WorldWideScience

Sample records for genetic models mineralization

  1. Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity

    Science.gov (United States)

    Louis, S.J.; Raines, G.L.

    2003-01-01

    We use a genetic algorithm to calibrate a spatially and temporally resolved cellular automata to model mining activity on public land in Idaho and western Montana. The genetic algorithm searches through a space of transition rule parameters of a two dimensional cellular automata model to find rule parameters that fit observed mining activity data. Previous work by one of the authors in calibrating the cellular automaton took weeks - the genetic algorithm takes a day and produces rules leading to about the same (or better) fit to observed data. These preliminary results indicate that genetic algorithms are a viable tool in calibrating cellular automata for this application. Experience gained during the calibration of this cellular automata suggests that mineral resource information is a critical factor in the quality of the results. With automated calibration, further refinements of how the mineral-resource information is provided to the cellular automaton will probably improve our model.

  2. Genetic Process Mining: Alignment-based Process Model Mutation

    NARCIS (Netherlands)

    Eck, van M.L.; Buijs, J.C.A.M.; Dongen, van B.F.; Fournier, F.; Mendling, J.

    2015-01-01

    The Evolutionary Tree Miner (ETM) is a genetic process discovery algorithm that enables the user to guide the discovery process based on preferences with respect to four process model quality dimensions: replay fitness, precision, generalization and simplicity. Traditionally, the ETM algorithm uses

  3. Methods of modeling and optimization of work effects for chosen mineral processing systems

    Directory of Open Access Journals (Sweden)

    Tomasz Niedoba

    2005-11-01

    Full Text Available The methods being used in the mineral processing modeling are reviewed in this paper. Particularly, the heuristic approach was presented. The new, modern techniques of modeling and optimization were proposed, including the least median squares method and genetic algorithms. The rules of the latter were described in details.

  4. Genetic aspects of uranium mineralization in the Himalaya

    International Nuclear Information System (INIS)

    Saraswat, A.C.; Mahadevan, T.M.

    1989-01-01

    The Himalayan Uranium Province hosts five major types of uranium mineralization: (1) stratiform remobilized (Proterozoic), (2) structurally controlled hydrothermal (Proterozoic), (3) black shale-phosphorite (Palaeozoic-Mesozoic), (4) sandstone (Siwalik belt, Tertiary), and (5) primary disseminations in granitoids (Tertiary). Evaluation of the genetic aspects of these types has led to the identification of distinct spatial (lithostratigraphic and tectonic units) and temporal relations among them. The sandstone types are confined to the Tertiary (Middle Miocene to Pleistocene) molasse formations found south of th Main Boundary Thrust (MBT). Between the MBT and the Main Central Thrust, in the Lesser Himalaya, mineralization hosted in the Chail quartzite-phyllite ± metabasic sequences is of stratiform remobilized type. The structurally controlled hydrothermal type is confined to Dalings and gneisses. Syngenetic uranium in black shale-phosphorite sequences of Palaeozoic-Mesozoic age is found on the southern fringes of the Lesser Himalaya, bordering the MBT. Disseminated uranium occurs in the Tertiary and Proterozoic(?) granitoids of the Greater Himalaya and Ladakh. Rb-Sr geochronological data on host rocks and U-Pb dates on uraninites from some areas indicate that uranium mineralization in stratiform remobilized and structurally controlled types hosted by the Chails, Dalings and gneisses is essentially Precambrian and thus existed much before the Himalayan Orogeny. The Himalayan Orogeny, however, appears to have aided in further remobilization. The sandstone type mineralization in the Siwalik, on the other hand, is directly related to the process of formation of the foredeep and molasse sedimentation and subsequent uplift and epigenesis of the uranium mineralization, all of which are directly relatable to the evolution of the Himalaya. The relevance of deep seated lineament structures to mineralization, particularly of uranium, needs to be evaluated critically, as most

  5. Genetic African Ancestry and Markers of Mineral Metabolism in CKD.

    Science.gov (United States)

    Gutiérrez, Orlando M; Parsa, Afshin; Isakova, Tamara; Scialla, Julia J; Chen, Jing; Flack, John M; Nessel, Lisa C; Gupta, Jayanta; Bellovich, Keith A; Steigerwalt, Susan; Sondheimer, James H; Wright, Jackson T; Feldman, Harold I; Kusek, John W; Lash, James P; Wolf, Myles

    2016-04-07

    Disorders of mineral metabolism are more common in African Americans with CKD than in European Americans with CKD. Previous studies have focused on the differences in mineral metabolism by self-reported race, making it difficult to delineate the importance of environmental compared with biologic factors. In a cross-sectional analysis of 3013 participants of the Chronic Renal Insufficiency Cohort study with complete data, we compared markers of mineral metabolism (phosphorus, calcium, alkaline phosphatase, parathyroid hormone, fibroblast growth factor 23, and urine calcium and phosphorus excretion) in European Americans versus African Americans and separately, across quartiles of genetic African ancestry in African Americans (n=1490). Compared with European Americans, African Americans had higher blood concentrations of phosphorus, alkaline phosphatase, fibroblast growth factor 23, and parathyroid hormone, lower 24-hour urinary excretion of calcium and phosphorus, and lower urinary fractional excretion of calcium and phosphorus at baseline (PAfrican Americans, a higher percentage of African ancestry was associated with lower 24-hour urinary excretion of phosphorus (PtrendAfrican ancestry was significantly associated with lower 24-hour urinary phosphorus excretion (each 10% higher African ancestry was associated with 39.6 mg lower 24-hour urinary phosphorus, PAfrican ancestry was associated with an absolute 1.1% lower fractional excretion of phosphorus, P=0.01). A higher percentage of African ancestry was independently associated with lower 24-hour urinary phosphorus excretion and lower fractional excretion of phosphorus among African Americans with CKD. These findings suggest that genetic variability might contribute to racial differences in urinary phosphorus excretion in CKD. Copyright © 2016 by the American Society of Nephrology.

  6. Genetic determinism of bone and mineral metabolism in meat-type chickens: A QTL mapping study.

    Science.gov (United States)

    Mignon-Grasteau, Sandrine; Chantry-Darmon, Céline; Boscher, Marie-Yvonne; Sellier, Nadine; Chabault-Dhuit, Marie; Le Bihan-Duval, Elisabeth; Narcy, Agnès

    2016-12-01

    Skeletal integrity in meat-type chickens is affected by many factors including rapid growth rate, nutrition and genetics. To investigate the genetic basis of bone and mineral metabolism, a QTL detection study was conducted in an intercross between two lines of meat-type chickens divergently selected for their high (D +) or low (D -) digestive efficiency. Tibia size (length, diameter, volume) and ash content were determined at 3 weeks of age as well as phosphorus (P) retention and plasma concentration. Heritability of these traits and their genetic correlations with digestive efficiency were estimated. A QTL mapping study was performed using 3379 SNP markers. Tibia size, weight, ash content and breaking strength were highly heritable (0.42 to 0.61). Relative tibia diameter and volume as well as P retention were strongly and positively genetically correlated with digestive efficiency (0.57 to 0.80). A total of 35 QTL were identified (9 for tibia weight, 13 for tibia size, 5 for bone strength, 5 for bone mineralization, 2 for plasma P concentration and 1 for P retention). Six QTL were genome-wide significant, and 3 QTL for tibia relative volume, weight and ash weight on chromosome 6 were fixed, the positive allele coming from the D-line. For two QTL for ash content on chromosome 18 and relative tibia length on chromosome 26, the confidence intervals were small enough to identify potential candidate genes. These findings support the evidence of multiple genetic loci controlling bone and mineral metabolism. The identification of candidate genes may provide new perspectives in the understanding of bone regulation, even beyond avian species.

  7. Statistical models for optimizing mineral exploration

    International Nuclear Information System (INIS)

    Wignall, T.K.; DeGeoffroy, J.

    1987-01-01

    The primary purpose of mineral exploration is to discover ore deposits. The emphasis of this volume is on the mathematical and computational aspects of optimizing mineral exploration. The seven chapters that make up the main body of the book are devoted to the description and application of various types of computerized geomathematical models. These chapters include: (1) the optimal selection of ore deposit types and regions of search, as well as prospecting selected areas, (2) designing airborne and ground field programs for the optimal coverage of prospecting areas, and (3) delineating and evaluating exploration targets within prospecting areas by means of statistical modeling. Many of these statistical programs are innovative and are designed to be useful for mineral exploration modeling. Examples of geomathematical models are applied to exploring for six main types of base and precious metal deposits, as well as other mineral resources (such as bauxite and uranium)

  8. In vitro evaluation of caseinophosphopeptides from different genetic variants on bone mineralization

    Directory of Open Access Journals (Sweden)

    Giovanni Tulipano

    2010-01-01

    Full Text Available Casein phosphopeptides (CPPs have been shown to enhance calcium solubility and to increase the calcification by in vitro analyses. The aim of our study was to investigate the effects of four selected casein peptides, which differ in the number of phosphorylated serines, on osteoblast mineralization in vitro. The chosen peptides, related to different casein genetic variants, were obtained by chemical synthesis and tested on murine osteoblast cell line (MC3T3-E1. Our results suggest that the distinct peptides in protein hydrolysates may differentially affect calcium deposition in the extracellular matrix and that the genetic variation within the considered peptides is involved in their differential effect.

  9. Genetic Aspects of Gold Mineralization at Some Occurrences in the Eastern Desert of Egypt

    Science.gov (United States)

    Abd El Monsef, M.; Slobodník, M.; Salem, I. A.

    2012-04-01

    The Eastern Desert of Egypt is well known as a gold-mining area since ancient times, there're more than 95 gold deposits and occurrences spread the whole area covered by the basement rocks of Precambrian age. The basement rocks of the Eastern Desert of Egypt constitute the Nubian Shield that has formed a continuous part of the Arabian-Nubian Shield before the opening of Red Sea (Oligocene-Early Miocene). Commonly, the system of gold-bearing quartz veins in the Eastern Desert is clearly structural controlled related to brittle-ductile shear zones that mostly developed during late deformational stages of the evolution history for basement rocks in the Eastern Desert. This running study principally aims to contribute the mineral resource potential of the gold deposits in Egypt, so particularly Fatira, Gidami and Atalla occurrences have been involved into a comprehensive study based on field, structural, mineralogical, geochemical and genetic investigations. It is intended to better understanding for the characteristics, distribution controls, conditions and age of mineralization in relation to the age of the hosting rocks intrusion to find if there're genetic links between the gold mineralization and the evolution of the host intrusive complex. Several authors suggested that the gold mineralization was related to the intrusion of the (postorogenic) Younger granites. Other authors interpret these deposits as products of hydrothermal activity induced either by metamorphism or cooling effects of early Paleozoic magmatism or as combined metamorphic/magmatic episodes. The prime focus will be directed to the ore itself and the associated hydrothermal alteration zones based on detailed maps and well-distributed samples network and geochemical anomalies distribution. The laboratory studies included microscopic examination (reflecting and transmitting microscopy) to allow for determination of the hosting rocks types and mineralogical changes related to the gold mineralization

  10. Genetic sharing with cardiovascular disease risk factors and diabetes reveals novel bone mineral density loci

    NARCIS (Netherlands)

    S. Reppe (Sjur); Y. Wang (Yunpeng); W.K. Thompson (Wesley K.); L.K. McEvoy (Linda K.); N.J. Schork (Nicholas); V. Zuber (Verena); M. Leblanc (Marissa); F. Bettella (Francesco); I.G. Mills (Ian G.); R.S. Desikan (Rahul S.); S. Djurovic (Srdjan); K.M. Gautvik (Kaare); A.M. Dale (Anders); O.A. Andreassen (Ole); K. Estrada Gil (Karol); U. Styrkarsdottir (Unnur); E. Evangelou (Evangelos); Y.-H. Hsu (Yi-Hsiang); E.L. Duncan (Emma); E.E. Ntzani (Evangelia); L. Oei (Ling); O.M.E. Albagha (Omar M.); N. Amin (Najaf); J.P. Kemp (John); D.L. Koller (Daniel); G. Li (Guo); C.-T. Liu (Ching-Ti); R.L. Minster (Ryan); A. Moayyeri (Alireza); L. Vandenput (Liesbeth); D. Willner (Dana); S.-M. Xiao (Su-Mei); L.M. Yerges-Armstrong (Laura); H.-F. Zheng (Hou-Feng); N. Alonso (Nerea); J. Eriksson (Joel); C.M. Kammerer (Candace); S. Kaptoge (Stephen); P.J. Leo (Paul); G. Thorleifsson (Gudmar); S.G. Wilson (Scott); J.F. Wilson (James F); V. Aalto (Ville); M. Alen (Markku); A.K. Aragaki (Aaron); T. Aspelund (Thor); J.R. Center (Jacqueline); Z. Dailiana (Zoe); C. Duggan; M. Garcia (Melissa); N. Garcia-Giralt (Natàlia); S. Giroux (Sylvie); G. Hallmans (Göran); L.J. Hocking (Lynne); L.B. Husted (Lise Bjerre); K. Jameson (Karen); R. Khusainova (Rita); G.S. Kim (Ghi Su); C. Kooperberg (Charles); T. Koromila (Theodora); M. Kruk (Marcin); M. Laaksonen (Marika); A.Z. Lacroix (Andrea Z.); S.H. Lee (Seung Hun); P.C. Leung (Ping C.); J.R. Lewis (Joshua); L. Masi (Laura); S. Mencej-Bedrac (Simona); T.V. Nguyen (Tuan); X. Nogues (Xavier); M.S. Patel (Millan); J. Prezelj (Janez); L.M. Rose (Lynda); S. Scollen (Serena); K. Siggeirsdottir (Kristin); G.D. Smith; O. Svensson (Olle); S. Trompet (Stella); O. Trummer (Olivia); N.M. van Schoor (Natasja); J. Woo (Jean); K. Zhu (Kun); S. Balcells (Susana); M.L. Brandi; B.M. Buckley (Brendan M.); S. Cheng (Sulin); C. Christiansen; C. Cooper (Charles); G.V. Dedoussis (George); I. Ford (Ian); M. Frost (Morten); D. Goltzman (David); J. González-Macías (Jesús); M. Kähönen (Mika); M. Karlsson (Magnus); E.K. Khusnutdinova (Elza); J.-M. Koh (Jung-Min); P. Kollia (Panagoula); B.L. Langdahl (Bente); W.D. Leslie (William D.); P. Lips (Paul); O. Ljunggren (Östen); R. Lorenc (Roman); J. Marc (Janja); D. Mellström (Dan); B. Obermayer-Pietsch (Barbara); D. Olmos (David); U. Pettersson-Kymmer (Ulrika); D.M. Reid (David); J.A. Riancho (José); P.M. Ridker (Paul); M.F. Rousseau (Francois); P.E. Slagboom (Eline); N.L.S. Tang (Nelson L.S.); R. Urreizti (Roser); W. Van Hul (Wim); J. Viikari (Jorma); M.T. Zarrabeitia (María); Y.S. Aulchenko (Yurii); M.C. Castaño Betancourt (Martha); E. Grundberg (Elin); L. Herrera (Lizbeth); T. Ingvarsson (Torvaldur); H. Johannsdottir (Hrefna); T. Kwan (Tony); R. Li (Rui); R.N. Luben (Robert); M.C. Medina-Gomez (Carolina); S.T. Palsson (Stefan Th); J.I. Rotter (Jerome I.); G. Sigurdsson (Gunnar); J.B.J. van Meurs (Joyce); D.J. Verlaan (Dominique); F.M. Williams (Frances); A.R. Wood (Andrew); Y. Zhou (Yanhua); T. Pastinen (Tomi); S. Raychaudhuri (Soumya); J.A. Cauley (Jane); D.I. Chasman (Daniel); G.R. Clark (Graeme); S.R. Cummings (Steven R.); P. Danoy (Patrick); E.M. Dennison (Elaine); R. Eastell (Richard); J.A. Eisman (John); V. Gudnason (Vilmundur); A. Hofman (Albert); R.D. Jackson (Rebecca); G. Jones (Graeme); J.W. Jukema (Jan Wouter); K.T. Khaw; T. Lehtimäki (Terho); Y. Liu (YongMei); M. Lorentzon (Mattias); E. McCloskey (Eugene); B.D. Mitchell (Braxton); K. Nandakumar (Kannabiran); G.C. Nicholson (Geoffrey); B.A. Oostra (Ben); M. Peacock (Munro); H.A.P. Pols (Huib); R.L. Prince (Richard); O. Raitakari (Olli); I.R. Reid (Ian); J. Robbins (John); P.N. Sambrook (Philip); P.C. Sham (Pak Chung); A.R. Shuldiner (Alan); F.A. Tylavsky (Frances); C.M. van Duijn (Cornelia); N.J. Wareham (Nicholas J.); L.A. Cupples (Adrienne); M.J. Econs (Michael); D.M. Evans (David); T.B. Harris (Tamara B.); A.W.C. Kung (Annie Wai Chee); B.M. Psaty (Bruce); J. Reeve (Jonathan); T.D. Spector (Timothy); E.A. Streeten (Elizabeth); M.C. Zillikens (Carola); U. Thorsteinsdottir (Unnur); C. Ohlsson (Claes); D. Karasik (David); J.B. Richards (Brent); M.A. Brown (Matthew); J-A. Zwart (John-Anker); A.G. Uitterlinden (André); S.H. Ralston (Stuart); J.P.A. Ioannidis (John P.A.); D.P. Kiel (Douglas P.); F. Rivadeneira Ramirez (Fernando)

    2015-01-01

    textabstractBone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown.

  11. Deposit model for heavy-mineral sands in coastal environments: Chapter L in Mineral deposit models for resource assessment

    Science.gov (United States)

    Van Gosen, Bradley S.; Fey, David L.; Shah, Anjana K.; Verplanck, Philip L.; Hoefen, Todd M.

    2014-01-01

    This report provides a descriptive model of heavy-mineral sands, which are sedimentary deposits of dense minerals that accumulate with sand, silt, and clay in coastal environments, locally forming economic concentrations of the heavy minerals. This deposit type is the main source of titanium feedstock for the titanium dioxide (TiO2) pigments industry, through recovery of the minerals ilmenite (Fe2+TiO3), rutile (TiO2), and leucoxene (an alteration product of ilmenite). Heavy-mineral sands are also the principal source of zircon (ZrSiO4) and its zirconium oxide; zircon is often recovered as a coproduct. Other heavy minerals produced as coproducts from some deposits are sillimanite/kyanite, staurolite, monazite, and garnet. Monazite [(Ce,La,Nd,Th)PO4] is a source of rare earth elements as well as thorium, which is used in thorium-based nuclear power under development in India and elsewhere.

  12. Genetic Screening of WNT4 and WNT5B in Two Populations with Deviating Bone Mineral Densities

    DEFF Research Database (Denmark)

    Hendrickx, Gretl; Boudin, Eveline; Steenackers, Ellen

    2017-01-01

    A role for WNT4 and WNT5B in bone metabolism was indicated by genome-wide association studies (GWAS) and a Wnt4 knockout mouse model. The aim of this study was therefore to replicate and further investigate the causality between genetic variation in WNT4 and WNT5B and deviating bone mineral density...... (BMD) values. A WNT4 and WNT5B mutation screening was performed in patients with craniotubular hyperostosis using Sanger sequencing. Here, no putative causal mutations were detected. Moreover, a high and low BMD cohort was selected from the Odense Androgen Study population for re-sequencing. In WNT4 we...

  13. A genetic model based on evapoconcentration for sediment-hosted exotic-Cu mineralization in arid environments: the case of the El Tesoro Central copper deposit, Atacama Desert, Chile

    Science.gov (United States)

    Fernández-Mort, A.; Riquelme, R.; Alonso-Zarza, A. M.; Campos, E.; Bissig, T.; Mpodozis, C.; Carretier, S.; Herrera, C.; Tapia, M.; Pizarro, H.; Muñoz, S.

    2017-12-01

    Although the formation of exotic-Cu deposits is controlled by multiple factors, the role of the sedimentary environment has not been well defined. We present a case study of the El Tesoro Central exotic-Cu deposit located in the Atacama Desert of northern Chile. This deposit consists of two mineralized bodies hosted within Late Cenozoic gravels deposited in an arid continental environment dominated by alluvial fans with sub-surficial ponded water bodies formed at the foot of these fans or within the interfan areas. Both exotic-Cu orebodies mostly consist of chrysocolla, copper wad, atacamite, paratacamite, quartz, opal, and calcite. The most commonly observed paragenesis comprises chrysocolla, silica minerals, and calcite and records a progressive increase in pH, which is notably influenced by evaporation. The results of stable isotope analyses (δ13C and δ18O) and hydrogeochemical simulations confirm that evapoconcentration is the main controlling factor in the exotic-Cu mineralization at El Tesoro Central. This conclusion complements the traditional genetic model based on the gradual neutralization of highly oversaturated Cu-bearing solutions that progressively cement the gravels and underlying bedrock regardless of the depositional environment. This study concludes that in exotic-Cu deposits formed relatively far from the source, a favorable sedimentary environment and particular hydrologic and climatic conditions are essential to trap, accumulate, evapoconcentrate, neutralize and saturate Cu-bearing solutions to trigger mineralization. Thus, detailed sedimentological studies should be incorporated when devising exploration strategies in order to discover new exotic-Cu resources, particularly if they are expected to have formed relatively far from the metal sources.

  14. Geology of gemstone deposit Ugljarevats (Central Serbia) and contributions to genetic model

    International Nuclear Information System (INIS)

    Kureshevicj, Lidija; Vushovicj, Olivera; Delicj-Nikolicj, Ivana

    2017-01-01

    Silica gemstone deposit Ugljarevats is situated within the ophiolite sequence of the Vardar zone central deep fault. Genetic processes of this deposit are connected to the Neogene calc-alkaline magmatic activity of the Vardar zone and hydrothermal activity triggered by it. Based on surface occurrences of listwenitized serpentinite containing silica mineralization, it can be inferred that the ore body is an elongated oval stock. Within the stock of hydrothermally altered serpentinite, the gemstone mineralization occurs as veins, stock works and irregular bodies. Present gemstone types include chalcedony varieties (jasper, colourless and greenish chalcedony, carnelian and sard) and opal (opalized serpentinite). Homogenous pieces are very rare. Most often, various types of silica are intimately intermixed and combined. The mineralization has formed in two distinct hydrothermal phases, apparently in close time succession. Jasper and coloured chalcedony (and rare magnesite) are the products of the first phase of hydro- thermal activity, while the colourless chalcedony is formed in the second phase. Newly discovered type of silica vein with central-symmetrical parallel banding gives new contributions to a genetic model, proving the precipitation process and its products are unpredictably changeable, heterogeneous and depending on the evolution of the local environment physico-chemical conditions, notably the contents of impurities and system's openness degree. (author)

  15. 40Ar-39Ar dating of Archean iron oxide Cu-Au and Paleoproterozoic granite-related Cu-Au deposits in the Carajás Mineral Province, Brazil: implications for genetic models

    Science.gov (United States)

    Pollard, Peter J.; Taylor, Roger G.; Peters, Lisa; Matos, Fernando; Freitas, Cantidiano; Saboia, Lineu; Huhn, Sergio

    2018-05-01

    40Ar-39Ar dating of biotite from IOCG and granite-related Cu-Au deposits in the Carajás Mineral Province provides evidence for the timing of mineralization and constraints on genetic models of ore formation. Ages of biotite from greisen and quartz-rich vein and breccia deposits, Alvo 118—1885 ± 4 Ma, Breves—1886 ± 5 Ma, Estrela—1896 ± 7 Ma, and Gameleira—1908 ± 7 Ma, demonstrate the close temporal relationship between Cu-Au mineralization and subjacent A-type granites. Mineralization is hosted within granite cupolas (Breves) or in vein/breccia systems emanating from the cupolas (Estrela and Gameleira), consistent with a genetic relationship of mineralization to the B-Li-F-rich granites. Plateau and minimum ages of biotite from IOCG deposits, including Igarapé Bahia, Cristalino, Corta Goela, and GT34, range from 2537 ± 6 Ma to 2193 ± 4 Ma. The 40Ar-39Ar age of biotite from Igarapé Bahia (2537 ± 6 Ma) is similar to a previous SHRIMP 207Pb-206Pb age for monazite of 2575 ± 12 Ma when the uncertainties in the respective analyses and standards are taken into account. The age spectrum for biotite from Cristalino shows increasing ages for successive steps, consistent with post-crystallization Ar loss, and the age of 2388 ± 5 Ma for the last three steps is considered a minimum age for Cu-Au mineralization. The age of biotite from the GT34 prospect (2512 ± 7 Ma) coincides with a previously identified period of basement reactivation and may indicate the formation of Cu-Au mineralization at this time or resetting of biotite from an older mineralization event at this time. At Corta Goela, within the Canaã Shear Zone, the biotite age of 2193 ± 4 Ma lies between the ages of IOCG (2.57-2.76 Ga) and granite-related Cu-Au ( 1.88 Ga) deposits elsewhere in the Carajás district but is similar to previously reported 40Ar-39Ar ages for amphibole from Sossego, possibly indicating that mineralization at both Sossego and Corta Goela was affected by a thermal event at

  16. Model Predictive Control of Mineral Column Flotation Process

    Directory of Open Access Journals (Sweden)

    Yahui Tian

    2018-06-01

    Full Text Available Column flotation is an efficient method commonly used in the mineral industry to separate useful minerals from ores of low grade and complex mineral composition. Its main purpose is to achieve maximum recovery while ensuring desired product grade. This work addresses a model predictive control design for a mineral column flotation process modeled by a set of nonlinear coupled heterodirectional hyperbolic partial differential equations (PDEs and ordinary differential equations (ODEs, which accounts for the interconnection of well-stirred regions represented by continuous stirred tank reactors (CSTRs and transport systems given by heterodirectional hyperbolic PDEs, with these two regions combined through the PDEs’ boundaries. The model predictive control considers both optimality of the process operations and naturally present input and state/output constraints. For the discrete controller design, spatially varying steady-state profiles are obtained by linearizing the coupled ODE–PDE model, and then the discrete system is obtained by using the Cayley–Tustin time discretization transformation without any spatial discretization and/or without model reduction. The model predictive controller is designed by solving an optimization problem with input and state/output constraints as well as input disturbance to minimize the objective function, which leads to an online-solvable finite constrained quadratic regulator problem. Finally, the controller performance to keep the output at the steady state within the constraint range is demonstrated by simulation studies, and it is concluded that the optimal control scheme presented in this work makes this flotation process more efficient.

  17. Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci.

    Directory of Open Access Journals (Sweden)

    Sjur Reppe

    Full Text Available Bone Mineral Density (BMD is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR method to identify single nucleotide polymorphisms (SNPs associated with BMD by leveraging cardiovascular disease (CVD associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity.

  18. A systematic study of multiple minerals precipitation modelling in wastewater treatment.

    Science.gov (United States)

    Kazadi Mbamba, Christian; Tait, Stephan; Flores-Alsina, Xavier; Batstone, Damien J

    2015-11-15

    Mineral solids precipitation is important in wastewater treatment. However approaches to minerals precipitation modelling are varied, often empirical, and mostly focused on single precipitate classes. A common approach, applicable to multi-species precipitates, is needed to integrate into existing wastewater treatment models. The present study systematically tested a semi-mechanistic modelling approach, using various experimental platforms with multiple minerals precipitation. Experiments included dynamic titration with addition of sodium hydroxide to synthetic wastewater, and aeration to progressively increase pH and induce precipitation in real piggery digestate and sewage sludge digestate. The model approach consisted of an equilibrium part for aqueous phase reactions and a kinetic part for minerals precipitation. The model was fitted to dissolved calcium, magnesium, total inorganic carbon and phosphate. Results indicated that precipitation was dominated by the mineral struvite, forming together with varied and minor amounts of calcium phosphate and calcium carbonate. The model approach was noted to have the advantage of requiring a minimal number of fitted parameters, so the model was readily identifiable. Kinetic rate coefficients, which were statistically fitted, were generally in the range 0.35-11.6 h(-1) with confidence intervals of 10-80% relative. Confidence regions for the kinetic rate coefficients were often asymmetric with model-data residuals increasing more gradually with larger coefficient values. This suggests that a large kinetic coefficient could be used when actual measured data is lacking for a particular precipitate-matrix combination. Correlation between the kinetic rate coefficients of different minerals was low, indicating that parameter values for individual minerals could be independently fitted (keeping all other model parameters constant). Implementation was therefore relatively flexible, and would be readily expandable to include other

  19. Genetic labelling and application of the isoproturon-mineralizing Sphingomonas sp. strain SRS2 in soil and rhizosphere

    DEFF Research Database (Denmark)

    Kristensen, K.E.; Jacobsen, C.S.; Hansen, L.H.

    2006-01-01

    AIMS: To construct a luxAB-labelled Sphingomonas sp. strain SRS2 maintaining the ability to mineralize the herbicide isoproturon and usable for monitoring the survival and distribution of strain SRS2 on plant roots in laboratory systems. METHODS AND RESULTS: We inserted the mini-Tn5-luxAB marker...... into strain SRS2 using conjugational mating. In the transconjugant mutants luciferase was produced in varying levels. The mutants showed significant differences in their ability to degrade isoproturon. One luxAB-labelled mutant maintained the ability to mineralize isoproturon and was therefore selected...... for monitoring colonization of barley roots. CONCLUSIONS: We successfully constructed a genetically labelled isoproturon-mineralizing-strain SRS2 and demonstrated its ability to survive in soil and its colonization of rhizosphere. SIGNIFICANCE AND IMPACT OF THE STUDY: The construction of a luxAB-labelled strain...

  20. Research on interactive genetic-geological models to evaluate favourability for undiscovered uranium resources

    International Nuclear Information System (INIS)

    Finch, W.I.; Granger, H.C.; Lupe, R.; McCammon, R.B.

    1980-01-01

    Current methods of evaluating favourability for undiscovered uranium resources are unduly subjective, quite possibly inconsistent and, as a consequence, of questionable reliability. This research is aimed at reducing the subjectivity and increasing the reliability by designing an improved method that depends largely on geological data and their statistical frequency of occurrence. This progress report outlines a genetic approach to modelling the geological factors that controlled uranium mineralization in order to evaluate the favourability for the occurrence of undiscovered uranium deposits of the type modelled. A genetic model is constructed from all the factors that describe the processes, in chronological sequence, that formed uranium deposits thought to have a common origin. The field and laboratory evidence for the processes constitute a geologic-occurrence base that parallels the chronological sequence of events. The genetic model and the geologic-occurrence base are portrayed as two columns of an interactive matrix called the ''genetic-geologic model''. For each column, eight chronological stages are used to describe the overall formation of the uranium deposits. These stages consist of (1) precursor processes; (2) host-rock formation; (3) preparation of host-rock; (4) uranium-source development; (5) transport of uranium; (6) primary uranium deposition; (7) post-deposition modification; and (8) preservation. To apply the genetic-geological model to evaluate favourability, a question is posed that determines the presence or absence of each attribute listed under the geologic-occurrence base. By building a logic circuit of the attributes according to either their essential or non-essential nature, the resultant match between a well-documented control area and the test area may be determined. The degree of match is a measure of favourability for uranium occurrence as hypothesized in the genetic model

  1. Arc-related porphyry molybdenum deposit model: Chapter D in Mineral deposit models for resource assessment

    Science.gov (United States)

    Taylor, Ryan D.; Hammarstrom, Jane M.; Piatak, Nadine M.; Seal, Robert R.

    2012-01-01

    This report provides a descriptive model for arc-related porphyry molybdenum deposits. Presented within are geological, geochemical, and mineralogical characteristics that differentiate this deposit type from porphyry copper and alkali-feldspar rhyolite-granite porphyry molybdenum deposits. The U.S. Geological Survey's effort to update existing mineral deposit models spurred this research, which is intended to supplement previously published models for this deposit type that help guide mineral-resource and mineral-environmental assessments.

  2. The effect of sedimentation background of depression target stratum containing mineral in Erlian basin, Ulanqab to uranium mineralization type

    International Nuclear Information System (INIS)

    Kang Shihu; Jiao Yangquan; Men Hong; Kuang Wenzhan

    2012-01-01

    The ore bearing stratum in depression of Ulanqab contains target stratum of lower cretaceous Saihan formation, upper cretaceous Erlian formation, paleogene system etc. The uranium mineralization type which have found by now contains sandstone type, mudstone type and coal petrography. The genetic type of mineral deposit contains paleovalley-type, reformed type after superposition with sedimentation and diagenesis by sedimentation. Uranium mineralization of both the natural type and genetic type have close relationship with its ore bearing stratum. Different geological background forms different sedimentary system combination, and different sedimentary system combination forms different uranium mineralization type. (authors)

  3. Phenotypic Dissection of Bone Mineral Density Reveals Skeletal Site Specificity and Facilitates the Identification of Novel Loci in the Genetic Regulation of Bone Mass Attainment

    NARCIS (Netherlands)

    J.P. Kemp (John); M.C. Medina-Gomez (Carolina); K. Estrada Gil (Karol); B. St Pourcain (Beate); D.H.M. Heppe (Denise); N.M. Warrington (Nicole); L. Oei (Ling); S.M. Ring (Susan); C.J. Kruithof (Claudia); N.J. Timpson (Nicholas); L.E. Wolber (Lisa); S. Reppe (Sjur); K.M. Gautvik (Kaare); E. Grundberg (Elin); B. Ge (Bing); B.C.J. van der Eerden (Bram); J. van de Peppel (Jeroen); M.A. Hibbs (Matthew); C.L. Ackert-Bicknell (Cheryl); K. Choi (Kunho); D.L. Koller (Daniel); M.J. Econs (Michael); F.M. Williams (Frances); T. Foroud (Tatiana); M.C. Zillikens (Carola); C. Ohlsson (Claes); A. Hofman (Albert); A.G. Uitterlinden (André); G. Davey-Smith (George); V.W.V. Jaddoe (Vincent); J.H. Tobias (Jon); F. Rivadeneira Ramirez (Fernando); D.M. Evans (David)

    2014-01-01

    textabstractHeritability of bone mineral density (BMD) varies across skeletal sites, reflecting different relative contributions of genetic and environmental influences. To quantify the degree to which common genetic variants tag and environmental factors influence BMD, at different sites, we

  4. Genetic labelling and application of the isoproturon-mineralizing Sphingomonas sp. strain SRS2 in soil and rhizosphere.

    Science.gov (United States)

    Kristensen, K E; Jacobsen, C S; Hansen, L H; Aamand, J; Morgan, J A W; Sternberg, C; Sørensen, S R

    2006-09-01

    To construct a luxAB-labelled Sphingomonas sp. strain SRS2 maintaining the ability to mineralize the herbicide isoproturon and usable for monitoring the survival and distribution of strain SRS2 on plant roots in laboratory systems. We inserted the mini-Tn5-luxAB marker into strain SRS2 using conjugational mating. In the transconjugant mutants luciferase was produced in varying levels. The mutants showed significant differences in their ability to degrade isoproturon. One luxAB-labelled mutant maintained the ability to mineralize isoproturon and was therefore selected for monitoring colonization of barley roots. We successfully constructed a genetically labelled isoproturon-mineralizing-strain SRS2 and demonstrated its ability to survive in soil and its colonization of rhizosphere. The construction of a luxAB-labelled strain SRS2 maintaining the degradative ability, provides a powerful tool for ecological studies serving as the basis for evaluating SRS2 as a bioremediation agent.

  5. Discussion on geochemical characteristics, mechanism and prospecting model of gluey type sandstone uranium mineralization--taking Redwell uranium deposit as an example

    International Nuclear Information System (INIS)

    Wang Jinping

    1998-01-01

    Redwell uranium deposit hosted in the red clastic rock formation, is a typical example of gluey type uranium mineralization, which has not been reported so far in China. Based on the study of geochemical characteristics of Redwell deposit, the author discusses the genetic mechanism of this type deposits, and proposes the prospecting model of 4 in 1 of red bed-fault-oil gas-uranium source

  6. Graphical models for genetic analyses

    DEFF Research Database (Denmark)

    Lauritzen, Steffen Lilholt; Sheehan, Nuala A.

    2003-01-01

    This paper introduces graphical models as a natural environment in which to formulate and solve problems in genetics and related areas. Particular emphasis is given to the relationships among various local computation algorithms which have been developed within the hitherto mostly separate areas...... of graphical models and genetics. The potential of graphical models is explored and illustrated through a number of example applications where the genetic element is substantial or dominating....

  7. Biologically enhanced mineral weathering: what does it look like, can we model it?

    Science.gov (United States)

    Schulz, M. S.; Lawrence, C. R.; Harden, J. W.; White, A. F.

    2011-12-01

    The interaction between plants and minerals in soils is hugely important and poorly understood as it relates to the fate of soil carbon. Plant roots, fungi and bacteria inhabit the mineral soil and work symbiotically to extract nutrients, generally through low molecular weight exudates (organic acids, extracelluar polysachrides (EPS), siderophores, etc.). Up to 60% of photosynthetic carbon is allocated below ground as roots and exudates, both being important carbon sources in soils. Some exudates accelerate mineral weathering. To test whether plant exudates are incorporated into poorly crystalline secondary mineral phases during precipitation, we are investigating the biologic-mineral interface. We sampled 5 marine terraces along a soil chronosequence (60 to 225 ka), near Santa Cruz, CA. The effects of the biologic interactions with mineral surfaces were characterized through the use of Scanning Electron Microscopy (SEM). Morphologically, mycorrhizal fungi were observed fully surrounding minerals, fungal hyphae were shown to tunnel into primary silicate minerals and we have observed direct hyphal attachment to mineral surfaces. Fungal tunneling was seen in all 5 soils by SEM. Additionally, specific surface area (using a nitrogen BET method) of primary minerals was measured to determine if the effects of mineral tunneling are quantifiable in older soils. Results suggest that fungal tunneling is more extensive in the primary minerals of older soils. We have also examined the influence of organic acids on primary mineral weathering during soil development using a geochemical reactive transport model (CrunchFlow). Addition of organic acids in our models of soil development at Santa Cruz result in decreased activity of Fe and Al in soil pore water, which subsequently alters the spatial extent of primary mineral weathering and kaolinite precipitation. Overall, our preliminary modeling results suggest biological processes may be an important but underrepresented aspect of

  8. Prevalence and Genetic Diversity of Enterococcus faecalis Isolates from Mineral Water and Spring Water in China

    Directory of Open Access Journals (Sweden)

    Lei Wei

    2017-06-01

    Full Text Available Enterococcus faecalis is an important opportunistic pathogen which is frequently detected in mineral water and spring water for human consumption and causes human urinary tract infections, endocarditis and neonatal sepsis. The aim of this study was to determine the prevalence, virulence genes, antimicrobial resistance and genetic diversity of E. faecalis from mineral water and spring water in China. Of 314 water samples collected from January 2013 to January 2014, 48 samples (15.3% were contaminated E. faecalis. The highest contamination rate occurred in activated carbon filtered water of spring water (34.5%, followed by source water of spring water (32.3% and source water of mineral water (6.4%. The virulence gene test of 58 E. faecalis isolates showed that the detection rates of asa1, ace, cylA, gelE and hyl were 79.3, 39.7, 0, 100, 0%, respectively. All 58 E. faecalis isolates were not resistant to 12 kinds of antibiotics (penicillin, ampicillin, linezolid, quinupristin/dalfopristin, vancomycin, gentamicin, streptomycin, ciprofloxacin, levofloxacin, norfloxacin, nitrofurantoin, and tetracycline. Enterobacterial repetitive intergenic consensus-PCR classified 58 isolates and three reference strains into nine clusters with a similarity of 75%. This study is the first to investigate the prevalence of E. faecalis in mineral water and spring water in China. The results of this study suggested that spring water could be potential vehicles for transmission of E. faecalis.

  9. A model for continuous improvement at a South African minerals benefication plant

    Directory of Open Access Journals (Sweden)

    Ras, Eugene Ras

    2015-05-01

    Full Text Available South Africa has a variety of mineral resources, and several minerals beneficiation plants are currently in operation. These plants must be operated effectively to ensure that the end-users of its products remain internationally competitive. To achieve this objective, plants need a sustainable continuous improvement programme. Several frameworks for continuous improvement are used, with variable success rates, in beneficiation plants around the world. However, none of these models specifically addresses continuous improvement from a minerals-processing point of view. The objective of this research study was to determine which factors are important for a continuous improvement model at a minerals beneficiation plant, and to propose a new model using lean manufacturing, six sigma, and the theory of constraints. A survey indicated that managers in the industry prefer a model that combines various continuous improvement models.

  10. 3D visualization and quantification of bone and teeth mineralization for the study of osteo/dentinogenesis in mice models

    Science.gov (United States)

    Marchadier, A.; Vidal, C.; Ordureau, S.; Lédée, R.; Léger, C.; Young, M.; Goldberg, M.

    2011-03-01

    Research on bone and teeth mineralization in animal models is critical for understanding human pathologies. Genetically modified mice represent highly valuable models for the study of osteo/dentinogenesis defects and osteoporosis. Current investigations on mice dental and skeletal phenotype use destructive and time consuming methods such as histology and scanning microscopy. Micro-CT imaging is quicker and provides high resolution qualitative phenotypic description. However reliable quantification of mineralization processes in mouse bone and teeth are still lacking. We have established novel CT imaging-based software for accurate qualitative and quantitative analysis of mouse mandibular bone and molars. Data were obtained from mandibles of mice lacking the Fibromodulin gene which is involved in mineralization processes. Mandibles were imaged with a micro-CT originally devoted to industrial applications (Viscom, X8060 NDT). 3D advanced visualization was performed using the VoxBox software (UsefulProgress) with ray casting algorithms. Comparison between control and defective mice mandibles was made by applying the same transfer function for each 3D data, thus allowing to detect shape, colour and density discrepencies. The 2D images of transverse slices of mandible and teeth were similar and even more accurate than those obtained with scanning electron microscopy. Image processing of the molars allowed the 3D reconstruction of the pulp chamber, providing a unique tool for the quantitative evaluation of dentinogenesis. This new method is highly powerful for the study of oro-facial mineralizations defects in mice models, complementary and even competitive to current histological and scanning microscopy appoaches.

  11. A facile in vitro model to study rapid mineralization in bone tissues.

    Science.gov (United States)

    Deegan, Anthony J; Aydin, Halil M; Hu, Bin; Konduru, Sandeep; Kuiper, Jan Herman; Yang, Ying

    2014-09-16

    Mineralization in bone tissue involves stepwise cell-cell and cell-ECM interaction. Regulation of osteoblast culture microenvironments can tailor osteoblast proliferation and mineralization rate, and the quality and/or quantity of the final calcified tissue. An in vitro model to investigate the influencing factors is highly required. We developed a facile in vitro model in which an osteoblast cell line and aggregate culture (through the modification of culture well surfaces) were used to mimic intramembranous bone mineralization. The effect of culture environments including culture duration (up to 72 hours for rapid mineralization study) and aggregates size (monolayer culture as control) on mineralization rate and mineral quantity/quality were examined by osteogenic gene expression (PCR) and mineral markers (histological staining, SEM-EDX and micro-CT). Two size aggregates (on average, large aggregates were 745 μm and small 79 μm) were obtained by the facile technique with high yield. Cells in aggregate culture generated visible and quantifiable mineralized matrix within 24 hours, whereas cells in monolayer failed to do so by 72 hours. The gene expression of important ECM molecules for bone formation including collagen type I, alkaline phosphatase, osteopontin and osteocalcin, varied temporally, differed between monolayer and aggregate cultures, and depended on aggregate size. Monolayer specimens stayed in a proliferation phase for the first 24 hours, and remained in matrix synthesis up to 72 hours; whereas the small aggregates were in the maturation phase for the first 24 and 48 hour cultures and then jumped to a mineralization phase at 72 hours. Large aggregates were in a mineralization phase at all these three time points and produced 36% larger bone nodules with a higher calcium content than those in the small aggregates after just 72 hours in culture. This study confirms that aggregate culture is sufficient to induce rapid mineralization and that aggregate

  12. Modelling the mechanics of partially mineralized collagen fibrils, fibres and tissue

    Science.gov (United States)

    Liu, Yanxin; Thomopoulos, Stavros; Chen, Changqing; Birman, Victor; Buehler, Markus J.; Genin, Guy M.

    2014-01-01

    Progressive stiffening of collagen tissue by bioapatite mineral is important physiologically, but the details of this stiffening are uncertain. Unresolved questions about the details of the accommodation of bioapatite within and upon collagen's hierarchical structure have posed a central hurdle, but recent microscopy data resolve several major questions. These data suggest how collagen accommodates bioapatite at the lowest relevant hierarchical level (collagen fibrils), and suggest several possibilities for the progressive accommodation of bioapatite at higher hierarchical length scales (fibres and tissue). We developed approximations for the stiffening of collagen across spatial hierarchies based upon these data, and connected models across hierarchies levels to estimate mineralization-dependent tissue-level mechanics. In the five possible sequences of mineralization studied, percolation of the bioapatite phase proved to be an important determinant of the degree of stiffening by bioapatite. The models were applied to study one important instance of partially mineralized tissue, which occurs at the attachment of tendon to bone. All sequences of mineralization considered reproduced experimental observations of a region of tissue between tendon and bone that is more compliant than either tendon or bone, but the size and nature of this region depended strongly upon the sequence of mineralization. These models and observations have implications for engineered tissue scaffolds at the attachment of tendon to bone, bone development and graded biomimetic attachment of dissimilar hierarchical materials in general. PMID:24352669

  13. Multi-scale interactions of geological processes during mineralization: cascade dynamics model and multifractal simulation

    Directory of Open Access Journals (Sweden)

    L. Yao

    2011-03-01

    Full Text Available Relations between mineralization and certain geological processes are established mostly by geologist's knowledge of field observations. However, these relations are descriptive and a quantitative model of how certain geological processes strengthen or hinder mineralization is not clear, that is to say, the mechanism of the interactions between mineralization and the geological framework has not been thoroughly studied. The dynamics behind these interactions are key in the understanding of fractal or multifractal formations caused by mineralization, among which singularities arise due to anomalous concentration of metals in narrow space. From a statistical point of view, we think that cascade dynamics play an important role in mineralization and studying them can reveal the nature of the various interactions throughout the process. We have constructed a multiplicative cascade model to simulate these dynamics. The probabilities of mineral deposit occurrences are used to represent direct results of mineralization. Multifractal simulation of probabilities of mineral potential based on our model is exemplified by a case study dealing with hydrothermal gold deposits in southern Nova Scotia, Canada. The extent of the impacts of certain geological processes on gold mineralization is related to the scale of the cascade process, especially to the maximum cascade division number nmax. Our research helps to understand how the singularity occurs during mineralization, which remains unanswered up to now, and the simulation may provide a more accurate distribution of mineral deposit occurrences that can be used to improve the results of the weights of evidence model in mapping mineral potential.

  14. On the mineralization model of 'three sources--heat, water and uranium'

    International Nuclear Information System (INIS)

    Li Xueli

    1992-01-01

    In response to the relations between geological and geothermal settings, geothermal water and uranium mineralizations in the Southeastern China, the model of uranium mineralization in discharge area (depressurization area) of fossil geothermal systems in Mesozoic-Cenozoic Volcanic-magmatic active areas has been put forward and expounded in the view of mineral-formation by the 'three sources'-heat, water and uranium

  15. Ectopic mineralization disorders of the extracellular matrix of connective tissue: molecular genetics and pathomechanisms of aberrant calcification.

    Science.gov (United States)

    Li, Qiaoli; Jiang, Qiujie; Uitto, Jouni

    2014-01-01

    Ectopic mineralization of connective tissues is a complex process leading to deposition of calcium phosphate complexes in the extracellular matrix, particularly affecting the skin and the arterial blood vessels and common in age-associated disorders. A number of initiating and contributing metabolic and environmental factors are linked to aberrant mineralization in these diseases, making the identification of precise pathomechanistic pathways exceedingly difficult. However, there has been significant recent progress in understanding the ectopic mineralization processes through study of heritable single-gene disorders, which have allowed identification of discrete pathways and contributing factors leading to aberrant connective tissue mineralization. These studies have provided support for the concept of an intricate mineralization/anti-mineralization network present in peripheral connective tissues, providing a perspective to development of pharmacologic approaches to limit the phenotypic consequences of ectopic mineralization. This overview summarizes the current knowledge of ectopic heritable mineralization disorders, with accompanying animal models, focusing on pseudoxanthoma elasticum and generalized arterial calcification of infancy, two autosomal recessive diseases manifesting with extensive connective tissue mineralization in the skin and the cardiovascular system. © 2013.

  16. Mineral-modeled ceramics for long-term storage of high-level nuclear wastes

    International Nuclear Information System (INIS)

    Vance, E.R.

    1980-01-01

    Over the past ten years, Penn State's Materials Research Laboratory has done extensive work on mineral-modeled ceramics for high-level nuclear waste storage. These ceramics are composed of several mineral analogues that form a monolithic polycrystalline aggregate. Mineral-modeling can be made in a similar fashion to nuclear waste glasses, and their naturally occurring analogues are known to last millions, and even billions, of years in hot, wet conditions. It is believed that such ceramics could reduce dispersal of radionuclides by leaching to a minimum

  17. Preliminary conceptual model for mineral evolution in Yucca Mountain

    International Nuclear Information System (INIS)

    Duffy, C.J.

    1993-12-01

    A model is presented for mineral alteration in Yucca Mountain, Nevada, that suggests that the mineral transformations observed there are primarily controlled by the activity of aqueous silica. The rate of these reactions is related to the rate of evolution of the metastable silica polymorphs opal-CT and cristobalite assuming that a SiO 2(aq) is fixed at the equilibrium solubility of the most soluble silica polymorph present. The rate equations accurately predict the present depths of disappearance of opal-CT and cristobalite. The rate equations have also been used to predict the extent of future mineral alteration that may result from emplacement of a high-level nuclear waste repository in Yucca Mountain. Relatively small changes in mineralogy are predicted, but these predictions are based on the assumption that emplacement of a repository would not increase the pH of water in Yucca Mountain nor increase its carbonate content. Such changes may significantly increase mineral alteration. Some of the reactions currently occurring in Yucca Mountain consume H + and CO 3 2- . Combining reaction rate models for these reactions with water chemistry data may make it possible to estimate water flux through the basal vitrophyre of the Topopah Spring Member and to help confirm the direction and rate of flow of groundwater in Yucca Mountain

  18. Mineral Precipitation in Fractures: Multiscale Imaging and Geochemical Modeling

    Science.gov (United States)

    Hajirezaie, S.; Peters, C. A.; Swift, A.; Sheets, J. M.; Cole, D. R.; Crandall, D.; Cheshire, M.; Stack, A. G.; Anovitz, L. M.

    2017-12-01

    For subsurface energy technologies such as geologic carbon sequestration, fractures are potential pathways for fluid migration from target formations. Highly permeable fractures may become sealed by mineral precipitation. In this study, we examined shale specimens with existing cemented fractures as natural analogues, using an array of imaging methods to characterize mineralogy and porosity at several spatial scales. In addition, we used reactive transport modeling to investigate geochemical conditions that can lead to extensive mineral precipitation and to simulate the impacts on fracture hydraulic properties. The naturally-cemented fractured rock specimens were from the Upper Wolfcamp formation in Texas, at 10,000 ft depth. The specimens were scanned using x-ray computed tomography (xCT) at resolution of 13 microns. The xCT images revealed an original fracture aperture of 1.9 mm filled with several distinct mineral phases and vuggy void regions, and the mineral phase volumes and surface areas were quantified and mapped in 3D. Specimens were thin-sectioned and examined at micron- and submicron-scales using petrographic microscopy (PM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and small angle X-ray scattering (SAXS). Collectively these methods revealed crystals of dolomite as large as 900 microns in length overlain with a heterogeneous mixture of carbonate minerals including calcite, dolomite, and Fe-rich dolomite, interspersed at spatial scales as small as 5 microns. In addition, secondary precipitation of SiO2 was found to fill some of the void space. This multiscale imaging was used to inform the reactive transport modeling employed to examine the conditions that can cause the observed mineral precipitation in fractures at a larger scale. Two brines containing solutions that when mixed would lead to precipitation of various carbonate minerals were simulated as injectants into a fracture domain. In particular, the competing

  19. Behavior genetic modeling of human fertility

    DEFF Research Database (Denmark)

    Rodgers, J L; Kohler, H P; Kyvik, K O

    2001-01-01

    Behavior genetic designs and analysis can be used to address issues of central importance to demography. We use this methodology to document genetic influence on human fertility. Our data come from Danish twin pairs born from 1953 to 1959, measured on age at first attempt to get pregnant (First......Try) and number of children (NumCh). Behavior genetic models were fitted using structural equation modeling and DF analysis. A consistent medium-level additive genetic influence was found for NumCh, equal across genders; a stronger genetic influence was identified for FirstTry, greater for females than for males....... A bivariate analysis indicated significant shared genetic variance between NumCh and FirstTry....

  20. Intrusion-Related Gold Deposits: New insights from gravity and hydrothermal integrated 3D modeling applied to the Tighza gold mineralization (Central Morocco)

    Science.gov (United States)

    Eldursi, Khalifa; Branquet, Yannick; Guillou-Frottier, Laurent; Martelet, Guillaume; Calcagno, Philippe

    2018-04-01

    The Tighza (or Jebel Aouam) district is one of the most important polymetallic districts in Morocco. It belongs to the Variscan Belt of Central Meseta, and includes W-Au, Pb-Zn-Ag, and Sb-Ba mineralization types that are spatially related to late-Carboniferous granitic stocks. One of the proposed hypotheses suggests that these granitic stocks are connected to a large intrusive body lying beneath them and that W-Au mineralization is directly related to this magmatism during a 287-285 Ma time span. A more recent model argues for a disconnection between the older barren outcropping magmatic stocks and a younger hidden magmatic complex responsible for the W-Au mineralization. Independently of the magmatic scenario, the W-Au mineralization is consensually recognized as of intrusion-related gold deposit (IRGD) type, W-rich. In addition to discrepancies between magmatic sceneries, the IRGD model does not account for published older age corresponding to a high-temperature hydrothermal event at ca. 291 Ma. Our study is based on gravity data inversion and hydro-thermal modeling, and aims to test this model of IRGD and its related magmatic geometries, with respect to subsurface geometries, favorable physical conditions for deposition and time record of hydrothermal processes. Combined inversion of geology and gravity data suggests that an intrusive body is rooted mainly at the Tighza fault in the north and that it spreads horizontally toward the south during a trans-tensional event (D2). Based on the numerical results, two types of mineralization can be distinguished: 1) the "Pre-Main" type appears during the emplacement of the magmatic body, and 2) the "Main" type appears during magma crystallization and the cooling phase. The time-lag between the two mineralization types depends on the cooling rate of magma. Although our numerical model of thermally-driven fluid flow around the Tighza pluton is simplified, as it does not take into account the chemical and deformation

  1. A genetic link between magnetite mineralization and diorite intrusion at the El Romeral iron oxide-apatite deposit, northern Chile

    Science.gov (United States)

    Rojas, Paula A.; Barra, Fernando; Reich, Martin; Deditius, Artur; Simon, Adam; Uribe, Francisco; Romero, Rurik; Rojo, Mario

    2018-01-01

    El Romeral is one of the largest iron oxide-apatite (IOA) deposits in the Coastal Cordillera of northern Chile. The Cerro Principal magnetite ore body at El Romeral comprises massive magnetite intergrown with actinolite, with minor apatite, scapolite, and sulfides (pyrite ± chalcopyrite). Several generations of magnetite were identified by using a combination of optical and electron microscopy techniques. The main mineralization event is represented by zoned magnetite grains with inclusion-rich cores and inclusion-poor rims, which form the massive magnetite ore body. This main magnetite stage was followed by two late hydrothermal events that are represented by magnetite veinlets that crosscut the massive ore body and by disseminated magnetite in the andesite host rock and in the Romeral diorite. The sulfur stable isotope signature of the late hydrothermal sulfides indicates a magmatic origin for sulfur (δ34S between - 0.8 and 2.9‰), in agreement with previous δ34S data reported for other Chilean IOA and iron oxide-copper-gold deposits. New 40Ar/39Ar dating of actinolite associated with the main magnetite ore stage yielded ages of ca. 128 Ma, concordant within error with a U-Pb zircon age for the Romeral diorite (129.0 ± 0.9 Ma; mean square weighted deviation = 1.9, n = 28). The late hydrothermal magnetite-biotite mineralization is constrained at ca. 118 Ma by 40Ar/39Ar dating of secondary biotite. This potassic alteration is about 10 Ma younger than the main mineralization episode, and it may be related to post-mineralization dikes that crosscut and remobilize Fe from the main magnetite ore body. These data reveal a clear genetic association between magnetite ore formation, sulfide mineralization, and the diorite intrusion at El Romeral (at 129 Ma), followed by a late and more restricted stage of hydrothermal alteration associated with the emplacement of post-ore dikes at ca. 118 Ma. Therefore, this new evidence supports a magmatic-hydrothermal model for the

  2. Indicator minerals as guides to base metal sulphide mineralisation ...

    Indian Academy of Sciences (India)

    Zn-bearing minerals that act as indicator minerals for base metal sulphide mineralization from the Proterozoic Betul Belt,central India with special emphasis on their genetic significance have been discussed.Sulphide mineralisation is hosted by the felsic volcanic rocks and has similarities with volcanic-hosted massive ...

  3. Quartz-pebble-conglomerate gold deposits: Chapter P in Mineral deposit models for resource assessment

    Science.gov (United States)

    Taylor, Ryan D.; Anderson, Eric D.

    2018-05-17

    Quartz-pebble-conglomerate gold deposits represent the largest repository of gold on Earth, largely due to the deposits of the Witwatersrand Basin, which account for nearly 40 percent of the total gold produced throughout Earth’s history. This deposit type has had a controversial history in regards to genetic models. However, most researchers conclude that they are paleoplacer deposits that have been modified by metamorphism and hydrothermal fluid flow subsequent to initial sedimentation.The deposits are found exclusively within fault-bounded depositional basins. The periphery of these basins commonly consists of granite-greenstone terranes, classic hosts for lode gold that source the detrital material infilling the basin. The gold reefs are typically located along unconformities or, less commonly, at the top of sedimentary beds. Large quartz pebbles and heavy-mineral concentrates are found associated with the gold. Deposits that formed prior to the Great Oxidation Event (circa 2.4 giga-annum [Ga]) contain pyrite, whereas younger deposits contain iron oxides. Uranium minerals and hydrocarbons are also notable features of some deposits.Much of the gold in these types of deposits forms crystalline features that are the product of local remobilization. However, some gold grains preserve textures that are undoubtedly of detrital origin. Other heavy minerals, such as pyrite, contain growth banding that is truncated along broken margins, which indicates that they were transported into place as opposed to forming by in situ growth in a hydrothermal setting.The ore tailings associated with these deposits commonly contain uranium-rich minerals and sulfides. Oxidation of the sulfides releases sulfuric acid and mobilizes various metals into the environment. The neutralizing potential of the tailings is minimal, since carbonate minerals are rare. The continuity of the tabular ore bodies, such as those of the Witwatersrand Basin, has allowed these mines to be the deepest in

  4. Hydrometalurgical processes for mineral complexes

    International Nuclear Information System (INIS)

    Barskij, L.A.; Danil'chenko, L.M.

    1977-01-01

    Requirements for the technology of the processing of ores including uranium ores and principal stages of the working out of technological schemes are described in brief. There are reference data on commercial minerals and ores including uranium-thorium ores, their classification with due regard for physical, chemical and superficial properties which form the basis for ore-concentrating processes. There are also presented the classification of minerals including uranium minerals by their flotation ability, flotation regimes of minerals, structural-textural characteristics of ores, genetic types of ore formations and their concentrating ability, algorithmization of the apriori evaluation of the concentration and technological diagnostics of the processing of ores. The classification of ore concentration technique is suggested

  5. U-Pb age for some base-metal sulfide deposits in Ireland: genetic implications for Mississippi Valley-type mineralization

    International Nuclear Information System (INIS)

    Duane, M.J.; Welke, H.J.; Allsopp, H.L.

    1986-01-01

    Evidence is presented that links the timing of vein-type (Cu-Ag(U)) to stratiform Mississippi Valley-type (MVT, Pb-Zn) ore events in Ireland. The rare occurrence of pitchblende, coffinite(?), and brannerite mineralization, which is regarded as a precursor component to the sulfide mineralization in the Gortdrum deposit (Ireland), provides the first direct radiometric dating tool for these carbonate-hosted deposits. The U-Pb (340 +25/-20 Ma) and Pb-Pb (359 +/- 26 Ma) whole-rock ages constrain the uranium and base-metal mineralizing events to the Early Carboniferous. The data support a model according to which MVT and earlier uranium mineralization stages of some major ore bodies resulted from fracturing coincident with large basin-dewatering events. The Pb-Pb and concordia data are consistent with an Early Carboniferous age for the mineralization at Gortdrum and agree closely with a previously published Rb-Sr age of 359 +/- 22 Ma, obtained for Missouri glauconites. Furthermore, other comparative geologic data from Ireland and from North American MVT mineral provinces support a model of Pb-Zn-Cu(U) mobilization on a regional scale that implicates the later closing stages of the proto-Atlantic. 40 references, 3 figures, 1 table

  6. A coupled hydrodynamic-hydrochemical modeling for predicting mineral transport in a natural acid drainage system.

    Science.gov (United States)

    Zegers Risopatron, G., Sr.; Navarro, L.; Montserrat, S., Sr.; McPhee, J. P.; Niño, Y.

    2017-12-01

    The geochemistry of water and sediments, coupled with hydrodynamic transport in mountainous channels, is of particular interest in central Chilean Andes due to natural occurrence of acid waters. In this paper, we present a coupled transport and geochemical model to estimate and understand transport processes and fate of minerals at the Yerba Loca Basin, located near Santiago, Chile. In the upper zone, water presentes low pH ( 3) and high concentrations of iron, aluminum, copper, manganese and zinc. Acidity and minerals are the consequence of water-rock interactions in hydrothermal alteration zones, rich in sulphides and sulphates, covered by seasonal snow and glaciers. Downstream, as a consequence of neutral to alkaline lateral water contributions (pH >7) along the river, pH increases and concentration of solutes decreases. The mineral transport model has three components: (i) a hydrodynamic model, where we use HEC-RAS to solve 1D Saint-Venant equations, (ii) a sediment transport model to estimate erosion and sedimentation rates, which quantify minerals transference between water and riverbed and (iii) a solute transport model, based on the 1D OTIS model which takes into account the temporal delay in solutes transport that typically is observed in natural channels (transient storage). Hydrochemistry is solved using PHREEQC, a software for speciation and batch reaction. Our results show that correlation between mineral precipitation and dissolution according to pH values changes along the river. Based on pH measurements (and according to literature) we inferred that main minerals in the water system are brochantite, ferrihydrite, hydrobasaluminite and schwertmannite. Results show that our model can predict the transport and fate of minerals and metals in the Yerba Loca Basin. Mineral dissolution and precipitation process occur for limited ranges of pH values. When pH values are increased, iron minerals (schwertmannite) are the first to precipitate ( 2.5

  7. THE GEOLOGY, GEOCHEMISTRY AND GENETICAL FEATURES OF THE ORMANBAŞI HILL (SİNCİK, ADIYAMAN COPPER MINERALIZATION

    Directory of Open Access Journals (Sweden)

    Nail YILDIRIM

    2012-06-01

    Full Text Available - The study area covers Ormanbaşı Hill of Adıyaman–Sincik County and its vicinity. Regional geological locations of Cu mineralizations that lie between the Southeastern Anatolian Foothill Belt and Taurus Orogenic Belt are conformable with thrust planes approximately extending in E-W directions. Cu mineralizations are observed in the form of lenses and layers within mudstone, diabase, spilite, and claystone - shales of the Koçali complex. The primary genetic relations of these formations have completely been disappeared but have only been traced along thrust planes that are conformable with general tectonic lineaments. The ore structure is generally massive but is stockwork and disseminated in some zones. The ore-bearing layer with pyrite towards deeper parts is observed, while the mineralization is observed in the form of iron ore cap (gossan at the surface. Ore paragenesis consists of pyrite, marcasite, chalcopyrite, sphalerite, bornite, chalcocite - covelline and native copper. All samples belonging to ore mineralizations plot on Cyprus type volcanogenic massive sulfide (VMS area in Cu – Pb - Zn and Au - (Cu + Pb + Zn - Ag ternary diagrams. All samples in Pb, Cu, Ag, Au and Zn spider diagrams which were normalized to primary mantle show a trend similar to VMS deposits. Besides, analyses carried out in massive pyrites indicated that these had Ni/Co ratio higher than 1% and less Ni content. Therefore; it was detected that hydrothermal processes had been effective in ore mineralizations. S32 /S34 ratios were obtained as 6.9 and 7.6 in sulfur isotope analyses performed by using pyrite and chalcopyrite samples. These values are both compatible with sulfur ratios in hydrothermal solutions related to volcanism and show a similar composition with that of Cyprus type VMS deposits on the world.

  8. Considerations on the phosophoro-uraniferous mineralization of Itataia deposit-CE, Brazil

    International Nuclear Information System (INIS)

    Mendonca, J.C.G.S.; Braga, A. de P.G.; Campos, M. de.

    1980-01-01

    Phosphoro-uraniferous deposit of Itataia is situated in Precambrian metamorphic terrains, into the litho-stratigraphic unit named Caico Complex. Regionally, the rocks are linearly folded, as a result of compressive tectonic that fits in the regmatic pattern. Rio Groairas' and Itatira's wrench faults form shearing couples in which the drag folds' climax are thrusting faults with axial plane dipping north. Uranium mineralization occurs into a phosphatic rock containing about 80% of collophane - 'collophanite - in association chiefly with marbles or feldsphatic rocks and gneisses. The ore (collophanite) occurs mainly as a stockwork, and it may be massive, (into big joints) or disseminated (impregnating the host rocks). Dark ore appears only in brecciated zones; it is richer in uranium content, but poorer in phosphorous. The highest grade ore is in a very fractured zone, associated to marbles. Supergene enrichment took place in this area. Underground works show that mineralization is deeper toward east. No uranium mineral was identified yet. Itataia's deposit is a very peculiar one, because of the high grade uranium-phosphorous association. That's why it's difficult to establish a genetic model. However, there exist several genetic hypothesis, some of which in the same line of thought. (Author) [pt

  9. A Follow-up Association Study of Genetic Variants for Bone Mineral Density in a Korean Population

    Directory of Open Access Journals (Sweden)

    Seokjin Ham

    2014-09-01

    Full Text Available Bone mineral density (BMD is one of the quantitative traits that are genetically inherited and affected by various factors. Over the past years, genome-wide association studies (GWASs have searched for many genetic loci that influence BMD. A recent meta-analysis of 17 GWASs for BMD of the femoral neck and lumbar spine is the largest GWAS for BMD to date and offers 64 single-nucleotide polymorphisms (SNPs in 56 associated loci. We investigated these BMD loci in a Korean population called Korea Association REsource (KARE to identify their validity in an independent study. The KARE population contains genotypes from 8,842 individuals, and their BMD levels were measured at the distal radius (BMD-RT and midshaft tibia (BMD-TT. Thirteen genomic loci among 56 loci were significantly associated with BMD variations, and 3 loci were involved in known biological pathways related to BMD. In order to find putative functional variants, nearby SNPs in relation to linkage equilibrium were annotated, and their possible functional effects were predicted. These findings reveal that tens of variants, not a single factor, may contribute to the genetic architecture of BMD; have an important role regardless of ethnic group; and may highlight the importance of a replication study in GWASs to validate genuine loci for BMD variation.

  10. Modeling CO2-Water-Mineral Wettability and Mineralization for Carbon Geosequestration.

    Science.gov (United States)

    Liang, Yunfeng; Tsuji, Shinya; Jia, Jihui; Tsuji, Takeshi; Matsuoka, Toshifumi

    2017-07-18

    Carbon dioxide (CO 2 ) capture and storage (CCS) is an important climate change mitigation option along with improved energy efficiency, renewable energy, and nuclear energy. CO 2 geosequestration, that is, to store CO 2 under the subsurface of Earth, is feasible because the world's sedimentary basins have high capacity and are often located in the same region of the world as emission sources. How CO 2 interacts with the connate water and minerals is the focus of this Account. There are four trapping mechanisms that keep CO 2 in the pores of subsurface rocks: (1) structural trapping, (2) residual trapping, (3) dissolution trapping, and (4) mineral trapping. The first two are dominated by capillary action, where wettability controls CO 2 and water two-phase flow in porous media. We review state-of-the-art studies on CO 2 /water/mineral wettability, which was found to depend on pressure and temperature conditions, salt concentration in aqueous solutions, mineral surface chemistry, and geometry. We then review some recent advances in mineral trapping. First, we show that it is possible to reproduce the CO 2 /water/mineral wettability at a wide range of pressures using molecular dynamics (MD) simulations. As the pressure increases, CO 2 gas transforms into a supercritical fluid or liquid at ∼7.4 MPa depending on the environmental temperature. This transition leads to a substantial decrease of the interfacial tension between CO 2 and reservoir brine (or pure water). However, the wettability of CO 2 /water/rock systems depends on the type of rock surface. Recently, we investigated the contact angle of CO 2 /water/silica systems with two different silica surfaces using MD simulations. We found that contact angle increased with pressure for the hydrophobic (siloxane) surface while it was almost constant for the hydrophilic (silanol) surface, in excellent agreement with experimental observations. Furthermore, we found that the CO 2 thin films at the CO 2 -hydrophilic

  11. Simplified models of rates of CO2 mineralization in Geologic Carbon Storage

    Science.gov (United States)

    DePaolo, D. J.; Zhang, S.

    2017-12-01

    Geologic carbon storage (GCS) reverses the flow of carbon to the atmosphere, returning the carbon to long-term geologic storage. Models suggest that most of the injected CO2 will be "trapped" in the subsurface by physical means, but the most risk-free and permanent form of carbon storage is as carbonate minerals (Ca,Mg,Fe)CO3. The transformation of CO2 to carbonate minerals requires supply of divalent cations by dissolution of silicate minerals. Available data suggest that rates of transformation are difficult to predict. We show that the chemical kinetic observations and experimental results, when reduced to a single timescale that describes the fractional rate at which cations are released to solution by mineral dissolution, show sufficiently systematic behavior that the rates of mineralization can be estimated with reasonable certainty. Rate of mineralization depends on both the abundance (determined by the reservoir rock mineralogy) and the rate at which cations are released by dissolution into pore fluid that has been acidified with dissolved CO2. Laboratory-measured rates and field observations give values spanning 8 to 10 orders of magnitude, but when evaluated in the context of reservoir-scale reactive transport simulations, this range becomes much smaller. Reservoir scale simulations indicate that silicate mineral dissolution and subsequent carbonate mineral precipitation occur at pH 4.5 to 6, fluid flow velocity less than 5m/yr, and 50-100 years or more after the start of injection. These constraints lead to estimates of 200 to 2000 years for conversion of 60-90% of injected CO2 when the reservoir rock has a sufficient volume fraction of divalent cation-bearing silicate minerals (ca. 20%), and confirms that when reservoir rock mineralogy is not favorable the fraction of CO2 converted to carbonate minerals is minimal over 104 years. A sufficient amount of reactive minerals represents the condition by which the available cations per volume of rock plus pore

  12. Genetics of osteoporosis

    Energy Technology Data Exchange (ETDEWEB)

    Urano, Tomohiko [Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan); Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp [Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan); Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan); Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan)

    2014-09-19

    Highlights: • Single-nucleotide polymorphisms (SNPs) associated with osteoporosis were identified. • SNPs mapped close to or within VDR and ESR1 are associated with bone mineral density. • WNT signaling pathway plays a pivotal role in regulating bone mineral density. • Genetic studies will be useful for identification of new therapeutic targets. - Abstract: Osteoporosis is a skeletal disease characterized by low bone mineral density (BMD) and microarchitectural deterioration of bone tissue, which increases susceptibility to fractures. BMD is a complex quantitative trait with normal distribution and seems to be genetically controlled (in 50–90% of the cases), according to studies on twins and families. Over the last 20 years, candidate gene approach and genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNPs) that are associated with low BMD, osteoporosis, and osteoporotic fractures. These SNPs have been mapped close to or within genes including those encoding nuclear receptors and WNT-β-catenin signaling proteins. Understanding the genetics of osteoporosis will help identify novel candidates for diagnostic and therapeutic targets.

  13. Determination of bone mineral volume fraction using impedance analysis and Bruggeman model

    Energy Technology Data Exchange (ETDEWEB)

    Ciuchi, Ioana Veronica; Olariu, Cristina Stefania, E-mail: oocristina@yahoo.com; Mitoseriu, Liliana, E-mail: lmtsr@uaic.ro

    2013-11-20

    Highlights: • Mineral volume fraction of a bone sample was determined. • Dielectric properties for bone sample and for the collagen type I were determined by impedance spectroscopy. • Bruggeman effective medium approximation was applied in order to evaluate mineral volume fraction of the sample. • The computed values were compared with ones derived from a histogram test performed on SEM micrographs. -- Abstract: Measurements by impedance spectroscopy and Bruggeman effective medium approximation model were employed in order to determine the mineral volume fraction of dry bone. This approach assumes that two or more phases are present into the composite: the matrix (environment) and the other ones are inclusion phases. A fragment of femur diaphysis dense bone from a young pig was investigated in its dehydrated state. Measuring the dielectric properties of bone and its main components (hydroxyapatite and collagen) and using the Bruggeman approach, the mineral volume filling factor was determined. The computed volume fraction of the mineral volume fraction was confirmed by a histogram test analysis based on the SEM microstructures. In spite of its simplicity, the method provides a good approximation for the bone mineral volume fraction. The method which uses impedance spectroscopy and EMA modeling can be further developed by considering the conductive components of the bone tissue as a non-invasive in situ impedance technique for bone composition evaluation and monitoring.

  14. Determination of bone mineral volume fraction using impedance analysis and Bruggeman model

    International Nuclear Information System (INIS)

    Ciuchi, Ioana Veronica; Olariu, Cristina Stefania; Mitoseriu, Liliana

    2013-01-01

    Highlights: • Mineral volume fraction of a bone sample was determined. • Dielectric properties for bone sample and for the collagen type I were determined by impedance spectroscopy. • Bruggeman effective medium approximation was applied in order to evaluate mineral volume fraction of the sample. • The computed values were compared with ones derived from a histogram test performed on SEM micrographs. -- Abstract: Measurements by impedance spectroscopy and Bruggeman effective medium approximation model were employed in order to determine the mineral volume fraction of dry bone. This approach assumes that two or more phases are present into the composite: the matrix (environment) and the other ones are inclusion phases. A fragment of femur diaphysis dense bone from a young pig was investigated in its dehydrated state. Measuring the dielectric properties of bone and its main components (hydroxyapatite and collagen) and using the Bruggeman approach, the mineral volume filling factor was determined. The computed volume fraction of the mineral volume fraction was confirmed by a histogram test analysis based on the SEM microstructures. In spite of its simplicity, the method provides a good approximation for the bone mineral volume fraction. The method which uses impedance spectroscopy and EMA modeling can be further developed by considering the conductive components of the bone tissue as a non-invasive in situ impedance technique for bone composition evaluation and monitoring

  15. Evaluation of geological structure and uranium mineralization model in West Lemajung Sector, Kalan Basin, West Kalimantan

    International Nuclear Information System (INIS)

    Ngadenin; Sularto, P.

    2000-01-01

    The fieldwork is based on the data of strike (S0) and schistosity (S1) of cores that could not penetrate the geological structure model and result of observation on some cores has shown that U mineralization veins are not always parallel to S1. The problems were encountered in core drill data to improve the estimation of U resources from indication category to measured category. The purpose of the evaluation is to establish the advisability of geological structure model and U mineralization model which was applied by this time. The research used remapping of geological structure with surface method in the scale of 1:1000. The result of remapping shows the difference of the dipping between new geological structure model and the old model. The dipping of the new model is to South East until vertical and the old model is to North West until vertical and to South East until vertical. Despite the difference between both of them, the substantive of folding system is identical so that the new and old models can be applied in drilling in West Lemajung sector. U mineralization model of remapping result consists of 3 types : type 1 U mineralization lens form with West-East direction and vertical dipping which is associated with tourmaline, type 2 U mineralization filling in the open fractures with West-East direction and 70 o to North dipping and parallel with S1, and type 3 U mineralization fill in opening fractures with N 110 o - 130 o E the direction and 60 o to North East until subvertical dipping while the old model is only one type. It is U mineralization filling in the open fractures with West-East the direction and 70 o to North the dipping and parallel with S1. Because of this significant difference, data collection of drill core must follow the new mineralization model. (author)

  16. Eco-genetic modeling of contemporary life-history evolution.

    Science.gov (United States)

    Dunlop, Erin S; Heino, Mikko; Dieckmann, Ulf

    2009-10-01

    We present eco-genetic modeling as a flexible tool for exploring the course and rates of multi-trait life-history evolution in natural populations. We build on existing modeling approaches by combining features that facilitate studying the ecological and evolutionary dynamics of realistically structured populations. In particular, the joint consideration of age and size structure enables the analysis of phenotypically plastic populations with more than a single growth trajectory, and ecological feedback is readily included in the form of density dependence and frequency dependence. Stochasticity and life-history trade-offs can also be implemented. Critically, eco-genetic models permit the incorporation of salient genetic detail such as a population's genetic variances and covariances and the corresponding heritabilities, as well as the probabilistic inheritance and phenotypic expression of quantitative traits. These inclusions are crucial for predicting rates of evolutionary change on both contemporary and longer timescales. An eco-genetic model can be tightly coupled with empirical data and therefore may have considerable practical relevance, in terms of generating testable predictions and evaluating alternative management measures. To illustrate the utility of these models, we present as an example an eco-genetic model used to study harvest-induced evolution of multiple traits in Atlantic cod. The predictions of our model (most notably that harvesting induces a genetic reduction in age and size at maturation, an increase or decrease in growth capacity depending on the minimum-length limit, and an increase in reproductive investment) are corroborated by patterns observed in wild populations. The predicted genetic changes occur together with plastic changes that could phenotypically mask the former. Importantly, our analysis predicts that evolutionary changes show little signs of reversal following a harvest moratorium. This illustrates how predictions offered by

  17. Laboratory tools to quantify biogenic dissolution of rocks and minerals: a model rock biofilm growing in percolation columns

    Directory of Open Access Journals (Sweden)

    Franz eSeiffert

    2016-04-01

    Full Text Available Sub-aerial biofilms (SAB are ubiquitous, self-sufficient microbial ecosystems found on mineral surfaces at all altitudes and latitudes. SABs, which are the principal causes of weathering on exposed terrestrial surfaces, are characterised by patchy growth dominated by associations of algae, cyanobacteria, fungi and heterotrophic bacteria. A recently developed in vitro system to study colonisation of rocks exposed to air included two key SAB participants - the rock-inhabiting ascomycete Knufia petricola (CBS 123872 and the phototrophic cyanobacterium Nostoc punctiforme ATCC29133. Both partners are genetically tractable and we used them here to study weathering of granite, K-feldspar and plagioclase. Small fragments of the various rocks or minerals (1 to 6 mm were packed into flow-through columns and incubated with 0.1% glucose and 10 µM thiamine-hydrochloride (90 µL.min-1 to compare weathering with and without biofilms. Dissolution of the minerals was followed by: analysing (i the degradation products in the effluent from the columns via Inductively Coupled Plasma Spectroscopy and (ii by studying polished sections of the incubated mineral fragment/grains using scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray analyses. K. petricola/N. punctiforme stimulated release of Ca, Na, Mg and Mn. Analyses of the polished sections confirmed depletion of Ca, Na and K near the surface of the fragments. The abrupt decrease in Ca concentration observed in peripheral areas of plagioclase fragments favoured a dissolution-reprecipitation mechanism. Percolation columns in combination with a model biofilm can thus be used to study weathering in closed systems. Columns can easily be filled with different minerals and biofilms, the effluent as well as grains can be collected after long-term exposure under axenic conditions and easily analysed.

  18. Laboratory tools to quantify biogenic dissolution of rocks and minerals: a model rock biofilm growing in percolation columns

    Science.gov (United States)

    Seiffert, Franz; Bandow, Nicole; Kalbe, Ute; Milke, Ralf; Gorbushina, Anna

    2016-04-01

    Sub-aerial biofilms (SAB) are ubiquitous, self-sufficient microbial ecosystems found on mineral surfaces at all altitudes and latitudes. SABs, which are the principal causes of weathering on exposed terrestrial surfaces, are characterised by patchy growth dominated by associations of algae, cyanobacteria, fungi and heterotrophic bacteria. A recently developed in vitro system to study colonisation of rocks exposed to air included two key SAB participants - the rock-inhabiting ascomycete Knufia petricola (CBS 123872) and the phototrophic cyanobacterium Nostoc punctiforme ATCC29133. Both partners are genetically tractable and we used them here to study weathering of granite, K-feldspar and plagioclase. Small fragments of the various rocks or minerals (1 to 6 mm) were packed into flow-through columns and incubated with 0.1% glucose and 10 µM thiamine-hydrochloride (90 µL.min-1) to compare weathering with and without biofilms. Dissolution of the minerals was followed by: analysing (i) the degradation products in the effluent from the columns via Inductively Coupled Plasma Spectroscopy and (ii) by studying polished sections of the incubated mineral fragment/grains using scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray analyses. K. petricola/N. punctiforme stimulated release of Ca, Na, Mg and Mn. Analyses of the polished sections confirmed depletion of Ca, Na and K near the surface of the fragments. The abrupt decrease in Ca concentration observed in peripheral areas of plagioclase fragments favoured a dissolution-reprecipitation mechanism. Percolation columns in combination with a model biofilm can thus be used to study weathering in closed systems. Columns can easily be filled with different minerals and biofilms, the effluent as well as grains can be collected after long-term exposure under axenic conditions and easily analysed.

  19. Effect of HIP/ribosomal protein L29 deficiency on mineral properties of murine bones and teeth.

    Science.gov (United States)

    Sloofman, Laura G; Verdelis, Kostas; Spevak, Lyudmila; Zayzafoon, Majd; Yamauchi, Mistuo; Opdenaker, Lynn M; Farach-Carson, Mary C; Boskey, Adele L; Kirn-Safran, Catherine B

    2010-07-01

    Mice lacking HIP/RPL29, a component of the ribosomal machinery, display increased bone fragility. To understand the effect of sub-efficient protein synthetic rates on mineralized tissue quality, we performed dynamic and static histomorphometry and examined the mineral properties of both bones and teeth in HIP/RPL29 knock-out mice using Fourier transform infrared imaging (FTIRI). While loss of HIP/RPL29 consistently reduced total bone size, decreased mineral apposition rates were not significant, indicating that short stature is not primarily due to impaired osteoblast function. Interestingly, our microspectroscopic studies showed that a significant decrease in collagen crosslinking during maturation of HIP/RPL29-null bone precedes an overall enhancement in the relative extent of mineralization of both trabecular and cortical adult bones. This report provides strong genetic evidence that ribosomal insufficiency induces subtle organic matrix deficiencies which elevates calcification. Consistent with the HIP/RPL29-null bone phenotype, HIP/RPL29-deficient teeth also showed reduced geometric properties accompanied with relative increased mineral densities of both dentin and enamel. Increased mineralization associated with enhanced tissue fragility related to imperfection in organic phase microstructure evokes defects seen in matrix protein-related bone and tooth diseases. Thus, HIP/RPL29 mice constitute a new genetic model for studying the contribution of global protein synthesis in the establishment of organic and inorganic phases in mineral tissues. 2010 Elsevier Inc. All rights reserved.

  20. Calderas and mineralization: volcanic geology and mineralization in the Chianti caldera complex, Trans-Pecos Texas

    Energy Technology Data Exchange (ETDEWEB)

    Duex, T.W.; Henry, C.D.

    1981-01-01

    This report describes preliminary results of an ongoing study of the volcanic stratigraphy, caldera activity, and known and potential mineralization of the Chinati Mountains area of Trans-Pecos Texas. Many ore deposits are spatially associated with calderas and other volcanic centers. A genetic relationship between calderas and base and precious metal mineralization has been proposed by some and denied by others. Steven and others have demonstrated that calderas provide an important setting for mineralization in the San Juan volcanic field of Colorado. Mineralization is not found in all calderas but is apparently restricted to calderas that had complex, postsubsidence igneous activity. A comparison of volcanic setting, volcanic history, caldera evolution, and evidence of mineralization in Trans-Pecos to those of the San Juan volcanic field, a major mineral producer, indicates that Trans-Pecos Texas also could be an important mineralized region. The Chianti caldera complex in Trans-Pecos Texas contains at least two calderas that have had considerable postsubsidence activity and that display large areas of hydrothermal alteration and mineralization. Abundant prospects in Trans-Pecos and numerous producing mines immediately south of the Trans-Pecos volcanic field in Mexico are additional evidence that ore-grade deposits could occur in Texas.

  1. Evaluating Ice Nucleating Particle Concentrations From Prognostic Dust Minerals in an Earth System Model

    Science.gov (United States)

    Perlwitz, J. P.; Knopf, D. A.; Fridlind, A. M.; Miller, R. L.; Pérez García-Pando, C.; DeMott, P. J.

    2016-12-01

    The effect of aerosol particles on the radiative properties of clouds, the so-called, indirect effect of aerosols, is recognized as one of the largest sources of uncertainty in climate prediction. The distribution of water vapor, precipitation, and ice cloud formation are influenced by the atmospheric ice formation, thereby modulating cloud albedo and thus climate. It is well known that different particle types possess different ice formation propensities with mineral dust being a superior ice nucleating particle (INP) compared to soot particles. Furthermore, some dust mineral types are more proficient INP than others, depending on temperature and relative humidity.In recent work, we have presented an improved dust aerosol module in the NASA GISS Earth System ModelE2 with prognostic mineral composition of the dust aerosols. Thus, there are regional variations in dust composition. We evaluated the predicted mineral fractions of dust aerosols by comparing them to measurements from a compilation of about 60 published literature references. Additionally, the capability of the model to reproduce the elemental composition of the simulated dusthas been tested at Izana Observatory at Tenerife, Canary Islands, which is located off-shore of Africa and where frequent dust events are observed. We have been able to show that the new approach delivers a robust improvement of the predicted mineral fractions and elemental composition of dust.In the current study, we use three-dimensional dust mineral fields and thermodynamic conditions, which are simulated using GISS ModelE, to calculate offline the INP concentrations derived using different ice nucleation parameterizations that are currently discussed. We evaluate the calculated INP concentrations from the different parameterizations by comparing them to INP concentrations from field measurements.

  2. Genetic coding and gene expression - new Quadruplet genetic coding model

    Science.gov (United States)

    Shankar Singh, Rama

    2012-07-01

    Successful demonstration of human genome project has opened the door not only for developing personalized medicine and cure for genetic diseases, but it may also answer the complex and difficult question of the origin of life. It may lead to making 21st century, a century of Biological Sciences as well. Based on the central dogma of Biology, genetic codons in conjunction with tRNA play a key role in translating the RNA bases forming sequence of amino acids leading to a synthesized protein. This is the most critical step in synthesizing the right protein needed for personalized medicine and curing genetic diseases. So far, only triplet codons involving three bases of RNA, transcribed from DNA bases, have been used. Since this approach has several inconsistencies and limitations, even the promise of personalized medicine has not been realized. The new Quadruplet genetic coding model proposed and developed here involves all four RNA bases which in conjunction with tRNA will synthesize the right protein. The transcription and translation process used will be the same, but the Quadruplet codons will help overcome most of the inconsistencies and limitations of the triplet codes. Details of this new Quadruplet genetic coding model and its subsequent potential applications including relevance to the origin of life will be presented.

  3. Context trees for privacy-preserving modeling of genetic data

    NARCIS (Netherlands)

    Kusters, C.J.; Ignatenko, T.

    2016-01-01

    In this work, we use context trees for privacypreserving modeling of genetic sequences. The resulting estimated models are applied for functional comparison of genetic sequences in a privacy preserving way. Here we define privacy as uncertainty about the genetic source sequence given its model and

  4. Latent spatial models and sampling design for landscape genetics

    Science.gov (United States)

    Hanks, Ephraim M.; Hooten, Mevin B.; Knick, Steven T.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Cross, Todd B.; Schwartz, Michael K.

    2016-01-01

    We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial random effect to allow for spatial correlation between genetic observations. We illustrate how modern dimension reduction approaches to spatial statistics can allow for efficient computation in landscape genetic statistical models covering large spatial domains. We apply our approach to propose a retrospective spatial sampling design for greater sage-grouse (Centrocercus urophasianus) population genetics in the western United States.

  5. Noise in Genetic Toggle Switch Models

    Directory of Open Access Journals (Sweden)

    Andrecut M.

    2006-06-01

    Full Text Available In this paper we study the intrinsic noise effect on the switching behavior of a simple genetic circuit corresponding to the genetic toggle switch model. The numerical results obtained from a noisy mean-field model are compared to those obtained from the stochastic Gillespie simulation of the corresponding system of chemical reactions. Our results show that by using a two step reaction approach for modeling the transcription and translation processes one can make the system to lock in one of the steady states for exponentially long times.

  6. Behavior genetics: Bees as model

    International Nuclear Information System (INIS)

    Nates Parra, Guiomar

    2011-01-01

    The honeybee Apis mellifera (Apidae) is a model widely used in behavior because of its elaborate social life requiring coordinate actions among the members of the society. Within a colony, division of labor, the performance of tasks by different individuals, follows genetically determined physiological changes that go along with aging. Modern advances in tools of molecular biology and genomics, as well as the sequentiation of A. mellifera genome, have enabled a better understanding of honeybee behavior, in particular social behavior. Numerous studies show that aspects of worker behavior are genetically determined, including defensive, hygienic, reproductive and foraging behavior. For example, genetic diversity is associated with specialization to collect water, nectar and pollen. Also, control of worker reproduction is associated with genetic differences. In this paper, I review the methods and the main results from the study of the genetic and genomic basis of some behaviors in bees.

  7. Testing the Structure of Hydrological Models using Genetic Programming

    Science.gov (United States)

    Selle, B.; Muttil, N.

    2009-04-01

    Genetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that genetic programming can be used to test the structure hydrological models and to identify dominant processes in hydrological systems. To test this, genetic programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, water table depths and water ponding times during surface irrigation. Using genetic programming, a simple model of deep percolation was consistently evolved in multiple model runs. This simple and interpretable model confirmed the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that genetic programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  8. Proceedings for a Workshop on Deposit Modeling, Mineral Resource Assessment, and Their Role in Sustainable Development

    Science.gov (United States)

    Briskey, Joseph A.; Schulz, Klaus J.

    2007-01-01

    The world's use of nonfuel mineral resources continues to increase to support a growing population and increasing standards of living. The ability to meet this increasing demand is affected especially by concerns about possible environmental degradation associated with minerals production and by competing land uses. What information does the world need to support global minerals development in a sustainable way?Informed planning and decisions concerning sustainability and future mineral resource supply require a long–term perspective and an integrated approach to resource, land use, economic, and environmental management worldwide. Such perspective and approach require unbiased information on the global distribution of identified and especially undiscovered resources, the economic and political factors influencing their development, and the potential environmental consequences of their exploitation.The U.S. Geological Survey and the former Deposit Modeling Program of the International Union of Geological Sciences (IUGS) of the United Nations Educational, Scientific and Cultural Organization (UNESCO) sponsored a workshop on "Deposit Modeling, Mineral Resource Assessment, and Their Role in Sustainable Development" at the 31st International Geological Congress (IGC) in Rio de Janeiro, Brazil, on August 18–19, 2000. The purpose of the workshop was to review the state-of-the-art in mineral deposit modeling and resource assessment and to examine the role of global assessments of nonfuel mineral resources in sustainable development.The workshop addressed questions such as the following: Which of the available mineral deposit models and assessment methods are best suited for predicting the locations, deposit types, and amounts of undiscovered nonfuel mineral resources remaining in the world? What is the availability of global geologic, mineral deposit, and mineral exploration information? How can mineral resource assessments be used to address economic and

  9. Relationships between mineralization and silicic volcanism in the central Andes

    Science.gov (United States)

    Francis, P. W.; Halls, C.; Baker, M. C. W.

    1983-01-01

    Existing models for the genesis of porphyry copper deposits indicate that they formed in granodioritic stocks located in the infrastructure of andesitic stratovolcanoes. It is noted that sites of porphyry-type subvolcanic tin mineralization in the Eastern Cordillera of Bolivia are distinguished by the absence of such andesitic structures. The surface expression of a typical subvolcanic porphyry tin deposit is thought to be an extrusive dome of quartz latite porphyry, sometimes related to a larger caldera structure. Evidence from the El Salvador porphyry copper deposit in the Eocene magmatic belt in Chile indicates that it too may be more closely related to a silicic volcanic structure than to an andesitic stratovolcano. The dome of La Soufriere, Guadeloupe is offered as a modern analog for the surface expression of subvolcanic mineralization processes, with the phreatic eruptions there indicating the formation of hydrothermal breccia bodies in depths. It is pointed out that the occurrence of mineralized porphyries, millions of years after caldera formation, does not necessarily indicate that tin intrusions and mineralization are not genetically related to the subcaldera pluton, but may be a consequence of the long thermal histories (1-10 million years) of the lowermost parts of large plutons.

  10. Accelerated growth plate mineralization and foreshortened proximal limb bones in fetuin-A knockout mice.

    Science.gov (United States)

    Seto, Jong; Busse, Björn; Gupta, Himadri S; Schäfer, Cora; Krauss, Stefanie; Dunlop, John W C; Masic, Admir; Kerschnitzki, Michael; Zaslansky, Paul; Boesecke, Peter; Catalá-Lehnen, Philip; Schinke, Thorsten; Fratzl, Peter; Jahnen-Dechent, Willi

    2012-01-01

    The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix--a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth.

  11. Introduction to genetic algorithms as a modeling tool

    International Nuclear Information System (INIS)

    Wildberger, A.M.; Hickok, K.A.

    1990-01-01

    Genetic algorithms are search and classification techniques modeled on natural adaptive systems. This is an introduction to their use as a modeling tool with emphasis on prospects for their application in the power industry. It is intended to provide enough background information for its audience to begin to follow technical developments in genetic algorithms and to recognize those which might impact on electric power engineering. Beginning with a discussion of genetic algorithms and their origin as a model of biological adaptation, their advantages and disadvantages are described in comparison with other modeling tools such as simulation and neural networks in order to provide guidance in selecting appropriate applications. In particular, their use is described for improving expert systems from actual data and they are suggested as an aid in building mathematical models. Using the Thermal Performance Advisor as an example, it is suggested how genetic algorithms might be used to make a conventional expert system and mathematical model of a power plant adapt automatically to changes in the plant's characteristics

  12. Modeling of Possible Conditions for Origin of First Organic Forms in hot Mineral Water

    OpenAIRE

    Ignat Ignatov; Oleg Mosin

    2014-01-01

    The composition of water, its temperature and pH value was analyzed in experiments with modelling of primary hydrosphere and possible conditions for origin of first organic forms in hot mineral water. For this aim the authors performed experiments with hot mineral and seawater from Bulgaria by IR-spectrometry (DNES-method). As model systems were used cactus juice of Echinopsis pachanoi and Mediterranean jellyfish Cotylorhiza tuberculata. It was considered the reactions of condensation and deh...

  13. Comparing estimates of genetic variance across different relationship models.

    Science.gov (United States)

    Legarra, Andres

    2016-02-01

    Use of relationships between individuals to estimate genetic variances and heritabilities via mixed models is standard practice in human, plant and livestock genetics. Different models or information for relationships may give different estimates of genetic variances. However, comparing these estimates across different relationship models is not straightforward as the implied base populations differ between relationship models. In this work, I present a method to compare estimates of variance components across different relationship models. I suggest referring genetic variances obtained using different relationship models to the same reference population, usually a set of individuals in the population. Expected genetic variance of this population is the estimated variance component from the mixed model times a statistic, Dk, which is the average self-relationship minus the average (self- and across-) relationship. For most typical models of relationships, Dk is close to 1. However, this is not true for very deep pedigrees, for identity-by-state relationships, or for non-parametric kernels, which tend to overestimate the genetic variance and the heritability. Using mice data, I show that heritabilities from identity-by-state and kernel-based relationships are overestimated. Weighting these estimates by Dk scales them to a base comparable to genomic or pedigree relationships, avoiding wrong comparisons, for instance, "missing heritabilities". Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Predicting the Mineral Composition of Dust Aerosols. Part 2; Model Evaluation and Identification of Key Processes with Observations

    Science.gov (United States)

    Perlwitz, J. P.; Garcia-Pando, C. Perez; Miller, R. L.

    2015-01-01

    A global compilation of nearly sixty measurement studies is used to evaluate two methods of simulating the mineral composition of dust aerosols in an Earth system model. Both methods are based upon a Mean Mineralogical Table (MMT) that relates the soil mineral fractions to a global atlas of arid soil type. The Soil Mineral Fraction (SMF) method assumes that the aerosol mineral fractions match the fractions of the soil. The MMT is based upon soil measurements after wet sieving, a process that destroys aggregates of soil particles that would have been emitted from the original, undisturbed soil. The second method approximately reconstructs the emitted aggregates. This model is referred to as the Aerosol Mineral Fraction (AMF) method because the mineral fractions of the aerosols differ from those of the wet-sieved parent soil, partly due to reaggregation. The AMF method remedies some of the deficiencies of the SMF method in comparison to observations. Only the AMF method exhibits phyllosilicate mass at silt sizes, where they are abundant according to observations. In addition, the AMF quartz fraction of silt particles is in better agreement with measured values, in contrast to the overestimated SMF fraction. Measurements at distinct clay and silt particle sizes are shown to be more useful for evaluation of the models, in contrast to the sum over all particles sizes that is susceptible to compensating errors, as illustrated by the SMF experiment. Model errors suggest that allocation of the emitted silt fraction of each mineral into the corresponding transported size categories is an important remaining source of uncertainty. Evaluation of both models and the MMT is hindered by the limited number of size-resolved measurements of mineral content that sparsely sample aerosols from the major dust sources. The importance of climate processes dependent upon aerosol mineral composition shows the need for global and routine mineral measurements.

  15. The mineralization and mechanism of the endogenetic mineral deposit in China

    International Nuclear Information System (INIS)

    Jiang Yonghong

    2010-01-01

    In the process of mineralization, due to the difference in rank, scale and order of structures orebody, mine colomn or rich ore bag are often produced in the specific structural parts. Obviously, it is controlled by favourite structure. The important and direct control of the structure to metal endogenetic mineralization evolution are representative on the affect of pulse action of structure to the multi-stage of mineralization evolution. According to the formation environment of the mineralization, it can be classified as collision orogeny mineralization, release(extension)mineralization, slide draw-division basin mineralization and shear zone extension mineralization. Throng the discuss of endogenetic deposit in the geological evolution, structure and formation machenism, the metallogenic model was preliminary established,and the criteria for delineating favourable metallogenic area was identified. (authors)

  16. Testing the structure of a hydrological model using Genetic Programming

    Science.gov (United States)

    Selle, Benny; Muttil, Nitin

    2011-01-01

    SummaryGenetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that Genetic Programming can be used to test the structure of hydrological models and to identify dominant processes in hydrological systems. To test this, Genetic Programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, watertable depths and water ponding times during surface irrigation. Using Genetic Programming, a simple model of deep percolation was recurrently evolved in multiple Genetic Programming runs. This simple and interpretable model supported the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that Genetic Programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  17. Analysis of genetic effects of nuclear-cytoplasmic interaction on quantitative traits: genetic model for diploid plants.

    Science.gov (United States)

    Han, Lide; Yang, Jian; Zhu, Jun

    2007-06-01

    A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative traits of diploid plants. In the model, the NCI effects were further partitioned into additive and dominance nuclear-cytoplasmic interaction components. Mixed linear model approaches were used for statistical analysis. On the basis of diallel cross designs, Monte Carlo simulations showed that the genetic model was robust for estimating variance components under several situations without specific effects. Random genetic effects were predicted by an adjusted unbiased prediction (AUP) method. Data on four quantitative traits (boll number, lint percentage, fiber length, and micronaire) in Upland cotton (Gossypium hirsutum L.) were analyzed as a worked example to show the effectiveness of the model.

  18. Genetics Home Reference: juvenile primary osteoporosis

    Science.gov (United States)

    ... bones (decreased bone mineral density), which makes the bones brittle and prone to fracture. Affected individuals often have ... information about a genetic condition can statistics provide? Why are some genetic conditions more common in particular ...

  19. Short communication: Genetic lag represents commercial herd genetic merit more accurately than the 4-path selection model.

    Science.gov (United States)

    Dechow, C D; Rogers, G W

    2018-05-01

    Expectation of genetic merit in commercial dairy herds is routinely estimated using a 4-path genetic selection model that was derived for a closed population, but commercial herds using artificial insemination sires are not closed. The 4-path model also predicts a higher rate of genetic progress in elite herds that provide artificial insemination sires than in commercial herds that use such sires, which counters other theoretical assumptions and observations of realized genetic responses. The aim of this work is to clarify whether genetic merit in commercial herds is more accurately reflected under the assumptions of the 4-path genetic response formula or by a genetic lag formula. We demonstrate by tracing the transmission of genetic merit from parents to offspring that the rate of genetic progress in commercial dairy farms is expected to be the same as that in the genetic nucleus. The lag in genetic merit between the nucleus and commercial farms is a function of sire and dam generation interval, the rate of genetic progress in elite artificial insemination herds, and genetic merit of sires and dams. To predict how strategies such as the use of young versus daughter-proven sires, culling heifers following genomic testing, or selective use of sexed semen will alter genetic merit in commercial herds, genetic merit expectations for commercial herds should be modeled using genetic lag expectations. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Explanatory models of black lung: understanding the health-related behavior of Appalachian coal miners.

    Science.gov (United States)

    Friedl, J

    1982-03-01

    Many retired coal miners who are eligible for care in a black lung treatment center at little or no cost to themselves do not enter into available programs or discontinue soon after beginning therapy. Reasons for this behavior are related to the prevalent beliefs among Appalachians concerning the course of black lung and the appropriate treatment for it. The miners' health beliefs are clearly at odds with those of the health care providers who work in the centers. Using the concept of explanatory model, popular and professional health cultures are analyzed, focusing on course of disease, sick role, appropriate treatment, and expected outcome. Differences in explanatory models are discussed with regard to implications for the organization and delivery of care to retired coal miners with black lung.

  1. Genetic and non-genetic animal models for autism spectrum disorders (ASD).

    Science.gov (United States)

    Ergaz, Zivanit; Weinstein-Fudim, Liza; Ornoy, Asher

    2016-09-01

    Autism spectrum disorder (ASD) is associated, in addition to complex genetic factors, with a variety of prenatal, perinatal and postnatal etiologies. We discuss the known animal models, mostly in mice and rats, of ASD that helps us to understand the etiology, pathogenesis and treatment of human ASD. We describe only models where behavioral testing has shown autistic like behaviors. Some genetic models mimic known human syndromes like fragile X where ASD is part of the clinical picture, and others are without defined human syndromes. Among the environmentally induced ASD models in rodents, the most common model is the one induced by valproic acid (VPA) either prenatally or early postnatally. VPA induces autism-like behaviors following single exposure during different phases of brain development, implying that the mechanism of action is via a general biological mechanism like epigenetic changes. Maternal infection and inflammation are also associated with ASD in man and animal models. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Identification of mineralized zones in the Zardu area, Kushk SEDEX deposit (Central Iran, based on geological and multifractal modeling

    Directory of Open Access Journals (Sweden)

    Dahooei Ahmad Heidari

    2016-02-01

    Full Text Available The aim of this paper is to delineate the different lead–zinc mineralized zones in the Zardu area of the Kushk zinc–lead stratabound SEDEX deposit, Central Iran, through concentration–volume (C–V modeling of geological and lithogeochemical drillcore data. The geological model demonstrated that the massive sulfide and pyrite+dolomite ore types as main rock types hosting mineralization. The C–V fractal modeling used lead, zinc and iron geochemical data to outline four types of mineralized zones, which were then compared to the mineralized rock types identified in the geological model. ‘Enriched’ mineralized zones contain lead and zinc values higher than 6.93% and 19.95%, respectively, with iron values lower than 12.02%. Areas where lead and zinc values were higher than 1.58% and 5.88%, respectively, and iron grades lower than 22% are labelled “high-grade” mineralized zones, and these zones are linked to massive sulfide and pyrite+dolomite lithologies of the geological model. Weakly mineralized zones, labelled ‘low-grade’ in the C– V model have 0–0.63% lead, 0–3.16% zinc and > 30.19% iron, and are correlated to those lithological units labeled as gangue in the geological model, including shales and dolomites, pyritized dolomites. Finally, a log-ratio matrix was employed to validate the results obtained and check correlations between the geological and fractal modeling. Using this method, a high overall accuracy (OA was confirmed for the correlation between the enriched and high-grade mineralized zones and two lithological units — the massive sulfide and pyrite+dolomite ore types.

  3. Modelling of water-gas-rock geo-chemical interactions. Application to mineral diagenesis in geological reservoirs

    International Nuclear Information System (INIS)

    Bildstein, Olivier

    1998-01-01

    Mineral diagenesis in tanks results from interactions between minerals, water, and possibly gases, over geological periods of time. The associated phenomena may have a crucial importance for reservoir characterization because of their impact on petrophysical properties. The objective of this research thesis is thus to develop a model which integrates geochemical functions necessary to simulate diagenetic reactions, and which is numerically efficient enough to perform the coupling with a transport model. After a recall of thermodynamic and kinetic backgrounds, the author discusses how the nature of available analytic and experimental data influenced choices made for the formalization of physical-chemical phenomena and for behaviour laws to be considered. Numerical and computational aspects are presented in the second part. The model is validated by using simple examples. The different possible steps during the kinetic competition between two mineral are highlighted, as well the competition between mineral reaction kinetics and water flow rate across the rock. Redox reactions are also considered. In the third part, the author reports the application of new model functions, and highlights the contribution of the modelling to the understanding of some complex geochemical phenomena and to the prediction of reservoir quality. The model is applied to several diagenetic transformations: cementation of dolomitic limestone by anhydride, illite precipitation, and thermal reduction of sulphates [fr

  4. Modelling of acid-base titration curves of mineral assemblages

    Directory of Open Access Journals (Sweden)

    Stamberg Karel

    2016-01-01

    Full Text Available The modelling of acid-base titration curves of mineral assemblages was studied with respect to basic parameters of their surface sites to be obtained. The known modelling approaches, component additivity (CA and generalized composite (GC, and three types of different assemblages (fucoidic sandstones, sedimentary rock-clay and bentonite-magnetite samples were used. In contrary to GC-approach, application of which was without difficulties, the problem of CA-one consisted in the credibility and accessibility of the parameters characterizing the individual mineralogical components.

  5. The development of the asparagus miner (Ophiomyia simplex Loew; Diptera: Agromyzidae) in temperate zones: a degree-day model.

    Science.gov (United States)

    Morrison, William R; Andresen, Jeffrey; Szendrei, Zsofia

    2014-07-01

    The asparagus miner is a putative vector of Fusarium spp., which have been implicated in globally declining asparagus production. Growers currently apply broad-spectrum insecticides for the asparagus miner, but lack management guidelines for adequately controlling the pest. Our aims were (1) to determine the lower developmental threshold of the asparagus miner, (2) develop and validate a degree-day model describing its phenology, and (3) create a developmental time budget for the asparagus miner to help guide growers' management decisions. We found that the lower developmental threshold for the asparagus miner was 12.1 °C, and that the phenology of the asparagus miner could be reliably predicted over the course of a two-year study. Predictions from the model match well with previously published information on the bionomics of the asparagus miner, but fit better for sampling data collected from the midwestern and eastern United States than for the United Kingdom. The life cycle of the asparagus miner likely requires between 1500 and 2000 degree-days to complete; the longest developmental time requirement was for the pupal stagen This study provides tools for the targeted management of the asparagus miner by offering a degree-day model that may be used to predict its life stages in the north-eastern United States. © 2013 Society of Chemical Industry.

  6. Automatic endmember selection and nonlinear spectral unmixing of Lunar analog minerals

    Science.gov (United States)

    Rommel, Daniela; Grumpe, Arne; Felder, Marian Patrik; Wöhler, Christian; Mall, Urs; Kronz, Andreas

    2017-03-01

    While the interpretation of spectral reflectance data has been widely applied to detect the presence of minerals, determining and quantifying the abundances of minerals contained by planetary surfaces is still an open problem. With this paper we address one of the two main questions arising from the spectral unmixing problem. While the mathematical mixture model has been extensively researched, considerably less work has been committed to the selection of endmembers from a possibly huge database or catalog of potential endmembers. To solve the endmember selection problem we define a new spectral similarity measure that is not purely based on the reconstruction error, i.e. the squared difference between the modeled and the measured reflectance spectrum. To select reasonable endmembers, we extend the similarity measure by adding information extracted from the spectral absorption bands. This will allow for a better separation of spectrally similar minerals. Evaluating all possible subsets of a possibly very large catalog that contain at least one endmember leads to an exponential increase in computational complexity, rendering catalogs of 20-30 endmembers impractical. To overcome this computational limitation, we propose the usage of a genetic algorithm that, while initially starting with random subsets, forms new subsets by combining the best subsets and, to some extent, does a local search around the best subsets by randomly adding a few endmembers. A Monte-Carlo simulation based on synthetic mixtures and a catalog size varying from three to eight endmembers demonstrates that the genetic algorithm is expected to require less combinations to be evaluated than an exhaustive search if the catalog comprises 10 or more endmembers. Since the genetic algorithm evaluates some combinations multiple times, we propose a simple modification and store previously evaluated endmember combinations. The resulting algorithm is shown to never require more function evaluations than a

  7. Developing robotic behavior using a genetic programming model

    International Nuclear Information System (INIS)

    Pryor, R.J.

    1998-01-01

    This report describes the methodology for using a genetic programming model to develop tracking behaviors for autonomous, microscale robotic vehicles. The use of such vehicles for surveillance and detection operations has become increasingly important in defense and humanitarian applications. Through an evolutionary process similar to that found in nature, the genetic programming model generates a computer program that when downloaded onto a robotic vehicle's on-board computer will guide the robot to successfully accomplish its task. Simulations of multiple robots engaged in problem-solving tasks have demonstrated cooperative behaviors. This report also discusses the behavior model produced by genetic programming and presents some results achieved during the study

  8. Can genetics help psychometrics? Improving dimensionality assessment through genetic factor modeling.

    Science.gov (United States)

    Franić, Sanja; Dolan, Conor V; Borsboom, Denny; Hudziak, James J; van Beijsterveldt, Catherina E M; Boomsma, Dorret I

    2013-09-01

    In the present article, we discuss the role that quantitative genetic methodology may play in assessing and understanding the dimensionality of psychological (psychometric) instruments. Specifically, we study the relationship between the observed covariance structures, on the one hand, and the underlying genetic and environmental influences giving rise to such structures, on the other. We note that this relationship may be such that it hampers obtaining a clear estimate of dimensionality using standard tools for dimensionality assessment alone. One situation in which dimensionality assessment may be impeded is that in which genetic and environmental influences, of which the observed covariance structure is a function, differ from each other in structure and dimensionality. We demonstrate that in such situations settling dimensionality issues may be problematic, and propose using quantitative genetic modeling to uncover the (possibly different) dimensionalities of the underlying genetic and environmental structures. We illustrate using simulations and an empirical example on childhood internalizing problems.

  9. CMCpy: Genetic Code-Message Coevolution Models in Python

    Science.gov (United States)

    Becich, Peter J.; Stark, Brian P.; Bhat, Harish S.; Ardell, David H.

    2013-01-01

    Code-message coevolution (CMC) models represent coevolution of a genetic code and a population of protein-coding genes (“messages”). Formally, CMC models are sets of quasispecies coupled together for fitness through a shared genetic code. Although CMC models display plausible explanations for the origin of multiple genetic code traits by natural selection, useful modern implementations of CMC models are not currently available. To meet this need we present CMCpy, an object-oriented Python API and command-line executable front-end that can reproduce all published results of CMC models. CMCpy implements multiple solvers for leading eigenpairs of quasispecies models. We also present novel analytical results that extend and generalize applications of perturbation theory to quasispecies models and pioneer the application of a homotopy method for quasispecies with non-unique maximally fit genotypes. Our results therefore facilitate the computational and analytical study of a variety of evolutionary systems. CMCpy is free open-source software available from http://pypi.python.org/pypi/CMCpy/. PMID:23532367

  10. Calibration and validation of models for short-term decomposition and N mineralization of plant residues in the tropics

    Directory of Open Access Journals (Sweden)

    Alexandre Ferreira do Nascimento

    2012-12-01

    Full Text Available Insight of nutrient release patterns associated with the decomposition of plant residues is important for their effective use as a green manure in food production systems. Thus, this study aimed to evaluate the ability of the Century, APSIM and NDICEA simulation models for predicting the decomposition and N mineralization of crop residues in the tropical Atlantic forest biome, Brazil. The simulation models were calibrated based on actual decomposition and N mineralization rates of three types of crop residues with different chemical and biochemical composition. The models were also validated for different pedo-climatic conditions and crop residues conditions. In general, the accuracy of decomposition and N mineralization improved after calibration. Overall RMSE values for the decomposition and N mineralization of the crop materials varied from 7.4 to 64.6% before models calibration compared to 3.7 to 16.3 % after calibration. Therefore, adequate calibration of the models is indispensable for use them under humid tropical conditions. The NDICEA model generally outperformed the other models. However, the decomposition and N mineralization was not very accurate during the first 30 days of incubation, especially for easily decomposable crop residues. An additional model variable may be required to capture initial microbiological growth as affected by the moisture dynamics of the residues, as is the case in surface residues decomposition models.

  11. Evolutionary genetics: the Drosophila model

    Indian Academy of Sciences (India)

    Unknown

    Evolutionary genetics straddles the two fundamental processes of life, ... of the genus Drosophila have been used extensively as model systems in experimental ... issue will prove interesting, informative and thought-provoking for both estab-.

  12. Marine Mineral Exploration

    DEFF Research Database (Denmark)

    in EEZ areas are fairly unknown; many areas need detailed mapping and mineral exploration, and the majority of coastal or island states with large EEZ areas have little experience in exploration for marine hard minerals. This book describes the systematic steps in marine mineral exploration....... Such exploration requires knowledge of mineral deposits and models of their formation, of geophysical and geochemical exploration methods, and of data evaluation and interpretation methods. These topics are described in detail by an international group of authors. A short description is also given of marine...

  13. Multivariate Survival Mixed Models for Genetic Analysis of Longevity Traits

    DEFF Research Database (Denmark)

    Pimentel Maia, Rafael; Madsen, Per; Labouriau, Rodrigo

    2014-01-01

    A class of multivariate mixed survival models for continuous and discrete time with a complex covariance structure is introduced in a context of quantitative genetic applications. The methods introduced can be used in many applications in quantitative genetics although the discussion presented co...... applications. The methods presented are implemented in such a way that large and complex quantitative genetic data can be analyzed......A class of multivariate mixed survival models for continuous and discrete time with a complex covariance structure is introduced in a context of quantitative genetic applications. The methods introduced can be used in many applications in quantitative genetics although the discussion presented...... concentrates on longevity studies. The framework presented allows to combine models based on continuous time with models based on discrete time in a joint analysis. The continuous time models are approximations of the frailty model in which the hazard function will be assumed to be piece-wise constant...

  14. Multivariate Survival Mixed Models for Genetic Analysis of Longevity Traits

    DEFF Research Database (Denmark)

    Pimentel Maia, Rafael; Madsen, Per; Labouriau, Rodrigo

    2013-01-01

    A class of multivariate mixed survival models for continuous and discrete time with a complex covariance structure is introduced in a context of quantitative genetic applications. The methods introduced can be used in many applications in quantitative genetics although the discussion presented co...... applications. The methods presented are implemented in such a way that large and complex quantitative genetic data can be analyzed......A class of multivariate mixed survival models for continuous and discrete time with a complex covariance structure is introduced in a context of quantitative genetic applications. The methods introduced can be used in many applications in quantitative genetics although the discussion presented...... concentrates on longevity studies. The framework presented allows to combine models based on continuous time with models based on discrete time in a joint analysis. The continuous time models are approximations of the frailty model in which the hazard function will be assumed to be piece-wise constant...

  15. Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines)

    Science.gov (United States)

    Carranza, Emmanuel John M.; Laborte, Alice G.

    2015-01-01

    Machine learning methods that have been used in data-driven predictive modeling of mineral prospectivity (e.g., artificial neural networks) invariably require large number of training prospect/locations and are unable to handle missing values in certain evidential data. The Random Forests (RF) algorithm, which is a machine learning method, has recently been applied to data-driven predictive mapping of mineral prospectivity, and so it is instructive to further study its efficacy in this particular field. This case study, carried out using data from Abra (Philippines), examines (a) if RF modeling can be used for data-driven modeling of mineral prospectivity in areas with a few (i.e., individual layers of evidential data. Furthermore, RF modeling can handle missing values in evidential data through an RF-based imputation technique whereas in WofE modeling values are simply represented by zero weights. Therefore, the RF algorithm is potentially more useful than existing methods that are currently used for data-driven predictive mapping of mineral prospectivity. In particular, it is not a purely black-box method like artificial neural networks in the context of data-driven predictive modeling of mineral prospectivity. However, further testing of the method in other areas with a few mineral occurrences is needed to fully investigate its usefulness in data-driven predictive modeling of mineral prospectivity.

  16. Prediction of Mineral Scale Formation in Geothermal and Oilfield Operations using the Extended UNIQUAC Model. Part I: Sulphate Scaling Minerals

    DEFF Research Database (Denmark)

    Garcia, Ada V.; Thomsen, Kaj; Stenby, Erling Halfdan

    2005-01-01

    Pressure parameters are added to the Extended UNIQUAC model presented by Thomsen and Rasmussen (1999). The improved model has been used for correlation and prediction of solid-liquid equilibrium (SLE) of scaling minerals (CaSO4, CaSO4·2H2O, BaSO4 and SrSO4) at temperatures up to 300°C and pressur...

  17. Evolutionary selection of enzymatically synthesized semiconductors from biomimetic mineralization vesicles.

    Science.gov (United States)

    Bawazer, Lukmaan A; Izumi, Michi; Kolodin, Dmitriy; Neilson, James R; Schwenzer, Birgit; Morse, Daniel E

    2012-06-26

    The way nature evolves and sculpts materials using proteins inspires new approaches to materials engineering but is still not completely understood. Here, we present a cell-free synthetic biological platform to advance studies of biologically synthesized solid-state materials. This platform is capable of simultaneously exerting many of the hierarchical levels of control found in natural biomineralization, including genetic, chemical, spatial, structural, and morphological control, while supporting the evolutionary selection of new mineralizing proteins and the corresponding genetically encoded materials that they produce. DNA-directed protein expression and enzymatic mineralization occur on polystyrene microbeads in water-in-oil emulsions, yielding synthetic surrogates of biomineralizing cells that are then screened by flow sorting, with light-scattering signals used to sort the resulting mineralized composites differentially. We demonstrate the utility of this platform by evolutionarily selecting newly identified silicateins, biomineralizing enzymes previously identified from the silica skeleton of a marine sponge, for enzyme variants capable of synthesizing silicon dioxide (silica) or titanium dioxide (titania) composites. Mineral composites of intermediate strength are preferentially selected to remain intact for identification during cell sorting, and then to collapse postsorting to expose the encoding genes for enzymatic DNA amplification. Some of the newly selected silicatein variants catalyze the formation of crystalline silicates, whereas the parent silicateins lack this ability. The demonstrated bioengineered route to previously undescribed materials introduces in vitro enzyme selection as a viable strategy for mimicking genetic evolution of materials as it occurs in nature.

  18. [The emphases and basic procedures of genetic counseling in psychotherapeutic model].

    Science.gov (United States)

    Zhang, Yuan-Zhi; Zhong, Nanbert

    2006-11-01

    The emphases and basic procedures of genetic counseling are all different with those in old models. In the psychotherapeutic model, genetic counseling will not only focus on counselees' genetic disorders and birth defects, but also their psychological problems. "Client-centered therapy" termed by Carl Rogers plays an important role in genetic counseling process. The basic procedures of psychotherapeutic model of genetic counseling include 7 steps: initial contact, introduction, agendas, inquiry of family history, presenting information, closing the session and follow-up.

  19. Applying personal genetic data to injury risk assessment in athletes.

    Directory of Open Access Journals (Sweden)

    Gabrielle T Goodlin

    Full Text Available Recent studies have identified genetic markers associated with risk for certain sports-related injuries and performance-related conditions, with the hope that these markers could be used by individual athletes to personalize their training and diet regimens. We found that we could greatly expand the knowledge base of sports genetic information by using published data originally found in health and disease studies. For example, the results from large genome-wide association studies for low bone mineral density in elderly women can be re-purposed for low bone mineral density in young endurance athletes. In total, we found 124 single-nucleotide polymorphisms associated with: anterior cruciate ligament tear, Achilles tendon injury, low bone mineral density and stress fracture, osteoarthritis, vitamin/mineral deficiencies, and sickle cell trait. Of these single nucleotide polymorphisms, 91% have not previously been used in sports genetics. We conducted a pilot program on fourteen triathletes using this expanded knowledge base of genetic variants associated with sports injury. These athletes were genotyped and educated about how their individual genetic make-up affected their personal risk profile during an hour-long personal consultation. Overall, participants were favorable of the program, found it informative, and most acted upon their genetic results. This pilot program shows that recent genetic research provides valuable information to help reduce sports injuries and to optimize nutrition. There are many genetic studies for health and disease that can be mined to provide useful information to athletes about their individual risk for relevant injuries.

  20. An approximate multitrait model for genetic evaluation in dairy cattle with a robust estimation of genetic trends (Open Access publication

    Directory of Open Access Journals (Sweden)

    Madsen Per

    2007-07-01

    Full Text Available Abstract In a stochastic simulation study of a dairy cattle population three multitrait models for estimation of genetic parameters and prediction of breeding values were compared. The first model was an approximate multitrait model using a two-step procedure. The first step was a single trait model for all traits. The solutions for fixed effects from these analyses were subtracted from the phenotypes. A multitrait model only containing an overall mean, an additive genetic and a residual term was applied on these preadjusted data. The second model was similar to the first model, but the multitrait model also contained a year effect. The third model was a full multitrait model. Genetic trends for total merit and for the individual traits in the breeding goal were compared for the three scenarios to rank the models. The full multitrait model gave the highest genetic response, but was not significantly better than the approximate multitrait model including a year effect. The inclusion of a year effect into the second step of the approximate multitrait model significantly improved the genetic trend for total merit. In this study, estimation of genetic parameters for breeding value estimation using models corresponding to the ones used for prediction of breeding values increased the accuracy on the breeding values and thereby the genetic progress.

  1. A comprehensive review of the use of computational intelligence methods in mineral exploration

    Directory of Open Access Journals (Sweden)

    Habibollah Bazdar

    2017-11-01

    new method that has been applied in mining exploration in recent years, for example for separating alterations in initial stages of mining exploration (Abbaszadeh et al., 2013. Neuro-fuzzy methods and its application in mineral exploration The base of fuzzy logic is to make flexible borders between different samples. By applying this method with other methods, we can improve their performance. The adaptive neuro-fuzzy inference system (ANFIS is one of the useful approaches in this branch of intelligent methods in mining exploration. For example, we can note the use of this approach in mineral mapping (Porwal et al., 2004. Hybrid computational intelligence methods and its application in mineral exploration In order to improve the performance of intelligence methods, often a hybrid form of these methods and optimization algorithms is a fit option. For example, Genetic Algorithm (GA, Ant Colony Optimization and Particle Swarm Optimization (PSO have been applied with ANN and SVM in research studies. For example, (Chatterjee et al., 2008 applied a genetic algorithm-based ANN for ore grade estimation. Conclusions Earth sciences in general and more specifically mineral explorations have always been a part of science that encompasses all the factors involved due to their complexity and the factors that influence them thereby making the solution very difficult or almost impossible to solve. Because of the difficulty of accurate measurement parameters and boundaries, in recent years, researchers have been trying to use modeling in order to simplify natural disasters for better evaluation. One of the models that has received a lot of attention in recent years is modeling with of computational intelligent methods. The appropriate results show the usefulness of these methods. References Abbaszadeh, M., Hezarkhani, A. and Soltani-Mohammadi, S., 2013. An SVM-based machine learning method for the separation of alteration zones in Sungun porphyry copper deposit. Chemie der Erde

  2. Population genetics of Setaria viridis, a new model system.

    Science.gov (United States)

    Huang, Pu; Feldman, Maximilian; Schroder, Stephan; Bahri, Bochra A; Diao, Xianmin; Zhi, Hui; Estep, Matt; Baxter, Ivan; Devos, Katrien M; Kellogg, Elizabeth A

    2014-10-01

    An extensive survey of the standing genetic variation in natural populations is among the priority steps in developing a species into a model system. In recent years, green foxtail (Setaria viridis), along with its domesticated form foxtail millet (S. italica), has rapidly become a promising new model system for C4 grasses and bioenergy crops, due to its rapid life cycle, large amount of seed production and small diploid genome, among other characters. However, remarkably little is known about the genetic diversity in natural populations of this species. In this study, we survey the genetic diversity of a worldwide sample of more than 200 S. viridis accessions, using the genotyping-by-sequencing technique. Two distinct genetic groups in S. viridis and a third group resembling S. italica were identified, with considerable admixture among the three groups. We find the genetic variation of North American S. viridis correlates with both geography and climate and is representative of the total genetic diversity in this species. This pattern may reflect several introduction/dispersal events of S. viridis into North America. We also modelled demographic history and show signal of recent population decline in one subgroup. Finally, we show linkage disequilibrium decay is rapid (<45 kb) in our total sample and slow in genetic subgroups. These results together provide an in-depth understanding of the pattern of genetic diversity of this new model species on a broad geographic scale. They also provide key guidelines for on-going and future work including germplasm preservation, local adaptation, crossing designs and genomewide association studies. © 2014 John Wiley & Sons Ltd.

  3. Minerals in deserts

    International Nuclear Information System (INIS)

    Smith, G.I.

    1982-01-01

    Almost any kind of mineral deposit can occur in desert areas, and the lack of vegetation and soil cover makes finding them easier. Some kinds of deposits, though, are more likely to occur in deserts than elsewhere. Some of these result from processes genetically related to the present desert climate that improved lower grade deposits of ore. One such process, termed secondary enrichment, is most effective in areas with deep water tables, and many low-grade copper, silver, and uranium deposits have been converted into mineable ore by the downward migration and redeposition of soluble metals. In a desert terrane, placer processes are effective whenever running water flowing over steep slopes erodes outcropping ore bodies and transports and concentrates the heavier ore minerals at lower levels, thus converting low-grade or hard-to-mine bedrock deposits into economically workable concentrations. Other kinds of deposits are better preserved in deserts because the lower rainfall at the surface, and the lower volume of flow and the greater depths to groundwater, result in less destruction of soluble ores; deposits of salines and phosphates are the most notable ores affected by these factors. Still other ore deposits are created as a consequence of the arid climate, mostly because the high evaporation rates operating on standing bodies of water produce brines that can lead directly to concentrations of salts and indirectly to secondary minerals, such as zeolites, that are produced by reaction of silicate minerals with saline waters

  4. Mineral potential modelling of gold and silver mineralization in the Nevada Great Basin - a GIS-based analysis using weights of evidence

    Science.gov (United States)

    Mihalasky, Mark J.

    2001-01-01

    The distribution of 2,690 gold-silver-bearing occurrences in the Nevada Great Basin was examined in terms of spatial association with various geological phenomena. Analysis of these relationships, using GIS and weights of evidence modelling techniques, has predicted areas of high mineral potential where little or no mining activity exists. Mineral potential maps for sedimentary (?disseminated?) and volcanic (?epithermal?) rock-hosted gold-silver mineralization revealed two distinct patterns that highlight two sets of crustal-scale geologic features that likely control the regional distribution of these deposit types. The weights of evidence method is a probability-based technique for mapping mineral potential using the spatial distribution of known mineral occurrences. Mineral potential maps predicting the distribution of gold-silver-bearing occurrences were generated from structural, geochemical, geomagnetic, gravimetric, lithologic, and lithotectonic-related deposit-indicator factors. The maps successfully predicted nearly 70% of the total number of known occurrences, including ~83% of sedimentary and ~60% of volcanic rock-hosted types. Sedimentary and volcanic rockhosted mineral potential maps showed high spatial correlation (an area cross-tabulation agreement of 85% and 73%, respectively) with expert-delineated mineral permissive tracts. In blind tests, the sedimentary and volcanic rock-hosted mineral potential maps predicted 10 out of 12 and 5 out of 5 occurrences, respectively. The key mineral predictor factors, in order of importance, were determined to be: geology (including lithology, structure, and lithotectonic terrane), geochemistry (indication of alteration), and geophysics. Areas of elevated sedimentary rock-hosted mineral potential are generally confined to central, north-central, and north-eastern Nevada. These areas form a conspicuous ?V?-shape pattern that is coincident with the Battle Mountain-Eureka (Cortez) and Carlin mineral trends and a

  5. Mineral accumulation in vegetative and reproductive tissues during seed development in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Christina B. Garcia

    2015-08-01

    Full Text Available Enhancing nutrient density in legume seeds is one of several strategies being explored to improve the nutritional quality of the food supply. In order to develop crop varieties with increased seed mineral concentration, a more detailed understanding of mineral translocation within the plant is required. By studying mineral accumulation in different organs within genetically diverse members of the same species, it may be possible to identify variable traits that modulate seed mineral concentration. We utilized two ecotypes (A17 and DZA315.16 of the model legume, Medicago truncatula, to study dry mass and mineral accumulation in the leaves, pod walls, and seeds during reproductive development. The pod wall dry mass was significantly different between the two ecotypes beginning at 12 days after pollination, whereas there was no significant difference in the average dry mass of individual seeds between the two ecotypes at any time point. There were also no significant differences in leaf dry mass between ecotypes; however, we observed expansion of A17 leaves during the first 21 days of pod development, while DZA315.16 leaves did not display a significant increase in leaf area. Mineral profiling of the leaves, pod walls, and seeds highlighted differences in accumulation patterns among minerals within each tissue as well as genotypic differences with respect to individual minerals. Because there were differences in the average seed number per pod, the total seed mineral content per pod was generally higher in A17 than DZA315.16. In addition, mineral partitioning to the seeds tended to be higher in A17 pods. These data revealed that mineral retention within leaves and/or pod walls might attenuate mineral accumulation within the seeds. As a result, strategies to increase seed mineral content should include approaches that will enhance export from these tissues.

  6. Shaping asteroid models using genetic evolution (SAGE)

    Science.gov (United States)

    Bartczak, P.; Dudziński, G.

    2018-02-01

    In this work, we present SAGE (shaping asteroid models using genetic evolution), an asteroid modelling algorithm based solely on photometric lightcurve data. It produces non-convex shapes, orientations of the rotation axes and rotational periods of asteroids. The main concept behind a genetic evolution algorithm is to produce random populations of shapes and spin-axis orientations by mutating a seed shape and iterating the process until it converges to a stable global minimum. We tested SAGE on five artificial shapes. We also modelled asteroids 433 Eros and 9 Metis, since ground truth observations for them exist, allowing us to validate the models. We compared the derived shape of Eros with the NEAR Shoemaker model and that of Metis with adaptive optics and stellar occultation observations since other models from various inversion methods were available for Metis.

  7. Numeral eddy current sensor modelling based on genetic neural network

    International Nuclear Information System (INIS)

    Yu Along

    2008-01-01

    This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method

  8. International mineral economics

    International Nuclear Information System (INIS)

    Gocht, W.R.; Eggert, R.G.

    1988-01-01

    International Mineral Economics provides an integrated overview of the important concepts. The treatment is interdisciplinary, drawing on the fields of economics, geology, business, and mining engineering. Part I examines the technical concepts important for understanding the geology of ore deposits, the methods of exploration and deposit evaluation, and the activities of mining and mineral processing. Part II focuses on the economic and related concepts important for understanding mineral development, the evaluation of exploration and mining projects, and mineral markets and market models. Finally, Part III reviews and traces the historical development of the policies of international organizations, the industrialized countries, and the developing countries. (orig.)

  9. Genetic demographic networks: Mathematical model and applications.

    Science.gov (United States)

    Kimmel, Marek; Wojdyła, Tomasz

    2016-10-01

    Recent improvement in the quality of genetic data obtained from extinct human populations and their ancestors encourages searching for answers to basic questions regarding human population history. The most common and successful are model-based approaches, in which genetic data are compared to the data obtained from the assumed demography model. Using such approach, it is possible to either validate or adjust assumed demography. Model fit to data can be obtained based on reverse-time coalescent simulations or forward-time simulations. In this paper we introduce a computational method based on mathematical equation that allows obtaining joint distributions of pairs of individuals under a specified demography model, each of them characterized by a genetic variant at a chosen locus. The two individuals are randomly sampled from either the same or two different populations. The model assumes three types of demographic events (split, merge and migration). Populations evolve according to the time-continuous Moran model with drift and Markov-process mutation. This latter process is described by the Lyapunov-type equation introduced by O'Brien and generalized in our previous works. Application of this equation constitutes an original contribution. In the result section of the paper we present sample applications of our model to both simulated and literature-based demographies. Among other we include a study of the Slavs-Balts-Finns genetic relationship, in which we model split and migrations between the Balts and Slavs. We also include another example that involves the migration rates between farmers and hunters-gatherers, based on modern and ancient DNA samples. This latter process was previously studied using coalescent simulations. Our results are in general agreement with the previous method, which provides validation of our approach. Although our model is not an alternative to simulation methods in the practical sense, it provides an algorithm to compute pairwise

  10. Analysis of genomic instability in bronchial cells from uranium miners

    International Nuclear Information System (INIS)

    Neft, R.E.; Belinsky, S.A.; Gilliland, F.D.; Lechner, J.F.

    1994-01-01

    Epidemiological studies show that underground uranium miners have a radon progeny exposure-dependent increased risk for developing lung cancer. The odds ratio for lung cancer in uranium miners increase for all cumulative exposures above 99 Working Level Months. In addition, there is a strong multiplicative effect of cigarette smoking on the development of lung cancer in uranium miners. The purpose of this investigation was to determine whether or not early genetic changes, as indicated by genomic instability, can be detected in bronchial cells from uranium miners. Investigations of this nature may serve as a means of discovering sub-clinical disease and could lead to earlier detection of lung cancer and a better prognosis for the patient

  11. Mineral vein dynamics modelling (FRACS II)

    International Nuclear Information System (INIS)

    Urai, J.; Virgo, S.; Arndt, M.

    2016-08-01

    The Mineral Vein Dynamics Modeling group ''FRACS'' started out as a team of 7 research groups in its first phase and continued with a team of 5 research groups at the Universities of Aachen, Tuebingen, Karlsruhe, Mainz and Glasgow during its second phase ''FRACS 11''. The aim of the group was to develop an advanced understanding of the interplay between fracturing, fluid flow and fracture healing with a special emphasis on the comparison of field data and numerical models. Field areas comprised the Oman mountains in Oman (which where already studied in detail in the first phase), a siliciclastic sequence in the Internal Ligurian Units in Italy (closed to Sestri Levante) and cores of Zechstein carbonates from a Lean Gas reservoir in Northern Germany. Numerical models of fracturing, sealing and interaction with fluid that were developed in phase I where expanded in phase 11. They were used to model small scale fracture healing by crystal growth and the resulting influence on flow, medium scale fracture healing and its influence on successive fracturing and healing, as well as large scale dynamic fluid flow through opening and closing fractures and channels as a function of fluid overpressure. The numerical models were compared with structures in the field and we were able to identify first proxies for mechanical vein-hostrock properties and fluid overpressures versus tectonic stresses. Finally we propose a new classification of stylolites based on numerical models and observations in the Zechstein cores and continued to develop a new stress inversion tool to use stylolites to estimate depth of their formation.

  12. Hierarchical linear modeling of longitudinal pedigree data for genetic association analysis

    DEFF Research Database (Denmark)

    Tan, Qihua; B Hjelmborg, Jacob V; Thomassen, Mads

    2014-01-01

    -effect models to explicitly model the genetic relationship. These have proved to be an efficient way of dealing with sample clustering in pedigree data. Although current algorithms implemented in popular statistical packages are useful for adjusting relatedness in the mixed modeling of genetic effects...... associated with blood pressure with estimated inflation factors of 0.99, suggesting that our modeling of random effects efficiently handles the genetic relatedness in pedigrees. Application to simulated data captures important variants specified in the simulation. Our results show that the method is useful......Genetic association analysis on complex phenotypes under a longitudinal design involving pedigrees encounters the problem of correlation within pedigrees, which could affect statistical assessment of the genetic effects. Approaches have been proposed to integrate kinship correlation into the mixed...

  13. Genetic screens in Caenorhabditis elegans models for neurodegenerative diseases

    NARCIS (Netherlands)

    Alvarenga Fernandes Sin, Olga; Michels, Helen; Nollen, Ellen A. A.

    2014-01-01

    Caenorhabditis elegans comprises unique features that make it an attractive model organism in diverse fields of biology. Genetic screens are powerful to identify genes and C. elegans can be customized to forward or reverse genetic screens and to establish gene function. These genetic screens can be

  14. Heuristics Miner for E-Commerce Visitor Access Pattern Representation

    OpenAIRE

    Kartina Diah Kesuma Wardhani; Wawan Yunanto

    2017-01-01

    E-commerce click stream data can form a certain pattern that describe visitor behavior while surfing the e-commerce website. This pattern can be used to initiate a design to determine alternative access sequence on the website. This research use heuristic miner algorithm to determine the pattern. σ-Algorithm and Genetic Mining are methods used for pattern recognition with frequent sequence item set approach. Heuristic Miner is an evolved form of those methods. σ-Algorithm assume that an activ...

  15. Bone mineralization in childhood and adolescence.

    Science.gov (United States)

    Bachrach, L K

    1993-08-01

    Prevention of osteoporosis depends on establishing adequate peak bone mass in the first two decades of life. Achievement of this goal requires an understanding of factors that promote skeletal health. Genetic factors are important determinants of adult bone mass, but nonheritable variables, including body mass, calcium nutriture, sex steroids, and activity can strongly influence whether maximal bone mineral is achieved. Acquisition of bone mineral continues throughout childhood and adolescence, reaching a lifetime maximum in early adulthood. Adolescence is a particularly critical time for bone mineral accretion as more than half of the bone calcium is normally laid down during the teen years. Chronic illness, malnutrition, or endocrine deficiencies at this age may result in profound deficits in bone mass, which may not be fully reversible. These risk factors contribute to the osteopenia associated with anorexia nervosa, exercise-induced amenorrhea, delayed puberty, Turner's syndrome, and growth hormone deficiency.

  16. Uranium mineralization associated with late Palaeozoic acid magmatism in northeast Queensland

    International Nuclear Information System (INIS)

    Bain, J.H.C.

    1977-01-01

    The late Palaeozoic acid igneous petrographic province, covering some 120,000 km 2 in the Cairns-Townsville hinterland, has associated uranium mineralization characterized by various combinations of uranium, fluorine, and molybdenum. Mineralization of this type has been described from other parts of the world, but is best known in the USSR. Information about the Australian deposits and occurrences is very limited, but it is apparent that the mineralization is mainly of hydrothermal origin and genetically related to extensive late Palaeozoic magmatism. A detailed description of the mineralization and the prospect of additional discoveries of uranium deposits of similar and related types in other parts of Australia are discussed. (J.R.)

  17. Modelling of the physico-chemical behaviour of clay minerals with a thermo-kinetic model taking into account particles morphology in compacted material.

    Science.gov (United States)

    Sali, D.; Fritz, B.; Clément, C.; Michau, N.

    2003-04-01

    Modelling of fluid-mineral interactions is largely used in Earth Sciences studies to better understand the involved physicochemical processes and their long-term effect on the materials behaviour. Numerical models simplify the processes but try to preserve their main characteristics. Therefore the modelling results strongly depend on the data quality describing initial physicochemical conditions for rock materials, fluids and gases, and on the realistic way of processes representations. The current geo-chemical models do not well take into account rock porosity and permeability and the particle morphology of clay minerals. In compacted materials like those considered as barriers in waste repositories, low permeability rocks like mudstones or compacted powders will be used : they contain mainly fine particles and the geochemical models used for predicting their interactions with fluids tend to misjudge their surface areas, which are fundamental parameters in kinetic modelling. The purpose of this study was to improve how to take into account the particles morphology in the thermo-kinetic code KINDIS and the reactive transport code KIRMAT. A new function was integrated in these codes, considering the reaction surface area as a volume depending parameter and the calculated evolution of the mass balance in the system was coupled with the evolution of reactive surface areas. We made application exercises for numerical validation of these new versions of the codes and the results were compared with those of the pre-existing thermo-kinetic code KINDIS. Several points are highlighted. Taking into account reactive surface area evolution during simulation modifies the predicted mass transfers related to fluid-minerals interactions. Different secondary mineral phases are also observed during modelling. The evolution of the reactive surface parameter helps to solve the competition effects between different phases present in the system which are all able to fix the chemical

  18. Modeling of Cation Binding in Hydrated 2:1 Clay Minerals - Final Report

    International Nuclear Information System (INIS)

    Smith, David E.

    2000-01-01

    Hydrated 2:1 clay minerals are high surface area, layered silicates that play a unique role in determining the fate of radionuclides in the environment. This project consisted of developing and implementing computer simulation methods for molecular characterization of the swelling and ion exchange properties of Hydrated 2:1 clay minerals, and the subsequent analysis and theoretical modeling with a view toward improving contaminant transport modeling as well as soil remediation and radionuclide containment strategies. Project results included the (a) development of simulation methods to treat clays under environmentally relevant conditions of variable water vapor pressure; (b) calculation of clay swelling thermodynamics as a function of interlayer ion size and charge (calculated quantities include immersion energies, free energies, and entropies of swelling); and (c) calculation of ion exchange free energies, including contributions from changing interlayer water contents and layer spacing

  19. Animal models for human genetic diseases | Sharif | African Journal ...

    African Journals Online (AJOL)

    The study of human genetic diseases can be greatly aided by animal models because of their similarity to humans in terms of genetics. In addition to understand diverse aspects of basic biology, model organisms are extensively used in applied research in agriculture, industry, and also in medicine, where they are used to ...

  20. Chromate adsorption on selected soil minerals: Surface complexation modeling coupled with spectroscopic investigation

    Energy Technology Data Exchange (ETDEWEB)

    Veselská, Veronika, E-mail: veselskav@fzp.czu.cz [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic); Fajgar, Radek [Department of Analytical and Material Chemistry, Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135/1, CZ-16502, Prague (Czech Republic); Číhalová, Sylva [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic); Bolanz, Ralph M. [Institute of Geosciences, Friedrich-Schiller-University Jena, Carl-Zeiss-Promenade 10, DE-07745, Jena (Germany); Göttlicher, Jörg; Steininger, Ralph [ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, DE-76344, Eggenstein-Leopoldshafen (Germany); Siddique, Jamal A.; Komárek, Michael [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic)

    2016-11-15

    Highlights: • Study of Cr(VI) adsorption on soil minerals over a large range of conditions. • Combined surface complexation modeling and spectroscopic techniques. • Diffuse-layer and triple-layer models used to obtain fits to experimental data. • Speciation of Cr(VI) and Cr(III) was assessed. - Abstract: This study investigates the mechanisms of Cr(VI) adsorption on natural clay (illite and kaolinite) and synthetic (birnessite and ferrihydrite) minerals, including its speciation changes, and combining quantitative thermodynamically based mechanistic surface complexation models (SCMs) with spectroscopic measurements. Series of adsorption experiments have been performed at different pH values (3–10), ionic strengths (0.001–0.1 M KNO{sub 3}), sorbate concentrations (10{sup −4}, 10{sup −5}, and 10{sup −6} M Cr(VI)), and sorbate/sorbent ratios (50–500). Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy were used to determine the surface complexes, including surface reactions. Adsorption of Cr(VI) is strongly ionic strength dependent. For ferrihydrite at pH <7, a simple diffuse-layer model provides a reasonable prediction of adsorption. For birnessite, bidentate inner-sphere complexes of chromate and dichromate resulted in a better diffuse-layer model fit. For kaolinite, outer-sphere complexation prevails mainly at lower Cr(VI) loadings. Dissolution of solid phases needs to be considered for better SCMs fits. The coupled SCM and spectroscopic approach is thus useful for investigating individual minerals responsible for Cr(VI) retention in soils, and improving the handling and remediation processes.

  1. Use of mineral physics, with geodynamic modelling and seismology, to investigate flow in the Earth's mantle

    International Nuclear Information System (INIS)

    Blackman, D K

    2007-01-01

    Seismologists and mineral physicists have known for decades that anisotropy inherent in mantle minerals could provide a means to relate surface seismic measurements to deformation patterns at great depth in the Earth, where direct geologic observations would never be possible. Prior to the past decade, only qualitative relationships or simple symmetry assumptions between mantle flow (deformation), mineral alignment and seismic anisotropy were possible. Recent numerical methods now allow quantitative incorporation of constraints from mineral physics to flow/deformation models and, thereby, direct estimates of the resulting pattern of seismic anisotropy can be made and compared with observed signatures. Numerical methods for simulating microstructural deformation within an aggregate of minerals subjected to an arbitrary stress field make it possible to quantitatively link crystal-scale processes with large-scale Earth processes of mantle flow and seismic wave propagation, on regional (100s of kilometres) and even global scales. Such linked numerical investigations provide a rich field for exploring inter-dependences of micro and macro processes, as well as a means to determine the extents to which viable seismic experiments could discern between different models of Earth structure and dynamics. The aim of this review is to provide an overview of why and how linked numerical models are useful for exploring processes in the mantle and how they relate to surface tectonics. A brief introduction to the basic concepts of deformation of mantle minerals and the limits of knowledge currently available are designed to serve both the subsequent discussions in this review and as an entry point to more detailed literature for readers interested in pursuing the topic further. The reference list includes both primary sources and pertinent review articles on individual aspects of the combined subjects covered in the review. A series of flow/texturing models illustrate the

  2. Urban net-zero water treatment and mineralization: experiments, modeling and design.

    Science.gov (United States)

    Englehardt, James D; Wu, Tingting; Tchobanoglous, George

    2013-09-01

    Water and wastewater treatment and conveyance account for approximately 4% of US electric consumption, with 80% used for conveyance. Net zero water (NZW) buildings would alleviate demands for a portion of this energy, for water, and for the treatment of drinking water for pesticides and toxic chemical releases in source water. However, domestic wastewater contains nitrogen loads much greater than urban/suburban ecosystems can typically absorb. The purpose of this work was to identify a first design of a denitrifying urban NZW treatment process, operating at ambient temperature and pressure and circum-neutral pH, and providing mineralization of pharmaceuticals (not easily regulated in terms of environmental half-life), based on laboratory tests and mass balance and kinetic modeling. The proposed treatment process is comprised of membrane bioreactor, iron-mediated aeration (IMA, reported previously), vacuum ultrafiltration, and peroxone advanced oxidation, with minor rainwater make-up and H2O2 disinfection residual. Similar to biological systems, minerals accumulate subject to precipitative removal by IMA, salt-free treatment, and minor dilution. Based on laboratory and modeling results, the system can produce potable water with moderate mineral content from commingled domestic wastewater and 10-20% rainwater make-up, under ambient conditions at individual buildings, while denitrifying and reducing chemical oxygen demand to below detection (<3 mg/L). While economics appear competitive, further development and study of steady-state concentrations and sludge management options are needed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Mineral vein dynamics modelling (FRACS II)

    Energy Technology Data Exchange (ETDEWEB)

    Urai, J.; Virgo, S.; Arndt, M. [RWTH Aachen (Germany); and others

    2016-08-15

    The Mineral Vein Dynamics Modeling group ''FRACS'' started out as a team of 7 research groups in its first phase and continued with a team of 5 research groups at the Universities of Aachen, Tuebingen, Karlsruhe, Mainz and Glasgow during its second phase ''FRACS 11''. The aim of the group was to develop an advanced understanding of the interplay between fracturing, fluid flow and fracture healing with a special emphasis on the comparison of field data and numerical models. Field areas comprised the Oman mountains in Oman (which where already studied in detail in the first phase), a siliciclastic sequence in the Internal Ligurian Units in Italy (closed to Sestri Levante) and cores of Zechstein carbonates from a Lean Gas reservoir in Northern Germany. Numerical models of fracturing, sealing and interaction with fluid that were developed in phase I where expanded in phase 11. They were used to model small scale fracture healing by crystal growth and the resulting influence on flow, medium scale fracture healing and its influence on successive fracturing and healing, as well as large scale dynamic fluid flow through opening and closing fractures and channels as a function of fluid overpressure. The numerical models were compared with structures in the field and we were able to identify first proxies for mechanical vein-hostrock properties and fluid overpressures versus tectonic stresses. Finally we propose a new classification of stylolites based on numerical models and observations in the Zechstein cores and continued to develop a new stress inversion tool to use stylolites to estimate depth of their formation.

  4. Modelling the co-evolution of indirect genetic effects and inherited variability.

    Science.gov (United States)

    Marjanovic, Jovana; Mulder, Han A; Rönnegård, Lars; Bijma, Piter

    2018-03-28

    When individuals interact, their phenotypes may be affected not only by their own genes but also by genes in their social partners. This phenomenon is known as Indirect Genetic Effects (IGEs). In aquaculture species and some plants, however, competition not only affects trait levels of individuals, but also inflates variability of trait values among individuals. In the field of quantitative genetics, the variability of trait values has been studied as a quantitative trait in itself, and is often referred to as inherited variability. Such studies, however, consider only the genetic effect of the focal individual on trait variability and do not make a connection to competition. Although the observed phenotypic relationship between competition and variability suggests an underlying genetic relationship, the current quantitative genetic models of IGE and inherited variability do not allow for such a relationship. The lack of quantitative genetic models that connect IGEs to inherited variability limits our understanding of the potential of variability to respond to selection, both in nature and agriculture. Models of trait levels, for example, show that IGEs may considerably change heritable variation in trait values. Currently, we lack the tools to investigate whether this result extends to variability of trait values. Here we present a model that integrates IGEs and inherited variability. In this model, the target phenotype, say growth rate, is a function of the genetic and environmental effects of the focal individual and of the difference in trait value between the social partner and the focal individual, multiplied by a regression coefficient. The regression coefficient is a genetic trait, which is a measure of cooperation; a negative value indicates competition, a positive value cooperation, and an increasing value due to selection indicates the evolution of cooperation. In contrast to the existing quantitative genetic models, our model allows for co-evolution of

  5. Determination of the relationship between major fault and zinc mineralization using fractal modeling in the Behabad fault zone, central Iran

    Science.gov (United States)

    Adib, Ahmad; Afzal, Peyman; Mirzaei Ilani, Shapour; Aliyari, Farhang

    2017-10-01

    The aim of this study is to determine a relationship between zinc mineralization and a major fault in the Behabad area, central Iran, using the Concentration-Distance to Major Fault (C-DMF), Area of Mineralized Zone-Distance to Major Fault (AMZ-DMF), and Concentration-Area (C-A) fractal models for Zn deposit/mine classification according to their distance from the Behabad fault. Application of the C-DMF and the AMZ-DMF models for Zn mineralization classification in the Behabad fault zone reveals that the main Zn deposits have a good correlation with the major fault in the area. The distance from the known zinc deposits/mines with Zn values higher than 29% and the area of the mineralized zone of more than 900 m2 to the major fault is lower than 1 km, which shows a positive correlation between Zn mineralization and the structural zone. As a result, the AMZ-DMF and C-DMF fractal models can be utilized for the delineation and the recognition of different mineralized zones in different types of magmatic and hydrothermal deposits.

  6. Metallogenic geologic conditions and prospecting direction of sandstone type uranium mineralizations in Yili basin of Xinjiang

    International Nuclear Information System (INIS)

    Chen Daisheng; Wang Ruiying; Li Shengxiang; Zhang Kefang

    1994-09-01

    Yili basin is a Mesozoic down-warped basin superimposed on the late Paleozoic volcanic taphrogenic basin. Uranium mineralizations are hosted in the Middle-Lower Jurassic coal-bearing series. The depositions environment in the basin is turbulent in the east and relatively stable in the west. It is characterized by coarse-grained sequence with thin thickness in the eastern part and fine-grained with thick thickness in the western part. On the analytical basis of sedimentary facies indices, it is the first time to present a sedimentary model of 'alluvial fan-braided stream-(narrow) lakeshore delta-lacustrine facies and marsh facies' for the coal-bearing series. The authors have summarized the basic geologic features of U-mineralizations in the interlayer oxidation zone, analyzed the difference and cause of U-mineralizations between the south and north, as well as the east and west. The genetic mechanism of U-mineralizations in the basin is discussed. Finally, seven items of geologic prerequisites for the formation of in-situ leachable sandstone type uranium deposits have been suggested and the potential of sandstone type U-mineralizations in the basin has been evaluated. Four promising target areas are selected

  7. Impact of organic-mineral matter interactions on thermal reaction pathways for coal model compounds

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, A.C. III; Britt, P.F.; Struss, J.A. [Oak Ridge National Lab., TN (United States). Chemical and Analytical Sciences Div.

    1995-07-01

    Coal is a complex, heterogeneous solid that includes interdispersed mineral matter. However, knowledge of organic-mineral matter interactions is embryonic, and the impact of these interactions on coal pyrolysis and liquefaction is incomplete. Clay minerals, for example, are known to be effective catalysts for organic reactions. Furthermore, clays such as montmorillonite have been proposed to be key catalysts in the thermal alteration of lignin into vitrinite during the coalification process. Recent studies by Hatcher and coworkers on the evolution of coalified woods using microscopy and NMR have led them to propose selective, acid-catalyzed, solid state reaction chemistry to account for retained structural integrity in the wood. However, the chemical feasibility of such reactions in relevant solids is difficult to demonstrate. The authors have begun a model compound study to gain a better molecular level understanding of the effects in the solid state of organic-mineral matter interactions relevant to both coal formation and processing. To satisfy the need for model compounds that remain nonvolatile solids at temperatures ranging to 450 C, model compounds are employed that are chemically bound to the surface of a fumed silica (Si-O-C{sub aryl}linkage). The organic structures currently under investigation are phenethyl phenyl ether (C{sub 6}H{sub 5}CH{sub 2}CH{sub 2}OC{sub 6}H{sub 5}) derivatives, which serve as models for {beta}-alkyl aryl ether units that are present in lignin and lignitic coals. The solid-state chemistry of these materials at 200--450 C in the presence of interdispersed acid catalysts such as small particle size silica-aluminas and montmorillonite clay will be reported. Initial focus will be on defining the potential impact of these interactions on coal pyrolysis and liquefaction.

  8. ENU mutagenesis to generate genetically modified rat models.

    Science.gov (United States)

    van Boxtel, Ruben; Gould, Michael N; Cuppen, Edwin; Smits, Bart M G

    2010-01-01

    The rat is one of the most preferred model organisms in biomedical research and has been extremely useful for linking physiology and pathology to the genome. However, approaches to genetically modify specific genes in the rat germ line remain relatively scarce. To date, the most efficient approach for generating genetically modified rats has been the target-selected N-ethyl-N-nitrosourea (ENU) mutagenesis-based technology. Here, we describe the detailed protocols for ENU mutagenesis and mutant retrieval in the rat model organism.

  9. Natural variation and QTL analysis for cationic mineral content in seeds of Arabidopsis thaliana.

    NARCIS (Netherlands)

    Vreugdenhil, D.; Aarts, M.G.M.; Koornneef, M.; Nelissen, H.J.M.; Ernst, W.H.O.

    2004-01-01

    Naturally occurring genetic variation for contents of cationic minerals in seeds of Arabidopsis thaliana was studied by screening a series of accessions (ecotypes) for Ca, Fe, K, Mg, Mn, Na, Zn, and for total contents of P. Variation was observed for all minerals and correlations between contents of

  10. An overview of hydrodynamic studies of mineralization

    Directory of Open Access Journals (Sweden)

    Guoxiang Chi

    2011-07-01

    Full Text Available Fluid flow is an integral part of hydrothermal mineralization, and its analysis and characterization constitute an important part of a mineralization model. The hydrodynamic study of mineralization deals with analyzing the driving forces, fluid pressure regimes, fluid flow rate and direction, and their relationships with localization of mineralization. This paper reviews the principles and methods of hydrodynamic studies of mineralization, and discusses their significance and limitations for ore deposit studies and mineral exploration. The driving forces of fluid flow may be related to fluid overpressure, topographic relief, tectonic deformation, and fluid density change due to heating or salinity variation, depending on specific geologic environments and mineralization processes. The study methods may be classified into three types, megascopic (field observations, microscopic analyses, and numerical modeling. Megascopic features indicative of significantly overpressured (especially lithostatic or supralithostatic fluid systems include horizontal veins, sand injection dikes, and hydraulic breccias. Microscopic studies, especially microthermometry of fluid inclusions and combined stress analysis and microthermometry of fluid inclusion planes (FIPs can provide important information about fluid temperature, pressure, and fluid-structural relationships, thus constraining fluid flow models. Numerical modeling can be carried out to solve partial differential equations governing fluid flow, heat transfer, rock deformation and chemical reactions, in order to simulate the distribution of fluid pressure, temperature, fluid flow rate and direction, and mineral precipitation or dissolution in 2D or 3D space and through time. The results of hydrodynamic studies of mineralization can enhance our understanding of the formation processes of hydrothermal deposits, and can be used directly or indirectly in mineral exploration.

  11. Chromate Adsorption on Selected Soil Minerals: Surface Complexation Modeling Coupled with Spectroscopic Investigation.

    Czech Academy of Sciences Publication Activity Database

    Veselská, V.; Fajgar, Radek; Číhalová, S.; Bolanz, R.M.; Göttlicher, J.; Steininger, R.; Siddique, J.A.; Komárek, M.

    2016-01-01

    Roč. 318, NOV 15 (2016), s. 433-442 ISSN 0304-3894 Institutional support: RVO:67985858 Keywords : surface complexation modeling * chromate * soil minerals Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.065, year: 2016

  12. Teaching Genetic Counseling Skills: Incorporating a Genetic Counseling Adaptation Continuum Model to Address Psychosocial Complexity.

    Science.gov (United States)

    Shugar, Andrea

    2017-04-01

    Genetic counselors are trained health care professionals who effectively integrate both psychosocial counseling and information-giving into their practice. Preparing genetic counseling students for clinical practice is a challenging task, particularly when helping them develop effective and active counseling skills. Resistance to incorporating these skills may stem from decreased confidence, fear of causing harm or a lack of clarity of psycho-social goals. The author reflects on the personal challenges experienced in teaching genetic counselling students to work with psychological and social complexity, and proposes a Genetic Counseling Adaptation Continuum model and methodology to guide students in the use of advanced counseling skills.

  13. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. YUNJIAO ZHOU. Articles written in Journal of Genetics. Volume 96 Issue 6 December 2017 pp 993-1003 Research article. Association of lactase 13910 C/T polymorphism with bone mineral density and fracture risk: a meta-analysis · YOUGEN WU YINGHUA LI YUNQING CUI YUNJIAO ...

  14. Uranium mineralization in tertiary volcanic rocks of the Los Frailes formation (Bolivia)

    International Nuclear Information System (INIS)

    Aparicio, A.

    1981-01-01

    The Los Frailes Formation, a 9000 km 2 area of Miocene-Pliocene age, contains uranium mineralization in acid tuffs, ignimbrites and lavas. Uranium also occurs in sedimentary rocks of various types and ages which outcrop in adjacent areas. So far the most extensive mineralization seems to be confined in volcanic pyroclastic rocks. Although the surface mineralization varies in grade from 0.01% to more than 2.5%, the average grade in the only deposit being mined (Cotaje) is 0.05% of U 3 O 8 . On the basis of the available data it is believed that certain leaching processes, during the last erosion cycle (Pliocene-Pleistocene) and under very humid conditions, brought about the mobilization of the uranium from the volcanic rocks in aqueous alkaline and calco-alkaline solutions circulating on the surface and underground. Uranium minerals were deposited, generally by chemical reduction, in tectonic zones and/or zones of high porosity. The common metallogenetic model in the western area, defined as the 'Sevaruyo uraniferous district', is exogenic and is characterized by epigenetic uranium occurrences and deposits formed by supergene enrichment. On the basis of their mechanism of formation, control of mineralization and mineral associations, these deposits are classified according to: those with strictly tectonic control, those with sedimentary control and those of mixed genetics. Recent discoveries in the eastern area of the volcanic complex give evidence of epigenetic mineralization, apparently linked with hypogene hydrothermal processes, in addition to exogenic mineralizations contained in rocks stratigraphically subjacent to the Los Frailes Formation. There is no intention of making an evaluation of the recently discovered resources since the studies and exploration are still at too early a stage to warrant prediction of their real potential. (author)

  15. THE ALLOMETRIC-AUTOREGRESSIVE MODEL IN GENETIC ...

    African Journals Online (AJOL)

    The application of an allometric-autoregressive model for the quantification of growth and efficiency of feed utilization for purposes of selection for ... be of value in genetic studies. ... mass) gives a fair indication of the cumulative preweaning.

  16. Animal models for human genetic diseases

    African Journals Online (AJOL)

    Sharif Sons

    The study of human genetic diseases can be greatly aided by animal models because of their similarity .... and gene targeting in embryonic stem cells) has been a powerful tool in .... endonucleases that are designed to make a doublestrand.

  17. Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice.

    Science.gov (United States)

    Vanleene, Maximilien; Porter, Alexandra; Guillot, Pascale-Valerie; Boyde, Alan; Oyen, Michelle; Shefelbine, Sandra

    2012-06-01

    Bone is a complex material with a hierarchical multi-scale organization from the molecule to the organ scale. The genetic bone disease, osteogenesis imperfecta, is primarily caused by mutations in the collagen type I genes, resulting in bone fragility. Because the basis of the disease is molecular with ramifications at the whole bone level, it provides a platform for investigating the relationship between structure, composition, and mechanics throughout the hierarchy. Prior studies have individually shown that OI leads to: 1. increased bone mineralization, 2. decreased elastic modulus, and 3. smaller apatite crystal size. However, these have not been studied together and the mechanism for how mineral structure influences tissue mechanics has not been identified. This lack of understanding inhibits the development of more accurate models and therapies. To address this research gap, we used a mouse model of the disease (oim) to measure these outcomes together in order to propose an underlying mechanism for the changes in properties. Our main finding was that despite increased mineralization, oim bones have lower stiffness that may result from the poorly organized mineral matrix with significantly smaller, highly packed and disoriented apatite crystals. Using a composite framework, we interpret the lower oim bone matrix elasticity observed as the result of a change in the aspect ratio of apatite crystals and a disruption of the crystal connectivity. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Validation of a plant-wide phosphorus modelling approach with minerals precipitation in a full-scale WWTP

    DEFF Research Database (Denmark)

    Mbamba, Christian Kazadi; Flores Alsina, Xavier; Batstone, Damien John

    2016-01-01

    approach describing ion speciation and ion pairing with kinetic multiple minerals precipitation. Model performance is evaluated against data sets from a full-scale wastewater treatment plant, assessing capability to describe water and sludge lines across the treatment process under steady-state operation...... plant. Dynamic influent profiles were generated using a calibrated influent generator and were used to study the effect of long-term influent dynamics on plant performance. Model-based analysis shows that minerals precipitation strongly influences composition in the anaerobic digesters, but also impacts......The focus of modelling in wastewater treatment is shifting from single unit to plant-wide scale. Plant wide modelling approaches provide opportunities to study the dynamics and interactions of different transformations in water and sludge streams. Towards developing more general and robust...

  19. Spatial arrangement of organic compounds on a model mineral surface: implications for soil organic matter stabilization.

    Science.gov (United States)

    Petridis, Loukas; Ambaye, Haile; Jagadamma, Sindhu; Kilbey, S Michael; Lokitz, Bradley S; Lauter, Valeria; Mayes, Melanie A

    2014-01-01

    The complexity of the mineral-organic carbon interface may influence the extent of stabilization of organic carbon compounds in soils, which is important for global climate futures. The nanoscale structure of a model interface was examined here by depositing films of organic carbon compounds of contrasting chemical character, hydrophilic glucose and amphiphilic stearic acid, onto a soil mineral analogue (Al2O3). Neutron reflectometry, a technique which provides depth-sensitive insight into the organization of the thin films, indicates that glucose molecules reside in a layer between Al2O3 and stearic acid, a result that was verified by water contact angle measurements. Molecular dynamics simulations reveal the thermodynamic driving force behind glucose partitioning on the mineral interface: The entropic penalty of confining the less mobile glucose on the mineral surface is lower than for stearic acid. The fundamental information obtained here helps rationalize how complex arrangements of organic carbon on soil mineral surfaces may arise.

  20. Rn daughter exposure to U miners

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B L

    1982-04-01

    Radon exposures to U.S. uranium miners under present conditions average about 1.3 WLM per year approximately or equal to 60 WLM per full working lifetime. This is intermediate between the lowest exposures for which there have been excess lung cancers reported among U.S. miners (120-240 WLM) and average environmental radon exposures (16 WLM), so models based on these two situations are used to estimate expected effects on present uranium miners. In Model A, the loss of life expectancy is 45 days, the SMR (standardized mortality ratio) for lung cancer is 1.10, and the SMR for all causes between ages 18 and 65 is 1.013. In Model B these are 10 days, 1.03 and 1.002 respectively. It is shown that the radon exposures to miners are similar to those to millions of Americans from environmental exposure, and that miner health risks are comparable to those of other radiation workers. Their lung cancer risk from radon is 7-50 times less than their job-related accident mortality risk, and represents 0.7-4% of their total risk in mining. Miners suffer from many diseases with SMR very much larger than that for radon-induced lung cancer, and there are many other occupations and industries with far higher SMR for lung cancer than that from radon exposure to miners.

  1. Winter and spring variation in daily milk yield and mineral ...

    African Journals Online (AJOL)

    201007395

    2013-06-02

    Jun 2, 2013 ... Jersey, Friesian cows and their crosses under a pasture-based dairy system. C.T.W. Nantapo & V. Muchenje ... and mineral composition of pasture-based dairy cows. This was done by ..... Genetic and nongenetic variation in ...

  2. Alternate service delivery models in cancer genetic counseling: a mini-review

    Directory of Open Access Journals (Sweden)

    Adam Hudson Buchanan

    2016-05-01

    Full Text Available Demand for cancer genetic counseling has grown rapidly in recent years as germline genomic information has become increasingly incorporated into cancer care and the field has entered the public consciousness through high-profile celebrity publications. Increased demand and existing variability in the availability of trained cancer genetics clinicians place a priority on developing and evaluating alternate service delivery models for genetic counseling. This mini-review summarizes the state of science regarding service delivery models such as telephone counseling, telegenetics and group counseling. Research on comparative effectiveness of these models in traditional individual, in-person genetic counseling has been promising for improving access to care in a manner acceptable to patients. Yet, it has not fully evaluated the short- and long-term patient- and system-level outcomes that will help answer the question of whether these models achieve the same beneficial psychosocial and behavioral outcomes as traditional cancer genetic counseling. We propose a research agenda focused on comparative effectiveness of available service delivery models and how to match models to patients and practice settings. Only through this rigorous research can clinicians and systems find the optimal balance of clinical quality, ready and secure access to care, and financial sustainability. Such research will be integral to achieving the promise of genomic medicine in oncology.

  3. Estimation and interpretation of genetic effects with epistasis using the NOIA model.

    Science.gov (United States)

    Alvarez-Castro, José M; Carlborg, Orjan; Rönnegård, Lars

    2012-01-01

    We introduce this communication with a brief outline of the historical landmarks in genetic modeling, especially concerning epistasis. Then, we present methods for the use of genetic modeling in QTL analyses. In particular, we summarize the essential expressions of the natural and orthogonal interactions (NOIA) model of genetic effects. Our motivation for reviewing that theory here is twofold. First, this review presents a digest of the expressions for the application of the NOIA model, which are often mixed with intermediate and additional formulae in the original articles. Second, we make the required theory handy for the reader to relate the genetic concepts to the particular mathematical expressions underlying them. We illustrate those relations by providing graphical interpretations and a diagram summarizing the key features for applying genetic modeling with epistasis in comprehensive QTL analyses. Finally, we briefly review some examples of the application of NOIA to real data and the way it improves the interpretability of the results.

  4. Genetic engineering in nonhuman primates for human disease modeling.

    Science.gov (United States)

    Sato, Kenya; Sasaki, Erika

    2018-02-01

    Nonhuman primate (NHP) experimental models have contributed greatly to human health research by assessing the safety and efficacy of newly developed drugs, due to their physiological and anatomical similarities to humans. To generate NHP disease models, drug-inducible methods, and surgical treatment methods have been employed. Recent developments in genetic and developmental engineering in NHPs offer new options for producing genetically modified disease models. Moreover, in recent years, genome-editing technology has emerged to further promote this trend and the generation of disease model NHPs has entered a new era. In this review, we summarize the generation of conventional disease model NHPs and discuss new solutions to the problem of mosaicism in genome-editing technology.

  5. Modeling genetic imprinting effects of DNA sequences with multilocus polymorphism data

    Directory of Open Access Journals (Sweden)

    Staud Roland

    2009-08-01

    Full Text Available Abstract Single nucleotide polymorphisms (SNPs represent the most widespread type of DNA sequence variation in the human genome and they have recently emerged as valuable genetic markers for revealing the genetic architecture of complex traits in terms of nucleotide combination and sequence. Here, we extend an algorithmic model for the haplotype analysis of SNPs to estimate the effects of genetic imprinting expressed at the DNA sequence level. The model provides a general procedure for identifying the number and types of optimal DNA sequence variants that are expressed differently due to their parental origin. The model is used to analyze a genetic data set collected from a pain genetics project. We find that DNA haplotype GAC from three SNPs, OPRKG36T (with two alleles G and T, OPRKA843G (with alleles A and G, and OPRKC846T (with alleles C and T, at the kappa-opioid receptor, triggers a significant effect on pain sensitivity, but with expression significantly depending on the parent from which it is inherited (p = 0.008. With a tremendous advance in SNP identification and automated screening, the model founded on haplotype discovery and statistical inference may provide a useful tool for genetic analysis of any quantitative trait with complex inheritance.

  6. Sleep and Development in Genetically Tractable Model Organisms.

    Science.gov (United States)

    Kayser, Matthew S; Biron, David

    2016-05-01

    Sleep is widely recognized as essential, but without a clear singular function. Inadequate sleep impairs cognition, metabolism, immune function, and many other processes. Work in genetic model systems has greatly expanded our understanding of basic sleep neurobiology as well as introduced new concepts for why we sleep. Among these is an idea with its roots in human work nearly 50 years old: sleep in early life is crucial for normal brain maturation. Nearly all known species that sleep do so more while immature, and this increased sleep coincides with a period of exuberant synaptogenesis and massive neural circuit remodeling. Adequate sleep also appears critical for normal neurodevelopmental progression. This article describes recent findings regarding molecular and circuit mechanisms of sleep, with a focus on development and the insights garnered from models amenable to detailed genetic analyses. Copyright © 2016 by the Genetics Society of America.

  7. The stratigraphy of the Malmani dolomite subgroup in the Carletonville area, Transvaal: genetic implications for lead-zinc mineralization

    International Nuclear Information System (INIS)

    Clay, A.N.

    1986-01-01

    The geological setting of a borehole intersection of lead-zinc mineralization in the Malmani Dolomite Subgroup in the Carletonville area is discussed. It is suggested that the lead and zinc ions were derived from the overlying shales, transported as bisulphide complexes in silica-enriched, alkaline solutions, and deposited during silicification in the upper part of the dolomite succession which contains relic evaporites. Lead isotope data suggests that the known lead-zinc deposits in the Transvaal sequence are not of major importance. However, the dolomites are regarded as very probable hosts for Mississippi Valley type base metal deposits and offer important exploration targets. This study includes lead isotopic data. Lead isotope compositions and model lead ages for galenas in the zinc deposits are shown. It is concluded that the leads have undergone either a two-stage evolution process, or have mixed with 206 Pb-enriched ores. Model ages suggest that the lead was derived from an approximate 2,7 Ga source and that mineralization took place at 1,7 Ga

  8. Barite-polymetallic mineralization of Zmeinogorsk ore district and some genetic aspects of its formation

    Science.gov (United States)

    Bestemianova, K. V.; Grinev, O. M.

    2017-12-01

    Zmeinogorsky ore district is located in the northwest part of Ore Altai megatrough, which has long-lasting history of its development and complicated geological structure. Within the ore district, which is the northwest part of the devonian Zmeinogorsk-Bystrushinsky trough, ore mineralization is associated with the system of northwest border faults and cross branch faults. There were four main stages and five phases of minerogenesis. The first stage is the stage of oregenesis beginning and quartz-chlorite-sericite wall-rock alteration rocks formation. Ore deposition and intense tectonics took place during the second stage. The third stage is the most longstanding and productive ore formation stage. There are five distinct minerogenesis phases within this stage. The fourth stage expressed in erosion development and supergene alteration of already formed ore bodies with oxidation zone formation. Main ore minerals are pyrite, chalcopyrite, sphalerite and galena. Minor minerals are tetrahedrite, bornite, tennantite and chalcocite. Precious metals minerals are acanthite, gold, electrum, gold and silver amalgams. Barren minerals are barite, quartz, calcite, gypsum. According to obtained data average isotopic composition of third stage sulphides is: pyrite -0,2‰, chalcopyrite 0‰, galena +0,5‰, sphalerite -1,2‰ for the first complex; chalcopyrite -1,9‰, galena -3,4‰, sphalerite -2,3‰, tetrahedrite -3,7‰ for the second complex; tennantite -12,8‰, bornite -8,9‰ for the third complex. Sulfur isotopic compoisiton variations indicate source inhomogeneity. Thus, there was dominant source change from mantle one in the beginning to crustal one in the end. Main oregenesis stages took place in the range of temperatures between 170 and 210°С and in the mineral-forming solutions salinity range between 3 and 10 wt % NaCl equiv.

  9. Process-based modeling of silicate mineral weathering responses to increasing atmospheric CO2 and climate change

    Science.gov (United States)

    Banwart, Steven A.; Berg, Astrid; Beerling, David J.

    2009-12-01

    A mathematical model describes silicate mineral weathering processes in modern soils located in the boreal coniferous region of northern Europe. The process model results demonstrate a stabilizing biological feedback mechanism between atmospheric CO2 levels and silicate weathering rates as is generally postulated for atmospheric evolution. The process model feedback response agrees within a factor of 2 of that calculated by a weathering feedback function of the type generally employed in global geochemical carbon cycle models of the Earth's Phanerozoic CO2 history. Sensitivity analysis of parameter values in the process model provides insight into the key mechanisms that influence the strength of the biological feedback to weathering. First, the process model accounts for the alkalinity released by weathering, whereby its acceleration stabilizes pH at values that are higher than expected. Although the process model yields faster weathering with increasing temperature, because of activation energy effects on mineral dissolution kinetics at warmer temperature, the mineral dissolution rate laws utilized in the process model also result in lower dissolution rates at higher pH values. Hence, as dissolution rates increase under warmer conditions, more alkalinity is released by the weathering reaction, helping maintain higher pH values thus stabilizing the weathering rate. Second, the process model yields a relatively low sensitivity of soil pH to increasing plant productivity. This is due to more rapid decomposition of dissolved organic carbon (DOC) under warmer conditions. Because DOC fluxes strongly influence the soil water proton balance and pH, this increased decomposition rate dampens the feedback between productivity and weathering. The process model is most sensitive to parameters reflecting soil structure; depth, porosity, and water content. This suggests that the role of biota to influence these characteristics of the weathering profile is as important, if not

  10. A simple algorithm to estimate genetic variance in an animal threshold model using Bayesian inference Genetics Selection Evolution 2010, 42:29

    DEFF Research Database (Denmark)

    Ødegård, Jørgen; Meuwissen, Theo HE; Heringstad, Bjørg

    2010-01-01

    Background In the genetic analysis of binary traits with one observation per animal, animal threshold models frequently give biased heritability estimates. In some cases, this problem can be circumvented by fitting sire- or sire-dam models. However, these models are not appropriate in cases where...... records exist for the parents). Furthermore, the new algorithm showed much faster Markov chain mixing properties for genetic parameters (similar to the sire-dam model). Conclusions The new algorithm to estimate genetic parameters via Gibbs sampling solves the bias problems typically occurring in animal...... individual records exist on parents. Therefore, the aim of our study was to develop a new Gibbs sampling algorithm for a proper estimation of genetic (co)variance components within an animal threshold model framework. Methods In the proposed algorithm, individuals are classified as either "informative...

  11. Potential uses of genetic geological modelling to identify new uranium provinces

    International Nuclear Information System (INIS)

    Finch, W.I.

    1982-01-01

    Genetic-geological modelling is the placing of the various processes of the development of a uranium province into distinct stages that are ordered chronologically and made part of a matrix with corresponding geologic evidence. The models can be applied to a given region by using one of several methods to determine a numerical favorability rating. Two of the possible methods, geologic decision analysis and an oil-and-gas type of play analysis, are briefly described. Simplified genetic models are given for environments of the quartz-pebble conglomerate, unconformity-related vein, and sandstone types of deposits. Comparison of the genetic models of these three sedimentary-related environments reveals several common attributes that may define a general uranium province environment

  12. Genetic and environmental variances of bone microarchitecture and bone remodeling markers: a twin study.

    Science.gov (United States)

    Bjørnerem, Åshild; Bui, Minh; Wang, Xiaofang; Ghasem-Zadeh, Ali; Hopper, John L; Zebaze, Roger; Seeman, Ego

    2015-03-01

    All genetic and environmental factors contributing to differences in bone structure between individuals mediate their effects through the final common cellular pathway of bone modeling and remodeling. We hypothesized that genetic factors account for most of the population variance of cortical and trabecular microstructure, in particular intracortical porosity and medullary size - void volumes (porosity), which establish the internal bone surface areas or interfaces upon which modeling and remodeling deposit or remove bone to configure bone microarchitecture. Microarchitecture of the distal tibia and distal radius and remodeling markers were measured for 95 monozygotic (MZ) and 66 dizygotic (DZ) white female twin pairs aged 40 to 61 years. Images obtained using high-resolution peripheral quantitative computed tomography were analyzed using StrAx1.0, a nonthreshold-based software that quantifies cortical matrix and porosity. Genetic and environmental components of variance were estimated under the assumptions of the classic twin model. The data were consistent with the proportion of variance accounted for by genetic factors being: 72% to 81% (standard errors ∼18%) for the distal tibial total, cortical, and medullary cross-sectional area (CSA); 67% and 61% for total cortical porosity, before and after adjusting for total CSA, respectively; 51% for trabecular volumetric bone mineral density (vBMD; all p accounted for 47% to 68% of the variance (all p ≤ 0.001). Cross-twin cross-trait correlations between tibial cortical porosity and medullary CSA were higher for MZ (rMZ  = 0.49) than DZ (rDZ  = 0.27) pairs before (p = 0.024), but not after (p = 0.258), adjusting for total CSA. For the remodeling markers, the data were consistent with genetic factors accounting for 55% to 62% of the variance. We infer that middle-aged women differ in their bone microarchitecture and remodeling markers more because of differences in their genetic factors than

  13. Portfolio optimization by using linear programing models based on genetic algorithm

    Science.gov (United States)

    Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.

    2018-01-01

    In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.

  14. Calibration of the century, apsim and ndicea models of decomposition and n mineralization of plant residues in the humid tropics

    Directory of Open Access Journals (Sweden)

    Alexandre Ferreira do Nascimento

    2011-06-01

    Full Text Available The aim of this study was to calibrate the CENTURY, APSIM and NDICEA simulation models for estimating decomposition and N mineralization rates of plant organic materials (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum, Stylosanthes guyanensis for 360 days in the Atlantic rainforest bioma of Brazil. The models´ default settings overestimated the decomposition and N-mineralization of plant residues, underlining the fact that the models must be calibrated for use under tropical conditions. For example, the APSIM model simulated the decomposition of the Stizolobium aterrimum and Calopogonium mucunoides residues with an error rate of 37.62 and 48.23 %, respectively, by comparison with the observed data, and was the least accurate model in the absence of calibration. At the default settings, the NDICEA model produced an error rate of 10.46 and 14.46 % and the CENTURY model, 21.42 and 31.84 %, respectively, for Stizolobium aterrimum and Calopogonium mucunoides residue decomposition. After calibration, the models showed a high level of accuracy in estimating decomposition and N- mineralization, with an error rate of less than 20 %. The calibrated NDICEA model showed the highest level of accuracy, followed by the APSIM and CENTURY. All models performed poorly in the first few months of decomposition and N-mineralization, indicating the need of an additional parameter for initial microorganism growth on the residues that would take the effect of leaching due to rainfall into account.

  15. Two-level mixed modeling of longitudinal pedigree data for genetic association analysis

    DEFF Research Database (Denmark)

    Tan, Q.

    2013-01-01

    of follow-up. Approaches have been proposed to integrate kinship correlation into the mixed effect models to explicitly model the genetic relationship which have been proven as an efficient way for dealing with sample clustering in pedigree data. Although useful for adjusting relatedness in the mixed...... assess the genetic associations with the mean level and the rate of change in a phenotype both with kinship correlation integrated in the mixed effect models. We apply our method to longitudinal pedigree data to estimate the genetic effects on systolic blood pressure measured over time in large pedigrees......Genetic association analysis on complex phenotypes under a longitudinal design involving pedigrees encounters the problem of correlation within pedigrees which could affect statistical assessment of the genetic effects on both the mean level of the phenotype and its rate of change over the time...

  16. Global mineral resource assessment: porphyry copper assessment of Mexico: Chapter A in Global mineral resource assessment

    Science.gov (United States)

    Hammarstrom, Jane M.; Robinson, Gilpin R.; Ludington, Steve; Gray, Floyd; Drenth, Benjamin J.; Cendejas-Cruz, Francisco; Espinosa, Enrique; Pérez-Segura, Efrén; Valencia-Moreno, Martín; Rodríguez-Castañeda, José Luis; Vásquez-Mendoza, Rigobert; Zürcher, Lukas

    2010-01-01

    Mineral resource assessments provide a synthesis of available information about distributions of mineral deposits in the Earth’s crust. A probabilistic mineral resource assessment of undiscovered resources in porphyry copper deposits in Mexico was done as part of a global mineral resource assessment. The purpose of the study was to (1) delineate permissive areas (tracts) for undiscovered porphyry copper deposits within 1 km of the surface at a scale of 1:1,000,000; (2) provide a database of known porphyry copper deposits and significant prospects; (3) estimate numbers of undiscovered deposits within those permissive tracts; and (4) provide probabilistic estimates of amounts of copper (Cu), molybdenum (Mo), gold (Au), and silver (Ag) that could be contained in undiscovered deposits for each permissive tract. The assessment was conducted using a three-part form of mineral resource assessment based on mineral deposit models (Singer, 1993). Delineation of permissive tracts primarily was based on distributions of mapped igneous rocks related to magmatic arcs that formed in tectonic settings associated with subduction boundary zones. Using a GIS, map units were selected from digital geologic maps based on lithology and age to delineate twelve permissive tracts associated with Jurassic, Laramide (~90 to 34 Ma), and younger Tertiary magmatic arcs. Stream-sediment geochemistry, mapped alteration, regional aeromagnetic data, and exploration history were considered in conjunction with descriptive deposit models and grade and tonnage models to guide estimates.

  17. Minerals Yearbook, volume I, Metals and Minerals

    Science.gov (United States)

    ,

    2018-01-01

    The U.S. Geological Survey (USGS) Minerals Yearbook discusses the performance of the worldwide minerals and materials industries and provides background information to assist in interpreting that performance. Content of the individual Minerals Yearbook volumes follows:Volume I, Metals and Minerals, contains chapters about virtually all metallic and industrial mineral commodities important to the U.S. economy. Chapters on survey methods, summary statistics for domestic nonfuel minerals, and trends in mining and quarrying in the metals and industrial mineral industries in the United States are also included.Volume II, Area Reports: Domestic, contains a chapter on the mineral industry of each of the 50 States and Puerto Rico and the Administered Islands. This volume also has chapters on survey methods and summary statistics of domestic nonfuel minerals.Volume III, Area Reports: International, is published as four separate reports. These regional reports contain the latest available minerals data on more than 180 foreign countries and discuss the importance of minerals to the economies of these nations and the United States. Each report begins with an overview of the region’s mineral industries during the year. It continues with individual country chapters that examine the mining, refining, processing, and use of minerals in each country of the region and how each country’s mineral industry relates to U.S. industry. Most chapters include production tables and industry structure tables, information about Government policies and programs that affect the country’s mineral industry, and an outlook section.The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the Minerals Yearbook are welcomed.

  18. Somatic cell genetics of uranium miners and plutonium workers. A biological dose-response indicator

    International Nuclear Information System (INIS)

    Brandom, W.F.; Bloom, A.D.; Bistline, R.W.; Saccomanno, G.

    1978-01-01

    Two populations of underground uranium miners and plutonium workers work in the state of Colorado, United States of America. We have explored the prevalence of structural chromosome aberrations in peripheral blood lymphocytes as a possible biological indicator of absorbed radiation late-effects in these populations. The uranium miners are divided into four exposure groups expressed in Working Level Months (WLM), the plutonium workers into six groups with estimated 239 Pu burdens expressed in nCi. Comparison of chromosome aberration frequency data between controls, miners, and plutonium workers demonstrate: (1) a cytogenetic response to occupational ionizing radiation at low estimated doses; and (2) an increasing monotonic dose-response in the prevalence of complex (all exchange) or total aberrations in all exposure groups in these populations. We also compared trends in the prevalence of aberrations per exposure unit (WLM and nCi) in each exposure subgroup for each population. In the uranium miners, the effects per WLM seem to decrease monotonically with increasing dose, whereas in the Pu workers the change per nCi appears abrupt, with all exposure groups over 1.3 nCi (minimum detectable level) having essentially similar rates. The calculations of aberrations per respective current maximum permissible dose (120 WLM and 40 nCi) for the two populations yield 4.8 X 10 -2 /100 cells for uranium miners and 90.6 X 10 -2 /100 cells for Pu workers. Factors which may have influenced this apparent 20-fold increase in the effectiveness of plutonium in the production of complex aberrations (9-fold increase in total aberrations) are discussed. (author)

  19. Using the extended parallel process model to prevent noise-induced hearing loss among coal miners in Appalachia

    Energy Technology Data Exchange (ETDEWEB)

    Murray-Johnson, L.; Witte, K.; Patel, D.; Orrego, V.; Zuckerman, C.; Maxfield, A.M.; Thimons, E.D. [Ohio State University, Columbus, OH (US)

    2004-12-15

    Occupational noise-induced hearing loss is the second most self-reported occupational illness or injury in the United States. Among coal miners, more than 90% of the population reports a hearing deficit by age 55. In this formative evaluation, focus groups were conducted with coal miners in Appalachia to ascertain whether miners perceive hearing loss as a major health risk and if so, what would motivate the consistent wearing of hearing protection devices (HPDs). The theoretical framework of the Extended Parallel Process Model was used to identify the miners' knowledge, attitudes, beliefs, and current behaviors regarding hearing protection. Focus group participants had strong perceived severity and varying levels of perceived susceptibility to hearing loss. Various barriers significantly reduced the self-efficacy and the response efficacy of using hearing protection.

  20. Uptake of mineral elements by plants

    International Nuclear Information System (INIS)

    Ven Babu, P.

    2008-01-01

    Scientific investigations into the mineral nutrition of plants, date back to the late 17th century and vast amount of literature has accumulated since then, encompassing the occurrence of mineral elements, their interaction in soil and within plants, kinetics of their uptake, role in metabolism, toxicity to plants and animals and so on. Despite great advances made in the fields of plant physiology, plant biochemistry and genetic engineering and application of sophisticated analytical and biochemical techniques, many aspects of nutrient uptake by plants, their movement within roots and the long distance transport to shoots remain yet to be fully answered and a combination of hypothesis and assumptions are taken into account, for understanding the phenomena. This write up deals with the subject in a brief and narrative manner, so as to enable the reader to get an insight into the field

  1. Modeling groundwater age using tritium and groundwater mineralization processes - Morondava sedimentary basin, Southwestern Madagascar

    International Nuclear Information System (INIS)

    RAMAROSON, V.

    2007-01-01

    The tritium method in the lumped parameter approach was used for groundwater dating in the Morondava sedimentary basin, Southwestern Madagascar. Tritium data were interpreted by the dispersion model. The modeling results, with P D values between 0.05 and 0.7, show that shallow groundwater age is ranging from 17 to 56 years. Different types of chemical composition were determined for these shallow ground waters, among others, Ca-HCO 3 , Ca-Na-HCO 3 , Ca-Na-Mg-HCO 3 , Ca-K-HCO 3 -NO 3 -SO 4 , Na-Cl, or Ca-Na-Mg-Cl. Likewise, deeper ground waters show various chemical type such as Ca-Na-HCO 3 , Ca-Mg-Na H CO 3 , Ca-Na-Mg-HCO 3 , Ca-Na-Mg-HCO 3 -Cl-SO 4 , Ca-Mg-HCO 3 , Na-Ca-Mg-HCO 3 -SO 4 -Cl, Na-Cl-HCO 3 or Na-HCO 3 -Cl. To evaluate the geochemical processes, the NETPATH inverse geochemical modeling type was implemented. The modeling results show that silicate minerals dissolution , including olivine, plagioclase, and pyroxene is more important than calcite or dolomite dissolution, for both shallow and deeper groundwater . In the Southern part of the study area, while halite dissolution is likely to be the source of shallow groundwater chloride concentration rise, the mineral precipitation seems to be responsible for less chloride content in deeper groundwater. Besides, ion exchange contributes to the variations of major cations concentrations in groundwater. The major difference between shallow and deep groundwater mineralization process lies in the leaching of marine aerosols deposits by local precipitation, rapidly infiltrated through the sandy formation and giving marine chemical signature to shallow groundwater [fr

  2. Model comparisons and genetic and environmental parameter ...

    African Journals Online (AJOL)

    arc

    Model comparisons and genetic and environmental parameter estimates of growth and the ... breeding strategies and for accurate breeding value estimation. The objectives ...... Sci. 23, 72-76. Van Wyk, J.B., Fair, M.D. & Cloete, S.W.P., 2003.

  3. Simulating pattern-process relationships to validate landscape genetic models

    Science.gov (United States)

    A. J. Shirk; S. A. Cushman; E. L. Landguth

    2012-01-01

    Landscapes may resist gene flow and thereby give rise to a pattern of genetic isolation within a population. The mechanism by which a landscape resists gene flow can be inferred by evaluating the relationship between landscape models and an observed pattern of genetic isolation. This approach risks false inferences because researchers can never feasibly test all...

  4. Clinical impact of recent genetic discoveries in osteoporosis

    Directory of Open Access Journals (Sweden)

    Mitchell BD

    2013-10-01

    Full Text Available Braxton D Mitchell, Elizabeth A StreetenDepartment of Medicine and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, and Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, MD, USAAbstract: Osteoporotic fracture carries an enormous public health burden in terms of mortality and morbidity. Current approaches to identify individuals at high risk for fracture are based on assessment of bone mineral density and presence of other osteoporosis risk factors. Bone mineral density and susceptibility to osteoporotic fractures are highly heritable, and over 60 loci have been robustly associated with one or both traits through genome-wide association studies carried out over the past 7 years. In this review, we discuss opportunities and challenges for incorporating these genetic discoveries into strategies to prevent osteoporotic fracture and translating new insights obtained from these discoveries into development of new therapeutic targets.Keywords: bone mineral density, genome-wide association studies, osteoporosis, prediction, fracture, genetics

  5. Genetic Affiliation of Gold and Uranium Mineralization in El-Missikat Granite, Central Eastern Desert, Egypt

    International Nuclear Information System (INIS)

    Ammar, F.A.; Omar, S.A.M.; El Sawey, El.H.

    2016-01-01

    Gabal El-Missikat granitic pluton is affected by two fault systems trending NW-SE (the oldest) and ENE-WSW directions. It is one of the uranium occurrences in the Eastern Desert of Egypt. The northwestern margins of El-Missikat pluton, along its contact with the gneissose quartz diorite, are dissected by numerous reactivated fractured shear zones running generally ENE-WSW to NE-SW and dipping about 60°-70° to SE. Many white (oldest), smoky or black and jasperoid (youngest) silica veinlets fill the fractures of these shear zones. These veins are of irregular shape and variable thickness ranging from few centimeters to about three meters. They are chiefly affected by silicification, sericitization, hematitization , kaolinization and hydrothermal alterations processes. The smoky black veins are hosting secondary uranium and fluorite-, sulphide-gold mineralizations. Polished surface studies, ICP-ES and Atomic Absorption as well as Scanning Electron Microscope measurements recorded galena, pyrite chalcopyrite, sphalerite and molybdenite in the black and jasperoid mineralized veins. Gold associated with ore mineral assemblage as pyrite, chalcopyrite, sphalerite, galena, sheelite and iron oxides. The identified sulphide minerals not bearing gold are recorded. Gold are relatively coarse-grained, massive and metallic yellow or stretched bronze colored particles. The recorded secondary U minerals associates the sulphide gold-mineralization in the black and jasperoid silica veins. Regarding the mobility of both uranium and gold, U 4+ mobilized in oxidizing medium and migrate and transport as U 6+ , then deposited later as U 4+ when the medium changes to be reducing characterized by high /O 2 . On contrary, gold mobilized when the medium is complex AuCl 3- ion bearing. Consequently, El- Missikat granitic pluton affected by oxidizing Au and Cl 3- bearing high temperature hydrothermal solutions that leached U 4+ , W and Mo from the granitic mass as U 6 + , later decrease of

  6. Re-Os, Sm-Nd, U-Pb, and stepwise lead leaching isotope systematics in shear-zone hosted gold mineralization: genetic tracing and age constraints of crustal hydrothermal activity

    Science.gov (United States)

    Frei, R.; Nägler, Th. F.; Schönberg, R.; Kramers, J. D.

    1998-06-01

    A combined Re-Os, Sm-Nd, U-Pb, and stepwise Pb leaching (PbSL) isotope study of hydrothermal (Mo-W)-bearing minerals and base metal sulfides from two adjacent shear zone hosted gold deposits (RAN, Kimberley) in the Harare-Shamva greenstone belt (Zimbabwe) constrain the timing of the mineralizing events to two periods. During an initial Late Archean event (2.60 Ga) a first molybdenite-scheelite bearing paragenesis was deposited in both shear zone systems, followed by a local reactivation of the shear systems during an Early Proterozoic (1.96 Ga) tectono-thermal overprint, during which base metal sulfides and most of the gold was (re-)deposited. While PbSL has revealed an open-system behavior of the U-Pb systematics in molybdenite and wolframite from the RAN mine, initial Archean Re-Os ages are still preserved implying that this system in these minerals was more resistant to the overprint. A similar retentivity could be shown for the Sm-Nd system in scheelite and powellite associated with the above ore minerals. Re-Os isotopic data from the Proterozoic mineralization in the Kimberley mine point to a recent gain of Re, most pronouncedly affecting Fe-rich sulfides such as pyrrhotite. A significant Re-loss in powellitic scheelite (an alteration phase of molybdenite-bearing scheelite), coupled with a marked loss of U in W-Mo ore minerals, complements the observation of a major Re uptake in Fe-sulfides during oxidizing conditions in a weathering environment. Pyrrhotite under these conditions behaves as an efficient Re-sink. Lead isotope signatures from PbSL residues of molybdenite, powellite, and quartz indicate a continental crustal source and/or contamination for the mineralizing fluid by interaction of the fluids with older sedimentary material as represented by the direct host country rocks. Our investigation reveals the potential of the Re-Os isotopic system applied to crustal hydrothermal ore minerals for genetic tracing and dating purposes. The simplified chemical

  7. Lung cancer from radon and smoking: a multistage model for the WISMUT uranium miners

    International Nuclear Information System (INIS)

    Dillen, Teun van; Bijwaard, Harmen; Schnelzer, Maria; Kreuzer, Michaela; Grosche, Bernd

    2008-01-01

    Full text: In the world's third-largest uranium-mining province located in areas of Saxony and Thuringia in the former German Democratic Republic, the WISMUT Company conducted extensive uranium mining starting in 1946. Up to 1990, when mining activities were discontinued, most of the 400,000 employees had been exposed to uranium ore dust and radon and its progeny. It is well established that, besides smoking, such exposures are associated with an increased risk of lung cancer. From about 130,000 known miners a huge cohort of 59,000 miners has been formed and in an epidemiological analysis lung cancer risks have been evaluated (Grosche et al., 2006). We will present an alternative approach using a biologically-based multistage carcinogenesis model quantifying the lung-cancer risk related to both the exposure to radon and smoking habits. This mechanistic technique allows for extrapolation to the low exposures that are important for present-day radiation protection purposes and the transfer of risk across populations. The model is applied to a sub-cohort of about 35,000 persons who were employed at WISMUT after 1955, with known annual exposures estimated from the job-exposure matrix (Lehmann et al., 2004). Unfortunately, detailed information on smoking is missing for most miners. However, this information has been retrieved in two case-control studies, one of which was nested in the cohort while the other was not (Brueske-Hohlfeld et al., 2006). For these studies, the relevant smoking parameters are assembled in so-called smoking spectra that are next projected onto the entire cohort using a Monte-Carlo sampling method. Individual smoking habits that are randomly assigned to the cohort members, together with the information on annual exposure to radon, is used as an input for the multistage model. Model parameters related to radon and tobacco exposure are fitted with a maximum-likelihood technique. We will show results of the observed and expected lung

  8. Characterization and modelling of the mechanical properties of mineral wool

    DEFF Research Database (Denmark)

    Chapelle, Lucie

    2016-01-01

    and as a consequence focus on the mechanical properties of mineral wool has intensified. Also understanding the deformation mechanisms during compression of low density mineral wool is crucial since better thickness recovery after compression will result in significant savings on transport costs. The mechanical...... properties of mineral wool relate closely to the arrangement and characteristics of the fibres inside the material. Because of the complex architecture of mineral wool, the characterization and the understanding of the mechanism of deformations require a new methodology. In this PhD thesis, a methodology...... of the structure on mechanical properties can be explored. The size of the representative volume elements for the prediction of the elastic properties is determined for two types of applied boundary conditions. For sufficiently large volumes, the predicted elastic properties are consistent with results from...

  9. A New Murine Model of Chronic Kidney Disease-Mineral and Bone Disorder

    Directory of Open Access Journals (Sweden)

    Bianca Frauscher

    2017-01-01

    Full Text Available Chronic kidney disease (CKD is associated with mineral and bone disorder (MBD, which is the main cause of the extensively increased cardiovascular mortality in the CKD population. We now aimed to establish a new murine experimental CKD-MBD model. Dilute brown non-Agouti (DBA/2 mice were fed with high-phosphate diet for 4 (HPD4 or 7 (HPD7 days, then with standard chow diet (SCD and subsequently followed until day 84. They were compared to DBA/2 mice maintained on SCD during the whole study period. Both 4 and 7 days HPD-fed mice developed phosphate nephropathy with tubular atrophy, interstitial fibrosis, decreased glomerular filtration rate, and increased serum urea levels. The abdominal aorta of HPD-treated mice showed signs of media calcification. Histomorphometric analysis of HPD-treated mice showed decreased bone volume/tissue volume, low mineral apposition rate, and low bone formation rate as compared to SCD-fed mice, despite increased parathyroid hormone levels. Overall, the observed phenotype was more pronounced in the HPD7 group. In summary, we established a new, noninvasive, and therefore easy to perform reproducible CKD-MBD model, which showed media calcification, secondary hyperparathyroidism, and low-turnover bone disease.

  10. Predicting Mineral N Release during Decomposition of Organic Wastes in Soil by Use of the SOILNNO Model

    International Nuclear Information System (INIS)

    Sogn, T.A.; Haugen, L.E.

    2011-01-01

    In order to predict the mineral N release associated with the use of organic waste as fertilizer in agricultural plant production, the adequacy of the SOILN N O model has been evaluated. The original thought was that the model calibrated to data from simple incubation experiments could predict the mineral N release from organic waste products used as N fertilizer on agricultural land. First, the model was calibrated to mineral N data achieved in a laboratory experiment where different organic wastes were added to soil and incubated at 15 degree C for 8 weeks. Secondly, the calibrated model was tested by use of NO 3 -leaching data from soil columns with barley growing in 4 different soil types, added organic waste and exposed to natural climatic conditions during three growing seasons. The SOILN N O model reproduced relatively well the NO 3 -leaching from some of the soils included in the outdoor experiment, but failed to reproduce others. Use of the calibrated model often induced underestimation of the observed NO 3 -leaching. To achieve a satisfactory simulation of the NO 3 -leaching, recalibration of the model had to be carried out. Thus, SOILN N O calibrated to data from simple incubation experiments in the laboratory could not directly be used as a tool to predict the N-leaching following organic waste application in more natural agronomic plant production systems. The results emphasised the need for site- and system-specific data for model calibration before using a model for predictive purposes related to fertilizer N value of organic wastes applied to agricultural land.

  11. Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops.

    Science.gov (United States)

    Yabe, Shiori; Yamasaki, Masanori; Ebana, Kaworu; Hayashi, Takeshi; Iwata, Hiroyoshi

    2016-01-01

    Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS), which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an "island model" inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the potential of genomic

  12. Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops.

    Directory of Open Access Journals (Sweden)

    Shiori Yabe

    Full Text Available Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS, which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an "island model" inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the

  13. The dissolution rate of silicate glasses and minerals: an alternative model based on several activated complexes

    International Nuclear Information System (INIS)

    Berger, G.

    1997-01-01

    Most of the mineral reactions in natural water-rock systems progress at conditions close to the chemical equilibrium. The kinetics of these reactions, in particular the dissolution rate of the primary minerals, is a major constrain for the numerical modelling of diagenetic and hydrothermal processes. In the case of silicates, recent experimental studies have pointed out the necessity to better understand the elementary reactions which control the dissolution process. This article presents several models that have been proposed to account for the observed dissolution rate/chemical affinity relationships. The case of glasses (R7T7), feldspars and clays, in water, in near neutral pH aqueous solutions and in acid/basic media, are reviewed. (A.C.)

  14. Using ICP and micro-PIXE to investigate possible differences in the mineral composition of genetically modified versus wild-type sorghum grain

    Science.gov (United States)

    Ndimba, R.; Cloete, K.; Mehlo, L.; Kossmann, J.; Mtshali, C.; Pineda-Vargas, C.

    2017-08-01

    In the present study, possible differences in the mineral composition of transgenic versus non-transgenic sorghum grains were investigated using inductively coupled atomic emission spectroscopy (ICP-AES); and, in-tissue elemental mapping by micro Proton-Induced X-ray Emission (micro-PIXE) analysis. ICP AES was used to analyse the bulk mineral content of the wholegrain flour derived from each genotype; whilst micro-PIXE was used to interrogate localised differences in mineral composition specific to certain areas of the grain, such as the bran layer and the central endosperm tissue. According to the results obtained, no significant difference in the average Fe, Zn or Ca content was found to differentiate the transgenic from the wild-type grain using ICP-AES. However, using micro-PIXE, a significant reduction in zinc could be detected in the bran layer of the transgenic grains relative to wild-type. Although it is difficult to draw firm conclusions, as a result of the small sample size used in this study, micro-PIXE has nonetheless proven itself as a useful technique for highlighting the possibility that there may be reduced levels of zinc accumulation in the bran layer of the transgenic grains. Given that the genetic modification targets proteins that are highly concentrated in certain parts of the bran tissue, it seems plausible that the reduced levels of zinc may be an unintended consequence of the silencing of kafirin proteins. Although no immediate health or nutritional concerns emerge from this preliminary finding, it is noted that zinc plays an important biological role within this part of the grain as a structural stabiliser and antioxidant factor. Further study is therefore needed to assess more definitively the extent of the apparent localised reduction in zinc in the transgenic grains and how this may affect other important grain quality characteristics.

  15. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: An integrated genetic model

    Science.gov (United States)

    Li, Yan Hei Martin; Zhao, Wen Winston; Zhou, Mei-Fu

    2017-10-01

    Regolith-hosted rare earth element (REE) deposits, also called ion-adsorption or weathered crust elution-deposited REE deposits are distributed over Jiangxi, Guangdong, Fujian, Hunan, Guangxi and Yunnan provinces in South China. In general, these deposits can be categorized into the HREE-dominated type, for example the famous Zudong deposit in southern Jiangxi province and the LREE-dominated type, such as the Heling and Dingnan deposits in southern Jiangxi province. Most of these deposits form from weathering of biotite and muscovite granites, syenites, monzogranites, granodiorites, granite porphyries, and rhyolitic tuffs. The parent rocks are generally peraluminous, siliceous, alkaline and contain a variety of REE-bearing minerals. Mostly, REE patterns of regolith are inherited from the parent rocks, and therefore, characteristics of the parent rocks impose a significant control on the ore formation. Data compilation shows that autometasomatism during the latest stage of granite crystallization is likely essential in forming the HREE-enriched granites, whereas LREE-enriched granites could form through magmatic differentiation. These deposits are normally two- to three-fold, but could be up to ten-fold enrichment in REE compared to the parent granites, where the maximum enrichment usually occurs from the lower B to the upper C horizon. Ce shows different behavior with the other REEs. Strongly positive Ce anomalies commonly occur at the upper part of weathering profiles, likely due to oxidation of Ce3+ to Ce4+ and removal of Ce from soil solutions through precipitation of cerianite. Vertical pH and redox gradients in weathering crusts facilitate dissolution of REE-bearing minerals at shallow level and fixation of REE at depth through either adsorption on clay minerals or precipitation of secondary minerals. At the same time, mass removal of major elements plays an important role in concentrating REE in regolith. Combination of mass removal and eluviation

  16. PM Synchronous Motor Dynamic Modeling with Genetic Algorithm ...

    African Journals Online (AJOL)

    Adel

    This paper proposes dynamic modeling simulation for ac Surface Permanent Magnet Synchronous ... Simulations are implemented using MATLAB with its genetic algorithm toolbox. .... selection, the process that drives biological evolution.

  17. Uranium mineralization possibilities in metamorphic Massif of Isla de Juventud, Cuba

    International Nuclear Information System (INIS)

    Gongora Dominguez, L.E.; Llanes Castro, A.I.; Pena Fortes, B.; Capote Rodriguez, G.

    1996-01-01

    The geologic and metallogenic characteristic of the metamorphic Massif shows the presence of possible uranium vein type mineralization as a result of a hidrotermal genetic process. Metalliferous fluids rising along the fault system were responsible for the deposition of the uranium in the reduction zones, i.e. presence of pyrite, organic matter and others. This type of uranium minerization is proposed for the Bibijagua area and for the Revolucion and Lela area the same type is expected. The gamma spectrometric analysis was used to evaluate the geological samples

  18. The genetic analysis of repeated measures I: Simplex models

    NARCIS (Netherlands)

    Molenaar, P.C.M.; Boomsma, D.I.

    1987-01-01

    Extends the simplex model to a model that may be used for the genetic and environmental analysis of covariance (ANCOVA) structures. This "double" simplex structure can be specified as a linear structural relationships model. It is shown that data that give rise to a simplex correlation structure,

  19. [Histochemical stains for minerals by hematoxylin-lake method].

    Science.gov (United States)

    Miyagawa, Makoto

    2013-04-01

    The present study was undertaken to establish the experimental animal model by histological staining methods for minerals. After intraperitoneal injections of minerals, precipitates deposited on the surface of the liver. Liver tissues were fixed in paraformaldehyde, embedded in paraffin and cut into thin sections which were used as minerals containing standard section. Several reagents for histological stains and spectrophotometry for minerals were applied in both test-tube experiments and stainings of tissue sections to test for minerals. Hematoxylin-lake was found of capable of staining minerals in tissue. A simple technique used was described for light microscopic detection of minerals.

  20. 43 CFR 19.8 - Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest...

    Science.gov (United States)

    2010-10-01

    ... patents, and mineral leasing within National Forest Wilderness. 19.8 Section 19.8 Public Lands: Interior... § 19.8 Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest... locations, mineral patents, and mineral leasing within National Forest Wilderness are contained in parts...

  1. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models.

    Science.gov (United States)

    Moran, Paula; Stokes, Jennifer; Marr, Julia; Bock, Gavin; Desbonnet, Lieve; Waddington, John; O'Tuathaigh, Colm

    2016-01-01

    The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia.

  2. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models

    Science.gov (United States)

    Marr, Julia; Bock, Gavin; Desbonnet, Lieve; Waddington, John

    2016-01-01

    The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia. PMID:27725886

  3. Survey and critique of quantitative methods for the appraisal of mineral resources. Progress report

    International Nuclear Information System (INIS)

    Harris, D.P.

    1976-01-01

    Two major categories of appraisal methods (models) for regional mineral resources are identified by virtue of the manner in which mineral endowment is treated in the appraisal: implicit and explicit models. Implicit models do not identify nor specify the mineral endowment model. Mineral resources are inferred to exist as required to fulfill economic or secular relationships. Econometric models of mineral supply and Hubbert's time-rate trend projection are varieties of implicit models. Explicit mineral resource models separate the economic and endowment models and state the endowment model explicitly. Explicit models describe mineral endowment as a function of some physical aspect of the earth's crust, such as geology, volume of rock, density of mineral occurrences, and crustal abundance of an element. Economic factors are introduced subsequent to the appraisal of endowment either as an explicit model which interacts with the deposits inferred by the endowment model, or as a simple adjustment made directly on some aggregate measure of endowment

  4. Genetic demixing and evolution in linear stepping stone models

    Science.gov (United States)

    Korolev, K. S.; Avlund, Mikkel; Hallatschek, Oskar; Nelson, David R.

    2010-04-01

    Results for mutation, selection, genetic drift, and migration in a one-dimensional continuous population are reviewed and extended. The population is described by a continuous limit of the stepping stone model, which leads to the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation with additional terms describing mutations. Although the stepping stone model was first proposed for population genetics, it is closely related to “voter models” of interest in nonequilibrium statistical mechanics. The stepping stone model can also be regarded as an approximation to the dynamics of a thin layer of actively growing pioneers at the frontier of a colony of micro-organisms undergoing a range expansion on a Petri dish. The population tends to segregate into monoallelic domains. This segregation slows down genetic drift and selection because these two evolutionary forces can only act at the boundaries between the domains; the effects of mutation, however, are not significantly affected by the segregation. Although fixation in the neutral well-mixed (or “zero-dimensional”) model occurs exponentially in time, it occurs only algebraically fast in the one-dimensional model. An unusual sublinear increase is also found in the variance of the spatially averaged allele frequency with time. If selection is weak, selective sweeps occur exponentially fast in both well-mixed and one-dimensional populations, but the time constants are different. The relatively unexplored problem of evolutionary dynamics at the edge of an expanding circular colony is studied as well. Also reviewed are how the observed patterns of genetic diversity can be used for statistical inference and the differences are highlighted between the well-mixed and one-dimensional models. Although the focus is on two alleles or variants, q -allele Potts-like models of gene segregation are considered as well. Most of the analytical results are checked with simulations and could be tested against recent spatial

  5. Is there a metric for mineral deposit occurrence probabilities?

    Science.gov (United States)

    Drew, L.J.; Menzie, W.D.

    1993-01-01

    Traditionally, mineral resource assessments have been used to estimate the physical inventory of critical and strategic mineral commodities that occur in pieces of land and to assess the consequences of supply disruptions of these commodities. More recently, these assessments have been used to estimate the undiscovered mineral wealth in such pieces of land to assess the opportunity cost of using the land for purposes other than mineral production. The field of mineral resource assessment is an interdisciplinary field that draws elements from the disciplines of geology, economic geology (descriptive models), statistics and management science (grade and tonnage models), mineral economics, and operations research (computer simulation models). The purpose of this study is to assert that an occurrenceprobability metric exists that is useful in "filling out" an assessment both for areas in which only a trivial probability exists that a new mining district could be present and for areas where nontrivial probabilities exist for such districts. ?? 1993 Oxford University Press.

  6. Selecting the Best Forecasting-Implied Volatility Model Using Genetic Programming

    Directory of Open Access Journals (Sweden)

    Wafa Abdelmalek

    2009-01-01

    Full Text Available The volatility is a crucial variable in option pricing and hedging strategies. The aim of this paper is to provide some initial evidence of the empirical relevance of genetic programming to volatility's forecasting. By using real data from S&P500 index options, the genetic programming's ability to forecast Black and Scholes-implied volatility is compared between time series samples and moneyness-time to maturity classes. Total and out-of-sample mean squared errors are used as forecasting's performance measures. Comparisons reveal that the time series model seems to be more accurate in forecasting-implied volatility than moneyness time to maturity models. Overall, results are strongly encouraging and suggest that the genetic programming approach works well in solving financial problems.

  7. Mineral vein dynamics modeling (FRACS). Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Urai, J.; Virgo, S.; Arndt, M. [RWTH Aachen (Germany). Geologie-Endogene Dynamik] [and others

    2013-07-15

    The Mineral Vein Dynamics Modeling group ''FRACS'' is a team of 7 research groups from the Universities of Mainz, Aachen, Tuebingen, Karlsruhe, Bayreuth, ETH Zuerich and Glasgow working on an understanding of the dynamic development of fracturing, fluid flow and fracture sealing. World-class field laboratories, especially carbonate sequences from the Oman Mountains are studied and classified. State of the art numerical programs are written, expanded and used to simulate the dynamic interaction of fracturing, flow and resealing and the results are compared with the natural examples. Newest analytical technologies including laser scanning, high resolution X-ray microtomography, fluid inclusion and isotope analysis are performed to understand and compare the results of simulations with natural examples. A new statistical program was developed to classify the natural fracture and vein systems and compare them with dynamic numerical simulations and analytical models. The results of the first project phase are extremely promising. Most of the numerical models have been developed up to the stage where they can be used to simulate the natural examples. The models allow a definition of the first proxies for high fluid pressure and tectonic stresses. It was found out that the Oman Mountains are a complex and very dynamic system that constantly fractures and reseals from the scale of small veins up to the scale of large normal and strike slip faults. The numerical simulations also indicate that the permeability of such systems is not a constant but that the system adjusts to the driving force, for ex-ample high fluid pressure. When the system reseals fast a fluctuating behavior can be observed in the models where the system constantly fractures and reseals, which is in accordance with the observation of the natural laboratory.

  8. Evaluation of efficacy of mineral oil, charcoal, and smectite in a rat model of equine cantharidin toxicosis.

    Science.gov (United States)

    Qualls, H J; Holbrook, T C; Gilliam, L L; Njaa, B L; Panciera, R J; Pope, C N; Payton, M E

    2013-01-01

    The efficacy of orally administered therapeutics for the treatment of cantharidin intoxication has not been evaluated in controlled studies. To develop a model of acute cantharidin intoxication in laboratory rats and to evaluate in this model the relative efficacy of 3 gastrointestinal therapies used to treat equine cantharidin toxicosis. Sixty-four male Sprague-Dawley rats. A blinded, randomized, controlled study was performed on rats surgically implanted with telemetry transmitters for evaluating heart rate, locomotor activity, and body temperature. Orogastric administration of cantharidin was performed within 15 seconds before administration of mineral oil, activated charcoal, or smectite. Negative control groups received therapeutic agents alone. Urine was collected for cantharidin analysis. Rats were sacrificed 24 hours after intoxication, and tissues were collected for histopathologic evaluation. Data analysis included ANOVA procedures and contingency tables. Six of 8 cantharidin-intoxicated rats treated with mineral oil died; bradycardia and hypothermia developed in the animals of this group 0-8 hours after intoxication. Rats treated with mineral oil had higher urine cantharidin concentrations than rats receiving cantharidin alone or with smectite (P = .04). The most severe hypothermia (30.6°C ± 1.0) developed in rats administered mineral oil at 4-8 hours after intoxication, whereas those treated with charcoal (35.2°C ± 0.8) had mean body temperatures higher than all other treatment groups (P = .03). Survival times in the charcoal (P = .16) and smectite (P = .12) treatment groups were not statistically different from negative controls. Mineral oil is often used in the treatment of equine cantharidin toxicosis. Our findings suggest that mineral oil increases cantharidin absorption, worsening morbidity and fatality in rats. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  9. Gene-dietary fat interaction, bone mineral density and bone speed of sound in Children: a twin study in China

    Science.gov (United States)

    Huang, Tao; Liu, Huijuan; Zhao, Wei; Li, Ji; Wang, Youfa

    2015-01-01

    Scope Dietary fat correlates with bone mineral density (BMD). We tested the association between fat intake and BMD, and tested if fat intake modified the degree of genetic influence on BMD and bone speed of sound (SOS). Methods and results We included 622 twins aged 7–15 y from South China. Data on anthropometry, dietary intake, BMD, and SOS were collected. Quantitative genetic analyses of structural equation models were fit using the Mx statistical package. The within-pair intra-class correlations (ICC) for BMD in DZ twins were nearly half of that for MZ twins (ICC=0.39 vs 0.70). The heritability of BMD and SOS were 71% and 79%. Phenotypic correlation between fat intake and SOS was significant (r=−0.19, p=0.04). SOS was negatively correlated with fat intake in boys (r=−0.11, p=0.05), but not in girls. Full Cholesky decomposition models showed SOS has a strong genetic correlation with fat intake (rA =−0.88, 95% CI=−0.94, 0.01); the environmental correlation between fat intake and SOS was weak (rE =−0.04, 95% CI=−0.20, 0.13). Fat intake modified the additive genetic effects on BMD. Conclusion Genetic factors explained 71% and 79% of individual variance in BMD and SOS, respectively. Low fat intake counteracts genetic predisposition to low BMD. PMID:25546604

  10. Variability, heritability and genetic association in vegetable amaranth (Amaranthus tricolor L.)

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, U.; Islam, Md T.; Rabbani, Md G.; Oba, S.

    2015-07-01

    Forty three vegetable amaranth (Amaranthus tricolor L.) genotypes selected from different eco-geographic regions of Bangladesh were evaluated during 3 years (2012-2014) for genetic variability, heritability and genetic association among mineral elements and quality and agronomic traits in randomized complete block design (RCBD) with five replications. The analysis showed that vegetable amaranth is a rich source of K, Ca, Mg, proteins and dietary fibre with average values among the 43 genotypes (1.014%, 2.476%, 2.984, 1.258% and 7.81%, respectively). Six genotypes (VA13, VA14, VA16, VA18, VA26, VA27) showed a biological yield >2000 g/m2 and high mineral, protein and dietary fibre contents; eleven genotypes had high amount of minerals, protein and dietary fibre with above average biological yield; nine genotypes had below average biological yield but were rich in minerals, protein and dietary fibre. Biological yield exhibited a strong positive correlation with leaf area, shoot weight, shoot/root weight and stem base diameter. Insignificant genotypic correlation was observed among mineral, quality and agronomic traits, except K vs. Mg, protein vs. dietary fibre and stem base diameter vs. Ca. Some of these genotypes can be used for improvement of vegetable amaranth regarding mineral, protein and dietary fibre content without compromising yield loss. (Author)

  11. Mineralogy and Genesis of Heavy Minerals in Coastal Dune Sands, South Eastern Qatar

    OpenAIRE

    Nasir, Sobhi J. [صبحي جابر نصر; El-Kassas, Ibrahim A.; Sadiq, A. Ali M.

    1999-01-01

    Large amounts of aeolian sand occur in the southeastern coastal zone of Qatar Peninsula as sand dunes accumulated in a vast sand field locally called " Niqyan Qatar ". The present work, carried out on a sand dune belt of this field near Mesaied Industrial City, revealed the distribution of heavy minerals shows a regional variability induced by provenance and local variability reflecting genetic differences. The studied dune sands are rich in shells of pelecypods, with the light mineral assemb...

  12. Genetic Resources in the “Calabaza Pipiana” Squash (Cucurbita argyrosperma) in Mexico: Genetic Diversity, Genetic Differentiation and Distribution Models

    Science.gov (United States)

    Sánchez-de la Vega, Guillermo; Castellanos-Morales, Gabriela; Gámez, Niza; Hernández-Rosales, Helena S.; Vázquez-Lobo, Alejandra; Aguirre-Planter, Erika; Jaramillo-Correa, Juan P.; Montes-Hernández, Salvador; Lira-Saade, Rafael; Eguiarte, Luis E.

    2018-01-01

    Analyses of genetic variation allow understanding the origin, diversification and genetic resources of cultivated plants. Domesticated taxa and their wild relatives are ideal systems for studying genetic processes of plant domestication and their joint is important to evaluate the distribution of their genetic resources. Such is the case of the domesticated subspecies C. argyrosperma ssp. argyrosperma, known in Mexico as calabaza pipiana, and its wild relative C. argyrosperma ssp. sororia. The main aim of this study was to use molecular data (microsatellites) to assess the levels of genetic variation and genetic differentiation within and among populations of domesticated argyrosperma across its distribution in Mexico in comparison to its wild relative, sororia, and to identify environmental suitability in previously proposed centers of domestication. We analyzed nine unlinked nuclear microsatellite loci to assess levels of diversity and distribution of genetic variation within and among populations in 440 individuals from 19 populations of cultivated landraces of argyrosperma and from six wild populations of sororia, in order to conduct a first systematic analysis of their genetic resources. We also used species distribution models (SDMs) for sororia to identify changes in this wild subspecies’ distribution from the Holocene (∼6,000 years ago) to the present, and to assess the presence of suitable environmental conditions in previously proposed domestication sites. Genetic variation was similar among subspecies (HE = 0.428 in sororia, and HE = 0.410 in argyrosperma). Nine argyrosperma populations showed significant levels of inbreeding. Both subspecies are well differentiated, and genetic differentiation (FST) among populations within each subspecies ranged from 0.152 to 0.652. Within argyrosperma we found three genetic groups (Northern Mexico, Yucatan Peninsula, including Michoacan and Veracruz, and Pacific coast plus Durango). We detected low levels of gene

  13. Genetic Resources in the “Calabaza Pipiana” Squash (Cucurbita argyrosperma in Mexico: Genetic Diversity, Genetic Differentiation and Distribution Models

    Directory of Open Access Journals (Sweden)

    Guillermo Sánchez-de la Vega

    2018-03-01

    Full Text Available Analyses of genetic variation allow understanding the origin, diversification and genetic resources of cultivated plants. Domesticated taxa and their wild relatives are ideal systems for studying genetic processes of plant domestication and their joint is important to evaluate the distribution of their genetic resources. Such is the case of the domesticated subspecies C. argyrosperma ssp. argyrosperma, known in Mexico as calabaza pipiana, and its wild relative C. argyrosperma ssp. sororia. The main aim of this study was to use molecular data (microsatellites to assess the levels of genetic variation and genetic differentiation within and among populations of domesticated argyrosperma across its distribution in Mexico in comparison to its wild relative, sororia, and to identify environmental suitability in previously proposed centers of domestication. We analyzed nine unlinked nuclear microsatellite loci to assess levels of diversity and distribution of genetic variation within and among populations in 440 individuals from 19 populations of cultivated landraces of argyrosperma and from six wild populations of sororia, in order to conduct a first systematic analysis of their genetic resources. We also used species distribution models (SDMs for sororia to identify changes in this wild subspecies’ distribution from the Holocene (∼6,000 years ago to the present, and to assess the presence of suitable environmental conditions in previously proposed domestication sites. Genetic variation was similar among subspecies (HE = 0.428 in sororia, and HE = 0.410 in argyrosperma. Nine argyrosperma populations showed significant levels of inbreeding. Both subspecies are well differentiated, and genetic differentiation (FST among populations within each subspecies ranged from 0.152 to 0.652. Within argyrosperma we found three genetic groups (Northern Mexico, Yucatan Peninsula, including Michoacan and Veracruz, and Pacific coast plus Durango. We detected low

  14. The substitution of mineral fertilizers by compost from household waste in Cameroon: economic analysis with a partial equilibrium model.

    Science.gov (United States)

    Jaza Folefack, Achille Jean

    2009-05-01

    This paper analyses the possibility of substitution between compost and mineral fertilizer in order to assess the impact on the foreign exchange savings in Cameroon of increasing the use of compost. In this regard, a partial equilibrium model was built up and used as a tool for policy simulations. The review of existing literature already suggests that, the compost commercial value i.e. value of substitution (33,740 FCFA tonne(-1)) is higher compared to the compost real price (30,000 FCFA tonne(-1)), proving that it could be profitable to substitute the mineral fertilizer by compost. Further results from the scenarios used in the modelling exercise show that, increasing the compost availability is the most favourable policy for the substitution of mineral fertilizer by compost. This policy helps to save about 18.55% of the annual imported mineral fertilizer quantity and thus to avoid approximately 8.47% of the yearly total import expenditure in Cameroon. The policy of decreasing the transport rate of compost in regions that are far from the city is also favourable to the substitution. Therefore, in order to encourage the substitution of mineral fertilizer by compost, programmes of popularization of compost should be highlighted and be among the top priorities in the agricultural policy of the Cameroon government.

  15. Semen quality, biochemistry and mineral content of five strains of ...

    African Journals Online (AJOL)

    The study was conducted to evaluate the genetic effect on semen quality, biochemistry and mineral content of three strains of Nigerian indigenous and two exotic cocks. One hundred (100) adult local breeding cocks comprising 20 normal, 20 frizzle and 20 naked necks, 20 dominant black and 20 dominant blue feather were ...

  16. An animal model of differential genetic risk for methamphetamine intake

    Directory of Open Access Journals (Sweden)

    Tamara ePhillips

    2015-09-01

    Full Text Available The question of whether genetic factors contribute to risk for methamphetamine (MA use and dependence has not been intensively investigated. Compared to human populations, genetic animal models offer the advantages of control over genetic family history and drug exposure. Using selective breeding, we created lines of mice that differ in genetic risk for voluntary MA intake and identified the chromosomal addresses of contributory genes. A quantitative trait locus was identified on chromosome 10 that accounts for more than 50% of the genetic variance in MA intake in the selected mouse lines. In addition, behavioral and physiological screening identified differences corresponding with risk for MA intake that have generated hypotheses that are testable in humans. Heightened sensitivity to aversive and certain physiological effects of MA, such as MA-induced reduction in body temperature, are hallmarks of mice bred for low MA intake. Furthermore, unlike MA-avoiding mice, MA-preferring mice are sensitive to rewarding and reinforcing MA effects, and to MA-induced increases in brain extracellular dopamine levels. Gene expression analyses implicate the importance of a network enriched in transcription factor genes, some of which regulate the mu opioid receptor gene, Oprm1, in risk for MA use. Neuroimmune factors appear to play a role in differential response to MA between the mice bred for high and low intake. In addition, chromosome 10 candidate gene studies provide strong support for a trace amine associated receptor 1 gene, Taar1, polymorphism in risk for MA intake. MA is a trace amine-associated receptor 1 (TAAR1 agonist, and a non-functional Taar1 allele segregates with high MA consumption. Thus, reduced TAAR1 function has the potential to increase risk for MA use. Overall, existing findings support the MA drinking lines as a powerful model for identifying genetic factors involved in determining risk for harmful MA use. Future directions include the

  17. Artificial Neural Network Genetic Algorithm As Powerful Tool to Predict and Optimize In vitro Proliferation Mineral Medium for G × N15 Rootstock

    Science.gov (United States)

    Arab, Mohammad M.; Yadollahi, Abbas; Shojaeiyan, Abdolali; Ahmadi, Hamed

    2016-01-01

    One of the major obstacles to the micropropagation of Prunus rootstocks has, up until now, been the lack of a suitable tissue culture medium. Therefore, reformulation of culture media or modification of the mineral content might be a breakthrough to improve in vitro multiplication of G × N15 (garnem). We found artificial neural network in combination of genetic algorithm (ANN-GA) as a very precise and powerful modeling system for optimizing the culture medium, So that modeling the effects of MS mineral salts (NH4+, NO3-, PO42-, Ca2+, K+, SO42-, Mg2+, and Cl−) on in vitro multiplication parameters (the number of microshoots per explant, average length of microshoots, weight of calluses derived from the base of stem explants, and quality index of plantlets) of G × N15. Showed high R2 correlation values of 87, 91, 87, and 74 between observed and predicted values were found for these four growth parameters, respectively. According to the ANN-GA results, among the input variables, NH4+ and NO3- had the highest values of VSR in data set for the parameters studied. The ANN-GA showed that the best proliferation rate was obtained from medium containing (mM) 27.5 NO3-, 14 NH4+, 5 Ca2+, 25.9 K+, 0.7 Mg2+, 1.1 PO42-, 4.7 SO42-, and 0.96 Cl−. The performance of the medium optimized by ANN-GA, denoted as YAS (Yadollahi, Arab and Shojaeiyan), was compared to that of standard growth media for all Prunus rootstock, including the Murashige and Skoog (MS) medium, (specific media) EM, Quoirin and Lepoivre (QL) medium, and woody plant medium (WPM) Prunus. With respect to shoot length, shoot number per cultured explant and productivity (number of microshoots × length of microshoots), YAS was found to be superior to other media for in vitro multiplication of G × N15 rootstocks. In addition, our results indicated that by using ANN-GA, we were able to determine a suitable culture medium formulation to achieve the best in vitro productivity. PMID:27807436

  18. Artificial Neural Network Genetic Algorithm As Powerful Tool to Predict and Optimize In vitro Proliferation Mineral Medium for G × N15 Rootstock.

    Science.gov (United States)

    Arab, Mohammad M; Yadollahi, Abbas; Shojaeiyan, Abdolali; Ahmadi, Hamed

    2016-01-01

    One of the major obstacles to the micropropagation of Prunus rootstocks has, up until now, been the lack of a suitable tissue culture medium. Therefore, reformulation of culture media or modification of the mineral content might be a breakthrough to improve in vitro multiplication of G × N15 (garnem). We found artificial neural network in combination of genetic algorithm (ANN-GA) as a very precise and powerful modeling system for optimizing the culture medium, So that modeling the effects of MS mineral salts ([Formula: see text], [Formula: see text], [Formula: see text], Ca 2+ , K + , [Formula: see text], Mg 2+ , and Cl - ) on in vitro multiplication parameters (the number of microshoots per explant, average length of microshoots, weight of calluses derived from the base of stem explants, and quality index of plantlets) of G × N15. Showed high R 2 correlation values of 87, 91, 87, and 74 between observed and predicted values were found for these four growth parameters, respectively. According to the ANN-GA results, among the input variables, [Formula: see text] and [Formula: see text] had the highest values of VSR in data set for the parameters studied. The ANN-GA showed that the best proliferation rate was obtained from medium containing (mM) 27.5 [Formula: see text], 14 [Formula: see text], 5 Ca 2+ , 25.9 K + , 0.7 Mg 2+ , 1.1 [Formula: see text], 4.7 [Formula: see text], and 0.96 Cl - . The performance of the medium optimized by ANN-GA, denoted as YAS (Yadollahi, Arab and Shojaeiyan), was compared to that of standard growth media for all Prunus rootstock, including the Murashige and Skoog (MS) medium, (specific media) EM, Quoirin and Lepoivre (QL) medium, and woody plant medium (WPM) Prunus . With respect to shoot length, shoot number per cultured explant and productivity (number of microshoots × length of microshoots), YAS was found to be superior to other media for in vitro multiplication of G × N15 rootstocks. In addition, our results indicated that by

  19. Developing the lithotectonic framework and model for sulphide mineralization in the Jebilet Massif, Morocco: implications for regional exploration

    OpenAIRE

    Lusty, Paul A.J.; Goodenough, Kathryn M.; Essaifi, Abderrahim; Maacha, Lhou

    2015-01-01

    The central Jebilet massif, part of the North African Variscan Belt, hosts significant polymetallic sulphide mineralization. It is generally considered syngenetic and has many features of volcanogenic massive sulphide (VMS) mineralization. However, some characteristics are not compatible with a classic VMS model and two alternative scenarios for formation have been proposed. Our preliminary research favours a complex, multi-stage development of the sulphide deposits...

  20. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models

    Directory of Open Access Journals (Sweden)

    Paula Moran

    2016-01-01

    Full Text Available The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia.

  1. A Rational Model In Theoretical Genetics

    Directory of Open Access Journals (Sweden)

    Karl Javorszky

    2008-07-01

    Full Text Available This model connects information processing in biological organisms with methods and concepts used in classical, technical information processing. The central concept shows copying and regulatory interaction between a logical sequence consisting of triplets and the amount of constituents of a set. The basic mathematical model of information processing within a biological cell has been worked out. The cell in the model copies its present state into a sequence and reads it off the sequence. The sequence comes in triplets and is not one sequence but appears in two almost identical varieties. We treat consecutive and contemporary assemblies of information carrying media as equally suited to contain information. Methods used so far utilised the consecutive property of media, while in biology one observes the concurrent existence of specific realisations of possibilities. Genetics connects the two approaches by using an interplay between consecutively (sequentially ordered logical markers (the DNA and the state of the set engulfing the DNA. Several mathematical tools have been evolved to assemble an interface between sequentially ordered carriers and the same number of carriers if they arrive contemporaneously. Using linguistic theory and formal logic one concludes that measurement(s on a cell are a (set of logical sentence(s relating to an assembly of n objects with group structures among each other. We linearise and count all possible group relations on a set of n objects and introduce the concept of multidimensional partitions hitherto left undefined. We introduce the concept of a maximally structured set by establishing an upper limit to the information carrying capacity of n objects used commutatively and sequentially at the same time (like genetics does. The copying and re-copying mechanism which is the core matter with genetics appears in the model as differing transmission efficiency coefficients of media if the media are used once sequentially

  2. Characterization of bioactive compounds, antioxidant activity and minerals in landraces of pumpkin (Cucurbita moschata cultivated in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Daniela PRIORI

    2016-01-01

    Full Text Available Abstract The objective of this work was to evaluate the genetic variability for the synthesis of bioactive compounds and minerals in pumpkin (Cucurbita moschata landraces. Total phenolic compounds, carotenoids, antioxidant activity and minerals were evaluated in 10 accessions of Cucurbita moschata landraces from the Genebank of Embrapa Temperate Agriculture (Pelotas - RS, Brazil. Twenty plants of each accession were cultivated in the field during the spring/summer of 2013/2014. After harvesting of mature fruits, the seeds were discarded and opposite longitudinal portions of the pulp were manually prepared for analysis of the bioactive compounds. For the determination of minerals, pumpkin samples were frozen in plastic bags, and after freeze-dried and milled. All analysis were performed in triplicate. The data obtained showed high genetic variability for the synthesis of phenolic compounds, carotenoids, antioxidant activity and minerals. The accessions C52, C81, C267 e C389 showed high levels of antioxidants and minerals, being recommended for use in pumpkin breeding programs. The accessions C52 and C389 are promising, especially because they present the highest levels of total carotenoids.

  3. Characterization of bioactive compounds, antioxidant activity and minerals in landraces of pumpkin (Cucurbita moschata cultivated in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Daniela PRIORI

    Full Text Available Abstract The objective of this work was to evaluate the genetic variability for the synthesis of bioactive compounds and minerals in pumpkin (Cucurbita moschata landraces. Total phenolic compounds, carotenoids, antioxidant activity and minerals were evaluated in 10 accessions of Cucurbita moschata landraces from the Genebank of Embrapa Temperate Agriculture (Pelotas - RS, Brazil. Twenty plants of each accession were cultivated in the field during the spring/summer of 2013/2014. After harvesting of mature fruits, the seeds were discarded and opposite longitudinal portions of the pulp were manually prepared for analysis of the bioactive compounds. For the determination of minerals, pumpkin samples were frozen in plastic bags, and after freeze-dried and milled. All analysis were performed in triplicate. The data obtained showed high genetic variability for the synthesis of phenolic compounds, carotenoids, antioxidant activity and minerals. The accessions C52, C81, C267 e C389 showed high levels of antioxidants and minerals, being recommended for use in pumpkin breeding programs. The accessions C52 and C389 are promising, especially because they present the highest levels of total carotenoids.

  4. Mineral transformations during the dissolution of uranium ore minerals by dissimilatory metal-reducing bacteria

    Science.gov (United States)

    Glasauer, S.; Weidler, P.; Fakra, S.; Tyliszczak, T.; Shuh, D.

    2011-12-01

    formed extensive biofilms or flocs that contained U and V in the exopolymer, but excluded these metals from the bacteria. This suggests a specific mechanism to inhibit metal sorption to cell wall components. The example illustrates the interplay between bacteria and minerals under conditions that model oligotrophic survival, and provides insight on U mobilization from common uranium ore minerals.

  5. Genetics of traffic assignment models for strategic transport planning

    NARCIS (Netherlands)

    Bliemer, M.C.J.; Raadsen, M.P.H.; Brederode, L.J.N.; Bell, M.G.H.; Wismans, Luc Johannes Josephus; Smith, M.J.

    2016-01-01

    This paper presents a review and classification of traffic assignment models for strategic transport planning purposes by using concepts analogous to genetics in biology. Traffic assignment models share the same theoretical framework (DNA), but differ in capability (genes). We argue that all traffic

  6. Accumulation of biomass and mineral elements with calendar time by corn: application of the expanded growth model.

    Directory of Open Access Journals (Sweden)

    Allen R Overman

    Full Text Available The expanded growth model is developed to describe accumulation of plant biomass (Mg ha(-1 and mineral elements (kg ha(-1 in with calendar time (wk. Accumulation of plant biomass with calendar time occurs as a result of photosynthesis for green land-based plants. A corresponding accumulation of mineral elements such as nitrogen, phosphorus, and potassium occurs from the soil through plant roots. In this analysis, the expanded growth model is tested against high quality, published data on corn (Zea mays L. growth. Data from a field study in South Carolina was used to evaluate the application of the model, where the planting time of April 2 in the field study maximized the capture of solar energy for biomass production. The growth model predicts a simple linear relationship between biomass yield and the growth quantifier, which is confirmed with the data. The growth quantifier incorporates the unit processes of distribution of solar energy which drives biomass accumulation by photosynthesis, partitioning of biomass between light-gathering and structural components of the plants, and an aging function. A hyperbolic relationship between plant nutrient uptake and biomass yield is assumed, and is confirmed for the mineral elements nitrogen (N, phosphorus (P, and potassium (K. It is concluded that the rate limiting process in the system is biomass accumulation by photosynthesis and that nutrient accumulation occurs in virtual equilibrium with biomass accumulation.

  7. Accumulation of Biomass and Mineral Elements with Calendar Time by Corn: Application of the Expanded Growth Model

    Science.gov (United States)

    Overman, Allen R.; Scholtz, Richard V.

    2011-01-01

    The expanded growth model is developed to describe accumulation of plant biomass (Mg ha−1) and mineral elements (kg ha−1) in with calendar time (wk). Accumulation of plant biomass with calendar time occurs as a result of photosynthesis for green land-based plants. A corresponding accumulation of mineral elements such as nitrogen, phosphorus, and potassium occurs from the soil through plant roots. In this analysis, the expanded growth model is tested against high quality, published data on corn (Zea mays L.) growth. Data from a field study in South Carolina was used to evaluate the application of the model, where the planting time of April 2 in the field study maximized the capture of solar energy for biomass production. The growth model predicts a simple linear relationship between biomass yield and the growth quantifier, which is confirmed with the data. The growth quantifier incorporates the unit processes of distribution of solar energy which drives biomass accumulation by photosynthesis, partitioning of biomass between light-gathering and structural components of the plants, and an aging function. A hyperbolic relationship between plant nutrient uptake and biomass yield is assumed, and is confirmed for the mineral elements nitrogen (N), phosphorus (P), and potassium (K). It is concluded that the rate limiting process in the system is biomass accumulation by photosynthesis and that nutrient accumulation occurs in virtual equilibrium with biomass accumulation. PMID:22194842

  8. The elastic solid solution model for minerals at high pressures and temperatures

    Science.gov (United States)

    Myhill, R.

    2018-02-01

    Non-ideality in mineral solid solutions affects their elastic and thermodynamic properties, their thermobaric stability, and the equilibrium phase relations in multiphase assemblages. At a given composition and state of order, non-ideality in minerals is typically modelled via excesses in Gibbs free energy which are either constant or linear with respect to pressure and temperature. This approach has been extremely successful when modelling near-ideal solutions. However, when the lattice parameters of the solution endmembers differ significantly, extrapolations of thermodynamic properties to high pressures using these models may result in significant errors. In this paper, I investigate the effect of parameterising solution models in terms of the Helmholtz free energy, treating volume (or lattice parameters) rather than pressure as an independent variable. This approach has been previously applied to models of order-disorder, but the implications for the thermodynamics and elasticity of solid solutions have not been fully explored. Solid solution models based on the Helmholtz free energy are intuitive at a microscopic level, as they automatically include the energetic contribution from elastic deformation of the endmember lattices. A chemical contribution must also be included in such models, which arises from atomic exchange within the solution. Derivations are provided for the thermodynamic properties of n-endmember solutions. Examples of the use of the elastic model are presented for the alkali halides, pyroxene, garnet, and bridgmanite solid solutions. Elastic theory provides insights into the microscopic origins of non-ideality in a range of solutions, and can make accurate predictions of excess enthalpies, entropies, and volumes as a function of volume and temperature. In solutions where experimental data are sparse or contradictory, the Helmholtz free energy approach can be used to assess the magnitude of excess properties and their variation as a function

  9. Polarization in Raman spectroscopy helps explain bone brittleness in genetic mouse models

    Science.gov (United States)

    Makowski, Alexander J.; Pence, Isaac J.; Uppuganti, Sasidhar; Zein-Sabatto, Ahbid; Huszagh, Meredith C.; Mahadevan-Jansen, Anita; Nyman, Jeffry S.

    2014-11-01

    Raman spectroscopy (RS) has been extensively used to characterize bone composition. However, the link between bone biomechanics and RS measures is not well established. Here, we leveraged the sensitivity of RS polarization to organization, thereby assessing whether RS can explain differences in bone toughness in genetic mouse models for which traditional RS peak ratios are not informative. In the selected mutant mice-activating transcription factor 4 (ATF4) or matrix metalloproteinase 9 (MMP9) knock-outs-toughness is reduced but differences in bone strength do not exist between knock-out and corresponding wild-type controls. To incorporate differences in the RS of bone occurring at peak shoulders, a multivariate approach was used. Full spectrum principal components analysis of two paired, orthogonal bone orientations (relative to laser polarization) improved genotype classification and correlation to bone toughness when compared to traditional peak ratios. When applied to femurs from wild-type mice at 8 and 20 weeks of age, the principal components of orthogonal bone orientations improved age classification but not the explanation of the maturation-related increase in strength. Overall, increasing polarization information by collecting spectra from two bone orientations improves the ability of multivariate RS to explain variance in bone toughness, likely due to polarization sensitivity to organizational changes in both mineral and collagen.

  10. Cross-validation analysis for genetic evaluation models for ranking in endurance horses.

    Science.gov (United States)

    García-Ballesteros, S; Varona, L; Valera, M; Gutiérrez, J P; Cervantes, I

    2018-01-01

    Ranking trait was used as a selection criterion for competition horses to estimate racing performance. In the literature the most common approaches to estimate breeding values are the linear or threshold statistical models. However, recent studies have shown that a Thurstonian approach was able to fix the race effect (competitive level of the horses that participate in the same race), thus suggesting a better prediction accuracy of breeding values for ranking trait. The aim of this study was to compare the predictability of linear, threshold and Thurstonian approaches for genetic evaluation of ranking in endurance horses. For this purpose, eight genetic models were used for each approach with different combinations of random effects: rider, rider-horse interaction and environmental permanent effect. All genetic models included gender, age and race as systematic effects. The database that was used contained 4065 ranking records from 966 horses and that for the pedigree contained 8733 animals (47% Arabian horses), with an estimated heritability around 0.10 for the ranking trait. The prediction ability of the models for racing performance was evaluated using a cross-validation approach. The average correlation between real and predicted performances across genetic models was around 0.25 for threshold, 0.58 for linear and 0.60 for Thurstonian approaches. Although no significant differences were found between models within approaches, the best genetic model included: the rider and rider-horse random effects for threshold, only rider and environmental permanent effects for linear approach and all random effects for Thurstonian approach. The absolute correlations of predicted breeding values among models were higher between threshold and Thurstonian: 0.90, 0.91 and 0.88 for all animals, top 20% and top 5% best animals. For rank correlations these figures were 0.85, 0.84 and 0.86. The lower values were those between linear and threshold approaches (0.65, 0.62 and 0.51). In

  11. Applying a health action model to predict and improve healthy behaviors in coal miners.

    Science.gov (United States)

    Vahedian-Shahroodi, Mohammad; Tehrani, Hadi; Mohammadi, Faeze; Gholian-Aval, Mahdi; Peyman, Nooshin

    2018-05-01

    One of the most important ways to prevent work-related diseases in occupations such as mining is to promote healthy behaviors among miners. This study aimed to predict and promote healthy behaviors among coal miners by using a health action model (HAM). The study was conducted on 200 coal miners in Iran in two steps. In the first step, a descriptive study was implemented to determine predictive constructs and effectiveness of HAM on behavioral intention. The second step involved a quasi-experimental study to determine the effect of an HAM-based education intervention. This intervention was implemented by the researcher and the head of the safety unit based on the predictive construct specified in the first step over 12 sessions of 60 min. The data was collected using an HAM questionnaire and a checklist of healthy behavior. The results of the first step of the study showed that attitude, belief, and normative constructs were meaningful predictors of behavioral intention. Also, the results of the second step revealed that the mean score of attitude and behavioral intention increased significantly after conducting the intervention in the experimental group, while the mean score of these constructs decreased significantly in the control group. The findings of this study showed that HAM-based educational intervention could improve the healthy behaviors of mine workers. Therefore, it is recommended to extend the application of this model to other working groups to improve healthy behaviors.

  12. Numerical modeling of the impact of temperature on the behavior of minerals in the Soultz-sous-Forêts enhanced geothermal system

    Science.gov (United States)

    Van Ngo, Viet; Lucas, Yann; Clément, Alain; Fritz, Bertrand

    2015-04-01

    Operation of the enhanced geothermal system (EGS) requires to re-inject fluid, after heat exchange at the surface to the energy production, into the geothermal reservoir. This cold re-injected fluid can cause a strong disequilibrium with the fluid and granitic rock within the geothermal reservoir and then implies the possible dissolution/precipitation of minerals. The hydrothermal alterations include the transformation of plagioclase, biotite and K-feldspar and the precipitation of various secondary minerals. The major sealing phases observed in the main fracture zones are quartz, calcite, and clay minerals. These mineralogical transformations may modify the porosity, permeability and fluid pathways of the geothermal reservoir. In the Soultz-sous-Forêts EGS (Alsace, France), the hydraulic connection between the injection well and the production well is quite poor. Therefore, understanding the impact of changes in temperature, which are caused by the re-injected fluid, on the behavior of minerals (especially for the main newly-formed minerals such as quartz, calcite and clay minerals) is a critical preliminary step for the long-term prediction of their evolution. The approach used in the present work is typically based on a geochemical code, called THERMA, which enables to calculate the changes in equilibrium constants of all primary and secondary minerals and aqueous species as a function of temperature. Our model accounted for a wide range of different mineral groups in order to make sure a large freedom for the numerical calculations. The modeling results showed that when the temperature of geothermal reservoir is cooled down, quartz, calcite, illites, galena and pyrite have tendency towards equilibrium state, which indicates that they are precipitated under the geothermal conditions. In contrast, other minerals including plagioclase, K-feldspar and biotite remained unsaturated. These behaviors of minerals were further illustrated by the Khorzinsky stability

  13. Applicability of genetic algorithms to parameter estimation of economic models

    Directory of Open Access Journals (Sweden)

    Marcel Ševela

    2004-01-01

    Full Text Available The paper concentrates on capability of genetic algorithms for parameter estimation of non-linear economic models. In the paper we test the ability of genetic algorithms to estimate of parameters of demand function for durable goods and simultaneously search for parameters of genetic algorithm that lead to maximum effectiveness of the computation algorithm. The genetic algorithms connect deterministic iterative computation methods with stochastic methods. In the genteic aůgorithm approach each possible solution is represented by one individual, those life and lifes of all generations of individuals run under a few parameter of genetic algorithm. Our simulations resulted in optimal mutation rate of 15% of all bits in chromosomes, optimal elitism rate 20%. We can not set the optimal extend of generation, because it proves positive correlation with effectiveness of genetic algorithm in all range under research, but its impact is degreasing. The used genetic algorithm was sensitive to mutation rate at most, than to extend of generation. The sensitivity to elitism rate is not so strong.

  14. Minerals

    Science.gov (United States)

    Minerals are important for your body to stay healthy. Your body uses minerals for many different jobs, including keeping your bones, muscles, heart, and brain working properly. Minerals are also important for making enzymes and hormones. ...

  15. Minerals from Macedonia: XV. Sivec mineral assemble

    International Nuclear Information System (INIS)

    Boev, Blazho; Jovanovski, Gligor; Makreski, Petre; Bermanec, Vladimir

    2005-01-01

    The paper presents investigations carried out on the collected minerals from the Sivec deposit. It is situated in the vicinity of the town of Prilep, representing a rare occurrence of sugary white dolomite marbles. The application of suitable methods of exploitation of decorative-dimension stones makes possible to obtain large amounts of commercial blocks well known in the world. Despite the existence of dolomite marbles, a series of exotic minerals are typical in Sivec mineralization. Among them, the most significant are: calcite, fluorite, rutile, phlogopite, corundum, diaspore, almandine, kosmatite (clintonite or margarite), clinochlore, muscovite, quartz, pyrite, tourmaline and zoisite. An attempt to identify ten collected minerals using the FT IR spectroscopy is performed. The identification of the minerals was based on the comparison of the infrared spectra of our specimens with the corresponding literature data for the mineral species originating all over the world. The coloured pictures of all studied silicate minerals are presented as well. (Author)

  16. Mineralizations of the Lavalleja Group (Uruguay), a Probable Neoproterozoic Volcano-sedimentary Sequence

    International Nuclear Information System (INIS)

    Sanchez Bettucci, L.; Oyhantcabal, P.; Loureiro, J.; Basei, M.; Ramos, V.; Preciozzi, F.; Basei, M.

    2004-01-01

    The Lavalleja Group is located in the southern extreme of the Dom Feliciano Belt, being tentatively correlated with the Porongos and Brusque Groups of Brazil. The basement of the Lavalleja Group is probably represented by granitic gneissic rocks of the Campanero Unit with ages, in the southern portion, ranging from 1.75 to 2.1 Ga (U-Pb in zircon). The Lavalleja Group is characterized by narrow bands of meta sedimentary and meta volcanic rocks and it is separated in three formations, namely (from base to top): Zanja del Tigre, Fuente del Puma and Minas. Outcrops assigned to the Minas Formation have been recently correlated with the Arroyo del Soldado Group. Only the Fuente del Puma formation hosts base metals, Au and Ag occurrences. The Fuente del Puma formation is divided into three informal units: sedimentary, volcanic and hornblenditic gabbros. The sedimentary unit is characterized by an important amount of carbonates. Syn collisional to pos tectonic granitic bodies (Carapé Complex) intrudes the Lavalleja Group and the Campanero Unit. Several mineralizations are located in the Fuente del Puma Formation, those associated to Arrospide, Ramallo-Reus, Chape, Valencia, La Oriental, Apolonia, Redondo Hill, La China and La Paloma mines are the most important. In addition, many occurrences of Cu-Zn-Pb were recognized in the region. The Cu-Zn-Pb mineralization includes massive sulfides with pyrite-chalcopyrite-sphalerite-galena-pyrrothyte, arsenopyrite-hematite into small bodies with lenticular shape. The host rock shows frequently hydrothermal alteration. The geochemistry and the geological features of the mineralizations suggest Besshi Massive Sulphide Zn-Cu-Pb and SEDEX Zn-Pb as most probably genetic models for the deposits related to the Neoproterozoic orogeny. Early mineralizations are syngenetic and were formed on the sea floor, although the main mineralizations are related to remobilization during syn- to late-metamorphic events and thrusting

  17. Heuristics Miner for E-Commerce Visitor Access Pattern Representation

    Directory of Open Access Journals (Sweden)

    Kartina Diah Kesuma Wardhani

    2017-06-01

    Full Text Available E-commerce click stream data can form a certain pattern that describe visitor behavior while surfing the e-commerce website. This pattern can be used to initiate a design to determine alternative access sequence on the website. This research use heuristic miner algorithm to determine the pattern. σ-Algorithm and Genetic Mining are methods used for pattern recognition with frequent sequence item set approach. Heuristic Miner is an evolved form of those methods. σ-Algorithm assume that an activity in a website, that has been recorded in the data log, is a complete sequence from start to finish, without any tolerance to incomplete data or data with noise. On the other hand, Genetic Mining is a method that tolerate incomplete data or data with noise, so it can generate a more detailed e-commerce visitor access pattern. In this study, the same sequence of events obtained from six-generated patterns. The resulting pattern of visitor access is that visitors are often access the home page and then the product category page or the home page and then the full text search page.

  18. Genetic algorithms and experimental discrimination of SUSY models

    International Nuclear Information System (INIS)

    Allanach, B.C.; Quevedo, F.; Grellscheid, D.

    2004-01-01

    We introduce genetic algorithms as a means to estimate the accuracy required to discriminate among different models using experimental observables. We exemplify the technique in the context of the minimal supersymmetric standard model. If supersymmetric particles are discovered, models of supersymmetry breaking will be fit to the observed spectrum and it is beneficial to ask beforehand: what accuracy is required to always allow the discrimination of two particular models and which are the most important masses to observe? Each model predicts a bounded patch in the space of observables once unknown parameters are scanned over. The questions can be answered by minimising a 'distance' measure between the two hypersurfaces. We construct a distance measure that scales like a constant fraction of an observable, since that is how the experimental errors are expected to scale. Genetic algorithms, including concepts such as natural selection, fitness and mutations, provide a solution to the minimisation problem. We illustrate the efficiency of the method by comparing three different classes of string models for which the above questions could not be answered with previous techniques. The required accuracy is in the range accessible to the Large Hadron Collider (LHC) when combined with a future linear collider (LC) facility. The technique presented here can be applied to more general classes of models or observables. (author)

  19. Initial assessment of a model relating intratumoral genetic heterogeneity to radiological morphology

    Science.gov (United States)

    Noterdaeme, O; Kelly, M; Friend, P; Soonowalla, Z; Steers, G; Brady, M

    2010-01-01

    Tumour heterogeneity has major implications for tumour development and response to therapy. Tumour heterogeneity results from mutations in the genes responsible for mismatch repair or maintenance of chromosomal stability. Cells with different genetic properties may grow at different rates and exhibit different resistance to therapeutic interventions. To date, there exists no approach to non-invasively assess tumour heterogeneity. Here we present a biologically inspired model of tumour growth, which relates intratumoral genetic heterogeneity to gross morphology visible on radiological images. The model represents the development of a tumour as a set of expanding spheres, each sphere representing a distinct clonal centre, with the sprouting of new spheres corresponding to new clonal centres. Each clonal centre may possess different characteristics relating to genetic composition, growth rate and response to treatment. We present a clinical example for which the model accurately tracks tumour growth and shows the correspondence to genetic variation (as determined by array comparative genomic hybridisation). One clinical implication of our work is that the assessment of heterogeneous tumours using Response Evaluation Criteria In Solid Tumours (RECIST) or volume measurements may not accurately reflect tumour growth, stability or the response to treatment. We believe that this is the first model linking the macro-scale appearance of tumours to their genetic composition. We anticipate that our model will provide a more informative way to assess the response of heterogeneous tumours to treatment, which is of increasing importance with the development of novel targeted anti-cancer treatments. PMID:19690073

  20. Modelling of niobium sorption on clay minerals in sodium and calcium perchlorate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ervanne, Heini; Hakanen, Martti; Lehto, Jukka [Helsinki Univ. (Finland). Laboratory of Radiochemistry

    2014-11-01

    The sorption behaviour of niobium on kaolinite and illite minerals in sodium and calcium perchlorate solutions was evaluated with use of the mass distribution coefficient, Rd, obtained in batch sorption experiments. Very high distribution coefficient values, about 100 m{sup 3}/kg, were obtained for both minerals in the neutral pH range between 6 and 8. Values were somewhat lower at pH 5. In NaClO{sub 4} solution, the sorption of niobium starts to decrease at pH higher than 8. This is in agreement with the increase, with pH, in the proportion of anionic niobate species, which are presumed to be low or non-sorbing. A similar decrease was not observed in Ca(ClO{sub 4}){sub 2} solution, probably owing to the influence of Ca on niobium solution speciation and surface species. The surface complexation model was applied to model the Rd values. The model fitted well for the NaClO{sub 4} solution but only at pH below 9 for the Ca(ClO{sub 4}){sub 2} solution. The discrepancy between the strong sorption of niobium in calcium-bearing solution at high pH and the calculated speciation is due in part to the non-inclusion of calcium niobate solution species and Ca-Nb compounds in the present NEA and other similar thermodynamic databases.

  1. Different concepts and models of information for family-relevant genetic findings: comparison and ethical analysis.

    Science.gov (United States)

    Lenk, Christian; Frommeld, Debora

    2015-08-01

    Genetic predispositions often concern not only individual persons, but also other family members. Advances in the development of genetic tests lead to a growing number of genetic diagnoses in medical practice and to an increasing importance of genetic counseling. In the present article, a number of ethical foundations and preconditions for this issue are discussed. Four different models for the handling of genetic information are presented and analyzed including a discussion of practical implications. The different models' ranges of content reach from a strictly autonomous position over self-governed arrangements in the practice of genetic counseling up to the involvement of official bodies and committees. The different models show a number of elements which seem to be very useful for the handling of genetic data in families from an ethical perspective. In contrast, the limitations of the standard medical attempt regarding confidentiality and personal autonomy in the context of genetic information in the family are described. Finally, recommendations for further ethical research and the development of genetic counseling in families are given.

  2. Discussion on the genesis and mineralization of sandstone type uranium deposit in the southern-central Longchuanjiang basin, western Yunnan province

    International Nuclear Information System (INIS)

    Cai Yuqi; Li Mangen

    2002-01-01

    The author mainly discusses the character of the depositional systems, geological structures and ore-bearing series in the south-central Longchuanjiang basin, and points out that the uranium mineralization is closely related to the two depositional discontinuities caused by the tectonic evolution. Based on the characteristics of uranium mineralization in the area, pitchblende, uranium blacks and phosphuranylite are discovered in No. 382 uranium deposit and radiometric super-micro-minerals in No. 381 deposit. The research on the uranium mineralization age in No. 382 deposit shows that the mineralization in the south-central part of the basin has genetically multi-staged

  3. Population genetics models of local ancestry.

    Science.gov (United States)

    Gravel, Simon

    2012-06-01

    Migrations have played an important role in shaping the genetic diversity of human populations. Understanding genomic data thus requires careful modeling of historical gene flow. Here we consider the effect of relatively recent population structure and gene flow and interpret genomes of individuals that have ancestry from multiple source populations as mosaics of segments originating from each population. This article describes general and tractable models for local ancestry patterns with a focus on the length distribution of continuous ancestry tracts and the variance in total ancestry proportions among individuals. The models offer improved agreement with Wright-Fisher simulation data when compared to the state-of-the art and can be used to infer time-dependent migration rates from multiple populations. Considering HapMap African-American (ASW) data, we find that a model with two distinct phases of "European" gene flow significantly improves the modeling of both tract lengths and ancestry variances.

  4. Parallel Genetic Algorithms for calibrating Cellular Automata models: Application to lava flows

    International Nuclear Information System (INIS)

    D'Ambrosio, D.; Spataro, W.; Di Gregorio, S.; Calabria Univ., Cosenza; Crisci, G.M.; Rongo, R.; Calabria Univ., Cosenza

    2005-01-01

    Cellular Automata are highly nonlinear dynamical systems which are suitable far simulating natural phenomena whose behaviour may be specified in terms of local interactions. The Cellular Automata model SCIARA, developed far the simulation of lava flows, demonstrated to be able to reproduce the behaviour of Etnean events. However, in order to apply the model far the prediction of future scenarios, a thorough calibrating phase is required. This work presents the application of Genetic Algorithms, general-purpose search algorithms inspired to natural selection and genetics, far the parameters optimisation of the model SCIARA. Difficulties due to the elevated computational time suggested the adoption a Master-Slave Parallel Genetic Algorithm far the calibration of the model with respect to the 2001 Mt. Etna eruption. Results demonstrated the usefulness of the approach, both in terms of computing time and quality of performed simulations

  5. Probabilistic failure analysis of bone using a finite element model of mineral-collagen composites.

    Science.gov (United States)

    Dong, X Neil; Guda, Teja; Millwater, Harry R; Wang, Xiaodu

    2009-02-09

    Microdamage accumulation is a major pathway for energy dissipation during the post-yield deformation of bone. In this study, a two-dimensional probabilistic finite element model of a mineral-collagen composite was developed to investigate the influence of the tissue and ultrastructural properties of bone on the evolution of microdamage from an initial defect in tension. The probabilistic failure analyses indicated that the microdamage progression would be along the plane of the initial defect when the debonding at mineral-collagen interfaces was either absent or limited in the vicinity of the defect. In this case, the formation of a linear microcrack would be facilitated. However, the microdamage progression would be scattered away from the initial defect plane if interfacial debonding takes place at a large scale. This would suggest the possible formation of diffuse damage. In addition to interfacial debonding, the sensitivity analyses indicated that the microdamage progression was also dependent on the other material and ultrastructural properties of bone. The intensity of stress concentration accompanied with microdamage progression was more sensitive to the elastic modulus of the mineral phase and the nonlinearity of the collagen phase, whereas the scattering of failure location was largely dependent on the mineral to collagen ratio and the nonlinearity of the collagen phase. The findings of this study may help understanding the post-yield behavior of bone at the ultrastructural level and shed light on the underlying mechanism of bone fractures.

  6. Controlling factors of uranium mineralization and prospect prediction in Qimantage area

    International Nuclear Information System (INIS)

    Yao Chunling; Zhu Pengfei; Cai Yuqi; Zhang Wenming; Zhao Yong'an; Song Jiye; Zhang Xiaojin

    2011-01-01

    Based on the analysis of regional geology in Qimantage area, the condition for uranium mineralization is summarized in regional geology setting, volcanic, granite and faults. This study shows that this area has favorable prospect for uranium mineralization. The metallogenic model is built up according to the controlling factors over uranium mineralization. Under this model, six potential areas are predicted in MRAS software with mineralization factors of synthetically geological information method. (authors)

  7. Genetic Algorithm Based Microscale Vehicle Emissions Modelling

    Directory of Open Access Journals (Sweden)

    Sicong Zhu

    2015-01-01

    Full Text Available There is a need to match emission estimations accuracy with the outputs of transport models. The overall error rate in long-term traffic forecasts resulting from strategic transport models is likely to be significant. Microsimulation models, whilst high-resolution in nature, may have similar measurement errors if they use the outputs of strategic models to obtain traffic demand predictions. At the microlevel, this paper discusses the limitations of existing emissions estimation approaches. Emission models for predicting emission pollutants other than CO2 are proposed. A genetic algorithm approach is adopted to select the predicting variables for the black box model. The approach is capable of solving combinatorial optimization problems. Overall, the emission prediction results reveal that the proposed new models outperform conventional equations in terms of accuracy and robustness.

  8. Genetic algorithms and genetic programming for multiscale modeling: Applications in materials science and chemistry and advances in scalability

    Science.gov (United States)

    Sastry, Kumara Narasimha

    2007-03-01

    Effective and efficient rnultiscale modeling is essential to advance both the science and synthesis in a, wide array of fields such as physics, chemistry, materials science; biology, biotechnology and pharmacology. This study investigates the efficacy and potential of rising genetic algorithms for rnultiscale materials modeling and addresses some of the challenges involved in designing competent algorithms that solve hard problems quickly, reliably and accurately. In particular, this thesis demonstrates the use of genetic algorithms (GAs) and genetic programming (GP) in multiscale modeling with the help of two non-trivial case studies in materials science and chemistry. The first case study explores the utility of genetic programming (GP) in multi-timescaling alloy kinetics simulations. In essence, GP is used to bridge molecular dynamics and kinetic Monte Carlo methods to span orders-of-magnitude in simulation time. Specifically, GP is used to regress symbolically an inline barrier function from a limited set of molecular dynamics simulations to enable kinetic Monte Carlo that simulate seconds of real time. Results on a non-trivial example of vacancy-assisted migration on a surface of a face-centered cubic (fcc) Copper-Cobalt (CuxCo 1-x) alloy show that GP predicts all barriers with 0.1% error from calculations for less than 3% of active configurations, independent of type of potentials used to obtain the learning set of barriers via molecular dynamics. The resulting method enables 2--9 orders-of-magnitude increase in real-time dynamics simulations taking 4--7 orders-of-magnitude less CPU time. The second case study presents the application of multiobjective genetic algorithms (MOGAs) in multiscaling quantum chemistry simulations. Specifically, MOGAs are used to bridge high-level quantum chemistry and semiempirical methods to provide accurate representation of complex molecular excited-state and ground-state behavior. Results on ethylene and benzene---two common

  9. Genetic analysis identifies DDR2 as a novel gene affecting bone mineral density and osteoporotic fractures in Chinese population.

    Directory of Open Access Journals (Sweden)

    Yan Guo

    Full Text Available DDR2 gene, playing an essential role in regulating osteoblast differentiation and chondrocyte maturation, may influence bone mineral density (BMD and osteoporosis, but the genetic variations actually leading to the association remain to be elucidated. Therefore, the aim of this study was to investigate whether the genetic variants in DDR2 are associated with BMD and fracture risk. This study was performed in three samples from two ethnicities, including 1,300 Chinese Han subjects, 700 Chinese Han subjects (350 with osteoporotic hip fractures and 350 healthy controls and 2,286 US white subjects. Twenty-eight SNPs in DDR2 were genotyped and tested for associations with hip BMD and fractures. We identified 3 SNPs in DDR2 significantly associated with hip BMD in the Chinese population after multiple testing adjustments, which were rs7521233 (P = 1.06×10-4, β: -0.018 for allele C, rs7553831 (P = 1.30×10-4, β: -0.018 for allele T, and rs6697469 (P = 1.59×10-3, β: -0.015 for allele C, separately. These three SNPs were in high linkage disequilibrium. Haplotype analyses detected two significantly associated haplotypes, including one haplotype in block 2 (P = 9.54×10-4, β: -0.016 where these three SNPs located. SNP rs6697469 was also associated with hip fractures (P = 0.043, OR: 1.42 in the Chinese population. The effect on fracture risk was consistent with its association with lower BMD. However, in the white population, we didn't observe significant associations with hip BMD. eQTL analyses revealed that SNPs associated with BMD also affected DDR2 mRNA expression levels in Chinese. Our findings, together with the prior biological evidence, suggest that DDR2 could be a new candidate for osteoporosis in Chinese population. Our results also reveal an ethnic difference, which highlights the need for further genetic studies in each ethnic group.

  10. Mouse genome-wide association and systems genetics identify Asxl2 as a regulator of bone mineral density and osteoclastogenesis.

    Directory of Open Access Journals (Sweden)

    Charles R Farber

    2011-04-01

    Full Text Available Significant advances have been made in the discovery of genes affecting bone mineral density (BMD; however, our understanding of its genetic basis remains incomplete. In the current study, genome-wide association (GWA and co-expression network analysis were used in the recently described Hybrid Mouse Diversity Panel (HMDP to identify and functionally characterize novel BMD genes. In the HMDP, a GWA of total body, spinal, and femoral BMD revealed four significant associations (-log10P>5.39 affecting at least one BMD trait on chromosomes (Chrs. 7, 11, 12, and 17. The associations implicated a total of 163 genes with each association harboring between 14 and 112 genes. This list was reduced to 26 functional candidates by identifying those genes that were regulated by local eQTL in bone or harbored potentially functional non-synonymous (NS SNPs. This analysis revealed that the most significant BMD SNP on Chr. 12 was a NS SNP in the additional sex combs like-2 (Asxl2 gene that was predicted to be functional. The involvement of Asxl2 in the regulation of bone mass was confirmed by the observation that Asxl2 knockout mice had reduced BMD. To begin to unravel the mechanism through which Asxl2 influenced BMD, a gene co-expression network was created using cortical bone gene expression microarray data from the HMDP strains. Asxl2 was identified as a member of a co-expression module enriched for genes involved in the differentiation of myeloid cells. In bone, osteoclasts are bone-resorbing cells of myeloid origin, suggesting that Asxl2 may play a role in osteoclast differentiation. In agreement, the knockdown of Asxl2 in bone marrow macrophages impaired their ability to form osteoclasts. This study identifies a new regulator of BMD and osteoclastogenesis and highlights the power of GWA and systems genetics in the mouse for dissecting complex genetic traits.

  11. Model parameters estimation and sensitivity by genetic algorithms

    International Nuclear Information System (INIS)

    Marseguerra, Marzio; Zio, Enrico; Podofillini, Luca

    2003-01-01

    In this paper we illustrate the possibility of extracting qualitative information on the importance of the parameters of a model in the course of a Genetic Algorithms (GAs) optimization procedure for the estimation of such parameters. The Genetic Algorithms' search of the optimal solution is performed according to procedures that resemble those of natural selection and genetics: an initial population of alternative solutions evolves within the search space through the four fundamental operations of parent selection, crossover, replacement, and mutation. During the search, the algorithm examines a large amount of solution points which possibly carries relevant information on the underlying model characteristics. A possible utilization of this information amounts to create and update an archive with the set of best solutions found at each generation and then to analyze the evolution of the statistics of the archive along the successive generations. From this analysis one can retrieve information regarding the speed of convergence and stabilization of the different control (decision) variables of the optimization problem. In this work we analyze the evolution strategy followed by a GA in its search for the optimal solution with the aim of extracting information on the importance of the control (decision) variables of the optimization with respect to the sensitivity of the objective function. The study refers to a GA search for optimal estimates of the effective parameters in a lumped nuclear reactor model of literature. The supporting observation is that, as most optimization procedures do, the GA search evolves towards convergence in such a way to stabilize first the most important parameters of the model and later those which influence little the model outputs. In this sense, besides estimating efficiently the parameters values, the optimization approach also allows us to provide a qualitative ranking of their importance in contributing to the model output. The

  12. [The discussion of the infiltrative model of mathematical knowledge to genetics teaching].

    Science.gov (United States)

    Liu, Jun; Luo, Pei-Gao

    2011-11-01

    Genetics, the core course of biological field, is an importance major-basic course in curriculum of many majors related with biology. Due to strong theoretical and practical as well as abstract of genetics, it is too difficult to study on genetics for many students. At the same time, mathematics is one of the basic courses in curriculum of the major related natural science, which has close relationship with the establishment, development and modification of genetics. In this paper, to establish the intrinsic logistic relationship and construct the integral knowledge network and to help students improving the analytic, comprehensive and logistic abilities, we applied some mathematical infiltrative model genetic knowledge in genetics teaching, which could help students more deeply learn and understand genetic knowledge.

  13. Estimation in a multiplicative mixed model involving a genetic relationship matrix

    Directory of Open Access Journals (Sweden)

    Eccleston John A

    2009-04-01

    Full Text Available Abstract Genetic models partitioning additive and non-additive genetic effects for populations tested in replicated multi-environment trials (METs in a plant breeding program have recently been presented in the literature. For these data, the variance model involves the direct product of a large numerator relationship matrix A, and a complex structure for the genotype by environment interaction effects, generally of a factor analytic (FA form. With MET data, we expect a high correlation in genotype rankings between environments, leading to non-positive definite covariance matrices. Estimation methods for reduced rank models have been derived for the FA formulation with independent genotypes, and we employ these estimation methods for the more complex case involving the numerator relationship matrix. We examine the performance of differing genetic models for MET data with an embedded pedigree structure, and consider the magnitude of the non-additive variance. The capacity of existing software packages to fit these complex models is largely due to the use of the sparse matrix methodology and the average information algorithm. Here, we present an extension to the standard formulation necessary for estimation with a factor analytic structure across multiple environments.

  14. Genetic search feature selection for affective modeling

    DEFF Research Database (Denmark)

    Martínez, Héctor P.; Yannakakis, Georgios N.

    2010-01-01

    Automatic feature selection is a critical step towards the generation of successful computational models of affect. This paper presents a genetic search-based feature selection method which is developed as a global-search algorithm for improving the accuracy of the affective models built....... The method is tested and compared against sequential forward feature selection and random search in a dataset derived from a game survey experiment which contains bimodal input features (physiological and gameplay) and expressed pairwise preferences of affect. Results suggest that the proposed method...

  15. Emerging technologies to create inducible and genetically defined porcine cancer models

    Directory of Open Access Journals (Sweden)

    Lawrence B Schook

    2016-02-01

    Full Text Available There is an emerging need for new animal models that address unmet translational cancer research requirements. Transgenic porcine models provide an exceptional opportunity due to their genetic, anatomic and physiological similarities with humans. Due to recent advances in the sequencing of domestic animal genomes and the development of new organism cloning technologies, it is now very feasible to utilize pigs as a malleable species, with similar anatomic and physiological features with humans, in which to develop cancer models. In this review, we discuss genetic modification technologies successfully used to produce porcine biomedical models, in particular the Cre-loxP System as well as major advances and perspectives the CRISPR/Cas9 System. Recent advancements in porcine tumor modeling and genome editing will bring porcine models to the forefront of translational cancer research.

  16. Emerging Technologies to Create Inducible and Genetically Defined Porcine Cancer Models.

    Science.gov (United States)

    Schook, Lawrence B; Rund, Laurie; Begnini, Karine R; Remião, Mariana H; Seixas, Fabiana K; Collares, Tiago

    2016-01-01

    There is an emerging need for new animal models that address unmet translational cancer research requirements. Transgenic porcine models provide an exceptional opportunity due to their genetic, anatomic, and physiological similarities with humans. Due to recent advances in the sequencing of domestic animal genomes and the development of new organism cloning technologies, it is now very feasible to utilize pigs as a malleable species, with similar anatomic and physiological features with humans, in which to develop cancer models. In this review, we discuss genetic modification technologies successfully used to produce porcine biomedical models, in particular the Cre-loxP System as well as major advances and perspectives the CRISPR/Cas9 System. Recent advancements in porcine tumor modeling and genome editing will bring porcine models to the forefront of translational cancer research.

  17. Quantitative genetics of Taura syndrome resistance in Pacific (Penaeus vannamei): A cure model approach

    DEFF Research Database (Denmark)

    Ødegård, Jørgen; Gitterle, Thomas; Madsen, Per

    2011-01-01

    cure survival model using Gibbs sampling, treating susceptibility and endurance as separate genetic traits. Results: Overall mortality at the end of test was 28%, while 38% of the population was considered susceptible to the disease. The estimated underlying heritability was high for susceptibility (0....... However, genetic evaluation of susceptibility based on the cure model showed clear associations with standard genetic evaluations that ignore the cure fraction for these data. Using the current testing design, genetic variation in observed survival time and absolute survival at the end of test were most...

  18. Modelling lung cancer due to radon and smoking in WISMUT miners: Preliminary results

    International Nuclear Information System (INIS)

    Bijwaard, H.; Dekkers, F.; Van Dillen, T.

    2011-01-01

    A mechanistic two-stage carcinogenesis model has been applied to model lung-cancer mortality in the largest uranium-miner cohort available. Models with and without smoking action both fit the data well. As smoking information is largely missing from the cohort data, a method has been devised to project this information from a case-control study onto the cohort. Model calculations using 256 projections show that the method works well. Preliminary results show that if an explicit smoking action is absent in the model, this is compensated by the values of the baseline parameters. This indicates that in earlier studies performed without smoking information, the results obtained for the radiation parameters are still valid. More importantly, the inclusion of smoking-related parameters shows that these mainly influence the later stages of lung-cancer development. (authors)

  19. Genetic hotels for the standard genetic code: evolutionary analysis based upon novel three-dimensional algebraic models.

    Science.gov (United States)

    José, Marco V; Morgado, Eberto R; Govezensky, Tzipe

    2011-07-01

    Herein, we rigorously develop novel 3-dimensional algebraic models called Genetic Hotels of the Standard Genetic Code (SGC). We start by considering the primeval RNA genetic code which consists of the 16 codons of type RNY (purine-any base-pyrimidine). Using simple algebraic operations, we show how the RNA code could have evolved toward the current SGC via two different intermediate evolutionary stages called Extended RNA code type I and II. By rotations or translations of the subset RNY, we arrive at the SGC via the former (type I) or via the latter (type II), respectively. Biologically, the Extended RNA code type I, consists of all codons of the type RNY plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The Extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. Since the dimensions of remarkable subsets of the Genetic Hotels are not necessarily integer numbers, we also introduce the concept of algebraic fractal dimension. A general decoding function which maps each codon to its corresponding amino acid or the stop signals is also derived. The Phenotypic Hotel of amino acids is also illustrated. The proposed evolutionary paths are discussed in terms of the existing theories of the evolution of the SGC. The adoption of 3-dimensional models of the Genetic and Phenotypic Hotels will facilitate the understanding of the biological properties of the SGC.

  20. Modelling soil organic carbon concentration of mineral soils in arable lands using legacy soil data

    DEFF Research Database (Denmark)

    Suuster, E; Ritz, Christian; Roostalu, H

    2012-01-01

    is appropriate if the study design has a hierarchical structure as in our scenario. We used the Estonian National Soil Monitoring data on arable lands to predict SOC concentrations of mineral soils. Subsequently, the model with the best prediction accuracy was applied to the Estonian digital soil map...

  1. A systematic study of multiple minerals precipitation modelling in wastewater treatment

    DEFF Research Database (Denmark)

    Kazadi Mbamba, Christian; Tait, Stephan; Flores-Alsina, Xavier

    2015-01-01

    coefficient values. This suggests that a large kinetic coefficient could be used when actual measured data is lacking for a particular precipitate-matrix combination. Correlation between the kinetic rate coefficients of different minerals was low, indicating that parameter values for individual minerals could...

  2. Medulloblastoma: Molecular Genetics and Animal Models

    Directory of Open Access Journals (Sweden)

    Corey Raffel

    2004-07-01

    Full Text Available Medulloblastoma is a primary brain tumor found in the cerebellum of children. The tumor occurs in association with two inherited cancer syndromes: Turcot syndrome and Gorlin syndrome. Insights into the molecular biology of the tumor have come from looking at alterations in the genes altered in these syndromes, PTC and APC, respectively. Murine models of medulloblastoma have been constructed based on these alterations. Additional murine models that, while mimicking the appearance of the human tumor, seem unrelated to the human tumor's molecular alterations have been made. In this review, the clinical picture, origin, molecular biology, murine models of medulloblastoma are discussed. Although a great deal has been discovered about this tumor, the genetic alterations responsible for tumor development in a majority of patients have yet to be described.

  3. Effects of hydrocarbon generation on fluid flow in the Ordos basin and relationship with uranium mineralization

    International Nuclear Information System (INIS)

    Xue Wei; Xue Chunji; Chi Guoxiang

    2012-01-01

    The Ordos Basin is not only an important uranium mineralization province but also a major producer of oil. gas and coal in China. The genetic relationship between uranium mineralization and hydrocarbons has been recognized by a number of previous studies, but it has not been well understood in terms of hydrodynamics of basin fluid flow. In a previous study we have demonstrated that the preferential localization of uranium mineralization in the upper part of the Jurassic strata may have been related to the interface of an upward flowing, reducing fluid and a downward flowing, oxidizing fluid, and that this interface may have been controlled by the interplay between fluid overpressure, which was related to disequilibrium sediment compaction and drove the upward flow, and topographic relief which drove the down- ward flow. In the present study, we carried out numerical modeling for the contribution of oil and gas generation to the development of fluid overpressure, in addition to sediment compaction and heating. Our results indicate that when hydrocarbon generation was taken into account, fluid overpressure during the Cretaceous was more than doubled in comparison with the simulation when hydrocarbon generation was not considered. Furthermore, fluid overpressure dissipation after ceasing of sedimentation slowed down relative to the no-hydrocarbon generation case. These results suggest that hydrocarbon generation may have played an important role in uranium mineralization, not only in providing reducing agents required for the mineralization, but also in contributing to the driving force to maintain the upward flow against the pushing of topography driven. downward flow, thus helping stabilize the interface between the two fluid system and localization of uranium mineralization. (authors)

  4. Inflammation and bone mineral density: A Mendelian randomization study

    OpenAIRE

    Huang, Jian V.; Schooling, C. Mary

    2017-01-01

    Osteoporosis is a common age-related disorder leading to an increase in osteoporotic fractures and resulting in significant suffering and disability. Inflammation may contribute to osteoporosis, as it does to many other chronic diseases. We examined whether inflammation is etiologically relevant to osteoporosis, assessed from bone mineral density (BMD), as a new potential target of intervention, or whether it is a symptom/biomarker of osteoporosis. We obtained genetic predictors of inflammato...

  5. Intracellular transport of ions in mineralizing tissues

    International Nuclear Information System (INIS)

    Matthews, J.L.

    This study resulted in the development of a new model for bone cell physiology and has provided the means for studying the mechanism and site of action of bone affecting hormones and vitamin metabolites and has provided new information on mechanisms of mineralization and mineralization defects

  6. Genetic models of absence epilepsy: New concepts and insights

    NARCIS (Netherlands)

    Luijtelaar, E.L.J.M. van; Coenen, A.M.L.; Schwartzkroin, P.A.

    2009-01-01

    The discovery, development, and use of genetic rodent models of absence epilepsy have led to a new theory about the origin of absence seizures. A focal zone has been identified in the peri-oral region of the somatosensory cortex in WAG/Rij and GAERS – the two most commonly used models – from which

  7. The Genetics of PPARG and the Skeleton

    Directory of Open Access Journals (Sweden)

    Cheryl Ackert-Bicknell

    2006-01-01

    (PPARG impact bone formation, but genetic studies connecting PPARG polymorphisms to skeletal phenotypes in humans have proven to be less than satisfactory. One missense polymorphism in exon one has been linked to low bone mineral density (BMD, but the most studied polymorphism, Pro12Ala, has not yet been examined in the context of skeletal phenotype. The studies to date are a promising start in leading to our understanding of the genetic contribution of PPARG to the phenotypes of BMD and fracture risk.

  8. Dynamic modeling of genetic networks using genetic algorithm and S-system.

    Science.gov (United States)

    Kikuchi, Shinichi; Tominaga, Daisuke; Arita, Masanori; Takahashi, Katsutoshi; Tomita, Masaru

    2003-03-22

    The modeling of system dynamics of genetic networks, metabolic networks or signal transduction cascades from time-course data is formulated as a reverse-problem. Previous studies focused on the estimation of only network structures, and they were ineffective in inferring a network structure with feedback loops. We previously proposed a method to predict not only the network structure but also its dynamics using a Genetic Algorithm (GA) and an S-system formalism. However, it could predict only a small number of parameters and could rarely obtain essential structures. In this work, we propose a unified extension of the basic method. Notable improvements are as follows: (1) an additional term in its evaluation function that aims at eliminating futile parameters; (2) a crossover method called Simplex Crossover (SPX) to improve its optimization ability; and (3) a gradual optimization strategy to increase the number of predictable parameters. The proposed method is implemented as a C program called PEACE1 (Predictor by Evolutionary Algorithms and Canonical Equations 1). Its performance was compared with the basic method. The comparison showed that: (1) the convergence rate increased about 5-fold; (2) the optimization speed was raised about 1.5-fold; and (3) the number of predictable parameters was increased about 5-fold. Moreover, we successfully inferred the dynamics of a small genetic network constructed with 60 parameters for 5 network variables and feedback loops using only time-course data of gene expression.

  9. Genetic mouse models relevant to schizophrenia: taking stock and looking forward.

    Science.gov (United States)

    Harrison, Paul J; Pritchett, David; Stumpenhorst, Katharina; Betts, Jill F; Nissen, Wiebke; Schweimer, Judith; Lane, Tracy; Burnet, Philip W J; Lamsa, Karri P; Sharp, Trevor; Bannerman, David M; Tunbridge, Elizabeth M

    2012-03-01

    Genetic mouse models relevant to schizophrenia complement, and have to a large extent supplanted, pharmacological and lesion-based rat models. The main attraction is that they potentially have greater construct validity; however, they share the fundamental limitations of all animal models of psychiatric disorder, and must also be viewed in the context of the uncertain and complex genetic architecture of psychosis. Some of the key issues, including the choice of gene to target, the manner of its manipulation, gene-gene and gene-environment interactions, and phenotypic characterization, are briefly considered in this commentary, illustrated by the relevant papers reported in this special issue. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Models for Estimating Genetic Parameters of Milk Production Traits Using Random Regression Models in Korean Holstein Cattle

    Directory of Open Access Journals (Sweden)

    C. I. Cho

    2016-05-01

    Full Text Available The objectives of the study were to estimate genetic parameters for milk production traits of Holstein cattle using random regression models (RRMs, and to compare the goodness of fit of various RRMs with homogeneous and heterogeneous residual variances. A total of 126,980 test-day milk production records of the first parity Holstein cows between 2007 and 2014 from the Dairy Cattle Improvement Center of National Agricultural Cooperative Federation in South Korea were used. These records included milk yield (MILK, fat yield (FAT, protein yield (PROT, and solids-not-fat yield (SNF. The statistical models included random effects of genetic and permanent environments using Legendre polynomials (LP of the third to fifth order (L3–L5, fixed effects of herd-test day, year-season at calving, and a fixed regression for the test-day record (third to fifth order. The residual variances in the models were either homogeneous (HOM or heterogeneous (15 classes, HET15; 60 classes, HET60. A total of nine models (3 orders of polynomials×3 types of residual variance including L3-HOM, L3-HET15, L3-HET60, L4-HOM, L4-HET15, L4-HET60, L5-HOM, L5-HET15, and L5-HET60 were compared using Akaike information criteria (AIC and/or Schwarz Bayesian information criteria (BIC statistics to identify the model(s of best fit for their respective traits. The lowest BIC value was observed for the models L5-HET15 (MILK; PROT; SNF and L4-HET15 (FAT, which fit the best. In general, the BIC values of HET15 models for a particular polynomial order was lower than that of the HET60 model in most cases. This implies that the orders of LP and types of residual variances affect the goodness of models. Also, the heterogeneity of residual variances should be considered for the test-day analysis. The heritability estimates of from the best fitted models ranged from 0.08 to 0.15 for MILK, 0.06 to 0.14 for FAT, 0.08 to 0.12 for PROT, and 0.07 to 0.13 for SNF according to days in milk of first

  11. ENU mutagenesis to generate genetically modified rat models

    NARCIS (Netherlands)

    van Boxtel, R.; Gould, M.; Cuppen, E.; Smits, B.M.

    2010-01-01

    The rat is one of the most preferred model organisms in biomedical research and has been extremely useful for linking physiology and pathology to the genome. However, approaches to genetically modify specific genes in the rat germ line remain relatively scarce. To date, the most efficient approach

  12. Geochemical modeling of the influence of silicate mineral alteration on alkalinity production and carbonate precipitation

    Science.gov (United States)

    Herda, Gerhard; Kraemer, Stephan M.; Gier, Susanne; Meister, Patrick

    2016-04-01

    High CO2 partial pressure (pCO2) in deep rock reservoirs causes acidification of the porefluid. Such conditions occur during injection and subsurface storage of CO2 (to prevent the release of greenhouse gas) but also naturally in zones of strong methanogenic microbial activity in organic matter-rich ocean margin sediments. The acidic fluids are corrosive to carbonates and bear the risk of leakage of CO2 gas to the surface. Porefluid acidification may be moderated by processes that increase the alkalinity, i.e. that produce weak acid anions capable of buffering the acidification imposed by the CO2. Often, alkalinity increases as a result of anaerobic microbial activity, such as anaerobic oxidation of methane. However, on a long term the alteration of silicates, in particular, clay minerals, may be a more efficient mechanism of alkalinity production. Under altered temperature, pressure and porefluid composition at depth, clay minerals may change to thermodynamically more stable states, thereby increasing the alkalinity of the porefluid by partial leaching of Mg-(OH)2 and Ca-(OH)2 (e.g. Wallmann et al., 2008; Mavromatis et al., 2014). This alteration may even be enhanced by a high pCO2. Thus, silicate alteration can be essential for a long-term stabilization of volatile CO2 in the form of bicarbonate or may even induce precipitation of carbonate minerals, but these processes are not fully understood yet. The goal of this study is to simulate the alkalinity effect of silicate alteration under diagenetic conditions and high pCO2 by geochemical modeling. We are using the program PHREEQC (Parkhurst and Appelo, 2013) to generate high rock/fluid ratio characteristics for deep subsurface rock reservoirs. Since we are interested in the long-term evolution of diagenetic processes, over millions of years, we do not consider kinetics but calculate the theoretically possible equilibrium conditions. In a first step we are calculating the saturation state of different clay minerals

  13. Mineralization dynamics in soil fertilized with seaweed-fish waste compost.

    Science.gov (United States)

    Illera-Vives, Marta; López-Fabal, Adolfo; López-Mosquera, M Elvira; Ribeiro, Henrique M

    2015-12-01

    Seaweed and fish waste can be composted together to obtain fertilizer with high organic matter and nutrient contents. The nutrients, however, are mostly in organic form and must be mineralized to make them available to plants. The objective of this work was to establish a usage guideline for the compost by studying its mineralization dynamics. Also, the release of inorganic N and C from soil fertilized with the compost was monitored and modelled. C and N were released throughout the assay, to an extent significantly dependent on fertilizer rate. Mineralization of both elements fitted a first-order exponential model, and each fertilizer rate required using a specific fitting model. An increased rate favoured mineralization (especially of carbon). After 90 days, 2.3% of C and 7.7% of N were mineralized (and 23.3% of total nitrogen made plant available) with the higher rate. C mineralization was slow because organic matter in the compost was very stable. On the other hand, the relatively high initial content in mineral N of the compost increased gradually by the effect of mineralization. The amount of N available would suffice to meet the requirements of moderately demanding crops at the lower fertilizer rate, and even those of more demanding crops at the higher rate. © 2015 Society of Chemical Industry.

  14. A review of animal models used to evaluate potential allergenicity of genetically modified organisms (GMOs)

    DEFF Research Database (Denmark)

    Marsteller, Nathan; Bøgh, Katrine Lindholm; Goodman, Richard E.

    2017-01-01

    Food safety regulators request prediction of allergenicity for newly expressed proteins in genetically modified (GM) crops and in novel foods. Some have suggested using animal models to assess potential allergenicity. A variety of animal models have been used in research to evaluate sensitisation...... of genetically modified organisms (GMOs).......Food safety regulators request prediction of allergenicity for newly expressed proteins in genetically modified (GM) crops and in novel foods. Some have suggested using animal models to assess potential allergenicity. A variety of animal models have been used in research to evaluate sensitisation...

  15. Applications of Systems Genetics and Biology for Obesity Using Pig Models

    DEFF Research Database (Denmark)

    Kogelman, Lisette; Kadarmideen, Haja N.

    2016-01-01

    approach, a branch of systems biology. In this chapter, we will describe the state of the art of genetic studies on human obesity, using pig populations. We will describe the features of using the pig as a model for human obesity and briefly discuss the genetics of obesity, and we will focus on systems...

  16. A case study for the integration of predictive mineral potential maps

    Science.gov (United States)

    Lee, Saro; Oh, Hyun-Joo; Heo, Chul-Ho; Park, Inhye

    2014-09-01

    This study aims to elaborate on the mineral potential maps using various models and verify the accuracy for the epithermal gold (Au) — silver (Ag) deposits in a Geographic Information System (GIS) environment assuming that all deposits shared a common genesis. The maps of potential Au and Ag deposits were produced by geological data in Taebaeksan mineralized area, Korea. The methodological framework consists of three main steps: 1) identification of spatial relationships 2) quantification of such relationships and 3) combination of multiple quantified relationships. A spatial database containing 46 Au-Ag deposits was constructed using GIS. The spatial association between training deposits and 26 related factors were identified and quantified by probabilistic and statistical modelling. The mineral potential maps were generated by integrating all factors using the overlay method and recombined afterwards using the likelihood ratio model. They were verified by comparison with test mineral deposit locations. The verification revealed that the combined mineral potential map had the greatest accuracy (83.97%), whereas it was 72.24%, 65.85%, 72.23% and 71.02% for the likelihood ratio, weight of evidence, logistic regression and artificial neural network models, respectively. The mineral potential map can provide useful information for the mineral resource development.

  17. The mineral economy of Brazil--Economia mineral do Brasil

    Science.gov (United States)

    Gurmendi, Alfredo C.; Barboza, Frederico Lopes; Thorman, Charles H.

    1999-01-01

    This study depicts the Brazilian government structure, mineral legislation and investment policy, taxation, foreign investment policies, environmental laws and regulations, and conditions in which the mineral industry operates. The report underlines Brazil's large and diversified mineral endowment. A total of 37 mineral commodities, or groups of closely related commodities, is discussed. An overview of the geologic setting of the major mineral deposits is presented. This report is presented in English and Portuguese in pdf format.

  18. Hydrogeochemical methods for studying uranium mineralization in sedimentary rocks

    International Nuclear Information System (INIS)

    Lisitsin, A.K.

    1985-01-01

    The role of hydrogeochemical studies of uranium deposits is considered, which permits to obtain data on ore forming role of water solutions. The hydrogeochemistry of ore formation is determined as a result of physicochemical analysis of mineral paragenesis. Analysis results of the content of primary and secondary gaseous - liquid inclusions into the minerals are of great importance. Another way to determine the main features of ore formation hydrogeochemistry envisages simultaneous analysis of material from a number of deposits of one genetic type but in different periods of their geochemical life: being formed, formed and preserved, and being destructed. Comparison of mineralogo-geochemical zonation and hydrogeochemical one in water-bearing horizon is an efficient method, resulting in the objective interpretation of the facts. The comparison is compulsory when determining deposit genesis

  19. Genetic Modeling of Radiation Injury in Prostate Cancer Patients Treated with Radiotherapy

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0681 TITLE: Genetic Modeling of Radiation Injury in Prostate Cancer Patients Treated with Radiotherapy PRINCIPAL...TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0681Genetic Modeling of Radiation Injury in Prostate Cancer Patients Treated...effects, urinary morbidity, rectal injury, sexual dysfunction 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF

  20. Felling-system and regeneration of pine forests on ecological-genetic-geographical basis

    Directory of Open Access Journals (Sweden)

    S. N. Sannikov

    2015-12-01

    Full Text Available A conception of the adaptation of Scots pine populations to the natural regeneration on open sites with the mosaic retained stand and mineralized soil surface on the basis of the ecological-genetic-geographical investigations in the forests of the Russia and the theory of petropsammofitness-pyrofitness (Sannikov S. N., 1983 has been substantiated. The methods of clear cuts with the seeding from surrounding forest, seed curtains and sufficiently extent of the substrate preparation for the pine selfsown have been selected and elaborated as a main organization principle of the system «felling-regeneration» in the plains pine forests of the forest zone. High regeneration efficiency of this system with the application of original aggregate for the optimal mineralization of the soil substrate (with its synchronous loosing has been shown on the example of dominating pine forest types in the subzone for-forest-steppe of the Western Siberia. The silvicultural-ecological and reproductive-genetic advantages of retaining seed curtains instead of separate seed trees have been substantiated. The basic parameters of the system «felling-regeneration», which guarantee a sufficient success of the following pine regeneration in the for-forest-steppe subzone, have been determined with the help of the methods of the mathematical imitation modeling of the pine selfsown density depending on the area and localization of seed curtains, surrounding forest and the extent of the substrate mineralization. The zonal differentiated system of the fellings and measures for the regeneration optimization in the climatically substituting pine forest types in the Western Siberia has been elaborated according to the parameters, studied earlier, on the ecological-genetic-geographical basis. The principles of this system in forest zone come to the clear strip-fellings with insemination of cuts from the seed curtains and forest walls, and to the hollow-fellings with the

  1. Equilibrium and non-equilibrium concepts in forest genetic modelling: population- and individually-based approaches

    OpenAIRE

    Kramer, Koen; van der Werf, D. C.

    2010-01-01

    The environment is changing and so are forests, in their functioning, in species composition, and in the species’ genetic composition. Many empirical and process-based models exist to support forest management. However, most of these models do not consider the impact of environmental changes and forest management on genetic diversity nor on the rate of adaptation of critical plant processes. How genetic diversity and rates of adaptation depend on management actions is a crucial next step in m...

  2. Hyperspectral analysis of clay minerals

    Science.gov (United States)

    Janaki Rama Suresh, G.; Sreenivas, K.; Sivasamy, R.

    2014-11-01

    A study was carried out by collecting soil samples from parts of Gwalior and Shivpuri district, Madhya Pradesh in order to assess the dominant clay mineral of these soils using hyperspectral data, as 0.4 to 2.5 μm spectral range provides abundant and unique information about many important earth-surface minerals. Understanding the spectral response along with the soil chemical properties can provide important clues for retrieval of mineralogical soil properties. The soil samples were collected based on stratified random sampling approach and dominant clay minerals were identified through XRD analysis. The absorption feature parameters like depth, width, area and asymmetry of the absorption peaks were derived from spectral profile of soil samples through DISPEC tool. The derived absorption feature parameters were used as inputs for modelling the dominant soil clay mineral present in the unknown samples using Random forest approach which resulted in kappa accuracy of 0.795. Besides, an attempt was made to classify the Hyperion data using Spectral Angle Mapper (SAM) algorithm with an overall accuracy of 68.43 %. Results showed that kaolinite was the dominant mineral present in the soils followed by montmorillonite in the study area.

  3. Uranium fission track length distribution modelling for retracing chronothermometrical history of minerals

    International Nuclear Information System (INIS)

    Rebetez, M.

    1987-01-01

    Spontaneous fission of uranium 238 isotope contained in certain minerals creates damage zones called latent tracks, that can be etched chemically. The observation of these etched tracks and the measurement of their characteristics using an optical microscope are the basis of several applications in the domain of the earth sciences. First, the determination of their densities permits dating a mineral and establishing uranium mapping of rocks. Second, the measurement of their lengths can be a good source of information for retracing the thermal and tectonic history of the sample. The study of the partial annealing of tracks in apatite appears to be the ideal indicator for the evaluation of petroleum potential of a sedimentary basin. To allow the development of this application, it is necessary to devise a theoretical model of track length distributions. The model which is proposed takes into account the most realistic hypotheses concerning registration, etching and observation of tracks. The characteristics of surface tracks (projected lengths, depths, inclination angles, real lengths) and confined tracks (Track IN Track and Track IN Cleavage) are calculated. Surface tracks and confined tracks are perfectly complementary for chrono-thermometric interpretation of complex geological histories. The method is applied to the case of two samples with different tectonic history, issued from the cretaceous alcalin magmatism from the Pyrenees (Bilbao, Spain). A graphic method of distribution deconvolution is proposed. Finally, the uranium migration, depending on the hydrothermal alteration, is studied on the granite from Auriat (France) [fr

  4. Mineral formation and organo-mineral controls on the bioavailability of carbon at the terrestrial-aquatic interface

    Science.gov (United States)

    Rod, K. A.; Smith, A. P.; Renslow, R.

    2016-12-01

    . The results from the static experiments will be used to model and predict the impacts of mineral sorption and biological activity on OM persistence in the context of dynamic saturation conditions and heterogeneous material properties.

  5. Model-based problem solving through symbolic regression via pareto genetic programming

    NARCIS (Netherlands)

    Vladislavleva, E.

    2008-01-01

    Pareto genetic programming methodology is extended by additional generic model selection and generation strategies that (1) drive the modeling engine to creation of models of reduced non-linearity and increased generalization capabilities, and (2) improve the effectiveness of the search for robust

  6. Fourier transform infrared imaging microspectroscopy and tissue-level mechanical testing reveal intraspecies variation in mouse bone mineral and matrix composition.

    Science.gov (United States)

    Courtland, Hayden-William; Nasser, Philip; Goldstone, Andrew B; Spevak, Lyudmila; Boskey, Adele L; Jepsen, Karl J

    2008-11-01

    Fracture susceptibility is heritable and dependent upon bone morphology and quality. However, studies of bone quality are typically overshadowed by emphasis on bone geometry and bone mineral density. Given that differences in mineral and matrix composition exist in a variety of species, we hypothesized that genetic variation in bone quality and tissue-level mechanical properties would also exist within species. Sixteen-week-old female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse femora were analyzed using Fourier transform infrared imaging and tissue-level mechanical testing for variation in mineral composition, mineral maturity, collagen cross-link ratio, and tissue-level mechanical properties. A/J femora had an increased mineral-to-matrix ratio compared to B6. The C3H mineral-to-matrix ratio was intermediate of A/J and B6. C3H femora had reduced acid phosphate and carbonate levels and an increased collagen cross-link ratio compared to A/J and B6. Modulus values paralleled mineral-to-matrix values, with A/J femora being the most stiff, B6 being the least stiff, and C3H having intermediate stiffness. In addition, work-to-failure varied among the strains, with the highly mineralized and brittle A/J femora performing the least amount of work-to-failure. Inbred mice are therefore able to differentially modulate the composition of their bone mineral and the maturity of their bone matrix in conjunction with tissue-level mechanical properties. These results suggest that specific combinations of bone quality and morphological traits are genetically regulated such that mechanically functional bones can be constructed in different ways.

  7. Genetic Causes of Rickets

    Science.gov (United States)

    Acar, Sezer; Demir, Korcan; Shi, Yufei

    2017-01-01

    Rickets is a metabolic bone disease that develops as a result of inadequate mineralization of growing bone due to disruption of calcium, phosphorus and/or vitamin D metabolism. Nutritional rickets remains a significant child health problem in developing countries. In addition, several rare genetic causes of rickets have also been described, which can be divided into two groups. The first group consists of genetic disorders of vitamin D biosynthesis and action, such as vitamin D-dependent rickets type 1A (VDDR1A), vitamin D-dependent rickets type 1B (VDDR1B), vitamin D-dependent rickets type 2A (VDDR2A), and vitamin D-dependent rickets type 2B (VDDR2B). The second group involves genetic disorders of excessive renal phosphate loss (hereditary hypophosphatemic rickets) due to impairment in renal tubular phosphate reabsorption as a result of FGF23-related or FGF23-independent causes. In this review, we focus on clinical, laboratory and genetic characteristics of various types of hereditary rickets as well as differential diagnosis and treatment approaches. PMID:29280738

  8. Genetics on the Fly: A Primer on the Drosophila Model System

    Science.gov (United States)

    Hales, Karen G.; Korey, Christopher A.; Larracuente, Amanda M.; Roberts, David M.

    2015-01-01

    Fruit flies of the genus Drosophila have been an attractive and effective genetic model organism since Thomas Hunt Morgan and colleagues made seminal discoveries with them a century ago. Work with Drosophila has enabled dramatic advances in cell and developmental biology, neurobiology and behavior, molecular biology, evolutionary and population genetics, and other fields. With more tissue types and observable behaviors than in other short-generation model organisms, and with vast genome data available for many species within the genus, the fly’s tractable complexity will continue to enable exciting opportunities to explore mechanisms of complex developmental programs, behaviors, and broader evolutionary questions. This primer describes the organism’s natural history, the features of sequenced genomes within the genus, the wide range of available genetic tools and online resources, the types of biological questions Drosophila can help address, and historical milestones. PMID:26564900

  9. Integrated Experimental and Modeling Studies of Mineral Carbonation as a Mechanism for Permanent Carbon Sequestration in Mafic/Ultramafic Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhengrong [Yale Univ., New Haven, CT (United States); Qiu, Lin [Yale Univ., New Haven, CT (United States); Zhang, Shuang [Yale Univ., New Haven, CT (United States); Bolton, Edward [Yale Univ., New Haven, CT (United States); Bercovici, David [Yale Univ., New Haven, CT (United States); Ague, Jay [Yale Univ., New Haven, CT (United States); Karato, Shun-Ichiro [Yale Univ., New Haven, CT (United States); Oristaglio, Michael [Yale Univ., New Haven, CT (United States); Zhu, Wen-Iu [Univ. of Maryland, College Park, MD (United States); Lisabeth, Harry [Univ. of Maryland, College Park, MD (United States); Johnson, Kevin [Univ. of Hawaii, Honolulu, HI (United States)

    2014-09-30

    A program of laboratory experiments, modeling and fieldwork was carried out at Yale University, University of Maryland, and University of Hawai‘i, under a DOE Award (DE-FE0004375) to study mineral carbonation as a practical method of geologic carbon sequestration. Mineral carbonation, also called carbon mineralization, is the conversion of (fluid) carbon dioxide into (solid) carbonate minerals in rocks, by way of naturally occurring chemical reactions. Mafic and ultramafic rocks, such as volcanic basalt, are natural candidates for carbonation, because the magnesium and iron silicate minerals in these rocks react with brines of dissolved carbon dioxide to form carbonate minerals. By trapping carbon dioxide (CO2) underground as a constituent of solid rock, carbonation of natural basalt formations would be a secure method of sequestering CO2 captured at power plants in efforts to mitigate climate change. Geochemical laboratory experiments at Yale, carried out in a batch reactor at 200°C and 150 bar (15 MPa), studied carbonation of the olivine mineral forsterite (Mg2SiO4) reacting with CO2 brines in the form of sodium bicarbonate (NaHCO3) solutions. The main carbonation product in these reactions is the carbonate mineral magnesite (MgCO3). A series of 32 runs varied the reaction time, the reactive surface area of olivine grains and powders, the concentration of the reacting fluid, and the starting ratio of fluid to olivine mass. These experiments were the first to study the rate of olivine carbonation under passive conditions approaching equilibrium. The results show that, in a simple batch reaction, olivine carbonation is fastest during the first 24 hours and then slows significantly and even reverses. A natural measure of the extent of carbonation is a quantity called the carbonation fraction, which compares the amount of carbon removed from solution, during a run, to the maximum amount

  10. Statistical analysis of results from the quantitative mapping of fracture minerals in Laxemar. Site descriptive modelling - complementary studies

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, Martin (Niressa AB, Norsborg (Sweden)); Sidborn, Magnus (Kemakta Konsult AB, Stockholm (Sweden))

    2010-12-15

    generally shown to be small and if comparing the cumulative distribution functions for the data subsets of the 17 rock volumes, more similarities than dissimilarities are found. No general trends can be observed in data with respect to elevation and location of the rock volumes. These conclusions are made from the perspective of radionuclide retention and groundwater composition modelling. Such modelling is not so sensitive to local deviations in fracture mineral abundances, as flow path averaging is of major importance. In other scientific fields, these deviations may be attributed greater importance. It is shown from parametric analyses that the normal distribution fairly well describes the logarithm of d{sub mean} data. Concerning the visible coverage, log{sub 10}(C{sub vis}) data are fairly well described by truncated normal distributions. The distributions fitted to data from the entire site fairly well represent the individual rock volumes. In fractures where the mineral amounts could be quantified, the following means and standard deviations for the normal distribution of log{sub 10}(d{sub mean} [mm]) are suggested: calcite mu = -1.21 and sigma = 0.76, chlorite mu = -0.83 and sigma = 0.48, clay minerals mu = -1.12 and sigma = 0.51, pyrite mu = -4.43 and sigma = 1.17. In fractures where the mineral visible coverage could be estimated, the following parameters for a truncated normal distribution of log{sub 10}(C{sub vis}) are suggested: calcite alpha = 0.96 and beta = 0.65, chlorite alpha = 1.43 and beta = 0.45, clay minerals alpha = 1.39 and beta = 0.41, pyrite alpha = -1.90 and beta = 1.08. For hematite, the data are so scarce that no well founded conclusion can be drawn. The potential correlation between the abundance of fracture minerals and the local transmissivity (which is related to the groundwater flow rate) has been evaluated, but no apparent correlation has been found. However, this evaluation is of preliminary character

  11. Statistical analysis of results from the quantitative mapping of fracture minerals in Forsmark. Site descriptive modelling - complementary studies

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, Martin (Niressa AB, Norsborg (Sweden)); Sidborn, Magnus (Kemakta Konsult AB, Stockholm (Sweden))

    2010-12-15

    so, the differences are generally shown to be small and if comparing the cumulative distribution functions for the data subsets of the 21 rock volumes, more similarities than dissimilarities are found. No general trends can be observed in data with respect to elevation and location of the rock volumes. These conclusions are made from the perspective of radionuclide retention and groundwater composition modelling. Such modelling is not so sensitive to local deviations in fracture mineral abundances, as flow path averaging is of major importance. In other scientific fields, these deviations may be attributed greater importance. It is shown from parametric analyses that the normal distribution fairly well describes the logarithm of d{sub mean} data. Concerning the visible coverage, log{sub 10}(C{sub vis}) data are fairly well described by truncated normal distributions. The distributions fitted to data from the entire site fairly well represent the individual rock volumes. In fractures where the mineral amounts could be quantified, the following means and standard deviations for the normal distribution of log{sub 10}(d{sub mean} [mm]) are suggested: calcite mu = -1.47 and sigma 0.70, chlorite mu = -0.93 and sigma = 0.46, clay minerals mu = -1.09 and sigma = 0.44, pyrite mu = -4.01 and sigma = 1.26. In fractures where the mineral visible coverage could be estimated, the following parameters for a truncated normal distribution of log{sub 10}(C{sub vis}) are suggested: calcite alpha = 0.85 and beta = 0.65, chlorite alpha =1.38 and beta = 0.51, clay minerals alpha = 1.47 and beta = 0.40, pyrite alpha = -1.52 and beta = 1.18. For hematite, the data are so scarce that no well founded conclusion can be drawn. The potential correlation between the abundance of fracture minerals and the local transmissivity(which is related to the groundwater flow rate) has been evaluated, but no apparent correlation has been found. However, this evaluation is of preliminary character

  12. Conditions and potential evaluation of the uranium mineralization in volcanic basins at the west section of the Yanliao mineral belt

    International Nuclear Information System (INIS)

    Wang Zhengbang; Zhao Shiqin; Luo Yi; Zhou Dean; Xiao Xiangping

    1993-03-01

    The West section of the Yanliao Mineral Belt is an important prospective uranium mineralization area in volcanic basins at North China. It has undergone three evolutionary periods and developed into six large volcanic collapse faulted basins with tri-layer structure. This leads to three times of pre-enrichment and multiple mineralization of uranium. Finally, the accumulation of uranium and superimposed reworked actions of uranium mineralization resulted in the formation of uranium deposits. After analyzing conditions of uranium mineralization, a model for uranium mineralization of mixed hydrothermal solution of multiple sources in penetrating volcanic collapse faulted basins and seven exploring criteria are suggested. On this basis the evaluation of prospect in this area is positive, and the main exploring strategy has been decided. Furthermore, five prospective areas of mineralization and three most favorable mineralization zones are selected. For exploring large size or super-large size uranium deposits in the area, the key is to strengthen the study and boring of deep layers. Thus, the mineralization in the deep layers or basement may be found. The prediction of deep blind deposits in known ore districts has been proved effectively

  13. Reframed Genome-Scale Metabolic Model to Facilitate Genetic Design and Integration with Expression Data.

    Science.gov (United States)

    Gu, Deqing; Jian, Xingxing; Zhang, Cheng; Hua, Qiang

    2017-01-01

    Genome-scale metabolic network models (GEMs) have played important roles in the design of genetically engineered strains and helped biologists to decipher metabolism. However, due to the complex gene-reaction relationships that exist in model systems, most algorithms have limited capabilities with respect to directly predicting accurate genetic design for metabolic engineering. In particular, methods that predict reaction knockout strategies leading to overproduction are often impractical in terms of gene manipulations. Recently, we proposed a method named logical transformation of model (LTM) to simplify the gene-reaction associations by introducing intermediate pseudo reactions, which makes it possible to generate genetic design. Here, we propose an alternative method to relieve researchers from deciphering complex gene-reactions by adding pseudo gene controlling reactions. In comparison to LTM, this new method introduces fewer pseudo reactions and generates a much smaller model system named as gModel. We showed that gModel allows two seldom reported applications: identification of minimal genomes and design of minimal cell factories within a modified OptKnock framework. In addition, gModel could be used to integrate expression data directly and improve the performance of the E-Fmin method for predicting fluxes. In conclusion, the model transformation procedure will facilitate genetic research based on GEMs, extending their applications.

  14. On Mineral Retrosynthesis of a Complex Biogenic Scaffold

    Directory of Open Access Journals (Sweden)

    Ashit Rao

    2017-03-01

    Full Text Available Synergistic relations between organic molecules and mineral precursors regulate biogenic mineralization. Given the remarkable material properties of the egg shell as a biogenic ceramic, it serves as an important model to elucidate biomineral growth. With established roles of complex anionic biopolymers and a heterogeneous organic scaffold in egg shell mineralization, the present study explores the regulation over mineralization attained by applying synthetic polymeric counterparts (polyethylene glycol, poly(acrylic acid, poly(aspartic acid and poly(4-styrenesulfonic acid-co-maleic acid as additives during remineralization of decalcified eggshell membranes. By applying Mg2+ ions as a co-additive species, mineral retrosynthesis is achieved in a manner that modulates the polymorph and structure of mineral products. Notable features of the mineralization process include distinct local wettability of the biogenic organic scaffold by mineral precursors and mineralization-induced membrane actuation. Overall, the form, structure and polymorph of the mineralization products are synergistically affected by the additive and the content of Mg2+ ions. We also revisit the physicochemical nature of the biomineral scaffold and demonstrate the distinct spatial distribution of anionic biomolecules associated with the scaffold-mineral interface, as well as highlight the hydrogel-like properties of mammillae-associated macromolecules.

  15. Characteristics of uranium mineralization and depositional system of host sediments, Bayantala basin, Inner Mongolia autonomous region

    International Nuclear Information System (INIS)

    Zhu Minqiang; Wu Rengui; Yu Dagan; Chen Anping; Shen Kefeng

    2003-01-01

    Based upon the research of basin fills at the Bayantala basin, the genetic facies of host sediments have been ascertained and the target beds and their range are delineated. The sand bodies of the Upper Member of Tengge'er Formation deposited in fan delta front is favorable to the formation of uranium mineralization of phreatic-interlayer oxidation. The Saihantala Fm deposited in fluvial system can be divided into Lower Member and Upper Member based on depositional microfacies and paleoclimate. The Lower Member of braided system is the most important target bed enriched in organic matter where basal-channel-type uranium mineralization occurs. Features of alteration and mineralization suggest that the early-stage and the late-stage uranium mineralization are related to phreatic oxidation and interlayer oxidation (roll-type) respectively. Meanwhile, the secondary reduction has superimposed over the earlier mineralization in the area caused by hydrocarbons raising along faults

  16. Estimation of genetic parameters related to eggshell strength using random regression models.

    Science.gov (United States)

    Guo, J; Ma, M; Qu, L; Shen, M; Dou, T; Wang, K

    2015-01-01

    This study examined the changes in eggshell strength and the genetic parameters related to this trait throughout a hen's laying life using random regression. The data were collected from a crossbred population between 2011 and 2014, where the eggshell strength was determined repeatedly for 2260 hens. Using random regression models (RRMs), several Legendre polynomials were employed to estimate the fixed, direct genetic and permanent environment effects. The residual effects were treated as independently distributed with heterogeneous variance for each test week. The direct genetic variance was included with second-order Legendre polynomials and the permanent environment with third-order Legendre polynomials. The heritability of eggshell strength ranged from 0.26 to 0.43, the repeatability ranged between 0.47 and 0.69, and the estimated genetic correlations between test weeks was high at > 0.67. The first eigenvalue of the genetic covariance matrix accounted for about 97% of the sum of all the eigenvalues. The flexibility and statistical power of RRM suggest that this model could be an effective method to improve eggshell quality and to reduce losses due to cracked eggs in a breeding plan.

  17. The evolution of menstruation: A new model for genetic assimilation

    Science.gov (United States)

    Emera, D.; Romero, R.; Wagner, G.

    2012-01-01

    Why do humans menstruate while most mammals do not? Here, we present our answer to this long-debated question, arguing that (i) menstruation occurs as a mechanistic consequence of hormone-induced differentiation of the endometrium (referred to as spontaneous decidualization, or SD); (ii) SD evolved because of maternal-fetal conflict; and (iii) SD evolved by genetic assimilation of the decidualization reaction, which is induced by the fetus in non-menstruating species. The idea that menstruation occurs as a consequence of SD has been proposed in the past, but here we present a novel hypothesis on how SD evolved. We argue that decidualization became genetically stabilized in menstruating lineages, allowing females to prepare for pregnancy without any signal from the fetus. We present three models for the evolution of SD by genetic assimilation, based on recent advances in our understanding of the mechanisms of endometrial differentiation and implantation. Testing these models will ultimately shed light on the evolutionary significance of menstruation, as well as on the etiology of human reproductive disorders like endometriosis and recurrent pregnancy loss. PMID:22057551

  18. Application of the genetic algorithm to blume-emery-griffiths model: Test Cases

    International Nuclear Information System (INIS)

    Erdinc, A.

    2004-01-01

    The equilibrium properties of the Blume-Emery-Griffiths (BEO) model Hamiltonian with the arbitrary bilinear (1), biquadratic (K) and crystal field interaction (D) are studied using the genetic algorithm technique. Results are compared with lowest approximation of the cluster variation method (CVM), which is identical to the mean field approximation. We found that the genetic algorithm to be very efficient for fast search at the average fraction of the spins, especially in the early stages as the system is far from the equilibrium state. A combination of the genetic algorithm followed by one of the well-tested simulation techniques seems to be an optimal approach. The curvature of the inverse magnetic susceptibility is also presented for the stable state of the BEG model

  19. Lack of Association between Body Weight, Bone Mineral Density and Vitamin D Receptor Gene Polymorphism in Normal and Osteoporotic Women

    Directory of Open Access Journals (Sweden)

    Massimo Poggi

    1999-01-01

    Full Text Available In an ethnically homogeneous population of women living in Tuscany, Italy, the relationships between age, body weight, bone mineral density and the vitamin D receptor (VDR gene polymorphism were studied, with the objective of recognizing patients at risk for osteoporosis. In 275 women bone mineral density was measured by Dual Energy X-rays Absorptiometry (DEXA. In 50 of them the individual genetic pattern for VDR was evaluated by DNA extraction followed by PCR amplification of the VDR gene, and digestion with the restriction enzyme BsmI. Age and bone mineral density were inversely related (R2 = 0.298. Body weight was associated with bone mineral density (R2 = 0.059, but not with age. In osteoporotic women, mean (± SD body weight was 59.9 ± 6.5 Kg, lower than that recorded in non osteoporotic women (64.2 ± 9.4 Kg, even though not significantly different (p = 0.18. No association was found between VDR gene polymorphism, bone density or body weight. The performance of anthropometric and genetic components appear to be poor, and, at least for the time being, bone mineral density measurement by means of MOC-DEXA represents the optimal method to detect women at risk for postmenopausal osteoporosis.

  20. Microbially mediated mineral carbonation

    Science.gov (United States)

    Power, I. M.; Wilson, S. A.; Dipple, G. M.; Southam, G.

    2010-12-01

    Mineral carbonation involves silicate dissolution and carbonate precipitation, which are both natural processes that microorganisms are able to mediate in near surface environments (Ferris et al., 1994; Eq. 1). (Ca,Mg)SiO3 + 2H2CO3 + H2O → (Ca,Mg)CO3 + H2O + H4SiO4 + O2 (1) Cyanobacteria are photoautotrophs with cell surface characteristics and metabolic processes involving inorganic carbon that can induce carbonate precipitation. This occurs partly by concentrating cations within their net-negative cell envelope and through the alkalinization of their microenvironment (Thompson & Ferris, 1990). Regions with mafic and ultramafic bedrock, such as near Atlin, British Columbia, Canada, represent the best potential sources of feedstocks for mineral carbonation. The hydromagnesite playas near Atlin are a natural biogeochemical model for the carbonation of magnesium silicate minerals (Power et al., 2009). Field-based studies at Atlin and corroborating laboratory experiments demonstrate the ability of a microbial consortium dominated by filamentous cyanobacteria to induce the precipitation of carbonate minerals. Phototrophic microbes, such as cyanobacteria, have been proposed as a means for producing biodiesel and other value added products because of their efficiency as solar collectors and low requirement for valuable, cultivable land in comparison to crops (Dismukes et al., 2008). Carbonate precipitation and biomass production could be facilitated using specifically designed ponds to collect waters rich in dissolved cations (e.g., Mg2+ and Ca2+), which would allow for evapoconcentration and provide an appropriate environment for growth of cyanobacteria. Microbially mediated carbonate precipitation does not require large quantities of energy or chemicals needed for industrial systems that have been proposed for rapid carbon capture and storage via mineral carbonation (e.g., Lackner et al., 1995). Therefore, this biogeochemical approach may represent a readily

  1. Modeling the Isentropic Head Value of Centrifugal Gas Compressor using Genetic Programming

    Directory of Open Access Journals (Sweden)

    Safiyullah Ferozkhan

    2016-01-01

    Full Text Available Gas compressor performance is vital in oil and gas industry because of the equipment criticality which requires continuous operations. Plant operators often face difficulties in predicting appropriate time for maintenance and would usually rely on time based predictive maintenance intervals as recommended by original equipment manufacturer (OEM. The objective of this work is to develop the computational model to find the isentropic head value using genetic programming. The isentropic head value is calculated from the OEM performance chart. Inlet mass flow rate and speed of the compressor are taken as the input value. The obtained results from the GP computational models show good agreement with experimental and target data with the average prediction error of 1.318%. The genetic programming computational model will assist machinery engineers to quantify performance deterioration of gas compressor and the results from this study will be then utilized to estimate future maintenance requirements based on the historical data. In general, this genetic programming modelling provides a powerful solution for gas compressor operators to realize predictive maintenance approach in their operations.

  2. Evolutionary model with genetics, aging, and knowledge

    Science.gov (United States)

    Bustillos, Armando Ticona; de Oliveira, Paulo Murilo

    2004-02-01

    We represent a process of learning by using bit strings, where 1 bits represent the knowledge acquired by individuals. Two ways of learning are considered: individual learning by trial and error, and social learning by copying knowledge from other individuals or from parents in the case of species with parental care. The age-structured bit string allows us to study how knowledge is accumulated during life and its influence over the genetic pool of a population after many generations. We use the Penna model to represent the genetic inheritance of each individual. In order to study how the accumulated knowledge influences the survival process, we include it to help individuals to avoid the various death situations. Modifications in the Verhulst factor do not show any special feature due to its random nature. However, by adding years to life as a function of the accumulated knowledge, we observe an improvement of the survival rates while the genetic fitness of the population becomes worse. In this latter case, knowledge becomes more important in the last years of life where individuals are threatened by diseases. Effects of offspring overprotection and differences between individual and social learning can also be observed. Sexual selection as a function of knowledge shows some effects when fidelity is imposed.

  3. Effects of hydrocarbon generation on fluid flow in the Ordos Basin and its relationship to uranium mineralization

    Directory of Open Access Journals (Sweden)

    Chunji Xue

    2011-07-01

    Full Text Available The Ordos Basin of North China is not only an important uranium mineralization province, but also a major producer of oil, gas and coal in China. The genetic relationship between uranium mineralization and hydrocarbons has been recognized by a number of previous studies, but it has not been well understood in terms of the hydrodynamics of basin fluid flow. We have demonstrated in a previous study that the preferential localization of Cretaceous uranium mineralization in the upper part of the Ordos Jurassic section may have been related to the interface between an upward flowing, reducing fluid and a downward flowing, oxidizing fluid. This interface may have been controlled by the interplay between fluid overpressure related to disequilibrium sediment compaction and which drove the upward flow, and topographic relief, which drove the downward flow. In this study, we carried out numerical modeling for the contribution of oil and gas generation to the development of fluid overpressure, in addition to sediment compaction and heating. Our results indicate that when hydrocarbon generation is taken into account, fluid overpressure during the Cretaceous was more than doubled in comparison with the simulation when hydrocarbon generation was not considered. Furthermore, fluid overpressure dissipation at the end of sedimentation slowed down relative to the no-hydrocarbon generation case. These results suggest that hydrocarbon generation may have played an important role in uranium mineralization, not only in providing reducing agents required for the mineralization, but also in contributing to the driving force to maintain the upward flow.

  4. Recent genetic discoveries in osteoporosis, sarcopenia and obesity.

    Science.gov (United States)

    Urano, Tomohiko; Inoue, Satoshi

    2015-01-01

    Osteoporosis is a skeletal disorder characterized by low bone mineral density (BMD) and an increased susceptibility to fractures. Evidence from genetic studies indicates that BMD, a complex quantitative trait with a normal distribution, is genetically controlled. Genome-wide association studies (GWAS) as well as studies using candidate gene approaches have identified single-nucleotide polymorphisms (SNPs) that are associated with BMD, osteoporosis and osteoporotic fractures. These SNPs have been mapped close to or within genes including those encoding WNT/β-catenin signaling proteins. Understanding the genetics of osteoporosis will help to identify novel candidates for diagnostic and therapeutic targets. Genetic factors are also important for the development of sarcopenia, which is characterized by a loss of lean body mass, and obesity, which is characterized by high fat mass. Hence, in this review, we discuss the genetic factors, identified by genetic studies, which regulate the body components related to osteoporosis, sarcopenia, and obesity.

  5. Modeling of Phenoxy Acid Herbicide Mineralization and Growth of Microbial Degraders in 15 Soils Monitored by Quantitative Real-Time PCR of the Functional tfdA Gene

    DEFF Research Database (Denmark)

    Bælum, Jacob; Prestat, Emmanuel; David, Maude M.

    2012-01-01

    continents. The mineralization patterns were fitted by zero/linear or exponential growth forms of the three-half-order models and by logarithmic (log), first-order, or zero-order kinetic models. Prior and subsequent to the mineralization event, tfdA genes were quantified using real-time PCR to estimate...

  6. Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces

    KAUST Repository

    Chassé , Alexander W.; Ohno, Tsutomu; Higgins, Steven R.; Amirbahman, Aria; Yildirim, Nadir; Parr, Thomas B.

    2015-01-01

    © 2015 American Chemical Society. The adsorption of dissolved organic matter (DOM) to metal (oxy)hydroxide mineral surfaces is a critical step for C sequestration in soils. Although equilibrium studies have described some of the factors controlling this process, the molecular-scale description of the adsorption process has been more limited. Chemical force spectroscopy revealed differing adhesion strengths of DOM extracted from three soils and a reference peat soil material to an iron (oxy)hydroxide mineral surface. The DOM was characterized using ultrahigh-resolution negative ion mode electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. The results indicate that carboxyl-rich aromatic and N-containing aliphatic molecules of DOM are correlated with high adhesion forces. Increasing molecular mass was shown to decrease the adhesion force between the mineral surface and the DOM. Kendrick mass defect analysis suggests that mechanisms involving two carboxyl groups result in the most stable bond to the mineral surface. We conceptualize these results using a layer-by-layer "onion" model of organic matter stabilization on soil mineral surfaces.

  7. Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces

    KAUST Repository

    Chassé, Alexander W.

    2015-08-18

    © 2015 American Chemical Society. The adsorption of dissolved organic matter (DOM) to metal (oxy)hydroxide mineral surfaces is a critical step for C sequestration in soils. Although equilibrium studies have described some of the factors controlling this process, the molecular-scale description of the adsorption process has been more limited. Chemical force spectroscopy revealed differing adhesion strengths of DOM extracted from three soils and a reference peat soil material to an iron (oxy)hydroxide mineral surface. The DOM was characterized using ultrahigh-resolution negative ion mode electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. The results indicate that carboxyl-rich aromatic and N-containing aliphatic molecules of DOM are correlated with high adhesion forces. Increasing molecular mass was shown to decrease the adhesion force between the mineral surface and the DOM. Kendrick mass defect analysis suggests that mechanisms involving two carboxyl groups result in the most stable bond to the mineral surface. We conceptualize these results using a layer-by-layer "onion" model of organic matter stabilization on soil mineral surfaces.

  8. Chapter 9: Model Systems for Formation and Dissolution of Calcium Phosphate Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Orme, C A; Giocondi, J L

    2006-07-29

    Calcium phosphates are the mineral component of bones and teeth. As such there is great interest in understanding the physical mechanisms that underlie their growth, dissolution, and phase stability. Control is often achieved at the cellular level by the manipulation of solution states and the use of crystal growth modulators such as peptides or other organic molecules. This chapter begins with a discussion of solution speciation in body fluids and relates this to important crystal growth parameters such as the supersaturation, pH, ionic strength and the ratio of calcium to phosphate activities. We then discuss the use of scanning probe microscopy as a tool to measure surface kinetics of mineral surfaces evolving in simplified solutions. The two primary themes that we will touch on are the use of microenvironments that temporally evolve the solution state to control growth and dissolution; and the use of various growth modifiers that interact with the solution species or with mineral surfaces to shift growth away from the lowest energy facetted forms. The study of synthetic minerals in simplified solution lays the foundation for understand mineralization process in more complex environments found in the body.

  9. A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction

    Science.gov (United States)

    Bell, Richard L.; Hauser, Sheketha; Rodd, Zachary A.; Liang, Tiebing; Sari, Youssef; McClintick, Jeanette; Rahman, Shafiqur; Engleman, Eric A.

    2016-01-01

    The purpose of this review is to present up-to-date pharmacological, genetic and behavioral findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine and psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, and neuropeptide Y. Herein we sought to place the P rat’s behavioral and neurochemical phenotypes, and to some extent its genotype, in the context of the clinical literature. After reviewing the findings thus far, this paper discusses future directions for expanding the use of this genetic animal model of alcoholism to identify molecular targets for treating drug addiction in general. PMID:27055615

  10. Genetic enhancement of macroautophagy in vertebrate models of neurodegenerative diseases.

    Science.gov (United States)

    Ejlerskov, Patrick; Ashkenazi, Avraham; Rubinsztein, David C

    2018-04-03

    Most of the neurodegenerative diseases that afflict humans manifest with the intraneuronal accumulation of toxic proteins that are aggregate-prone. Extensive data in cell and neuronal models support the concept that such proteins, like mutant huntingtin or alpha-synuclein, are substrates for macroautophagy (hereafter autophagy). Furthermore, autophagy-inducing compounds lower the levels of such proteins and ameliorate their toxicity in diverse animal models of neurodegenerative diseases. However, most of these compounds also have autophagy-independent effects and it is important to understand if similar benefits are seen with genetic strategies that upregulate autophagy, as this strengthens the validity of this strategy in such diseases. Here we review studies in vertebrate models using genetic manipulations of core autophagy genes and describe how these improve pathology and neurodegeneration, supporting the validity of autophagy upregulation as a target for certain neurodegenerative diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. BurnMan: A lower mantle mineral physics toolkit

    KAUST Repository

    Cottaar, Sanne; Heister, Timo; Rose, Ian; Unterborn, Cayman

    2014-01-01

    We present BurnMan, an open-source mineral physics toolbox to determine elastic properties for specified compositions in the lower mantle by solving an Equation of State (EoS). The toolbox, written in Python, can be used to evaluate seismic velocities of new mineral physics data or geodynamic models, and as the forward model in inversions for mantle composition. The user can define the composition from a list of minerals provided for the lower mantle or easily include their own. BurnMan provides choices in methodology, both for the EoS and for the multiphase averaging scheme. The results can be visually or quantitatively compared to observed seismic models. Example user scripts show how to go through these steps. This paper includes several examples realized with BurnMan: First, we benchmark the computations to check for correctness. Second, we exemplify two pitfalls in EoS modeling: using a different EoS than the one used to derive the mineral physical parameters or using an incorrect averaging scheme. Both pitfalls have led to incorrect conclusions on lower mantle composition and temperature in the literature. We further illustrate that fitting elastic velocities separately or jointly leads to different Mg/Si ratios for the lower mantle. However, we find that, within mineral physical uncertainties, a pyrolitic composition can match PREM very well. Finally, we find that uncertainties on specific input parameters result in a considerable amount of variation in both magnitude and gradient of the seismic velocities. © 2014. American Geophysical Union. All Rights Reserved.

  12. BurnMan: A lower mantle mineral physics toolkit

    KAUST Repository

    Cottaar, Sanne

    2014-04-01

    We present BurnMan, an open-source mineral physics toolbox to determine elastic properties for specified compositions in the lower mantle by solving an Equation of State (EoS). The toolbox, written in Python, can be used to evaluate seismic velocities of new mineral physics data or geodynamic models, and as the forward model in inversions for mantle composition. The user can define the composition from a list of minerals provided for the lower mantle or easily include their own. BurnMan provides choices in methodology, both for the EoS and for the multiphase averaging scheme. The results can be visually or quantitatively compared to observed seismic models. Example user scripts show how to go through these steps. This paper includes several examples realized with BurnMan: First, we benchmark the computations to check for correctness. Second, we exemplify two pitfalls in EoS modeling: using a different EoS than the one used to derive the mineral physical parameters or using an incorrect averaging scheme. Both pitfalls have led to incorrect conclusions on lower mantle composition and temperature in the literature. We further illustrate that fitting elastic velocities separately or jointly leads to different Mg/Si ratios for the lower mantle. However, we find that, within mineral physical uncertainties, a pyrolitic composition can match PREM very well. Finally, we find that uncertainties on specific input parameters result in a considerable amount of variation in both magnitude and gradient of the seismic velocities. © 2014. American Geophysical Union. All Rights Reserved.

  13. Application of hierarchical genetic models to Raven and WAIS subtests: a Dutch twin study.

    Science.gov (United States)

    Rijsdijk, Frühling V; Vernon, P A; Boomsma, Dorret I

    2002-05-01

    Hierarchical models of intelligence are highly informative and widely accepted. Application of these models to twin data, however, is sparse. This paper addresses the question of how a genetic hierarchical model fits the Wechsler Adult Intelligence Scale (WAIS) subtests and the Raven Standard Progressive test score, collected in 194 18-year-old Dutch twin pairs. We investigated whether first-order group factors possess genetic and environmental variance independent of the higher-order general factor and whether the hierarchical structure is significant for all sources of variance. A hierarchical model with the 3 Cohen group-factors (verbal comprehension, perceptual organisation and freedom-from-distractibility) and a higher-order g factor showed the best fit to the phenotypic data and to additive genetic influences (A), whereas the unique environmental source of variance (E) could be modeled by a single general factor and specifics. There was no evidence for common environmental influences. The covariation among the WAIS group factors and the covariation between the group factors and the Raven is predominantly influenced by a second-order genetic factor and strongly support the notion of a biological basis of g.

  14. Linear Mixed Models in Statistical Genetics

    NARCIS (Netherlands)

    R. de Vlaming (Ronald)

    2017-01-01

    markdownabstractOne of the goals of statistical genetics is to elucidate the genetic architecture of phenotypes (i.e., observable individual characteristics) that are affected by many genetic variants (e.g., single-nucleotide polymorphisms; SNPs). A particular aim is to identify specific SNPs that

  15. Models for genetic evaluations of claw health traits in Spanish dairy cattle.

    Science.gov (United States)

    Pérez-Cabal, M A; Charfeddine, N

    2015-11-01

    Genetic parameters of 7 claw health traits from Spanish dairy cattle were estimated and the predictive ability of linear and ordinal threshold models were compared and assessed. This study included data on interdigital and digital dermatitis (DE), sole ulcer (SU), white line disease (WL), interdigital hyperplasia (IH), interdigital phlegmon (IP), and chronic laminitis (CL) collected between July 2012 and June 2013 from 834 dairy herds visited by 21 trained trimmers. An overall claw disorder (OCD) was also considered an indicator the absence or the presence of at least 1 of the 6 disorders. Claw health traits were scored as categorical traits with 3 degrees of severity (nonaffected, mild, and severe disorder). Genetic parameters were estimated by fitting both a standard linear model and an ordinal threshold animal model. Around 21% of cows had at least 1 claw disorder, and the most frequent disorders were SU, DE, WL, and CL. Heritabilities of claw disorders estimated with a linear model ranged from 0.01 (IP) to 0.05 (OCD), whereas estimates from the ordinal threshold models ranged from 0.06 to 0.39 (for IP and IH, respectively). Repeatabilities of claw health estimated with the linear model varied from 0.03 to 0.18 and estimates with the ordinal threshold model ranged from 0.33 to 0.69. The global trait OCD was correlated with all disorders, except for IH and IP when the linear model was fitted. Two different genetic backgrounds of claw disorders were found. Digital dermatitis showed positive correlations with IH and IP, whereas SU was positively correlated with WL and CL. The predictive ability of the models was assessed using mean squared error and Pearson correlation between the real observation and the corresponding prediction using cross-validation. Regardless of the claw health status, the linear model led to smaller mean squared error. However, differences in predictive ability were found when predicting nonaffected and affected animals. For most traits

  16. Analysis of enamel development using murine model systems: approaches and limitations.

    Directory of Open Access Journals (Sweden)

    Megan K Pugach

    2014-09-01

    Full Text Available A primary goal of enamel research is to understand and potentially treat or prevent enamel defects related to amelogenesis imperfecta (AI. Rodents are ideal models to assist our understanding of how enamel is formed because they are easily genetically modified, and their continuously erupting incisors display all stages of enamel development and mineralization. While numerous methods have been developed to generate and analyze genetically modified rodent enamel, it is crucial to understand the limitations and challenges associated with these methods in order to draw appropriate conclusions that can be applied translationally, to AI patient care. We have highlighted methods involved in generating and analyzing rodent enamel and potential approaches to overcoming limitations of these methods: 1 generating transgenic, knockout and knockin mouse models, and 2 analyzing rodent enamel mineral density and functional properties (structure, mechanics of mature enamel. There is a need for a standardized workflow to analyze enamel phenotypes in rodent models so that investigators can compare data from different studies. These methods include analyses of gene and protein expression, developing enamel histology, enamel pigment, degree of mineralization, enamel structure and mechanical properties. Standardization of these methods with regard to stage of enamel development and sample preparation is crucial, and ideally investigators can use correlative and complementary techniques with the understanding that developing mouse enamel is dynamic and complex.

  17. Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment.

    Directory of Open Access Journals (Sweden)

    John P Kemp

    2014-06-01

    Full Text Available Heritability of bone mineral density (BMD varies across skeletal sites, reflecting different relative contributions of genetic and environmental influences. To quantify the degree to which common genetic variants tag and environmental factors influence BMD, at different sites, we estimated the genetic (rg and residual (re correlations between BMD measured at the upper limbs (UL-BMD, lower limbs (LL-BMD and skull (SK-BMD, using total-body DXA scans of ∼ 4,890 participants recruited by the Avon Longitudinal Study of Parents and their Children (ALSPAC. Point estimates of rg indicated that appendicular sites have a greater proportion of shared genetic architecture (LL-/UL-BMD rg = 0.78 between them, than with the skull (UL-/SK-BMD rg = 0.58 and LL-/SK-BMD rg = 0.43. Likewise, the residual correlation between BMD at appendicular sites (r(e = 0.55 was higher than the residual correlation between SK-BMD and BMD at appendicular sites (r(e = 0.20-0.24. To explore the basis for the observed differences in rg and re, genome-wide association meta-analyses were performed (n ∼ 9,395, combining data from ALSPAC and the Generation R Study identifying 15 independent signals from 13 loci associated at genome-wide significant level across different skeletal regions. Results suggested that previously identified BMD-associated variants may exert site-specific effects (i.e. differ in the strength of their association and magnitude of effect across different skeletal sites. In particular, variants at CPED1 exerted a larger influence on SK-BMD and UL-BMD when compared to LL-BMD (P = 2.01 × 10(-37, whilst variants at WNT16 influenced UL-BMD to a greater degree when compared to SK- and LL-BMD (P = 2.31 × 10(-14. In addition, we report a novel association between RIN3 (previously associated with Paget's disease and LL-BMD (rs754388: β = 0.13, SE = 0.02, P = 1.4 × 10(-10. Our results suggest that BMD at different skeletal sites is under a mixture of shared and

  18. Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment.

    Science.gov (United States)

    Kemp, John P; Medina-Gomez, Carolina; Estrada, Karol; St Pourcain, Beate; Heppe, Denise H M; Warrington, Nicole M; Oei, Ling; Ring, Susan M; Kruithof, Claudia J; Timpson, Nicholas J; Wolber, Lisa E; Reppe, Sjur; Gautvik, Kaare; Grundberg, Elin; Ge, Bing; van der Eerden, Bram; van de Peppel, Jeroen; Hibbs, Matthew A; Ackert-Bicknell, Cheryl L; Choi, Kwangbom; Koller, Daniel L; Econs, Michael J; Williams, Frances M K; Foroud, Tatiana; Zillikens, M Carola; Ohlsson, Claes; Hofman, Albert; Uitterlinden, André G; Davey Smith, George; Jaddoe, Vincent W V; Tobias, Jonathan H; Rivadeneira, Fernando; Evans, David M

    2014-06-01

    Heritability of bone mineral density (BMD) varies across skeletal sites, reflecting different relative contributions of genetic and environmental influences. To quantify the degree to which common genetic variants tag and environmental factors influence BMD, at different sites, we estimated the genetic (rg) and residual (re) correlations between BMD measured at the upper limbs (UL-BMD), lower limbs (LL-BMD) and skull (SK-BMD), using total-body DXA scans of ∼ 4,890 participants recruited by the Avon Longitudinal Study of Parents and their Children (ALSPAC). Point estimates of rg indicated that appendicular sites have a greater proportion of shared genetic architecture (LL-/UL-BMD rg = 0.78) between them, than with the skull (UL-/SK-BMD rg = 0.58 and LL-/SK-BMD rg = 0.43). Likewise, the residual correlation between BMD at appendicular sites (r(e) = 0.55) was higher than the residual correlation between SK-BMD and BMD at appendicular sites (r(e) = 0.20-0.24). To explore the basis for the observed differences in rg and re, genome-wide association meta-analyses were performed (n ∼ 9,395), combining data from ALSPAC and the Generation R Study identifying 15 independent signals from 13 loci associated at genome-wide significant level across different skeletal regions. Results suggested that previously identified BMD-associated variants may exert site-specific effects (i.e. differ in the strength of their association and magnitude of effect across different skeletal sites). In particular, variants at CPED1 exerted a larger influence on SK-BMD and UL-BMD when compared to LL-BMD (P = 2.01 × 10(-37)), whilst variants at WNT16 influenced UL-BMD to a greater degree when compared to SK- and LL-BMD (P = 2.31 × 10(-14)). In addition, we report a novel association between RIN3 (previously associated with Paget's disease) and LL-BMD (rs754388: β = 0.13, SE = 0.02, P = 1.4 × 10(-10)). Our results suggest that BMD at different skeletal sites is under a mixture of shared and

  19. Setaria viridis as a model system to advance millet genetics and genomics

    Directory of Open Access Journals (Sweden)

    Pu Huang

    2016-11-01

    Full Text Available Millet is a common name for a group of polyphyletic, small-seeded cereal crops that include pearl, finger and foxtail millet. Millet species are an important source of calories for many societies, often in developing countries. Compared to major cereal crops such as rice and maize, millets are generally better adapted to dry and hot environments. Despite their food security value, the genetic architecture of agronomically important traits in millets, including both morphological traits and climate resilience remains poorly studied. These complex traits have been challenging to dissect in large part because of the lack of sufficient genetic tools and resources. In this article, we review the phylogenetic relationship among various millet species and discuss the value of a genetic model system for millet research. We propose that a broader adoption of green foxtail (Setaria viridis as a model system for millets could greatly accelerate the pace of gene discovery in the millets, and summarize available and emerging resources in S. viridis and its domesticated relative S. italica. These resources have value in forward genetics, reverse genetics and high throughput phenotyping. We describe methods and strategies to best utilize these resources to facilitate the genetic dissection of complex traits. We envision that coupling cutting-edge technologies and the use of S. viridis for gene discovery will accelerate genetic research in millets in general. This will enable strategies and provide opportunities to increase productivity, especially in the semi-arid tropics of Asia and Africa where millets are staple food crop.

  20. Setaria viridis as a Model System to Advance Millet Genetics and Genomics.

    Science.gov (United States)

    Huang, Pu; Shyu, Christine; Coelho, Carla P; Cao, Yingying; Brutnell, Thomas P

    2016-01-01

    Millet is a common name for a group of polyphyletic, small-seeded cereal crops that include pearl, finger and foxtail millet. Millet species are an important source of calories for many societies, often in developing countries. Compared to major cereal crops such as rice and maize, millets are generally better adapted to dry and hot environments. Despite their food security value, the genetic architecture of agronomically important traits in millets, including both morphological traits and climate resilience remains poorly studied. These complex traits have been challenging to dissect in large part because of the lack of sufficient genetic tools and resources. In this article, we review the phylogenetic relationship among various millet species and discuss the value of a genetic model system for millet research. We propose that a broader adoption of green foxtail ( Setaria viridis ) as a model system for millets could greatly accelerate the pace of gene discovery in the millets, and summarize available and emerging resources in S. viridis and its domesticated relative S. italica . These resources have value in forward genetics, reverse genetics and high throughput phenotyping. We describe methods and strategies to best utilize these resources to facilitate the genetic dissection of complex traits. We envision that coupling cutting-edge technologies and the use of S. viridis for gene discovery will accelerate genetic research in millets in general. This will enable strategies and provide opportunities to increase productivity, especially in the semi-arid tropics of Asia and Africa where millets are staple food crops.

  1. Setaria viridis as a Model System to Advance Millet Genetics and Genomics

    Science.gov (United States)

    Huang, Pu; Shyu, Christine; Coelho, Carla P.; Cao, Yingying; Brutnell, Thomas P.

    2016-01-01

    Millet is a common name for a group of polyphyletic, small-seeded cereal crops that include pearl, finger and foxtail millet. Millet species are an important source of calories for many societies, often in developing countries. Compared to major cereal crops such as rice and maize, millets are generally better adapted to dry and hot environments. Despite their food security value, the genetic architecture of agronomically important traits in millets, including both morphological traits and climate resilience remains poorly studied. These complex traits have been challenging to dissect in large part because of the lack of sufficient genetic tools and resources. In this article, we review the phylogenetic relationship among various millet species and discuss the value of a genetic model system for millet research. We propose that a broader adoption of green foxtail (Setaria viridis) as a model system for millets could greatly accelerate the pace of gene discovery in the millets, and summarize available and emerging resources in S. viridis and its domesticated relative S. italica. These resources have value in forward genetics, reverse genetics and high throughput phenotyping. We describe methods and strategies to best utilize these resources to facilitate the genetic dissection of complex traits. We envision that coupling cutting-edge technologies and the use of S. viridis for gene discovery will accelerate genetic research in millets in general. This will enable strategies and provide opportunities to increase productivity, especially in the semi-arid tropics of Asia and Africa where millets are staple food crops. PMID:27965689

  2. Recent developments in computer modeling add ecological realism to landscape genetics

    Science.gov (United States)

    Background / Question / Methods A factor limiting the rate of progress in landscape genetics has been the shortage of spatial models capable of linking life history attributes such as dispersal behavior to complex dynamic landscape features. The recent development of new models...

  3. A Unifying Model for the Analysis of Phenotypic, Genetic and Geographic Data

    DEFF Research Database (Denmark)

    Guillot, Gilles; Rena, Sabrina; Ledevin, Ronan

    2012-01-01

    Recognition of evolutionary units (species, populations) requires integrating several kinds of data such as genetic or phenotypic markers or spatial information, in order to get a comprehensive view concerning the dierentiation of the units. We propose a statistical model with a double original...... advantage: (i) it incorporates information about the spatial distribution of the samples, with the aim to increase inference power and to relate more explicitly observed patterns to geography; and (ii) it allows one to analyze genetic and phenotypic data within a unied model and inference framework, thus...... an intricate case of inter- and intra-species dierentiation based on an original data-set of georeferenced genetic and morphometric markers obtained on Myodes voles from Sweden. A computer program is made available as an extension of the R package Geneland....

  4. Genetic Algorithms for a Parameter Estimation of a Fermentation Process Model: A Comparison

    Directory of Open Access Journals (Sweden)

    Olympia Roeva

    2005-12-01

    Full Text Available In this paper the problem of a parameter estimation using genetic algorithms is examined. A case study considering the estimation of 6 parameters of a nonlinear dynamic model of E. coli fermentation is presented as a test problem. The parameter estimation problem is stated as a nonlinear programming problem subject to nonlinear differential-algebraic constraints. This problem is known to be frequently ill-conditioned and multimodal. Thus, traditional (gradient-based local optimization methods fail to arrive satisfied solutions. To overcome their limitations, the use of different genetic algorithms as stochastic global optimization methods is explored. These algorithms are proved to be very suitable for the optimization of highly non-linear problems with many variables. Genetic algorithms can guarantee global optimality and robustness. These facts make them advantageous in use for parameter identification of fermentation models. A comparison between simple, modified and multi-population genetic algorithms is presented. The best result is obtained using the modified genetic algorithm. The considered algorithms converged very closely to the cost value but the modified algorithm is in times faster than other two.

  5. Amniotic Fluid Stem Cells: A Novel Source for Modeling of Human Genetic Diseases

    Directory of Open Access Journals (Sweden)

    Ivana Antonucci

    2016-04-01

    Full Text Available In recent years, great interest has been devoted to the use of Induced Pluripotent Stem cells (iPS for modeling of human genetic diseases, due to the possibility of reprogramming somatic cells of affected patients into pluripotent cells, enabling differentiation into several cell types, and allowing investigations into the molecular mechanisms of the disease. However, the protocol of iPS generation still suffers from technical limitations, showing low efficiency, being expensive and time consuming. Amniotic Fluid Stem cells (AFS represent a potential alternative novel source of stem cells for modeling of human genetic diseases. In fact, by means of prenatal diagnosis, a number of fetuses affected by chromosomal or Mendelian diseases can be identified, and the amniotic fluid collected for genetic testing can be used, after diagnosis, for the isolation, culture and differentiation of AFS cells. This can provide a useful stem cell model for the investigation of the molecular basis of the diagnosed disease without the necessity of producing iPS, since AFS cells show some features of pluripotency and are able to differentiate in cells derived from all three germ layers “in vitro”. In this article, we describe the potential benefits provided by using AFS cells in the modeling of human genetic diseases.

  6. Genetic mouse models of brain ageing and Alzheimer's disease.

    Science.gov (United States)

    Bilkei-Gorzo, Andras

    2014-05-01

    Progression of brain ageing is influenced by a complex interaction of genetic and environmental factors. Analysis of genetically modified animals with uniform genetic backgrounds in a standardised, controlled environment enables the dissection of critical determinants of brain ageing on a molecular level. Human and animal studies suggest that increased load of damaged macromolecules, efficacy of DNA maintenance, mitochondrial activity, and cellular stress defences are critical determinants of brain ageing. Surprisingly, mouse lines with genetic impairment of anti-oxidative capacity generally did not show enhanced cognitive ageing but rather an increased sensitivity to oxidative challenge. Mouse lines with impaired mitochondrial activity had critically short life spans or severe and rapidly progressing neurodegeneration. Strains with impaired clearance in damaged macromolecules or defects in the regulation of cellular stress defences showed alterations in the onset and progression of cognitive decline. Importantly, reduced insulin/insulin-like growth factor signalling generally increased life span but impaired cognitive functions revealing a complex interaction between ageing of the brain and of the body. Brain ageing is accompanied by an increased risk of developing Alzheimer's disease. Transgenic mouse models expressing high levels of mutant human amyloid precursor protein showed a number of symptoms and pathophysiological processes typical for early phase of Alzheimer's disease. Generally, therapeutic strategies effective against Alzheimer's disease in humans were also active in the Tg2576, APP23, APP/PS1 and 5xFAD lines, but a large number of false positive findings were also reported. The 3xtg AD model likely has the highest face and construct validity but further studies are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Identifying genetic signatures of selection in a non-model species, alpine gentian (Gentiana nivalis L.), using a landscape genetic approach

    DEFF Research Database (Denmark)

    Bothwell, H.; Bisbing, S.; Therkildsen, Nina Overgaard

    2013-01-01

    It is generally accepted that most plant populations are locally adapted. Yet, understanding how environmental forces give rise to adaptive genetic variation is a challenge in conservation genetics and crucial to the preservation of species under rapidly changing climatic conditions. Environmental...... loci, we compared outlier locus detection methods with a recently-developed landscape genetic approach. We analyzed 157 loci from samples of the alpine herb Gentiana nivalis collected across the European Alps. Principle coordinates of neighbor matrices (PCNM), eigenvectors that quantify multi...... variables identified eight more potentially adaptive loci than models run without spatial variables. 3) When compared to outlier detection methods, the landscape genetic approach detected four of the same loci plus 11 additional loci. 4) Temperature, precipitation, and solar radiation were the three major...

  8. Application of genetic algorithm in radio ecological models parameter determination

    Energy Technology Data Exchange (ETDEWEB)

    Pantelic, G. [Institute of Occupatioanl Health and Radiological Protection ' Dr Dragomir Karajovic' , Belgrade (Serbia)

    2006-07-01

    The method of genetic algorithms was used to determine the biological half-life of 137 Cs in cow milk after the accident in Chernobyl. Methodologically genetic algorithms are based on the fact that natural processes tend to optimize themselves and therefore this method should be more efficient in providing optimal solutions in the modeling of radio ecological and environmental events. The calculated biological half-life of 137 Cs in milk is (32 {+-} 3) days and transfer coefficient from grass to milk is (0.019 {+-} 0.005). (authors)

  9. Short communication: Variations in major mineral contents of Mediterranean buffalo milk and application of Fourier-transform infrared spectroscopy for their prediction.

    Science.gov (United States)

    Stocco, G; Cipolat-Gotet, C; Bonfatti, V; Schiavon, S; Bittante, G; Cecchinato, A

    2016-11-01

    The aims of this study were (1) to assess variability in the major mineral components of buffalo milk, (2) to estimate the effect of certain environmental sources of variation on the major minerals during lactation, and (3) to investigate the possibility of using Fourier-transform infrared (FTIR) spectroscopy as an indirect, noninvasive tool for routine prediction of the mineral content of buffalo milk. A total of 173 buffaloes reared in 5 herds were sampled once during the morning milking. Milk samples were analyzed for Ca, P, K, and Mg contents within 3h of sample collection using inductively coupled plasma optical emission spectrometry. A Milkoscan FT2 (Foss, Hillerød, Denmark) was used to acquire milk spectra over the spectral range from 5,000 to 900 wavenumber/cm. Prediction models were built using a partial least square approach, and cross-validation was used to assess the prediction accuracy of FTIR. Prediction models were validated using a 4-fold random cross-validation, thus dividing the calibration-test set in 4 folds, using one of them to check the results (prediction models) and the remaining 3 to develop the calibration models. Buffalo milk minerals averaged 162, 117, 86, and 14.4mg/dL of milk for Ca, P, K, and Mg, respectively. Herd and days in milk were the most important sources of variation in the traits investigated. Parity slightly affected only Ca content. Coefficients of determination of cross-validation between the FTIR-predicted and the measured values were 0.71, 0.70, and 0.72 for Ca, Mg, and P, respectively, whereas prediction accuracy was lower for K (0.55). Our findings reveal FTIR to be an unsuitable tool when milk mineral content needs to be predicted with high accuracy. Predictions may play a role as indicator traits in selective breeding (if the additive genetic correlation between FTIR predictions and measures of milk minerals is high enough) or in monitoring the milk of buffalo populations for dairy industry purposes. Copyright

  10. Probabilistic Failure Analysis of Bone Using a Finite Element Model of Mineral-Collagen Composites

    OpenAIRE

    Dong, X. Neil; Guda, Teja; Millwater, Harry R.; Wang, Xiaodu

    2008-01-01

    Microdamage accumulation is a major pathway for energy dissipation during the post-yield deformation of bone. In this study, a two-dimensional probabilistic finite element model of a mineral-collagen composite was developed to investigate the influence of the tissue and ultrastructural properties of bone on the evolution of microdamage from an initial defect in tension. The probabilistic failure analyses indicated that the microdamage progression would be along the plane of the initial defect...

  11. Simulated evolution applied to study the genetic code optimality using a model of codon reassignments.

    Science.gov (United States)

    Santos, José; Monteagudo, Angel

    2011-02-21

    As the canonical code is not universal, different theories about its origin and organization have appeared. The optimization or level of adaptation of the canonical genetic code was measured taking into account the harmful consequences resulting from point mutations leading to the replacement of one amino acid for another. There are two basic theories to measure the level of optimization: the statistical approach, which compares the canonical genetic code with many randomly generated alternative ones, and the engineering approach, which compares the canonical code with the best possible alternative. Here we used a genetic algorithm to search for better adapted hypothetical codes and as a method to guess the difficulty in finding such alternative codes, allowing to clearly situate the canonical code in the fitness landscape. This novel proposal of the use of evolutionary computing provides a new perspective in the open debate between the use of the statistical approach, which postulates that the genetic code conserves amino acid properties far better than expected from a random code, and the engineering approach, which tends to indicate that the canonical genetic code is still far from optimal. We used two models of hypothetical codes: one that reflects the known examples of codon reassignment and the model most used in the two approaches which reflects the current genetic code translation table. Although the standard code is far from a possible optimum considering both models, when the more realistic model of the codon reassignments was used, the evolutionary algorithm had more difficulty to overcome the efficiency of the canonical genetic code. Simulated evolution clearly reveals that the canonical genetic code is far from optimal regarding its optimization. Nevertheless, the efficiency of the canonical code increases when mistranslations are taken into account with the two models, as indicated by the fact that the best possible codes show the patterns of the

  12. Simulated evolution applied to study the genetic code optimality using a model of codon reassignments

    Directory of Open Access Journals (Sweden)

    Monteagudo Ángel

    2011-02-01

    Full Text Available Abstract Background As the canonical code is not universal, different theories about its origin and organization have appeared. The optimization or level of adaptation of the canonical genetic code was measured taking into account the harmful consequences resulting from point mutations leading to the replacement of one amino acid for another. There are two basic theories to measure the level of optimization: the statistical approach, which compares the canonical genetic code with many randomly generated alternative ones, and the engineering approach, which compares the canonical code with the best possible alternative. Results Here we used a genetic algorithm to search for better adapted hypothetical codes and as a method to guess the difficulty in finding such alternative codes, allowing to clearly situate the canonical code in the fitness landscape. This novel proposal of the use of evolutionary computing provides a new perspective in the open debate between the use of the statistical approach, which postulates that the genetic code conserves amino acid properties far better than expected from a random code, and the engineering approach, which tends to indicate that the canonical genetic code is still far from optimal. We used two models of hypothetical codes: one that reflects the known examples of codon reassignment and the model most used in the two approaches which reflects the current genetic code translation table. Although the standard code is far from a possible optimum considering both models, when the more realistic model of the codon reassignments was used, the evolutionary algorithm had more difficulty to overcome the efficiency of the canonical genetic code. Conclusions Simulated evolution clearly reveals that the canonical genetic code is far from optimal regarding its optimization. Nevertheless, the efficiency of the canonical code increases when mistranslations are taken into account with the two models, as indicated by the

  13. A Model for Understanding the Genetic Basis for Disparity in Prostate Cancer Risk

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0529 TITLE: A Model for Understanding the Genetic Basis for Disparity in Prostate Cancer Risk PRINCIPAL INVESTIGATOR...AND SUBTITLE A Model for Understanding the Genetic Basis for Disparity in Prostate Cancer Risk 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1...STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Prostate cancer is the most commonly diagnosed cancer in

  14. A genetic algorithm for optimizing multi-pole Debye models of tissue dielectric properties

    International Nuclear Information System (INIS)

    Clegg, J; Robinson, M P

    2012-01-01

    Models of tissue dielectric properties (permittivity and conductivity) enable the interactions of tissues and electromagnetic fields to be simulated, which has many useful applications in microwave imaging, radio propagation, and non-ionizing radiation dosimetry. Parametric formulae are available, based on a multi-pole model of tissue dispersions, but although they give the dielectric properties over a wide frequency range, they do not convert easily to the time domain. An alternative is the multi-pole Debye model which works well in both time and frequency domains. Genetic algorithms are an evolutionary approach to optimization, and we found that this technique was effective at finding the best values of the multi-Debye parameters. Our genetic algorithm optimized these parameters to fit to either a Cole–Cole model or to measured data, and worked well over wide or narrow frequency ranges. Over 10 Hz–10 GHz the best fits for muscle, fat or bone were each found for ten dispersions or poles in the multi-Debye model. The genetic algorithm is a fast and effective method of developing tissue models that compares favourably with alternatives such as the rational polynomial fit. (paper)

  15. The role of lateral boundary conditions in simulations of mineral aerosols by a regional climate model of Southwest Asia

    Energy Technology Data Exchange (ETDEWEB)

    Marcella, Marc Pace [Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Cambridge, MA (United States); Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Eltahir, Elfatih A.B. [Massachusetts Institute of Technology, Cambridge, Massachusetts (United States)

    2012-01-15

    The importance of specifying realistic lateral boundary conditions in the regional modeling of mineral aerosols has not been examined previously. This study examines the impact of assigning values for mineral aerosol (dust) concentrations at the lateral boundaries of Regional Climate Model version 3 (RegCM3) and its aerosol model over Southwest Asia. Currently, the dust emission module of RegCM3 operates over the interior of the domain, allowing dust to be transported to the boundaries, but neglecting any dust emitted at these points or from outside the domain. To account for possible dust occurring at, or entering from the boundaries, mixing ratios of dust concentrations from a larger domain RegCM3 simulation are specified at the boundaries of a smaller domain over Southwest Asia. The lateral boundary conditions are monthly averaged concentration values ({mu}g of dust per kg of dry air) resolved in the vertical for all four dust bin sizes within RegCM3's aerosol model. RegCM3 simulations with the aerosol/dust model including lateral boundary conditions for dust are performed for a five year period and compared to model simulations without prescribed dust concentrations at the boundaries. Results indicate that specifying boundary conditions has a significant impact on dust loading across the entire domain over Southwest Asia. More specifically, a nearly 30% increase in aerosol optical depth occurs during the summer months from specifying realistic dust boundary conditions, bringing model results closer to observations such as MISR. In addition, smaller dust particles at the boundaries have a more important impact than large particles in affecting the dust loading within the interior of this domain. Moreover, increases in aerosol optical depth and dust concentrations within the interior domain are not entirely caused by inflow from the boundaries; results indicate that an increase in the gradient of concentration at the boundaries causes an increase of

  16. Economic filters for evaluating porphyry copper deposit resource assessments using grade-tonnage deposit models, with examples from the U.S. Geological Survey global mineral resource assessment: Chapter H in Global mineral resource assessment

    Science.gov (United States)

    Robinson, Gilpin R.; Menzie, W. David

    2012-01-01

    An analysis of the amount and location of undiscovered mineral resources that are likely to be economically recoverable is important for assessing the long-term adequacy and availability of mineral supplies. This requires an economic evaluation of estimates of undiscovered resources generated by traditional resource assessments (Singer and Menzie, 2010). In this study, simplified engineering cost models were used to estimate the economic fraction of resources contained in undiscovered porphyry copper deposits, predicted in a global assessment of copper resources. The cost models of Camm (1991) were updated with a cost index to reflect increases in mining and milling costs since 1989. The updated cost models were used to perform an economic analysis of undiscovered resources estimated in porphyry copper deposits in six tracts located in North America. The assessment estimated undiscovered porphyry copper deposits within 1 kilometer of the land surface in three depth intervals.

  17. Genetic Evaluation and Ranking of Different Animal Models Using ...

    African Journals Online (AJOL)

    An animal model utilizes all relationships available in a given data set. Estimates for variance components for additive direct, additive maternal, maternal environmental and direct environmental effects, and their covariances between direct and maternal genetic effects for post weaning growth traits have been obtained with ...

  18. Evolution of models for conversion of smectite to non-expandable minerals

    International Nuclear Information System (INIS)

    Pusch, R.

    1993-12-01

    Hydrothermal alteration of smectite has long been regarded as conversion to illite and chlorite as concluded from investigations of Gulf sediments. As manifested by statements given earlier at various international scientific meetings and in the literature, smectite-to-illite conversion (S→I) has been assumed to be a solid-state reaction with layer-by-layer alteration via mixed layer I/S to illite. In the last 10 years this opinion has successively changed and in recent years the concept of dissolution of smectite and accessory minerals and precipitation of illite and possibly I/S has been favored by many investigators. The present report reports laboratory and field investigations on bentonite and also calculations based on geochemical codes, which all support the dissolution/precipitation process. Applying Pytte's model for calculating the rate of conversion to illite, one finds good agreement with a number of experiments and field data, and this model is therefore recommended for practical use

  19. Research on structure-alteration zone related to uranium mineralization and its exploration significance

    International Nuclear Information System (INIS)

    Huang Xianfang; Liu Dechang; Ye Fawang; Dong Xiuzhen; Yang Xu Zhang Hongguang

    2008-01-01

    The paper is focused on recommending geological characteristics of structure-alteration zone which is found from image interpretation in Bashibulake District, north of Tarim Basin, expounding remote sensing information enhancement and extraction technique, analyzing image feature, genetic mechanism and discussing the relationship between uranium mineralization and structure-alteration zone. A new discovery is raised through applying remote sensing information analysis and geologic analysis, that is, the uranium deposits in Bashibulake District are controlled by structure-alteration zone. The new understanding provides a new view point for reconsidering main controlling factors and uranium mineralization distribution in the area. It is helpful for further reconnaissance and exploration in the area. (authors)

  20. Genetic modelling in schizophrenia according to HLA typing.

    Science.gov (United States)

    Smeraldi, E; Macciardi, F; Gasperini, M; Orsini, A; Bellodi, L; Fabio, G; Morabito, A

    1986-09-01

    Studying families of schizophrenic patients, we observed that the risk of developing the overt form of the illness could be enhanced by some factors. Among these various factors we focused our attention on a biological variable, namely the presence or the absence of particular HLA antigens: partitioning our schizophrenic patients according to their HLA structure (i.e. those with HLA-A1 or CRAG-A1 antigens and those with HLA-non-CRAG-A1 antigens, respectively), revealed different illness distribution in the two groups. From a genetic point of view, this finding suggests the presence of heterogeneity in the hypothetical liability system related to schizophrenia and we evaluated the heterogeneity hypothesis by applying alternative genetic models to our data, trying to detect more biologically homogeneous subgroups of the disease.

  1. Genetic algorithm based optimization of advanced solar cell designs modeled in Silvaco AtlasTM

    OpenAIRE

    Utsler, James

    2006-01-01

    A genetic algorithm was used to optimize the power output of multi-junction solar cells. Solar cell operation was modeled using the Silvaco ATLASTM software. The output of the ATLASTM simulation runs served as the input to the genetic algorithm. The genetic algorithm was run as a diffusing computation on a network of eighteen dual processor nodes. Results showed that the genetic algorithm produced better power output optimizations when compared with the results obtained using the hill cli...

  2. Forecasting Shaharchay River Flow in Lake Urmia Basin using Genetic Programming and M5 Model Tree

    Directory of Open Access Journals (Sweden)

    S. Samadianfard

    2017-01-01

    Full Text Available Introduction: Precise prediction of river flows is the key factor for proper planning and management of water resources. Thus, obtaining the reliable methods for predicting river flows has great importance in water resource engineering. In the recent years, applications of intelligent methods such as artificial neural networks, fuzzy systems and genetic programming in water science and engineering have been grown extensively. These mentioned methods are able to model nonlinear process of river flows without any need to geometric properties. A huge number of studies have been reported in the field of using intelligent methods in water resource engineering. For example, Noorani and Salehi (23 presented a model for predicting runoff in Lighvan basin using adaptive neuro-fuzzy network and compared the performance of it with neural network and fuzzy inference methods in east Azerbaijan, Iran. Nabizadeh et al. (21 used fuzzy inference system and adaptive neuro-fuzzy inference system in order to predict river flow in Lighvan river. Khalili et al. (13 proposed a BL-ARCH method for prediction of flows in Shaharchay River in Urmia. Khu et al. (16 used genetic programming for runoff prediction in Orgeval catchment in France. Firat and Gungor (11 evaluated the fuzzy-neural model for predicting Mendes river flow in Turkey. The goal of present study is comparing the performance of genetic programming and M5 model trees for prediction of Shaharchay river flow in the basin of Lake Urmia and obtaining a comprehensive insight of their abilities. Materials and Methods: Shaharchay river as a main source of providing drinking water of Urmia city and agricultural needs of surrounding lands and finally one of the main input sources of Lake Urmia is quite important in the region. For obtaining the predetermined goals of present study, average monthly flows of Shaharchay River in Band hydrometric station has been gathered from 1951 to 2011. Then, two third of mentioned

  3. Mineral-associated organic matter: are we now on the right path to accurately measuring and modelling it?

    Science.gov (United States)

    Cotrufo, M. F.

    2017-12-01

    Mineral-associated organic matter (MAOM) is the largest and most persistent pool of carbon in soil. Understanding and correctly modeling its dynamic is key to suggest management practices that can augment soil carbon storage for climate change mitigation, as well as increase soil organic matter (SOM) stocks to support soil health on the long-term. In the Microbial Efficiency Mineral Stabilization (MEMS) framework we proposed that, contrary to what originally thought, this form of persistent SOM is derived from the labile components of plant inputs, through their efficient microbial processing. I will present results from several experiments using dual isotope labeling of plant inputs that largely confirm this opinion, and point to the key role of dissolved organic matter in MAOM formation, and to the dynamic nature of the outer layer of MAOM. I will also show how we are incorporating this understanding in a new SOM model, which uses physically defined measurable pools rather than turnover-defined pools to forecast C cycling in soil.

  4. Application of genetic algorithm in radio ecological models parameter determination

    International Nuclear Information System (INIS)

    Pantelic, G.

    2006-01-01

    The method of genetic algorithms was used to determine the biological half-life of 137 Cs in cow milk after the accident in Chernobyl. Methodologically genetic algorithms are based on the fact that natural processes tend to optimize themselves and therefore this method should be more efficient in providing optimal solutions in the modeling of radio ecological and environmental events. The calculated biological half-life of 137 Cs in milk is (32 ± 3) days and transfer coefficient from grass to milk is (0.019 ± 0.005). (authors)

  5. The Mouse Lemur, a Genetic Model Organism for Primate Biology, Behavior, and Health.

    Science.gov (United States)

    Ezran, Camille; Karanewsky, Caitlin J; Pendleton, Jozeph L; Sholtz, Alex; Krasnow, Maya R; Willick, Jason; Razafindrakoto, Andriamahery; Zohdy, Sarah; Albertelli, Megan A; Krasnow, Mark A

    2017-06-01

    Systematic genetic studies of a handful of diverse organisms over the past 50 years have transformed our understanding of biology. However, many aspects of primate biology, behavior, and disease are absent or poorly modeled in any of the current genetic model organisms including mice. We surveyed the animal kingdom to find other animals with advantages similar to mice that might better exemplify primate biology, and identified mouse lemurs ( Microcebus spp.) as the outstanding candidate. Mouse lemurs are prosimian primates, roughly half the genetic distance between mice and humans. They are the smallest, fastest developing, and among the most prolific and abundant primates in the world, distributed throughout the island of Madagascar, many in separate breeding populations due to habitat destruction. Their physiology, behavior, and phylogeny have been studied for decades in laboratory colonies in Europe and in field studies in Malagasy rainforests, and a high quality reference genome sequence has recently been completed. To initiate a classical genetic approach, we developed a deep phenotyping protocol and have screened hundreds of laboratory and wild mouse lemurs for interesting phenotypes and begun mapping the underlying mutations, in collaboration with leading mouse lemur biologists. We also seek to establish a mouse lemur gene "knockout" library by sequencing the genomes of thousands of mouse lemurs to identify null alleles in most genes from the large pool of natural genetic variants. As part of this effort, we have begun a citizen science project in which students across Madagascar explore the remarkable biology around their schools, including longitudinal studies of the local mouse lemurs. We hope this work spawns a new model organism and cultivates a deep genetic understanding of primate biology and health. We also hope it establishes a new and ethical method of genetics that bridges biological, behavioral, medical, and conservation disciplines, while

  6. Genetic parameters for racing records in trotters using linear and generalized linear models.

    Science.gov (United States)

    Suontama, M; van der Werf, J H J; Juga, J; Ojala, M

    2012-09-01

    Heritability and repeatability and genetic and phenotypic correlations were estimated for trotting race records with linear and generalized linear models using 510,519 records on 17,792 Finnhorses and 513,161 records on 25,536 Standardbred trotters. Heritability and repeatability were estimated for single racing time and earnings traits with linear models, and logarithmic scale was used for racing time and fourth-root scale for earnings to correct for nonnormality. Generalized linear models with a gamma distribution were applied for single racing time and with a multinomial distribution for single earnings traits. In addition, genetic parameters for annual earnings were estimated with linear models on the observed and fourth-root scales. Racing success traits of single placings, winnings, breaking stride, and disqualifications were analyzed using generalized linear models with a binomial distribution. Estimates of heritability were greatest for racing time, which ranged from 0.32 to 0.34. Estimates of heritability were low for single earnings with all distributions, ranging from 0.01 to 0.09. Annual earnings were closer to normal distribution than single earnings. Heritability estimates were moderate for annual earnings on the fourth-root scale, 0.19 for Finnhorses and 0.27 for Standardbred trotters. Heritability estimates for binomial racing success variables ranged from 0.04 to 0.12, being greatest for winnings and least for breaking stride. Genetic correlations among racing traits were high, whereas phenotypic correlations were mainly low to moderate, except correlations between racing time and earnings were high. On the basis of a moderate heritability and moderate to high repeatability for racing time and annual earnings, selection of horses for these traits is effective when based on a few repeated records. Because of high genetic correlations, direct selection for racing time and annual earnings would also result in good genetic response in racing success.

  7. Joint modeling of genetically correlated diseases and functional annotations increases accuracy of polygenic risk prediction.

    Directory of Open Access Journals (Sweden)

    Yiming Hu

    2017-06-01

    Full Text Available Accurate prediction of disease risk based on genetic factors is an important goal in human genetics research and precision medicine. Advanced prediction models will lead to more effective disease prevention and treatment strategies. Despite the identification of thousands of disease-associated genetic variants through genome-wide association studies (GWAS in the past decade, accuracy of genetic risk prediction remains moderate for most diseases, which is largely due to the challenges in both identifying all the functionally relevant variants and accurately estimating their effect sizes. In this work, we introduce PleioPred, a principled framework that leverages pleiotropy and functional annotations in genetic risk prediction for complex diseases. PleioPred uses GWAS summary statistics as its input, and jointly models multiple genetically correlated diseases and a variety of external information including linkage disequilibrium and diverse functional annotations to increase the accuracy of risk prediction. Through comprehensive simulations and real data analyses on Crohn's disease, celiac disease and type-II diabetes, we demonstrate that our approach can substantially increase the accuracy of polygenic risk prediction and risk population stratification, i.e. PleioPred can significantly better separate type-II diabetes patients with early and late onset ages, illustrating its potential clinical application. Furthermore, we show that the increment in prediction accuracy is significantly correlated with the genetic correlation between the predicted and jointly modeled diseases.

  8. Genetic models of absence epilepsy: New concepts and insights

    NARCIS (Netherlands)

    Luijtelaar, E.L.J.M. van; Stein, J.

    2017-01-01

    The discovery, development and use of genetic rodent models of absence epilepsy have led to a new theory about the origin of absence seizures, which has gained impact within the international epilepsy community. A focal zone has been identified in the perioral region of the somatosensory cortex in

  9. Revised models and genetic parameter estimates for production and ...

    African Journals Online (AJOL)

    Genetic parameters for production and reproduction traits in the Elsenburg Dormer sheep stud were estimated using records of 11743 lambs born between 1943 and 2002. An animal model with direct and maternal additive, maternal permanent and temporary environmental effects was fitted for traits considered traits of the ...

  10. Bayesian network model for identification of pathways by integrating protein interaction with genetic interaction data.

    Science.gov (United States)

    Fu, Changhe; Deng, Su; Jin, Guangxu; Wang, Xinxin; Yu, Zu-Guo

    2017-09-21

    Molecular interaction data at proteomic and genetic levels provide physical and functional insights into a molecular biosystem and are helpful for the construction of pathway structures complementarily. Despite advances in inferring biological pathways using genetic interaction data, there still exists weakness in developed models, such as, activity pathway networks (APN), when integrating the data from proteomic and genetic levels. It is necessary to develop new methods to infer pathway structure by both of interaction data. We utilized probabilistic graphical model to develop a new method that integrates genetic interaction and protein interaction data and infers exquisitely detailed pathway structure. We modeled the pathway network as Bayesian network and applied this model to infer pathways for the coherent subsets of the global genetic interaction profiles, and the available data set of endoplasmic reticulum genes. The protein interaction data were derived from the BioGRID database. Our method can accurately reconstruct known cellular pathway structures, including SWR complex, ER-Associated Degradation (ERAD) pathway, N-Glycan biosynthesis pathway, Elongator complex, Retromer complex, and Urmylation pathway. By comparing N-Glycan biosynthesis pathway and Urmylation pathway identified from our approach with that from APN, we found that our method is able to overcome its weakness (certain edges are inexplicable). According to underlying protein interaction network, we defined a simple scoring function that only adopts genetic interaction information to avoid the balance difficulty in the APN. Using the effective stochastic simulation algorithm, the performance of our proposed method is significantly high. We developed a new method based on Bayesian network to infer detailed pathway structures from interaction data at proteomic and genetic levels. The results indicate that the developed method performs better in predicting signaling pathways than previously

  11. Miners' welfare

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, C

    1984-06-13

    The Miners' Welfare Committee (MWC) was formed in Britain in 1921 and initiated building programmes to provide welfare amenities for miners and families, using architecture to improve the quality of a miner's working and leisure time. The article reviews the MWC's work, and assesses the design and architecture at the Selby Coalfield. (7 refs.)

  12. Multi-gene genetic programming based predictive models for municipal solid waste gasification in a fluidized bed gasifier.

    Science.gov (United States)

    Pandey, Daya Shankar; Pan, Indranil; Das, Saptarshi; Leahy, James J; Kwapinski, Witold

    2015-03-01

    A multi-gene genetic programming technique is proposed as a new method to predict syngas yield production and the lower heating value for municipal solid waste gasification in a fluidized bed gasifier. The study shows that the predicted outputs of the municipal solid waste gasification process are in good agreement with the experimental dataset and also generalise well to validation (untrained) data. Published experimental datasets are used for model training and validation purposes. The results show the effectiveness of the genetic programming technique for solving complex nonlinear regression problems. The multi-gene genetic programming are also compared with a single-gene genetic programming model to show the relative merits and demerits of the technique. This study demonstrates that the genetic programming based data-driven modelling strategy can be a good candidate for developing models for other types of fuels as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Wolfram Syndrome protein, Miner1, regulates sulphydryl redox status, the unfolded protein response, and Ca2+ homeostasis.

    Science.gov (United States)

    Wiley, Sandra E; Andreyev, Alexander Y; Divakaruni, Ajit S; Karisch, Robert; Perkins, Guy; Wall, Estelle A; van der Geer, Peter; Chen, Yi-Fan; Tsai, Ting-Fen; Simon, Melvin I; Neel, Benjamin G; Dixon, Jack E; Murphy, Anne N

    2013-06-01

    Miner1 is a redox-active 2Fe2S cluster protein. Mutations in Miner1 result in Wolfram Syndrome, a metabolic disease associated with diabetes, blindness, deafness, and a shortened lifespan. Embryonic fibroblasts from Miner1(-/-) mice displayed ER stress and showed hallmarks of the unfolded protein response. In addition, loss of Miner1 caused a depletion of ER Ca(2+) stores, a dramatic increase in mitochondrial Ca(2+) load, increased reactive oxygen and nitrogen species, an increase in the GSSG/GSH and NAD(+)/NADH ratios, and an increase in the ADP/ATP ratio consistent with enhanced ATP utilization. Furthermore, mitochondria in fibroblasts lacking Miner1 displayed ultrastructural alterations, such as increased cristae density and punctate morphology, and an increase in O2 consumption. Treatment with the sulphydryl anti-oxidant N-acetylcysteine reversed the abnormalities in the Miner1 deficient cells, suggesting that sulphydryl reducing agents should be explored as a treatment for this rare genetic disease. Copyright © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  14. Modelling the genetic risk in age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Felix Grassmann

    Full Text Available Late-stage age-related macular degeneration (AMD is a common sight-threatening disease of the central retina affecting approximately 1 in 30 Caucasians. Besides age and smoking, genetic variants from several gene loci have reproducibly been associated with this condition and likely explain a large proportion of disease. Here, we developed a genetic risk score (GRS for AMD based on 13 risk variants from eight gene loci. The model exhibited good discriminative accuracy, area-under-curve (AUC of the receiver-operating characteristic of 0.820, which was confirmed in a cross-validation approach. Noteworthy, younger AMD patients aged below 75 had a significantly higher mean GRS (1.87, 95% CI: 1.69-2.05 than patients aged 75 and above (1.45, 95% CI: 1.36-1.54. Based on five equally sized GRS intervals, we present a risk classification with a relative AMD risk of 64.0 (95% CI: 14.11-1131.96 for individuals in the highest category (GRS 3.44-5.18, 0.5% of the general population compared to subjects with the most common genetic background (GRS -0.05-1.70, 40.2% of general population. The highest GRS category identifies AMD patients with a sensitivity of 7.9% and a specificity of 99.9% when compared to the four lower categories. Modeling a general population around 85 years of age, 87.4% of individuals in the highest GRS category would be expected to develop AMD by that age. In contrast, only 2.2% of individuals in the two lowest GRS categories which represent almost 50% of the general population are expected to manifest AMD. Our findings underscore the large proportion of AMD cases explained by genetics particularly for younger AMD patients. The five-category risk classification could be useful for therapeutic stratification or for diagnostic testing purposes once preventive treatment is available.

  15. Genetic Diseases and Genetic Determinism Models in French Secondary School Biology Textbooks

    Science.gov (United States)

    Castera, Jeremy; Bruguiere, Catherine; Clement, Pierre

    2008-01-01

    The presentation of genetic diseases in French secondary school biology textbooks is analysed to determine the major conceptions taught in the field of human genetics. References to genetic diseases, and the processes by which they are explained (monogeny, polygeny, chromosomal anomaly and environmental influence) are studied in recent French…

  16. Using the concentration-volume (C-V) fractal model in the delineation of gold mineralized zones within the Tepeoba porphyry Cu-Mo-Au, Balikesir, NW Turkey

    Science.gov (United States)

    Kumral, Mustafa; Abdelnasser, Amr; Karaman, Muhittin; Budakoglu, Murat

    2016-04-01

    The Tepeoba porphyry Cu-Mo-Au mineralization that located at the Biga peninsula (W Turkey) developed around the Eybek pluton concentrated at its southern contact. This mineralization that hosted in the hornfels rocks of Karakaya Complex is associated with three main alteration zones; potassic, phyllic and propylitic alterations along the fault controlled margins of the Eybek pluton and quartz stockwork veining as well as brecciation zones. As well as two mineralized zones were occurred in the mine area; hypogene and oxidation/supergene zone. The hypogene zone has differentiated alteration types; high potassic and low phyllic alteration, while the oxidation/supergene zone has high phyllic and propylitic alterations. This work deals with the delineation of gold mineralized zone within this porphyry deposit using the concentration-volume (C-V) fractal model. Five zones of gold were calculated using its power-law C-V relationship that revealed that the main phase of gold mineralization stated at 5.3083 ppm Au concentration. In addition, the C-V log-log plot shows that the highly and moderately Au mineralization zone developed in western part of deposit correlated with oxidation zone related to propylitic alteration. On the other hand, its weakly mineralization zone has a widespread in the hypogene zone related to potassic alteration. This refers to the enrichment of gold and depletion of copper at the oxidation/supergene zone is due to the oxidation/supergene alteration processes that enrich the deposits by the meteoric water. Keywords: Concentration-volume (C-V) fractal model; gold mineralized zone; Tepeoba porphyry Cu-Mo-Au; Balikesir; NW Turkey.

  17. Detection of trisomy 7 in bronchial cells from uranium miners

    Energy Technology Data Exchange (ETDEWEB)

    Lechner, J.F.; Neft, R.E.; Belinsky, S.A. [and others

    1995-12-01

    New Mexico was the largest producer of uranium in the western world during 1960s and 1970s. Investigators at the University of New Mexico School of Medicine`s Epidemiology and Cancer Control Program have been conducting epidemiological studies on uranium miners over the past 2 decades. Currently, this cohort includes more than 3600 men who had completed at least 1 y of underground work experience in New Mexico by December 31, 1976. These miners, who are now in their 5th through 7th decades, the age when lung cancer incidence is highest, are at high risk for developing this disease because they were exposed to high levels of radon progeny in the mines, and they also smoked tobacco. However, not all people comparably exposed develop lung cancer; in fact, the lifetime risk of lung cancer for the smoking uranium miners has been projected by epidemiological analyses to be no higher than 50%. Therefore, the identification of gene alterations in bronchial epithelium would be a valuable tool to ascertain which miners are at greatest risk for lung cancer. The underlying significance of the current effort confirms the hypothesis that chronic exposure to high concentrations of {alpha}-particles and tobacco smoke produces genetically altered lung epithelial cells throughout the respiratory tract of some susceptible individuals before they develop clinical disease.

  18. Detection of trisomy 7 in bronchial cells from uranium miners

    International Nuclear Information System (INIS)

    Lechner, J.F.; Neft, R.E.; Belinsky, S.A.

    1995-01-01

    New Mexico was the largest producer of uranium in the western world during 1960s and 1970s. Investigators at the University of New Mexico School of Medicine's Epidemiology and Cancer Control Program have been conducting epidemiological studies on uranium miners over the past 2 decades. Currently, this cohort includes more than 3600 men who had completed at least 1 y of underground work experience in New Mexico by December 31, 1976. These miners, who are now in their 5th through 7th decades, the age when lung cancer incidence is highest, are at high risk for developing this disease because they were exposed to high levels of radon progeny in the mines, and they also smoked tobacco. However, not all people comparably exposed develop lung cancer; in fact, the lifetime risk of lung cancer for the smoking uranium miners has been projected by epidemiological analyses to be no higher than 50%. Therefore, the identification of gene alterations in bronchial epithelium would be a valuable tool to ascertain which miners are at greatest risk for lung cancer. The underlying significance of the current effort confirms the hypothesis that chronic exposure to high concentrations of α-particles and tobacco smoke produces genetically altered lung epithelial cells throughout the respiratory tract of some susceptible individuals before they develop clinical disease

  19. Behavioral phenotypes of genetic mouse models of autism.

    Science.gov (United States)

    Kazdoba, T M; Leach, P T; Crawley, J N

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  20. Gebel Gattar prospect, an obvious model of intra granitic uranium mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Salman, A A; Shalaby, H M; Noseir, L; Elkhouli, D; Roz, M; Abu Zeid, M; Mostafa, M; Amin, N; Ayoub, R; Khamis, H [Nuclear materials authority, El Maadi, Cairo, (Egypt)

    1995-10-01

    Gebel Gattar area is situated in the northern Eastern desert, SW Hurghada city and is considered as an area of high potentiality for workable uranium deposits. The field radiometric prospect has started in May 1984. The geologic, structural and radiometric studies have resulted in the northern parts of the pluton and are controlled by some important structural features, namely NNE-SSW, ENE-WSW, NW-SE and to a lesser extent the N-S faults. The uranium content of the fresh granites in the area ranges from 20 to 30 ppm and thus could be considered as uraniferous granites. The mineralized samples are ranging from 1000 to 5000 ppm, while hand piked sample could reach as much as 14000 ppm. Detailed mineralogical studies proved the presence of various types of secondary uranium minerals presented mainly by molybdates, vanadates, silicate and sulphates. Exploratory tunneling works during 1990 to 1992 demonstrated that the uranium mineralization is still persistent from level 900 m (asl) to level 660 m (asl) which is nearly the wadi level. The alteration of the rocks especially hematitization, kaolination and partial silicificant is still well noticed and the gaping of the fault zone is more open and shows an increasing width. Moreover, secondary uranium minerals are still present indicating persistence of the oxidizing conditions. 5 figs., 4 tabs.

  1. Teaching genetics using hands-on models, problem solving, and inquiry-based methods

    Science.gov (United States)

    Hoppe, Stephanie Ann

    Teaching genetics can be challenging because of the difficulty of the content and misconceptions students might hold. This thesis focused on using hands-on model activities, problem solving, and inquiry-based teaching/learning methods in order to increase student understanding in an introductory biology class in the area of genetics. Various activities using these three methods were implemented into the classes to address any misconceptions and increase student learning of the difficult concepts. The activities that were implemented were shown to be successful based on pre-post assessment score comparison. The students were assessed on the subjects of inheritance patterns, meiosis, and protein synthesis and demonstrated growth in all of the areas. It was found that hands-on models, problem solving, and inquiry-based activities were more successful in learning concepts in genetics and the students were more engaged than tradition styles of lecture.

  2. Analysis of a genetically structured variance heterogeneity model using the Box-Cox transformation.

    Science.gov (United States)

    Yang, Ye; Christensen, Ole F; Sorensen, Daniel

    2011-02-01

    Over recent years, statistical support for the presence of genetic factors operating at the level of the environmental variance has come from fitting a genetically structured heterogeneous variance model to field or experimental data in various species. Misleading results may arise due to skewness of the marginal distribution of the data. To investigate how the scale of measurement affects inferences, the genetically structured heterogeneous variance model is extended to accommodate the family of Box-Cox transformations. Litter size data in rabbits and pigs that had previously been analysed in the untransformed scale were reanalysed in a scale equal to the mode of the marginal posterior distribution of the Box-Cox parameter. In the rabbit data, the statistical evidence for a genetic component at the level of the environmental variance is considerably weaker than that resulting from an analysis in the original metric. In the pig data, the statistical evidence is stronger, but the coefficient of correlation between additive genetic effects affecting mean and variance changes sign, compared to the results in the untransformed scale. The study confirms that inferences on variances can be strongly affected by the presence of asymmetry in the distribution of data. We recommend that to avoid one important source of spurious inferences, future work seeking support for a genetic component acting on environmental variation using a parametric approach based on normality assumptions confirms that these are met.

  3. Mineralization of PCBs by the genetically modified strain Cupriavidus necator JMS34 and its application for bioremediation of PCBs in soil

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra, Juan Matias; Acevedo, Francisca; Gonzalez, Myriam; Seeger, Michael [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Lab. de Microbiologia Molecular y Biotecnologia

    2010-07-15

    Polychlorobiphenyls (PCBs) are classified as ''high-priority pollutants''. Diverse microorganisms are able to degrade PCBs. However, bacterial degradation of PCBs is generally incomplete, leading to the accumulation of chlorobenzoates (CBAs) as dead-end metabolites. To obtain a microorganism able to mineralize PCB congeners, the bph locus of Burkholderia xenovorans LB400, which encodes one of the most effective PCB degradation pathways, was incorporated into the genome of the CBA-degrading bacterium Cupriavidus necator JMP134-X3. The bph genes were transferred into strain JMP134-X3, using the mini-Tn5 transposon system and biparental mating. The genetically modified derivative, C. necator strain JMS34, had only one chromosomal insertion of bph locus, which was stable under nonselective conditions. This modified bacterium was able to grow on biphenyl, 3-CBA and 4-CBA, and degraded 3,5-CBA in the presence of m-toluate. The strain JMS34 mineralized 3-CB, 4-CB, 2,4{sup '}-CB, and 3,5-CB, without accumulation of CBAs. Bioaugmentation of PCB-polluted soils with C. necator strain JMS34 and with the native B. xenovorans LB400 was monitored. It is noteworthy that strain JMS34 degraded, in 1 week, 99% of 3-CB and 4-CB and approximately 80% of 2,4{sup '}-CB in nonsterile soil, as well as in sterile soil. Additionally, the bacterial count of strain JMS34 increased by almost two orders of magnitude in PCB-polluted nonsterile soil. In contrast, the presence of native microflora reduced the degradation of these PCBs by strain LB400 from 73% (sterile soil) to approximately 50% (nonsterile soil). This study contributes to the development of improved biocatalysts for remediation of PCB-contaminated environments. (orig.)

  4. New insights into the endophenotypic status of cognition in bipolar disorder: genetic modelling study of twins and siblings.

    Science.gov (United States)

    Georgiades, Anna; Rijsdijk, Fruhling; Kane, Fergus; Rebollo-Mesa, Irene; Kalidindi, Sridevi; Schulze, Katja K; Stahl, Daniel; Walshe, Muriel; Sahakian, Barbara J; McDonald, Colm; Hall, Mei-Hua; Murray, Robin M; Kravariti, Eugenia

    2016-06-01

    Twin studies have lacked statistical power to apply advanced genetic modelling techniques to the search for cognitive endophenotypes for bipolar disorder. To quantify the shared genetic variability between bipolar disorder and cognitive measures. Structural equation modelling was performed on cognitive data collected from 331 twins/siblings of varying genetic relatedness, disease status and concordance for bipolar disorder. Using a parsimonious AE model, verbal episodic and spatial working memory showed statistically significant genetic correlations with bipolar disorder (rg = |0.23|-|0.27|), which lost statistical significance after covarying for affective symptoms. Using an ACE model, IQ and visual-spatial learning showed statistically significant genetic correlations with bipolar disorder (rg = |0.51|-|1.00|), which remained significant after covarying for affective symptoms. Verbal episodic and spatial working memory capture a modest fraction of the bipolar diathesis. IQ and visual-spatial learning may tap into genetic substrates of non-affective symptomatology in bipolar disorder. © The Royal College of Psychiatrists 2016.

  5. The influence of clay minerals on acoustic properties of sandstones

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Olav

    1997-12-31

    This thesis aims to provide better understanding of the relationship between the acoustic properties and the petrophysical/mineralogical properties in sand-prone rock. It emphasizes the influence of clay minerals. The author develops a method to deposit clay minerals/mineral aggregates in pore space of a rigid rock framework. Kaolinite aggregates were flushed into porous permeable Bentheimer sandstone to evaluate the effect of pore filling minerals on porosity, permeability and acoustic properties. The compressional velocity was hardly affected by the clay content and it was found that the effect of minor quantities of pore filling minerals may be acoustically modelled as an ideal suspension, where the pore fluid bulk modulus is modified by the bulk modulus of the clay minerals. The influence of clays on acoustic velocities in petroleum reservoir rocks was investigated through ultrasonic measurements of compressional- and shear-waves on core material from reservoir and non-reservoir units on the Norwegian Continental Shelf. The measured velocities decrease as the porosity increases, but are not strongly dependent on the clay content. The measured velocities are less dependent on the petrophysical and lithological properties than indicated by previous authors and published mathematical models, and stiffness reduction factors are introduced in two of the models to better match the data. Velocities are estimated along the wellbores based on non-sonic well logs and reflect well the actual sonic log well measurements. In some wells the compressional velocity cannot be modelled correctly by the models suggested. Very high compressional wave anisotropy was measured in the dry samples at atmospheric conditions. As the samples were saturated, the anisotropy was reduced to a maximum of about 30% and decreases further upon pressurization. Reservoir rocks retrieved from 2500 m are more stress dependent than those retrieved from less than 200 m depth. 168 refs., 117 figs., 24

  6. U.S. Geological Survey Mineral Resources Program—Mineral resource science supporting informed decisionmaking

    Science.gov (United States)

    Wilkins, Aleeza M.; Doebrich, Jeff L.

    2016-09-19

    The USGS Mineral Resources Program (MRP) delivers unbiased science and information to increase understanding of mineral resource potential, production, and consumption, and how mineral resources interact with the environment. The MRP is the Federal Government’s sole source for this mineral resource science and information. Program goals are to (1) increase understanding of mineral resource formation, (2) provide mineral resource inventories and assessments, (3) broaden knowledge of the effects of mineral resources on the environment and society, and (4) provide analysis on the availability and reliability of mineral supplies.

  7. Hydrogeochemical tracing of mineral water in Jingyu County, Northeast China.

    Science.gov (United States)

    Yan, Baizhong; Xiao, Changlai; Liang, Xiujuan; Wu, Shili

    2016-02-01

    The east Jilin Province in China, Jingyu County has been explored as a potential for enriching mineral water. In order to assess the water quality and quantity, it is of crucial importance to investigate the origin of the mineral water and its flow paths. In this study, eighteen mineral springs were sampled in May and September of 2012, May and September of 2013, and May 2014 and the environment, evolvement, and reaction mechanism of mineral water formation were analysed by hydrochemical data analysis, geochemical modelling and multivariate statistical analysis. The results showed that the investigated mineral water was rich in calcium, magnesium, potassium, sodium, bicarbonate, chloride, sulphate, fluoride, nitrate, total iron, silicate, and strontium, and mineral water ages ranged from 11.0 to more than 61.0 years. The U-shape contours of the mineral ages indicate a local and discrete recharge. The mineral compositions of the rocks were olivine, potassium feldspar, pyroxene, albite, and anorthite and were under-saturated in the mineral water. The origin of mineral water was from the hydrolysis of basalt minerals under a neutral to slightly alkaline and CO2-rich environment.

  8. Aggregate and Mineral Resources - Industrial Mineral Mining Operations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — An Industrial Mineral Mining Operation is a DEP primary facility type related to the Industrial Mineral Mining Program. The sub-facility types are listed below:Deep...

  9. Genetic parameters for direct and maternal calving ease in Walloon dairy cattle based on linear and threshold models.

    Science.gov (United States)

    Vanderick, S; Troch, T; Gillon, A; Glorieux, G; Gengler, N

    2014-12-01

    Calving ease scores from Holstein dairy cattle in the Walloon Region of Belgium were analysed using univariate linear and threshold animal models. Variance components and derived genetic parameters were estimated from a data set including 33,155 calving records. Included in the models were season, herd and sex of calf × age of dam classes × group of calvings interaction as fixed effects, herd × year of calving, maternal permanent environment and animal direct and maternal additive genetic as random effects. Models were fitted with the genetic correlation between direct and maternal additive genetic effects either estimated or constrained to zero. Direct heritability for calving ease was approximately 8% with linear models and approximately 12% with threshold models. Maternal heritabilities were approximately 2 and 4%, respectively. Genetic correlation between direct and maternal additive effects was found to be not significantly different from zero. Models were compared in terms of goodness of fit and predictive ability. Criteria of comparison such as mean squared error, correlation between observed and predicted calving ease scores as well as between estimated breeding values were estimated from 85,118 calving records. The results provided few differences between linear and threshold models even though correlations between estimated breeding values from subsets of data for sires with progeny from linear model were 17 and 23% greater for direct and maternal genetic effects, respectively, than from threshold model. For the purpose of genetic evaluation for calving ease in Walloon Holstein dairy cattle, the linear animal model without covariance between direct and maternal additive effects was found to be the best choice. © 2014 Blackwell Verlag GmbH.

  10. Genetic evaluation of calf and heifer survival in Iranian Holstein cattle using linear and threshold models.

    Science.gov (United States)

    Forutan, M; Ansari Mahyari, S; Sargolzaei, M

    2015-02-01

    Calf and heifer survival are important traits in dairy cattle affecting profitability. This study was carried out to estimate genetic parameters of survival traits in female calves at different age periods, until nearly the first calving. Records of 49,583 female calves born during 1998 and 2009 were considered in five age periods as days 1-30, 31-180, 181-365, 366-760 and full period (day 1-760). Genetic components were estimated based on linear and threshold sire models and linear animal models. The models included both fixed effects (month of birth, dam's parity number, calving ease and twin/single) and random effects (herd-year, genetic effect of sire or animal and residual). Rates of death were 2.21, 3.37, 1.97, 4.14 and 12.4% for the above periods, respectively. Heritability estimates were very low ranging from 0.48 to 3.04, 0.62 to 3.51 and 0.50 to 4.24% for linear sire model, animal model and threshold sire model, respectively. Rank correlations between random effects of sires obtained with linear and threshold sire models and with linear animal and sire models were 0.82-0.95 and 0.61-0.83, respectively. The estimated genetic correlations between the five different periods were moderate and only significant for 31-180 and 181-365 (r(g) = 0.59), 31-180 and 366-760 (r(g) = 0.52), and 181-365 and 366-760 (r(g) = 0.42). The low genetic correlations in current study would suggest that survival at different periods may be affected by the same genes with different expression or by different genes. Even though the additive genetic variations of survival traits were small, it might be possible to improve these traits by traditional or genomic selection. © 2014 Blackwell Verlag GmbH.

  11. Study on mineral processing technology for abrasive minerals

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Woong; Yang, Jung Il; Hwang, Seon Kook; Choi, Yeon Ho; Cho, Ken Joon; Shin, Hee Young [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    Buyeo Materials in Buyeogun, Choongnam province is a company producing feldspar concentrate, but does not yet utilize the garnet as abrasive material and other useful heavy minerals wasted out from the process of feldspar ore. The purpose of this study is to develop technology and process for the recovery of garnet concentrate. As results, the garnet is defined as ferro manganese garnet. The optimum process for recovery of garnet concentrate is to primarily concentrate heavy minerals from tailings of feldspar processing. And secondly the heavy minerals concentrated is dried and separated garnet concentrate from other heavy minerals. At this time, the garnet concentrate is yield by 0.176%wt from 0.31%wt of heavy minerals in head ore. The garnet concentrate contains 33.35% SiO{sub 2}, 12.20% Al{sub 2}O{sub 3}, 28.47% Fe{sub 2}O{sub 3}, 11.96% MnO. As for utilization of abrasive materials, a fundamental data was established on technology of grinding and classification. (author). 13 refs., 47 figs., 24 tabs.

  12. Genetic Aspects of Autism Spectrum Disorders: Insights from Animal Models

    Directory of Open Access Journals (Sweden)

    Swati eBanerjee

    2014-02-01

    Full Text Available Autism spectrum disorders (ASD are a complex neurodevelopmental disorder that display a triad of core behavioral deficits including restricted interests, often accompanied by repetitive behavior, deficits in language and communication, and an inability to engage in reciprocal social interactions. ASD is among the most heritable disorders but is not a simple disorder with a singular pathology and has a rather complex etiology. It is interesting to note that perturbations in synaptic growth, development and stability underlie a variety of neuropsychiatric disorders, including ASD, schizophrenia, epilepsy and intellectual disability. Biological characterization of an increasing repertoire of synaptic mutants in various model organisms indicates synaptic dysfunction as causal in the pathophysiology of ASD. Our understanding of the genes and genetic pathways that contribute towards the formation, stabilization and maintenance of functional synapses coupled with an in-depth phenotypic analysis of the cellular and behavioral characteristics is therefore essential to unraveling the pathogenesis of these disorders. In this review, we discuss the genetic aspects of ASD emphasizing on the well conserved set of genes and genetic pathways implicated in this disorder, many of which contribute to synapse assembly and maintenance across species. We also review how fundamental research using animal models is providing key insights into the various facets of human ASD.

  13. NCI-60 whole exome sequencing and pharmacological CellMiner analyses.

    Directory of Open Access Journals (Sweden)

    William C Reinhold

    Full Text Available Exome sequencing provides unprecedented insights into cancer biology and pharmacological response. Here we assess these two parameters for the NCI-60, which is among the richest genomic and pharmacological publicly available cancer cell line databases. Homozygous genetic variants that putatively affect protein function were identified in 1,199 genes (approximately 6% of all genes. Variants that are either enriched or depleted compared to non-cancerous genomes, and thus may be influential in cancer progression and differential drug response were identified for 2,546 genes. Potential gene knockouts are made available. Assessment of cell line response to 19,940 compounds, including 110 FDA-approved drugs, reveals ≈80-fold range in resistance versus sensitivity response across cell lines. 103,422 gene variants were significantly correlated with at least one compound (at p<0.0002. These include genes of known pharmacological importance such as IGF1R, BRAF, RAD52, MTOR, STAT2 and TSC2 as well as a large number of candidate genes such as NOM1, TLL2, and XDH. We introduce two new web-based CellMiner applications that enable exploration of variant-to-compound relationships for a broad range of researchers, especially those without bioinformatics support. The first tool, "Genetic variant versus drug visualization", provides a visualization of significant correlations between drug activity-gene variant combinations. Examples are given for the known vemurafenib-BRAF, and novel ifosfamide-RAD52 pairings. The second, "Genetic variant summation" allows an assessment of cumulative genetic variations for up to 150 combined genes together; and is designed to identify the variant burden for molecular pathways or functional grouping of genes. An example of its use is provided for the EGFR-ERBB2 pathway gene variant data and the identification of correlated EGFR, ERBB2, MTOR, BRAF, MEK and ERK inhibitors. The new tools are implemented as an updated web-based CellMiner

  14. Formation conditions of uranium minerals in oxidation zone of uranium deposits

    International Nuclear Information System (INIS)

    Li Youzhu

    2005-01-01

    The paper concerns about the summary and classification of hydrothermal uranium deposit with oxidation zone. Based on the summary of observation results of forty uranium deposits located in CIS and Bulgaria which are of different sizes and industrial-genetic types, analysis on available published information concerning oxidation and uranium mineral enrichment in supergenic zone, oxidation zone classification of hydrothermal uranium had been put forward according to the general system of the exogenetic uranium concentration. (authors)

  15. Bone Tissue Collagen Maturity and Mineral Content Increase With Sustained Hyperglycemia in the KK-Ay Murine Model of Type 2 Diabetes.

    Science.gov (United States)

    Hunt, Heather B; Pearl, Jared C; Diaz, David R; King, Karen B; Donnelly, Eve

    2018-05-01

    Type 2 diabetes mellitus (T2DM) increases fracture risk for a given bone mineral density (BMD), which suggests that T2DM changes bone tissue properties independently of bone mass. In this study, we assessed the effects of hyperglycemia on bone tissue compositional properties, enzymatic collagen crosslinks, and advanced glycation end-products (AGEs) in the KK-Ay murine model of T2DM using Fourier transform infrared (FTIR) imaging and high-performance liquid chromatography (HPLC). Compared to KK-aa littermate controls (n = 8), proximal femoral bone tissue of KK-Ay mice (n = 14) exhibited increased collagen maturity, increased mineral content, and less heterogeneous mineral properties. AGE accumulation assessed by the concentration of pentosidine, as well as the concentrations of the nonenzymatic crosslinks hydroxylysylpyridinoline (HP) and lysyl pyridinoline (LP), did not differ in the proximal femurs of KK-Ay mice compared to controls. The observed differences in tissue-level compositional properties in the KK-Ay mice are consistent with bone that is older and echo observations of reduced remodeling in T2DM. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  16. Use of Genetic Models to Study the Urinary Concentrating Mechanism

    DEFF Research Database (Denmark)

    Olesen, Emma Tina Bisgaard; Kortenoeven, Marleen L.A.; Fenton, Robert A.

    2015-01-01

    technology is providing critical new information about urinary concentrating processes and thus mechanisms for maintaining body water homeostasis. In this chapter we provide a brief overview of genetic mouse model generation, and then summarize findings in transgenic and knockout mice pertinent to our...

  17. South Africa's mineral industry

    International Nuclear Information System (INIS)

    1985-06-01

    The main aim of the Minerals Bureau in presenting this annual review is to provide an up-to-date reference document on the current state of the mineral industry in South Africa. This includes a brief look at the production, trade, economy, resources and deposits of precious metals and minerals, energy minerals, metallic minerals, and non-metallic minerals. One article discusses the production, trade, export, deposits and economy of uranium

  18. Relative risk models of lung cancer in uranium miners

    Energy Technology Data Exchange (ETDEWEB)

    Tomasek, L [National Radiation Protection Institute, Prague (Czech Republic); Placek, V [Inst. for Expertises and Emergencies, Pribram-Kamenna (Czech Republic)

    1996-12-31

    The study population of the S cohort (studies of underground miners of uranium and other substances as the source of information on long term effects of exposure to radon and its progeny) involve uranium miners, that started underground work at the Jachymov and Horni Slavkov mines in the period 1978-1959, and had worked at least for four years. A total 4320 men satisfied these criteria. During the decade up to 1990, follow-up of the cohort mainly relied on the national population registry. In order to improve the follow-u, a series of additional checks were conducted: in the files of the Czech and Slovak Pensions Offices, by local enquires, and by direct correspondence. These additional efforts resulted in an increase of more than 10% in the numbers of known men to have died or emigrated. An exceptional feature of the S study is the large number of measurements of radon concentrations made in each mine-shaft (mean number per year and shaft was 223 in the period 1949-1960). Each man`s annual exposures to radon progeny in terms of working levels were estimated combining measurement data with men`s employment details. The excess relative risk models were used in the form RR = c(1 + ERR(w,x)), where ERR is excess relative risk, w and x denote exposure history and modifying variable, and c is an intercept term that allows the mortality rate for `unexposed` cohort to differ from that in the general population. The increased mortality (O/E=1.58; where O is observed and E is expected cases among collected death cases in the cohort) in the cohort, generally, somewhat lower ratios than one reflect the non-industrial character of the region, with the exception of lung cancer in man. The differences in the O/E ratios for lung cancer among the separate communities indicate that even in the situation of generally lower mortality, the dependence of lung cancer mortality on radon exposure cannot be excluded. 3 tabs., 6 refs.

  19. Application of genetic algorithm in modeling on-wafer inductors for up to 110 Ghz

    Science.gov (United States)

    Liu, Nianhong; Fu, Jun; Liu, Hui; Cui, Wenpu; Liu, Zhihong; Liu, Linlin; Zhou, Wei; Wang, Quan; Guo, Ao

    2018-05-01

    In this work, the genetic algorithm has been introducted into parameter extraction for on-wafer inductors for up to 110 GHz millimeter-wave operations, and nine independent parameters of the equivalent circuit model are optimized together. With the genetic algorithm, the model with the optimized parameters gives a better fitting accuracy than the preliminary parameters without optimization. Especially, the fitting accuracy of the Q value achieves a significant improvement after the optimization.

  20. Reactor design considerations in mineral sequestration of carbon dioxide

    International Nuclear Information System (INIS)

    Ityokumbul, M.T.; Chander, S.; O'Connor, William K.; Dahlin, David C.; Gerdemann, Stephen J.

    2001-01-01

    One of the promising approaches to lowering the anthropogenic carbon dioxide levels in the atmosphere is mineral sequestration. In this approach, the carbon dioxide reacts with alkaline earth containing silicate minerals forming magnesium and/or calcium carbonates. Mineral carbonation is a multiphase reaction process involving gas, liquid and solid phases. The effective design and scale-up of the slurry reactor for mineral carbonation will require careful delineation of the rate determining step and how it changes with the scale of the reactor. The shrinking core model was used to describe the mineral carbonation reaction. Analysis of laboratory data indicates that the transformations of olivine and serpentine are controlled by chemical reaction and diffusion through an ash layer respectively. Rate parameters for olivine and serpentine carbonation are estimated from the laboratory data

  1. Analysis of conditional genetic effects and variance components in developmental genetics.

    Science.gov (United States)

    Zhu, J

    1995-12-01

    A genetic model with additive-dominance effects and genotype x environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t-1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects.

  2. Advanced technologies for genetically manipulating the silkworm Bombyx mori, a model Lepidopteran insect

    Science.gov (United States)

    Xu, Hanfu; O'Brochta, David A.

    2015-01-01

    Genetic technologies based on transposon-mediated transgenesis along with several recently developed genome-editing technologies have become the preferred methods of choice for genetically manipulating many organisms. The silkworm, Bombyx mori, is a Lepidopteran insect of great economic importance because of its use in silk production and because it is a valuable model insect that has greatly enhanced our understanding of the biology of insects, including many agricultural pests. In the past 10 years, great advances have been achieved in the development of genetic technologies in B. mori, including transposon-based technologies that rely on piggyBac-mediated transgenesis and genome-editing technologies that rely on protein- or RNA-guided modification of chromosomes. The successful development and application of these technologies has not only facilitated a better understanding of B. mori and its use as a silk production system, but also provided valuable experiences that have contributed to the development of similar technologies in non-model insects. This review summarizes the technologies currently available for use in B. mori, their application to the study of gene function and their use in genetically modifying B. mori for biotechnology applications. The challenges, solutions and future prospects associated with the development and application of genetic technologies in B. mori are also discussed. PMID:26108630

  3. Response of Microbial Soil Carbon Mineralization Rates to Oxygen Limitations

    Science.gov (United States)

    Keiluweit, M.; Denney, A.; Nico, P. S.; Fendorf, S. E.

    2014-12-01

    The rate of soil organic matter (SOM) mineralization is known to be controlled by climatic factors as well as molecular structure, mineral-organic associations, and physical protection. What remains elusive is to what extent oxygen (O2) limitations impact overall rates of microbial SOM mineralization (oxidation) in soils. Even within upland soils that are aerobic in bulk, factors limiting O2 diffusion such as texture and soil moisture can result in an abundance of anaerobic microsites in the interior of soil aggregates. Variation in ensuing anaerobic respiration pathways can further impact SOM mineralization rates. Using a combination of (first) aggregate model systems and (second) manipulations of intact field samples, we show how limitations on diffusion and carbon bioavailability interact to impose anaerobic conditions and associated respiration constraints on SOM mineralization rates. In model aggregates, we examined how particle size (soil texture) and amount of dissolved organic carbon (bioavailable carbon) affect O2 availability and distribution. Monitoring electron acceptor profiles (O2, NO3-, Mn and Fe) and SOM transformations (dissolved, particulate, mineral-associated pools) across the resulting redox gradients, we then determined the distribution of operative microbial metabolisms and their cumulative impact on SOM mineralization rates. Our results show that anaerobic conditions decrease SOM mineralization rates overall, but those are partially offset by the concurrent increases in SOM bioavailability due to transformations of protective mineral phases. In intact soil aggregates collected from soils varying in texture and SOM content, we mapped the spatial distribution of anaerobic microsites. Optode imaging, microsensor profiling and 3D tomography revealed that soil texture regulates overall O2 availability in aggregate interiors, while particulate SOM in biopores appears to control the fine-scale distribution of anaerobic microsites. Collectively, our

  4. The infrared stage Linkam FTIR 600 for microthermometric studies in dark and opaque minerals associated to uranium mineralization

    International Nuclear Information System (INIS)

    Lima, Tatiana Aparecida Fernandes de; Rios, Francisco Javier; Fuzikawa, Kazuo; Oliveira, Lucilia A. Ramos de; Oliveira, Elizabeth Kerpe; Neves, Jose Marques Correia; Prates, Sonia Pinto

    2009-01-01

    Fluid composition studies, throughout fluid inclusions (FI), contribute to improve the understanding of mineral deposits. FI correspond to small portions of fluids trapped in minerals by many processes that preserve relevant information related to fluid composition which forms ore deposits. Microscopy and microthermometry techniques applied to fluid inclusions studies of opaque and/or dark minerals use infrared light (IR). A specific stage heating/cooling that allows working in the near infrared (NIR). Thus, the infrared stage model FTIR600 Linkam coupled the IR OLYMPUS BX51, with the automatic controllers LNP 94/2 and TMS 94, and software Linksys 32 - Linkam installed in computer was implemented and tested. An infrared QUICAM fast 1394 QIMAGING TM camera with the program QCAPTURE SUITE was acquisition for images capture and adapted the new system. This infrared stage Linkam FTIR600 reach temperatures between -196 deg C to +600 deg C, with the differential of working in the NIR; it is all automated, obtaining computerized data, graphics in real time of analysis and storage the data. It also controls the speed of the experiment (up to 130 deg C/min); it runs consecutively heating and cooling with a small N 2 (l) consuming; besides greater results repeatability, obtaining accurate and precise temperatures. Actually the Linkam stage FTIR600 is operating in the Metallogenesis and Fluid Inclusions Laboratory (LIFM) at CDTN/CNEN. Uranium ore and/or others mineralization studies which shows dark or opaque mineral have been developed. The uranium mineralization in the Lagoa Real Uraniferous Province, Bahia, Brazil, shows several rock-forming minerals together with the dark and opaque minerals (garnet, magnetite, pyroxene) emphasized in the present work. (author)

  5. An investigation of the mineral in ductile and brittle cortical mouse bone.

    Science.gov (United States)

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J

    2015-05-01

    Bone is a strong and tough material composed of apatite mineral, organic matter, and water. Changes in composition and organization of these building blocks affect bone's mechanical integrity. Skeletal disorders often affect bone's mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta model, oim(-/-) , mice have a defect in the collagen, which leads to brittle bone; PHOSPHO1 mutants, Phospho1(-/-) , have ductile bone resulting from altered mineralization. Oim(-/-) and Phospho1(-/-) were compared with their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD) and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (BSE SEM). Results revealed that although both pathology models had extremely different whole-bone mechanics, they both had smaller apatite crystals, lower bulk mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. In contrast, the degree of mineralization of bone matrix was different for each strain: brittle oim(-/-) were hypermineralized, whereas ductile Phospho1(-/-) were hypomineralized. Despite differences in the mineralization, nanoscale alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results indicated that alterations from normal crystal size

  6. Photocatalytic mineralization of commercial herbicides in a pilot-scale solar CPC reactor: photoreactor modeling and reaction kinetics constants independent of radiation field.

    Science.gov (United States)

    Colina-Márquez, Jose; Machuca-Martínez, Fiderman; Li Puma, Gianluca

    2009-12-01

    The six-flux absorption-scattering model (SFM) of the radiation field in the photoreactor, combined with reaction kinetics and fluid-dynamic models, has proved to be suitable to describe the degradation of water pollutants in heterogeneous photocatalytic reactors, combining simplicity and accuracy. In this study, the above approach was extended to model the photocatalytic mineralization of a commercial herbicides mixture (2,4-D, diuron, and ametryne used in Colombian sugar cane crops) in a solar, pilot-scale, compound parabolic collector (CPC) photoreactor using a slurry suspension of TiO(2). The ray-tracing technique was used jointly with the SFM to determine the direction of both the direct and diffuse solar photon fluxes and the spatial profile of the local volumetric rate of photon absorption (LVRPA) in the CPC reactor. Herbicides mineralization kinetics with explicit photon absorption effects were utilized to remove the dependence of the observed rate constants from the reactor geometry and radiation field in the photoreactor. The results showed that the overall model fitted the experimental data of herbicides mineralization in the solar CPC reactor satisfactorily for both cloudy and sunny days. Using the above approach kinetic parameters independent of the radiation field in the reactor can be estimated directly from the results of experiments carried out in a solar CPC reactor. The SFM combined with reaction kinetics and fluid-dynamic models proved to be a simple, but reliable model, for solar photocatalytic applications.

  7. Mapping of the stochastic Lotka-Volterra model to models of population genetics and game theory

    Science.gov (United States)

    Constable, George W. A.; McKane, Alan J.

    2017-08-01

    The relationship between the M -species stochastic Lotka-Volterra competition (SLVC) model and the M -allele Moran model of population genetics is explored via timescale separation arguments. When selection for species is weak and the population size is large but finite, precise conditions are determined for the stochastic dynamics of the SLVC model to be mappable to the neutral Moran model, the Moran model with frequency-independent selection, and the Moran model with frequency-dependent selection (equivalently a game-theoretic formulation of the Moran model). We demonstrate how these mappings can be used to calculate extinction probabilities and the times until a species' extinction in the SLVC model.

  8. Imaging and Analytical Approaches for Characterization of Soil Mineral Weathering

    Energy Technology Data Exchange (ETDEWEB)

    Dohnalkova, Alice; Arey, Bruce; Varga, Tamas; Miller, Micah; Kovarik, Libor

    2017-07-01

    Soil minerals weathering is the primary natural source of nutrients necessary to sustain productivity in terrestrial ecosystems. Soil microbial communities increase soil mineral weathering and mineral-derived nutrient availability through physical and chemical processes. Rhizosphere, the zone immediately surrounding plant roots, is a biogeochemical hotspot with microbial activity, soil organic matter production, mineral weathering, and secondary phase formation all happening in a small temporally ephemeral zone of steep geochemical gradients. The detailed exploration of the micro-scale rhizosphere is essential to our better understanding of large-scale processes in soils, such as nutrient cycling, transport and fate of soil components, microbial-mineral interactions, soil erosion, soil organic matter turnover and its molecular-level characterization, and predictive modeling.

  9. Studies on the reference values of bone mineral content in Bulgarian women using single energy quantitative computed tomography

    International Nuclear Information System (INIS)

    Tsvetkova, S.; Semova, R.; Lichev, A.; Delov, I.

    1995-01-01

    Quantitative CT assessment of bone mineral content (BMC) is widely used in clinical practice. The results obtained from the examination of every single patient are compared with the reference values for the corresponding age and sex. It is known that BMC shows well recognized genetic, racial, ethnic and other differences. On the other hand, the introduction of different techniques, calibration phantoms, algorithms for choosing the region of interest, statistical models etc. leads to some differences in reference values. The authors present their own studies on the reference values of BMC in Bulgarian women using single energy quantitative computed tomography and a liquid K 2 HPO 4 calibration phantom. Different statistical models for data processing are proposed. The results are compared to the studies of recognized foreign authors. 17 refs., 3 tabs., 5 figs. (author)

  10. Genetic Algorithms Principles Towards Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Nabil M. Hewahi

    2011-10-01

    Full Text Available In this paper we propose a general approach based on Genetic Algorithms (GAs to evolve Hidden Markov Models (HMM. The problem appears when experts assign probability values for HMM, they use only some limited inputs. The assigned probability values might not be accurate to serve in other cases related to the same domain. We introduce an approach based on GAs to find
    out the suitable probability values for the HMM to be mostly correct in more cases than what have been used to assign the probability values.

  11. Influence of oil and mineral characteristics on oil-mineral interaction

    International Nuclear Information System (INIS)

    Wood, P.A.; Lunel, T.; Daniel, F.; Swannell, R.; Lee, K.; Stoffyn-Egli, P.

    1998-01-01

    A laboratory study was conducted to simulate the process of oil-mineral interaction in seawater. Thirteen different crudes, emulsions and oil products were used in the study. The objective was to improve the fundamental understanding of the characteristics of oils and minerals that influence the process. The findings of an initial phase of studies based on the swirling flask and marine simulation procedures were also described. Oil content associated with flocs to oil and mineral characteristics were discussed. Emulsions were prepared at 10 degrees C by vigorously mixing the oil with excess artificial seawater in a Kilner jar using a high shear homogenizer. Topped oils were prepared by distillation to 250 degrees C. The biodegraded oil was prepared from the topped crude oil. Biodegradation was achieved over a 28 day period using natural seawater and naturally occurring hydrocarbon degraders. The relationships between oil concentration, oil density and mineral exchange capacity were determined. The study showed that greater oil concentrations in the water column could be expected with (1) the presence of mineral fines, (2) minerals with greater cation exchange rates, (3) minerals with finer sizes, and (4) oils of lower viscosity and density. It was determined that in coastal waters the viscosity of the oil/emulsion will likely be the main factor affecting oil-mineral interactions. The viscosity limit for allowing oil fines interaction is likely to be dependent on the energy in the coastal zone affected by the oil pollution. 18 refs., 5 tabs., 13 figs

  12. Chemical event chain model of coupled genetic oscillators.

    Science.gov (United States)

    Jörg, David J; Morelli, Luis G; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  13. Chemical event chain model of coupled genetic oscillators

    Science.gov (United States)

    Jörg, David J.; Morelli, Luis G.; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  14. Human X-chromosome inactivation pattern distributions fit a model of genetically influenced choice better than models of completely random choice

    Science.gov (United States)

    Renault, Nisa K E; Pritchett, Sonja M; Howell, Robin E; Greer, Wenda L; Sapienza, Carmen; Ørstavik, Karen Helene; Hamilton, David C

    2013-01-01

    In eutherian mammals, one X-chromosome in every XX somatic cell is transcriptionally silenced through the process of X-chromosome inactivation (XCI). Females are thus functional mosaics, where some cells express genes from the paternal X, and the others from the maternal X. The relative abundance of the two cell populations (X-inactivation pattern, XIP) can have significant medical implications for some females. In mice, the ‘choice' of which X to inactivate, maternal or paternal, in each cell of the early embryo is genetically influenced. In humans, the timing of XCI choice and whether choice occurs completely randomly or under a genetic influence is debated. Here, we explore these questions by analysing the distribution of XIPs in large populations of normal females. Models were generated to predict XIP distributions resulting from completely random or genetically influenced choice. Each model describes the discrete primary distribution at the onset of XCI, and the continuous secondary distribution accounting for changes to the XIP as a result of development and ageing. Statistical methods are used to compare models with empirical data from Danish and Utah populations. A rigorous data treatment strategy maximises information content and allows for unbiased use of unphased XIP data. The Anderson–Darling goodness-of-fit statistics and likelihood ratio tests indicate that a model of genetically influenced XCI choice better fits the empirical data than models of completely random choice. PMID:23652377

  15. An enhanced dynamic model of battery using genetic algorithm suitable for photovoltaic applications

    International Nuclear Information System (INIS)

    Blaifi, S.; Moulahoum, S.; Colak, I.; Merrouche, W.

    2016-01-01

    Highlights: • We proposed a developed dynamic battery model suitable for photovoltaic systems. • We used genetic algorithm optimization method to find parameters that gives minimized error. • The validation was carried out with real measurements from stand-alone photovoltaic string. - Abstract: Modeling of batteries in photovoltaic systems has been a major issue related to the random dynamic regime imposed by the changes of solar irradiation and ambient temperature added to the complexity of battery electrochemical and electrical behaviors. However, various approaches have been proposed to model the battery behavior by predicting from detailed electrochemical, electrical or analytical models to high-level stochastic models. In this paper, an improvement of dynamic electrical battery model is proposed by automatic parameter extraction using genetic algorithm in order to give usefulness and future implementation for practical application. It is highlighted that the enhancement of 21 values of the parameters of CEIMAT model presents a good agreement with real measurements for different modes like charge or discharge and various conditions.

  16. Sulphide mineralization and wall-rock alteration in ophiolites and modern oceanic spreading centres

    Science.gov (United States)

    Koski, R.A.

    1983-01-01

    Massive and stockwork Fe-Cu-Zn (Cyprus type) sulphide deposits in the upper parts of ophiolite complexes represent hydrothermal mineralization at ancient accretionary plate boundaries. These deposits are probable metallogenic analogues of the polymetallic sulphide deposits recently discovered along modern oceanic spreading centres. Genetic models for these deposits suggest that mineralization results from large-scale circulation of sea-water through basaltic basement along the tectonically active axis of spreading, a zone of high heat flow. The high geothermal gradient above 1 to 2 km deep magma chambers emplaced below the ridge axis drives the convective circulation cell. Cold oxidizing sea-water penetrating the crust on the ridge flanks becomes heated and evolves into a highly reduced somewhat acidic hydrothermal solvent during interaction with basaltic wall-rock. Depending on the temperature and water/rock ratio, this fluid is capable of leaching and transporting iron, manganese, and base metals; dissolved sea-water sulphate is reduced to sulphide. At the ridge axis, the buoyant hydrothermal fluid rises through permeable wall-rocks, and fluid flow may be focussed along deep-seated fractures related to extensional tectonic processes. Metal sulphides are precipitated along channelways as the ascending fluid undergoes adiabatic expansion and then further cooling during mixing with ambient sub-sea-floor water. Vigorous fluid flow results in venting of reduced fluid at the sea-floor/sea-water interface and deposition of massive sulphide. A comparison of sulphide mineralization and wall-rock alteration in ancient and modern spreading centre environments supports this genetic concept. Massive sulphide deposits in ophiolites generally occur in clusters of closely spaced (stacked sequences of pillow basalt and sheet flows, the sea-floor underlying numerous deposits in Guaymas Basin consists of diatomaceous ooze and terrigenous clastic sediment that is intruded by diabase

  17. Antimony(V) Adsorption by Variable-Charge Minerals

    Science.gov (United States)

    2013-10-01

    6‒] and inner-sphere [≡SOSb(OH)5‒] adsorption mechanisms. In general, however, the models generated for single ligand systems required reoptimization...HCO3 and CO3 ) effectively desorbed Sb(V) from hydrous metal (Al and Fe) oxides, clay minerals, and Sb(V)-contaminated sediments, relative to the...temperatures (20- 22°C). 7 A well- crystallized Georgia kaolinite (KGa-1b) from the Source Clays Repository of The Clay Minerals Society (West Lafayette

  18. Beaufort group uranium mineralization - a model that may aid exploration

    International Nuclear Information System (INIS)

    Stuart-Williams, V.

    1982-01-01

    The ore bodies examined while working on the Pristerognathus Diictodon Assemblage Zone West of Beaufort West are of the URAVAN type (URA - uranium, VAN - vanadium). It was found that uranium mineralization in any one ore body was not strictly random and tends to be associated with a fairly consistent sandstone and siltstone geometry. Mineralization is only found where coalescence between the two sandstones has occurred and it disappears where the sandstones remain coalesced. At a point of coalescence the fluids from the upper and lower sandstone are mixed, the oxidizing fluid penetrating progressively deeper in the sandstone couplet until the entire couplet is oxidizing. This generates a weakly dipping REDOX front. The REDOX front is not considered strong enough to have precipitated uranyl carbonate complexes in transport

  19. Panel 4: Recent Advances in Otitis Media in Molecular Biology, Biochemistry, Genetics, and Animal Models

    Science.gov (United States)

    Li, Jian-Dong; Hermansson, Ann; Ryan, Allen F.; Bakaletz, Lauren O.; Brown, Steve D.; Cheeseman, Michael T.; Juhn, Steven K.; Jung, Timothy T. K.; Lim, David J.; Lim, Jae Hyang; Lin, Jizhen; Moon, Sung-Kyun; Post, J. Christopher

    2014-01-01

    Background Otitis media (OM) is the most common childhood bacterial infection and also the leading cause of conductive hearing loss in children. Currently, there is an urgent need for developing novel therapeutic agents for treating OM based on full understanding of molecular pathogenesis in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Objective To provide a state-of-the-art review concerning recent advances in OM in the areas of molecular biology, biochemistry, genetics, and animal model studies and to discuss the future directions of OM studies in these areas. Data Sources and Review Methods A structured search of the current literature (since June 2007). The authors searched PubMed for published literature in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Results Over the past 4 years, significant progress has been made in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. These studies brought new insights into our understanding of the molecular and biochemical mechanisms underlying the molecular pathogenesis of OM and helped identify novel therapeutic targets for OM. Conclusions and Implications for Practice Our understanding of the molecular pathogenesis of OM has been significantly advanced, particularly in the areas of inflammation, innate immunity, mucus overproduction, mucosal hyperplasia, middle ear and inner ear interaction, genetics, genome sequencing, and animal model studies. Although these studies are still in their experimental stages, they help identify new potential therapeutic targets. Future preclinical and clinical studies will help to translate these exciting experimental research findings into clinical applications. PMID:23536532

  20. Genetic evaluation of European quails by random regression models

    Directory of Open Access Journals (Sweden)

    Flaviana Miranda Gonçalves

    2012-09-01

    Full Text Available The objective of this study was to compare different random regression models, defined from different classes of heterogeneity of variance combined with different Legendre polynomial orders for the estimate of (covariance of quails. The data came from 28,076 observations of 4,507 female meat quails of the LF1 lineage. Quail body weights were determined at birth and 1, 14, 21, 28, 35 and 42 days of age. Six different classes of residual variance were fitted to Legendre polynomial functions (orders ranging from 2 to 6 to determine which model had the best fit to describe the (covariance structures as a function of time. According to the evaluated criteria (AIC, BIC and LRT, the model with six classes of residual variances and of sixth-order Legendre polynomial was the best fit. The estimated additive genetic variance increased from birth to 28 days of age, and dropped slightly from 35 to 42 days. The heritability estimates decreased along the growth curve and changed from 0.51 (1 day to 0.16 (42 days. Animal genetic and permanent environmental correlation estimates between weights and age classes were always high and positive, except for birth weight. The sixth order Legendre polynomial, along with the residual variance divided into six classes was the best fit for the growth rate curve of meat quails; therefore, they should be considered for breeding evaluation processes by random regression models.

  1. Genetic Programming for Automatic Hydrological Modelling

    Science.gov (United States)

    Chadalawada, Jayashree; Babovic, Vladan

    2017-04-01

    One of the recent challenges for the hydrologic research community is the need for the development of coupled systems that involves the integration of hydrologic, atmospheric and socio-economic relationships. This poses a requirement for novel modelling frameworks that can accurately represent complex systems, given, the limited understanding of underlying processes, increasing volume of data and high levels of uncertainity. Each of the existing hydrological models vary in terms of conceptualization and process representation and is the best suited to capture the environmental dynamics of a particular hydrological system. Data driven approaches can be used in the integration of alternative process hypotheses in order to achieve a unified theory at catchment scale. The key steps in the implementation of integrated modelling framework that is influenced by prior understanding and data, include, choice of the technique for the induction of knowledge from data, identification of alternative structural hypotheses, definition of rules, constraints for meaningful, intelligent combination of model component hypotheses and definition of evaluation metrics. This study aims at defining a Genetic Programming based modelling framework that test different conceptual model constructs based on wide range of objective functions and evolves accurate and parsimonious models that capture dominant hydrological processes at catchment scale. In this paper, GP initializes the evolutionary process using the modelling decisions inspired from the Superflex framework [Fenicia et al., 2011] and automatically combines them into model structures that are scrutinized against observed data using statistical, hydrological and flow duration curve based performance metrics. The collaboration between data driven and physical, conceptual modelling paradigms improves the ability to model and manage hydrologic systems. Fenicia, F., D. Kavetski, and H. H. Savenije (2011), Elements of a flexible approach

  2. Self-Ordering and Complexity in Epizonal Mineral Deposits

    Science.gov (United States)

    Henley, Richard W.; Berger, Byron R.

    Epizonal base and precious metal deposits makeup a range of familiar deposit styles including porphyry copper-gold, epithermal veins and stockworks, carbonate-replacement deposits, and polymetallic volcanic rock-hosted (VHMS) deposits. They occur along convergent plate margins and are invariably associated directly with active faults and volcanism. They are complex in form, variable in their characteristics at all scales, and highly localized in the earth's crust. More than a century of detailed research has provided an extensive base of observational data characterizing these deposits, from their regional setting to the fluid and isotope chemistry of mineral deposition. This has led to a broad understanding of the large-scale hydrothermal systems within which they form. Low salinity vapor, released by magma crystallization and dispersed into vigorously convecting groundwater systems, is recognized as a principal source of metals and the gases that control redox conditions within systems. The temperature and pressure of the ambient fluid anywhere within these systems is close to its vapor-liquid phase boundary, and mineral deposition is a consequence of short timescale perturbations generated by localized release of crustal stress. However, a review of occurrence data raises questions about ore formation that are not addressed by traditional genetic models. For example, what are the origins of banding in epithermal veins, and what controls the frequency of oscillatory lamination? What controls where the phenomenon of mineralization occurs, and why are some porphyry deposits, for example, so much larger than others? The distinctive, self-organized characteristics of epizonal deposits are shown to be the result of repetitive coupling of fracture dilation consequent on brittle failure, phase separation ("boiling"), and heat transfer between fluid and host rock. Process coupling substantially increases solute concentrations and triggers fast, far

  3. Sorption Energy Maps of Clay Mineral Surfaces

    International Nuclear Information System (INIS)

    Cygan, Randall T.; Kirkpatrick, R. James

    1999-01-01

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation

  4. Retroviral-mediated gene therapy for the differentiation of primary cells into a mineralizing osteoblastic phenotype.

    Science.gov (United States)

    Phillips, Jennifer E; García, Andrés J

    2008-01-01

    Bone tissue engineering has emerged as a promising strategy for the repair of critical-sized skeletal fractures. However, the clinical application of this approach has been limited by the availability of a robust mineralizing cell source. Non-osteogenic cells, such as skin fibroblasts, are an attractive cell-source alternative because they are easy to harvest from autologous donor skin biopsies and display a high capacity for in vitro expansion. We have recently demonstrated that retroviral gene delivery of the osteoblastic transcription factor Runx2/Cbfa1 promotes osteogenic differentiation in primary dermal fibroblasts cultured in monolayer. Notably, sustained expression of Runx2 was not sufficient to promote functional osteogenesis in these cells, and co-treatment with the steroid hormone dexamethasone was required to induce deposition of biologically-equivalent matrix mineralization. On the basis of these results, we then investigated the osteogenic capacity of these genetically engineered fibroblasts when seeded on polymeric scaffolds in vitro and in vivo. These experiments demonstrated that Runx2-expressing fibroblasts seeded on collagen scaffolds produce significant levels of matrix mineralization after 28 days in vivo implantation in a subcutaneous, heterotopic site. Overall, these results offer evidence that transcription factor-based gene therapy may be a powerful strategy for the conversion of a non-osteogenic cellular phenotype into a mineralizing cell source for bone repair applications. This concept may also be applied to control functional differentiation in a broad range of cell types and tissue engineering applications. The chapter below outlines detailed methods for the isolation and ex vivo genetic modification of primary dermal fibroblasts using retroviral-mediated delivery of the Runx2 transgene in both monolayer culture and three-dimensional scaffolds.

  5. Wavelet-linear genetic programming: A new approach for modeling monthly streamflow

    Science.gov (United States)

    Ravansalar, Masoud; Rajaee, Taher; Kisi, Ozgur

    2017-06-01

    The streamflows are important and effective factors in stream ecosystems and its accurate prediction is an essential and important issue in water resources and environmental engineering systems. A hybrid wavelet-linear genetic programming (WLGP) model, which includes a discrete wavelet transform (DWT) and a linear genetic programming (LGP) to predict the monthly streamflow (Q) in two gauging stations, Pataveh and Shahmokhtar, on the Beshar River at the Yasuj, Iran were used in this study. In the proposed WLGP model, the wavelet analysis was linked to the LGP model where the original time series of streamflow were decomposed into the sub-time series comprising wavelet coefficients. The results were compared with the single LGP, artificial neural network (ANN), a hybrid wavelet-ANN (WANN) and Multi Linear Regression (MLR) models. The comparisons were done by some of the commonly utilized relevant physical statistics. The Nash coefficients (E) were found as 0.877 and 0.817 for the WLGP model, for the Pataveh and Shahmokhtar stations, respectively. The comparison of the results showed that the WLGP model could significantly increase the streamflow prediction accuracy in both stations. Since, the results demonstrate a closer approximation of the peak streamflow values by the WLGP model, this model could be utilized for the simulation of cumulative streamflow data prediction in one month ahead.

  6. Nature and nurture: environmental influences on a genetic rat model of depression.

    Science.gov (United States)

    Mehta-Raghavan, N S; Wert, S L; Morley, C; Graf, E N; Redei, E E

    2016-03-29

    In this study, we sought to learn whether adverse events such as chronic restraint stress (CRS), or 'nurture' in the form of environmental enrichment (EE), could modify depression-like behavior and blood biomarker transcript levels in a genetic rat model of depression. The Wistar Kyoto More Immobile (WMI) is a genetic model of depression that aided in the identification of blood transcriptomic markers, which successfully distinguished adolescent and adult subjects with major depressive disorders from their matched no-disorder controls. Here, we followed the effects of CRS and EE in adult male WMIs and their genetically similar control strain, the Wistar Kyoto Less Immobile (WLI), that does not show depression-like behavior, by measuring the levels of these transcripts in the blood and hippocampus. In WLIs, increased depression-like behavior and transcriptomic changes were present in response to CRS, but in WMIs no behavioral or additive transcriptomic changes occurred. Environmental enrichment decreased both the inherent depression-like behavior in the WMIs and the behavioral difference between WMIs and WLIs, but did not reverse basal transcript level differences between the strains. The inverse behavioral change induced by CRS and EE in the WLIs did not result in parallel inverse expression changes of the transcriptomic markers, suggesting that these behavioral responses to the environment work via separate molecular pathways. In contrast, 'trait' transcriptomic markers with expression differences inherent and unchanging between the strains regardless of the environment suggest that in our model, environmental and genetic etiologies of depression work through independent molecular mechanisms.

  7. Developing genetic epidemiological models to predict risk for nasopharyngeal carcinoma in high-risk population of China.

    Directory of Open Access Journals (Sweden)

    Hong-Lian Ruan

    Full Text Available To date, the only established model for assessing risk for nasopharyngeal carcinoma (NPC relies on the sero-status of the Epstein-Barr virus (EBV. By contrast, the risk assessment models proposed here include environmental risk factors, family history of NPC, and information on genetic variants. The models were developed using epidemiological and genetic data from a large case-control study, which included 1,387 subjects with NPC and 1,459 controls of Cantonese origin. The predictive accuracy of the models were then assessed by calculating the area under the receiver-operating characteristic curves (AUC. To compare the discriminatory improvement of models with and without genetic information, we estimated the net reclassification improvement (NRI and integrated discrimination index (IDI. Well-established environmental risk factors for NPC include consumption of salted fish and preserved vegetables and cigarette smoking (in pack years. The environmental model alone shows modest discriminatory ability (AUC = 0.68; 95% CI: 0.66, 0.70, which is only slightly increased by the addition of data on family history of NPC (AUC = 0.70; 95% CI: 0.68, 0.72. With the addition of data on genetic variants, however, our model's discriminatory ability rises to 0.74 (95% CI: 0.72, 0.76. The improvements in NRI and IDI also suggest the potential usefulness of considering genetic variants when screening for NPC in endemic areas. If these findings are confirmed in larger cohort and population-based case-control studies, use of the new models to analyse data from NPC-endemic areas could well lead to earlier detection of NPC.

  8. A genetic algorithm for solving supply chain network design model

    Science.gov (United States)

    Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.

    2013-09-01

    Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.

  9. A review of silver-rich mineral deposits and their metallogeny

    Science.gov (United States)

    Graybeal, Frederick T.; Vikre, Peter

    2010-01-01

    Mineral deposits with large inventories or high grades of silver are found in four genetic groups: (1) volcanogenic massive sulfide (VMS), (2) sedimentary exhalative (SEDEX), (3) lithogene, and, (4) magmatichydrothermal. Principal differences between the four groups relate to source rocks and regions, metal associations, process and timing of mineralization, and tectonic setting. These four groups may be subdivided into specific metal associations on ternary diagrams based on relative metal contents. The VMS deposits rarely contain more than 15,600 t Ag (500 Moz). Grades average 33 g/t Ag. Variable Ag- Pb-Zn-Cu-Au ± Sn concentrations are interpreted as having been derived both from shallow plutons and by leaching of the volcanic rock pile in regions of thin or no continental crust and the mineralization is syngenetic. Higher silver grades are associated with areas of abundant felsic volcanic rocks. The SEDEX deposits rarely contain more than 15,600 t Ag (500 Moz). Grades average 46 g/t Ag. Silver, lead, and zinc in relatively consistent proportions are leached from sedimentary rocks filling rift-related basins, where the continental crust is thin, and deposited as syngenetic to diagenetic massive sulfides. Pre-mineral volcanic rocks and their detritus may occur deep within the basin and gold is typically absent. Lithogene silver-rich deposits are epigenetic products of varying combinations of compaction, dewatering, meteoric water recharge, and metamorphism of rift basin-related clastic sedimentary and interbedded volcanic rocks. Individual deposits may contain more than 15,600 t Ag (500 Moz) at high grades. Ores are characterized by four well-defined metal associations, including Ag, Ag-Pb-Zn, Ag-Cu, and Ag-Co-Ni-U. Leaching, transport, and deposition of metals may occur both in specific sedimentary strata and other rock types adjacent to the rift. Multiple mineralizing events lasting 10 to 15 m.y., separated by as much as 1 b.y., may occur in a single basin

  10. Using parallel computing in modeling and optimization of mineral ...

    African Journals Online (AJOL)

    Then to solve ultimate pit limit problem it is required to find such a sub graph in a graph whose sum of weights will be maximal. One of the possible solutions of this problem is using genetic algorithms. We use a ... Details of implementation parallel genetic algorithm for searching open pit limits are provided. Comparison with ...

  11. Estimating the actual subject-specific genetic correlations in behavior genetics.

    Science.gov (United States)

    Molenaar, Peter C M

    2012-10-01

    Generalization of the standard behavior longitudinal genetic factor model for the analysis of interindividual phenotypic variation to a genetic state space model for the analysis of intraindividual variation enables the possibility to estimate subject-specific heritabilities.

  12. Bone mineral density in subjects using central nervous system-active medications.

    Science.gov (United States)

    Kinjo, Mitsuyo; Setoguchi, Soko; Schneeweiss, Sebastian; Solomon, Daniel H

    2005-12-01

    Decreased bone mineral density defines osteoporosis according to the World Health Organization and is an important predictor of future fractures. The use of several types of central nervous system-active drugs, including benzodiazepines, anticonvulsants, antidepressants, and opioids, have all been associated with increased risk of fracture. However, it is unclear whether such an increase in risk is related to an effect of bone mineral density or to other factors, such as increased risk of falls. We sought to examine the relationship between bone mineral density and the use of benzodiazepines, anticonvulsants, antidepressants, and opioids in a representative US population-based sample. We analyzed data on adults aged 17 years and older from the Third National Health and Nutrition Examination Survey (NHANES III, 1988-1994). Total femoral bone mineral density of 7114 male and 7532 female participants was measured by dual-energy x-ray absorptiometry. Multivariable linear regression models were used to quantify the relation between central nervous system medication exposure and total femoral bone mineral density. Models controlled for relevant covariates, including age, sex, and body mass index. In linear regression models, significantly reduced bone mineral density was found in subjects taking anticonvulsants (0.92 g/cm2; 95% confidence interval [CI]: 0.89 to 0.94) and opioids (0.92 g/cm2; 95% CI: 0.88 to 0.95) compared with nonusers (0.95 g/cm2; 95% CI: 0.95 to 0.95) after adjusting for several potential confounders. The other central nervous system-active drugs--benzodiazepines or antidepressants--were not associated with significantly reduced bone mineral density. In cross-sectional analysis of NHANES III, anticonvulsants and opioids (but not benzodiazepines or antidepressants) were associated with significantly reduced bone mineral density. These findings have implications for fracture-prevention strategies.

  13. A Tri-Part Model for Genetics Literacy: Exploring Undergraduate Student Reasoning about Authentic Genetics Dilemmas

    Science.gov (United States)

    Shea, Nicole A.; Duncan, Ravit Golan; Stephenson, Celeste

    2015-01-01

    Genetics literacy is becoming increasingly important as advancements in our application of genetic technologies such as stem cell research, cloning, and genetic screening become more prevalent. Very few studies examine how genetics literacy is applied when reasoning about authentic genetic dilemmas. However, there is evidence that situational…

  14. Mineral Resource Information System for Field Lab in the Osage Mineral Reservation Estate

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, H.B.; Johnson, William I.

    1999-04-27

    The Osage Mineral Reservation Estate is located in Osage County, Oklahoma. Minerals on the Estate are owned by members of the Osage Tribe who are shareholders in the Estate. The Estate is administered by the Osage Agency, Branch of Minerals, operated by the U.S. Bureau of Indian Affairs (BIA). Oil, natural gas, casinghead gas, and other minerals (sand, gravel, limestone, and dolomite) are exploited by lessors. Operators may obtain from the Branch of Minerals and the Osage Mineral Estate Tribal Council leases to explore and exploit oil, gas, oil and gas, and other minerals on the Estate. Operators pay a royalty on all minerals exploited and sold from the Estate. A mineral Resource Information system was developed for this project to evaluate the remaining hydrocarbon resources located on the Estate. Databases on Microsoft Excel spreadsheets of operators, leases, and production were designed for use in conjunction with an evaluation spreadsheet for estimating the remaining hydrocarbons on the Estate.

  15. Lead as a pathfinder for uranium mineralization

    International Nuclear Information System (INIS)

    Shouls, M.M.

    1983-01-01

    The theoretical aspects of the formation of radiogenic lead anomalies from uranium and thorium mineralization are discussed in the light of differing mobilities of the parent elements and the stable lead daughter. It is concluded that recognizable lead anomalies can persist in the weathered tops of ancient uranium deposits, and such anomalies can be identified from the stable lead isotope ratios. In addition, with mixed U-Th mineralization lead isotopic ratios may be identified after most of the uranium has been leached away. The theoretical models also include possible additions of entrained lead with the mineralization and its effects on the isotopic ratios. This reasoning was tested in the evaluation of a radiometric anomaly in northern Malawi where a discrepancy between the U and eU values suggested a uranium-depleted mixed U-Th deposit. However, the partly coincident lead anomaly did not fit the isotope models proposed in the first part of the paper, and they indicated an unexpectedly young age. The anomaly was therefore downgraded but the adequacy of the theory was not tested. (author)

  16. Spatial variability of isoproturon mineralizing activity within an agricultural field: Geostatistical analysis of simple physicochemical and microbiological soil parameters

    Energy Technology Data Exchange (ETDEWEB)

    El Sebai, T. [UMR Microbiologie et Geochimie des Sols, INRA/CMSE, 17 Rue Sully, BP 86510, 21065 Dijon Cedex (France); Lagacherie, B. [UMR Microbiologie et Geochimie des Sols, INRA/CMSE, 17 Rue Sully, BP 86510, 21065 Dijon Cedex (France); Soulas, G. [UMR Microbiologie et Geochimie des Sols, INRA/CMSE, 17 Rue Sully, BP 86510, 21065 Dijon Cedex (France); Martin-Laurent, F. [UMR Microbiologie et Geochimie des Sols, INRA/CMSE, 17 Rue Sully, BP 86510, 21065 Dijon Cedex (France)]. E-mail: fmartin@dijon.inra.fr

    2007-02-15

    We assessed the spatial variability of isoproturon mineralization in relation to that of physicochemical and biological parameters in fifty soil samples regularly collected along a sampling grid delimited across a 0.36 ha field plot (40 x 90 m). Only faint relationships were observed between isoproturon mineralization and the soil pH, microbial C biomass, and organic nitrogen. Considerable spatial variability was observed for six of the nine parameters tested (isoproturon mineralization rates, organic nitrogen, genetic structure of the microbial communities, soil pH, microbial biomass and equivalent humidity). The map of isoproturon mineralization rates distribution was similar to that of soil pH, microbial biomass, and organic nitrogen but different from those of structure of the microbial communities and equivalent humidity. Geostatistics revealed that the spatial heterogeneity in the rate of degradation of isoproturon corresponded to that of soil pH and microbial biomass. - In field spatial variation of isoproturon mineralization mainly results from the spatial heterogeneity of soil pH and microbial C biomass.

  17. Spatial variability of isoproturon mineralizing activity within an agricultural field: Geostatistical analysis of simple physicochemical and microbiological soil parameters

    International Nuclear Information System (INIS)

    El Sebai, T.; Lagacherie, B.; Soulas, G.; Martin-Laurent, F.

    2007-01-01

    We assessed the spatial variability of isoproturon mineralization in relation to that of physicochemical and biological parameters in fifty soil samples regularly collected along a sampling grid delimited across a 0.36 ha field plot (40 x 90 m). Only faint relationships were observed between isoproturon mineralization and the soil pH, microbial C biomass, and organic nitrogen. Considerable spatial variability was observed for six of the nine parameters tested (isoproturon mineralization rates, organic nitrogen, genetic structure of the microbial communities, soil pH, microbial biomass and equivalent humidity). The map of isoproturon mineralization rates distribution was similar to that of soil pH, microbial biomass, and organic nitrogen but different from those of structure of the microbial communities and equivalent humidity. Geostatistics revealed that the spatial heterogeneity in the rate of degradation of isoproturon corresponded to that of soil pH and microbial biomass. - In field spatial variation of isoproturon mineralization mainly results from the spatial heterogeneity of soil pH and microbial C biomass

  18. [Analysis of genetic models and gene effects on main agronomy characters in rapeseed].

    Science.gov (United States)

    Li, J; Qiu, J; Tang, Z; Shen, L

    1992-01-01

    According to four different genetic models, the genetic patterns of 8 agronomy traits were analysed by using the data of 24 generations which included positive and negative cross of 81008 x Tower, both of the varieties are of good quality. The results showed that none of 8 characters could fit in with additive-dominance models. Epistasis was found in all of these characters, and it has significant effect on generation means. Seed weight/plant and some other main yield characters are controlled by duplicate interaction genes. The interaction between triple genes or multiple genes needs to be utilized in yield heterosis.

  19. Random regression models to estimate genetic parameters for milk production of Guzerat cows using orthogonal Legendre polynomials

    Directory of Open Access Journals (Sweden)

    Maria Gabriela Campolina Diniz Peixoto

    2014-05-01

    Full Text Available The objective of this work was to compare random regression models for the estimation of genetic parameters for Guzerat milk production, using orthogonal Legendre polynomials. Records (20,524 of test-day milk yield (TDMY from 2,816 first-lactation Guzerat cows were used. TDMY grouped into 10-monthly classes were analyzed for additive genetic effect and for environmental and residual permanent effects (random effects, whereas the contemporary group, calving age (linear and quadratic effects and mean lactation curve were analized as fixed effects. Trajectories for the additive genetic and permanent environmental effects were modeled by means of a covariance function employing orthogonal Legendre polynomials ranging from the second to the fifth order. Residual variances were considered in one, four, six, or ten variance classes. The best model had six residual variance classes. The heritability estimates for the TDMY records varied from 0.19 to 0.32. The random regression model that used a second-order Legendre polynomial for the additive genetic effect, and a fifth-order polynomial for the permanent environmental effect is adequate for comparison by the main employed criteria. The model with a second-order Legendre polynomial for the additive genetic effect, and that with a fourth-order for the permanent environmental effect could also be employed in these analyses.

  20. Minerals

    Directory of Open Access Journals (Sweden)

    Vaquero, M. P.

    1998-08-01

    Full Text Available The possible changes in the mineral composition of food during frying could be the consequence of losses by leaching, or changes in concentrations caused by exchanges between the food and culinary fat of other compounds. The net result depends on the type of food, the frying fat used and the frying process. Moreover, the modifications that frying produces in other nutrients could indirectly affect the availability of dietary minerals. The most outstanding ones are those that can take place in the fat or in the protein. With respect to the interactions between frying oils and minerals, we have recent knowledge concerning the effects of consuming vegetable oils used in repeated fryings of potatoes without turnover, on the nutritive utilization of dietary minerals. The experiments have been carried out in pregnant and growing rats, which consumed diets containing, as a sole source of fat, the testing frying oils or unused oils. It seems that the consumption of various frying oils, with a polar compound content lower or close to the maximum limit of 25% accepted for human consumption, does not alter the absorption and metabolism of calcium, phosphorous, iron or copper. Magnesium absorption from diets containing frying oils tends to increase but the urinary excretion of this element increases, resulting imperceptible the variations in the magnesium balance. The urinary excretion of Zn also increased although its balance remained unchanged. Different studies referring to the effects of consuming fried fatty fish on mineral bioavailability will also be presented. On one hand, frying can cause structural changes in fish protein, which are associated with an increase in iron absorption and a decrease in body zinc retention. The nutritive utilization of other elements such as magnesium, calcium and copper seems to be unaffected. On the other hand; it has been described that an excess of fish fatty acids in the diet produces iron depletion, but when fatty

  1. Genetic algorithms used for PWRs refuel management automatic optimization: a new modelling

    International Nuclear Information System (INIS)

    Chapot, Jorge Luiz C.; Schirru, Roberto; Silva, Fernando Carvalho da

    1996-01-01

    A Genetic Algorithms-based system, linking the computer codes GENESIS 5.0 and ANC through the interface ALGER, has been developed aiming the PWRs fuel management optimization. An innovative codification, the Lists Model, has been incorporated to the genetic system, which avoids the use of variants of the standard crossover operator and generates only valid loading patterns in the core. The GENESIS/ALGER/ANC system has been successfully tested in an optimization study for Angra-1 second cycle. (author)

  2. Rates of CO2 Mineralization in Geological Carbon Storage.

    Science.gov (United States)

    Zhang, Shuo; DePaolo, Donald J

    2017-09-19

    Geologic carbon storage (GCS) involves capture and purification of CO 2 at industrial emission sources, compression into a supercritical state, and subsequent injection into geologic formations. This process reverses the flow of carbon to the atmosphere with the intention of returning the carbon to long-term geologic storage. Models suggest that most of the injected CO 2 will be "trapped" in the subsurface by physical means, but the most risk-free and permanent form of carbon storage is as carbonate minerals (Ca,Mg,Fe)CO 3 . The transformation of CO 2 to carbonate minerals requires supply of the necessary divalent cations by dissolution of silicate minerals. Available data suggest that rates of transformation are highly uncertain and difficult to predict by standard approaches. Here we show that the chemical kinetic observations and experimental results, when they can be reduced to a single cation-release time scale that describes the fractional rate at which cations are released to solution by mineral dissolution, show sufficiently systematic behavior as a function of pH, fluid flow rate, and time that the rates of mineralization can be estimated with reasonable certainty. The rate of mineralization depends on both the abundance (determined by the reservoir rock mineralogy) and the rate at which cations are released from silicate minerals by dissolution into pore fluid that has been acidified with dissolved CO 2 . Laboratory-measured rates and field observations give values spanning 8 to 10 orders of magnitude, but when they are evaluated in the context of a reservoir-scale reactive transport simulation, this range becomes much smaller. The reservoir scale simulations provide limits on the applicable conditions under which silicate mineral dissolution and subsequent carbonate mineral precipitation are likely to occur (pH 4.5 to 6, fluid flow velocity less than 5 m/year, and 50-100 years or more after the start of injection). These constraints lead to estimates of

  3. Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission.

    Science.gov (United States)

    Fiedler, S; Schepanski, K; Heinold, B; Knippertz, P; Tegen, I

    2013-06-27

    [1] This study presents the first climatology for the dust emission amount associated with Nocturnal Low-Level Jets (NLLJs) in North Africa. These wind speed maxima near the top of the nocturnal boundary layer can generate near-surface peak winds due to shear-driven turbulence in the course of the night and the NLLJ breakdown during the following morning. The associated increase in the near-surface wind speed is a driver for mineral dust emission. A new detection algorithm for NLLJs is presented and used for a statistical assessment of NLLJs in 32 years of ERA-Interim reanalysis from the European Centre for Medium-Range Weather Forecasts. NLLJs occur in 29% of the nights in the annual and spatial mean. The NLLJ climatology shows a distinct annual cycle with marked regional differences. Maxima of up to 80% NLLJ frequency are found where low-level baroclinicity and orographic channels cause favorable conditions, e.g., over the Bodélé Depression, Chad, for November-February and along the West Saharan and Mauritanian coast for April-September. Downward mixing of NLLJ momentum to the surface causes 15% of mineral dust emission in the annual and spatial mean and can be associated with up to 60% of the total dust amount in specific areas, e.g., the Bodélé Depression and south of the Hoggar-Tibesti Channel. The sharp diurnal cycle underlines the importance of using wind speed information with high temporal resolution as driving fields for dust emission models. Citation: Fiedler, S., K. Schepanski, B. Heinold, P. Knippertz, and I. Tegen (2013), Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission, J. Geophys. Res. Atmos., 118, 6100-6121, doi:10.1002/jgrd.50394.

  4. Novel anatomic adaptation of cortical bone to meet increased mineral demands of reproduction

    NARCIS (Netherlands)

    Macica, Carolyn M; King, Helen E; Wang, Meina; McEachon, Courtney L; Skinner, Catherine W; Tommasini, Steven M

    The goal of this study was to investigate the effects of reproductive adaptations to mineral homeostasis on the skeleton in a mouse model of compromised mineral homeostasis compared to adaptations in control, unaffected mice. During pregnancy, maternal adaptations to high mineral demand include more

  5. Mineral-deposit model for lithium-cesium-tantalum pegmatites

    Science.gov (United States)

    Bradley, Dwight C.; McCauley, Andrew D.; Stillings, Lisa L.

    2017-06-20

    Lithium-cesium-tantalum (LCT) pegmatites comprise a compositionally defined subset of granitic pegmatites. The major minerals are quartz, potassium feldspar, albite, and muscovite; typical accessory minerals include biotite, garnet, tourmaline, and apatite. The principal lithium ore minerals are spodumene, petalite, and lepidolite; cesium mostly comes from pollucite; and tantalum mostly comes from columbite-tantalite. Tin ore as cassiterite and beryllium ore as beryl also occur in LCT pegmatites, as do a number of gemstones and high-value museum specimens of rare minerals. Individual crystals in LCT pegmatites can be enormous: the largest spodumene was 14 meters long, the largest beryl was 18 meters long, and the largest potassium feldspar was 49 meters long.Lithium-cesium-tantalum pegmatites account for about one-fourth of the world’s lithium production, most of the tantalum production, and all of the cesium production. Giant deposits include Tanco in Canada, Greenbushes in Australia, and Bikita in Zimbabwe. The largest lithium pegmatite in the United States, at King’s Mountain, North Carolina, is no longer being mined although large reserves of lithium remain. Depending on size and attitude of the pegmatite, a variety of mining techniques are used, including artisanal surface mining, open-pit surface mining, small underground workings, and large underground operations using room-and-pillar design. In favorable circumstances, what would otherwise be gangue minerals (quartz, potassium feldspar, albite, and muscovite) can be mined along with lithium and (or) tantalum as coproducts.Most LCT pegmatites are hosted in metamorphosed supracrustal rocks in the upper greenschist to lower amphibolite facies. Lithium-cesium-tantalum pegmatite intrusions generally are emplaced late during orogeny, with emplacement being controlled by pre-existing structures. Typically, they crop out near evolved, peraluminous granites and leucogranites from which they are inferred to be

  6. Genetic analyses of partial egg production in Japanese quail using multi-trait random regression models.

    Science.gov (United States)

    Karami, K; Zerehdaran, S; Barzanooni, B; Lotfi, E

    2017-12-01

    1. The aim of the present study was to estimate genetic parameters for average egg weight (EW) and egg number (EN) at different ages in Japanese quail using multi-trait random regression (MTRR) models. 2. A total of 8534 records from 900 quail, hatched between 2014 and 2015, were used in the study. Average weekly egg weights and egg numbers were measured from second until sixth week of egg production. 3. Nine random regression models were compared to identify the best order of the Legendre polynomials (LP). The most optimal model was identified by the Bayesian Information Criterion. A model with second order of LP for fixed effects, second order of LP for additive genetic effects and third order of LP for permanent environmental effects (MTRR23) was found to be the best. 4. According to the MTRR23 model, direct heritability for EW increased from 0.26 in the second week to 0.53 in the sixth week of egg production, whereas the ratio of permanent environment to phenotypic variance decreased from 0.48 to 0.1. Direct heritability for EN was low, whereas the ratio of permanent environment to phenotypic variance decreased from 0.57 to 0.15 during the production period. 5. For each trait, estimated genetic correlations among weeks of egg production were high (from 0.85 to 0.98). Genetic correlations between EW and EN were low and negative for the first two weeks, but they were low and positive for the rest of the egg production period. 6. In conclusion, random regression models can be used effectively for analysing egg production traits in Japanese quail. Response to selection for increased egg weight would be higher at older ages because of its higher heritability and such a breeding program would have no negative genetic impact on egg production.

  7. Physical heterogeneity control on effective mineral dissolution rates

    Science.gov (United States)

    Jung, Heewon; Navarre-Sitchler, Alexis

    2018-04-01

    Hydrologic heterogeneity may be an important factor contributing to the discrepancy in laboratory and field measured dissolution rates, but the governing factors influencing mineral dissolution rates among various representations of physical heterogeneity remain poorly understood. Here, we present multiple reactive transport simulations of anorthite dissolution in 2D latticed random permeability fields and link the information from local grid scale (1 cm or 4 m) dissolution rates to domain-scale (1m or 400 m) effective dissolution rates measured by the flux-weighted average of an ensemble of flow paths. We compare results of homogeneous models to heterogeneous models with different structure and layered permeability distributions within the model domain. Chemistry is simplified to a single dissolving primary mineral (anorthite) distributed homogeneously throughout the domain and a single secondary mineral (kaolinite) that is allowed to dissolve or precipitate. Results show that increasing size in correlation structure (i.e. long integral scales) and high variance in permeability distribution are two important factors inducing a reduction in effective mineral dissolution rates compared to homogeneous permeability domains. Larger correlation structures produce larger zones of low permeability where diffusion is an important transport mechanism. Due to the increased residence time under slow diffusive transport, the saturation state of a solute with respect to a reacting mineral approaches equilibrium and reduces the reaction rate. High variance in permeability distribution favorably develops large low permeability zones that intensifies the reduction in mixing and effective dissolution rate. However, the degree of reduction in effective dissolution rate observed in 1 m × 1 m domains is too small (equilibrium conditions reduce the effective dissolution rate by increasing the saturation state. However, in large domains where less- or non-reactive zones develop, higher

  8. Assessment of the geoavailability of trace elements from minerals in mine wastes: analytical techniques and assessment of selected copper minerals

    Science.gov (United States)

    Driscoll, Rhonda; Hageman, Phillip L.; Benzel, William M.; Diehl, Sharon F.; Adams, David T.; Morman, Suzette; Choate, LaDonna M.

    2012-01-01

    In this study, four randomly selected copper-bearing minerals were examined—azurite, malachite, bornite, and chalcopyrite. The objectives were to examine and enumerate the crystalline and chemical properties of each of the minerals, to determine which, if any, of the Cu-bearing minerals might adversely affect systems biota, and to provide a multi-procedure reference. Laboratory work included use of computational software for quantifying crystalline and amorphous material and optical and electron imaging instruments to model and project crystalline structures. Chemical weathering, human fluid, and enzyme simulation studies were also conducted. The analyses were conducted systematically: X-ray diffraction and microanalytical studies followed by a series of chemical, bio-leaching, and toxicity experiments.

  9. Short Course Introduction to Quantitative Mineral Resource Assessments

    Science.gov (United States)

    Singer, Donald A.

    2007-01-01

    This is an abbreviated text supplementing the content of three sets of slides used in a short course that has been presented by the author at several workshops. The slides should be viewed in the order of (1) Introduction and models, (2) Delineation and estimation, and (3) Combining estimates and summary. References cited in the slides are listed at the end of this text. The purpose of the three-part form of mineral resource assessments discussed in the accompanying slides is to make unbiased quantitative assessments in a format needed in decision-support systems so that consequences of alternative courses of action can be examined. The three-part form of mineral resource assessments was developed to assist policy makers evaluate the consequences of alternative courses of action with respect to land use and mineral-resource development. The audience for three-part assessments is a governmental or industrial policy maker, a manager of exploration, a planner of regional development, or similar decision-maker. Some of the tools and models presented here will be useful for selection of exploration sites, but that is a side benefit, not the goal. To provide unbiased information, we recommend the three-part form of mineral resource assessments where general locations of undiscovered deposits are delineated from a deposit type's geologic setting, frequency distributions of tonnages and grades of well-explored deposits serve as models of grades and tonnages of undiscovered deposits, and number of undiscovered deposits are estimated probabilistically by type. The internally consistent descriptive, grade and tonnage, deposit density, and economic models used in the design of the three-part form of assessments reduce the chances of biased estimates of the undiscovered resources. What and why quantitative resource assessments: The kind of assessment recommended here is founded in decision analysis in order to provide a framework for making decisions concerning mineral

  10. Correction methods of medicinal properties of mineral waters in Pyatigorsk resort

    Science.gov (United States)

    Reps, Valentina; Potapov, Evgeniy; Abramtsova, Anna; Kotova, Margarita

    2016-04-01

    Mineral Water (MW) of Pyatigorsk deposit (PD) is united in five genetic groups (operational stocks of 2809,8 m3/day): carbonic and hydrosulphuric, carbonic, carbonic chloride-hydrocarbonate sodium (salt and alkaline), radonic low carbonate, nitrogen-carbonic terms. A variety of MW types is explained by peculiarities of geological structure and hydrogeological conditions of PD. Here on the sites of the development of deep semi-ring splits there are overflows and a mixture of various complexes. Unloading of deep water strikes happens not only on the earth surface in the form of springs but also at the depth in its edging crumbling rocks of Palaeocene and quarternary deposits. As a result of mixture processes of water and its subsequent metamorphization, various types of mineral water of this deposit are formed. Pyatigorsk resort is in a special protected ecologo-resort region which mode allows to keep stability of structure and ecological purity of MW. Nevertheless, MW variability, compositional differences and MW mineralization determining the level of its biological effect demand studying of action mechanisms of both natural MW, and possibility of its modification for range expansion of rehabilitation action. There have been examined biological effects of the course drinking reception In experiment on 80 rats males of the Wistar line biological effects of the course drinking reception of two MW types: "Krasnoarmeyskaya new" (MW1) of sulphate-hydrocarbonate-chloride calcium-sodium structure with the raised contents of iron (3-5 mg/dm3), mineralization of 5,0-5,2 g/dm3, CO2 of 1,3-2,2 g/dm3, daily flow of 10-86 m3/day, temperature from 14 to 370C on the mouth of the well and spring №2 (MW2) low sulphate, low carbonate sulphate-hydrocarbonate-chloride calcium-sodium, mineralization of 5,0 g/l, CO2 of 0,7 g/dm3, H2 of S 0,01 g/dm3. There has been shown an ability of the drinking course MW1 to influence on endocrine and metabolic continium - cortisol level increased

  11. Organic Minerals in the Origin of Life

    Science.gov (United States)

    Benner, S.; Biondi, E.; Kim, H. J.

    2017-12-01

    Models for the origin of life are plagued by fundamental problems that, due to their difficulty, are called "paradoxes". One of these, known to anyone who has ever worked in a kitchen, is that organics, when given energy and left to itself, does not generate life. Rather, organics devolve to give tarry mixtures that become increasingly complex and increasingly less likely to support life (like asphalt). However, even if those mixtures escape devolution to create something useful for Darwinism, like building blocks for RNA, the water in which they must work is corrosive, leading to their destruction. Even if RNA is created, it is itself easily degraded. One current trend to manage those paradoxes turns to minerals in environments on early Earth. Inorganic minerals containing borate have now been shown to prevent the destruction of ribose (the R in RNA) and other carbohydrates essential for early Earth. Evaporite desert basins supplied with aqueous runoff from tourmaline-containing basalts are ideal environments for forming borate minerals, especially if they are made alkaline by serpentinizing peridotite. In the evaporite environments, drying cycles mitigate the destructive capability of water. Further, we have shown that phosphate is segregated from calcium (avoiding formation of relatively unreacted apatites) if magnesium and borate are present. Further, a common magnesium borophosphate (luneburgite) not only makes phosphate available for prebiotic synthesis, but selectively phosphorylates RNA building blocks as it releases borate to stabilize them against further degradation. Finally, a variety of minerals bind and stabilize RNA itself. Research in this area has also discovered organic minerals that might have been relevant to the origins of life on Earth. Such minerals are scarce on Earth today, since they are easily consumed by microbial communities. However, on a prebiotic Earth, organic minerals could have stored organic species as intermediates towards our

  12. Titanium mineral resources in heavy-mineral sands in the Atlantic coastal plain of the southeastern United States

    Science.gov (United States)

    Van Gosen, Bradley S.; Ellefsen, Karl J.

    2018-04-16

    This study examined titanium distribution in the Atlantic Coastal Plain of the southeastern United States; the titanium is found in heavy-mineral sands that include the minerals ilmenite (Fe2+TiO3), rutile (TiO2), or leucoxene (an alteration product of ilmenite). Deposits of heavy-mineral sands in ancient and modern coastal plains are a significant feedstock source for the titanium dioxide pigments industry. Currently, two heavy-mineral sands mining and processing operations are active in the southeast United States producing concentrates of ilmenite-leucoxene, rutile, and zircon. The results of this study indicate the potential for similar deposits in many areas of the Atlantic Coastal Plain.This study used the titanium analyses of 3,457 stream sediment samples that were analyzed as part of the U.S. Geological Survey’s National Geochemical Survey program. This data set was analyzed by an integrated spatial modeling technique known as Bayesian hierarchical modeling to map the regional-scale, spatial distribution of titanium concentrations. In particular, clusters of anomalous concentrations of titanium occur: (1) along the Fall Zone, from Virginia to Alabama, where metamorphic and igneous rocks of the Piedmont region contact younger sediments of the Coastal Plain; (2) a paleovalley near the South Carolina and North Carolina border; (3) the upper and middle Atlantic Coastal Plain of North Carolina; (4) the majority of the Atlantic Coastal Plain of Virginia; and (5) barrier islands and stretches of the modern shoreline from South Carolina to northeast Florida. The areas mapped by this study could help mining companies delimit areas for exploration.

  13. Effect of mineral matter on coal self-heating rate

    Energy Technology Data Exchange (ETDEWEB)

    B. Basil Beamish; Ahmet Arisoy [University of Queensland, Brisbane, Qld. (Australia). School of Engineering

    2008-01-15

    Adiabatic self-heating tests have been conducted on subbituminous coal cores from the same seam profile, which cover a mineral matter content range of 11.2-71.1%. In all cases the heat release rate does not conform to an Arrhenius kinetic model, but can best be described by a third order polynomial. Assessment of the theoretical heat sink effect of the mineral matter in each of the tests reveals that the coal is less reactive than predicted using a simple energy conservation equation. There is an additional effect of the mineral matter in these cases that cannot be explained by heat sink alone. The disseminated mineral matter in the coal is therefore inhibiting the oxidation reaction due to physicochemical effects. 14 refs., 5 figs., 5 tabs.

  14. Cost optimization model and its heuristic genetic algorithms

    International Nuclear Information System (INIS)

    Liu Wei; Wang Yongqing; Guo Jilin

    1999-01-01

    Interest and escalation are large quantity in proportion to the cost of nuclear power plant construction. In order to optimize the cost, the mathematics model of cost optimization for nuclear power plant construction was proposed, which takes the maximum net present value as the optimization goal. The model is based on the activity networks of the project and is an NP problem. A heuristic genetic algorithms (HGAs) for the model was introduced. In the algorithms, a solution is represented with a string of numbers each of which denotes the priority of each activity for assigned resources. The HGAs with this encoding method can overcome the difficulty which is harder to get feasible solutions when using the traditional GAs to solve the model. The critical path of the activity networks is figured out with the concept of predecessor matrix. An example was computed with the HGAP programmed in C language. The results indicate that the model is suitable for the objectiveness, the algorithms is effective to solve the model

  15. Preferential Treatment: Interaction Between Amino Acids and Minerals

    Science.gov (United States)

    Crapster-Pregont, E. J.; Cleaves, H. J.; Hazen, R. M.

    2008-12-01

    Amino acids are the building blocks of proteins and are important for some models of the origin of life. Polymerization of amino acids from dilute solution is unlikely without a scaffold or catalyst. The surfaces of early Earth minerals are the most likely candidates for this role. The surface adsorption behavior of 12 amino acids (L-alanine, L-serine, L-aspartic acid, L-proline, L- phenylalanine, L-valine, L-arginine, d-amino valeric acid, glycine, L-lysine, L-isoleucine, and B-alanine) on 21 minerals (quartz, calcite, enstatite, illite, olivine, pyrrhotite, pyrite, alkali basalt, albite, analcime, chlorite, barite, hydroxyl apatite, hematite, magnetite, aluminum hydroxide, kaolin, silica gel, corundum, rutile, and montmorillonite) was determined via batch adsorption experiments. Absorption was determined for concentrations between 10-4M and 10-6M in the presence of 0.1M NaCl, and between pH values of 3 and 9 at 25 degrees C. The equilibrated solutions were centrifuged, filtered, derivatized using a fluorescent amino group tag (dansyl-chloride) and analyzed by HPLC. Adsorption was standardized using BET surface area measurements for each mineral to give the number of mols of each amino acid adsorbed per square meter for each mineral. The results indicate an enormous difference in the adsorption of amino acids between minerals, along with major differences in the adsorption of individual amino acids on the same mineral surface. There is also a change in the absorbance of amino acids as the pH changes. Many previous studies of amino acid concentration and catalysis by minerals have used clay minerals because of their high surface areas, however, this data suggests that the surfaces of minerals such as calcite, quartz and pyrite have even higher affinities for amino acids. The results suggest mineral surfaces that could be optimal locations for the polymerization of molecules linked to the origin of life.

  16. A genetic model of progressively partial melting for uranium-bearing granites in south China

    International Nuclear Information System (INIS)

    Zhai Jianping.

    1989-01-01

    A genetic model of progressively partial and enrichment mechanism of uranium during partial melting of the sources of material studied and the significance of the genetic model in search of uranium deposits is elaborated. This model accounts better for some geological and geochemical features of uranium-bearing granties and suspects the traditional idea that igneous uranium-bearing granites were formed by fusion of U-rich strata surrounding these granites. Finally this paper points out that the infuence of U-rich strata of wall rocks of granites over uranium-bearing granites depends on variation of water solubility in the magma and assimilation of magma to wall rocks during its ascending and crystallization

  17. Study of Adsorption of Phenanthrene on Different Types of Clay Minerals

    International Nuclear Information System (INIS)

    Contreras, M. L.; Escolano, O.; Rodriguez, V.; Diaz, F. J.; Perez, R.; Garcia, S.; Garcia Frutos, F. J.

    2003-01-01

    The fate and behaviour of non-ionic hydrophobic organic compounds in deep soil is mainly controlled by the mineral fraction present in the soil due to the very low organic carbon content of the deep soil. The mineral fraction that may greatly influence the fate and transport of these compounds due to its presence and properties are the clay minerals. Clay minerals also become increasingly important in low organic matter content soils. There tree, studies of non-ionic hydrophobic organic compounds adsorption on clay minerals without organic matter are necessary lo better understand the fate and transport of these compounds. In this work we used phenanthrene as model compound of non-ionic hydrophobic organic compound and four pure clay minerals: kaolinite, illite, montmorillonite, and vermiculite including muscovite mica. These clays minerals are selected due to its abundance in represents ve Spanish soils and different properties as its structural layers and expanding capacity. Batch experiments were performed using phenanthrene aqueous solutions and the clays selected. Phenanthrene sorption isotherms for all clays, except muscovite mica, were best described by the Freundlich model. Physical sorption on the external surfaces is the most probable adsorption mechanisms. In this sense, the presence of non-polar nano-sites on clay surfaces could determine the adsorption of phenanthrene by hydrophobic interaction on these sites. (Author) 22 refs

  18. Culture -independent Pathogenic Bacterial Communities in Bottled Mineral Water

    Directory of Open Access Journals (Sweden)

    Hamdy A. Hassan

    2015-08-01

    Full Text Available Bottled mineral water (BMW is an alternative to mains water and consider it to be better and safer. Access to safe BMW from the bacteria involving potential health hazard is essential to health. Cultivation-independent technique PCR-based single-strand conformation polymorphism (SSCP for genetic profiling of PCR-amplified 16S rRNA genes was performed using Com primer set targeting the 16S rRNA genes for detection of pathogenic bacteria in bottled mineral water from the final product of six factories for bottled mineral drinking water in Wadi El-natron region- Egypt. These factories use often ozone technology to treat large quantities of water because of its effectiveness in purifying and conditioning water. A total of 27 single products were isolated from the profiles by PCR re-amplification and cloning. Sequence analysis of 27 SSCP bands revealed that the 16S rRNA sequences were clustered into seven operational taxonomic units (OTUs and the compositions of the communities of the six samples were all common. The results showed that most communities from phyla Alphaproteobacteria and certainly in the Sphingomonas sp. Culture-independent approaches produced complementary information, thus generating a more accurate view for the bacterial community in the BMW, particularly in the disinfection step, as it constitutes the final barrier before BMW distribution to the consumer

  19. Genetic complexity in a Drosophila model of diabetes-associated misfolded human proinsulin.

    Science.gov (United States)

    Park, Soo-Young; Ludwig, Michael Z; Tamarina, Natalia A; He, Bin Z; Carl, Sarah H; Dickerson, Desiree A; Barse, Levi; Arun, Bharath; Williams, Calvin L; Miles, Cecelia M; Philipson, Louis H; Steiner, Donald F; Bell, Graeme I; Kreitman, Martin

    2014-02-01

    Drosophila melanogaster has been widely used as a model of human Mendelian disease, but its value in modeling complex disease has received little attention. Fly models of complex disease would enable high-resolution mapping of disease-modifying loci and the identification of novel targets for therapeutic intervention. Here, we describe a fly model of permanent neonatal diabetes mellitus and explore the complexity of this model. The approach involves the transgenic expression of a misfolded mutant of human preproinsulin, hINS(C96Y), which is a cause of permanent neonatal diabetes. When expressed in fly imaginal discs, hINS(C96Y) causes a reduction of adult structures, including the eye, wing, and notum. Eye imaginal discs exhibit defects in both the structure and the arrangement of ommatidia. In the wing, expression of hINS(C96Y) leads to ectopic expression of veins and mechano-sensory organs, indicating disruption of wild-type signaling processes regulating cell fates. These readily measurable "disease" phenotypes are sensitive to temperature, gene dose, and sex. Mutant (but not wild-type) proinsulin expression in the eye imaginal disc induces IRE1-mediated XBP1 alternative splicing, a signal for endoplasmic reticulum stress response activation, and produces global change in gene expression. Mutant hINS transgene tester strains, when crossed to stocks from the Drosophila Genetic Reference Panel, produce F1 adults with a continuous range of disease phenotypes and large broad-sense heritability. Surprisingly, the severity of mutant hINS-induced disease in the eye is not correlated with that in the notum in these crosses, nor with eye reduction phenotypes caused by the expression of two dominant eye mutants acting in two different eye development pathways, Drop (Dr) or Lobe (L), when crossed into the same genetic backgrounds. The tissue specificity of genetic variability for mutant hINS-induced disease has, therefore, its own distinct signature. The genetic dominance

  20. Genetic evolution, plasticity, and bet-hedging as adaptive responses to temporally autocorrelated fluctuating selection: A quantitative genetic model.

    Science.gov (United States)

    Tufto, Jarle

    2015-08-01

    Adaptive responses to autocorrelated environmental fluctuations through evolution in mean reaction norm elevation and slope and an independent component of the phenotypic variance are analyzed using a quantitative genetic model. Analytic approximations expressing the mutual dependencies between all three response modes are derived and solved for the joint evolutionary outcome. Both genetic evolution in reaction norm elevation and plasticity are favored by slow temporal fluctuations, with plasticity, in the absence of microenvironmental variability, being the dominant evolutionary outcome for reasonable parameter values. For fast fluctuations, tracking of the optimal phenotype through genetic evolution and plasticity is limited. If residual fluctuations in the optimal phenotype are large and stabilizing selection is strong, selection then acts to increase the phenotypic variance (bet-hedging adaptive). Otherwise, canalizing selection occurs. If the phenotypic variance increases with plasticity through the effect of microenvironmental variability, this shifts the joint evolutionary balance away from plasticity in favor of genetic evolution. If microenvironmental deviations experienced by each individual at the time of development and selection are correlated, however, more plasticity evolves. The adaptive significance of evolutionary fluctuations in plasticity and the phenotypic variance, transient evolution, and the validity of the analytic approximations are investigated using simulations. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  1. Attaining Sustainable Growth in Nigeria: Any Role for Solid Mineral Development?

    Directory of Open Access Journals (Sweden)

    Richardson Kojo Edeme

    2018-03-01

    Full Text Available Using time series such as GDP per capita, solid minerals output, foreign trade balance, domestic interest rate, inflation, and gross domestic savings, for the period 1960-2015. the Linear Growth Regression model adopted for this study indicates that solid minerals positively impact on sustainable growth and is statistically significant. The study also found that solid mineral is highly significant but negatively related with foreign exchange due largely to illegal migration of mineral commodities across the borders of the country. In view of this, there is need for conscious inter-agency collaboration to track the volume of mineral resources illegally escaping the shores of the country without being accounted for. Besides, there should be more attention on developing the solid mineral sector to help insulate the economy from the vagaries of the present economic woes given the rising demand in solid mineral resources globally.

  2. Human Urine-Derived Renal Progenitors for Personalized Modeling of Genetic Kidney Disorders.

    Science.gov (United States)

    Lazzeri, Elena; Ronconi, Elisa; Angelotti, Maria Lucia; Peired, Anna; Mazzinghi, Benedetta; Becherucci, Francesca; Conti, Sara; Sansavini, Giulia; Sisti, Alessandro; Ravaglia, Fiammetta; Lombardi, Duccio; Provenzano, Aldesia; Manonelles, Anna; Cruzado, Josep M; Giglio, Sabrina; Roperto, Rosa Maria; Materassi, Marco; Lasagni, Laura; Romagnani, Paola

    2015-08-01

    The critical role of genetic and epigenetic factors in the pathogenesis of kidney disorders is gradually becoming clear, and the need for disease models that recapitulate human kidney disorders in a personalized manner is paramount. In this study, we describe a method to select and amplify renal progenitor cultures from the urine of patients with kidney disorders. Urine-derived human renal progenitors exhibited phenotype and functional properties identical to those purified from kidney tissue, including the capacity to differentiate into tubular cells and podocytes, as demonstrated by confocal microscopy, Western blot analysis of podocyte-specific proteins, and scanning electron microscopy. Lineage tracing studies performed with conditional transgenic mice, in which podocytes are irreversibly tagged upon tamoxifen treatment (NPHS2.iCreER;mT/mG), that were subjected to doxorubicin nephropathy demonstrated that renal progenitors are the only urinary cell population that can be amplified in long-term culture. To validate the use of these cells for personalized modeling of kidney disorders, renal progenitors were obtained from (1) the urine of children with nephrotic syndrome and carrying potentially pathogenic mutations in genes encoding for podocyte proteins and (2) the urine of children without genetic alterations, as validated by next-generation sequencing. Renal progenitors obtained from patients carrying pathogenic mutations generated podocytes that exhibited an abnormal cytoskeleton structure and functional abnormalities compared with those obtained from patients with proteinuria but without genetic mutations. The results of this study demonstrate that urine-derived patient-specific renal progenitor cultures may be an innovative research tool for modeling of genetic kidney disorders. Copyright © 2015 by the American Society of Nephrology.

  3. Modification of the RothC model to simulate soil C mineralization of exogenous organic matter

    Science.gov (United States)

    Mondini, Claudio; Cayuela, Maria Luz; Sinicco, Tania; Fornasier, Flavio; Galvez, Antonia; Sánchez-Monedero, Miguel Angel

    2017-07-01

    The development of soil organic C (SOC) models capable of producing accurate predictions for the long-term decomposition of exogenous organic matter (EOM) in soils is important for the effective management of organic amendments. However, reliable C modeling in amended soils requires specific optimization of current C models to take into account the high variability in EOM origin and properties. The aim of this work was to improve the prediction of C mineralization rates in amended soils by modifying the RothC model to encompass a better description of EOM quality. The standard RothC model, involving C input to the soil only as decomposable (DPM) or resistant (RPM) organic material, was modified by introducing additional pools of decomposable (DEOM), resistant (REOM) and humified (HEOM) EOM. The partitioning factors and decomposition rates of the additional EOM pools were estimated by model fitting to the respiratory curves of amended soils. For this task, 30 EOMs from 8 contrasting groups (compost, anaerobic digestates, sewage sludge, agro-industrial waste, crop residues, bioenergy by-products, animal residues and meat and bone meals) were added to 10 soils and incubated under different conditions. The modified RothC model was fitted to C mineralization curves in amended soils with great accuracy (mean correlation coefficient 0.995). In contrast to the standard model, the EOM-optimized RothC was able to better accommodate the large variability in EOM source and composition, as indicated by the decrease in the root mean square error of the simulations for different EOMs (from 29.9 to 3.7 % and 20.0 to 2.5 % for soils amended with bioethanol residue and household waste compost, respectively). The average decomposition rates for DEOM and REOM pools were 89 and 0.4 yr-1, higher than the standard model coefficients for DPM (10 yr-1) and RPM (0.3 yr-1). The results indicate that the explicit treatment of EOM heterogeneity enhances the model ability to describe amendment

  4. Grouping Minerals by Their Formulas

    Science.gov (United States)

    Mulvey, Bridget

    2018-01-01

    Minerals are commonly taught in ways that emphasize mineral identification for its own sake or maybe to help identify rocks. But how do minerals fit in with other science content taught? The author uses mineral formulas to help Earth science students wonder about the connection between elements, compounds, mixtures, minerals, and mineral formulas.…

  5. Mineral transformation and biomass accumulation associated with uranium bioremediation at Rifle, Colorado.

    Science.gov (United States)

    Li, Li; Steefel, Carl I; Williams, Kenneth H; Wilkins, Michael J; Hubbard, Susan S

    2009-07-15

    Injection of organic carbon into the subsurface as an electron donor for bioremediation of redox-sensitive contaminants like uranium often leads to mineral transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation efficacy. This work combines reactive transport modeling with a column experiment and field measurements to understand the biogeochemical processes and to quantify the biomass and mineral transformation/accumulation during a bioremediation experiment at a uranium contaminated site near Rifle, Colorado. We use the reactive transport model CrunchFlow to explicitly simulate microbial community dynamics of iron and sulfate reducers, and their impacts on reaction rates. The column experiment shows clear evidence of mineral precipitation, primarily in the form of calcite and iron monosulfide. At the field scale, reactive transport simulations suggest that the biogeochemical reactions occur mostly close to the injection wells where acetate concentrations are highest, with mineral precipitate and biomass accumulation reaching as high as 1.5% of the pore space. This work shows that reactive transport modeling coupled with field data can bean effective tool for quantitative estimation of mineral transformation and biomass accumulation, thus improving the design of bioremediation strategies.

  6. Methods of mineral potential assessment of uranium deposits: A mineral systems approach

    International Nuclear Information System (INIS)

    Jaireth, S.

    2014-01-01

    Mineral potential represents the likelihood (probability) that an economic mineral deposit could have formed in an area. Mineral potential assessment and prospectivity analysis use a probabilistic concepts to mineral deposits, where the probability of an event (formation of a mineral deposit) is conditional on two factors : i) geological processes occurring in the area, and ii) the presence of geological features indicative of those process. For instance, one of the geological processes critical for the formation of sandstone-hosted uranium deposits in an area is transport of uranium in groundwaters. Geological features indicative of this process in an area comprise, i) presence of leachable source rocks of uranium; ii) presence of highly permeable sandstone; and iii) suitable hydrogeological gradient driving flow groundwaters. Mineral deposits can also be conceptualised as mineral systems with more emphasis on mineralising processes. This concept has some clear parallels with the petroleum systems approach which has proven to be a useful in oil and gas exploration. Mineral systems are defined as ‘all geological factors that control the generation and preservation of mineral deposits’. Seven important geological factors are outlined to define the characteristics of a hydrothermal mineral system. These factors include: i) source of the mineralising fluids and transporting legends; ii) source of metals and other ore components; iii) migration pathways which may include inflow as well as outflow zones; iv) thermal gradients; v) source of energy to mobilised fluids; vi) mechanical and structural focusing mechanism at the trap site; and vii) chemical and/or physical cause for precipitation of ore minerals at the trap site. This approach, commonly known as the ‘source’, ‘transport’ and ‘trap’ paradigm has been redefined to introduce five questions as a basis to understand spatial and temporal evolution of a mineral system at all scales (regional to

  7. Genetic Programming and Standardization in Water Temperature Modelling

    Directory of Open Access Journals (Sweden)

    Maritza Arganis

    2009-01-01

    Full Text Available An application of Genetic Programming (an evolutionary computational tool without and with standardization data is presented with the aim of modeling the behavior of the water temperature in a river in terms of meteorological variables that are easily measured, to explore their explanatory power and to emphasize the utility of the standardization of variables in order to reduce the effect of those with large variance. Recorded data corresponding to the water temperature behavior at the Ebro River, Spain, are used as analysis case, showing a performance improvement on the developed model when data are standardized. This improvement is reflected in a reduction of the mean square error. Finally, the models obtained in this document were applied to estimate the water temperature in 2004, in order to provide evidence about their applicability to forecasting purposes.

  8. The effects of borate minerals on the synthesis of nucleic acid bases, amino acids and biogenic carboxylic acids from formamide.

    Science.gov (United States)

    Saladino, Raffaele; Barontini, Maurizio; Cossetti, Cristina; Di Mauro, Ernesto; Crestini, Claudia

    2011-08-01

    The thermal condensation of formamide in the presence of mineral borates is reported. The products afforded are precursors of nucleic acids, amino acids derivatives and carboxylic acids. The efficiency and the selectivity of the reaction was studied in relation to the elemental composition of the 18 minerals analyzed. The possibility of synthesizing at the same time building blocks of both genetic and metabolic apparatuses, along with the production of amino acids, highlights the interest of the formamide/borate system in prebiotic chemistry.

  9. Consequences of the genetic threshold model for observing partial migration under climate change scenarios.

    Science.gov (United States)

    Cobben, Marleen M P; van Noordwijk, Arie J

    2017-10-01

    Migration is a widespread phenomenon across the animal kingdom as a response to seasonality in environmental conditions. Partially migratory populations are populations that consist of both migratory and residential individuals. Such populations are very common, yet their stability has long been debated. The inheritance of migratory activity is currently best described by the threshold model of quantitative genetics. The inclusion of such a genetic threshold model for migratory behavior leads to a stable zone in time and space of partially migratory populations under a wide range of demographic parameter values, when assuming stable environmental conditions and unlimited genetic diversity. Migratory species are expected to be particularly sensitive to global warming, as arrival at the breeding grounds might be increasingly mistimed as a result of the uncoupling of long-used cues and actual environmental conditions, with decreasing reproduction as a consequence. Here, we investigate the consequences for migratory behavior and the stability of partially migratory populations under five climate change scenarios and the assumption of a genetic threshold value for migratory behavior in an individual-based model. The results show a spatially and temporally stable zone of partially migratory populations after different lengths of time in all scenarios. In the scenarios in which the species expands its range from a particular set of starting populations, the genetic diversity and location at initialization determine the species' colonization speed across the zone of partial migration and therefore across the entire landscape. Abruptly changing environmental conditions after model initialization never caused a qualitative change in phenotype distributions, or complete extinction. This suggests that climate change-induced shifts in species' ranges as well as changes in survival probabilities and reproductive success can be met with flexibility in migratory behavior at the

  10. Fissure minerals, literature review

    International Nuclear Information System (INIS)

    Larsson, S.Aa.

    1980-01-01

    This paper is a review of methods used for direct and indirect dating of tectonic events. Isotope geochemistry including stable isotopes as well as fission track- dating, fluid inclusion and thermoluminescens techniques have been considered. It has been concluded that an investigation of tectonic (and thermal) events should start with a detailed study of the mineral phases grown in seald fissures as well as minerals from fissure walls. This study should include phase identification, textures as well as mineral chemistry. The information from this study is fundamental for the decision of further investigations. Mineral chemistry including isotopes and fluid inclusion studies will give an essential knowledge about crystallization conditions for fissure minerals concerned. Direct dating using fission tracks as well as radioactive isotopes could be useful for some minerals. Application of thermoluminescens dating on fissure minerals is doubtful. (Auth.)

  11. AN INVESTIGATION OF THE MINERAL IN DUCTILE AND BRITTLE CORTICAL MOUSE BONE

    Science.gov (United States)

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J.; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J.

    2015-01-01

    Bone is a strong and tough material composed of apatite mineral, organic matter and water. Changes in composition and organization of these building blocks affect bone’s mechanical integrity. Skeletal disorders often affect bone’s mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta murine (oim−/−) mice were used to model brittle bone; PHOSPHO1 mutants (Phospho1−/−) had ductile bone. They were compared to their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD), and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification, to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (qbSEM). Interestingly, the mineral of brittle oim−/− and ductile Phospho1−/− bones had many similar characteristics. Both pathology models had smaller apatite crystals, lower mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild-types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. The degree of mineralization of the bone matrix was different for each strain: oim−/− were hypermineralized, while Phospho1−/− were hypomineralized. However, alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results revealed that despite having extremely different whole bone mechanics, the mineral of oim−/− and Phospho1−/− has several similar trends at smaller length scales. This

  12. Mineral paragenesis on Mars: The roles of reactive surface area and diffusion.

    Science.gov (United States)

    Fairén, Alberto G; Gil-Lozano, Carolina; Uceda, Esther R; Losa-Adams, Elisabeth; Davila, Alfonso F; Gago-Duport, Luis

    2017-09-01

    Geochemical models of secondary mineral precipitation on Mars generally assume semiopen systems (open to the atmosphere but closed at the water-sediment interface) and equilibrium conditions. However, in natural multicomponent systems, the reactive surface area of primary minerals controls the dissolution rate and affects the precipitation sequences of secondary phases, and simultaneously, the transport of dissolved species may occur through the atmosphere-water and water-sediment interfaces. Here we present a suite of geochemical models designed to analyze the formation of secondary minerals in basaltic sediments on Mars, evaluating the role of (i) reactive surface areas and (ii) the transport of ions through a basalt sediment column. We consider fully open conditions, both to the atmosphere and to the sediment, and a kinetic approach for mineral dissolution and precipitation. Our models consider a geochemical scenario constituted by a basin (i.e., a shallow lake) where supersaturation is generated by evaporation/cooling and the starting point is a solution in equilibrium with basaltic sediments. Our results show that cation removal by diffusion, along with the input of atmospheric volatiles and the influence of the reactive surface area of primary minerals, plays a central role in the evolution of the secondary mineral sequences formed. We conclude that precipitation of evaporites finds more restrictions in basaltic sediments of small grain size than in basaltic sediments of greater grain size.

  13. Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals.

    Science.gov (United States)

    Xu, Longhua; Tian, Jia; Wu, Houqin; Fang, Shuai; Lu, Zhongyuan; Ma, Caifeng; Sun, Wei; Hu, Yuehua

    2018-03-07

    Anisotropic surface properties of minerals play an important role in a variety of fields. With a focus on the two most intensively investigated silicate minerals (i.e., phyllosilicate minerals and pegmatite aluminosilicate minerals), this review highlights the research on their anisotropic surface properties based on their crystal structures. Four surface features comprise the anisotropic surface chemistry of minerals: broken bonds, energy, wettability, and charge. Analysis of surface broken bond and energy anisotropy helps to explain the cleavage and growth properties of mineral crystals, and understanding surface wettability and charge anisotropy is critical to the analysis of minerals' solution behavior, such as their flotation performance and rheological properties. In a specific reaction, the anisotropic surface properties of minerals are reflected in the adsorption strengths of reagents on different mineral surfaces. Combined with the knowledge of mineral crushing and grinding, a thorough understanding of the anisotropic surface chemistry properties and the anisotropic adsorption behavior of minerals will lead to the development of effective relational models comprising their crystal structure, surface chemistry properties, and targeted reagent adsorption. Overall, such a comprehensive approach is expected to firmly establish the connection between selective cleavage of mineral crystals for desired surfaces and designing novel reagents selectively adsorbed on the mineral surfaces. As tools to characterize the anisotropic surface chemistry properties of minerals, DLVO theory, atomic force microscopy (AFM), and molecular dynamics (MD) simulations are also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Reconstruction of a digital core containing clay minerals based on a clustering algorithm.

    Science.gov (United States)

    He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling

    2017-10-01

    It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K-means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.

  15. Reconstruction of a digital core containing clay minerals based on a clustering algorithm

    Science.gov (United States)

    He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling

    2017-10-01

    It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K -means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.

  16. Mechanical and mineral properties of osteogenesis imperfecta human bones at the tissue level.

    Science.gov (United States)

    Imbert, Laurianne; Aurégan, Jean-Charles; Pernelle, Kélig; Hoc, Thierry

    2014-08-01

    Osteogenesis imperfecta (OI) is a genetic disorder characterized by an increase in bone fragility on the macroscopic scale, but few data are available to describe the mechanisms involved on the tissue scale and the possible correlations between these scales. To better understand the effects of OI on the properties of human bone, we studied the mechanical and chemical properties of eight bone samples from children suffering from OI and compared them to the properties of three controls. High-resolution computed tomography, nanoindentation and Raman microspectroscopy were used to assess those properties. A higher tissue mineral density was found for OI bone (1.131 gHA/cm3 vs. 1.032 gHA/cm3, p=0.032), along with a lower Young's modulus (17.6 GPa vs. 20.5 GPa, p=0.024). Obviously, the mutation-induced collagen defects alter the collagen matrix, thereby affecting the mineralization. Raman spectroscopy showed that the mineral-to-matrix ratio was higher in the OI samples, while the crystallinity was lower, suggesting that the mineral crystals were smaller but more abundant in the case of OI. This change in crystal size, distribution and composition contributes to the observed decrease in mechanical strength. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Efficient multiple-trait association and estimation of genetic correlation using the matrix-variate linear mixed model.

    Science.gov (United States)

    Furlotte, Nicholas A; Eskin, Eleazar

    2015-05-01

    Multiple-trait association mapping, in which multiple traits are used simultaneously in the identification of genetic variants affecting those traits, has recently attracted interest. One class of approaches for this problem builds on classical variance component methodology, utilizing a multitrait version of a linear mixed model. These approaches both increase power and provide insights into the genetic architecture of multiple traits. In particular, it is possible to estimate the genetic correlation, which is a measure of the portion of the total correlation between traits that is due to additive genetic effects. Unfortunately, the practical utility of these methods is limited since they are computationally intractable for large sample sizes. In this article, we introduce a reformulation of the multiple-trait association mapping approach by defining the matrix-variate linear mixed model. Our approach reduces the computational time necessary to perform maximum-likelihood inference in a multiple-trait model by utilizing a data transformation. By utilizing a well-studied human cohort, we show that our approach provides more than a 10-fold speedup, making multiple-trait association feasible in a large population cohort on the genome-wide scale. We take advantage of the efficiency of our approach to analyze gene expression data. By decomposing gene coexpression into a genetic and environmental component, we show that our method provides fundamental insights into the nature of coexpressed genes. An implementation of this method is available at http://genetics.cs.ucla.edu/mvLMM. Copyright © 2015 by the Genetics Society of America.

  18. Central Ukraine Uranium Province: The genetic model

    International Nuclear Information System (INIS)

    Emetz, A.; Cuney, M.

    2014-01-01

    ramifications or intersections. In such places albitites are often altered by superimposed calcic and potassic metasomatism resulting in the replacement of aegirine and riebeckite by garnet, epidote, actinolite, calcite and lamellar phlogopite accompanying U-mineralization. All types of the metasomatic alterations gradually pinch out with depth. U-mineralized metasomatites are enriched in a complex of elements typically accumulated in the crust during regional metamorphism, and partial melting as indicated by pegmatite dike swarms in the Ingul Megablock. From seismic data interpretation, all U deposits in the CUUP are located over latitudinal mantle “deeps” or in the zones where the base of the lithosphere contrastingly subsides. In conclusion, Na-metasomatism is interpreted as a regional process resulting from the deep penetration of marine waters down along crustal scale shear zones during an extensional tectonic regime causing the regional collapse of the Ingul Megablock. Calcic and potassic alterations and U-mineralization are possibly connected with the crust dehydration and probable hotspot partial melting in the mantle initiated by the most unstable P-T conditions within zones of contrasting thickness of the lithosphere. The proposed models of Na-metasomatism and U-accumulation are useful for delineation of prospective territories having the potential to host U deposits associated with Na-metasomatites in Proterozoic terrains. (author)

  19. System Response Analysis and Model Order Reduction, Using Conventional Method, Bond Graph Technique and Genetic Programming

    Directory of Open Access Journals (Sweden)

    Lubna Moin

    2009-04-01

    Full Text Available This research paper basically explores and compares the different modeling and analysis techniques and than it also explores the model order reduction approach and significance. The traditional modeling and simulation techniques for dynamic systems are generally adequate for single-domain systems only, but the Bond Graph technique provides new strategies for reliable solutions of multi-domain system. They are also used for analyzing linear and non linear dynamic production system, artificial intelligence, image processing, robotics and industrial automation. This paper describes a unique technique of generating the Genetic design from the tree structured transfer function obtained from Bond Graph. This research work combines bond graphs for model representation with Genetic programming for exploring different ideas on design space tree structured transfer function result from replacing typical bond graph element with their impedance equivalent specifying impedance lows for Bond Graph multiport. This tree structured form thus obtained from Bond Graph is applied for generating the Genetic Tree. Application studies will identify key issues and importance for advancing this approach towards becoming on effective and efficient design tool for synthesizing design for Electrical system. In the first phase, the system is modeled using Bond Graph technique. Its system response and transfer function with conventional and Bond Graph method is analyzed and then a approach towards model order reduction is observed. The suggested algorithm and other known modern model order reduction techniques are applied to a 11th order high pass filter [1], with different approach. The model order reduction technique developed in this paper has least reduction errors and secondly the final model retains structural information. The system response and the stability analysis of the system transfer function taken by conventional and by Bond Graph method is compared and

  20. Bone mineral density and polymorphisms in metallothionein 1A and 2A in a Chinese population exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiao [Department of Bone Metabolism, Institute of Radiation Medicine, Fudan University, Shanghai 200032 (China); Lei, Lijian [Department of Occupation Health, School of Public Health, Fudan University, Shanghai 200032 (China); Department of Epidemiology, School of Public Health, Shanxi Medical University, Shanxi 030001 (China); Tian, Liting [Department of Occupation Health, School of Public Health, Fudan University, Shanghai 200032 (China); Zhu, Guoying, E-mail: chx_win@hotmail.com [Department of Bone Metabolism, Institute of Radiation Medicine, Fudan University, Shanghai 200032 (China); Jin, Taiyi, E-mail: tyjin@shmu.edu.cn [Department of Occupation Health, School of Public Health, Fudan University, Shanghai 200032 (China)

    2012-04-15

    Cadmium (Cd) effect on bone varies between individuals. We investigated whether genetic variation in metallothionein (MT)1A and MT2A associated with Cd induced bone loss in this study. A total of 465 persons (311 women and 154 men), living in control, moderately and heavily polluted areas, participated. The participants completed a questionnaire and the bone mineral density (BMD) was measured by dual energy x-ray absorptiometry (DXA) at the proximal radius and ulna. Samples of urine and blood were collected for determination of Cd in urine (UCd) and blood (BCd). Genotypes for polymorphisms in MT1A (rs11076161) and MT2A (rs10636) were determined by Taqman allelic discrimination assays. BCd had a weak association with variant alleles for MT1A (rs11076161) and MT2A (rs10636) in female living in the highly polluted group (p = 0.08 and 0.05, respectively). A weak association was found between bone mineral density and MT2A polymorphisms variation (p = 0.06) in female living in the highly polluted group. Only a weak association was found between bone mineral density and MT1A polymorphisms variation in female. Genetic variation in the MT1A and MT2A genes may not associate with bone loss caused by cadmium exposure. - Highlights: Black-Right-Pointing-Pointer We investigated the association between metallothionein polymorphisms bone mineral density. Black-Right-Pointing-Pointer MT1A and MT2A polymorphisms showed a weak association with cadmium in blood. Black-Right-Pointing-Pointer MT1A and MT2A polymorphisms showed no association with bone mineral density.

  1. Studies about mineral oils maintenance in NPP

    International Nuclear Information System (INIS)

    Ceclan, R.E.; Floarea, O.; Ceclan, M.; Bercia, R.

    1997-01-01

    The maintenance of mineral oils, used as lubricating agent or insulating fluids is a very important problem for the reducing of operating costs in the Nuclear Power Plants. Their maintenance means the maintaining of their solid particles and water content between the allowed limits given by the international standards. A modern dehydration technology is the film desorption of water from mineral oils. The paper presents a mathematical model of the falling film dehydration process of mineral oils in a cylindrical film desorber. The model's equations were solved numerically using a FORTRAN programme made by the authors. The model allows the determination of water concentration radial and longitudinal profiles in the oil film. The simulation results are compared with the experimental results obtained by the authors on their own laboratory experimental plant and the good agreement found validated the mathematical model. The model was solved using a fully implicit numerical scheme, in which the longitudinal convection terms were approximated by the upstream difference and the transverse diffusion terms by the central difference to transform the governing equations into finite-difference equations. The finite-difference system obtained is an algebraic system with a tridiagonal matrix that can be efficiently solved by the Thomas algorithm. To account for the drastic variations of velocity and concentration in the regions near the inner boundary and interface, a nonuniform spatial grid in the r-direction was chosen. A grid with 401 gridpoints was used in the computations.The model allows the determination of water concentration radial and longitudinal profiles in the oil film. The simulation results are compared with the experimental results obtained by the authors on their own laboratory experimental plant and the good agreement found validated the mathematical model. (authors)

  2. Genetic human prion disease modelled in PrP transgenic Drosophila.

    Science.gov (United States)

    Thackray, Alana M; Cardova, Alzbeta; Wolf, Hanna; Pradl, Lydia; Vorberg, Ina; Jackson, Walker S; Bujdoso, Raymond

    2017-09-20

    Inherited human prion diseases, such as fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD), are associated with autosomal dominant mutations in the human prion protein gene PRNP and accumulation of PrP Sc , an abnormal isomer of the normal host protein PrP C , in the brain of affected individuals. PrP Sc is the principal component of the transmissible neurotoxic prion agent. It is important to identify molecular pathways and cellular processes that regulate prion formation and prion-induced neurotoxicity. This will allow identification of possible therapeutic interventions for individuals with, or at risk from, genetic human prion disease. Increasingly, Drosophila has been used to model human neurodegenerative disease. An important unanswered question is whether genetic prion disease with concomitant spontaneous prion formation can be modelled in Drosophila We have used pUAST/PhiC31-mediated site-directed mutagenesis to generate Drosophila transgenic for murine or hamster PrP (prion protein) that carry single-codon mutations associated with genetic human prion disease. Mouse or hamster PrP harbouring an FFI (D178N) or fCJD (E200K) mutation showed mild Proteinase K resistance when expressed in Drosophila Adult Drosophila transgenic for FFI or fCJD variants of mouse or hamster PrP displayed a spontaneous decline in locomotor ability that increased in severity as the flies aged. Significantly, this mutant PrP-mediated neurotoxic fly phenotype was transferable to recipient Drosophila that expressed the wild-type form of the transgene. Collectively, our novel data are indicative of the spontaneous formation of a PrP-dependent neurotoxic phenotype in FFI- or CJD-PrP transgenic Drosophila and show that inherited human prion disease can be modelled in this invertebrate host. © 2017 The Author(s).

  3. Application of hierarchical genetic models to Raven and WAIS subtests: a Dutch twin study

    NARCIS (Netherlands)

    Rijsdijk, F.V.; Vernon, P.A.; Boomsma, D.I.

    2002-01-01

    Hierarchical models of intelligence are highly informative and widely accepted. Application of these models to twin data, however, is sparse. This paper addresses the question of how a genetic hierarchical model fits the Wechsler Adult Intelligence Scale (WAIS) subtests and the Raven Standard

  4. 25 CFR 215.25 - Other minerals and deep-lying lead and zinc minerals.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Other minerals and deep-lying lead and zinc minerals. 215.25 Section 215.25 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.25 Other minerals and deep-lying lead...

  5. The mineral sector and economic development in Ghana: A computable general equilibrium analysis

    Science.gov (United States)

    Addy, Samuel N.

    A computable general equilibrium model (CGE) model is formulated for conducting mineral policy analysis in the context of national economic development for Ghana. The model, called GHANAMIN, places strong emphasis on production, trade, and investment. It can be used to examine both micro and macro economic impacts of policies associated with mineral investment, taxation, and terms of trade changes, as well as mineral sector performance impacts due to technological change or the discovery of new deposits. Its economywide structure enables the study of broader development policy with a focus on individual or multiple sectors, simultaneously. After going through a period of contraction for about two decades, mining in Ghana has rebounded significantly and is currently the main foreign exchange earner. Gold alone contributed 44.7 percent of 1994 total export earnings. GHANAMIN is used to investigate the economywide impacts of mineral tax policies, world market mineral prices changes, mining investment, and increased mineral exports. It is also used for identifying key sectors for economic development. Various simulations were undertaken with the following results: Recently implemented mineral tax policies are welfare increasing, but have an accompanying decrease in the output of other export sectors. World mineral price rises stimulate an increase in real GDP; however, this increase is less than real GDP decreases associated with price declines. Investment in the non-gold mining sector increases real GDP more than investment in gold mining, because of the former's stronger linkages to the rest of the economy. Increased mineral exports are very beneficial to the overall economy. Foreign direct investment (FDI) in mining increases welfare more so than domestic capital, which is very limited. Mining investment and the increased mineral exports since 1986 have contributed significantly to the country's economic recovery, with gold mining accounting for 95 percent of the

  6. Information Extraction and Interpretation Analysis of Mineral Potential Targets Based on ETM+ Data and GIS technology: A Case Study of Copper and Gold Mineralization in Burma

    International Nuclear Information System (INIS)

    Wenhui, Du; Yongqing, Chen; Nana, Guo; Yinglong, Hao; Pengfei, Zhao; Gongwen, Wang

    2014-01-01

    Mineralization-alteration and structure information extraction plays important roles in mineral resource prospecting and assessment using remote sensing data and the Geographical Information System (GIS) technology. Choosing copper and gold mines in Burma as example, the authors adopt band ratio, threshold segmentation and principal component analysis (PCA) to extract the hydroxyl alteration information using ETM+ remote sensing images. Digital elevation model (DEM) (30m spatial resolution) and ETM+ data was used to extract linear and circular faults that are associated with copper and gold mineralization. Combining geological data and the above information, the weights of evidence method and the C-A fractal model was used to integrate and identify the ore-forming favourable zones in this area. Research results show that the high grade potential targets are located with the known copper and gold deposits, and the integrated information can be used to the next exploration for the mineral resource decision-making

  7. Modeling Self-Healing of Concrete Using Hybrid Genetic Algorithm-Artificial Neural Network.

    Science.gov (United States)

    Ramadan Suleiman, Ahmed; Nehdi, Moncef L

    2017-02-07

    This paper presents an approach to predicting the intrinsic self-healing in concrete using a hybrid genetic algorithm-artificial neural network (GA-ANN). A genetic algorithm was implemented in the network as a stochastic optimizing tool for the initial optimal weights and biases. This approach can assist the network in achieving a global optimum and avoid the possibility of the network getting trapped at local optima. The proposed model was trained and validated using an especially built database using various experimental studies retrieved from the open literature. The model inputs include the cement content, water-to-cement ratio (w/c), type and dosage of supplementary cementitious materials, bio-healing materials, and both expansive and crystalline additives. Self-healing indicated by means of crack width is the model output. The results showed that the proposed GA-ANN model is capable of capturing the complex effects of various self-healing agents (e.g., biochemical material, silica-based additive, expansive and crystalline components) on the self-healing performance in cement-based materials.

  8. Modeling AEC—New Approaches to Study Rare Genetic Disorders

    Science.gov (United States)

    Koch, Peter J.; Dinella, Jason; Fete, Mary; Siegfried, Elaine C.; Koster, Maranke I.

    2015-01-01

    Ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome is a rare monogenetic disorder that is characterized by severe abnormalities in ectoderm-derived tissues, such as skin and its appendages. A major cause of morbidity among affected infants is severe and chronic skin erosions. Currently, supportive care is the only available treatment option for AEC patients. Mutations in TP63, a gene that encodes key regulators of epidermal development, are the genetic cause of AEC. However, it is currently not clear how mutations in TP63 lead to the various defects seen in the patients’ skin. In this review, we will discuss current knowledge of the AEC disease mechanism obtained by studying patient tissue and genetically engineered mouse models designed to mimic aspects of the disorder. We will then focus on new approaches to model AEC, including the use of patient cells and stem cell technology to replicate the disease in a human tissue culture model. The latter approach will advance our understanding of the disease and will allow for the development of new in vitro systems to identify drugs for the treatment of skin erosions in AEC patients. Further, the use of stem cell technology, in particular induced pluripotent stem cells (iPSC), will enable researchers to develop new therapeutic approaches to treat the disease using the patient’s own cells (autologous keratinocyte transplantation) after correction of the disease-causing mutations. PMID:24665072

  9. Occurrence model for volcanogenic beryllium deposits: Chapter F in Mineral deposit models for resource assessment

    Science.gov (United States)

    Foley, Nora K.; Hofstra, Albert H.; Lindsey, David A.; Seal, Robert R.; Jaskula, Brian W.; Piatak, Nadine M.

    2012-01-01

    Current global and domestic mineral resources of beryllium (Be) for industrial uses are dominated by ores produced from deposits of the volcanogenic Be type. Beryllium deposits of this type can form where hydrothermal fluids interact with fluorine and lithophile-element (uranium, thorium, rubidium, lithium, beryllium, cesium, tantalum, rare earth elements, and tin) enriched volcanic rocks that contain a highly reactive lithic component, such as carbonate clasts. Volcanic and hypabyssal high-silica biotite-bearing topaz rhyolite constitutes the most well-recognized igneous suite associated with such Be deposits. The exemplar setting is an extensional tectonic environment, such as that characterized by the Basin and Range Province, where younger topaz-bearing igneous rock sequences overlie older dolomite, quartzite, shale, and limestone sequences. Mined deposits and related mineralized rocks at Spor Mountain, Utah, make up a unique economic deposit of volcanogenic Be having extensive production and proven and probable reserves. Proven reserves in Utah, as reported by the U.S. Geological Survey National Mineral Information Center, total about 15,900 tons of Be that are present in the mineral bertrandite (Be4Si2O7(OH)2). At the type locality for volcanogenic Be, Spor Mountain, the tuffaceous breccias and stratified tuffs that host the Be ore formed as a result of explosive volcanism that brought carbonate and other lithic fragments to the surface through vent structures that cut the underlying dolomitic Paleozoic sedimentary rock sequences. The tuffaceous sediments and lithic clasts are thought to make up phreatomagmatic base surge deposits. Hydrothermal fluids leached Be from volcanic glass in the tuff and redeposited the Be as bertrandite upon reaction of the hydrothermal fluid with carbonate clasts in lithic-rich sections of tuff. The localization of the deposits in tuff above fluorite-mineralized faults in carbonate rocks, together with isotopic evidence for the

  10. Spatial variability of isoproturon mineralizing activity within an agricultural field: geostatistical analysis of simple physicochemical and microbiological soil parameters.

    Science.gov (United States)

    El Sebai, T; Lagacherie, B; Soulas, G; Martin-Laurent, F

    2007-02-01

    We assessed the spatial variability of isoproturon mineralization in relation to that of physicochemical and biological parameters in fifty soil samples regularly collected along a sampling grid delimited across a 0.36 ha field plot (40 x 90 m). Only faint relationships were observed between isoproturon mineralization and the soil pH, microbial C biomass, and organic nitrogen. Considerable spatial variability was observed for six of the nine parameters tested (isoproturon mineralization rates, organic nitrogen, genetic structure of the microbial communities, soil pH, microbial biomass and equivalent humidity). The map of isoproturon mineralization rates distribution was similar to that of soil pH, microbial biomass, and organic nitrogen but different from those of structure of the microbial communities and equivalent humidity. Geostatistics revealed that the spatial heterogeneity in the rate of degradation of isoproturon corresponded to that of soil pH and microbial biomass.

  11. Analysis on uranium mineralization-formation condition and prospecting potential in Xidamingshan metallogenic belt

    International Nuclear Information System (INIS)

    Li Zhixing; Qi Fucheng; He Zhongbo; Zhang Zilong

    2012-01-01

    There are many different opinions about the source of uranium and metallogenic mechanism in Xidamingshan metallogenic belt. therefore it blocked uranium resources potential evaluation and ore exploration. Through absorb in- formation and investigate Daxin deposit and systematic analysis on samples. It is believed that uranium source mainly came from Cambrian System, a little came from the deep. The Devonian System is favorable room for saving ores in addition to be pre-concentrated room for uranium. Also, there are new cognition about uranium metallogenic mechanism, establish ore-forming series of Xidamingshan metallogenic belt, It is proposed that uranium mineralization have experienced 4 stages; It is cleared that hydrothermal fluid superposition transform type uranium deposit is main genetic type, ancient karst accumulate type is secondary genetic type, the later is formed by leaching the former and then precipitate, enrichment in ancient karst congeries, which is formed nearby faults and with the movement of Xishan structural movement. It is proven that metallogenic potential of Xidamingshan metallogenic belt is good. Tectonic rock controlled by subsidiary fracture nearby regional main fault, which connected with the Cambrian System and the Devonian System, and the deep of the deposit is guideline of mineral prospecting next stage. (authors)

  12. Molecular genetics of cancer and tumorigenesis: Drosophila models

    Institute of Scientific and Technical Information of China (English)

    Wu-Min Deng

    2011-01-01

    Why do some cells not respond to normal control of cell division and become tumorous? Which signals trigger some tumor cells to migrate and colonize other tissues? What genetic factors are responsible for tumorigenesis and cancer development? What environmental factors play a role in cancer formation and progression? In how many ways can our bodies prevent and restrict the growth of cancerous cells?How can we identify and deliver effective drugs to fight cancer? In the fight against cancer,which kills more people than any other disease,these and other questions have long interested researchers from a diverse range of fields.To answer these questions and to fight cancer more effectively,we must increase our understanding of basic cancer biology.Model organisms,including the fruit fly Drosophila melanogaster,have played instrumental roles in our understanding of this devastating disease and the search for effective cures.Drosophila and its highly effective,easy-touse,and ever-expanding genetic tools have contributed toand enriched our knowledge of cancer and tumor formation tremendously.

  13. Radioactive mineral potential of carbonatites in western parts of the South American shields

    International Nuclear Information System (INIS)

    Premoli, C.; Kroonenberg, S.B.

    1984-01-01

    During the last eight years at least six carbonatites or clusters of carbonatites have been discovered in the western parts of the South American cratons. In contrast to the carbonatites of the eastern part of the South American shields, which have been well studied and placed in a tectonic context together with the West African carbonatite provinces, those of the western part of the South American cratons have received litte attention. This paper is a compilation of published and original data on these occurrences, their geology, geochemistry, structural setting and radioactive mineral potential. An exploration strategy is devised based on experiences in this rainforest-clad area and the peculiar genetic aspect of carbonatites. Some details of a possibly new uranium mineral encountered in Cerro Cora carbonatite are given. (author)

  14. Experiencing the genetic body: parents' encounters with pediatric clinical genetics.

    Science.gov (United States)

    Raspberry, Kelly; Skinner, Debra

    2007-01-01

    Because of advancements in genetic research and technologies, the clinical practice of genetics is becoming a prevalent component of biomedicine. As the genetic basis for more and more diseases are found, it is possible that ways of experiencing health, illness, identity, kin relations, and the body are becoming geneticized, or understood within a genetic model of disease. Yet, other models and relations that go beyond genetic explanations also shape interpretations of health and disease. This article explores how one group of individuals for whom genetic disorder is highly relevant formulates their views of the body in light of genetic knowledge. Using data from an ethnographic study of 106 parents or potential parents of children with known or suspected genetic disorders who were referred to a pediatric genetic counseling and evaluation clinic in the southeastern United States, we find that these parents do, to some degree, perceive of their children's disorders in terms of a genetic body that encompasses two principal qualities: a sense of predetermined health and illness and an awareness of a profound historicity that reaches into the past and extends into the present and future. They experience this genetic body as both fixed and historical, but they also express ideas of a genetic body made less deterministic by their own efforts and future possibilities. This account of parents' experiences with genetics and clinical practice contributes to a growing body of work on the ways in which genetic information and technologies are transforming popular and medical notions of the body, and with it, health, illness, kinship relations, and personal and social identities.

  15. Mineral Soil Carbon in Managed Hardwood Forests of the Northeastern US

    Science.gov (United States)

    Vario, C.; Friedland, A.; Hornig, C.

    2013-12-01

    New England is characterized by extensive forest cover and large reservoirs of soil carbon (C). In northern hardwood forests, mineral soil C can account for up to 50% of total ecosystem C. There has been an increasing demand for forests to serve both as a C sink and a renewable energy source, and effective management of the ecosystem C balance relies on accurate modeling of each compartment of the ecosystem. However, the dynamics of soil C storage with respect to forest use are variable and poorly understood, particularly in mineral soils. For example, current regional models assume C pools after forest harvesting do not change, while some studies suggest that belowground mineral soil C pools can be affected by disturbances at the soil surface. We quantified mineral soil C pools in previously clear-cut stands in seven research or protected forests across New York, New Hampshire, Massachusetts, and Vermont. The ages of the sites sampled ranged from recently cleared to those with no disturbance history, with 21 forest stands represented in the study. Within each research forest studied, physical parameters such as soil type, forest type, slope and land-use history (aside from forest harvest) did not vary between the stands of different ages. Soil samples were collected to a depth of 60 cm below the mineral-organic boundary using a gas-powered augur and 9.5-cm diameter drill bit. Samples were collected in 10-cm increments in shallow mineral soil and 15-cm increments from 30-60 cm depth. Carbon, nitrogen (N), pH, texture and soil mineralogy were measured across the regional sites. At Bartlett Experimental Forest (BEF) in New Hampshire, mineral soil biogeochemistry in cut and uncut sites was studied at a finer scale. Measurements included soil temperature to 55 cm depth, carbon compound analyses using Py-GCMS and soil microbial messenger RNA extractions from mineral soil. Finally, we simulated C dynamics after harvesting by building a model in Stella, with a particular

  16. Comparison of models of automatic classification of textural patterns of mineral presents in Colombian coals

    International Nuclear Information System (INIS)

    Lopez Carvajal, Jaime; Branch Bedoya, John Willian

    2005-01-01

    The automatic classification of objects is a very interesting approach under several problem domains. This paper outlines some results obtained under different classification models to categorize textural patterns of minerals using real digital images. The data set used was characterized by a small size and noise presence. The implemented models were the Bayesian classifier, Neural Network (2-5-1), support vector machine, decision tree and 3-nearest neighbors. The results after applying crossed validation show that the Bayesian model (84%) proved better predictive capacity than the others, mainly due to its noise robustness behavior. The neuronal network (68%) and the SVM (67%) gave promising results, because they could be improved increasing the data amount used, while the decision tree (55%) and K-NN (54%) did not seem to be adequate for this problem, because of their sensibility to noise

  17. Evaluating the Genetics of Common Variable Immunodeficiency: Monogenetic Model and Beyond

    Directory of Open Access Journals (Sweden)

    Guillem de Valles-Ibáñez

    2018-05-01

    Full Text Available Common variable immunodeficiency (CVID is the most frequent symptomatic primary immunodeficiency characterized by recurrent infections, hypogammaglobulinemia and poor response to vaccines. Its diagnosis is made based on clinical and immunological criteria, after exclusion of other diseases that can cause similar phenotypes. Currently, less than 20% of cases of CVID have a known underlying genetic cause. We have analyzed whole-exome sequencing and copy number variants data of 36 children and adolescents diagnosed with CVID and healthy relatives to estimate the proportion of monogenic cases. We have replicated an association of CVID to p.C104R in TNFRSF13B and reported the second case of homozygous patient to date. Our results also identify five causative genetic variants in LRBA, CTLA4, NFKB1, and PIK3R1, as well as other very likely causative variants in PRKCD, MAPK8, or DOCK8 among others. We experimentally validate the effect of the LRBA stop-gain mutation which abolishes protein production and downregulates the expression of CTLA4, and of the frameshift indel in CTLA4 producing expression downregulation of the protein. Our results indicate a monogenic origin of at least 15–24% of the CVID cases included in the study. The proportion of monogenic patients seems to be lower in CVID than in other PID that have also been analyzed by whole exome or targeted gene panels sequencing. Regardless of the exact proportion of CVID monogenic cases, other genetic models have to be considered for CVID. We propose that because of its prevalence and other features as intermediate penetrancies and phenotypic variation within families, CVID could fit with other more complex genetic scenarios. In particular, in this work, we explore the possibility of CVID being originated by an oligogenic model with the presence of heterozygous mutations in interacting proteins or by the accumulation of detrimental variants in particular immunological pathways, as well as

  18. Accelerated enamel mineralization in Dspp mutant mice

    Science.gov (United States)

    Verdelis, Kostas; Szabo-Rogers, Heather L.; Xu, Yang; Chong, Rong; Kang, Ryan; Cusack, Brian J.; Jani, Priyam; Boskey, Adele L.; Qin, Chunlin; Beniash, Elia

    2016-01-01

    Dentin sialophosphoprotein (DSPP) is one of the major non-collagenous proteins present in dentin, cementum and alveolar bone; it is also transiently expressed by ameloblasts. In humans many mutations have been found in DSPP and are associated with two autosomal-dominant genetic diseases — dentinogenesis imperfecta II (DGI-II) and dentin dysplasia (DD). Both disorders result in the development of hypomineralized and mechanically compromised teeth. The erupted mature molars of Dspp–/– mice have a severe hypomineralized dentin phenotype. Since dentin and enamel formations are interdependent, we decided to investigate the process of enamel onset mineralization in young Dspp–/– animals. We focused our analysis on the constantly erupting mouse incisor, to capture all of the stages of odontogenesis in one tooth, and the unerupted first molars. Using high-resolution microCT, we revealed that the onset of enamel matrix deposition occurs closer to the cervical loop and both secretion and maturation of enamel are accelerated in Dspp–/– incisors compared to the Dspp+/– control. Importantly, these differences did not translate into major phenotypic differences in mature enamel in terms of the structural organization, mineral density or hardness. The only observable difference was the reduction in thickness of the outer enamel layer, while the total enamel thickness remained unchanged. We also observed a compromised dentin-enamel junction, leading to delamination between the dentin and enamel layers. The odontoblast processes were widened and lacked branching near the DEJ. Finally, for the first time we demonstrate expression of Dspp mRNA in secretory ameloblasts. In summary, our data show that DSPP is important for normal mineralization of both dentin and enamel. PMID:26780724

  19. Reagan issues mineral policy

    Science.gov (United States)

    The National Materials and Minerals Program plan and report that President Reagan sent to Congress on April 5 aims to ‘decrease America's minerals vulnerability’ while reducing future dependence on potentially unstable foreign sources of minerals. These goals would be accomplished by taking inventory of federal lands to determine mineral potential; by meeting the stockpile goals set by the Strategic and Critical Material Stockpiling Act; and by establishing a business and political climate that would encourage private-sector research and development on minerals.Now that the Administration has issued its plan, the Subcommittee on Mines and Mining of the House Committee on Interior and Insular Affairs will consider the National Minerals Security Act (NMSA), which was introduced 1 year ago by subcommittee chairman Jim Santini (D-Nev.) [Eos, May 19, 1981, p. 497]. The bill calls for establishing a three-member White-House-level council to coordinate the development of a national minerals policy; amending tax laws to assist the mining industry to make capital investments to locate and produce strategic materials; and creating a revolving fund for the sale and purchase of strategic minerals. In addition, the NMSA bill would allow the secretary of the interior to make previously withdrawn public lands available for mineral development. The subcommittee will hold a hearing on the Administration's plan on May 11. Interior Secretary James Watt has been invited to testify.

  20. Contributions of Caucasian-associated bone mass loci to the variation in bone mineral density in Vietnamese population.

    Science.gov (United States)

    Ho-Pham, Lan T; Nguyen, Sing C; Tran, Bich; Nguyen, Tuan V

    2015-07-01

    Bone mineral density (BMD) is under strong genetic regulation, but it is not clear which genes are involved in the regulation, particularly in Asian populations. This study sought to determine the association between 29 genes discovered by Caucasian-based genome-wide association studies and BMD in a Vietnamese population. The study involved 564 Vietnamese men and women aged 18 years and over (average age: 47 years) who were randomly sampled from the Ho Chi Minh City. BMD at the femoral neck, lumbar spine, total hip and whole body was measured by DXA (Hologic QDR4500, Bedford, MA, USA). Thirty-two single nucleotide polymorphisms (SNPs) in 29 genes were genotyped using Sequenom MassARRAY technology. The magnitude of association between SNPs and BMD was analyzed by the linear regression model. The Bayesian model average method was used to identify SNPs that are independently associated with BMD. The distribution of genotypes of all, but two, SNPs was consistent with the Hardy-Weinberg equilibrium law. After adjusting for age, gender and weight, 3 SNPs were associated with BMD: rs2016266 (SP7 gene), rs7543680 (ZBTB40 gene), and rs1373004 (MBL2/DKK1 gene). Among the three genetic variants, the SNP rs2016266 had the strongest association, with each minor allele being associated with ~0.02 g/cm(2) increase in BMD at the femoral neck and whole body. Each of these genetic variant explained about 0.2 to 1.1% variance of BMD. All other SNPs were not significantly associated with BMD. These results suggest that genetic variants in the SP7, ZBTB40 and MBL2/DKK1 genes are associated with BMD in the Vietnamese population, and that the effect of these genes on BMD is likely to be modest. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Clay mineral association in the salt formation of the Transylvanian Basin and its paleoenvironmental significance

    Directory of Open Access Journals (Sweden)

    Nicoleta Bican-Bris̡an

    2006-04-01

    Full Text Available The investigated clay fraction was separated from salt samples recovered from three boreholes located in the Praid salt deposit area. For comparison, samples collected from Turda deposit (Franz Josef adit, the Rudolf and Ghizele chambers and from the salt massif from Sărăţel were also analyzed. The qualitative investigations evidenced a clay minerals association dominated by illite and chlorite accompanied by subordinate amounts of kaolinite, smectite, fibrous clays (sepiolite, palygorskite, and in minor amounts, by 14/14 chlorite/vermiculite and chlorite/smectite interstratifications. A quantitative evaluation (% including a standard graphical representation was performed only for the borehole samples (Praid, according to the vertical distribution. The genetical interpretation of the identified clay minerals association took into account the influence of the sedimentation mechanisms and the climate control on the mineral phases. The environment of formation for the salt in the Transylvanian Basin was defined by the presence of specific climatic factors, also suggested by the palynological investigations.

  2. Impact-Induced Clay Mineral Formation and Distribution on Mars

    Science.gov (United States)

    Rivera-Valentin, E. G.; Craig, P. I.

    2015-01-01

    Clay minerals have been identified in the central peaks and ejecta blankets of impact craters on Mars. Several studies have suggested these clay minerals formed as a result of impact induced hydrothermalism either during Mars' Noachian era or more recently by the melting of subsurface ice. Examples of post-impact clay formation is found in several locations on Earth such as the Mjolnir and Woodleigh Impact Structures. Additionally, a recent study has suggested the clay minerals observed on Ceres are the result of impact-induced hydrothermal processes. Such processes may have occurred on Mars, possibly during the Noachian. Distinguishing between clay minerals formed preor post-impact can be accomplished by studying their IR spectra. In fact, showed that the IR spectra of clay minerals is greatly affected at longer wavelengths (i.e. mid-IR, 5-25 micron) by impact-induced shock deformation while the near-IR spectra (1.0-2.5 micron) remains relatively unchanged. This explains the discrepancy between NIR and MIR observations of clay minerals in martian impact craters noted. Thus, it allows us to determine whether a clay mineral formed from impact-induced hydrothermalism or were pre-existing and were altered by the impact. Here we study the role of impacts on the formation and distribution of clay minerals on Mars via a fully 3-D Monte Carlo cratering model, including impact- melt production using results from modern hydrocode simulations. We identify regions that are conducive to clay formation and the location of clay minerals post-bombardment.

  3. Genetic parameters for body condition score, body weight, milk yield, and fertility estimated using random regression models.

    Science.gov (United States)

    Berry, D P; Buckley, F; Dillon, P; Evans, R D; Rath, M; Veerkamp, R F

    2003-11-01

    Genetic (co)variances between body condition score (BCS), body weight (BW), milk yield, and fertility were estimated using a random regression animal model extended to multivariate analysis. The data analyzed included 81,313 BCS observations, 91,937 BW observations, and 100,458 milk test-day yields from 8725 multiparous Holstein-Friesian cows. A cubic random regression was sufficient to model the changing genetic variances for BCS, BW, and milk across different days in milk. The genetic correlations between BCS and fertility changed little over the lactation; genetic correlations between BCS and interval to first service and between BCS and pregnancy rate to first service varied from -0.47 to -0.31, and from 0.15 to 0.38, respectively. This suggests that maximum genetic gain in fertility from indirect selection on BCS should be based on measurements taken in midlactation when the genetic variance for BCS is largest. Selection for increased BW resulted in shorter intervals to first service, but more services and poorer pregnancy rates; genetic correlations between BW and pregnancy rate to first service varied from -0.52 to -0.45. Genetic selection for higher lactation milk yield alone through selection on increased milk yield in early lactation is likely to have a more deleterious effect on genetic merit for fertility than selection on higher milk yield in late lactation.

  4. Of minerals and men. [Discovery of new mineral species

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, S.W. (Council for Mineral Technology, Randburg (South Africa))

    1983-01-01

    The rate of discovery of new mineral species appears to be on the increase in Southern Africa and classification and nomenclature, once haphazard, are now subject to international scientific screening and rules. Earlier names entrenched in the literature provide a fascinating background to the minerals scene.

  5. Geology, mineralization, mineral chemistry, and ore-fluid conditions of Irankuh Pb-Zn mining district, south of Isfahan

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Karimpour

    2017-11-01

    in Mining Engineering, 6: 83-91 (in Persian. Boveiri Konari, M. and Rastad, E., 2016. Nature and origin of dolomitization associated with sulphide mineralization: new insights from the Tappehsorkh Zn-Pb (-Ag-Ba deposit, Irankuh Mining District, Iran. Geological Journal, DOI: 10.1002/gj.2875 Ghasemi, A., 1995. Facies analysis and geochemistry of Kolah-Darvazaeh, Goud-Zendan, and Khaneh-Gorgi Pb-Zn deposits from south of Irankuh. M.Sc. thesis, Tarbiat Modares University, Tehran, Iran, 158 pp. (in Persian Ghazban, F., McNutt, R.H. and Schwarcz, H. P., 1994. Genesis of sediment-hosted Zn-Pb-Ba deposits in the Irankuh district, Esfahan area, west-central Iran. Economic Geology, 89: 1262-1278. Hosseini-Dinani, H., Aftabi, A., Esmaeili, A. and Rabbani, M., 2015. Composite soil-geochemical halos delineating carbonate-hosted zinc–lead–barium mineralization in the Irankuh district, Isfahan, west-central Iran. Journal of Geochemical Exploration, 156: 114-130. Malakhov, A.A., 1968. Bismuth and antimony in galena, indicators of conditions of ore deposition. Geokhimiya, 11: 1283-1296. Rastad, E., 1981. Geological, mineralogical and ore facies investigations on the Lower Cretaceous stratabound Zn – Pb – Ba – Cu deposits of the Irankuh mountain range, Isfahan, west central Iran. Ph.D. thesis, Heidelberg University, Heidelberg, Germany, 334 pp. Reichert, J., 2007. A metallogenetic model for carbonate-hosted non-sulphide zinc deposits based on observations of Mehdi Abad and Irankuh, Central and Southwestern Iran. Ph.D. thesis, Martin Luther University Halle Wittenberg, Halle, Germany, 152 pp. Timoori-Asl, F., 2010. Sedimentology and petrology of Jurassic deposits and Basinal brines studies in formation of Irankuh deposit. M.Sc. thesis, Isfahan University, Isfahan, Iran, 120 pp. (in Persian Viets, J.G., Hopkins, R.T. and Miller, B.M., 1992. Variation in minor and trace metals in sphalerite from Mississippi Valley-type deposits of the Ozark Region: genetic implications

  6. Recovering byproduct heavy minerals from sand and gravel, placer gold, and industrial mineral operations

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, J.M.; Martinez, G.M.; Wong, M.M.

    1979-01-01

    The Bureau of Mines, as part of an effort to maximize minerals and metals recovery from domestic resources, has investigated the feasibility of recovering heavy minerals as byproducts from sand and gravel, placer gold, and industrial mineral operations in northern California. Sand samples from about 50 locations were treated by gravity separation to yield heavy-mineral cocentrates (black sands). Mineral compositions of the concentrates were determined by chemical analysis and mineralogical examination. Individual zircon, ilmenite, magnetite, platinum-group metals, thoria, and silica products were prepared from heavy-mineral concentrates by selective separation using low- and high-intensity magnetic, high-tension, and flotation equipment.

  7. Genetic correlations between body condition scores and fertility in dairy cattle using bivariate random regression models.

    Science.gov (United States)

    De Haas, Y; Janss, L L G; Kadarmideen, H N

    2007-10-01

    Genetic correlations between body condition score (BCS) and fertility traits in dairy cattle were estimated using bivariate random regression models. BCS was recorded by the Swiss Holstein Association on 22,075 lactating heifers (primiparous cows) from 856 sires. Fertility data during first lactation were extracted for 40,736 cows. The fertility traits were days to first service (DFS), days between first and last insemination (DFLI), calving interval (CI), number of services per conception (NSPC) and conception rate to first insemination (CRFI). A bivariate model was used to estimate genetic correlations between BCS as a longitudinal trait by random regression components, and daughter's fertility at the sire level as a single lactation measurement. Heritability of BCS was 0.17, and heritabilities for fertility traits were low (0.01-0.08). Genetic correlations between BCS and fertility over the lactation varied from: -0.45 to -0.14 for DFS; -0.75 to 0.03 for DFLI; from -0.59 to -0.02 for CI; from -0.47 to 0.33 for NSPC and from 0.08 to 0.82 for CRFI. These results show (genetic) interactions between fat reserves and reproduction along the lactation trajectory of modern dairy cows, which can be useful in genetic selection as well as in management. Maximum genetic gain in fertility from indirect selection on BCS should be based on measurements taken in mid lactation when the genetic variance for BCS is largest, and the genetic correlations between BCS and fertility is strongest.

  8. A literature review of actinide-carbonate mineral interactions

    International Nuclear Information System (INIS)

    Stout, D.L.

    1993-10-01

    Chemical retardation of actinides in groundwater systems is a potentially important mechanism for assessing the performance of the Waste Isolation Pilot Plant (WIPP), a facility intended to demonstrate safe disposal of transuranic waste. Rigorous estimation of chemical retardation during transport through the Culebra Dolomite, a water-bearing unit overlying the WIPP, requires a mechanistic understanding of chemical reactions between dissolved elements and mineral surfaces. This report represents a first step toward this goal by examining the literature for pertinent experimental studies of actinide-carbonate interactions. A summary of existing models is given, along with the types of experiments on which these models are based. Articles pertaining to research into actinide interactions with carbonate minerals are summarized. Select articles involving trace element-carbonate mineral interactions are also reviewed and may serve as templates for future research. A bibliography of related articles is included. Americium(III), and its nonradioactive analog neodymium(III), partition strongly from aqueous solutions into carbonate minerals. Recent thermodynamic, kinetic, and surface studies show that Nd is preferentially removed from solution, forming a Nd-Ca carbonate solid solution. Neptunium(V) is rapidly removed from solution by carbonates. Plutonium incorporation into carbonates is complicated by multiple oxidation states. Little research has been done on the radium(H) and thorium(IV) carbonate systems. Removal of uranyl ion from solution by calcite is limited to monolayer surface coverage

  9. Radioactive mineral deposits

    Energy Technology Data Exchange (ETDEWEB)

    1948-01-01

    This publication was designed as a guide for uranium and thorium prospectors in Australia. Physical properties, such as color, streak, luster, hardness, fracture, and specific gravity of the uranium and thorium-bearing minerals are summarized and the various methods suitable for detecting radioactivity in minerals are described. Two colored plates show samples of pitchblende (uraninite), autunite, carnotite, monazite, and others of the most important minerals sources of uranium and thorium.

  10. Empirical valence bond models for reactive potential energy surfaces: a parallel multilevel genetic program approach.

    Science.gov (United States)

    Bellucci, Michael A; Coker, David F

    2011-07-28

    We describe a new method for constructing empirical valence bond potential energy surfaces using a parallel multilevel genetic program (PMLGP). Genetic programs can be used to perform an efficient search through function space and parameter space to find the best functions and sets of parameters that fit energies obtained by ab initio electronic structure calculations. Building on the traditional genetic program approach, the PMLGP utilizes a hierarchy of genetic programming on two different levels. The lower level genetic programs are used to optimize coevolving populations in parallel while the higher level genetic program (HLGP) is used to optimize the genetic operator probabilities of the lower level genetic programs. The HLGP allows the algorithm to dynamically learn the mutation or combination of mutations that most effectively increase the fitness of the populations, causing a significant increase in the algorithm's accuracy and efficiency. The algorithm's accuracy and efficiency is tested against a standard parallel genetic program with a variety of one-dimensional test cases. Subsequently, the PMLGP is utilized to obtain an accurate empirical valence bond model for proton transfer in 3-hydroxy-gamma-pyrone in gas phase and protic solvent. © 2011 American Institute of Physics

  11. Volcanic-plutonic connections and metal fertility of highly evolved magma systems: A case study from the Herberton Sn-W-Mo Mineral Field, Queensland, Australia

    Science.gov (United States)

    Cheng, Yanbo; Spandler, Carl; Chang, Zhaoshan; Clarke, Gavin

    2018-03-01

    Understanding the connection between the highly evolved intrusive and extrusive systems is essential to explore the evolution of high silicic magma systems, which plays an important role in discussions of planetary differentiation, the growth of continents, crustal evolution, and the formation of highly evolved magma associated Sn-W-Mo mineral systems. To discern differences between "fertile" and "non-fertile" igneous rocks associated with Sn-W-Mo mineralization and reveal the genetic links between coeval intrusive and extrusive rocks, we integrate whole rock geochemistry, geochronology and Hf isotope signatures of igneous zircons from contemporaneous plutonic and volcanic rocks from the world-class Herberton Mineral Field of Queensland, Australia. The 310-300 Ma intrusive rocks and associated intra-plutonic W-Mo mineralization formed from relatively oxidized magmas after moderate degrees of crystal fractionation. The geochemical and isotopic features of the coeval volcanic succession are best reconciled utilizing the widely-accepted volcanic-plutonic connection model, whereby the volcanic rocks represent fractionated derivatives of the intrusive rocks. Older intrusions emplaced at 335-315 Ma formed from relatively low fO2 magmas that fractionated extensively to produce highly evolved granites that host Sn mineralization. Coeval volcanic rocks of this suite are compositionally less evolved than the intrusive rocks, thereby requiring a different model to link these plutonic-volcanic sequences. In this case, we propose that the most fractionated magmas were not lost to volcanism, but instead were effectively retained at the plutonic level, which allowed further localized build-up of volatiles and lithophile metals in the plutonic environment. This disconnection to the volcanism and degassing may be a crucial step for forming granite-hosted Sn mineralization. The transition between these two igneous regimes in Herberton region over a ∼30 m.y. period is attributed to

  12. Relationship of changing social atmosphere, lifestyle and bone mineral density in college students

    International Nuclear Information System (INIS)

    Lee, In Ja; Ko, Yo Han; Kim, Chung Kyung; Kim, Hee Sol; Park, Da Jeong; Yoon, Hyeo Min; Jeong, Yu Jin

    2013-01-01

    The decrease of bone mineral density gives rise to the outbreak of osteopenia and makes the possibility of a bone fracture. It makes health problems in society. It's very important to prevent osteopenia in advance. Also it's critical to prevent and take care of it in adolescent because it's the most developing period comparing to middle ages because that bone mineral density decreases. There are genetic, physical and environmental factors that affect bone mineral density. Recently, a lifestyle and eating habits are also changing as the society atmosphere is gradually doing. This study have shown that 134 women and 75 men was chosen and responded to the survey of measuring bone mineral density and investigating a lifestyle. The measure of bone mineral density is to use Dual energy X-ray absorptiometry(DEXA) and check femoral neck and lumbar spine. Also questionaries was required to pre-made survey about their lifestyles. Analysis of data was done with SPSS program. Multiple regression analysis was used for the relation of bone mineral density, the heigths and BMI. The sample of Groups are checked for drinking, smoking or excercising about differences by t-test. The results of the experiments were; first, there is statistically significant differences in the comparisons between BMD and BMD. But there isn't any special correlation between drinking, smoking and BMD. Secondly, bone mineral density becomes low related to an intake of caffeine. Particularly, this is statically significant on women. Also there is statically significant correlation between femoral neck and quantity of motion for both men and women. Third, there is significant relation between eating habits and bone mineral density on women's lumbar spine. However, there is no significant relation between men's lumbar spine and women's one. Therefore, to prevent osteopenia, it's good to abstain from intaking caffeine within an hour after a meal. In addition, it

  13. Relationship of changing social atmosphere, lifestyle and bone mineral density in college students

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Ja; Ko, Yo Han; Kim, Chung Kyung; Kim, Hee Sol; Park, Da Jeong; Yoon, Hyeo Min; Jeong, Yu Jin [Dept. of Radiological Technology, Dongnam Health college, Suwon (Korea, Republic of)

    2013-12-15

    The decrease of bone mineral density gives rise to the outbreak of osteopenia and makes the possibility of a bone fracture. It makes health problems in society. It's very important to prevent osteopenia in advance. Also it's critical to prevent and take care of it in adolescent because it's the most developing period comparing to middle ages because that bone mineral density decreases. There are genetic, physical and environmental factors that affect bone mineral density. Recently, a lifestyle and eating habits are also changing as the society atmosphere is gradually doing. This study have shown that 134 women and 75 men was chosen and responded to the survey of measuring bone mineral density and investigating a lifestyle. The measure of bone mineral density is to use Dual energy X-ray absorptiometry(DEXA) and check femoral neck and lumbar spine. Also questionaries was required to pre-made survey about their lifestyles. Analysis of data was done with SPSS program. Multiple regression analysis was used for the relation of bone mineral density, the heigths and BMI. The sample of Groups are checked for drinking, smoking or excercising about differences by t-test. The results of the experiments were; first, there is statistically significant differences in the comparisons between BMD and BMD. But there isn't any special correlation between drinking, smoking and BMD. Secondly, bone mineral density becomes low related to an intake of caffeine. Particularly, this is statically significant on women. Also there is statically significant correlation between femoral neck and quantity of motion for both men and women. Third, there is significant relation between eating habits and bone mineral density on women's lumbar spine. However, there is no significant relation between men's lumbar spine and women's one. Therefore, to prevent osteopenia, it's good to abstain from intaking caffeine within an hour after a meal. In addition, it

  14. Nanostructured Mineral Coatings Stabilize Proteins for Therapeutic Delivery.

    Science.gov (United States)

    Yu, Xiaohua; Biedrzycki, Adam H; Khalil, Andrew S; Hess, Dalton; Umhoefer, Jennifer M; Markel, Mark D; Murphy, William L

    2017-09-01

    Proteins tend to lose their biological activity due to their fragile structural conformation during formulation, storage, and delivery. Thus, the inability to stabilize proteins in controlled-release systems represents a major obstacle in drug delivery. Here, a bone mineral inspired protein stabilization strategy is presented, which uses nanostructured mineral coatings on medical devices. Proteins bound within the nanostructured coatings demonstrate enhanced stability against extreme external stressors, including organic solvents, proteases, and ethylene oxide gas sterilization. The protein stabilization effect is attributed to the maintenance of protein conformational structure, which is closely related to the nanoscale feature sizes of the mineral coatings. Basic fibroblast growth factor (bFGF) released from a nanostructured mineral coating maintains its biological activity for weeks during release, while it maintains activity for less than 7 d during release from commonly used polymeric microspheres. Delivery of the growth factors bFGF and vascular endothelial growth factor using a mineral coated surgical suture significantly improves functional Achilles tendon healing in a rabbit model, resulting in increased vascularization, more mature collagen fiber organization, and a two fold improvement in mechanical properties. The findings of this study demonstrate that biomimetic interactions between proteins and nanostructured minerals provide a new, broadly applicable mechanism to stabilize proteins in the context of drug delivery and regenerative medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Experimental Investigation and Simplistic Geochemical Modeling of CO2 Mineral Carbonation Using the Mount Tawai Peridotite

    Directory of Open Access Journals (Sweden)

    Omeid Rahmani

    2016-03-01

    Full Text Available In this work, the potential of CO2 mineral carbonation of brucite (Mg(OH2 derived from the Mount Tawai peridotite (forsterite based (Mg2SiO4 to produce thermodynamically stable magnesium carbonate (MgCO3 was evaluated. The effect of three main factors (reaction temperature, particle size, and water vapor were investigated in a sequence of experiments consisting of aqueous acid leaching, evaporation to dryness of the slurry mass, and then gas-solid carbonation under pressurized CO2. The maximum amount of Mg converted to MgCO3 is ~99%, which occurred at temperatures between 150 and 175 °C. It was also found that the reduction of particle size range from >200 to <75 µm enhanced the leaching rate significantly. In addition, the results showed the essential role of water vapor in promoting effective carbonation. By increasing water vapor concentration from 5 to 10 vol %, the mineral carbonation rate increased by 30%. This work has also numerically modeled the process by which CO2 gas may be sequestered, by reaction with forsterite in the presence of moisture. In both experimental analysis and geochemical modeling, the results showed that the reaction is favored and of high yield; going almost to completion (within about one year with the bulk of the carbon partitioning into magnesite and that very little remains in solution.

  16. Parameters Calculation of ZnO Surge Arrester Models by Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    A. Bayadi

    2006-09-01

    Full Text Available This paper proposes to provide a new technique based on the genetic algorithm to obtain the best possible series of values of the parameters of the ZnO surge arresters models. The validity of the predicted parameters is then checked by comparing the results predicted with the experimental results available in the literature. Using the ATP-EMTP package an application of the arrester model on network system studies is presented and discussed.

  17. Comparing ESC and iPSC?Based Models for Human Genetic Disorders

    OpenAIRE

    Halevy, Tomer; Urbach, Achia

    2014-01-01

    Traditionally, human disorders were studied using animal models or somatic cells taken from patients. Such studies enabled the analysis of the molecular mechanisms of numerous disorders, and led to the discovery of new treatments. Yet, these systems are limited or even irrelevant in modeling multiple genetic diseases. The isolation of human embryonic stem cells (ESCs) from diseased blastocysts, the derivation of induced pluripotent stem cells (iPSCs) from patients’ somatic cells, and the ne...

  18. Bioleaching of serpentine group mineral by fungus Talaromyces flavus: application for mineral carbonation

    Science.gov (United States)

    Li, Z.; Lianwen, L.; Zhao, L.; Teng, H.

    2011-12-01

    Many studies of serpentine group mineral dissolution for mineral carbonation have been published in recent years. However, most of them focus mainly on either physical and chemical processes or on bacterial function, rather than fungal involvement in the bioleaching of serpentine group mineral. Due to the excessive costs of the magnesium dissolution process, finding a lower energy consumption method will be meaningful. A fungal strain Talaromyces flavus was isolated from serpentinic rock of Donghai (China). No study of its bioleaching ability is currently available. It is thus of great significance to explore the impact of T. flavus on the dissolution of serpentine group mineral. Serpentine rock-inhabiting fungi belonging to Acremonium, Alternaria, Aspergillus, Botryotinia, Cladosporium, Clavicipitaceae, Cosmospora, Fusarium, Monascus, Paecilomyces, Penicillium, Talaromyces, Trichoderma were isolated. These strains were chosen on the basis of resistance to magnesium and nickel characterized in terms of minimum inhibiting concentration (MIC). Specifically, the strain Talaromyces flavus has a high tolerance to both magnesium (1 mol/L) and nickel (10 mM/L), and we examine its bioleaching ability on serpentine group mineral. Contact and separation experiments (cut-off 8 000-14 000 Da), as well as three control experiments, were set up for 30 days. At least three repeated tests were performed for each individual experiment. The results of our experiments demonstrate that the bioleaching ability of T. flavus towards serpentine group mineral is evident. 39.39 wt% of magnesium was extracted from lizardite during the bioleaching period in the contact experiment, which showed a dissolution rate at about a constant 0.126 mM/d before reaching equilibrium in 13 days. The amount of solubilized Mg from chrysotile and antigorite were respectively 37.79 wt% and 29.78 wt% in the contact experiment. These results make clear the influence of mineral structure on mineral bioleaching

  19. Research on prediction of agricultural machinery total power based on grey model optimized by genetic algorithm

    Science.gov (United States)

    Xie, Yan; Li, Mu; Zhou, Jin; Zheng, Chang-zheng

    2009-07-01

    Agricultural machinery total power is an important index to reflex and evaluate the level of agricultural mechanization. It is the power source of agricultural production, and is the main factors to enhance the comprehensive agricultural production capacity expand production scale and increase the income of the farmers. Its demand is affected by natural, economic, technological and social and other "grey" factors. Therefore, grey system theory can be used to analyze the development of agricultural machinery total power. A method based on genetic algorithm optimizing grey modeling process is introduced in this paper. This method makes full use of the advantages of the grey prediction model and characteristics of genetic algorithm to find global optimization. So the prediction model is more accurate. According to data from a province, the GM (1, 1) model for predicting agricultural machinery total power was given based on the grey system theories and genetic algorithm. The result indicates that the model can be used as agricultural machinery total power an effective tool for prediction.

  20. Effect of soil metal contamination on glyphosate mineralization: role of zinc in the mineralization rates of two copper-spiked mineral soils.

    Science.gov (United States)

    Kim, Bojeong; Kim, Young Sik; Kim, Bo Min; Hay, Anthony G; McBride, Murray B

    2011-03-01

    A systematic investigation into lowered degradation rates of glyphosate in metal-contaminated soils was performed by measuring mineralization of [(14)C]glyphosate to (14)CO(2) in two mineral soils that had been spiked with Cu and/or Zn at various loadings. Cumulative (14)CO(2) release was estimated to be approximately 6% or less of the amount of [(14)C]glyphosate originally added in both soils over an 80-d incubation. For all but the highest Cu treatments (400 mg kg(-1)) in the coarse-textured Arkport soil, mineralization began without a lag phase and declined over time. No inhibition of mineralization was observed for Zn up to 400 mg kg(-1) in either soil, suggesting differential sensitivity of glyphosate mineralization to the types of metal and soil. Interestingly, Zn appeared to alleviate high-Cu inhibition of mineralization in the Arkport soil. The protective role of Zn against Cu toxicity was also observed in the pure culture study with Pseudomonas aeruginosa, suggesting that increased mineralization rates in high Cu soil with Zn additions might have been due to alleviation of cellular toxicity by Zn rather than a mineralization specific mechanism. Extensive use of glyphosate combined with its reduced degradation in Cu-contaminated, coarse-textured soils may increase glyphosate persistence in soil and consequently facilitate Cu and glyphosate mobilization in the soil environment. Copyright © 2010 SETAC.

  1. Laboratory of minerals purification

    International Nuclear Information System (INIS)

    2002-01-01

    The laboratory of minerals purification was organized in 1962 where with application of modern physical and chemical methods were investigated the mechanism of flotation reagents interaction with minerals' surface, was elaborated technologies on rising complexity of using of republic's minerals

  2. MitoMiner: a data warehouse for mitochondrial proteomics data.

    Science.gov (United States)

    Smith, Anthony C; Blackshaw, James A; Robinson, Alan J

    2012-01-01

    MitoMiner (http://mitominer.mrc-mbu.cam.ac.uk/) is a data warehouse for the storage and analysis of mitochondrial proteomics data gathered from publications of mass spectrometry and green fluorescent protein tagging studies. In MitoMiner, these data are integrated with data from UniProt, Gene Ontology, Online Mendelian Inheritance in Man, HomoloGene, Kyoto Encyclopaedia of Genes and Genomes and PubMed. The latest release of MitoMiner stores proteomics data sets from 46 studies covering 11 different species from eumetazoa, viridiplantae, fungi and protista. MitoMiner is implemented by using the open source InterMine data warehouse system, which provides a user interface allowing users to upload data for analysis, personal accounts to store queries and results and enables queries of any data in the data model. MitoMiner also provides lists of proteins for use in analyses, including the new MitoMiner mitochondrial proteome reference sets that specify proteins with substantial experimental evidence for mitochondrial localization. As further mitochondrial proteomics data sets from normal and diseased tissue are published, MitoMiner can be used to characterize the variability of the mitochondrial proteome between tissues and investigate how changes in the proteome may contribute to mitochondrial dysfunction and mitochondrial-associated diseases such as cancer, neurodegenerative diseases, obesity, diabetes, heart failure and the ageing process.

  3. Mineral Commodity Summaries 2009

    Science.gov (United States)

    ,

    2009-01-01

    Each chapter of the 2009 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2008 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses. For mineral commodities for which there is a Government stockpile, detailed information concerning the stockpile status is included in the two-page synopsis. Because specific information concerning committed inventory was no longer available from the Defense Logistics Agency, National Defense Stockpile Center, that information, which was included in earlier Mineral Commodity Summaries publications, has been deleted from Mineral Commodity Summaries 2009. National reserves and reserve base information for most mineral commodities found in this report, including those for the United States, are derived from a variety of sources. The ideal source of such information would be comprehensive evaluations that apply the same criteria to deposits in different geographic areas and report the results by country. In the absence of such evaluations, national reserves and reserve base estimates compiled by countries for selected mineral commodities are a primary source of national reserves and reserve base information. Lacking national assessment information by governments, sources such as academic articles, company reports, common business practice, presentations by company representatives, and trade journal articles, or a combination of these, serve as the basis for national reserves and reserve base information reported in the mineral commodity sections of this publication. A national estimate may be assembled from the following: historically reported

  4. Aggregate and Mineral Resources - Minerals

    Data.gov (United States)

    NSGIC State | GIS Inventory — This point occurrence data set represents the current mineral and selected energy resources of Utah. The data set coordinates were derived from USGS topographic maps...

  5. Construction Minerals Operations

    Data.gov (United States)

    Department of Homeland Security — This map layer includes construction minerals operations in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  6. Agricultural Minerals Operations

    Data.gov (United States)

    Department of Homeland Security — This map layer includes agricultural minerals operations in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  7. Poisson versus threshold models for genetic analysis of clinical mastitis in US Holsteins.

    Science.gov (United States)

    Vazquez, A I; Weigel, K A; Gianola, D; Bates, D M; Perez-Cabal, M A; Rosa, G J M; Chang, Y M

    2009-10-01

    Typically, clinical mastitis is coded as the presence or absence of disease in a given lactation, and records are analyzed with either linear models or binary threshold models. Because the presence of mastitis may include cows with multiple episodes, there is a loss of information when counts are treated as binary responses. Poisson models are appropriated for random variables measured as the number of events, and although these models are used extensively in studying the epidemiology of mastitis, they have rarely been used for studying the genetic aspects of mastitis. Ordinal threshold models are pertinent for ordered categorical responses; although one can hypothesize that the number of clinical mastitis episodes per animal reflects a continuous underlying increase in mastitis susceptibility, these models have rarely been used in genetic analysis of mastitis. The objective of this study was to compare probit, Poisson, and ordinal threshold models for the genetic evaluation of US Holstein sires for clinical mastitis. Mastitis was measured as a binary trait or as the number of mastitis cases. Data from 44,908 first-parity cows recorded in on-farm herd management software were gathered, edited, and processed for the present study. The cows were daughters of 1,861 sires, distributed over 94 herds. Predictive ability was assessed via a 5-fold cross-validation using 2 loss functions: mean squared error of prediction (MSEP) as the end point and a cost difference function. The heritability estimates were 0.061 for mastitis measured as a binary trait in the probit model and 0.085 and 0.132 for the number of mastitis cases in the ordinal threshold and Poisson models, respectively; because of scale differences, only the probit and ordinal threshold models are directly comparable. Among healthy animals, MSEP was smallest for the probit model, and the cost function was smallest for the ordinal threshold model. Among diseased animals, MSEP and the cost function were smallest

  8. Relationships between soil and leaf mineral composition are element-specific, environment-dependent and geographically structured in the emerging model Arabidopsis halleri.

    Science.gov (United States)

    Stein, Ricardo J; Höreth, Stephan; de Melo, J Romário F; Syllwasschy, Lara; Lee, Gwonjin; Garbin, Mário L; Clemens, Stephan; Krämer, Ute

    2017-02-01

    Leaf mineral composition, the leaf ionome, reflects the complex interaction between a plant and its environment including local soil composition, an influential factor that can limit species distribution and plant productivity. Here we addressed within-species variation in plant-soil interactions and edaphic adaptation using Arabidopsis halleri, a well-suited model species as a facultative metallophyte and metal hyperaccumulator. We conducted multi-element analysis of 1972 paired leaf and soil samples from 165 European populations of A. halleri, at individual resolution to accommodate soil heterogeneity. Results were further confirmed under standardized conditions upon cultivation of 105 field-collected genotypes on an artificially metal-contaminated soil in growth chamber experiments. Soil-independent between- and within-population variation set apart leaf accumulation of zinc, cadmium and lead from all other nutrient and nonessential elements, concurring with differential hypothesized ecological roles in either biotic interaction or nutrition. For these metals, soil-leaf relationships were element-specific, differed between metalliferous and nonmetalliferous soils and were geographically structured both in the field and under standardized growth conditions, implicating complex scenarios of recent ecological adaptation. Our study provides an example and a reference for future related work and will serve as a basis for the molecular-genetic dissection and ecological analysis of the observed phenotypic variation. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. Heterocoagulation of chalcopyrite and pyrite minerals in flotation separation.

    Science.gov (United States)

    Mitchell, Timothy K; Nguyen, Anh V; Evans, Geoffrey M

    2005-06-30

    Heterocoagulation between various fine mineral particles contained within a mineral suspension with different structural and surface chemistry can interfere with the ability of the flotation processes to selectively separate the minerals involved. This paper examines the interactions between chalcopyrite (a copper mineral) and pyrite (an iron mineral often bearing gold) as they approach each other in suspensions with added chemicals, and relates the results to the experimental data for the flotation recovery and selectivity. The heterocoagulation was experimentally studied using the electrophoretic light scattering (ELS) technique and was modelled by incorporating colloidal forces, including the van der Waals, electrostatic double layer and hydrophobic forces. The ELS results indicated that pyrite has a positive zeta potential (zeta) up to its isoelectric point (IEP) at approximately pH 2.2, while chalcopyrite has a positive zeta up to its IEP at approximately pH 5.5. This produces heterocoagulation of chalcopyrite with pyrite between pH 2.2 and pH 5.5. The heterocoagulation was confirmed by the ELS spectra measured with a ZetaPlus instrument from Brookhaven and by small-scale flotation experiments.

  10. Lineament analysis of mineral areas of interest in Afghanistan

    Science.gov (United States)

    Hubbard, Bernard E.; Mack, Thomas J.; Thompson, Allyson L.

    2012-01-01

    During a preliminary mineral resource assessment of Afghanistan (Peters and others, 2007), 24 mineralized areas of interest (AOIs) were highlighted as the focus for future economic development throughout various parts of the country. In addition to located mineral resources of value, development of a viable mining industry in Afghanistan will require the location of suitable groundwater resources for drinking, processing of mineral ores for use or for export, and for agriculture and food production in areas surrounding and supporting future mining enterprises. This report and accompanying GIS datasets describe the results of both automated and manual mapping of lineaments throughout the 24 mineral occurrence AOIs described in detail by Peters and others (2007; 2011). For this study, we define lineaments as "mappable linear or curvilinear features of a surface whose parts align in a straight or slightly curving relationship that may be the expression of a fault or other linear zones of weakness" as derived from remote sensing sources such as optical imagery, radar imagery or digital elevation models (DEMs) (Sabins, 2007).

  11. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter.

    Science.gov (United States)

    Huang, Wenjuan; Hall, Steven J

    2017-11-24

    Moisture response functions for soil microbial carbon (C) mineralization remain a critical uncertainty for predicting ecosystem-climate feedbacks. Theory and models posit that C mineralization declines under elevated moisture and associated anaerobic conditions, leading to soil C accumulation. Yet, iron (Fe) reduction potentially releases protected C, providing an under-appreciated mechanism for C destabilization under elevated moisture. Here we incubate Mollisols from ecosystems under C 3 /C 4 plant rotations at moisture levels at and above field capacity over 5 months. Increased moisture and anaerobiosis initially suppress soil C mineralization, consistent with theory. However, after 25 days, elevated moisture stimulates cumulative gaseous C-loss as CO 2 and CH 4 to >150% of the control. Stable C isotopes show that mineralization of older C 3 -derived C released following Fe reduction dominates C losses. Counter to theory, elevated moisture may significantly accelerate C losses from mineral soils over weeks to months-a critical mechanistic deficiency of current Earth system models.

  12. An Adaptive Agent-Based Model of Homing Pigeons: A Genetic Algorithm Approach

    Directory of Open Access Journals (Sweden)

    Francis Oloo

    2017-01-01

    Full Text Available Conventionally, agent-based modelling approaches start from a conceptual model capturing the theoretical understanding of the systems of interest. Simulation outcomes are then used “at the end” to validate the conceptual understanding. In today’s data rich era, there are suggestions that models should be data-driven. Data-driven workflows are common in mathematical models. However, their application to agent-based models is still in its infancy. Integration of real-time sensor data into modelling workflows opens up the possibility of comparing simulations against real data during the model run. Calibration and validation procedures thus become automated processes that are iteratively executed during the simulation. We hypothesize that incorporation of real-time sensor data into agent-based models improves the predictive ability of such models. In particular, that such integration results in increasingly well calibrated model parameters and rule sets. In this contribution, we explore this question by implementing a flocking model that evolves in real-time. Specifically, we use genetic algorithms approach to simulate representative parameters to describe flight routes of homing pigeons. The navigation parameters of pigeons are simulated and dynamically evaluated against emulated GPS sensor data streams and optimised based on the fitness of candidate parameters. As a result, the model was able to accurately simulate the relative-turn angles and step-distance of homing pigeons. Further, the optimised parameters could replicate loops, which are common patterns in flight tracks of homing pigeons. Finally, the use of genetic algorithms in this study allowed for a simultaneous data-driven optimization and sensitivity analysis.

  13. A Comparison of Telephone Genetic Counseling and In-Person Genetic Counseling from the Genetic Counselor's Perspective.

    Science.gov (United States)

    Burgess, Kelly R; Carmany, Erin P; Trepanier, Angela M

    2016-02-01

    Growing demand for and limited geographic access to genetic counseling services is increasing the need for alternative service delivery models (SDM) like telephone genetic counseling (TGC). Little research has been done on genetic counselors' perspectives of the practice of TGC. We created an anonymous online survey to assess whether telephone genetic counselors believed the tasks identified in the ABGC (American Board of Genetic Counseling) Practice Analysis were performed similarly or differently in TGC compared to in person genetic counseling (IPGC). If there were differences noted, we sought to determine the nature of the differences and if additional training might be needed to address them. Eighty eight genetic counselors with experience in TGC completed some or all of the survey. Respondents identified differences in 13 (14.8%) of the 88 tasks studied. The tasks identified as most different in TGC were: "establishing rapport through verbal and nonverbal interactions" (60.2%; 50/83 respondents identified the task as different), "recognizing factors affecting the counseling interaction" (47.8%; 32/67), "assessing client/family emotions, support, etc." (40.1%; 27/66) and "educating clients about basic genetic concepts" (35.6%; 26/73). A slight majority (53.8%; 35/65) felt additional training was needed to communicate information without visual aids and more effectively perform psychosocial assessments. In summary, although a majority of genetic counseling tasks are performed similarly between TGC and IPGC, TGC counselors recognize that specific training in the TGC model may be needed to address the key differences.

  14. Mineral commodity summaries 2015

    Science.gov (United States)

    ,

    2015-01-01

    Each chapter of the 2015 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2014 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses.

  15. Isotope analysis of closely adjacent minerals

    International Nuclear Information System (INIS)

    Smith, M.P.

    1990-01-01

    This patent describes a method of determining an indicator of at least one of hydrocarbon formation, migration, and accumulation during mineral development. It comprises: searching for a class of minerals in a mineral specimen comprising more than one class of minerals; identifying in the mineral specimen a target sample of the thus searched for class; directing thermally pyrolyzing laser beam radiation onto surface mineral substance of the target sample in the mineral specimen releasing surface mineral substance pyrolysate gases therefrom; and determining isotope composition essentially of the surface mineral substance from analyzing the pyrolysate gases released from the thus pyrolyzed target sample, the isotope composition including isotope(s) selected from the group consisting of carbon, hydrogen, and oxygen isotopes; determining an indicator of at least one of hydrocarbon formation, migration, and accumulation during mineral development of the target mineral from thus determined isotope composition of surface mineral substance pyrolysate

  16. Influence of tropical leaf litter on nitrogen mineralization and community structure of ammonia-oxidizing bacteria

    Directory of Open Access Journals (Sweden)

    Diallo, MD.

    2015-01-01

    Full Text Available Description of the subject. The present study concerns the relationships among leaf litter decomposition, substrate quality, ammonia-oxidizing bacteria (AOB community composition and nitrogen (N availability. Decomposition of organic matter affects the biogeochemical cycling of carbon (C and N. Since the composition of the soil microbial community can alter the physiological capacity of the community, it is timely to study the litter quality effect on N dynamic in ecosystems. Objectives. The aim of this study was to determine the influence of leaf litter decomposition on N mineralization. The specific objectives of this study were to evaluate the influence of the litter biochemistry of five plants species (Faidherbia albida A.Chev., Azadirachta indica A.Juss., Casuarina equisetifolia L., Andropogon gayanus Kunth and Eragrostis tremula Hochst. ex Steud. on N mineralization in a tropical ferrous soil (Lixisol, nitrification, and genetic diversity of ammonia-oxidizing bacteria. Denaturing gradient gel electrophoresis (DGGE of amplified fragments of genes coding for 16S rRNA was used to study the development of bacterial communities during decomposition of leaf litter in soils. Method. Community structure of AOB was determined at two time periods: day 0 and day 140. Ten strains were tested and each of these strains produced a single band. Thus, DGGE DNA band patterns were used to estimate bacterial diversity. Plant secondary compounds such as polyphenols are purported to influence nutrient cycling by affecting organic matter degradation, mineralization rates, N availability and humus formation. In a laboratory study, we investigated the influence of six phenolic acids (ferulic, gallic, vanillic, syringic, p-coumaric and p-HBA acids commonly found in the plant residues on N mineralization and NH4+ and NO3- production in soils. Results. The results showed that litter type did affect soil nitrification. Faidherbia albida litter was associated with

  17. Rock and mineral magnetism

    CERN Document Server

    O’Reilly, W

    1984-01-01

    The past two decades have witnessed a revolution in the earth sciences. The quantitative, instrument-based measurements and physical models of. geophysics, together with advances in technology, have radically transformed the way in which the Earth, and especially its crust, is described. The study of the magnetism of the rocks of the Earth's crust has played a major part in this transformation. Rocks, or more specifically their constituent magnetic minerals, can be regarded as a measuring instrument provided by nature, which can be employed in the service of the earth sciences. Thus magnetic minerals are a recording magnetometer; a goniometer or protractor, recording the directions of flows, fields and forces; a clock; a recording thermometer; a position recorder; astrain gauge; an instrument for geo­ logical surveying; a tracer in climatology and hydrology; a tool in petrology. No instrument is linear, or free from noise and systematic errors, and the performance of nature's instrument must be assessed and ...

  18. Genetic coding and united-hypercomplex systems in the models of algebraic biology.

    Science.gov (United States)

    Petoukhov, Sergey V

    2017-08-01

    Structured alphabets of DNA and RNA in their matrix form of representations are connected with Walsh functions and a new type of systems of multidimensional numbers. This type generalizes systems of complex numbers and hypercomplex numbers, which serve as the basis of mathematical natural sciences and many technologies. The new systems of multi-dimensional numbers have interesting mathematical properties and are called in a general case as "systems of united-hypercomplex numbers" (or briefly "U-hypercomplex numbers"). They can be widely used in models of multi-parametrical systems in the field of algebraic biology, artificial life, devices of biological inspired artificial intelligence, etc. In particular, an application of U-hypercomplex numbers reveals hidden properties of genetic alphabets under cyclic permutations in their doublets and triplets. A special attention is devoted to the author's hypothesis about a multi-linguistic in DNA-sequences in a relation with an ensemble of U-numerical sub-alphabets. Genetic multi-linguistic is considered as an important factor to provide noise-immunity properties of the multi-channel genetic coding. Our results attest to the conformity of the algebraic properties of the U-numerical systems with phenomenological properties of the DNA-alphabets and with the complementary device of the double DNA-helix. It seems that in the modeling field of algebraic biology the genetic-informational organization of living bodies can be considered as a set of united-hypercomplex numbers in some association with the famous slogan of Pythagoras "the numbers rule the world". Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Interaction between the Bacterium Pseudomonas fluorescens strain CHA0, its genetic derivatives and vermiculite: Effects on chemical, mineralogical and mechanical properties of vermiculite

    Science.gov (United States)

    Mueller, Barbara

    2016-04-01

    Using bacteria of the strain Pseudomonas fluorescens wild type CHA0 and its genetic derivative strains CHA77, CHA89, CHA400, CHA631 and CHA661 (which differ in one gene only) the changes in chemical, mineralogical and rheological properties of the clay mineral vermiculite affected by microbial activity were studied in order to test whether the individually different production of metabolites by the genetically engineered strains may alter the clay mineral vermiculite in distinct ways. With the novel strategy of working with living wild type bacteria, their genetic derivatives and clay, the following properties of the mineral altered by the various strains of Pseudomonas fluorescens were determined: grain size, X-Ray diffraction pattern, intercrystalline swelling with glycerol, layer charge, CEC, BET surface and uptake of trace elements. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to determine the changes in major, minor and trace elements of the clay vermiculite affected by microbial activity. Among all analyzed trace elements, Fe, Mn and Cu are the most interesting. Fe and Mn are taken up from the clay mineral by all bacterial strains whereas Cu is only removed from vermiculite by strains CHA0, CHA77, CHA400 and CHA661. The latter mentioned strains all produce the antibiotics 2,4-diacetylphloroglucinol and monoacetylphloroglucinol which can complex Cu efficiently. Therefore the alteration of only one gene of the bacteria is causing significant effects on the clay mineral.

  20. Deficits in fine motor skills in a genetic animal model of ADHD

    Directory of Open Access Journals (Sweden)

    Qian Yu

    2010-09-01

    Full Text Available Abstract Background In an attempt to model some behavioral aspects of Attention Deficit/Hyperactivity Disorder (ADHD, we examined whether an existing genetic animal model of ADHD is valid for investigating not only locomotor hyperactivity, but also more complex motor coordination problems displayed by the majority of children with ADHD. Methods We subjected young adolescent Spontaneously Hypertensive Rats (SHRs, the most commonly used genetic animal model of ADHD, to a battery of tests for motor activity, gross motor coordination, and skilled reaching. Wistar (WIS rats were used as controls. Results Similar to children with ADHD, young adolescent SHRs displayed locomotor hyperactivity in a familiar, but not in a novel environment. They also had lower performance scores in a complex skilled reaching task when compared to WIS rats, especially in the most sensitive measure of skilled performance (i.e., single attempt success. In contrast, their gross motor performance on a Rota-Rod test was similar to that of WIS rats. Conclusion The results support the notion that the SHR strain is a useful animal model system to investigate potential molecular mechanisms underlying fine motor skill problems in children with ADHD.