compared with conventional PI controller. The experimental results show that the genetic-based PI controller renders a better transient response than the conventional PI controller resulting in negligible overshoot, smaller settling time and rise time. Moreover the proposed controller provides low torque ripples and high starting torque. Both simulation and experimental results are presented to show the superiority of the proposed GA-PI controller based resonant pole inverter.

  4. Electric motor noise control over the past ten years

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, J.D. (Bolt Beranek and Newman Inc., Cambridge, MA); Bruce, R.D.

    1982-01-01

    Electric motors have been recognized as a source of noise and vibration requiring solutions for almost 40 years. Noise from electric motors is not as major a source of concern today as it was 10 years ago. In this paper, the authors attempt to summarize very briefly why quiet motors are available today.

  5. Adapting active noise control headsets for the mining industry: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vipac Engineers and Scientists Ltd., North Ryde, NSW (Australia)

    1996-02-01

    Noise induced hearing loss and its consequences with regard to occupational health and safety remain a major problem in the coal industry, especially underground. Australian Standards for exposure to noise in the occupational environment are being lowered from 8-hour equivalent continuous A-weighted sound pressure level of 90 dBA to 85 dBA. The most desirable solution is to treat the noise problem at source. Where noise control strategies are not feasible, the use of hearing protection devices remains the most widely used strategy for limiting the exposure to noise in the work place. This project aimed to demonstrate design specifications for ANC (Active Noise Control) Headsets for use in the coal mining industry, especially underground. Tests showed some devices benefit from a significantly improved noise attenuation performance at low frequencies due the ANC system. Using measured noise from continuous miner and the measured noise attenuation performance of one of the ANC headsets under evaluation as an example, it was demonstrated that with Active Noise Control, the overall Leq noise level was reduced from 90 dBA (with passive hearing protection only) to 77 dBA. The final part of the project was to establish a set of specifications for the manufacturers to use in developing ANC headsets for use underground. (author). 8 tabs., 7 figs., 20 refs.

  6. Simulation Study on Active Noise Control for a 4 Tesla MRI Scanner

    Science.gov (United States)

    Li, Mingfeng; Lim, Teik C.; Lee, Jing-Huei

    2008-01-01

    The purpose of this work is to study computationally the possibility of the application of a hybrid active noise control technique for MRI acoustic noise reduction. A hybrid control system combined with both feedforward and feedback loops embedded is proposed for potential application on active MRI noise reduction. A set of computational simulation studies were performed. Sets of MRI acoustic noise emissions measured at the patient's left ear location were recorded and used in the simulation study. By comparing three different control systems, namely the feedback, the feedforward and the hybrid control, our results revealed that the hybrid control system is the most effective. The hybrid control system achieved approximately a 20 dB reduction at the principal frequency component. We concluded that the proposed hybrid active control scheme could have a potential application for MRI scanner noise reduction. PMID:18060719

  7. Simulation study on active noise control for a 4-T MRI scanner.

    Science.gov (United States)

    Li, Mingfeng; Lim, Teik C; Lee, Jing-Huei

    2008-04-01

    The purpose of this work is to study computationally the possibility of the application of a hybrid active noise control technique for magnetic resonance imaging (MRI) acoustic noise reduction. A hybrid control system combined with both feedforward and feedback loops embedded is proposed for potential application on active MRI noise reduction. A set of computational simulation studies were performed. Sets of MRI acoustic noise emissions measured at the patient's left ear location were recorded and used in the simulation study. By comparing three different control systems, namely, the feedback, the feedforward and the hybrid control, our results revealed that the hybrid control system is the most effective. The hybrid control system achieved approximately a 20-dB reduction at the principal frequency component. We concluded that the proposed hybrid active control scheme could have a potential application for MRI scanner noise reduction.

  8. Industrial Noise Pollution and the Need for Applying Protocols for its Control and Decrease

    Directory of Open Access Journals (Sweden)

    Parvin Nasiri

    1999-03-01

    Full Text Available Industrialization has had many complications for human beings and has been a threat to social mental and physical health. Vibration induced noises in the workplace is one of the main devastating factor in producing hearing loss in workers. Recently, several investigations on the issue of noise pollution and noise dosimetry and also Noise induced hearing loss have been developed. In the current article we will have a look and sometimes reconsideration on the results and of these studies and will discuss the findings in regard to noise control and management in details.

  9. Approaches to Adaptive Active Acoustic Noise Control at a Point Using Feedforward Techniques.

    Science.gov (United States)

    Zulch, Peter A.

    Active acoustic noise control systems have been of interest since their birth in the 1930's. The principle is to superimpose on an unwanted noise wave shape its inverse with the intention of destructive interference. This work presents two approaches to this idea. The first approach uses a direct design method to develop a controller using an auto-regressive moving-average (ARMA) model that will be used to condition the primary noise to produce the required anti-noise for cancellation. The development of this approach has shown that the stability of the controller relies heavily on a non-minimum phase model of the secondary noise path. For this reason, a second approach, using a controller consisting of two parts was developed. The first part of the controller is designed to cancel broadband noise and the second part is an adaptive controller designed to cancel periodic noise. A simple technique for identifying the parameters of the broadband controller is developed. An ARMA model is used, and it is shown that its stability is improved by prefiltering the test signal with a minimum-phase inverse of the secondary noise channel. The periodic controller uses an estimate of the fundamental frequency to cancel the first few harmonics of periodic noise. A computationally efficient adaptive technique based on least squares is developed for updating the harmonic controller gains at each time step. Experimental results are included for the broadband controller, the harmonic controller, and the combination of the two algorithms. The advantages of using both techniques in conjunction are shown using test cases involving both broadband noise and periodic noise.

  10. Extra-low-noise refrigerator with active noise control system, GR-W40NVI. Nodo seigyo choseiongata reizoko GR-W40NVI

    Energy Technology Data Exchange (ETDEWEB)

    Sekiguchi, Y.; Nakanishi, K.; Saruta, S. (Toshiba Corp., Tokyo (Japan))

    1991-04-20

    Aiming at lowering the noise down to a domestic background noise level, development was made of GR-W40NVI, extra-low-noise refrigerator with an active noise control system. The active control for lowering the noise is methodically to artificially generate sound, reverse in phase against the noise to be generated, silence it by acoustic wave interference, and theoretically reduce the acoustic pressure to zero. Such a technology was applied to the refrigerator morphologically as follows: In order to silence the noise, generated by the compressor and three-dimensionally diffused, by a simple structure, duct structure is applied for the noise to be diffused in one direction only, by acoustically insulating and confining the compressor with exception of its thermal exhaust opening. In order to lower the noise, generated by the compressor and amplified in zonal region, the active control is applied against the low frequency noise, while the conventional acoustic insulation/absorption technology is done against the high frequency noise. In order to quickly and accurately prepare sound, reverse in phase against the noise under fluctuation, signal processing is made by using digital signal processor (DSP), hardware exclusively for it. As a result, the noise was lowered by about 7dB (1/5) for the basic type of refrigerator. 12 figs.

  11. A study of poultry processing plant noise characteristics and potential noise control techniques

    Science.gov (United States)

    Wyvill, J. C.; Jape, A. D.; Moriarity, L. J.; Atkins, R. D.

    1980-01-01

    The noise environment in a typical poultry processing plant was characterized by developing noise contours for two representative plants: Central Soya of Athens, Inc., Athens, Georgia, and Tip Top Poultry, Inc., Marietta, Georgia. Contour information was restricted to the evisceration are of both plants because nearly 60 percent of all process employees are stationed in this area during a normal work shift. Both plant evisceration areas were composed of tile walls, sheet metal ceilings, and concrete floors. Processing was performed in an assembly-line fashion in which the birds travel through the area on overhead shackles while personnel remain at fixed stations. Processing machinery was present throughout the area. In general, the poultry processing noise problem is the result of loud sources and reflective surfaces. Within the evisceration area, it can be concluded that only a few major sources (lung guns, a chiller component, and hock cutters) are responsible for essentially all direct and reverberant sound pressure levels currently observed during normal operations. Consequently, any effort to reduce the noise problem must first address the sound power output of these sources and/or the absorptive qualitities of the room.

  12. Modeling resistance to genetic control of insects.

    Science.gov (United States)

    Alphey, Nina; Bonsall, Michael B; Alphey, Luke

    2011-02-07

    The sterile insect technique is an area-wide pest control method that reduces pest populations by releasing mass-reared sterile insects which compete for mates with wild insects. Modern molecular tools have created possibilities for improving and extending the sterile insect technique. As with any new insect control method, questions arise about potential resistance. Genetic RIDL(®)(1) (Release of Insects carrying a Dominant Lethal) technology is a proposed modification of the technique, releasing insects that are homozygous for a repressible dominant lethal genetic construct rather than being sterilized by irradiation. Hypothetical resistance to the lethal mechanism is a potential threat to RIDL strategies' effectiveness. Using population genetic and population dynamic models, we assess the circumstances under which monogenic biochemically based resistance could have a significant impact on the effectiveness of releases for population control. We assume that released insects would be homozygous susceptible to the lethal genetic construct and therefore releases would have a built-in element of resistance dilution. We find that this effect could prevent or limit the spread of resistance to RIDL constructs; the outcomes are subject to competing selective forces deriving from the fitness properties of resistance and the release ratio. Resistance that is spreading and capable of having a significant detrimental impact on population reduction is identifiable, signaling in advance a need for mitigating action.

  13. Adaptive Feed-Forward Control of Low Frequency Interior Noise

    CERN Document Server

    Kletschkowski, Thomas

    2012-01-01

    This book presents a mechatronic approach to Active Noise Control (ANC). It describes the required elements of system theory, engineering acoustics, electroacoustics and adaptive signal processing in a comprehensive, consistent and systematic manner using a unified notation. Furthermore, it includes a design methodology for ANC-systems, explains its application and describes tools to be used for ANC-system design. From the research point of view, the book presents new approaches to sound source localization in weakly damped interiors. One is based on the inverse finite element method, the other is based on a sound intensity probe with an active free field. Furthermore, a prototype of an ANC-system able to reach the physical limits of local (feed-forward) ANC is described. This is one example for applied research in ANC-system design. Other examples are given for (i) local ANC in a semi-enclosed subspace of an aircraft cargo hold and (ii) for the combination of audio entertainment with ANC.

  14. Synchronization of noise-perturbed generalized Lorenz system by sliding mode control*

    Institute of Scientific and Technical Information of China (English)

    Kong Cui-Cui; Chen Shi-Hua

    2009-01-01

    Synchronization of a noise-perturbed generalized Lorenz system by using sliding mode control method is investigated in this paper. Two sliding mode control methods are proposed to synchronize the noise-perturbed generalized Lorenz system. Numerical simulations are also provided for the illustration and verification of the methods.

  15. Active noise control of forced and induced draft fans in power generating plants

    Energy Technology Data Exchange (ETDEWEB)

    Eldada, M.V.

    1985-05-01

    A study was carried out into active noise reduction of forced draft fans in power generation plants. Active noise reduction involves detecting noise, inverting the phase and re-introducing the anti-phase signal into the duct to cancel the noise through destructive interference. Acoustic pressure transfer functions were meaured in-situ along a cross section of a 15 ft diameter fan inlet. A computer modal analysis program was written and used to analyze the field data. It was found that in frequencies between ca 5 Hz and 45 Hz the energy propagates mainly in the plane wave mode, while in higher frequencies the energy was carried mainly by higher order propagation modes. The project objective was to cancel noise up to a frequency of 130 Hz, but current technology restricted active cancellation to plane waves only. Three alternatives were considered: install a feed forward active noise control system to cancel noise at frequencies below 45 Hz; conduct research on active noise control of higher order propagation modes in ducts; or install a feed back active noise control system and a duct splitter in order to cancel noise between 30 and 130 Hz. It was recommended that the third option be selected as the next phase of the research project, which would comprise a 20 ft duct splitter and microphones, filters, amplifiers, loudspekers and cabinets. 6 refs., 12 figs.

  16. Active noise control and application; Active soon seigyo gijutsu to sono tekiyorei

    Energy Technology Data Exchange (ETDEWEB)

    Muto, M.; Hayashi, M.; Kawai, T.; Sato, F.; Kanbe, K. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan); Inoue, Y.; Takada, K.

    1995-11-01

    The recent rapid progress of electronic devices and signal processing techniques has allowed the practical application of active noise control(ANC) for reduction of noise. The principle of ANC is to cancel a noise by an anti-noise which has the same amplitude of the noise but the inverse phase. For noise reduction in gas ducts, the one dimensional ANC theory can be applied. However, there are still several technical issues particulars to individual plants to be studied and solved. This paper describes the ANC system using the hydraulically actuated speaker which has been developed at IHI, and applications to reduction of low frequency sound emitted at the exit of a stack from a large induction fan. Another application for tractor cabin is also described, indicating successful noise reduction. 6 refs., 12 figs.

  17. Automatic exposure control systems designed to maintain constant image noise: effects on computed tomography dose and noise relative to clinically accepted technique charts.

    Science.gov (United States)

    Favazza, Christopher P; Yu, Lifeng; Leng, Shuai; Kofler, James M; McCollough, Cynthia H

    2015-01-01

    To compare computed tomography dose and noise arising from use of an automatic exposure control (AEC) system designed to maintain constant image noise as patient size varies with clinically accepted technique charts and AEC systems designed to vary image noise. A model was developed to describe tube current modulation as a function of patient thickness. Relative dose and noise values were calculated as patient width varied for AEC settings designed to yield constant or variable noise levels and were compared to empirically derived values used by our clinical practice. Phantom experiments were performed in which tube current was measured as a function of thickness using a constant-noise-based AEC system and the results were compared with clinical technique charts. For 12-, 20-, 28-, 44-, and 50-cm patient widths, the requirement of constant noise across patient size yielded relative doses of 5%, 14%, 38%, 260%, and 549% and relative noises of 435%, 267%, 163%, 61%, and 42%, respectively, as compared with our clinically used technique chart settings at each respective width. Experimental measurements showed that a constant noise-based AEC system yielded 175% relative noise for a 30-cm phantom and 206% relative dose for a 40-cm phantom compared with our clinical technique chart. Automatic exposure control systems that prescribe constant noise as patient size varies can yield excessive noise in small patients and excessive dose in obese patients compared with clinically accepted technique charts. Use of noise-level technique charts and tube current limits can mitigate these effects.

  18. Jet Engine Noise Generation, Prediction and Control. Chapter 86

    Science.gov (United States)

    Huff, Dennis L.; Envia, Edmane

    2004-01-01

    Aircraft noise has been a problem near airports for many years. It is a quality of life issue that impacts millions of people around the world. Solving this problem has been the principal goal of noise reduction research that began when commercial jet travel became a reality. While progress has been made in reducing both airframe and engine noise, historically, most of the aircraft noise reduction efforts have concentrated on the engines. This was most evident during the 1950 s and 1960 s when turbojet engines were in wide use. This type of engine produces high velocity hot exhaust jets during takeoff generating a great deal of noise. While there are fewer commercial aircraft flying today with turbojet engines, supersonic aircraft including high performance military aircraft use engines with similar exhaust flow characteristics. The Pratt & Whitney F100-PW-229, pictured in Figure la, is an example of an engine that powers the F-15 and F-16 fighter jets. The turbofan engine was developed for subsonic transports, which in addition to better fuel efficiency also helped mitigate engine noise by reducing the jet exhaust velocity. These engines were introduced in the late 1960 s and power most of the commercial fleet today. Over the years, the bypass ratio (that is the ratio of the mass flow through the fan bypass duct to the mass flow through the engine core) has increased to values approaching 9 for modern turbofans such as the General Electric s GE-90 engine (Figure lb). The benefits to noise reduction for high bypass ratio (HPBR) engines are derived from lowering the core jet velocity and temperature, and lowering the tip speed and pressure ratio of the fan, both of which are the consequences of the increase in bypass ratio. The HBPR engines are typically very large in diameter and can produce over 100,000 pounds of thrust for the largest engines. A third type of engine flying today is the turbo-shaft which is mainly used to power turboprop aircraft and helicopters

  19. Contemporary theories of 1/f noise in motor control.

    Science.gov (United States)

    Diniz, Ana; Wijnants, Maarten L; Torre, Kjerstin; Barreiros, João; Crato, Nuno; Bosman, Anna M T; Hasselman, Fred; Cox, Ralf F A; Van Orden, Guy C; Delignières, Didier

    2011-10-01

    1/f noise has been discovered in a number of time series collected in psychological and behavioral experiments. This ubiquitous phenomenon has been ignored for a long time and classical models were not designed for accounting for these long-range correlations. The aim of this paper is to present and discuss contrasted theoretical perspectives on 1/f noise, in order to provide a comprehensive overview of current debates in this domain. In a first part, we propose a formal definition of the phenomenon of 1/f noise, and we present some commonly used methods for measuring long-range correlations in time series. In a second part, we develop a theoretical position that considers 1/f noise as the hallmark of system complexity. From this point of view, 1/f noise emerges from the coordination of the many elements that compose the system. In a third part, we present a theoretical counterpoint suggesting that 1/f noise could emerge from localized sources within the system. In conclusion, we try to draw some lines of reasoning for going beyond the opposition between these two approaches.

  20. Interior noise control ground test studies for advanced turboprop aircraft applications

    Science.gov (United States)

    Simpson, Myles A.; Cannon, Mark R.; Burge, Paul L.; Boyd, Robert P.

    1989-01-01

    The measurement and analysis procedures are documented, and the results of interior noise control ground tests conducted on a DC-9 aircraft test section are summarized. The objectives of these tests were to study the fuselage response characteristics of treated and untreated aircraft with aft-mount advanced turboprop engines and to analyze the effectiveness of selected noise control treatments in reducing passenger cabin noise on these aircraft. The results of fuselage structural mode surveys, cabin cavity surveys and sound intensity surveys are presented. The performance of various structural and cabin sidewall treatments is assessed, based on measurements of the resulting interior noise levels under simulated advanced turboprop excitation.

  1. Genetic control of leaf curl in maize.

    Science.gov (United States)

    Entringer, G C; Guedes, F L; Oliveira, A A; Nascimento, J P; Souza, J C

    2014-03-17

    Among the many implications of climatic change on agriculture, drought is expected to continue to have a major impact on agribusinesses. Leaf curling is an anatomical characteristic that might be potentially used to enhance plant tolerance to water deficit. Hence, we aimed to study the genetic control of leaf curl in maize. From 2 contrasting inbred lines for the trait, generations F1, F2, and the backcrosses were obtained. All of these generations were evaluated in a randomized block design with 2 replicates. Leaf curl samples were collected from 3 leaves above the first ear at the tasseling stage, and quantified by dividing the width of the leaf blade with natural curling against its extended width. The mean and variance components were estimated by the weighted least square method. It was found that the trait studied has predominance of the additive effects, with genetic control being attributed to few genes that favor selection and exhibit minimal influence from the environment.

  2. Integration of Bass Enhancement and Active Noise Control System in Automobile Cabin

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2008-01-01

    Full Text Available With the advancement of digital signal processing technologies, consumers are more concerned with the quality of multimedia entertainment in automobiles. In order to meet this demand, an audio enhancement system is needed to improve bass reproduction and cancel engine noise in the cabins. This paper presents an integrated active noise control system that is based on frequency-sampling filters to track and extract the bass information from the audio signal, and a multifrequency active noise equalizer to tune the low-frequency engine harmonics to enhance the bass reproduction. In the noise cancellation mode, a maximum of 3 dB bass enhancement can be achieved with significant noise suppression, while higher bass enhancement can be achieved in the bass enhance mode. The results show that the proposed system is effective for solving both the bass audio reproduction and the noise control problems in automobile cabins.

  3. Active control of periodic fan noise in laptops: spectral width requirements in delayed buffer implementation

    Directory of Open Access Journals (Sweden)

    H. A. Cordourier‐Maruri

    2009-08-01

    Full Text Available An active control system intended for the reduction of strictly periodic noise components in computer cooling fans is described,which is based on high‐performance digital sound device architectures found in some personal computers. The systemovercomes causality and synchronization constrains imposed by delayed buffering, as usually found in computer audioprocessing. Performance of the system is demonstrated and evaluated through measurements in a physical implementation ofactive noise control of synthetic tones combined with laptop fan noise, carried out under anechoic and slightly reverberantconditions. Tests on other types of tonal noise sources, like an electrical transformer, were also carried out. However, its widerapplicability to the cancellation of tonal noise has been proved compromised by weak periodicity issues found and reported inthis work. Also, a study of noise spectral width requirements for successful operation is presented.

  4. Noise control, sound, and the vehicle design process

    Science.gov (United States)

    Donavan, Paul

    2005-09-01

    For many products, noise and sound are viewed as necessary evils that need to be dealt with in order to bring the product successfully to market. They are generally not product ``exciters'' although some vehicle manufacturers do tune and advertise specific sounds to enhance the perception of their products. In this paper, influencing the design process for the ``evils,'' such as wind noise and road noise, are considered in more detail. There are three ingredients to successfully dealing with the evils in the design process. The first of these is knowing how excesses in noise effects the end customer in a tangible manner and how that effects customer satisfaction and ultimately sells. The second is having and delivering the knowledge of what is required of the design to achieve a satisfactory or even better level of noise performance. The third ingredient is having the commitment of the designers to incorporate the knowledge into their part, subsystem or system. In this paper, the elements of each of these ingredients are discussed in some detail and the attributes of a successful design process are enumerated.

  5. Genetic control of the innate immune response

    Directory of Open Access Journals (Sweden)

    Sweet Matthew

    2003-06-01

    Full Text Available Abstract Background Susceptibility to infectious diseases is directed, in part, by the interaction between the invading pathogen and host macrophages. This study examines the influence of genetic background on host-pathogen interactions, by assessing the transcriptional responses of macrophages from five inbred mouse strains to lipopolysaccharide (LPS, a major determinant of responses to gram-negative microorganisms. Results The mouse strains examined varied greatly in the number, amplitude and rate of induction of genes expressed in response to LPS. The response was attenuated in the C3H/HeJlpsd strain, which has a mutation in the LPS receptor Toll-like receptor 4 (TLR4. Variation between mouse strains allowed clustering into early (C57Bl/6J and DBA/2J and delayed (BALB/c and C3H/ARC transcriptional phenotypes. There was no clear correlation between gene induction patterns and variation at the Bcg locus (Slc11A1 or propensity to bias Th1 versus Th2 T cell activation responses. Conclusion Macrophages from each strain responded to LPS with unique gene expression profiles. The variation apparent between genetic backgrounds provides insights into the breadth of possible inflammatory responses, and paradoxically, this divergence was used to identify a common transcriptional program that responds to TLR4 signalling, irrespective of genetic background. Our data indicates that many additional genetic loci control the nature and the extent of transcriptional responses promoted by a single pathogen-associated molecular pattern (PAMP, such as LPS.

  6. Identification procedures for the charge-controlled nonlinear noise model of microwave electron devices

    Science.gov (United States)

    Filicori, Fabio; Traverso, Pier Andrea; Florian, Corrado; Borgarino, Mattia

    2004-05-01

    The basic features of the recently proposed Charge-Controlled Non-linear Noise (CCNN) model for the prediction of low-to-high-frequency noise up-conversion in electron devices under large-signal RF operation are synthetically presented. It is shown that the different noise generation phenomena within the device can be described by four equivalent noise sources, which are connected at the ports of a "noiseless" device model and are non-linearly controlled by the time-varying instantaneous values of the intrinsic device voltages. For the empirical identification of the voltage-controlled equivalent noise sources, different possible characterization procedures, based not only on conventional low-frequency noise data, but also on different types of noise measurements carried out under large-signal RF operating conditions are discussed. As an example of application, the measurement-based identification of the CCNN model for a GaInP heterojunction bipolar microwave transistor is presented. Preliminary validation results show that the proposed model can describe with adequate accuracy not only the low-frequency noise of the HBT, but also its phase-noise performance in a prototype VCO implemented by using the same monolithic GaAs technology.

  7. Wavelet Adaptive Algorithm and Its Application to MRE Noise Control System

    Directory of Open Access Journals (Sweden)

    Zhang Yulin

    2015-01-01

    Full Text Available To address the limitation of conventional adaptive algorithm used for active noise control (ANC system, this paper proposed and studied two adaptive algorithms based on Wavelet. The twos are applied to a noise control system including magnetorheological elastomers (MRE, which is a smart viscoelastic material characterized by a complex modulus dependent on vibration frequency and controllable by external magnetic fields. Simulation results reveal that the Decomposition LMS algorithm (D-LMS and Decomposition and Reconstruction LMS algorithm (DR-LMS based on Wavelet can significantly improve the noise reduction performance of MRE control system compared with traditional LMS algorithm.

  8. Advanced Trailing Edge Blowing Concepts for Fan Noise Control

    Directory of Open Access Journals (Sweden)

    Cezar RIZEA

    2012-03-01

    Full Text Available This study documents trailing edge blowing research performed to reduce rotor / stator interaction noise in turbofan engines. The existing technique of filling every velocity deficit requires a large amount of air and is therefore impractical. The purpose of this research is to investigate new blowing configurations in order to achieve noise reduction with lesser amounts of air. Using the new configurations air is not injected into every fan blade, but is instead varied circumferentially. For example, blowing air may be applied to alternating fan blades. This type of blowing configuration both reduces the amount of air used and changes the spectral shape of the tonal interaction noise. The original tones at the blade passing frequency and its harmonics are reduced and new tones are introduced between them. This change in the tonal spectral shape increases the performance of acoustic liners used in conjunction with trailing edge blowing.

  9. [Genetic factors in susceptibility to age- and noise-related hearing loss].

    Science.gov (United States)

    Sliwińiska-Kowalska, Mariola; Pawelczyk, Małgorzata; Kowalski, Tomasz Jarema

    2006-10-01

    Individual susceptibility to age-related hearing loss (AHL) and noise-induced hearing loss (NIHL) varies greatly, and this inter-individual variation is due to an interaction of environmental factors, individual factors, and susceptibility genes. Majority of studies on susceptibility genes for AHL and NIHL have been performed in mice model. These findings suggest the role of the same genes in the development of AHL and NIHL, the more so as the pathogenesis of both diseases is similar with a crucial role of oxidative stress. The alleles responsible for AHL have been localized to the chromosome 10 (Ahl gene). Ahl-/- mice develop hearing impairment at early age and are also oversensitive to noise. Ahl gene is a recessive gene and it is probably responsible for the synthesis of cell junction proteins. In mice ahl codes for cadherin (CDH) proteins. The cadherin of interest is named otocadherin or CDH23, and it is localized to the links between stereocilia of hair cells. A hypomorphic 753G>A single nucleotide polymorphism (SNP) in Cdh 23 is associated with AHL, and the 753A variant is also correlated with susceptibility to NIHL. An increased susceptibility to AHL and NIHL may rely on the SNPs of several other genes, including the groups of oxidative stress genes, K+ ions recycling genes, monogenic deafness genes (including Connexin 26 gene, which mutation is responsible for the most frequent hereditary deafness in Caucasians), as well as mitochondrial genes. Several oxidative stress enzyme (sod1-/-, gpx -/-) knock-out mice have been shown to be more susceptible to NIHL than wild strains. Current large-scale cohort studies on AHL and NIHL performed under the European projects in between-lab collaboration along with a dynamic progress in the field of genetics of deafness open up new opportunities to find human AHL and NIHL susceptibility genes and develop methods for AHUNIHL treatment.

  10. Genetic Algorithm based Decentralized PI Type Controller: Load Frequency Control

    Science.gov (United States)

    Dwivedi, Atul; Ray, Goshaidas; Sharma, Arun Kumar

    2016-12-01

    This work presents a design of decentralized PI type Linear Quadratic (LQ) controller based on genetic algorithm (GA). The proposed design technique allows considerable flexibility in defining the control objectives and it does not consider any knowledge of the system matrices and moreover it avoids the solution of algebraic Riccati equation. To illustrate the results of this work, a load-frequency control problem is considered. Simulation results reveal that the proposed scheme based on GA is an alternative and attractive approach to solve load-frequency control problem from both performance and design point of views.

  11. On the investigation of voltage controlled oscillator phase noise for IoT applications

    Directory of Open Access Journals (Sweden)

    Haddad F.

    2016-01-01

    Full Text Available Voltage controlled oscillator (VCO is one of the key elements in radio frequency (RF transceivers. A VCO working at 2.4 GHz and designed in CMOS technology is presented. It is suitable for low-cost and low-noise applications using wireless standards such as ZigBee, Bluetooth, Wi-Fi and WPAN (Wireless Personal Area Network. The noise characteristics of this RF VCO are investigated. Noise measurements, especially, phase noise are achieved under different environmental conditions.

  12. Genetic and environmental control of salmonella invasion.

    Science.gov (United States)

    Altier, Craig

    2005-02-01

    An early step in the pathogenesis of non-typhoidal Salmonella species is the ability to penetrate the intestinal epithelial monolayer. This process of cell invasion requires the production and transport of secreted effector proteins by a type III secretion apparatus encoded in Salmonella pathogenicity island I (SPI-1). The control of invasion involves a number of genetic regulators and environmental stimuli in complex relationships. SPI-1 itself encodes several transcriptional regulators (HilA, HilD, HilC, and InvF) with overlapping sets of target genes. These regulators are, in turn, controlled by both positive and regulators outside SPI-1, including the two-component regulators BarA/SirA and PhoP/Q, and the csr post-transcriptional control system. Additionally, several environmental conditions are known to regulate invasion, including pH, osmolarity, oxygen tension, bile, Mg2+ concentration, and short chain fatty acids. This review will discuss the current understanding of invasion control, with emphasis on the interaction of environmental factors with genetic regulators that leads to productive infection.

  13. Experimental Performance Evaluation of a Multi-Reference Algorithm for Active Control of Propeller-Induced Cabin Noise

    OpenAIRE

    Johansson, Sven; Sjösten, Per; Persson, Per; Claesson, Ingvar

    2000-01-01

    A noisy environment dominated by low frequency noise can often be improved through the use of active noise control. This situation arises naturally in propeller aircraft where the propellers induce periodic low frequency noise inside the cabin. The cabin noise is typically rather high, and the passenger flight comfort could be improved considerably if this level were significantly reduced. This paper discusses the operation and robustness of a narrowband feedforward active noise control syste...

  14. Robust and fast schemes in broadband active noise and vibration control

    NARCIS (Netherlands)

    Fraanje, Petrus Rufus

    2004-01-01

    This thesis presents robust and fast active control algorithms for the suppression of broadband noise and vibration disturbances. Noise disturbances, e.g., generated by engines in airplanes and cars or by air ow, can be reduced by means of passive or active methods.

  15. Robust and fast schemes in broadband active noise and vibration control

    NARCIS (Netherlands)

    Fraanje, P.R.

    2004-01-01

    This thesis presents robust and fast active control algorithms for the suppression of broadband noise and vibration disturbances. Noise disturbances, e.g., generated by engines in airplanes and cars or by air ow, can be reduced by means of passive or active methods.

  16. Study of active noise control in ducts. Kanrokei ni okeru nodoteki soon seigyo hoho no kento

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Yoshiatsu

    1988-08-01

    On an active control to reduce noise in ducts, the theoretical and experimental studies of the energies ratio of the noise and the cancelling sound which should be produced by a speaker, were carried out. In case the cancelling sound was produced by the speaker which was set in the branch duct, the energies ratio varied with the setting position, the length and the cross section of the branch duct and the frequency of the noise. As the non-dimensional length of the branch duct was drawing near 0.5, the energies ratio became small. But when the non-dimensional length was 0, the ratio did not become smaller than 1. The experimental test confirmed that it was possible to reduce the noise by the cancelling sound which energies ratio was as small as about one hundredth of the noise. In case the noise was the pure sound, and the wave-length was over one fourth of the duct diameter, it was possible to reduce the noise more than 40 dB. And in case the wave-length was one eighth the reduction quantity was about 20 dB. Therefore, in case the noise is the pure sound or close to the pure sound, it is possible to apply the active noise control. 5 references, 23 figures.

  17. Active Control of Automotive Intake Noise under Rapid Acceleration using the Co-FXLMS Algorithm

    Science.gov (United States)

    Lee, Hae-Jin; Lee, Gyeong-Tae; Oh, Jae-Eung

    The method of reducing automotive intake noise can be classified by passive and active control techniques. However, passive control has a limited effect of noise reduction at low frequency range (below 500 Hz) and is limited by the space of the engine room. However, active control can overcome these passive control limitations. The active control technique mostly uses the Least-Mean-Square (LMS) algorithm, because the LMS algorithm can easily obtain the complex transfer function in real-time, particularly when the Filtered-X LMS (FXLMS) algorithm is applied to an active noise control (ANC) system. However, the convergence performance of the LMS algorithm decreases significantly when the FXLMS algorithm is applied to the active control of intake noise under rapidly accelerating driving conditions. Therefore, in this study, the Co-FXLMS algorithm was proposed to improve the control performance of the FXLMS algorithm during rapid acceleration. The Co-FXLMS algorithm is realized by using an estimate of the cross correlation between the adaptation error and the filtered input signal to control the step size. The performance of the Co-FXLMS algorithm is presented in comparison with that of the FXLMS algorithm. Experimental results show that active noise control using Co-FXLMS is effective in reducing automotive intake noise during rapid acceleration.

  18. Substation noise intelligent prediction and active control%变电站噪声智能预测及其主动控制

    Institute of Scientific and Technical Information of China (English)

    姜鸿羽; 马宏忠; 姜宁; 李凯

    2014-01-01

    针对变电站噪声有源控制技术中存在的算法性能较差和易受周边环境影响的问题,本文利用人工神经网络、小波技术及遗传算法对该技术进行改进。首先结合小波技术和人工神经网络来预测噪声控制系统的参考输入信号,然后根据小波去噪原理滤除进入误差传感器的混合噪声中由周边环境引起的高频干扰噪声,并将剩余噪声反馈至系统控制器中,最后利用遗传算法优化控制器中小波神经网络的参数,实现变电站噪声的最佳控制。对变电站内变压器振动和噪声数据进行仿真,结果表明改进后的方法有效地提高了系统的噪声跟踪速度、降噪量及稳定性,可以使变电站降噪达到满意的效果。%In view of the deficiencies of substation noise active control technology , such as the poor performance of filtering algorithms and susceptible to the surrounding environment , this article uses artificial neural network , wave-let technology and genetic algorithm to improve the noise active control technology .First, using wavelet technology and artificial neural network algorithm the noise control system ’ s reference input signal is predicted .Then , accord-ing to the principle of wavelet de-noising high-frequency interference noise caused by the surrounding environment is removed which is included in the mixed noise into the error sensor , and the residual noise is fed back to the sys-tem controller.Finally, using genetic algorithm the parameters of wavelet neural network in the system controller are optimized , and optimal control of substation noise is achieved .Through the simulation of substation transformer vibration and noise data , the results show that the improved method can effectively improve the system noise track-ing speed , noise reduction and system stability , and has better suppression effect for substation noise .

  19. Development of active control technique for engine noise. Engine soon no active seigyo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, H.; Nakao, N.; Butsuen, T. (Mazda Motor Corp., Hiroshima (Japan))

    1994-03-31

    As a measure to reduce engine noise in a car, the active noise control (ANC) technique to eliminate noise by another noise of antiphase has been studied. The conventional filtered-x LMS control algorithm has been generally applied to the ANC, but a large quantity of arithmetic operation used for filtering is practically problematic. This paper proposes the new algorithm of which control effects and practicability have been improved by utilizing periodicity of engine noise and by introducing the idea of error scanning. This algorithm requires only 30-50% of the arithmetic operation of the above LMS method. Concerning the actual system structure, arrangement and the number of microphones have been examined based on the detailed measurement results of the spatial distribution of noise in a car. As a result, the suitable arrangement of only three microphones to reduce noise in the whole interior space of a car is found. Through the experiments, maximum noise reduction of 8dB (A scale) has been achieved at each seat position. 7 refs., 9 figs., 1 tab.

  20. Inexact fuzzy integer chance constraint programming approach for noise control within an urban environment

    Science.gov (United States)

    Huang, Kai; Huang, Gordon; Dai, Liming; Fan, Yurui

    2016-08-01

    This article introduces an inexact fuzzy integer chance constraint programming (IFICCP) approach for identifying noise reduction strategy under uncertainty. The IFICCP method integrates the interval programming and fuzzy chance constraint programming approaches into a framework, which is able to deal with uncertainties expressed as intervals and fuzziness. The proposed IFICCP model can be converted into two deterministic submodels corresponding to the optimistic and pessimistic conditions. The modelling approach is applied to a hypothetical control measure selection problem for noise reduction. Results of the case study indicate that useful solutions for noise control practices can be acquired. Three acceptable noise levels for two communities are considered. For each acceptable noise level, several decision alternatives have been obtained and analysed under different fuzzy confidence levels, which reflect the trade-offs between environmental and economic considerations.

  1. Experimental Investigation of Active Noise Controller for Internal Combustion Engine Exhaust System

    Science.gov (United States)

    Wu, Jian-Da; Chen, Chih-Keng; Lee, Chun-Ying; Lee, Tian-Hua

    2002-10-01

    Two active noise control (ANC) algorithms for internal combustion engine exhaust systems are developed and their performances are compared in various experiments. The first controller is based on the filtered-x least mean square (FXLMS) algorithm with feedback neutralization, while the second is a fixed controller with a gain-scheduled active control technique for broadband attenuation with thermal effects. Both control algorithms are implemented on a digital signal processing (DSP) platform. Experiments are carried out to evaluate the attenuation performance of the proposed active noise control systems for an engine exhaust system. The results of the experiments indicate that both the adaptive controller and the gain-scheduled controller effectively suppress the noise of engine exhaust systems. The experimental comparison and analysis of the proposed controllers are also described.

  2. 40 CFR 2.303 - Special rules governing certain information obtained under the Noise Control Act of 1972.

    Science.gov (United States)

    2010-07-01

    ... information obtained under the Noise Control Act of 1972. 2.303 Section 2.303 Protection of Environment... Special rules governing certain information obtained under the Noise Control Act of 1972. (a) Definitions. For the purposes of this section: (1) Act means the Noise Control Act of 1972, 42 U.S.C. 4901 et...

  3. Phase noise analysis of voltage controlled oscillator used in cesium atomic clock

    Science.gov (United States)

    Zhi, Menghui; Tang, Liang; Qiao, Donghai

    2017-03-01

    Coherent population trapping (CPT) cesium frequency standard plays a significant role in precision guidance of missile and global positioning system (GPS). Low noise 4.596 GHz voltage controlled oscillator (VCO) is an indispensable part of microwave signal source in cesium frequency standard. Low-phase noise is also the most important and difficult performance indicator of VCO. Starting from phase noise analysis method proposed by Leeson, the formulas about the relationship between phase noise of output signal of oscillator feedback model and phase fluctuation spectrum of amplifier, phase noise of oscillator are derived in this paper. Finally, the asymptote model of microwave oscillator is proposed based on the formula derivation. The experiment shows that when the reverse bias voltage of variode is 1.8 V, the designed oscillation frequency of VCO is 4.596 GHz, the power is ‑1 dBm and the DC power consumption is 19.6 mW. The tendency of phase noise simulation curve and actual test curve conform to asymptote model. The phase noise in 1 and 10 kHz is, respectively, ‑60.86 and ‑86.58 dBc/Hz. The significance of the paper lies in determining the main factors influencing oscillator phase noise and providing guiding direction for the design of low-phase noise VCO.

  4. Filtered-X Radial Basis Function Neural Networks for Active Noise Control

    Directory of Open Access Journals (Sweden)

    Bambang Riyanto

    2004-05-01

    Full Text Available This paper presents active control of acoustic noise using radial basis function (RBF networks and its digital signal processor (DSP real-time implementation. The neural control system consists of two stages: first, identification (modeling of secondary path of the active noise control using RBF networks and its learning algorithm, and secondly neural control of primary path based on neural model obtained in the first stage. A tapped delay line is introduced in front of controller neural, and another tapped delay line is inserted between controller neural networks and model neural networks. A new algorithm referred to as Filtered X-RBF is proposed to account for secondary path effects of the control system arising in active noise control. The resulting algorithm turns out to be the filtered-X version of the standard RBF learning algorithm. We address centralized and decentralized controller configurations and their DSP implementation is carried out. Effectiveness of the neural controller is demonstrated by applying the algorithm to active noise control within a 3 dimension enclosure to generate quiet zones around error microphones. Results of the real-time experiments show that 10-23 dB noise attenuation is produced with moderate transient response.

  5. Control design for discrete-time state-multiplicative noise stochastic systems

    Science.gov (United States)

    Krokavec, Dušan; Filasová, Anna

    2015-11-01

    Design conditions for existence of the H∞ linear state feedback control for discretetime stochastic systems with state-multiplicative noise and polytopic uncertainties are presented in the paper. Using an enhanced form of the bounded real lemma for discrete-time stochastic systems with state-multiplicative noise, the LMI-based procedure is provided for computation of the gains of linear, as well as nonlinear, state control law. The approach is illustrated on an example demonstrating the validity of the proposed method.

  6. Air Traffic Controllers’ Long-Term Speech-in-Noise Training Effects: A Control Group Study

    Science.gov (United States)

    Zaballos, María T.P.; Plasencia, Daniel P.; González, María L.Z.; de Miguel, Angel R.; Macías, Ángel R.

    2016-01-01

    Introduction: Speech perception in noise relies on the capacity of the auditory system to process complex sounds using sensory and cognitive skills. The possibility that these can be trained during adulthood is of special interest in auditory disorders, where speech in noise perception becomes compromised. Air traffic controllers (ATC) are constantly exposed to radio communication, a situation that seems to produce auditory learning. The objective of this study has been to quantify this effect. Subjects and Methods: 19 ATC and 19 normal hearing individuals underwent a speech in noise test with three signal to noise ratios: 5, 0 and −5 dB. Noise and speech were presented through two different loudspeakers in azimuth position. Speech tokes were presented at 65 dB SPL, while white noise files were at 60, 65 and 70 dB respectively. Results: Air traffic controllers outperform the control group in all conditions [Pcontrol group in all conditions. Thus, this study provides evidence that long-term auditory training is indeed useful in achieving better speech-in-noise understanding even in adverse conditions. PMID:27991470

  7. A hybrid active/passive exhaust noise control system for locomotives

    Science.gov (United States)

    Remington, Paul J.; Knight, J. Scott; Hanna, Doug; Rowley, Craig

    2005-01-01

    A prototype hybrid system consisting of active and passive components for controlling far-field locomotive exhaust noise has been designed, assembled, and tested on a locomotive. The system consisted of a resistive passive silencer for controlling high-frequency broadband noise and a feedforward multiple-input, multiple-output active control system for suppressing low-frequency tonal noise. The active system used ten roof-mounted bandpass speaker enclosures with 2-12-in. speakers per enclosure as actuators, eight roof-mounted electret microphones as residual sensors, and an optical tachometer that sensed locomotive engine speed as a reference sensor. The system was installed on a passenger locomotive and tested in an operating rail yard. Details of the system are described and the near-field and far-field noise reductions are compared against the design goal. .

  8. Multichannel active control of random noise in a small reverberant room

    DEFF Research Database (Denmark)

    Laugesen, Søren; Elliott, Stephen J.

    1993-01-01

    An algorithm for multichannel adaptive IIR (infinite impulse response) filtering is presented and applied to the active control of broadband random noise in a small reverberant room. Assuming complete knowledge of the primary noise, the theoretically optimal reductions of acoustic energy...... multichannel FIR (finite impulse response) and IIR filters are then compared for a four-secondary-source, eight-error microphone active control system, and it is found that for the present application FIR filters are sufficient when the primary noise source is a loudspeaker. Some experiments are then presented...... with the primary noise field generated by a panel excited by a loudspeaker in an adjoining room. These results show that far better performances are provided by IIR and FIR filters when the primary source has a lightly damped dynamic behavior which the active controller must model...

  9. Reactive control of subsonic axial fan noise in a duct.

    Science.gov (United States)

    Liu, Y; Choy, Y S; Huang, L; Cheng, L

    2014-10-01

    Suppressing the ducted fan noise at low frequencies without varying the flow capacity is still a technical challenge. This study examines a conceived device consisting of two tensioned membranes backed with cavities housing the axial fan for suppression of the sound radiation from the axial fan directly. The noise suppression is achieved by destructive interference between the sound fields from the axial fan of a dipole nature and sound radiation from the membrane via vibroacoustics coupling. A two-dimensional model with the flow effect is presented which allows the performance of the device to be explored analytically. The air flow influences the symmetrical behavior and excites the odd in vacuo mode response of the membrane due to kinematic coupling. Such an asymmetrical effect can be compromised with off-center alignment of the axial fan. Tension plays an important role to sustain the performance to revoke the deformation of the membrane during the axial fan operation. With the design of four appropriately tensioned membranes covered by a cylindrical cavity, the first and second blade passage frequencies of the axial fan can be reduced by at least 20 dB. The satisfactory agreement between experiment and theory demonstrates that its feasibility is practical.

  10. Modelling of tonal noise control from subsonic axial fans using flow control obstructions

    Science.gov (United States)

    Gérard, Anthony; Berry, Alain; Masson, Patrice; Gervais, Yves

    2009-03-01

    This paper investigates the analytical calculation of blade unsteady lift spectrum when interacting with a neighboring obstruction, designed to control tonal noise. The approach used in this paper is to add a secondary unsteady lift mode, of equal intensity but opposite in phase with the primary unsteady lift mode which radiates most of tonal noise, so that the resultant of both primary and secondary modes is null. To control one unsteady lift mode (consequently an acoustic tone) without affecting the harmonics of the controlled mode (consequently the harmonics of the acoustic tone to be controlled), it is important for the secondary unsteady lift to be harmonically selective. We have therefore evaluated the harmonic content of the blade unsteady lift generated by the proposed control obstructions. To this purpose, an original equation is derived using the infinitesimal radial strips theory coupled with the one-dimensional Sears gust analysis. The spectrum of the blade unsteady lift is then analyzed for three types of obstructions: a series of B-trapezoidal obstructions, a B-periodic sinusoidal obstruction and a series of B-rectangular obstructions (where B is the number of blades). The use of salient obstructions leads to a large unsteady lift harmonic content. An optimized wake width of the trapezoidal obstruction leads to a low harmonic content rate of 5.5%. A Gaussian approximation of the measured inflow velocity profile generated by a sinusoidal obstruction leads to a relatively low harmonic content rate of 18.8%, which indicates that most of the energy is contained in the fundamental mode of the blade unsteady lift. Finally, a rotor/rectangular interaction shows that the use of small-width rectangular obstructions leads to a higher harmonic content rate of 58.6%.

  11. Extrinsic noise passing through a Michaelis-Menten reaction: a universal response of a genetic switch.

    Science.gov (United States)

    Ochab-Marcinek, Anna

    2010-04-21

    The study of biochemical pathways usually focuses on a small section of a protein interactions network. Two distinct sources contribute to the noise in such a system: intrinsic noise, inherent in the studied reactions, and extrinsic noise generated in other parts of the network or in the environment. We study the effect of extrinsic noise entering the system through a nonlinear uptake reaction which acts as a nonlinear filter. Varying input noise intensity varies the mean of the noise after the passage through the filter, which changes the stability properties of the system. The steady-state displacement due to small noise is independent on the kinetics of the system but it only depends on the nonlinearity of the input function. For monotonically increasing and concave input functions such as the Michaelis-Menten uptake rate, we give a simple argument based on the small-noise expansion, which enables qualitative predictions of the steady-state displacement only by inspection of experimental data: when weak and rapid noise enters the system through a Michaelis-Menten reaction, then the graph of the system's steady states vs. the mean of the input signal always shifts to the right as noise intensity increases. We test the predictions on two models of lac operon, where TMG/lactose uptake is driven by a Michaelis-Menten enzymatic process. We show that as a consequence of the steady state displacement due to fluctuations in extracellular TMG/lactose concentration the lac switch responds in an asymmetric manner: as noise intensity increases, switching off lactose metabolism becomes easier and switching it on becomes more difficult. (c) 2009 Elsevier Ltd. All rights reserved.

  12. Multiobjective Genetic Algorithm applied to dengue control.

    Science.gov (United States)

    Florentino, Helenice O; Cantane, Daniela R; Santos, Fernando L P; Bannwart, Bettina F

    2014-12-01

    Dengue fever is an infectious disease caused by a virus of the Flaviridae family and transmitted to the person by a mosquito of the genus Aedes aegypti. This disease has been a global public health problem because a single mosquito can infect up to 300 people and between 50 and 100 million people are infected annually on all continents. Thus, dengue fever is currently a subject of research, whether in the search for vaccines and treatments for the disease or efficient and economical forms of mosquito control. The current study aims to study techniques of multiobjective optimization to assist in solving problems involving the control of the mosquito that transmits dengue fever. The population dynamics of the mosquito is studied in order to understand the epidemic phenomenon and suggest strategies of multiobjective programming for mosquito control. A Multiobjective Genetic Algorithm (MGA_DENGUE) is proposed to solve the optimization model treated here and we discuss the computational results obtained from the application of this technique.

  13. Evaluating the performance of active noise control systems in commercial and industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Depies, C.; Deneen, S.; Lowe, M.; Wise, S.

    1995-06-01

    Active sound cancellation technology is increasingly being used to quiet commercial and industrial air-moving devices. Engineers and designers are implementing active or combination active/passive technology to control sound quality in the workplace and the acoustical environment in residential areas near industrial facilities. Sound level measurements made before and after the installation of active systems have proved that significant improvements in sound quality can be obtained even if there is little or no change in the NC/RC or dBA numbers. Noise produced by centrifugal and vane-axial fans, pumps and blowers, commonly used for ventilation and material movement in industry, are frequently dominated by high amplitude, tonal noise at low frequencies. And the low-frequency noise produced by commercial air handlers often has less tonal and more broadband characteristics, resulting in audible duct rumble noise and objectionable room spectrums. Because the A-weighting network, which is commonly used for industrial noise measurements, de-emphasizes low frequencies, its single number rating can be misleading in terms of judging the overall subjective sound quality in impacted areas and assessing the effectiveness of noise control measures. Similarly, NC values, traditionally used for commercial HVAC acoustical design criteria, can be governed by noise at any frequency and cannot accurately depict human judgment of the aural comfort level. Analyses of frequency spectrum characteristics provide the most effective means of assessing sound quality and determining mitigative measures for achieving suitable background sound levels.

  14. Improving the Effectiveness of Communication Headsets with Active Noise Reduction: Influence of Control Structure

    Science.gov (United States)

    2005-04-01

    for two circumaural communication headsets with similar passive, and active, noise reductions, one with an analog feedback control system and the...the feedback control system to maintain stability of the feedback loop, as well as the presence of communication sounds sensed by the control

  15. Analytical and experimental results for active noise control within cylindrical cavities bounded by elastic adaptive structures

    Energy Technology Data Exchange (ETDEWEB)

    Baier, H.; Dool, T. van den; Haeusler, S.; Faust, M. [Technische Univ. Muenchen (Germany)]|[TNO, Delf (Netherlands)]|[Dornier, Friedrichshafen (Germany)

    1998-10-01

    The feasibility of differnt concepts for active noise control in elastically bounded cylindrical cavities such as in launcher fairings is investigated. Analytical and experimental studies are carried out for feedforward and feedback controllers and different types of actuators and sensors. The feasibility and potential of the approach is demonstrated, but further progress on controller speed and actuator capability has to be made. (orig.)

  16. Arbitrary quantum control of qubits in the presence of universal noise

    CSIR Research Space (South Africa)

    Green, TJ

    2013-09-01

    Full Text Available be expressed in terms of experimentally relevant spectral characteristics of the noise and of the control, over all Cartesian directions. We formulate control matrices in the time domain to capture the effects of piecewise-constant control, and convert them...

  17. Active structural acoustic control of noise from power transformers; Aktive Laermdaemmung von Leistungstransformatoren mit Gegenlaerm

    Energy Technology Data Exchange (ETDEWEB)

    Brungardt, K.; Vierengel, J.; Weissmann, K. [Quiet Power Systems Inc., New York, NY (United States); Schemel, G.; Lorin, P. [ABB Secheron SA, Genf (Switzerland)

    1998-04-06

    Population growth and tougher zoning regulations mean transformer noise is a growing problem for electric utilities. Transformer noise is dominanted by low frequency tones which are difficult to control by passive means, but are effectively attenuated by active noise control. This paper details a novel noise control system that actively attenuates transformer noise using a combination of structural actuators mounted on the radiating surface of the transformer tank, and specially designed resonant acoustic devices located just off the tank surface. An adaptive selfcalibrating, multi-channel controller is used to automatically respond to changes in noise level during transformer operation. Performance results have been proven at a number of field installations in utility substations, and an installation case study is provided here as an example. (orig.) [Deutsch] Beim Betrieb von Leistungstransformatoren entstehen Geraeusche, die besonders in der Naehe von Wohngebieten als stoerend empfunden werden. Zunehmend strengere Laermschutzverordnungen erfordern daher Massnahmen um die Geraeuschentwicklung von Transformatoren zu reduzieren. Die passive Daempfung dieses `Brummens` durch Bauten ist oft mit hohen Kosten verbunden und bereitet Schwierigkeiten bei der Umsetzung. Fuer Abhilfe sorgt ein neuartiges System, das den Transformatorenlaerm aktiv daempft. Dabei setzt man zur Reduktion des Transformatorenlaerms neuartige, durch adaptive Algorythmen gesteuerte Aktuatoren ein, die den stoerenden Laerm direkt am Transformator selbst daempfen. (orig.)

  18. Active vibration and noise control by hybrid active acoustic panels

    Energy Technology Data Exchange (ETDEWEB)

    Stoebener, U.; Gaul, L. [Stuttgart Univ. (Germany). Inst. A fuer Mechanik

    2001-07-01

    In the present paper a hybrid passive and active treatment for vibration and noise reduction of plate type structures is proposed. The treatment is manufactured as sandwich structure and is called hybrid active acoustic panel. The passive component is used to reduce the vibration and sound radiation for high frequencies whereas the active part of the system is designed for the low frequency range. By selecting the thickness of the passive damping layer a certain frequency limit is defined, which divides the high and low frequency range. The actuator and sensor layout of the active component is evaluated by using the mode shapes of the low frequency range. According to the evaluated layout a hybrid active acoustic panel is manufactured and experimentally tested. The experimental results validate the proposed concept. (orig.)

  19. Entanglement dynamics in the presence of controlled unital noise.

    Science.gov (United States)

    Shaham, A; Halevy, A; Dovrat, L; Megidish, E; Eisenberg, H S

    2015-06-10

    Quantum entanglement is notorious for being a very fragile resource. Significant efforts have been put into the study of entanglement degradation in the presence of a realistic noisy environment. Here, we present a theoretical and an experimental study of the decoherence properties of entangled pairs of qubits. The entanglement dynamics of maximally entangled qubit pairs is shown to be related in a simple way to the noise representation in the Bloch sphere picture. We derive the entanglement level in the case when both qubits of a Bell state are transmitted through any arbitrary unital Pauli channel, and compare it to the case when the channel is applied only to one of the qubits. The dynamics of both cases was verified experimentally using an all-optical setup. We further investigated the evolution of partially entangled initial states. Different dynamics was observed for initial mixed and pure states of the same entanglement level.

  20. Genetic control of mosquitoes: population suppression strategies.

    Science.gov (United States)

    Wilke, André Barretto Bruno; Marrelli, Mauro Toledo

    2012-01-01

    Over the last two decades, morbidity and mortality from malaria and dengue fever among other pathogens are an increasing Public Health problem. The increase in the geographic distribution of vectors is accompanied by the emergence of viruses and diseases in new areas. There are insufficient specific therapeutic drugs available and there are no reliable vaccines for malaria or dengue, although some progress has been achieved, there is still a long way between its development and actual field use. Most mosquito control measures have failed to achieve their goals, mostly because of the mosquito's great reproductive capacity and genomic flexibility. Chemical control is increasingly restricted due to potential human toxicity, mortality in no target organisms, insecticide resistance, and other environmental impacts. Other strategies for mosquito control are desperately needed. The Sterile Insect Technique (SIT) is a species-specific and environmentally benign method for insect population suppression, it is based on mass rearing, radiation mediated sterilization, and release of a large number of male insects. Releasing of Insects carrying a dominant lethal gene (RIDL) offers a solution to many of the drawbacks of traditional SIT that have limited its application in mosquitoes while maintaining its environmentally friendly and species-specific utility. The self-limiting nature of sterile mosquitoes tends to make the issues related to field use of these somewhat less challenging than for self-spreading systems characteristic of population replacement strategies. They also are closer to field use, so might be appropriate to consider first. The prospect of genetic control methods against mosquito vectored human diseases is rapidly becoming a reality, many decisions will need to be made on a national, regional and international level regarding the biosafety, social, cultural and ethical aspects of the use and deployment of these vector control methods.

  1. Genetic Control of Mosquitoes: population suppression strategies

    Directory of Open Access Journals (Sweden)

    André Barretto Bruno Wilke

    2012-10-01

    Full Text Available Over the last two decades, morbidity and mortality from malaria and dengue fever among other pathogens are an increasing Public Health problem. The increase in the geographic distribution of vectors is accompanied by the emergence of viruses and diseases in new areas. There are insufficient specific therapeutic drugs available and there are no reliable vaccines for malaria or dengue, although some progress has been achieved, there is still a long way between its development and actual field use. Most mosquito control measures have failed to achieve their goals, mostly because of the mosquito's great reproductive capacity and genomic flexibility. Chemical control is increasingly restricted due to potential human toxicity, mortality in no target organisms, insecticide resistance, and other environmental impacts. Other strategies for mosquito control are desperately needed. The Sterile Insect Technique (SIT is a species-specific and environmentally benign method for insect population suppression, it is based on mass rearing, radiation mediated sterilization, and release of a large number of male insects. Releasing of Insects carrying a dominant lethal gene (RIDL offers a solution to many of the drawbacks of traditional SIT that have limited its application in mosquitoes while maintaining its environmentally friendly and species-specific utility. The self-limiting nature of sterile mosquitoes tends to make the issues related to field use of these somewhat less challenging than for self-spreading systems characteristic of population replacement strategies. They also are closer to field use, so might be appropriate to consider first. The prospect of genetic control methods against mosquito vectored human diseases is rapidly becoming a reality, many decisions will need to be made on a national, regional and international level regarding the biosafety, social, cultural and ethical aspects of the use and deployment of these vector control methods.

  2. Secondary Path Modeling Method for Active Noise Control of Power Transformer

    Science.gov (United States)

    Zhao, Tong; Liang, Jiabi; Liang, Yuanbin; Wang, Lixin; Pei, Xiugao; Li, Peng

    The accuracy of the secondary path modeling is critical to the stability of active noise control system. On condition of knowing the input and output of the secondary path, system identification theory can be used to identify the path. Based on the experiment data, correlation analysis is adopted to eliminate the random noise and nonlinear harmonic in the output data in order to obtain the accurate frequency characteristic of the secondary path. After that, Levy's Method is applied to identify the transfer function of the path. Computer simulation results are given respectively, both showing the proposed off-line modeling method is feasible and applicable. At last, Levy's Method is used to attain an accurate secondary path model in the active control of transformer noise experiment and achieves to make the noise sound level decrease about 10dB.

  3. Design of multi-modal obstruction to control tonal fan noise using modulation principles

    Science.gov (United States)

    Gérard, Anthony; Moreau, Stéphane; Berry, Alain; Masson, Patrice

    2015-11-01

    The approach presented in this paper uses a combination of obstructions in the upstream flow of subsonic axial fans with B blades to destructively interfere with the primary tonal noise at the blade passage frequency. The first step of the proposed experimental method consists in identifying the independent radiation of B - 1 and B lobed obstructions at the control microphones. During this identification step, rotating obstructions allow for the frequencies of primary and secondary tonal noise to be slightly shifted in the spectrum due to modulation principles. The magnitude of the secondary tonal noise generated by each obstruction can be adjusted by varying the size of the lobes of the obstruction, and the phase of the secondary tonal noise is related to the angular position of the obstruction. The control obstructions are then optimized by combining the B - 1 and B lobed obstructions to significantly reduce the acoustic power at blade passage frequency.

  4. Active control of interior noise in a large scale cylinder using piezoelectric actuators

    Science.gov (United States)

    Lester, H. C.; Silcox, R. J.

    1992-07-01

    The noise reduction effectiveness of two types of control force actuator models has been analytically investigated: (1) a point actuator, and (2) an in-plane, piezoelectric actuator. The actuators were attached to the wall of a simply supported, elastic cylinder closed with rigid end caps. Control inputs to the actuators were determined such that the integrated square of the pressure over the interior of the vibrating cylinder was a minimum. Significant interior noise reductions were achieved for all actuator configurations, but especially for the structurally dominated response. Noise reduction of 9 dB to 26 dB were achieved using point force actuators, as well as localized and extended piezoelectric actuators. Control spillover was found to limit overall performance for all cases. However, the use of extended piezoelectric actuators was effective in reducing control spillover, without increasing the number of control degrees of freedom.

  5. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    Science.gov (United States)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1996-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  6. THE GENETIC-INDUCED HEARING lOSS CAN BLOCK THE EFFECT OF NOISE TRAUMA IN WAlTZING GUINEA PIG

    Institute of Scientific and Technical Information of China (English)

    Tong Busheng; Duan Maoli

    2013-01-01

    The waltzing guinea pig may be a good model to investigate if genetic factor can change the sensitivity in noise-induced hearing loss. A total of 34 waltzig guinea pigs were studied and we found that there is no any significant increased sensitivity to noise trauma if the age-induced hearing loss was considered in waltz-ing guinea pig.

  7. Guaranteed control performance robust LQG regulator for discrete-time Markovian jump systems with uncertain noise

    Institute of Scientific and Technical Information of China (English)

    Zhu Jin; Xi Hongsheng; Xiao Xiaobo; Ji Haibo

    2007-01-01

    Robust LQG problems of discrete-time Markovian jump systems with uncertain noises are investigated.The problem addressed is the construction of perturbation upper bounds on the uncertain noise covariances so as to guarantee that the deviation of the control performance remains within the precision prescribed in actual problems.Furthermore, this regulator is capable of minimizing the worst performance in an uncertain case. A numerical example is exploited to show the validity of the method.

  8. Signal-Noise Ratio Control Subsystem of Digital Equipment for Transmission of "Strela" Relay Protection Commands

    Directory of Open Access Journals (Sweden)

    I. Zabenkov

    2012-01-01

    Full Text Available Continuous measurement function of relative noise and interference level in the information transmission channel is considered as an important one for controlling parameters of high-frequency signal. The present paper simulates an algorithm for measuring signal-noise ratio in the transmission channel of high-voltage lines which is used in the digital equipment for transmission of relay protection and emergency automation commands of "Strela" complex.

  9. Suppression of charge noise using barrier control of a singlet-triplet qubit

    Science.gov (United States)

    Yang, Xu-Chen; Wang, Xin

    2017-07-01

    It has been recently demonstrated that a singlet-triplet spin qubit in semiconductor double quantum dots can be controlled by changing the height of the potential barrier between the two dots ("barrier control"), which has led to a considerable reduction of charge noises as compared with the traditional tilt control method. In this paper we show, through a molecular-orbital-theoretic calculation of double quantum dots influenced by a charged impurity, that the relative charge noise for a system under the barrier control not only is smaller than that for the tilt control but actually decreases as a function of an increasing exchange interaction. This is understood as a combined consequence of the greatly suppressed detuning noise when the two dots are symmetrically operated, as well as an enhancement of the interdot hopping energy of an electron when the barrier is lowered which in turn reduces the relative charge noise at large exchange interaction values. We have also studied the response of the qubit to charged impurities at different locations and found that the improvement of barrier control is least for impurities equidistant from the two dots due to the small detuning noise they cause but is otherwise significant along other directions.

  10. Hybrid Fluid-borne Noise Control in Fluid-filled Pipelines

    Science.gov (United States)

    Pan, M.; Johnston, N.; Plummer, A.

    2016-09-01

    This article reports on an initial investigation of a hybrid fluid-borne noise control system in hydraulic pipelines. The hybrid system is built by integrating an active feedforward noise controller with passive tuned flexible hoses. The active attenuator is designed to cancel the dominant harmonic pressure pulsations in the fluid line, while the passive hose is tuned to attenuate the residual high frequency pulsations. The active attenuator can effectively decrease the fluid-borne noise by superimposing a secondary anti-phase control signal. Adaptive notch filters with the filtered-X least mean square algorithm were applied for the controller and a frequency-domain least mean square filter was used for the secondary path on-line identification. The transmission line model was used to model the pipeline, and a time-domain hose model which includes coupling of longitudinal wall and fluid waves was used to model the flexible hose. Simulation results show that very good noise cancellation was achieved using the proposed approach, which has several advantages over existing fluid-borne noise control systems, being effective for a wide range of frequencies without impairing the system dynamic response much. While the flexible hoses may be less effective than purpose-built passive silencers, they can form an inexpensive and practical solution in combination with active control.

  11. Active control of noise radiation from vibrating structures

    DEFF Research Database (Denmark)

    Mørkholt, Jakob

    The thesis is concerned with the active control of randomly vibrating structures by means of feedback control, with particular emphasis on reducing the sound radiation from such structures. A time domain model of the structural and radiation dynamics of an actively controlled plate has been...... optimal and robust discrete-time feedback controllers for active vibration control of multimodal structures have been compared. They have been showed to yield controllers with identical frequency response characteristics, even though they employ completely different methods of numerical solutions...... developed, based on the theory of radiation filters for estimating the sound radiation from multimodal vibrations. This model has then been used in simulations of optimal feedback control, with special emphasis of the stability margins of the optimal control scheme. Two different methods of designing...

  12. Active control of noise radiation from vibrating structures

    DEFF Research Database (Denmark)

    Mørkholt, Jakob

    The thesis is concerned with the active control of randomly vibrating structures by means of feedback control, with particular emphasis on reducing the sound radiation from such structures. A time domain model of the structural and radiation dynamics of an actively controlled plate has been...... developed, based on the theory of radiation filters for estimating the sound radiation from multimodal vibrations. This model has then been used in simulations of optimal feedback control, with special emphasis of the stability margins of the optimal control scheme. Two different methods of designing...... optimal and robust discrete-time feedback controllers for active vibration control of multimodal structures have been compared. They have been showed to yield controllers with identical frequency response characteristics, even though they employ completely different methods of numerical solutions...

  13. A Modified Structure for Feed Forward Active Noise Control Systems With Improved Performa

    Directory of Open Access Journals (Sweden)

    P.Babu

    2010-09-01

    Full Text Available Several approaches have been introduced in literature for active noise control (ANC systems. SinceFxLMS algorithm appears to be the best choice as a controller filter, researchers tend to improveperformance of ANC systems by enhancing and modifying this algorithm. In this paper, the existingFxLMS algorithm is modified which provides a new structure for improving the noise reduction andconvergence rate. Here the proposed method uses two variable step sizes, one for control filter andanother for modelling filter. The control filter step size is varied based on the secondary path thresholdsignal l dˆ . The modelling filter step size is varied based on error signal f (n . It is shown that in theproposed method ANC system noise reduction rate and convergence rate are improved dynamically thanthe FxLMS variable step size methods. The computer simulations results indicate effectiveness of theproposed method.

  14. PDE-based random-valued impulse noise removal based on new class of controlling functions.

    Science.gov (United States)

    Wu, Jian; Tang, Chen

    2011-09-01

    This paper is concerned with partial differential equation (PDE)-based image denoising for random-valued impulse noise. We introduce the notion of ENI (the abbreviation for "edge pixels, noisy pixels, and interior pixels") that denotes the number of homogeneous pixels in a local neighborhood and is significantly different for edge pixels, noisy pixels, and interior pixels. We redefine the controlling speed function and the controlling fidelity function to depend on ENI. According to our two controlling functions, the diffusion and fidelity process at edge pixels, noisy pixels, and interior pixels can be selectively carried out. Furthermore, a class of second-order improved and edge-preserving PDE denoising models is proposed based on the two new controlling functions in order to deal with random-valued impulse noise reliably. We demonstrate the performance of the proposed PDEs via application to five standard test images, corrupted by random-valued impulse noise with various noise levels and comparison with the related second-order PDE models and the other special filtering methods for random-valued impulse noise. Our two controlling functions are extended to automatically other PDE models.

  15. Experiments on reduction of propeller induced interior noise by active control of cylinder vibration

    Science.gov (United States)

    Fuller, C. R.; Jones, J. D.

    1987-01-01

    The feasibility of reducing interior noise caused by advanced turbo propellers by controlling the vibration of aircraft fuselages was investigated by performing experiments in an anechoic chamber with an aircraft model test rig and apparatus. It was found that active vibration control provides reasonable global attenuation of interior noise levels for the cases of resonant (at 576 Hz) and forced (at 708 Hz) system response. The controlling mechanism behind the effect is structural-acoustic coupling between the shell and the contained field, termed interface modal filtering.

  16. A bulk-controlled ring-VCO with 1/f-noise reduction for frequency ΔΣ modulator

    DEFF Research Database (Denmark)

    Tuan Vu, CAO; Wisland, Dag T.; Lande, Tor Sverre

    The paper introduces a bulk-controlled ring-VCO with a tail transistor utilizing flicker-noise (1/f-noise) reduction techniques for a frequency-based DeltaSigma modulator (FDSM). This VCO converts an analog input voltage to phase information under various bias conditions ranging from sub......-threshold to saturation. By using the 1/f-noise reduction circuit which is based on the switched bias technique, the simulations indicate that less noise is transferred to the output when the 1/f-noise reduction circuit is used. The phase noise of the proposed VCO is improved by 7.6% while maintaining tuning...

  17. Analysis and Optimal Condition of the Rear-Sound-Aided Control Source in Active Noise Control

    Directory of Open Access Journals (Sweden)

    Karel Kreuter

    2011-01-01

    Full Text Available An active noise control scenario of simple ducts is considered. The previously suggested technique of using an single loudspeaker and its rear sound to cancel the upstream sound is further examined and compared to the bidirectional solution in order to give theoretical proof of its advantage. Firstly, a model with a new approach for taking damping effects into account is derived based on the electrical transmission line theory. By comparison with the old model, the new approach is validated, and occurring differences are discussed. Moreover, a numerical application with the consideration of damping is implemented for confirmation. The influence of the rear sound strength on the feedback-path system is investigated, and the optimal condition is determined. Finally, it is proven that the proposed source has an advantage of an extended phase lag and a time delay in the feedback-path system by both frequency-response analysis and numerical calculation of the time response.

  18. Smart Materials and Active Noise and Vibration Control in Vehicles

    NARCIS (Netherlands)

    Doppenberg, E.J.J.; Berkhoff, A.P.; Overbeek, van M.

    2001-01-01

    The paper presents the results for the reduction of sound radiated from a structure using different control methodologies, and discusses two approaches for active structural acoustic control: the acoustic approach or the vibro-acoustic approach. Integrated actuators in structure material are necessa

  19. Smart Materials and Active Noise and Vibration Control in Vehicles

    NARCIS (Netherlands)

    Doppenberg, E.J.J.; Berkhoff, Arthur P.; van Overbeek, M.; Gissinger, G.L.

    2001-01-01

    The paper presents the results for the reduction of sound radiated from a structure using different control methodologies, and discusses two approaches for active structural acoustic control: the acoustic approach or the vibro-acoustic approach. Integrated actuators in structure material are

  20. Innovative Control of Noise and Vibration of Industrial Equipments and Machines

    Directory of Open Access Journals (Sweden)

    Owhor, Sampson Chisa,

    2015-05-01

    Full Text Available Noise and Vibration of industrial equipment is the grave factor influencing its production state, working conditions of staff and job safety. In course of technology development the more potent machines are used, it is quite often accompanied by an increase of vibration and noise level. This is experienced by equipment as it is transmitted to building structures, environment and through staffs. The system of equation advocated in this research work has been permitted to evaluate reduction of machine vibrations caused by unbalance movement of its members, thereby transmitting it onto the floor and the environment. A noise problem generally consists of three inter-related elements- the source, the receiver and the transmission path. This transmission path is usually the atmosphere through which the sound is propagated, but can include structural materials of any building containing the receiver. The development of innovative noise control treatments provides opportunities for applying basic physics and engineering procedures.

  1. H∞ Control for Nonlinear Stochastic Systems with Time-Delay and Multiplicative Noise

    Directory of Open Access Journals (Sweden)

    Ming Gao

    2015-01-01

    Full Text Available This paper studies the infinite horizon H∞ control problem for a general class of nonlinear stochastic systems with time-delay and multiplicative noise. The exponential/asymptotic mean square H∞ control design of delayed nonlinear stochastic systems is presented by solving Hamilton-Jacobi inequalities. Two numerical examples are provided to show the effectiveness of the proposed design method.

  2. A rapid prototyping system for broadband multichannel active noise and vibration control

    NARCIS (Netherlands)

    Wesselink, Johan Marius

    2009-01-01

    The development system presented in this thesis consists of a highly integrated controller which can be used for different active noise and vibration control (ANVC) applications. The system consists of an embedded PC and an interfacing card that can offer up to 16 analog input and output channels. T

  3. From bounded-noise data to robust PI-controller design

    NARCIS (Netherlands)

    Steinbuch, Luc; Keesman, K.J.

    2015-01-01

    An approach is presented to design a robust PI-controller from bounded noise measurement data of a first order process with and without time delay. This controller guarantees a known robust performance. It is shown that in the case without time delay, the conservatism of the robust approach can b

  4. Assessing Measurement Noise Effect in Run-to-Run Process Control: Extends EWMA Controller by Kalman Filter

    Directory of Open Access Journals (Sweden)

    Tzu-Wei Kuo

    2011-09-01

    Full Text Available Recently, the Exponentially Weighted Moving Average (EWMA controller has become a popular control method in Run-to-Run (RtR process control, but the issue of measurement noise from metrology tools has not been addressed in RtR EWMA controllers yet. This paper utilizes a Kalman Filter (KF controller to deal with measurement noise in RtR process control and investigates the output properties for steady-state mean and variance, and for closed-loop stability. Five disturbance models modeling semiconductor process disturbances are investigated. These disturbance models consist of Deterministic Trend (DT, Random Walk with Drift (RWD, Integrated Moving Average process (IMA(1,1, AutoRegressive Moving Average (ARMA(1,1, and Autoregressive Integrated Moving Average (ARIMA(1,1,1.  Analytical results show that a KF controller can be considered as an extended version of a RtR EWMA controller. In particular, the EWMA controller is a special case of KF in a filtering form without the capability of measuring noise. Simulation results also show that the KF has a better ability to deal with measurement noise than the EWMA controller.

  5. Robust active noise control in the loadmaster area of a military transport aircraft.

    Science.gov (United States)

    Kochan, Kay; Sachau, Delf; Breitbach, Harald

    2011-05-01

    The active noise control (ANC) method is based on the superposition of a disturbance noise field with a second anti-noise field using loudspeakers and error microphones. This method can be used to reduce the noise level inside the cabin of a propeller aircraft. However, during the design process of the ANC system, extensive measurements of transfer functions are necessary to optimize the loudspeaker and microphone positions. Sometimes, the transducer positions have to be tailored according to the optimization results to achieve a sufficient noise reduction. The purpose of this paper is to introduce a controller design method for such narrow band ANC systems. The method can be seen as an extension of common transducer placement optimization procedures. In the presented method, individual weighting parameters for the loudspeakers and microphones are used. With this procedure, the tailoring of the transducer positions is replaced by adjustment of controller parameters. Moreover, the ANC system will be robust because of the fact that the uncertainties are considered during the optimization of the controller parameters. The paper describes the necessary theoretic background for the method and demonstrates the efficiency in an acoustical mock-up of a military transport aircraft.

  6. Active noise control - Piezoceramic actuators in fluid/structure interaction models

    Science.gov (United States)

    Banks, H. T.; Fang, W.; Smith, R. C.

    1991-01-01

    A model for a 2-D acoustic cavity with a flexible boundary (a beam) controlled via piezoceramic patches producing bending moments in the beam is considered. The associated control problem for this fluid/structure interaction system to reduce the acoustic pressure in the cavity involves unbounded control inputs. Approximation methods in the context of an LQR state space formulation are discussed, and numerical results are presented to demonstrate the effectiveness of this approach in computing feedback controls for noise reduction.

  7. Method and system to perform energy-extraction based active noise control

    Science.gov (United States)

    Kelkar, Atul (Inventor); Joshi, Suresh M. (Inventor)

    2009-01-01

    A method to provide active noise control to reduce noise and vibration in reverberant acoustic enclosures such as aircraft, vehicles, appliances, instruments, industrial equipment and the like is presented. A continuous-time multi-input multi-output (MIMO) state space mathematical model of the plant is obtained via analytical modeling and system identification. Compensation is designed to render the mathematical model passive in the sense of mathematical system theory. The compensated system is checked to ensure robustness of the passive property of the plant. The check ensures that the passivity is preserved if the mathematical model parameters are perturbed from nominal values. A passivity-based controller is designed and verified using numerical simulations and then tested. The controller is designed so that the resulting closed-loop response shows the desired noise reduction.

  8. ON THE APPLICATION OF PARTIAL BARRIERS FOR SPINNING MACHINE NOISE CONTROL: A THEORETICAL AND EXPERIMENTAL APPROACH

    Directory of Open Access Journals (Sweden)

    M. R. Monazzam, A. Nezafat

    2007-04-01

    Full Text Available Noise is one of the most serious challenges in modern community. In some specific industries, according to the nature of process, this challenge is more threatening. This paper describes a means of noise control for spinning machine based on experimental measurements. Also advantages and disadvantages of the control procedure are added. Different factors which may affect the performance of the barrier in this situation are also mentioned. To provide a good estimation of the control measure, a theoretical formula is also described and it is compared with the field data. Good agreement between the results of filed measurements and theoretical presented model was achieved. No obvious noise reduction was seen by partial indoor barriers in low absorbent enclosed spaces, since the reflection from multiple hard surfaces is the main dominated factor in the tested environment. At the end, the situation of the environment and standards, which are necessary in attaining the ideal results, are explained.

  9. Entropy as a measure of the noise extent in a two-level quantum feedback controlled system

    Institute of Scientific and Technical Information of China (English)

    Wang Tao-Bo; Fang Mao-Fa; Hu Yao-Hua

    2007-01-01

    By introducing the von Neumann entropy as a measure of the extent of noise, this paper discusses the entropy evolution in a two-level quantum feedback controlled system. The results show that the feedback control can induce the reduction of the degree of noise, and different control schemes exhibit different noise controlling ability, the extent of the reduction also related with the position of the target state on the Bloch sphere. It is shown that the evolution of entropy can provide a real time noise observation and a systematic guideline to make reasonable choice of control strategy.

  10. Noise control of counterflow cooling towers%逆流式冷却塔的噪声治理

    Institute of Scientific and Technical Information of China (English)

    费朝阳; 陈长征; 周勃

    2011-01-01

    根据逆流式冷却塔辐射噪声的实测频谱图,分析了冷却塔的主要噪声来源和频谱特征.分别从吸声、消声和隔声等方面制定了降噪方案,取得了良好的降噪效果.%Based on the measured radiation noise frequency spectrogram, analyses the main noise source and noise spectrum characteristics of cooling tower.Makes a noise control scheme from the aspects of sound absorption, attenuation and insulation.The effect of the noise control is satisfactory.

  11. Active noise and vibration control for vehicular applications

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, P.S.; Ellis, S.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project investigated semi-active suspension systems based on real time nonlinear control of magneto-rheological (MR) shock absorbers. This effort was motivated by Laboratory interactions with the automobile industry and with the Defense Department. Background research and a literature search on semi-active suspensions was carried out. Numerical simulations of alternative nonlinear control algorithms were developed and adapted for use with an MR shock absorber. A benchtop demonstration system was designed, including control electronics and a mechanical demonstration fixture to hold the damper/spring assembly. A custom-made MR shock was specified and procured. Measurements were carried out at Los Alamos to characterize the performance of the device.

  12. Output feedback control for a class of nonlinear systems with actuator degradation and sensor noise.

    Science.gov (United States)

    Ai, Weiqing; Lu, Zhenli; Li, Bin; Fei, Shumin

    2016-11-01

    This paper investigates the output feedback control problem of a class of nonlinear systems with sensor noise and actuator degradation. Firstly, by using the descriptor observer approach, the origin system is transformed into a descriptor system. On the basis of the descriptor system, a novel Proportional Derivative (PD) observer is developed to asymptotically estimate sensor noise and system state simultaneously. Then, by designing an adaptive law to estimate the effectiveness of actuator, an adaptive observer-based controller is constructed to ensure that system state can be regulated to the origin asymptotically. Finally, the design scheme is applied to address a flexible joint robot link problem.

  13. Optimal control of light propagation through multiple-scattering media in the presence of noise

    CERN Document Server

    Yilmaz, Hasan; Mosk, Allard P

    2013-01-01

    We study the control of coherent light propagation through multiple-scattering media in the presence of measurement noise. In our experiments, we use a two-step optimization procedure to find the optimal incident wavefront. We conclude that the degree of optimal control of coherent light propagation through a multiple-scattering medium is only determined by the number of photoelectrons detected per single speckle spot. The prediction of our model agrees well with the experimental results. Our results offer opportunities for imaging applications through scattering media such as biological tissue in the shot noise limit.

  14. Anticipated Effectiveness of Active Noise Control in Propeller Aircraft Interiors as Determined by Sound Quality Tests

    Science.gov (United States)

    Powell, Clemans A.; Sullivan, Brenda M.

    2004-01-01

    Two experiments were conducted, using sound quality engineering practices, to determine the subjective effectiveness of hypothetical active noise control systems in a range of propeller aircraft. The two tests differed by the type of judgments made by the subjects: pair comparisons in the first test and numerical category scaling in the second. Although the results of the two tests were in general agreement that the hypothetical active control measures improved the interior noise environments, the pair comparison method appears to be more sensitive to subtle changes in the characteristics of the sounds which are related to passenger preference.

  15. A feedback control strategy for the airfoil system under non-Gaussian colored noise excitation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yong, E-mail: hy@njust.edu.cn, E-mail: taogang@njust.edu.cn; Tao, Gang, E-mail: hy@njust.edu.cn, E-mail: taogang@njust.edu.cn [School of Energy and Power Engineering, Nanjing University of Science and Technology, 200 XiaoLingwei Street, Nanjing 210094 (China)

    2014-09-01

    The stability of a binary airfoil with feedback control under stochastic disturbances, a non-Gaussian colored noise, is studied in this paper. First, based on some approximated theories and methods the non-Gaussian colored noise is simplified to an Ornstein-Uhlenbeck process. Furthermore, via the stochastic averaging method and the logarithmic polar transformation, one dimensional diffusion process can be obtained. At last by applying the boundary conditions, the largest Lyapunov exponent which can determine the almost-sure stability of the system and the effective region of control parameters is calculated.

  16. Toward Active Control of Noise from Hot Supersonic Jets

    Science.gov (United States)

    2013-12-31

    control valves upstream of the nozzle through the use of a proportional-integral-derivative controller ( PID ) that allows to minimize the error by...adjusting the percentage of aperture of the tuning valve. The variability of the NPR over all the tests was found to be less "Jian 1%; Figure Ha shows the...36.7 : we first open the main valve to a value of 10%, and when ;he NPR gets high enough we open manually to 35% the tuning valve, and at t = 20s we

  17. A Computational Study of BVI Noise Reduction Using Active Twist Control

    Science.gov (United States)

    Fogarty, David E.; Wilbur, Matthew L.; Sekula, Martin K.

    2010-01-01

    The results of a computational study examining the effects of active-twist control on blade-vortex interaction (BVI) noise using the Apache Active Twist Rotor are presented. The primary goal of this activity is to reduce BVI noise during a low-speed descent flight condition using active-twist control. Rotor aeroelastic behavior was modeled using the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics code and the rotor noise was predicted using the acoustics code PSU-WOPWOP. The accuracy of the analysis was validated through comparisons with experimental acoustic data for the first generation Active Twist Rotor at an advance ratio of mu=0.14. The application of active-twist to the main rotor blade system consisted of harmonic actuation frequencies ranging from 2P to 5P, control phase angles from 0' to 360 , and tip-twist amplitudes ranging from 0.5 to 4.0 . The acoustic analysis was conducted for a single low-speed flight condition of advance ratio =0.14 and shaft angle-of-attack, c^=+6 , with BVI noise levels predicted on a flat plane of observers located 1.1 rotor diameters beneath the rotor. The results indicated reductions of up to 11dB in BVI noise using 1.25 tip-twist amplitude with negligible effects on 4P vertical hub shear.

  18. High temperature sensor/microphone development for active noise control

    Science.gov (United States)

    Shrout, Thomas R.

    1993-01-01

    The industrial and scientific communities have shown genuine interest in electronic systems which can operate at high temperatures, among which are sensors to monitor noise, vibration, and acoustic emissions. Acoustic sensing can be accomplished by a wide variety of commercially available devices, including: simple piezoelectric sensors, accelerometers, strain gauges, proximity sensors, and fiber optics. Of the several sensing mechanisms investigated, piezoelectrics were found to be the most prevalent, because of their simplicity of design and application and, because of their high sensitivity over broad ranges of frequencies and temperature. Numerous piezoelectric materials are used in acoustic sensors today; but maximum use temperatures are imposed by their transition temperatures (T(sub c)) and by their resistivity. Lithium niobate, in single crystal form, has the highest operating temperature of any commercially available material, 650 C; but that is not high enough for future requirements. Only two piezoelectric materials show potential for use at 1000 C; AlN thin film reported to be piezoactive at 1150 C, and perovskite layer structure (PLS) materials, which possess among the highest T(sub c) (greater than 1500 C) reported for ferroelectrics. A ceramic PLS composition was chosen. The solid solution composition, 80% strontium niobate (SN) and 20% strontium tantalate (STa), with a T(sub c) approximately 1160 C, was hot forged, a process which concurrently sinters and renders the plate-like grains into a highly oriented configuration to enhance piezo properties. Poled samples of this composition showed coupling (k33) approximately 6 and piezoelectric strain constant (d33) approximately 3. Piezoactivity was seen at 1125 C, the highest temperature measurement reported for a ferroelectric ceramic. The high temperature piezoelectric responses of this, and similar PLS materials, opens the possibility of their use in electronic devices operating at temperatures up to

  19. Active control of vibrations and noise by electrorheological fluids and piezoelectric materials

    Science.gov (United States)

    Amorosi, Joseph J.

    The combination of electrorheological (ER) fluids and piezoelectric actuators into one actively controlled intelligent sandwich plate structure for either noise or vibration control is investigated in this study. The simply supported sandwich plate consists of a core of four cavities filled with ER fluid, two elastic outer face plates, bottom plate cross stiffeners and symmetrically bonded surface piezoceramic (PZT) actuator patches. Analytical and computational simulations are performed to obtain the resultant structural response to random inputs, noise transmission into a rectangular enclosure, and sound radiation into a semi-infinite acoustic half space. An equivalent, homogeneous plate model is used in the modal decomposition of the derived governing equations of motion. This equivalency is obtained by taking the modal frequencies and mode shapes, calculated by the finite element method, to be that of the sandwich plate. The effect of actively controlling the ER fluid's stiffness material properties is incorporated into the modal frequencies and mode shapes by altering the sandwich plate's core shear and elastic moduli whereas ER fluid controllable damping is directly incorporated into the governing equations of motion as equivalent modal damping. The effect of the PZT actuators is incorporated into the governing equations of motion through direct velocity feedback utilizing collocated control. A two part control strategy is developed. First, the appropriate ER fluid voltage potential and then the PZT actuator gains are selected. Numerical results obtained in this study indicate that using ER and PZT active control up to 50 dB of noise reduction is possible at certain frequency ranges. In addition, about 15 dB reduction of the overall radiated sound pressure level can be obtained. However, for the available ER and PZT materials, the reduction of overall sound pressure to random input is shown to be on the order of 5 to 8 decibels. To improve on noise

  20. Active control of internal cabin noise in cars. Aktive Innengeraeuschreduzierung bei Kraftfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Felske, A.; Gawron, H.J.; Schaaf, K.

    1990-01-01

    It is an important research task to develop methods for active noise control. In addition to reviewing possible operational areas, we discuss the efficiency based on measurements of a broadband active head-set and present an experimental two-channel system for active noise control which was tested in a VW Passat with 4 cylinder engine. Having solved the problem of decoupling in multi-channel systems, a reduction of the interior noise level for 2nd order frequencies up to 20 dB could be achieved. Standard speaker systems were used. Diagrams of sound pressure levels show the efficiency of the active compensation as a function of motor speed for the co-driver's right ear, and as a function of location both in longitudinal and transversal direction within the car cabin at a fixed motor speed. (orig./HW).

  1. Modeling the effect of transcriptional noise on switching in gene networks in a genetic bistable switch.

    Science.gov (United States)

    Chaudhury, Srabanti

    2015-06-01

    Gene regulatory networks in cells allow transitions between gene expression states under the influence of both intrinsic and extrinsic noise. Here we introduce a new theoretical method to study the dynamics of switching in a two-state gene expression model with positive feedback by explicitly accounting for the transcriptional noise. Within this theoretical framework, we employ a semi-classical path integral technique to calculate the mean switching time starting from either an active or inactive promoter state. Our analytical predictions are in good agreement with Monte Carlo simulations and experimental observations.

  2. Algorithms to Solve Stochastic H2/H∞ Control with State-Dependent Noise

    Directory of Open Access Journals (Sweden)

    Ming Gao

    2014-01-01

    Full Text Available This paper is concerned with the algorithms which solve H2/H∞ control problems of stochastic systems with state-dependent noise. Firstly, the algorithms for the finite and infinite horizon H2/H∞ control of discrete-time stochastic systems are reviewed and studied. Secondly, two algorithms are proposed for the finite and infinite horizon H2/H∞ control of continuous-time stochastic systems, respectively. Finally, several numerical examples are presented to show the effectiveness of the algorithms.

  3. Room acoustic analysis of blower unit and noise control plan in the typical steel industry

    Directory of Open Access Journals (Sweden)

    2013-02-01

    Full Text Available Introduction: In the steel industry,air blowers used to supply compressed air are considered as sources of annoying noise. This study aims to acoustics analysis of theairblower workroomand sound source characteristics in order to present noise controlmeasuresinthe steel industry. .Material and Method: Measurement of noiselevel and its frequency analysis was performed usingsound levelmetermodelof CASELLA-Cell.450. Distribution of noise level in the investigated workroom in form of noise map was provided using Surfer software. In addition, acoustic analysis of workroom and control room was performed in view point of soundabsorption andinsulation. Redesignofdoor and window of controlroom and installation of soundabsorbing materialson theceiling of the workroom were proposed and the efficiency of these interventionswasestimated. .Result: The totalsound pressurelevelin the blower workroom was 95.4 dB(L and the dominant frequency was 2000Hz. Sound pressure level inside the room control was 80.1dB(A. The average absorption coefficient and reverberation time in the blower workroom was estimated equal to 0.082 Sab.m2 and 3.9 seconds respectively. These value in control room was 0.04 Sab.m2 and 3/4 seconds respectively. In control room, sound transmission loss between the two parts of the wall dividing was 13.7 dB(A. The average of noise dose in blower operators was 230%. With the installation of sound absorber on ceiling of workroom, average of absorption coefficient can increase to 0.33 Sab.m2 and sound transmission loss of the new designed door and window was estimated equal to 20dB. . Conclusion: The main cause of noise leakage in the control room was insufficient insulation properties of door and windows. By replacing the door and window and installation of sound absorbing on ceiling of workroom, the noise dose can reduce to 49.6%. New Improved door and window of control room can reduce noise dose to 69.65% solely.

  4. Reward Pays the Cost of Noise Reduction in Motor and Cognitive Control

    Science.gov (United States)

    Manohar, Sanjay G.; Chong, Trevor T.-J.; Apps, Matthew A.J.; Batla, Amit; Stamelou, Maria; Jarman, Paul R.; Bhatia, Kailash P.; Husain, Masud

    2015-01-01

    Summary Speed-accuracy trade-off is an intensively studied law governing almost all behavioral tasks across species. Here we show that motivation by reward breaks this law, by simultaneously invigorating movement and improving response precision. We devised a model to explain this paradoxical effect of reward by considering a new factor: the cost of control. Exerting control to improve response precision might itself come at a cost—a cost to attenuate a proportion of intrinsic neural noise. Applying a noise-reduction cost to optimal motor control predicted that reward can increase both velocity and accuracy. Similarly, application to decision-making predicted that reward reduces reaction times and errors in cognitive control. We used a novel saccadic distraction task to quantify the speed and accuracy of both movements and decisions under varying reward. Both faster speeds and smaller errors were observed with higher incentives, with the results best fitted by a model including a precision cost. Recent theories consider dopamine to be a key neuromodulator in mediating motivational effects of reward. We therefore examined how Parkinson’s disease (PD), a condition associated with dopamine depletion, alters the effects of reward. Individuals with PD showed reduced reward sensitivity in their speed and accuracy, consistent in our model with higher noise-control costs. Including a cost of control over noise explains how reward may allow apparent performance limits to be surpassed. On this view, the pattern of reduced reward sensitivity in PD patients can specifically be accounted for by a higher cost for controlling noise. PMID:26096975

  5. Effect of Acute Noise Exposure on Salivary Cortisol: A Randomized Controlled Trial.

    Science.gov (United States)

    Pouryaghoub, Gholamreza; Mehrdad, Ramin; Valipouri, Alireza

    2016-10-01

    Cardiovascular adverse effects are interesting aspects of occupational noise exposure. One possible mechanism of these effects is an alternation in hypothalamic-pituitary-adrenal axis. Our aim was to measure salivary cortisol response to relatively high-intensity noise exposure in a controlled randomized trial study. We exposed 50 male volunteers to 90 dBA noise for 20 minutes and compared their level of salivary cortisol with 50 non-exposed controls. Salivary samples obtained before and after exposure. Before intervention means (SD) salivary cortisol level were 3.24 (0.47)ng/ml and 3.25 (0.41)ng/ml for exposed and non-exposed groups respectively. Mean salivary cortisol level increased to 4.17 ng/mlafter intervention in exposure group. This increment was statistically significant (P=0.00). Mean salivary cortisol level of the non-exposed group had statistically non-significant decrement after this period (0.2 ng/ml). The difference between salivary cortisol level of non-exposed and exposed groups after the intervention was statistically significant. Noise exposure may affect the hypothalamic-pituitary-adrenal axis activity, and this may be one of the mechanisms of noise exposure cardiovascular effects.

  6. Noise-driven activation in human intermittent control: a double-well potential model

    CERN Document Server

    Zgonnikov, Arkady

    2014-01-01

    In controlling unstable systems humans switch intermittently between the passive and active behavior instead of controlling the system in a continuous manner. The notion of noise-driven control activation provides a richer alternative to the conventional threshold-based models of intermittent motor control. The present study represents the control activation as a random walk in a continuously changing double-well potential. The match between the proposed model and the previous data on human balancing of virtual stick prompts that the double-well approach can aid in explaining complex dynamics of human behavior in control processes.

  7. Genetic Algorithm Based Proportional Integral Controller Design for Induction Motor

    Directory of Open Access Journals (Sweden)

    Mohanasundaram Kuppusamy

    2011-01-01

    Full Text Available Problem statement: This study has expounded the application of evolutionary computation method namely Genetic Algorithm (GA for estimation of feedback controller parameters for induction motor. GA offers certain advantages such as simple computational steps, derivative free optimization, reduced number of iterations and assured near global optima. The development of the method is well documented and computed and measured results are presented. Approach: The design of PI controller parameter for three phase induction motor drives was done using Genetic Algorithm. The objective function of motor current reduction, using PI controller, at starting is formulated as an optimization problem and solved with Genetic Algorithm. Results: The results showed the selected values of PI controller parameter using genetic algorithm approach, with objective of induction motor starting current reduction. Conclusions/Recommendation: The results proved the robustness and easy implementation of genetic algorithm selection of PI parameters for induction motor starting.

  8. Optimal and Adaptive Virtual Unidirectional Sound Source in Active Noise Control

    Directory of Open Access Journals (Sweden)

    Dariusz Bismor

    2008-01-01

    Full Text Available One of the problems concerned with active noise control is the existence of acoustical feedback between the control value (“active” loudspeaker output and the reference signal. Various experiments show that such feedback can seriously decrease effects of attenuation or even make the whole ANC system unstable. This paper presents a detailed analysis of one of possible approaches allowing to deal with acoustical feedback, namely, virtual unidirectional sound source. With this method, two loudspeakers are used together with control algorithm assuring that the combined behaviour of the pair makes virtual propagation of sound only in one direction. Two different designs are presented for the application of active noise control in an acoustic duct: analytical (leading to fixed controller and adaptive. The algorithm effectiveness in simulations and real experiments for both solutions is showed, discussed, and compared.

  9. Intra-Day Trading System Design Based on the Integrated Model of Wavelet De-Noise and Genetic Programming

    Directory of Open Access Journals (Sweden)

    Hongguang Liu

    2016-12-01

    Full Text Available Technical analysis has been proved to be capable of exploiting short-term fluctuations in financial markets. Recent results indicate that the market timing approach beats many traditional buy-and-hold approaches in most of the short-term trading periods. Genetic programming (GP was used to generate short-term trade rules on the stock markets during the last few decades. However, few of the related studies on the analysis of financial time series with genetic programming considered the non-stationary and noisy characteristics of the time series. In this paper, to de-noise the original financial time series and to search profitable trading rules, an integrated method is proposed based on the Wavelet Threshold (WT method and GP. Since relevant information that affects the movement of the time series is assumed to be fully digested during the market closed periods, to avoid the jumping points of the daily or monthly data, in this paper, intra-day high-frequency time series are used to fully exploit the short-term forecasting advantage of technical analysis. To validate the proposed integrated approach, an empirical study is conducted based on the China Securities Index (CSI 300 futures in the emerging China Financial Futures Exchange (CFFEX market. The analysis outcomes show that the wavelet de-noise approach outperforms many comparative models.

  10. The superior fault tolerance of artificial neural network training with a fault/noise injection-based genetic algorithm

    Directory of Open Access Journals (Sweden)

    Feng Su

    2016-08-01

    Full Text Available Abstract Artificial neural networks (ANNs are powerful computational tools that are designed to replicate the human brain and adopted to solve a variety of problems in many different fields. Fault tolerance (FT, an important property of ANNs, ensures their reliability when significant portions of a network are lost. In this paper, a fault/noise injection-based (FIB genetic algorithm (GA is proposed to construct fault-tolerant ANNs. The FT performance of an FIB-GA was compared with that of a common genetic algorithm, the back-propagation algorithm, and the modification of weights algorithm. The FIB-GA showed a slower fitting speed when solving the exclusive OR (XOR problem and the overlapping classification problem, but it significantly reduced the errors in cases of single or multiple faults in ANN weights or nodes. Further analysis revealed that the fit weights showed no correlation with the fitting errors in the ANNs constructed with the FIB-GA, suggesting a relatively even distribution of the various fitting parameters. In contrast, the output weights in the training of ANNs implemented with the use the other three algorithms demonstrated a positive correlation with the errors. Our findings therefore indicate that a combination of the fault/noise injection-based method and a GA is capable of introducing FT to ANNs and imply that the distributed ANNs demonstrate superior FT performance.

  11. Controlling chaos with weak periodic signals optimized by a genetic algorithm.

    Science.gov (United States)

    Soong, C Y; Huang, W T; Lin, F P; Tzeng, P Y

    2004-01-01

    In the present study we develop a relatively novel and effective chaos control approach with a multimode periodic disturbance applied as a control signal and perform an in-depth analysis on this nonfeedback chaos control strategy. Different from previous chaos control schemes, the present method is of two characteristic features: (1) the parameters of the controlling signal are optimized by a genetic algorithm (GA) with the largest Lyapunov exponent used as an index of the stability, and (2) the optimization is justified by a fitness function defined with the target Lyapunov exponent and the controlling power. This novel method is then tested on the noted Rössler and Lorenz systems with and without the presence of noise. The results disclosed that, compared to the existing chaos control methods, the present GA-based control needs only significantly reduced signal power and a shorter transient stage to achieve the preset control goal. The switching control ability and the robustness of the proposed method for cases with sudden change in a system parameter and/or with the presence of noise environment are also demonstrated.

  12. Adaptive multichannel control of time-varying broadband noise and vibrations

    NARCIS (Netherlands)

    Berkhoff, A.P.

    2010-01-01

    This paper presents results obtained from a number of applications in which a recent adaptive algorithm for broadband multichannel active noise control is used. The core of the algorithm uses the inverse of the minimum-phase part of the secondary path for improvement of the speed of convergence. A f

  13. Fast affine projections and the regularized modified filtered-error algorithm in multichannel active noise control

    NARCIS (Netherlands)

    Wesselink, J.M.; Berkhoff, A.P.

    2008-01-01

    In this paper, real-time results are given for broadband multichannel active noise control using the regularized modified filtered-error algorithm. As compared to the standard filtered-error algorithm, the improved convergence rate and stability of the algorithm are obtained by using an inner-outer

  14. A numerically stable, finite memory, fast array recursive least squares algorithm for broadband active noise control

    NARCIS (Netherlands)

    van Ophem, S.; Berkhoff, Arthur P.

    2016-01-01

    For broadband active noise control applications with a rapidly changing primary path, it is desirable to find algorithms with a rapid convergence, a fast tracking performance, and a low computational cost. Recently, a promising algorithm has been presented, called the fast-array Kalman filter, which

  15. Active control of multi-modal propagation of tonal noise in

    DEFF Research Database (Denmark)

    Laugesen, Søren

    1996-01-01

    The active control of tonal noise propagating in ducts at frequencies where many modes are able to propagate is considered. The final objective of the work reported is to cancel the prominent 450-500 Hz blade passing frequency of the rotary suction fans found in chimney stacks of power stations. ...

  16. Tracking and convergence of multi-channel kalman filters for active noise control

    NARCIS (Netherlands)

    Berkhoff, A.; Ophem, S. van

    2013-01-01

    The feed-forward broadband active noise control problem can be formulated as a state estimation problem to achieve a faster rate of convergence than the filtered reference least mean squares algorithm and possibly also a better tracking performance. A multiple input/multiple output Kalman algorithm

  17. Tracking and convergence of multi-channel Kalman filters for active noise control

    NARCIS (Netherlands)

    Berkhoff, A.P.; Ophem, S. van

    2013-01-01

    The feed-forward broadband active noise control problem can be formulated as a state estimation problem to achieve a faster rate of convergence than the filtered reference least mean squares algorithm and possibly also a better tracking performance. A multiple input/multiple output Kalman algorithm

  18. Active control of multi-modal propagation of tonal noise in

    DEFF Research Database (Denmark)

    Laugesen, Søren

    1996-01-01

    The active control of tonal noise propagating in ducts at frequencies where many modes are able to propagate is considered. The final objective of the work reported is to cancel the prominent 450-500 Hz blade passing frequency of the rotary suction fans found in chimney stacks of power stations. ...

  19. Development of an active noise control system with minimized amount of calculation; Shoenzan ryogata active soon seigyo system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M. [Hitachi, Ltd., Tokyo (Japan); Sasaki, M.; Hori, Y. [Gifu University, Gifu (Japan); Fujisawa, F. [Hachinohe Institute of Technology, Aomori (Japan); Sumida, I. [Chubu University, Nagoya (Japan)

    1997-12-20

    This paper proposes an active noise control system with minimized amount of calculation for periodic noise. A modified algorithm based on the filtered-x adaptive notch filter is applied on the diesel engine noise generate d in the cabin of an all-terrain vehicle. Diesel engine noise is periodic and includes some harmonic components due to engine rotation. Numerical simulation results using measured data indicated that the proposed system could be controlled by using fewer calculations compared to the conventional system. The controller was made using an eight bit microcomputer without a digital signal processor and installed in the vehicle. Results of the driving tests achieved a large noise reduction for some harmonic components, second, fourth and sixth order components. This shows that the control system is effective for noise reduction. 5 refs., 8 figs., 6 tabs.

  20. Lead-Lag Control for Helicopter Vibration and Noise Reduction

    Science.gov (United States)

    Gandhi, Farhan

    1995-01-01

    As a helicopter transitions from hover to forward flight, the main rotor blades experience an asymmetry in flow field around the azimuth, with the blade section tangential velocities increasing on the advancing side and decreasing on the retreating side. To compensate for the reduced dynamic pressure on the retreating side, the blade pitch angles over this part of the rotor disk are increased. Eventually, a high enough forward speed is attained to produce compressibility effects on the advancing side of the rotor disk and stall on the retreating side. The onset of these two phenomena drastically increases the rotor vibratory loads and power requirements, thereby effectively establishing a limit on the maximum achievable forward speed. The alleviation of compressibility and stall (and the associated decrease in vibratory loads and power) would potentially result in an increased maximum forward speed. In the past, several methods have been examined and implemented to reduce the vibratory hub loads. Some of these methods are aimed specifically at alleviating vibration at very high flight speeds and increasing the maximum flight speed, while others focus on vibration reduction within the conventional flight envelope. Among the later are several types passive as well as active schemes. Passive schemes include a variety of vibration absorbers such as mechanical springs, pendulums, and bifilar absorbers. These mechanism are easy to design and maintain, but incur significant weight and drag penalties. Among the popular active control schemes in consideration are Higher Harmonic Control (HHC) and Individual Blade Control (IBC). HHC uses a conventional swash plate to generate a multi-cyclic pitch input to the blade. This requires actuators capable of sufficiently high power and bandwidth, increasing the cost and weight of the aircraft. IBC places actuators in the rotating reference frame, requiring the use of slip rings capable of transferring enough power to the actuators

  1. Assessment of the need for noise control research on electric power transformers and reactors. Report No. 4289

    Energy Technology Data Exchange (ETDEWEB)

    Keast, D. N.; Gordon, C. G.

    1980-08-01

    This study was conducted to identify and quantify the needs (if any) for noise control research applicable to electric utility transformers and reactors to comply with quantitative state noise regulations. The study was accomplished by analyzing available published data, by studying a sample of utility substation drawings, and by assessing various noise-control design approaches. No experimental work was done. The study was restricted to outdoor substations. A model was prepared to predict noise from existing US substations. A sample of 658 substation designs from five utilities was analyzed to refine the above model and to provide a detailed analysis of the configurations, capacities, and noise-control features of present US substations. A typical substation was defined. Advanced transformer designs (low-loss core, amorphous core, SF/sub 6/-cooled, vapor-cooled, superconducting) for future substations were reviewed to estimate their noise impacts. Noise abatement options were assessed to define where future noise-control research would be appropriate. It was concluded that: at present, about 5% of the electric utility substations in the US, require an average of 14 dBA of noise reduction to comply with existing noise regulations; estimated cost of compliance is about $200 million; and transformer noise is the dominant problem; current technology can provide the necessary noise control, but it is very costly. Additional research and demonstration programs are recommended to reduce the cost of retrofit noise control treatments for existing substations. It is essential that the electric utility industry be involved in guiding this research.

  2. Noise tolerant selection by gaze-controlled pan and zoom in 3D

    DEFF Research Database (Denmark)

    Hansen, Dan Witzner; Jensen, Henrik Skovsgaard; Hansen, John Paulin;

    2008-01-01

    ) the subjects were able to type at acceptable rates. In a second test, seven subjects were allowed to adjust the zooming speed themselves. They achieved typing rates of more than eight words per minute without using language modeling. We conclude that the StarGazer application is an intuitive 3D interface...... tested three different display sizes (down to PDA-sized displays) and found that large screens are faster to navigate than small displays and that the error rate is higher for the smallest display. Half of the subjects were exposed to severe noise deliberately added on the cursor positions. We found...... that this had a negative impact on efficiency. However, the user remained in control and the noise did not seem to effect the error rate. Additionally, three subjects tested the effects of temporally adding noise to simulate latency in the gaze tracker. Even with a significant latency (about 200 ms...

  3. A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gated Technique

    Directory of Open Access Journals (Sweden)

    Jothi Baskar A

    2015-06-01

    Full Text Available This project presents the low phase noise cmos quadrature voltage control oscillator using clock gating technique. Here the colpitts vco is used to split the capacitance in the Qvco circuit producing quadrature output. The startup condition in the oscillator is improved by using enhancement [12].This QVCO performs the operation anti phase injection locking fordevice reuse [8]. The new clock gating technique is used to reduce the power with thepower supply 1.5v. The QVCO uses a 0.5mwith phase error of 0.4 and exhibits a phase noise of -118dBc/HZ at 1MHZ offset at the centre frequency of 500MHZ. Index terms: current switching, clock gating, phase noise, Qvco

  4. Thin broadband noise absorption through acoustic reactance control by electro-mechanical coupling without sensor.

    Science.gov (United States)

    Zhang, Yumin; Chan, Yum-Ji; Huang, Lixi

    2014-05-01

    Broadband noise with profound low-frequency profile is prevalent and difficult to be controlled mechanically. This study demonstrates effective broadband sound absorption by reducing the mechanical reactance of a loudspeaker using a shunt circuit through electro-mechanical coupling, which induces reactance with different signs from that of loudspeaker. An RLC shunt circuit is connected to the moving coil to provide an electrically induced mechanical impedance which counters the cavity stiffness at low frequencies and reduces the system inertia above the resonance frequency. A sound absorption coefficient well above 0.5 is demonstrated across frequencies between 150 and 1200 Hz. The performance of the proposed device is superior to existing passive absorbers of the same depth (60 mm), which has lower frequency limits of around 300 Hz. A passive noise absorber is further proposed by paralleling a micro-perforated panel with shunted loudspeaker which shows potentials in absorbing band-limit impulse noise.

  5. Control of noise and structural vibration a MATLAB-based approach

    CERN Document Server

    Mao, Qibo

    2013-01-01

    Control of Noise and Structural Vibration presents a MATLAB®-based approach to solving the problems of undesirable noise generation and transmission by structures and of undesirable vibration within structures in response to environmental or operational forces. The fundamentals of acoustics, vibration and coupling between vibrating structures and the sound fields they generate are introduced including a discussion of the finite element method for vibration analysis. Following this, the treatment of sound and vibration control begins, illustrated by example systems such as beams, plates and double plate structures. Sensor and actuator placement is explained as is the idea of modal sensor–actuators. The design of appropriate feedback systems includes consideration of basic stability criteria and robust active structural acoustic control. Single and multi-mode positive position feedback (PPF) control systems are also described in the context of loudspeaker–duct model with non-collocated loudspeaker–microp...

  6. In Situ Active Control of Noise in a 4-Tesla MRI Scanner

    Science.gov (United States)

    Li, Mingfeng; Rudd, Brent; Lim, Teik C.; Lee, Jing-Huei

    2011-01-01

    Purpose To evaluate the effectiveness of the proposed active noise control (ANC) system for the reduction of the acoustic noise emission generated by a 4 T MRI scanner during operation and to assess the feasibility of developing an ANC device that can be deployed in situ. Materials and Methods Three typical scanning sequences, namely EPI (echo planar imaging), GEMS (gradient echo multi-slice) and MDEFT (Modified Driven Equilibrium Fourier Transform), were used for evaluating the performance of the ANC system, which was composed of a magnetic compatible headset and a multiple reference feedforward filtered-x least mean square controller. Results The greatest reduction, about 55 dB, was achieved at the harmonic at a frequency of 1.3 kHz in the GEMS case. Approximately 21 dB and 30 dBA overall reduction was achieved for GEMS noise across the entire audible frequency range. For the MDEFT sequence, the control system achieved 14 dB and 14 dBA overall reduction in the audible frequency range, while 13 dB and 14 dBA reduction was obtained for the EPI case. Conclusion The result is highly encouraging because it shows great potential for treating MRI noise with an ANC application during real time scanning. PMID:21751284

  7. AN ADAPTIVE OPTIMAL KALMAN FILTER FOR STOCHASTIC VIBRATION CONTROL SYSTEM WITH UNKNOWN NOISE VARIANCES

    Institute of Scientific and Technical Information of China (English)

    Li Shu; Zhuo Jiashou; Ren Qingwen

    2000-01-01

    In this paper, an optimal criterion is presented for adaptive Kalman filter in a control sys tem with unknown variances of stochastic vibration by constructing a function of noise variances and minimizing the function. We solve the model and measure variances by using DFP optimal method to guarantee the results of Kalman filter to be optimized. Finally, the control of vibration can be implemented by LQG method.

  8. Active control of time-varying broadband noise and vibrations using a sliding-window Kalman filter

    NARCIS (Netherlands)

    van Ophem, S.; Berkhoff, Arthur P.; Sas, P; Moens, D.; Denayer, H.

    2014-01-01

    Recently, a multiple-input/multiple-output Kalman filter technique was presented to control time-varying broadband noise and vibrations. By describing the feed-forward broadband active noise control problem in terms of a state estimation problem it was possible to achieve a faster rate of

  9. Intelligent Controller Design for DC Motor Speed Control based on Fuzzy Logic-Genetic Algorithms Optimization

    OpenAIRE

    Boumediene ALLAOUA; Laoufi, Abdellah; Brahim GASBAOUI; Nasri, Abdelfatah; Abdessalam ABDERRAHMANI

    2008-01-01

    In this paper, an intelligent controller of the DC (Direct current) Motor drive is designed using fuzzy logic-genetic algorithms optimization. First, a controller is designed according to fuzzy rules such that the systems are fundamentally robust. To obtain the globally optimal values, parameters of the fuzzy controller are improved by genetic algorithms optimization model. Computer MATLAB work space demonstrate that the fuzzy controller associated to the genetic algorithms approach became ve...

  10. Reverse Genetics Approaches to Control Arenavirus.

    Science.gov (United States)

    Martínez-Sobrido, Luis; Cheng, Benson Yee Hin; de la Torre, Juan Carlos

    2016-01-01

    Several arenavirus cause hemorrhagic fever disease in humans and pose a significant public health problem in their endemic regions. To date, no licensed vaccines are available to combat human arenavirus infections, and anti-arenaviral drug therapy is limited to an off-label use of ribavirin that is only partially effective. The development of arenavirus reverse genetics approaches provides investigators with a novel and powerful approach for the investigation of the arenavirus molecular and cell biology. The use of cell-based minigenome systems has allowed examining the cis- and trans-acting factors involved in arenavirus replication and transcription and the identification of novel anti-arenaviral drug targets without requiring the use of live forms of arenaviruses. Likewise, it is now feasible to rescue infectious arenaviruses entirely from cloned cDNAs containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of pathogenesis, as well as to facilitate screens to identify anti-arenaviral drugs and development of novel live-attenuated arenavirus vaccines. Recently, reverse genetics have also allowed the generation of tri-segmented arenaviruses expressing foreign genes, facilitating virus detection and opening the possibility of implementing live-attenuated arenavirus-based vaccine vector approaches. Likewise, the development of single-cycle infectious, reporter-expressing, arenaviruses has provided a new experimental method to study some aspects of the biology of highly pathogenic arenaviruses without the requirement of high-security biocontainment required to study HF-causing arenaviruses. In this chapter we summarize the current knowledge on arenavirus reverse genetics and the implementation of plasmid-based reverse genetics techniques for the development of arenavirus vaccines and vaccine vectors.

  11. Fuzzy Control of Chaotic System with Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-an; GUO Zhao-xia; SHAO Shi-huang

    2002-01-01

    A novel approach to control the unpredictable behavior of chaotic systems is presented. The control algorithm is based on fuzzy logic control technique combined with genetic algorithm. The use of fuzzy logic allows for the implementation of human "rule-of-thumb" approach to decision making by employing linguistic variables. An improved Genetic Algorithm (GA) is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the condition portion of each rule,and to automatically generate fuzzy control actions under each condition. Simulation results show that such an approach for the control of chaotic systems is both effective and robust.

  12. A low-phase-noise digitally controlled crystal oscillator for DVB TV tuners

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Wei; Lu Lei; Tang Zhangwen, E-mail: zwtang@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2010-07-15

    This paper presents a 25-MHz fully-integrated digitally controlled crystal oscillator (DCXO) with automatic amplitude control (AAC). The DCXO is based on Colpitts topology for one-pin solution. The AAC circuit is introduced to optimize the phase noise performance. The automatic frequency control is realized by a 10-bit thermometer-code segmental tapered MOS capacitor array, ensuring a {approx} 35 ppm tuning range and {approx} 0.04 ppm frequency step. The measured phase noise results are -139 dBc/Hz at 1 kHz and -151 dBc/Hz at 10 kHz frequency offset, respectively. The chip consumes 1 mA at 1.8V supply and occupies 0.4 mm{sup 2} in a 0.18-{mu}m CMOS process.

  13. A low-phase-noise digitally controlled crystal oscillator for DVB TV tuners

    Science.gov (United States)

    Wei, Zhao; Lei, Lu; Zhangwen, Tang

    2010-07-01

    This paper presents a 25-MHz fully-integrated digitally controlled crystal oscillator (DCXO) with automatic amplitude control (AAC). The DCXO is based on Colpitts topology for one-pin solution. The AAC circuit is introduced to optimize the phase noise performance. The automatic frequency control is realized by a 10-bit thermometer-code segmental tapered MOS capacitor array, ensuring a ~ 35 ppm tuning range and ~ 0.04 ppm frequency step. The measured phase noise results are -139 dBc/Hz at 1 kHz and -151 dBc/Hz at 10 kHz frequency offset, respectively. The chip consumes 1 mA at 1.8V supply and occupies 0.4 mm2 in a 0.18-μm CMOS process.

  14. Robust reactor power control system design by genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Joon; Cho, Kyung Ho; Kim, Sin [Cheju National University, Cheju (Korea, Republic of)

    1997-12-31

    The H{sub {infinity}} robust controller for the reactor power control system is designed by use of the mixed weight sensitivity. The system is configured into the typical two-port model with which the weight functions are augmented. Since the solution depends on the weighting functions and the problem is of nonconvex, the genetic algorithm is used to determine the weighting functions. The cost function applied in the genetic algorithm permits the direct control of the power tracking performances. In addition, the actual operating constraints such as rod velocity and acceleration can be treated as design parameters. Compared with the conventional approach, the controller designed by the genetic algorithm results in the better performances with the realistic constraints. Also, it is found that the genetic algorithm could be used as an effective tool in the robust design. 4 refs., 6 figs. (Author)

  15. Numerical simulation of tandem-cylinder noise-reduction using plasma-based flow control

    Science.gov (United States)

    Wang, Meng; Eltaweel, Ahmed; Thomas, Flint; Kozlov, Alexey; Kim, Dongjoo

    2011-11-01

    The noise of low-Mach-number flow over tandem cylinders at ReD = 22 , 000 and its reduction using plasma actuators are simulated numerically to confirm and extend earlier experimental results. The numerical approach is based on large-eddy simulation for the turbulent flow field, a semi-empirical plasma actuation model, and Lighthill's theory for acoustic calculation. Excellent agreement between LES and experimental results is obtained for both the baseline flow and flow with plasma control in terms of wake velocity profiles, turbulence intensity, and frequency spectra of pressure fluctuations on the downstream cylinder. The validated flow-field results allow an accurate acoustic analysis based on Lighthill's equation, which is solved using a boundary-element method. The effectiveness of plasma actuators for reducing noise is demonstrated. In the baseline flow, the acoustic field is dominated by the interaction of the downstream cylinder with the upstream wake. With flow control the interaction noise is reduced drastically through suppression of vortex shedding from the upstream cylinder, and the vortex-shedding noise from the downstream cylinder becomes dominant. The peak sound pressure level is reduced by approximately 15 dB. Supported by NASA Cooperative Agreement NNX07AO09A.

  16. Control and Synchronization of Chaos in RCL-Shunted Josephson Junction with Noise Disturbance Using Only One Controller Term

    Directory of Open Access Journals (Sweden)

    Di-Yi Chen

    2012-01-01

    Full Text Available This paper investigates the control and synchronization of the shunted nonlinear resistive-capacitive-inductance junction (RCLSJ model under the condition of noise disturbance with only one single controller. Based on the sliding mode control method, the controller is designed to eliminate the chaotic behavior of Josephson junctions and realize the achievement of global asymptotic synchronization of coupled system. Numerical simulation results are presented to demonstrate the validity of the proposed method. The approach is simple and easy to implement and provides reference for chaos control and synchronization in relevant systems.

  17. Improved PHIP polarization using a precision, low noise, voltage controlled current source

    Science.gov (United States)

    Agraz, Jose; Grunfeld, Alexander; Cunningham, Karl; Li, Debiao; Wagner, Shawn

    2013-10-01

    Existing para-hydrogen induced polarization (PHIP) instrumentation relies on magnetic fields to hyperpolarize substances. These hyperpolarized substances have enhanced magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for MRI at the molecular level. Required magnetic fields are generated by energizing a solenoid coil with current produced by a voltage controlled voltage source (VCVS), also known as a power supply. A VCVS lacks the current regulation necessary to keep magnetic field fluctuations to a minimum, which results in low PHIP polarization. A voltage controlled current source (VCCS) is an electric circuit that generates a steady flow of electrons proportional to an input voltage. A low noise VCCS provides the solenoid current flow regulation necessary to generate a stable static magnetic field (Bo). We discuss the design and implementation of a low noise, high stability, VCCS for magnetic field generation with minimum variations. We show that a precision, low noise, voltage reference driving a metal oxide semiconductor field effect transistor (MOSFET) based current sink, results in the current flow control necessary for generating a low noise and high stability Bo. In addition, this work: (1) compares current stability for ideal VCVS and VCCS models using transfer functions (TF), (2) develops our VCCS design's TF, (3) measures our VCCS design's thermal & 1/f noise, and (4) measures and compares hydroxyethyl-propionate (HEP) polarization obtained using a VCVS and our VCCS. The hyperpolarization of HEP was done using a PHIP instrument developed in our lab. Using our VCCS design, HEP polarization magnitude data show a statistically significant increase in polarization over using a VCVS. Circuit schematic, bill of materials, board layout, TF derivation, and Matlab simulations code are included as supplemental files.

  18. Improved PHIP polarization using a precision, low noise, voltage controlled current source.

    Science.gov (United States)

    Agraz, Jose; Grunfeld, Alexander; Cunningham, Karl; Li, Debiao; Wagner, Shawn

    2013-10-01

    Existing para-hydrogen induced polarization (PHIP) instrumentation relies on magnetic fields to hyperpolarize substances. These hyperpolarized substances have enhanced magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for MRI at the molecular level. Required magnetic fields are generated by energizing a solenoid coil with current produced by a voltage controlled voltage source (VCVS), also known as a power supply. A VCVS lacks the current regulation necessary to keep magnetic field fluctuations to a minimum, which results in low PHIP polarization. A voltage controlled current source (VCCS) is an electric circuit that generates a steady flow of electrons proportional to an input voltage. A low noise VCCS provides the solenoid current flow regulation necessary to generate a stable static magnetic field (Bo). We discuss the design and implementation of a low noise, high stability, VCCS for magnetic field generation with minimum variations. We show that a precision, low noise, voltage reference driving a metal oxide semiconductor field effect transistor (MOSFET) based current sink, results in the current flow control necessary for generating a low noise and high stability Bo. In addition, this work: (1) compares current stability for ideal VCVS and VCCS models using transfer functions (TF), (2) develops our VCCS design's TF, (3) measures our VCCS design's thermal & 1/f noise, and (4) measures and compares hydroxyethyl-propionate (HEP) polarization obtained using a VCVS and our VCCS. The hyperpolarization of HEP was done using a PHIP instrument developed in our lab. Using our VCCS design, HEP polarization magnitude data show a statistically significant increase in polarization over using a VCVS. Circuit schematic, bill of materials, board layout, TF derivation, and Matlab simulations code are included as supplemental files.

  19. Active Vibration Control for Helicopter Interior Noise Reduction Using Power Minimization

    Science.gov (United States)

    Mendoza, J.; Chevva, K.; Sun, F.; Blanc, A.; Kim, S. B.

    2014-01-01

    This report describes work performed by United Technologies Research Center (UTRC) for NASA Langley Research Center (LaRC) under Contract NNL11AA06C. The objective of this program is to develop technology to reduce helicopter interior noise resulting from multiple gear meshing frequencies. A novel active vibration control approach called Minimum Actuation Power (MAP) is developed. MAP is an optimal control strategy that minimizes the total input power into a structure by monitoring and varying the input power of controlling sources. MAP control was implemented without explicit knowledge of the phasing and magnitude of the excitation sources by driving the real part of the input power from the controlling sources to zero. It is shown that this occurs when the total mechanical input power from the excitation and controlling sources is a minimum. MAP theory is developed for multiple excitation sources with arbitrary relative phasing for single or multiple discrete frequencies and controlled by a single or multiple controlling sources. Simulations and experimental results demonstrate the feasibility of MAP for structural vibration reduction of a realistic rotorcraft interior structure. MAP control resulted in significant average global vibration reduction of a single frequency and multiple frequency excitations with one controlling actuator. Simulations also demonstrate the potential effectiveness of the observed vibration reductions on interior radiated noise.

  20. Numerical Comparison of Active Acoustic and Structural Noise Control in a Stiffened Double Wall Cylinder

    Science.gov (United States)

    Grosveld, Ferdinand W.

    1996-01-01

    The active acoustic and structural noise control characteristics of a double wall cylinder with and without ring stiffeners were numerically evaluated. An exterior monopole was assumed to acoustically excite the outside of the double wall cylinder at an acoustic cavity resonance frequency. Structural modal vibration properties of the inner and outer shells were analyzed by post-processing the results from a finite element analysis. A boundary element approach was used to calculate the acoustic cavity response and the coupled structural-acoustic interaction. In the frequency region of interest, below 500 Hz, all structural resonant modes were found to be acoustically slow and the nonresonant modal response to be dominant. Active sound transmission control was achieved by control forces applied to the inner or outer shell, or acoustic control monopoles placed just outside the inner or outer shell. A least mean square technique was used to minimize the interior sound pressures at the nodes of a data recovery mesh. Results showed that single acoustic control monopoles placed just outside the inner or outer shells resulted in better sound transmission control than six distributed point forces applied to either one of the shells. Adding stiffeners to the double wall structure constrained the modal vibrations of the shells, making the double wall stiffer with associated higher modal frequencies. Active noise control obtained for the stiffened double wall configurations was less than for the unstiffened cylinder. In all cases, the acoustic control monopoles controlled the sound transmission into the interior better than the structural control forces.

  1. Topology control based on quantum genetic algorithm in sensor networks

    Institute of Scientific and Technical Information of China (English)

    SUN Lijuan; GUO Jian; LU Kai; WANG Ruchuan

    2007-01-01

    Nowadays,two trends appear in the application of sensor networks in which both multi-service and quality of service (QoS)are supported.In terms of the goal of low energy consumption and high connectivity,the control on topology is crucial.The algorithm of topology control based on quantum genetic algorithm in sensor networks is proposed.An advantage of the quantum genetic algorithm over the conventional genetic algorithm is demonstrated in simulation experiments.The goals of high connectivity and low consumption of energy are reached.

  2. Sound Control in the Physic Lab in the Polyacryl Company and Studying the Noise Reduction by Means of Different Absorbents

    Directory of Open Access Journals (Sweden)

    Harandi

    1999-03-01

    Full Text Available Studying noise effect at the workplace has more various aspects than other factors. So it is not surprising that its adverse impact on the physical and mental state of the society has been detected to some extent. There is a significant correlation between the hearing loss and the noise pollution of the workplaces. The most important ways to lessen and control the impact of noise are: substituting the noisy equipments with ones that produce less noise, correcting noise sources and isolating the sound source. In the current study we tried to control the noise level by using various sound absorbents and measured sound level by using these different substances. The results of these measurements have reported in the current article in details.

  3. Comparison of various decentralised structural and cavity feedback control strategies for transmitted noise reduction through a double panel structure

    NARCIS (Netherlands)

    Ho, J.H.; Berkhoff, A.P.

    2014-01-01

    This paper compares various decentralised control strategies, including structural and acoustic actuator-sensor configuration designs, to reduce noise transmission through a double panel structure. The comparison is based on identical control stability indexes. The double panel structure consists of

  4. Drag reduction of a car model by linear genetic programming control

    Science.gov (United States)

    Li, Ruiying; Noack, Bernd R.; Cordier, Laurent; Borée, Jacques; Harambat, Fabien

    2017-08-01

    We investigate open- and closed-loop active control for aerodynamic drag reduction of a car model. Turbulent flow around a blunt-edged Ahmed body is examined at ReH≈ 3× 105 based on body height. The actuation is performed with pulsed jets at all trailing edges (multiple inputs) combined with a Coanda deflection surface. The flow is monitored with 16 pressure sensors distributed at the rear side (multiple outputs). We apply a recently developed model-free control strategy building on genetic programming in Dracopoulos and Kent (Neural Comput Appl 6:214-228, 1997) and Gautier et al. (J Fluid Mech 770:424-441, 2015). The optimized control laws comprise periodic forcing, multi-frequency forcing and sensor-based feedback including also time-history information feedback and combinations thereof. Key enabler is linear genetic programming (LGP) as powerful regression technique for optimizing the multiple-input multiple-output control laws. The proposed LGP control can select the best open- or closed-loop control in an unsupervised manner. Approximately 33% base pressure recovery associated with 22% drag reduction is achieved in all considered classes of control laws. Intriguingly, the feedback actuation emulates periodic high-frequency forcing. In addition, the control identified automatically the only sensor which listens to high-frequency flow components with good signal to noise ratio. Our control strategy is, in principle, applicable to all multiple actuators and sensors experiments.

  5. Genetic selection for context-dependent stochastic phenotypes: Sp1 and TATA mutations increase phenotypic noise in HIV-1 gene expression.

    Directory of Open Access Journals (Sweden)

    Kathryn Miller-Jensen

    Full Text Available The sequence of a promoter within a genome does not uniquely determine gene expression levels and their variability; rather, promoter sequence can additionally interact with its location in the genome, or genomic context, to shape eukaryotic gene expression. Retroviruses, such as human immunodeficiency virus-1 (HIV, integrate their genomes into those of their host and thereby provide a biomedically-relevant model system to quantitatively explore the relationship between promoter sequence, genomic context, and noise-driven variability on viral gene expression. Using an in vitro model of the HIV Tat-mediated positive-feedback loop, we previously demonstrated that fluctuations in viral Tat-transactivating protein levels generate integration-site-dependent, stochastically-driven phenotypes, in which infected cells randomly 'switch' between high and low expressing states in a manner that may be related to viral latency. Here we extended this model and designed a forward genetic screen to systematically identify genetic elements in the HIV LTR promoter that modulate the fraction of genomic integrations that specify 'Switching' phenotypes. Our screen identified mutations in core promoter regions, including Sp1 and TATA transcription factor binding sites, which increased the Switching fraction several fold. By integrating single-cell experiments with computational modeling, we further investigated the mechanism of Switching-fraction enhancement for a selected Sp1 mutation. Our experimental observations demonstrated that the Sp1 mutation both impaired Tat-transactivated expression and also altered basal expression in the absence of Tat. Computational analysis demonstrated that the observed change in basal expression could contribute significantly to the observed increase in viral integrations that specify a Switching phenotype, provided that the selected mutation affected Tat-mediated noise amplification differentially across genomic contexts. Our study

  6. Reduction of Helicopter BVI Noise, Vibration, and Power Consumption Through Individual Blade Control

    Science.gov (United States)

    Jacklin, Stephen A.; Blaas, Achim; Teves, Dietrich; Kube, Roland; Warmbrodt, William (Technical Monitor)

    1994-01-01

    A wind tunnel test was conducted with a full-scale BO 105 helicopter rotor to evaluate the potential of open-loop individual blade control (IBC) to improve rotor performance, to reduce blade vortex interaction (BVI) noise, and to alleviate helicopter vibrations. The wind tunnel test was an international collaborative effort between NASA/U.S. Army AFDD, ZF Luftfahrttechnik, Eurocopter Deutschland, and the German Aerospace Laboratory (DLR) and was conducted under the auspices of the U.S./German MOU on Rotorcraft Aeromechanics. In this test the normal blade pitch links of the rotor were replaced by servo-actuators so that the pitch of each blade could be controlled independently of the other blades. The specially designed servoactuators and IBC control system were designed and manufactured by ZF Luftfahrttechnik, GmbH. The wind tunnel test was conducted in the 40- by 80-Foot Wind Tunnel at the NASA Ames Research Center. An extensive amount of measurement information was acquired for each IBC data point. These data include rotor performance, static and dynamic hub forces and moments, rotor loads, control loads, inboard and outboard blade pitch motion, and BVI noise data. The data indicated very significant (80 percent) simultaneous reductions in both BVI noise and hub vibrations could be obtained using multi-harmonic input at the critical descent (terminal approach) condition. The data also showed that performance improvements of up to 7 percent could be obtained using 2P input at high-speed forward flight conditions.

  7. Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system.

    Science.gov (United States)

    Todorov, Emanuel

    2005-05-01

    Optimality principles of biological movement are conceptually appealing and straightforward to formulate. Testing them empirically, however, requires the solution to stochastic optimal control and estimation problems for reasonably realistic models of the motor task and the sensorimotor periphery. Recent studies have highlighted the importance of incorporating biologically plausible noise into such models. Here we extend the linear-quadratic-gaussian framework--currently the only framework where such problems can be solved efficiently--to include control-dependent, state-dependent, and internal noise. Under this extended noise model, we derive a coordinate-descent algorithm guaranteed to converge to a feedback control law and a nonadaptive linear estimator optimal with respect to each other. Numerical simulations indicate that convergence is exponential, local minima do not exist, and the restriction to nonadaptive linear estimators has negligible effects in the control problems of interest. The application of the algorithm is illustrated in the context of reaching movements. A Matlab implementation is available at www.cogsci.ucsd.edu/~todorov.

  8. Reduction of Helicopter BVI Noise, Vibration, and Power Consumption Through Individual Blade Control

    Science.gov (United States)

    Jacklin, Stephen A.; Blaas, Achim; Teves, Dietrich; Kube, Roland; Warmbrodt, William (Technical Monitor)

    1994-01-01

    A wind tunnel test was conducted with a full-scale BO 105 helicopter rotor to evaluate the potential of open-loop individual blade control (IBC) to improve rotor performance, to reduce blade vortex interaction (BVI) noise, and to alleviate helicopter vibrations. The wind tunnel test was an international collaborative effort between NASA/U.S. Army AFDD, ZF Luftfahrttechnik, Eurocopter Deutschland, and the German Aerospace Laboratory (DLR) and was conducted under the auspices of the U.S./German MOU on Rotorcraft Aeromechanics. In this test the normal blade pitch links of the rotor were replaced by servo-actuators so that the pitch of each blade could be controlled independently of the other blades. The specially designed servoactuators and IBC control system were designed and manufactured by ZF Luftfahrttechnik, GmbH. The wind tunnel test was conducted in the 40- by 80-Foot Wind Tunnel at the NASA Ames Research Center. An extensive amount of measurement information was acquired for each IBC data point. These data include rotor performance, static and dynamic hub forces and moments, rotor loads, control loads, inboard and outboard blade pitch motion, and BVI noise data. The data indicated very significant (80 percent) simultaneous reductions in both BVI noise and hub vibrations could be obtained using multi-harmonic input at the critical descent (terminal approach) condition. The data also showed that performance improvements of up to 7 percent could be obtained using 2P input at high-speed forward flight conditions.

  9. Initial results of a model rotor higher harmonic control (HHC) wind tunnel experiment on BVI impulsive noise reduction

    Science.gov (United States)

    Splettstoesser, W. R.; Lehmann, G.; van der Wall, B.

    1989-09-01

    Initial acoustic results are presented from a higher harmonic control (HHC) wind tunnel pilot experiment on helicopter rotor blade-vortex interaction (BVI) impulsive noise reduction, making use of the DFVLR 40-percent-scaled BO-105 research rotor in the DNW 6m by 8m closed test section. Considerable noise reduction (of several decibels) has been measured for particular HHC control settings, however, at the cost of increased vibration levels and vice versa. The apparently adverse results for noise and vibration reduction by HHC are explained. At optimum pitch control settings for BVI noise reduction, rotor simulation results demonstrate that blade loading at the outer tip region is decreased, vortex strength and blade vortex miss-distance are increased, resulting altogether in reduced BVI noise generation. At optimum pitch control settings for vibration reduction adverse effects on blade loading, vortex strength and blade vortex miss-distance are found.

  10. Hot carrier effects on jitter and phase noise in CMOS voltage-controlled oscillators

    Science.gov (United States)

    Zhang, Chi; Srivastava, Ashok

    2005-05-01

    The effects of hot carrier stress on CMOS voltage-controlled oscillators (VCO) are investigated. A model of the threshold voltage degradation in MOSFETs due to hot carrier stress has been used to model jitter and phase noise in voltage-controlled oscillators. The relation between the stress time which induces the hot carrier effects and the degradation of the VCO performance is presented. The VCO performance degradation takes into consideration decrease in operation frequency, increase in jitter and phase noise and decrease in tuning range. The experimental circuits have been designed in 0.5 μm n-well CMOS technology for operation at 3 V. It is shown that when the MOSFET threshold voltage, increases from 0.4 V to 0.9 V due to the hot carrier effect, for the single-ended ring oscillator, the oscillation frequency changes from 538 MHz to 360 MHz, and the phase noise changes from -104 dBc to -105 dBc at 1 MHz frequency offset with a power dissipation of 0.37 mW. For the current-starved VCO, the tuning range changes from 72 MHz - 287 MHz to 65.4 MHz - 201 MHz, and the phase noise changes from -109 dBc to -107 dBc at 1 MHz offset from the center frequency, 200 MHz; for the double-ended differential VCO, the tuning range changes from 32 MHz - 983 MHz to 26 MHz - 698 MHz, and phase noise changes from -86 dBc to -87 dBc at 1 MHz offset from the center frequency, 700 MHz.

  11. Genes in new environments: genetics and evolution in biological control.

    Science.gov (United States)

    Roderick, George K; Navajas, Maria

    2003-11-01

    The availability of new genetic technologies has positioned the field of biological control as a test bed for theories in evolutionary biology and for understanding practical aspects of the release of genetically manipulated material. Purposeful introductions of pathogens, parasites, predators and herbivores, when considered as replicated semi-natural field experiments, show the unpredictable nature of biological colonization. The characteristics of organisms and their environments that determine this variation in the establishment and success of biological control can now be explored using genetic tools. Lessons from studies of classical biological control can help inform researchers and policy makers about the risks that are associated with the release of genetically modified organisms, particularly with respect to long-term evolutionary changes.

  12. Genetic and epigenetic control of RKIP transcription.

    Science.gov (United States)

    Datar, Ila; Tegegne, Hanna; Qin, Kevin; Al-Mulla, Fahd; Bitar, Milad S; Trumbly, Robert J; Yeung, Kam C

    2014-01-01

    Raf kinase inhibitory protein (RKIP) is known to modulate key signaling cascades and regulate normal physiological processes such as cellular proliferation, differentiation, and apoptosis. The expression of RKIP is found to be downregulated in several cancer metastases and the repressed RKIP expression can be reactivated on treatment with chemotherapeutic agents. RKIP is a proven tumor metastasis suppressor gene and investigating the mechanisms of transcriptional regulation of RKIP is therefore of immense clinical importance. In this review, we discuss the basal expression of RKIP in various tissues and the genetic aspects of the RKIP chromosomal locus including the structure of the RKIP promoter as well as gene regulatory elements such as enhancers. We also review the genetic and epigenetic modulation of RKIP transcription through EZH2, a component of the polycomb repressive complex 2 (PRC2) and sequence specific transcription factors (TFs) BACH1 and Snail. Emerging experimental evidence supports a unifying model in which both these TFs repress RKIP transcription in cancers by recruiting the EZH2 containing repressive complex to the proximal RKIP promoter. Finally, we review the known mechanisms employed by different types of chemotherapeutic agents to activate RKIP expression in cancer cells.

  13. Genetic control of active neural circuits

    Directory of Open Access Journals (Sweden)

    Leon Reijmers

    2009-12-01

    Full Text Available The use of molecular tools to study the neurobiology of complex behaviors has been hampered by an inability to target the desired changes to relevant groups of neurons. Specific memories and specific sensory representations are sparsely encoded by a small fraction of neurons embedded in a sea of morphologically and functionally similar cells. In this review we discuss genetics techniques that are being developed to address this difficulty. In several studies the use of promoter elements that are responsive to neural activity have been used to drive long lasting genetic alterations into neural ensembles that are activated by natural environmental stimuli. This approach has been used to examine neural activity patterns during learning and retrieval of a memory, to examine the regulation of receptor trafficking following learning and to functionally manipulate a specific memory trace. We suggest that these techniques will provide a general approach to experimentally investigate the link between patterns of environmentally activated neural firing and cognitive processes such as perception and memory.

  14. Observer-Based Controller Design for Singular Stochastic Markov Jump Systems with State Dependent Noise

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yong; ZHANG Weihai

    2016-01-01

    This paper is concerned with the problem of observer-based controller design for singular stochastic Markov jump systems with state-dependent noise.Two concepts called "non-impulsiveness" and "mean square admissibility" are introduced,which are different from previous ones.Sufficient conditions for the open-and closed-loop singular stochastic Markov jump systems with state-dependent noise to be mean square admissible are provided in terms of strict LMIs.The controller gain and the observer gain which guarantee the resulting closed-loop error system to be mean square admissible are obtained in turn by solving the strict LMIs.A numerical example is presented to show the efficiency of the design approach.

  15. Odeon, a design tool for auditorium acoustics, noise control and loudspeaker systems

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge

    2001-01-01

    The ODEON software was originally developed for prediction of auditorium acoustics. However current editions of the software are not limited to these fields, but also allow prediction in rooms such as churches and mosques, interior noise control, design of room acoustics and sound distribution...... systems in public rooms such as foyers, underground stations and airports. Some of the features in ODEON 5.0 Combined are; two methods for global estimation of reverberation time, various point response calculations providing decay curves, reflectograms, miscellaneous parameter graphs, 3D maps, multi......-source calculations including point, line and surface sources, facilities for noise control calculations and multi-channel auralization using fully filtered BRIR’s....

  16. Stability analysis of a noise control system in a duct by using delay differential equation

    Institute of Scientific and Technical Information of China (English)

    Masakazu Haraguchi; Hai Yan Hu

    2009-01-01

    The paper deals with the criteria for the closed-loop stability of a noise control system in a duct. To study the stability of the system, the model of delay differential equation is derived from the propagation of acoustic wave governed by a partial differential equation of hyperbolic type. Then, a simple feedback controller is designed, and its closed-loop stability is analyzed on the basis of the derived model of delay differential equation. The obtained criteria reveal the influence of the controller gain and the positions of a sensor and an actuator on the closed-loop stability. Finally, numerical simulations are presented to support the theoreti-cal results.

  17. Multiobjective Output Feedback Control of a Class of Stochastic Hybrid Systems with State-Dependent Noise

    Directory of Open Access Journals (Sweden)

    S. Aberkane

    2007-01-01

    Full Text Available This paper deals with dynamic output feedback control of continuous-time active fault tolerant control systems with Markovian parameters (AFTCSMP and state-dependent noise. The main contribution is to formulate conditions for multiperformance design, related to this class of stochastic hybrid systems, that take into account the problematic resulting from the fact that the controller only depends on the fault detection and isolation (FDI process. The specifications and objectives under consideration include stochastic stability, ℋ2 and ℋ∞ (or more generally, stochastic integral quadratic constraints performances. Results are formulated as matrix inequalities. The theoretical results are illustrated using a classical example from literature.

  18. Structural control on the directional amplification of seismic noise (Campo Imperatore, central Italy)

    Science.gov (United States)

    Pischiutta, M.; Fondriest, M.; Demurtas, M.; Magnoni, F.; Di Toro, G.; Rovelli, A.

    2017-08-01

    Seismic signals propagating across a fault may yield information on the internal structure of the fault zone. Here we have assessed the amplification of seismic noise (i.e., ambient vibrations generated by natural or anthropogenic disturbances) across the Vado di Corno Fault (Campo Imperatore, central Italy). The fault zone is considered as an exhumed analogue of the normal faults activated during the L'Aquila 2009 earthquake sequence. Detailed structural geological survey of the footwall block revealed that the fault zone is highly anisotropic and is affected by a complex network of faults and fractures with dominant WNW-ESE strike. We measured seismic noise with portable seismometers along a ∼500 m long transect perpendicular to the average fault strike. Seismic signals were processed calculating the horizontal-to-vertical spectral ratios and performing wavefield polarization analyses. We found a predominant NE-SW to NNE-SSW (i.e., ca. perpendicular to the average strike of the fault-fracture network) amplification of the horizontal component of the seismic waves. Numerical simulations of earthquake-induced ground motions ruled out the role of topography in controlling the polarization and the amplitude of the waves. Therefore, the higher seismic noise amplitude observed in the fault-perpendicular direction was related to the measured fracture network and the resulting stiffness anisotropy of the rock mass. These observations open new perspectives in using measures of ambient seismic noise, which are fast and inexpensive, to estimate the dominant orientation of fracture networks within fault zones.

  19. Tuning of active vibration controllers for ACTEX by genetic algorithm

    Science.gov (United States)

    Kwak, Moon K.; Denoyer, Keith K.

    1999-06-01

    This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.

  20. Active Control of Fan Noise: Feasibility Study. Volume 6; Theoretical Analysis for Coupling of Active Noise Control Actuator Ring Sources to an Annular Duct with Flow

    Science.gov (United States)

    Kraft, R. E.

    1996-01-01

    The objective of this effort is to develop an analytical model for the coupling of active noise control (ANC) piston-type actuators that are mounted flush to the inner and outer walls of an annular duct to the modes in the duct generated by the actuator motion. The analysis will be used to couple the ANC actuators to the modal analysis propagation computer program for the annular duct, to predict the effects of active suppression of fan-generated engine noise sources. This combined program will then be available to assist in the design or evaluation of ANC systems in fan engine annular exhaust ducts. An analysis has been developed to predict the modes generated in an annular duct due to the coupling of flush-mounted ring actuators on the inner and outer walls of the duct. The analysis has been combined with a previous analysis for the coupling of modes to a cylindrical duct in a FORTRAN computer program to perform the computations. The method includes the effects of uniform mean flow in the duct. The program can be used for design or evaluation purposes for active noise control hardware for turbofan engines. Predictions for some sample cases modeled after the geometry of the NASA Lewis ANC Fan indicate very efficient coupling in both the inlet and exhaust ducts for the m = 6 spinning mode at frequencies where only a single radial mode is cut-on. Radial mode content in higher order cut-off modes at the source plane and the required actuator displacement amplitude to achieve 110 dB SPL levels in the desired mode were predicted. Equivalent cases with and without flow were examined for the cylindrical and annular geometry, and little difference was found for a duct flow Mach number of 0.1. The actuator ring coupling program will be adapted as a subroutine to the cylindrical duct modal analysis and the exhaust duct modal analysis. This will allow the fan source to be defined in terms of characteristic modes at the fan source plane and predict the propagation to the

  1. Comparison of Gap in Noise Test Results in Musicians and Non-Musician Controls

    OpenAIRE

    Ghassem Mohamadkhani; Mohammad Hossein Nilforoushkhoshk; Ali Zadeh Mohammadi; Soghrat Faghihzadeh; Mahsa Sepehrnejhad

    2011-01-01

    Background and Aim: Main feature of auditory processing abilities is temporal processing including temporal resolution, temporal ordering, temporal integration and temporal masking. Many studies have shown the superiority of musicians in temporal discrimination over non-musicians. In this study we compared temporal processing in musicians and non-musician controls via Gap in Noise (GIN) test.Methods: This cohort study was conducted on 24 musicians with mean age of 25.3 years and 24 normal hea...

  2. Genetic Control of Meat Quality Traits

    Science.gov (United States)

    Williams, John L.

    Meat was originally produced from non-specialized animals that were used for a variety of purposes, in addition to being a source of food. However, selective breeding has resulted in “improved” breeds of cattle that are now used to produce either milk or beef, and specialized chicken lines that produce eggs or meat. These improved breeds are very productive under appropriate management systems. The selection methods used to create these specialized breeds were based on easily measured phenotypic variations, such as growth rate or physical size. Improvement in the desired trait was achieved by breeding directly from animals displaying the desired phenotype. However, more recently sophisticated genetic models have been developed using statistical approaches that consider phenotypic information collected, not only from individual animals but also from their parents, sibs, and progeny.

  3. Geochemical, Genetic, and Community Controls on Mercury

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D.

    2014-11-10

    The sulfate-reducing bacteria (SRB) are soil bacteria that share two common characteristics, strict anaerobiosis and the ability to respire sulfate. The metabolic activities of these bacteria play significant roles in the global sulfur cycle, anaerobic degradation of biomass, biological metal corrosion in the environment and, recently, degradation of toxic compounds. The accumulation of evidence suggests these bacteria are also key to the production of the neurotoxin methylmercury in environmental settings. We propose to use our experience with the development of genetics in sulfate-reducing bacteria of the genus Desulfovibrio to create mutations that will eliminate the methylation of mercury, thereby identifying the genes essential for this process. This information may allow the environmental monitoring of the mercury methylation potential to learn the location and quantity of the production this toxin. From these data, more accurate predictive models of mercury cycling can be generated.

  4. Comparison of Auditory Brainstem Response in Noise Induced Tinnitus and Non-Tinnitus Control Subjects

    Directory of Open Access Journals (Sweden)

    Ghassem Mohammadkhani

    2009-12-01

    Full Text Available Background and Aim: Tinnitus is an unpleasant sound which can cause some behavioral disorders. According to evidence the origin of tinnitus is not only in peripheral but also in central auditory system. So evaluation of central auditory system function is necessary. In this study Auditory brainstem responses (ABR were compared in noise induced tinnitus and non-tinnitus control subjects.Materials and Methods: This cross-sectional, descriptive and analytic study is conducted in 60 cases in two groups including of 30 noise induced tinnitus and 30 non-tinnitus control subjects. ABRs were recorded ipsilateraly and contralateraly and their latencies and amplitudes were analyzed.Results: Mean interpeak latencies of III-V (p= 0.022, I-V (p=0.033 in ipsilatral electrode array and mean absolute latencies of IV (p=0.015 and V (p=0.048 in contralatral electrode array were significantly increased in noise induced tinnitus group relative to control group. Conclusion: It can be concluded from that there are some decrease in neural transmission time in brainstem and there are some sign of involvement of medial nuclei in olivery complex in addition to lateral lemniscus.

  5. Numerical investigation of sound transmission through double wall cylinders with respect to active noise control

    Science.gov (United States)

    Coats, T. J.; Silcox, R. J.; Lester, H. C.

    Market pressure for more fuel efficient air travel has led to increased use of turboprop and higher bypass turbofan engines. The low frequency components of propeller, jet and boundary layer noise are difficult to attenuate with conventional passive techniques. Weight and geometric restrictions for sound absorbing meterials limit the amount and type of treatment that may be applied. An active noise control (ANC) method is providing to be an attractive alternative. The approach taken in this paper uses a numerical finite/boundary element method (FEM/BEM) that may be easilty adapted to arbitrary geometries. A double walled cylinder is modeled using commercially available software. The outer shell is modeled as an aluminum cylinder, similar to that of aircraft skins. The inner shell is modeled as a composite material representative of a lightweight, stiff trim panel. Two different inner shell materials are used. The first is representative of current trim structure, the second a much stiffer composite. The primary source is generated by an exterior acoustic monopole. Control fields are generated using normal force inputs to the inner cylindrical shell. A linear least mean square (LMS) algorithm is used to determine amplitudes of control forces that minimize the interior acoustic field. Coupling of acoustic and structural modes and noise reductions are discussed for each of the inner shell materials.

  6. On the stability of adaptation process in active noise control systems.

    Science.gov (United States)

    Ardekani, Iman Tabatabaei; Abdulla, Waleed H

    2011-01-01

    The stability analysis of the adaptation process, performed by the filtered-x least mean square algorithm on weights of active noise controllers, has not been fully investigated. The main contribution of this paper is conducting a theoretical stability analysis for this process without utilizing commonly used simplifying assumptions regarding the secondary electro-acoustic channel. The core of this analysis is based on the root locus theory. The general rules for constructing the root locus plot of the adaptation process are derived by obtaining root locus parameters, including start points, end points, asymptote lines, and breakaway points. The conducted analysis leads to the derivation of a general upper-bound for the adaptation step-size beyond which the mean weight vector of the active noise controller becomes unstable. Also, this analysis yields the optimum step-size for which the adaptive active noise controller has its fastest dynamic performance. The proposed upper-bound and optimum values apply to general secondary electro-acoustic channels, unlike the commonly used ones which apply to only pure delay channels. The results are found to agree very well with those obtained from numerical analyses and computer simulation experiments.

  7. Structural sensing of interior sound for active control of noise in structural-acoustic cavities.

    Science.gov (United States)

    Bagha, Ashok K; Modak, S V

    2015-07-01

    This paper proposes a method for structural sensing of acoustic potential energy for active control of noise in a structural-acoustic cavity. The sensing strategy aims at global control and works with a fewer number of sensors. It is based on the established concept of radiation modes and hence does not add too many states to the order of the system. Acoustic potential energy is sensed using a combination of a Kalman filter and a frequency weighting filter with the structural response measurements as the inputs. The use of Kalman filter also makes the system robust against measurement noise. The formulation of the strategy is presented using finite element models of the system including that of sensors and actuators so that it can be easily applied to practical systems. The sensing strategy is numerically evaluated in the framework of Linear Quadratic Gaussian based feedback control of interior noise in a rectangular box cavity with a flexible plate with single and multiple pairs of piezoelectric sensor-actuator patches when broadband disturbances act on the plate. The performance is compared with an "acoustic filter" that models the complete transfer function from the structure to the acoustic domain. The sensing performance is also compared with a direct estimation strategy.

  8. Synthesis of optimal digital shapers with arbitrary noise using a genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Regadío, Alberto, E-mail: regadioca@inta.es [Department of Computer Engineering, Space Research Group, Universidad de Alcalá, 28805 Alcalá de Henares (Spain); Electronic Technology Area, Instituto Nacional de Técnica Aeroespacial, 28850 Torrejón de Ardoz (Spain); Sánchez-Prieto, Sebastián, E-mail: sebastian.sanchez@uah.es [Department of Computer Engineering, Space Research Group, Universidad de Alcalá, 28805 Alcalá de Henares (Spain); Tabero, Jesús, E-mail: taberogj@inta.es [Electronic Technology Area, Instituto Nacional de Técnica Aeroespacial, 28850 Torrejón de Ardoz (Spain); González-Castaño, Diego M., E-mail: diego.gonzalez@usc.es [Radiation Physics Laboratory, Universidad de Santiago, 15782 Santiago de Compostela (Spain)

    2015-09-21

    This paper presents structure, design and implementation of a novel technique for determining the optimal shaping, in time-domain, for spectrometers by means of a Genetic Algorithm (GA) specifically designed for this purpose. The proposed algorithm is able to adjust automatically the coefficients for shaping an input signal. Results of this experiment have been compared to a previous simulated annealing algorithm. Finally, its performance and capabilities were tested using simulation data and a real particle detector, as a scintillator.

  9. 汽车车内制动噪声主动控制%Active Noise Control of Automotive Interior Braking Noise

    Institute of Scientific and Technical Information of China (English)

    冯天培; 孙跃东; 王岩松; 刘宁宁

    2016-01-01

    Low-frequency components of braking noise usually dominate the internal noise for some kinds of automobiles. Since the low-frequency noise has high energy, the strong interior noise will reduce the comfort for the passengers. In this paper, the braking noises at the driver’s ears in three different cars travelling at 60km/h in emergency braking were collected and analyzed in time-frequency domain. Results of analysis agreed well with the real ride-perception in a testing car. Then, the active braking noise control simulation using adaptive LMS algorithm was implemented. The results show that the low-frequency noise, especially in the range of 20 Hz-50 Hz, is greatly eliminated.%部分汽车制动时的车内噪声以低频成分占主导。低频噪声能量大,车内较强的低频制动噪声会给乘员带来不舒适的乘坐感受,降低车辆的乘坐舒适性。采集三辆轿车车内60 km/h紧急制动时司机位双耳处噪声信号并进行时-频域分析,分析结果与实车试验乘坐感受一致,接着运用低频噪声消噪效果较好的主动噪声控制方法,结合自适应LMS算法对样本信号进行消噪仿真实验,制动噪声低频部分得到较大的抑制,特别是在20 Hz~50 Hz低频带内,噪声能量衰减明显。

  10. Deciphering the genetic regulatory code using an inverse error control coding framework.

    Energy Technology Data Exchange (ETDEWEB)

    Rintoul, Mark Daniel; May, Elebeoba Eni; Brown, William Michael; Johnston, Anna Marie; Watson, Jean-Paul

    2005-03-01

    We have found that developing a computational framework for reconstructing error control codes for engineered data and ultimately for deciphering genetic regulatory coding sequences is a challenging and uncharted area that will require advances in computational technology for exact solutions. Although exact solutions are desired, computational approaches that yield plausible solutions would be considered sufficient as a proof of concept to the feasibility of reverse engineering error control codes and the possibility of developing a quantitative model for understanding and engineering genetic regulation. Such evidence would help move the idea of reconstructing error control codes for engineered and biological systems from the high risk high payoff realm into the highly probable high payoff domain. Additionally this work will impact biological sensor development and the ability to model and ultimately develop defense mechanisms against bioagents that can be engineered to cause catastrophic damage. Understanding how biological organisms are able to communicate their genetic message efficiently in the presence of noise can improve our current communication protocols, a continuing research interest. Towards this end, project goals include: (1) Develop parameter estimation methods for n for block codes and for n, k, and m for convolutional codes. Use methods to determine error control (EC) code parameters for gene regulatory sequence. (2) Develop an evolutionary computing computational framework for near-optimal solutions to the algebraic code reconstruction problem. Method will be tested on engineered and biological sequences.

  11. Active noise control with fast array recursive least squares filters using a parallel implementation for numerical stability

    NARCIS (Netherlands)

    Berkhoff, A.P.; Ophem, S. van

    2015-01-01

    Noise reduction in feedforward active noise control systems with a rapidly changing primary path requires rapid convergence and fast tracking. This can be accomplished with a fast-array Kalman method which uses an efficient rotation matrix technique to calculate the filter parameters. However, finit

  12. A bulk-controlled ring-VCO with 1/f-noise reduction for frequency ΔΣ modulator

    DEFF Research Database (Denmark)

    Tuan Vu, CAO; Wisland, Dag T.; Lande, Tor Sverre

    The paper introduces a bulk-controlled ring-VCO with a tail transistor utilizing flicker-noise (1/f-noise) reduction techniques for a frequency-based DeltaSigma modulator (FDSM). This VCO converts an analog input voltage to phase information under various bias conditions ranging from sub...

  13. Active noise control with fast array recursive least squares filters using a parallel implementation for numerical stability

    NARCIS (Netherlands)

    Berkhoff, Arthur P.; van Ophem, S.; Glorieux, C.

    2015-01-01

    Significant noise reduction in feedforward active noise control systems with a rapidly changing primary path requires rapid convergence and fast tracking performance. This can be accomplished with a fast-array Kalman method which uses an efficient rotation matrix technique to calculate the filter

  14. Active noise control with fast array recursive least squares filters using a parallel implementation for numerical stability

    NARCIS (Netherlands)

    Berkhoff, A.P.; Ophem, S. van

    2015-01-01

    Noise reduction in feedforward active noise control systems with a rapidly changing primary path requires rapid convergence and fast tracking. This can be accomplished with a fast-array Kalman method which uses an efficient rotation matrix technique to calculate the filter parameters. However,

  15. High critical temperature superconducting quantum interference device magnetometer with feedforward active noise control system for magnetocardiographic measurement in unshielded circumstances

    Energy Technology Data Exchange (ETDEWEB)

    Mizukami, A.; Nishiura, H.; Sakuta, K.; Kobayashi, T

    2003-10-15

    Magnetocardiographic (MCG) measurement in unshielded environment for practical use requires to suppress the environmental magnetic noise. We have designed the high critical temperature superconducting quantum interference device (High-T{sub c} SQUID) magnetometer with feedforward active noise control (ANC) system to suppress the environmental magnetic noise. The compensatory system consisted of two SQUID magnetometers, a digital signal processor (DSP) and the coil wound around the input magnetometer. The DSP calculated the output data to minimize the environmental noise from the input and reference date and then the coil generated the magnetic field to cancel the environmental noise. This method achieved the effective noise attenuation below 100 Hz about 40 dB. MCG measurement in unshielded environment was also performed.

  16. OPTIMAL-TUNING OF PID CONTROLLER GAINS USING GENETIC ALGORITHMS

    Directory of Open Access Journals (Sweden)

    Ömer GÜNDOĞDU

    2005-01-01

    Full Text Available This paper presents a method of optimum parameter tuning of a PID controller to be used in driving an inertial load by a dc motor thorough a gearbox. Specifically, the method uses genetic algorithms to determine the optimum controller parameters by minimizing the sum of the integral of the squared error and the squared controller output deviated from its steady state value. The paper suggests the use of Ziegler-Nichols settings to form the intervals for the controller parameters in which the population to be formed. The results obtained from the genetic algorithms are compared with the ones from Ziegler-Nichols in both figures and tabular form. Comparatively better results are obtained in the genetic algorithm case.

  17. Design of active noise and vibration control for car oil pans using numerical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ringwelski, S; Luft, T.; Gabbert, U. [Otto-von-Guericke Univ. of Magdeburg (Germany). Dept. of Mechanical Engineering

    2009-07-01

    Increasing attention has been paid to vibration and noise control in automotive engineering because it contributes to comfort, efficiency and safety. Since the oil pan is a major contributor to power train noise, a study was conducted to design a smart car oil pan with surface-attached piezoelectric actuators for active vibration and noise reduction. Efficient and reliable simulation tools were used along with a virtual model that predicted the performance of the smart oil pan and enabled engineers to compare different sensor-actuator configurations and control algorithms. The model included the passive oil pan, exterior sound field, sensors, actuators and a control algorithm. Due to the interactions between these subsystems the simulation was a coupled multi-field problem involving the fields of structural dynamics, electromechanics, acoustics and control theory. Numerical methods such as the finite element method (FEM) and the boundary element method (BEM) were used to accurately model the structural and acoustic response when actuator forces were applied to the structure. MATLAB software was used to model the oil pan and the piezoelectric actuators. Uncoupled structural FE simulations of the oil pan were first presented to identify the most dominant mode shapes within a frequency range of 0-1200 Hz. The definition of the actuator positions was then performed. A velocity feedback control algorithm was implemented into the electromechanical FE analysis to provide a closed loop model. With velocity feedback control, attenuations of about 24 dB in vibration level and 16 dB in sound pressure level at the resonance frequencies of the most dominant modes of the smart oil pan were achieved. Experimental results were found to be in good agreement with numerical results. 7 refs., 6 figs.

  18. Numerical simulation and experimental validation of the control mechanism of noise and vibration active control devices by piezoceramic transducers

    Energy Technology Data Exchange (ETDEWEB)

    Miccoli, G. [National Research Council, Cassana (Italy). Earth-Moving Machinery and Off-Road Vehicles Inst.; Concilio, A. [C.I.R.A., Capua (Italy)

    1994-12-31

    The applications till now carried out by this research group in order to actively control structural noise and vibration levels by means of piezoceramic transducers refer to the use and test of simple analogic SISO control systems. These devices work each connected to a couple of sensor/actuator collocated piezoceramics and implement positive feedback control law with self-adaptive variable gain. In order to improve the performance of these control systems and get more insight into their operation, the simulation of the control mechanism itself has been carried out by means of: (a) theoretical analysis of phase and gain characteristics of these devices using finite element (FEM) code (MSC/NASTRAN); (b) experimental validation of the analytical results by means of an on purpose built SISO variable phase and gain control system. On the basis of the experimental results obtained the electronic components of this first SISO control system have been optimized in order to reduce possible instability phenomena.

  19. Synchronization for unified chaotic systems with noise-disturbed parameters by sliding mode control

    Institute of Scientific and Technical Information of China (English)

    HEN Yuan; ZHANG Qun-jiao

    2008-01-01

    In this paper,the active sliding mode control method is utilized to study the synchronization for unified chaotic systems with noise-disturbed parameters.Some novet results about the suitable sliding mode surface and the synchronizing control law are derived,which avoid the mistake inequality sC△Ae≤‖△A‖∞ sCe in Ref.[Chaos,Solitons & Fractals 21(2004) 1249].Finally,numerical sireulations are included to show the correctness of our results and the effectiveness of the developed approach.

  20. ROBUST CONSENSUS AND SOFT CONTROL OF MULTI-AGENT SYSTEMS WITH NOISES

    Institute of Scientific and Technical Information of China (English)

    Lin WANG; Lei GUO

    2008-01-01

    This paper considers the problem of robust consensus for a basic class of multi-agent systems with bounded disturbances and with directed information flow. A necessary and sufficient condition on the robust consensus is first presented, which is then applied to the analysis, control and decision making problems in the noise environments. In particular, the authors show how a soft control technique will synchronize a group of autonomous mobile agents without changing the existing local rule of interactions, and without assuming any kind of connectivity conditions on the system trajectories.

  1. Kalman filter based fault diagnosis of networked control system with white noise

    Institute of Scientific and Technical Information of China (English)

    Yanwei WANG; Ying ZHENG

    2005-01-01

    The networked control system NCS is regarded as a sampled control system with output time-variant delay.White noise is considered in the model construction of NCS.By using the Kalman filter theory to compute the filter parameters,a Kalman filter is constructed for this NCS.By comparing the output of the filter and the practical system,a residual is generated to diagnose the sensor faults and the actuator faults.Finally,an example is given to show the feasibility of the approach.

  2. Novel Algorithm for Active Noise Control Systems Based on Frequency Selective Filters

    Institute of Scientific and Technical Information of China (English)

    Hong-liang ZHAO

    2010-01-01

    A novel algorithm for active noise control systems based on frequency selective filters (FSFANC)is presented in the paper.The FSFANC aims at the m lti-tonal noise attenuation problem.One FSFANC system copes with one of the tonal components,and several FSFANC systems can nun independently in parallel to cancel the selected multiple tones.The proposed algorithm adopts a simple structrue with only two coefficients that can be explained as the real and imaginary parts of the structure to modelthesecondary path,and estimates the secondary path by injecting sinusoidal identification signals.Theoretical analysis and laboratory experiments show that the proposed algorithm possesses some advantages,such as simpler stricture,less computational burden,greater stability,and fast canverging speed.

  3. Genetic control of midbrain dopamine systems

    NARCIS (Netherlands)

    Smits, Simone Marije

    2005-01-01

    The midbrain dopaminergic (mDA) system, organized in the substantia nigra compacta (SNc) and ventral tegmental area (VTA), regulates movement control and behavior as highlighted by the dramatic consequences of its degeneration in Parkinson’s disease and its implications in psychiatric and affective

  4. Genetic control of flowering time in rice: integration of Mendelian genetics and genomics.

    Science.gov (United States)

    Hori, Kiyosumi; Matsubara, Kazuki; Yano, Masahiro

    2016-12-01

    Integration of previous Mendelian genetic analyses and recent molecular genomics approaches, such as linkage mapping and QTL cloning, dramatically strengthened our current understanding of genetic control of rice flowering time. Flowering time is one of the most important agronomic traits for seed production in rice (Oryza sativa L.). It is controlled mainly by genes associated with photoperiod sensitivity, particularly in short-day plants such as rice. Since the early twentieth century, rice breeders and researchers have been interested in elucidating the genetic basis of flowering time because its modification is important for regional adaptation and yield optimization. Although flowering time is a complex trait controlled by many quantitative trait loci (QTLs), classical genetic studies have shown that many associated genes are inherited in accordance with Mendelian laws. Decoding the rice genome sequence opened a new era in understanding the genetic control of flowering time on the basis of genome-wide mapping and gene cloning. Heading date 1 (Hd1) was the first flowering time QTL to be isolated using natural variation in rice. Recent accumulation of information on rice genome has facilitated the cloning of other QTLs, including those with minor effects on flowering time. This information has allowed us to rediscover some of the flowering genes that were identified by classical Mendelian genetics. The genes characterized so far, including Hd1, have been assigned to specific photoperiod pathways. In this review, we provide an overview of the studies that led to an in-depth understanding of the genetic control of flowering time in rice, and of the current state of improving and fine-tuning this trait for rice breeding.

  5. Noise Response Data Reveal Novel Controllability Gramian for Nonlinear Network Dynamics.

    Science.gov (United States)

    Kashima, Kenji

    2016-06-06

    Control of nonlinear large-scale dynamical networks, e.g., collective behavior of agents interacting via a scale-free connection topology, is a central problem in many scientific and engineering fields. For the linear version of this problem, the so-called controllability Gramian has played an important role to quantify how effectively the dynamical states are reachable by a suitable driving input. In this paper, we first extend the notion of the controllability Gramian to nonlinear dynamics in terms of the Gibbs distribution. Next, we show that, when the networks are open to environmental noise, the newly defined Gramian is equal to the covariance matrix associated with randomly excited, but uncontrolled, dynamical state trajectories. This fact theoretically justifies a simple Monte Carlo simulation that can extract effectively controllable subdynamics in nonlinear complex networks. In addition, the result provides a novel insight into the relationship between controllability and statistical mechanics.

  6. Genetic dissection of cardiac growth control pathways

    Science.gov (United States)

    MacLellan, W. R.; Schneider, M. D.

    2000-01-01

    Cardiac muscle cells exhibit two related but distinct modes of growth that are highly regulated during development and disease. Cardiac myocytes rapidly proliferate during fetal life but exit the cell cycle irreversibly soon after birth, following which the predominant form of growth shifts from hyperplastic to hypertrophic. Much research has focused on identifying the candidate mitogens, hypertrophic agonists, and signaling pathways that mediate these processes in isolated cells. What drives the proliferative growth of embryonic myocardium in vivo and the mechanisms by which adult cardiac myocytes hypertrophy in vivo are less clear. Efforts to answer these questions have benefited from rapid progress made in techniques to manipulate the murine genome. Complementary technologies for gain- and loss-of-function now permit a mutational analysis of these growth control pathways in vivo in the intact heart. These studies have confirmed the importance of suspected pathways, have implicated unexpected pathways as well, and have led to new paradigms for the control of cardiac growth.

  7. Global-mode based linear feedback control of a supersonic jet for noise reduction

    Science.gov (United States)

    Natarajan, Mahesh; Freund, Jonathan; Bodony, Daniel

    2016-11-01

    The loudest source of high-speed jet noise appears to be describable by unsteady wavepackets that resemble instabilities. We seek to reduce their acoustic impact with a control strategy that uses global modes to model their dynamics and structural sensitivity of the linearized compressible Navier-Stokes operator to identify an effective linear feedback control. For a case with co-located actuators and sensors adjacent the nozzle, we demonstrate the method on an axisymmetric Mach 1.5 jet. Direct numerical simulations using this control show significant noise reduction. Eigenanalysis of the controlled mean flows reveal fundamental changes in the spectrum at frequencies lower than that used by the control, with the quieter flows having unstable eigenvalues that correspond to eigenfunctions without significant support in the acoustic field. A specific trend is observed in the mean flow quantities as the flow becomes quieter, with changes in the mean flow becoming significant only further downstream of the nozzle exit. The quieter flows also have a stable shock-cell structure that extends further downstream. A phase plot of the POD coefficients for the flows show that the quieter flows are more regular in time. Funded by the Office of Naval Research.

  8. Feedback Control of Turbulent Shear Flows by Genetic Programming

    CERN Document Server

    Duriez, Thomas; von Krbek, Kai; Bonnet, Jean-Paul; Cordier, Laurent; Noack, Bernd R; Segond, Marc; Abel, Markus; Gautier, Nicolas; Aider, Jean-Luc; Raibaudo, Cedric; Cuvier, Christophe; Stanislas, Michel; Debien, Antoine; Mazellier, Nicolas; Kourta, Azeddine; Brunton, Steven L

    2015-01-01

    Turbulent shear flows have triggered fundamental research in nonlinear dynamics, like transition scenarios, pattern formation and dynamical modeling. In particular, the control of nonlinear dynamics is subject of research since decades. In this publication, actuated turbulent shear flows serve as test-bed for a nonlinear feedback control strategy which can optimize an arbitrary cost function in an automatic self-learning manner. This is facilitated by genetic programming providing an analytically treatable control law. Unlike control based on PID laws or neural networks, no structure of the control law needs to be specified in advance. The strategy is first applied to low-dimensional dynamical systems featuring aspects of turbulence and for which linear control methods fail. This includes stabilizing an unstable fixed point of a nonlinearly coupled oscillator model and maximizing mixing, i.e.\\ the Lyapunov exponent, for forced Lorenz equations. For the first time, we demonstrate the applicability of genetic p...

  9. Adaptive process control using fuzzy logic and genetic algorithms

    Science.gov (United States)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  10. Optimization of PID Controllers Using Ant Colony and Genetic Algorithms

    CERN Document Server

    Ünal, Muhammet; Topuz, Vedat; Erdal, Hasan

    2013-01-01

    Artificial neural networks, genetic algorithms and the ant colony optimization algorithm have become a highly effective tool for solving hard optimization problems. As their popularity has increased, applications of these algorithms have grown in more than equal measure. While many of the books available on these subjects only provide a cursory discussion of theory, the present book gives special emphasis to the theoretical background that is behind these algorithms and their applications. Moreover, this book introduces a novel real time control algorithm, that uses genetic algorithm and ant colony optimization algorithms for optimizing PID controller parameters. In general, the present book represents a solid survey on artificial neural networks, genetic algorithms and the ant colony optimization algorithm and introduces novel practical elements related to the application of these methods to  process system control.

  11. 多通道有源噪声控制系统设计%Reduction of Noise in Chinese Y-7 Aircraft Using Active Noise Control (ANC)

    Institute of Scientific and Technical Information of China (English)

    吴亚锋; 黎中伟; 任辉; 李江红

    2001-01-01

    Active noise control, as applied to engineering projects, began around 1990. We designed a multi-channel active noise control (ANC) system for reducing the noise in front cabin in Chinese Y-7 propeller driven aircraft. In ANC applications, in order to reduce effectively the noise level in a large space, we have to match at any time the generated secondary sound field with the original primary sound field, so that a percentage of the entire primary noise field is effectively cancelled out by the entire secondary noise field. Via analyzing ANC time sequences, we developed a multi-channel adaptive control system that can simultaneously detect multiple error inputs and produce multiple canceling outputs. Our system consists of PC as main controller, TMS320-C30 DSP chip as slave processor, 16 A/D input channels and 8 D/A output channels. Applying our system to Chinese Y-7 aircraft appears to be successful; test results show that noise level of Y-7′s blade pass frequency (BPF) and its secondary harmonic frequency (2BPF) are attenuated by 13.4 dB and 5.5 dB respectively. Work remains to be done before our system becomes a part of Y-7 aircraft in actual flights.%基于实时数字信号处理系统理论,讨论有源噪声控制系统的电子设计方法。通过对控制时序的分析,设计了一实时多通道自适应控制系统,该系统以PC为主控机,以DSP TMS320-C30为从处理机,具有多路传感器同时输入和扬声器同时输出通道。该系统被应用于国产某型螺桨飞机的舱内噪声控制,取得了满意的降噪效果。

  12. Improvement of vibration and noise by applying analysis technology. Development of active control technique of engine noise in a car cabin. Kaiseki gijutsu wo oyoshita shindo-soon no kaizen. Shashitsunai engine soon akutibu seigyo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, H.; Nakao, N.; Butsuen, T. (Matsuda Motor Corp., Hiroshima (Japan). Technology Research Inst.)

    1994-06-01

    It is difficult to reduce engine noise which is principal noise in a car cabin without producing an adverse effect on low cost production. Active noise control technique (ANC) has been developed to reduce engine noise compatible with low cost production. This paper discusses its control algorithm and the system configuration and presents experimental results. The filtered-x least mean square method is a well-known ANC algorithm, however, it often requires large amount of calculation exceeding the present capacity of a digital signal processor. An effective ANC algorithm is developed by the use of the repetitiveness of the engine noise. This paper describes the basic theory of the control algorithm, the extension to a multiple input and output system, the system configuration and experimental results. A noise control system with three microphones is designed with consideration of the spatial distribution of the noise and reduces noise in the whole cabin by 8dB(A) in the largest case. Active noise control technique is applicable to many areas and can be used for the reduction of noise and vibration other than engine noise. 5 refs., 7 figs., 1 tab.

  13. Genetic control of cuticular wax compounds in Eucalyptus globulus.

    Science.gov (United States)

    Gosney, Benjamin J; Potts, Brad M; O'Reilly-Wapstra, Julianne M; Vaillancourt, René E; Fitzgerald, Hugh; Davies, Noel W; Freeman, Jules S

    2016-01-01

    Plant cuticular wax compounds perform functions that are essential for the survival of terrestrial plants. Despite their importance, the genetic control of these compounds is poorly understood outside of model taxa. Here we investigate the genetic basis of variation in cuticular compounds in Eucalyptus globulus using quantitative genetic and quantitative trait loci (QTL) analyses. Quantitative genetic analysis was conducted using 246 open-pollinated progeny from 13 native sub-races throughout the geographic range. QTL analysis was conducted using 112 clonally replicated progeny from an outcross F2 population. Nine compounds exhibited significant genetic variation among sub-races with three exhibiting signals of diversifying selection. Fifty-two QTL were found with co-location of QTL for related compounds commonly observed. Notable among these was the QTL for five wax esters, which co-located with a gene from the KCS family, previously implicated in the biosynthesis of cuticular waxes in Arabidopsis. In combination, the QTL and quantitative genetic analyses suggest the variation and differentiation in cuticular wax compounds within E. globulus has a complex genetic origin. Sub-races exhibited independent latitudinal and longitudinal differentiation in cuticular wax compounds, likely reflecting processes such as historic gene flow and diversifying selection acting upon genes that have diverse functions in distinct biochemical pathways.

  14. Comparison of various decentralised structural and cavity feedback control strategies for transmitted noise reduction through a double panel structure

    Science.gov (United States)

    Ho, Jen-Hsuan; Berkhoff, Arthur

    2014-03-01

    This paper compares various decentralised control strategies, including structural and acoustic actuator-sensor configuration designs, to reduce noise transmission through a double panel structure. The comparison is based on identical control stability indexes. The double panel structure consists of two panels with air in between and offers the advantages of low sound transmission at high frequencies, low heat transmission, and low weight. The double panel structure is widely used, such as in the aerospace and automotive industries. Nevertheless, the resonance of the cavity and the poor sound transmission loss at low frequencies limit the double panel's noise control performance. Applying active structural acoustic control to the panels or active noise control to the cavity has been discussed in many papers. In this paper, the resonances of the panels and the cavity are considered simultaneously to further reduce the transmitted noise through an existing double panel structure. A structural-acoustic coupled model is developed to investigate and compare various structural control and cavity control methods. Numerical analysis and real-time control results show that structural control should be applied to both panels. Three types of cavity control sources are presented and compared. The results indicate that the largest noise reduction is obtained with cavity control by loudspeakers modified to operate as incident pressure sources.

  15. A Control Source Structure of Single Loudspeaker and Rear Sound Interference for Inexpensive Active Noise Control

    Directory of Open Access Journals (Sweden)

    Yasuhide Kobayashi

    2010-01-01

    phase-lag is imposed by the Swinbanks' source and the rear sound interference. Thirdly, effects on control performances of control source structures are examined by control experiments with robust controllers.

  16. Simulation and stability analysis of supersonic impinging jet noise with microjet control

    Science.gov (United States)

    Hildebrand, Nathaniel; Nichols, Joseph W.

    2014-11-01

    A model for an ideally expanded 1.5 Mach turbulent jet impinging on a flat plate using unstructured high-fidelity large eddy simulations (LES) and hydrodynamic stability analysis is presented. Note the LES configuration conforms exactly to experiments performed at the STOVL supersonic jet facility of the Florida Center for Advanced Aero-Propulsion allowing validation against experimental measurements. The LES are repeated for different nozzle-wall separation distances as well as with and without the addition of sixteen microjets positioned uniformly around the nozzle lip. For some nozzle-wall distances, but not all, the microjets result in substantial noise reduction. Observations of substantial noise reduction are associated with a relative absence of large-scale coherent vortices in the jet shear layer. To better understand and predict the effectiveness of microjet noise control, the application of global stability analysis about LES mean fields is used to extract axisymmetric and helical instability modes connected to the complex interplay between the coherent vortices, shocks, and acoustic feedback. We gratefully acknowledge computational resources provided by the Argonne Leadership Computing Facility.

  17. Hanbury-Brown Twiss noise correlation with time controlled quasi-particles in ballistic quantum conductors

    Science.gov (United States)

    Glattli, D. C.; Roulleau, P.

    2016-02-01

    We study the Hanbury Brown and Twiss correlation of electronic quasi-particles injected in a quantum conductor using current noise correlations and we experimentally address the effect of finite temperature. By controlling the relative time of injection of two streams of electrons it is possible to probe the fermionic antibunching, performing the electron analog of the optical Hong Ou Mandel (HOM) experiment. The electrons are injected using voltage pulses with either sine-wave or Lorentzian shape. In the latter case, we propose a set of orthogonal wavefunctions, describing periodic trains of multiply charged electron pulses, which give a simple interpretation to the HOM shot noise. The effect of temperature is then discussed and experimentally investigated. We observe a perfect electron anti-bunching for a large range of temperature, showing that, as recently predicted, thermal mixing of the states does not affect anti-bunching properties, a feature qualitatively different from dephasing. For single charge Lorentzian pulses, we provide experimental evidence of the prediction that the HOM shot noise variation versus the emission time delay is remarkably independent of the temperature.

  18. Modeling of Broadband Liners Applied to the Advanced Noise Control Fan

    Science.gov (United States)

    Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.

    2015-01-01

    The broadband component of fan noise has grown in relevance with an increase in bypass ratio and incorporation of advanced fan designs. Therefore, while the attenuation of fan tones remains a major factor in engine nacelle acoustic liner design, the simultaneous reduction of broadband fan noise levels has received increased interest. As such, a previous investigation focused on improvements to an established broadband acoustic liner optimization process using the Advanced Noise Control Fan (ANCF) rig as a demonstrator. Constant-depth, double-degree of freedom and variable-depth, multi-degree of freedom liner designs were carried through design, fabrication, and testing. This paper addresses a number of areas for further research identified in the initial assessment of the ANCF study. Specifically, incident source specification and uncertainty in some aspects of the predicted liner impedances are addressed. This information is incorporated in updated predictions of the liner performance and comparisons with measurement are greatly improved. Results illustrate the value of the design process in concurrently evaluating the relative costs/benefits of various liner designs. This study also provides further confidence in the integrated use of duct acoustic propagation/radiation and liner modeling tools in the design and evaluation of novel broadband liner concepts for complex engine configurations.

  19. Noise Temperature Characteristics and Gain-control of Avalanche Photodiodes for Laser Radar

    Institute of Scientific and Technical Information of China (English)

    CAI Xi-ping; SHANG Hong-Bo; BAI Ji-yuan; YANG Shuang; WANG Li-na

    2008-01-01

    Avalanche photodiodes(APDs) are promising light sensors with high quantum efficiency and low noise. It has been extensively used in radiation detection, laser radar and other weak signal detection fields. Unlike other photodiodes, APD is a very sensitive light detector with very high internal gain. The basic theory shows that the gain of APD is related to the temperature. The internal gain fluctuates with the variation of temperature. Investigated was the influence of the variation of the gain induced by the fluctuation of temperature on the output from APD for a very weak laser pulse input in laser radar. An active reverse-biased voltage compensation method is used to stabilize the gain of APD. An APD model is setup to simulate the detection of light pulse signal. The avalanche process, various noises and temperature's effect are all included in the model. Our results show that for the detection of weak light signal such as in laser radar, even a very small fluctuation of temperature could cause a great effect on APD's gain. The results show that the signal-to-noise ratio of the APD's output could be improved effectively with the active gain-control system.

  20. Genetic control of anastomosis in Podospora anserina.

    Science.gov (United States)

    Tong, Laetitia Chan Ho; Silar, Philippe; Lalucque, Hervé

    2014-09-01

    We developed a new microscopy procedure to study anastomoses in the model ascomycete Podospora anserina and compared it with the previous method involving the formation of balanced heterokaryons. Both methods showed a good correlation. Heterokaryon formation was less quantifiable, but enabled to observe very rare events. Microscopic analysis evidenced that anastomoses were greatly influence by growth conditions and were severely impaired in the IDC mutants of the PaMpk1, PaMpk2, IDC1 and PaNox1 pathways. Yet some mutants readily formed heterokaryons, albeit with a delay when compared to the wild type. We also identified IDC(821), a new mutant presenting a phenotype similar to the other IDC mutants, including lack of anastomosis. Complete genome sequencing revealed that IDC(821) was affected in the orthologue of the Neurospora crassa So gene known to control anastomosis in several other ascomycetes.

  1. Environmental Control Of A Genetic Process

    Science.gov (United States)

    Khosla, Chaitan; Bailey, James E.

    1991-01-01

    E. coli bacteria altered to contain DNA sequence encoding production of hemoglobin made to produce hemoglobin at rates decreasing with increases in concentration of oxygen in culture media. Represents amplification of part of method described in "Cloned Hemoglobin Genes Enhance Growth Of Cells" (NPO-17517). Manipulation of promoter/regulator DNA sequences opens promising new subfield of recombinant-DNA technology for environmental control of expression of selected DNA sequences. New recombinant-DNA fusion gene products, expression vectors, and nucleotide-base sequences will emerge. Likely applications include such aerobic processes as manufacture of cloned proteins and synthesis of metabolites, production of chemicals by fermentation, enzymatic degradation, treatment of wastes, brewing, and variety of oxidative chemical reactions.

  2. H2 control of discrete-time periodic systems with Markovian jumps and multiplicative noise

    Science.gov (United States)

    Ma, Hongji; Jia, Yingmin

    2013-10-01

    This paper addresses the problem of optimal and robust H2 control for discrete-time periodic systems with Markov jump parameters and multiplicative noise. To analyse the system performance in the presence of exogenous random disturbance, an H2 norm is firstly established on the basis of Gramian matrices. Further, under the condition of exact observability, a necessary and sufficient condition is presented for the solvability of H2 optimal control problem by means of a generalised Riccati equation. When the transition probabilities of jump parameter are incompletely measurable, an H2-guaranteed cost norm is exploited and the robust H2 controller is designed through a linear matrix inequality (LMI) optimisation approach. An example of a networked control system is supplied to illustrate the proposed results.

  3. Active control of interior noise within an irregular enclosure under the cooperation of point force and incident wave

    Institute of Scientific and Technical Information of China (English)

    GENG Houcai; RAO Zhushi; HAN Zushun; ZHANG Hualiang

    2002-01-01

    A new modeling method is developed for the active control of interior noise within an irregular three-dimensional cavity under the cooperation of point force and incident wave. The validity of this method is verified by a regular cuboid enclosure. With global and local per-formance functions, good results are obtained in the active control of noise within the irregular enclosure according to numerical investigations.

  4. Human genetic variation: new challenges and opportunities for doping control.

    Science.gov (United States)

    Schneider, Angela J; Fedoruk, Matthew N; Rupert, Jim L

    2012-01-01

    Sport celebrates differences in competitors that lead to the often razor-thin margins between victory and defeat. The source of this variation is the interaction between the environment in which the athletes develop and compete and their genetic make-up. However, a darker side of sports may also be genetically influenced: some anti-doping tests are affected by the athlete's genotype. Genetic variation is an issue that anti-doping authorities must address as more is learned about the interaction between genotype and the responses to prohibited practices. To differentiate between naturally occurring deviations in indirect blood and urine markers from those potentially caused by doping, the "biological-passport" program uses intra-individual variability rather than population values to establish an athlete's expected physiological range. The next step in "personalized" doping control may be the inclusion of genetic data, both for the purposes of documenting an athlete's responses to doping agents and doping-control assays as well facilitating athlete and sample identification. Such applications could benefit "clean" athletes but will come at the expense of risks to privacy. This article reviews the instances where genetics has intersected with doping control, and briefly discusses the potential role, and ethical implications, of genotyping in the struggle to eliminate illicit ergogenic practices.

  5. Intelligent Controller Design for DC Motor Speed Control based on Fuzzy Logic-Genetic Algorithms Optimization

    Directory of Open Access Journals (Sweden)

    Boumediene ALLAOUA

    2008-12-01

    Full Text Available In this paper, an intelligent controller of the DC (Direct current Motor drive is designed using fuzzy logic-genetic algorithms optimization. First, a controller is designed according to fuzzy rules such that the systems are fundamentally robust. To obtain the globally optimal values, parameters of the fuzzy controller are improved by genetic algorithms optimization model. Computer MATLAB work space demonstrate that the fuzzy controller associated to the genetic algorithms approach became very strong, gives a very good results and possesses good robustness.

  6. GENETIC ALGORITHM BASED PARAMETER TUNING OF PID CONTROLLER FOR COMPOSITION CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Bhawna Tandon

    2011-08-01

    Full Text Available A Composition control system is discussed in this paper in which the PID controller is tuned using Genetic Algorithm & Ziegler-Nichols Tuning Criteria. Tuning methods for PID controllers are very importantfor the process industries. Traditional methods such as Ziegler-Nichols method often do not provide adequate tuning. Genetic Algorithm (GA as an intelligent approach has also been widely used to tune the parameters of PID. Genetic algorithms are used to create an objective function that can evaluate the optimum PID gains based on the controlled systems overall error.

  7. Active control of structure-borne noise. Kotaion no nodo seigyoho ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, N. (Mechanical Engineering Laboratory, Tsukuba (Japan))

    1992-06-01

    This paper describes the active control of structure-borne noise emitted from a vibrating plate. It also presents the mechanism of suppression of a rigid plate vibration from the viewpoint of a feedforward control method. First, in order to control the rigid plate vibration, two kinds of vibration control methods are proposed. One is of a progressive wave type and the other is of a standing wave type. Then, the characteristics of the sound radiated from the controlled plate are made clear. Consequently. it was shown that there existed two types in radiation efficiency, i.e., a peak type and a notch type. For the peak type, the effect of standing wave type control has higher radiation efficiency with the control than without the control, and conversely for the notch type, it has higher one without the control than with the control. Furthermore, a wave visualization system has been constructed. This system made it possible to observe progressive waves propagating on the rigid plate. 11 refs., 14 figs.

  8. Random genetic drift, natural selection, and noise in human cranial evolution.

    Science.gov (United States)

    Roseman, Charles C

    2016-08-01

    This study assesses the extent to which relationships among groups complicate comparative studies of adaptation in recent human cranial variation and the extent to which departures from neutral additive models of evolution hinder the reconstruction of population relationships among groups using cranial morphology. Using a maximum likelihood evolutionary model fitting approach and a mixed population genomic and cranial data set, I evaluate the relative fits of several widely used models of human cranial evolution. Moreover, I compare the goodness of fit of models of cranial evolution constrained by genomic variation to test hypotheses about population specific departures from neutrality. Models from population genomics are much better fits to cranial variation than are traditional models from comparative human biology. There is not enough evolutionary information in the cranium to reconstruct much of recent human evolution but the influence of population history on cranial variation is strong enough to cause comparative studies of adaptation serious difficulties. Deviations from a model of random genetic drift along a tree-like population history show the importance of environmental effects, gene flow, and/or natural selection on human cranial variation. Moreover, there is a strong signal of the effect of natural selection or an environmental factor on a group of humans from Siberia. The evolution of the human cranium is complex and no one evolutionary process has prevailed at the expense of all others. A holistic unification of phenome, genome, and environmental context, gives us a strong point of purchase on these problems, which is unavailable to any one traditional approach alone. Am J Phys Anthropol 160:582-592, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Proximal versus distal control of two-joint planar reaching movements in the presence of neuromuscular noise.

    Science.gov (United States)

    Nguyen, Hung P; Dingwell, Jonathan B

    2012-06-01

    Determining how the human nervous system contends with neuro-motor noise is vital to understanding how humans achieve accurate goal-directed movements. Experimentally, people learning skilled tasks tend to reduce variability in distal joint movements more than in proximal joint movements. This suggests that they might be imposing greater control over distal joints than proximal joints. However, the reasons for this remain unclear, largely because it is not experimentally possible to directly manipulate either the noise or the control at each joint independently. Therefore, this study used a 2 degree-of-freedom torque driven arm model to determine how different combinations of noise and/or control independently applied at each joint affected the reaching accuracy and the total work required to make the movement. Signal-dependent noise was simultaneously and independently added to the shoulder and elbow torques to induce endpoint errors during planar reaching. Feedback control was then applied, independently and jointly, at each joint to reduce endpoint error due to the added neuromuscular noise. Movement direction and the inertia distribution along the arm were varied to quantify how these biomechanical variations affected the system performance. Endpoint error and total net work were computed as dependent measures. When each joint was independently subjected to noise in the absence of control, endpoint errors were more sensitive to distal (elbow) noise than to proximal (shoulder) noise for nearly all combinations of reaching direction and inertia ratio. The effects of distal noise on endpoint errors were more pronounced when inertia was distributed more toward the forearm. In contrast, the total net work decreased as mass was shifted to the upper arm for reaching movements in all directions. When noise was present at both joints and joint control was implemented, controlling the distal joint alone reduced endpoint errors more than controlling the proximal joint

  10. Rhizobial exopolysaccharides: genetic control and symbiotic functions

    Directory of Open Access Journals (Sweden)

    Mazur Andrzej

    2006-02-01

    Full Text Available Abstract Specific complex interactions between soil bacteria belonging to Rhizobium, Sinorhizobium, Mesorhizobium, Phylorhizobium, Bradyrhizobium and Azorhizobium commonly known as rhizobia, and their host leguminous plants result in development of root nodules. Nodules are new organs that consist mainly of plant cells infected with bacteroids that provide the host plant with fixed nitrogen. Proper nodule development requires the synthesis and perception of signal molecules such as lipochitooligosaccharides, called Nod factors that are important for induction of nodule development. Bacterial surface polysaccharides are also crucial for establishment of successful symbiosis with legumes. Sugar polymers of rhizobia are composed of a number of different polysaccharides, such as lipopolysaccharides (LPS, capsular polysaccharides (CPS or K-antigens, neutral β-1, 2-glucans and acidic extracellular polysaccharides (EPS. Despite extensive research, the molecular function of the surface polysaccharides in symbiosis remains unclear. This review focuses on exopolysaccharides that are especially important for the invasion that leads to formation of indetermined (with persistent meristem type of nodules on legumes such as clover, vetch, peas or alfalfa. The significance of EPS synthesis in symbiotic interactions of Rhizobium leguminosarum with clover is especially noticed. Accumulating data suggest that exopolysaccharides may be involved in invasion and nodule development, bacterial release from infection threads, bacteroid development, suppression of plant defense response and protection against plant antimicrobial compounds. Rhizobial exopolysaccharides are species-specific heteropolysaccharide polymers composed of common sugars that are substituted with non-carbohydrate residues. Synthesis of repeating units of exopolysaccharide, their modification, polymerization and export to the cell surface is controlled by clusters of genes, named exo/exs, exp or

  11. A secondary source configuration for control of a ventilation fan noise in ducts

    OpenAIRE

    Čudina, Mirko; Prezelj, Jurij

    2015-01-01

    The main noise source in heating, ventilation, and air conditioning systems is usually a ventilating fan. Noise, generated by the ventilating fan is transmitted through the duct into the living and working environment. A typical fan noise spectrum consists of a broadband noise, which is superimposed with pure tones. Different methods are available to reduce a transmission of such noise from the ventilating fan into the living and working environment. In this article it is demonstrated how a f...

  12. Design of PID Controller Simulator based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Fahri VATANSEVER

    2013-08-01

    Full Text Available PID (Proportional Integral and Derivative controllers take an important place in the field of system controlling. Various methods such as Ziegler-Nichols, Cohen-Coon, Chien Hrones Reswick (CHR and Wang-Juang-Chan are available for the design of such controllers benefiting from the system time and frequency domain data. These controllers are in compliance with system properties under certain criteria suitable to the system. Genetic algorithms have become widely used in control system applications in parallel to the advances in the field of computer and artificial intelligence. In this study, PID controller designs have been carried out by means of classical methods and genetic algorithms and comparative results have been analyzed. For this purpose, a graphical user interface program which can be used for educational purpose has been developed. For the definite (entered transfer functions, the suitable P, PI and PID controller coefficients have calculated by both classical methods and genetic algorithms and many parameters and responses of the systems have been compared and presented numerically and graphically

  13. Parameter Optimization of Linear Quadratic Controller Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    LI Jimin; SHANG Chaoxuan; ZOU Minghu

    2007-01-01

    The selection of weighting matrix in design of the linear quadratic optimal controller is an important topic in the control theory. In this paper, an approach based on genetic algorithm is presented for selecting the weighting matrix for the optimal controller. Genetic algorithm is adaptive heuristic search algorithm premised on the evolutionary ideas of natural selection and genetic. In this algorithm, the fitness function is used to evaluate individuals and reproductive success varies with fitness. In the design of the linear quadratic optimal controller, the fitness function has relation to the anticipated step response of the system. Not only can the controller designed by this approach meet the demand of the performance indexes of linear quadratic controller, but also satisfy the anticipated step response of close-loop system. The method possesses a higher calculating efficiency and provides technical support for the optimal controller in engineering application. The simulation of a three-order single-input single-output (SISO) system has demonstrated the feasibility and validity of the approach.

  14. Disclosing genetic risk for coronary heart disease: effects on perceived personal control and genetic counseling satisfaction.

    Science.gov (United States)

    Robinson, C L; Jouni, H; Kruisselbrink, T M; Austin, E E; Christensen, K D; Green, R C; Kullo, I J

    2016-02-01

    We investigated whether disclosure of coronary heart disease (CHD) genetic risk influences perceived personal control (PPC) and genetic counseling satisfaction (GCS). Participants (n = 207, age: 45-65 years) were randomized to receive estimated 10-year risk of CHD based on a conventional risk score (CRS) with or without a genetic risk score (GRS). Risk estimates were disclosed by a genetic counselor who also reviewed how GRS altered risk in those randomized to CRS+GRS. Each participant subsequently met with a physician and then completed surveys to assess PPC and GCS. Participants who received CRS+GRS had higher PPC than those who received CRS alone although the absolute difference was small (25.2 ± 2.7 vs 24.1 ± 3.8, p = 0.04). A greater proportion of CRS+GRS participants had higher GCS scores (17.3 ± 5.3 vs 15.9 ± 6.3, p = 0.06). In the CRS+GRS group, PPC and GCS scores were not correlated with GRS. Within both groups, PPC and GCS scores were similar in patients with or without family history (p = NS). In conclusion, patients who received their genetic risk of CHD had higher PPC and tended to have higher GCS. Our findings suggest that disclosure of genetic risk of CHD together with conventional risk estimates is appreciated by patients. Whether this results in improved outcomes needs additional investigation.

  15. System control fuzzy neural sewage pumping stations using genetic algorithms

    Directory of Open Access Journals (Sweden)

    Владлен Николаевич Кузнецов

    2015-06-01

    Full Text Available It is considered the system of management of sewage pumping station with regulators based on a neuron network with fuzzy logic. Linguistic rules for the controller based on fuzzy logic, maintaining the level of effluent in the receiving tank within the prescribed limits are developed. The use of genetic algorithms for neuron network training is shown.

  16. Study on the active noise control method and the effect of noise reduction due to the multi-connected branch dusts. Gyakuiso no fukaon ni yoru soon seigyoho no kento to tarengata bunkikan ni yoru soon keigen koka

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Kiyoatsu.

    1989-04-01

    This paper reports the results of experimental studies on the utility of the active noise control method, and the effects of the multi-connected branch pipes silencer, concerning the reduction of noise. In the experiments of active noise control by using ducts, when the canceling sound was produced by the speaker set at the end of the short-length pipe corresponding to the one forth wave-length, the sound pressure of canceling noise was less one sixth as compared with setting the speaker at the wall of pipe. The noise reduction quantity to the random noise by the active noise control method was about as much as 15db. This method is not adaptable for noise with wide ranges of frequency. A branch pipe silencers, when it was used as multi-connected branch pipe, could extend the bounds of noise frequency which was able to be reduced and could increase the noise reduction quality. This silencer can deal with the fluctuation of frequency od noise and has higher practicability. 10 refs., 21 figs.

  17. Noise Control Using Coconut Coir Fiber Sound Absorber with Porous Layer Backing and Perforated Panel

    Directory of Open Access Journals (Sweden)

    Rozli Zulkifli

    2010-01-01

    Full Text Available Problem statement: Noise control was one of the major requirements to improve the living environment. One of the methods to do that is provided by sound absorber. Commonly, multi-layer sound absorbers are applied to absorb broadband noise that was composed of perforated plates, air space and porous material. However, multi-layers sound absorbers effectiveness depends on their construction. This study was conducted to investigate the potential of using coconut coir fiber as sound absorber. The effects of porous layer backing and perforated plate on sound absorption coefficient of sound absorber using coconut coir fiber were studied. Approach: Car boot liners made from woven cotton cloth were used as type of porous layer in the study. This material has been used widely in automotive industry. Perforated plate used was machined with perforation ratio of 0.20, thickness of 1 mm and holed diameter of 2 mm. The samples were tested at the acoustic lab of the Faculty of Engineering and Built Environment, University Kebangsaan Malaysia, according to ASTM E 1050-98 international standards for noise absorption coefficient. Results: The experiment data indicates that porous layer backing can improve noise absorption coefficient at low and high frequencies with significant increasing. 20 mm thick layer coconut coir fiber with porous layer backing exhibit peak value at frequencies between 2750-2825 Hz with maximum value of 0.97. The experimental results also found that the coconut coir fiber with perforated plate gives higher value for lower frequencies range from 600-2400 Hz. The optimum value for coconut coir fiber with perforated panel is around 0.94-0.95 for the frequency range 2600-2700 Hz. Conclusion: Noise absorption coefficient of coconut coir fiber was increased at all frequency when they were backing with Woven Cotton Cloth (WCC. At low frequency, the NAC have significant increasing. This is because WCC have higher flow resistivity than coconut coir

  18. Genetic improvement of tomato by targeted control of fruit softening

    KAUST Repository

    Uluisik, Selman

    2016-07-25

    Controlling the rate of softening to extend shelf life was a key target for researchers engineering genetically modified (GM) tomatoes in the 1990s, but only modest improvements were achieved. Hybrids grown nowadays contain \\'non-ripening mutations\\' that slow ripening and improve shelf life, but adversely affect flavor and color. We report substantial, targeted control of tomato softening, without affecting other aspects of ripening, by silencing a gene encoding a pectate lyase. © 2016 Nature America, Inc. All rights reserved.

  19. Genetic Algorithm based PID controller for Frequency Regulation Ancillary services

    Directory of Open Access Journals (Sweden)

    Sandeep Bhongade

    2010-12-01

    Full Text Available In this paper, the parameters of Proportional, Integral and Derivative (PID controller for Automatic Generation Control (AGC suitable in restructured power system is tuned according to Generic Algorithms (GAs based performance indices. The key idea of the proposed method is to use the fitness function based on Area Control Error (ACE. The functioning of the proposed Genetic Algorithm based PID (GAPID controller has been demonstrated on a 75-bus Indian power system network and the results have been compared with those obtained by using Least Square Minimization method.

  20. 管道电机噪声有源控制系统研究%Experimental research of duct active noise control for motor operating noise

    Institute of Scientific and Technical Information of China (English)

    刘会灯; 邱阿瑞

    2011-01-01

    针对直流电机运行噪声的频谱特点,设计管道电机噪声有源控制的物理系统和软件硬件系统.对直流电机运行噪声,通过实验进行单通道有源噪声控制算法主要参数包括泄漏参数、迭代步长和滤波器长度的最优化设计.根据优化后的算法参数,进行管道电机噪声单通道和多通道有源控制实验.实验结果表明,电机转速为1 200r/min和1 500r/min时,对于单通道和多通道有源噪声控制系统,管道下游最大的降噪量分别为14.8dB和17.9dB以及16.42dB和19.75dB, 降噪效果也表明有源噪声控制系统能有效地降低电机运行噪声.%A duct active noise control (ANC) experimental platform including the physical system, hardware and software system was designed to control a DC motor operating noise. The parameters for the single channel ANC algorithms were optimized to achieve the maximum noise reduction when the practical DC motor operating noise was applied. With these optimized algorithm parameters, several experiments were conducted for both single channel and multi-channel duct ANC system to control the DC motor operating noise. The experimental results show that the maximum sound pressure level (SPL) reductions downstream of the duct are about 14. 8dB and 17.9dB for the single channel duct ANC system, 16. 42dB and 19. 72dB for the multi-channel duct ANC system when the DC motor operates at the speed of 1200r/min and 1500r/min respectively, which indicates that ANC can be a feasible way to reduce the motor operating noise.

  1. Characterization of electro-acoustics impedance and its application to active noise control

    Institute of Scientific and Technical Information of China (English)

    HOU Hong; YANG Jianhua

    2004-01-01

    Characteristics of radiation impedance and its inducing variation of electrical impedance for a controllable source have been investigated. An impedance-based error criterion has been proposed and its application to Active Noise Control is demonstrated through a coil driven loudspeaker. A general formula of radiation impedance is derived for two control strategies, according to the criterion of total acoustic power output. The radiation impedances of some commonly used sound sources are calculated. We discuss in detail the relation between variation of the input electrical impedance and radiation impedance for the two control strategies. The measured data of the input electrical impedance from a loudspeaker agree fairly well with theoretical analysis. An AC- bridge circuit is designed in order to measure the weak variation of electrical impedance resulted from radiation impedance. The bridge relative output is unique for a certain control strategy, from which an impedance-based error criterion is then proposed and the implementation of its application to an active control system is analyzed.Numerical results of such criterion are presented. An analogue control system is set up and experiments are carried out in a semi-anechoic chamber to verify the new control approach.

  2. A flexible and high-performance bidirectional optical amplifier with all optical gain control using ASE noise path through multi-port circulators

    Institute of Scientific and Technical Information of China (English)

    An Vu Tran; Chang-Joon Chae; Rodney S. Tucker

    2003-01-01

    We report a flexible all-optical gain controlled bidirectional optical amplifier. The device achieves constant gain and low noise figure over a large input power range. Moreover, the device removes Rayleigh backscattered light and amplifier noise.

  3. Control of Complex Systems Using Bayesian Networks and Genetic Algorithm

    CERN Document Server

    Marwala, Tshilidzi

    2007-01-01

    A method based on Bayesian neural networks and genetic algorithm is proposed to control the fermentation process. The relationship between input and output variables is modelled using Bayesian neural network that is trained using hybrid Monte Carlo method. A feedback loop based on genetic algorithm is used to change input variables so that the output variables are as close to the desired target as possible without the loss of confidence level on the prediction that the neural network gives. The proposed procedure is found to reduce the distance between the desired target and measured outputs significantly.

  4. 电梯噪声传播分析与控制%Elevator noise transmission analysis and control

    Institute of Scientific and Technical Information of China (English)

    郑祥盘

    2013-01-01

    分析了电梯噪声产生机理与传播途径,通过查阅相关技术文件总结了电梯噪声标准.试验通过工程案例阐述了如何测试分析电梯噪声,并提出有效控制电梯噪声和减少振动的途径、措施.采用阻尼隔声板增加降噪减振层方式以隔断声音传播的方法实现电梯降噪处理、控制柜的固定作软接触处理等措施隔断“声桥”,使业主房内噪声声压降低.%The article analyzed the elevator noise generation mechanism and transmission way. By consulting relevant technical documents summarized the elevator noise standard- Through the engineering test case analysis on how to test the noise, and put forward the effective control of the elevator noise and reduce the vibration of the ways and measures. The acoustic barrier plate of reduction noise damping layer mode to separate sound propagation , achieve elevator noise reduction, control cabinet fixed for soft contact processing measures separating "sound bridge", make the owner room noise sound pressure to reduce.

  5. Active Noise Control in a Three Dimensional Enclosure Using Multichannel Fuzzy LMS Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun Do [Dankook University (Korea, Republic of); Kim, Kyun Tae [Haitai Electronics R and D Cemter (Korea, Republic of)

    1998-05-01

    In this paper, active noise control(ANC) in an enclosure using multi-channel fuzzy LMS(MCFLMS) algorithm is considered. A new model for a secondary path transfer function, which has common acoustical poles that correspond to resonance properties of an enclosure, is used. Since this model requires far fewer variable parameters to represent secondary path transfer functions than those of conventional all-zero or pole and zero models, it reduces the computational complexity for an active noise control system. A MCFLMS algorithm, where the convergence coefficients of a multi-channel LMS(MCLMS) algorithm is derived by a fuzzy inference engine, is proposed. This algorithm shows better convergence than the existing MCLMS algorithms and it does not require pre-adjustment of convergence parameters, so it could be easily applied to practical ANC systems. Computer simulations and experiments were performed to show the effectiveness of the proposed algorithm in experimental enclosure. The proposed method shows better results in both computer simulations and experiments. (author). 14 refs., 10 figs., 2 tabs.

  6. Reduction of current chopping noise with DSP controller in switched reluctance motor drive system

    Institute of Scientific and Technical Information of China (English)

    郭伟; 詹琼华; 马志源

    2002-01-01

    A novel current chopping mode was used in a switched reluctance motor drive system to make full use of the characteristics of digital signal processor (DSP) TMS320F240. The necessity of this 180° phase-shift current control (PSCC) mode is introduced first and then the principle of PSCC covering both hardware requirement and software programming is described in detail. The analysis made indicated that with this mode, the chopping frequency in winding can reach 20 kHz with 10 kHz power switches and the control frequency can reach 40 kHz at the same time. Subsequently, based on the linear and nonlinear mathematical models of the switched reluctance motor ( SRM), some simulation work has been done. The simulation results show that when this mode is applied to SRM drive (SRD) system, the current waveform becomes better. So the ripple of the torque is reduced simultaneously and the vibration and acoustic noise are reduced involuntarily. Stationary tests show that the acoustic noise is greatly diminished. Finally, some experiments were made using a 50 kW SRD system for electric vehicle (EV). Experimental results indicate that this mode can be implemented feasibly and it has a good action on the SRD system.

  7. Panels Manufactured from Vegetable Fibers: An Alternative Approach for Controlling Noises in Indoor Environments

    Directory of Open Access Journals (Sweden)

    Leopoldo Pacheco Bastos

    2012-01-01

    Full Text Available Noise control devices such as panels and barriers, when of high efficiency, generally are of difficult acquisition due to high costs turning in many cases their use impracticable, mainly for limited budget small-sized companies. There is a huge requirement for new acoustic materials that have satisfactory performance, not only under acoustic aspect but also other relevant ones and are of low cost. Vegetable fibers are an alternative solution when used as panels since they promise satisfactory acoustic absorption, according to previous researches, exist in abundance, and derive from renewable sources. This paper, therefore, reports on the development of panels made from vegetable fibers (coconut, palm, sisal, and açaí, assesses their applicability by various experimental (flammability, odor, fungal growth, and ageing tests, and characterize them acoustically in terms of their sound absorption coefficients on a scale model reverberant chamber. Acoustic results point out that the aforementioned fiber panels play pretty well the role of a noise control device since they have compatible, and in some cases, higher performance when compared to commercially available conventional materials.

  8. Filtered-X Affine Projection Algorithms for Active Noise Control Using Volterra Filters

    Directory of Open Access Journals (Sweden)

    Sicuranza Giovanni L

    2004-01-01

    Full Text Available We consider the use of adaptive Volterra filters, implemented in the form of multichannel filter banks, as nonlinear active noise controllers. In particular, we discuss the derivation of filtered-X affine projection algorithms for homogeneous quadratic filters. According to the multichannel approach, it is then easy to pass from these algorithms to those of a generic Volterra filter. It is shown in the paper that the AP technique offers better convergence and tracking capabilities than the classical LMS and NLMS algorithms usually applied in nonlinear active noise controllers, with a limited complexity increase. This paper extends in two ways the content of a previous contribution published in Proc. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP '03, Grado, Italy, June 2003. First of all, a general adaptation algorithm valid for any order of affine projections is presented. Secondly, a more complete set of experiments is reported. In particular, the effects of using multichannel filter banks with a reduced number of channels are investigated and relevant results are shown.

  9. Open-loop control of noise amplification in a separated boundary layer flow

    CERN Document Server

    Boujo, Edouard; Gallaire, François

    2014-01-01

    Linear optimal gains are computed for the subcritical two-dimensional separated boundary-layer flow past a bump. Very large optimal gain values are found, making it possible for small-amplitude noise to be strongly amplified and to destabilize the flow. The optimal forcing is located close to the summit of the bump, while the optimal response is the largest in the shear layer. The largest amplification occurs at frequencies corresponding to eigenvalues which first become unstable at higher Reynolds number. Nonlinear direct numerical simulations show that a low level of noise is indeed sufficient to trigger random flow unsteadiness, characterized here by large-scale vortex shedding. Next, a variational technique is used to compute efficiently the sensitivity of optimal gains to steady control (through source of momentum in the flow, or blowing/suction at the wall). A systematic analysis at several frequencies identifies the bump summit as the most sensitive region for control with wall actuation. Based on thes...

  10. Genetic Algorithm Optimisation of PID Controllers for a Multivariable Process

    Directory of Open Access Journals (Sweden)

    Wael Alharbi

    2017-03-01

    Full Text Available This project is about the design of PID controllers and the improvement of outputs in multivariable processes. The optimisation of PID controller for the Shell oil process is presented in this paper, using Genetic Algorithms (GAs. Genetic Algorithms (GAs are used to automatically tune PID controllers according to given specifications. They use an objective function, which is specially formulated and measures the performance of controller in terms of time-domain bounds on the responses of closed-loop process.A specific objective function is suggested that allows the designer for a single-input, single-output (SISO process to explicitly specify the process performance specifications associated with the given problem in terms of time-domain bounds, then experimentally evaluate the closed-loop responses. This is investigated using a simple two-term parametric PID controller tuning problem. The results are then analysed and compared with those obtained using a number of popular conventional controller tuning methods. The intention is to demonstrate that the proposed objective function is inherently capable of accurately quantifying complex performance specifications in the time domain. This is something that cannot normally be employed in conventional controller design or tuning methods.Finally, the recommended objective function will be used to examine the control problems of Multi-Input-Multi-Output (MIMO processes, and the results will be presented in order to determine the efficiency of the suggested control system.

  11. Multichannel control systems for the attenuation of interior road noise in vehicles

    Science.gov (United States)

    Cheer, Jordan; Elliott, Stephen J.

    2015-08-01

    This paper considers the active control of road noise in vehicles, using either multichannel feedback control, with both headrest and floor positioned microphones providing feedback error signals, or multichannel feedforward control, in which reference signals are provided by the microphones on the vehicle floor and error signals are provided by the microphones mounted on the headrests. The formulation of these control problems is shown to be similar if the constraints of robust stability, limited disturbance enhancement and open-loop stability are imposed. A novel formulation is presented for disturbance enhancement in multichannel systems, which limits the maximum enhancement of each individual error signal. The performance of these two systems is predicted using plant responses and disturbance signals measured in a small city car. The reduction in the sum of the squared pressure signals at the four error microphones for both systems is found to be up to 8 dB at low frequencies and 3 dB on average, where the sound level is particularly high from 80 to 180 Hz. The performance of both systems is found to be robust to measured variations in the plant responses. The enhancements in the disturbance at higher frequencies are smaller for the feedback controller than for the feedforward controller, although the performance of the feedback controller is more significantly reduced by the introduction of additional delay in the plant response.

  12. Quantum control using genetic algorithms in quantum communication: superdense coding

    Science.gov (United States)

    Domínguez-Serna, Francisco; Rojas, Fernando

    2015-06-01

    We present a physical example model of how Quantum Control with genetic algorithms is applied to implement the quantum superdense code protocol. We studied a model consisting of two quantum dots with an electron with spin, including spin-orbit interaction. The electron and the spin get hybridized with the site acquiring two degrees of freedom, spin and charge. The system has tunneling and site energies as time dependent control parameters that are optimized by means of genetic algorithms to prepare a hybrid Bell-like state used as a transmission channel. This state is transformed to obtain any state of the four Bell basis as required by superdense protocol to transmit two bits of classical information. The control process protocol is equivalent to implement one of the quantum gates in the charge subsystem. Fidelities larger than 99.5% are achieved for the hybrid entangled state preparation and the superdense operations.

  13. Genetic control of organ shape and tissue polarity.

    Directory of Open Access Journals (Sweden)

    Amelia A Green

    Full Text Available The mechanisms by which genes control organ shape are poorly understood. In principle, genes may control shape by modifying local rates and/or orientations of deformation. Distinguishing between these possibilities has been difficult because of interactions between patterns, orientations, and mechanical constraints during growth. Here we show how a combination of growth analysis, molecular genetics, and modelling can be used to dissect the factors contributing to shape. Using the Snapdragon (Antirrhinum flower as an example, we show how shape development reflects local rates and orientations of tissue growth that vary spatially and temporally to form a dynamic growth field. This growth field is under the control of several dorsoventral genes that influence flower shape. The action of these genes can be modelled by assuming they modulate specified growth rates parallel or perpendicular to local orientations, established by a few key organisers of tissue polarity. Models in which dorsoventral genes only influence specified growth rates do not fully account for the observed growth fields and shapes. However, the data can be readily explained by a model in which dorsoventral genes also modify organisers of tissue polarity. In particular, genetic control of tissue polarity organisers at ventral petal junctions and distal boundaries allows both the shape and growth field of the flower to be accounted for in wild type and mutants. The results suggest that genetic control of tissue polarity organisers has played a key role in the development and evolution of shape.

  14. Tuning of a neuro-fuzzy controller by genetic algorithm.

    Science.gov (United States)

    Seng, T L; Bin Khalid, M; Yusof, R

    1999-01-01

    Due to their powerful optimization property, genetic algorithms (GAs) are currently being investigated for the development of adaptive or self-tuning fuzzy logic control systems. This paper presents a neuro-fuzzy logic controller (NFLC) where all of its parameters can be tuned simultaneously by GA. The structure of the controller is based on the radial basis function neural network (RBF) with Gaussian membership functions. The NFLC tuned by GA can somewhat eliminate laborious design steps such as manual tuning of the membership functions and selection of the fuzzy rules. The GA implementation incorporates dynamic crossover and mutation probabilistic rates for faster convergence. A flexible position coding strategy of the NFLC parameters is also implemented to obtain near optimal solutions. The performance of the proposed controller is compared with a conventional fuzzy controller and a PID controller tuned by GA. Simulation results show that the proposed controller offers encouraging advantages and has better performance.

  15. Estimating the Coherence of Noise in Quantum Control of a Solid-State Qubit

    Science.gov (United States)

    Feng, Guanru; Wallman, Joel J.; Buonacorsi, Brandon; Cho, Franklin H.; Park, Daniel K.; Xin, Tao; Lu, Dawei; Baugh, Jonathan; Laflamme, Raymond

    2016-12-01

    To exploit a given physical system for quantum information processing, it is critical to understand the different types of noise affecting quantum control. Distinguishing coherent and incoherent errors is extremely useful as they can be reduced in different ways. Coherent errors are generally easier to reduce at the hardware level, e.g., by improving calibration, whereas some sources of incoherent errors, e.g., T2* processes, can be reduced by engineering robust pulses. In this work, we illustrate how purity benchmarking and randomized benchmarking can be used together to distinguish between coherent and incoherent errors and to quantify the reduction in both of them due to using optimal control pulses and accounting for the transfer function in an electron spin resonance system. We also prove that purity benchmarking provides bounds on the optimal fidelity and diamond norm that can be achieved by correcting the coherent errors through improving calibration.

  16. Cyclic pitch for the control of wind turbine noise amplitude modulation

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Fischer, Andreas

    2014-01-01

    Using experimental data acquired during a wind turbine measurement campaign, it is shown that amplitude modulation of aerodynamic noise can be generated by the rotating blades in conjunction with the atmospheric wind shear. As an attempt to alleviate this phenomenon, a control strategy is designed...... if such a strategy is to be implemented on an actual wind turbine, though at the expense of an increased wear and tear of the pitch control system....... in form of a cyclic pitch of the blades. As a side effect, it is shown that it is also possible to reduce fatigue load on the blade using this cyclic pitch. The main goal is to reduce both amplitude modulation and fatigue load without compromising the energy harvested from the wind. A simulation tool...

  17. Use of a beat effect for the automatic positioning of flow obstructions to control tonal fan noise: Theory and experiments

    Science.gov (United States)

    Gérard, A.; Berry, A.; Masson, P.; Moreau, S.

    2013-09-01

    Tonal noise generated by axial fans at the Blade Passage Frequency and its harmonics is a source of discomfort for low-speed fans used in many cooling and ventilation applications. The noise control approach presented here is based on the interference between the unsteady aerodynamic blade loads responsible for tonal noise generation and secondary aerodynamic loads generated in the rotor plane by fixed, carefully positioned, small obstructions in the upstream flow. Although not strictly active control, the magnitude and phase of the secondary tonal noise can be adjusted by varying the axial distance between the rotor and the obstruction, and the circumferential position of the obstruction, respectively. An optimal position of the obstruction generally exists, that minimizes the total noise at a given frequency. This paper establishes a practical method for automatic positioning of such control obstructions. In a first step, the method searches for the optimal axial distance between the rotor and the obstruction using a slowly rotating control obstruction. The modulation created by the rotation of the obstruction allows for the primary and secondary noises to be distinguished in the frequency response of the sound field. The steepest descent algorithm is used to find the optimal axial distance, for which the magnitudes of the primary and secondary tonal noise are equal at the error microphone. Then, the optimal angular position of the obstruction is obtained by slowly rotating the obstruction until minimal total noise is achieved. Finally, it is shown that at the optimal axial and angular position, the BPF tone, which produced the largest area in the loudness pattern, has been greatly reduced.

  18. Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control and genetic correlations.

    Science.gov (United States)

    Porth, Ilga; Klápště, Jaroslav; Skyba, Oleksandr; Lai, Ben S K; Geraldes, Armando; Muchero, Wellington; Tuskan, Gerald A; Douglas, Carl J; El-Kassaby, Yousry A; Mansfield, Shawn D

    2013-02-01

    The increasing ecological and economical importance of Populus species and hybrids has stimulated research into the investigation of the natural variation of the species and the estimation of the extent of genetic control over its wood quality traits for traditional forestry activities as well as the emerging bioenergy sector. A realized kinship matrix based on informative, high-density, biallelic single nucleotide polymorphism (SNP) genetic markers was constructed to estimate trait variance components, heritabilities, and genetic and phenotypic correlations. Seventeen traits related to wood chemistry and ultrastructure were examined in 334 9-yr-old Populus trichocarpa grown in a common-garden plot representing populations spanning the latitudinal range 44° to 58.6°. In these individuals, 9342 SNPs that conformed to Hardy-Weinberg expectations were employed to assess the genomic pair-wise kinship to estimate narrow-sense heritabilities and genetic correlations among traits. The range-wide phenotypic variation in all traits was substantial and several trait heritabilities were > 0.6. In total, 61 significant genetic and phenotypic correlations and a network of highly interrelated traits were identified. The high trait variation, the evidence for moderate to high heritabilities and the identification of advantageous trait combinations of industrially important characteristics should aid in providing the foundation for the enhancement of poplar tree breeding strategies for modern industrial use.

  19. Genetic Algorithm Optimizes Q-LAW Control Parameters

    Science.gov (United States)

    Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard

    2008-01-01

    A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.

  20. Room acoustic analysis of blower unit and noise control plan in the typical steel industry

    OpenAIRE

    2013-01-01

    Introduction: In the steel industry,air blowers used to supply compressed air are considered as sources of annoying noise. This study aims to acoustics analysis of theairblower workroomand sound source characteristics in order to present noise controlmeasuresinthe steel industry. .Material and Method: Measurement of noiselevel and its frequency analysis was performed usingsound levelmetermodelof CASELLA-Cell.450. Distribution of noise level in the investigated workroom in form of noise ma...

  1. Noise suppression by noise

    OpenAIRE

    Vilar, J. M. G.; Rubí Capaceti, José Miguel

    2001-01-01

    We have analyzed the interplay between an externally added noise and the intrinsic noise of systems that relax fast towards a stationary state, and found that increasing the intensity of the external noise can reduce the total noise of the system. We have established a general criterion for the appearance of this phenomenon and discussed two examples in detail.

  2. A rapid prototyping system for broadband multichannel active noise and vibration control

    NARCIS (Netherlands)

    Wesselink, J.M.

    2009-01-01

    In recent years the need for active and passive noise reduction methods has increased. This is due to an increase in the ambient noise caused by industrialization and the extended use of power tools. The effects of noise on a person can be quite severe and can cause illness and in severe cased lead

  3. Controlled longitudinal emittance blow-up using band-limited phase noise in CERN PSB

    Science.gov (United States)

    Quartullo, D.; Shaposhnikova, E.; Timko, H.

    2017-07-01

    Controlled longitudinal emittance blow-up (from 1 eVs to 1.4 eVs) for LHC beams in the CERN PS Booster is currently achievied using sinusoidal phase modulation of a dedicated high-harmonic RF system. In 2021, after the LHC injectors upgrade, 3 eVs should be extracted to the PS. Even if the current method may satisfy the new requirements, it relies on low-power level RF improvements. In this paper another method of blow-up was considered, that is the injection of band-limited phase noise in the main RF system (h=1), never tried in PSB but already used in CERN SPS and LHC, under different conditions (longer cycles). This technique, which lowers the peak line density and therefore the impact of intensity effects in the PSB and the PS, can also be complementary to the present method. The longitudinal space charge, dominant in the PSB, causes significant synchrotron frequency shifts with intensity, and its effect should be taken into account. Another complication arises from the interaction of the phase loop with the injected noise, since both act on the RF phase. All these elements were studied in simulations of the PSB cycle with the BLonD code, and the required blow-up was achieved.

  4. Multiple Iteration of Weight Updates for Least Mean Square Adaptive Filter in Active Noise Control Application

    Directory of Open Access Journals (Sweden)

    Mustafa Rahimie

    2017-01-01

    Full Text Available The method of least mean square (LMS is the commonly used algorithm in Adaptive filter due to its simplicity and robustness in implementation. In Active Noise Control application, a filtered reference signal is used prior to LMS algorithm to overcome the constraint on stability and convergence performance of the system due to the existence of the auxiliary path. This is known as Filtered-X LMS algorithm. In conventional Filtered-X LMS algorithm, each filter weight is updated once on every audio sample. This paper proposes the improved version of Filtered-X LMS algorithm with the use of multiple iteration of filter weight on every sample of audio signal. The proposed work uses field programmable gate arrays to realize real-time simulation on hardware for the noise signal of 500 Hz. Results from the real-time hardware simulations have shown much faster error convergence and better adaptation performance for different selections of learning constant μ, as compared with the conventional method.

  5. Vehicle engine sound design based on an active noise control system

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, M. [Siemens VDO Automotive, Auburn Hills, MI (United States)

    2002-07-01

    A study has been carried out to identify the types of vehicle engine sounds that drivers prefer while driving at different locations and under different driving conditions. An active noise control system controlled the sound at the air intake orifice of a vehicle engine's first sixteen orders and half orders. The active noise control system was used to change the engine sound to quiet, harmonic, high harmonic, spectral shaped and growl. Videos were made of the roads traversed, binaural recording of vehicle interior sounds, and vibrations of the vehicle floor pan. Jury tapes were made up for day driving, nighttime driving and driving in the rain during the day for each of the sites. Jurors used paired comparisons to evaluate the vehicle interior sounds while sitting in a vehicle simulator developed by Siemens VDO that replicated videos of the road traversed, binaural recording of the vehicle interior sounds and vibrations of the floor pan and seat. (orig.) [German] Im Rahmen einer Studie wurden Typen von Motorgeraeuschen identifiziert, die von Fahrern unter verschiedenen Fahrbedingungen als angenehm empfunden werden. Ein System zur aktiven Geraeuschbeeinflussung am Ansauglufteinlass im Bereich des Luftfilters modifizierte den Klang des Motors bis zur 16,5ten Motorordnung, und zwar durch Bedaempfung, Verstaerkung und Filterung der Signalfrequenzen. Waehrend der Fahrt wurden Videoaufnahmen der befahrenen Strassen, Stereoaufnahmen der Fahrzeuginnengeraeusche und Aufnahmen der Vibrationsamplituden des Fahrzeugbodens erstellt; dies bei Tag- und Nachtfahrten und bei Tagfahrten im Regen. Zur Beurteilung der aufgezeichneten Geraeusche durch Versuchspersonen wurde ein Fahrzeug-Laborsimulator mit Fahrersitz, Bildschirm, Lautsprecher und mechanischer Erregung der Bodenplatte aufgebaut, um die aufgenommenen Signale moeglichst wirklichkeitsgetreu wiederzugeben. (orig.)

  6. Active Noise Control Using a Functional Link Artificial Neural Network with the Simultaneous Perturbation Learning Rule

    Directory of Open Access Journals (Sweden)

    Ya-li Zhou

    2009-01-01

    Full Text Available In practical active noise control (ANC systems, the primary path and the secondary path may be nonlinear and time-varying. It has been reported that the linear techniques used to control such ANC systems exhibit degradation in performance. In addition, the actuators of an ANC system very often have nonminimum-phase response. A linear controller under such situations yields poor performance. A novel functional link artificial neural network (FLANN-based simultaneous perturbation stochastic approximation (SPSA algorithm, which functions as a nonlinear mode-free (MF controller, is proposed in this paper. Computer simulations have been carried out to demonstrate that the proposed algorithm outperforms the standard filtered-x least mean square (FXLMS algorithm, and performs better than the recently proposed filtered-s least mean square (FSLMS algorithm when the secondary path is time-varying. This observation implies that the SPSA-based MF controller can eliminate the need of the modeling of the secondary path for the ANC system.

  7. Active vibration control on a quarter-car for cancellation of road noise disturbance

    Science.gov (United States)

    Belgacem, Walid; Berry, Alain; Masson, Patrice

    2012-07-01

    In this paper, a methodology is presented for the cancellation of road noise, from the analysis of vibration transmission paths for an automotive suspension to the design of an active control system using inertial actuators on a suspension to reduce the vibrations transmitted to the chassis. First, experiments were conducted on a Chevrolet Epica LS automobile on a concrete test track to measure accelerations induced on the suspension by the road. These measurements were combined with experimental Frequency Response Functions (FRFs) measured on a quarter-car test bench to reconstruct an equivalent three dimensional force applied on the wheel hub. Second, FRFs measured on the test bench between the three-dimensional driving force and forces at each suspension/chassis linkage were used to characterize the different transmission paths of vibration energy to the chassis. Third, an experimental model of the suspension was constructed to simulate the configuration of the active control system, using the primary (disturbance) FRFs and secondary (control) FRFs also measured on the test bench. This model was used to optimize the configuration of the control actuators and to evaluate the required forces. Finally, a prototype of an active suspension was implemented and measurements were performed in order to assess the performance of the control approach. A 4.6 dB attenuation on transmitted forces was obtained in the 50-250 Hz range.

  8. Evolutionary biology and genetic techniques for insect control

    OpenAIRE

    Leftwich, Philip; Bolton, Michael; Chapman, Tracey

    2015-01-01

    Abstract The requirement to develop new techniques for insect control that minimize negative environmental impacts has never been more pressing. Here we discuss population suppression and population replacement technologies. These include sterile insect technique, genetic elimination methods such as the release of insects carrying a dominant lethal (RIDL), and gene driving mechanisms offered by intracellular bacteria and homing endonucleases. We also review the potential of newer or underutil...

  9. Evidence for mitochondrial genetic control of autosomal gene expression.

    Science.gov (United States)

    Kassam, Irfahan; Qi, Tuan; Lloyd-Jones, Luke; Holloway, Alexander; Jan Bonder, Marc; Henders, Anjali K; Martin, Nicholas G; Powell, Joseph E; Franke, Lude; Montgomery, Grant W; Visscher, Peter M; McRae, Allan F

    2016-10-18

    The mitochondrial and nuclear genomes coordinate and co-evolve in eukaryotes in order to adapt to environmental changes. Variation in the mitochondrial genome is capable of affecting expression of genes on the nuclear genome. Sex-specific mitochondrial genetic control of gene expression has been demonstrated in Drosophila melanogaster, where males were found to drive most of the total variation in gene expression. This has potential implications for male-related health and disease resulting from variation in mtDNA solely inherited from the mother. We used a family-based study comprised of 47,323 gene expression probes and 78 mitochondrial SNPs (mtSNPs) from n = 846 individuals to examine the extent of mitochondrial genetic control of gene expression in humans. This identified 15 significant probe-mtSNP associations (P[Formula: see text]) corresponding to 5 unique genes on the mitochondrial and nuclear genomes, with three of these genes corresponding to mitochondrial genetic control of gene expression in the nuclear genome. The associated mtSNPs for three genes (one cis and two trans associations) were replicated (P expression in any of these five probes. Sex-specific effects were examined by applying our analysis to males and females separately and testing for differences in effect size. The MEST gene was identified as having the most significantly different effect sizes across the sexes (P [Formula: see text]). MEST was similarly expressed in males and females with the G allele; however, males with the C allele are highly expressed for MEST, while females show no expression of the gene. This study provides evidence for the mitochondrial genetic control of expression of several genes in humans, with little evidence found for sex-specific effects.

  10. Occupational noise management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-06-15

    Occupational noise is a frequently encountered on-the-job health hazard. This guide presented the responsibilities and regulatory requirements related to business activities where noise above 80 decibels is present. The guide provided a definition of noise and discussed noise hazards, types of noise, and on-the-job noise exposure. A risk assessment to noise in the work environment was also discussed. A guide to a hearing conservation program was also included. The main purpose of a hearing conservation program is the prevention of noise induced hearing loss for employees exposed to occupational noise. The components of such a program were outlined, with particular reference to noise monitoring; noise exposure control; worker education and training; hearing (audiometric) testing; and annual program review and record keeping. It was concluded that in terms of record keeping, it can be very helpful to file noise exposure assessments, particularly personal exposure measurements, with hearing test records to facilitate for future reference. refs., appendices.

  11. Active Noise Control for Narrow-band and Broad-band Signals Using Q-Learning Technique

    Directory of Open Access Journals (Sweden)

    B. Raeisy

    2013-06-01

    Full Text Available The acoustic noise pollution is one of the serious disasters in the current industrialized life. Though traditional solutions based on noise absorption have many different applications, but these methods have low performance for low frequency noises. Active Noise Control (ANC has been introduced to resolve this problem. In this paper, a new active method is introduced for suppressing acoustic noises based on the reinforcement learning. To achieve this, an algorithm to control periodic noises is suggested. Then, the method is developed further to deal with multi-tonal signals with a large number of harmonics. At the next step, the broad-band signals are considered. The problem is broken into some sub-problems in frequency domain and each is solved via a reinforcement learning approach. In all of the proposed techniques no model for the environment is needed. Combining the reinforcement learning and the traditional methods in ANC for broad-band signals is a new line research considered here. This combination could increase the speed of the response, but some information of the dynamics of the environment is needed. This will cause the system to become compatible with gradual changes of the environment. Simulation results show the effectiveness of the proposed approach.

  12. Convergence analysis of the Filtered-U LMS algorithm for active noise control in case perfect cancellation is not possible

    NARCIS (Netherlands)

    Fraanje, P.R.; Verhaegen, M.; Doelman, N.J.

    2003-01-01

    The Filtered-U LMS algorithm, proposed by Eriksson for active noise control applications, adapts the coefficients of an infinite-impulse response controller. Conditions for global convergence of the Filtered-U LMS algorithm were presented by Wang and Ren (Signal Processing, 73 (1999) 3) and Mosquera

  13. Application of genetic algorithms to tuning fuzzy control systems

    Science.gov (United States)

    Espy, Todd; Vombrack, Endre; Aldridge, Jack

    1993-01-01

    Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.

  14. Genetics

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt

    2016-01-01

    The sequenced genomes of individuals aged ≥80 years, who were highly educated, self-referred volunteers and with no self-reported chronic diseases were compared to young controls. In these data, healthy ageing is a distinct phenotype from exceptional longevity and genetic factors that protect...

  15. A New Application of Current Conveyors: The Design of Wideband Controllable Low-Noise Amplifiers

    Directory of Open Access Journals (Sweden)

    A. Fabre

    2008-12-01

    Full Text Available The aim of this paper is three-fold. First, it reviews the low-noise amplifier and its relevance in wireless communications receivers. Then it presents an exhaustive review of the existing topologies. Finally, it introduces a new class of LNAs, based on current conveyors, describing the founding principle and the performances of a new single-ended LNA. The new LNAs offer the following notable advantages: total absence of passive elements (and the smallest LNAs in their respective classes; wideband performance, with stable frequency responses from 0 to 3 GHz; easy gain control over wide ranges (0 to 20 dB. Comparisons with other topologies prove that the new class of LNA greatly advances the state of the art.

  16. Numerical methods to predict the performance of passive and active noise control measures

    Energy Technology Data Exchange (ETDEWEB)

    Fyfe, K. R. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    1996-08-01

    The two major categories of acoustic modelling methods, which permit a very detailed analysis of both the current operating state and any proposed modifications to noise control equipment, were reviewed. One of the categories is based on geometrical principles which treats sound propagation as a series of rays with diffraction principles to account for edge effects. The wave-based method, on the other hand, models the true physical nature of sound, including interference and scattering. The finite element method (well suited for the study of enclosures) and the boundary element method (for finite and infinite domain analysis) which belong to this category, were emphasized in this paper, as methods of choice for predicting sound fields in enclosed and exterior domains. The theoretical basis of each method was sketched, limitations were described, and examples of their application in such areas as barrier design and furnace mufflers, were provided. 11 refs., 15 figs.

  17. Optimal Output Feedback Control of Linear Systems in Presence of Forcing and Measurement Noise.

    Science.gov (United States)

    1974-08-27

    cal exm*le is give for the pArpose of 4dnestration. A a x a systm matriz I a x a tap" matrix C a a Otput matrix E epected vol%* Operator o ma t...ilthiough the seasureent noise-4epeadent portion of the control signal was not welot.d in th* perforuarxe f~ucioa, "the neaur.ment covariaaoe matriz V does...conditions are obtalnd by equating "t -a and a3 to zero: 0 a -(R + DTp3)’ 1Tp5 cT(CjCT + W)-1 (44) P a Q .CTO7R0C + (A * DC)Tp(A + BC ) (45) I a (A

  18. Increasing LIGO sensitivity by feedforward subtraction of auxiliary length control noise

    CERN Document Server

    Meadors, Grant David; Riles, Keith

    2013-01-01

    LIGO, the Laser Interferometer Gravitational-wave Observatory, has been designed and constructed to measure gravitational wave strain via differential arm length. The LIGO 4-km Michelson arms with Fabry-Perot cavities have auxiliary length control servos for suppressing Michelson motion of the beam-splitter and arm cavity input mirrors, which degrades interferometer sensitivity. We demonstrate how a post-facto pipeline called AMPS improves a data sample from LIGO Science Run~6 with feedforward subtraction. Dividing data into 1024-second windows, AMPS numerically fits filter functions representing the frequency-domain transfer functions from Michelson length channels into the gravitational-wave strain data channel for each window, then subtracts the filtered Michelson channel noise (witness) from the strain channel (target). In this paper we describe the algorithm, assess achievable improvements in sensitivity to astrophysical sources, and consider relevance to future interferometry.

  19. Development of adaptive IIR filtered-e LMS algorithm for active noise control

    Institute of Scientific and Technical Information of China (English)

    SUN Xu; MENG Guang; TENG Pengxiao; CHEN Duanshi

    2003-01-01

    Compared to finite impulse response (FIR) filters, infinite impulse response (IIR)filters can match the system better with much fewer coefficients, and hence the computationload is saved and the performance improves. Therefore, it is attractive to use IIR filters insteadof FIR filters in active noise control (ANC). However, filtered-U LMS (FULMS) algorithm, theIIR filter-based algorithm commonly used so far cannot ensure global convergence. A new IIRfilter based adaptive algorithm, which can ensure global convergence with computation loadonly slightly increasing, is proposed in this paper. The new algorithm is called as filtered-eLMS algorithm since the error signal of which need to be filtered. Simulation results show thatthe FELMS algorithm presents better performance than the FULMS algorithm.

  20. Controlling kilometre-scale interferometric detectors for gravitational wave astronomy: Active phase noise cancellation using EOMs

    Science.gov (United States)

    Arnaud, N.; Balembois, L.; Bizouard, M. A.; Brisson, V.; Casanueva, J.; Cavalier, F.; Davier, M.; Frey, V.; Hello, P.; Huet, D.; Leroy, N.; Loriette, V.; Maksimovic, I.; Robinet, F.

    2017-02-01

    The second generation of Gravitational waves detectors are kilometric Michelson interferometers with additional recycling Fabry-Perot cavities on the arms and ​the addition of two more recycling cavities to enhance their sensitivity, with the particularity that all the mirrors are suspended. In order to control them a new technique, based on the use of auxiliary lasers, has been developed to bring the interferometer to its working point, with all the cavities on their resonance, in an adiabatic way. The implementation of this technique in Advanced Virgo is under preparation and the propagation of a stable laser through a 3-km optical fibre is one of the most problematic issues. A new technique of active phase noise cancellation based on the use of Electro Optical Modulators has been developed, and a first prototype has been successfully tested.

  1. Controllable single accumulated state-sequential acquisition with low signal noise ratio

    Institute of Scientific and Technical Information of China (English)

    JI Jiang; HUANG KaiZhi; JIN Liang; ZHANG LiZhi; ZHANG Meng

    2009-01-01

    The sequential estimation (SE) algorithm has a poor performance in the environment with a low signal-to-noise ratio (SNR) and a high bit error rate (BER), especially for unknown initial acquisition sequence. This paper summarizes the conventional sequence acquisition model, and discovers its several prob-persedly. To solve these problems, the paper presents a new algorithm, CSAS-SA (controllable single accumulated state-sequential acquisition). This algorithm accumulates the sequence innovation to a single appointed sequence state and makes the useful information accumulated effectively. Through simulation, CSAS-SA has a higher probability of success acquisition. When SNR equals -3 dB, the performance can be improved by 70%.

  2. Genetic control of astrocyte function in neural circuits

    Directory of Open Access Journals (Sweden)

    Hannah Maria Jahn

    2015-08-01

    Full Text Available During the last two decades numerous genetic approaches affecting cell function in vivo have been developed. Current state-of-the-art technology permits the selective switching of gene function in distinct cell populations within the complex organization of a given tissue parenchyma. The tamoxifen-inducible Cre/loxP gene recombination and the doxycycline-dependent modulation of gene expression are probably the most popular genetic paradigms.Here, we will review applications of these two strategies while focussing on the interactions of astrocytes and neurons in the central nervous system (CNS and their impact for the whole organism. Abolishing glial sensing of neuronal activity by selective deletion of glial transmitter receptors demonstrated the impact of astrocytes for higher cognitive functions such as learning and memory, or the more basic body control of muscle coordination. Interestingly, also interfering with glial output, i.e. the release of gliotransmitters can drastically change animal’s physiology like sleeping behavior. Furthermore, such genetic approaches have also been used to restore astrocyte function. In these studies two alternatives were employed to achieve proper genetic targeting of astrocytes: transgenes using the promoter of the human glial fibrillary acidic protein (GFAP or homologous recombination into the glutamate-aspartate transporter (GLAST locus. We will highlight their specific properties that could be relevant for their use.

  3. Sensitivity and open-loop control of stochastic response in a noise amplifier flow: the backward-facing step

    CERN Document Server

    Boujo, Edouard

    2014-01-01

    The two-dimensional backward-facing step flow is a canonical example of noise amplifier flow: global linear stability analysis predicts that it is stable, but perturbations can undergo large amplification in space and time as a result of non-normal effects. This amplification potential is best captured by optimal transient growth analysis, optimal harmonic forcing, or the response to sustained noise. In view of reducing disturbance amplification in these globally stable open flows, a variational technique is proposed to evaluate the sensitivity of stochastic amplification to steady control. Existing sensitivity methods are extended in two ways to achieve a realistic representation of incoming noise: (i) perturbations are time-stochastic rather than time-harmonic, (ii) perturbations are localised at the inlet rather than distributed in space. This allows for the identification of regions where small-amplitude control is the most effective, without actually computing any controlled flows. In particular, passive...

  4. 基于DSP的有源噪声控制系统设计%Active Noise Control Based on DSP

    Institute of Scientific and Technical Information of China (English)

    马永炜; 缑新科; 杜先君; 任崇玉

    2012-01-01

    The feed-forwaid adaptive active noise control (AANC) system is presented. First, the hardware project of the system is brought forward by selecting TMS320C5509 DSP as the controller. Second, using the mixed language, the active noise real-time control system is realized, based on the FXLMS algorithm. It's proved that a good noise cancellation is achieved by the experiment%基于有源噪声控制算法,设计出一种有源噪声控制器.以TMS320C5509为核心,给出了系统的硬件解决方案,并利用混合编程在硬件系统上实现了基于LMS算法的有源噪声实时控制.实验结果表明,系统取得了良好的降噪效果.

  5. Genomic analysis of QTLs and genes altering natural variation in stochastic noise.

    Science.gov (United States)

    Jimenez-Gomez, Jose M; Corwin, Jason A; Joseph, Bindu; Maloof, Julin N; Kliebenstein, Daniel J

    2011-09-01

    Quantitative genetic analysis has long been used to study how natural variation of genotype can influence an organism's phenotype. While most studies have focused on genetic determinants of phenotypic average, it is rapidly becoming understood that stochastic noise is genetically determined. However, it is not known how many traits display genetic control of stochastic noise nor how broadly these stochastic loci are distributed within the genome. Understanding these questions is critical to our understanding of quantitative traits and how they relate to the underlying causal loci, especially since stochastic noise may be directly influenced by underlying changes in the wiring of regulatory networks. We identified QTLs controlling natural variation in stochastic noise of glucosinolates, plant defense metabolites, as well as QTLs for stochastic noise of related transcripts. These loci included stochastic noise QTLs unique for either transcript or metabolite variation. Validation of these loci showed that genetic polymorphism within the regulatory network alters stochastic noise independent of effects on corresponding average levels. We examined this phenomenon more globally, using transcriptomic datasets, and found that the Arabidopsis transcriptome exhibits significant, heritable differences in stochastic noise. Further analysis allowed us to identify QTLs that control genomic stochastic noise. Some genomic QTL were in common with those altering average transcript abundance, while others were unique to stochastic noise. Using a single isogenic population, we confirmed that natural variation at ELF3 alters stochastic noise in the circadian clock and metabolism. Since polymorphisms controlling stochastic noise in genomic phenotypes exist within wild germplasm for naturally selected phenotypes, this suggests that analysis of Arabidopsis evolution should account for genetic control of stochastic variance and average phenotypes. It remains to be determined if natural

  6. Optimal control strategy of malaria vector using genetically modified mosquitoes.

    Science.gov (United States)

    Rafikov, M; Bevilacqua, L; Wyse, A P P

    2009-06-07

    The development of transgenic mosquitoes that are resistant to diseases may provide a new and effective weapon of diseases control. Such an approach relies on transgenic mosquitoes being able to survive and compete with wild-type populations. These transgenic mosquitoes carry a specific code that inhibits the plasmodium evolution in its organism. It is said that this characteristic is hereditary and consequently the disease fades away after some time. Once transgenic mosquitoes are released, interactions between the two populations and inter-specific mating between the two types of mosquitoes take place. We present a mathematical model that considers the generation overlapping and variable environment factors. Based on this continuous model, the malaria vector control is formulated and solved as an optimal control problem, indicating how genetically modified mosquitoes should be introduced in the environment. Numerical simulations show the effectiveness of the proposed control.

  7. Genetic and Environmental Control of Neurodevelopmental Robustness in Drosophila.

    Directory of Open Access Journals (Sweden)

    David J Mellert

    Full Text Available Interindividual differences in neuronal wiring may contribute to behavioral individuality and affect susceptibility to neurological disorders. To investigate the causes and potential consequences of wiring variation in Drosophila melanogaster, we focused on a hemilineage of ventral nerve cord interneurons that exhibits morphological variability. We find that late-born subclasses of the 12A hemilineage are highly sensitive to genetic and environmental variation. Neurons in the second thoracic segment are particularly variable with regard to two developmental decisions, whereas its segmental homologs are more robust. This variability "hotspot" depends on Ultrabithorax expression in the 12A neurons, indicating variability is cell-intrinsic and under genetic control. 12A development is more variable and sensitive to temperature in long-established laboratory strains than in strains recently derived from the wild. Strains with a high frequency of one of the 12A variants also showed a high frequency of animals with delayed spontaneous flight initiation, whereas other wing-related behaviors did not show such a correlation and were thus not overtly affected by 12A variation. These results show that neurodevelopmental robustness is variable and under genetic control in Drosophila and suggest that the fly may serve as a model for identifying conserved gene pathways that stabilize wiring in stressful developmental environments. Moreover, some neuronal lineages are variation hotspots and thus may be more amenable to evolutionary change.

  8. 风电冷却系统噪声控制%Noise Control of Windmill Cooling System

    Institute of Scientific and Technical Information of China (English)

    彭若龙; 夏博雯; 谢凌志; 林胜

    2013-01-01

    针对国内某风电机组冷却系统噪声扰民问题,进行噪声控制。通过振动噪声测试分析确定主要声源,研究设计相应的减隔振方案、消声器声屏障降噪方案以及塔桶内部吸声降噪等方案和相应的减振降噪器件,并开展整体噪声控制方案的实施和评价。最终关键点噪声降低达到22 dB,有效解决了噪声扰民问题,并有效提升该机型海外市场的竞争力。%The noise control of a typical windmill turbine cooling system was studied, including the measurement of noise sources, design of noise control strategy, effects of sound barrier and silencer, materials and devices for sound absorption and reduction etc. The global noise control strategy was implemented and evaluated. As a consequence, the sound level in the key position of the system was reduced to 22 dB, and the noise problem was solved, which can effectively improve the windmill competitiveness in the overseas markets.

  9. Genetic and physiological controls of growth under water deficit.

    Science.gov (United States)

    Tardieu, François; Parent, Boris; Caldeira, Cecilio F; Welcker, Claude

    2014-04-01

    The sensitivity of expansive growth to water deficit has a large genetic variability, which is higher than that of photosynthesis. It is observed in several species, with some genotypes stopping growth in a relatively wet soil, whereas others continue growing until the lower limit of soil-available water. The responses of growth to soil water deficit and evaporative demand share an appreciable part of their genetic control through the colocation of quantitative trait loci as do the responses of the growth of different organs to water deficit. This result may be caused by common mechanisms of action discussed in this paper (particularly, plant hydraulic properties). We propose that expansive growth, putatively linked to hydraulic processes, determines the sink strength under water deficit, whereas photosynthesis determines source strength. These findings have large consequences for plant modeling under water deficit and for the design of breeding programs.

  10. One Community’s Effort to Control Genetic Disease

    Science.gov (United States)

    Puffenberger, Erik G.; Morton, D. Holmes

    2012-01-01

    In 1989, we established a small community health clinic to provide care for uninsured Amish and Mennonite children with genetic disorders. Over 20 years, we have used publicly available molecular data and sophisticated technologies to improve diagnostic efficiency, control laboratory costs, reduce hospitalizations, and prevent major neurological impairments within a rural underserved community. These actions allowed the clinic’s 2010 operating budget of $1.5 million to save local communities an estimated $20 to $25 million in aggregate medical costs. This exposes an unsettling fact: our failure to improve the lot of most people stricken with genetic disease is no longer a matter of scientific ignorance or prohibitive costs but of choices we make about how to implement existing knowledge and resources. PMID:22594747

  11. Still in Womb: Intrauterine Acoustic Embedded Active Noise Control for Infant Incubators

    Directory of Open Access Journals (Sweden)

    Lichuan Liu

    2008-01-01

    effect”, that is, by using intrauterine and maternal heart sounds, proven to be beneficial to infant health, for soothing the infant and masking the residual noise. A computer model for audio-integrated noise cancellation utilizing experimentally measured transfer functions is developed for simulations using real medical equipment noise. The simulation of the audio integrated ANC system produced optimal results and the system was further validated by real-time experiments to be robust and efficient.

  12. Life Cycle Cost Evaluation of Noise and Vibration Control Methods at Urban Railway Turnouts

    Directory of Open Access Journals (Sweden)

    Rodrigo Tavares de Freitas

    2016-12-01

    Full Text Available A focus of the railway industry over the past decades has been to research, find and develop methods to mitigate noise and vibration resulting from wheel/rail contact along track infrastructure. This resulted in a wide range of abatement measures that are available for today’s engineers. The suitability of each method must be analysed through budget and timeframe limitations, which includes building, maintenance and inspection costs and time allocation, while also aiming at delivering other benefits, such as environmental impact and durability of infrastructure. There are several situations that need noise and vibration mitigation methods, but each design allocates different priorities on a case-by-case basis. Traditionally, the disturbance caused by railways to the community are generated by wheel/rail contact sound radiation that is expressed in different ways, depending on the movement of the rolling stock and track alignment, such as rolling noise, impact noise and curve noise. More specifically, in special trackworks such as turnouts (or called “switches and crossings”, there are two types of noise that can often be observed: impact noise and screeching noise. With respect to the screeching (or flanging, its mitigation methods are usually associated with curve lubrications. In contrast, the impact noise emerges from the sound made by the rolling stock moving through joints and discontinuities (i.e., gaps, resulting in various noise abatement features to minimise such noise impact. Life cycle analysis is therefore vital for cost efficiency benchmarking of the mitigation methods. The evaluation is based on available data from open literature and the total costs were estimated from valid industry reports to maintain coherency. A 50-year period for a life cycle analysis is chosen for this study. As for the general parameters, an area with a high density of people is considered to estimate the values for a community with very strict limits

  13. Internal noise of a phase-locked receiver with a loop-controlled synthesizer

    Science.gov (United States)

    Greenhall, C. A.

    1979-01-01

    A local oscillator design that uses a digitally programmed frequency synthesizer instead of an analog VCO was proposed. The integral of the synthesizer input, the digital phase, is a convenient measure of integrated Doppler. The internal noise of such a receiver was examined. At high carrier margin, the local oscillator phase noise equals that of the Block IV receiver, about 2 deg rms at S-band, whereas the digital phase noise is about 0.5 deg rms.

  14. Genetic Algorithm and Fuzzy Tuning PID Controller Applied on Speed Control System for Marine Diesel Engines

    Directory of Open Access Journals (Sweden)

    Naeim Farouk

    2012-11-01

    Full Text Available The degree of speed control of ship machinery effects on the economics and optimization of the machinery configuration and operation. All marine vessel ranging need some sort of speed control system to control and govern the speed of the marine diesel engines. The main focus of this study is to apply and comparative between two specific soft-computing techniques. Fuzzy logic controller and genetic algorithm to design and tuning of PID controller for applied on speed control system of marine diesel engine to get an output with better dynamic and static performance. Simulation results show that the response of system when using genetic algorithm is better and faster than when using fuzzy tuning PID controller.

  15. Active control of counter-rotating open rotor interior noise in a Dornier 728 experimental aircraft

    Science.gov (United States)

    Haase, Thomas; Unruh, Oliver; Algermissen, Stephan; Pohl, Martin

    2016-08-01

    The fuel consumption of future civil aircraft needs to be reduced because of the CO2 restrictions declared by the European Union. A consequent lightweight design and a new engine concept called counter-rotating open rotor are seen as key technologies in the attempt to reach this ambitious goals. Bearing in mind that counter-rotating open rotor engines emit very high sound pressures at low frequencies and that lightweight structures have a poor transmission loss in the lower frequency range, these key technologies raise new questions in regard to acoustic passenger comfort. One of the promising solutions for the reduction of sound pressure levels inside the aircraft cabin are active sound and vibration systems. So far, active concepts have rarely been investigated for a counter-rotating open rotor pressure excitation on complex airframe structures. Hence, the state of the art is augmented by the preliminary study presented in this paper. The study shows how an active vibration control system can influence the sound transmission of counter-rotating open rotor noise through a complex airframe structure into the cabin. Furthermore, open questions on the way towards the realisation of an active control system are addressed. In this phase, an active feedforward control system is investigated in a fully equipped Dornier 728 experimental prototype aircraft. In particular, the sound transmission through the airframe, the coupling of classical actuators (inertial and piezoelectric patch actuators) into the structure and the performance of the active vibration control system with different error sensors are investigated. It can be shown that the active control system achieves a reduction up to 5 dB at several counter-rotating open rotor frequencies but also that a better performance could be achieved through further optimisations.

  16. Nonlinear Stochastic H∞ Control with Markov Jumps and (x,u,v-Dependent Noise: Finite and Infinite Horizon Cases

    Directory of Open Access Journals (Sweden)

    Li Sheng

    2014-01-01

    Full Text Available This paper is concerned with the H∞ control problem for nonlinear stochastic Markov jump systems with state, control, and external disturbance-dependent noise. By means of inequality techniques and coupled Hamilton-Jacobi inequalities, both finite and infinite horizon H∞ control designs of such systems are developed. Two numerical examples are provided to illustrate the effectiveness of the proposed design method.

  17. Hybrid Active-Passive Systems for Control of Aircraft Interior Noise

    Science.gov (United States)

    Fuller, Chris R.

    1999-01-01

    Previous work has demonstrated the large potential for hybrid active-passive systems for attenuating interior noise in aircraft fuselages. The main advantage of an active-passive system is, by utilizing the natural dynamics of the actuator system, the control actuator power and weight is markedly reduced and stability/robustness is enhanced. Three different active-passive approaches were studied in the past year. The first technique utilizes multiple tunable vibration absorbers (ATVA) for reducing narrow band sound radiated from panels and transmitted through fuselage structures. The focus is on reducing interior noise due to propeller or turbo fan harmonic excitation. Two types of tunable vibration absorbers were investigated; a solid state system based upon a piezoelectric mechanical exciter and an electromechanical system based upon a Motran shaker. Both of these systems utilize a mass-spring dynamic effect to maximize tile output force near resonance of the shaker system and so can also be used as vibration absorbers. The dynamic properties of the absorbers (i.e. resonance frequency) were modified using a feedback signal from an accelerometer mounted on the active mass, passed through a compensator and fed into the drive component of the shaker system (piezoelectric element or voice coil respectively). The feedback loop consisted of a two coefficient FIR filter, implemented on a DSP, where the input is acceleration of tile ATVA mass and the output is a force acting in parallel with the stiffness of the absorber. By separating the feedback signal into real and imaginary components, the effective natural frequency and damping of the ATVA can be altered independently. This approach gave control of the resonance frequencies while also allowing the simultaneous removal of damping from the ATVA, thus increasing the ease of controllability and effectiveness. In order to obtain a "tuned" vibration absorber the chosen resonant frequency was set to the excitation

  18. Application of Improved Genetic Algorithm in PID Controller Parameters Optimization

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2013-01-01

    Full Text Available Ying Chen, Yong-jie Ma, Wen-xia Yun College of Physics and Electronic Engineering, Northwest Normal University, Anning Road no.967 ,Lanzhou,China,0931-7971503 e-mail:chenying1386685@126.com Abstract The setting and optimization of Proportion Integration Differentiation(PID parameters have been always the important study topics in the automatic control field. The current optimization design methods are often difficult to consider the system requirements for quickness ,reliability and robustness .So a method of PID controller parameters optimization based on Improved Genetic Algorithm(IGA is presented .Simulations with Matlab have proved that the control performance index based on IGA is better than that of the GA method and Z-N method, and is a method which has good practical value of the PID parameter setting and optimization .

  19. A Carrier-Phase Control Suitable for Conducted EMI Noise Reduction in a Multiple-Converter System

    Science.gov (United States)

    Tamate, Michio; Toba, Akio; Matsumoto, Yasushi; Wada, Keiji; Shimizu, Toshihisa

    Conducted EMI noise flowing from the power converters to AC utility line is regulated by international commissions such as International Electrotechnical Commission (IEC). For adherence to the IEC regulations, EMI filters should be used in power electronics equipment. This paper proposes a method for analyzing the conducted EMI noise in multiple power converters connected to the same power line. In this method, the phase difference between sub-harmonic modulated carrier signals at each power converter is taken into account. The phase difference among the power converters determines the EMI noise level in a multiple-converter system, as is evident from the analysis of the waveform of the common-mode current. In addition, EMI noise suppression using a carrier-phase control is a proposed. In order to reduce volume of the EMI filter effectively, the phase difference θ should be set to 360/nN° here, n is a high-order harmonic component at around 150kHz, and N is the number of power converters. Therefore, the conducted EMI noise can be reduced effectively with the help of the proposed phase control.

  20. Comparison of Gap in Noise Test Results in Musicians and Non-Musician Controls

    Directory of Open Access Journals (Sweden)

    Ghassem Mohamadkhani

    2011-12-01

    Full Text Available Background and Aim: Main feature of auditory processing abilities is temporal processing including temporal resolution, temporal ordering, temporal integration and temporal masking. Many studies have shown the superiority of musicians in temporal discrimination over non-musicians. In this study we compared temporal processing in musicians and non-musician controls via Gap in Noise (GIN test.Methods: This cohort study was conducted on 24 musicians with mean age of 25.3 years and 24 normal hearing non-musician controls with mean age of 24.5 years, in Faculty of Rehabilitation of Tehran University of Medical Sciences. GIN test results (approximate threshold and percent of corrected answers obtained and analyzed by Mann-Whitney non-parametric statistical test.Results: There was significant difference between approximate threshold and percent of corrected answers between musicians and non-musician group (p0.05.Conclusion: the lower approximate threshold and the more corrected answers in GIN test by musician group indicate rapid auditory temporal processing ability of this group rather than non-musicians group. This might be related to effects of musical training on central auditory processing.

  1. Adaptive Helmholtz resonators and passive vibration absorbers for cylinder interior noise control

    Science.gov (United States)

    Estève, Simon J.; Johnson, Marty E.

    2005-12-01

    This paper presents an adaptive-passive solution to control the broadband sound transmission into rocket payload fairings. The treatment is composed of passive distributed vibration absorbers (DVAs) and adaptive Helmholtz resonators (HR). Both the frequency domain and time-domain model of a simply supported cylinder excited by an external plane wave are developed. To tune vibration absorbers to tonal excitation, a tuning strategy, based on the phase information between the velocity of the absorber mass and the velocity of the host structure is used here in a new fashion to tune resonators to peaks in the broadband acoustic spectrum of a cavity. This tuning law, called the dot-product method, only uses two microphone signals local to each HR, which allows the adaptive Helmholtz resonator (AHR) to be manufactured as an autonomous device with power supply, sensor, actuator and controller integrated. Numerical simulations corresponding to a 2.8 m long 2.5 m diameter composite cylinder prototype demonstrate that, as long as the structure modes, which strongly couple to the acoustic cavity, are damped with a DVA treatment, the dot-product method tune multiple HRs to a near-optimal solution over a broad frequency range (40-160 Hz). An adaptive HR prototype with variable opening is built and characterized. Experiments conducted on the cylinder prototype with eight AHRs demonstrate the ability of resonators adapted with the dot-product method to converge to near-optimal noise attenuation in a frequency band including multiple resonances.

  2. Genetic and epigenetic control of plant heat responses

    Directory of Open Access Journals (Sweden)

    Junzhong eLiu

    2015-04-01

    Full Text Available Plants have evolved sophisticated genetic and epigenetic regulatory systems to respond quickly to unfavorable environmental conditions such as heat, cold, drought, and pathogen infections. In particular, heat greatly affects plant growth and development, immunity and circadian rhythm, and poses a serious threat to the global food supply. According to temperatures exposing, heat can be usually classified as warm ambient temperature (about 22-27℃, high temperature (27-30℃ and extremely high temperature (37-42℃, also known as heat stress for the model plant Arabidopsis thaliana. The genetic mechanisms of plant responses to heat have been well studied, mainly focusing on elevated ambient temperature-mediated morphological acclimation and acceleration of flowering, modulation of plant immunity and circadian clock by high temperatures, and thermotolerance to heat stress. Recently, great progress has been achieved on epigenetic regulation of heat responses, including DNA methylation, histone modifications, histone variants, ATP-dependent chromatin remodeling, histone chaperones, small RNAs, long non-coding RNAs and other undefined epigenetic mechanisms. These epigenetic modifications regulate the expression of heat-responsive genes and function to prevent heat-related damage. This review focuses on recent progresses regarding the genetic and epigenetic control of heat responses in plants, and pays more attention to the role of the major epigenetic mechanisms in plant heat responses. Further research perspectives are also discussed.

  3. Manipulator Neural Network Control Based on Fuzzy Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The three-layer forward neural networks are used to establish the inverse kinem a tics models of robot manipulators. The fuzzy genetic algorithm based on the line ar scaling of the fitness value is presented to update the weights of neural net works. To increase the search speed of the algorithm, the crossover probability and the mutation probability are adjusted through fuzzy control and the fitness is modified by the linear scaling method in FGA. Simulations show that the propo sed method improves considerably the precision of the inverse kinematics solutio ns for robot manipulators and guarantees a rapid global convergence and overcome s the drawbacks of SGA and the BP algorithm.

  4. Control of the lighting system using a genetic algorithm

    Directory of Open Access Journals (Sweden)

    Čongradac Velimir D.

    2012-01-01

    Full Text Available The manufacturing, distribution and use of electricity are of fundamental importance for the social life and they have the biggest influence on the environment associated with any human activity. The energy needed for building lighting makes up 20-40% of the total consumption. This paper displays the development of the mathematical model and genetic algorithm for the control of dimmable lighting on problems of regulating the level of internal lighting and increase of energetic efficiency using daylight. A series of experiments using the optimization algorithm on the realized model confirmed very high savings in electricity consumption.

  5. Genetic control of immune responsiveness in the chicken

    NARCIS (Netherlands)

    Zijpp, van der A.J.

    1982-01-01

    Disease can be combated by medication, vaccination, hygienic measures, eradication and genetic resistance. Genetic resistance to infectious diseases is advantageous because of its permanent character in contrast with the aforementioned procedures. In the chicken genetic resistance to specific diseas

  6. A before-after control-impact assessment to understand the potential impacts of highway construction noise and activity on an endangered songbird.

    Science.gov (United States)

    Long, Ashley M; Colón, Melanie R; Bosman, Jessica L; Robinson, Dianne H; Pruett, Hannah L; McFarland, Tiffany M; Mathewson, Heather A; Szewczak, Joseph M; Newnam, J Cal; Morrison, Michael L

    2017-01-01

    Anthropogenic noise associated with highway construction and operation can have individual- and population-level consequences for wildlife (e.g., reduced densities, decreased reproductive success, behavioral changes). We used a before-after control-impact study design to examine the potential impacts of highway construction and traffic noise on endangered golden-cheeked warblers (Setophaga chrysoparia; hereafter warbler) in urban Texas. We mapped and monitored warbler territories before (2009-2011), during (2012-2013), and after (2014) highway construction at three study sites: a treatment site exposed to highway construction and traffic noise, a control site exposed only to traffic noise, and a second control site exposed to neither highway construction or traffic noise. We measured noise levels at varying distances from the highway at sites exposed to construction and traffic noise. We examined how highway construction and traffic noise influenced warbler territory density, territory placement, productivity, and song characteristics. In addition, we conducted a playback experiment within study sites to evaluate acute behavioral responses to highway construction noises. Noise decreased with increasing distance from the highways. However, noise did not differ between the construction and traffic noise sites or across time. Warbler territory density increased over time at all study sites, and we found no differences in warbler territory placement, productivity, behavior, or song characteristics that we can attribute to highway construction or traffic noise. As such, we found no evidence to suggest that highway construction or traffic noise had a negative effect on warblers during our study. Because human population growth will require recurring improvements to transportation infrastructure, understanding wildlife responses to anthropogenic noise associated with the construction and operation of roads is essential for effective management and recovery of prioritized

  7. Numerical Investigation of Jet Noise Prediction in Exhaust Nozzle by Passive Control Techniques

    Directory of Open Access Journals (Sweden)

    Alagu sundaram.A

    2015-05-01

    Full Text Available The project mainly focuses on the reduction of jet noise emission in the exhaust nozzle of TURBOFAN ENGINES. Reduction of noise in the exhaust system is done by attaching chevrons with particular parameters in the nozzle exit. Numerical investigations have been carried out on chevron nozzles to assess the importance of chevron parameters such as the number of chevrons like (chevron count, chevron penetration and the mixing characteristics of co flow jet. Chevron count is the pertinent parameter for noise reduction at low nozzle pressure ratios, whereas at high nozzle pressure ratios, chevron penetration is crucial. The results illustrate that by careful selection of chevron parameters substantial noise reduction can be achieved. The sound pressure level (SPL can be calculated from that we determined the noise level at nozzle exit section. After assessing the chevron parameters we are going to modify the chevron shapes in order to get maximum noise reduction along with very negligible thrust loss. Modification of chevron is based on aspect of increasing the mixing of cold jet and the hot jet in order to decrease the noise emission. ANSYS-Fluent is a commercial CFD code which will be used for performing the simulation and the simulation configuration contains three different velocities (100,150,200 with two different nozzle model(plain & chevron nozzle. The simulation results are evaluated to find out nozzle noise level in the engine exhaust system.

  8. Real-time Kalman filter implementation for active feedforward control of time-varying broadband noise and vibrations

    NARCIS (Netherlands)

    Ophem, S. van; Berkhoff, A.P.

    2012-01-01

    Tracking behavior and the rate of convergence are critical properties in active noise control applications with time-varying disturbance spectra. As compared to the standard filtered-reference Least Mean Square (LMS) algorithm, improved convergence can be obtained with schemes based on preconditioni

  9. Performance of a multi-channel adaptive Kalman algorithm for active noise control of non-stationary sources

    NARCIS (Netherlands)

    Ophem, S. van; Berkhoff, A.P.

    2012-01-01

    Commonly used adaptive algorithms which determine the coefficients of a finite impulse response feed-forward filter in an active noise control application, as the filtered reference least mean squares algorithm, are not performing well when the sound source is non-stationary. A multiple input and

  10. Real-time Kalman filter implementation for active feedforward control of time-varying broadband noise and vibrations

    NARCIS (Netherlands)

    Ophem, S. van; Berkhoff, A.P.

    2012-01-01

    Tracking behavior and the rate of convergence are critical properties in active noise control applications with time-varying disturbance spectra. As compared to the standard filtered-reference Least Mean Square (LMS) algorithm, improved convergence can be obtained with schemes based on

  11. Experimental Investigations of Noise Control in Planetary Gear Set by Phasing

    Directory of Open Access Journals (Sweden)

    S. H. Gawande

    2014-01-01

    Full Text Available Now a days reduction of gear noise and resulting vibrations has received much attention of the researchers. The internal excitation caused by the variation in tooth mesh stiffness is a key factor in causing vibration. Therefore to reduce gear noise and vibrations several techniques have been proposed in recent years. In this research the experimental work is carried out to study the effect of planet phasing on noise and subsequent resulting vibrations of Nylon-6 planetary gear drive. For this purpose experimental set-up was built and trials were conducted for two different arrangements (i.e., with phasing and without phasing and it is observed that the noise level and resulting vibrations were reduced by planet phasing arrangement. So from the experimental results it is observed that by applying the meshing phase difference one can reduce planetary gear set noise and vibrations.

  12. Noise-induced hearing loss

    Directory of Open Access Journals (Sweden)

    Mariola Sliwinska-Kowalska

    2012-01-01

    Full Text Available Noise-induced hearing loss (NIHL still remains a problem in developed countries, despite reduced occupational noise exposure, strict standards for hearing protection and extensive public health awareness campaigns. Therefore NIHL continues to be the focus of noise research activities. This paper summarizes progress achieved recently in our knowledge of NIHL. It includes papers published between the years 2008-2011 (in English, which were identified by a literature search of accessible medical and other relevant databases. A substantial part of this research has been concerned with the risk of NIHL in the entertainment sector, particularly in professional, orchestral musicians. There are also constant concerns regarding noise exposure and hearing risk in "hard to control" occupations, such as farming and construction work. Although occupational noise has decreased since the early 1980s, the number of young people subject to social noise exposure has tripled. If the exposure limits from the Noise at Work Regulations are applied, discotheque music, rock concerts, as well as music from personal music players are associated with the risk of hearing loss in teenagers and young adults. Several recent research studies have increased the understanding of the pathomechanisms of acoustic trauma, the genetics of NIHL, as well as possible dietary and pharmacologic otoprotection in acoustic trauma. The results of these studies are very promising and offer grounds to expect that targeted therapies might help prevent the loss of sensory hair cells and protect the hearing of noise-exposed individuals. These studies emphasize the need to launch an improved noise exposure policy for hearing protection along with developing more efficient norms of NIHL risk assessment.

  13. A Model Predictive Algorithm for Active Control of Nonlinear Noise Processes

    Directory of Open Access Journals (Sweden)

    Qi-Zhi Zhang

    2005-01-01

    Full Text Available In this paper, an improved nonlinear Active Noise Control (ANC system is achieved by introducing an appropriate secondary source. For ANC system to be successfully implemented, the nonlinearity of the primary path and time delay of the secondary path must be overcome. A nonlinear Model Predictive Control (MPC strategy is introduced to deal with the time delay in the secondary path and the nonlinearity in the primary path of the ANC system. An overall online modeling technique is utilized for online secondary path and primary path estimation. The secondary path is estimated using an adaptive FIR filter, and the primary path is estimated using a Neural Network (NN. The two models are connected in parallel with the two paths. In this system, the mutual disturbances between the operation of the nonlinear ANC controller and modeling of the secondary can be greatly reduced. The coefficients of the adaptive FIR filter and weight vector of NN are adjusted online. Computer simulations are carried out to compare the proposed nonlinear MPC method with the nonlinear Filter-x Least Mean Square (FXLMS algorithm. The results showed that the convergence speed of the proposed nonlinear MPC algorithm is faster than that of nonlinear FXLMS algorithm. For testing the robust performance of the proposed nonlinear ANC system, the sudden changes in the secondary path and primary path of the ANC system are considered. Results indicated that the proposed nonlinear ANC system can rapidly track the sudden changes in the acoustic paths of the nonlinear ANC system, and ensure the adaptive algorithm stable when the nonlinear ANC system is time variable.

  14. Evolutionary biology and genetic techniques for insect control.

    Science.gov (United States)

    Leftwich, Philip T; Bolton, Michael; Chapman, Tracey

    2016-01-01

    The requirement to develop new techniques for insect control that minimize negative environmental impacts has never been more pressing. Here we discuss population suppression and population replacement technologies. These include sterile insect technique, genetic elimination methods such as the release of insects carrying a dominant lethal (RIDL), and gene driving mechanisms offered by intracellular bacteria and homing endonucleases. We also review the potential of newer or underutilized methods such as reproductive interference, CRISPR technology, RNA interference (RNAi), and genetic underdominance. We focus on understanding principles and potential effectiveness from the perspective of evolutionary biology. This offers useful insights into mechanisms through which potential problems may be minimized, in much the same way that an understanding of how resistance evolves is key to slowing the spread of antibiotic and insecticide resistance. We conclude that there is much to gain from applying principles from the study of resistance in these other scenarios - specifically, the adoption of combinatorial approaches to minimize the spread of resistance evolution. We conclude by discussing the focused use of GM for insect pest control in the context of modern conservation planning under land-sparing scenarios.

  15. Modularity, noise, and natural selection.

    Science.gov (United States)

    Marroig, Gabriel; Melo, Diogo A R; Garcia, Guilherme

    2012-05-01

    Most biological systems are formed by component parts that are to some degree interrelated. Groups of parts that are more associated among themselves and are relatively autonomous from others are called modules. One of the consequences of modularity is that biological systems usually present an unequal distribution of the genetic variation among traits. Estimating the covariance matrix that describes these systems is a difficult problem due to a number of factors such as poor sample sizes and measurement errors. We show that this problem will be exacerbated whenever matrix inversion is required, as in directional selection reconstruction analysis. We explore the consequences of varying degrees of modularity and signal-to-noise ratio on selection reconstruction. We then present and test the efficiency of available methods for controlling noise in matrix estimates. In our simulations, controlling matrices for noise vastly improves the reconstruction of selection gradients. We also perform an analysis of selection gradients reconstruction over a New World Monkeys skull database to illustrate the impact of noise on such analyses. Noise-controlled estimates render far more plausible interpretations that are in full agreement with previous results. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  16. Robust fuzzy control subject to state variance and passivity constraints for perturbed nonlinear systems with multiplicative noises.

    Science.gov (United States)

    Chang, Wen-Jer; Huang, Bo-Jyun

    2014-11-01

    The multi-constrained robust fuzzy control problem is investigated in this paper for perturbed continuous-time nonlinear stochastic systems. The nonlinear system considered in this paper is represented by a Takagi-Sugeno fuzzy model with perturbations and state multiplicative noises. The multiple performance constraints considered in this paper include stability, passivity and individual state variance constraints. The Lyapunov stability theory is employed to derive sufficient conditions to achieve the above performance constraints. By solving these sufficient conditions, the contribution of this paper is to develop a parallel distributed compensation based robust fuzzy control approach to satisfy multiple performance constraints for perturbed nonlinear systems with multiplicative noises. At last, a numerical example for the control of perturbed inverted pendulum system is provided to illustrate the applicability and effectiveness of the proposed multi-constrained robust fuzzy control method.

  17. Modified-filtered-u LMS algorithm for active noise control and its application to a short acoustic duct

    Science.gov (United States)

    Kim, Ho-Wuk; Park, Hong-Sug; Lee, Sang-Kwon; Shin, Kihong

    2011-01-01

    This paper presents a new adaptive algorithm for active noise control (ANC) that can be effectively applicable to a short acoustic duct, such as the intake system of an automobile engine, where the stability and fast convergence of the ANC system is particularly important. The new algorithm, called the modified-filtered-u LMS algorithm (MFU-LMS), is developed based on the recursive filtered-u LMS algorithm (FU-LMS) incorporating the simple hyper-stable adaptive recursive filter (SHARF) to ensure the control stability and the variable step size to enhance the convergence rate. The MFU-LMS algorithm is implemented by purely experimental ways, and is applied to active control of noise in a short acoustic duct, and is validated using two experimental cases of which the primary noise sources are a sinusoidal signal embedded in white noise and a chirp signal. The experimental results demonstrate that the proposed MFU-LMS algorithm gives a considerably better performance than other conventional algorithms, such as the filtered-x LMS (FX-LMS) and the FU-LMS algorithms.

  18. Analytical study of interior noise control by fuselage design techniques on high-speed, propeller-driven aircraft

    Science.gov (United States)

    Revell, J. D.; Balena, F. J.; Koval, L. R.

    1980-01-01

    The acoustical treatment mass penalties required to achieve an interior noise level of 80 dBA for high speed, fuel efficient propfan-powered aircraft are determined. The prediction method used is based on theory developed for the outer shell dynamics, and a modified approach for add-on noise control element performance. The present synthesis of these methods is supported by experimental data. Three different sized aircraft are studied, including a widebody, a narrowbody and a business sized aircraft. Noise control penalties are calculated for each aircraft for two kinds of noise control designs: add-on designs, where the outer wall structure cannot be changed, and advanced designs where the outer wall stiffness level and the materials usage can be altered. For the add-on designs, the mass penalties range from 1.7 to 2.4 percent of the takeoff gross weight (TOGW) of the various aircraft, similar to preliminary estimates. Results for advanced designs show significant reductions of the mass penalties. For the advanced aluminum designs the penalties are 1.5% of TOGW, and for an all composite aircraft the penalties range from 0.74 to 1.4% of TOGW.

  19. Temperature Control and Noise Reduction in our Compact ADR System for TES Microcalorimeter Operation

    Science.gov (United States)

    Hishi, U.; Fujimoto, R.; Kamiya, K.; Kotake, M.; Ito, H.; Kaido, T.; Tanaka, K.; Hattori, K.

    2016-08-01

    We have been developing a compact adiabatic demagnetization refrigerator, keeping ground application and future missions in mind. A salt pill fabricated in-house, a superconducting magnet with a passive magnetic shield around it, and a mechanical heat switch are mounted in a dedicated helium cryostat. The detector stage temperature is regulated by PID control of the magnet current, with a dI/dt term added to compensate the temperature rise due to parasitic heat. The temperature fluctuation of the detector stage is 1-2 \\upmu Krms, and the hold time was extended by about 15 % thanks to the dI/dt term. Bundle shields of the harnesses between the cryostat and the analog electronics boxes were connected to the chassis at both ends, and the analog electronics boxes were grounded to the cryostat through the bundle shields. This reduced the readout noise to 16 pA/√{Hz} in the 10-60 kHz range. Using this system, an energy resolution of 3.8 ± 0.2 eV (FWHM) was achieved at 5.9 keV.

  20. Study of laminar boundary layer instability noise study on a controlled diffusion airfoil

    Science.gov (United States)

    Jaiswal, Prateek; Sanjose, Marlene; Moreau, Stephane

    2016-11-01

    Detailed experimental study has been carried out on a Controlled Diffusion (CD) airfoil at 5° angle of attack and at chord based Reynolds number of 1 . 5 ×105 . All the measurements were done in an open-jet anechoic wind tunnel. The airfoil mock-up is held between two side plates, to keep the flow two-dimensional. PIV measurements have been performed in the wake and on the boundary layer of the airfoil. Pressure sensor probes on the airfoil were used to detect mean airfoil loading and remote microphone probes were used to measure unsteady pressure fluctuations on the surface of the airfoil. Furthermore the far field acoustic pressure was measured using an 1/2 inch ICP microphone. The results confirm very later transition of a laminar boundary layer to a turbulent boundary layer on the suction side of the airfoil. The process of transition of laminar to turbulent boundary layer comprises of turbulent reattachment of a separated shear layer. The pressure side of the boundary layer is found to be laminar and stable. Therefore tonal noise generated is attributed to events on suction side of the airfoil. The flow transition and emission of tones are further investigated in detail thanks to the complementary DNS study.

  1. Adjoint LMS (ALMS Algorithm Based Active Noise Control with Feedback Path Modeling

    Directory of Open Access Journals (Sweden)

    U Ramachandraiah,

    2010-12-01

    Full Text Available In active noise control (ANC systems, there exists an inherent feedback from the loudspeaker to the primary microphone. Adjoint least mean square (ALMS algorithm is known to be an alternative to the widely used filtered x LMS (FxLMS for reducing the computational complexity and memory requirements, especially in the case of multi-channel systems. Further FxLMS algorithm is based on the assumptionthat the order of the weighing filter and secondary path can be commuted which is not always true in practice. Though ALMS do not make such an assumption, neither FxLMS nor the ALMS algorithms onsider the feedback path effect that is inherent in ANC systems.We propose a feedback ANC system based on ALMS algorithm which is analogous to the system based on FxLMS. Detailed computational complexity analysis for addition and multiplication requirements ispresented and are compared with those of its counterpart to establish its usefulness. Simulation results show the convergence characteristics of the ALMS based ANC with feedback path modeling is on par with that based on FxLMS.

  2. Computationally efficient algorithm for high sampling-frequency operation of active noise control

    Science.gov (United States)

    Rout, Nirmal Kumar; Das, Debi Prasad; Panda, Ganapati

    2015-05-01

    In high sampling-frequency operation of active noise control (ANC) system the length of the secondary path estimate and the ANC filter are very long. This increases the computational complexity of the conventional filtered-x least mean square (FXLMS) algorithm. To reduce the computational complexity of long order ANC system using FXLMS algorithm, frequency domain block ANC algorithms have been proposed in past. These full block frequency domain ANC algorithms are associated with some disadvantages such as large block delay, quantization error due to computation of large size transforms and implementation difficulties in existing low-end DSP hardware. To overcome these shortcomings, the partitioned block ANC algorithm is newly proposed where the long length filters in ANC are divided into a number of equal partitions and suitably assembled to perform the FXLMS algorithm in the frequency domain. The complexity of this proposed frequency domain partitioned block FXLMS (FPBFXLMS) algorithm is quite reduced compared to the conventional FXLMS algorithm. It is further reduced by merging one fast Fourier transform (FFT)-inverse fast Fourier transform (IFFT) combination to derive the reduced structure FPBFXLMS (RFPBFXLMS) algorithm. Computational complexity analysis for different orders of filter and partition size are presented. Systematic computer simulations are carried out for both the proposed partitioned block ANC algorithms to show its accuracy compared to the time domain FXLMS algorithm.

  3. Optimal virtual sensing for active noise control in a rigid-walled acoustic duct

    Science.gov (United States)

    Petersen, Dick; Zander, Anthony C.; Cazzolato, Ben S.; Hansen, Colin H.

    2005-11-01

    The performance of local active noise control systems is generally limited by the small sizes of the zones of quiet created at the error sensors. This is often exacerbated by the fact that the error sensors cannot always be located close to an observer's ears. Virtual sensing is a method that can move the zone of quiet away from the physical location of the transducers to a desired location, such as an observer's ear. In this article, analytical expressions are derived for optimal virtual sensing in a rigid-walled acoustic duct with arbitrary termination conditions. The expressions are derived for tonal excitations, and are obtained by employing a traveling wave model of a rigid-walled acoustic duct. It is shown that the optimal solution for the virtual sensing microphone weights is independent of the source location and microphone locations. It is also shown that, theoretically, it is possible to obtain infinite reductions at the virtual location. The analytical expressions are compared with forward difference prediction techniques. The results demonstrate that the maximum attenuation, that theoretically can be obtained at the virtual location using forward difference prediction techniques, is expected to decrease for higher excitation frequencies and larger virtual distances.

  4. Migratory decisions in birds: Extent of genetic versus environmental control

    Science.gov (United States)

    Ogonowski, M.S.; Conway, C.J.

    2009-01-01

    Migration is one of the most spectacular of animal behaviors and is prevalent across a broad array of taxa. In birds, we know much about the physiological basis of how birds migrate, but less about the relative contribution of genetic versus environmental factors in controlling migratory tendency. To evaluate the extent to which migratory decisions are genetically determined, we examined whether individual western burrowing owls (Athene cunicularia hypugaea) change their migratory tendency from one year to the next at two sites in southern Arizona. We also evaluated the heritability of migratory decisions by using logistic regression to examine the association between the migratory tendency of burrowing owl parents and their offspring. The probability of migrating decreased with age in both sexes and adult males were less migratory than females. Individual owls sometimes changed their migratory tendency from one year to the next, but changes were one-directional: adults that were residents during winter 2004-2005 remained residents the following winter, but 47% of adults that were migrants in winter 2004-2005 became residents the following winter. We found no evidence for an association between the migratory tendency of hatch-year owls and their male or female parents. Migratory tendency of hatch-year owls did not differ between years, study sites or sexes or vary by hatching date. Experimental provision of supplemental food did not affect these relationships. All of our results suggest that heritability of migratory tendency in burrowing owls is low, and that intraspecific variation in migratory tendency is likely due to: (1) environmental factors, or (2) a combination of environmental factors and non-additive genetic variation. The fact that an individual's migratory tendency can change across years implies that widespread anthropogenic changes (i.e., climate change or changes in land use) could potentially cause widespread changes in the migratory tendency of

  5. Abnormal Noise Source Identification and Control for Automobile Transmission in the Neutral Idle Condition

    Directory of Open Access Journals (Sweden)

    Yongxiang Li

    2013-05-01

    Full Text Available Aiming at the abnormal noise of a domestically-made automobile transmission in the neutral idle condition, seriously affecting the vehicle market competitiveness and the riding comfort ability for customers, the objective of this study to reduce the noise and vibration of the automobile transmission by accurately identifying the noise source of the transmission in the neutral idle condition. For this purpose, based on the working characteristics of the transmission, modal analysis of automobile transmission housing is formulated using 3D graphics software Pro/E together with Finite Element Method. In addition, the calculation of meshing frequency of gear pair is conducted also. Finally, through comparing model analysis results to the calculation results, it is indicated that the gear meshing impact noise of the third gear pair was identified as the noise resource of the automobile transmission in neutral idle condition, which will provide the theoretic basis to analyze its dynamic characteristics of the transmission as well as its improvement to reduce vibration and noise.

  6. Chaos control on autonomous and non-autonomous systems with various types of genetic algorithm-optimized weak perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Soong, C.Y. [Department of Aerospace and Systems Engineering, Feng Chia University, Seatwen, Taichung 40724, Taiwan (China)]. E-mail: cysoong@fcu.edu.tw; Huang, W.T. [Department of Marine Mechanical Engineering, Chinese Naval Academy, Kaohsiung 81300, Taiwan (China); Lin, F.P. [Grid Computing Division, National Center of High Performance Computing, Hsinchu 30012, Taiwan (China)

    2007-12-15

    Recently, we proposed a chaos control strategy with weak Fourier signals optimized by using a genetic algorithm (GA) and demonstrated its merits in controlling Lorenz and Roessler systems (Physical Review E, 2004). In this continuation work, performance of various types of signals, namely periodic continuous, periodic discrete, and constant bias (non-periodic), applied to an autonomous (Roessler) system and a non-autonomous (Murali-Lakshmanan-Chua, MLC) system are investigated. An index of relative robustness is proposed for measuring the noise-resisting ability of the control signals. The results reveal that the constant signal has the strongest noise-resisting ability, the periodic pulse signal has the weakest, and the Fourier signal falls in between. Phase modulation generally shortens the transient time period and is additionally beneficial to non-autonomous systems in minimizing significantly the signal power. By searching with the present GA-optimization, it is demonstrated that the minimum-power signal for controlling the non-autonomous (MLC) system is the signal with a frequency exactly the same as that of the system forcing but with phase modulation. The effectiveness of the GA-optimized signals of extremely low power employed in alternatively switching control of non-autonomous systems is also demonstrated.

  7. Bioactive Hierarchical Structures for Genetic Control of Bone Morphogenesis

    Directory of Open Access Journals (Sweden)

    Pilar Sepulveda

    2002-09-01

    Full Text Available For thirty years it has been known that certain compositions of Na2O-CaO-P2O5-SiO 2 glasses will form a mechanically strong, chemical bond to bone. These materials have become known as bioactive glasses and the process of bonding is called bioactive fixation. Bioactive glasses are widely used clinically in the repair of bone defects. Recent research at the Imperial College Tissue Engineering Centre has now established that there is a genetic control of the cellular response to bioactive materials. Seven families of genes are up-regulated when primary human osteoblasts are exposed to the ionic dissolution products of bioactive glasses. The gene expression occurs very rapidly, within two days, and includes enhanced expression of cell cycle regulators. The consequence is rapid differentiation of the osteoblasts into a mature phenotype and formation of large three-dimensional bone nodules within six days in vitro. These cell culture results correlate with extensive human clinical results using the same bioactive material. The new genetic theory of bioactive materials provides a scientific foundation for molecular design of new generation of resorbable bioactive materials for tissue engineering and in situ tissue regeneration and repair. Application of this theory to the synthesis of bioactive foams for tissue engineering of bone is described.

  8. Reduction in noise-induced functional loss of the cochleae in mice with pre-existing cochlear dysfunction due to genetic interference of prestin.

    Science.gov (United States)

    Cai, Qunfeng; Wang, Bo; Coling, Donald; Zuo, Jian; Fang, Jie; Yang, Shiming; Vera, Krystal; Hu, Bo Hua

    2014-01-01

    Various cochlear pathologies, such as acoustic trauma, ototoxicity and age-related degeneration, cause hearing loss. These pre-existing hearing losses can alter cochlear responses to subsequent acoustic overstimulation. So far, the knowledge on the impacts of pre-existing hearing loss caused by genetic alteration of cochlear genes is limited. Prestin is the motor protein expressed exclusively in outer hair cells in the mammalian cochlea. This motor protein contributes to outer hair cell motility. At present, it is not clear how the interference of prestin function affects cochlear responses to acoustic overstimulation. To address this question, a genetic model of prestin dysfunction in mice was created by inserting an internal ribosome entry site (IRES)-CreERT2-FRT-Neo-FRT cassette into the prestin locus after the stop codon. Homozygous mice exhibit a threshold elevation of auditory brainstem responses with large individual variation. These mice also display a threshold elevation and a shift of the input/output function of the distortion product otoacoustic emission, suggesting a reduction in outer hair cell function. The disruption of prestin function reduces the threshold shifts caused by exposure to a loud noise at 120 dB (sound pressure level) for 1 h. This reduction is positively correlated with the level of pre-noise cochlear dysfunction and is accompanied by a reduced change in Cdh1 expression, suggesting a reduction in molecular responses to the acoustic overstimulation. Together, these results suggest that prestin interference reduces cochlear stress responses to acoustic overstimulation.

  9. Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors

    Science.gov (United States)

    Tochitsky, Ivan; Banghart, Matthew R.; Mourot, Alexandre; Yao, Jennifer Z.; Gaub, Benjamin; Kramer, Richard H.; Trauner, Dirk

    2012-02-01

    Advances in synthetic chemistry, structural biology, molecular modelling and molecular cloning have enabled the systematic functional manipulation of transmembrane proteins. By combining genetically manipulated proteins with light-sensitive ligands, innately ‘blind’ neurobiological receptors can be converted into photoreceptors, which allows them to be photoregulated with high spatiotemporal precision. Here, we present the optochemical control of neuronal nicotinic acetylcholine receptors (nAChRs) with photoswitchable tethered agonists and antagonists. Using structure-based design, we produced heteromeric α3β4 and α4β2 nAChRs that can be activated or inhibited with deep-violet light, but respond normally to acetylcholine in the dark. The generation of these engineered receptors should facilitate investigation of the physiological and pathological functions of neuronal nAChRs and open a general pathway to photosensitizing pentameric ligand-gated ion channels.

  10. Diversity Controlling Genetic Algorithm for Order Acceptance and Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Cheng Chen

    2014-01-01

    Full Text Available Selection and scheduling are an important topic in production systems. To tackle the order acceptance and scheduling problem on a single machine with release dates, tardiness penalty, and sequence-dependent setup times, in this paper a diversity controlling genetic algorithm (DCGA is proposed, in which a diversified population is maintained during the whole search process through survival selection considering both the fitness and the diversity of individuals. To measure the similarity between individuals, a modified Hamming distance without considering the unaccepted orders in the chromosome is adopted. The proposed DCGA was validated on 1500 benchmark instances with up to 100 orders. Compared with the state-of-the-art algorithms, the experimental results show that DCGA improves the solution quality obtained significantly, in terms of the deviation from upper bound.

  11. Genetic control of human brain transcript expression in Alzheimer disease.

    Science.gov (United States)

    Webster, Jennifer A; Gibbs, J Raphael; Clarke, Jennifer; Ray, Monika; Zhang, Weixiong; Holmans, Peter; Rohrer, Kristen; Zhao, Alice; Marlowe, Lauren; Kaleem, Mona; McCorquodale, Donald S; Cuello, Cindy; Leung, Doris; Bryden, Leslie; Nath, Priti; Zismann, Victoria L; Joshipura, Keta; Huentelman, Matthew J; Hu-Lince, Diane; Coon, Keith D; Craig, David W; Pearson, John V; Heward, Christopher B; Reiman, Eric M; Stephan, Dietrich; Hardy, John; Myers, Amanda J

    2009-04-01

    We recently surveyed the relationship between the human brain transcriptome and genome in a series of neuropathologically normal postmortem samples. We have now analyzed additional samples with a confirmed pathologic diagnosis of late-onset Alzheimer disease (LOAD; final n = 188 controls, 176 cases). Nine percent of the cortical transcripts that we analyzed had expression profiles correlated with their genotypes in the combined cohort, and approximately 5% of transcripts had SNP-transcript relationships that could distinguish LOAD samples. Two of these transcripts have been previously implicated in LOAD candidate-gene SNP-expression screens. This study shows how the relationship between common inherited genetic variants and brain transcript expression can be used in the study of human brain disorders. We suggest that studying the transcriptome as a quantitative endo-phenotype has greater power for discovering risk SNPs influencing expression than the use of discrete diagnostic categories such as presence or absence of disease.

  12. 乘用车怠速车内噪声源识别及控制措施研究%Investigation on Noise Sources Identification and Control of Idling Noise inside Car

    Institute of Scientific and Technical Information of China (English)

    陈达亮; 李洪亮; 高辉; 车云龙

    2014-01-01

    In this paper, a car model of domestic brand is taken as research object to investigate the interior noise control in idling. The vibration isolation test of engine mounts and interior noises separation test, etc., are carried out to quantify contribution of different interior noise sources. Measures to improve interior noise control in idling are presented in this paper including control of noise source at exhaust outlet, control of suspension cushion structure transfer path, and control of air transfer path of firewall and sound-proof pad. With such modifications, the test car reduces its interior noise by 3.5 dB (A) in idling, which enables its noise level in line with that the noise level of Sino-foreign joint venture car products.%以某自主品牌乘用车怠速车内噪声为研究对象,通过动力总成悬置系统隔振率试验、车内噪声分离试验等方法定量确定车内各噪声源的贡献量大小,并从排气管口噪声源控制、悬置垫结构传递路径控制及防火墙隔音垫空气传递路径控制等方面分别提出怠速车内噪声控制的改进措施。采取改进措施后的试验样车怠速工况下车内噪声降低3.5dB(A),达到国内合资品牌水平。

  13. Genetic control of maize shoot apical meristem architecture.

    Science.gov (United States)

    Thompson, Addie M; Crants, James; Schnable, Patrick S; Yu, Jianming; Timmermans, Marja C P; Springer, Nathan M; Scanlon, Michael J; Muehlbauer, Gary J

    2014-05-22

    The shoot apical meristem contains a pool of undifferentiated stem cells and generates all above-ground organs of the plant. During vegetative growth, cells differentiate from the meristem to initiate leaves while the pool of meristematic cells is preserved; this balance is determined in part by genetic regulatory mechanisms. To assess vegetative meristem growth and genetic control in Zea mays, we investigated its morphology at multiple time points and identified three stages of growth. We measured meristem height, width, plastochron internode length, and associated traits from 86 individuals of the intermated B73 × Mo17 recombinant inbred line population. For meristem height-related traits, the parents exhibited markedly different phenotypes, with B73 being very tall, Mo17 short, and the population distributed between. In the outer cell layer, differences appeared to be related to number of cells rather than cell size. In contrast, B73 and Mo17 were similar in meristem width traits and plastochron internode length, with transgressive segregation in the population. Multiple loci (6-9 for each trait) were mapped, indicating meristem architecture is controlled by many regions; none of these coincided with previously described mutants impacting meristem development. Major loci for height and width explaining 16% and 19% of the variation were identified on chromosomes 5 and 8, respectively. Significant loci for related traits frequently coincided, whereas those for unrelated traits did not overlap. With the use of three near-isogenic lines, a locus explaining 16% of the parental variation in meristem height was validated. Published expression data were leveraged to identify candidate genes in significant regions. Copyright © 2014 Thompson et al.

  14. 车内噪声主动控制变步长LMS算法%Active Noise Control for Vehicle Interior Noise Using Variable Incremental Step LMS Algorithm

    Institute of Scientific and Technical Information of China (English)

    余荣平; 张心光; 王岩松; 郭辉

    2015-01-01

    通过对轨道车辆车内含噪样本数据的分析,应用步长因子μ(n)与误差信号e(n)呈正弦函数关系的变步长LMS算法。分别对自适应滤波器中的权向量按照最速下降算法进行更新,并利用建立的自适应滤波器进行车内噪声主动控制。结果表明,提出的变步长LMS算法解决了LMS算法因固定步长不能同时兼顾算法收敛速度和稳态误差的固有缺陷,具有更快的算法收敛速度和较小的稳态误差。%By analyzing the noise signal sample inside the railway vehicle, the plain LMS algorithm and the LMS algo-rithm with variable-incremental-steps were applied respectively to update the weight vectors in the adaptive filtering based on the steepest descent algorithm. The relation between step factor μ(n) and error signal e(n) is a sinusoidal function in the variable-step LMS algorithm. The adaptive filter was used for active internal noise control for the vehicle. Result shows that the proposed variable-step LMS algorithm can overcome the inherent contradiction in the plain LMS algorithm between al-gorithm convergence speed and steady-state error, and has faster algorithm convergence speed and less steady-state error si-multaneously.

  15. The genetic control of apomixis: asexual seed formation.

    Science.gov (United States)

    Hand, Melanie L; Koltunow, Anna M G

    2014-06-01

    Apomixis (asexual seed formation) is the result of a plant gaining the ability to bypass the most fundamental aspects of sexual reproduction: meiosis and fertilization. Without the need for male fertilization, the resulting seed germinates a plant that develops as a maternal clone. This dramatic shift in reproductive process has been documented in many flowering plant species, although no major seed crops have been shown to be capable of apomixis. The ability to generate maternal clones and therefore rapidly fix desirable genotypes in crop species could accelerate agricultural breeding strategies. The potential of apomixis as a next-generation breeding technology has contributed to increasing interest in the mechanisms controlling apomixis. In this review, we discuss the progress made toward understanding the genetic and molecular control of apomixis. Research is currently focused on two fronts. One aims to identify and characterize genes causing apomixis in apomictic species that have been developed as model species. The other aims to engineer or switch the sexual seed formation pathway in non-apomictic species, to one that mimics apomixis. Here we describe the major apomictic mechanisms and update knowledge concerning the loci that control them, in addition to presenting candidate genes that may be used as tools for switching the sexual pathway to an apomictic mode of reproduction in crops.

  16. Genetic control of environmental variation of two quantitative traits of Drosophila melanogaster revealed by whole-genome sequencing

    DEFF Research Database (Denmark)

    Sørensen, Peter; de los Campos, Gustavo; Morgante, Fabio

    2015-01-01

    Genetic studies usually focus on quantifying and understanding the existence of genetic control on expected phenotypic outcomes. However, there is compelling evidence suggesting the existence of genetic control at the level of environmental variability, with some genotypes exhibiting more stable ...

  17. Evaluation of Sabine's formula on the prediction and control of reverberant noise in a modern LEED Platinum certified research building

    Science.gov (United States)

    Quinn-Vawter, Christopher

    The Powerhouse Energy Campus is a LEED Platinum certified research building located in Fort Collins, Colorado and is part of Colorado State University. Completed in 2014, the renovated interior of the Powerhouse consists largely of open floor plans with minimal closed rooms to allow the building's heating and cooling system to function. The open floor plan and use of interior building materials with hard surfaces created problematic noise levels for the office occupants as noise from laboratory spaces or offices could be heard throughout the building. This project provided a unique opportunity to evaluate the method available to most industrial hygienists to measure and predict reverberant noise: Sabine's Formula and the impulse noise method of reverberation measurement. Reverberation times (RT60) in five interior spaces ranging from 76 m3 to 5400 m3 were modeled using a Sabine's Formula model. The RT60 predictions were then compared to the reverberation times measured in each location, and reverberant noise treatments were designed for two rooms using the same models. The RT 60 times were taken again after the installation of the recommended treatments for two rooms. This allowed for the evaluation of both the modeling capabilities of Sabine's Formula and the practical industrial hygiene application of the equation to select effective acoustic treatments to control reverberant noise. The model performed well in room volumes 620 m3 and below, and would have likely performed better in the large volume rooms if they did not have such complex, open acoustic environments. The model was still slightly underestimating reverberation times at 620 m3 indicating that it would perform well in larger volume spaces, though this study was not able to identify the room volume at which Sabine's Formula begins to overestimate reverberation times. The RT60 time reductions in both the first floor classroom and the second floor conference room indicated that the reverberant noise

  18. 小型发电机的噪声治理%Noise control of portable genrtator set

    Institute of Scientific and Technical Information of China (English)

    侯美丽; 朱培恭; 侯丽

    2001-01-01

    In this paper,major noise sources in a portable generator set have been controlled.Constrained layer damping treatment and stiffening of the cooling fan cover had a combined effect of reducing the sound pressure level by about 3dB.Rigid clamping of the silencer also reduced the noise level.A partial enclosure reduced the sound pressure and power levels by about 4 and 3.7dB respectively.An overall noise reduction by 8.5dB was obtained on side 4 of the generator set as a result of the implementation of all the noise control measures.The noise reduction on the other sides of the generator set was also substantial.%本文对便携式发电机的噪声源进行了控制处理.约束阻尼层处理和冷却风扇盖硬化处理,可有效减小噪声级达3dB.紧固消音器也可减小噪声级.为发电机设计局部包围,局部包围分别减小声压级和声强级为4dB和3.7dB.同时使用上述噪声控制,第四面上噪声可减小8.5dB.其他面上的噪声也有相应的减小.

  19. Flow Field Simulation and Noise Control of a Twin-Screw Engine-Driven Supercharger

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2016-01-01

    Full Text Available With the advantages of good low-speed torque capability and excellent instant response performance, twin-screw superchargers have great potential in the automobile market, but the noise of these superchargers is the main factor that discourages their use. Therefore, it is important to study their noise mechanism and methods of reducing it. This study included a transient numerical simulation of a twin-screw supercharger flow field with computational fluid dynamics software and an analysis of the pressure field of the running rotor. The results showed that overcompression was significant in the compression end stage of the supercharger, resulting in a surge in airflow to a supersonic speed and the production of shock waves that resulted in loud noise. On the basis of these findings, optimization of the supercharger is proposed, including expansion of the supercharger exhaust orifice and creation of a slot along the direction of the rotor spiral normal line at the exhaust port, so as to reduce the compression end pressure, improve the exhaust flow channel, and weaken the source of the noise. Experimental results showed that the noise level value of the improved twin-screw supercharger was significantly lower at the same speed than the original model, with an average decrease of about 5 dB (A.

  20. Genetics

    Science.gov (United States)

    ... Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...