WorldWideScience

Sample records for genetic algorithms

  1. Genetic algorithms

    Science.gov (United States)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  2. Software For Genetic Algorithms

    Science.gov (United States)

    Wang, Lui; Bayer, Steve E.

    1992-01-01

    SPLICER computer program is genetic-algorithm software tool used to solve search and optimization problems. Provides underlying framework and structure for building genetic-algorithm application program. Written in Think C.

  3. Genetic Algorithms and Local Search

    Science.gov (United States)

    Whitley, Darrell

    1996-01-01

    The first part of this presentation is a tutorial level introduction to the principles of genetic search and models of simple genetic algorithms. The second half covers the combination of genetic algorithms with local search methods to produce hybrid genetic algorithms. Hybrid algorithms can be modeled within the existing theoretical framework developed for simple genetic algorithms. An application of a hybrid to geometric model matching is given. The hybrid algorithm yields results that improve on the current state-of-the-art for this problem.

  4. Fluid Genetic Algorithm (FGA

    Directory of Open Access Journals (Sweden)

    Ruholla Jafari-Marandi

    2017-04-01

    Full Text Available Genetic Algorithm (GA has been one of the most popular methods for many challenging optimization problems when exact approaches are too computationally expensive. A review of the literature shows extensive research attempting to adapt and develop the standard GA. Nevertheless, the essence of GA which consists of concepts such as chromosomes, individuals, crossover, mutation, and others rarely has been the focus of recent researchers. In this paper method, Fluid Genetic Algorithm (FGA, some of these concepts are changed, removed, and furthermore, new concepts are introduced. The performance of GA and FGA are compared through seven benchmark functions. FGA not only shows a better success rate and better convergence control, but it can be applied to a wider range of problems including multi-objective and multi-level problems. Also, the application of FGA for a real engineering problem, Quadric Assignment Problem (AQP, is shown and experienced.

  5. Foundations of genetic algorithms 1991

    CERN Document Server

    1991-01-01

    Foundations of Genetic Algorithms 1991 (FOGA 1) discusses the theoretical foundations of genetic algorithms (GA) and classifier systems.This book compiles research papers on selection and convergence, coding and representation, problem hardness, deception, classifier system design, variation and recombination, parallelization, and population divergence. Other topics include the non-uniform Walsh-schema transform; spurious correlations and premature convergence in genetic algorithms; and variable default hierarchy separation in a classifier system. The grammar-based genetic algorithm; condition

  6. Genetic algorithm essentials

    CERN Document Server

    Kramer, Oliver

    2017-01-01

    This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.

  7. Genetic Programming and Genetic Algorithms for Propositions

    Directory of Open Access Journals (Sweden)

    Nabil M. HEWAHI

    2012-01-01

    Full Text Available In this paper we propose a mechanism to discover the compound proposition solutions for a given truth table without knowing the compound propositions that lead to the truth table results. The approach is based on two proposed algorithms, the first is called Producing Formula (PF algorithm which is based on the genetic programming idea, to find out the compound proposition solutions for the given truth table. The second algorithm is called the Solutions Optimization (SO algorithm which is based on genetic algorithms idea, to find a list of the optimum compound propositions that can solve the truth table. The obtained list will depend on the solutions obtained from the PF algorithm. Various types of genetic operators have been introduced to obtain the solutions either within the PF algorithm or SO algorithm.

  8. A genetic engineering approach to genetic algorithms.

    Science.gov (United States)

    Gero, J S; Kazakov, V

    2001-01-01

    We present an extension to the standard genetic algorithm (GA), which is based on concepts of genetic engineering. The motivation is to discover useful and harmful genetic materials and then execute an evolutionary process in such a way that the population becomes increasingly composed of useful genetic material and increasingly free of the harmful genetic material. Compared to the standard GA, it provides some computational advantages as well as a tool for automatic generation of hierarchical genetic representations specifically tailored to suit certain classes of problems.

  9. Genetic algorithm optimization of entanglement

    CERN Document Server

    Navarro-Munoz, J C; Rosu, H C; Navarro-Munoz, Jorge C.

    2006-01-01

    We present an application of a genetic algorithmic computational method to the optimization of the concurrence measure of entanglement for the cases of one dimensional chains, as well as square and triangular lattices in a simple tight-binding approach

  10. Voice Matching Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Abhishek Bal

    2014-03-01

    Full Text Available In this paper, the use of Genetic Algorithm (GA for voice recognition is described. The practical application of Genetic Algorithm (GA to the solution of engineering problem is a rapidly emerging approach in the field of control engineering and signal processing. Genetic algorithms are useful for searching a space in multi-directional way from large spaces and poorly defined space. Voice is a signal of infinite information. Digital processing of voice signal is very important for automatic voice recognition technology. Nowadays, voice processing is very much important in security mechanism due to mimicry characteristic. So studying the voice feature extraction in voice processing is very necessary in military, hospital, telephone system, investigation bureau and etc. In order to extract valuable information from the voice signal, make decisions on the process, and obtain results, the data needs to be manipulated and analyzed. In this paper, if the instant voice is not matched with same person’s reference voices in the database, then Genetic Algorithm (GA is applied between two randomly chosen reference voices. Again the instant voice is compared with the result of Genetic Algorithm (GA which is used, including its three main steps: selection, crossover and mutation. We illustrate our approach with different sample of voices from human in our institution.

  11. Simultaneous stabilization using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Benson, R.W.; Schmitendorf, W.E. (California Univ., Irvine, CA (USA). Dept. of Mechanical Engineering)

    1991-01-01

    This paper considers the problem of simultaneously stabilizing a set of plants using full state feedback. The problem is converted to a simple optimization problem which is solved by a genetic algorithm. Several examples demonstrate the utility of this method. 14 refs., 8 figs.

  12. Function Optimization Based on Quantum Genetic Algorithm

    OpenAIRE

    Ying Sun; Hegen Xiong

    2014-01-01

    Optimization method is important in engineering design and application. Quantum genetic algorithm has the characteristics of good population diversity, rapid convergence and good global search capability and so on. It combines quantum algorithm with genetic algorithm. A novel quantum genetic algorithm is proposed, which is called Variable-boundary-coded Quantum Genetic Algorithm (vbQGA) in which qubit chromosomes are collapsed into variable-boundary-coded chromosomes instead of binary-coded c...

  13. Function Optimization Based on Quantum Genetic Algorithm

    OpenAIRE

    Ying Sun; Yuesheng Gu; Hegen Xiong

    2013-01-01

    Quantum genetic algorithm has the characteristics of good population diversity, rapid convergence and good global search capability and so on.It combines quantum algorithm with genetic algorithm. A novel quantum genetic algorithm is proposed ,which is called variable-boundary-coded quantum genetic algorithm (vbQGA) in which qubit chromosomes are collapsed into variableboundary- coded chromosomes instead of binary-coded chromosomes. Therefore much shorter chromosome strings can be gained.The m...

  14. Genetic algorithms for protein threading.

    Science.gov (United States)

    Yadgari, J; Amir, A; Unger, R

    1998-01-01

    Despite many years of efforts, a direct prediction of protein structure from sequence is still not possible. As a result, in the last few years researchers have started to address the "inverse folding problem": Identifying and aligning a sequence to the fold with which it is most compatible, a process known as "threading". In two meetings in which protein folding predictions were objectively evaluated, it became clear that threading as a concept promises a real breakthrough, but that much improvement is still needed in the technique itself. Threading is a NP-hard problem, and thus no general polynomial solution can be expected. Still a practical approach with demonstrated ability to find optimal solutions in many cases, and acceptable solutions in other cases, is needed. We applied the technique of Genetic Algorithms in order to significantly improve the ability of threading algorithms to find the optimal alignment of a sequence to a structure, i.e. the alignment with the minimum free energy. A major progress reported here is the design of a representation of the threading alignment as a string of fixed length. With this representation validation of alignments and genetic operators are effectively implemented. Appropriate data structure and parameters have been selected. It is shown that Genetic Algorithm threading is effective and is able to find the optimal alignment in a few test cases. Furthermore, the described algorithm is shown to perform well even without pre-definition of core elements. Existing threading methods are dependent on such constraints to make their calculations feasible. But the concept of core elements is inherently arbitrary and should be avoided if possible. While a rigorous proof is hard to submit yet an, we present indications that indeed Genetic Algorithm threading is capable of finding consistently good solutions of full alignments in search spaces of size up to 10(70).

  15. Results of Evolution Supervised by Genetic Algorithms

    CERN Document Server

    Jäntschi, Lorentz; Bălan, Mugur C; Sestraş, Radu E

    2010-01-01

    A series of results of evolution supervised by genetic algorithms with interest to agricultural and horticultural fields are reviewed. New obtained original results from the use of genetic algorithms on structure-activity relationships are reported.

  16. Nurse Rostering with Genetic Algorithms

    CERN Document Server

    Aickelin, Uwe

    2010-01-01

    In recent years genetic algorithms have emerged as a useful tool for the heuristic solution of complex discrete optimisation problems. In particular there has been considerable interest in their use in tackling problems arising in the areas of scheduling and timetabling. However, the classical genetic algorithm paradigm is not well equipped to handle constraints and successful implementations usually require some sort of modification to enable the search to exploit problem specific knowledge in order to overcome this shortcoming. This paper is concerned with the development of a family of genetic algorithms for the solution of a nurse rostering problem at a major UK hospital. The hospital is made up of wards of up to 30 nurses. Each ward has its own group of nurses whose shifts have to be scheduled on a weekly basis. In addition to fulfilling the minimum demand for staff over three daily shifts, nurses' wishes and qualifications have to be taken into account. The schedules must also be seen to be fair, in tha...

  17. Genetic Algorithm for Optimization: Preprocessor and Algorithm

    Science.gov (United States)

    Sen, S. K.; Shaykhian, Gholam A.

    2006-01-01

    Genetic algorithm (GA) inspired by Darwin's theory of evolution and employed to solve optimization problems - unconstrained or constrained - uses an evolutionary process. A GA has several parameters such the population size, search space, crossover and mutation probabilities, and fitness criterion. These parameters are not universally known/determined a priori for all problems. Depending on the problem at hand, these parameters need to be decided such that the resulting GA performs the best. We present here a preprocessor that achieves just that, i.e., it determines, for a specified problem, the foregoing parameters so that the consequent GA is a best for the problem. We stress also the need for such a preprocessor both for quality (error) and for cost (complexity) to produce the solution. The preprocessor includes, as its first step, making use of all the information such as that of nature/character of the function/system, search space, physical/laboratory experimentation (if already done/available), and the physical environment. It also includes the information that can be generated through any means - deterministic/nondeterministic/graphics. Instead of attempting a solution of the problem straightway through a GA without having/using the information/knowledge of the character of the system, we would do consciously a much better job of producing a solution by using the information generated/created in the very first step of the preprocessor. We, therefore, unstintingly advocate the use of a preprocessor to solve a real-world optimization problem including NP-complete ones before using the statistically most appropriate GA. We also include such a GA for unconstrained function optimization problems.

  18. Improved genetic operator for genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    林峰; 杨启文

    2002-01-01

    The mutation operator has been seldom improved because researchers ha rdly suspect its ability to prevent genetic algorithm (GA) from converging prema turely. Due to its i mportance to GA, the authors of this paper study its influence on the diversity of genes in the same locus, and point out that traditional mutation, to some ext ent, can result in premature convergence of genes (PCG) in the same locus. The a bove drawback of the traditional mutation operator causes the loss of critical a lleles. Inspired by digital technique, we introduce two kinds of boolean operati on into GA to develop a novel mutation operator and discuss its contribution to preventing the loss of critical alleles. The experimental results of function op timization show that the improved mutation operator can effectively prevent prem ature convergence, and can provide a wide selection range of control parameters for GA.

  19. Improved genetic operator for genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    林峰; 杨启文

    2002-01-01

    The mutation operator has been seldom improved because ressearchers hardly suspect its ability to prevent genetic algorithm(GA) from converging prematurely.Due to its importance to GA,the authors of this paper study influence on the diversity of genes in the same locus,and point out that traditional mutation,to some extent,can result in premature convergence of genes(PCG) in the same locus.The above drawback of the traditional mutation operator causes the loss of critical alleles.Inspired by digital technique,we introduce two kinds of boolean operation into GA to develop a novel mutation operator and discuss its contribution of preventing the loss of critical alleles.The experimental results of function optimizatioin show that the improved mutation operator can effectively prevent premature convegence,and can provide a wide selection range of control parameters for GA.

  20. Learning Intelligent Genetic Algorithms Using Japanese Nonograms

    Science.gov (United States)

    Tsai, Jinn-Tsong; Chou, Ping-Yi; Fang, Jia-Cen

    2012-01-01

    An intelligent genetic algorithm (IGA) is proposed to solve Japanese nonograms and is used as a method in a university course to learn evolutionary algorithms. The IGA combines the global exploration capabilities of a canonical genetic algorithm (CGA) with effective condensed encoding, improved fitness function, and modified crossover and…

  1. Learning Intelligent Genetic Algorithms Using Japanese Nonograms

    Science.gov (United States)

    Tsai, Jinn-Tsong; Chou, Ping-Yi; Fang, Jia-Cen

    2012-01-01

    An intelligent genetic algorithm (IGA) is proposed to solve Japanese nonograms and is used as a method in a university course to learn evolutionary algorithms. The IGA combines the global exploration capabilities of a canonical genetic algorithm (CGA) with effective condensed encoding, improved fitness function, and modified crossover and…

  2. Filter selection using genetic algorithms

    Science.gov (United States)

    Patel, Devesh

    1996-03-01

    Convolution operators act as matched filters for certain types of variations found in images and have been extensively used in the analysis of images. However, filtering through a bank of N filters generates N filtered images, consequently increasing the amount of data considerably. Moreover, not all these filters have the same discriminatory capabilities for the individual images, thus making the task of any classifier difficult. In this paper, we use genetic algorithms to select a subset of relevant filters. Genetic algorithms represent a class of adaptive search techniques where the processes are similar to natural selection of biological evolution. The steady state model (GENITOR) has been used in this paper. The reduction of filters improves the performance of the classifier (which in this paper is the multi-layer perceptron neural network) and furthermore reduces the computational requirement. In this study we use the Laws filters which were proposed for the analysis of texture images. Our aim is to recognize the different textures on the images using the reduced filter set.

  3. Incremental multiple objective genetic algorithms.

    Science.gov (United States)

    Chen, Qian; Guan, Sheng-Uei

    2004-06-01

    This paper presents a new genetic algorithm approach to multiobjective optimization problems--incremental multiple objective genetic algorithms (IMOGA). Different from conventional MOGA methods, it takes each objective into consideration incrementally. The whole evolution is divided into as many phases as the number of objectives, and one more objective is considered in each phase. Each phase is composed of two stages. First, an independent population is evolved to optimize one specific objective. Second, the better-performing individuals from the single-objecive population evolved in the above stage and the multiobjective population evolved in the last phase are joined together by the operation of integration. The resulting population then becomes an initial multiobjective population, to which a multiobjective evolution based on the incremented objective set is applied. The experiment results show that, in most problems, the performance of IMOGA is better than that of three other MOGAs, NSGA-II, SPEA, and PAES. IMOGA can find more solutions during the same time span, and the quality of solutions is better.

  4. Excursion-Set-Mediated Genetic Algorithm

    Science.gov (United States)

    Noever, David; Baskaran, Subbiah

    1995-01-01

    Excursion-set-mediated genetic algorithm (ESMGA) is embodiment of method of searching for and optimizing computerized mathematical models. Incorporates powerful search and optimization techniques based on concepts analogous to natural selection and laws of genetics. In comparison with other genetic algorithms, this one achieves stronger condition for implicit parallelism. Includes three stages of operations in each cycle, analogous to biological generation.

  5. Excursion-Set-Mediated Genetic Algorithm

    Science.gov (United States)

    Noever, David; Baskaran, Subbiah

    1995-01-01

    Excursion-set-mediated genetic algorithm (ESMGA) is embodiment of method of searching for and optimizing computerized mathematical models. Incorporates powerful search and optimization techniques based on concepts analogous to natural selection and laws of genetics. In comparison with other genetic algorithms, this one achieves stronger condition for implicit parallelism. Includes three stages of operations in each cycle, analogous to biological generation.

  6. Genetic Algorithms: Basic Concept and Applications

    Directory of Open Access Journals (Sweden)

    Ms. Amninder Kaur

    2013-07-01

    Full Text Available Genetic algorithms are a part of evolutionary computing, which is a rapidly growing area of artificial intelligence. Genetic algorithms have been applied to a wide range of practical problems often with valuable results. Genetic algorithms are often viewed as function optimizer, although the range of problems to which genetic algorithms have been applied are quite broad. This paper covers the basic concepts of genetic algorithms and their applications to a variety of fields. It also tries to give a solution to the problem of economic load dispatch using Genetic Algorithms. An attempt has been made to explain when and why GA should be used as an optimization tool. Finally, the paper points to future directions

  7. Genetic algorithms and fuzzy multiobjective optimization

    CERN Document Server

    Sakawa, Masatoshi

    2002-01-01

    Since the introduction of genetic algorithms in the 1970s, an enormous number of articles together with several significant monographs and books have been published on this methodology. As a result, genetic algorithms have made a major contribution to optimization, adaptation, and learning in a wide variety of unexpected fields. Over the years, many excellent books in genetic algorithm optimization have been published; however, they focus mainly on single-objective discrete or other hard optimization problems under certainty. There appears to be no book that is designed to present genetic algorithms for solving not only single-objective but also fuzzy and multiobjective optimization problems in a unified way. Genetic Algorithms And Fuzzy Multiobjective Optimization introduces the latest advances in the field of genetic algorithm optimization for 0-1 programming, integer programming, nonconvex programming, and job-shop scheduling problems under multiobjectiveness and fuzziness. In addition, the book treats a w...

  8. Application of Chaos in Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    YANG Li-Jiang; CHEN Tian-Lun

    2002-01-01

    Through replacing Gaussian mutation operator in real-coded genetic algorithm with a chaotic mapping, wepresent a genetic algorithm with chaotic mutation. To examine this new algorithm, we applied our algorithm to functionoptimization problems and obtained good results. Furthermore the orbital points' distribution of chaotic mapping andthe effects of chaotic mutation with different parameters were studied in order to make the chaotic mutation mechanismbe utilized efficiently.

  9. Biomimetic use of genetic algorithms

    CERN Document Server

    Dessalles, Jean-Louis

    2011-01-01

    Genetic algorithms are considered as an original way to solve problems, probably because of their generality and of their "blind" nature. But GAs are also unusual since the features of many implementations (among all that could be thought of) are principally led by the biological metaphor, while efficiency measurements intervene only afterwards. We propose here to examine the relevance of these biomimetic aspects, by pointing out some fundamental similarities and divergences between GAs and the genome of living beings shaped by natural selection. One of the main differences comes from the fact that GAs rely principally on the so-called implicit parallelism, while giving to the mutation/selection mechanism the second role. Such differences could suggest new ways of employing GAs on complex problems, using complex codings and starting from nearly homogeneous populations.

  10. Nurse Scheduling Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Komgrit Leksakul

    2014-01-01

    Full Text Available This study applied engineering techniques to develop a nurse scheduling model that, while maintaining the highest level of service, simultaneously minimized hospital-staffing costs and equitably distributed overtime pay. In the mathematical model, the objective function was the sum of the overtime payment to all nurses and the standard deviation of the total overtime payment that each nurse received. Input data distributions were analyzed in order to formulate a simulation model to determine the optimal demand for nurses that met the hospital’s service standards. To obtain the optimal nurse schedule with the number of nurses acquired from the simulation model, we proposed a genetic algorithm (GA with two-point crossover and random mutation. After running the algorithm, we compared the expenses and number of nurses between the existing and our proposed nurse schedules. For January 2013, the nurse schedule obtained by GA could save 12% in staffing expenses per month and 13% in number of nurses when compare with the existing schedule, while more equitably distributing overtime pay between all nurses.

  11. Genetic algorithms in seasonal demand forecasting

    OpenAIRE

    Chodak, Grzegorz; Kwaśnicki, Witold

    2000-01-01

    The method of forecasting seasonal demand applying genetic algorithm is presented. Specific form of used demand function is shown in the first section of the article. Next the method of identification of the function parameters using genetic algorithms is discussed. In the final section an example of applying proposed method to forecast real demand process is shown.

  12. Dynamic Route Guidance Using Improved Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Zhanke Yu

    2013-01-01

    Full Text Available This paper presents an improved genetic algorithm (IGA for dynamic route guidance algorithm. The proposed IGA design a vicinity crossover technique and a greedy backward mutation technique to increase the population diversity and strengthen local search ability. The steady-state reproduction is introduced to protect the optimized genetic individuals. Furthermore the junction delay is introduced to the fitness function. The simulation results show the effectiveness of the proposed algorithm.

  13. Genetic algorithms for route discovery.

    Science.gov (United States)

    Gelenbe, Erol; Liu, Peixiang; Lainé, Jeremy

    2006-12-01

    Packet routing in networks requires knowledge about available paths, which can be either acquired dynamically while the traffic is being forwarded, or statically (in advance) based on prior information of a network's topology. This paper describes an experimental investigation of path discovery using genetic algorithms (GAs). We start with the quality-of-service (QoS)-driven routing protocol called "cognitive packet network" (CPN), which uses smart packets (SPs) to dynamically select routes in a distributed autonomic manner based on a user's QoS requirements. We extend it by introducing a GA at the source routers, which modifies and filters the paths discovered by the CPN. The GA can combine the paths that were previously discovered to create new untested but valid source-to-destination paths, which are then selected on the basis of their "fitness." We present an implementation of this approach, where the GA runs in background mode so as not to overload the ingress routers. Measurements conducted on a network test bed indicate that when the background-traffic load of the network is light to medium, the GA can result in improved QoS. When the background-traffic load is high, it appears that the use of the GA may be detrimental to the QoS experienced by users as compared to CPN routing because the GA uses less timely state information in its decision making.

  14. Predicting Protein Structure Using Parallel Genetic Algorithms.

    Science.gov (United States)

    1994-12-01

    34 IEEE Transactions on Systems, Man and Cybernetics, 10(9) (September 1980). 16. De Jong, Kenneth A. "On Using Genetic Algoriths to Search Program...By " Predicting rotein Structure D istribticfiar.. ................ Using Parallel Genetic Algorithms ,Avaiu " ’ •"... Dist THESIS I IGeorge H...iiLite-d Approved for public release; distribution unlimited AFIT/ GCS /ENG/94D-03 Predicting Protein Structure Using Parallel Genetic Algorithms

  15. A GREEDY GENETIC ALGORITHM FOR UNCONSTRAINED GLOBAL OPTIMIZATION

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xinchao

    2005-01-01

    The greedy algorithm is a strong local searching algorithm. The genetica lgorithm is generally applied to the global optimization problems. In this paper, we combine the greedy idea and the genetic algorithm to propose the greedy genetic algorithm which incorporates the global exploring ability of the genetic algorithm and the local convergent ability of the greedy algorithm. Experimental results show that greedy genetic algorithm gives much better results than the classical genetic algorithm.

  16. Genetic Algorithm for Solving Simple Mathematical Equality Problem

    OpenAIRE

    Hermawanto, Denny

    2013-01-01

    This paper explains genetic algorithm for novice in this field. Basic philosophy of genetic algorithm and its flowchart are described. Step by step numerical computation of genetic algorithm for solving simple mathematical equality problem will be briefly explained

  17. Solving Maximal Clique Problem through Genetic Algorithm

    Science.gov (United States)

    Rajawat, Shalini; Hemrajani, Naveen; Menghani, Ekta

    2010-11-01

    Genetic algorithm is one of the most interesting heuristic search techniques. It depends basically on three operations; selection, crossover and mutation. The outcome of the three operations is a new population for the next generation. Repeating these operations until the termination condition is reached. All the operations in the algorithm are accessible with today's molecular biotechnology. The simulations show that with this new computing algorithm, it is possible to get a solution from a very small initial data pool, avoiding enumerating all candidate solutions. For randomly generated problems, genetic algorithm can give correct solution within a few cycles at high probability.

  18. Function Optimization Based on Quantum Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Ying Sun

    2014-01-01

    Full Text Available Optimization method is important in engineering design and application. Quantum genetic algorithm has the characteristics of good population diversity, rapid convergence and good global search capability and so on. It combines quantum algorithm with genetic algorithm. A novel quantum genetic algorithm is proposed, which is called Variable-boundary-coded Quantum Genetic Algorithm (vbQGA in which qubit chromosomes are collapsed into variable-boundary-coded chromosomes instead of binary-coded chromosomes. Therefore much shorter chromosome strings can be gained. The method of encoding and decoding of chromosome is first described before a new adaptive selection scheme for angle parameters used for rotation gate is put forward based on the core ideas and principles of quantum computation. Eight typical functions are selected to optimize to evaluate the effectiveness and performance of vbQGA against standard Genetic Algorithm (sGA and Genetic Quantum Algorithm (GQA. The simulation results show that vbQGA is significantly superior to sGA in all aspects and outperforms GQA in robustness and solving velocity, especially for multidimensional and complicated functions.

  19. Genetic algorithms at UC Davis/LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Vemuri, V.R. [comp.

    1993-12-31

    A tutorial introduction to genetic algorithms is given. This brief tutorial should serve the purpose of introducing the subject to the novice. The tutorial is followed by a brief commentary on the term project reports that follow.

  20. Hybrid Genetic Algorithms with Fuzzy Logic Controller

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, a new implementation of genetic algorithms (GAs) is developed for the machine scheduling problem, which is abundant among the modern manufacturing systems. The performance measure of early and tardy completion of jobs is very natural as one's aim, which is usually to minimize simultaneously both earliness and tardiness of all jobs. As the problem is NP-hard and no effective algorithms exist, we propose a hybrid genetic algorithms approach to deal with it. We adjust the crossover and mutation probabilities by fuzzy logic controller whereas the hybrid genetic algorithm does not require preliminary experiments to determine probabilities for genetic operators. The experimental results show the effectiveness of the GAs method proposed in the paper.``

  1. GARD: a genetic algorithm for recombination detection

    National Research Council Canada - National Science Library

    Kosakovsky Pond, Sergei L; Posada, David; Gravenor, Michael B; Woelk, Christopher H; Frost, Simon D W

    2006-01-01

    .... We developed a likelihood-based model selection procedure that uses a genetic algorithm to search multiple sequence alignments for evidence of recombination breakpoints and identify putative recombinant sequences...

  2. Genetic Algorithms, Floating Point Numbers and Applications

    Science.gov (United States)

    Hardy, Yorick; Steeb, Willi-Hans; Stoop, Ruedi

    The core in most genetic algorithms is the bitwise manipulations of bit strings. We show that one can directly manipulate the bits in floating point numbers. This means the main bitwise operations in genetic algorithm mutations and crossings are directly done inside the floating point number. Thus the interval under consideration does not need to be known in advance. For applications, we consider the roots of polynomials and finding solutions of linear equations.

  3. Quantum Genetic Algorithms for Computer Scientists

    OpenAIRE

    Rafael Lahoz-Beltra

    2016-01-01

    Genetic algorithms (GAs) are a class of evolutionary algorithms inspired by Darwinian natural selection. They are popular heuristic optimisation methods based on simulated genetic mechanisms, i.e., mutation, crossover, etc. and population dynamical processes such as reproduction, selection, etc. Over the last decade, the possibility to emulate a quantum computer (a computer using quantum-mechanical phenomena to perform operations on data) has led to a new class of GAs known as “Quantum Geneti...

  4. Analog Module Placement Design Using Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper presents a novel genetic algorithm for analog module placement based on ageneralization of the two-dimensional bin packing problem. The genetic encoding and operators assure that allproblem constraints are always satisfied. Thus the potential problems of adding penalty terms to the costfunction are eliminated so that the search configuration space is drastically decreased. The dedicated costfunction is based on the special requirements of analog integrated circuits. A fractional factorial experimentwas conducted using an orthogonal array to study the algorithm parameters. A meta GA was applied todetermine the optimal parameter values. The algorithm was tested with several local benchmark circuits. Theexperimental results show that the algorithm has better performance than the simulated annealing approachwith satisfactory results comparable to manual placement. This study demonstrates the effectiveness of thegenetic algorithm in the analog module placement problem. The algorithm has been successfully used in alayout synthesis tool.

  5. Evolving evolutionary algorithms using linear genetic programming.

    Science.gov (United States)

    Oltean, Mihai

    2005-01-01

    A new model for evolving Evolutionary Algorithms is proposed in this paper. The model is based on the Linear Genetic Programming (LGP) technique. Every LGP chromosome encodes an EA which is used for solving a particular problem. Several Evolutionary Algorithms for function optimization, the Traveling Salesman Problem and the Quadratic Assignment Problem are evolved by using the considered model. Numerical experiments show that the evolved Evolutionary Algorithms perform similarly and sometimes even better than standard approaches for several well-known benchmarking problems.

  6. A New Fuzzy Adaptive Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    FANG Lei; ZHANG Huan-chun; JING Ya-zhi

    2005-01-01

    Multiple genetic algorithms (GAs) need a large population size, which will take a long time for evolution.A new fuzzy adaptive GA is proposed in this paper. This algorithm is more effective in global search while keeping the overall population size constant. The simulation results of function optimization show that with the proposed algorithm, the phenomenon of premature convergence can be overcome effectively, and a satisfying optimization result is obtained.

  7. Robot path planning using genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Presents a strategy for soccer robot path planning using genetic algorithms for which, real number coding method is used, to overcome the defects of binary coding method, and the double crossover operation a dopted, to avoid the common defect of early convergence and converge faster than the standard genetic algo rithms concludes from simulation results that the method is effective for robot path planning.

  8. Adaptive Genetic Algorithm Model for Intrusion Detection

    Directory of Open Access Journals (Sweden)

    K. S. Anil Kumar

    2012-09-01

    Full Text Available Intrusion detection systems are intelligent systems designed to identify and prevent the misuse of computer networks and systems. Various approaches to Intrusion Detection are currently being used, but they are relatively ineffective. Thus the emerging network security systems need be part of the life system and this ispossible only by embedding knowledge into the network. The Adaptive Genetic Algorithm Model - IDS comprising of K-Means clustering Algorithm, Genetic Algorithm and Neural Network techniques. Thetechnique is tested using multitude of background knowledge sets in DARPA network traffic datasets.

  9. Genetic Algorithms for multiple objective vehicle routing

    CERN Document Server

    Geiger, Martin Josef

    2008-01-01

    The talk describes a general approach of a genetic algorithm for multiple objective optimization problems. A particular dominance relation between the individuals of the population is used to define a fitness operator, enabling the genetic algorithm to adress even problems with efficient, but convex-dominated alternatives. The algorithm is implemented in a multilingual computer program, solving vehicle routing problems with time windows under multiple objectives. The graphical user interface of the program shows the progress of the genetic algorithm and the main parameters of the approach can be easily modified. In addition to that, the program provides powerful decision support to the decision maker. The software has proved it's excellence at the finals of the European Academic Software Award EASA, held at the Keble college/ University of Oxford/ Great Britain.

  10. Genetic algorithms as global random search methods

    Science.gov (United States)

    Peck, Charles C.; Dhawan, Atam P.

    1995-01-01

    Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that the schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solutions and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.

  11. Interactive Genetic Algorithms with Fitness Adjustment

    Institute of Scientific and Technical Information of China (English)

    GUO Guang-song; GONG Dun-wei; HAO Guo-sheng; ZHANG Yong

    2006-01-01

    Noises widely exist in interactive genetic algorithms. However, there is no effective method to solve this problem up to now. There are two kinds of noises, one is the noise existing in visual systems and the other is resulted from user's preference mechanisms. Characteristics of the two noises are presented aiming at the application of interactive genetic algorithms in dealing with images. The evolutionary phases of interactive genetic algorithms are determined according to differences in the same individual's fitness among different generations. Models for noises in different phases are established and the corresponding strategies for reducing noises are given. The algorithm proposed in this paper has been applied to fashion design, which is a typical example of image processing. The results show that the strategies can reduce noises in interactive genetic algorithms and improve the algorithm's performance effectively. However, a further study is needed to solve the problem of determining the evolution phase by using suitable objective methods so as to find out an effective method to decrease noises.

  12. Combinatorial Multiobjective Optimization Using Genetic Algorithms

    Science.gov (United States)

    Crossley, William A.; Martin. Eric T.

    2002-01-01

    The research proposed in this document investigated multiobjective optimization approaches based upon the Genetic Algorithm (GA). Several versions of the GA have been adopted for multiobjective design, but, prior to this research, there had not been significant comparisons of the most popular strategies. The research effort first generalized the two-branch tournament genetic algorithm in to an N-branch genetic algorithm, then the N-branch GA was compared with a version of the popular Multi-Objective Genetic Algorithm (MOGA). Because the genetic algorithm is well suited to combinatorial (mixed discrete / continuous) optimization problems, the GA can be used in the conceptual phase of design to combine selection (discrete variable) and sizing (continuous variable) tasks. Using a multiobjective formulation for the design of a 50-passenger aircraft to meet the competing objectives of minimizing takeoff gross weight and minimizing trip time, the GA generated a range of tradeoff designs that illustrate which aircraft features change from a low-weight, slow trip-time aircraft design to a heavy-weight, short trip-time aircraft design. Given the objective formulation and analysis methods used, the results of this study identify where turboprop-powered aircraft and turbofan-powered aircraft become more desirable for the 50 seat passenger application. This aircraft design application also begins to suggest how a combinatorial multiobjective optimization technique could be used to assist in the design of morphing aircraft.

  13. An investigation of messy genetic algorithms

    Science.gov (United States)

    Goldberg, David E.; Deb, Kalyanmoy; Korb, Bradley

    1990-01-01

    Genetic algorithms (GAs) are search procedures based on the mechanics of natural selection and natural genetics. They combine the use of string codings or artificial chromosomes and populations with the selective and juxtapositional power of reproduction and recombination to motivate a surprisingly powerful search heuristic in many problems. Despite their empirical success, there has been a long standing objection to the use of GAs in arbitrarily difficult problems. A new approach was launched. Results to a 30-bit, order-three-deception problem were obtained using a new type of genetic algorithm called a messy genetic algorithm (mGAs). Messy genetic algorithms combine the use of variable-length strings, a two-phase selection scheme, and messy genetic operators to effect a solution to the fixed-coding problem of standard simple GAs. The results of the study of mGAs in problems with nonuniform subfunction scale and size are presented. The mGA approach is summarized, both its operation and the theory of its use. Experiments on problems of varying scale, varying building-block size, and combined varying scale and size are presented.

  14. Multicast Routing Based on Hybrid Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    CAO Yuan-da; CAI Gui

    2005-01-01

    A new multicast routing algorithm based on the hybrid genetic algorithm (HGA) is proposed. The coding pattern based on the number of routing paths is used. A fitness function that is computed easily and makes algorithm quickly convergent is proposed. A new approach that defines the HGA's parameters is provided. The simulation shows that the approach can increase largely the convergent ratio, and the fitting values of the parameters of this algorithm are different from that of the original algorithms. The optimal mutation probability of HGA equals 0.50 in HGA in the experiment, but that equals 0.07 in SGA. It has been concluded that the population size has a significant influence on the HGA's convergent ratio when it's mutation probability is bigger. The algorithm with a small population size has a high average convergent rate. The population size has little influence on HGA with the lower mutation probability.

  15. Genetic Algorithm Approaches for Actuator Placement

    Science.gov (United States)

    Crossley, William A.

    2000-01-01

    This research investigated genetic algorithm approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supported goals of the Multidisciplinary Design Optimization focus efforts in NASA's Aircraft au program. This work helped to properly identify various aspects of the genetic algorithm operators and parameters that allow for placement of discrete control actuators/effectors. An improved problem definition, including better definition of the objective function and constraints, resulted from this research effort. The work conducted for this research used a geometrically simple wing model; however, an increasing number of potential actuator placement locations were incorporated to illustrate the ability of the GA to determine promising actuator placement arrangements. This effort's major result is a useful genetic algorithm-based approach to assist in the discrete actuator/effector placement problem.

  16. Genetic warfarin dosing: tables versus algorithms.

    Science.gov (United States)

    Finkelman, Brian S; Gage, Brian F; Johnson, Julie A; Brensinger, Colleen M; Kimmel, Stephen E

    2011-02-01

    The aim of this study was to compare the accuracy of genetic tables and formal pharmacogenetic algorithms for warfarin dosing. Pharmacogenetic algorithms based on regression equations can predict warfarin dose, but they require detailed mathematical calculations. A simpler alternative, recently added to the warfarin label by the U.S. Food and Drug Administration, is to use genotype-stratified tables to estimate warfarin dose. This table may potentially increase the use of pharmacogenetic warfarin dosing in clinical practice; however, its accuracy has not been quantified. A retrospective cohort study of 1,378 patients from 3 anticoagulation centers was conducted. Inclusion criteria were stable therapeutic warfarin dose and complete genetic and clinical data. Five dose prediction methods were compared: 2 methods using only clinical information (empiric 5 mg/day dosing and a formal clinical algorithm), 2 genetic tables (the new warfarin label table and a table based on mean dose stratified by genotype), and 1 formal pharmacogenetic algorithm, using both clinical and genetic information. For each method, the proportion of patients whose predicted doses were within 20% of their actual therapeutic doses was determined. Dosing methods were compared using McNemar's chi-square test. Warfarin dose prediction was significantly more accurate (all p algorithm (52%) than with all other methods: empiric dosing (37%; odds ratio [OR]: 2.2), clinical algorithm (39%; OR: 2.2), warfarin label (43%; OR: 1.8), and genotype mean dose table (44%; OR: 1.9). Although genetic tables predicted warfarin dose better than empiric dosing, formal pharmacogenetic algorithms were the most accurate. Copyright © 2011 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  17. Genetic Algorithms for Digital Quantum Simulations.

    Science.gov (United States)

    Las Heras, U; Alvarez-Rodriguez, U; Solano, E; Sanz, M

    2016-06-10

    We propose genetic algorithms, which are robust optimization techniques inspired by natural selection, to enhance the versatility of digital quantum simulations. In this sense, we show that genetic algorithms can be employed to increase the fidelity and optimize the resource requirements of digital quantum simulation protocols while adapting naturally to the experimental constraints. Furthermore, this method allows us to reduce not only digital errors but also experimental errors in quantum gates. Indeed, by adding ancillary qubits, we design a modular gate made out of imperfect gates, whose fidelity is larger than the fidelity of any of the constituent gates. Finally, we prove that the proposed modular gates are resilient against different gate errors.

  18. Applying a Genetic Algorithm to Reconfigurable Hardware

    Science.gov (United States)

    Wells, B. Earl; Weir, John; Trevino, Luis; Patrick, Clint; Steincamp, Jim

    2004-01-01

    This paper investigates the feasibility of applying genetic algorithms to solve optimization problems that are implemented entirely in reconfgurable hardware. The paper highlights the pe$ormance/design space trade-offs that must be understood to effectively implement a standard genetic algorithm within a modem Field Programmable Gate Array, FPGA, reconfgurable hardware environment and presents a case-study where this stochastic search technique is applied to standard test-case problems taken from the technical literature. In this research, the targeted FPGA-based platform and high-level design environment was the Starbridge Hypercomputing platform, which incorporates multiple Xilinx Virtex II FPGAs, and the Viva TM graphical hardware description language.

  19. Genetic Algorithms for Digital Quantum Simulations

    Science.gov (United States)

    Las Heras, U.; Alvarez-Rodriguez, U.; Solano, E.; Sanz, M.

    2016-06-01

    We propose genetic algorithms, which are robust optimization techniques inspired by natural selection, to enhance the versatility of digital quantum simulations. In this sense, we show that genetic algorithms can be employed to increase the fidelity and optimize the resource requirements of digital quantum simulation protocols while adapting naturally to the experimental constraints. Furthermore, this method allows us to reduce not only digital errors but also experimental errors in quantum gates. Indeed, by adding ancillary qubits, we design a modular gate made out of imperfect gates, whose fidelity is larger than the fidelity of any of the constituent gates. Finally, we prove that the proposed modular gates are resilient against different gate errors.

  20. Genetic algorithm for neural networks optimization

    Science.gov (United States)

    Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta

    2004-11-01

    This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.

  1. The Applications of Genetic Algorithms in Medicine

    Directory of Open Access Journals (Sweden)

    Ali Ghaheri

    2015-11-01

    Full Text Available A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.

  2. The Applications of Genetic Algorithms in Medicine

    Science.gov (United States)

    Ghaheri, Ali; Shoar, Saeed; Naderan, Mohammad; Hoseini, Sayed Shahabuddin

    2015-01-01

    A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.] PMID:26676060

  3. Hybrid Genetic Algorithms for University Course Timetabling

    Directory of Open Access Journals (Sweden)

    Meysam Shahvali Kohshori

    2012-03-01

    Full Text Available University course timetabling is one of the important and time consuming issues that each University is involved with it at the beginning of each. This problem is in class of NP-hard problem and is very difficult to solve by classic algorithms. Therefore optimization techniques are used to solve them and produce optimal or near optimal feasible solutions instead of exact solutions. Genetic algorithms, because of multidirectional search property of them, are considered as an efficient approach for solving this type of problems. In this paper three new hybrid genetic algorithms for solving the university course timetabling problem (UCTP are proposed: FGARI, FGASA and FGATS. In proposed algorithms, fuzzy logic is used to measure violation of soft constraints in fitness function to deal with inherent uncertainly and vagueness involved in real life data. Also, randomized iterative local search, simulated annealing and tabu search are applied, respectively, to improve exploitive search ability and prevent genetic algorithm to be trapped in local optimum. The experimental results indicate that the proposed algorithms are able to produce promising results for the UCTP.

  4. Cognitive radio resource allocation based on coupled chaotic genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Zu Yun-Xiao; Zhou Jie; Zeng Chang-Chang

    2010-01-01

    A coupled chaotic genetic algorithm for cognitive radio resource allocation which is based on genetic algorithm and coupled Logistic map is proposed. A fitness function for cognitive radio resource allocation is provided. Simulations are conducted for cognitive radio resource allocation by using the coupled chaotic genetic algorithm, simple genetic algorithm and dynamic allocation algorithm respectively. The simulation results show that, compared with simple genetic and dynamic allocation algorithm, coupled chaotic genetic algorithm reduces the total transmission power and bit error rate in cognitive radio system, and has faster convergence speed.

  5. Cognitive radio resource allocation based on coupled chaotic genetic algorithm

    Science.gov (United States)

    Zu, Yun-Xiao; Zhou, Jie; Zeng, Chang-Chang

    2010-11-01

    A coupled chaotic genetic algorithm for cognitive radio resource allocation which is based on genetic algorithm and coupled Logistic map is proposed. A fitness function for cognitive radio resource allocation is provided. Simulations are conducted for cognitive radio resource allocation by using the coupled chaotic genetic algorithm, simple genetic algorithm and dynamic allocation algorithm respectively. The simulation results show that, compared with simple genetic and dynamic allocation algorithm, coupled chaotic genetic algorithm reduces the total transmission power and bit error rate in cognitive radio system, and has faster convergence speed.

  6. Multiprocessor Scheduling Using Parallel Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Nourah Al-Angari

    2012-07-01

    Full Text Available Tasks scheduling is the most challenging problem in the parallel computing. Hence, the inappropriate scheduling will reduce or even abort the utilization of the true potential of the parallelization. Genetic algorithm (GA has been successfully applied to solve the scheduling problem. The fitness evaluation is the most time consuming GA operation for the CPU time, which affect the GA performance. The proposed synchronous master-slave algorithm outperforms the sequential algorithm in case of complex and high number of generations problem.

  7. Nested Genetic Algorithm for Resolving Overlapped Spectral Bands

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A nested genetic algorithm, including genetic parameter level and genetic implemented level for peak parameters, was proposed and applied for resolving overlapped spectral bands. By the genetic parameter level, parameters of genetic algorithm were optimized; moreover, the number of overlapped peaks was determined simultaneously. Then parameters of individual peaks were computed with the genetic implemented level.

  8. MULTIOBJECTIVE PARALLEL GENETIC ALGORITHM FOR WASTE MINIMIZATION

    Science.gov (United States)

    In this research we have developed an efficient multiobjective parallel genetic algorithm (MOPGA) for waste minimization problems. This MOPGA integrates PGAPack (Levine, 1996) and NSGA-II (Deb, 2000) with novel modifications. PGAPack is a master-slave parallel implementation of a...

  9. Predicting complex mineral structures using genetic algorithms.

    Science.gov (United States)

    Mohn, Chris E; Kob, Walter

    2015-10-28

    We show that symmetry-adapted genetic algorithms are capable of finding the ground state of a range of complex crystalline phases including layered- and incommensurate super-structures. This opens the way for the atomistic prediction of complex crystal structures of functional materials and mineral phases.

  10. Genetic Algorithm for Chinese Postman Problems

    Institute of Scientific and Technical Information of China (English)

    Jiang Hua; Kang Li-shan

    2003-01-01

    Chinese Postman Problem is an unsettled graphic problem. It was approached seldom by evolutionary computation. Now we use genetic algorithm to solve Chinese Postman Problem in undirected graph and get good results. It could be extended to solve Chinese postman problem in directed graph. We make these efforts for exploring in optimizing the mixed Chinese postman problem.

  11. Proposed genetic algorithms for construction site layout

    NARCIS (Netherlands)

    Mawdesley, Michael J.; Al-Jibouri, Saad H.

    2003-01-01

    The positioning of temporary facilities on a construction site is an area of research which has been recognised as important but which has received relatively little attention. In this paper, a genetic algorithm is proposed to solve the problem in which m facilities are to be positioned to n availab

  12. Boosting Principal Component Analysis by Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Divya Somvanshi

    2010-07-01

    Full Text Available This paper presents a new method of feature extraction by combining principal component analysis and genetic algorithm. Use of multiple pre-processors in combination with principal component analysis generates alternate feature spaces for data representation. The present method works out the fusion of these multiple spaces to create higher dimensionality feature vectors. The fused feature vectors are given chromosome representation by taking feature components to be genes. Then these feature vectors are allowed to undergo genetic evolution individually. For genetic algorithm, initial population is created by calculating probability distance matrix, and by applying a probability distance metric such that all the genes which lie farther than a defined threshold are tripped to zero. The genetic evolution of fused feature vector brings out most significant feature components (genes as survivours. A measure of significance is adapted on the basis of frequency of occurrence of the surviving genes in the current population. Finally, the feature vector is obtained by weighting the original feature components in proportion to their significance. The present algorithm is validated in combination with a neural network classifier based on error backpropagation algorithm, and by analysing a number of benchmark datasets available in the open sources.Defence Science Journal, 2010, 60(4, pp.392-398, DOI:http://dx.doi.org/10.14429/dsj.60.495

  13. Focused Crawler Optimization Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Hartanto Kusuma Wardana

    2011-12-01

    Full Text Available As the size of the Web continues to grow, searching it for useful information has become more difficult. Focused crawler intends to explore the Web conform to a specific topic. This paper discusses the problems caused by local searching algorithms. Crawler can be trapped within a limited Web community and overlook suitable Web pages outside its track. A genetic algorithm as a global searching algorithm is modified to address the problems. The genetic algorithm is used to optimize Web crawling and to select more suitable Web pages to be fetched by the crawler. Several evaluation experiments are conducted to examine the effectiveness of the approach. The crawler delivers collections consist of 3396 Web pages from 5390 links which had been visited, or filtering rate of Roulette-Wheel selection at 63% and precision level at 93% in 5 different categories. The result showed that the utilization of genetic algorithm had empowered focused crawler to traverse the Web comprehensively, despite it relatively small collections. Furthermore, it brought up a great potential for building an exemplary collections compared to traditional focused crawling methods.

  14. Evolving Quantum Circuits using Genetic Algorithms

    CERN Document Server

    Prashant

    2005-01-01

    This paper describes an application of genetic algorithm for evolving quantum computing circuits. The circuits use reversible one qubit and two qubit gates which are applied on a multi-qubit system having some initial state. The genetic algorithm automatically searches the space and comes out with the appropriate circuit design, which yields desired output state. The fitness function used matches the output with desired output and the search stops when it is found. The fitness value becomes higher if the output is close to the desired output. The paper briefly discusses the operation of a quantum gate over the multi-qubit system. The paper also demonstrates some examples of the evolved circuits using the algorithm.

  15. Stego-audio Using Genetic Algorithm Approach

    Directory of Open Access Journals (Sweden)

    V. Santhi

    2014-06-01

    Full Text Available With the rapid development of digital multimedia applications, the secure data transmission becomes the main issue in data communication system. So the multimedia data hiding techniques have been developed to ensure the secured data transfer. Steganography is an art of hiding a secret message within an image/audio/video file in such a way that the secret message cannot be perceived by hacker/intruder. In this study, we use RSA encryption algorithm to encrypt the message and Genetic Algorithm (GA to encode the message in the audio file. This study presents a method to access the negative audio bytes and includes the negative audio bytes in the message encoding and position embedding process. This increases the capacity of encoding message in the audio file. The use of GA operators in Genetic Algorithm reduces the noise distortions.

  16. Genetic algorithm optimization for finned channel performance

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Compared to a smooth channel, a finned channel provides a higher heat transfer coefficient; increasing the fin height enhances the heat transfer. However, this heat transfer enhancement is associated with an increase in the pressure drop. This leads to an increased pumping power requirement so that one may seek an optimum design for such systems. The main goal of this paper is to define the exact location and size of fins in such a way that a minimal pressure drop coincides with an optimal heat transfer based on the genetic algorithm. Each fin arrangement is considered a solution to the problem(an individual for genetic algorithm). An initial population is generated randomly at the first step. Then the algorithm has been searched among these solutions and made new solutions iteratively by its functions to find an optimum design as reported in this article.

  17. Learning Bayesian networks using genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Chen Fei; Wang Xiufeng; Rao Yimei

    2007-01-01

    A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not.Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach.

  18. Quantum Genetic Algorithms for Computer Scientists

    Directory of Open Access Journals (Sweden)

    Rafael Lahoz-Beltra

    2016-10-01

    Full Text Available Genetic algorithms (GAs are a class of evolutionary algorithms inspired by Darwinian natural selection. They are popular heuristic optimisation methods based on simulated genetic mechanisms, i.e., mutation, crossover, etc. and population dynamical processes such as reproduction, selection, etc. Over the last decade, the possibility to emulate a quantum computer (a computer using quantum-mechanical phenomena to perform operations on data has led to a new class of GAs known as “Quantum Genetic Algorithms” (QGAs. In this review, we present a discussion, future potential, pros and cons of this new class of GAs. The review will be oriented towards computer scientists interested in QGAs “avoiding” the possible difficulties of quantum-mechanical phenomena.

  19. Surface/Surface Intersection Using Simulated Annealing Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The genetic algorithm and marching method are integrated into a novel algorithm to solve the surface intersection problem. By combining genetic algorithm with local searching method the efficiency of evolution is greatly improved. By fully utilizing the global searching ability and instinct attribute for parallel computation of genetic algorithm and the local rapid convergency of marching method, the algorithm can compute the intersection robustly and generate correct topology of intersection curves. The details of the new algorithm are discussed here.

  20. Genetic algorithms for the vehicle routing problem

    Science.gov (United States)

    Volna, Eva

    2016-06-01

    The Vehicle Routing Problem (VRP) is one of the most challenging combinatorial optimization tasks. This problem consists in designing the optimal set of routes for fleet of vehicles in order to serve a given set of customers. Evolutionary algorithms are general iterative algorithms for combinatorial optimization. These algorithms have been found to be very effective and robust in solving numerous problems from a wide range of application domains. This problem is known to be NP-hard; hence many heuristic procedures for its solution have been suggested. For such problems it is often desirable to obtain approximate solutions, so they can be found fast enough and are sufficiently accurate for the purpose. In this paper we have performed an experimental study that indicates the suitable use of genetic algorithms for the vehicle routing problem.

  1. Niche Genetic Algorithm with Accurate Optimization Performance

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-hua; YAN De-kun

    2005-01-01

    Based on crowding mechanism, a novel niche genetic algorithm was proposed which can record evolutionary direction dynamically during evolution. After evolution, the solutions's precision can be greatly improved by means of the local searching along the recorded direction. Simulation shows that this algorithm can not only keep population diversity but also find accurate solutions. Although using this method has to take more time compared with the standard GA, it is really worth applying to some cases that have to meet a demand for high solution precision.

  2. Routine Discovery of Complex Genetic Models using Genetic Algorithms.

    Science.gov (United States)

    Moore, Jason H; Hahn, Lance W; Ritchie, Marylyn D; Thornton, Tricia A; White, Bill C

    2004-02-01

    Simulation studies are useful in various disciplines for a number of reasons including the development and evaluation of new computational and statistical methods. This is particularly true in human genetics and genetic epidemiology where new analytical methods are needed for the detection and characterization of disease susceptibility genes whose effects are complex, nonlinear, and partially or solely dependent on the effects of other genes (i.e. epistasis or gene-gene interaction). Despite this need, the development of complex genetic models that can be used to simulate data is not always intuitive. In fact, only a few such models have been published. We have previously developed a genetic algorithm approach to discovering complex genetic models in which two single nucleotide polymorphisms (SNPs) influence disease risk solely through nonlinear interactions. In this paper, we extend this approach for the discovery of high-order epistasis models involving three to five SNPs. We demonstrate that the genetic algorithm is capable of routinely discovering interesting high-order epistasis models in which each SNP influences risk of disease only through interactions with the other SNPs in the model. This study opens the door for routine simulation of complex gene-gene interactions among SNPs for the development and evaluation of new statistical and computational approaches for identifying common, complex multifactorial disease susceptibility genes.

  3. TIP: protein backtranslation aided by genetic algorithms.

    Science.gov (United States)

    Moreira, Andrés; Maass, Alejandro

    2004-09-01

    Several applications require the backtranslation of a protein sequence into a nucleic acid sequence. The degeneracy of the genetic code makes this process ambiguous; moreover, not every translation is equally viable. The usual answer is to mimic the codon usage of the target species; however, this does not capture all the relevant features of the 'genomic styles' from different taxa. The program TIP ' Traducción Inversa de Proteínas') applies genetic algorithms to improve the backtranslation, by minimizing the difference of some coding statistics with respect to their average value in the target. http://www.cmm.uchile.cl/genoma/tip/

  4. Predicting mining activity with parallel genetic algorithms

    Science.gov (United States)

    Talaie, S.; Leigh, R.; Louis, S.J.; Raines, G.L.; Beyer, H.G.; O'Reilly, U.M.; Banzhaf, Arnold D.; Blum, W.; Bonabeau, C.; Cantu-Paz, E.W.; ,; ,

    2005-01-01

    We explore several different techniques in our quest to improve the overall model performance of a genetic algorithm calibrated probabilistic cellular automata. We use the Kappa statistic to measure correlation between ground truth data and data predicted by the model. Within the genetic algorithm, we introduce a new evaluation function sensitive to spatial correctness and we explore the idea of evolving different rule parameters for different subregions of the land. We reduce the time required to run a simulation from 6 hours to 10 minutes by parallelizing the code and employing a 10-node cluster. Our empirical results suggest that using the spatially sensitive evaluation function does indeed improve the performance of the model and our preliminary results also show that evolving different rule parameters for different regions tends to improve overall model performance. Copyright 2005 ACM.

  5. Fashion sketch design by interactive genetic algorithms

    Science.gov (United States)

    Mok, P. Y.; Wang, X. X.; Xu, J.; Kwok, Y. L.

    2012-11-01

    Computer aided design is vitally important for the modern industry, particularly for the creative industry. Fashion industry faced intensive challenges to shorten the product development process. In this paper, a methodology is proposed for sketch design based on interactive genetic algorithms. The sketch design system consists of a sketch design model, a database and a multi-stage sketch design engine. First, a sketch design model is developed based on the knowledge of fashion design to describe fashion product characteristics by using parameters. Second, a database is built based on the proposed sketch design model to define general style elements. Third, a multi-stage sketch design engine is used to construct the design. Moreover, an interactive genetic algorithm (IGA) is used to accelerate the sketch design process. The experimental results have demonstrated that the proposed method is effective in helping laypersons achieve satisfied fashion design sketches.

  6. Genetic algorithms and aquifer parameter identification

    Institute of Scientific and Technical Information of China (English)

    LI Jing-sheng(李竞生); YAO Lei-hua(姚磊华); LI Yang(李杨)

    2003-01-01

    In order to identify aquifer parameter,authors develops an improved combinatorial method called best chromosome clone plus younger generation chromosome prepotency genetic algorithm (BCC-YGCP-GA), based on a decimal system simple genetic algorithm (SGA). The paper takes unsteady state flows in a two-dimensional, inhomogeneous, confined aquifer for a ideal model, and utilizes SGA and BCC-YGCP-GA coupled to finite element method for identifying aquifer hydraulic conductivity K1,K2,K3 and storage S1,S2,S3, respectively. It is shown from the result that GSA does not reach convergence with 100 generations, whereas convergence rate of BCC-YGCD-GA is very fast. Objective function value calculated by BCC-YGCD-GA is 0.001 29 with 100 generations, and hydraulic conductivity and storage of three zones are almost equal to the "true" values of ideal model.

  7. Genetic algorithms for minimal source reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, P.S.; Mosher, J.C.

    1993-12-01

    Under-determined linear inverse problems arise in applications in which signals must be estimated from insufficient data. In these problems the number of potentially active sources is greater than the number of observations. In many situations, it is desirable to find a minimal source solution. This can be accomplished by minimizing a cost function that accounts from both the compatibility of the solution with the observations and for its ``sparseness``. Minimizing functions of this form can be a difficult optimization problem. Genetic algorithms are a relatively new and robust approach to the solution of difficult optimization problems, providing a global framework that is not dependent on local continuity or on explicit starting values. In this paper, the authors describe the use of genetic algorithms to find minimal source solutions, using as an example a simulation inspired by the reconstruction of neural currents in the human brain from magnetoencephalographic (MEG) measurements.

  8. Application of Genetic Algorithms in Seismic Tomography

    Science.gov (United States)

    Soupios, Pantelis; Akca, Irfan; Mpogiatzis, Petros; Basokur, Ahmet; Papazachos, Constantinos

    2010-05-01

    In the earth sciences several inverse problems that require data fitting and parameter estimation are nonlinear and can involve a large number of unknown parameters. Consequently, the application of analytical inversion or optimization techniques may be quite restrictive. In practice, most analytical methods are local in nature and rely on a linearized form of the problem in question, adopting an iterative procedure using partial derivatives to improve an initial model. This approach can lead to a dependence of the final model solution on the starting model and is prone to entrapment in local misfit minima. Moreover, the calculation of derivatives can be computationally inefficient and create instabilities when numerical approximations are used. In contrast to these local minimization methods, global techniques that do not rely on partial derivatives, are independent of the form of the data misfit criterion, and are computationally robust. Such methods often use random processes to sample a selected wider span of the model space. In this situation, randomly generated models are assessed in terms of their data-fitting quality and the process may be stopped after a certain number of acceptable models is identified or continued until a satisfactory data fit is achieved. A new class of methods known as genetic algorithms achieves the aforementioned approximation through novel model representation and manipulations. Genetic algorithms (GAs) were originally developed in the field of artificial intelligence by John Holland more than 20 years ago, but even in this field it is less than a decade that the methodology has been more generally applied and only recently did the methodology attract the attention of the earth sciences community. Applications have been generally concentrated in geophysics and in particular seismology. As awareness of genetic algorithms grows there surely will be many more and varied applications to earth science problems. In the present work, the

  9. Identification of Hammerstein Model Based on Quantum Genetic Algorithm

    OpenAIRE

    Zhang Hai Li

    2013-01-01

    Nonlinear system identification is a main topic of modern identification. A new method for nonlinear system identification is presented by using Quantum Genetic Algorithm(QGA).The problems of nonlinear system identification are cast as function optimization overprameter space,and the Quantum Genetic Algorithm is adopted to solve the optimization problem. Simulation experiments show that: compared with the genetic algorithm, quantum genetic algorithm is an effective swarm intelligence algorith...

  10. Design of hyperbolic metamaterials by genetic algorithm

    Science.gov (United States)

    Goforth, Ian A.; Alisafaee, Hossein; Fullager, Daniel B.; Rosenbury, Chris; Fiddy, Michael A.

    2014-09-01

    We explain the design of one dimensional Hyperbolic Metamaterials (HMM) using a genetic algorithm (GA) and provide sample applications including the realization of negative refraction. The design method is a powerful optimization approach to find the optimal performance of such structures, which "naturally" finds HMM structures that are globally optimized for specific applications. We explain how a fitness function can be incorporated into the GA for different metamaterial properties.

  11. Designing quantum gates using the genetic algorithm

    Science.gov (United States)

    Kumar, Karthikeyan S.; Paraoanu, G. S.

    2012-12-01

    We demonstrate the usage of Genetic Algorithm (GA) to tailor the radio frequency pulses for producing unitary transformations in qubit systems. We find that the initial population converges to the optimal solution after 10 generations, for a one segment pulse corresponding to single qubit Hadamard gate. For a two qubit CNOT gate, we see the population convergence for a two segment pulse after 150 generations. This demonstrates that the method is suitable for designing quantum gates.

  12. Web Based Genetic Algorithm Using Data Mining

    OpenAIRE

    Ashiqur Rahman; Asaduzzaman Noman; Md. Ashraful Islam; Al-Amin Gaji

    2016-01-01

    This paper presents an approach for classifying students in order to predict their final grade based on features extracted from logged data in an education web-based system. A combination of multiple classifiers leads to a significant improvement in classification performance. Through weighting the feature vectors using a Genetic Algorithm we can optimize the prediction accuracy and get a marked improvement over raw classification. It further shows that when the number of features is few; fea...

  13. Genetic algorithms in computer aided inductor design

    OpenAIRE

    Jean Fivaz; Willem A. Cronjé

    2004-01-01

    The goal of this investigation is to determine the advantages of using genetic algorithms in computer-aided design as applied to inductors.  These advantages are exploited in design problems with a number of specifications and constraints, as encountered in power electronics during practical inductor design. The design tool should be able to select components, such as cores and wires, from databases of available components, and evaluate these choices based on the components’ characteristic d...

  14. Assembly line balancing using genetic algorithms

    OpenAIRE

    Tanyer, Muzaffer

    1997-01-01

    Ankara : Department of Industrial Engineering and Institute of Engineering and Sciences, Bilkent Univ., 1997. Thesis (Master's) -- Bilkent University, 1997. Includes bibliographical references leaves 69-73 For the last few decades, the genetic algorithms (GAs) have been used as a kind of heuristic in many areas of manufacturing. Facility layout, scheduling, process planning, and assembly line balancing are some of the areas where GAs are already popular. GAs are more efficie...

  15. Quantum-Inspired Genetic Algorithm or Quantum Genetic Algorithm: Which Is It?

    Science.gov (United States)

    Jones, Erika

    2015-04-01

    Our everyday work focuses on genetic algorithms (GAs) related to quantum computing where we call ``related'' algorithms those falling into one of two classes: (1) GAs run on classical computers but making use of quantum mechanical (QM) constructs and (2) GAs run on quantum hardware. Though convention has yet to be set with respect to usage of the accepted terms quantum-inspired genetic algorithm (QIGA) and quantum genetic algorithm (QGA), we find the two terms highly suitable respectively as labels for the aforementioned classes. With these specific definitions in mind, the difference between the QIGA and QGA is greater than might first be appreciated, particularly by those coming from a perspective emphasizing GA use as a general computational tool irrespective of QM aspects (1) suggested by QIGAs and (2) inherent in QGAs. We offer a theoretical standpoint highlighting key differences-both obvious, and more significantly, subtle-to be considered in general design of a QIGA versus that of a QGA.

  16. Genetic Algorithms for Multiple-Choice Problems

    CERN Document Server

    Aickelin, Uwe

    2010-01-01

    This thesis investigates the use of problem-specific knowledge to enhance a genetic algorithm approach to multiple-choice optimisation problems.It shows that such information can significantly enhance performance, but that the choice of information and the way it is included are important factors for success.Two multiple-choice problems are considered.The first is constructing a feasible nurse roster that considers as many requests as possible.In the second problem, shops are allocated to locations in a mall subject to constraints and maximising the overall income.Genetic algorithms are chosen for their well-known robustness and ability to solve large and complex discrete optimisation problems.However, a survey of the literature reveals room for further research into generic ways to include constraints into a genetic algorithm framework.Hence, the main theme of this work is to balance feasibility and cost of solutions.In particular, co-operative co-evolution with hierarchical sub-populations, problem structur...

  17. Asian Option Pricing Based on Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    YunzhongLiu; HuiyuXuan

    2004-01-01

    The cross-fertilization between artificial intelligence and computational finance has resulted in some of the most active research areas in financial engineering. One direction is the application of machine learning techniques to pricing financial products, which is certainly one of the most complex issues in finance. In the literature, when the interest rate,the mean rate of return and the volatility of the underlying asset follow general stochastic processes, the exact solution is usually not available. In this paper, we shall illustrate how genetic algorithms (GAs), as a numerical approach, can be potentially helpful in dealing with pricing. In particular, we test the performance of basic genetic algorithms by using it to the determination of prices of Asian options, whose exact solutions is known from Black-Scholesoption pricing theory. The solutions found by basic genetic algorithms are compared with the exact solution, and the performance of GAs is ewluated accordingly. Based on these ewluations, some limitations of GAs in option pricing are examined and possible extensions to future works are also proposed.

  18. Emergence of Algorithmic Languages in Genetic Systems

    CERN Document Server

    Angeles, O; Waelbroeck, H

    1997-01-01

    In genetic systems there is a non-trivial interface between the sequence of symbols which constitutes the chromosome, or ``genotype'', and the products which this sequence encodes --- the ``phenotype''. This interface can be thought of as a ``computer''. In this case the chromosome is viewed as an algorithm and the phenotype as the result of the computation. In general only a small fraction of all possible sequences of symbols makes any sense for a given computer. The difficulty of finding meaningful algorithms by random mutation is known as the brittleness problem. In this paper we show that mutation and crossover favour the emergence of an algorithmic language which facilitates the production of meaningful sequences following random mutations of the genotype. We base our conclusions on an analysis of the population dynamics of a variant of Kitano's neurogenetic model wherein the chromosome encodes the rules for cellular division and the phenotype is a 16-cell organism interpreted as a connectivity matrix fo...

  19. Optimization of unit commitment based on genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    蔡兴国; 初壮

    2002-01-01

    How to solve unit commitment and load dispatch of power system by genetic algorithms is discussed in this paper. A combination encoding scheme of binary encoding and floating number encoding and corresponding genetic operators are developed. Meanwhile a contract mapping genetic algorithm is used to enhance traditional GA' s convergence. The result of a practical example shows that this algorithm is effective.

  20. Explicit filtering of building blocks for genetic algorithms

    NARCIS (Netherlands)

    Kemenade, C.H.M. van

    1996-01-01

    Genetic algorithms are often applied to building block problems. We have developed a simple filtering algorithm that can locate building blocks within a bit-string, and does not make assumptions regarding the linkage of the bits. A comparison between the filtering algorithm and genetic algorithms re

  1. NOVEL QUANTUM-INSPIRED GENETIC ALGORITHM BASED ON IMMUNITY

    Institute of Scientific and Technical Information of China (English)

    Li Ying; Zhao Rongchun; Zhang Yanning; Jiao Licheng

    2005-01-01

    A novel algorithm, the Immune Quantum-inspired Genetic Algorithm (IQGA), is proposed by introducing immune concepts and methods into Quantum-inspired Genetic Algorithm (QGA). With the condition of preserving QGA's advantages, IQGA utilizes the characteristics and knowledge in the pending problems for restraining the repeated and ineffective operations during evolution, so as to improve the algorithm efficiency. The experimental results of the knapsack problem show that the performance of IQGA is superior to the Conventional Genetic Algorithm (CGA), the Immune Genetic Algorithm (IGA) and QGA.

  2. Identification of Hammerstein Model Based on Quantum Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Zhang Hai Li

    2013-07-01

    Full Text Available Nonlinear system identification is a main topic of modern identification. A new method for nonlinear system identification is presented by using Quantum Genetic Algorithm(QGA.The problems of nonlinear system identification are cast as function optimization overprameter space,and the Quantum Genetic Algorithm is adopted to solve the optimization problem. Simulation experiments show that: compared with the genetic algorithm, quantum genetic algorithm is an effective swarm intelligence algorithm, its salient features of the algorithm parameters, small population size, and the use of Quantum gate update populations, greatly improving the recognition in the optimization of speed and accuracy. Simulation results show the effectiveness of the proposed method.

  3. New Hybrid Genetic Algorithm for Vertex Cover Problems

    Institute of Scientific and Technical Information of China (English)

    霍红卫; 许进

    2003-01-01

    This paper presents a new hybrid genetic algorithm for the vertex cover problems in which scan-repair and local improvement techniques are used for local optimization. With the hybrid approach, genetic algorithms are used to perform global exploration in a population, while neighborhood search methods are used to perform local exploitation around the chromosomes. The experimental results indicate that hybrid genetic algorithms can obtain solutions of excellent quality to the problem instances with different sizes. The pure genetic algorithms are outperformed by the neighborhood search heuristics procedures combined with genetic algorithms.

  4. Improved Quantum Genetic Algorithm in Application of Scheduling Engineering Personnel

    Directory of Open Access Journals (Sweden)

    Huaixiao Wang

    2014-01-01

    Full Text Available To verify the availability of the improved quantum genetic algorithm in solving the scheduling engineering personnel problem, the following work has been carried out: the characteristics of the scheduling engineering personnel problem are analyzed, the quantum encoding method is proposed, and an improved quantum genetic algorithm is applied to address the issue. Taking the low efficiency and the bad performance of the conventional quantum genetic algorithm into account, a universal improved quantum genetic algorithm is introduced to solve the scheduling engineering personnel problem. Finally, the examples are applied to verify the effectiveness and superiority of the improved quantum genetic algorithm and the rationality of the encoding method.

  5. Saving Resources with Plagues in Genetic Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    de Vega, F F; Cantu-Paz, E; Lopez, J I; Manzano, T

    2004-06-15

    The population size of genetic algorithms (GAs) affects the quality of the solutions and the time required to find them. While progress has been made in estimating the population sizes required to reach a desired solution quality for certain problems, in practice the sizing of populations is still usually performed by trial and error. These trials might lead to find a population that is large enough to reach a satisfactory solution, but there may still be opportunities to optimize the computational cost by reducing the size of the population. This paper presents a technique called plague that periodically removes a number of individuals from the population as the GA executes. Recently, the usefulness of the plague has been demonstrated for genetic programming. The objective of this paper is to extend the study of plagues to genetic algorithms. We experiment with deceptive trap functions, a tunable difficult problem for GAs, and the experiments show that plagues can save computational time while maintaining solution quality and reliability.

  6. Genetic Algorithm Tuned Fuzzy Logic for Gliding Return Trajectories

    Science.gov (United States)

    Burchett, Bradley T.

    2003-01-01

    The problem of designing and flying a trajectory for successful recovery of a reusable launch vehicle is tackled using fuzzy logic control with genetic algorithm optimization. The plant is approximated by a simplified three degree of freedom non-linear model. A baseline trajectory design and guidance algorithm consisting of several Mamdani type fuzzy controllers is tuned using a simple genetic algorithm. Preliminary results show that the performance of the overall system is shown to improve with genetic algorithm tuning.

  7. Using Genetic Algorithms in Secured Business Intelligence Mobile Applications

    OpenAIRE

    Silvia TRIF

    2011-01-01

    The paper aims to assess the use of genetic algorithms for training neural networks used in secured Business Intelligence Mobile Applications. A comparison is made between classic back-propagation method and a genetic algorithm based training. The design of these algorithms is presented. A comparative study is realized for determining the better way of training neural networks, from the point of view of time and memory usage. The results show that genetic algorithms based training offer bette...

  8. Novel Quantum Genetic Algorithm and Its Applications

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ge-xiang; LI Na; JIN Wei-dong; HU Lai-zhao

    2006-01-01

    By introducing strong parallelism of quantum computing into evolutionary algorithm,a novel quantum genetic algorithm (NQGA) is proposed.In NQGA,a novel approach for updating the rotation angles of quantum logic gates and a strategy for enhancing search capability and avoiding premature convergence are adopted.Several typical complex continuous functions are chosen to test the performance of NQGA.Also,NQGA is applied in selecting the best feature subset from a large number of features in radar emitter signal recognition.The testing and experimental results of feature selection show that NQGA presents good search capability,rapid convergence,short computing time,and ability to avoid premature convergence effectively.

  9. Grouping genetic algorithms advances and applications

    CERN Document Server

    Mutingi, Michael

    2017-01-01

    This book presents advances and innovations in grouping genetic algorithms, enriched with new and unique heuristic optimization techniques. These algorithms are specially designed for solving industrial grouping problems where system entities are to be partitioned or clustered into efficient groups according to a set of guiding decision criteria. Examples of such problems are: vehicle routing problems, team formation problems, timetabling problems, assembly line balancing, group maintenance planning, modular design, and task assignment. A wide range of industrial grouping problems, drawn from diverse fields such as logistics, supply chain management, project management, manufacturing systems, engineering design and healthcare, are presented. Typical complex industrial grouping problems, with multiple decision criteria and constraints, are clearly described using illustrative diagrams and formulations. The problems are mapped into a common group structure that can conveniently be used as an input scheme to spe...

  10. Implementation of Genetic Algorithm in Predicting Diabetes

    Directory of Open Access Journals (Sweden)

    S.Sapna

    2012-01-01

    Full Text Available Data Mining aims at discovering knowledge out of data and presenting it in a form that is easily compressible to humans. Data Mining represents a process developed to examine large amounts of data routinely collected. The term also refers to a collection of tools used to perform the process. One of the useful applications in the field of medicine is the incurable chronic disease diabetes. Data Mining algorithm is used for testing the accuracy in predicting diabetic status. Fuzzy Systems are been used for solving a wide range of problems in different application domain Genetic Algorithm for designing. Fuzzy systems allows in introducing the learning and adaptation capabilities. Neural Networks are efficiently used for learning membership functions. Diabetes occurs throughout the world, but Type 2 is more common in the most developed countries. The greater increase in prevalence is however expected in Asia and Africa where most patients will likely be found by 2030.

  11. Evolutionary algorithms in genetic regulatory networks model

    CERN Document Server

    Raza, Khalid

    2012-01-01

    Genetic Regulatory Networks (GRNs) plays a vital role in the understanding of complex biological processes. Modeling GRNs is significantly important in order to reveal fundamental cellular processes, examine gene functions and understanding their complex relationships. Understanding the interactions between genes gives rise to develop better method for drug discovery and diagnosis of the disease since many diseases are characterized by abnormal behaviour of the genes. In this paper we have reviewed various evolutionary algorithms-based approach for modeling GRNs and discussed various opportunities and challenges.

  12. The genetic algorithm for a signal enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Karimova, L. [Laboratory of Computer Modelling, Institute of Mathematics, Pushkin Street 125, 480100 Almaty (Kazakhstan)]. E-mail: karimova@math.kz; Kuadykov, E. [Laboratory of Computer Modelling, Institute of Mathematics, Pushkin Street 125, 480100 Almaty (Kazakhstan); Makarenko, N. [Laboratory of Computer Modelling, Institute of Mathematics, Pushkin Street 125, 480100 Almaty (Kazakhstan)

    2004-11-21

    The paper is devoted to the problem of time series enhancement, which is based on the analysis of local regularity. The model construction using this analysis does not require any a priori assumption on the structure of the noise and the functional relationship between original signal and noise. The signal itself may be nowhere differentiable with rapidly varying local regularity, what is overcome with the help of the new technique of increasing the local Hoelder regularity of the signal under research. A new signal with prescribed regularity is constructed using the genetic algorithm. This approach is applied to enhancement of time series in the paleoclimatology, solar physics, dendrochronology, meteorology and hydrology.

  13. Genetic Algorithm for Hierarchical Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sajid Hussain

    2007-09-01

    Full Text Available Large scale wireless sensor networks (WSNs can be used for various pervasive and ubiquitous applications such as security, health-care, industry automation, agriculture, environment and habitat monitoring. As hierarchical clusters can reduce the energy consumption requirements for WSNs, we investigate intelligent techniques for cluster formation and management. A genetic algorithm (GA is used to create energy efficient clusters for data dissemination in wireless sensor networks. The simulation results show that the proposed intelligent hierarchical clustering technique can extend the network lifetime for different network deployment environments.

  14. Genetic algorithms in computer aided inductor design

    Directory of Open Access Journals (Sweden)

    Jean Fivaz

    2004-09-01

    Full Text Available The goal of this investigation is to determine the advantages of using genetic algorithms in computer-aided design as applied to inductors.  These advantages are exploited in design problems with a number of specifications and constraints, as encountered in power electronics during practical inductor design. The design tool should be able to select components, such as cores and wires, from databases of available components, and evaluate these choices based on the components’ characteristic data read from a database of manufacturers’ data-sheets.  The proposed design must always be practically realizable, as close to the desired specifications as possible and within any specified constraints.

  15. Parallel Genetic Algorithm for Alpha Spectra Fitting

    Science.gov (United States)

    García-Orellana, Carlos J.; Rubio-Montero, Pilar; González-Velasco, Horacio

    2005-01-01

    We present a performance study of alpha-particle spectra fitting using parallel Genetic Algorithm (GA). The method uses a two-step approach. In the first step we run parallel GA to find an initial solution for the second step, in which we use Levenberg-Marquardt (LM) method for a precise final fit. GA is a high resources-demanding method, so we use a Beowulf cluster for parallel simulation. The relationship between simulation time (and parallel efficiency) and processors number is studied using several alpha spectra, with the aim of obtaining a method to estimate the optimal processors number that must be used in a simulation.

  16. Genetic Algorithms Principles Towards Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Nabil M. Hewahi

    2011-10-01

    Full Text Available In this paper we propose a general approach based on Genetic Algorithms (GAs to evolve Hidden Markov Models (HMM. The problem appears when experts assign probability values for HMM, they use only some limited inputs. The assigned probability values might not be accurate to serve in other cases related to the same domain. We introduce an approach based on GAs to find
    out the suitable probability values for the HMM to be mostly correct in more cases than what have been used to assign the probability values.

  17. The Integration of Cooperation Model and Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In the photogrammetry,some researchers have applied genetic algorithms in aerial image texture classification and reducing hyper-spectrum remote sensing data.Genetic algorithm can rapidly find the solutions which are close to the optimal solution.But it is not easy to find the optimal solution.In order to solve the problem,a cooperative evolution idea integrating genetic algorithm and ant colony algorithm is presented in this paper.On the basis of the advantages of ant colony algorithm,this paper proposes the method integrating genetic algorithms and ant colony algorithm to overcome the drawback of genetic algorithms.Moreover,the paper takes designing texture classification masks of aerial images as an example to illustrate the integration theory and procedures.

  18. Optimal Genetic View Selection Algorithm for Data Warehouse

    Institute of Scientific and Technical Information of China (English)

    Wang Ziqiang; Feng Boqin

    2005-01-01

    To efficiently solve the materialized view selection problem, an optimal genetic algorithm of how to select a set of views to be materialized is proposed so as to achieve both good query performance and low view maintenance cost under a storage space constraint. First, a pre-processing algorithm based on the maximum benefit per unit space is used to generate initial solutions. Then, the initial solutions are improved by the genetic algorithm having the mixture of optimal strategies. Furthermore, the generated infeasible solutions during the evolution process are repaired by loss function. The experimental results show that the proposed algorithm outperforms the heuristic algorithm and canonical genetic algorithm in finding optimal solutions.

  19. Modeling of genetic algorithms with a finite population

    NARCIS (Netherlands)

    Kemenade, C.H.M. van

    1997-01-01

    Cross-competition between non-overlapping building blocks can strongly influence the performance of evolutionary algorithms. The choice of the selection scheme can have a strong influence on the performance of a genetic algorithm. This paper describes a number of different genetic algorithms, all in

  20. Explicit filtering of building blocks for genetic algorithms

    NARCIS (Netherlands)

    C.H.M. van Kemenade

    1996-01-01

    textabstractGenetic algorithms are often applied to building block problems. We have developed a simple filtering algorithm that can locate building blocks within a bit-string, and does not make assumptions regarding the linkage of the bits. A comparison between the filtering algorithm and genetic

  1. Cognitive Radio — Genetic Algorithm Approach

    Science.gov (United States)

    Reddy, Y. B.

    2005-03-01

    Cognitive Radio (CR) is relatively a new technology, which intelligently detects a particular segment of the radio spectrum currently in use and selects unused spectrum quickly without interfering the transmission of authorized users. Cognitive Radios can learn about current use of spectrum in their operating area, make intelligent decisions, and react to immediate changes in the use of spectrum by other authorized users. The goal of CR technology is to relieve radio spectrum overcrowding, which actually translates to a lack of access to full radio spectrum utilization. Due to this adaptive behavior, the CR can easily avoid the interference of signals in a crowded radio frequency spectrum. In this research, we discuss the possible application of genetic algorithms (GA) to create a CR that can respond intelligently in changing and unanticipated circumstances and in the presence of hostile jammers and interferers. Genetic algorithms are problem solving techniques based on evolution and natural selection. GA models adapt Charles Darwin's evolutionary theory for analysis of data and interchanging design elements in hundreds of thousands of different combinations. Only the best-performing combinations are permitted to survive, and those combinations "reproduce" further, progressively yielding better and better results.

  2. Edge Crossing Minimization Algorithm for Hierarchical Graphs Based on Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We present an edge crossing minimization algorithm forhierarchical gr aphs based on genetic algorithms, and comparing it with some heuristic algorithm s. The proposed algorithm is more efficient and has the following advantages: th e frame of the algorithms is unified, the method is simple, and its implementati on and revision are easy.

  3. An improved genetic algorithm with dynamic topology

    Science.gov (United States)

    Cai, Kai-Quan; Tang, Yan-Wu; Zhang, Xue-Jun; Guan, Xiang-Min

    2016-12-01

    The genetic algorithm (GA) is a nature-inspired evolutionary algorithm to find optima in search space via the interaction of individuals. Recently, researchers demonstrated that the interaction topology plays an important role in information exchange among individuals of evolutionary algorithm. In this paper, we investigate the effect of different network topologies adopted to represent the interaction structures. It is found that GA with a high-density topology ends up more likely with an unsatisfactory solution, contrarily, a low-density topology can impede convergence. Consequently, we propose an improved GA with dynamic topology, named DT-GA, in which the topology structure varies dynamically along with the fitness evolution. Several experiments executed with 15 well-known test functions have illustrated that DT-GA outperforms other test GAs for making a balance of convergence speed and optimum quality. Our work may have implications in the combination of complex networks and computational intelligence. Project supported by the National Natural Science Foundation for Young Scientists of China (Grant No. 61401011), the National Key Technologies R & D Program of China (Grant No. 2015BAG15B01), and the National Natural Science Foundation of China (Grant No. U1533119).

  4. Order Reduction of Linear Interval Systems Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Dr. Rajendra Prasad

    2010-10-01

    Full Text Available This paper presents an algorithm for order reduction of higher order linear interval system into stable lower order linear interval system by means of Genetic algorithm. In this algorithm the numerator and denominator polynomials are determined by minimizing the Integral square error (ISE using genetic algorithm (GA. The algorithm is simple, rugged and computer oriented. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. A numerical example illustrates the proposed algorithm.

  5. WWW portal usage analysis using genetic algorithms

    Directory of Open Access Journals (Sweden)

    Ondřej Popelka

    2009-01-01

    Full Text Available The article proposes a new method suitable for advanced analysis of web portal visits. This is part of retrieving information and knowledge from web usage data (web usage mining. Such information is necessary in order to gain better insight into visitor’s needs and generally consumer behaviour. By le­ve­ra­ging this information a company can optimize the organization of its internet presentations and offer a better end-user experience. The proposed approach is using Grammatical evolution which is computational method based on genetic algorithms. Grammatical evolution is using a context-free grammar in order to generate the solution in arbitrary reusable form. This allows us to describe visitors’ behaviour in different manners depending on desired further processing. In this article we use description with a procedural programming language. Web server access log files are used as source data.The extraction of behaviour patterns can currently be solved using statistical analysis – specifically sequential analysis based methods. Our objective is to develop an alternative algorithm.The article further describes the basic algorithms of two-level grammatical evolution; this involves basic Grammatical Evolution and Differential Evolution, which forms the second phase of the computation. Grammatical evolution is used to generate the basic structure of the solution – in form of a part of application code. Differential evolution is used to find optimal parameters for this solution – the specific pages visited by a random visitor. The grammar used to conduct experiments is described along with explanations of the links to the actual implementation of the algorithm. Furthermore the fitness function is described and reasons which yield to its’ current shape. Finally the process of analyzing and filtering the raw input data is described as it is vital part in obtaining reasonable results.

  6. Training product unit neural networks with genetic algorithms

    Science.gov (United States)

    Janson, D. J.; Frenzel, J. F.; Thelen, D. C.

    1991-01-01

    The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.

  7. Improved Quantum Genetic Algorithm in Application of Scheduling Engineering Personnel

    OpenAIRE

    Huaixiao Wang; Ling Li; Jianyong Liu; Yong Wang; Chengqun Fu

    2014-01-01

    To verify the availability of the improved quantum genetic algorithm in solving the scheduling engineering personnel problem, the following work has been carried out: the characteristics of the scheduling engineering personnel problem are analyzed, the quantum encoding method is proposed, and an improved quantum genetic algorithm is applied to address the issue. Taking the low efficiency and the bad performance of the conventional quantum genetic algorithm into account, a universal improved q...

  8. Genetic algorithm and particle swarm optimization combined with Powell method

    Science.gov (United States)

    Bento, David; Pinho, Diana; Pereira, Ana I.; Lima, Rui

    2013-10-01

    In recent years, the population algorithms are becoming increasingly robust and easy to use, based on Darwin's Theory of Evolution, perform a search for the best solution around a population that will progress according to several generations. This paper present variants of hybrid genetic algorithm - Genetic Algorithm and a bio-inspired hybrid algorithm - Particle Swarm Optimization, both combined with the local method - Powell Method. The developed methods were tested with twelve test functions from unconstrained optimization context.

  9. Solving Hitchcock's transportation problem by a genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    CHEN Hai-feng; CHO Joong Rae; LEE Jeong.Tae

    2004-01-01

    Genetic algorithms (GAs) employ the evolutionary process of Darwin's nature selection theory to find the solutions of optimization problems. In this paper, an implementation of genetic algorithm is put forward to solve a classical transportation problem, namely the Hitchcock's Transportation Problem (HTP), and the GA is improved to search for all optimal solutions and identify them automatically. The algorithm is coded with C++ and validated by numerical examples. The computational results show that the algorithm is efficient for solving the Hitchcock's transportation problem.

  10. Solving the Dial-a-Ride Problem using Genetic algorithms

    DEFF Research Database (Denmark)

    Bergvinsdottir, Kristin Berg; Larsen, Jesper; Jørgensen, Rene Munk

    service level constraints (Quality of Service). In this paper we present a genetic algorithm for solving the DARP. The algorithm is based on the classical cluster-first route-second approach, where it alternates between assigning customers to vehicles using a genetic algorithm and solving independent...... routing problems for the vehicles using a routing heuristic. The algorithm is implemented in Java and tested on publicly available data sets....

  11. Solving the Dial-a-Ride Problem using Genetic algorithms

    DEFF Research Database (Denmark)

    Bergvinsdottir, Kristin Berg; Larsen, Jesper; Jørgensen, Rene Munk

    service level constraints (Quality of Service). In this paper we present a genetic algorithm for solving the DARP. The algorithm is based on the classical cluster-first route-second approach, where it alternates between assigning customers to vehicles using a genetic algorithm and solving independent...... routing problems for the vehicles using a routing heuristic. The algorithm is implemented in Java and tested on publicly available data sets....

  12. Using Genetic Algorithms for Building Metrics of Collaborative Systems

    Directory of Open Access Journals (Sweden)

    Cristian CIUREA

    2011-01-01

    Full Text Available he paper objective is to reveal the importance of genetic algorithms in building robust metrics of collaborative systems. The main types of collaborative systems in economy are presented and some characteristics of genetic algorithms are described. A genetic algorithm was implemented in order to determine the local maximum and minimum points of the relative complexity function associated to a collaborative banking system. The intelligent collaborative systems based on genetic algorithms, representing the new generation of collaborative systems, are analyzed and the implementation of auto-adaptive interfaces in a banking application is described.

  13. A Parallel Genetic Simulated Annealing Hybrid Algorithm for Task Scheduling

    Institute of Scientific and Technical Information of China (English)

    SHU Wanneng; ZHENG Shijue

    2006-01-01

    In this paper combined with the advantages of genetic algorithm and simulated annealing, brings forward a parallel genetic simulated annealing hybrid algorithm (PGSAHA) and applied to solve task scheduling problem in grid computing .It first generates a new group of individuals through genetic operation such as reproduction, crossover, mutation, etc, and than simulated anneals independently all the generated individuals respectively.When the temperature in the process of cooling no longer falls, the result is the optimal solution on the whole.From the analysis and experiment result, it is concluded that this algorithm is superior to genetic algorithm and simulated annealing.

  14. Optimization of PID Controllers Using Ant Colony and Genetic Algorithms

    CERN Document Server

    Ünal, Muhammet; Topuz, Vedat; Erdal, Hasan

    2013-01-01

    Artificial neural networks, genetic algorithms and the ant colony optimization algorithm have become a highly effective tool for solving hard optimization problems. As their popularity has increased, applications of these algorithms have grown in more than equal measure. While many of the books available on these subjects only provide a cursory discussion of theory, the present book gives special emphasis to the theoretical background that is behind these algorithms and their applications. Moreover, this book introduces a novel real time control algorithm, that uses genetic algorithm and ant colony optimization algorithms for optimizing PID controller parameters. In general, the present book represents a solid survey on artificial neural networks, genetic algorithms and the ant colony optimization algorithm and introduces novel practical elements related to the application of these methods to  process system control.

  15. A Comparison between Memetic algorithm and Genetic algorithm for the cryptanalysis of Simplified Data Encryption Standard algorithm

    CERN Document Server

    Garg, Poonam

    2010-01-01

    Genetic algorithms are a population-based Meta heuristics. They have been successfully applied to many optimization problems. However, premature convergence is an inherent characteristic of such classical genetic algorithms that makes them incapable of searching numerous solutions of the problem domain. A memetic algorithm is an extension of the traditional genetic algorithm. It uses a local search technique to reduce the likelihood of the premature convergence. The cryptanalysis of simplified data encryption standard can be formulated as NP-Hard combinatorial problem. In this paper, a comparison between memetic algorithm and genetic algorithm were made in order to investigate the performance for the cryptanalysis on simplified data encryption standard problems(SDES). The methods were tested and various experimental results show that memetic algorithm performs better than the genetic algorithms for such type of NP-Hard combinatorial problem. This paper represents our first effort toward efficient memetic algo...

  16. Integrating Genetic Algorithm, Tabu Search Approach for Job Shop Scheduling

    CERN Document Server

    Thamilselvan, R

    2009-01-01

    This paper presents a new algorithm based on integrating Genetic Algorithms and Tabu Search methods to solve the Job Shop Scheduling problem. The idea of the proposed algorithm is derived from Genetic Algorithms. Most of the scheduling problems require either exponential time or space to generate an optimal answer. Job Shop scheduling (JSS) is the general scheduling problem and it is a NP-complete problem, but it is difficult to find the optimal solution. This paper applies Genetic Algorithms and Tabu Search for Job Shop Scheduling problem and compares the results obtained by each. With the implementation of our approach the JSS problems reaches optimal solution and minimize the makespan.

  17. A genetic algorithm selection perturbative hyper-heuristic for solving ...

    African Journals Online (AJOL)

    http://dx.doi.org/10.5784/31-1-158. 39 ... in solving other combinatorial optimisation problems, this paper investigates the use of a genetic ...... [16] Goldberg D, 1989, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-.

  18. Genetic Algorithm Based Microscale Vehicle Emissions Modelling

    Directory of Open Access Journals (Sweden)

    Sicong Zhu

    2015-01-01

    Full Text Available There is a need to match emission estimations accuracy with the outputs of transport models. The overall error rate in long-term traffic forecasts resulting from strategic transport models is likely to be significant. Microsimulation models, whilst high-resolution in nature, may have similar measurement errors if they use the outputs of strategic models to obtain traffic demand predictions. At the microlevel, this paper discusses the limitations of existing emissions estimation approaches. Emission models for predicting emission pollutants other than CO2 are proposed. A genetic algorithm approach is adopted to select the predicting variables for the black box model. The approach is capable of solving combinatorial optimization problems. Overall, the emission prediction results reveal that the proposed new models outperform conventional equations in terms of accuracy and robustness.

  19. Anisotropic selection in cellular genetic algorithms

    CERN Document Server

    Simoncini, David; Collard, Philippe; Clergue, Manuel

    2008-01-01

    In this paper we introduce a new selection scheme in cellular genetic algorithms (cGAs). Anisotropic Selection (AS) promotes diversity and allows accurate control of the selective pressure. First we compare this new scheme with the classical rectangular grid shapes solution according to the selective pressure: we can obtain the same takeover time with the two techniques although the spreading of the best individual is different. We then give experimental results that show to what extent AS promotes the emergence of niches that support low coupling and high cohesion. Finally, using a cGA with anisotropic selection on a Quadratic Assignment Problem we show the existence of an anisotropic optimal value for which the best average performance is observed. Further work will focus on the selective pressure self-adjustment ability provided by this new selection scheme.

  20. ATM cash management using genetic algorithm

    Directory of Open Access Journals (Sweden)

    Ahmadreza Ghodrati

    2013-07-01

    Full Text Available Automatic teller machine (ATM is one of the most popular banking facilities to do daily financial transactions. People use ATM services to pay bills, transfer funds and withdraw cash. Therefore, we can treat ATM as a tradition inventory problem and use simulation technique to analysis the amount of cash required on different occasions such as regular days, holidays, etc. The proposed model of this paper uses genetic algorithm to determine the replenishment cash strategy for each ATM. The survey uses all transactions accomplished during the fiscal years of 2011-2012 on one of Iranian banks named Ayande. The study categorizes various ATM based on the average daily transactions into three groups of low, medium and high levels. The preliminary results of our survey indicate that it is possible to do setup different strategies to manage cash in various banks, optimally.

  1. A Genetic Algorithm-Based Feature Selection

    Directory of Open Access Journals (Sweden)

    Babatunde Oluleye

    2014-07-01

    Full Text Available This article details the exploration and application of Genetic Algorithm (GA for feature selection. Particularly a binary GA was used for dimensionality reduction to enhance the performance of the concerned classifiers. In this work, hundred (100 features were extracted from set of images found in the Flavia dataset (a publicly available dataset. The extracted features are Zernike Moments (ZM, Fourier Descriptors (FD, Lengendre Moments (LM, Hu 7 Moments (Hu7M, Texture Properties (TP and Geometrical Properties (GP. The main contributions of this article are (1 detailed documentation of the GA Toolbox in MATLAB and (2 the development of a GA-based feature selector using a novel fitness function (kNN-based classification error which enabled the GA to obtain a combinatorial set of feature giving rise to optimal accuracy. The results obtained were compared with various feature selectors from WEKA software and obtained better results in many ways than WEKA feature selectors in terms of classification accuracy

  2. Genetic Algorithm Approaches to Prebiobiotic Chemistry Modeling

    Science.gov (United States)

    Lohn, Jason; Colombano, Silvano

    1997-01-01

    We model an artificial chemistry comprised of interacting polymers by specifying two initial conditions: a distribution of polymers and a fixed set of reversible catalytic reactions. A genetic algorithm is used to find a set of reactions that exhibit a desired dynamical behavior. Such a technique is useful because it allows an investigator to determine whether a specific pattern of dynamics can be produced, and if it can, the reaction network found can be then analyzed. We present our results in the context of studying simplified chemical dynamics in theorized protocells - hypothesized precursors of the first living organisms. Our results show that given a small sample of plausible protocell reaction dynamics, catalytic reaction sets can be found. We present cases where this is not possible and also analyze the evolved reaction sets.

  3. PDE Nozzle Optimization Using a Genetic Algorithm

    Science.gov (United States)

    Billings, Dana; Turner, James E. (Technical Monitor)

    2000-01-01

    Genetic algorithms, which simulate evolution in natural systems, have been used to find solutions to optimization problems that seem intractable to standard approaches. In this study, the feasibility of using a GA to find an optimum, fixed profile nozzle for a pulse detonation engine (PDE) is demonstrated. The objective was to maximize impulse during the detonation wave passage and blow-down phases of operation. Impulse of each profile variant was obtained by using the CFD code Mozart/2.0 to simulate the transient flow. After 7 generations, the method has identified a nozzle profile that certainly is a candidate for optimum solution. The constraints on the generality of this possible solution remain to be clarified.

  4. Optimized dynamical decoupling via genetic algorithms

    Science.gov (United States)

    Quiroz, Gregory; Lidar, Daniel A.

    2013-11-01

    We utilize genetic algorithms aided by simulated annealing to find optimal dynamical decoupling (DD) sequences for a single-qubit system subjected to a general decoherence model under a variety of control pulse conditions. We focus on the case of sequences with equal pulse intervals and perform the optimization with respect to pulse type and order. In this manner, we obtain robust DD sequences, first in the limit of ideal pulses, then when including pulse imperfections such as finite-pulse duration and qubit rotation (flip-angle) errors. Although our optimization is numerical, we identify a deterministic structure that underlies the top-performing sequences. We use this structure to devise DD sequences which outperform previously designed concatenated DD (CDD) and quadratic DD (QDD) sequences in the presence of pulse errors. We explain our findings using time-dependent perturbation theory and provide a detailed scaling analysis of the optimal sequences.

  5. Optimized Dynamical Decoupling via Genetic Algorithms

    CERN Document Server

    Quiroz, Gregory

    2013-01-01

    We utilize genetic algorithms to find optimal dynamical decoupling (DD) sequences for a single-qubit system subjected to a general decoherence model under a variety of control pulse conditions. We focus on the case of sequences with equal pulse-intervals and perform the optimization with respect to pulse type and order. In this manner we obtain robust DD sequences, first in the limit of ideal pulses, then when including pulse imperfections such as finite pulse duration and qubit rotation (flip-angle) errors. Although our optimization is numerical, we identify a deterministic structure underlies the top-performing sequences. We use this structure to devise DD sequences which outperform previously designed concatenated DD (CDD) and quadratic DD (QDD) sequences in the presence of pulse errors. We explain our findings using time-dependent perturbation theory and provide a detailed scaling analysis of the optimal sequences.

  6. Warehouse Optimization Model Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Guofeng Qin

    2013-01-01

    Full Text Available This paper takes Bao Steel logistics automated warehouse system as an example. The premise is to maintain the focus of the shelf below half of the height of the shelf. As a result, the cost time of getting or putting goods on the shelf is reduced, and the distance of the same kind of goods is also reduced. Construct a multiobjective optimization model, using genetic algorithm to optimize problem. At last, we get a local optimal solution. Before optimization, the average cost time of getting or putting goods is 4.52996 s, and the average distance of the same kinds of goods is 2.35318 m. After optimization, the average cost time is 4.28859 s, and the average distance is 1.97366 m. After analysis, we can draw the conclusion that this model can improve the efficiency of cargo storage.

  7. DNA Technique, cryptography, bit exchange, Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Meenakshi Moza

    2016-07-01

    Full Text Available Internet reliability and performance is based mostly on the underlying routing protocols. The current traffic load has to be taken into account for computation of paths in routing protocols. Addressing the selection of path, from a known source to destination is the basic aim of this paper. Making use of multipoint crossover and mutation is done for optimum and when required alternate path determination. Network scenario which consists of nodes that are fixed and limited to the known size of topology, comprises the population size. This paper proposes a simple method of calculating the shortest path for a network using Genetic Algorithm (GA, which is capable of giving an efficient, dynamic and consistent solution in spite of, what topology, changes in link and node happen and volume of the network. GA is used in this paper for optimization of routing. It helps us in enhancing the performance of the routers.

  8. GAMPMS: Genetic algorithm managed peptide mutant screening.

    Science.gov (United States)

    Long, Thomas; McDougal, Owen M; Andersen, Tim

    2015-06-30

    The prominence of endogenous peptide ligands targeted to receptors makes peptides with the desired binding activity good molecular scaffolds for drug development. Minor modifications to a peptide's primary sequence can significantly alter its binding properties with a receptor, and screening collections of peptide mutants is a useful technique for probing the receptor-ligand binding domain. Unfortunately, the combinatorial growth of such collections can limit the number of mutations which can be explored using structure-based molecular docking techniques. Genetic algorithm managed peptide mutant screening (GAMPMS) uses a genetic algorithm to conduct a heuristic search of the peptide's mutation space for peptides with optimal binding activity, significantly reducing the computational requirements of the virtual screening. The GAMPMS procedure was implemented and used to explore the binding domain of the nicotinic acetylcholine receptor (nAChR) α3β2-isoform with a library of 64,000 α-conotoxin (α-CTx) MII peptide mutants. To assess GAMPMS's performance, it was compared with a virtual screening procedure that used AutoDock to predict the binding affinity of each of the α-CTx MII peptide mutants with the α3β2-nAChR. The GAMPMS implementation performed AutoDock simulations for as few as 1140 of the 64,000 α-CTx MII peptide mutants and could consistently identify a set of 10 peptides with an aggregated binding energy that was at least 98% of the aggregated binding energy of the 10 top peptides from the exhaustive AutoDock screening.

  9. Chemometrics: From classical to genetic algorithms

    Directory of Open Access Journals (Sweden)

    Leardi, Riccardo

    2002-03-01

    Full Text Available In this paper the fundamentals of Chemometrics are presented, by means of a quick overview of the most relevant techniques for data display, classification, modeling and calibration. Two emerging techniques such as Genetic Algorithms and Artificial Neural Networks will also be presented. Goal of the paper is to make people aware of the great superiority of multivariate analysis over the commonly used univariate approach. Mathematical and algorithmical details are not presented, since the paper is mainly focused on the general problems to which Chemometrics can be successfully applied in the field of Food Chemistry.En este artículo se muestran los aspectos fundamentales de la Quimiometria por medio de una revisión rápida de las técnicas más relevantes para mostrar los datos, modelar y calibrar. Se describen dos técnicas emergentes como los algoritmos genéticos y las redes neuronales. El objetivo del articulo es que la comunidad científica tome conciencia de la gran superioridad del análisis multivariante sobre el análisis univariante. No se describen los detalles matemáticos y algorítmicos porque el articulo está dirigido a problemas genéricos en los que la Quimiometría puede ser aplicada con éxito dentro del campo de la Química Analítica.

  10. Spacecraft Attitude Maneuver Planning Using Genetic Algorithms

    Science.gov (United States)

    Kornfeld, Richard P.

    2004-01-01

    A key enabling technology that leads to greater spacecraft autonomy is the capability to autonomously and optimally slew the spacecraft from and to different attitudes while operating under a number of celestial and dynamic constraints. The task of finding an attitude trajectory that meets all the constraints is a formidable one, in particular for orbiting or fly-by spacecraft where the constraints and initial and final conditions are of time-varying nature. This approach for attitude path planning makes full use of a priori constraint knowledge and is computationally tractable enough to be executed onboard a spacecraft. The approach is based on incorporating the constraints into a cost function and using a Genetic Algorithm to iteratively search for and optimize the solution. This results in a directed random search that explores a large part of the solution space while maintaining the knowledge of good solutions from iteration to iteration. A solution obtained this way may be used as is or as an initial solution to initialize additional deterministic optimization algorithms. A number of representative case examples for time-fixed and time-varying conditions yielded search times that are typically on the order of minutes, thus demonstrating the viability of this method. This approach is applicable to all deep space and planet Earth missions requiring greater spacecraft autonomy, and greatly facilitates navigation and science observation planning.

  11. A novel mating approach for genetic algorithms.

    Science.gov (United States)

    Galán, Severino F; Mengshoel, Ole J; Pinter, Rafael

    2013-01-01

    Genetic algorithms typically use crossover, which relies on mating a set of selected parents. As part of crossover, random mating is often carried out. A novel approach to parent mating is presented in this work. Our novel approach can be applied in combination with a traditional similarity-based criterion to measure distance between individuals or with a fitness-based criterion. We introduce a parameter called the mating index that allows different mating strategies to be developed within a uniform framework: an exploitative strategy called best-first, an explorative strategy called best-last, and an adaptive strategy called self-adaptive. Self-adaptive mating is defined in the context of the novel algorithm, and aims to achieve a balance between exploitation and exploration in a domain-independent manner. The present work formally defines the novel mating approach, analyzes its behavior, and conducts an extensive experimental study to quantitatively determine its benefits. In the domain of real function optimization, the experiments show that, as the degree of multimodality of the function at hand grows, increasing the mating index improves performance. In the case of the self-adaptive mating strategy, the experiments give strong results for several case studies.

  12. Dynamic airspace configuration by genetic algorithm

    Directory of Open Access Journals (Sweden)

    Marina Sergeeva

    2017-06-01

    Full Text Available With the continuous air traffic growth and limits of resources, there is a need for reducing the congestion of the airspace systems. Nowadays, several projects are launched, aimed at modernizing the global air transportation system and air traffic management. In recent years, special interest has been paid to the solution of the dynamic airspace configuration problem. Airspace sector configurations need to be dynamically adjusted to provide maximum efficiency and flexibility in response to changing weather and traffic conditions. The main objective of this work is to automatically adapt the airspace configurations according to the evolution of traffic. In order to reach this objective, the airspace is considered to be divided into predefined 3D airspace blocks which have to be grouped or ungrouped depending on the traffic situation. The airspace structure is represented as a graph and each airspace configuration is created using a graph partitioning technique. We optimize airspace configurations using a genetic algorithm. The developed algorithm generates a sequence of sector configurations for one day of operation with the minimized controller workload. The overall methodology is implemented and successfully tested with air traffic data taken for one day and for several different airspace control areas of Europe.

  13. A hybrid genetic algorithm to optimize simple distillation column sequences

    Institute of Scientific and Technical Information of China (English)

    GAN YongSheng; Andreas Linninger

    2004-01-01

    Based on the principles of Genetic Algorithms (GAs), a hybrid genetic algorithm used to optimize simple distillation column sequences was established. A new data structure, a novel arithmetic crossover operator and a dynamic mutation operator were proposed. Together with the feasibility test of distillation columns, they are capable to obtain the optimum simple column sequence at one time without the limitation of the number of mixture components, ideal or non-ideal mixtures and sloppy or sharp splits. Compared with conventional algorithms, this hybrid genetic algorithm avoids solving complicated nonlinear equations and demands less derivative information and computation time. Result comparison between this genetic algorithm and Underwood method and Doherty method shows that this hybrid genetic algorithm is reliable.

  14. Double Exchange Genetic Algorithm for the Synthesis of Linear Array

    Directory of Open Access Journals (Sweden)

    Zhang Jian-Hua

    2012-01-01

    Full Text Available The development of Synthesis of Linear array put forward higher request for complex optimization solutions. This article improves the basic genetic algorithm according to the traditional genetic algorithm easily prematuring convergence and later evolution slow convergence shortcoming. And then, adopt double exchange operator in reproductive strategies and implement dynamic mutation rate in variation operations. Combined characteristics of guarantee to the population diversity based on fitness shared niche while iteration times exponential diminishing, this article creats niche double exchangegenetic algorithm, and applies in pattern synthesis of homogeneous linear array, and simulates multi-objective complex array problem. The result turns out much better in effectively preventing premature and improving the searching efficiency of genetic algorithm than original genetic algorithm and immune genetic algorithm, what will achieve the broad prospect in the antenna array comprehensive field.

  15. OPTIMIZATION BASED ON LMPROVED REAL—CODED GENETIC ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    ShiYu; YuShenglin

    2002-01-01

    An improved real-coded genetic algorithm is pro-posed for global optimization of functionsl.The new algo-rithm is based om the judgement of the searching perfor-mance of basic real-coded genetic algorithm.The opera-tions of basic real-coded genetic algorithm are briefly dis-cussed and selected.A kind of chaos sequence is described in detail and added in the new algorithm ad a disturbance factor.The strategy of field partition is also used to im-prove the strcture of the new algorithm.Numerical ex-periment shows that the mew genetic algorithm can find the global optimum of complex funtions with satistaiting precision.

  16. An Improved Genetic Algorithm with Quasi-Gradient Crossover

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ling Zhang; Li Du; Guang-Wei Zhang; Qiang Miao; Zhong-Lai Wang

    2008-01-01

    The convergence of genetic algorithm is mainly determined by its core operation crossover operation. When the objective function is a multiple hump function, traditional genetic algorithms are easily trapped into local optimum, which is called premature conver gence. In this paper, we propose a new genetic algorithm with improved arithmetic crossover operation based on gradient method. This crossover operation can generate offspring along quasi-gradient direction which is the Steepest descent direction of the value of objective function. The selection operator is also simplified, every individual in the population is given an opportunity to get evolution to avoid complicated selection algorithm. The adaptive mutation operator and the elitist strategy are also applied in this algorithm. The case 4 indicates this algorithm can faster converge to the global optimum and is more stable than the conventional genetic algorithms.

  17. Hybrid Genetic Algorithm with PSO Effect for Combinatorial Optimisation Problems

    Directory of Open Access Journals (Sweden)

    M. H. Mehta

    2012-12-01

    Full Text Available In engineering field, many problems are hard to solve in some definite interval of time. These problems known as “combinatorial optimisation problems” are of the category NP. These problems are easy to solve in some polynomial time when input size is small but as input size grows problems become toughest to solve in some definite interval of time. Long known conventional methods are not able to solve the problems and thus proper heuristics is necessary. Evolutionary algorithms based on behaviours of different animals and species have been invented and studied for this purpose. Genetic Algorithm is considered a powerful algorithm for solving combinatorial optimisation problems. Genetic algorithms work on these problems mimicking the human genetics. It follows principle of “survival of the fittest” kind of strategy. Particle swarm optimisation is a new evolutionary approach that copies behaviour of swarm in nature. However, neither traditional genetic algorithms nor particle swarm optimisation alone has been completely successful for solving combinatorial optimisation problems. Here a hybrid algorithm is proposed in which strengths of both algorithms are merged and performance of proposed algorithm is compared with simple genetic algorithm. Results show that proposed algorithm works definitely better than the simple genetic algorithm.

  18. Niching genetic algorithms for optimization in electromagnetics - I. Fundamentals

    OpenAIRE

    Sareni, Bruno; Krähenbühl, Laurent; Nicolas, Alain

    1998-01-01

    Niching methods extend genetic algorithms and permit the investigation of multiple optimal solutions in the search space. In this paper, we review and discuss various strategies of niching for optimization in electromagnetics. Traditional mathematical problems and an electromagnetic benchmark are solved using niching genetic algorithms to show their interest in real world optimization.

  19. Application of a Genetic Algorithm to Nearest Neighbour Classification

    NARCIS (Netherlands)

    Simkin, S.; Verwaart, D.; Vrolijk, H.C.J.

    2005-01-01

    This paper describes the application of a genetic algorithm to nearest-neighbour based imputation of sample data into a census data dataset. The genetic algorithm optimises the selection and weights of variables used for measuring distance. The results show that the measure of fit can be improved by

  20. Semiclassical genetic algorithm with quantum crossover and mutation operations

    CERN Document Server

    SaiToh, Akira; Nakahara, Mikio

    2012-01-01

    In order for finding a good individual for a given fitness function in the context of evolutionary computing, we introduce a novel semiclassical quantum genetic algorithm. It has both of quantum crossover and quantum mutation procedures unlike conventional quantum genetic algorithms. A complexity analysis shows a certain improvement over its classical counterpart.

  1. FEATURE SELECTION USING GENETIC ALGORITHMS FOR HANDWRITTEN CHARACTER RECOGNITION

    NARCIS (Netherlands)

    Kim, G.; Kim, S.

    2004-01-01

    A feature selection method using genetic algorithms which are suitable means for selecting appropriate set of features from ones with huge dimension is proposed. SGA (Simple Genetic Algorithm) and its modified methods are applied to improve the recognition speed as well as the recognition accuracy.

  2. Genetic Algorithms in Dynamical Systems Optimisation and Adaptation

    NARCIS (Netherlands)

    Reus, N.M. de; Visser, E.K.; Bruggeman, B.

    1998-01-01

    Both in the design of dynamical systems, ranging from control systems to state estimators as in the adaptation of these systems the use of genetic algorithms is worth studying. This paper presents some approaches for using genetic algorithms in dynamical systems. The layouts and specific uses are di

  3. On the runtime analysis of the Simple Genetic Algorithm

    DEFF Research Database (Denmark)

    Oliveto, Pietro S.; Witt, Carsten

    2014-01-01

    For many years it has been a challenge to analyze the time complexity of Genetic Algorithms (GAs) using stochastic selection together with crossover and mutation. This paper presents a rigorous runtime analysis of the well-known Simple Genetic Algorithm (SGA) for OneMax. It is proved that the SGA...

  4. A Test of Genetic Algorithms in Relevance Feedback.

    Science.gov (United States)

    Lopez-Pujalte, Cristina; Guerrero Bote, Vicente P.; Moya Anegon, Felix de

    2002-01-01

    Discussion of information retrieval, query optimization techniques, and relevance feedback focuses on genetic algorithms, which are derived from artificial intelligence techniques. Describes an evaluation of different genetic algorithms using a residual collection method and compares results with the Ide dec-hi method (Salton and Buckley, 1990…

  5. On the Analysis of the Simple Genetic Algorithm

    DEFF Research Database (Denmark)

    Oliveto, Pietro S.; Witt, Carsten

    2012-01-01

    For many years it has been a challenge to analyze the time complexity of Genetic Algorithms (GAs) using stochastic selection together with crossover and mutation. This paper presents a rigorous runtime analysis of the well-known Simple Genetic Algorithm (SGA) for OneMax. It is proved that the SGA...

  6. Modeling of genetic algorithms with a finite population

    NARCIS (Netherlands)

    C.H.M. van Kemenade

    1997-01-01

    textabstractCross-competition between non-overlapping building blocks can strongly influence the performance of evolutionary algorithms. The choice of the selection scheme can have a strong influence on the performance of a genetic algorithm. This paper describes a number of different genetic

  7. Genetic algorithms principles and perspectives : a guide to GA theory

    CERN Document Server

    Reeves, Colin R; Reeves, Colin R

    2002-01-01

    Genetic Algorithms (GAs) have become a highly effective tool for solving hard optimization problems. This text provides a survey of some important theoretical contributions, many of which have been proposed and developed in the Foundations of Genetic Algorithms series of workshops.

  8. Selfish Gene Algorithm Vs Genetic Algorithm: A Review

    Science.gov (United States)

    Ariff, Norharyati Md; Khalid, Noor Elaiza Abdul; Hashim, Rathiah; Noor, Noorhayati Mohamed

    2016-11-01

    Evolutionary algorithm is one of the algorithms inspired by the nature. Within little more than a decade hundreds of papers have reported successful applications of EAs. In this paper, the Selfish Gene Algorithms (SFGA), as one of the latest evolutionary algorithms (EAs) inspired from the Selfish Gene Theory which is an interpretation of Darwinian Theory ideas from the biologist Richards Dawkins on 1989. In this paper, following a brief introduction to the Selfish Gene Algorithm (SFGA), the chronology of its evolution is presented. It is the purpose of this paper is to present an overview of the concepts of Selfish Gene Algorithm (SFGA) as well as its opportunities and challenges. Accordingly, the history, step involves in the algorithm are discussed and its different applications together with an analysis of these applications are evaluated.

  9. Topology control based on quantum genetic algorithm in sensor networks

    Institute of Scientific and Technical Information of China (English)

    SUN Lijuan; GUO Jian; LU Kai; WANG Ruchuan

    2007-01-01

    Nowadays,two trends appear in the application of sensor networks in which both multi-service and quality of service (QoS)are supported.In terms of the goal of low energy consumption and high connectivity,the control on topology is crucial.The algorithm of topology control based on quantum genetic algorithm in sensor networks is proposed.An advantage of the quantum genetic algorithm over the conventional genetic algorithm is demonstrated in simulation experiments.The goals of high connectivity and low consumption of energy are reached.

  10. Global annealing genetic algorithm and its convergence analysis

    Institute of Scientific and Technical Information of China (English)

    张讲社; 徐宗本; 梁怡

    1997-01-01

    A new selection mechanism termed global annealing selection (GAnS) is proposed for the genetic algorithm. It is proved that the GAnS genetic algorithm converges to the global optimums if and only if the parents are allowed to compete for reproduction, and that the variance of population’s fitness can be used as a natural stopping criterion. Numerical simulations show that the new algorithm has stronger ability to escape from local maximum and converges more rapidly than canonical genetic algorithm.

  11. Using Genetic Algorithms in Secured Business Intelligence Mobile Applications

    Directory of Open Access Journals (Sweden)

    Silvia TRIF

    2011-01-01

    Full Text Available The paper aims to assess the use of genetic algorithms for training neural networks used in secured Business Intelligence Mobile Applications. A comparison is made between classic back-propagation method and a genetic algorithm based training. The design of these algorithms is presented. A comparative study is realized for determining the better way of training neural networks, from the point of view of time and memory usage. The results show that genetic algorithms based training offer better performance and memory usage than back-propagation and they are fit to be implemented on mobile devices.

  12. Solving Hub Network Problem Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Mursyid Hasan Basri

    2012-01-01

    non-linearity, so there is no guarantee to find the optimal solution. Moreover, it has generated a great number of variables. Therefore, a heuristic method is required to find near optimal solution with reasonable computation time. For this reason, a genetic algorithm (GA-based procedure is proposed. The proposed procedure then is applied to the same problem as discussed in the basic model. The results indicated that there is significant improvement on hub locations. Flows are successfully consolidated to several big ports as expected. With regards to spoke allocations, however, spokes are not fairly allocated.Keywords: Hub and Spoke Model; Marine Transportation; Genetic Algorithm

  13. Solving Hub Network Problem Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Mursyid Hasan Basri

    2012-01-01

    non-linearity, so there is no guarantee to find the optimal solution. Moreover, it has generated a great number of variables. Therefore, a heuristic method is required to find near optimal solution with reasonable computation time. For this reason, a genetic algorithm (GA-based procedure is proposed. The proposed procedure then is applied to the same problem as discussed in the basic model. The results indicated that there is significant improvement on hub locations. Flows are successfully consolidated to several big ports as expected. With regards to spoke allocations, however, spokes are not fairly allocated.Keywords: Hub and Spoke Model; Marine Transportation; Genetic Algorithm

  14. Genetic Algorithm Based Proportional Integral Controller Design for Induction Motor

    Directory of Open Access Journals (Sweden)

    Mohanasundaram Kuppusamy

    2011-01-01

    Full Text Available Problem statement: This study has expounded the application of evolutionary computation method namely Genetic Algorithm (GA for estimation of feedback controller parameters for induction motor. GA offers certain advantages such as simple computational steps, derivative free optimization, reduced number of iterations and assured near global optima. The development of the method is well documented and computed and measured results are presented. Approach: The design of PI controller parameter for three phase induction motor drives was done using Genetic Algorithm. The objective function of motor current reduction, using PI controller, at starting is formulated as an optimization problem and solved with Genetic Algorithm. Results: The results showed the selected values of PI controller parameter using genetic algorithm approach, with objective of induction motor starting current reduction. Conclusions/Recommendation: The results proved the robustness and easy implementation of genetic algorithm selection of PI parameters for induction motor starting.

  15. Efficient Genetic Algorithm sets for optimizing constrained building design problem

    National Research Council Canada - National Science Library

    Wright, Jonathan; Alajmi, Ali

    2016-01-01

    .... This requires trying large possible solutions which need heuristic optimization algorithms. A comparison between several heuristic optimization algorithms showed that Genetic Algorithm (GA) is robust on getting the optimum(s) simulation ( Wetter and Wright, 2004; Brownlee et al., 2011; Bichiou and Krarti, 2011; Sahu et al., 2012 ) while the building simulat...

  16. Seasonal Time Series Analysis Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Pattern discovery from the seasonal time-series is of importance. Traditionally, most of the algorithms of pattern discovery in time series are similar. A novel mode of time series is proposed which integrates the Genetic Algorithm (GA) for the actual problem. The experiments on the electric power yield sequence models show that this algorithm is practicable and effective.

  17. New Iris Localization Method Based on Chaos Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    Jia Dongli; Muhammad Khurram Khan; Zhang Jiashu

    2005-01-01

    This paper present a new method based on Chaos Genetic Algorithm (CGA) to localize the human iris in a given image. First, the iris image is preprocessed to estimate the range of the iris localization, and then CGA is used to extract the boundary of the iris. Simulation results show that the proposed algorithms is efficient and robust, and can achieve sub pixel precision. Because Genetic Algorithms (GAs) can search in a large space, the algorithm does not need accurate estimation of iris center for subsequent localization, and hence can lower the requirement for original iris image processing. On this point, the present localization algirithm is superior to Daugmans algorithm.

  18. Transonic Wing Shape Optimization Using a Genetic Algorithm

    Science.gov (United States)

    Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A method for aerodynamic shape optimization based on a genetic algorithm approach is demonstrated. The algorithm is coupled with a transonic full potential flow solver and is used to optimize the flow about transonic wings including multi-objective solutions that lead to the generation of pareto fronts. The results indicate that the genetic algorithm is easy to implement, flexible in application and extremely reliable.

  19. Higher-Order Quantum-Inspired Genetic Algorithms

    OpenAIRE

    Nowotniak, Robert; Kucharski, Jacek

    2014-01-01

    This paper presents a theory and an empirical evaluation of Higher-Order Quantum-Inspired Genetic Algorithms. Fundamental notions of the theory have been introduced, and a novel Order-2 Quantum-Inspired Genetic Algorithm (QIGA2) has been presented. Contrary to all QIGA algorithms which represent quantum genes as independent qubits, in higher-order QIGAs quantum registers are used to represent genes strings which allows modelling of genes relations using quantum phenomena. Performance comparis...

  20. Advanced optimization of permanent magnet wigglers using a genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Hajima, Ryoichi [Univ. of Tokyo (Japan)

    1995-12-31

    In permanent magnet wigglers, magnetic imperfection of each magnet piece causes field error. This field error can be reduced or compensated by sorting magnet pieces in proper order. We showed a genetic algorithm has good property for this sorting scheme. In this paper, this optimization scheme is applied to the case of permanent magnets which have errors in the direction of field. The result shows the genetic algorithm is superior to other algorithms.

  1. A Hybrid Algorithm for Satellite Data Transmission Schedule Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    LI Yun-feng; WU Xiao-yue

    2008-01-01

    A hybrid scheduling algorithm based on genetic algorithm is proposed in this paper for reconnaissance satellite data transmission. At first, based on description of satellite data transmission request, satellite data transmission task modal and satellite data transmission scheduling problem model are established. Secondly, the conflicts in scheduling are discussed. According to the meaning of possible conflict, the method to divide possible conflict task set is given. Thirdly, a hybrid algorithm which consists of genetic algorithm and heuristic information is presented. The heuristic information comes from two concepts, conflict degree and conflict number. Finally, an example shows the algorithm's feasibility and performance better than other traditional algorithms.

  2. Genetic algorithm-based wide-band deterministic maximum likelihood direction finding algorithm

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The wide-band direction finding is one of hit and difficult task in array signal processing. This paper generalizes narrow-band deterministic maximum likelihood direction finding algorithm to the wideband case, and so constructions an object function, then utilizes genetic algorithm for nonlinear global optimization. Direction of arrival is estimated without preprocessing of array data and so the algorithm eliminates the effect of pre-estimate on the final estimation. The algorithm is applied on uniform linear array and extensive simulation results prove the efficacy of the algorithm. In the process of simulation, we obtain the relation between estimation error and parameters of genetic algorithm.

  3. Investigation of Web Mining Optimization Using Microbial Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Dipali Tungar

    2014-02-01

    Full Text Available In today's modern internet era peopleneed searching on the web and finding relevant information on the web to be efficient and fast. But traditional search engines like Google suppose to be more intelligent, still use the traditional crawling algorithms to find data relevant to the search query. But most of the times it returns irrelevant data as well which becomes confusing for the user. In a normal XML data the user inputs the search query in terms of a keyword or a question and the answer to the search query should be more precise and more relevant. So, using the traditional crawling algorithms over XML data would lead to irrelevant results. Genetic algorithms are the modern algorithms which replicates the Darwinian theory of the natural evolution. The genetic algorithms are best suited for the traditional search problem as the genetic algorithms always tend to return quality as solution for any domain data. It would be a good approach to investigate how the genetic algorithms would be suitable for the search over the XML data of different domains. So, this system implements a steady state tournament selection Microbial Genetic Algorithm over the XML data of the different domains. This would be an investigation of how the genetic algorithm would return accurate results over XML data of different domains.

  4. Genetic Algorithms for Satellite Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Fatos Xhafa

    2012-01-01

    Full Text Available Recently there has been a growing interest in mission operations scheduling problem. The problem, in a variety of formulations, arises in management of satellite/space missions requiring efficient allocation of user requests to make possible the communication between operations teams and spacecraft systems. Not only large space agencies, such as ESA (European Space Agency and NASA, but also smaller research institutions and universities can establish nowadays their satellite mission, and thus need intelligent systems to automate the allocation of ground station services to space missions. In this paper, we present some relevant formulations of the satellite scheduling viewed as a family of problems and identify various forms of optimization objectives. The main complexities, due highly constrained nature, windows accessibility and visibility, multi-objectives and conflicting objectives are examined. Then, we discuss the resolution of the problem through different heuristic methods. In particular, we focus on the version of ground station scheduling, for which we present computational results obtained with Genetic Algorithms using the STK simulation toolkit.

  5. Lunar Habitat Optimization Using Genetic Algorithms

    Science.gov (United States)

    SanScoucie, M. P.; Hull, P. V.; Tinker, M. L.; Dozier, G. V.

    2007-01-01

    Long-duration surface missions to the Moon and Mars will require bases to accommodate habitats for the astronauts. Transporting the materials and equipment required to build the necessary habitats is costly and difficult. The materials chosen for the habitat walls play a direct role in protection against each of the mentioned hazards. Choosing the best materials, their configuration, and the amount required is extremely difficult due to the immense size of the design region. Clearly, an optimization method is warranted for habitat wall design. Standard optimization techniques are not suitable for problems with such large search spaces; therefore, a habitat wall design tool utilizing genetic algorithms (GAs) has been developed. GAs use a "survival of the fittest" philosophy where the most fit individuals are more likely to survive and reproduce. This habitat design optimization tool is a multiobjective formulation of up-mass, heat loss, structural analysis, meteoroid impact protection, and radiation protection. This Technical Publication presents the research and development of this tool as well as a technique for finding the optimal GA search parameters.

  6. Closed Loop System Identification with Genetic Algorithms

    Science.gov (United States)

    Whorton, Mark S.

    2004-01-01

    High performance control design for a flexible space structure is challenging since high fidelity plant models are di.cult to obtain a priori. Uncertainty in the control design models typically require a very robust, low performance control design which must be tuned on-orbit to achieve the required performance. Closed loop system identi.cation is often required to obtain a multivariable open loop plant model based on closed-loop response data. In order to provide an accurate initial plant model to guarantee convergence for standard local optimization methods, this paper presents a global parameter optimization method using genetic algorithms. A minimal representation of the state space dynamics is employed to mitigate the non-uniqueness and over-parameterization of general state space realizations. This control-relevant system identi.cation procedure stresses the joint nature of the system identi.cation and control design problem by seeking to obtain a model that minimizes the di.erence between the predicted and actual closed-loop performance.

  7. OPC recipe optimization using genetic algorithm

    Science.gov (United States)

    Asthana, Abhishek; Wilkinson, Bill; Power, Dave

    2016-03-01

    Optimization of OPC recipes is not trivial due to multiple parameters that need tuning and their correlation. Usually, no standard methodologies exist for choosing the initial recipe settings, and in the keyword development phase, parameters are chosen either based on previous learning, vendor recommendations, or to resolve specific problems on particular special constructs. Such approaches fail to holistically quantify the effects of parameters on other or possible new designs, and to an extent are based on the keyword developer's intuition. In addition, when a quick fix is needed for a new design, numerous customization statements are added to the recipe, which make it more complex. The present work demonstrates the application of Genetic Algorithm (GA) technique for optimizing OPC recipes. GA is a search technique that mimics Darwinian natural selection and has applications in various science and engineering disciplines. In this case, GA search heuristic is applied to two problems: (a) an overall OPC recipe optimization with respect to selected parameters and, (b) application of GA to improve printing and via coverage at line end geometries. As will be demonstrated, the optimized recipe significantly reduced the number of ORC violations for case (a). For case (b) line end for various features showed significant printing and filling improvement.

  8. Robot path planning using a genetic algorithm

    Science.gov (United States)

    Cleghorn, Timothy F.; Baffes, Paul T.; Wang, Liu

    1988-01-01

    Robot path planning can refer either to a mobile vehicle such as a Mars Rover, or to an end effector on an arm moving through a cluttered workspace. In both instances there may exist many solutions, some of which are better than others, either in terms of distance traversed, energy expended, or joint angle or reach capabilities. A path planning program has been developed based upon a genetic algorithm. This program assumes global knowledge of the terrain or workspace, and provides a family of good paths between the initial and final points. Initially, a set of valid random paths are constructed. Successive generations of valid paths are obtained using one of several possible reproduction strategies similar to those found in biological communities. A fitness function is defined to describe the goodness of the path, in this case including length, slope, and obstacle avoidance considerations. It was found that with some reproduction strategies, the average value of the fitness function improved for successive generations, and that by saving the best paths of each generation, one could quite rapidly obtain a collection of good candidate solutions.

  9. Web Based Genetic Algorithm Using Data Mining

    Directory of Open Access Journals (Sweden)

    Ashiqur Rahman

    2016-09-01

    Full Text Available This paper presents an approach for classifying students in order to predict their final grade based on features extracted from logged data in an education web-based system. A combination of multiple classifiers leads to a significant improvement in classification performance. Through weighting the feature vectors using a Genetic Algorithm we can optimize the prediction accuracy and get a marked improvement over raw classification. It further shows that when the number of features is few; feature weighting is works better than just feature selection. Many leading educational institutions are working to establish an online teaching and learning presence. Several systems with different capabilities and approaches have been developed to deliver online education in an academic setting. In particular, Michigan State University (MSU has pioneered some of these systems to provide an infrastructure for online instruction. The research presented here was performed on a part of the latest online educational system developed at MSU, the Learning Online Network with Computer-Assisted Personalized Approach (LON-CAPA

  10. Multiobjective Genetic Algorithm applied to dengue control.

    Science.gov (United States)

    Florentino, Helenice O; Cantane, Daniela R; Santos, Fernando L P; Bannwart, Bettina F

    2014-12-01

    Dengue fever is an infectious disease caused by a virus of the Flaviridae family and transmitted to the person by a mosquito of the genus Aedes aegypti. This disease has been a global public health problem because a single mosquito can infect up to 300 people and between 50 and 100 million people are infected annually on all continents. Thus, dengue fever is currently a subject of research, whether in the search for vaccines and treatments for the disease or efficient and economical forms of mosquito control. The current study aims to study techniques of multiobjective optimization to assist in solving problems involving the control of the mosquito that transmits dengue fever. The population dynamics of the mosquito is studied in order to understand the epidemic phenomenon and suggest strategies of multiobjective programming for mosquito control. A Multiobjective Genetic Algorithm (MGA_DENGUE) is proposed to solve the optimization model treated here and we discuss the computational results obtained from the application of this technique.

  11. Application of Genetic Algorithm in the Layout of Fixture Components

    Institute of Scientific and Technical Information of China (English)

    焦黎; 孙厚芳

    2003-01-01

    Automation in the layout of fixture components is important to achieve efficiency and flexibility in computer aided fixture design. Based on basic genetic algorithm and particulars of different fixture components, a method of layout space division is presented. Such techniques as suitable crossover rate, mutation rate and selection arithmetic element are adopted in the genetic operation. The results show that genetic algorithm can effectively be applied in the automatic layout of fixture components.

  12. Key Frames Extraction Based on the Improved Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHOU Dong-sheng; JIANG Wei; YI Peng-fei; LIURui

    2014-01-01

    In order toovercomethe poor local search ability of genetic algorithm, resulting in the basic genetic algorithm is time-consuming, and low search abilityin the late evolutionary, we use thegray coding instead ofbinary codingatthebeginning of the coding;we use multi-point crossoverto replace the originalsingle-point crossoveroperation.Finally, theexperimentshows that the improved genetic algorithmnot only has a strong search capability, but also thestability has been effectively improved.

  13. Coordinating Exploration and Exploitation To Construct Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    江瑞; 罗予频; 胡东成; 司徒国业

    2002-01-01

    A new genetic algorithm is proposed based on the careful coordination of the exploration in the solution space of the given problem and the exploitation of the information from the previous search. In the new algorithm architecture, the population in each generation consists of three sub-populations: a preserved part, a reproduced part, and a randomized part. Two parameters are incorporated into the algorithm to efficiently control the percentage of each sub-population to achieve good balance between the exploration and exploitation processes during the optimization. By modeling the algorithm as a homogeneous finite Markov chain, the new genetic algorithm is shown to converge towards the global optimum of the problem at hand. Experiments were designed to test the algorithm using the Rastrigin function, the Griewangk function, and the Schaffer function. Data analyses using the average success ratio, the average objective calculating number, the average first passage time to solution, and the standard deviation of the first passage time were compared with those of the canonical genetic algorithm, the elitist genetic algorithm, and the steady genetic algorithm. The results show strong evidence that our algorithm is superior in performance in terms of economy, robustness and efficiency.

  14. A genetic algorithm for solving supply chain network design model

    Science.gov (United States)

    Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.

    2013-09-01

    Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.

  15. Mobile robot dynamic path planning based on improved genetic algorithm

    Science.gov (United States)

    Wang, Yong; Zhou, Heng; Wang, Ying

    2017-08-01

    In dynamic unknown environment, the dynamic path planning of mobile robots is a difficult problem. In this paper, a dynamic path planning method based on genetic algorithm is proposed, and a reward value model is designed to estimate the probability of dynamic obstacles on the path, and the reward value function is applied to the genetic algorithm. Unique coding techniques reduce the computational complexity of the algorithm. The fitness function of the genetic algorithm fully considers three factors: the security of the path, the shortest distance of the path and the reward value of the path. The simulation results show that the proposed genetic algorithm is efficient in all kinds of complex dynamic environments.

  16. A Software Pattern of the Genetic Algorithm -a Study on Reusable Object Model of Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Genetic Algorithm (GA) has been a pop research field, butthere is little concern on GA in view of Software Engineering and this result in a serie s of problems. In this paper, we extract a GA's software pattern, draw a model d iagram of the reusable objects, analyze the advantages and disadvantages of the pattern, and give a sample code at the end. We are then able to improve the reus ability and expansibility of GA. The results make it easier to program a new GA code by using some existing successful operators, thereby reducing the difficult ies and workload of programming a GA's code, and facilitate the GA application.

  17. An adaptive genetic algorithm for solving bilevel linear programming problem

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Bilevel linear programming, which consists of the objective functions of the upper level and lower level, is a useful tool for modeling decentralized decision problems.Various methods are proposed for solving this problem. Of all the algorithms, the genetic algorithm is an alternative to conventional approaches to find the solution of the bilevel linear programming. In this paper, we describe an adaptive genetic algorithm for solving the bilevel linear programming problem to overcome the difficulty of determining the probabilities of crossover and mutation. In addition, some techniques are adopted not only to deal with the difficulty that most of the chromosomes may be infeasible in solving constrained optimization problem with genetic algorithm but also to improve the efficiency of the algorithm. The performance of this proposed algorithm is illustrated by the examples from references.

  18. Restart-Based Genetic Algorithm for the Quadratic Assignment Problem

    Science.gov (United States)

    Misevicius, Alfonsas

    The power of genetic algorithms (GAs) has been demonstrated for various domains of the computer science, including combinatorial optimization. In this paper, we propose a new conceptual modification of the genetic algorithm entitled a "restart-based genetic algorithm" (RGA). An effective implementation of RGA for a well-known combinatorial optimization problem, the quadratic assignment problem (QAP), is discussed. The results obtained from the computational experiments on the QAP instances from the publicly available library QAPLIB show excellent performance of RGA. This is especially true for the real-life like QAPs.

  19. A NEW GENETIC SIMULATED ANNEALING ALGORITHM FOR FLOOD ROUTING MODEL

    Institute of Scientific and Technical Information of China (English)

    KANG Ling; WANG Cheng; JIANG Tie-bing

    2004-01-01

    In this paper, a new approach, the Genetic Simulated Annealing (GSA), was proposed for optimizing the parameters in the Muskingum routing model. By integrating the simulated annealing method into the genetic algorithm, the hybrid method could avoid some troubles of traditional methods, such as arduous trial-and-error procedure, premature convergence in genetic algorithm and search blindness in simulated annealing. The principle and implementing procedure of this algorithm were described. Numerical experiments show that the GSA can adjust the optimization population, prevent premature convergence and seek the global optimal result.Applications to the Nanyunhe River and Qingjiang River show that the proposed approach is of higher forecast accuracy and practicability.

  20. Aerodynamic Optimum Design of Transonic Turbine Cascades Using Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    This paper presents an aerodynamic optimum design method for transonic turbine cascades based on the Genetic Algorithms coupled to the inviscid flow Euler Solver and the boundary-layer calculation.The Genetic Algorithms control the evolution of a population of cascades towards an optimum design.The fitness value of each string is evaluated using the flow solver.The design procedure has been developed and the behavior of the genetic algorithms has been tested.The objective functions of the design examples are the minimum mean-square deviation between the aimed pressure and computed pressure and the minimum amount of user expertise.

  1. Support Vector Machine Optimized by Improved Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xiang Chang Sheng

    2013-07-01

    Full Text Available Parameters of support vector machines (SVM which is optimized by standard genetic algorithm is easy to trap into the local minimum, in order to get the optimal parameters of support vector machine, this paper proposed a parameters optimization method for support vector machines based on improved genetic algorithm, the simulation experiment is carried out on 5 benchmark datasets. The simulation show that the proposed method not only can assure the classification precision, but also can reduce training time markedly compared with standard genetic algorithm.

  2. A New Genetic Algorithm Methodology for Design Optimization of Truss Structures: Bipopulation-Based Genetic Algorithm with Enhanced Interval Search

    Directory of Open Access Journals (Sweden)

    Tugrul Talaslioglu

    2009-01-01

    Full Text Available A new genetic algorithm (GA methodology, Bipopulation-Based Genetic Algorithm with Enhanced Interval Search (BGAwEIS, is introduced and used to optimize the design of truss structures with various complexities. The results of BGAwEIS are compared with those obtained by the sequential genetic algorithm (SGA utilizing a single population, a multipopulation-based genetic algorithm (MPGA proposed for this study and other existing approaches presented in literature. This study has two goals: outlining BGAwEIS's fundamentals and evaluating the performances of BGAwEIS and MPGA. Consequently, it is demonstrated that MPGA shows a better performance than SGA taking advantage of multiple populations, but BGAwEIS explores promising solution regions more efficiently than MPGA by exploiting the feasible solutions. The performance of BGAwEIS is confirmed by better quality degree of its optimal designations compared to algorithms proposed here and described in literature.

  3. Robust reactor power control system design by genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Joon; Cho, Kyung Ho; Kim, Sin [Cheju National University, Cheju (Korea, Republic of)

    1997-12-31

    The H{sub {infinity}} robust controller for the reactor power control system is designed by use of the mixed weight sensitivity. The system is configured into the typical two-port model with which the weight functions are augmented. Since the solution depends on the weighting functions and the problem is of nonconvex, the genetic algorithm is used to determine the weighting functions. The cost function applied in the genetic algorithm permits the direct control of the power tracking performances. In addition, the actual operating constraints such as rod velocity and acceleration can be treated as design parameters. Compared with the conventional approach, the controller designed by the genetic algorithm results in the better performances with the realistic constraints. Also, it is found that the genetic algorithm could be used as an effective tool in the robust design. 4 refs., 6 figs. (Author)

  4. Mobile transporter path planning using a genetic algorithm approach

    Science.gov (United States)

    Baffes, Paul; Wang, Lui

    1988-01-01

    The use of an optimization technique known as a genetic algorithm for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the Space Station which must be able to reach any point of the structure autonomously. Specific elements of the genetic algorithm are explored in both a theoretical and experimental sense. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research. However, trajectory planning problems are common in space systems and the genetic algorithm provides an attractive alternative to the classical techniques used to solve these problems.

  5. PM Synchronous Motor Dynamic Modeling with Genetic Algorithm ...

    African Journals Online (AJOL)

    Adel

    intelligence like neural network, genetic algorithm, etc (El Shahat and El Shewy, ..... maximum power factor has the most powerful effect on all various machine .... Artificial Intelligence, Renewable Energy, Power System, Control Systems, PV ...

  6. Multiscale modeling for classification of SAR imagery using hybrid EM algorithm and genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Xianbin Wen; Hua Zhang; Jianguang Zhang; Xu Jiao; Lei Wang

    2009-01-01

    A novel method that hybridizes genetic algorithm (GA) and expectation maximization (EM) algorithm for the classification of syn-thetic aperture radar (SAR) imagery is proposed by the finite Gaussian mixtures model (GMM) and multiscale autoregressive (MAR)model. This algorithm is capable of improving the global optimality and consistency of the classification performance. The experiments on the SAR images show that the proposed algorithm outperforms the standard EM method significantly in classification accuracy.

  7. Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    Science.gov (United States)

    Holst, Terry L.

    2005-01-01

    A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.

  8. Genetic-Algorithm Tool For Search And Optimization

    Science.gov (United States)

    Wang, Lui; Bayer, Steven

    1995-01-01

    SPLICER computer program used to solve search and optimization problems. Genetic algorithms adaptive search procedures (i.e., problem-solving methods) based loosely on processes of natural selection and Darwinian "survival of fittest." Algorithms apply genetically inspired operators to populations of potential solutions in iterative fashion, creating new populations while searching for optimal or nearly optimal solution to problem at hand. Written in Think C.

  9. Building Blocks Propagation in Quantum-Inspired Genetic Algorithm

    OpenAIRE

    Nowotniak, Robert; Kucharski, Jacek

    2010-01-01

    This paper presents an analysis of building blocks propagation in Quantum-Inspired Genetic Algorithm, which belongs to a new class of metaheuristics drawing their inspiration from both biological evolution and unitary evolution of quantum systems. The expected number of quantum chromosomes matching a schema has been analyzed and a random variable corresponding to this issue has been introduced. The results have been compared with Simple Genetic Algorithm. Also, it has been presented how selec...

  10. SNMP Based Network Optimization Technique Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    M. Mohamed Surputheen

    2012-03-01

    Full Text Available Genetic Algorithms (GAs has innumerable applications through the optimization techniques and network optimization is one of them. SNMP (Simple Network Management Protocol is used as the basic network protocol for monitoring the network activities health of the systems. This paper deals with adding Intelligence to the various aspects of SNMP by adding optimization techniques derived out of genetic algorithms, which enhances the performance of SNMP processes like routing.

  11. A novel genetic algorithm for k-LCS

    Science.gov (United States)

    Zheng, Li; Yang, Guoyu; Zhang, Rui

    2017-08-01

    A new fitness function model is designed, which considers that the outstanding sequence must be a common subsequence and the longer the better. However, the sequence which is not a common subsequence should be eliminated. Then, a novel genetic algorithm is proposed and described in details. Finally, the experimental results show that the new fitness function associated with the novel genetic algorithm can find out better solution.

  12. Optimal Design of Materials for DJMP Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    FENG Zhong-ren; WANG Xiong-jiang

    2004-01-01

    The genetic algorithm was used in optimal design of deep jet method pile. The cost of deep jetmethod pile in one unit area of foundation was taken as the objective function. All the restrains were listed followingthe corresponding specification. Suggestions were proposed and the modified. The real-coded Genetic Algorithm wasgiven to deal with the problems of excessive computational cost and premature convergence. Software system of opti-mal design of deep jet method pile was developed.

  13. Parallel Genetic Algorithm Based on the MPI Environment

    OpenAIRE

    2012-01-01

    Current genetic algorithm require both management of huge amounts of data and heavy computation, fulfilling these requirements calls for simple ways to implement parallel computing. In this paper, serial genetic algorithm was designed to parallel GA; this technology appears to be particularly well adapted to this task. Here we introduce two related mechanism: elite reserve strategy and MPI. The first can increase the possible to get the optimal solution of the population, while the message pa...

  14. A Hybrid Genetic Algorithm for the Job Shop Scheduling Problem

    OpenAIRE

    Gonçalves, José Fernando; Mendes, J. J. M.; Resende, Maurício G. C.

    2005-01-01

    This paper presents a hybrid genetic algorithm for the Job Shop Scheduling problem. The chromosome representation of the problem is based on random keys. The schedules are constructed using a priority rule in which the priorities are defined by the genetic algorithm. Schedules are constructed using a procedure that generates parameterized active schedules. After a schedule is obtained a local search heuristic is applied to improve the solution. The approach is tested on a set o...

  15. Neural Network Control Optimization based on Improved Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Zhaoyin Zhang

    2013-08-01

    Full Text Available To clearly find the effect of factors in network classification, the classification process of PNN is analyzed in detail. The XOR problem is described by PNN and the elements in PNN are also studied. Through simulations and combined with genetic algorithm, a novel PNN supervised learning algorithm is proposed. This algorithm introduces the classification accuracy of training samples to the network parameter learning. It adopts genetic algorithm to train the PNN smoothing parameter and hidden centric vector. Then the effects of hidden neuron number, hidden centric vector and smoothing parameter in PNN are verified in the experiments. It is shown that this algorithm is superior to other PNN learning algorithms on classification effect.

  16. Improved time complexity analysis of the Simple Genetic Algorithm

    DEFF Research Database (Denmark)

    Oliveto, Pietro S.; Witt, Carsten

    2015-01-01

    A runtime analysis of the Simple Genetic Algorithm (SGA) for the OneMax problem has recently been presented proving that the algorithm with population size μ≤n1/8−ε requires exponential time with overwhelming probability. This paper presents an improved analysis which overcomes some limitations...

  17. Optimization of genomic selection training populations with a genetic algorithm

    Science.gov (United States)

    In this article, we derive a computationally efficient statistic to measure the reliability of estimates of genetic breeding values for a fixed set of genotypes based on a given training set of genotypes and phenotypes. We adopt a genetic algorithm scheme to find a training set of certain size from ...

  18. Multiple Query Evaluation Based on an Enhanced Genetic Algorithm.

    Science.gov (United States)

    Tamine, Lynda; Chrisment, Claude; Boughanem, Mohand

    2003-01-01

    Explains the use of genetic algorithms to combine results from multiple query evaluations to improve relevance in information retrieval. Discusses niching techniques, relevance feedback techniques, and evolution heuristics, and compares retrieval results obtained by both genetic multiple query evaluation and classical single query evaluation…

  19. Dynamic Uniform Scaling for Multiobjective Genetic Algorithms

    DEFF Research Database (Denmark)

    Pedersen, Gerulf; Goldberg, David E.

    2004-01-01

    Before Multiobjective Evolutionary Algorithms (MOEAs) can be used as a widespread tool for solving arbitrary real world problems there are some salient issues which require further investigation. One of these issues is how a uniform distribution of solutions along the Pareto non-dominated front can......, the issue of obtaining a diverse set of solutions for badly scaled objective functions will be investigated and proposed solutions will be implemented using the NSGA-II algorithm....

  20. The Applications of Genetic Algorithms in Medicine

    OpenAIRE

    Ali Ghaheri; Saeed Shoar; Mohammad Naderan; Sayed Shahabuddin Hoseini

    2015-01-01

    A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algo...

  1. Dynamic Uniform Scaling for Multiobjective Genetic Algorithms

    DEFF Research Database (Denmark)

    Pedersen, Gerulf; Goldberg, D.E.

    2004-01-01

    Before Multiobjective Evolutionary Algorithms (MOEAs) can be used as a widespread tool for solving arbitrary real world problems there are some salient issues which require further investigation. One of these issues is how a uniform distribution of solutions along the Pareto non-dominated front c......, the issue of obtaining a diverse set of solutions for badly scaled objective functions will be investigated and proposed solutions will be implemented using the NSGA-II algorithm....

  2. Optimal Path Planning for Mobile Robot Using Tailored Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Dong Xiao Xian

    2013-07-01

    Full Text Available During routine inspecting, mobile robot may be requested to visit multiple locations to execute special tasks occasionally. This study aims at optimal path planning for multiple goals visiting task based on tailored genetic algorithm. The proposed algorithm will generate an optimal path that has the least idle time, which is proven to be more effective on evaluating a path in our previous work. In proposed algorithm, customized chromosome representing a path and genetic operators including repair and cut are developed and implemented. Afterwards, simulations are carried out to verify the effectiveness and applicability. Finally, analysis of simulation results is conducted and future work is addressed.

  3. Evolving aerodynamic airfoils for wind turbines through a genetic algorithm

    Science.gov (United States)

    Hernández, J. J.; Gómez, E.; Grageda, J. I.; Couder, C.; Solís, A.; Hanotel, C. L.; Ledesma, JI

    2017-01-01

    Nowadays, genetic algorithms stand out for airfoil optimisation, due to the virtues of mutation and crossing-over techniques. In this work we propose a genetic algorithm with arithmetic crossover rules. The optimisation criteria are taken to be the maximisation of both aerodynamic efficiency and lift coefficient, while minimising drag coefficient. Such algorithm shows greatly improvements in computational costs, as well as a high performance by obtaining optimised airfoils for Mexico City's specific wind conditions from generic wind turbines designed for higher Reynolds numbers, in few iterations.

  4. Fuzzy Control of Chaotic System with Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-an; GUO Zhao-xia; SHAO Shi-huang

    2002-01-01

    A novel approach to control the unpredictable behavior of chaotic systems is presented. The control algorithm is based on fuzzy logic control technique combined with genetic algorithm. The use of fuzzy logic allows for the implementation of human "rule-of-thumb" approach to decision making by employing linguistic variables. An improved Genetic Algorithm (GA) is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the condition portion of each rule,and to automatically generate fuzzy control actions under each condition. Simulation results show that such an approach for the control of chaotic systems is both effective and robust.

  5. A Survey of Association Rule Mining Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Anubha Sharma

    2012-08-01

    Full Text Available Data mining is the analysis step of the "Knowledge Discovery in Databases" process, or KDD. It is the process that results in the discovery of new patterns in large data sets. It utilizes methods at the intersection of artificial intelligence, machine learning, statistics, and database systems. The overall goal of the data mining process is to extract knowledge from an existing data set and transform it into a human-understandable structure. In data mining, association rule learning is a popular and well researched method for discovering interesting relations between variables in large databases. Association rules are usually required to satisfy a user-specified minimum support and a user-specified minimum confidence at the same time. Genetic algorithm (GA is a search heuristic that mimics the process of natural evolution. This heuristic is routinely used to generate useful solutions to optimization and search problems. Genetic algorithms belong to the larger class of evolutionary algorithms, which generate solutions to optimization problems using techniques inspired by natural evolution, such as inheritance, mutation, selection, and crossover. In previous, many researchers have proposed Genetic Algorithms for mining interesting association rules from quantitative data. In this paper we represent a survey of Association Rule Mining Using Genetic Algorithm. The techniques are categorized based upon different approaches. This paper provides the major advancement in the approaches for association rule mining using genetic algorithms.

  6. Parallel Genetic Algorithm Based on the MPI Environment

    Directory of Open Access Journals (Sweden)

    Wen-Juan Liu

    2012-11-01

    Full Text Available Current genetic algorithm require both management of huge amounts of data and heavy computation, fulfilling these requirements calls for simple ways to implement parallel computing. In this paper, serial genetic algorithm was designed to parallel GA; this technology appears to be particularly well adapted to this task. Here we introduce two related mechanism: elite reserve strategy and MPI. The first can increase the possible to get the optimal solution of the population, while the message passing interface MPI support is adding to form a new coarse-grain model of distributed parallel genetic algorithm. This new algorithm is tested by the classical and effective Knapsack problem, analysis shows that, the introduction of the parallel strategies can reduce the communication between different machines and the scheduling time of the heterogeneous system, thereby accelerate the traditional genetic algorithm search process, ultimately concluded that the parallel genetic algorithm is very promising and this framework could have a wide range of applications while maintaining good computational efficiency, scalability and ease of maintenance.

  7. Solving Classification Problems Using Genetic Programming Algorithms on GPUs

    Science.gov (United States)

    Cano, Alberto; Zafra, Amelia; Ventura, Sebastián

    Genetic Programming is very efficient in problem solving compared to other proposals but its performance is very slow when the size of the data increases. This paper proposes a model for multi-threaded Genetic Programming classification evaluation using a NVIDIA CUDA GPUs programming model to parallelize the evaluation phase and reduce computational time. Three different well-known Genetic Programming classification algorithms are evaluated using the parallel evaluation model proposed. Experimental results using UCI Machine Learning data sets compare the performance of the three classification algorithms in single and multithreaded Java, C and CUDA GPU code. Results show that our proposal is much more efficient.

  8. Coarse-Grained Parallel Genetic Algorithm to solve the Shortest Path Routing problem using Genetic operators

    Directory of Open Access Journals (Sweden)

    V.PURUSHOTHAM REDDY

    2011-02-01

    Full Text Available In computer networks the routing is based on shortest path routing algorithms. Based on its advantages, an alternative method is used known as Genetic Algorithm based routing algorithm, which is highly scalable and insensitive to variations in network topology. Here we propose a coarse-grained parallel genetic algorithm to solve the shortest path routing problem with the primary goal of computation time reduction along with the use of migration scheme. This algorithm is developed and implemented on an MPI cluster. The effects of migration and its performance is studied in this paper.

  9. Novel hybrid genetic algorithm for progressive multiple sequence alignment.

    Science.gov (United States)

    Afridi, Muhammad Ishaq

    2013-01-01

    The family of evolutionary or genetic algorithms is used in various fields of bioinformatics. Genetic algorithms (GAs) can be used for simultaneous comparison of a large pool of DNA or protein sequences. This article explains how the GA is used in combination with other methods like the progressive multiple sequence alignment strategy to get an optimal multiple sequence alignment (MSA). Optimal MSA get much importance in the field of bioinformatics and some other related disciplines. Evolutionary algorithms evolve and improve their performance. In this optimisation, the initial pair-wise alignment is achieved through a progressive method and then a good objective function is used to select and align more alignments and profiles. Child and subpopulation initialisation is based upon changes in the probability of similarity or the distance matrix of the alignment population. In this genetic algorithm, optimisation of mutation, crossover and migration in the population of candidate solution reflect events of natural organic evolution.

  10. Adaptive interactive genetic algorithms with individual interval fitness

    Institute of Scientific and Technical Information of China (English)

    Dunwei Gong; Guangsong Guo; Li Lu; Hongmei Ma

    2008-01-01

    It is necessary to enhance the performance of interactive genetic algorithms in order to apply them to complicated optimization problems successfully. An adaptive interactive genetic algorithm with individual interval fitness is proposed in this paper in which an individual fitness is expressed by an interval. Through analyzing the fitness, information reflecting the distribution of an evolutionary population is picked up, namely, the difference of evaluating superior individuals and the difference of evaluating a population. Based on these, the adaptive probabilities of crossover and mutation operators of an individual are presented. The algorithm proposed in this paper is applied to a fashion evolutionary design system, and the results show that it can find many satisfactory solutions per generation. The achievement of the paper provides a new approach to enhance the performance of interactive genetic algorithms.

  11. A Multi-Objective Genetic Algorithm for Optimal Portfolio Problems

    Institute of Scientific and Technical Information of China (English)

    林丹; 赵瑞

    2004-01-01

    This paper concerns with modeling and design of an algorithm for the portfolio selection problems with fixed transaction costs and minimum transaction lots. A mean-variance model for the portfolio selection problem is proposed, and the model is formulated as a non-smooth and nonlinear integer programming problem with multiple objective functions. As it has been proven that finding a feasible solution to the problem only is already NP-hard, based on NSGA-II and genetic algorithm for numerical optimization of constrained problems (Genocop), a multi-objective genetic algorithm (MOGA) is designed to solve the model. Its features comprise integer encoding and corresponding operators, and special treatment of constraints conditions. It is illustrated via a numerical example that the genetic algorithm can efficiently solve portfolio selection models proposed in this paper. This approach offers promise for the portfolio problems in practice.

  12. Optimization of a genetic algorithm for searching molecular conformer space

    Science.gov (United States)

    Brain, Zoe E.; Addicoat, Matthew A.

    2011-11-01

    We present two sets of tunings that are broadly applicable to conformer searches of isolated molecules using a genetic algorithm (GA). In order to find the most efficient tunings for the GA, a second GA - a meta-genetic algorithm - was used to tune the first genetic algorithm to reliably find the already known a priori correct answer with minimum computational resources. It is shown that these tunings are appropriate for a variety of molecules with different characteristics, and most importantly that the tunings are independent of the underlying model chemistry but that the tunings for rigid and relaxed surfaces differ slightly. It is shown that for the problem of molecular conformational search, the most efficient GA actually reduces to an evolutionary algorithm.

  13. Stochastic analysis and convergence velocity estimation of genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    郭观七; 喻寿益

    2003-01-01

    Formulizations of mutation and crossover operators independent of representation of solutions are proposed. A kind of precisely quantitative Markov chain of populations of standard genetic algorithms is modeled. It is proved that inadequate parameters of mutation and crossover probabilities degenerate standard genetic algorithm to a class of random search algorithms without selection bias toward any solution based on fitness. After introducing elitist reservation, the stochastic matrix of Markov chain of the best-so-far individual with the highest fitness is derived.The average convergence velocity of genetic algorithms is defined as the mathematical expectation of the mean absorbing time steps that the best-so-far individual transfers from any initial solution to the global optimum. Using the stochastic matrix of the best-so-far individual, a theoretic method and the computing process of estimating the average convergence velocity are proposed.

  14. An Indirect Genetic Algorithm for a Nurse Scheduling Problem

    CERN Document Server

    Aickelin, Uwe

    2008-01-01

    This paper describes a Genetic Algorithms approach to a manpower-scheduling problem arising at a major UK hospital. Although Genetic Algorithms have been successfully used for similar problems in the past, they always had to overcome the limitations of the classical Genetic Algorithms paradigm in handling the conflict between objectives and constraints. The approach taken here is to use an indirect coding based on permutations of the nurses, and a heuristic decoder that builds schedules from these permutations. Computational experiments based on 52 weeks of live data are used to evaluate three different decoders with varying levels of intelligence, and four well-known crossover operators. Results are further enhanced by introducing a hybrid crossover operator and by making use of simple bounds to reduce the size of the solution space. The results reveal that the proposed algorithm is able to find high quality solutions and is both faster and more flexible than a recently published Tabu Search approach.

  15. Solving the MDBCS Problem Using the Metaheuric–Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Milena Bogdanovic

    2011-12-01

    Full Text Available The problems degree-limited graph of nodes considering the weight of the vertex or weight of the edges, with the aim to find the optimal weighted graph in terms of certain restrictions on the degree of the vertices in the subgraph. This class of combinatorial problems was extensively studied because of the implementation and application in network design, connection of networks and routing algorithms. It is likely that solution of MDBCS problem will find its place and application in these areas. The paper is given an ILP model to solve the problem MDBCS, as well as the genetic algorithm, which calculates a good enough solution for the input graph with a greater number of nodes. An important feature of the heuristic algorithms is that can approximate, but still good enough to solve the problems of exponential complexity. However, it should solve the problem heuristic algorithms may not lead to a satisfactory solution, and that for some of the problems, heuristic algorithms give relatively poor results. This is particularly true of problems for which no exact polynomial algorithm complexity. Also, heuristic algorithms are not the same, because some parts of heuristic algorithms differ depending on the situation and problems in which they are used. These parts are usually the objective function (transformation, and their definition significantly affects the efficiency of the algorithm. By mode of action, genetic algorithms are among the methods directed random search space solutions are looking for a global optimum.

  16. Composite multiobjective optimization beamforming based on genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    Shi Jing; Meng Weixiao; Zhang Naitong; Wang Zheng

    2006-01-01

    All thc parameters of beamforming are usually optimized simultaneously in implementing the optimization of antenna array pattern with multiple objectives and parameters by genetic algorithms (GAs).Firstly, this paper analyzes the performance of fitness functions of previous algorithms. It shows that original algorithms make the fitness functions too complex leading to large amount of calculation, and also the selection of the weight of parameters very sensitive due to many parameters optimized simultaneously. This paper proposes a kind of algorithm of composite beamforming, which detaches the antenna array into two parts corresponding to optimization of different objective parameters respectively. New algorithm substitutes the previous complex fitness function with two simpler functions. Both theoretical analysis and simulation results show that this method simplifies the selection of weighting parameters and reduces the complexity of calculation. Furthermore, the algorithm has better performance in lowering side lobe and interferences in comparison with conventional algorithms of beamforming in the case of slightly widening the main lobe.

  17. Solving traveling salesman problems by genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The gene section ordering on solving traveling salesman problems is analyzed by numerical experiments. Some improved crossover operations are presented. Several combinations of genetic operations are examined and the functions of these operations are analyzed. The essentiality of the ordering of the gene section and the significance of the evolutionary inversion operation are discussed. Some results and conclusions are obtained and given, which provide useful information for the implementation of the genetic operations for solving the traveling salesman problem.

  18. A Hybrid Immigrants Scheme for Genetic Algorithms in Dynamic Environments

    Institute of Scientific and Technical Information of China (English)

    Shengxiang Yang; Renato Tinós

    2007-01-01

    Dynamic optimization problems are a kind of optimization problems that involve changes over time. They pose a serious challenge to traditional optimization methods as well as conventional genetic algorithms since the goal is no longer to search for the optimal solution(s) of a fixed problem but to track the moving optimum over time. Dynamic optimization problems have attracted a growing interest from the genetic algorithm community in recent years. Several approaches have been developed to enhance the performance of genetic algorithms in dynamic environments. One approach is to maintain the diversity of the population via random immigrants. This paper proposes a hybrid immigrants scheme that combines the concepts of elitism, dualism and random immigrants for genetic algorithms to address dynamic optimization problems. In this hybrid scheme, the best individual, i.e., the elite, from the previous generation and its dual individual are retrieved as the bases to create immigrants via traditional mutation scheme. These elitism-based and dualism-based immigrants together with some random immigrants are substituted into the current population, replacing the worst individuals in the population. These three kinds of immigrants aim to address environmental changes of slight, medium and significant degrees respectively and hence efficiently adapt genetic algorithms to dynamic environments that are subject to different severities of changes. Based on a series of systematically constructed dynamic test problems, experiments are carried out to investigate the performance of genetic algorithms with the hybrid immigrants scheme and traditional random immigrants scheme. Experimental results validate the efficiency of the proposed hybrid immigrants scheme for improving the performance of genetic algorithms in dynamic environments.

  19. Multiscale Unsupervised Segmentation of SAR Imagery Using the Genetic Algorithm.

    Science.gov (United States)

    Wen, Xian-Bin; Zhang, Hua; Jiang, Ze-Tao

    2008-03-12

    A valid unsupervised and multiscale segmentation of synthetic aperture radar(SAR) imagery is proposed by a combination GA-EM of the Expectation Maximization(EM) algorith with the genetic algorithm (GA). The mixture multiscale autoregressive(MMAR) model is introduced to characterize and exploit the scale-to-scale statisticalvariations and statistical variations in the same scale in SAR imagery due to radar speckle,and a segmentation method is given by combining the GA algorithm with the EMalgorithm. This algorithm is capable of selecting the number of components of the modelusing the minimum description length (MDL) criterion. Our approach benefits from theproperties of the Genetic and the EM algorithm by combination of both into a singleprocedure. The population-based stochastic search of the genetic algorithm (GA) exploresthe search space more thoroughly than the EM method. Therefore, our algorithm enablesescaping from local optimal solutions since the algorithm becomes less sensitive to itsinitialization. Some experiment results are given based on our proposed approach, andcompared to that of the EM algorithms. The experiments on the SAR images show that theGA-EM outperforms the EM method.

  20. Multiscale Unsupervised Segmentation of SAR Imagery Using the Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Ze-Tao Jiang

    2008-03-01

    Full Text Available A valid unsupervised and multiscale segmentation of synthetic aperture radar(SAR imagery is proposed by a combination GA-EM of the Expectation Maximization(EM algorith with the genetic algorithm (GA. The mixture multiscale autoregressive(MMAR model is introduced to characterize and exploit the scale-to-scale statisticalvariations and statistical variations in the same scale in SAR imagery due to radar speckle,and a segmentation method is given by combining the GA algorithm with the EMalgorithm. This algorithm is capable of selecting the number of components of the modelusing the minimum description length (MDL criterion. Our approach benefits from theproperties of the Genetic and the EM algorithm by combination of both into a singleprocedure. The population-based stochastic search of the genetic algorithm (GA exploresthe search space more thoroughly than the EM method. Therefore, our algorithm enablesescaping from local optimal solutions since the algorithm becomes less sensitive to itsinitialization. Some experiment results are given based on our proposed approach, andcompared to that of the EM algorithms. The experiments on the SAR images show that theGA-EM outperforms the EM method.

  1. A Genetic Clustering Algorithm for Mean-Residual Vector Quantization

    Institute of Scientific and Technical Information of China (English)

    CHUShuchuan; JohnF.Roddick; CHENTsongyi

    2004-01-01

    Vector quantization (VQ) is a useful tool for data compression and can be applied to compress the data vectors in the database. The quality of the recovered data vector depends on a good codebook. Meanresidual vector quantization (M/R VQ) has been shown to be efficient in the encoding time and it only needs a little storage. In this paper, genetic algorithms in combination with the Generalized lloyd algorithm (GLA) are applied to the codebook design of M/R VQ. The mean codebook and residual codebook are trained using GLA algorithm separately, then Genetic algorithms (GA) are used to evaluate and evolve the combined mean codebook and residual codebook. The parameters used in the proposed algorithm are designed based on experiments and they are robust to the proposed GA based clustering algorithm for M/R VQ. Experimental results demonstrate the proposed genetic clustering algorithm applied to M/R VQ may improve the peak signal to noise ratio of the recovered data vector compared with the GLA algorithm.

  2. An Agent Inspired Reconfigurable Computing Implementation of a Genetic Algorithm

    Science.gov (United States)

    Weir, John M.; Wells, B. Earl

    2003-01-01

    Many software systems have been successfully implemented using an agent paradigm which employs a number of independent entities that communicate with one another to achieve a common goal. The distributed nature of such a paradigm makes it an excellent candidate for use in high speed reconfigurable computing hardware environments such as those present in modem FPGA's. In this paper, a distributed genetic algorithm that can be applied to the agent based reconfigurable hardware model is introduced. The effectiveness of this new algorithm is evaluated by comparing the quality of the solutions found by the new algorithm with those found by traditional genetic algorithms. The performance of a reconfigurable hardware implementation of the new algorithm on an FPGA is compared to traditional single processor implementations.

  3. Weighted K-Nearest Neighbor Classification Algorithm Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xuesong Yan

    2013-10-01

    Full Text Available K-Nearest Neighbor (KNN is one of the most popular algorithms for data classification. Many researchers have found that the KNN algorithm accomplishes very good performance in their experiments on different datasets. The traditional KNN text classification algorithm has limitations: calculation complexity, the performance is solely dependent on the training set, and so on. To overcome these limitations, an improved version of KNN is proposed in this paper, we use genetic algorithm combined with weighted KNN to improve its classification performance. and the experiment results shown that our proposed algorithm outperforms the KNN with greater accuracy.

  4. Quantum Algorithms and the Genetic Code

    CERN Document Server

    Patel, A D

    2001-01-01

    Replication of DNA and synthesis of proteins are studied from the view-pointof quantum database search. Identification of a base-pairing with a quantumquery gives a natural (and first ever!) explanation of why living organismshave 4 nucleotide bases and 20 amino acids. It is amazing that these numbersarise as solutions to an optimisation problem. Components of the DNA structurewhich implement Grover's algorithm are identified, and a physical scenario ispresented for the execution of the quantum algorithm. It is proposed thatenzymes play a crucial role in maintaining quantum coherence of the process.Experimental tests that can verify this scenario are pointed out.

  5. Solving constrained traveling salesman problems by genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    WU Chunguo; LIANG Yanchun; LEE Heowpueh; LU Chun; LIN Wuzhong

    2004-01-01

    Three kinds of constrained traveling salesman problems (TSP) arising from application problems, namely the open route TSP, the end-fixed TSP, and the path-constrained TSP, are proposed. The corresponding approaches based on modified genetic algorithms (GA) for solving these constrained TSPs are presented. Numerical experiments demonstrate that the algorithm for the open route TSP shows its advantages when the open route is required, the algorithm for the end-fixed TSP can deal with route optimization with constraint of fixed ends effectively, and the algorithm for the path-constraint could benefit the traffic problems where some cities cannot be visited from each other.

  6. Linkage intensity learning approach with genetic algorithm for causality diagram

    Institute of Scientific and Technical Information of China (English)

    WANG Cheng-liang; CHEN Juan-juan

    2007-01-01

    The causality diagram theory, which adopts graphical expression of knowledge and direct intensity of causality, overcomes some shortages in belief network and has evolved into a mixed causality diagram methodology for discrete and continuous variable. But to give linkage intensity of causality diagram is difficult, particularly in many working conditions in which sampling data are limited or noisy. The classic learning algorithm is hard to be adopted. We used genetic algorithm to learn linkage intensity from limited data. The simulation results demonstrate that this algorithm is more suitable than the classic algorithm in the condition of sample shortage such as space shuttle's fault diagnoisis.

  7. A modified decision tree algorithm based on genetic algorithm for mobile user classification problem.

    Science.gov (United States)

    Liu, Dong-sheng; Fan, Shu-jiang

    2014-01-01

    In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity.

  8. Genetic Algorithms, Neural Networks, and Time Effectiveness Algorithm Based Air Combat Intelligence Simulation System

    Institute of Scientific and Technical Information of China (English)

    曾宪钊; 成冀; 安欣; 方礼明

    2002-01-01

    This paper introduces a new Air Combat Intelligence Simulation System (ACISS) in a 32 versus 32 air combat, describes three methods: Genetic Algorithms (GA) in the multi-targeting decision and Evading Missile Rule Base learning, Neural Networks (NN) in the maneuvering decision, and Time Effectiveness Algorithm (TEA) in the adjudicating an air combat and the evaluating evading missile effectiveness.

  9. Application of Modified Genetic Algorithm to Optimal Design of Supporting Structure

    Institute of Scientific and Technical Information of China (English)

    ZHOU Rui-zhong; PAN Shi-wei

    2003-01-01

    The modified genetic algorithm was used for the optimal design of supporting structure in deep pits.Based on the common genetic algorithm, using niche technique and reserving the optimum individual the modified genetic algorithm was presented. By means of the practical engineering, the modified genetic algorithm not only has more expedient convergence, but also can enhance security and operation efficiency.

  10. An improved genetic algorithm for searching for pollution sources

    Directory of Open Access Journals (Sweden)

    Quan-min BU

    2013-10-01

    Full Text Available As an optimization method that has experienced rapid development over the past 20 years, the genetic algorithm has been successfully applied in many fields, but it requires repeated searches based on the characteristics of high-speed computer calculation and conditions of the known relationship between the objective function and independent variables. There are several hundred generations of evolvement, but the functional relationship is unknown in pollution source searches. Therefore, the genetic algorithm cannot be used directly. Certain improvements need to be made based on the actual situation, so that the genetic algorithm can adapt to the actual conditions of environmental problems, and can be used in environmental monitoring and environmental quality assessment. Therefore, a series of methods are proposed for the improvement of the genetic algorithm: (1 the initial generation of individual groups should be artificially set and move from lightly polluted areas to heavily polluted areas; (2 intervention measures should be introduced in the competition between individuals; (3 guide individuals should be added; and (4 specific improvement programs should be put forward. Finally, the scientific rigor and rationality of the improved genetic algorithm are proven through an example.

  11. A parallel genetic algorithm for the set partitioning problem

    Energy Technology Data Exchange (ETDEWEB)

    Levine, D. [Argonne National Lab., IL (United States). Mathematics and Computer Science Division.

    1994-05-01

    In this dissertation the author reports on his efforts to develop a parallel genetic algorithm and apply it to the solution of set partitioning problem -- a difficult combinatorial optimization problem used by many airlines as a mathematical model for flight crew scheduling. He developed a distributed steady-state genetic algorithm in conjunction with a specialized local search heuristic for solving the set partitioning problem. The genetic algorithm is based on an island model where multiple independent subpopulations each run a steady-state genetic algorithm on their subpopulation and occasionally fit strings migrate between the subpopulations. Tests on forty real-world set partitioning problems were carried out on up to 128 nodes of an IBM SP1 parallel computer. The authors found that performance, as measured by the quality of the solution found and the iteration on which it was found, improved as additional subpopulation found and the iteration on which it was found, improved as additional subpopulations were added to the computation. With larger numbers of subpopulations the genetic algorithm was regularly able to find the optimal solution to problems having up to a few thousand integer variables. In two cases, high-quality integer feasible solutions were found for problems with 36,699 and 43,749 integer variables, respectively. A notable limitation they found was the difficulty solving problems with many constraints.

  12. Impatient Task Mapping in Elastic Cloud using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Nawfal A. Mehdi

    2011-01-01

    Full Text Available Problem statement: Task scheduling is the main factor that determines the performance of any distributed system. Cloud computing comes with a paradigm of distributed datacenters. Each datacenter consists of physical machines that host virtual machines to execute customers’ tasks. Resources allocation on the cloud is different from other paradigms and the mapping algorithms need to be adapted to the new characteristics. This study takes the problem of immediate task scheduling under an intercloud infrastructure using a genetic algorithm. An impatient task needs to be scheduled as soon as it enters the system taking into account the input and output files location and its QoS requirements. Approach: This study proposes an algorithm that can find a fast mapping using genetic algorithms with "exist if satisfy" condition to speed up the mapping process and ensures the respecting of all task deadlines. Cloudsim simulator was used to test the proposed algorithm with real datasets collected as a cloud benchmark. Mapping time and makespan are the performance metrics that are used to evaluate the proposed system. Results: The results show an improvement in the proposed system compared to MCT algorithm as illustrated throughout the study. Conclusion: Batch mapping via genetic algorithms with throughput as a fitness function can be used to map jobs to cloud resources.

  13. G/SPLINES: A hybrid of Friedman's Multivariate Adaptive Regression Splines (MARS) algorithm with Holland's genetic algorithm

    Science.gov (United States)

    Rogers, David

    1991-01-01

    G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.

  14. Quantum algorithms and the genetic code

    Indian Academy of Sciences (India)

    Apoorva Patel

    2001-02-01

    Replication of DNA and synthesis of proteins are studied from the view-point of quantum database search. Identification of a base-pairing with a quantum query gives a natural (and first ever!) explanation of why living organisms have 4 nucleotide bases and 20 amino acids. It is amazing that these numbers arise as solutions to an optimisation problem. Components of the DNA structure which implement Grover’s algorithm are identified, and a physical scenario is presented for the execution of the quantum algorithm. It is proposed that enzymes play a crucial role in maintaining quantum coherence of the process. Experimental tests that can verify this scenario are pointed out.

  15. Genetic Algorithms and Genetic Programming Modern Concepts and Practical Applications

    CERN Document Server

    Affenzeller, Michael

    2009-01-01

    Describes several generic algorithmic concepts that can be used in various kinds of GA or with evolutionary optimization techniques. This title provides a better understanding of the basic workflow of GAs and GP, encouraging readers to establish new bionic, problem-independent theoretical concepts.

  16. Using an Adaptive Genetic Algorithm to Improve Finance Decision

    Institute of Scientific and Technical Information of China (English)

    FaliangGui; TiesongHu

    2004-01-01

    Optimising both qualitative and quantitative factors is a key challenge in solving construction finance decisions. The semi-structured nature of construction finance optimisation problems precludes conventional optimisation techniques. With a desire to improve the performance of the canonical genetic algorithm (CCA) which is characterised by static crossover and mutation probability, and to provide contractors with a profit-risk trade-off curve and cash flow prediction, an adaptive genetic algorithm (AGA) model is developed. Ten projects being undertaken by a major construction firm in Hong Kong were used as case studies to evaluate the performance of the genetic algorithm (CA). The results of case study reveal that the ACA outperformed the CGA both in terms of its quality of solutions and the computational time required for a certain level of accuracy. The results also indicate that there is a potential for using the GA for modelling financial decisions should both quantitative and qualitative factors be optimised simultaneously.

  17. Cheating for Problem Solving: A Genetic Algorithm with Social Interactions

    CERN Document Server

    Lahoz-Beltra, Rafeal; Aickelin, Uwe

    2010-01-01

    We propose a variation of the standard genetic algorithm that incorporates social interaction between the individuals in the population. Our goal is to understand the evolutionary role of social systems and its possible application as a non-genetic new step in evolutionary algorithms. In biological populations, ie animals, even human beings and microorganisms, social interactions often affect the fitness of individuals. It is conceivable that the perturbation of the fitness via social interactions is an evolutionary strategy to avoid trapping into local optimum, thus avoiding a fast convergence of the population. We model the social interactions according to Game Theory. The population is, therefore, composed by cooperator and defector individuals whose interactions produce payoffs according to well known game models (prisoner's dilemma, chicken game, and others). Our results on Knapsack problems show, for some game models, a significant performance improvement as compared to a standard genetic algorithm.

  18. Application of genetic algorithms to hydrogenated silicon clusters

    Indian Academy of Sciences (India)

    N Chakraborti; R Prasad

    2003-01-01

    We discuss the application of biologically inspired genetic algorithms to determine the ground state structures of a number of Si–H clusters. The total energy of a given configuration of a cluster has been obtained by using a non-orthogonal tight-binding model and the energy minimization has been carried out by using genetic algorithms and their recent variant differential evolution. Our results for ground state structures and cohesive energies for Si–H clusters are in good agreement with the earlier work conducted using the simulated annealing technique. We find that the results obtained by genetic algorithms turn out to be comparable and often better than the results obtained by the simulated annealing technique.

  19. Method of stereo matching based on genetic algorithm

    Science.gov (United States)

    Lu, Chaohui; An, Ping; Zhang, Zhaoyang

    2003-09-01

    A new stereo matching scheme based on image edge and genetic algorithm (GA) is presented to improve the conventional stereo matching method in this paper. In order to extract robust edge feature for stereo matching, infinite symmetric exponential filter (ISEF) is firstly applied to remove the noise of image, and nonlinear Laplace operator together with local variance of intensity are then used to detect edges. Apart from the detected edge, the polarity of edge pixels is also obtained. As an efficient search method, genetic algorithm is applied to find the best matching pair. For this purpose, some new ideas are developed for applying genetic algorithm to stereo matching. Experimental results show that the proposed methods are effective and can obtain good results.

  20. Family Competition Pheromone Genetic Algorithm for Comparative Genome Assembly

    Institute of Scientific and Technical Information of China (English)

    Chien-Hao Su; Chien-Shun Chiou; Jung-Che Kuo; Pei-Jen Wang; Cheng-Yan Kao; Hsueh-Ting Chu

    2014-01-01

    Genome assembly is a prerequisite step for analyzing next generation sequencing data and also far from being solved. Many assembly tools have been proposed and used extensively. Majority of them aim to assemble sequencing reads into contigs; however, we focus on the assembly of contigs into scaffolds in this paper. This is called scaffolding, which estimates the relative order of the contigs as well as the size of the gaps between these contigs. Pheromone trail-based genetic algorithm (PGA) was previously proposed and had decent performance according to their paper. From our previous study, we found that family competition mechanism in genetic algorithm is able to further improve the results. Therefore, we propose family competition pheromone genetic algorithm (FCPGA) and demonstrate the improvement over PGA.

  1. Protein fold classification with genetic algorithms and feature selection.

    Science.gov (United States)

    Chen, Peng; Liu, Chunmei; Burge, Legand; Mahmood, Mohammad; Southerland, William; Gloster, Clay

    2009-10-01

    Protein fold classification is a key step to predicting protein tertiary structures. This paper proposes a novel approach based on genetic algorithms and feature selection to classifying protein folds. Our dataset is divided into a training dataset and a test dataset. Each individual for the genetic algorithms represents a selection function of the feature vectors of the training dataset. A support vector machine is applied to each individual to evaluate the fitness value (fold classification rate) of each individual. The aim of the genetic algorithms is to search for the best individual that produces the highest fold classification rate. The best individual is then applied to the feature vectors of the test dataset and a support vector machine is built to classify protein folds based on selected features. Our experimental results on Ding and Dubchak's benchmark dataset of 27-class folds show that our approach achieves an accuracy of 71.28%, which outperforms current state-of-the-art protein fold predictors.

  2. A genetic algorithm approach in interface and surface structure optimization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    The thesis is divided into two parts. In the first part a global optimization method is developed for the interface and surface structures optimization. Two prototype systems are chosen to be studied. One is Si[001] symmetric tilted grain boundaries and the other is Ag/Au induced Si(111) surface. It is found that Genetic Algorithm is very efficient in finding lowest energy structures in both cases. Not only existing structures in the experiments can be reproduced, but also many new structures can be predicted using Genetic Algorithm. Thus it is shown that Genetic Algorithm is a extremely powerful tool for the material structures predictions. The second part of the thesis is devoted to the explanation of an experimental observation of thermal radiation from three-dimensional tungsten photonic crystal structures. The experimental results seems astounding and confusing, yet the theoretical models in the paper revealed the physics insight behind the phenomena and can well reproduced the experimental results.

  3. OPTIMAL-TUNING OF PID CONTROLLER GAINS USING GENETIC ALGORITHMS

    Directory of Open Access Journals (Sweden)

    Ömer GÜNDOĞDU

    2005-01-01

    Full Text Available This paper presents a method of optimum parameter tuning of a PID controller to be used in driving an inertial load by a dc motor thorough a gearbox. Specifically, the method uses genetic algorithms to determine the optimum controller parameters by minimizing the sum of the integral of the squared error and the squared controller output deviated from its steady state value. The paper suggests the use of Ziegler-Nichols settings to form the intervals for the controller parameters in which the population to be formed. The results obtained from the genetic algorithms are compared with the ones from Ziegler-Nichols in both figures and tabular form. Comparatively better results are obtained in the genetic algorithm case.

  4. Multi-island Genetic Algorithm Opetimization of Suspension System

    Directory of Open Access Journals (Sweden)

    Li-Wei Xu

    2012-11-01

    Full Text Available The suspension and the car's operating stability are closely linked. Through the optimization of the suspension, it can improve the operating stability of vehicle, which is very meaningful to enhance the performance of modern cars. With the development of science and technology, the traditional optimization methods often appear insufficient when it deals with the multi-objective optimization problem of the automotive suspension. As a kind of improved genetic algorithm, the multi-island genetic algorithm can handle the multi-objective problem very well. In order to improve the vehicle handling stability, in this paper, the multi-island genetic algorithm is used to optimize the suspension parameters, combined with the iSight-FD and the Adams/car.

  5. Genetic algorithms with permutation coding for multiple sequence alignment.

    Science.gov (United States)

    Ben Othman, Mohamed Tahar; Abdel-Azim, Gamil

    2013-08-01

    Multiple sequence alignment (MSA) is one of the topics of bio informatics that has seriously been researched. It is known as NP-complete problem. It is also considered as one of the most important and daunting tasks in computational biology. Concerning this a wide number of heuristic algorithms have been proposed to find optimal alignment. Among these heuristic algorithms are genetic algorithms (GA). The GA has mainly two major weaknesses: it is time consuming and can cause local minima. One of the significant aspects in the GA process in MSA is to maximize the similarities between sequences by adding and shuffling the gaps of Solution Coding (SC). Several ways for SC have been introduced. One of them is the Permutation Coding (PC). We propose a hybrid algorithm based on genetic algorithms (GAs) with a PC and 2-opt algorithm. The PC helps to code the MSA solution which maximizes the gain of resources, reliability and diversity of GA. The use of the PC opens the area by applying all functions over permutations for MSA. Thus, we suggest an algorithm to calculate the scoring function for multiple alignments based on PC, which is used as fitness function. The time complexity of the GA is reduced by using this algorithm. Our GA is implemented with different selections strategies and different crossovers. The probability of crossover and mutation is set as one strategy. Relevant patents have been probed in the topic.

  6. Big Data Clustering Using Genetic Algorithm On Hadoop Mapreduce

    Directory of Open Access Journals (Sweden)

    Nivranshu Hans

    2015-04-01

    Full Text Available Abstract Cluster analysis is used to classify similar objects under same group. It is one of the most important data mining methods. However it fails to perform well for big data due to huge time complexity. For such scenarios parallelization is a better approach. Mapreduce is a popular programming model which enables parallel processing in a distributed environment. But most of the clustering algorithms are not naturally parallelizable for instance Genetic Algorithms. This is so due to the sequential nature of Genetic Algorithms. This paper introduces a technique to parallelize GA based clustering by extending hadoop mapreduce. An analysis of proposed approach to evaluate performance gains with respect to a sequential algorithm is presented. The analysis is based on a real life large data set.

  7. Combinatorial optimization problem solution based on improved genetic algorithm

    Science.gov (United States)

    Zhang, Peng

    2017-08-01

    Traveling salesman problem (TSP) is a classic combinatorial optimization problem. It is a simplified form of many complex problems. In the process of study and research, it is understood that the parameters that affect the performance of genetic algorithm mainly include the quality of initial population, the population size, and crossover probability and mutation probability values. As a result, an improved genetic algorithm for solving TSP problems is put forward. The population is graded according to individual similarity, and different operations are performed to different levels of individuals. In addition, elitist retention strategy is adopted at each level, and the crossover operator and mutation operator are improved. Several experiments are designed to verify the feasibility of the algorithm. Through the experimental results analysis, it is proved that the improved algorithm can improve the accuracy and efficiency of the solution.

  8. Constrained minimization of smooth functions using a genetic algorithm

    Science.gov (United States)

    Moerder, Daniel D.; Pamadi, Bandu N.

    1994-01-01

    The use of genetic algorithms for minimization of differentiable functions that are subject to differentiable constraints is considered. A technique is demonstrated for converting the solution of the necessary conditions for a constrained minimum into an unconstrained function minimization. This technique is extended as a global constrained optimization algorithm. The theory is applied to calculating minimum-fuel ascent control settings for an energy state model of an aerospace plane.

  9. Control of Complex Systems Using Bayesian Networks and Genetic Algorithm

    CERN Document Server

    Marwala, Tshilidzi

    2007-01-01

    A method based on Bayesian neural networks and genetic algorithm is proposed to control the fermentation process. The relationship between input and output variables is modelled using Bayesian neural network that is trained using hybrid Monte Carlo method. A feedback loop based on genetic algorithm is used to change input variables so that the output variables are as close to the desired target as possible without the loss of confidence level on the prediction that the neural network gives. The proposed procedure is found to reduce the distance between the desired target and measured outputs significantly.

  10. Acoustic design of rotor blades using a genetic algorithm

    Science.gov (United States)

    Wells, V. L.; Han, A. Y.; Crossley, W. A.

    1995-01-01

    A genetic algorithm coupled with a simplified acoustic analysis was used to generate low-noise rotor blade designs. The model includes thickness, steady loading and blade-vortex interaction noise estimates. The paper presents solutions for several variations in the fitness function, including thickness noise only, loading noise only, and combinations of the noise types. Preliminary results indicate that the analysis provides reasonable assessments of the noise produced, and that genetic algorithm successfully searches for 'good' designs. The results show that, for a given required thrust coefficient, proper blade design can noticeably reduce the noise produced at some expense to the power requirements.

  11. Optimization of multicast optical networks with genetic algorithm

    Science.gov (United States)

    Lv, Bo; Mao, Xiangqiao; Zhang, Feng; Qin, Xi; Lu, Dan; Chen, Ming; Chen, Yong; Cao, Jihong; Jian, Shuisheng

    2007-11-01

    In this letter, aiming to obtain the best multicast performance of optical network in which the video conference information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental optical network has been testified with best switching strategies by employing the novel numerical solution designed with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are accordance with the ones with the traditional fictitious play method.

  12. A genetic algorithm for structure-activity relationships: software implementation

    CERN Document Server

    Jantschi, Lorentz

    2009-01-01

    The design and the implementation of a genetic algorithm are described. The applicability domain is on structure-activity relationships expressed as multiple linear regressions and predictor variables are from families of structure-based molecular descriptors. An experiment to compare different selection and survival strategies was designed and realized. The genetic algorithm was run using the designed experiment on a set of 206 polychlorinated biphenyls searching on structure-activity relationships having known the measured octanol-water partition coefficients and a family of molecular descriptors. The experiment shows that different selection and survival strategies create different partitions on the entire population of all possible genotypes.

  13. Naturally selecting solutions: the use of genetic algorithms in bioinformatics.

    Science.gov (United States)

    Manning, Timmy; Sleator, Roy D; Walsh, Paul

    2013-01-01

    For decades, computer scientists have looked to nature for biologically inspired solutions to computational problems; ranging from robotic control to scheduling optimization. Paradoxically, as we move deeper into the post-genomics era, the reverse is occurring, as biologists and bioinformaticians look to computational techniques, to solve a variety of biological problems. One of the most common biologically inspired techniques are genetic algorithms (GAs), which take the Darwinian concept of natural selection as the driving force behind systems for solving real world problems, including those in the bioinformatics domain. Herein, we provide an overview of genetic algorithms and survey some of the most recent applications of this approach to bioinformatics based problems.

  14. Optimal design of steel portal frames based on genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    Yue CHEN; Kai HU

    2008-01-01

    As for the optimal design of steel portal frames, due to both the complexity of cross selections of beams and columns and the discreteness of design variables, it is difficult to obtain satisfactory results by traditional optimization. Based on a set of constraints of the Technical Specification for Light-weighted Steel Portal Frames of China, a genetic algorithm (GA) optimization program for portal frames, written in MATLAB code, was proposed in this paper. The graph user interface (GUI) is also developed for this optimal program, so that it can be used much more conveniently. Finally, some examples illustrate the effectiveness and efficiency of the genetic-algorithm-based optimal program.

  15. Building Blocks Propagation in Quantum-Inspired Genetic Algorithm

    CERN Document Server

    Nowotniak, Robert

    2010-01-01

    This paper presents an analysis of building blocks propagation in Quantum-Inspired Genetic Algorithm, which belongs to a new class of metaheuristics drawing their inspiration from both biological evolution and unitary evolution of quantum systems. The expected number of quantum chromosomes matching a schema has been analyzed and a random variable corresponding to this issue has been introduced. The results have been compared with Simple Genetic Algorithm. Also, it has been presented how selected binary quantum chromosomes cover a domain of one-dimensional fitness function.

  16. Particle swarm optimization - Genetic algorithm (PSOGA) on linear transportation problem

    Science.gov (United States)

    Rahmalia, Dinita

    2017-08-01

    Linear Transportation Problem (LTP) is the case of constrained optimization where we want to minimize cost subject to the balance of the number of supply and the number of demand. The exact method such as northwest corner, vogel, russel, minimal cost have been applied at approaching optimal solution. In this paper, we use heurisitic like Particle Swarm Optimization (PSO) for solving linear transportation problem at any size of decision variable. In addition, we combine mutation operator of Genetic Algorithm (GA) at PSO to improve optimal solution. This method is called Particle Swarm Optimization - Genetic Algorithm (PSOGA). The simulations show that PSOGA can improve optimal solution resulted by PSO.

  17. Improved Genetic Algorithm Application in Textile Defect Detection

    Institute of Scientific and Technical Information of China (English)

    GENG Zhao-feng; Li Bei-bei; ZHAO Zhi-hong

    2007-01-01

    Based on an efficient improved genetic algorithm,a pattern recognition approach is represented for textile defects inspection. An image process is developed to automatically detect the drawbacks on textile caused by three circumstances: break, dual, and jump of yams. By statistic method, some texture feature values of the image with defects points can be achieved. Therefore, the textile defects are classified properly. The advanced process of the defect image is done. Image segmentation is realized by an improved genetic algorithm to detect the defects. This method can be used to automatically classify and detect textile defects. According to different users' requirements, ifferent types of textile material can be detected.

  18. Solving the Vehicle Routing Problem using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Abdul Kadar Muhammad Masum

    2011-08-01

    Full Text Available The main goal of this research is to find a solution of Vehicle Routing Problem using genetic algorithms. The Vehicle Routing Problem (VRP is a complex combinatorial optimization problem that belongs to the NP-complete class. Due to the nature of the problem it is not possible to use exact methods for large instances of the VRP. Genetic algorithms provide a search technique used in computing to find true or approximate solution to optimization and search problems. However we used some heuristic in addition during crossover or mutation for tuning the system to obtain better result.

  19. Stellar Population Analysis of Galaxies based on Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    Abdel-Fattah Attia; H.A.Ismail; I.M.Selim; A.M.Osman; I.A.Isaa; M.A.Marie; A.A.Shaker

    2005-01-01

    We present a new method for determining the age and relative contribution of different stellar populations in galaxies based on the genetic algorithm.We apply this method to the barred spiral galaxy NGC 3384, using CCD images in U, B, V, R and I bands. This analysis indicates that the galaxy NGC 3384 is mainly inhabited by old stellar population (age > 109 yr). Some problems were encountered when numerical simulations are used for determining the contribution of different stellar populations in the integrated color of a galaxy. The results show that the proposed genetic algorithm can search efficiently through the very large space of the possible ages.

  20. Genetic Algorithm Optimisation of a Ship Navigation System

    Directory of Open Access Journals (Sweden)

    E. Alfaro-Cid

    2001-01-01

    Full Text Available The optimisation of the PID controllers' gains for separate propulsion and heading control systems of CyberShip I, a scale model of an oil platform supply ship, using Genetic Algorithms is considered. During the initial design process both PID controllers have been manually tuned to improve their performance. However this tuning approach is a tedious and time consuming process. A solution to this problem is the use of optimisation techniques based on Genetic Algorithms to optimise the controllers' gain values. This investigation has been carried out through computer-generated simulations based on a non-linear hydrodynamic model of CyberShip I.

  1. Quality of Service Routing Strategy Using Supervised Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    WANG Zhaoxia; SUN Yugeng; WANG Zhiyong; SHEN Huayu

    2007-01-01

    A supervised genetic algorithm (SGA) is proposed to solve the quality of service (QoS)routing problems in computer networks. The supervised rules of intelligent concept are introduced into genetic algorithms (GAs) to solve the constraint optimization problem. One of the main characteristics of SGA is its searching space can be limited in feasible regions rather than infeasible regions. The superiority of SGA to other GAs lies in that some supervised search rules in which the information comes from the problems are incorporated into SGA. The simulation results show that SGA improves the ability of searching an optimum solution and accelerates the convergent process up to 20 times.

  2. Genetic Algorithm Modeling with GPU Parallel Computing Technology

    CERN Document Server

    Cavuoti, Stefano; Brescia, Massimo; Pescapé, Antonio; Longo, Giuseppe; Ventre, Giorgio

    2012-01-01

    We present a multi-purpose genetic algorithm, designed and implemented with GPGPU / CUDA parallel computing technology. The model was derived from a multi-core CPU serial implementation, named GAME, already scientifically successfully tested and validated on astrophysical massive data classification problems, through a web application resource (DAMEWARE), specialized in data mining based on Machine Learning paradigms. Since genetic algorithms are inherently parallel, the GPGPU computing paradigm has provided an exploit of the internal training features of the model, permitting a strong optimization in terms of processing performances and scalability.

  3. Optimizing Combination of Units Commitment Based on Improved Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    LAI Yifei; ZHANG Qianhua; JIA Junping

    2007-01-01

    GAs are general purpose optimization techniques based on principles inspired from the biological evolution using metaphors of mechanisms, such as natural selection, genetic recombination and survival of the fittest. By use of coding betterment, the dynamic changes of the mutation rate and the crossover probability, the dynamic choice of subsistence, the reservation of the optimal fitness value, a modified genetic algorithm for optimizing combination of units in thermal power plants is proposed.And through taking examples, test result are analyzed and compared with results of some different algorithms. Numerical results show available value for the unit commitment problem with examples.

  4. Hierarchical Genetic Algorithm Approach to Determine Pulse Sequences in NMR

    CERN Document Server

    Ajoy, Ashok

    2009-01-01

    We develop a new class of genetic algorithm that computationally determines efficient pulse sequences to implement a quantum gate U in a three-qubit system. The method is shown to be quite general, and the same algorithm can be used to derive efficient sequences for a variety of target matrices. We demonstrate this by implementing the inversion-on-equality gate efficiently when the spin-spin coupling constants $J_{12}=J_{23}=J$ and $J_{13}=0$. We also propose new pulse sequences to implement the Parity gate and Fanout gate, which are about 50% more efficient than the previous best efforts. Moreover, these sequences are shown to require significantly less RF power for their implementation. The proposed algorithm introduces several new features in the conventional genetic algorithm framework. We use matrices instead of linear chains, and the columns of these matrices have a well defined hierarchy. The algorithm is a genetic algorithm coupled to a fast local optimizer, and is hence a hybrid GA. It shows fast con...

  5. Multi Population Hybrid Genetic Algorithms for University Course Timetabling Problem

    Directory of Open Access Journals (Sweden)

    Leila Jadidi

    2012-06-01

    Full Text Available University course timetabling is one of the important and time consuming issues that each University is involved with it at the beginning of each. This problem is in class of NP-hard problem and is very difficult to solve by classic algorithms. Therefore optimization techniques are used to solve them and produce optimal or near optimal feasible solutions instead of exact solutions. Genetic algorithms, because of multidirectional search property of them, are considered as an efficient approach for solving this type of problems. In this paper three new hybrid genetic algorithms for solving the university course timetabling problem (UCTP are proposed: FGARI, FGASA and FGATS. In proposed algorithms, fuzzy logic is used to measure violation of soft constraints in fitness function to deal with inherent uncertainly and vagueness involved in real life data. Also, randomized iterative local search, simulated annealing and tabu search are applied, respectively, to improve exploitive search ability and prevent genetic algorithm to be trapped in local optimum. The experimental results indicate that the proposed algorithms are able to produce promising results for the UCTP.

  6. Multi Population Hybrid Genetic Algorithms for University Course Timetabling

    Directory of Open Access Journals (Sweden)

    Mehrnaz Shirani LIRI

    2012-08-01

    Full Text Available University course timetabling is one of the important and time consuming issues that each University is involved with at the beginning of each university year. This problem is in class of NP-hard problem and is very difficult to solve by classic algorithms. Therefore optimization techniques are used to solve them and produce optimal or almost optimal feasible solutions instead of exact solutions. Genetic algorithms, because of their multidirectional search property, are considered as an efficient approach for solving this type of problems. In this paper three new hybrid genetic algorithms for solving the university course timetabling problem (UCTP are proposed: FGARI, FGASA and FGATS. In the proposed algorithms, fuzzy logic is used to measure violation of soft constraints in fitness function to deal with inherent uncertainty and vagueness involved in real life data. Also, randomized iterative local search, simulated annealing and tabu search are applied, respectively, to improve exploitive search ability and prevent genetic algorithm to be trapped in local optimum. The experimental results indicate that the proposed algorithms are able to produce promising results for the UCTP

  7. Genetic Algorithms and Their Application to the Protein Folding Problem

    Science.gov (United States)

    1993-12-01

    mutation, genetic algorithms simulate the Darwin theory of survival of the fittest. The search space is represented by a population of strings upon which... Darwin theory of survival of the fittest by representing the search space as a population of strings upon which genetic operators act to create new...34 International Conference on Tools for Artificial Intelligence, IEEE-TAI 90, 322-7. Cartwright , H. M. & Mott, G. F. (1991). "Looking A:;und: Using Clues

  8. Underground water quality model inversion of genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    MA Ruijie; LI Xin

    2009-01-01

    The underground water quality model with non-linear inversion problem is ill-posed, and boils down to solving the minimum of nonlinear function. Genetic algorithms are adopted in a number of individuals of groups by iterative search to find the optimal solution of the problem, the encoding strings as its operational objective, and achieving the iterative calculations by the genetic operators. It is an effective method of inverse problems of groundwater, with incomparable advantages and practical significances.

  9. A new automatic alignment technology for single mode fiber-waveguide based on improved genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yu; CHEN Zhuang-zhuang; LI Ya-juan; DUAN Jian

    2009-01-01

    A novel automatic alignment algorithm of single mode fiber-waveguide based on improved genetic algorithm is proposed. The genetic searching is based on the dynamic crossover operator and the adaptive mutation operator to solve the premature convergence of simple genetic algorithm The improved genetic algorithm combines with hill-climbing method and pattern searching algorithm, to solve low precision of simple genetic algorithm in later searching. The simulation results indicate that the improved genetic algorithm can rise the alignment precision and reach the coupling loss of 0.01 dB when platform moves near 207 space points averagely.

  10. Manipulator Neural Network Control Based on Fuzzy Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The three-layer forward neural networks are used to establish the inverse kinem a tics models of robot manipulators. The fuzzy genetic algorithm based on the line ar scaling of the fitness value is presented to update the weights of neural net works. To increase the search speed of the algorithm, the crossover probability and the mutation probability are adjusted through fuzzy control and the fitness is modified by the linear scaling method in FGA. Simulations show that the propo sed method improves considerably the precision of the inverse kinematics solutio ns for robot manipulators and guarantees a rapid global convergence and overcome s the drawbacks of SGA and the BP algorithm.

  11. Improved Runtime Analysis of the Simple Genetic Algorithm

    DEFF Research Database (Denmark)

    Oliveto, Pietro S.; Witt, Carsten

    2013-01-01

    A runtime analysis of the Simple Genetic Algorithm (SGA) for the OneMax problem has recently been presented proving that the algorithm requires exponential time with overwhelming probability. This paper presents an improved analysis which overcomes some limitations of our previous one. Firstly...... improvement towards the reusability of the techniques in future systematic analyses of GAs. Finally, we consider the more natural SGA using selection with replacement rather than without replacement although the results hold for both algorithmic versions. Experiments are presented to explore the limits...

  12. Improved time complexity analysis of the Simple Genetic Algorithm

    DEFF Research Database (Denmark)

    Oliveto, Pietro S.; Witt, Carsten

    2015-01-01

    A runtime analysis of the Simple Genetic Algorithm (SGA) for the OneMax problem has recently been presented proving that the algorithm with population size μ≤n1/8−ε requires exponential time with overwhelming probability. This paper presents an improved analysis which overcomes some limitations...... this is a major improvement towards the reusability of the techniques in future systematic analyses of GAs. Finally, we consider the more natural SGA using selection with replacement rather than without replacement although the results hold for both algorithmic versions. Experiments are presented to explore...

  13. Genetic algorithm for flood detection and evacuation route planning

    Science.gov (United States)

    Gomes, Rahul; Straub, Jeremy

    2017-05-01

    A genetic-type algorithm is presented that uses satellite geospatial data to determine the most probable path to safety for individuals in a disaster area, where a traditional routing system cannot be used. The algorithm uses geological features and disaster information to determine the shortest safe path. It predicts how a flood can change a landform over time and uses this data to predict alternate routes. It also predicts safe routes in rural locations where GPS/map-based routing data is unavailable or inaccurate. Reflectance and a supervised classification algorithm are used and the output is compared with RFPI and PCR-GLOBWB data.

  14. Solving the Dial-a-Ride Problem using Genetic Algorithms

    DEFF Research Database (Denmark)

    Jørgensen, Rene Munk; Larsen, Jesper; Bergvinsdottir, Kristin Berg

    2007-01-01

    customer service level constraints (Quality of Service). In this paper, we present a genetic algorithm (GA) for solving the DARP. The algorithm is based on the classical cluster-first, route-second approach, where it alternates between assigning customers to vehicles using a GA and solving independent...... routing problems for the vehicles using a routing heuristic. The algorithm is implemented in Java and tested on publicly available data sets. The new solution method has achieved solutions comparable with the current state-of-the-art methods....

  15. Haplotyping a single triploid individual based on genetic algorithm.

    Science.gov (United States)

    Wu, Jingli; Chen, Xixi; Li, Xianchen

    2014-01-01

    The minimum error correction model is an important combinatorial model for haplotyping a single individual. In this article, triploid individual haplotype reconstruction problem is studied by using the model. A genetic algorithm based method GTIHR is presented for reconstructing the triploid individual haplotype. A novel coding method and an effectual hill-climbing operator are introduced for the GTIHR algorithm. This relatively short chromosome code can lead to a smaller solution space, which plays a positive role in speeding up the convergence process. The hill-climbing operator ensures algorithm GTIHR converge at a good solution quickly, and prevents premature convergence simultaneously. The experimental results prove that algorithm GTIHR can be implemented efficiently, and can get higher reconstruction rate than previous algorithms.

  16. Advancing x-ray scattering metrology using inverse genetic algorithms

    Science.gov (United States)

    Hannon, Adam F.; Sunday, Daniel F.; Windover, Donald; Joseph Kline, R.

    2016-07-01

    We compare the speed and effectiveness of two genetic optimization algorithms to the results of statistical sampling via a Markov chain Monte Carlo algorithm to find which is the most robust method for determining real-space structure in periodic gratings measured using critical dimension small-angle x-ray scattering. Both a covariance matrix adaptation evolutionary strategy and differential evolution algorithm are implemented and compared using various objective functions. The algorithms and objective functions are used to minimize differences between diffraction simulations and measured diffraction data. These simulations are parameterized with an electron density model known to roughly correspond to the real-space structure of our nanogratings. The study shows that for x-ray scattering data, the covariance matrix adaptation coupled with a mean-absolute error log objective function is the most efficient combination of algorithm and goodness of fit criterion for finding structures with little foreknowledge about the underlying fine scale structure features of the nanograting.

  17. Neural-Network-Biased Genetic Algorithms for Materials Design: Evolutionary Algorithms That Learn.

    Science.gov (United States)

    Patra, Tarak K; Meenakshisundaram, Venkatesh; Hung, Jui-Hsiang; Simmons, David S

    2017-02-13

    Machine learning has the potential to dramatically accelerate high-throughput approaches to materials design, as demonstrated by successes in biomolecular design and hard materials design. However, in the search for new soft materials exhibiting properties and performance beyond those previously achieved, machine learning approaches are frequently limited by two shortcomings. First, because they are intrinsically interpolative, they are better suited to the optimization of properties within the known range of accessible behavior than to the discovery of new materials with extremal behavior. Second, they require large pre-existing data sets, which are frequently unavailable and prohibitively expensive to produce. Here we describe a new strategy, the neural-network-biased genetic algorithm (NBGA), for combining genetic algorithms, machine learning, and high-throughput computation or experiment to discover materials with extremal properties in the absence of pre-existing data. Within this strategy, predictions from a progressively constructed artificial neural network are employed to bias the evolution of a genetic algorithm, with fitness evaluations performed via direct simulation or experiment. In effect, this strategy gives the evolutionary algorithm the ability to "learn" and draw inferences from its experience to accelerate the evolutionary process. We test this algorithm against several standard optimization problems and polymer design problems and demonstrate that it matches and typically exceeds the efficiency and reproducibility of standard approaches including a direct-evaluation genetic algorithm and a neural-network-evaluated genetic algorithm. The success of this algorithm in a range of test problems indicates that the NBGA provides a robust strategy for employing informatics-accelerated high-throughput methods to accelerate materials design in the absence of pre-existing data.

  18. A Genetic Algorithm on Inventory Routing Problem

    Directory of Open Access Journals (Sweden)

    Nevin Aydın

    2014-03-01

    Full Text Available Inventory routing problem can be defined as forming the routes to serve to the retailers from the manufacturer, deciding on the quantity of the shipment to the retailers and deciding on the timing of the replenishments. The difference of inventory routing problems from vehicle routing problems is the consideration of the inventory positions of retailers and supplier, and making the decision accordingly. Inventory routing problems are complex in nature and they can be solved either theoretically or using a heuristics method. Metaheuristics is an emerging class of heuristics that can be applied to combinatorial optimization problems. In this paper, we provide the relationship between vendor-managed inventory and inventory routing problem. The proposed genetic for solving vehicle routing problem is described in detail.

  19. FPGA Implementation of Parallel Particle Swarm Optimization Algorithm and Compared with Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    BEN AMEUR Mohamed sadek

    2016-08-01

    Full Text Available In this paper, a digital implementation of Particle Swarm Optimization algorithm (PSO is developed for implementation on Field Programmable Gate Array (FPGA. PSO is a recent intelligent heuristic search method in which the mechanism of algorithm is inspired by the swarming of biological populations. PSO is similar to the Genetic Algorithm (GA. In fact, both of them use a combination of deterministic and probabilistic rules. The experimental results of this algorithm are effective to evaluate the performance of the PSO compared to GA and other PSO algorithm. New digital solutions are available to generate a hardware implementation of PSO Algorithms. Thus, we developed a hardware architecture based on Finite state machine (FSM and implemented into FPGA to solve some dispatch computing problems over other circuits based on swarm intelligence. Moreover, the inherent parallelism of these new hardware solutions with a large computational capacity makes the running time negligible regardless the complexity of the processing.

  20. An Adaptive Filtering Algorithm Based on Genetic Algorithm-Backpropagation Network

    Directory of Open Access Journals (Sweden)

    Kai Hu

    2013-01-01

    Full Text Available A new image filtering algorithm is proposed. GA-BPN algorithm uses genetic algorithm (GA to decide weights in a back propagation neural network (BPN. It has better global optimal characteristics than traditional optimal algorithm. In this paper, we used GA-BPN to do image noise filter researching work. Firstly, this paper uses training samples to train GA-BPN as the noise detector. Then, we utilize the well-trained GA-BPN to recognize noise pixels in target image. And at last, an adaptive weighted average algorithm is used to recover noise pixels recognized by GA-BPN. Experiment data shows that this algorithm has better performance than other filters.

  1. The multi-niche crowding genetic algorithm: Analysis and applications

    Energy Technology Data Exchange (ETDEWEB)

    Cedeno, Walter [Univ. of California, Davis, CA (United States)

    1995-09-01

    The ability of organisms to evolve and adapt to the environment has provided mother nature with a rich and diverse set of species. Only organisms well adapted to their environment can survive from one generation to the next, transferring on the traits, that made them successful, to their offspring. Competition for resources and the ever changing environment drives some species to extinction and at the same time others evolve to maintain the delicate balance in nature. In this disertation we present the multi-niche crowding genetic algorithm, a computational metaphor to the survival of species in ecological niches in the face of competition. The multi-niche crowding genetic algorithm maintains stable subpopulations of solutions in multiple niches in multimodal landscapes. The algorithm introduces the concept of crowding selection to promote mating among members with qirnilar traits while allowing many members of the population to participate in mating. The algorithm uses worst among most similar replacement policy to promote competition among members with similar traits while allowing competition among members of different niches as well. We present empirical and theoretical results for the success of the multiniche crowding genetic algorithm for multimodal function optimization. The properties of the algorithm using different parameters are examined. We test the performance of the algorithm on problems of DNA Mapping, Aquifer Management, and the File Design Problem. Applications that combine the use of heuristics and special operators to solve problems in the areas of combinatorial optimization, grouping, and multi-objective optimization. We conclude by presenting the advantages and disadvantages of the algorithm and describing avenues for future investigation to answer other questions raised by this study.

  2. Genetic Algorithm with SRM SVM Classifier for Face Verification

    OpenAIRE

    Safiya K.M; Bhuvana, S.; P.TamijeSelvy; R. Radhakrishnan

    2012-01-01

    Face verification is an important problem. The problem of designing and evaluating discriminativeapproaches without explicit age modelling is used. To find the gradient orientation discard magnitudeinformation. Using hierarchical information this representation can be further improved which results inthe use of gradient orientation pyramid. When combined with a structural risk minimization support vectormachine with genetic algorithm, gradient orientation pyramid demonstrate excellent per...

  3. Genetic algorithm for multi-protocol label switching

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new method for multi-protocol label switching is presented in this study, whose core idea is to construct model for simulating process of accommodating network online loads and then adopt genetic algorithm to optimize the model. Due to the heuristic property of evolutional method, the new method is efficient and effective, which is verified by the experiments.

  4. Optimization of reliability allocation strategies through use of genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.E.; Painton, L.A.

    1996-08-01

    This paper examines a novel optimization technique called genetic algorithms and its application to the optimization of reliability allocation strategies. Reliability allocation should occur in the initial stages of design, when the objective is to determine an optimal breakdown or allocation of reliability to certain components or subassemblies in order to meet system specifications. The reliability allocation optimization is applied to the design of a cluster tool, a highly complex piece of equipment used in semiconductor manufacturing. The problem formulation is presented, including decision variables, performance measures and constraints, and genetic algorithm parameters. Piecewise ``effort curves`` specifying the amount of effort required to achieve a certain level of reliability for each component of subassembly are defined. The genetic algorithm evolves or picks those combinations of ``effort`` or reliability levels for each component which optimize the objective of maximizing Mean Time Between Failures while staying within a budget. The results show that the genetic algorithm is very efficient at finding a set of robust solutions. A time history of the optimization is presented, along with histograms or the solution space fitness, MTBF, and cost for comparative purposes.

  5. System control fuzzy neural sewage pumping stations using genetic algorithms

    Directory of Open Access Journals (Sweden)

    Владлен Николаевич Кузнецов

    2015-06-01

    Full Text Available It is considered the system of management of sewage pumping station with regulators based on a neuron network with fuzzy logic. Linguistic rules for the controller based on fuzzy logic, maintaining the level of effluent in the receiving tank within the prescribed limits are developed. The use of genetic algorithms for neuron network training is shown.

  6. Time-Delay System Identification Using Genetic Algorithm

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Seested, Glen Thane

    2013-01-01

    Due to the unknown dead-time coefficient, the time-delay system identification turns to be a non-convex optimization problem. This paper investigates the identification of a simple time-delay system, named First-Order-Plus-Dead-Time (FOPDT), by using the Genetic Algorithm (GA) technique...

  7. Concrete Plant Operations Optimization Using Combined Simulation and Genetic Algorithms

    NARCIS (Netherlands)

    Cao, Ming; Lu, Ming; Zhang, Jian-Ping

    2004-01-01

    This work presents a new approach for concrete plant operations optimization by combining a ready mixed concrete (RMC) production simulation tool (called HKCONSIM) with a genetic algorithm (GA) based optimization procedure. A revamped HKCONSIM computer system can be used to automate the simulation m

  8. Experiences with the PGAPack Parallel Genetic Algorithm library

    Energy Technology Data Exchange (ETDEWEB)

    Levine, D.; Hallstrom, P.; Noelle, D.; Walenz, B.

    1997-07-01

    PGAPack is the first widely distributed parallel genetic algorithm library. Since its release, several thousand copies have been distributed worldwide to interested users. In this paper we discuss the key components of the PGAPack design philosophy and present a number of application examples that use PGAPack.

  9. UAV Cooperative Multiple Task Assignments using Genetic Algorithms

    Science.gov (United States)

    2005-06-01

    vehicle routing problem (VRP). In all of these classical problems the minimum cost assignment is sought where: in the TSP the tour is of one agent...10] Baker, Barrie, M. and Ayechew, M. A., “A Genetic Algorithm for the Vehicle Routing Problem ,” Computers and Operations Research, Vol. 30, 2003

  10. Concrete Plant Operations Optimization Using Combined Simulation and Genetic Algorithms

    NARCIS (Netherlands)

    Cao, Ming; Lu, Ming; Zhang, Jian-Ping

    2004-01-01

    This work presents a new approach for concrete plant operations optimization by combining a ready mixed concrete (RMC) production simulation tool (called HKCONSIM) with a genetic algorithm (GA) based optimization procedure. A revamped HKCONSIM computer system can be used to automate the simulation m

  11. Waypoint planning with Dubins Curves using Genetic Algorithms

    DEFF Research Database (Denmark)

    Hansen, Karl Damkjær; La Cour-Harbo, Anders

    2016-01-01

    , the kinematics of the aircraft ruins the plan. This work describes an approach that uses a genetic algorithm to solve the waypoint planning problem while considering the kinematics of the aircraft in one single step. This approach entails the addition of a heading and target speed along with the position...

  12. USING GENETIC ALGORITHMS TO DESIGN ENVIRONMENTALLY FRIENDLY PROCESSES

    Science.gov (United States)

    Genetic algorithm calculations are applied to the design of chemical processes to achieve improvements in environmental and economic performance. By finding the set of Pareto (i.e., non-dominated) solutions one can see how different objectives, such as environmental and economic ...

  13. Applying Genetic Algorithms To Query Optimization in Document Retrieval.

    Science.gov (United States)

    Horng, Jorng-Tzong; Yeh, Ching-Chang

    2000-01-01

    Proposes a novel approach to automatically retrieve keywords and then uses genetic algorithms to adapt the keyword weights. Discusses Chinese text retrieval, term frequency rating formulas, vector space models, bigrams, the PAT-tree structure for information retrieval, query vectors, and relevance feedback. (Author/LRW)

  14. Optimization of antibacterial peptides by genetic algorithms and cheminformatics

    DEFF Research Database (Denmark)

    Fjell, Christopher D.; Jenssen, Håvard; Cheung, Warren A.

    2011-01-01

    47 of the top rated 50 peptides chosen from an in silico library of nearly 100 000 sequences. Here, we report a method of generating candidate peptide sequences using the heuristic evolutionary programming method of genetic algorithms (GA), which provided a large (19-fold) improvement...

  15. Performance of genetic algorithms in search for water splitting perovskites

    DEFF Research Database (Denmark)

    Jain, A.; Castelli, Ivano Eligio; Hautier, G.

    2013-01-01

    We examine the performance of genetic algorithms (GAs) in uncovering solar water light splitters over a space of almost 19,000 perovskite materials. The entire search space was previously calculated using density functional theory to determine solutions that fulfill constraints on stability, band...

  16. District Heating Network Design and Configuration Optimization with Genetic Algorithm

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2013-01-01

    and the pipe friction and heat loss formulations are non-linear. In order to find the optimal district heating network configuration, genetic algorithm which handles the mixed integer nonlinear programming problem is chosen. The network configuration is represented with binary and integer encoding...

  17. District Heating Network Design and Configuration Optimization with Genetic Algorithm

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2011-01-01

    the heating plant location is allowed to vary. The connection between the heat generation plant and the end users can be represented with mixed integer and the pipe friction and heat loss formulations are non-linear. In order to find the optimal DH distribution pipeline configuration, the genetic algorithm...

  18. A parallel genetic algorithm for the set partitioning problem

    Energy Technology Data Exchange (ETDEWEB)

    Levine, D.

    1996-12-31

    This paper describes a parallel genetic algorithm developed for the solution of the set partitioning problem- a difficult combinatorial optimization problem used by many airlines as a mathematical model for flight crew scheduling. The genetic algorithm is based on an island model where multiple independent subpopulations each run a steady-state genetic algorithm on their own subpopulation and occasionally fit strings migrate between the subpopulations. Tests on forty real-world set partitioning problems were carried out on up to 128 nodes of an IBM SP1 parallel computer. We found that performance, as measured by the quality of the solution found and the iteration on which it was found, improved as additional subpopulations were added to the computation. With larger numbers of subpopulations the genetic algorithm was regularly able to find the optimal solution to problems having up to a few thousand integer variables. In two cases, high- quality integer feasible solutions were found for problems with 36, 699 and 43,749 integer variables, respectively. A notable limitation we found was the difficulty solving problems with many constraints.

  19. Time-Delay System Identification Using Genetic Algorithm

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Seested, Glen Thane

    2013-01-01

    problem through an identification approach using the real coded Genetic Algorithm (GA). The desired FOPDT/SOPDT model is directly identified based on the measured system's input and output data. In order to evaluate the quality and performance of this GA-based approach, the proposed method is compared...

  20. Navigation Constellation Design Using a Multi-Objective Genetic Algorithm

    Science.gov (United States)

    2015-03-26

    the mutation and crossover functions specified that certain design parameters be integer values [17]. Equation 21 represents the variables that...been used to force certain design variables to be integer values. Understanding the MATLAB code for the mutation and crossover functions is not...NAVIGATION CONSTELLATION DESIGN USING A MULTI-OBJECTIVE GENETIC ALGORITHM THESIS MARCH 2015

  1. District Heating Network Design and Configuration Optimization with Genetic Algorithm

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2011-01-01

    the heating plant location is allowed to vary. The connection between the heat generation plant and the end users can be represented with mixed integer and the pipe friction and heat loss formulations are non-linear. In order to find the optimal DH distribution pipeline configuration, the genetic algorithm...

  2. Optimization of composite panels using neural networks and genetic algorithms

    NARCIS (Netherlands)

    Ruijter, W.; Spallino, R.; Warnet, Laurent; de Boer, Andries

    2003-01-01

    The objective of this paper is to present first results of a running study on optimization of aircraft components (composite panels of a typical vertical tail plane) by using Genetic Algorithms (GA) and Neural Networks (NN). The panels considered are standardized to some extent but still there is a

  3. Concrete Plant Operations Optimization Using Combined Simulation and Genetic Algorithms

    NARCIS (Netherlands)

    Cao, Ming; Lu, Ming; Zhang, Jian-Ping

    2004-01-01

    This work presents a new approach for concrete plant operations optimization by combining a ready mixed concrete (RMC) production simulation tool (called HKCONSIM) with a genetic algorithm (GA) based optimization procedure. A revamped HKCONSIM computer system can be used to automate the simulation

  4. Applying Genetic Algorithms To Query Optimization in Document Retrieval.

    Science.gov (United States)

    Horng, Jorng-Tzong; Yeh, Ching-Chang

    2000-01-01

    Proposes a novel approach to automatically retrieve keywords and then uses genetic algorithms to adapt the keyword weights. Discusses Chinese text retrieval, term frequency rating formulas, vector space models, bigrams, the PAT-tree structure for information retrieval, query vectors, and relevance feedback. (Author/LRW)

  5. USING GENETIC ALGORITHMS TO DESIGN ENVIRONMENTALLY FRIENDLY PROCESSES

    Science.gov (United States)

    Genetic algorithm calculations are applied to the design of chemical processes to achieve improvements in environmental and economic performance. By finding the set of Pareto (i.e., non-dominated) solutions one can see how different objectives, such as environmental and economic ...

  6. Finite-time performance analysis for genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Finite-time performance of genetic algorithm with elitist operator in finite solution space is studied, and the relationship between evolution generation and the quality of the solution found best so far is analyzed. The estimating formulations of the expectation value as well as upper bound and lower bound for the evolution generation earliest achieving specific performance are provided.

  7. Dimensional Synthesis of Four Bar Mechanism Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    S. S. Shete

    2015-03-01

    Full Text Available The dimensional synthesis is done by using Genetic Algorithm to achieve a desired trajectory. Three problems are analyzed having different curvature. The program is authored in MATLAB® 2010a. The error is seen to be in the permissible prescribed limit. The prototyping of straight line trajectory analysis is also done in ADAMS®

  8. Transmission function models of finite population genetic algorithms

    NARCIS (Netherlands)

    Kemenade, C.H.M. van; Kok, J.N.; La Poutré, J.A.; Thierens, D.

    1998-01-01

    Infinite population models show a deterministic behaviour. Genetic algorithms with finite populations behave non-deterministicly. For small population sizes, the results obtained with these models differ strongly from the results predicted by the infinite population model. When the population size i

  9. Proposed genetic algorithms for construction site lay out

    NARCIS (Netherlands)

    Mawdesley, Michael J.; Al-Jibouri, Saad H.S.

    2003-01-01

    The positioning of temporary facilities on a construction site is an area of research which has been recognised as important but which has received relatively little attention. In this paper, a genetic algorithm is proposed to solve the problem in which m facilities are to be positioned to n

  10. A Parallel Genetic Algorithm for Automated Electronic Circuit Design

    Science.gov (United States)

    Lohn, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris; Norvig, Peter (Technical Monitor)

    2000-01-01

    We describe a parallel genetic algorithm (GA) that automatically generates circuit designs using evolutionary search. A circuit-construction programming language is introduced and we show how evolution can generate practical analog circuit designs. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. We present experimental results as applied to analog filter and amplifier design tasks.

  11. Genetic Algorithm Optimization for Determining Fuzzy Measures from Fuzzy Data

    Directory of Open Access Journals (Sweden)

    Chen Li

    2013-01-01

    Full Text Available Fuzzy measures and fuzzy integrals have been successfully used in many real applications. How to determine fuzzy measures is a very difficult problem in these applications. Though there have existed some methodologies for solving this problem, such as genetic algorithms, gradient descent algorithms, neural networks, and particle swarm algorithm, it is hard to say which one is more appropriate and more feasible. Each method has its advantages. Most of the existed works can only deal with the data consisting of classic numbers which may arise limitations in practical applications. It is not reasonable to assume that all data are real data before we elicit them from practical data. Sometimes, fuzzy data may exist, such as in pharmacological, financial and sociological applications. Thus, we make an attempt to determine a more generalized type of general fuzzy measures from fuzzy data by means of genetic algorithms and Choquet integrals. In this paper, we make the first effort to define the σ-λ rules. Furthermore we define and characterize the Choquet integrals of interval-valued functions and fuzzy-number-valued functions based on σ-λ rules. In addition, we design a special genetic algorithm to determine a type of general fuzzy measures from fuzzy data.

  12. Real-Coded Quantum-Inspired Genetic Algorithm-Based BP Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Jianyong Liu

    2015-01-01

    Full Text Available The method that the real-coded quantum-inspired genetic algorithm (RQGA used to optimize the weights and threshold of BP neural network is proposed to overcome the defect that the gradient descent method makes the algorithm easily fall into local optimal value in the learning process. Quantum genetic algorithm (QGA is with good directional global optimization ability, but the conventional QGA is based on binary coding; the speed of calculation is reduced by the coding and decoding processes. So, RQGA is introduced to explore the search space, and the improved varied learning rate is adopted to train the BP neural network. Simulation test shows that the proposed algorithm is effective to rapidly converge to the solution conformed to constraint conditions.

  13. Genetic algorithm-based evaluation of spatial straightness error

    Institute of Scientific and Technical Information of China (English)

    崔长彩; 车仁生; 黄庆成; 叶东; 陈刚

    2003-01-01

    A genetic algorithm ( GA ) -based approach is proposed to evaluate the straightness error of spatial lines. According to the mathematical definition of spatial straightness, a verification model is established for straightness error, and the fitness function of GA is then given and the implementation techniques of the proposed algorithm is discussed in detail. The implementation techniques include real number encoding, adaptive variable range choosing, roulette wheel and elitist combination selection strategies, heuristic crossover and single point mutation schemes etc. An application example is quoted to validate the proposed algorithm. The computation result shows that the GA-based approach is a superior nonlinear parallel optimization method. The performance of the evolution population can be improved through genetic operations such as reproduction, crossover and mutation until the optimum goal of the minimum zone solution is obtained. The quality of the solution is better and the efficiency of computation is higher than other methods.

  14. An Adaptive Immune Genetic Algorithm for Edge Detection

    Science.gov (United States)

    Li, Ying; Bai, Bendu; Zhang, Yanning

    An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.

  15. A dynamic fuzzy clustering method based on genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yan; ZHOU Chunguang; LIANG Yanchun; GUO Dongwei

    2003-01-01

    A dynamic fuzzy clustering method is presented based on the genetic algorithm. By calculating the fuzzy dissimilarity between samples the essential associations among samples are modeled factually. The fuzzy dissimilarity between two samples is mapped into their Euclidean distance, that is, the high dimensional samples are mapped into the two-dimensional plane. The mapping is optimized globally by the genetic algorithm, which adjusts the coordinates of each sample, and thus the Euclidean distance, to approximate to the fuzzy dissimilarity between samples gradually. A key advantage of the proposed method is that the clustering is independent of the space distribution of input samples, which improves the flexibility and visualization. This method possesses characteristics of a faster convergence rate and more exact clustering than some typical clustering algorithms. Simulated experiments show the feasibility and availability of the proposed method.

  16. Genetic Algorithm Based Production Planning for Alternative Process Production

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fa-ping; SUN Hou-fang; SHAHID I. Butt

    2009-01-01

    Production planning under flexible job shop environment is studied. A mathematic model is formulated to help improve alternative process production. This model, in which genetic algorithm is used, is expected to result in better production planning, hence towards the aim of minimizing production cost under the constraints of delivery time and other scheduling conditions. By means of this algorithm, all planning schemes which could meet all requirements of the constraints within the whole solution space are exhaustively searched so as to find the optimal one. Also, a case study is given in the end to support and validate this model. Our results show that genetic algorithm is capable of locating feasible process routes to reduce production cost for certain tasks.

  17. Genetic algorithms for multicriteria shape optimization of induction furnace

    Science.gov (United States)

    Kůs, Pavel; Mach, František; Karban, Pavel; Doležel, Ivo

    2012-09-01

    In this contribution we deal with a multi-criteria shape optimization of an induction furnace. We want to find shape parameters of the furnace in such a way, that two different criteria are optimized. Since they cannot be optimized simultaneously, instead of one optimum we find set of partially optimal designs, so called Pareto front. We compare two different approaches to the optimization, one using nonlinear conjugate gradient method and second using variation of genetic algorithm. As can be seen from the numerical results, genetic algorithm seems to be the right choice for this problem. Solution of direct problem (coupled problem consisting of magnetic and heat field) is done using our own code Agros2D. It uses finite elements of higher order leading to fast and accurate solution of relatively complicated coupled problem. It also provides advanced scripting support, allowing us to prepare parametric model of the furnace and simply incorporate various types of optimization algorithms.

  18. Efficient Satellite Scheduling Based on Improved Vector Evaluated Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Tengyue Mao

    2012-03-01

    Full Text Available Satellite scheduling is a typical multi-peak, many-valley, nonlinear multi-objective optimization problem. How to effectively implement the satellite scheduling is a crucial research in space areas.This paper mainly discusses the performance of VEGA (Vector Evaluated Genetic Algorithm based on the study of basic principles of VEGA algorithm, algorithm realization and test function, and then improves VEGA algorithm through introducing vector coding, new crossover and mutation operators, new methods to assign fitness and hold good individuals. As a result, the diversity and convergence of improved VEGA algorithm of improved VEGA algorithm have been significantly enhanced and will be applied to Earth-Mars orbit optimization. At the same time, this paper analyzes the results of the improved VEGA, whose results of performance analysis and evaluation show that although VEGA has a profound impact upon multi-objective evolutionary research,  multi-objective evolutionary algorithm on the basis of Pareto seems to be a more effective method to get the non-dominated solutions from the perspective of diversity and convergence of experimental result. Finally, based on Visual C + + integrated development environment, we have implemented improved vector evaluation algorithm in the satellite scheduling.

  19. Application of genetic algorithm to hexagon-based motion estimation.

    Science.gov (United States)

    Kung, Chih-Ming; Cheng, Wan-Shu; Jeng, Jyh-Horng

    2014-01-01

    With the improvement of science and technology, the development of the network, and the exploitation of the HDTV, the demands of audio and video become more and more important. Depending on the video coding technology would be the solution for achieving these requirements. Motion estimation, which removes the redundancy in video frames, plays an important role in the video coding. Therefore, many experts devote themselves to the issues. The existing fast algorithms rely on the assumption that the matching error decreases monotonically as the searched point moves closer to the global optimum. However, genetic algorithm is not fundamentally limited to this restriction. The character would help the proposed scheme to search the mean square error closer to the algorithm of full search than those fast algorithms. The aim of this paper is to propose a new technique which focuses on combing the hexagon-based search algorithm, which is faster than diamond search, and genetic algorithm. Experiments are performed to demonstrate the encoding speed and accuracy of hexagon-based search pattern method and proposed method.

  20. Evaluation of algorithms used to order markers on genetic maps.

    Science.gov (United States)

    Mollinari, M; Margarido, G R A; Vencovsky, R; Garcia, A A F

    2009-12-01

    When building genetic maps, it is necessary to choose from several marker ordering algorithms and criteria, and the choice is not always simple. In this study, we evaluate the efficiency of algorithms try (TRY), seriation (SER), rapid chain delineation (RCD), recombination counting and ordering (RECORD) and unidirectional growth (UG), as well as the criteria PARF (product of adjacent recombination fractions), SARF (sum of adjacent recombination fractions), SALOD (sum of adjacent LOD scores) and LHMC (likelihood through hidden Markov chains), used with the RIPPLE algorithm for error verification, in the construction of genetic linkage maps. A linkage map of a hypothetical diploid and monoecious plant species was simulated containing one linkage group and 21 markers with fixed distance of 3 cM between them. In all, 700 F(2) populations were randomly simulated with 100 and 400 individuals with different combinations of dominant and co-dominant markers, as well as 10 and 20% of missing data. The simulations showed that, in the presence of co-dominant markers only, any combination of algorithm and criteria may be used, even for a reduced population size. In the case of a smaller proportion of dominant markers, any of the algorithms and criteria (except SALOD) investigated may be used. In the presence of high proportions of dominant markers and smaller samples (around 100), the probability of repulsion linkage increases between them and, in this case, use of the algorithms TRY and SER associated to RIPPLE with criterion LHMC would provide better results.

  1. A simple algorithm for optimization and model fitting: AGA (asexual genetic algorithm)

    Science.gov (United States)

    Cantó, J.; Curiel, S.; Martínez-Gómez, E.

    2009-07-01

    Context: Mathematical optimization can be used as a computational tool to obtain the optimal solution to a given problem in a systematic and efficient way. For example, in twice-differentiable functions and problems with no constraints, the optimization consists of finding the points where the gradient of the objective function is zero and using the Hessian matrix to classify the type of each point. Sometimes, however it is impossible to compute these derivatives and other type of techniques must be employed such as the steepest descent/ascent method and more sophisticated methods such as those based on the evolutionary algorithms. Aims: We present a simple algorithm based on the idea of genetic algorithms (GA) for optimization. We refer to this algorithm as AGA (asexual genetic algorithm) and apply it to two kinds of problems: the maximization of a function where classical methods fail and model fitting in astronomy. For the latter case, we minimize the chi-square function to estimate the parameters in two examples: the orbits of exoplanets by taking a set of radial velocity data, and the spectral energy distribution (SED) observed towards a YSO (Young Stellar Object). Methods: The algorithm AGA may also be called genetic, although it differs from standard genetic algorithms in two main aspects: a) the initial population is not encoded; and b) the new generations are constructed by asexual reproduction. Results: Applying our algorithm in optimizing some complicated functions, we find the global maxima within a few iterations. For model fitting to the orbits of exoplanets and the SED of a YSO, we estimate the parameters and their associated errors.

  2. JavaGenes and Condor: Cycle-Scavenging Genetic Algorithms

    Science.gov (United States)

    Globus, Al; Langhirt, Eric; Livny, Miron; Ramamurthy, Ravishankar; Soloman, Marvin; Traugott, Steve

    2000-01-01

    A genetic algorithm code, JavaGenes, was written in Java and used to evolve pharmaceutical drug molecules and digital circuits. JavaGenes was run under the Condor cycle-scavenging batch system managing 100-170 desktop SGI workstations. Genetic algorithms mimic biological evolution by evolving solutions to problems using crossover and mutation. While most genetic algorithms evolve strings or trees, JavaGenes evolves graphs representing (currently) molecules and circuits. Java was chosen as the implementation language because the genetic algorithm requires random splitting and recombining of graphs, a complex data structure manipulation with ample opportunities for memory leaks, loose pointers, out-of-bound indices, and other hard to find bugs. Java garbage-collection memory management, lack of pointer arithmetic, and array-bounds index checking prevents these bugs from occurring, substantially reducing development time. While a run-time performance penalty must be paid, the only unacceptable performance we encountered was using standard Java serialization to checkpoint and restart the code. This was fixed by a two-day implementation of custom checkpointing. JavaGenes is minimally integrated with Condor; in other words, JavaGenes must do its own checkpointing and I/O redirection. A prototype Java-aware version of Condor was developed using standard Java serialization for checkpointing. For the prototype to be useful, standard Java serialization must be significantly optimized. JavaGenes is approximately 8700 lines of code and a few thousand JavaGenes jobs have been run. Most jobs ran for a few days. Results include proof that genetic algorithms can evolve directed and undirected graphs, development of a novel crossover operator for graphs, a paper in the journal Nanotechnology, and another paper in preparation.

  3. A Linkage Learning Genetic Algorithm with Linkage Matrix

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The goal of linkage learning, or building block identification, is the creation of a more effective Genetic Algorithm (GA). This paper proposes a new Linkage Learning Genetic Algorithms, named m-LLGA. With the linkage learning module and the linkage-based genetic operation, m-LLGA is not only able to learn and record the linkage information among genes without any prior knowledge of the function being optimized. It also can use the linkage information stored in the linkage matrix to guide the selection of crossover point. The preliminary experiments on two kinds of bounded difficulty problems and a TSP problem validated the performance of m-LLGA. The m-LLGA learns the linkage of different building blocks parallel and therefore solves these problems effectively; it can also reasonably reduce the probability of building blocks being disrupted by crossover at the same time give attention to getting away from local minimum.

  4. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Zu Yun-Xiao; Zhou Jie

    2012-01-01

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed,and a fitness function is provided.Simulations are conducted using the adaptive niche immune genetic algorithm,the simulated annealing algorithm,the quantum genetic algorithm and the simple genetic algorithm,respectively.The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation,and has quick convergence speed and strong global searching capability,which effectively reduces the system power consumption and bit error rate.

  5. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    Science.gov (United States)

    Zu, Yun-Xiao; Zhou, Jie

    2012-01-01

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algorithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate.

  6. The Ordered Clustered Travelling Salesman Problem: A Hybrid Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Zakir Hussain Ahmed

    2014-01-01

    Full Text Available The ordered clustered travelling salesman problem is a variation of the usual travelling salesman problem in which a set of vertices (except the starting vertex of the network is divided into some prespecified clusters. The objective is to find the least cost Hamiltonian tour in which vertices of any cluster are visited contiguously and the clusters are visited in the prespecified order. The problem is NP-hard, and it arises in practical transportation and sequencing problems. This paper develops a hybrid genetic algorithm using sequential constructive crossover, 2-opt search, and a local search for obtaining heuristic solution to the problem. The efficiency of the algorithm has been examined against two existing algorithms for some asymmetric and symmetric TSPLIB instances of various sizes. The computational results show that the proposed algorithm is very effective in terms of solution quality and computational time. Finally, we present solution to some more symmetric TSPLIB instances.

  7. The ordered clustered travelling salesman problem: a hybrid genetic algorithm.

    Science.gov (United States)

    Ahmed, Zakir Hussain

    2014-01-01

    The ordered clustered travelling salesman problem is a variation of the usual travelling salesman problem in which a set of vertices (except the starting vertex) of the network is divided into some prespecified clusters. The objective is to find the least cost Hamiltonian tour in which vertices of any cluster are visited contiguously and the clusters are visited in the prespecified order. The problem is NP-hard, and it arises in practical transportation and sequencing problems. This paper develops a hybrid genetic algorithm using sequential constructive crossover, 2-opt search, and a local search for obtaining heuristic solution to the problem. The efficiency of the algorithm has been examined against two existing algorithms for some asymmetric and symmetric TSPLIB instances of various sizes. The computational results show that the proposed algorithm is very effective in terms of solution quality and computational time. Finally, we present solution to some more symmetric TSPLIB instances.

  8. Packing Boxes into Multiple Containers Using Genetic Algorithm

    Science.gov (United States)

    Menghani, Deepak; Guha, Anirban

    2016-07-01

    Container loading problems have been studied extensively in the literature and various analytical, heuristic and metaheuristic methods have been proposed. This paper presents two different variants of a genetic algorithm framework for the three-dimensional container loading problem for optimally loading boxes into multiple containers with constraints. The algorithms are designed so that it is easy to incorporate various constraints found in real life problems. The algorithms are tested on data of standard test cases from literature and are found to compare well with the benchmark algorithms in terms of utilization of containers. This, along with the ability to easily incorporate a wide range of practical constraints, makes them attractive for implementation in real life scenarios.

  9. Optimization of solar air collector using genetic algorithm and artificial bee colony algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Sencan Sahin, Arzu [Sueleyman Demirel University, Technology Faculty, Isparta (Turkey)

    2012-11-15

    Thermal performance of solar air collector depends on many parameters as inlet air temperature, air velocity, collector slope and properties related to collector. In this study, the effect of the different parameters which affect the performance of the solar air collector are investigated. In order to maximize the thermal performance of a solar air collector genetic algorithm (GA) and artificial bee colony algorithm (ABC) have been used. The results obtained indicate that GA and ABC algorithms can be applied successfully for the optimization of the thermal performance of solar air collector. (orig.)

  10. A novel algorithm combining finite state method and genetic algorithm for solving crude oil scheduling problem.

    Science.gov (United States)

    Duan, Qian-Qian; Yang, Gen-Ke; Pan, Chang-Chun

    2014-01-01

    A hybrid optimization algorithm combining finite state method (FSM) and genetic algorithm (GA) is proposed to solve the crude oil scheduling problem. The FSM and GA are combined to take the advantage of each method and compensate deficiencies of individual methods. In the proposed algorithm, the finite state method makes up for the weakness of GA which is poor at local searching ability. The heuristic returned by the FSM can guide the GA algorithm towards good solutions. The idea behind this is that we can generate promising substructure or partial solution by using FSM. Furthermore, the FSM can guarantee that the entire solution space is uniformly covered. Therefore, the combination of the two algorithms has better global performance than the existing GA or FSM which is operated individually. Finally, a real-life crude oil scheduling problem from the literature is used for conducting simulation. The experimental results validate that the proposed method outperforms the state-of-art GA method.

  11. Genetic Algorithm Applied to the Eigenvalue Equalization Filtered-x LMS Algorithm (EE-FXLMS

    Directory of Open Access Journals (Sweden)

    Stephan P. Lovstedt

    2008-01-01

    Full Text Available The FXLMS algorithm, used extensively in active noise control (ANC, exhibits frequency-dependent convergence behavior. This leads to degraded performance for time-varying tonal noise and noise with multiple stationary tones. Previous work by the authors proposed the eigenvalue equalization filtered-x least mean squares (EE-FXLMS algorithm. For that algorithm, magnitude coefficients of the secondary path transfer function are modified to decrease variation in the eigenvalues of the filtered-x autocorrelation matrix, while preserving the phase, giving faster convergence and increasing overall attenuation. This paper revisits the EE-FXLMS algorithm, using a genetic algorithm to find magnitude coefficients that give the least variation in eigenvalues. This method overcomes some of the problems with implementing the EE-FXLMS algorithm arising from finite resolution of sampled systems. Experimental control results using the original secondary path model, and a modified secondary path model for both the previous implementation of EE-FXLMS and the genetic algorithm implementation are compared.

  12. An improved localization algorithm based on genetic algorithm in wireless sensor networks.

    Science.gov (United States)

    Peng, Bo; Li, Lei

    2015-04-01

    Wireless sensor network (WSN) are widely used in many applications. A WSN is a wireless decentralized structure network comprised of nodes, which autonomously set up a network. The node localization that is to be aware of position of the node in the network is an essential part of many sensor network operations and applications. The existing localization algorithms can be classified into two categories: range-based and range-free. The range-based localization algorithm has requirements on hardware, thus is expensive to be implemented in practice. The range-free localization algorithm reduces the hardware cost. Because of the hardware limitations of WSN devices, solutions in range-free localization are being pursued as a cost-effective alternative to more expensive range-based approaches. However, these techniques usually have higher localization error compared to the range-based algorithms. DV-Hop is a typical range-free localization algorithm utilizing hop-distance estimation. In this paper, we propose an improved DV-Hop algorithm based on genetic algorithm. Simulation results show that our proposed algorithm improves the localization accuracy compared with previous algorithms.

  13. Strain gage selection in loads equations using a genetic algorithm

    Science.gov (United States)

    1994-01-01

    Traditionally, structural loads are measured using strain gages. A loads calibration test must be done before loads can be accurately measured. In one measurement method, a series of point loads is applied to the structure, and loads equations are derived via the least squares curve fitting algorithm using the strain gage responses to the applied point loads. However, many research structures are highly instrumented with strain gages, and the number and selection of gages used in a loads equation can be problematic. This paper presents an improved technique using a genetic algorithm to choose the strain gages used in the loads equations. Also presented are a comparison of the genetic algorithm performance with the current T-value technique and a variant known as the Best Step-down technique. Examples are shown using aerospace vehicle wings of high and low aspect ratio. In addition, a significant limitation in the current methods is revealed. The genetic algorithm arrived at a comparable or superior set of gages with significantly less human effort, and could be applied in instances when the current methods could not.

  14. A Clustering Genetic Algorithm for Cylinder Drag Optimization

    Science.gov (United States)

    Milano, Michele; Koumoutsakos, Petros

    2002-01-01

    A real coded genetic algorithm is implemented for the optimization of actuator parameters for cylinder drag minimization. We consider two types of idealized actuators that are allowed either to move steadily and tangentially to the cylinder surface (“belts”) or to steadily blow/suck with a zero net mass constraint. The genetic algorithm we implement has the property of identifying minima basins, rather than single optimum points. The knowledge of the shape of the minimum basin enables further insights into the system properties and provides a sensitivity analysis in a fully automated way. The drag minimization problem is formulated as an optimal regulation problem. By means of the clustering property of the present genetic algorithm, a set of solutions producing drag reduction of up to 50% is identified. A comparison between the two types of actuators, based on the clustering property of the algorithm, indicates that blowing/suction actuation parameters are associated with larger tolerances when compared to optimal parameters for the belt actuators. The possibility of using a few strategically placed actuators to obtain a significant drag reduction is explored using the clustering diagnostics of this method. The optimal belt-actuator parameters obtained by optimizing the two-dimensional case is employed in three-dimensional simulations, by extending the actuators across the span of the cylinder surface. The three-dimensional controlled flow exhibits a strong two-dimensional character near the cylinder surface, resulting in significant drag reduction.

  15. A novel pipeline based FPGA implementation of a genetic algorithm

    Science.gov (United States)

    Thirer, Nonel

    2014-05-01

    To solve problems when an analytical solution is not available, more and more bio-inspired computation techniques have been applied in the last years. Thus, an efficient algorithm is the Genetic Algorithm (GA), which imitates the biological evolution process, finding the solution by the mechanism of "natural selection", where the strong has higher chances to survive. A genetic algorithm is an iterative procedure which operates on a population of individuals called "chromosomes" or "possible solutions" (usually represented by a binary code). GA performs several processes with the population individuals to produce a new population, like in the biological evolution. To provide a high speed solution, pipelined based FPGA hardware implementations are used, with a nstages pipeline for a n-phases genetic algorithm. The FPGA pipeline implementations are constraints by the different execution time of each stage and by the FPGA chip resources. To minimize these difficulties, we propose a bio-inspired technique to modify the crossover step by using non identical twins. Thus two of the chosen chromosomes (parents) will build up two new chromosomes (children) not only one as in classical GA. We analyze the contribution of this method to reduce the execution time in the asynchronous and synchronous pipelines and also the possibility to a cheaper FPGA implementation, by using smaller populations. The full hardware architecture for a FPGA implementation to our target ALTERA development card is presented and analyzed.

  16. Parameter Optimization of Linear Quadratic Controller Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    LI Jimin; SHANG Chaoxuan; ZOU Minghu

    2007-01-01

    The selection of weighting matrix in design of the linear quadratic optimal controller is an important topic in the control theory. In this paper, an approach based on genetic algorithm is presented for selecting the weighting matrix for the optimal controller. Genetic algorithm is adaptive heuristic search algorithm premised on the evolutionary ideas of natural selection and genetic. In this algorithm, the fitness function is used to evaluate individuals and reproductive success varies with fitness. In the design of the linear quadratic optimal controller, the fitness function has relation to the anticipated step response of the system. Not only can the controller designed by this approach meet the demand of the performance indexes of linear quadratic controller, but also satisfy the anticipated step response of close-loop system. The method possesses a higher calculating efficiency and provides technical support for the optimal controller in engineering application. The simulation of a three-order single-input single-output (SISO) system has demonstrated the feasibility and validity of the approach.

  17. Distributed query plan generation using multiobjective genetic algorithm.

    Science.gov (United States)

    Panicker, Shina; Kumar, T V Vijay

    2014-01-01

    A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside. Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation (DQPG) problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total query processing cost comprising the local processing cost (LPC) and the site-to-site communication cost (CC). In this paper, this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II. Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover and mutation probability.

  18. Distributed Query Plan Generation Using Multiobjective Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Shina Panicker

    2014-01-01

    Full Text Available A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside. Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation (DQPG problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total query processing cost comprising the local processing cost (LPC and the site-to-site communication cost (CC. In this paper, this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II. Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover and mutation probability.

  19. Optimal Polygonal Approximation of Digital Planar Curves Using Genetic Algorithm and Tabu Search

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Three heuristic algorithms for optimal polygonal approximation of digital planar curves is presented.With Genetic Algorithm (GA), improved Genetic Algorithm (IGA) based on Pareto optimal solution and Tabu Search (TS), a near optimal polygonal approximation was obtained.Compared to the famous Teh-chin algorithm, our algorithms have obtained the approximated polygons with less number of vertices and less approximation error.Compared to the dynamic programming algorithm, the processing time of our algorithms are much less expensive.

  20. Scope of Gradient and Genetic Algorithms in Multivariable Function Optimization

    Science.gov (United States)

    Shaykhian, Gholam Ali; Sen, S. K.

    2007-01-01

    Global optimization of a multivariable function - constrained by bounds specified on each variable and also unconstrained - is an important problem with several real world applications. Deterministic methods such as the gradient algorithms as well as the randomized methods such as the genetic algorithms may be employed to solve these problems. In fact, there are optimization problems where a genetic algorithm/an evolutionary approach is preferable at least from the quality (accuracy) of the results point of view. From cost (complexity) point of view, both gradient and genetic approaches are usually polynomial-time; there are no serious differences in this regard, i.e., the computational complexity point of view. However, for certain types of problems, such as those with unacceptably erroneous numerical partial derivatives and those with physically amplified analytical partial derivatives whose numerical evaluation involves undesirable errors and/or is messy, a genetic (stochastic) approach should be a better choice. We have presented here the pros and cons of both the approaches so that the concerned reader/user can decide which approach is most suited for the problem at hand. Also for the function which is known in a tabular form, instead of an analytical form, as is often the case in an experimental environment, we attempt to provide an insight into the approaches focusing our attention toward accuracy. Such an insight will help one to decide which method, out of several available methods, should be employed to obtain the best (least error) output. *

  1. Improved multilayer OLED architecture using evolutionary genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Quirino, W.G. [LADOR - Laboratorio de Dispositivos Organicos, Dimat - Inmetro, Duque de Caxias, RJ (Brazil); Teixeira, K.C. [LADOR - Laboratorio de Dispositivos Organicos, Dimat - Inmetro, Duque de Caxias, RJ (Brazil); LOEM - Laboratorio de Optoeletronica Molecular, Physics Department, Pontifical Catholic University of Rio de Janeiro, 22453-900, Rio de Janeiro, RJ (Brazil); Legnani, C. [LADOR - Laboratorio de Dispositivos Organicos, Dimat - Inmetro, Duque de Caxias, RJ (Brazil); Calil, V.L. [LADOR - Laboratorio de Dispositivos Organicos, Dimat - Inmetro, Duque de Caxias, RJ (Brazil); LOEM - Laboratorio de Optoeletronica Molecular, Physics Department, Pontifical Catholic University of Rio de Janeiro, 22453-900, Rio de Janeiro, RJ (Brazil); Messer, B.; Neto, O.P. Vilela; Pacheco, M.A.C. [ICA - Laboratorio de Inteligencia Computacional Aplicada, Electrical Engineering Department, Pontifical Catholic University of Rio de Janeiro, 22451-900, Rio de Janeiro, RJ (Brazil); Cremona, M., E-mail: cremona@fis.puc-rio.b [LADOR - Laboratorio de Dispositivos Organicos, Dimat - Inmetro, Duque de Caxias, RJ (Brazil); LOEM - Laboratorio de Optoeletronica Molecular, Physics Department, Pontifical Catholic University of Rio de Janeiro, 22453-900, Rio de Janeiro, RJ (Brazil)

    2009-12-31

    Organic light-emitting diodes (OLEDs) constitute a new class of emissive devices, which present high efficiency and low voltage operation, among other advantages over current technology. Multilayer architecture (M-OLED) is generally used to optimize these devices, specially overcoming the suppression of light emission due to the exciton recombination near the metal layers. However, improvement in recombination, transport and charge injection can also be achieved by blending electron and hole transporting layers into the same one. Graded emissive region devices can provide promising results regarding quantum and power efficiency and brightness, as well. The massive number of possible model configurations, however, suggests that a search algorithm would be more suitable for this matter. In this work, multilayer OLEDs were simulated and fabricated using Genetic Algorithms (GAs) as evolutionary strategy to improve their efficiency. Genetic Algorithms are stochastic algorithms based on genetic inheritance and Darwinian strife to survival. In our simulations, it was assumed a 50 nm width graded region, divided into five equally sized layers. The relative concentrations of the materials within each layer were optimized to obtain the lower V/J{sup 0.5} ratio, where V is the applied voltage and J the current density. The best M-OLED architecture obtained by genetic algorithm presented a V/J{sup 0.5} ratio nearly 7% lower than the value reported in the literature. In order to check the experimental validity of the improved results obtained in the simulations, two M-OLEDs with different architectures were fabricated by thermal deposition in high vacuum environment. The results of the comparison between simulation and some experiments are presented and discussed.

  2. Genetic analysis of growth curves using the SAEM algorithm

    Directory of Open Access Journals (Sweden)

    Lavielle Marc

    2006-11-01

    Full Text Available Abstract The analysis of nonlinear function-valued characters is very important in genetic studies, especially for growth traits of agricultural and laboratory species. Inference in nonlinear mixed effects models is, however, quite complex and is usually based on likelihood approximations or Bayesian methods. The aim of this paper was to present an efficient stochastic EM procedure, namely the SAEM algorithm, which is much faster to converge than the classical Monte Carlo EM algorithm and Bayesian estimation procedures, does not require specification of prior distributions and is quite robust to the choice of starting values. The key idea is to recycle the simulated values from one iteration to the next in the EM algorithm, which considerably accelerates the convergence. A simulation study is presented which confirms the advantages of this estimation procedure in the case of a genetic analysis. The SAEM algorithm was applied to real data sets on growth measurements in beef cattle and in chickens. The proposed estimation procedure, as the classical Monte Carlo EM algorithm, provides significance tests on the parameters and likelihood based model comparison criteria to compare the nonlinear models with other longitudinal methods.

  3. The genetic algorithm: A robust method for stress inversion

    Science.gov (United States)

    Thakur, Prithvi; Srivastava, Deepak C.; Gupta, Pravin K.

    2017-01-01

    The stress inversion of geological or geophysical observations is a nonlinear problem. In most existing methods, it is solved by linearization, under certain assumptions. These linear algorithms not only oversimplify the problem but also are vulnerable to entrapment of the solution in a local optimum. We propose the use of a nonlinear heuristic technique, the genetic algorithm, which searches the global optimum without making any linearizing assumption or simplification. The algorithm mimics the natural evolutionary processes of selection, crossover and mutation and, minimizes a composite misfit function for searching the global optimum, the fittest stress tensor. The validity and efficacy of the algorithm are demonstrated by a series of tests on synthetic and natural fault-slip observations in different tectonic settings and also in situations where the observations are noisy. It is shown that the genetic algorithm is superior to other commonly practised methods, in particular, in those tectonic settings where none of the principal stresses is directed vertically and/or the given data set is noisy.

  4. A New Method for Medical Image Clustering Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Akbar Shahrzad Khashandarag

    2013-01-01

    Full Text Available Segmentation is applied in medical images when the brightness of the images becomes weaker so that making different in recognizing the tissues borders. Thus, the exact segmentation of medical images is an essential process in recognizing and curing an illness. Thus, it is obvious that the purpose of clustering in medical images is the recognition of damaged areas in tissues. Different techniques have been introduced for clustering in different fields such as engineering, medicine, data mining and so on. However, there is no standard technique of clustering to present ideal results for all of the imaging applications. In this paper, a new method combining genetic algorithm and k-means algorithm is presented for clustering medical images. In this combined technique, variable string length genetic algorithm (VGA is used for the determination of the optimal cluster centers. The proposed algorithm has been compared with the k-means clustering algorithm. The advantage of the proposed method is the accuracy in selecting the optimal cluster centers compared with the above mentioned technique.

  5. Genetic algorithms and their use in Geophysical Problems

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Paul B. [Univ. of California, Berkeley, CA (United States)

    1999-04-01

    Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or ''fittest'' models from a ''population'' and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show that certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Optimal efficiency is usually achieved with smaller (< 50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (> 2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems

  6. Optimization of Antennas using a Hybrid Genetic-Algorithm Space-Mapping Algorithm

    DEFF Research Database (Denmark)

    Pantoja, M.F.; Bretones, A.R.; Meincke, Peter;

    2006-01-01

    A hybrid global-local optimization technique for the design of antennas is presented. It consists of the subsequent application of a Genetic Algorithm (GA) that employs coarse models in the simulations and a space mapping (SM) that refines the solution found in the previous stage. The technique...

  7. Application layer multicast routing solution based on genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    Peng CHENG; Qiufeng WU; Qionghai DAI

    2009-01-01

    Application layer multicast routing is a multi-objective optimization problem.Three routing con-straints,tree's cost,tree's balance and network layer load distribution are analyzed in this paper.The three fitness functions are used to evaluate a multicast tree on the three indexes respectively and one general fitness function is generated.A novel approach based on genetic algorithms is proposed.Numerical simulations show that,compared with geometrical routing rules,the proposed algorithm improve all three indexes,especially on cost and network layer load distribution indexes.

  8. Mass spectrometry cancer data classification using wavelets and genetic algorithm.

    Science.gov (United States)

    Nguyen, Thanh; Nahavandi, Saeid; Creighton, Douglas; Khosravi, Abbas

    2015-12-21

    This paper introduces a hybrid feature extraction method applied to mass spectrometry (MS) data for cancer classification. Haar wavelets are employed to transform MS data into orthogonal wavelet coefficients. The most prominent discriminant wavelets are then selected by genetic algorithm (GA) to form feature sets. The combination of wavelets and GA yields highly distinct feature sets that serve as inputs to classification algorithms. Experimental results show the robustness and significant dominance of the wavelet-GA against competitive methods. The proposed method therefore can be applied to cancer classification models that are useful as real clinical decision support systems for medical practitioners.

  9. A Dedicated Genetic Algorithm for Localization of Moving Magnetic Objects

    Directory of Open Access Journals (Sweden)

    Roger Alimi

    2015-09-01

    Full Text Available A dedicated Genetic Algorithm (GA has been developed to localize the trajectory of ferromagnetic moving objects within a bounded perimeter. Localization of moving ferromagnetic objects is an important tool because it can be employed in situations when the object is obscured. This work is innovative for two main reasons: first, the GA has been tuned to provide an accurate and fast solution to the inverse magnetic field equations problem. Second, the algorithm has been successfully tested using real-life experimental data. Very accurate trajectory localization estimations were obtained over a wide range of scenarios.

  10. Diagnosis support using Fuzzy Cognitive Maps combined with Genetic Algorithms.

    Science.gov (United States)

    Georgopoulos, Voula C; Stylios, Chrysotomos D

    2009-01-01

    A new hybrid modeling methodology to support medical diagnosis decisions is developed here. It extends previous work on Competitive Fuzzy Cognitive Maps for Medical Diagnosis Support Systems by complementing them with Genetic Algorithms Methods for concept interaction. The synergy of these methodologies is accomplished by a new proposed algorithm that leads to more dependable Advanced Medical Diagnosis Support Systems that are suitable to handle situations where the decisions are not clearly distinct. The technique developed here is applied successfully to model and test a differential diagnosis problem from the speech pathology area for the diagnosis of language impairments.

  11. Genetic Algorithm Procreation Operators for Alloy Nanoparticle Catalysts

    DEFF Research Database (Denmark)

    Lysgaard, Steen; Landis, David Dominic; Bligaard, Thomas

    2014-01-01

    focus on the surface properties. Based on a genetic algorithm (GA) we introduce and discuss efficient permutation operations that work by interchanging positions of elements depending on their local environment and position in the cluster. We discuss the fact that in order to be efficient, the operators...... have to be dynamic, i.e. change their behavior during the course of an algorithm run. The implementation of the GA including the customized operators is freely available at http://svn.fysik.dtu. dk/projects/pga....

  12. Control of the lighting system using a genetic algorithm

    Directory of Open Access Journals (Sweden)

    Čongradac Velimir D.

    2012-01-01

    Full Text Available The manufacturing, distribution and use of electricity are of fundamental importance for the social life and they have the biggest influence on the environment associated with any human activity. The energy needed for building lighting makes up 20-40% of the total consumption. This paper displays the development of the mathematical model and genetic algorithm for the control of dimmable lighting on problems of regulating the level of internal lighting and increase of energetic efficiency using daylight. A series of experiments using the optimization algorithm on the realized model confirmed very high savings in electricity consumption.

  13. Genetic Algorithm based PID controller for Frequency Regulation Ancillary services

    Directory of Open Access Journals (Sweden)

    Sandeep Bhongade

    2010-12-01

    Full Text Available In this paper, the parameters of Proportional, Integral and Derivative (PID controller for Automatic Generation Control (AGC suitable in restructured power system is tuned according to Generic Algorithms (GAs based performance indices. The key idea of the proposed method is to use the fitness function based on Area Control Error (ACE. The functioning of the proposed Genetic Algorithm based PID (GAPID controller has been demonstrated on a 75-bus Indian power system network and the results have been compared with those obtained by using Least Square Minimization method.

  14. A pipelined FPGA implementation of an encryption algorithm based on genetic algorithm

    Science.gov (United States)

    Thirer, Nonel

    2013-05-01

    With the evolution of digital data storage and exchange, it is essential to protect the confidential information from every unauthorized access. High performance encryption algorithms were developed and implemented by software and hardware. Also many methods to attack the cipher text were developed. In the last years, the genetic algorithm has gained much interest in cryptanalysis of cipher texts and also in encryption ciphers. This paper analyses the possibility to use the genetic algorithm as a multiple key sequence generator for an AES (Advanced Encryption Standard) cryptographic system, and also to use a three stages pipeline (with four main blocks: Input data, AES Core, Key generator, Output data) to provide a fast encryption and storage/transmission of a large amount of data.

  15. Resizing Technique-Based Hybrid Genetic Algorithm for Optimal Drift Design of Multistory Steel Frame Buildings

    Directory of Open Access Journals (Sweden)

    Hyo Seon Park

    2014-01-01

    Full Text Available Since genetic algorithm-based optimization methods are computationally expensive for practical use in the field of structural optimization, a resizing technique-based hybrid genetic algorithm for the drift design of multistory steel frame buildings is proposed to increase the convergence speed of genetic algorithms. To reduce the number of structural analyses required for the convergence, a genetic algorithm is combined with a resizing technique that is an efficient optimal technique to control the drift of buildings without the repetitive structural analysis. The resizing technique-based hybrid genetic algorithm proposed in this paper is applied to the minimum weight design of three steel frame buildings. To evaluate the performance of the algorithm, optimum weights, computational times, and generation numbers from the proposed algorithm are compared with those from a genetic algorithm. Based on the comparisons, it is concluded that the hybrid genetic algorithm shows clear improvements in convergence properties.

  16. A case study of a multiobjective recombinative genetic algorithm with coevolutionary sharing

    NARCIS (Netherlands)

    Neef, R.M.; Thierens, D.; Arciszewski, H.F.R.

    1999-01-01

    We present a multiobjective genetic algorithm that incorporates various genetic algorithm techniques that have been proven to be efficient and robust in their problem domain. More specifically, we integrate rank based selection, adaptive niching through coevolutionary sharing, elitist recombination,

  17. A Case Study of a Multiobjective Elitist Recombinative Genetic Algorithm with Coevolutionary Sharing

    NARCIS (Netherlands)

    Neef, R.M.; Thierens, D.; Arciszewski, H.F.R.

    1999-01-01

    We present a multiobjective genetic algorithm that incorporates various genetic algorithm techniques that have been proven to be efficient and robust in their problem domain. More specifically, we integrate rank based selection, adaptive niching through coevolutionary sharing, elitist recombination,

  18. A Genetic Algorithm for Delay-constrained Least-cost Multicast Routing

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The delay-constrained least-cost multicast routing problem is introduced and then a related genetic algorithm is proposed. Finally, simulation results are shown to prove that the genetic algorithm is fast and effective.

  19. A Case Study of a Multiobjective Elitist Recombinative Genetic Algorithm with Coevolutionary Sharing

    NARCIS (Netherlands)

    Neef, R.M.; Thierens, D.; Arciszewski, H.F.R.

    1999-01-01

    We present a multiobjective genetic algorithm that incorporates various genetic algorithm techniques that have been proven to be efficient and robust in their problem domain. More specifically, we integrate rank based selection, adaptive niching through coevolutionary sharing, elitist recombination,

  20. A case study of a multiobjective recombinative genetic algorithm with coevolutionary sharing

    NARCIS (Netherlands)

    Neef, R.M.; Thierens, D.; Arciszewski, H.F.R.

    1999-01-01

    We present a multiobjective genetic algorithm that incorporates various genetic algorithm techniques that have been proven to be efficient and robust in their problem domain. More specifically, we integrate rank based selection, adaptive niching through coevolutionary sharing, elitist recombination,

  1. Genetic Algorithm for Initial Orbit Determination with Too Short Arc

    Science.gov (United States)

    Xin-ran, Li; Xin, Wang

    2017-01-01

    A huge quantity of too-short-arc (TSA) observational data have been obtained in sky surveys of space objects. However, reasonable results for the TSAs can hardly be obtained with the classical methods of initial orbit determination (IOD). In this paper, the IOD is reduced to a two-stage hierarchical optimization problem containing three variables for each stage. Using the genetic algorithm, a new method of the IOD for TSAs is established, through the selections of the optimized variables and the corresponding genetic operators for specific problems. Numerical experiments based on the real measurements show that the method can provide valid initial values for the follow-up work.

  2. Error analysis on heading determination via genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    Zhong Bing; Xu Jiangning; Ma Heng

    2006-01-01

    A new error analysis method is presented via genetic algorithms for high precise heading determination model based on two total positioning stations (TPSs). The method has the ability to search all possible solution space by the genetic operators of elitist model and restriction. The result of analyzing the error of this model shows that the accuracy of this model is precise enough to meet the need of calibration for navigation systems on ship, and the search space is only 0.03% of the total search space, and the precision of heading determination is 4" in a general dock.

  3. Aligning multiple protein sequences by parallel hybrid genetic algorithm.

    Science.gov (United States)

    Nguyen, Hung Dinh; Yoshihara, Ikuo; Yamamori, Kunihito; Yasunaga, Moritoshi

    2002-01-01

    This paper presents a parallel hybrid genetic algorithm (GA) for solving the sum-of-pairs multiple protein sequence alignment. A new chromosome representation and its corresponding genetic operators are proposed. A multi-population GENITOR-type GA is combined with local search heuristics. It is then extended to run in parallel on a multiprocessor system for speeding up. Experimental results of benchmarks from the BAliBASE show that the proposed method is superior to MSA, OMA, and SAGA methods with regard to quality of solution and running time. It can be used for finding multiple sequence alignment as well as testing cost functions.

  4. Optimising steel production schedules via a hierarchical genetic algorithm

    Directory of Open Access Journals (Sweden)

    Worapradya, Kiatkajohn

    2014-08-01

    Full Text Available This paper presents an effective scheduling in a steel-making continuous casting (SCC plant. The main contribution of this paper is the formulation of a new optimisation model that more closely represents real-world situations, and a hierarchical genetic algorithm (HGA tailored particularly for searching for an optimal SCC schedule. The optimisation model is developed by integrating two main planning phases of traditional scheduling: (1 planning cast sequence, and (2 scheduling of steel-making and timing of all jobs. A novel procedure is given for genetic algorithm (GA chromosome coding that maps Gantt chart and hierarchical chromosomes. The performance of the proposed methodology is illustrated and compared with a two-phase traditional scheduling and a standard GA toolbox. Both qualitative and quantitative performance measures are investigated.

  5. Power Transmission System Vulnerability Assessment Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    E. Karimi

    2012-11-01

    Full Text Available Recent blackouts in power systems have shown the necessity of vulnerability assessment. Among all factors, transmission system components have a more important role. Power system vulnerability assessment could capture cascading outages which result in large blackouts and is an effective tool for power system engineers for defining power system bottlenecks and weak points. In this paper a new method based on fault chains concept is developed which uses new measures. Genetic algorithm with an effective structure is used for finding vulnerable branches in a practical power transmission system. Analytic hierarchy process is a technique used to determine the weighting factors in fitness function of genetic algorithm. Finally, the numerical results for Isfahan Regional Electric Company are presented which verifies the effectiveness and precision of the proposed method according to the practical expriments.

  6. Assigning Task by Parallel Genetic Algorithm Based on PVM

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Genetic algorithm has been proposed to solve the problem of taskassignment. Ho wever, it has some drawbacks, e.g., it often takes a long time to find an optima l solution, and the success rate is low. To overcome these problems, a new coars e-grained parallel genetic algorithm with the scheme of central migration is pr e sented, which exploits isolated sub-populations. The new approach has been impl e mented in the PVM environment and has been evaluated on a workstation network fo r solving the task assignment problem. The results show that it not only signifi cantly improves the result quality but also increases the speed for getting best solution.

  7. A sustainable genetic algorithm for satellite resource allocation

    Science.gov (United States)

    Abbott, R. J.; Campbell, M. L.; Krenz, W. C.

    1995-01-01

    A hybrid genetic algorithm is used to schedule tasks for 8 satellites, which can be modelled as a robot whose task is to retrieve objects from a two dimensional field. The objective is to find a schedule that maximizes the value of objects retrieved. Typical of the real-world tasks to which this corresponds is the scheduling of ground contacts for a communications satellite. An important feature of our application is that the amount of time available for running the scheduler is not necessarily known in advance. This requires that the scheduler produce reasonably good results after a short period but that it also continue to improve its results if allowed to run for a longer period. We satisfy this requirement by developing what we call a sustainable genetic algorithm.

  8. Genetic Algorithm Design of a 3D Printed Heat Sink

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tong [ORNL; Ozpineci, Burak [ORNL; Ayers, Curtis William [ORNL

    2016-01-01

    In this paper, a genetic algorithm- (GA-) based approach is discussed for designing heat sinks based on total heat generation and dissipation for a pre-specified size andshape. This approach combines random iteration processesand genetic algorithms with finite element analysis (FEA) to design the optimized heat sink. With an approach that prefers survival of the fittest , a more powerful heat sink can bedesigned which can cool power electronics more efficiently. Some of the resulting designs can only be 3D printed due totheir complexity. In addition to describing the methodology, this paper also includes comparisons of different cases to evaluate the performance of the newly designed heat sinkcompared to commercially available heat sinks.

  9. A New Neuro-Fuzzy Adaptive Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHU Lili; ZHANG Huanchun; JING Yazhi

    2003-01-01

    Novel neuro-fuzzy techniques are used to dynamically control parameter settings of genetic algorithms (GAs). The benchmark routine is an adaptive genetic algorithm (AGA) that uses a fuzzy knowledge-based system to control GA parameters. The self-learning ability of the cerebellar model ariculation controller(CMAC) neural network makes it possible for on-line learning the knowledge on GAs throughout the run. Automatically designing and tuning the fuzzy knowledge-base system, neurofuzzy techniques based on CMAC can find the optimized fuzzy system for AGA by the renhanced learning method. The Results from initial experiments show a Dynamic Parametric AGA system designed by the proposed automatic method and indicate the general applicability of the neuro-fuzzy AGA to a wide range of combinatorial optimization.

  10. Quantum control using genetic algorithms in quantum communication: superdense coding

    Science.gov (United States)

    Domínguez-Serna, Francisco; Rojas, Fernando

    2015-06-01

    We present a physical example model of how Quantum Control with genetic algorithms is applied to implement the quantum superdense code protocol. We studied a model consisting of two quantum dots with an electron with spin, including spin-orbit interaction. The electron and the spin get hybridized with the site acquiring two degrees of freedom, spin and charge. The system has tunneling and site energies as time dependent control parameters that are optimized by means of genetic algorithms to prepare a hybrid Bell-like state used as a transmission channel. This state is transformed to obtain any state of the four Bell basis as required by superdense protocol to transmit two bits of classical information. The control process protocol is equivalent to implement one of the quantum gates in the charge subsystem. Fidelities larger than 99.5% are achieved for the hybrid entangled state preparation and the superdense operations.

  11. Parametric analysis of architectural volumes through genetic algorithms

    Directory of Open Access Journals (Sweden)

    Pedro Salcedo Lagos

    2015-03-01

    Full Text Available During the last time, architectural design has developed partly due to new digital design techniques, which allow the generation of geometries based on the definition of initial parameters and the programming of formal relationship between them. Design processes based on these technologies allow to create shapes with the capacity to modify and adapt to multiple constrains or specific evaluation criteria, which raises the problem of identifying the best architectural solution. Several experiences have set up the utilization of genetic algorithm to face this problem. This paper demonstrates the possibility to implement a parametric analysis of architectural volumes with genetic algorithm, in order to combine functional, environmental and structural requirements, with an effective search method to select a variety of proper solutions through digital technologies.

  12. Genetic Algorithm Based Hybrid Fuzzy System for Assessing Morningness

    Directory of Open Access Journals (Sweden)

    Animesh Biswas

    2014-01-01

    Full Text Available This paper describes a real life case example on the assessment process of morningness of individuals using genetic algorithm based hybrid fuzzy system. It is observed that physical and mental performance of human beings in different time slots of a day are majorly influenced by morningness orientation of those individuals. To measure the morningness of people various self-reported questionnaires were developed by different researchers in the past. Among them reduced version of Morningness-Eveningness Questionnaire is mostly accepted. Almost all of the linguistic terms used in questionnaires are fuzzily defined. So, assessing them in crisp environments with their responses does not seem to be justifiable. Fuzzy approach based research works for assessing morningness of people are very few in the literature. In this paper, genetic algorithm is used to tune the parameters of a Mamdani fuzzy inference model to minimize error with their predicted outputs for assessing morningness of people.

  13. Load Flow Analysis Using Real Coded Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Himakar Udatha

    2014-02-01

    Full Text Available This paper presents a Real Coded Genetic Algorithm (RCGA for finding the load flow solution of electrical power systems. The proposed method is based on the minimization of the real and reactive power mismatches at various buses. The traditional methods such as Gauss-Seidel method and Newton-Raphson (NR method have certain drawbacks under abnormal operating condition. In order to overcome these problems, the load flow solution based on Real Coded Genetic Algorithm (RCGA is presented in this paper. Two cross over techniques, Arithmetic crossover and heuristic crossover are used to solve the power flow problem. The proposed method is applied for 3-bus, 5-bus and 6-bus systems and the results are presented.

  14. Stabilization of Electromagnetic Suspension System Behavior by Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Abbas Najar Khoda Bakhsh

    2012-07-01

    Full Text Available Electromagnetic suspension system with a nonlinear and unstable behavior, is used in maglev trains. In this paper a linear mathematical model of system is achieved and the state feedback method is used to improve the system stability. The control coefficients are tuned by two different methods, Riccati and a new method based on Genetic algorithm. In this new proposed method, we use Genetic algorithm to achieve the optimum values of control coefficients. The results of the system simulation by Matlab indicate the effectiveness of new proposed system. When a new reference of air gap is needed or a new external force is added, the proposed system could omit the vibration and shake of the train coupe and so, passengers feel more comfortable.

  15. Exergetic optimization of turbofan engine with genetic algorithm method

    Energy Technology Data Exchange (ETDEWEB)

    Turan, Onder [Anadolu University, School of Civil Aviation (Turkey)], e-mail: onderturan@anadolu.edu.tr

    2011-07-01

    With the growth of passenger numbers, emissions from the aeronautics sector are increasing and the industry is now working on improving engine efficiency to reduce fuel consumption. The aim of this study is to present the use of genetic algorithms, an optimization method based on biological principles, to optimize the exergetic performance of turbofan engines. The optimization was carried out using exergy efficiency, overall efficiency and specific thrust of the engine as evaluation criteria and playing on pressure and bypass ratio, turbine inlet temperature and flight altitude. Results showed exergy efficiency can be maximized with higher altitudes, fan pressure ratio and turbine inlet temperature; the turbine inlet temperature is the most important parameter for increased exergy efficiency. This study demonstrated that genetic algorithms are effective in optimizing complex systems in a short time.

  16. Genetic algorithm for network cost minimization using threshold based discounting

    Directory of Open Access Journals (Sweden)

    Hrvoje Podnar

    2003-01-01

    Full Text Available We present a genetic algorithm for heuristically solving a cost minimization problem applied to communication networks with threshold based discounting. The network model assumes that every two nodes can communicate and offers incentives to combine flow from different sources. Namely, there is a prescribed threshold on every link, and if the total flow on a link is greater than the threshold, the cost of this flow is discounted by a factor α. A heuristic algorithm based on genetic strategy is developed and applied to a benchmark set of problems. The results are compared with former branch and bound results using the CPLEX® solver. For larger data instances we were able to obtain improved solutions using less CPU time, confirming the effectiveness of our heuristic approach.

  17. Adaptive process control using fuzzy logic and genetic algorithms

    Science.gov (United States)

    Karr, C. L.

    1993-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.

  18. Healing Temperature of Hybrid Structures Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    赵中伟; 陈志华; 刘红波

    2016-01-01

    The healing temperature of suspen-dome with stacked arches(SDSA)and arch-supported single-layer lattice shell structures was investigated based on the genetic algorithm. The temperature field of arch under solar radiation was derived by FLUENT to investigate the influence of solar radiation on the determination of the healing temperature. Moreover, a multi-scale model was established to apply the complex temperature field under solar radiation. The change in the mechanical response of these two kinds of structures with the healing temperature was discussed. It can be concluded that solar radiation has great influence on the healing temperature, and the genetic algorithm can be effectively used in the optimization of the healing temperature for hybrid structures.

  19. Users guide to the PGAPack parallel genetic algorithm library

    Energy Technology Data Exchange (ETDEWEB)

    Levine, D.

    1996-01-01

    PGAPack is a parallel genetic algorithm library that is intended to provide most capabilities desired in a genetic algorithm package, in an integrated, seamless, and portable manner. Key features of PGAPack are as follows: Ability to be called from Fortran or C. Executable on uniprocessors, multiprocessors, multicomputers, and workstation networks. Binary-, integer-, real-, and character-valued native data types. Object-oriented data structure neutral design. Parameterized population replacement. Multiple choices for selection, crossover, and mutation operators. Easy integration of hill-climbing heuristics. Easy-to-use interface for novice and application users. Multiple levels of access for expert users. Full extensibility to support custom operators and new data types. Extensive debugging facilities. Large set of example problems.

  20. Efficient Feedforward Linearization Technique Using Genetic Algorithms for OFDM Systems

    Directory of Open Access Journals (Sweden)

    García Paloma

    2010-01-01

    Full Text Available Feedforward is a linearization method that simultaneously offers wide bandwidth and good intermodulation distortion suppression; so it is a good choice for Orthogonal Frequency Division Multiplexing (OFDM systems. Feedforward structure consists of two loops, being necessary an accurate adjustment between them along the time, and when temperature, environmental, or operating changes are produced. Amplitude and phase imbalances of the circuit elements in both loops produce mismatched effects that lead to degrade its performance. A method is proposed to compensate these mismatches, introducing two complex coefficients calculated by means of a genetic algorithm. A full study is carried out to choose the optimal parameters of the genetic algorithm applied to wideband systems based on OFDM technologies, which are very sensitive to nonlinear distortions. The method functionality has been verified by means of simulation.

  1. Digital Image Encryption Algorithm Design Based on Genetic Hyperchaos

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-01-01

    Full Text Available In view of the present chaotic image encryption algorithm based on scrambling (diffusion is vulnerable to choosing plaintext (ciphertext attack in the process of pixel position scrambling, we put forward a image encryption algorithm based on genetic super chaotic system. The algorithm, by introducing clear feedback to the process of scrambling, makes the scrambling effect related to the initial chaos sequence and the clear text itself; it has realized the image features and the organic fusion of encryption algorithm. By introduction in the process of diffusion to encrypt plaintext feedback mechanism, it improves sensitivity of plaintext, algorithm selection plaintext, and ciphertext attack resistance. At the same time, it also makes full use of the characteristics of image information. Finally, experimental simulation and theoretical analysis show that our proposed algorithm can not only effectively resist plaintext (ciphertext attack, statistical attack, and information entropy attack but also effectively improve the efficiency of image encryption, which is a relatively secure and effective way of image communication.

  2. Modified Multi-Population Genetic Algorithm for Yeast Fed-batch Cultivation Parameter Identification

    Directory of Open Access Journals (Sweden)

    Angelova M.

    2009-12-01

    Full Text Available In this work, a modified multi-population genetic algorithm is developed for the purpose of parameter identification of fermentation process model. Modified multi-population genetic algorithm is similar to the multi-population one and its development is instigated by modified genetic algorithm, similar to simple one. A comparison of four types of genetic algorithms, namely simple, modified, multipopulation and modified multi-population is presented for parameter identification of a fed-batch cultivation of Saccharomyces cerevisiae

  3. Genomic multiple sequence alignments: refinement using a genetic algorithm

    Directory of Open Access Journals (Sweden)

    Lefkowitz Elliot J

    2005-08-01

    Full Text Available Abstract Background Genomic sequence data cannot be fully appreciated in isolation. Comparative genomics – the practice of comparing genomic sequences from different species – plays an increasingly important role in understanding the genotypic differences between species that result in phenotypic differences as well as in revealing patterns of evolutionary relationships. One of the major challenges in comparative genomics is producing a high-quality alignment between two or more related genomic sequences. In recent years, a number of tools have been developed for aligning large genomic sequences. Most utilize heuristic strategies to identify a series of strong sequence similarities, which are then used as anchors to align the regions between the anchor points. The resulting alignment is globally correct, but in many cases is suboptimal locally. We describe a new program, GenAlignRefine, which improves the overall quality of global multiple alignments by using a genetic algorithm to improve local regions of alignment. Regions of low quality are identified, realigned using the program T-Coffee, and then refined using a genetic algorithm. Because a better COFFEE (Consistency based Objective Function For alignmEnt Evaluation score generally reflects greater alignment quality, the algorithm searches for an alignment that yields a better COFFEE score. To improve the intrinsic slowness of the genetic algorithm, GenAlignRefine was implemented as a parallel, cluster-based program. Results We tested the GenAlignRefine algorithm by running it on a Linux cluster to refine sequences from a simulation, as well as refine a multiple alignment of 15 Orthopoxvirus genomic sequences approximately 260,000 nucleotides in length that initially had been aligned by Multi-LAGAN. It took approximately 150 minutes for a 40-processor Linux cluster to optimize some 200 fuzzy (poorly aligned regions of the orthopoxvirus alignment. Overall sequence identity increased only

  4. Fuzzy Flexible Resource Constrained Project Scheduling Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    查鸿; 张连营

    2014-01-01

    Both fuzzy temporal constraint and flexible resource constraint are considered in project scheduling. In order to obtain an optimal schedule, we propose a genetic algorithm integrated with concepts on fuzzy set theory as well as specialized coding and decoding mechanism. An example demonstrates that the proposed approach can assist the project managers to obtain the optimal schedule effectively and make the correct decision on skill training before a project begins.

  5. A genetic algorithm approach to routine gamma spectra analysis

    Energy Technology Data Exchange (ETDEWEB)

    Carlevaro, C M [Instituto de FIsica de LIquidos y Sistemas Biologicos, Calle 59 No 789, B1900BTE La Plata (Argentina); Wilkinson, M V [Autoridad Regulatoria Nuclear, Avda. del Libertador 8250, C1429BNP Buenos Aires (Argentina); Barrios, L A [Autoridad Regulatoria Nuclear, Avda. del Libertador 8250, C1429BNP Buenos Aires (Argentina)

    2008-01-15

    In this work we present an alternative method for performing routine gamma spectra analysis based on genetic algorithm techniques. The main idea is to search for patterns of single nuclide spectra obtained by simulation in a sample spectrum targeted for analysis. We show how this approach is applied to the analysis of simulated and real target spectra, and also to the study of interference resolution.

  6. Eddy current testing probe optimization using a parallel genetic algorithm

    Directory of Open Access Journals (Sweden)

    Dolapchiev Ivaylo

    2008-01-01

    Full Text Available This paper uses the developed parallel version of Michalewicz's Genocop III Genetic Algorithm (GA searching technique to optimize the coil geometry of an eddy current non-destructive testing probe (ECTP. The electromagnetic field is computed using FEMM 2D finite element code. The aim of this optimization was to determine coil dimensions and positions that improve ECTP sensitivity to physical properties of the tested devices.

  7. Quantum Multiplexer Designing and Optimization applying Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Debarka Mukhopadhyay

    2010-09-01

    Full Text Available This paper shows how to design efficient quantum multiplexer circuit borrowed from classical computer design. The design will show that it is composed of some Toffole gates or C2NOT gate and some two input CNOT gates. Every C2NOT gate is synthesized and optimized by applying the genetic algorithm to get the best possible combination for the design of these gate circuits.

  8. A quantum genetic algorithm with quantum crossover and mutation operations

    Science.gov (United States)

    SaiToh, Akira; Rahimi, Robabeh; Nakahara, Mikio

    2013-11-01

    In the context of evolutionary quantum computing in the literal meaning, a quantum crossover operation has not been introduced so far. Here, we introduce a novel quantum genetic algorithm that has a quantum crossover procedure performing crossovers among all chromosomes in parallel for each generation. A complexity analysis shows that a quadratic speedup is achieved over its classical counterpart in the dominant factor of the run time to handle each generation.

  9. Using Genetic Algorithms on Manufacturing Facilities Layout Problems

    Institute of Scientific and Technical Information of China (English)

    王克胜; EspenGunnarsen; 袁庆丰

    2004-01-01

    Traditionally, the objective of a manufacturing facility layout problem is to minimize the material handling cost of the manufacturing systems. Because of the combination of the facility layout problems, the genetic algorithms (GA) technique is the most promising approach for solving practical layout problems. Much of the previous work has been done for identical problems, where all departments are equal in area. In this paper, non-identical problems are dealt with. A new coding approach - the Comer Attachmer Structure (CAS) is introduced.

  10. Genetic Algorithms for Development of New Financial Products

    OpenAIRE

    Eder de Oliveira Abensur

    2007-01-01

    New Product Development (NPD) is recognized as a fundamental activity that has a relevant impact on the performance of companies. Despite the relevance of the financial market there is a lack of work on new financial product development. The aim of this research is to propose the use of Genetic Algorithms (GA) as an alternative procedure for evaluating the most favorable combination of variables for the product launch. The paper focuses on: (i) determining the essential variables of the finan...

  11. Assignment of Cooperating UAVs to Simultaneous Tasks using Genetic Algorithms

    Science.gov (United States)

    2005-08-18

    multiple task assignment problem TSP travelling salesman problem UAV unmanned aerial vehicle VRP vehicle routing problem I. Introduction Many...assignment problem (GAP),3 and the vehicle routing problem (VRP).4 In all of these classical problems the minimum cost assignment is sought, where: in...17–23. 16Baker, B. M. and Ayechew, M. A., “A Genetic Algorithm for the Vehicle Routing Problem ,” Computers and Operations Research, Vol. 30, 2003, pp

  12. An Examination of Hypercube Implementations of Genetic Algorithms

    Science.gov (United States)

    1992-03-01

    answer questions on the C programming language. Capt Paul Hardy and Capt Joann Sartor taught me much of what I know of IATEX and its related...an Ada compiler. To have maximal portability, the C programming language, which is commonly available, is used to code the messy genetic algorithm...50. Kernighan, forian W. and Dennis M. Ritchie. The C Programming Language. Englewood Cliffs NJ: Prentice-Hall, Inc., 1978. 51. Kleinbaum, David G

  13. Solving Timetabling Problems by Hybridizing Genetic Algorithms and Taboo Search

    OpenAIRE

    Rahoual, Malek; Saad, Rachid

    2006-01-01

    International audience; As demand for Education increases and diversifies, so does the difficulty of designing workable timetables for schools and academic institutions. Besides the intractability of the basic problem, there is an increasing variety of constraints that come into play. In this paper we present a hybrid of two metaheuristics (genetic algorithm and tabu search) to tackle the problem in its most general setting. Promising experimental results are shown.

  14. An Improved Genetic Algorithm for Allocation Optimization of Distribution Centers

    Institute of Scientific and Technical Information of China (English)

    钱晶; 庞小红; 吴智铭

    2004-01-01

    This paper introduced an integrated allocation model for distribution centers (DCs). The facility cost, inventory cost, transportation cost and service quality were considered in the model. An improved genetic algorithm (IGA) was proposed to solve the problem. The improvement of IGA is based on the idea of adjusting crossover probability and mutation probability. The IGA is supplied by heuristic rules too. The simulation results show that the IGA is better than the standard GA(SGA) in search efficiency and equality.

  15. Solving geometric constraints with genetic simulated annealing algorithm

    Institute of Scientific and Technical Information of China (English)

    刘生礼; 唐敏; 董金祥

    2003-01-01

    This paper applies genetic simulated annealing algorithm (SAGA) to solving geometric constraint problems. This method makes full use of the advantages of SAGA and can handle under-/over- constraint problems naturally. It has advantages (due to its not being sensitive to the initial values) over the Newton-Raphson method, and its yielding of multiple solutions, is an advantage over other optimal methods for multi-solution constraint system. Our experiments have proved the robustness and efficiency of this method.

  16. Immune and Genetic Algorithm Based Assembly Sequence Planning

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-guo; LI Bei-zhi; YU Lei; JIN Yu-song

    2004-01-01

    In this paper an assembly sequence planning model inspired by natural immune and genetic algorithm (ASPIG) based on the part degrees of freedom matrix (PDFM) is proposed, and a proto system - DSFAS based on the ASPIG is introduced to solve assembly sequence problem. The concept and generation of PDFM and DSFAS are also discussed. DSFAS can prevent premature convergence, and promote population diversity, and can accelerate the learning and convergence speed in behavior evolution problem.

  17. Solving traveling salesman problems using generalized chromosome genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Jinhui Yang; Chunguo Wu; Heow Pueh Lee; Yanchun Liang

    2008-01-01

    Generalized chromosome genetic algorithm (GCGA) was proposed for solving generalized traveling salesman problems (GTSP) as reported in the authors' earlier work. Theoretically, the GCGA could also be used to solve the classical traveling salesman problem (CTSP), which has not been reported by others. In this paper, the generalized chromosome characteristics are analyzed and the feasibility for consistently solving the GTSP and CTSP is verified. Numerical experiments show the advantages of the GCGA for solving a large-scale CTSP.

  18. THE USE OF GENETIC ALGORITHM IN DIMENSIONING HYBRID AUTONOMOUS SYSTEMS

    Directory of Open Access Journals (Sweden)

    RUS T.

    2016-03-01

    Full Text Available In this paper is presented the working principle of genetic algorithms used to dimension autonomous hybrid systems. It is presented a study case in which is dimensioned and optimized an autonomous hybrid system for a residential house located in Cluj-Napoca. After the autonomous hybrid system optimization is performed, it is achieved a reduction of the total cost of system investment, a reduction of energy produced in excess and a reduction of CO2 emissions.

  19. MAC Protocol for Ad Hoc Networks Using a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Omar Elizarraras

    2014-01-01

    Full Text Available The problem of obtaining the transmission rate in an ad hoc network consists in adjusting the power of each node to ensure the signal to interference ratio (SIR and the energy required to transmit from one node to another is obtained at the same time. Therefore, an optimal transmission rate for each node in a medium access control (MAC protocol based on CSMA-CDMA (carrier sense multiple access-code division multiple access for ad hoc networks can be obtained using evolutionary optimization. This work proposes a genetic algorithm for the transmission rate election considering a perfect power control, and our proposition achieves improvement of 10% compared with the scheme that handles the handshaking phase to adjust the transmission rate. Furthermore, this paper proposes a genetic algorithm that solves the problem of power combining, interference, data rate, and energy ensuring the signal to interference ratio in an ad hoc network. The result of the proposed genetic algorithm has a better performance (15% compared to the CSMA-CDMA protocol without optimizing. Therefore, we show by simulation the effectiveness of the proposed protocol in terms of the throughput.

  20. Design of PID Controller Simulator based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Fahri VATANSEVER

    2013-08-01

    Full Text Available PID (Proportional Integral and Derivative controllers take an important place in the field of system controlling. Various methods such as Ziegler-Nichols, Cohen-Coon, Chien Hrones Reswick (CHR and Wang-Juang-Chan are available for the design of such controllers benefiting from the system time and frequency domain data. These controllers are in compliance with system properties under certain criteria suitable to the system. Genetic algorithms have become widely used in control system applications in parallel to the advances in the field of computer and artificial intelligence. In this study, PID controller designs have been carried out by means of classical methods and genetic algorithms and comparative results have been analyzed. For this purpose, a graphical user interface program which can be used for educational purpose has been developed. For the definite (entered transfer functions, the suitable P, PI and PID controller coefficients have calculated by both classical methods and genetic algorithms and many parameters and responses of the systems have been compared and presented numerically and graphically

  1. Accident Emergency Response And Routing Software (AERARS using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Naveen Ramachandran,

    2011-07-01

    Full Text Available AERARS is a response and routing software for accident emergency requirement. A method has been proposed in this project for using a genetic algorithm to find the shortest route between a source and adestination. It make use of genetic algorithms ability to search the opt solution from the population helping to solve spatially addressed problem. The numbers of accident spots are plotted in ArcGISenvironment and ten major accident spots are identified. The software package is designed with closest facility estimation and shortest route generation along with other basic software facilities in Visual Basic environment. Genetic algorithm provided a great optimality to the solutions. The closest facility tool helps to estimate the nearest hospital, ambulance, police station and fire station. The shortest route estimation tool generates shortest path between a locations to the hospital or ambulance spot. The various risk zonesare assessed and more safety measures can be taken to reduce the frequency of accident. The software efficiency can be further increased by incorporating GPS and satellite technology.

  2. A meta-learning system based on genetic algorithms

    Science.gov (United States)

    Pellerin, Eric; Pigeon, Luc; Delisle, Sylvain

    2004-04-01

    The design of an efficient machine learning process through self-adaptation is a great challenge. The goal of meta-learning is to build a self-adaptive learning system that is constantly adapting to its specific (and dynamic) environment. To that end, the meta-learning mechanism must improve its bias dynamically by updating the current learning strategy in accordance with its available experiences or meta-knowledge. We suggest using genetic algorithms as the basis of an adaptive system. In this work, we propose a meta-learning system based on a combination of the a priori and a posteriori concepts. A priori refers to input information and knowledge available at the beginning in order to built and evolve one or more sets of parameters by exploiting the context of the system"s information. The self-learning component is based on genetic algorithms and neural Darwinism. A posteriori refers to the implicit knowledge discovered by estimation of the future states of parameters and is also applied to the finding of optimal parameters values. The in-progress research presented here suggests a framework for the discovery of knowledge that can support human experts in their intelligence information assessment tasks. The conclusion presents avenues for further research in genetic algorithms and their capability to learn to learn.

  3. Genetic Algorithm Optimizes Q-LAW Control Parameters

    Science.gov (United States)

    Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard

    2008-01-01

    A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.

  4. A genetic algorithm to reduce stream channel cross section data

    Science.gov (United States)

    Berenbrock, C.

    2006-01-01

    A genetic algorithm (GA) was used to reduce cross section data for a hypothetical example consisting of 41 data points and for 10 cross sections on the Kootenai River. The number of data points for the Kootenai River cross sections ranged from about 500 to more than 2,500. The GA was applied to reduce the number of data points to a manageable dataset because most models and other software require fewer than 100 data points for management, manipulation, and analysis. Results indicated that the program successfully reduced the data. Fitness values from the genetic algorithm were lower (better) than those in a previous study that used standard procedures of reducing the cross section data. On average, fitnesses were 29 percent lower, and several were about 50 percent lower. Results also showed that cross sections produced by the genetic algorithm were representative of the original section and that near-optimal results could be obtained in a single run, even for large problems. Other data also can be reduced in a method similar to that for cross section data.

  5. Discovering Fuzzy Censored Classification Rules (Fccrs: A Genetic Algorithm Approach

    Directory of Open Access Journals (Sweden)

    Renu Bala

    2012-08-01

    Full Text Available Classification Rules (CRs are often discovered in the form of ‘If-Then’ Production Rules (PRs. PRs, beinghigh level symbolic rules, are comprehensible and easy to implement. However, they are not capable ofdealing with cognitive uncertainties like vagueness and ambiguity imperative to real word decision makingsituations. Fuzzy Classification Rules (FCRs based on fuzzy logic provide a framework for a flexiblehuman like reasoning involving linguistic variables. Moreover, a classification system consisting of simple‘If-Then’ rules is not competent in handling exceptional circumstances. In this paper, we propose aGenetic Algorithm approach to discover Fuzzy Censored Classification Rules (FCCRs. A FCCR is aFuzzy Classification Rule (FCRs augmented with censors. Here, censors are exceptional conditions inwhich the behaviour of a rule gets modified. The proposed algorithm works in two phases. In the firstphase, the Genetic Algorithm discovers Fuzzy Classification Rules. Subsequently, these FuzzyClassification Rules are mutated to produce FCCRs in the second phase. The appropriate encodingscheme, fitness function and genetic operators are designed for the discovery of FCCRs. The proposedapproach for discovering FCCRs is then illustrated on a synthetic dataset.

  6. Tuning Schema Matching Systems using Parallel Genetic Algorithms on GPU

    Directory of Open Access Journals (Sweden)

    Yuting Feng

    2010-11-01

    Full Text Available Most recent schema matching systems combine multiple components, each of which employs a particular matching technique with several knobs. The multi-component nature has brought a tuning problem, that is to determine which components to execute and how to adjust the knobs (e.g., thresholds, weights, etc. of these components for domain users. In this paper, we present an approach to automatically tune schema matching systems using genetic algorithms. We match a given schema S against generated matching scenarios, for which the ground truth matches are known, and find a configuration that effectively improves the performance of matching S against real schemas. To search the huge space of configuration candidates efficiently, we adopt genetic algorithms (GAs during the tuning process. To promote the performance of our approach, we implement parallel genetic algorithms on graphic processing units (GPUs based on NVIDIA’s Compute Unified Device Architecture (CUDA. Experiments over four real-world domains with two main matching systems demonstrate that our approach provides more qualified matches over different domains.

  7. Automated Guide Vehicles Dynamic Scheduling Based on Annealing Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Zou Gan

    2013-05-01

    Full Text Available Dispatching automated guided vehicles (AGVs is the common approach for AGVs scheduling in practice, the information about load arrivals in advance was not used to optimize the performance of the automated guided vehicles system (AGVsS. According to the characteristics of the AGVsS, the mathematical model of AGVs scheduling was established. A heuristic algorithm called Annealing Genetic Algorithm (AGA was presented to deal with the AGVs scheduling problem,and applied the algorithm dynamically by using it repeatedly under a combined rolling optimization strategy. the performance of the proposed approach for AGVs scheduling was compared with the dispatching rules by simulation. Results showed that the approach performs significantly better than the dispatching rules and proved that it is really effective for AGVsS.

  8. An Airborne Conflict Resolution Approach Using a Genetic Algorithm

    Science.gov (United States)

    Mondoloni, Stephane; Conway, Sheila

    2001-01-01

    An airborne conflict resolution approach is presented that is capable of providing flight plans forecast to be conflict-free with both area and traffic hazards. This approach is capable of meeting constraints on the flight plan such as required times of arrival (RTA) at a fix. The conflict resolution algorithm is based upon a genetic algorithm, and can thus seek conflict-free flight plans meeting broader flight planning objectives such as minimum time, fuel or total cost. The method has been applied to conflicts occurring 6 to 25 minutes in the future in climb, cruise and descent phases of flight. The conflict resolution approach separates the detection, trajectory generation and flight rules function from the resolution algorithm. The method is capable of supporting pilot-constructed resolutions, cooperative and non-cooperative maneuvers, and also providing conflict resolution on trajectories forecast by an onboard FMC.

  9. Use of genetic algorithms for solving problems of optimal cutting

    Directory of Open Access Journals (Sweden)

    Sergievskiy Maxim

    2016-01-01

    Full Text Available Cutting and packing problem is one of the most common optimization problem. Even a small space or material savings allow obtaining substantial advantages on an industrial scale. This paper proposes the genetic algorithm to solve this problem. It includes multipoint operators of crossing, mutation and selection. To use these operators, the special encoding of cutting card is applied, that can be transformed to the real coordinates by using decoder. This is a block typed decoder, which substitution strategy is “first-fit”. Efficiency of the solutions, obtained by the algorithm, depends on its parameters and on dimension of a task, but on average it decreases under the logarithmic law from dimension of a task. Temporary complexity of algorithm shows square dependence on the task dimension.

  10. A Genetic Algorithm to Optimize a Tweet for Retweetability

    CERN Document Server

    Hochreiter, Ronald

    2014-01-01

    Twitter is a popular microblogging platform. When users send out messages, other users have the ability to forward these messages to their own subgraph. Most research focuses on increasing retweetability from a node's perspective. Here, we center on improving message style to increase the chance of a message being forwarded. To this end, we simulate an artificial Twitter-like network with nodes deciding deterministically on retweeting a message or not. A genetic algorithm is used to optimize message composition, so that the reach of a message is increased. When analyzing the algorithm's runtime behavior across a set of different node types, we find that the algorithm consistently succeeds in significantly improving the retweetability of a message.

  11. Adaptive Genetic Algorithm for Sensor Coarse Signal Processing

    Directory of Open Access Journals (Sweden)

    Xuan Huang

    2014-03-01

    Full Text Available As with the development of computer technology and informatization, network technique, sensor technique and communication technology become three necessary components of information industry. As the core technique of sensor application, signal processing mainly determines the sensor performances. For this reason, study on signal processing mode is very important to sensors and the application of sensor network. In this paper, we introduce a new sensor coarse signal processing mode based on adaptive genetic algorithm. This algorithm selects crossover, mutation probability adaptively and compensates multiple operators commutatively to optimize the search process, so that we can obtain the global optimum solution. Based on the proposed algorithm, using auto-correlative characteristic parameter extraction method, it achieves smaller test error in sensor coarse signal processing mode of processing interference signal. We evaluate the proposed approach on a set of data. The experimental results show that, the proposed approach is able to improve the performance in different experimental setting

  12. Genetic Algorithms for Auto-Clustering in KDD

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In solving the clustering problem in the context of knowledge discovery in databases (KDD), the traditional methods, for example, the K-means algorithm and its variants, usually require the users to provide the number of clusters in advance based on the pro-information. Unfortunately, the number of clusters in general is unknown to the users who are usually short of pro-information. Therefore, the clustering calculation becomes a tedious trial-and-error work, and the result is often not global optimal especially when the number of clusters is large. In this paper, a new dynamic clustering method based on genetic algorithms (GA) is proposed and applied for auto-clustering of data entities in large databases. The algorithm can automatically cluster the data according to their similarities and find the exact number of clusters. Experiment results indicate that the method is of global optimization by dynamically clustering logic.

  13. Comparing a Coevolutionary Genetic Algorithm for Multiobjective Optimization

    Science.gov (United States)

    Lohn, Jason D.; Kraus, William F.; Haith, Gary L.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We present results from a study comparing a recently developed coevolutionary genetic algorithm (CGA) against a set of evolutionary algorithms using a suite of multiobjective optimization benchmarks. The CGA embodies competitive coevolution and employs a simple, straightforward target population representation and fitness calculation based on developmental theory of learning. Because of these properties, setting up the additional population is trivial making implementation no more difficult than using a standard GA. Empirical results using a suite of two-objective test functions indicate that this CGA performs well at finding solutions on convex, nonconvex, discrete, and deceptive Pareto-optimal fronts, while giving respectable results on a nonuniform optimization. On a multimodal Pareto front, the CGA finds a solution that dominates solutions produced by eight other algorithms, yet the CGA has poor coverage across the Pareto front.

  14. A cluster analysis on road traffic accidents using genetic algorithms

    Science.gov (United States)

    Saharan, Sabariah; Baragona, Roberto

    2017-04-01

    The analysis of traffic road accidents is increasingly important because of the accidents cost and public road safety. The availability or large data sets makes the study of factors that affect the frequency and severity accidents are viable. However, the data are often highly unbalanced and overlapped. We deal with the data set of the road traffic accidents recorded in Christchurch, New Zealand, from 2000-2009 with a total of 26440 accidents. The data is in a binary set and there are 50 factors road traffic accidents with four level of severity. We used genetic algorithm for the analysis because we are in the presence of a large unbalanced data set and standard clustering like k-means algorithm may not be suitable for the task. The genetic algorithm based on clustering for unknown K, (GCUK) has been used to identify the factors associated with accidents of different levels of severity. The results provided us with an interesting insight into the relationship between factors and accidents severity level and suggest that the two main factors that contributes to fatal accidents are "Speed greater than 60 km h" and "Did not see other people until it was too late". A comparison with the k-means algorithm and the independent component analysis is performed to validate the results.

  15. Optimization-Based Image Segmentation by Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    H. Laurent

    2008-05-01

    Full Text Available Many works in the literature focus on the definition of evaluation metrics and criteria that enable to quantify the performance of an image processing algorithm. These evaluation criteria can be used to define new image processing algorithms by optimizing them. In this paper, we propose a general scheme to segment images by a genetic algorithm. The developed method uses an evaluation criterion which quantifies the quality of an image segmentation result. The proposed segmentation method can integrate a local ground truth when it is available in order to set the desired level of precision of the final result. A genetic algorithm is then used in order to determine the best combination of information extracted by the selected criterion. Then, we show that this approach can either be applied for gray-levels or multicomponents images in a supervised context or in an unsupervised one. Last, we show the efficiency of the proposed method through some experimental results on several gray-levels and multicomponents images.

  16. Optimization-Based Image Segmentation by Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Rosenberger C

    2008-01-01

    Full Text Available Abstract Many works in the literature focus on the definition of evaluation metrics and criteria that enable to quantify the performance of an image processing algorithm. These evaluation criteria can be used to define new image processing algorithms by optimizing them. In this paper, we propose a general scheme to segment images by a genetic algorithm. The developed method uses an evaluation criterion which quantifies the quality of an image segmentation result. The proposed segmentation method can integrate a local ground truth when it is available in order to set the desired level of precision of the final result. A genetic algorithm is then used in order to determine the best combination of information extracted by the selected criterion. Then, we show that this approach can either be applied for gray-levels or multicomponents images in a supervised context or in an unsupervised one. Last, we show the efficiency of the proposed method through some experimental results on several gray-levels and multicomponents images.

  17. Family genetic algorithms based on gene exchange and its application

    Institute of Scientific and Technical Information of China (English)

    Li Jianhua; Ding Xiangqian; Wang Sunan; Yu Qing

    2006-01-01

    Genetic Algorithms (GA) are a search techniques based on mechanics of nature selection and have already been successfully applied in many diverse areas. However, increasing samples show that GA's performance is not as good as it was expected to be. Criticism of this algorithm includes the slow speed and premature result during convergence procedure. In order to improve the performance, the population size and individuals' space is emphatically described. The influence of individuals' space and population size on the operators is analyzed. And a novel family genetic algorithm (FGA) is put forward based on this analysis. In this novel algorithm, the optimum solution families closed to quality individuals is constructed, which is exchanged found by a search in the world space. Search will be done in this microspace. The family that can search better genes in a limited period of time would win a new life. At the same time, the best gene of this micro space with the basic population in the world space is exchanged. Finally, the FGA is applied to the function optimization and image matching through several experiments. The results show that the FGA possessed high performance.

  18. Locomotive assignment problem with train precedence using genetic algorithm

    Science.gov (United States)

    Noori, Siamak; Ghannadpour, Seyed Farid

    2012-07-01

    This paper aims to study the locomotive assignment problem which is very important for railway companies, in view of high cost of operating locomotives. This problem is to determine the minimum cost assignment of homogeneous locomotives located in some central depots to a set of pre-scheduled trains in order to provide sufficient power to pull the trains from their origins to their destinations. These trains have different degrees of priority for servicing, and the high class of trains should be serviced earlier than others. This problem is modeled using vehicle routing and scheduling problem where trains representing the customers are supposed to be serviced in pre-specified hard/soft fuzzy time windows. A two-phase approach is used which, in the first phase, the multi-depot locomotive assignment is converted to a set of single depot problems, and after that, each single depot problem is solved heuristically by a hybrid genetic algorithm. In the genetic algorithm, various heuristics and efficient operators are used in the evolutionary search. The suggested algorithm is applied to solve the medium sized numerical example to check capabilities of the model and algorithm. Moreover, some of the results are compared with those solutions produced by branch-and-bound technique to determine validity and quality of the model. Results show that suggested approach is rather effective in respect of quality and time.

  19. High performance genetic algorithm for VLSI circuit partitioning

    Science.gov (United States)

    Dinu, Simona

    2016-12-01

    Partitioning is one of the biggest challenges in computer-aided design for VLSI circuits (very large-scale integrated circuits). This work address the min-cut balanced circuit partitioning problem- dividing the graph that models the circuit into almost equal sized k sub-graphs while minimizing the number of edges cut i.e. minimizing the number of edges connecting the sub-graphs. The problem may be formulated as a combinatorial optimization problem. Experimental studies in the literature have shown the problem to be NP-hard and thus it is important to design an efficient heuristic algorithm to solve it. The approach proposed in this study is a parallel implementation of a genetic algorithm, namely an island model. The information exchange between the evolving subpopulations is modeled using a fuzzy controller, which determines an optimal balance between exploration and exploitation of the solution space. The results of simulations show that the proposed algorithm outperforms the standard sequential genetic algorithm both in terms of solution quality and convergence speed. As a direction for future study, this research can be further extended to incorporate local search operators which should include problem-specific knowledge. In addition, the adaptive configuration of mutation and crossover rates is another guidance for future research.

  20. Self-Adaptive Genetic Algorithm for LTE Backhaul Network

    Directory of Open Access Journals (Sweden)

    Li Li

    2014-03-01

    Full Text Available Mobile communication evolution from 2G, 3G to LTE shows a broadband and IP-oriented trend and the architecture of LTE backhaul network turns to be flat. In order to fit these new features, layer 3 routing technology has to be adopted in backhaul network and needs to be modified to fit it. In this paper, a new algorithm, named Self-Adaptive Genetic Algorithm (SAGA, is proposed to meet the demand of providing a highly efficient and QoS guaranteed routing scheme for LTE backhaul network. It can be used in Open Shortest Path First protocol (OSPF as the core path selection algorithm. It is based on traditional genetic algorithm(GA but improves the population initialization process in it as well as proposes a new fitness calculation function for it. Simulation verifies it can balance not only the traffic of network but also the load of MME pools, which improves the utility efficiency of the whole network.

  1. Feature selection for optimized skin tumor recognition using genetic algorithms.

    Science.gov (United States)

    Handels, H; Ross, T; Kreusch, J; Wolff, H H; Pöppl, S J

    1999-07-01

    In this paper, a new approach to computer supported diagnosis of skin tumors in dermatology is presented. High resolution skin surface profiles are analyzed to recognize malignant melanomas and nevocytic nevi (moles), automatically. In the first step, several types of features are extracted by 2D image analysis methods characterizing the structure of skin surface profiles: texture features based on cooccurrence matrices, Fourier features and fractal features. Then, feature selection algorithms are applied to determine suitable feature subsets for the recognition process. Feature selection is described as an optimization problem and several approaches including heuristic strategies, greedy and genetic algorithms are compared. As quality measure for feature subsets, the classification rate of the nearest neighbor classifier computed with the leaving-one-out method is used. Genetic algorithms show the best results. Finally, neural networks with error back-propagation as learning paradigm are trained using the selected feature sets. Different network topologies, learning parameters and pruning algorithms are investigated to optimize the classification performance of the neural classifiers. With the optimized recognition system a classification performance of 97.7% is achieved.

  2. A Simple Application and Design of Genetic Algorithm in Card Problem

    Institute of Scientific and Technical Information of China (English)

    顾鹏程

    2016-01-01

    According to traditional card problem solving which is based on the idea of genetic algorithm(GA), a set of algorithms is designed to find final solution. For each process in genetic algorithm, including choices of fitness function, parameters deter-mination and coding scheme selection,classic algorithm is used to realize the various steps, and ultimately to find solution of problems.

  3. APPLICATION OF GENETIC ALGORITHMS FOR ROBUST PARAMETER OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    N. Belavendram

    2010-12-01

    Full Text Available Parameter optimization can be achieved by many methods such as Monte-Carlo, full, and fractional factorial designs. Genetic algorithms (GA are fairly recent in this respect but afford a novel method of parameter optimization. In GA, there is an initial pool of individuals each with its own specific phenotypic trait expressed as a ‘genetic chromosome’. Different genes enable individuals with different fitness levels to reproduce according to natural reproductive gene theory. This reproduction is established in terms of selection, crossover and mutation of reproducing genes. The resulting child generation of individuals has a better fitness level akin to natural selection, namely evolution. Populations evolve towards the fittest individuals. Such a mechanism has a parallel application in parameter optimization. Factors in a parameter design can be expressed as a genetic analogue in a pool of sub-optimal random solutions. Allowing this pool of sub-optimal solutions to evolve over several generations produces fitter generations converging to a pre-defined engineering optimum. In this paper, a genetic algorithm is used to study a seven factor non-linear equation for a Wheatstone bridge as the equation to be optimized. A comparison of the full factorial design against a GA method shows that the GA method is about 1200 times faster in finding a comparable solution.

  4. A simple algorithm for optimization and model fitting: AGA (asexual genetic algorithm)

    CERN Document Server

    Canto, J; Martinez-Gomez, E; 10.1051/0004-6361/200911740

    2009-01-01

    Context. Mathematical optimization can be used as a computational tool to obtain the optimal solution to a given problem in a systematic and efficient way. For example, in twice-differentiable functions and problems with no constraints, the optimization consists of finding the points where the gradient of the objective function is zero and using the Hessian matrix to classify the type of each point. Sometimes, however it is impossible to compute these derivatives and other type of techniques must be employed such as the steepest descent/ascent method and more sophisticated methods such as those based on the evolutionary algorithms. Aims. We present a simple algorithm based on the idea of genetic algorithms (GA) for optimization. We refer to this algorithm as AGA (Asexual Genetic Algorithm) and apply it to two kinds of problems: the maximization of a function where classical methods fail and model fitting in astronomy. For the latter case, we minimize the chi-square function to estimate the parameters in two e...

  5. Demarcation of potential seismic sources on integration of genetic algorithm and BP algorithm

    Institute of Scientific and Technical Information of China (English)

    周庆; 叶洪

    2002-01-01

    In this paper potential seismic sources in coastal region of South China are identified by integration of genetic algorithm (GA) and back propagation (BP algorithm). GA is used for finding the best parameter combination rapidly in an infinite solution space for artificial neural networks (ANN). The results show that the distribution of potential seismic sources with different upper magnitude demarcated by this classifier is mostly satisfied the intrinsic relationship between seismic environment and earthquake occurrence, with less effect from subjective judgment of human being.

  6. A Multi-Objective Genetic Algorithm for Outlier Removal.

    Science.gov (United States)

    Nahum, Oren E; Yosipof, Abraham; Senderowitz, Hanoch

    2015-12-28

    Quantitative structure activity relationship (QSAR) or quantitative structure property relationship (QSPR) models are developed to correlate activities for sets of compounds with their structure-derived descriptors by means of mathematical models. The presence of outliers, namely, compounds that differ in some respect from the rest of the data set, compromise the ability of statistical methods to derive QSAR models with good prediction statistics. Hence, outliers should be removed from data sets prior to model derivation. Here we present a new multi-objective genetic algorithm for the identification and removal of outliers based on the k nearest neighbors (kNN) method. The algorithm was used to remove outliers from three different data sets of pharmaceutical interest (logBBB, factor 7 inhibitors, and dihydrofolate reductase inhibitors), and its performances were compared with those of five other methods for outlier removal. The results suggest that the new algorithm provides filtered data sets that (1) better maintain the internal diversity of the parent data sets and (2) give rise to QSAR models with much better prediction statistics. Equally good filtered data sets in terms of these metrics were obtained when another objective function was added to the algorithm (termed "preservation"), forcing it to remove certain compounds with low probability only. This option is highly useful when specific compounds should be preferably kept in the final data set either because they have favorable activities or because they represent interesting molecular scaffolds. We expect this new algorithm to be useful in future QSAR applications.

  7. Using Genetic Algorithms for Navigation Planning in Dynamic Environments

    Directory of Open Access Journals (Sweden)

    Ferhat Uçan

    2012-01-01

    Full Text Available Navigation planning can be considered as a combination of searching and executing the most convenient flight path from an initial waypoint to a destination waypoint. Generally the aim is to follow the flight path, which provides minimum fuel consumption for the air vehicle. For dynamic environments, constraints change dynamically during flight. This is a special case of dynamic path planning. As the main concern of this paper is flight planning, the conditions and objectives that are most probable to be used in navigation problem are considered. In this paper, the genetic algorithm solution of the dynamic flight planning problem is explained. The evolutionary dynamic navigation planning algorithm is developed for compensating the existing deficiencies of the other approaches. The existing fully dynamic algorithms process unit changes to topology one modification at a time, but when there are several such operations occurring in the environment simultaneously, the algorithms are quite inefficient. The proposed algorithm may respond to the concurrent constraint updates in a shorter time for dynamic environment. The most secure navigation of the air vehicle is planned and executed so that the fuel consumption is minimum.

  8. ROBUST-HYBRID GENETIC ALGORITHM FOR A FLOW-SHOP SCHEDULING PROBLEM (A Case Study at PT FSCM Manufacturing Indonesia

    Directory of Open Access Journals (Sweden)

    Johan Soewanda

    2007-01-01

    Full Text Available This paper discusses the application of Robust Hybrid Genetic Algorithm to solve a flow-shop scheduling problem. The proposed algorithm attempted to reach minimum makespan. PT. FSCM Manufacturing Indonesia Plant 4's case was used as a test case to evaluate the performance of the proposed algorithm. The proposed algorithm was compared to Ant Colony, Genetic-Tabu, Hybrid Genetic Algorithm, and the company's algorithm. We found that Robust Hybrid Genetic produces statistically better result than the company's, but the same as Ant Colony, Genetic-Tabu, and Hybrid Genetic. In addition, Robust Hybrid Genetic Algorithm required less computational time than Hybrid Genetic Algorithm

  9. A Parallel Genetic Algorithm for Automated Electronic Circuit Design

    Science.gov (United States)

    Long, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris

    2000-01-01

    Parallelized versions of genetic algorithms (GAs) are popular primarily for three reasons: the GA is an inherently parallel algorithm, typical GA applications are very compute intensive, and powerful computing platforms, especially Beowulf-style computing clusters, are becoming more affordable and easier to implement. In addition, the low communication bandwidth required allows the use of inexpensive networking hardware such as standard office ethernet. In this paper we describe a parallel GA and its use in automated high-level circuit design. Genetic algorithms are a type of trial-and-error search technique that are guided by principles of Darwinian evolution. Just as the genetic material of two living organisms can intermix to produce offspring that are better adapted to their environment, GAs expose genetic material, frequently strings of 1s and Os, to the forces of artificial evolution: selection, mutation, recombination, etc. GAs start with a pool of randomly-generated candidate solutions which are then tested and scored with respect to their utility. Solutions are then bred by probabilistically selecting high quality parents and recombining their genetic representations to produce offspring solutions. Offspring are typically subjected to a small amount of random mutation. After a pool of offspring is produced, this process iterates until a satisfactory solution is found or an iteration limit is reached. Genetic algorithms have been applied to a wide variety of problems in many fields, including chemistry, biology, and many engineering disciplines. There are many styles of parallelism used in implementing parallel GAs. One such method is called the master-slave or processor farm approach. In this technique, slave nodes are used solely to compute fitness evaluations (the most time consuming part). The master processor collects fitness scores from the nodes and performs the genetic operators (selection, reproduction, variation, etc.). Because of dependency

  10. An implementation of continuous genetic algorithm in parameter estimation of predator-prey model

    Science.gov (United States)

    Windarto

    2016-03-01

    Genetic algorithm is an optimization method based on the principles of genetics and natural selection in life organisms. The main components of this algorithm are chromosomes population (individuals population), parent selection, crossover to produce new offspring, and random mutation. In this paper, continuous genetic algorithm was implemented to estimate parameters in a predator-prey model of Lotka-Volterra type. For simplicity, all genetic algorithm parameters (selection rate and mutation rate) are set to be constant along implementation of the algorithm. It was found that by selecting suitable mutation rate, the algorithms can estimate these parameters well.

  11. Automatic Data Filter Customization Using a Genetic Algorithm

    Science.gov (United States)

    Mandrake, Lukas

    2013-01-01

    This work predicts whether a retrieval algorithm will usefully determine CO2 concentration from an input spectrum of GOSAT (Greenhouse Gases Observing Satellite). This was done to eliminate needless runtime on atmospheric soundings that would never yield useful results. A space of 50 dimensions was examined for predictive power on the final CO2 results. Retrieval algorithms are frequently expensive to run, and wasted effort defeats requirements and expends needless resources. This algorithm could be used to help predict and filter unneeded runs in any computationally expensive regime. Traditional methods such as the Fischer discriminant analysis and decision trees can attempt to predict whether a sounding will be properly processed. However, this work sought to detect a subsection of the dimensional space that can be simply filtered out to eliminate unwanted runs. LDAs (linear discriminant analyses) and other systems examine the entire data and judge a "best fit," giving equal weight to complex and problematic regions as well as simple, clear-cut regions. In this implementation, a genetic space of "left" and "right" thresholds outside of which all data are rejected was defined. These left/right pairs are created for each of the 50 input dimensions. A genetic algorithm then runs through countless potential filter settings using a JPL computer cluster, optimizing the tossed-out data s yield (proper vs. improper run removal) and number of points tossed. This solution is robust to an arbitrary decision boundary within the data and avoids the global optimization problem of whole-dataset fitting using LDA or decision trees. It filters out runs that would not have produced useful CO2 values to save needless computation. This would be an algorithmic preprocessing improvement to any computationally expensive system.

  12. A New Genetic Algorithm Based on Niche Technique and Local Search Method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The genetic algorithm has been widely used in many fields as an easy robust global search and optimization method. In this paper, a new genetic algorithm based on niche technique and local search method is presented under the consideration of inadequacies of the simple genetic algorithm. In order to prove the adaptability and validity of the improved genetic algorithm, optimization problems of multimodal functions with equal peaks, unequal peaks and complicated peak distribution are discussed. The simulation results show that compared to other niching methods, this improved genetic algorithm has obvious potential on many respects, such as convergence speed, solution accuracy, ability of global optimization, etc.

  13. Performance Analysis of Estimation of Distribution Algorithm and Genetic Algorithm in Zone Routing Protocol

    CERN Document Server

    Rahman, Mst Farhana; Ripon, Kazi Shah Nawaz; Suvo, Md Iqbal Hossain

    2010-01-01

    In this paper, Estimation of Distribution Algorithm (EDA) is used for Zone Routing Protocol (ZRP) in Mobile Ad-hoc Network (MANET) instead of Genetic Algorithm (GA). It is an evolutionary approach, and used when the network size grows and the search space increases. When the destination is outside the zone, EDA is applied to find the route with minimum cost and time. The implementation of proposed method is compared with Genetic ZRP, i.e., GZRP and the result demonstrates better performance for the proposed method. Since the method provides a set of paths to the destination, it results in load balance to the network. As both EDA and GA use random search method to reach the optimal point, the searching cost reduced significantly, especially when the number of data is large.

  14. Optimization of Circular Ring Microstrip Antenna Using Genetic Algorithm

    Science.gov (United States)

    Sathi, V.; Ghobadi, Ch.; Nourinia, J.

    2008-10-01

    Circular ring microstrip antennas have several interesting properties that make it attractive in wireless applications. Although several analysis techniques such as cavity model, generalized transmission line model, Fourier-Hankel transform domain and the method of matched asymptotic expansion have been studied by researchers, there is no efficient design tool that has been incorporated with a suitable optimization algorithm. In this paper, the cavity model analysis along with the genetic optimization algorithm is presented for the design of circular ring microstrip antennas. The method studied here is based on the well-known cavity model and the optimization of the dimensions and feed point location of the circular ring antenna is performed via the genetic optimization algorithm, to achieve an acceptable antenna operation around a desired resonance frequency. The antennas designed by this efficient design procedure were realized experimentally, and the results are compared. In addition, these results are also compared to the results obtained by the commercial electromagnetic simulation tool, the FEM based software, HFSS by ANSOFT.

  15. Feature Selection for Image Retrieval based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Preeti Kushwaha

    2016-12-01

    Full Text Available This paper describes the development and implementation of feature selection for content based image retrieval. We are working on CBIR system with new efficient technique. In this system, we use multi feature extraction such as colour, texture and shape. The three techniques are used for feature extraction such as colour moment, gray level co- occurrence matrix and edge histogram descriptor. To reduce curse of dimensionality and find best optimal features from feature set using feature selection based on genetic algorithm. These features are divided into similar image classes using clustering for fast retrieval and improve the execution time. Clustering technique is done by k-means algorithm. The experimental result shows feature selection using GA reduces the time for retrieval and also increases the retrieval precision, thus it gives better and faster results as compared to normal image retrieval system. The result also shows precision and recall of proposed approach compared to previous approach for each image class. The CBIR system is more efficient and better performs using feature selection based on Genetic Algorithm.

  16. The Genetic Algorithm: A Robust Method for Stress Inversion

    Science.gov (United States)

    Thakur, P.; Srivastava, D. C.; Gupta, P. K.

    2016-12-01

    The knowledge of stress states in Earth`s crust is a fundamental objective in many tectonic, seismological and engineering geological studies. Geologists and geophysicists routinely practice methods for determination of the stress tensor from inversion of observations on the stress indicators, such as faults, earthquakes and calcite twin lamellae. While the stress inversion is essentially a nonlinear problem, it is commonly solved by linearization, under some assumptions, in most existing methods. These algorithms not only oversimplify the problem but are also vulnerable to entrapment of the solution in a local optimum. We propose a nonlinear heuristic technique, the genetic algorithm method, that searches the global optimum without making any linearizing assumption or simplification. The method mimics the natural evolutionary process of selection, crossover, mutation, and minimises the composite misfit function for searching the global optimum, the fittest stress tensor. The validity of the method is successfully tested on synthetic fault-slip observations in different tectonic settings and also in situations where the observations contain noisy data. These results are compared with those obtained from the other common methods. The genetic algorithm method is superior to other common methods, in particular, in the oblique tectonic settings where none of the principal stresses is directed vertically.

  17. Articulated Human Motion Tracking Using Sequential Immune Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yi Li

    2013-01-01

    Full Text Available We formulate human motion tracking as a high-dimensional constrained optimization problem. A novel generative method is proposed for human motion tracking in the framework of evolutionary computation. The main contribution is that we introduce immune genetic algorithm (IGA for pose optimization in latent space of human motion. Firstly, we perform human motion analysis in the learnt latent space of human motion. As the latent space is low dimensional and contents the prior knowledge of human motion, it makes pose analysis more efficient and accurate. Then, in the search strategy, we apply IGA for pose optimization. Compared with genetic algorithm and other evolutionary methods, its main advantage is the ability to use the prior knowledge of human motion. We design an IGA-based method to estimate human pose from static images for initialization of motion tracking. And we propose a sequential IGA (S-IGA algorithm for motion tracking by incorporating the temporal continuity information into the traditional IGA. Experimental results on different videos of different motion types show that our IGA-based pose estimation method can be used for initialization of motion tracking. The S-IGA-based motion tracking method can achieve accurate and stable tracking of 3D human motion.

  18. GENETIC ALGORITHM AND NEURAL NETWORK FOR OPTICAL CHARACTER RECOGNITION

    Directory of Open Access Journals (Sweden)

    Hendy Yeremia

    2013-01-01

    Full Text Available Computer system has been able to recognize writing as human brain does. The method mostly used for character recognition is the backpropagation network. Backpropagation network has been known for its accuracy because it allows itself to learn and improving itself thus it can achieve higher accuracy. On the other hand, backpropagation was less to be used because of its time length needed to train the network to achieve the best result possible. In this study, backpropagation network algorithm is combined with genetic algorithm to achieve both accuracy and training swiftness for recognizing alphabets. Genetic algorithm is used to define the best initial values for the network’s architecture and synapses’ weight thus within a shorter period of time, the network could achieve the best accuracy. The optimized backpropagation network has better accuracy and less training time than the standard backpropagation network. The accuracy in recognizing character differ by 10, 77%, with a success rate of 90, 77% for the optimized backpropagation and 80% accuracy for the standard backpropagation network. The training time needed for backpropagation learning phase improved significantly from 03 h, 14 min and 40 sec, a standard backpropagation training time, to 02 h 18 min and 1 sec for the optimized backpropagation network.

  19. Library design using genetic algorithms for catalyst discovery and optimization

    Science.gov (United States)

    Clerc, Frederic; Lengliz, Mourad; Farrusseng, David; Mirodatos, Claude; Pereira, Sílvia R. M.; Rakotomalala, Ricco

    2005-06-01

    This study reports a detailed investigation of catalyst library design by genetic algorithm (GA). A methodology for assessing GA configurations is described. Operators, which promote the optimization speed while being robust to noise and outliers, are revealed through statistical studies. The genetic algorithms were implemented in GA platform software called OptiCat, which enables the construction of custom-made workflows using a tool box of operators. Two separate studies were carried out (i) on a virtual benchmark and (ii) on real surface response which is derived from HT screening. Additionally, we report a methodology to model a complex surface response by binning the search space in small zones that are then independently modeled by linear regression. In contrast to artificial neural networks, this approach allows one to obtain an explicit model in an analogical form that can be further used in Excel or entered in OptiCat to perform simulations. While speeding the implementation of a hybrid algorithm combining a GA with a knowledge-based extraction engine is described, while speeding up the optimization process by means of virtual prescreening the hybrid GA enables one to open the "black-box" by providing knowledge as a set of association rules.

  20. Genetic based optimization for multicast routing algorithm for MANET

    Indian Academy of Sciences (India)

    C Rajan; N Shanthi

    2015-12-01

    Mobile Ad hoc Network (MANET) is established for a limited period, for special extemporaneous services related to mobile applications. This ad hoc network is set up for a limited period, in environments that change with the application. While in Internet the TCP/IP protocol suite supports a wide range of application, in MANETs protocols are tuned to specific customer/application. Multicasting is emerging as a popular communication format where the same packet is sent to multiple nodes in a network. Routing in multicasting involves maintaining routes and finding new node locations in a group and is NP-complete due to the dynamic nature of the network. In this paper, a Hybrid Genetic Based Optimization for Multicast Routing algorithm is proposed. The proposed algorithm uses the best features of Genetic Algorithm (GA) and particle swarm optimization (PSO) to improve the solution. Simulations were conducted by varying number of mobile nodes and results compared with Multicast AODV (MAODV) protocol, PSO based and GA based solution. The proposed optimization improves jitter, end to end delay and Packet Delivery Ratio (PDR) with faster convergence.

  1. An Improved Chaos Genetic Algorithm for T-Shaped MIMO Radar Antenna Array Optimization

    Directory of Open Access Journals (Sweden)

    Xin Fu

    2014-01-01

    Full Text Available In view of the fact that the traditional genetic algorithm easily falls into local optimum in the late iterations, an improved chaos genetic algorithm employed chaos theory and genetic algorithm is presented to optimize the low side-lobe for T-shaped MIMO radar antenna array. The novel two-dimension Cat chaotic map has been put forward to produce its initial population, improving the diversity of individuals. The improved Tent map is presented for groups of individuals of a generation with chaos disturbance. Improved chaotic genetic algorithm optimization model is established. The algorithm presented in this paper not only improved the search precision, but also avoids effectively the problem of local convergence and prematurity. For MIMO radar, the improved chaos genetic algorithm proposed in this paper obtains lower side-lobe level through optimizing the exciting current amplitude. Simulation results show that the algorithm is feasible and effective. Its performance is superior to the traditional genetic algorithm.

  2. High-Speed General Purpose Genetic Algorithm Processor.

    Science.gov (United States)

    Hoseini Alinodehi, Seyed Pourya; Moshfe, Sajjad; Saber Zaeimian, Masoumeh; Khoei, Abdollah; Hadidi, Khairollah

    2016-07-01

    In this paper, an ultrafast steady-state genetic algorithm processor (GAP) is presented. Due to the heavy computational load of genetic algorithms (GAs), they usually take a long time to find optimum solutions. Hardware implementation is a significant approach to overcome the problem by speeding up the GAs procedure. Hence, we designed a digital CMOS implementation of GA in [Formula: see text] process. The proposed processor is not bounded to a specific application. Indeed, it is a general-purpose processor, which is capable of performing optimization in any possible application. Utilizing speed-boosting techniques, such as pipeline scheme, parallel coarse-grained processing, parallel fitness computation, parallel selection of parents, dual-population scheme, and support for pipelined fitness computation, the proposed processor significantly reduces the processing time. Furthermore, by relying on a built-in discard operator the proposed hardware may be used in constrained problems that are very common in control applications. In the proposed design, a large search space is achievable through the bit string length extension of individuals in the genetic population by connecting the 32-bit GAPs. In addition, the proposed processor supports parallel processing, in which the GAs procedure can be run on several connected processors simultaneously.

  3. Support Vector Machine Ensemble Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    LI Ye; YIN Ru-po; CAI Yun-ze; XU Xiao-ming

    2006-01-01

    Support vector machines (SVMs) have been introduced as effective methods for solving classification problems.However, due to some limitations in practical applications,their generalization performance is sometimes far from the expected level. Therefore, it is meaningful to study SVM ensemble learning. In this paper, a novel genetic algorithm based ensemble learning method, namely Direct Genetic Ensemble (DGE), is proposed. DGE adopts the predictive accuracy of ensemble as the fitness function and searches a good ensemble from the ensemble space. In essence, DGE is also a selective ensemble learning method because the base classifiers of the ensemble are selected according to the solution of genetic algorithm. In comparison with other ensemble learning methods, DGE works on a higher level and is more direct. Different strategies of constructing diverse base classifiers can be utilized in DGE.Experimental results show that SVM ensembles constructed by DGE can achieve better performance than single SVMs,bagged and boosted SVM ensembles. In addition, some valuable conclusions are obtained.

  4. Comparison of genetic algorithm and imperialist competitive algorithms in predicting bed load transport in clean pipe.

    Science.gov (United States)

    Ebtehaj, Isa; Bonakdari, Hossein

    2014-01-01

    The existence of sediments in wastewater greatly affects the performance of the sewer and wastewater transmission systems. Increased sedimentation in wastewater collection systems causes problems such as reduced transmission capacity and early combined sewer overflow. The article reviews the performance of the genetic algorithm (GA) and imperialist competitive algorithm (ICA) in minimizing the target function (mean square error of observed and predicted Froude number). To study the impact of bed load transport parameters, using four non-dimensional groups, six different models have been presented. Moreover, the roulette wheel selection method is used to select the parents. The ICA with root mean square error (RMSE) = 0.007, mean absolute percentage error (MAPE) = 3.5% show better results than GA (RMSE = 0.007, MAPE = 5.6%) for the selected model. All six models return better results than the GA. Also, the results of these two algorithms were compared with multi-layer perceptron and existing equations.

  5. Academic Training: Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms - Lecture series

    CERN Multimedia

    Françoise Benz

    2004-01-01

    ACADEMIC TRAINING LECTURE REGULAR PROGRAMME 1, 2, 3 and 4 June From 11:00 hrs to 12:00 hrs - Main Auditorium bldg. 500 Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms V. Robles Forcada and M. Perez Hernandez / Univ. de Madrid, Spain In the real world, there exist a huge number of problems that require getting an optimum or near-to-optimum solution. Optimization can be used to solve a lot of different problems such as network design, sets and partitions, storage and retrieval or scheduling. On the other hand, in nature, there exist many processes that seek a stable state. These processes can be seen as natural optimization processes. Over the last 30 years several attempts have been made to develop optimization algorithms, which simulate these natural optimization processes. These attempts have resulted in methods such as Simulated Annealing, based on natural annealing processes or Evolutionary Computation, based on biological evolution processes. Geneti...

  6. Academic Training: Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms - Lecture serie

    CERN Multimedia

    Françoise Benz

    2004-01-01

    ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch ACADEMIC TRAINING LECTURE REGULAR PROGRAMME 1, 2, 3 and 4 June From 11:00 hrs to 12:00 hrs - Main Auditorium bldg. 500 Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms V. Robles Forcada and M. Perez Hernandez / Univ. de Madrid, Spain In the real world, there exist a huge number of problems that require getting an optimum or near-to-optimum solution. Optimization can be used to solve a lot of different problems such as network design, sets and partitions, storage and retrieval or scheduling. On the other hand, in nature, there exist many processes that seek a stable state. These processes can be seen as natural optimization processes. Over the last 30 years several attempts have been made to develop optimization algorithms, which simulate these natural optimization processes. These attempts have resulted in methods such as Simulated Annealing, based on nat...

  7. Analysis of six stages supply chain management in inventory optimization for warehouse with artificial bee colony algorithm using genetic algorithm

    Directory of Open Access Journals (Sweden)

    Ajay Singh Yadav

    2017-09-01

    Full Text Available The purpose of the proposed study is to give a new dimension on warehouse with Artificial bee colony algorithm using genetic algorithm processes in six stages - 11 member supply chain in inventory optimization to describe the certain and uncertain market demand which is based on supply reliability and to develop more realistic and more flexible models. we hope that the proposed study has a great potential to solve various practical tribulations related to the warehouse using genetic algorithm processes in six stages - 11 member supply chain in inventory optimization and also provide a general review for the application of soft computing techniques like genetic algorithms to use for improve the effectiveness and efficiency for various aspect of warehouse with Artificial bee colony algorithm using genetic algorithm.

  8. A tuning algorithm for model predictive controllers based on genetic algorithms and fuzzy decision making.

    Science.gov (United States)

    van der Lee, J H; Svrcek, W Y; Young, B R

    2008-01-01

    Model Predictive Control is a valuable tool for the process control engineer in a wide variety of applications. Because of this the structure of an MPC can vary dramatically from application to application. There have been a number of works dedicated to MPC tuning for specific cases. Since MPCs can differ significantly, this means that these tuning methods become inapplicable and a trial and error tuning approach must be used. This can be quite time consuming and can result in non-optimum tuning. In an attempt to resolve this, a generalized automated tuning algorithm for MPCs was developed. This approach is numerically based and combines a genetic algorithm with multi-objective fuzzy decision-making. The key advantages to this approach are that genetic algorithms are not problem specific and only need to be adapted to account for the number and ranges of tuning parameters for a given MPC. As well, multi-objective fuzzy decision-making can handle qualitative statements of what optimum control is, in addition to being able to use multiple inputs to determine tuning parameters that best match the desired results. This is particularly useful for multi-input, multi-output (MIMO) cases where the definition of "optimum" control is subject to the opinion of the control engineer tuning the system. A case study will be presented in order to illustrate the use of the tuning algorithm. This will include how different definitions of "optimum" control can arise, and how they are accounted for in the multi-objective decision making algorithm. The resulting tuning parameters from each of the definition sets will be compared, and in doing so show that the tuning parameters vary in order to meet each definition of optimum control, thus showing the generalized automated tuning algorithm approach for tuning MPCs is feasible.

  9. Eliciting spatial statistics from geological experts using genetic algorithms

    Science.gov (United States)

    Walker, Matthew; Curtis, Andrew

    2014-07-01

    A new method to obtain the statistics of a geostatistical model is introduced. The method elicits the statistical information from a geological expert directly, by iteratively updating a population of vectors of statistics, based on the expert's subjective opinion of the corresponding geological simulations. Thus, it does not require the expert to have knowledge of the mathematical and statistical details of the model. The process uses a genetic algorithm to generate new vectors. We demonstrate the methodology for a particular geostatistical model used to model rock pore-space, which simulates the spatial distribution of matrix and pores over a 2-D grid, using multipoint statistics specified by conditional probabilities. Experts were asked to use the algorithm to estimate the statistics of a given target pore-space image with known statistics; thus, their numerical rates of convergence could be calculated. Convergence was measured for all experts, showing that the algorithm can be used to find appropriate probabilities given the expert's subjective input. However, considerable and apparently irreducible residual misfit was found between the true statistics and the estimates of statistics obtained by the experts, with the root-mean-square error on the conditional probabilities typically >0.1. This is interpreted as the limit of the experts' abilities to distinguish between realizations of different spatial statistics using the algorithm. More accurate discrimination is therefore likely to require complementary elicitation techniques or sources of information independent of expert opinion.

  10. Modelling Agro-Met Station Observations Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Prashant Kumar

    2014-01-01

    Full Text Available The present work discusses the development of a nonlinear data-fitting technique based on genetic algorithm (GA for the prediction of routine weather parameters using observations from Agro-Met Stations (AMS. The algorithm produces the equations that best describe the temporal evolutions of daily minimum and maximum near-surface (at 2.5-meter height air temperature and relative humidity and daily averaged wind speed (at 10-meter height at selected AMS locations. These enable the forecasts of these weather parameters, which could have possible use in crop forecast models. The forecast equations developed in the present study use only the past observations of the above-mentioned parameters. This approach, unlike other prediction methods, provides explicit analytical forecast equation for each parameter. The predictions up to 3 days in advance have been validated using independent datasets, unknown to the training algorithm, with impressive results. The power of the algorithm has also been demonstrated by its superiority over persistence forecast used as a benchmark.

  11. Protein complexes predictions within protein interaction networks using genetic algorithms.

    Science.gov (United States)

    Ramadan, Emad; Naef, Ahmed; Ahmed, Moataz

    2016-07-25

    Protein-protein interaction networks are receiving increased attention due to their importance in understanding life at the cellular level. A major challenge in systems biology is to understand the modular structure of such biological networks. Although clustering techniques have been proposed for clustering protein-protein interaction networks, those techniques suffer from some drawbacks. The application of earlier clustering techniques to protein-protein interaction networks in order to predict protein complexes within the networks does not yield good results due to the small-world and power-law properties of these networks. In this paper, we construct a new clustering algorithm for predicting protein complexes through the use of genetic algorithms. We design an objective function for exclusive clustering and overlapping clustering. We assess the quality of our proposed clustering algorithm using two gold-standard data sets. Our algorithm can identify protein complexes that are significantly enriched in the gold-standard data sets. Furthermore, our method surpasses three competing methods: MCL, ClusterOne, and MCODE in terms of the quality of the predicted complexes. The source code and accompanying examples are freely available at http://faculty.kfupm.edu.sa/ics/eramadan/GACluster.zip .

  12. Genetic algorithms for optimal design and control of adaptive structures

    CERN Document Server

    Ribeiro, R; Dias-Rodrigues, J; Vaz, M

    2000-01-01

    Future High Energy Physics experiments require the use of light and stable structures to support their most precise radiation detection elements. These large structures must be light, highly stable, stiff and radiation tolerant in an environment where external vibrations, high radiation levels, material aging, temperature and humidity gradients are not negligible. Unforeseen factors and the unknown result of the coupling of environmental conditions, together with external vibrations, may affect the position stability of the detectors and their support structures compromising their physics performance. Careful optimization of static and dynamic behavior must be an essential part of the engineering design. Genetic Algorithms ( GA) belong to the group of probabilistic algorithms, combining elements of direct and stochastic search. They are more robust than existing directed search methods with the advantage of maintaining a population of potential solutions. There is a class of optimization problems for which Ge...

  13. Application of genetic algorithms to tuning fuzzy control systems

    Science.gov (United States)

    Espy, Todd; Vombrack, Endre; Aldridge, Jack

    1993-01-01

    Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.

  14. Diversity Controlling Genetic Algorithm for Order Acceptance and Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Cheng Chen

    2014-01-01

    Full Text Available Selection and scheduling are an important topic in production systems. To tackle the order acceptance and scheduling problem on a single machine with release dates, tardiness penalty, and sequence-dependent setup times, in this paper a diversity controlling genetic algorithm (DCGA is proposed, in which a diversified population is maintained during the whole search process through survival selection considering both the fitness and the diversity of individuals. To measure the similarity between individuals, a modified Hamming distance without considering the unaccepted orders in the chromosome is adopted. The proposed DCGA was validated on 1500 benchmark instances with up to 100 orders. Compared with the state-of-the-art algorithms, the experimental results show that DCGA improves the solution quality obtained significantly, in terms of the deviation from upper bound.

  15. Optimization of Submarine Hydrodynamic Coefficients Based on Immune Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    HU Kun; XU Yi-fan

    2010-01-01

    Aiming at the demand for optimization of hydrodynamic coefficients in submarine's motion equations, an adaptive weight immune genetic algorithm was proposed to optimize hydrodynamic coefficients in motion equations. Some hydrody-namic coefficients of high sensitivity to control and maneuver were chosen as the optimization objects in the algorithm. By using adaptive weight method to determine the weight and target function, the multi-objective optimization could be transla-ted into single-objective optimization. For a certain kind of submarine, three typical maneuvers were chosen to be the objects of study: overshoot maneuver in horizontal plane, overshoot maneuver in vertical plane and turning circle maneuver in horizontal plane. From the results of computer simulations using primal hydrodynamic coefficient and optimized hydrody-namic coefficient, the efficiency of proposed method is proved.

  16. Cell Mapping for Nanohybrid Circuit Architecture Using Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    Zhu-Fei Chu; Yin-Shui Xia; Lun-Yao Wang

    2012-01-01

    Nanoelectronics constructed by nanoscale devices seems promising for the advanced development of integrated circuits (ICs). However,the lack of computer aided design (CAD) tools seriously hinders its development and applications.To investigate the cell mapping task in CAD flow,we present a genetic algorithm (GA) based method for Cmos/nanowire/MOLecular hybrid (CMOL),which is a nanohybrid circuit architecture.By designing several crossover operators and analyzing their performance,an efficient crossover operator is proposed.Combining a mutation operator,a GA based algorithm is presented and tested on the International Symposium on Circuits and Systems (ISCAS) benchmarks.The results show that the proposed method not only can obtain better area utilization and smaller delay,but also can handle larger benchmarks with CPU time improvement compared with the published methods.

  17. Minimal-Length Interoperability Test Sequences Generation via Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHONG Ning; KUANG Jing-ming; HE Zun-wen

    2008-01-01

    A novel interoperability test sequences optimization scheme is proposed in which the genetic algo-rithm(GA)is used to obtain the minimal-length interoperability test sequences.During our work,the basicin teroperability test sequences are generated based on the minimal-complete-coverage criterion,which removes the redundancy from conformance test sequences.Then interoperability sequences minimization problem can be considered as an instance of the set covering problem,and the GA is applied to remove redundancy in interoperability transitions.The results show that compared to conventional algorithm,the proposed algorithm is more practical to avoid the state space explosion problem,for it can reduce the length of the test sequences and maintain the same transition coverage.

  18. Assembly and Disassembly Planning by using Fuzzy Logic & Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    L. M. Galantucci

    2004-06-01

    Full Text Available The authors propose the implementation of hybrid Fuzzy Logic-Genetic Algorithm (FL-GA methodology to plan the automatic assembly and disassembly sequence of products. The GA-Fuzzy Logic approach is implemented onto two levels. The first level of hybridization consists of the development of a Fuzzy controller for the parameters of an assembly or disassembly planner based on GAs. This controller acts on mutation probability and crossover rate in order to adapt their values dynamically while the algorithm runs. The second level consists of the identification of the optimal assembly or disassembly sequence by a Fuzzy function, in order to obtain a closer control of the technological knowledge of the assembly/disassembly process. Two case studies were analyzed in order to test the efficiency of the Fuzzy-GA methodologies.

  19. Assembly and Disassembly Planning by using Fuzzy Logic & Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    L.M. Galantucci

    2008-11-01

    Full Text Available The authors propose the implementation of hybrid Fuzzy Logic-Genetic Algorithm (FL-GA methodology to plan the automatic assembly and disassembly sequence of products. The GA-Fuzzy Logic approach is implemented onto two levels. The first level of hybridization consists of the development of a Fuzzy controller for the parameters of an assembly or disassembly planner based on GAs. This controller acts on mutation probability and crossover rate in order to adapt their values dynamically while the algorithm runs. The second level consists of the identification of the optimal assembly or disassembly sequence by a Fuzzy function, in order to obtain a closer control of the technological knowledge of the assembly/disassembly process. Two case studies were analyzed in order to test the efficiency of the Fuzzy-GA methodologies.

  20. Multilayer Traffic Network Optimized by Multiobjective Genetic Clustering Algorithm

    Science.gov (United States)

    Wen, Feng; Gen, Mitsuo; Yu, Xinjie

    This paper introduces a multilayer traffic network model and traffic network clustering method for solving the route selection problem (RSP) in car navigation system (CNS). The purpose of the proposed method is to reduce the computation time of route selection substantially with acceptable loss of accuracy by preprocessing the large size traffic network into new network form. The proposed approach further preprocesses the traffic network than the traditional hierarchical network method by clustering method. The traffic network clustering considers two criteria. We specify a genetic clustering algorithm for traffic network clustering and use NSGA-II for calculating the multiple objective Pareto optimal set. The proposed method can overcome the size limitations when solving route selection in CNS. Solutions provided by the proposed algorithm are compared with the optimal solutions to analyze and quantify the loss of accuracy.

  1. Application of Genetic Algorithms for Parameter Estimation in Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Orestes Llanes Santiago

    2011-11-01

    Full Text Available Normal 0 21 false false false ES X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} In chromatography, complex inverse problems related to the parameters estimation and process optimization are presented. Metaheuristics methods are known as general purpose approximated algorithms which seek and hopefully find good solutions at a reasonable computational cost. These methods are iterative process to perform a robust search of a solution space. Genetic algorithms are optimization techniques based on the principles of genetics and natural selection. They have demonstrated very good performance as global optimizers in many types of applications, including inverse problems. In this work, the effectiveness of genetic algorithms is investigated to estimate parameters in liquid chromatography.

  2. MODIFIED GENETIC ALGORITHM APPLIED TO SOLVE PRODUCT FAMILY OPTIMIZATION PROBLEM

    Institute of Scientific and Technical Information of China (English)

    CHEN Chunbao; WANG Liya

    2007-01-01

    The product family design problem solved by evolutionary algorithms is discussed. A successfiil product family design method should achieve an optimal tradeoff among a set of competing objectives, which involves maximizing conunonality across the family of products and optimizing the performances of each product in the family. A 2-level chromosome structured genetic algorithm (2LCGA) is proposed to solve this dass of problems and its performance is analyzed in comparing its results with those obtained with other methods. By interpreting the chromosome as a 2-level linear structure, the variable commonality genetic algorithm (GA) is constructed to vary the amount of platform commonality and automatically searches across varying levels of commonality for the platform while trying to resolve the tradeoff between commonality and individual product performance within the product family during optimization process. By incorporating a commonality assessing index to the problem formulation, the 2LCGA optimize the product platform and its corresponding family of products in a single stage, which can yield improvements in the overall performance of the product family compared with two-stage approaches (the first stage involves determining the best settings for the platform variables and values of unique variables are found for each product in the second stage). The scope of the algorithm is also expanded by introducing a classification mechanism to allow multiple platforms to be considered during product family optimization, offering opportunities for superior overall design by more efficacious tradeoffs between commonality and performance. The effectiveness of 2LCGA is demonstrated through the design of a family of universal electric motors and comparison against previous results.

  3. Transitioning from Targeted to Comprehensive Mass Spectrometry Using Genetic Algorithms

    Science.gov (United States)

    Jaffe, Jacob D.; Feeney, Caitlin M.; Patel, Jinal; Lu, Xiaodong; Mani, D. R.

    2016-11-01

    Targeted proteomic assays are becoming increasingly popular because of their robust quantitative applications enabled by internal standardization, and they can be routinely executed on high performance mass spectrometry instrumentation. However, these assays are typically limited to 100s of analytes per experiment. Considerable time and effort are often expended in obtaining and preparing samples prior to targeted analyses. It would be highly desirable to detect and quantify 1000s of analytes in such samples using comprehensive mass spectrometry techniques (e.g., SWATH and DIA) while retaining a high degree of quantitative rigor for analytes with matched internal standards. Experimentally, it is facile to port a targeted assay to a comprehensive data acquisition technique. However, data analysis challenges arise from this strategy concerning agreement of results from the targeted and comprehensive approaches. Here, we present the use of genetic algorithms to overcome these challenges in order to configure hybrid targeted/comprehensive MS assays. The genetic algorithms are used to select precursor-to-fragment transitions that maximize the agreement in quantification between the targeted and the comprehensive methods. We find that the algorithm we used provided across-the-board improvement in the quantitative agreement between the targeted assay data and the hybrid comprehensive/targeted assay that we developed, as measured by parameters of linear models fitted to the results. We also found that the algorithm could perform at least as well as an independently-trained mass spectrometrist in accomplishing this task. We hope that this approach will be a useful tool in the development of quantitative approaches for comprehensive proteomics techniques.

  4. Multidisciplinary Optimization of Airborne Radome Using Genetic Algorithm

    Science.gov (United States)

    Tang, Xinggang; Zhang, Weihong; Zhu, Jihong

    A multidisciplinary optimization scheme of airborne radome is proposed. The optimization procedure takes into account the structural and the electromagnetic responses simultaneously. The structural analysis is performed with the finite element method using Patran/Nastran, while the electromagnetic analysis is carried out using the Plane Wave Spectrum and Surface Integration technique. The genetic algorithm is employed for the multidisciplinary optimization process. The thicknesses of multilayer radome wall are optimized to maximize the overall transmission coefficient of the antenna-radome system under the constraint of the structural failure criteria. The proposed scheme and the optimization approach are successfully assessed with an illustrative numerical example.

  5. Genetic algorithms in bidisciplinary (aerodynamics/electromagnetism) optimization

    Institute of Scientific and Technical Information of China (English)

    朱自强; 李海明; 李津; 于日新

    2001-01-01

    The genetic algorithm(GA) is a non-traditional, probability search and global optimization method similar to natural selection and evolution. The key points and control parameters of this method are briefly discussed. To apply it to a multiobjective and multidisciplinary optimization problem a kind of fitness function is suggested, in which the requirements of multiobjects and multiconstraints are considered and the nondimensional coefficients and panalty coefficients of the constraint function are also introduced. Numerical results of bidisciplinary optimization calculation show that the present method is effective, applicable, and robust.

  6. Genetic Algorithms for the Optimal Design of Superconducting Accelerator Magnets

    CERN Document Server

    Ramberger, S

    1998-01-01

    The paper describes the use of genetic algorithms with the concept of niching for the optimal design of superconducting magnets for the Large Hadron Collider, LHC at CERN. The method provides the designer with a number of local optima which can be further examined with respect to objectives such as ease of coil winding, sensitivity to manufacturing tolerances and local electromagnetic force distribution. A 6 block dipole coil was found to have advantages compared to the standard 5 block version which was previously designed using deterministic optimization methods. Results were proven by a short model magnet recently built and tested at CERN.

  7. Interleaver Design Method for Turbo Codes Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    Tan Ying; Sun Hong; Zhou Huai-bei

    2004-01-01

    This paper describes a new interleaver construction technique for turbo code. The technique searches as much as possible pseudo-random interleaving patterns under a certain condition using genetic algorithms(GAs). The new interleavers have the superiority of the S-random interleavers and this interleaver construction technique can reduce the time taken to generate pseudo-random interleaving patterns under a certain condition. Tbe results obtained indicate that the new interleavers yield an equal to or better performance than the Srandom interleavers. Compared to the S-random interleaver,this design requires a lower level of computational complexity.

  8. New Optimal DWT Domain Image Watermarking Technique via Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHONG Ning; KUANG Jing-ming; HE Zun-wen

    2007-01-01

    A novel optimal image watermarking scheme is proposed in which the genetic algor ithm (GA) is employed to obtain the improvement of algorithm performance. Arnold transform is utilized to obtain the scrambled watermark, and then the embedding and extraction of watermark are implemented in digital wavelet transform (DWT) domain. During the watermarking process, GA is employed to search optimal parame ters of embedding strength and times of Arnold transform to gain the optimization of watermarking performance. Simulation results show that the proposed method can improve the quality of watermarked image and give almost the same robustness of the watermark.

  9. Query Optimization Using Genetic Algorithms in the Vector Space Model

    CERN Document Server

    Mashagba, Eman Al; Nassar, Mohammad Othman

    2011-01-01

    In information retrieval research; Genetic Algorithms (GA) can be used to find global solutions in many difficult problems. This study used different similarity measures (Dice, Inner Product) in the VSM, for each similarity measure we compared ten different GA approaches based on different fitness functions, different mutations and different crossover strategies to find the best strategy and fitness function that can be used when the data collection is the Arabic language. Our results shows that the GA approach which uses one-point crossover operator, point mutation and Inner Product similarity as a fitness function is the best IR system in VSM.

  10. Properties of Nucleon Resonances by means of a Genetic Algorithm

    CERN Document Server

    Fernandez-Ramirez, C; Udias, A; Udias, J M

    2008-01-01

    We present an optimization scheme that employs a Genetic Algorithm (GA) to determine the properties of low-lying nucleon excitations within a realistic photo-pion production model based upon an effective Lagrangian. We show that with this modern optimization technique it is possible to reliably assess the parameters of the resonances and the associated error bars as well as to identify weaknesses in the models. To illustrate the problems the optimization process may encounter, we provide results obtained for the nucleon resonances $\\Delta$(1230) and $\\Delta$(1700). The former can be easily isolated and thus has been studied in depth, while the latter is not as well known experimentally.

  11. Approximate Quantum Adders with Genetic Algorithms: An IBM Quantum Experience

    Directory of Open Access Journals (Sweden)

    Li Rui

    2017-07-01

    Full Text Available It has been proven that quantum adders are forbidden by the laws of quantum mechanics. We analyze theoretical proposals for the implementation of approximate quantum adders and optimize them by means of genetic algorithms, improving previous protocols in terms of efficiency and fidelity. Furthermore, we experimentally realize a suitable approximate quantum adder with the cloud quantum computing facilities provided by IBM Quantum Experience. The development of approximate quantum adders enhances the toolbox of quantum information protocols, paving the way for novel applications in quantum technologies.

  12. Multi-objective quantum genetic algorithm in WSNs distribution optimization

    Science.gov (United States)

    Wen, Hao; Ren, Hong-liang

    2013-03-01

    To achieve lower energy and higher detection coverage simultaneously in scattering distribution wireless sensor networks (WSNs), a multi-objective optimization function combined with area coverage and node-communication energy is constructed. Based on the multi-objective quantum genetic algorithm (Mo-QGA) proposed by Li Bin and Zhuang-zhen Quan et al, we have obtained optimum solutions close to Pareto front. Experimental results indicate that the Mo-QGA has advantages both on efficiency and coverage, as well as low energy.

  13. Introduction to the application of genetic algorithms in engineering

    Directory of Open Access Journals (Sweden)

    I. S. Shaw

    1998-07-01

    Full Text Available Genetic algorithms constitute a new research area in the field of artificial intelligence. This work is aimed at their application in specific areas of engineering where good results have already been achieved. The purpose of this work is to provide a basic introduction for students as well as experienced engineers who wish to upgrade their knowledge. A distinctive feature of artificial intelligence is that instead of mathematical models, either direct human experience or certain functions of the human brain for the modelling of physical phenomena are used.

  14. Improved Adaptive LSB Steganography Based on Chaos and Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yu Lifang

    2010-01-01

    Full Text Available We propose a novel steganographic method in JPEG images with high performance. Firstly, we propose improved adaptive LSB steganography, which can achieve high capacity while preserving the first-order statistics. Secondly, in order to minimize visual degradation of the stego image, we shuffle bits-order of the message based on chaos whose parameters are selected by the genetic algorithm. Shuffling message's bits-order provides us with a new way to improve the performance of steganography. Experimental results show that our method outperforms classical steganographic methods in image quality, while preserving characteristics of histogram and providing high capacity.

  15. A Hybrid Genetic Algorithm for the Multiple Crossdocks Problem

    Directory of Open Access Journals (Sweden)

    Zhaowei Miao

    2012-01-01

    Full Text Available We study a multiple crossdocks problem with supplier and customer time windows, where any violation of time windows will incur a penalty cost and the flows through the crossdock are constrained by fixed transportation schedules and crossdock capacities. We prove this problem to be NP-hard in the strong sense and therefore focus on developing efficient heuristics. Based on the problem structure, we propose a hybrid genetic algorithm (HGA integrating greedy technique and variable neighborhood search method to solve the problem. Extensive experiments under different scenarios were conducted, and results show that HGA outperforms CPLEX solver, providing solutions in realistic timescales.

  16. Genetic Algorithm based Decentralized PI Type Controller: Load Frequency Control

    Science.gov (United States)

    Dwivedi, Atul; Ray, Goshaidas; Sharma, Arun Kumar

    2016-12-01

    This work presents a design of decentralized PI type Linear Quadratic (LQ) controller based on genetic algorithm (GA). The proposed design technique allows considerable flexibility in defining the control objectives and it does not consider any knowledge of the system matrices and moreover it avoids the solution of algebraic Riccati equation. To illustrate the results of this work, a load-frequency control problem is considered. Simulation results reveal that the proposed scheme based on GA is an alternative and attractive approach to solve load-frequency control problem from both performance and design point of views.

  17. Synthesis design of artificial magnetic metamaterials using a genetic algorithm.

    Science.gov (United States)

    Chen, P Y; Chen, C H; Wang, H; Tsai, J H; Ni, W X

    2008-08-18

    In this article, we present a genetic algorithm (GA) as one branch of artificial intelligence (AI) for the optimization-design of the artificial magnetic metamaterial whose structure is automatically generated by computer through the filling element methodology. A representative design example, metamaterials with permeability of negative unity, is investigated and the optimized structures found by the GA are presented. It is also demonstrated that our approach is effective for the synthesis of functional magnetic and electric metamaterials with optimal structures. This GA-based optimization-design technique shows great versatility and applicability in the design of functional metamaterials.

  18. Hydrogenerator system identification using a simple genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Wrate, C.A.; Wozniak, L. [Univ. of Illinois, Urbana, IL (United States)

    1997-03-01

    This paper investigates an identification procedure for a hydrogenerator plant using an adaptive technique. The procedure operates on field data consisting of sampled gate position and electrical frequency. The field data was recorded while the plant was operating under various load conditions. The procedure adapted to ongoing plant changes by continuously updating the identification results. It is shown that the adaptive technique, in this case genetic algorithm based, was capable of identifying the hydrogenerator system and following plant parameter changes while the plant operated under conditions of sufficient frequency excursions. These conditions include off-line and isolated network operation where effective control is critical.

  19. Approximate Quantum Adders with Genetic Algorithms: An IBM Quantum Experience

    Science.gov (United States)

    Li, Rui; Alvarez-Rodriguez, Unai; Lamata, Lucas; Solano, Enrique

    2017-07-01

    It has been proven that quantum adders are forbidden by the laws of quantum mechanics. We analyze theoretical proposals for the implementation of approximate quantum adders and optimize them by means of genetic algorithms, improving previous protocols in terms of efficiency and fidelity. Furthermore, we experimentally realize a suitable approximate quantum adder with the cloud quantum computing facilities provided by IBM Quantum Experience. The development of approximate quantum adders enhances the toolbox of quantum information protocols, paving the way for novel applications in quantum technologies.

  20. Application of genetic algorithms in nonlinear heat conduction problems.

    Science.gov (United States)

    Kadri, Muhammad Bilal; Khan, Waqar A

    2014-01-01

    Genetic algorithms are employed to optimize dimensionless temperature in nonlinear heat conduction problems. Three common geometries are selected for the analysis and the concept of minimum entropy generation is used to determine the optimum temperatures under the same constraints. The thermal conductivity is assumed to vary linearly with temperature while internal heat generation is assumed to be uniform. The dimensionless governing equations are obtained for each selected geometry and the dimensionless temperature distributions are obtained using MATLAB. It is observed that GA gives the minimum dimensionless temperature in each selected geometry.