WorldWideScience

Sample records for genes encoding components

  1. Transcript encoded on the opposite strand of the human steroid 21-hydroxylase/complement component C4 gene locus

    Energy Technology Data Exchange (ETDEWEB)

    Morel, Y.; Bristow, J.; Gitelman, S.E.; Miller, W.L. (Univ. of California, San Francisco (USA))

    1989-09-01

    The gene encoding human adrenal steroid 21-hydroxylase (P450c21) and its highly similar pseudogene are duplicated in tandem with the two genes encoding the fourth component of human serum hemolytic complement (C4). This 60-kilobase gene complex, which lies within the major histocompatibility complex on the short arm of human chromosome 6, has been studied in considerable detail because genetic disorders in steroid 21-hydroxylation and in C4 are common. The authors have cloned a cDNA encoded by a previously unidentified gene in this region. This gene lies on the strand of DNA opposite from the strand containing the P450c21 and C4 genes, and it overlaps the last exon of P450c21. The newly identified gene encodes mRNAs of 3.5 and 1.8 kilobases that are expressed in the adrenal and in a Leydig cell tumor but are not expressed in nonsteroidogenic tissues. The sequence of the longest cDNA (2.7 kilobases) shows no similarity to known sequences available in two computerized data bases. The 5{prime} end of this sequence is characterized by three repeats, each encoding about 100 amino acids flanked by potential sites for proteolytic cleavage. Although numerous studies have shown that gene deletions causing congenital adrenal hyperplasia occur in this region, none of these gene deletions extends into this newly identified gene, suggesting that it encodes an essential function.

  2. Isolation and functional analysis of a Brassica juncea gene encoding a component of auxin efflux carrier

    Institute of Scientific and Technical Information of China (English)

    WEI; MIN; NI; XIAO; YA; CHEN; ZHI; HONG; XU; HONG; WEI; XUE

    2002-01-01

    Polar auxin transport plays a divergent role in plant growth and developmental processes including rootand embryo development, vascular pattern formation and cell elongation. Recently isolated Arabidopsispin gene family was believed to encode a component of auxin efflux carrier (Galweiler et al, 1998). Basedon the Arabidopsis pin1 sequence we have isolated a Brassica juncea cDNA (designated Bjpinl), whichencoded a 70-kDa putative auxin efflux carrier. Deduced BjPIN1 shared 65% identities at protein level withAtPIN1 and was highly homologous to other putative PIN proteins of Arabidopsis (with highest homologyto AtPIN3). Hydrophobic analysis showed similar structures between BjPIN1 and AtPIN proteins. Presenceof 6 exons (varying in size between 65 bp and 1229 bp) and 5 introns (sizes between 89 bp and 463 bp)in the genomic fragment was revealed by comparing the genomic and cDNA sequences. Northern blotanalysis indicated that Bjpinl was expressed in most of the tissues tested, with a relatively higher levelof transcript in flowers and a lower level in root tissues. Promoter-reporter gene fusion studies furtherrevealed the expression of Bjpinl in the mature pollen grains, young seeds, root tip, leaf vascular tissue andtrace bundle, stem epidermis, cortex and vascular cells. BjPIN1 was localized on the plasma membraneas demonstrated through fusion expression of green fluorescent protein (GFP). Auxin efflux carrier activitywas elevated in transgenic Arabidopsis expressing BjPIN1.

  3. A Pin gene families encoding components of auxin efflux carriers in Brassica juncea

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the sequence information of Arabidopsis PIN1, two cDNAs encoding PIN homologues fromBrassica juncea, Bjpin2 and Bjpin3, were isolated through cDNA library screening. Bjpin2 and Bjpin3encoded proteins containing 640 and 635 amino acid residues, respectively, which shared 97.5% identities witheach other and were highly homologous to Arabidopsis PIN1, PIN2 and other putative PIN proteins. BjPIN2and BjPIN3 had similar structures as AtPIN proteins. Northern blot analysis indicated that Bjpin2 wasexpressed in stem, leaf and floral tissues, while Bjpin3 was expressed predominantly in stem and hypocotyls.Two promoter fragments of pin genes, Bjpin-X and Bjpin-Z, were isolated by 'genome walking' techniqueusing primers at 5'-end of pin cDNA. Promoter-gus fusion studies revealed the GUS activities driven byBjpin-X were at internal side of xylem and petal; while those driven by Bjpin-Z were detected at leaf vein,epidermal cell and cortex of stem, vascular tissues and anther. Results of the pin genes with differentexpression patterns in B. juncea suggested the presence of a gene family.

  4. Genomic organization and chromosomal localization of the human and mouse genes encoding the alpha receptor component for ciliary neurotrophic factor.

    Science.gov (United States)

    Valenzuela, D M; Rojas, E; Le Beau, M M; Espinosa, R; Brannan, C I; McClain, J; Masiakowski, P; Ip, N Y; Copeland, N G; Jenkins, N A

    1995-01-01

    Ciliary neurotrophic factor (CNTF) has recently been found to share receptor components with, and to be structurally related to, a family of broadly acting cytokines, including interleukin-6, leukemia inhibitory factor, and oncostatin M. However, the CNTF receptor complex also includes a CNTF-specific component known as CNTF receptor alpha (CNTFR alpha). Here we describe the molecular cloning of the human and mouse genes encoding CNTFR. We report that the human and mouse genes have an identical intron-exon structure that correlates well with the domain structure of CNTFR alpha. That is, the signal peptide and the immunoglobulin-like domain are each encoded by single exons, the cytokine receptor-like domain is distributed among 4 exons, and the C-terminal glycosyl phosphatidylinositol recognition domain is encoded by the final coding exon. The position of the introns within the cytokine receptor-like domain corresponds to those found in other members of the cytokine receptor superfamily. Confirming a recent study using radiation hybrids, we have also mapped the human CNTFR gene to chromosome band 9p13 and the mouse gene to a syntenic region of chromosome 4.

  5. Chromosomal location of the genes encoding complement components C5 and factor H in the mouse

    DEFF Research Database (Denmark)

    D'Eustachio, P; Kristensen, Torsten; Wetsel, R A;

    1986-01-01

    to chromosome 1 or chromosome 3. Following the inheritance of DNA restriction fragment-length polymorphisms revealed by the probes in recombinant inbred mouse strains allowed the factor H-associated fragments to be mapped to Sas-1 on chromosome 1, and the C5-associated fragments to be mapped to Hc. Analysis......Complementary DNA probes corresponding to the factor H and C5 polypeptides have been used to determine the chromosomal localizations of these two complement components. Both probes revealed complex and polymorphic arrays of DNA fragments in Southern blot analysis of mouse genomic DNA. Following...

  6. Chromosomal location of the genes encoding complement components C5 and factor H in the mouse

    DEFF Research Database (Denmark)

    D'Eustachio, P; Kristensen, Torsten; Wetsel, R A

    1986-01-01

    Complementary DNA probes corresponding to the factor H and C5 polypeptides have been used to determine the chromosomal localizations of these two complement components. Both probes revealed complex and polymorphic arrays of DNA fragments in Southern blot analysis of mouse genomic DNA. Following...... the distribution of these bands in panels of somatic cell hybrids carrying various combinations of mouse chromosomes on a constant rat or Chinese hamster background allowed the localization of the C5-associated fragments to proximal chromosome 2 and the localization of the factor H-associated fragments...... to chromosome 1 or chromosome 3. Following the inheritance of DNA restriction fragment-length polymorphisms revealed by the probes in recombinant inbred mouse strains allowed the factor H-associated fragments to be mapped to Sas-1 on chromosome 1, and the C5-associated fragments to be mapped to Hc. Analysis...

  7. Deletion of the aceE gene (encoding a component of pyruvate dehydrogenase) attenuates Salmonella enterica serovar Enteritidis.

    Science.gov (United States)

    Pang, Ervinna; Tien-Lin, Chang; Selvaraj, Madhan; Chang, Jason; Kwang, Jimmy

    2011-10-01

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major food-borne pathogen. From a transposon insertion mutant library created previously using S. Enteritidis 10/02, one of the mutants was identified to have a 50% lethal dose (LD(50) ) at least 100 times that of the parental strain in young chicks, with an attenuation in a poorly studied gene encoding a component of pyruvate dehydrogenase, namely the aceE gene. Evaluation of the in vitro virulence characteristics of the ΔaceE∷kan mutant revealed that it was less able to invade epithelial cells, less resistant to reactive oxygen intermediate, less able to survive within a chicken macrophage cell line and had a retarded growth rate compared with the parental strain. Young chicks vaccinated with 2 × 10(9) CFU of the ΔaceE∷kan mutant were protected from the subsequent challenge of the parental strain, with the mutant colonized in the liver and spleen in a shorter time than the group infected with the parental strain. In addition, compared with the parental strain, the ΔaceE∷kan mutant did not cause persistent eggshell contamination of vaccinated hens.

  8. Minor abnormalities of testis development in mice lacking the gene encoding the MAPK signalling component, MAP3K1.

    Directory of Open Access Journals (Sweden)

    Nick Warr

    Full Text Available In mammals, the Y chromosome is a dominant male determinant, causing the bipotential gonad to develop as a testis. Recently, cases of familial and spontaneous 46,XY disorders of sex development (DSD have been attributed to mutations in the human gene encoding mitogen-activated protein kinase kinase kinase 1, MAP3K1, a component of the mitogen-activated protein kinase (MAPK signal transduction pathway. In individuals harbouring heterozygous mutations in MAP3K1, dysregulation of MAPK signalling was observed in lymphoblastoid cell lines, suggesting a causal role for these mutations in disrupting XY sexual development. Mice lacking the cognate gene, Map3k1, are viable and exhibit the eyes open at birth (EOB phenotype on a mixed genetic background, but on the C57BL/6J genetic background most mice die at around 14.5 dpc due to a failure of erythropoiesis in the fetal liver. However, no systematic examination of sexual development in Map3k1-deficient mice has been described, an omission that is especially relevant in the case of C57BL/6J, a genetic background that is sensitized to disruptions to testis determination. Here, we report that on a mixed genetic background mice lacking Map3k1 are fertile and exhibit no overt abnormalities of testis development. On C57BL/6J, significant non-viability is observed with very few animals surviving to adulthood. However, an examination of development in Map3k1-deficient XY embryos on this genetic background revealed no significant defects in testis determination, although minor abnormalities were observed, including an increase in gonadal length. Based on these observations, we conclude that MAP3K1 is not required for mouse testis determination. We discuss the significance of these data for the functional interpretation of sex-reversing MAP3K1 mutations in humans.

  9. Distribution, structure and diversity of “bacterial” genes encoding two-component proteins in the Euryarchaeota

    Directory of Open Access Journals (Sweden)

    Mark K. Ashby

    2006-01-01

    Full Text Available The publicly available annotated archaeal genome sequences (23 complete and three partial annotations, October 2005 were searched for the presence of potential two-component open reading frames (ORFs using gene category lists and BLASTP. A total of 489 potential two-component genes were identified from the gene category lists and BLASTP. Two-component genes were found in 14 of the 21 Euryarchaeal sequences (October 2005 and in neither the Crenarchaeota nor the Nanoarchaeota. A total of 20 predicted protein domains were identified in the putative two-component ORFs that, in addition to the histidine kinase and receiver domains, also includes sensor and signalling domains. The detailed structure of these putative proteins is shown, as is the distribution of each class of two-component genes in each species. Potential members of orthologous groups have been identified, as have any potential operons containing two or more two-component genes. The number of two-component genes in those Euryarchaeal species which have them seems to be linked more to lifestyle and habitat than to genome complexity, with most examples being found in Methanospirillum hungatei, Haloarcula marismortui, Methanococcoides burtonii and the mesophilic Methanosarcinales group. The large numbers of two-component genes in these species may reflect a greater requirement for internal regulation. Phylogenetic analysis of orthologous groups of five different protein classes, three probably involved in regulating taxis, suggests that most of these ORFs have been inherited vertically from an ancestral Euryarchaeal species and point to a limited number of key horizontal gene transfer events.

  10. Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma

    DEFF Research Database (Denmark)

    Guo, Guangwu; Gui, Yaoting; Gao, Shengjie;

    2012-01-01

    We sequenced whole exomes of ten clear cell renal cell carcinomas (ccRCCs) and performed a screen of similar to 1,100 genes in 88 additional ccRCCs, from which we discovered 12 previously unidentified genes mutated at elevated frequencies in ccRCC. Notably, we detected frequent mutations in the u......We sequenced whole exomes of ten clear cell renal cell carcinomas (ccRCCs) and performed a screen of similar to 1,100 genes in 88 additional ccRCCs, from which we discovered 12 previously unidentified genes mutated at elevated frequencies in ccRCC. Notably, we detected frequent mutations...

  11. Multiple defects in the respiratory chain lead to the repression of genes encoding components of the respiratory chain and TCA cycle enzymes.

    Science.gov (United States)

    Bourges, Ingrid; Mucchielli, Marie-Helene; Herbert, Christopher J; Guiard, Bernard; Dujardin, Geneviève; Meunier, Brigitte

    2009-04-17

    Respiratory complexes III, IV and V are formed by components of both nuclear and mitochondrial origin and are embedded in the inner mitochondrial membrane. Their assembly requires the auxiliary factor Oxa1, and the absence of this protein has severe consequences on these three major respiratory chain enzymes. We have studied, in the yeast Saccharomyces cerevisiae, the effect of the loss of Oxa1 function and of other respiratory defects on the expression of nuclear genes encoding components of the respiratory complexes and tricarboxylic acid cycle enzymes. We observed that the concomitant decrease in the level of two respiratory enzymes, complexes III and IV, led to their repression. These genes are known targets of the transcriptional activator complex Hap2/3/4/5 that plays a central role in the reprogramming of yeast metabolism when cells switch from a fermenting, glucose-repressed state to a respiring, derepressed state. We found that the Hap4 protein, the regulatory subunit of the transcriptional complex, was present at a lower level in the oxa1 mutants whereas no change in HAP4 transcript level was observed, suggesting a posttranscriptional modulation. In addition, an altered mitochondrial morphology was observed in mutants with decreased expression of Hap2/3/4/5 target genes. We suggest that the aberrant mitochondrial morphology, presumably caused by the severely decreased level of at least two respiratory enzymes, might be part of the signalling pathway linking the mitochondrial defect and Hap2/3/4/5.

  12. Bacillus caldolyticus prs gene encoding phosphoribosyldiphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-l-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  13. Exposure of a 23F Serotype Strain of Streptococcus pneumoniae to Cigarette Smoke Condensate Is Associated with Selective Upregulation of Genes Encoding the Two-Component Regulatory System 11 (TCS11)

    Science.gov (United States)

    Herbert, Jenny A.; Mitchell, Timothy J.; Dix-Peek, Thérèse; Dickens, Caroline; Anderson, Ronald; Feldman, Charles

    2014-01-01

    Alterations in whole genome expression profiles following exposure of the pneumococcus (strain 172, serotype 23F) to cigarette smoke condensate (160 μg/mL) for 15 and 60 min have been determined using the TIGR4 DNA microarray chip. Exposure to CSC resulted in the significant (P < 0.014–0.0006) upregulation of the genes encoding the two-component regulatory system 11 (TCS11), consisting of the sensor kinase, hk11, and its cognate response regulator, rr11, in the setting of increased biofilm formation. These effects of cigarette smoke on the pneumococcus may contribute to colonization of the airways by this microbial pathogen. PMID:25013815

  14. Exposure of a 23F Serotype Strain of Streptococcus pneumoniae to Cigarette Smoke Condensate Is Associated with Selective Upregulation of Genes Encoding the Two-Component Regulatory System 11 (TCS11

    Directory of Open Access Journals (Sweden)

    Riana Cockeran

    2014-01-01

    Full Text Available Alterations in whole genome expression profiles following exposure of the pneumococcus (strain 172, serotype 23F to cigarette smoke condensate (160 μg/mL for 15 and 60 min have been determined using the TIGR4 DNA microarray chip. Exposure to CSC resulted in the significant (P<0.014–0.0006 upregulation of the genes encoding the two-component regulatory system 11 (TCS11, consisting of the sensor kinase, hk11, and its cognate response regulator, rr11, in the setting of increased biofilm formation. These effects of cigarette smoke on the pneumococcus may contribute to colonization of the airways by this microbial pathogen.

  15. Two Genes Encoding Uracil Phosphoribosyltransferase Are Present in Bacillus subtilis

    DEFF Research Database (Denmark)

    Martinussen, Jan; Glaser, Philippe; Andersen, Paal S.

    1995-01-01

    Uracil phosphoribosyltransferase (UPRTase) catalyzes the key reaction in the salvage of uracil in many microorganisms. Surprisingly, two genes encoding UPRTase activity were cloned from Bacillus subtilis by complementation of an Escherichia coli mutant. The genes were sequenced, and the putative...

  16. Mosaic tetracycline resistance genes encoding ribosomal protection proteins.

    Science.gov (United States)

    Warburton, Philip J; Amodeo, Nina; Roberts, Adam P

    2016-12-01

    First reported in 2003, mosaic tetracycline resistance genes are a subgroup of the genes encoding ribosomal protection proteins (RPPs). They are formed when two or more RPP-encoding genes recombine resulting in a functional chimera. To date, the majority of mosaic genes are derived from sections of three RPP genes, tet(O), tet(W) and tet(32), with others comprising tet(M) and tet(S). In this first review of mosaic genes, we report on their structure, diversity and prevalence, and suggest that these genes may be responsible for an under-reported contribution to tetracycline resistance in bacteria.

  17. Sub classification and targeted characterization of prophage-encoded two-component cell lysis cassette

    Indian Academy of Sciences (India)

    K V Srividhya; S Krishnaswamy

    2007-08-01

    Bacteriophage induced lysis of host bacterial cell is mediated by a two component cell lysis cassette comprised of holin and lysozyme. Prophages are integrated forms of bacteriophages in bacterial genomes providing a repertoire for bacterial evolution. Analysis using the prophage database (http://bicmku.in:8082) constructed by us showed 47 prophages were associated with putative two component cell lysis genes. These proteins cluster into four different subgroups. In this process, a putative holin (essd) and endolysin (ybcS), encoded by the defective lambdoid prophage DLP12 was found to be similar to two component cell lysis genes in functional bacteriophages like p21 and P1. The holin essd was found to have a characteristic dual start motif with two transmembrane regions and C-terminal charged residues as in class II holins. Expression of a fusion construct of essd in Escherichia coli showed slow growth. However, under appropriate conditions, this protein could be over expressed and purified for structure function studies. The second component of the cell lysis cassette, ybcS, was found to have an N-terminal SAR (Signal Arrest Release) transmembrane domain. The construct of ybcS has been over expressed in E. coli and the purified protein was functional, exhibiting lytic activity against E. coli and Salmonella typhi cell wall substrate. Such targeted sequence-structure-function characterization of proteins encoded by cryptic prophages will help understand the contribution of prophage proteins to bacterial evolution.

  18. The Sulfolobicin Genes of Sulfolobus acidocaldarius Encode Novel Antimicrobial Proteins

    NARCIS (Netherlands)

    Ellen, Albert F.; Rohulya, Olha V.; Fusetti, Fabrizia; Wagner, Michaela; Albers, Sonja-Verena; Driessen, Arnold J. M.

    2011-01-01

    Crenarchaea, such as Sulfolobus acidocaldarius and Sulfolobus tokodaii, produce antimicrobial proteins called sulfolobicins. These antimicrobial proteins inhibit the growth of closely related species. Here we report the identification of the sulfolobicin-encoding genes in S. acidocaldarius. The acti

  19. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii

    DEFF Research Database (Denmark)

    Kovacs, J A; Powell, F; Edman, J C;

    1993-01-01

    this antigen is a good candidate for development as a vaccine to prevent or control P. carinii infection. We have cloned and sequenced seven related but unique genes encoding the major surface glycoprotein of rat P. carinii. Partial amino acid sequencing confirmed the identity of these genes. Based on Southern...... hydrophobic region at the carboxyl terminus. The presence of multiple related msg genes encoding the major surface glycoprotein of P. carinii suggests that antigenic variation is a possible mechanism for evading host defenses. Further characterization of this family of genes should allow the development...

  20. Functional analysis of plastid-encoded genes

    OpenAIRE

    Swiatek, Magdalena

    2002-01-01

    Plastid chromosomes from the variety of plant species contain several conserved open reading frames of unknown function, which most probably represent functional genes. The primary aim of this thesis was the analysis of the role of two such ORFs, designated ycfs or hypothetical chloroplast reading frames, namely ycf9 (ORF62) and ycf10 (ORF229, cemA). Both were analyzed in Nicotiana tabacum (tobacco) via their inactivation using biolistic plastid transformation. A new experiment...

  1. Bioinformatics analysis and detection of gelatinase encoded gene in Lysinibacillussphaericus

    Science.gov (United States)

    Repin, Rul Aisyah Mat; Mutalib, Sahilah Abdul; Shahimi, Safiyyah; Khalid, Rozida Mohd.; Ayob, Mohd. Khan; Bakar, Mohd. Faizal Abu; Isa, Mohd Noor Mat

    2016-11-01

    In this study, we performed bioinformatics analysis toward genome sequence of Lysinibacillussphaericus (L. sphaericus) to determine gene encoded for gelatinase. L. sphaericus was isolated from soil and gelatinase species-specific bacterium to porcine and bovine gelatin. This bacterium offers the possibility of enzymes production which is specific to both species of meat, respectively. The main focus of this research is to identify the gelatinase encoded gene within the bacteria of L. Sphaericus using bioinformatics analysis of partially sequence genome. From the research study, three candidate gene were identified which was, gelatinase candidate gene 1 (P1), NODE_71_length_93919_cov_158.931839_21 which containing 1563 base pair (bp) in size with 520 amino acids sequence; Secondly, gelatinase candidate gene 2 (P2), NODE_23_length_52851_cov_190.061386_17 which containing 1776 bp in size with 591 amino acids sequence; and Thirdly, gelatinase candidate gene 3 (P3), NODE_106_length_32943_cov_169.147919_8 containing 1701 bp in size with 566 amino acids sequence. Three pairs of oligonucleotide primers were designed and namely as, F1, R1, F2, R2, F3 and R3 were targeted short sequences of cDNA by PCR. The amplicons were reliably results in 1563 bp in size for candidate gene P1 and 1701 bp in size for candidate gene P3. Therefore, the results of bioinformatics analysis of L. Sphaericus resulting in gene encoded gelatinase were identified.

  2. Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress.

    Science.gov (United States)

    Sun, Liang; Wang, Yan-Ping; Chen, Pei; Ren, Jie; Ji, Kai; Li, Qian; Li, Ping; Dai, Sheng-Jie; Leng, Ping

    2011-11-01

    In order to characterize the potential transcriptional regulation of core components of abscisic acid (ABA) signal transduction in tomato fruit development and drought stress, eight SlPYL (ABA receptor), seven SlPP2C (type 2C protein phosphatase), and eight SlSnRK2 (subfamily 2 of SNF1-related kinases) full-length cDNA sequences were isolated from the tomato nucleotide database of NCBI GenBank. All SlPYL, SlPP2C, and SlSnRK2 genes obtained are homologous to Arabidopsis AtPYL, AtPP2C, and AtSnRK2 genes, respectively. Based on phylogenetic analysis, SlPYLs and SlSnRK2s were clustered into three subfamilies/subclasses, and all SlPP2Cs belonged to PP2C group A. Within the SlPYL gene family, SlPYL1, SlPYL2, SlPYL3, and SlPYL6 were the major genes involved in the regulation of fruit development. Among them, SlPYL1 and SlPYL2 were expressed at high levels throughout the process of fruit development and ripening; SlPYL3 was strongly expressed at the immature green (IM) and mature green (MG) stages, while SlPYL6 was expressed strongly at the IM and red ripe (RR) stages. Within the SlPP2C gene family, the expression of SlPP2C, SlPP2C3, and SlPP2C4 increased after the MG stage; SlPP2C1 and SlPP2C5 peaked at the B3 stage, while SlPP2C2 and SlPP2C6 changed little during fruit development. Within the SlSnRK2 gene family, the expression of SlSnRK2.2, SlSnRK2.3, SlSnRK2.4, and SlSnRK2C was higher than that of other members during fruit development. Additionally, most SlPYL genes were down-regulated, while most SlPP2C and SlSnRK2 genes were up-regulated by dehydration in tomato leaf.

  3. Bacillus caldolyticus prs gene encoding phosphoribosyl-diphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-1-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  4. Human germline antibody gene segments encode polyspecific antibodies.

    Science.gov (United States)

    Willis, Jordan R; Briney, Bryan S; DeLuca, Samuel L; Crowe, James E; Meiler, Jens

    2013-04-01

    Structural flexibility in germline gene-encoded antibodies allows promiscuous binding to diverse antigens. The binding affinity and specificity for a particular epitope typically increase as antibody genes acquire somatic mutations in antigen-stimulated B cells. In this work, we investigated whether germline gene-encoded antibodies are optimal for polyspecificity by determining the basis for recognition of diverse antigens by antibodies encoded by three VH gene segments. Panels of somatically mutated antibodies encoded by a common VH gene, but each binding to a different antigen, were computationally redesigned to predict antibodies that could engage multiple antigens at once. The Rosetta multi-state design process predicted antibody sequences for the entire heavy chain variable region, including framework, CDR1, and CDR2 mutations. The predicted sequences matched the germline gene sequences to a remarkable degree, revealing by computational design the residues that are predicted to enable polyspecificity, i.e., binding of many unrelated antigens with a common sequence. The process thereby reverses antibody maturation in silico. In contrast, when designing antibodies to bind a single antigen, a sequence similar to that of the mature antibody sequence was returned, mimicking natural antibody maturation in silico. We demonstrated that the Rosetta computational design algorithm captures important aspects of antibody/antigen recognition. While the hypervariable region CDR3 often mediates much of the specificity of mature antibodies, we identified key positions in the VH gene encoding CDR1, CDR2, and the immunoglobulin framework that are critical contributors for polyspecificity in germline antibodies. Computational design of antibodies capable of binding multiple antigens may allow the rational design of antibodies that retain polyspecificity for diverse epitope binding.

  5. [Immunoglobulin genes encoding antibodies directed to oncodevelopmental carbohydrate antigens].

    Science.gov (United States)

    Zenita, K; Yago, K; Fujimoto, E; Kannagi, R

    1990-07-01

    We investigated the immunoglobulin genes which encode the variable region of the monoclonal antibodies directed to the onco-developmental carbohydrate antigens such SSEA-1, fucosyl SSEA-1, SSEA-3 and SSEA-4. The VH region of these antibodies was preferentially encoded by the gene members of the X24, VH7183 and Q52 families, the families which are known to be located at the 3'-end region of the murine germ line VH gene. This result is interesting particularly when considering that the members of the 3'-end VH families are known to be preferentially expressed in embryonic B lymphocytes by an intrinsic genetic program. The comparative study of the nucleic acid sequences of mRNAs encoding these antibodies and the sequences of the corresponding germ line VH genes disclosed that the sequences encoding the antibodies contain no mutation from the germ line VH genes, or contain only a few somatic mutations, which are thought to be insignificant for the reactivity of the antibodies to the nominal antigens. These results imply that some of the embryonic B lymphocytes that express the unmutated germ line VH genes of the 3'-end families can be reactive with embryonic carbohydrate antigens, albeit rearranged with appropriate D-JH gene segments, and coupled with proper light chains. The VH region of the syngenic monoclonal anti-idiotypic antibodies directed to these anti-carbohydrate antibodies were also encoded preferentially by the members of the 3'-end VH families. We propose here that a part of the virgin embryonic B lymphocytes, which express the antibody encoded by the gene members of the 3'-end VH families at the cell surface, will be stimulated by the embryonic carbohydrate antigens which are abundantly present in the internal milieu of the embryo. The clonally expanded B lymphocytes, in turn, will facilitate the proliferation of other populations of embryonic B lymphocytes expressing the corresponding anti-idiotypic antibodies, which are also encoded by the gene members

  6. Selection for Genes Encoding Secreted Proteins and Receptors

    Science.gov (United States)

    Klein, Robert D.; Gu, Qimin; Goddard, Audrey; Rosenthal, Arnon

    1996-07-01

    Extracellular proteins play an essential role in the formation, differentiation, and maintenance of multicellular organisms. Despite that, the systematic identification of genes encoding these proteins has not been possible. We describe here a highly efficient method to isolate genes encoding secreted and membrane-bound proteins by using a single-step selection in yeast. Application of this method, termed signal peptide selection, to various tissues yielded 559 clones that appear to encode known or novel extracellular proteins. These include members of the transforming growth factor and epidermal growth factor protein families, endocrine hormones, tyrosine kinase receptors, serine/threonine kinase receptors, seven transmembrane receptors, cell adhesion molecules, extracellular matrix proteins, plasma proteins, and ion channels. The eventual identification of most, or all, extracellular signaling molecules will advance our understanding of fundamental biological processes and our ability to intervene in disease states.

  7. Tobacco two-component gene NTHK2

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By using a previously isolated tobacco two- component gene NTHK1 as a probe, we screened a cDNA library and obtained a homologous gene designated NTHK2. Sequencing analysis revealed that NTHK2 encoded a putative ethylene receptor homolog and contained a histidine kinase domain and a receiver domain. In the histidine kinase domain, the histidine at the phosphorylation site was replaced by an asparagine. Southern analysis indicated that NTHK2 was present at low copies in tobacco genome. The expression of NTHK2 was studied using a competitive RT-PCR method. It was found that, in young flower buds, NTHK2 was expressed abundantly, while in other organs or tissues, it was expressed in a low level. When leaf was subjected to wounding (cutting) treatment, NTHK2 expression was increased. When tobacco seedlings were stressed with PEG and heat shock, NTHK2 transcription was also enhanced. Other treatments showed little effects. These results indicated that NTHK2 might be involved in the developmental processes and in plant responses to some environmental stresses.

  8. Structure of the gene encoding columbid annexin Icp35.

    Science.gov (United States)

    Hitti, Y S; Horseman, N D

    1991-07-22

    The cp35 gene, encoding an annexin I (AnxI) cropsac 35-kDa protein (cp35) from the pigeon, consists of 13 exons and twelve introns. The borders of exons 2-13 were mapped by comparison with the known cDNA sequence. A 5-kb sequence containing exons 1, 2, and 3, and 1.4 kb of 5'-flanking DNA, is presented. The transcription start point was mapped by S1 nuclease protection. The region of the cp35 mRNA sequence, which we had previously shown to be profoundly different from mammalian anxI, is located in the first half of exon 3. Whereas human anxI is known to be single copy, Southern analysis of pigeon genomic DNA and genomic clones demonstrated multiple anxI genes in the pigeon, diverging significantly in their 5'-termini. Pigeon vimentin, on the other hand, is encoded by a single-copy gene as it is in other birds and mammals. These experiments have demonstrated that the cp35 mRNA is transcribed from its individual gene and is not a product of alternative processing of the pigeon homolog of mammalian anxI. We speculate that the diversification of anxI genes in Columbid birds allowed the recruitment of one of these genes (cp35) for unique regulation by prolactin in the absence of post-translational regulation via residues encoded by exons 2 and 3.

  9. Differences in dinucleotide frequencies of thermophilic genes encoding water soluble and membrane proteins

    Institute of Scientific and Technical Information of China (English)

    Hiroshi NAKASHIMA; Yuka KURODA

    2011-01-01

    The occurrence frequencies of the dinucleotides of genes of three thermophilic and three mesophilic species from both archaea and eubacteria were investigated in this study. The genes encoding water soluble proteins were rich in the dinucleotides of purine dimers, whereas the genes encoding membrane proteins were rich in pyrimidine dimers. The dinucleotides of purine dimers are the counterparts of pyrimidine dimers in a double-stranded DNA. The purine/pyrimidine dimers were favored in the thermophiles but not in the mesophiles, based on comparisons of observed and expected frequencies. This finding is in agreement with our previous study which showed that purine/pyrimidine dimers are positive factors that increase the thermal stability of DNA. The dinucleotides AA, AG, and GA are components of the codons of charged residues of Glu, Asp, Lys, and Arg, and the dinucleotides TT, CT, and TC are components of the codons of hydrophobic residues of Leu, He, and Phe. This is consistent with the suitabilities of the different amino acid residues for water soluble and membrane proteins. Our analysis provides a picture of how thermophilic species produce water soluble and membrane proteins with distinctive characters: the genes encoding water soluble proteins use DNA sequences rich in purine dimers, and the genes encoding membrane proteins use DNA sequences rich in pyrimidine dimers on the opposite strand.

  10. The sae locus of Staphylococcus aureus encodes a two-component regulatory system.

    Science.gov (United States)

    Giraudo, A T; Calzolari, A; Cataldi, A A; Bogni, C; Nagel, R

    1999-08-01

    Sae is a regulatory locus that activates the production of several exoproteins in Staphylococcus aureus. A 3.4-kb fragment of a S. aureus genomic library, screened with a probe adjacent to the transposon insertion of a sae::Tn551 mutant, was cloned into a bifunctional vector. This fragment was shown to carry the sae locus by restoration of exoprotein production in sae mutants. The sae locus was mapped to the SmaI-D fragment of the staphylococcal chromosome by pulse-field electrophoresis. Sequence analysis of the cloned fragment revealed the presence of two genes, designated saeR and saeS, encoding a response regulator and a histidine protein kinase, respectively, with high homology to other bacterial two-component regulatory systems.

  11. Identification and use of genes encoding amatoxin and phallotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Hallen, Heather E.; Walton, Jonathan D.; Luo, Hong; Scott-Craig, John S.

    2016-12-13

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptide toxins and toxin production in mushrooms. In particular, the present invention relates to using genes and proteins from Amanita species encoding Amanita peptides, specifically relating to amatoxins and phallotoxins. In a preferred embodiment, the present invention also relates to methods for detecting Amanita peptide toxin genes for identifying Amanita peptide-producing mushrooms and for diagnosing suspected cases of mushroom poisoning. Further, the present inventions relate to providing kits for diagnosing and monitoring suspected cases of mushroom poisoning in patients.

  12. Genes encoding two Theileria parva antigens recognized by CD8+ T-cells exhibit sequence diversity in South Sudanese cattle populations but the majority of alleles are similar to the Muguga component of the live vaccine cocktail

    Science.gov (United States)

    Pelle, Roger; Mwacharo, Joram M.; Njahira, Moses N.; Marcellino, Wani L.; Kiara, Henry; Malak, Agol K.; EL Hussein, Abdel Rahim M.; Bishop, Richard; Skilton, Robert A.

    2017-01-01

    East Coast fever (ECF), caused by Theileria parva infection, is a frequently fatal disease of cattle in eastern, central and southern Africa, and an emerging disease in South Sudan. Immunization using the infection and treatment method (ITM) is increasingly being used for control in countries affected by ECF, but not yet in South Sudan. It has been reported that CD8+ T-cell lymphocytes specific for parasitized cells play a central role in the immunity induced by ITM and a number of T. parva antigens recognized by parasite-specific CD8+ T-cells have been identified. In this study we determined the sequence diversity among two of these antigens, Tp1 and Tp2, which are under evaluation as candidates for inclusion in a sub-unit vaccine. T. parva samples (n = 81) obtained from cattle in four geographical regions of South Sudan were studied for sequence polymorphism in partial sequences of the Tp1 and Tp2 genes. Eight positions (1.97%) in Tp1 and 78 positions (15.48%) in Tp2 were shown to be polymorphic, giving rise to four and 14 antigen variants in Tp1 and Tp2, respectively. The overall nucleotide diversity in the Tp1 and Tp2 genes was π = 1.65% and π = 4.76%, respectively. The parasites were sampled from regions approximately 300 km apart, but there was limited evidence for genetic differentiation between populations. Analyses of the sequences revealed limited numbers of amino acid polymorphisms both overall and in residues within the mapped CD8+ T-cell epitopes. Although novel epitopes were identified in the samples from South Sudan, a large number of the samples harboured several epitopes in both antigens that were similar to those in the T. parva Muguga reference stock, which is a key component in the widely used live vaccine cocktail. PMID:28231338

  13. Bacteriophage-encoded shiga toxin gene in atypical bacterial host

    Directory of Open Access Journals (Sweden)

    Casas Veronica

    2011-07-01

    Full Text Available Abstract Background Contamination from fecal bacteria in recreational waters is a major health concern since bacteria capable of causing human disease can be found in animal feces. The Dog Beach area of Ocean Beach in San Diego, California is a beach prone to closures due to high levels of fecal indicator bacteria (FIB. A potential source of these FIB could be the canine feces left behind by owners who do not clean up after their pets. We tested this hypothesis by screening the DNA isolated from canine feces for the bacteriophage-encoded stx gene normally found in the virulent strains of the fecal bacterium Escherichia coli. Results Twenty canine fecal samples were collected, processed for total and bacterial fraction DNA, and screened by PCR for the stx gene. The stx gene was detected in the total and bacterial fraction DNA of one fecal sample. Bacterial isolates were then cultivated from the stx-positive fecal sample. Eighty nine of these canine fecal bacterial isolates were screened by PCR for the stx gene. The stx gene was detected in five of these isolates. Sequencing and phylogenetic analyses of 16S rRNA gene PCR products from the canine fecal bacterial isolates indicated that they were Enterococcus and not E. coli. Conclusions The bacteriophage-encoded stx gene was found in multiple species of bacteria cultivated from canine fecal samples gathered at the shoreline of the Dog Beach area of Ocean Beach in San Diego, California. The canine fecal bacteria carrying the stx gene were not the typical E. coli host and were instead identified through phylogenetic analyses as Enterococcus. This suggests a large degree of horizontal gene transfer of exotoxin genes in recreational waters.

  14. Identification of β-haemolysin-encoding genes in Streptococcus anginosus.

    Science.gov (United States)

    Asam, D; Mauerer, S; Walheim, E; Spellerberg, B

    2013-08-01

    Streptococcus anginosus is an emerging pathogen, but little is known about its virulence factors. To detect the genes responsible for β-haemolysis we performed genomic mutagenesis of the β-haemolytic S. anginosus type strain ATCC 12395 using the vector pGhost9:ISS1. Integration site analysis of 15 non-haemolytic mutants identified a gene cluster with high homology to the genes of the streptolysin S (SLS) encoding sag gene cluster of S. pyogenes. The gene cluster harbours 10 open reading frames displaying significant similarities to the S. pyogenes genes sagA-sagI, with the identities on protein level ranging from 38 to 87%. Complementation assays of S. anginosus sagB and sagD integration mutants with the respective genes confirmed their importance for β-haemolysin production and suggest the presence of post-translational modifications in S. anginosus SLS similar to SLS of S. pyogenes. Characterization of the S. anginosus haemolysin in comparison to the S. pyogenes SLS showed that the haemolysin is surface bound, but in contrast to S. pyogenes neither fetal calf serum nor RNA was able to stabilize the haemolysin of S. anginosus in culture supernatants. Inhibition of β-haemolysis by polyethylene glycol of different sizes was carried out, giving no evidence of a pore-forming haemolytic mechanism. Analysis of a whole genome shotgun sequence of Streptococcus constellatus, a closely related streptococcal species that belongs to the S. anginosus group, revealed a similar sag gene cluster. Employing a genomic mutagenesis strategy we were able to determine an SLS encoding gene cluster in S. anginosus and demonstrate its importance for β-haemolysin production in S. anginosus.

  15. The sulfolobicin genes of Sulfolobus acidocaldarius encode novel antimicrobial proteins.

    Science.gov (United States)

    Ellen, Albert F; Rohulya, Olha V; Fusetti, Fabrizia; Wagner, Michaela; Albers, Sonja-Verena; Driessen, Arnold J M

    2011-09-01

    Crenarchaea, such as Sulfolobus acidocaldarius and Sulfolobus tokodaii, produce antimicrobial proteins called sulfolobicins. These antimicrobial proteins inhibit the growth of closely related species. Here we report the identification of the sulfolobicin-encoding genes in S. acidocaldarius. The active sulfolobicin comprises two proteins that are equipped with a classical signal sequence. These proteins are secreted by the cells and found to be membrane vesicle associated. Gene inactivation studies demonstrate that both proteins are required for the bacteriostatic antimicrobial activity. Sulfolobicins constitute a novel class of antimicrobial proteins without detectable homology to any other protein.

  16. Expression of genes encoding extracellular matrix proteins: a macroarray study.

    Science.gov (United States)

    Futyma, Konrad; Miotła, Paweł; Różyńska, Krystyna; Zdunek, Małgorzata; Semczuk, Andrzej; Rechberger, Tomasz; Wojcierowski, Jacek

    2014-12-01

    Endometrial cancer (EC) is one of the most common gynecological malignancies in Poland, with well-established risk factors. Genetic instability and molecular alterations responsible for endometrial carcinogenesis have been systematically investigated. The aim of the present study was to investigate, by means of cDNA macroarrays, the expression profiles of genes encoding extracellular matrix (ECM) proteins in ECs. Tissue specimens were collected during surgical procedures from 40 patients with EC, and control tissue was collected from 9 patients with uterine leiomyomas. RNA was isolated and RT-PCR with radioisotope-labeled cDNA was performed. The levels of ECM protein gene expression in normal endometrial tissues were compared to the expression of these genes in EC specimens. Statistically significant differences in gene expression, stratified by clinical stage of the ECs, were detected for aggrecan, vitronectin, tenascin R, nidogen and two collagen proteins: type VIII chain α1 and type XI chain α2. All of these proteins were overexpressed in stage III endometrial carcinomas compared to levels in stage I and II uterine neoplasms. In conclusion, increased expression of genes encoding ECM proteins may play an important role in facilitating accelerated disease progression of human ECs.

  17. Arabidopsis TRANSCURVATA1 encodes NUP58, a component of the nucleopore central channel.

    Directory of Open Access Journals (Sweden)

    Almudena Ferrández-Ayela

    Full Text Available The selective trafficking of proteins and RNAs through the nuclear envelope regulates nuclear-cytoplasmic segregation of macromolecules and is mediated by nucleopore complexes (NPCs, which consist of about 400 nucleoporins (Nups of about 30 types. Extensive studies of nucleoporin function in yeast and vertebrates showed that Nups function in nucleocytoplasmic trafficking and other processes. However, limited studies of plant Nups have identified only a few mutations, which cause pleiotropic phenotypes including reduced growth and early flowering. Here, we describe loss-of-function alleles of Arabidopsis TRANSCURVATA1 (TCU1; these mutations cause increased hypocotyl and petiole length, reticulate and asymmetrically epinastic leaf laminae of reduced size, and early flowering. TCU1 is transcribed in all of the organs and tissues examined, and encodes the putative ortholog of yeast and vertebrate Nup58, a nucleoporin of the Nup62 subcomplex. Nup58 forms the central channel of the NPC and acts directly in translocation of proteins through the nuclear envelope in yeast and vertebrates. Yeast two-hybrid (Y2H assays identified physical interactions between TCU1/NUP58 and 34 proteins, including nucleoporins, SCF (Skp1/Cul1/F-box ubiquitin ligase complex components and other nucleoplasm proteins. Genetic interactions were also found between TCU1 and genes encoding nucleoporins, soluble nuclear transport receptors and components of the ubiquitin-proteasome and auxin signaling pathways. These genetic and physical interactions indicate that TCU1/NUP58 is a member of the Nup62 subcomplex of the Arabidopsis NPC. Our findings also suggest regulatory roles for TCU1/NUP58 beyond its function in nucleocytoplasmic trafficking, a hypothesis that is supported by the Y2H and genetic interactions that we observed.

  18. Arabidopsis TRANSCURVATA1 Encodes NUP58, a Component of the Nucleopore Central Channel

    Science.gov (United States)

    Ferrández-Ayela, Almudena; Alonso-Peral, María Magdalena; Pérez-Pérez, José Manuel; Micol, José Luis; Ponce, María Rosa

    2013-01-01

    The selective trafficking of proteins and RNAs through the nuclear envelope regulates nuclear-cytoplasmic segregation of macromolecules and is mediated by nucleopore complexes (NPCs), which consist of about 400 nucleoporins (Nups) of about 30 types. Extensive studies of nucleoporin function in yeast and vertebrates showed that Nups function in nucleocytoplasmic trafficking and other processes. However, limited studies of plant Nups have identified only a few mutations, which cause pleiotropic phenotypes including reduced growth and early flowering. Here, we describe loss-of-function alleles of Arabidopsis TRANSCURVATA1 (TCU1); these mutations cause increased hypocotyl and petiole length, reticulate and asymmetrically epinastic leaf laminae of reduced size, and early flowering. TCU1 is transcribed in all of the organs and tissues examined, and encodes the putative ortholog of yeast and vertebrate Nup58, a nucleoporin of the Nup62 subcomplex. Nup58 forms the central channel of the NPC and acts directly in translocation of proteins through the nuclear envelope in yeast and vertebrates. Yeast two-hybrid (Y2H) assays identified physical interactions between TCU1/NUP58 and 34 proteins, including nucleoporins, SCF (Skp1/Cul1/F-box) ubiquitin ligase complex components and other nucleoplasm proteins. Genetic interactions were also found between TCU1 and genes encoding nucleoporins, soluble nuclear transport receptors and components of the ubiquitin-proteasome and auxin signaling pathways. These genetic and physical interactions indicate that TCU1/NUP58 is a member of the Nup62 subcomplex of the Arabidopsis NPC. Our findings also suggest regulatory roles for TCU1/NUP58 beyond its function in nucleocytoplasmic trafficking, a hypothesis that is supported by the Y2H and genetic interactions that we observed. PMID:23840761

  19. Mutations in SNRPB, encoding components of the core splicing machinery, cause cerebro-costo-mandibular syndrome.

    Science.gov (United States)

    Bacrot, Séverine; Doyard, Mathilde; Huber, Céline; Alibeu, Olivier; Feldhahn, Niklas; Lehalle, Daphné; Lacombe, Didier; Marlin, Sandrine; Nitschke, Patrick; Petit, Florence; Vazquez, Marie-Paule; Munnich, Arnold; Cormier-Daire, Valérie

    2015-02-01

    Cerebro-costo-mandibular syndrome (CCMS) is a developmental disorder characterized by the association of Pierre Robin sequence and posterior rib defects. Exome sequencing and Sanger sequencing in five unrelated CCMS patients revealed five heterozygous variants in the small nuclear ribonucleoprotein polypeptides B and B1 (SNRPB) gene. This gene includes three transcripts, namely transcripts 1 and 2, encoding components of the core spliceosomal machinery (SmB' and SmB) and transcript 3 undergoing nonsense-mediated mRNA decay. All variants were located in the premature termination codon (PTC)-introducing alternative exon of transcript 3. Quantitative RT-PCR analysis revealed a significant increase in transcript 3 levels in leukocytes of CCMS individuals compared to controls. We conclude that CCMS is due to heterozygous mutations in SNRPB, enhancing inclusion of a SNRPB PTC-introducing alternative exon, and show that this developmental disease is caused by defects in the splicing machinery. Our finding confirms the report of SNRPB mutations in CCMS patients by Lynch et al. (2014) and further extends the clinical and molecular observations.

  20. Recombinant vectors construction for cellobiohydrolase encoding gene constitutive expression

    Directory of Open Access Journals (Sweden)

    Leontina GURGU

    2012-12-01

    Full Text Available Cellobiohydrolases (EC 3.2.1.91 are important exo enzymes involved in cellulose hydrolysis alongside endoglucanases (EC 3.2.1.4 and β-glucosidases (EC 3.2.1.21. Heterologous cellobiohydrolase gene expression under constitutive promoter control using Saccharomyces cerevisiae as host system is of great importance for a successful SSF process. From this point of view, the main objective of the work was to use Yeplac181 expression vector as a recipient for cellobiohdrolase - cbhB encoding gene expression under the control of the actin promoter, in Saccharomyces cerevisiae. Two hybridvectors, YEplac-Actp and YEplac-Actp-CbhB, were generated usingEscherichia coli XLI Blue for the cloning experiments. Constitutive cbhB gene expression was checked by proteine gel electrophoresis (SDS-PAGE after insertion of these constructs into Saccharomyces cerevisiae.

  1. [Mutations in the gene encoding filaggrin cause ichthyosis vulgaris].

    Science.gov (United States)

    Prasad, Sumangali Chandra; Rasmussen, Kirsten; Bygum, Anette

    2011-02-14

    Ichthyosis vulgaris is a common genetic skin disorder with an estimated prevalence of 1:250 caused by mutations in the gene encoding filaggrin. This disorder manifests itself within the first year of life and is clinically characterized by dry, scaly skin, keratosis pilaris, palmar hyperlinearity and atopic manifestations. Patients with a severe phenotype are homozygous or compound heterozygous for the mutations, whereas heterozygous patients show mild disease, suggesting semidominant inheritance with incomplete penetrance. We present a patient with classic severe ichthyosis vulgaris, atopic eczema and two loss-of-function mutations.

  2. The pea gene NA encodes ent-kaurenoic acid oxidase.

    Science.gov (United States)

    Davidson, Sandra E; Elliott, Robert C; Helliwell, Chris A; Poole, Andrew T; Reid, James B

    2003-01-01

    The gibberellin (GA)-deficient dwarf na mutant in pea (Pisum sativum) has severely reduced internode elongation, reduced root growth, and decreased leaflet size. However, the seeds develop normally. Two genes, PsKAO1 and PsKAO2, encoding cytochrome P450 monooxygenases of the subfamily CYP88A were isolated. Both PsKAO1 and PsKAO2 had ent-kaurenoic acid oxidase (KAO) activity, catalyzing the three steps of the GA biosynthetic pathway from ent-kaurenoic acid to GA(12) when expressed in yeast (Saccharomyces cerevisiae). In addition to the intermediates ent-7alpha-hydroxykaurenoic acid and GA(12)-aldehyde, some additional products of the pea KAO activity were detected, including ent-6alpha,7alpha-dihydroxykaurenoic acid and 7beta-hydroxykaurenolide. The NA gene encodes PsKAO1, because in two independent mutant alleles, na-1 and na-2, PsKAO1 had altered sequences and the five-base deletion in PsKAO1 associated with the na-1 allele cosegregated with the dwarf na phenotype. PsKAO1 was expressed in the stem, apical bud, leaf, pod, and root, organs in which GA levels have previously been shown to be reduced in na plants. PsKAO2 was expressed only in seeds and this may explain the normal seed development and normal GA biosynthesis in seeds of na plants.

  3. Deletion of the gene encoding the reductase component of 3-ketosteroid 9α-hydroxylase in Rhodococcus equi USA-18 disrupts sterol catabolism, leading to the accumulation of 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid and 1,4-androstadiene-3,17-dione.

    Science.gov (United States)

    Yeh, Chin-Hsing; Kuo, Yung-Shun; Chang, Che-Ming; Liu, Wen-Hsiung; Sheu, Meei-Ling; Meng, Menghsiao

    2014-09-09

    The gene encoding the putative reductase component (KshB) of 3-ketosteroid 9α-hydroxylase was cloned from Rhodococcus equi USA-18, a cholesterol oxidase-producing strain formerly named Arthrobacter simplex USA-18, by PCR according to consensus amino acid motifs of several bacterial KshB subunits. Deletion of the gene in R. equi USA-18 by a PCR-targeted gene disruption method resulted in a mutant strain that could accumulate up to 0.58 mg/ml 1,4-androstadiene-3,17-dione (ADD) in the culture medium when 0.2% cholesterol was used as the carbon source, indicating the involvement of the deleted enzyme in 9α-hydroxylation of steroids. In addition, this mutant also accumulated 3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid (Δ1,4-BNC). Because both ADD and Δ1,4-BNC are important intermediates for the synthesis of steroid drugs, this mutant derived from R. equi USA-18 may deserve further investigation for its application potential.

  4. Gene set analysis using variance component tests

    Science.gov (United States)

    2013-01-01

    Background Gene set analyses have become increasingly important in genomic research, as many complex diseases are contributed jointly by alterations of numerous genes. Genes often coordinate together as a functional repertoire, e.g., a biological pathway/network and are highly correlated. However, most of the existing gene set analysis methods do not fully account for the correlation among the genes. Here we propose to tackle this important feature of a gene set to improve statistical power in gene set analyses. Results We propose to model the effects of an independent variable, e.g., exposure/biological status (yes/no), on multiple gene expression values in a gene set using a multivariate linear regression model, where the correlation among the genes is explicitly modeled using a working covariance matrix. We develop TEGS (Test for the Effect of a Gene Set), a variance component test for the gene set effects by assuming a common distribution for regression coefficients in multivariate linear regression models, and calculate the p-values using permutation and a scaled chi-square approximation. We show using simulations that type I error is protected under different choices of working covariance matrices and power is improved as the working covariance approaches the true covariance. The global test is a special case of TEGS when correlation among genes in a gene set is ignored. Using both simulation data and a published diabetes dataset, we show that our test outperforms the commonly used approaches, the global test and gene set enrichment analysis (GSEA). Conclusion We develop a gene set analyses method (TEGS) under the multivariate regression framework, which directly models the interdependence of the expression values in a gene set using a working covariance. TEGS outperforms two widely used methods, GSEA and global test in both simulation and a diabetes microarray data. PMID:23806107

  5. Co-transcriptional folding is encoded within RNA genes

    Directory of Open Access Journals (Sweden)

    Miklós István

    2004-08-01

    Full Text Available Abstract Background Most of the existing RNA structure prediction programs fold a completely synthesized RNA molecule. However, within the cell, RNA molecules emerge sequentially during the directed process of transcription. Dedicated experiments with individual RNA molecules have shown that RNA folds while it is being transcribed and that its correct folding can also depend on the proper speed of transcription. Methods The main aim of this work is to study if and how co-transcriptional folding is encoded within the primary and secondary structure of RNA genes. In order to achieve this, we study the known primary and secondary structures of a comprehensive data set of 361 RNA genes as well as a set of 48 RNA sequences that are known to differ from the originally transcribed sequence units. We detect co-transcriptional folding by defining two measures of directedness which quantify the extend of asymmetry between alternative helices that lie 5' and those that lie 3' of the known helices with which they compete. Results We show with statistical significance that co-transcriptional folding strongly influences RNA sequences in two ways: (1 alternative helices that would compete with the formation of the functional structure during co-transcriptional folding are suppressed and (2 the formation of transient structures which may serve as guidelines for the co-transcriptional folding pathway is encouraged. Conclusions These findings have a number of implications for RNA secondary structure prediction methods and the detection of RNA genes.

  6. Analysis of the Genes Encoding the Histones of Microsporidia Nosema bombycis

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2013-02-01

    Full Text Available Histone proteins are essential components of eukaryotic chromosomes, the objective of the study is to provide some new insights into its evolution through analysis of N. bombycis Histone genes at genomic level. In the study, genes encoding core Histone H2A, H2B, H3 and H4 from Nosema bombycis were analyzed by multiple sequence alignments. Analysis showed that: each type of the core Histone genes, sharing high similarity with each other in both coding and non-coding regions, has low copy number. Multiple sequence alignments showed N. bombycis core Histones diverge obviously, relative-rate test revealed Histone proteins have accelerated in the evolutionary rate of amino acid substitution. The distance between the stop codon and consensus poly (A signal is compacted, no conserved hair-pin element was found in 3'-untranslated regions of Histone mRNAs and overlapping gene transcription was observed in the downstream region of Histone variant H3_3, that implies there maybe have only single class of core Histone genes encoding replication-independent Histones in N. bombycis. Surveying the upstream of the coding region of all core Histone genes, there were no canonical TATA or CAAT boxes except that a common Histone motif (TTTCCCTCC was discovered. Moreover, no similar Histone motif mentioned above existed in Encephalitozoon cuniculi, the closely related organisms. That means that similar Histone motif maybe exists in microsporidian last common ancestor, N. bombycis retained Histone motif, while E. cuniculi have lost Histone motif after the differentiation from the common ancestor with the change of the host. Therefore the analysis of the genes encoding the Histones ofN. bombycis revealed that there maybe have two evolution directions in microsporidia, that is, genome extreme compact and mild compact, during the course of evolution. It contributes us to have the knowledge of that there have different genome size in microsporidia and provide useful

  7. Cloning of two genes encoding Rab7 in Paramecium.

    Science.gov (United States)

    Surmacz, Liliana; Wiejak, Jolanta; Wyroba, Elzbieta

    2006-01-01

    Rab7 is a small GTPase that plays a crucial role in the regulation of transport from early to late endosomes and lysosomes, phagosome maturation and in lysosomal biogenesis in mammalian cells. It contains conserved and unique sequence elements that mediate its function. Two Rab7 genes, Rab7a (703 bp) and Rab7b (707 bp) were identified in the unicellular eukaryote Paramecium by PCR amplification. They contain three short introns of different lengths (28-32 bp) and sequence located at identical positions in both genes. The presence of two Rab7 genes in the Paramecium genome was confirmed by Southern hybridization analysis performed with six different restriction enzymes. Expression of both genes was assessed by Northern blot and RT-PCR. Two transcripts of 1.8 and 2.2 kb were identified by hybridization analysis. The cloned complementary DNAs, both of 618 nucleotides in length, encode polypeptides of 206 amino acids that are 97.6% identical and differ in their C-termini. The predicted protein sequences of Rab7a and Rab7b contain all characteristic domains essential for Rab function: the effector domain (YRATVGADF) and four GTP-binding consensus sequences (GDSGVGKT, WDTAGQ, NKLD, SAK) as well as the prenylation motif (-CC) at the C-terminus indispensable for Rab binding to the membrane. Similarity searches revealed 81.6-82.1% homology of Paramecium Rab7 isoforms to human Rab7 and a lack of an insert typical for the Kinetoplastida - the species that appeared earlier in evolution. Paramecium is the first free-living lower eukaryote in which homologues of Rab7 have been identified that exhibit features similar to those of mammalian Rab7.

  8. Molecular characterization of genes encoding leucoanthocyanidin reductase involved in proanthocyanidin biosynthesis in apple

    Directory of Open Access Journals (Sweden)

    Yuepeng eHan

    2015-04-01

    Full Text Available Proanthocyanidins (PAs are the major component of phenolics in apple, but mechanisms involved in PA biosynthesis remain unclear. Here, the relationship between the PA biosynthesis and the expression of genes encoding leucoanthocyanidin reductase (LAR and anthocyanidin reductase (ANR was investigated in fruit skin of one apple cultivar and three crabapples. Transcript levels of LAR1 and ANR2 genes were significantly correlated with the contents of catechin and epicatechin, respectively, which suggests their active roles in PA synthesis. Surprisingly, transcript levels for both LAR1 and LAR2 genes were almost undetectable in two crabapples that accumulated both flavan-3-ols and PAs. This contradicts the previous finding that LAR1 gene is a strong candidate regulating the accumulation of metabolites such as epicatechin and PAs in apple. Ectopic expression of apple MdLAR1 gene in tobacco suppresses expression of the late genes in anthocyanin biosynthetic pathway, resulting in loss of anthocyanin in flowers. Interestingly, a decrease in PA biosynthesis was also observed in flowers of transgenic tobacco plants overexpressing the MdLAR1 gene, which could be attributed to decreased expression of both the NtANR1 and NtANR2 genes. Our study not only confirms the in vivo function of apple LAR1 gene, but it is also helpful for understanding the mechanism of PA biosynthesis.

  9. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    DEFF Research Database (Denmark)

    2010-01-01

    from Geobacillus. It is selected from SEQ ID NO. 1-17. Sequences not defined here may be found at ftp://ftp.wipo.int/pub/publishedpctsequences/publication. The heterologous gene encoding glycerol dehydrogenase has been incorporated into the chromosome of the bacterium, or is inserted into a lactate...... glycerol dehydrogenase; and/or (ii) up-regulating a native gene encoding glycerol dehydrogenase; and (b) obtaining the recombinant bacterium. Preferred Bacterium: In the recombinant bacterium above, the inserted heterologous gene and/or the up-regulated native gene is encoding a glycerol dehydrogenase...... selected from glycerol dehydrogenase (E.C 1.1.1.6); glycerol dehydrogenase (NADP(+)) (E.C. 1.1.1.72); glycerol 2-dehydrogenase (NADP(+)) (E.C. 1.1.1.156); and glycerol dehydrogenase (acceptor) (E.C. 1.1.99.22). The heterologous gene encoding a glycerol dehydrogenase is derived from Thermotoga or is derived...

  10. Structure and function of the DNA ligases encoded by the mammalian LIG3 gene

    OpenAIRE

    Tomkinson, Alan E.; Sallmyr, Annahita

    2013-01-01

    Among the mammalian genes encoding DNA ligases (LIG), the LIG3 gene is unique in that it encodes multiple DNA ligase polypeptides with different cellular functions. Notably, this nuclear gene encodes the only mitochondrial DNA ligase and so is essential for this organelle. In the nucleus, there is significant functional redundancy between DNA ligase IIIα and DNA ligase I in excision repair. In addition, DNA ligase IIIα is essential for DNA replication in the absence of the replicative DNA lig...

  11. [Association of schizophrenia with variations in genes encoding transcription factors].

    Science.gov (United States)

    Boyajyan, A S; Atshemyan, S A; Zakharyan, R V

    2015-01-01

    Alterations in neuronal plasticity and immune system play a key role in pathogenesis of schizophrenia. Identification of genetic factors contributing to these alterations will significantly encourage elucidation of molecular etiopathomechanisms of this disorder. Transcription factors c-Fos, c-Jun, and Ier5 are the important regulators of neuronal plasticity and immune response. In the present work we investigated a potential association of schizophrenia with a number of single nucleotide polymorphisms of c-Fos-,c-Jun and Ier5 encoding genes (FOS, JUN, and IER5 respectively). Genotyping of DNA samples of patients with schizophrenia and healthy individuals was performed using polymerase chain reaction with allele specific primers. The results obtained demonstrated association between schizophrenia and FOS rs1063169, FOS rs7101, JUN rs11688, and IER5 rs6425663 polymorphisms. Namely, it was found that the inheritance of FOS rs1063169*T, JUN rs11688*A, and IER5 rs6425663*T minor variants decreases risk for development of schizophrenia whereas the inheritance of FOS rs7101*T minor variant, especially its homozygous form, increases risk for development of this disorder.

  12. Genes encoding novel secreted and transmembrane proteins are temporally and spatially regulated during Drosophila melanogaster embryogenesis

    Directory of Open Access Journals (Sweden)

    González Mauricio

    2009-09-01

    recovered a substantial number of unknown genes encoding putative secreted and transmembrane proteins, suggesting new components of signaling pathways that might be incorporated within the existing regulatory networks controlling D. melanogaster embryogenesis. These genes are also good candidates for additional targeted functional analyses similar to those we conducted for CG6234. See related minireview by Vichas and Zallen: http://www.jbiol.com/content/8/8/76

  13. Decay of genes encoding the oomycete flagellar proteome in the downy mildew Hyaloperonospora arabidopsidis.

    Directory of Open Access Journals (Sweden)

    Howard S Judelson

    Full Text Available Zoospores are central to the life cycles of most of the eukaryotic microbes known as oomycetes, but some genera have lost the ability to form these flagellated cells. In the plant pathogen Phytophthora infestans, genes encoding 257 proteins associated with flagella were identified by comparative genomics. These included the main structural components of the axoneme and basal body, proteins involved in intraflagellar transport, regulatory proteins, enzymes for maintaining ATP levels, and others. Transcripts for over three-quarters of the genes were up-regulated during sporulation, and persisted to varying degrees in the pre-zoospore stage (sporangia and motile zoospores. Nearly all of these genes had orthologs in other eukaryotes that form flagella or cilia, but not species that lack the organelle. Orthologs of 211 of the genes were also absent from a sister taxon to P. infestans that lost the ability to form flagella, the downy mildew Hyaloperonospora arabidopsidis. Many of the genes retained in H. arabidopsidis were also present in other non-flagellates, suggesting that they play roles both in flagella and other cellular processes. Remnants of the missing genes were often detected in the H. arabidopsidis genome. Degradation of the genes was associated with local compaction of the chromosome and a heightened propensity towards genome rearrangements, as such regions were less likely to share synteny with P. infestans.

  14. Technique for Calibration of Chassis components based on encoding marks and machine Vision metrology

    Institute of Scientific and Technical Information of China (English)

    SONG Li-mei; ZHANG Chun-bo; WEI Yi-ying; CHEN Hua-wei

    2011-01-01

    @@ A novel technique for calibrating crucial parameters of chassis components is proposed, which utilizes the machine vision metrology to measure 3D coordinates of the center of a component's hole for assembling in the 3D world coordinate system.In the measurement, encoding marks with special patterns will be assembled on the chassis component associated with cross drone and staff gauge located near the chassis.The geometry and coordinates of the cross drone consist of two planes orthogonal to each other and the staff gauge is in 3D space with high precision.A few images are taken by a highresolution camera in different orientations and perspectives.The 3D coordinates of 5 key points on the encoding marks will be calculated by the machine vision technique and those of the center of the holes to be calibrated will be calculated by the deduced algorithm in this paper.Experimental results show that the algorithm and the technique can satisfy the precision requirement when the components are assembled, and the average measurement precision provided by the algorithm is 0.0174 mm.

  15. Multi-level and Multi-component Bitmap Encoding for Efficient Search Operations

    Directory of Open Access Journals (Sweden)

    Madhu BHAN, Department of Computer Applications

    2012-12-01

    Full Text Available The growing interest in data warehousing for decision makers is becoming more and more crucial to make faster and efficient decisions. On-line decision needs short response times. Many indexing techniques have been created to achieve this goal in read only environments. Indexing technique that has attracted attention in multidimensional databases is Bitmap Indexing. The paper discusses the various existing bitmap indexing techniques along with their performance characteristics. The paper proposes two new bitmap indexing techniques in the class of multi-level and multi-component encoding schemes and prove that the two techniques have better space–time performance than some of the existing techniques used for range queries. We provide an analytical model for comparing the performance of our proposed encoding schemes with that of the existing ones.

  16. Tracing the origin and evolution of plant TIR-encoding genes.

    Science.gov (United States)

    Sun, Xiaoqin; Pang, Hui; Li, Mimi; Chen, Jianqun; Hang, Yueyu

    2014-08-10

    Toll-interleukin-1 receptor (TIR)-encoding proteins represent one of the most important families of disease resistance genes in plants. Studies that have explored the functional details of these genes tended to focus on only a few limited groups; the origin and evolutionary history of these genes were therefore unclear. In this study, focusing on the four principal groups of TIR-encoding genes, we conducted an extensive genome-wide survey of 32 fully sequenced plant genomes and Expressed Sequence Tags (ESTs) from the gymnosperm Pinus taeda and explored the origins and evolution of these genes. Through the identification of the TIR-encoding genes, the analysis of chromosome positions, the identification and analysis of conserved motifs, and sequence alignment and phylogenetic reconstruction, our results showed that the genes of the TIR-X family (TXs) had an earlier origin and a wider distribution than the genes from the other three groups. TIR-encoding genes experienced large-scale gene duplications during evolution. A skeleton motif pattern of the TIR domain was present in all spermatophytes, and the genes with this skeleton pattern exhibited a conserved and independent evolutionary history in all spermatophytes, including monocots, that followed their gymnosperm origin. This study used comparative genomics to explore the origin and evolutionary history of the four main groups of TIR-encoding genes. Additionally, we unraveled the mechanism behind the uneven distribution of TIR-encoding genes in dicots and monocots.

  17. Genome-wide identification of structural variants in genes encoding drug targets

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Dahmcke, Christina Mackeprang

    2012-01-01

    The objective of the present study was to identify structural variants of drug target-encoding genes on a genome-wide scale. We also aimed at identifying drugs that are potentially amenable for individualization of treatments based on knowledge about structural variation in the genes encoding the...

  18. The cia Operon of Streptococcus mutans Encodes a Unique Component Required for Calcium-Mediated Autoregulation

    OpenAIRE

    He, Xuesong; Wu, Chenggang; Yarbrough, Daniel; Sim, Lucy; Niu, Guoqing; Merritt, Justin; Shi, Wenyuan; Qi, Fengxia

    2008-01-01

    Streptococcus mutans is a primary pathogen for dental caries in humans. CiaR and CiaH of S. mutans comprise a two-component signal transduction system (TCS) involved in regulating various virulent factors. However, the signal that triggers the CiaRH response remains unknown. In this study, we show that calcium is a signal for regulation of the ciaRH operon, and that a double-glycine-containing small peptide encoded within the ciaRH operon (renamed ciaX) mediates this regulation. CiaX contains...

  19. Characterization of transcript processing of the gene encoding precerebellin-1.

    Science.gov (United States)

    Kavety, B; Morgan, J I

    1998-12-10

    Precerebellin-1 (Cbln1) is a cerebellum-specific protein that shares significant sequence identity with the globular domains of the complement components C1qA, B and C, suggesting some common aspects of function and/or structure. As the C1q complex is composed of heterotrimers of C1qA, B and C it was hypothesized that multiple precerebellins may exist in a ternary complex. Northern blotting for cbln1 revealed multiple bands that could represent further family members or alternatively spliced variants. To discriminate these alternatives, probes derived from different regions of the cbln1 gene were used to identify and clone the transcripts detected on Northern blots. Four independent transcripts were repeatedly cloned from an adult mouse cerebellum cDNA library. Upon sequencing, all of these clones were found to be derived from the cbln1 gene and no additional precerebellin-related genes were isolated. Moreover, these clones accounted for the four cbln1-hybridizing bands (1.9, 2. 2, 3.2 and 5.5 kb) detected on Northern blots of adult cerebellum RNA. With one possible exception, these clones were all derived through alterations in the 3'-untranslated region (3'-UTR) of cbln1 that did not affect the coding sequence. This was achieved by the use of two polyadenylation sites and alternative (non-canonical) splicing in the 3'-UTR. Some additional variation in mRNA structure is provided by the use of alternative transcription start sites in cbln1. The possible significance of this level of diversity in the 3'-UTR is discussed.

  20. Species-specific duplications of NBS-encoding genes in Chinese chestnut (Castanea mollissima)

    Science.gov (United States)

    Zhong, Yan; Li, Yingjun; Huang, Kaihui; Cheng, Zong-Ming

    2015-01-01

    The disease resistance (R) genes play an important role in protecting plants from infection by diverse pathogens in the environment. The nucleotide-binding site (NBS)-leucine-rich repeat (LRR) class of genes is one of the largest R gene families. Chinese chestnut (Castanea mollissima) is resistant to Chestnut Blight Disease, but relatively little is known about the resistance mechanism. We identified 519 NBS-encoding genes, including 374 NBS-LRR genes and 145 NBS-only genes. The majority of Ka/Ks were less than 1, suggesting the purifying selection operated during the evolutionary history of NBS-encoding genes. A minority (4/34) of Ka/Ks in non-TIR gene families were greater than 1, showing that some genes were under positive selection pressure. Furthermore, Ks peaked at a range of 0.4 to 0.5, indicating that ancient duplications arose during the evolution. The relationship between Ka/Ks and Ks indicated greater selective pressure on the newer and older genes with the critical value of Ks = 0.4–0.5. Notably, species-specific duplications were detected in NBS-encoding genes. In addition, the group of RPW8-NBS-encoding genes clustered together as an independent clade located at a relatively basal position in the phylogenetic tree. Many cis-acting elements related to plant defense responses were detected in promoters of NBS-encoding genes. PMID:26559332

  1. Phylogenetic and evolutionary analysis of NBS-encoding genes in Rutaceae fruit crops.

    Science.gov (United States)

    Xu, Qiang; Biswas, Manosh Kumar; Lan, Hong; Zeng, Wenfang; Liu, Chaoyang; Xu, Jidi; Deng, Xiuxin

    2011-02-01

    The nucleotide-binding site leucine-rich repeat (NBS-LRR) genes are the largest class of disease resistance genes in plants. However, our understanding of the evolution of NBS-LRR genes in Rutaceae fruit crops is rather limited. We report an evolutionary study of 103 NBS-encoding genes isolated from Poncirus trifoliata (trifoliate orange), Citrus reticulata (tangerine) and their F(1) progeny. In all, 58 of the sequences contained a continuous open reading frame. Phylogenetic analysis classified the 58 NBS genes into nine clades, eight of which were genus specific. This was taken to imply that most of the ancestors of these NBS genes evolved after the genus split. The motif pattern of the 58 NBS-encoding genes was consistent with their phylogenetic profile. An extended phylogenetic analysis, incorporating citrus NBS genes from the public database, classified 95 citrus NBS genes into six clades, half of which were genus specific. RFLP analysis showed that citrus NBS-encoding genes have been evolving rapidly, and that they are unstable when passed through an intergeneric cross. Of 32 NBS-encoding genes tracked by gene-specific PCR, 24 showed segregation distortion among a set of 94 F(1) individuals. This study provides new insight into the evolution of Rutaceae NBS genes and their behaviour following an intergeneric cross.

  2. Hypoxia-inducible genes encoding small EF-hand proteins in rice and tomato.

    Science.gov (United States)

    Otsuka, Chie; Minami, Ikuko; Oda, Kenji

    2010-01-01

    Rice has evolved metabolic and morphological adaptations to low-oxygen stress to grow in submerged paddy fields. To characterize the molecular components that mediate the response to hypoxia in rice, we identified low-oxygen stress early response genes by microarray analysis. Among the highly responsive genes, five genes, OsHREF1 to OsHREF5, shared strong homology. They encoded small proteins harboring two EF-hands, typical Ca(2+)-binding motifs. Homologous genes were found in many land plants, including SlHREF in tomato, which is also strongly induced by hypoxia. SlHREF induction was detected in both roots and shoots of tomato plants under hypoxia. With the exception of OsHREF5, OsHREF expression was unaffected by drought, salinity, cold, or osmotic stress. Fluorescent signals of green fluorescent protein-fused OsHREFs were detected in the cytosol and nucleus. Ruthenium red, an inhibitor of intracellular Ca(2+) release, repressed induction of OsHREF1-4 under hypoxia. The HREFs may be related to the Ca(2+) response to hypoxia.

  3. Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations.

    Directory of Open Access Journals (Sweden)

    Bryan D Moyer

    Full Text Available BACKGROUND: Using fungiform (FG and circumvallate (CV taste buds isolated by laser capture microdissection and analyzed using gene arrays, we previously constructed a comprehensive database of gene expression in primates, which revealed over 2,300 taste bud-associated genes. Bioinformatics analyses identified hundreds of genes predicted to encode multi-transmembrane domain proteins with no previous association with taste function. A first step in elucidating the roles these gene products play in gustation is to identify the specific taste cell types in which they are expressed. METHODOLOGY/PRINCIPAL FINDINGS: Using double label in situ hybridization analyses, we identified seven new genes expressed in specific taste cell types, including sweet, bitter, and umami cells (TRPM5-positive, sour cells (PKD2L1-positive, as well as other taste cell populations. Transmembrane protein 44 (TMEM44, a protein with seven predicted transmembrane domains with no homology to GPCRs, is expressed in a TRPM5-negative and PKD2L1-negative population that is enriched in the bottom portion of taste buds and may represent developmentally immature taste cells. Calcium homeostasis modulator 1 (CALHM1, a component of a novel calcium channel, along with family members CALHM2 and CALHM3; multiple C2 domains; transmembrane 1 (MCTP1, a calcium-binding transmembrane protein; and anoctamin 7 (ANO7, a member of the recently identified calcium-gated chloride channel family, are all expressed in TRPM5 cells. These proteins may modulate and effect calcium signalling stemming from sweet, bitter, and umami receptor activation. Synaptic vesicle glycoprotein 2B (SV2B, a regulator of synaptic vesicle exocytosis, is expressed in PKD2L1 cells, suggesting that this taste cell population transmits tastant information to gustatory afferent nerve fibers via exocytic neurotransmitter release. CONCLUSIONS/SIGNIFICANCE: Identification of genes encoding multi-transmembrane domain proteins

  4. The fas operon of Rhodococcus fascians encodes new genes required for efficient fasciation of host plants.

    Science.gov (United States)

    Crespi, M; Vereecke, D; Temmerman, W; Van Montagu, M; Desomer, J

    1994-01-01

    Three virulence loci (fas, att, and hyp) of Rhodococcus fascians D188 have been identified on a 200-kb conjugative linear plasmid (pFiD188). The fas locus was delimited to a 6.5-kb DNA fragment by insertion mutagenesis, single homologous disruptive recombination, and in trans complementation of different avirulent insertion mutants. The locus is arranged as a large operon containing six open reading frames whose expression is specifically induced during the interaction with host plants. One predicted protein is homologous to P-450 cytochromes from actinomycetes. The putative ferredoxin component is of a novel type containing additional domains homologous to transketolases from chemoautotrophic, photosynthetic, and methylotrophic microorganisms. Genetic analysis revealed that fas encodes, in addition to the previously identified ipt, at least two new genes that are involved in fasciation development, one of which is only required on older tobacco plants. PMID:8169198

  5. Surfactant Protein-D-Encoding Gene Variant Polymorphisms Are Linked to Respiratory Outcome in Premature Infants

    DEFF Research Database (Denmark)

    Sorensen, Grith Lykke; Dahl, Marianne; Tan, Qihua

    2014-01-01

    OBJECTIVE: Associations between the genetic variation within or downstream of the surfactant protein-D-encoding gene (SFTPD), which encodes the collectin surfactant protein-D (SP-D) and may lead to respiratory distress syndrome or bronchopulmonary dysplasia, recently were reported. Our aim was to...

  6. Identification of Genes Encoding the Folate- and Thiamine-Binding Membrane Proteins in Firmicutes

    NARCIS (Netherlands)

    Eudes, Aymerick; Erkens, Guus B.; Slotboom, Dirk J.; Rodionov, Dmitry A.; Naponelli, Valeria; Hanson, Andrew D.

    2008-01-01

    Genes encoding high-affinity folate- and thiamine-binding proteins (FolT, ThiT) were identified in the Lactobacillus casei genome, expressed in Lactococcus lactis, and functionally characterized. Similar genes occur in many Firmicutes, sometimes next to folate or thiamine salvage genes. Most thiT ge

  7. Identification of Genes Encoding the Folate- and Thiamine-Binding Membrane Proteins in Firmicutes

    NARCIS (Netherlands)

    Eudes, Aymerick; Erkens, Guus B.; Slotboom, Dirk J.; Rodionov, Dmitry A.; Naponelli, Valeria; Hanson, Andrew D.

    2008-01-01

    Genes encoding high-affinity folate- and thiamine-binding proteins (FolT, ThiT) were identified in the Lactobacillus casei genome, expressed in Lactococcus lactis, and functionally characterized. Similar genes occur in many Firmicutes, sometimes next to folate or thiamine salvage genes. Most thiT ge

  8. The gusBC genes of Escherichia coli encode a glucuronide transport system

    NARCIS (Netherlands)

    Liang, WJ; Wilson, KJ; Xie, H; Knol, J; Suzuki, S; Rutherford, NG; Henderson, PJF; Jefferson, RA

    2005-01-01

    Two genes, gusB and gusC, from a natural fecal isolate of Escherichia coli are shown to encode proteins responsible for transport of beta-glucuronides with synthetic [C-14] phenyl-l-thio-beta-D-glucuronide as the substrate. These genes are located in the gus operon downstream of the gusA gene on the

  9. Enterotoxin-encoding genes in Staphylococcus spp. from bulk goat milk.

    Science.gov (United States)

    Lyra, Daniele G; Sousa, Francisca G C; Borges, Maria F; Givisiez, Patrícia E N; Queiroga, Rita C R E; Souza, Evandro L; Gebreyes, Wondwossen A; Oliveira, Celso J B

    2013-02-01

    Although Staphylococcus aureus has been implicated as the main Staphylococcus species causing human food poisoning, recent studies have shown that coagulase-negative Staphylococcus could also harbor enterotoxin-encoding genes. Such organisms are often present in goat milk and are the most important mastitis-causing agents. Therefore, this study aimed to investigate the occurrence of enterotoxin-encoding genes among coagulase-positive (CoPS) and coagulase-negative (CoNS) staphylococci isolated from raw goat milk produced in the semi-arid region of Paraiba, the most important region for goat milk production in Brazil. Enterotoxin-encoding genes were screened in 74 staphylococci isolates (30 CoPS and 44 CoNS) by polymerase chain reaction targeting the genes sea, seb, sec, sed, see, seg, seh, and sei. Enterotoxin-encoding genes were found in nine (12.2%) isolates, and four different genes (sea, sec, seg, and sei) were identified amongst the isolates. The most frequent genes were seg and sei, which were often found simultaneously in 44.5% of the isolates. The gene sec was the most frequent among the classical genes, and sea was found only in one isolate. All CoPS isolates (n=7) harboring enterotoxigenic genes were identified as S. aureus. The two coagulase-negative isolates were S. haemolyticus and S. hominis subsp. hominis and they harbored sei and sec genes, respectively. A higher frequency of enterotoxin-encoding genes was observed amongst CoPS (23.3%) than CoNS (4.5%) isolates (penterotoxin-encoding genes were detected in some isolates.

  10. In silicio search for genes encoding peroxisomal proteins in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kal, A J; Hettema, E H; van den Berg, M; Koerkamp, M G; van Ijlst, L; Distel, B; Tabak, H F

    2000-01-01

    The biogenesis of peroxisomes involves the synthesis of new proteins that after, completion of translation, are targeted to the organelle by virtue of peroxisomal targeting signals (PTS). Two types of PTSs have been well characterized for import of matrix proteins (PTS1 and PTS2). Induction of the genes encoding these matrix proteins takes place in oleate-containing medium and is mediated via an oleate response element (ORE) present in the region preceding these genes. The authors have searched the yeast genome for OREs preceding open reading frames (ORFs), and for ORFs that contain either a PTS1 or PTS2. Of the ORFs containing an ORE, as well as either a PTS1 or a PTS2, many were known to encode bona fide peroxisomal matrix proteins. In addition, candidate genes were identified as encoding putative new peroxisomal proteins. For one case, subcellular location studies validated the in silicio prediction. This gene encodes a new peroxisomal thioesterase.

  11. The presence of two S-layer-protein-encoding genes is conserved among species related to Lactobacillus acidophilus

    NARCIS (Netherlands)

    Boot, H.J.; Kolen, C.P.A.M.; Pot, B.; Kersters, K.; Pouwels, P.H.

    1996-01-01

    Previously we have shown that the type strain of Lactobacillus acidophilus possesses two S-protein-encoding genes, one of which is silent, on a chromosomal segment of 6 kb. The S-protein-encoding gene in the expression site can be exchanged for the silent S-protein-encoding gene by inversion of this

  12. The presence of two S-layer-protein-encoding genes is conserved among species related to Lactobacillus acidophilus

    NARCIS (Netherlands)

    Boot, H.J.; Kolen, C.P.A.M.; Pot, B.; Kersters, K.; Pouwels, P.H.

    1996-01-01

    Previously we have shown that the type strain of Lactobacillus acidophilus possesses two S-protein-encoding genes, one of which is silent, on a chromosomal segment of 6 kb. The S-protein-encoding gene in the expression site can be exchanged for the silent S-protein-encoding gene by inversion of this

  13. Molecular quantification of genes encoding for green-fluorescent proteins

    DEFF Research Database (Denmark)

    Felske, A; Vandieken, V; Pauling, B V

    2003-01-01

    A quantitative PCR approach is presented to analyze the amount of recombinant green fluorescent protein (gfp) genes in environmental DNA samples. The quantification assay is a combination of specific PCR amplification and temperature gradient gel electrophoresis (TGGE). Gene quantification is pro...

  14. Antifungal activity of a virally encoded gene in transgenic wheat.

    Science.gov (United States)

    Clausen, M; Kräuter, R; Schachermayr, G; Potrykus, I; Sautter, C

    2000-04-01

    The cDNA encoding the antifungal protein KP4 from Ustilago maydis-infecting virus was inserted behind the ubiquitin promoter of maize and genetically transferred to wheat varieties particularly susceptible to stinking smut (Tilletia tritici) disease. The transgene was integrated and inherited over several generations. Of seven transgenic lines, three showed antifungal activity against U. maydis. The antifungal activity correlated with the presence of the KP4 transgene. KP4-transgenic, soil-grown wheat plants exhibit increased endogenous resistance against stinking smut.

  15. Occurrence of enterotoxin-encoding genes in Staphylococcus aureus causing mastitis in lactating goats

    Directory of Open Access Journals (Sweden)

    Daneelly H. Ferreira

    2014-07-01

    Full Text Available Staphylococcal enterotoxins are the leading cause of human food poisoning worldwide. Staphylococcus spp. are the main mastitis-causing agents in goats and frequently found in high counts in goat milk. This study aimed to investigate the occurrence of enterotoxin-encoding genes in Staphylococcus aureus associated with mastitis in lactating goats in Paraiba State, Brazil. Milk samples (n=2024 were collected from 393 farms. Staphylococcus aureus was isolated in 55 milk samples. Classical (sea, seb, sec, sed, see and novel (seg, seh, sei enterotoxin-encoding genes were investigated by means of polymerase chain reaction (PCR. From thirty-six tested isolates, enterotoxin-encoding genes were detected in 7 (19.5% S. aureus. The gene encoding enterotoxin C (seC was identified in six isolates, while seiwas observed in only one isolate. The genes sea, seb, sed, see, seg and seh were not observed amongst the S. aureus investigated in this study. In summary, S. aureus causing mastitis in goats can harbor enterotoxin-encoding genes and seC was the most frequent gene observed amongst the investigated isolates. This finding is important for surveillance purposes, since enterotoxin C should be investigated in human staphylococcal food poisoning outbreaks caused by consumption of goat milk and dairy products.

  16. Characterization of a Soil Metagenome-Derived Gene Encoding Wax Ester Synthase.

    Science.gov (United States)

    Kim, Nam Hee; Park, Ji-Hye; Chung, Eunsook; So, Hyun-Ah; Lee, Myung Hwan; Kim, Jin-Cheol; Hwang, Eul Chul; Lee, Seon-Woo

    2016-02-01

    A soil metagenome contains the genomes of all microbes included in a soil sample, including those that cannot be cultured. In this study, soil metagenome libraries were searched for microbial genes exhibiting lipolytic activity and those involved in potential lipid metabolism that could yield valuable products in microorganisms. One of the subclones derived from the original fosmid clone, pELP120, was selected for further analysis. A subclone spanning a 3.3 kb DNA fragment was found to encode for lipase/esterase and contained an additional partial open reading frame encoding a wax ester synthase (WES) motif. Consequently, both pELP120 and the full length of the gene potentially encoding WES were sequenced. To determine if the wes gene encoded a functioning WES protein that produced wax esters, gas chromatography-mass spectroscopy was conducted using ethyl acetate extract from an Escherichia coli strain that expressed the wes gene and was grown with hexadecanol. The ethyl acetate extract from this E. coli strain did indeed produce wax ester compounds of various carbon-chain lengths. DNA sequence analysis of the full-length gene revealed that the gene cluster may be derived from a member of Proteobacteria, whereas the clone does not contain any clear phylogenetic markers. These results suggest that the wes gene discovered in this study encodes a functional protein in E. coli and produces wax esters through a heterologous expression system.

  17. EWS and FUS bind a subset of transcribed genes encoding proteins enriched in RNA regulatory functions

    DEFF Research Database (Denmark)

    Luo, Yonglun; Friis, Jenny Blechingberg; Fernandes, Ana Miguel;

    2015-01-01

    IP-seq). Our results show that FUS and EWS bind to a subset of actively transcribed genes, that binding often is downstream the poly(A)-signal, and that binding overlaps with RNA polymerase II. Functional examinations of selected target genes identified that FUS and EWS can regulate gene expression...... at different levels. Gene Ontology analyses showed that FUS and EWS target genes preferentially encode proteins involved in regulatory processes at the RNA level. Conclusions The presented results yield new insights into gene interactions of EWS and FUS and have identified a set of FUS and EWS target genes...

  18. Organization and expression of two tandemly oriented genes encoding ribulosebisphosphate carboxylase/oxygenase activase in barley.

    Science.gov (United States)

    Rundle, S J; Zielinski, R E

    1991-03-15

    We have isolated and structurally characterized genomic DNA and cDNA sequences encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rbu-P2 carboxylase) activase from barley (Hordeum vulgare L.). Three Rbu-P2 carboxylase activase (Rca) polypeptides are encoded in the barley genome by two closely linked, tandemly oriented nuclear genes (RcaA and RcaB); cDNAs encoding each of the three Rbu-P2 carboxylase activase polypeptides were isolated from cDNA libraries of barley leaf mRNA. RcaA produces two mRNAs, which encode polypeptides of 42 and 46 kDa, by an alternative splicing mechanism identical to that previously reported for spinach and Arabidopsis Rca genes (Werneke, J.M., Chatfield, J.M., and Ogren, W. L. (1989) Plant Cell 1, 815-825). RcaB is transcribed to produce a single mRNA, which encodes a mature peptide of 42 kDa. Genomic Southern blots indicate that RcaA and RcaB represent the entire Rbu-P2 carboxylase activase gene family in barley. The genes share 80% nucleotide sequence identity, and the 42-kDa polypeptides encoded by RcaA and RcaB share 87% amino acid sequence identity. Coding regions of the two barley Rca genes are separated by 1 kilobase pair of flanking DNA. DNA sequence motifs similar to those thought to control light-regulated gene expression in other nuclear-encoded plastid polypeptide genes are found at the 5' end of both barley Rca genes. Probes specific to three mRNAs were used to determine the relative contribution each species makes to the total Rca mRNA pool.

  19. Phylogenetic Analysis of Homologous Proteins Encoded by UL2 and UL23 genes of Herpesviridae

    Institute of Scientific and Technical Information of China (English)

    Long-ding LIU; Wen-juan WU; Min HONG; Hai-jing SHI; Shao-hui MA; Jing-jing WANG; Hong-ling ZHAO; Yun LIAO; Qi-han LI

    2007-01-01

    The proteins encoded by the Herpesviridae β-gene play a critical role in the replication stage of the virus. In this paper, phylogenetic analyses provided evidence that someβ-gene products, such as UL2 and UL23 from HSV1, have their homologous genes in its family, and also exist in prokaryotic organisms, indicating that these viruses appear to have been assembled over evolutionary time by numerous independent events of horizontal gene transfer.

  20. Organization and control of genes encoding catabolic enzymes in Rhizobiaceae

    Energy Technology Data Exchange (ETDEWEB)

    Parke, D.; Ornston, L.N.

    1993-03-01

    Rhizobiaceae, a diverse bacterial group comprising rhizobia and agrobacteria, symbiotic partnership with plants form nitrogen-fixing nodules on plant roots or are plant pathogens. Phenolic compounds produced by plants serve as inducers of rhizobial nodulation genes and agrobacterial virulence genes reflect their capacity to utilize numerous aromatics, including phenolics, as a source of carbon and energy. In many microbes the aerobic degradation of numerous aromatic compounds to tricarboxylic acid cycle intermediates is achieved by the [beta]-ketoadipate pathway. Our initial studies focused on the organization and regulation of the ketoadipate pathway in Agrobacterium tumefaciens. We have cloned, identified and characterized a novel regulatory gene that modulates expression of an adjacent pca (protocatechuate) structural gene, pcaD. Regulation of pcaD is mediated by the regulatory gene, termed pcaQ, in concert with the intermediate [beta]-carboxy-cis,cis-muconate. [beta]-carboxy-cis,cismuconate is an unstable chemical, not marketed commercially, and it is unlikely to permeate Escherichia coli cells if supplied in media. Because of these factors, characterization of pcaQ in E. coli required an in vivo delivery system for [beta]-carboxycis,cis-muconate. This was accomplished by designing an E. coli strain that expressed an Acinetobacter calcoaceticus pcaA gene for conversion of protocatechuate to [beta]-carboxy-cis,cis-muconate.

  1. Flagellin Encoded in Gene-Based Vector Vaccines Is a Route-Dependent Immune Adjuvant.

    Directory of Open Access Journals (Sweden)

    Hamada F Rady

    Full Text Available Flagellin has been tested as a protein-based vaccine adjuvant, with the majority of studies focused on antibody responses. Here, we evaluated the adjuvant activity of flagellin for both cellular and humoral immune responses in BALB/c mice in the setting of gene-based immunization, and have made several novel observations. DNA vaccines and adenovirus (Ad vectors were engineered to encode mycobacterial protein Ag85B, with or without flagellin of Salmonella typhimurium (FliC. DNA-encoded flagellin given IM enhanced splenic CD4+ and CD8+ T cell responses to co-expressed vaccine antigen, including memory responses. Boosting either IM or intranasally with Ad vectors expressing Ag85B without flagellin led to durable enhancement of Ag85B-specific antibody and CD4+ and CD8+ T cell responses in both spleen and pulmonary tissues, correlating with significantly improved protection against challenge with pathogenic aerosolized M. tuberculosis. However, inclusion of flagellin in both DNA prime and Ad booster vaccines induced localized pulmonary inflammation and transient weight loss, with route-dependent effects on vaccine-induced T cell immunity. The latter included marked reductions in levels of mucosal CD4+ and CD8+ T cell responses following IM DNA/IN Ad mucosal prime-boosting, although antibody responses were not diminished. These findings indicate that flagellin has differential and route-dependent adjuvant activity when included as a component of systemic or mucosally-delivered gene-based prime-boost immunization. Clear adjuvant activity for both T and B cell responses was observed when flagellin was included in the DNA priming vaccine, but side effects occurred when given in an Ad boosting vector, particularly via the pulmonary route.

  2. Flagellin Encoded in Gene-Based Vector Vaccines Is a Route-Dependent Immune Adjuvant.

    Science.gov (United States)

    Rady, Hamada F; Dai, Guixiang; Huang, Weitao; Shellito, Judd E; Ramsay, Alistair J

    2016-01-01

    Flagellin has been tested as a protein-based vaccine adjuvant, with the majority of studies focused on antibody responses. Here, we evaluated the adjuvant activity of flagellin for both cellular and humoral immune responses in BALB/c mice in the setting of gene-based immunization, and have made several novel observations. DNA vaccines and adenovirus (Ad) vectors were engineered to encode mycobacterial protein Ag85B, with or without flagellin of Salmonella typhimurium (FliC). DNA-encoded flagellin given IM enhanced splenic CD4+ and CD8+ T cell responses to co-expressed vaccine antigen, including memory responses. Boosting either IM or intranasally with Ad vectors expressing Ag85B without flagellin led to durable enhancement of Ag85B-specific antibody and CD4+ and CD8+ T cell responses in both spleen and pulmonary tissues, correlating with significantly improved protection against challenge with pathogenic aerosolized M. tuberculosis. However, inclusion of flagellin in both DNA prime and Ad booster vaccines induced localized pulmonary inflammation and transient weight loss, with route-dependent effects on vaccine-induced T cell immunity. The latter included marked reductions in levels of mucosal CD4+ and CD8+ T cell responses following IM DNA/IN Ad mucosal prime-boosting, although antibody responses were not diminished. These findings indicate that flagellin has differential and route-dependent adjuvant activity when included as a component of systemic or mucosally-delivered gene-based prime-boost immunization. Clear adjuvant activity for both T and B cell responses was observed when flagellin was included in the DNA priming vaccine, but side effects occurred when given in an Ad boosting vector, particularly via the pulmonary route.

  3. How are exons encoding transmembrane sequences distributed in the exon-intron structure of genes?

    Science.gov (United States)

    Sawada, Ryusuke; Mitaku, Shigeki

    2011-01-01

    The exon-intron structure of eukaryotic genes raises a question about the distribution of transmembrane regions in membrane proteins. Were exons that encode transmembrane regions formed simply by inserting introns into preexisting genes or by some kind of exon shuffling? To answer this question, the exon-per-gene distribution was analyzed for all genes in 40 eukaryotic genomes with a particular focus on exons encoding transmembrane segments. In 21 higher multicellular eukaryotes, the percentage of multi-exon genes (those containing at least one intron) within all genes in a genome was high (>70%) and with a mean of 87%. When genes were grouped by the number of exons per gene in higher eukaryotes, good exponential distributions were obtained not only for all genes but also for the exons encoding transmembrane segments, leading to a constant ratio of membrane proteins independent of the exon-per-gene number. The positional distribution of transmembrane regions in single-pass membrane proteins showed that they are generally located in the amino or carboxyl terminal regions. This nonrandom distribution of transmembrane regions explains the constant ratio of membrane proteins to the exon-per-gene numbers because there are always two terminal (i.e., the amino and carboxyl) regions - independent of the length of sequences.

  4. The Schizosaccharomyces pombe mam1 gene encodes an ABC transporter mediating secretion of M-factor

    DEFF Research Database (Denmark)

    Christensen, P U; Davey, William John; Nielsen, O;

    1997-01-01

    In the fission yeast Schizosaccharomyces pombe, cells of opposite mating type communicate via diffusible peptide pheromones prior to mating. We have cloned the S. pombe mam1 gene, which encodes a 1336-amino acid protein belonging to the ATP-binding cassette (ABC) superfamily. The mam1 gene is onl...

  5. Positive selection in phytotoxic protein-encoding genes of Botrytis species

    NARCIS (Netherlands)

    Staats, M.; Baarlen, van P.; Schouten, A.; Kan, van J.A.L.; Bakker, F.T.

    2007-01-01

    Evolutionary patterns of sequence divergence were analyzed in genes from the fungal genus Botrytis (Ascomycota), encoding phytotoxic proteins homologous to a necrosis and ethylene-inducing protein from Fusarium oxysporum. Fragments of two paralogous genes (designated NEP1 and NEP2) were amplified

  6. Structure of the gene encoding phosphoribosylpyrophosphate synthetase (prsA>) in Salmonella typhimurium

    DEFF Research Database (Denmark)

    Bower, Stanley G.; Hove-Jensen, Bjarne; Switzer, Robert L.

    1988-01-01

    The Salmonella typhimurium gene prsA, which encodes phosphoribosylpyrophosphate synthetase, has been cloned, and the nucleotide sequence has been determined. The amino acid sequence derived from the S. typhimurium gene is 99% identical to the derived Escherichia coli sequence and 47% identical to...

  7. Escherichia coli rpiA> gene encoding ribose phosphate isomerase A

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Maigaard, Marianne

    1993-01-01

    The rpiA gene encoding ribose phosphate isomerase A was cloned from phage 1A2(471) of the Kohara gene library. Subcloning, restriction, and complementation analyses revealed an 1,800-bp SspI-generated DNA fragment that contained the entire control and coding sequences. This DNA fragment was seque...

  8. Escherichia coli rpiA gene encoding ribose phosphate isomerase A

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Maigaard, Marianne

    1993-01-01

    The rpiA gene encoding ribose phosphate isomerase A was cloned from phage 1A2(471) of the Kohara gene library. Subcloning, restriction, and complementation analyses revealed an 1,800-bp SspI-generated DNA fragment that contained the entire control and coding sequences. This DNA fragment...

  9. Chromosomal location of the gene encoding phosphoribosylpyrophosphate synthetase in Escherichia coli

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    1983-01-01

    by conjugation. Transductional analysis of the prs region established the gene order as purB-fadR-dadR-tre-pth-prs-hemA-trp. Two additional mutations were identified in the mutant: one in gsk, the gene encoding guanosine kinase, and one in lon, conferring a mucoid colony morphology. The contribution of each...

  10. Identification, mapping, and cloning of the gene encoding cyanase in Escherichia coli K-12.

    Science.gov (United States)

    Sung, Y C; Parsell, D; Anderson, P M; Fuchs, J A

    1987-06-01

    The gene in Escherichia coli for cyanase, designated cynS, was localized to a BglII restriction site approximately 1.7 kilobases from the lacA end of the lac operon. The gene was cloned into the pUC13 vector. Maxicell analysis of plasmid-encoded proteins confirmed that the BglII site is in the region encoding the structural gene for cyanase. Cyanase-deficient strains had increased sensitivity to cyanate and were not able to use cyanate as a nitrogen source.

  11. Identification, mapping, and cloning of the gene encoding cyanase in Escherichia coli K-12.

    OpenAIRE

    Sung, Y C; Parsell, D; Anderson, P. M.; Fuchs, J A

    1987-01-01

    The gene in Escherichia coli for cyanase, designated cynS, was localized to a BglII restriction site approximately 1.7 kilobases from the lacA end of the lac operon. The gene was cloned into the pUC13 vector. Maxicell analysis of plasmid-encoded proteins confirmed that the BglII site is in the region encoding the structural gene for cyanase. Cyanase-deficient strains had increased sensitivity to cyanate and were not able to use cyanate as a nitrogen source.

  12. Characterization of the gene encoding a fibrinogen-related protein expressed in Crassostrea gigas hemocytes.

    Science.gov (United States)

    Skazina, M A; Gorbushin, A M

    2016-07-01

    Four exons of the CgFrep1 gene (3333 bp long) encode a putative fibrinogen-related protein (324 aa) bearing a single C-terminal FBG domain. Transcripts of the gene obtained from hemocytes of different Pacific oysters show prominent individual variation based on SNP and indels of tandem repeats resulted in polymorphism of N-terminus of the putative CgFrep1 polypeptide. The polypeptide chain bears N-terminal coiled-coil region potentially acting as inter-subunit interface in the protein oligomerization. It is suggested that CgFrep1 gene encodes the oligomeric lectin composed of at least two subunits.

  13. Mutations in CTC1, encoding the CTS telomere maintenance complex component 1, cause cerebroretinal microangiopathy with calcifications and cysts.

    Science.gov (United States)

    Polvi, Anne; Linnankivi, Tarja; Kivelä, Tero; Herva, Riitta; Keating, James P; Mäkitie, Outi; Pareyson, Davide; Vainionpää, Leena; Lahtinen, Jenni; Hovatta, Iiris; Pihko, Helena; Lehesjoki, Anna-Elina

    2012-03-09

    Cerebroretinal microangiopathy with calcifications and cysts (CRMCC) is a rare multisystem disorder characterized by extensive intracranial calcifications and cysts, leukoencephalopathy, and retinal vascular abnormalities. Additional features include poor growth, skeletal and hematological abnormalities, and recurrent gastrointestinal bleedings. Autosomal-recessive inheritance has been postulated. The pathogenesis of CRMCC is unknown, but its phenotype has key similarities with Revesz syndrome, which is caused by mutations in TINF2, a gene encoding a member of the telomere protecting shelterin complex. After a whole-exome sequencing approach in four unrelated individuals with CRMCC, we observed four recessively inherited compound heterozygous mutations in CTC1, which encodes the CTS telomere maintenance complex component 1. Sanger sequencing revealed seven more compound heterozygous mutations in eight more unrelated affected individuals. Two individuals who displayed late-onset cerebral findings, a normal fundus appearance, and no systemic findings did not have CTC1 mutations, implying that systemic findings are an important indication for CTC1 sequencing. Of the 11 mutations identified, four were missense, one was nonsense, two resulted in in-frame amino acid deletions, and four were short frameshift-creating deletions. All but two affected individuals were compound heterozygous for a missense mutation and a frameshift or nonsense mutation. No individuals with two frameshift or nonsense mutations were identified, which implies that severe disturbance of CTC1 function from both alleles might not be compatible with survival. Our preliminary functional experiments did not show evidence of severely affected telomere integrity in the affected individuals. Therefore, determining the underlying pathomechanisms associated with deficient CTC1 function will require further studies.

  14. Identification and characterization of the genes encoding the core histones and histone variants of Neurospora crassa.

    OpenAIRE

    Hays, Shan M.; Swanson, Johanna; Selker, Eric U.

    2002-01-01

    We have identified and characterized the complete complement of genes encoding the core histones of Neurospora crassa. In addition to the previously identified pair of genes that encode histones H3 and H4 (hH3 and hH4-1), we identified a second histone H4 gene (hH4-2), a divergently transcribed pair of genes that encode H2A and H2B (hH2A and hH2B), a homolog of the F/Z family of H2A variants (hH2Az), a homolog of the H3 variant CSE4 from Saccharomyces cerevisiae (hH3v), and a highly diverged ...

  15. Identification and characterization of the genes encoding the core histones and histone variants of Neurospora crassa.

    OpenAIRE

    Hays, Shan M.; Swanson, Johanna; Selker, Eric U.

    2002-01-01

    We have identified and characterized the complete complement of genes encoding the core histones of Neurospora crassa. In addition to the previously identified pair of genes that encode histones H3 and H4 (hH3 and hH4-1), we identified a second histone H4 gene (hH4-2), a divergently transcribed pair of genes that encode H2A and H2B (hH2A and hH2B), a homolog of the F/Z family of H2A variants (hH2Az), a homolog of the H3 variant CSE4 from Saccharomyces cerevisiae (hH3v), and a highly diverged ...

  16. Molecular evolution of genes encoding ribonucleases in ruminant species

    NARCIS (Netherlands)

    Confalone, E; Beintema, JJ; Sasso, MP; Carsana, A; Palmieri, M; Vento, MT; Furia, A

    1995-01-01

    Phylogenetic analysis, based on the primary structures of mammalian pancreatic-type ribonucleases, indicated that gene duplication events, which occurred during the evolution of ancestral ruminants, gave rise to the three paralogous enzymes present in the bovine species. Herein we report data that d

  17. Molecular evolution of genes encoding ribonucleases in ruminant species

    NARCIS (Netherlands)

    Confalone, E; Beintema, JJ; Sasso, MP; Carsana, A; Palmieri, M; Vento, MT; Furia, A

    1995-01-01

    Phylogenetic analysis, based on the primary structures of mammalian pancreatic-type ribonucleases, indicated that gene duplication events, which occurred during the evolution of ancestral ruminants, gave rise to the three paralogous enzymes present in the bovine species. Herein we report data that

  18. Transcriptional modulation of genes encoding nitrate reductase in ...

    African Journals Online (AJOL)

    2016-10-26

    Oct 26, 2016 ... Light is known to induce the expression of the NR genes. (Tischner, 2000; Lillo et .... diluted 1:10. The reactions were performed in a thermocycler model ..... Effects of long-term soil drought on photosynthesis and carbohydrate ...

  19. Gene Cluster Encoding Cholate Catabolism in Rhodococcus spp.

    NARCIS (Netherlands)

    Mohn, William W.; Wilbrink, Maarten H.; Casabon, Israel; Stewart, Gordon R.; Liu, Jie; van der Geize, Robert; Eltis, Lindsay D.

    2012-01-01

    Bile acids are highly abundant steroids with important functions in vertebrate digestion. Their catabolism by bacteria is an important component of the carbon cycle, contributes to gut ecology, and has potential commercial applications. We found that Rhodococcus jostii RHA1 grows well on cholate, as

  20. Identification of sugarcane cDNAs encoding components of the cell cycle machinery

    Directory of Open Access Journals (Sweden)

    Andrietta Mírian Helene

    2001-01-01

    Full Text Available Data on cell cycle research in plants indicate that the majority of the fundamental regulators are conserved with other eukaryotes, but the controlling mechanisms imposed on them, and their integration into growth and development is unique to plants. To date, most studies on cell division have been conducted in dicot plants. However, monocot plants have distinct developmental strategies that will affect the regulation of cell division at the meristems. In order to advance our understanding how cell division is integrated with the basic mechanisms controlling cell growth and development in monocots, we took advantage of the sugarcane EST Project (Sucest to carry an exhaustive data mining to identify components of the cell cycle machinery. Results obtained include the description of distinct classes of cyclin-dependent kinases (CDKs; A, B, D, and H-type cyclins; CDK-interacting proteins, CDK-inhibitory and activating kinases, pRB and E2F transcription factors. Most sugarcane cell cycle genes seem to be member of multigene families. Like in dicot plants, CDKa transcription is not restricted to tissues with elevated meristematic activity, but the vast majority of CDKb-related ESTs are found in regions of high proliferation rates. Expression of CKI genes is far more abundant in regions of less cell division, notably in lateral buds. Shared expression patterns for a group of clusters was unraveled by transcriptional profiling, and we suggest that similar approaches could be used to identify genes that are part of the same regulatory network.

  1. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris.

    Science.gov (United States)

    Smith, Frances J D; Irvine, Alan D; Terron-Kwiatkowski, Ana; Sandilands, Aileen; Campbell, Linda E; Zhao, Yiwei; Liao, Haihui; Evans, Alan T; Goudie, David R; Lewis-Jones, Sue; Arseculeratne, Gehan; Munro, Colin S; Sergeant, Ann; O'Regan, Gráinne; Bale, Sherri J; Compton, John G; DiGiovanna, John J; Presland, Richard B; Fleckman, Philip; McLean, W H Irwin

    2006-03-01

    Ichthyosis vulgaris (OMIM 146700) is the most common inherited disorder of keratinization and one of the most frequent single-gene disorders in humans. The most widely cited incidence figure is 1 in 250 based on a survey of 6,051 healthy English schoolchildren. We have identified homozygous or compound heterozygous mutations R501X and 2282del4 in the gene encoding filaggrin (FLG) as the cause of moderate or severe ichthyosis vulgaris in 15 kindreds. In addition, these mutations are semidominant; heterozygotes show a very mild phenotype with incomplete penetrance. The mutations show a combined allele frequency of approximately 4% in populations of European ancestry, explaining the high incidence of ichthyosis vulgaris. Profilaggrin is the major protein of keratohyalin granules in the epidermis. During terminal differentiation, it is cleaved into multiple filaggrin peptides that aggregate keratin filaments. The resultant matrix is cross-linked to form a major component of the cornified cell envelope. We find that loss or reduction of this major structural protein leads to varying degrees of impaired keratinization.

  2. The you gene encodes an EGF-CUB protein essential for Hedgehog signaling in zebrafish.

    Directory of Open Access Journals (Sweden)

    Ian G Woods

    2005-03-01

    Full Text Available Hedgehog signaling is required for many aspects of development in vertebrates and invertebrates. Misregulation of the Hedgehog pathway causes developmental abnormalities and has been implicated in certain types of cancer. Large-scale genetic screens in zebrafish have identified a group of mutations, termed you-class mutations, that share common defects in somite shape and in most cases disrupt Hedgehog signaling. These mutant embryos exhibit U-shaped somites characteristic of defects in slow muscle development. In addition, Hedgehog pathway mutations disrupt spinal cord patterning. We report the positional cloning of you, one of the original you-class mutations, and show that it is required for Hedgehog signaling in the development of slow muscle and in the specification of ventral fates in the spinal cord. The you gene encodes a novel protein with conserved EGF and CUB domains and a secretory pathway signal sequence. Epistasis experiments support an extracellular role for You upstream of the Hedgehog response mechanism. Analysis of chimeras indicates that you mutant cells can appropriately respond to Hedgehog signaling in a wild-type environment. Additional chimera analysis indicates that wild-type you gene function is not required in axial Hedgehog-producing cells, suggesting that You is essential for transport or stability of Hedgehog signals in the extracellular environment. Our positional cloning and functional studies demonstrate that You is a novel extracellular component of the Hedgehog pathway in vertebrates.

  3. Absence of repellents in Ustilago maydis induces genes encoding small secreted proteins.

    Science.gov (United States)

    Teertstra, Wieke R; Krijgsheld, Pauline; Wösten, Han A B

    2011-08-01

    The rep1 gene of the maize pathogen Ustilago maydis encodes a pre-pro-protein that is processed in the secretory pathway into 11 peptides. These so-called repellents form amphipathic amyloid fibrils at the surface of aerial hyphae. A SG200 strain in which the rep1 gene is inactivated (∆rep1 strain) is affected in aerial hyphae formation. We here assessed changes in global gene expression as a consequence of the inactivation of the rep1 gene. Microarray analysis revealed that only 31 genes in the ∆rep1 SG200 strain had a fold change in expression of ≥2. Twenty-two of these genes were up-regulated and half of them encode small secreted proteins (SSPs) with unknown functions. Seven of the SSP genes and two other genes that are over-expressed in the ∆rep1 SG200 strain encode proteins that can be classified as secreted cysteine-rich proteins (SCRPs). Interestingly, most of the SCRPs are predicted to form amyloids. The SCRP gene um00792 showed the highest up-regulation in the ∆rep1 strain. Using GFP as a reporter, it was shown that this gene is over-expressed in the layer of hyphae at the medium-air interface. Taken together, it is concluded that inactivation of rep1 hardly affects the expression profile of U. maydis, despite the fact that the mutant strain has a strong reduced ability to form aerial hyphae.

  4. The CKH1/EER4 gene encoding a TAF12-like protein negatively regulates cytokinin sensitivity in Arabidopsis thaliana.

    Science.gov (United States)

    Kubo, Minoru; Furuta, Kaori; Demura, Taku; Fukuda, Hiroo; Liu, Yao-Guang; Shibata, Daisuke; Kakimoto, Tatsuo

    2011-04-01

    The recessive ckh1 (cytokinin hypersensitive 1) mutant of Arabidopsis thaliana shows hypersensitivity to cytokinins, which promote proliferation and greening of calli. The CKH1 gene encodes a protein resembling TAF12 (TATA BOX BINDING PROTEIN ASSOCIATED FACTOR 12), which is a component of transcription factor IID (TFIID)- and histone acetyltransferase-containing complexes in yeast and animals. Microarray analyses revealed that a substantially greater number of genes responded to a low level of cytokinins in the ckh1 mutant than in the wild type. However, expression of cytokinin primary response genes was not significantly affected by the ckh1 mutation. These results suggest that the CKH1 protein regulates a set of genes involved in late signaling processes governing a range of cytokinin responses, including cell proliferation and differentiation.

  5. A unique endoglucanase-encoding gene cloned from the phytopathogenic fungus Macrophomina phaseolina.

    OpenAIRE

    Wang, H; Jones, R W

    1995-01-01

    The deduced amino acid sequence derived from a Macrophomina phaseolina beta-1,4-endoglucanase-encoding gene revealed 48% identity (over 119 amino acids) with egl1 from the phytopathogen Pseudomonas solanacearum. Its similarity to saprophyte endoglucanases was not significant. Its minimum substrate size, unlike that of any known saprophyte endoglucanase, was cellopentaose. The unique characteristics of M. phaseolina egl1-encoded endoglucanase suggest that it is phytopathogen specific.

  6. A unique endoglucanase-encoding gene cloned from the phytopathogenic fungus Macrophomina phaseolina.

    Science.gov (United States)

    Wang, H; Jones, R W

    1995-05-01

    The deduced amino acid sequence derived from a Macrophomina phaseolina beta-1,4-endoglucanase-encoding gene revealed 48% identity (over 119 amino acids) with egl1 from the phytopathogen Pseudomonas solanacearum. Its similarity to saprophyte endoglucanases was not significant. Its minimum substrate size, unlike that of any known saprophyte endoglucanase, was cellopentaose. The unique characteristics of M. phaseolina egl1-encoded endoglucanase suggest that it is phytopathogen specific.

  7. Comparative differential gene expression analysis of nucleus-encoded proteins for Rafflesia cantleyi against Arabidopsis thaliana

    Science.gov (United States)

    Ng, Siuk-Mun; Lee, Xin-Wei; Wan, Kiew-Lian; Firdaus-Raih, Mohd

    2015-09-01

    Regulation of functional nucleus-encoded proteins targeting the plastidial functions was comparatively studied for a plant parasite, Rafflesia cantleyi versus a photosynthetic plant, Arabidopsis thaliana. This study involved two species of different feeding modes and different developmental stages. A total of 30 nucleus-encoded proteins were found to be differentially-regulated during two stages in the parasite; whereas 17 nucleus-encoded proteins were differentially-expressed during two developmental stages in Arabidopsis thaliana. One notable finding observed for the two plants was the identification of genes involved in the regulation of photosynthesis-related processes where these processes, as expected, seem to be present only in the autotroph.

  8. Cloning and expression of prion protein encoding gene of flounder ( Paralichthys olivaceus)

    Science.gov (United States)

    Zhang, Zhiwen; Sun, Xiuqin; Zhang, Jinxing; Zan, Jindong

    2008-02-01

    The prion protein (PrP) encoding gene of flounder ( Paralichthys olivaceus) was cloned. It was not interrupted by an intron. This gene has two promoters in its 5' upstream, indicating that its transcription may be intensive, and should have an important function. It was expressed in all 14 tissues tested, demonstrating that it is a house-keeping gene. Its expression in digestion and reproduction systems implies that the possible prions of fish may transfer horizontally.

  9. Transient receptor potential (TRP gene superfamily encoding cation channels

    Directory of Open Access Journals (Sweden)

    Pan Zan

    2011-01-01

    Full Text Available Abstract Transient receptor potential (TRP non-selective cation channels constitute a superfamily, which contains 28 different genes. In mammals, this superfamily is divided into six subfamilies based on differences in amino acid sequence homology between the different gene products. Proteins within a subfamily aggregate to form heteromeric or homomeric tetrameric configurations. These different groupings have very variable permeability ratios for calcium versus sodium ions. TRP expression is widely distributed in neuronal tissues, as well as a host of other tissues, including epithelial and endothelial cells. They are activated by environmental stresses that include tissue injury, changes in temperature, pH and osmolarity, as well as volatile chemicals, cytokines and plant compounds. Their activation induces, via intracellular calcium signalling, a host of responses, including stimulation of cell proliferation, migration, regulatory volume behaviour and the release of a host of cytokines. Their activation is greatly potentiated by phospholipase C (PLC activation mediated by coupled GTP-binding proteins and tyrosine receptors. In addition to their importance in maintaining tissue homeostasis, some of these responses may involve various underlying diseases. Given the wealth of literature describing the multiple roles of TRP in physiology in a very wide range of different mammalian tissues, this review limits itself to the literature describing the multiple roles of TRP channels in different ocular tissues. Accordingly, their importance to the corneal, trabecular meshwork, lens, ciliary muscle, retinal, microglial and retinal pigment epithelial physiology and pathology is reviewed.

  10. Structures of genes encoding TATA box-binding proteins from Trimeresurus gramineus and T. flavoviridis snakes.

    Science.gov (United States)

    Nakashima, K; Nobuhisa, I; Deshimaru, M; Ogawa, T; Shimohigashi, Y; Fukumaki, Y; Hattori, M; Sakaki, Y; Hattori, S; Ohno, M

    1995-01-23

    A cDNA encoding the Trimeresurus gramineus (Tg; green habu snake) TATA-box-binding protein (TgTBP) was cloned and sequenced. The cDNA encodes a 33-kDa protein with an extensive sequence similarity to those derived from other organisms, except for the N-terminal domain. Genes encoding TgTBP and Trimeresurus flavoviridis (Tf; habu snake) TBP (TfTBP) were isolated using a TgTBP cDNA and their nt sequences were determined. They are the first TBP genes entirely sequenced in higher animals. Both genes span over 15 kb and are constructed from eight exons and seven introns. Comparison of the loci of introns on the aligned amino-acid sequences of TBP from six organisms (Tg, Tf, mouse, Arabidopsis thaliana, Schizosaccharomyces pombe and Acanthamoeba castellanii) indicated that there are three highly conserved loci in the C-terminal domain.

  11. The evolution of genes encoding for green fluorescent proteins: insights from cephalochordates (amphioxus)

    Science.gov (United States)

    Yue, Jia-Xing; Holland, Nicholas D.; Holland, Linda Z.; Deheyn, Dimitri D.

    2016-06-01

    Green Fluorescent Protein (GFP) was originally found in cnidarians, and later in copepods and cephalochordates (amphioxus) (Branchiostoma spp). Here, we looked for GFP-encoding genes in Asymmetron, an early-diverged cephalochordate lineage, and found two such genes closely related to some of the Branchiostoma GFPs. Dim fluorescence was found throughout the body in adults of Asymmetron lucayanum, and, as in Branchiostoma floridae, was especially intense in the ripe ovaries. Spectra of the fluorescence were similar between Asymmetron and Branchiostoma. Lineage-specific expansion of GFP-encoding genes in the genus Branchiostoma was observed, largely driven by tandem duplications. Despite such expansion, purifying selection has strongly shaped the evolution of GFP-encoding genes in cephalochordates, with apparent relaxation for highly duplicated clades. All cephalochordate GFP-encoding genes are quite different from those of copepods and cnidarians. Thus, the ancestral cephalochordates probably had GFP, but since GFP appears to be lacking in more early-diverged deuterostomes (echinoderms, hemichordates), it is uncertain whether the ancestral cephalochordates (i.e. the common ancestor of Asymmetron and Branchiostoma) acquired GFP by horizontal gene transfer (HGT) from copepods or cnidarians or inherited it from the common ancestor of copepods and deuterostomes, i.e. the ancestral bilaterians.

  12. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance

    Science.gov (United States)

    van Rooij, Eva; Quiat, Daniel; Johnson, Brett A.; Sutherland, Lillian B.; Qi, Xiaoxia; Richardson, James A.; Kelm, Robert J.; Olson, Eric N.

    2009-01-01

    Myosin is the primary regulator of muscle strength and contractility. Here we show that three myosin genes, Myh6, Myh7, and Myh7b, encode related microRNAs (miRNAs) within their introns, which, in turn, control muscle myosin content, myofiber identity and muscle performance. Within the adult heart, the Myh6 gene, encoding a fast myosin, co-expresses miR-208a, which regulates the expression of two slow myosins and their intronic miRNAs, Myh7/miR-208b and Myh7b/miR-499, respectively. miR-208b and miR-499 are functionally redundant, and play a dominant role in the specification of muscle fiber identity by activating slow and repressing fast myofiber gene programs. The actions of these miRNAs are mediated by a collection of transcriptional repressors of slow myofiber genes. These findings reveal that myosin genes not only encode the major contractile proteins of muscle, but act more broadly to influence muscle function by encoding a network of intronic miRNAs that control muscle gene expression and performance. PMID:19922871

  13. Genes encoding calmodulin-binding proteins in the Arabidopsis genome

    Science.gov (United States)

    Reddy, Vaka S.; Ali, Gul S.; Reddy, Anireddy S N.

    2002-01-01

    Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.

  14. Co-expression of a Saccharomyces diastaticus glucoamylase-encoding gene and a Bacillus amyloliquefaciens alpha-amylase-encoding gene in Saccharomyces cerevisiae.

    Science.gov (United States)

    Steyn, A J; Pretorius, I S

    1991-04-01

    A glucoamylase-encoding gene (STA2) from Saccharomyces diastaticus and an alpha-amylase-encoding gene (AMY) from Bacillus amyloliquefaciens were cloned separately into a yeast-integrating shuttle vector (YIp5), generating recombinant plasmids pSP1 and pSP2, respectively. The STA2 and AMY genes were jointly cloned into YIp5, generating plasmid pSP3. Subsequently, the dominant selectable marker APH1, encoding resistance to Geneticin G418 (GtR), was cloned into pSP3, resulting in pSP4. For enhanced expression of GtR, the APH1 gene was fused to the GAL10 promoter and terminated by the URA3 terminator, resulting in pSP5. Plasmid pSP5 was converted to a circular minichromosome (pSP6) by the addition of the ARS1 and CEN4 sequences. Laboratory strains of Saccharomyces cerevisiae transformed with plasmids pSP1 through pSP6, stably produced and secreted glucoamylase and/or alpha-amylase. Brewers' and distillers' yeast transformed with pSP6 were also capable of secreting amylolytic enzymes. Yeast transformants containing pSP1, pSP2 and pSP3 assimilated soluble starch with an efficiency of 69%, 84% and 93%, respectively. The major starch hydrolysis products produced by crude amylolytic enzymes found in the culture broths of the pSP1-, pSP2- and pSP3-containing transformants, were glucose, glucose and maltose (1:1), and glucose and maltose (3:1), respectively. These results confirmed that co-expression of the STA2 and AMY genes synergistically enhanced starch degradation.

  15. Characterization of genes encoding poly(A polymerases in plants: evidence for duplication and functional specialization.

    Directory of Open Access Journals (Sweden)

    Lisa R Meeks

    Full Text Available BACKGROUND: Poly(A polymerase is a key enzyme in the machinery that mediates mRNA 3' end formation in eukaryotes. In plants, poly(A polymerases are encoded by modest gene families. To better understand this multiplicity of genes, poly(A polymerase-encoding genes from several other plants, as well as from Selaginella, Physcomitrella, and Chlamydomonas, were studied. METHODOLOGY/PRINCIPAL FINDINGS: Using bioinformatics tools, poly(A polymerase-encoding genes were identified in the genomes of eight species in the plant lineage. Whereas Chlamydomonas reinhardtii was found to possess a single poly(A polymerase gene, other species possessed between two and six possible poly(A polymerase genes. With the exception of four intron-lacking genes, all of the plant poly(A polymerase genes (but not the C. reinhardtii gene possessed almost identical intron positions within the poly(A polymerase coding sequences, suggesting that all plant poly(A polymerase genes derive from a single ancestral gene. The four Arabidopsis poly(A polymerase genes were found to be essential, based on genetic analysis of T-DNA insertion mutants. GFP fusion proteins containing three of the four Arabidopsis poly(A polymerases localized to the nucleus, while one such fusion protein was localized in the cytoplasm. The fact that this latter protein is largely pollen-specific suggests that it has important roles in male gametogenesis. CONCLUSIONS/SIGNIFICANCE: Our results indicate that poly(A polymerase genes have expanded from a single ancestral gene by a series of duplication events during the evolution of higher plants, and that individual members have undergone sorts of functional specialization so as to render them essential for plant growth and development. Perhaps the most interesting of the plant poly(A polymerases is a novel cytoplasmic poly(A polymerase that is expressed in pollen in Arabidopsis; this is reminiscent of spermatocyte-specific cytoplasmic poly(A polymerases in

  16. Isolation and characterization of the gene encoding the starch debranching enzyme limit dextrinase from germinating barley

    DEFF Research Database (Denmark)

    Kristensen, Michael; Lok, Finn; Planchot, Véronique

    1999-01-01

    The gene encoding the starch debranching enzyme limit dextrinase, LD, from barley (Hordeum vulgare), was isolated from a genomic phage library using a barley cDNA clone as probe. The gene encodes a protein of 904 amino acid residues with a calculated molecular mass of 98.6 kDa. This is in agreement...... fragments coupled with matrix assisted laser desorption mass spectrometry. The sequenced peptide fragments cover 70% of the entire protein sequence, which shows 62% and 77% identity to that of starch debranching enzymes from spinach and rice and 37% identity to Klebsiella pullulanase. Sequence alignment...

  17. Characterization of the FKBP12-Encoding Genes in Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Katie Falloon

    Full Text Available Invasive aspergillosis, largely caused by Aspergillus fumigatus, is responsible for a growing number of deaths among immunosuppressed patients. Immunosuppressants such as FK506 (tacrolimus that target calcineurin have shown promise for antifungal drug development. FK506-binding proteins (FKBPs form a complex with calcineurin in the presence of FK506 (FKBP12-FK506 and inhibit calcineurin activity. Research on FKBPs in fungi is limited, and none of the FKBPs have been previously characterized in A. fumigatus. We identified four orthologous genes of FKBP12, the human FK506 binding partner, in A. fumigatus and designated them fkbp12-1, fkbp12-2, fkbp12-3, and fkbp12-4. Deletional analysis of the four genes revealed that the Δfkbp12-1 strain was resistant to FK506, indicating FKBP12-1 as the key mediator of FK506-binding to calcineurin. The endogenously expressed FKBP12-1-EGFP fusion protein localized to the cytoplasm and nuclei under normal growth conditions but also to the hyphal septa following FK506 treatment, revealing its interaction with calcineurin. The FKBP12-1-EGFP fusion protein didn't localize at the septa in the presence of FK506 in the cnaA deletion background, confirming its interaction with calcineurin. Testing of all deletion strains in the Galleria mellonella model of aspergillosis suggested that these proteins don't play an important role in virulence. While the Δfkbp12-2 and Δfkbp12-3 strains didn't show any discernable phenotype, the Δfkbp12-4 strain displayed slight growth defect under normal growth conditions and inhibition of the caspofungin-mediated "paradoxical growth effect" at higher concentrations of the antifungal caspofungin. Together, these results indicate that while only FKBP12-1 is the bona fide binding partner of FK506, leading to the inhibition of calcineurin in A. fumigatus, FKBP12-4 may play a role in basal growth and the caspofungin-mediated paradoxical growth response. Exploitation of differences between A

  18. EWS and FUS bind a subset of transcribed genes encoding proteins enriched in RNA regulatory functions

    DEFF Research Database (Denmark)

    Luo, Yonglun; Friis, Jenny Blechingberg; Fernandes, Ana Miguel

    2015-01-01

    at different levels. Gene Ontology analyses showed that FUS and EWS target genes preferentially encode proteins involved in regulatory processes at the RNA level. Conclusions The presented results yield new insights into gene interactions of EWS and FUS and have identified a set of FUS and EWS target genes...... and involved in the human neurological diseases amyotrophic lateral sclerosis and fronto-temporal lobar degeneration. Results To determine the gene regulatory functions of FUS and EWS at the level of chromatin, we have performed chromatin immunoprecipitation followed by next generation sequencing (Ch......IP-seq). Our results show that FUS and EWS bind to a subset of actively transcribed genes, that binding often is downstream the poly(A)-signal, and that binding overlaps with RNA polymerase II. Functional examinations of selected target genes identified that FUS and EWS can regulate gene expression...

  19. LEA (Late Embryogenesis Abundant proteins and their encoding genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Hincha Dirk K

    2008-03-01

    Full Text Available Abstract Background LEA (late embryogenesis abundant proteins have first been described about 25 years ago as accumulating late in plant seed development. They were later found in vegetative plant tissues following environmental stress and also in desiccation tolerant bacteria and invertebrates. Although they are widely assumed to play crucial roles in cellular dehydration tolerance, their physiological and biochemical functions are largely unknown. Results We present a genome-wide analysis of LEA proteins and their encoding genes in Arabidopsis thaliana. We identified 51 LEA protein encoding genes in the Arabidopsis genome that could be classified into nine distinct groups. Expression studies were performed on all genes at different developmental stages, in different plant organs and under different stress and hormone treatments using quantitative RT-PCR. We found evidence of expression for all 51 genes. There was only little overlap between genes expressed in vegetative tissues and in seeds and expression levels were generally higher in seeds. Most genes encoding LEA proteins had abscisic acid response (ABRE and/or low temperature response (LTRE elements in their promoters and many genes containing the respective promoter elements were induced by abscisic acid, cold or drought. We also found that 33% of all Arabidopsis LEA protein encoding genes are arranged in tandem repeats and that 43% are part of homeologous pairs. The majority of LEA proteins were predicted to be highly hydrophilic and natively unstructured, but some were predicted to be folded. Conclusion The analyses indicate a wide range of sequence diversity, intracellular localizations, and expression patterns. The high fraction of retained duplicate genes and the inferred functional diversification indicate that they confer an evolutionary advantage for an organism under varying stressful environmental conditions. This comprehensive analysis will be an important starting point for

  20. Intra- and inter-generic transfer of pathogenicity island-encoded virulence genes by cos phages.

    Science.gov (United States)

    Chen, John; Carpena, Nuria; Quiles-Puchalt, Nuria; Ram, Geeta; Novick, Richard P; Penadés, José R

    2015-05-01

    Bacteriophage-mediated horizontal gene transfer is one of the primary driving forces of bacterial evolution. The pac-type phages are generally thought to facilitate most of the phage-mediated gene transfer between closely related bacteria, including that of mobile genetic elements-encoded virulence genes. In this study, we report that staphylococcal cos-type phages transferred the Staphylococcus aureus pathogenicity island SaPIbov5 to non-aureus staphylococcal species and also to different genera. Our results describe the first intra- and intergeneric transfer of a pathogenicity island by a cos phage, and highlight a gene transfer mechanism that may have important implications for pathogen evolution.

  1. Biovar diversity is reflected by variations of genes encoding urease of Ureaplasma urealyticum.

    Science.gov (United States)

    Ruifu, Y; Minli, Z; Guo, Z; Wang, X

    1997-01-01

    Five oligonucleotide primers derived from the gene encoding urease of Ureaplasma urealyticum were designed to evaluate the relationship between the urease gene and biovar diversity of this organism. Five combinations of these primers were tested by PCR and the result revealed that there were variations in urease genes among different serovars of U. urealyticum. This result, in agreement with other PCRs based on other functionally unrelated (rRNA and MB antigen) genes, may reflect the phylogenetic relationship among organisms taxonomically classified as U. urealyticum.

  2. Allotopic Expression of a Gene Encoding FLAG Tagged-subunit 8 of Yeast Mitochondrial ATP Synthase

    Directory of Open Access Journals (Sweden)

    I MADE ARTIKA

    2006-03-01

    Full Text Available Subunit 8 of yeast mitochondrial ATP synthase is a polypeptide of 48 amino acids encoded by the mitochondrial ATP8 gene. A nuclear version of subunit 8 gene has been designed to encode FLAG tagged-subunit 8 fused with a mitochondrial signal peptide. The gene has been cloned into a yeast expression vector and then expressed in a yeast strain lacking endogenous subunit 8. Results showed that the gene was successfully expressed and the synthesized FLAG tagged-subunit 8 protein was imported into mitochondria. Following import, the FLAG tagged-subunit 8 protein assembled into functional mitochondrial ATP synthase complex. Furthermore, the subunit 8 protein could be detected using anti-FLAG tag monoclonal antibody.

  3. Genes encoding Cher-TPR fusion proteins are predominantly found in gene clusters encoding chemosensory pathways with alternative cellular functions.

    Science.gov (United States)

    Muñoz-Martínez, Francisco; García-Fontana, Cristina; Rico-Jiménez, Miriam; Alfonso, Carlos; Krell, Tino

    2012-01-01

    Chemosensory pathways correspond to major signal transduction mechanisms and can be classified into the functional families flagellum-mediated taxis, type four pili-mediated taxis or pathways with alternative cellular functions (ACF). CheR methyltransferases are core enzymes in all of these families. CheR proteins fused to tetratricopeptide repeat (TPR) domains have been reported and we present an analysis of this uncharacterized family. We show that CheR-TPRs are widely distributed in GRAM-negative but almost absent from GRAM-positive bacteria. Most strains contain a single CheR-TPR and its abundance does not correlate with the number of chemoreceptors. The TPR domain fused to CheR is comparatively short and frequently composed of 2 repeats. The majority of CheR-TPR genes were found in gene clusters that harbor multidomain response regulators in which the REC domain is fused to different output domains like HK, GGDEF, EAL, HPT, AAA, PAS, GAF, additional REC, HTH, phosphatase or combinations thereof. The response regulator architectures coincide with those reported for the ACF family of pathways. Since the presence of multidomain response regulators is a distinctive feature of this pathway family, we conclude that CheR-TPR proteins form part of ACF type pathways. The diversity of response regulator output domains suggests that the ACF pathways form a superfamily which regroups many different regulatory mechanisms, in which all CheR-TPR proteins appear to participate. In the second part we characterize WspC of Pseudomonas putida, a representative example of CheR-TPR. The affinities of WspC-Pp for S-adenosylmethionine and S-adenosylhomocysteine were comparable to those of prototypal CheR, indicating that WspC-Pp activity is in analogy to prototypal CheRs controlled by product feed-back inhibition. The removal of the TPR domain did not impact significantly on the binding constants and consequently not on the product feed-back inhibition. WspC-Pp was found to be

  4. ohr, Encoding an Organic Hydroperoxide Reductase, Is an In Vivo-Induced Gene in Actinobacillus pleuropneumoniae

    OpenAIRE

    Shea, Robin J.; Mulks, Martha H.

    2002-01-01

    Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia, a disease characterized by pulmonary necrosis and hemorrhage caused in part by neutrophil degranulation. In an effort to understand the pathogenesis of this disease, we have developed an in vivo expression technology (IVET) system to identify genes that are specifically up-regulated during infection. One of the genes that we have identified as being induced in vivo is ohr, encoding organic hydroperoxide reducta...

  5. Characterization of genes encoding for acquired bacitracin resistance in Clostridium perfringens.

    Directory of Open Access Journals (Sweden)

    Audrey Charlebois

    Full Text Available Phenotypic bacitracin resistance has been reported in Clostridium perfringens. However, the genes responsible for the resistance have not yet been characterized. Ninety-nine C. perfringens isolates recovered from broilers and turkeys were tested for phenotypic bacitracin resistance. Bacitracin MIC(90 (>256 µg/ml was identical for both turkey and chicken isolates; whereas MIC(50 was higher in turkey isolates (6 µg/ml than in chicken isolates (3 µg/ml. Twenty-four of the 99 isolates showed high-level bacitracin resistance (MIC breakpoint >256 µg/ml and the genes encoding for this resistance were characterized in C. perfringens c1261_A strain using primer walking. Sequence analysis and percentages of amino acid identity revealed putative genes encoding for both an ABC transporter and an overproduced undecaprenol kinase in C. perfringens c1261_A strain. These two mechanisms were shown to be both encoded by the putative bcrABD operon under the control of a regulatory gene, bcrR. Efflux pump inhibitor thioridazine was shown to increase significantly the susceptibility of strain c1261_A to bacitracin. Upstream and downstream from the bcr cluster was an IS1216-like element, which may play a role in the dissemination of this resistance determinant. Pulsed-field gel electrophoresis with prior double digestion with I-CeuI/MluI enzymes followed by hybridization analyses revealed that the bacitracin resistance genes bcrABDR were located on the chromosome. Semi-quantitative RT-PCR demonstrated that this gene cluster is expressed under bacitracin stress. Microarray analysis revealed the presence of these genes in all bacitracin resistant strains. This study reports the discovery of genes encoding for a putative ABC transporter and an overproduced undecaprenol kinase associated with high-level bacitracin resistance in C. perfringens isolates from turkeys and broiler chickens.

  6. Genes encoding phospholipases A2 mediate insect nodulation reactions to bacterial challenge.

    Science.gov (United States)

    Shrestha, Sony; Park, Yoonseong; Stanley, David; Kim, Yonggyun

    2010-03-01

    We propose that expression of four genes encoding secretory phospholipases A(2) (sPLA(2)) mediates insect nodulation responses to bacterial infection. Nodulation is the quantitatively predominant cellular defense reaction to bacterial infection. This reaction is mediated by eicosanoids, the biosynthesis of which depends on PLA(2)-catalyzed hydrolysis of arachidonic acid (AA) from cellular phospholipids. Injecting late instar larvae of the red flour beetle, Tribolium castaneum, with the bacterium, Escherichia coli, stimulated nodulation reactions and sPLA(2) activity in time- and dose-related manners. Nodulation was inhibited by pharmaceutical inhibitors of enzymes involved in eicosanoid biosynthesis, and the inhibition was rescued by AA. We cloned five genes encoding sPLA(2) and expressed them in E. coli cells to demonstrate these genes encode catalytically active sPLA(2)s. The recombinant sPLA(2)s were inhibited by sPLA(2) inhibitors. Injecting larvae with double-stranded RNAs specific to each of the five genes led to reduced expression of the corresponding sPLA(2) genes and to reduced nodulation reactions to bacterial infections for four of the five genes. The reduced nodulation was rescued by AA, indicating that expression of four genes encoding sPLA(2)s mediates nodulation reactions. A polyclonal antibody that reacted with all five sPLA(2)s showed the presence of the sPLA(2) enzymes in hemocytes and revealed that the enzymes were more closely associated with hemocyte plasma membranes following infection. Identifying specific sPLA(2) genes that mediate nodulation reactions strongly supports our hypothesis that sPLA(2)s are central enzymes in insect cellular immune reactions. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  7. On the Role of PDZ Domain-Encoding Genes in Drosophila Border Cell Migration

    OpenAIRE

    Aranjuez, George; Kudlaty, Elizabeth; Longworth, Michelle S; McDonald, Jocelyn A.

    2012-01-01

    Cells often move as collective groups during normal embryonic development and wound healing, although the mechanisms governing this type of migration are poorly understood. The Drosophila melanogaster border cells migrate as a cluster during late oogenesis and serve as a powerful in vivo genetic model for collective cell migration. To discover new genes that participate in border cell migration, 64 out of 66 genes that encode PDZ domain-containing proteins were systematically targeted by in v...

  8. Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis

    Directory of Open Access Journals (Sweden)

    St Clair Dina A

    2007-10-01

    Full Text Available Abstract Background Nucleotide binding site-leucine rich repeat (NBS-LRR-encoding genes comprise the largest class of plant disease resistance genes. The 149 NBS-LRR-encoding genes and the 58 related genes that do not encode LRRs represent approximately 0.8% of all ORFs so far annotated in Arabidopsis ecotype Col-0. Despite their prevalence in the genome and functional importance, there was little information regarding expression of these genes. Results We analyzed the expression patterns of ~170 NBS-LRR-encoding and related genes in Arabidopsis Col-0 using multiple analytical approaches: expressed sequenced tag (EST representation, massively parallel signature sequencing (MPSS, microarray analysis, rapid amplification of cDNA ends (RACE PCR, and gene trap lines. Most of these genes were expressed at low levels with a variety of tissue specificities. Expression was detected by at least one approach for all but 10 of these genes. The expression of some but not the majority of NBS-LRR-encoding and related genes was affected by salicylic acid (SA treatment; the response to SA varied among different accessions. An analysis of previously published microarray data indicated that ten NBS-LRR-encoding and related genes exhibited increased expression in wild-type Landsberg erecta (Ler after flagellin treatment. Several of these ten genes also showed altered expression after SA treatment, consistent with the regulation of R gene expression during defense responses and overlap between the basal defense response and salicylic acid signaling pathways. Enhancer trap analysis indicated that neither jasmonic acid nor benzothiadiazole (BTH, a salicylic acid analog, induced detectable expression of the five NBS-LRR-encoding genes and one TIR-NBS-encoding gene tested; however, BTH did induce detectable expression of the other TIR-NBS-encoding gene analyzed. Evidence for alternative mRNA polyadenylation sites was observed for many of the tested genes. Evidence for

  9. A multiplex PCR for detection of genes encoding exfoliative toxins from Staphylococcus hyicus

    DEFF Research Database (Denmark)

    Andresen, Lars Ole; Ahrens, Peter

    2004-01-01

    Aims: To develop a multiplex PCR for detection of genes encoding the exfoliative toxins ExhA, ExhB, ExhC and ExhD from Staphylococcus hyicus and to estimate the prevalence of exfoliative toxins among Staph. hyicus isolates from Danish pig herds with exudative epidermitis (EE). Methods and Results...

  10. The Drosophila gene brainiac encodes a glycosyltransferase putatively involved in glycosphingolipid synthesis

    DEFF Research Database (Denmark)

    Schwientek, Tilo; Keck, Birgit; Levery, Steven B

    2002-01-01

    The Drosophila genes fringe and brainiac exhibit sequence similarities to glycosyltransferases. Drosophila and mammalian fringe homologs encode UDP-N-acetylglucosamine:fucose-O-Ser beta1,3-N-acetylglucosaminyltransferases that modulate the function of Notch family receptors. The biological function...

  11. Genome-wide comparative analysis of NBS-encoding genes in four Gossypium species

    Science.gov (United States)

    Nucleotide binding site (NBS) genes encode a large family of disease resistance (R) proteins in plants. The availability of genomic data of the two diploid cotton species, Gossypium arboreum and Gossypium raimondii, and the two allotetraploid cotton species, Gossypium hirsutum (TM-1) and Gossypium ...

  12. Phenotypical Manifestations of Mutations in the Genes Encoding Subunits of the Cardiac Sodium Channel

    NARCIS (Netherlands)

    Wilde, Arthur A. M.; Brugada, Ramon

    2011-01-01

    Variations in the gene encoding for the major sodium channel (Na(v)1.5) in the heart, SCN5A, has been shown to cause a number of arrhythmia syndromes (with or without structural changes in the myocardium), including the long-QT syndrome (type 3), Brugada syndrome, (progressive) cardiac conduction di

  13. Mutations in genes encoding subunits of RNA polymerases I and III cause Treacher Collins syndrome.

    NARCIS (Netherlands)

    Dauwerse, J.G.; Dixon, J.; Seland, S.; Ruivenkamp, C.A.; Haeringen, A. van; Hoefsloot, L.H.; Peters, D.J.; Boers, A.C.; Daumer-Haas, C.; Maiwald, R.; Zweier, C.; Kerr, B.; Cobo, A.M.; Toral, J.F.; Hoogeboom, A.J.M.; Lohmann, D.R.; Hehr, U.; Dixon, M.J.; Breuning, M.H.; Wieczorek, D.

    2011-01-01

    We identified a deletion of a gene encoding a subunit of RNA polymerases I and III, POLR1D, in an individual with Treacher Collins syndrome (TCS). Subsequently, we detected 20 additional heterozygous mutations of POLR1D in 252 individuals with TCS. Furthermore, we discovered mutations in both allele

  14. TMC and EVER genes belong to a larger novel family, the TMC gene family encoding transmembrane proteins

    Directory of Open Access Journals (Sweden)

    Mutai Hideki

    2003-06-01

    Full Text Available Abstract Background Mutations in the transmembrane cochlear expressed gene 1 (TMC1 cause deafness in human and mouse. Mutations in two homologous genes, EVER1 and EVER2 increase the susceptibility to infection with certain human papillomaviruses resulting in high risk of skin carcinoma. Here we report that TMC1, EVER1 and EVER2 (now TMC6 and TMC8 belong to a larger novel gene family, which is named TMC for trans membrane channel-like gene family. Results Using a combination of iterative database searches and reverse transcriptase-polymerase chain reaction (RT-PCR experiments we assembled contigs for cDNA encoding human, murine, puffer fish, and invertebrate TMC proteins. TMC proteins of individual species can be grouped into three subfamilies A, B, and C. Vertebrates have eight TMC genes. The majority of murine TMC transcripts are expressed in most organs; some transcripts, however, in particular the three subfamily A members are rare and more restrictively expressed. Conclusion The eight vertebrate TMC genes are evolutionary conserved and encode proteins that form three subfamilies. Invertebrate TMC proteins can also be categorized into these three subfamilies. All TMC genes encode transmembrane proteins with intracellular amino- and carboxyl-termini and at least eight membrane-spanning domains. We speculate that the TMC proteins constitute a novel group of ion channels, transporters, or modifiers of such.

  15. Two genes encoding new carotenoid-modifying enzymes in the green sulfur bacterium Chlorobium tepidum.

    Science.gov (United States)

    Maresca, Julia A; Bryant, Donald A

    2006-09-01

    The green sulfur bacterium Chlorobium tepidum produces chlorobactene as its primary carotenoid. Small amounts of chlorobactene are hydroxylated by the enzyme CrtC and then glucosylated and acylated to produce chlorobactene glucoside laurate. The genes encoding the enzymes responsible for these modifications of chlorobactene, CT1987, and CT0967, have been identified by comparative genomics, and these genes were insertionally inactivated in C. tepidum to verify their predicted function. The gene encoding chlorobactene glucosyltransferase (CT1987) has been named cruC, and the gene encoding chlorobactene lauroyltransferase (CT0967) has been named cruD. Homologs of these genes are found in the genomes of all sequenced green sulfur bacteria and filamentous anoxygenic phototrophs as well as in the genomes of several nonphotosynthetic bacteria that produce similarly modified carotenoids. The other bacteria in which these genes are found are not closely related to green sulfur bacteria or to one another. This suggests that the ability to synthesize modified carotenoids has been a frequently transferred trait.

  16. Cloning of human genes encoding novel G protein-coupled receptors

    Energy Technology Data Exchange (ETDEWEB)

    Marchese, A.; Docherty, J.M.; Heiber, M. [Univ. of Toronto, (Canada)] [and others

    1994-10-01

    We report the isolation and characterization of several novel human genes encoding G protein-coupled receptors. Each of the receptors contained the familiar seven transmembrane topography and most closely resembled peptide binding receptors. Gene GPR1 encoded a receptor protein that is intronless in the coding region and that shared identity (43% in the transmembrane regions) with the opioid receptors. Northern blot analysis revealed that GPR1 transcripts were expressed in the human hippocampus, and the gene was localized to chromosome 15q21.6. Gene GPR2 encoded a protein that most closely resembled an interleukin-8 receptor (51% in the transmembrane regions), and this gene, not expressed in the six brain regions examined, was localized to chromosome 17q2.1-q21.3. A third gene, GPR3, showed identity (56% in the transmembrane regions) with a previously characterized cDNA clone from rat and was localized to chromosome 1p35-p36.1. 31 refs., 5 figs., 1 tab.

  17. Unusually high frequency of genes encoding vegetative insecticidal proteins in an Australian Bacillus thuringiensis collection.

    Science.gov (United States)

    Beard, Cheryl E; Court, Leon; Boets, Annemie; Mourant, Roslyn; Van Rie, Jeroen; Akhurst, Raymond J

    2008-09-01

    Of 188 Australian Bacillus thuringiensis strains screened for genes encoding soluble insecticidal proteins by polymerase chain reaction/restriction-length fragment polymorphism (RFLP) analysis, 87% showed the presence of such genes. Although 135 isolates (72%) produced an RFLP pattern identical to that expected for vip3A genes, 29 isolates possessed a novel vip-like gene. The novel vip-like gene was cloned from B. thuringiensis isolate C81, and sequence analysis demonstrated that it was 94% identical to the vip3Ba1 gene. The new gene was designated vip3Bb2. Cell-free supernatants from both the B. thuringiensis strain C81 and from Escherichia coli expressing the Vip3Bb2 protein were toxic for the cotton bollworm, Helicoverpa armigera.

  18. DNA-SEQUENCE DETERMINATION AND FUNCTIONAL-CHARACTERIZATION OF THE OCT-PLASMID-ENCODED ALKJKL GENES OF PSEUDOMONAS-OLEOVORANS

    NARCIS (Netherlands)

    van Beilen, J.B.; EGGINK, G; ENEQUIST, H; Witholt, Bernard; Bos, R

    1992-01-01

    The alkBFGHJKL and alkST operons encode enzymes that allow Pseudomonas putida (oleovorans) to metabolize alkanes. In this paper we report the nucleotide sequence of a 4592 bp region of the alkBFGHJKL operon encoding the AlkJ, AlkK and AlkL polypeptides. The alkJ gene encodes a protein of 59 kilodalt

  19. Gene set of nuclear-encoded mitochondrial regulators is enriched for common inherited variation in obesity.

    Directory of Open Access Journals (Sweden)

    Nadja Knoll

    Full Text Available There are hints of an altered mitochondrial function in obesity. Nuclear-encoded genes are relevant for mitochondrial function (3 gene sets of known relevant pathways: (1 16 nuclear regulators of mitochondrial genes, (2 91 genes for oxidative phosphorylation and (3 966 nuclear-encoded mitochondrial genes. Gene set enrichment analysis (GSEA showed no association with type 2 diabetes mellitus in these gene sets. Here we performed a GSEA for the same gene sets for obesity. Genome wide association study (GWAS data from a case-control approach on 453 extremely obese children and adolescents and 435 lean adult controls were used for GSEA. For independent confirmation, we analyzed 705 obesity GWAS trios (extremely obese child and both biological parents and a population-based GWAS sample (KORA F4, n = 1,743. A meta-analysis was performed on all three samples. In each sample, the distribution of significance levels between the respective gene set and those of all genes was compared using the leading-edge-fraction-comparison test (cut-offs between the 50(th and 95(th percentile of the set of all gene-wise corrected p-values as implemented in the MAGENTA software. In the case-control sample, significant enrichment of associations with obesity was observed above the 50(th percentile for the set of the 16 nuclear regulators of mitochondrial genes (p(GSEA,50 = 0.0103. This finding was not confirmed in the trios (p(GSEA,50 = 0.5991, but in KORA (p(GSEA,50 = 0.0398. The meta-analysis again indicated a trend for enrichment (p(MAGENTA,50 = 0.1052, p(MAGENTA,75 = 0.0251. The GSEA revealed that weak association signals for obesity might be enriched in the gene set of 16 nuclear regulators of mitochondrial genes.

  20. Gene set of nuclear-encoded mitochondrial regulators is enriched for common inherited variation in obesity.

    Science.gov (United States)

    Knoll, Nadja; Jarick, Ivonne; Volckmar, Anna-Lena; Klingenspor, Martin; Illig, Thomas; Grallert, Harald; Gieger, Christian; Wichmann, Heinz-Erich; Peters, Annette; Hebebrand, Johannes; Scherag, André; Hinney, Anke

    2013-01-01

    There are hints of an altered mitochondrial function in obesity. Nuclear-encoded genes are relevant for mitochondrial function (3 gene sets of known relevant pathways: (1) 16 nuclear regulators of mitochondrial genes, (2) 91 genes for oxidative phosphorylation and (3) 966 nuclear-encoded mitochondrial genes). Gene set enrichment analysis (GSEA) showed no association with type 2 diabetes mellitus in these gene sets. Here we performed a GSEA for the same gene sets for obesity. Genome wide association study (GWAS) data from a case-control approach on 453 extremely obese children and adolescents and 435 lean adult controls were used for GSEA. For independent confirmation, we analyzed 705 obesity GWAS trios (extremely obese child and both biological parents) and a population-based GWAS sample (KORA F4, n = 1,743). A meta-analysis was performed on all three samples. In each sample, the distribution of significance levels between the respective gene set and those of all genes was compared using the leading-edge-fraction-comparison test (cut-offs between the 50(th) and 95(th) percentile of the set of all gene-wise corrected p-values) as implemented in the MAGENTA software. In the case-control sample, significant enrichment of associations with obesity was observed above the 50(th) percentile for the set of the 16 nuclear regulators of mitochondrial genes (p(GSEA,50) = 0.0103). This finding was not confirmed in the trios (p(GSEA,50) = 0.5991), but in KORA (p(GSEA,50) = 0.0398). The meta-analysis again indicated a trend for enrichment (p(MAGENTA,50) = 0.1052, p(MAGENTA,75) = 0.0251). The GSEA revealed that weak association signals for obesity might be enriched in the gene set of 16 nuclear regulators of mitochondrial genes.

  1. Mutations in SEC24D, encoding a component of the COPII machinery, cause a syndromic form of osteogenesis imperfecta.

    Science.gov (United States)

    Garbes, Lutz; Kim, Kyungho; Rieß, Angelika; Hoyer-Kuhn, Heike; Beleggia, Filippo; Bevot, Andrea; Kim, Mi Jeong; Huh, Yang Hoon; Kweon, Hee-Seok; Savarirayan, Ravi; Amor, David; Kakadia, Purvi M; Lindig, Tobias; Kagan, Karl Oliver; Becker, Jutta; Boyadjiev, Simeon A; Wollnik, Bernd; Semler, Oliver; Bohlander, Stefan K; Kim, Jinoh; Netzer, Christian

    2015-03-05

    As a result of a whole-exome sequencing study, we report three mutant alleles in SEC24D, a gene encoding a component of the COPII complex involved in protein export from the ER: the truncating mutation c.613C>T (p.Gln205(∗)) and the missense mutations c.3044C>T (p.Ser1015Phe, located in a cargo-binding pocket) and c.2933A>C (p.Gln978Pro, located in the gelsolin-like domain). Three individuals from two families affected by a similar skeletal phenotype were each compound heterozygous for two of these mutant alleles, with c.3044C>T being embedded in a 14 Mb founder haplotype shared by all three. The affected individuals were a 7-year-old boy with a phenotype most closely resembling Cole-Carpenter syndrome and two fetuses initially suspected to have a severe type of osteogenesis imperfecta. All three displayed a severely disturbed ossification of the skull and multiple fractures with prenatal onset. The 7-year-old boy had short stature and craniofacial malformations including macrocephaly, midface hypoplasia, micrognathia, frontal bossing, and down-slanting palpebral fissures. Electron and immunofluorescence microscopy of skin fibroblasts of this individual revealed that ER export of procollagen was inefficient and that ER tubules were dilated, faithfully reproducing the cellular phenotype of individuals with cranio-lentico-sutural dysplasia (CLSD). CLSD is caused by SEC23A mutations and displays a largely overlapping craniofacial phenotype, but it is not characterized by generalized bone fragility and presented with cataracts in the original family described. The cellular and morphological phenotypes we report are in concordance with the phenotypes described for the Sec24d-deficient fish mutants vbi (medaka) and bulldog (zebrafish).

  2. Structure and expression of nuclear genes encoding rubisco activase. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Zielinski, R.E.

    1994-06-01

    Rubisco activase (Rca) is a soluble chloroplast protein that catalyzes the activation of rubisco, the enzyme that initiates the photosynthetic carbon reduction cycle, to catalytic competency. Rca in barley consists of three polypeptides, one of 46- and two of 42-kDa, but the quaternary structure of the protein is not known. The authors have isolated and completely sequenced 8.8 kb of barley genomic DNA containing two, tandemly oriented activase genes (RcaA and RcaB) and three different cDNAs encoding the 42- and 46-kDa Rca polypeptide isoforms. Genomic Southern blot assays indicate that these sequences represent the entire Rca gene family in barley. Pre-mRNAs transcribed from the RcaA gene are alternatively spliced to give mRNAs encoding both 46- (RcaA1) and 42-kDa (RcaA2) Rca isoforms. The RcaB gene encodes a single polypeptide of 42 kDa. Primer extension and northern blot assays indicate that RcaB mRNA is expressed at a level that is 10- to 100-fold lower than RcaA mRNA. Analyses at the mRNA and protein level showed that Rca gene expression is coordinated by that of the rubisco subunits during barley leaf development.

  3. Expression patterns of genes encoding plasma membrane aquaporins during fruit development in cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Shi, Jin; Wang, Jinfang; Li, Ren; Li, Dianbo; Xu, Fengfeng; Sun, Qianqian; Zhao, Bin; Mao, Ai-Jun; Guo, Yang-Dong

    2015-11-01

    Aquaporins are membrane channels precisely regulating water movement through cell membranes in most living organisms. Despite the advances in the physiology of fruit development, their participation during fruit development in cucumber still barely understood. In this paper, the expressions of 12 genes encoding plasma membrane intrinsic proteins (PIPs) were analyzed during cucumber fruit development in our work. Based on the homology search with known PIPs from rice, Arabidopsis and strawberry, 12 cucumber PIP genes subfamily members were identified. Cellular localization assays indicated that CsPIPs were localized in the plasma membrane. The qRT-PCR analysis of CsPIPs showed that 12 CsPIPs were differentially expressed during fruit development. These results suggest that 12 genes encoding plasma membrane intrinsic proteins (CsPIPs) play very important roles in cucumber life cycle and the data generated will be helpful in understanding their precise roles during fruit development in cucumber.

  4. Variation in genes encoding eosinophil granule proteins in atopic dermatitis patients from Germany

    Directory of Open Access Journals (Sweden)

    Epplen Jörg T

    2008-11-01

    Full Text Available Abstract Background Atopic dermatitis (AD is believed to result from complex interactions between genetic and environmental factors. A main feature of AD as well as other allergic disorders is serum and tissue eosinophilia. Human eosinophils contain high amounts of cationic granule proteins, including eosinophil cationic protein (ECP, eosinophil-derived neurotoxin (EDN, eosinophil peroxidase (EPO and major basic protein (MBP. Recently, variation in genes encoding eosinophil granule proteins has been suggested to play a role in the pathogenesis of allergic disorders. We therefore genotyped selected single nucleotide polymorphisms within the ECP, EDN, EPO and MBP genes in a cohort of 361 German AD patients and 325 healthy controls. Results Genotype and allele frequencies did not differ between patients and controls for all polymorphisms investigated in this study. Haplotype analysis did not reveal any additional information. Conclusion We did not find evidence to support an influence of variation in genes encoding eosinophil granule proteins for AD pathogenesis in this German cohort.

  5. Filamentous-haemagglutinin-like protein genes encoded on a plasmid of Moraxella bovis.

    Science.gov (United States)

    Kakuda, Tsutomu; Sarataphan, Nopporn; Tanaka, Tetsuya; Takai, Shinji

    2006-11-26

    The complete nucleotide sequence of a plasmid, pMBO-1, from Moraxella bovis strain Epp63 was determined. We identified 30 open reading frames (ORFs) encoded by the 44,215bp molecule. Two large ORFs, flpA and flpB, encoding proteins with similarity to Bordetella pertussis filamentous haemagglutinin (FHA), were identified on the same plasmid. The gene for a specific accessory protein (Fap), which may play a role in the secretion of Flp protein, was also identified. Reverse transcriptase PCR analysis of total RNA isolated from M. bovis Epp63 indicated that the flpA, flpB, and fap genes are all transcribed. Southern blot analysis indicated that the flp and fap genes are present in other clinical isolates of geographically diverse M. bovis.

  6. Cloning and expression analysis of a prion protein encoding gene in guppy ( Poecilia reticulata)

    Science.gov (United States)

    Wu, Suihan; Wei, Qiwei; Yang, Guanpin; Wang, Dengqiang; Zou, Guiwei; Chen, Daqing

    2008-11-01

    The full length cDNA of a prion protein (PrP) encoding gene of guppy ( Poecilia reticulata) and the corresponding genomic DNA were cloned. The cDNA was 2245 bp in length and contained an open reading frame (ORF) of 1545 bp encoding a protein of 515 amino acids, which held all typical structural characteristics of the functional PrP. The cloned genomic DNA fragment corresponding to the cDNA was 3720 bp in length, consisting of 2 introns and 2 exons. The 5' untranslated region of cDNA originated from the 2 exons, while the ORF originated from the second exon. Although the gene was transcribed in diverse tissues including brain, eye, liver, intestine, muscle and tail, its transcript was most abundant in the brain. In addition, the transcription of the gene was enhanced by 5 salinity, implying that it was associated with the response of guppy to saline stress.

  7. Campylobacter jejuni gene cj0511 encodes a serine peptidase essential for colonisation

    Directory of Open Access Journals (Sweden)

    A.V. Karlyshev

    2014-01-01

    Full Text Available According to MEROPS peptidase database, Campylobacter species encode 64 predicted peptidases. However, proteolytic properties of only a few of these proteins have been confirmed experimentally. In this study we identified and characterised a Campylobacter jejuni gene cj0511 encoding a novel peptidase. The proteolytic activity associated with this enzyme was demonstrated in cell lysates. Moreover, enzymatic studies conducted with a purified protein confirmed a prediction of it being a serine peptidase. Furthermore, cj0511 mutant was found to be severely attenuated in chicken colonisation model, suggesting a role of the Cj0511 protein in infection.

  8. Three encochitinase-encoding genes identified in the biocontrol fungus Clonostachys rosea are differentially expressed

    DEFF Research Database (Denmark)

    Mamarabadi, Mojtaba; Jensen, Birgit; Lübeck, Mette

    2008-01-01

    showed that the three genes were differentially expressed. The expression of the cr-ech42 and cr-ech37 genes was triggered by F. culmorum cell walls and chitin whereas glucose repressed their expression. In contrast, the expression of cr-ech58 was not triggered by F. culmorum cell walls and chitin......Three endochitinase-encoding genes, cr-ech58, cr-ech42 and cr-ech37 were identified and characterised from the mycoparasitic C. rosea strain IK726. The endochitinase activity was specifically induced in media containing chitin or Fusarium culmorum cell walls as sole carbon sources. RT-PCR analysis...

  9. Cloning and expression of prion protein encoding gene of flounder (Paralichthys olivaceus)

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhiwen; SUN Xiuqin; ZHANG Jinxing; ZAN Jindong

    2008-01-01

    The prion protein (PrP) encoding gene of flounder (Paralichthys olivaceus) was cloned.It was not interrupted by an intron.This gene has two promoters in its 5' upstream,indicating that its transcription may be intensive,and should have an important function.It was expressed in all 14 tissues tested,demonstrating that it is a house-keeping gene.Its expression in digestion and reproduction systems implies that the possible prions of fish may transfer horizontally.

  10. Identification and characterization of the Vibrio anguillarum prtV gene encoding a new metalloprotease

    Institute of Scientific and Technical Information of China (English)

    莫照兰; 郭东升; 茅云翔; 叶旭红; 邹玉霞; 肖鹏; 郝斌

    2010-01-01

    We cloned and sequenced a prtV-like gene from Vibrio anguillarum M3 strain.This prtV gene encodes a putative protein of 918 amino acids,and is highly homologous to the V.cholerae prtV gene.We found that a prtV insertion mutant strain displayed lower gelatinase activity on gelatin agar,lower protease activity against azocasein,and lower activity for four glycosidases.This prtV mutant strain also had increased activity for two esterases in its extracellular products,as analyzed by the API ZYM system.In additi...

  11. Isolation and molecular characterisation of the gene encoding eburicol 14α-demethylase (CYP51) from Penicillium italicum

    NARCIS (Netherlands)

    Nistelrooy, J.G.M. van; Brink, J.M. van den; Kan, J.A.L. van; Gorcom, R.F.M. van; Waard, M.A. de

    1996-01-01

    The CYP51 gene encoding eburicol 14α-demethylase (P450(14DM)) was cloned from a genomic library of the filamentous fungal plant pathogen Penicillium italicum, by heterologous hybridisation with the corresponding gene encoding lanosterol 14α-demethylase from the yeast Candida tropicalis. The nucleoti

  12. Analysis of Genes Encoding Penicillin-Binding Proteins in Clinical Isolates of Acinetobacter baumannii ▿ †

    Science.gov (United States)

    Cayô, Rodrigo; Rodríguez, María-Cruz; Espinal, Paula; Fernández-Cuenca, Felipe; Ocampo-Sosa, Alain A.; Pascual, Álvaro; Ayala, Juan A.; Vila, Jordi; Martínez-Martínez, Luis

    2011-01-01

    There is limited information on the role of penicillin-binding proteins (PBPs) in the resistance of Acinetobacter baumannii to β-lactams. This study presents an analysis of the allelic variations of PBP genes in A. baumannii isolates. Twenty-six A. baumannii clinical isolates (susceptible or resistant to carbapenems) from three teaching hospitals in Spain were included. The antimicrobial susceptibility profile, clonal pattern, and genomic species identification were also evaluated. Based on the six complete genomes of A. baumannii, the PBP genes were identified, and primers were designed for each gene. The nucleotide sequences of the genes identified that encode PBPs and the corresponding amino acid sequences were compared with those of ATCC 17978. Seven PBP genes and one monofunctional transglycosylase (MGT) gene were identified in the six genomes, encoding (i) four high-molecular-mass proteins (two of class A, PBP1a [ponA] and PBP1b [mrcB], and two of class B, PBP2 [pbpA or mrdA] and PBP3 [ftsI]), (ii) three low-molecular-mass proteins (two of type 5, PBP5/6 [dacC] and PBP6b [dacD], and one of type 7 (PBP7/8 [pbpG]), and (iii) a monofunctional enzyme (MtgA [mtgA]). Hot spot mutation regions were observed, although most of the allelic changes found translated into silent mutations. The amino acid consensus sequences corresponding to the PBP genes in the genomes and the clinical isolates were highly conserved. The changes found in amino acid sequences were associated with concrete clonal patterns but were not directly related to susceptibility or resistance to β-lactams. An insertion sequence disrupting the gene encoding PBP6b was identified in an endemic carbapenem-resistant clone in one of the participant hospitals. PMID:21947403

  13. The rice HGW gene encodes a ubiquitin-associated (UBA domain protein that regulates heading date and grain weight.

    Directory of Open Access Journals (Sweden)

    Juan Li

    Full Text Available Heading date and grain weight are two determining agronomic traits of crop yield. To date, molecular factors controlling both heading date and grain weight have not been identified. Here we report the isolation of a hemizygous mutation, heading and grain weight (hgw, which delays heading and reduces grain weight in rice. Analysis of hgw mutant phenotypes indicate that the hemizygous hgw mutation decreases latitudinal cell number in the lemma and palea, both composing the spikelet hull that is known to determine the size and shape of brown grain. Molecular cloning and characterization of the HGW gene showed that it encodes a novel plant-specific ubiquitin-associated (UBA domain protein localized in the cytoplasm and nucleus, and functions as a key upstream regulator to promote expressions of heading date- and grain weight-related genes. Moreover, co-expression analysis in rice and Arabidopsis indicated that HGW and its Arabidopsis homolog are co-expressed with genes encoding various components of ubiquitination machinery, implying a fundamental role for the ubiquitination pathway in heading date and grain weight control.

  14. The Drosophila Medea gene is required downstream of dpp and encodes a functional homolog of human Smad4.

    Science.gov (United States)

    Hudson, J B; Podos, S D; Keith, K; Simpson, S L; Ferguson, E L

    1998-04-01

    The Transforming Growth Factor-beta superfamily member decapentaplegic (dpp) acts as an extracellular morphogen to pattern the embryonic ectoderm of the Drosophila embryo. To identify components of the dpp signaling pathway, we screened for mutations that act as dominant maternal enhancers of a weak allele of the dpp target gene zerknŁllt. In this screen, we recovered new alleles of the Mothers against dpp (Mad) and Medea genes. Phenotypic analysis of the new Medea mutations indicates that Medea, like Mad, is required for both embryonic and imaginal disc patterning. Genetic analysis suggests that Medea may have two independently mutable functions in patterning the embryonic ectoderm. Complete elimination of maternal and zygotic Medea activity in the early embryo results in a ventralized phenotype identical to that of null dpp mutants, indicating that Medea is required for all dpp-dependent signaling in embryonic dorsal-ventral patterning. Injection of mRNAs encoding DPP or a constitutively activated form of the DPP receptor, Thick veins, into embryos lacking all Medea activity failed to induce formation of any dorsal cell fates, demonstrating that Medea acts downstream of the thick veins receptor. We cloned Medea and found that it encodes a protein with striking sequence similarity to human SMAD4. Moreover, injection of human SMAD4 mRNA into embryos lacking all Medea activity conferred phenotypic rescue of the dorsal-ventral pattern, demonstrating conservation of function between the two gene products.

  15. Expression and functional analysis of genes encoding cytokinin receptor-like histidine kinase in maize (Zea mays L.).

    Science.gov (United States)

    Wang, Bo; Chen, Yanhong; Guo, Baojian; Kabir, Muhammad Rezaul; Yao, Yingyin; Peng, Huiru; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2014-08-01

    Cytokinin signaling is vital for plant growth and development which function via the two-component system (TCS). As one of the key component of TCS, transmembrane histidine kinases (HK) are encoded by a small gene family in plants. In this study, we focused on expression and functional analysis of cytokinin receptor-like HK genes (ZmHK) in maize. Firstly, bioinformatics analysis revealed that seven cloned ZmHK genes have different expression patterns during maize development. Secondly, ectopic expression by CaMV35S promoter in Arabidopsis further revealed that functional differentiation exists among these seven members. Among them, the ZmHK1a2-OX transgenic line has the lowest germination rate in the dark, ZmHK1-OX and ZmHK2a2-OX can delay leaf senescence, and seed size of ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX was obviously reduced as compared to wild type. Additionally, ZmHK genes play opposite roles in shoot and root development; all ZmHK-OX transgenic lines display obvious shorter root length and reduced number of lateral roots, but enhanced shoot development compared with the wild type. Most notably, Arabidopsis response regulator ARR5 gene was up-regulated in ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX as compared to wild type. Although the causal link between ZmHK genes and cytokinin signaling pathway is still an area to be further elucidated, these findings reflected that the diversification of ZmHK genes expression patterns and functions occurred in the course of maize evolution, indicating that some ZmHK genes might play different roles during maize development.

  16. MYB98 positively regulates a battery of synergid-expressed genes encoding filiform apparatus localized proteins.

    Science.gov (United States)

    Punwani, Jayson A; Rabiger, David S; Drews, Gary N

    2007-08-01

    The synergid cells within the female gametophyte are essential for reproduction in angiosperms. MYB98 encodes an R2R3-MYB protein required for pollen tube guidance and filiform apparatus formation by the synergid cells. To test the predicted function of MYB98 as a transcriptional regulator, we determined its subcellular localization and examined its DNA binding properties. We show that MYB98 binds to a specific DNA sequence (TAAC) and that a MYB98-green fluorescent protein fusion protein localizes to the nucleus, consistent with a role in transcriptional regulation. To identify genes regulated by MYB98, we tested previously identified synergid-expressed genes for reduced expression in myb98 female gametophytes and identified 16 such genes. We dissected the promoter of one of the downstream genes, DD11, and show that it contains a MYB98 binding site required for synergid expression, suggesting that DD11 is regulated directly by MYB98. To gain insight into the functions of the downstream genes, we chose five genes and determined the subcellular localization of the encoded proteins. We show that these five proteins are secreted into the filiform apparatus, suggesting that they play a role in either the formation or the function of this unique structure. Together, these data suggest that MYB98 functions as a transcriptional regulator in the synergid cells and activates the expression of genes required for pollen tube guidance and filiform apparatus formation.

  17. Significant prognostic values of nuclear genes encoding mitochondrial complex I subunits in tumor patients.

    Science.gov (United States)

    Li, L D; Sun, H F; Bai, Y; Gao, S P; Jiang, H L; Jin, W

    2016-01-01

    In cancer biology, it remains still open question concerning the oncogenic versus oncosuppressor behavior of metabolic genes, which includes those encoding mitochondrial complex I (CI) subunits. The prognostic value of nuclear genome mRNAs expression of CI subunits is to be evaluated in the tumor patients. We used the Kaplan Meier plotter database, the cBio Cancer Genomics Portal, and the Oncomine in which gene expression data and survival information were from thousands of tumor patients to assess the relevance of nuclear genome mRNAs level of CI subunits to patients' survival, as well as their alterations in gene and expression level in tumors. We presented that the relative expression level of overwhelming majority of the nuclear genes of CI subunits with survival significance (overall survival, relapse free survival, progression free survival, distant metastasis free survival, post progression survival, and first progression), had consistent effects for patients in each type of four tumors separately, including breast cancer, ovarian cancer, lung cancer, and gastric cancer. However, in gene level, frequent cumulative or individual alteration of these genes could not significantly affect patients' survival and the overexpression of the individual gene was not ubiquitous in tumors versus normal tissues. Given that reprogrammed energy metabolism was viewed as an emerging hallmark of tumor, thus tumor patients' survival might potentially to be evaluated by certain threshold for overall expression of CI subunits. Comprehensive understanding of the nuclear genome encoded CI subunits may have guiding significance for the diagnosis and prognosis in tumor patients.

  18. A gene encoding a new cold-active lipase from an Antarctic isolate of Penicillium expansum.

    Science.gov (United States)

    Mohammed, Suja; Te'o, Junior; Nevalainen, Helena

    2013-08-01

    Cold-active lipases are of significant interest as biocatalysts in industrial processes. We have identified a lipase that displayed activity towards long carbon-chain-p-nitrophenyl substrates (C12-C18) at 25 °C from the culture supernatant of an Antarctic Penicillium expansum strain assigned P. expansum SM3. Zymography revealed a protein band of around 30 kDa with activity towards olive oil. DNA fragments of a lipase gene designated as lipPE were isolated from the genomic DNA of P. expansum SM3 by genomic walking PCR. Subsequently, the complete genomic lipPE gene was amplified using gene-specific primers designed from the 5'- and 3'-regions. Reverse transcription PCR was used to amplify the lipPE cDNA. The deduced amino acid sequence consisted of 285 residues that included a predicted signal peptide. Three peptides identified by LC/MS/MS analysis of the proteins in the culture supernatant of P. expansum were also present in the deduced amino acid sequence of the lipPE gene suggesting that this gene encoded the lipase identified by initial zymogram activity analysis. Full analysis of the nucleotide and the deduced amino acid sequences indicated that the lipPE gene encodes a novel P. expansum lipase. The lipPE gene was expressed in E. coli for further characterization of the enzyme with a view of assessing its suitability for industrial applications.

  19. Knowledge-guided gene ranking by coordinative component analysis.

    Science.gov (United States)

    Wang, Chen; Xuan, Jianhua; Li, Huai; Wang, Yue; Zhan, Ming; Hoffman, Eric P; Clarke, Robert

    2010-03-30

    In cancer, gene networks and pathways often exhibit dynamic behavior, particularly during the process of carcinogenesis. Thus, it is important to prioritize those genes that are strongly associated with the functionality of a network. Traditional statistical methods are often inept to identify biologically relevant member genes, motivating researchers to incorporate biological knowledge into gene ranking methods. However, current integration strategies are often heuristic and fail to incorporate fully the true interplay between biological knowledge and gene expression data. To improve knowledge-guided gene ranking, we propose a novel method called coordinative component analysis (COCA) in this paper. COCA explicitly captures those genes within a specific biological context that are likely to be expressed in a coordinative manner. Formulated as an optimization problem to maximize the coordinative effort, COCA is designed to first extract the coordinative components based on a partial guidance from knowledge genes and then rank the genes according to their participation strengths. An embedded bootstrapping procedure is implemented to improve statistical robustness of the solutions. COCA was initially tested on simulation data and then on published gene expression microarray data to demonstrate its improved performance as compared to traditional statistical methods. Finally, the COCA approach has been applied to stem cell data to identify biologically relevant genes in signaling pathways. As a result, the COCA approach uncovers novel pathway members that may shed light into the pathway deregulation in cancers. We have developed a new integrative strategy to combine biological knowledge and microarray data for gene ranking. The method utilizes knowledge genes for a guidance to first extract coordinative components, and then rank the genes according to their contribution related to a network or pathway. The experimental results show that such a knowledge-guided strategy

  20. Cloning and Characterization of Largemouth Bass (Micropterus salmoides) Myostatin Encoding Gene and Its Promoter

    Institute of Scientific and Technical Information of China (English)

    LI Shengjie; BAI Junjie; WANG Lin

    2008-01-01

    Myostatin or GDF-8, a member of the transforming growth factor-β (TGF-β) superfamily, has been demonstrated to be a negative regulator of skeletal muscle mass in mammals. In the present study, we obtained a 5.64kb sequence of myostatin encoding gene and its promoter from largemouth bass (Micropterus salmoides). The myostatin encoding gene consisted of three exons (488bp, 371 bp and 1779bp, respectively) and two introns (390bp and 855 bp, respectively). The intron-exon boundaries were conservative in comparison with those of mammalian myostatin encoding genes, whereas the size of introns was smaller than that of mammals. Se- quence analysis of 1.569kb of the largemouth bass myostatin gene promoter region revealed that it contained two TATA boxes, one CAAT box and nine putative E-boxes. Putative muscle growth response elements for myocyte enhancer factor 2 (MEF2), serum response factor (SRF), activator protein 1 (API), etc.. and muscle-specific Mt binding site (MTBF) were also detected. Some of the transcription factor binding sites were conserved among five teleost species. This information will be useful for studying the tran- scriptional regulation of myostatin in fish.

  1. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    Directory of Open Access Journals (Sweden)

    Nordlund Henri R

    2005-03-01

    Full Text Available Abstract Background A chicken egg contains several biotin-binding proteins (BBPs, whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins.

  2. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family.

    Science.gov (United States)

    Niskanen, Einari A; Hytönen, Vesa P; Grapputo, Alessandro; Nordlund, Henri R; Kulomaa, Markku S; Laitinen, Olli H

    2005-03-18

    A chicken egg contains several biotin-binding proteins (BBPs), whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins.

  3. Overlapping protein-encoding genes in Pseudomonas fluorescens Pf0-1.

    Directory of Open Access Journals (Sweden)

    Mark W Silby

    2008-06-01

    Full Text Available The annotated genome sequences of prokaryotes seldom include overlapping genes encoded opposite each other by the same stretch of DNA. However, antisense transcription is becoming recognized as a widespread phenomenon in eukaryotes, and examples have been linked to important biological processes. Pseudomonas fluorescens inhabits aquatic and terrestrial environments, and can be regarded as an environmental generalist. The genetic basis for this ecological success is not well understood. In a previous search for soil-induced genes in P. fluorescens Pf0-1, ten antisense genes were discovered. These were termed 'cryptic' genes, as they had escaped detection by gene-hunting algorithms, and lacked easily recognizable promoters. In this communication, we designate such genes as 'non-predicted' or 'hidden'. Using reverse transcription PCR, we show that at each of six non-predicted gene loci chosen for study, transcription occurs from both 'sense' and 'antisense' DNA strands. Further, at least one of these hidden antisense genes, iiv14, encodes a protein, as does the sense transcript, both identified by poly-histidine tags on the C-terminus of the proteins. Mutational and complementation studies showed that this novel antisense gene was important for efficient colonization of soil, and multiple copies in the wildtype host improved the speed of soil colonization. Introduction of a stop codon early in the gene eliminated complementation, further implicating the protein in colonization of soil. We therefore designate iiv14 "cosA". These data suggest that, as is the case with eukaryotes, some bacterial genomes are more densely coded than currently recognized.

  4. Overlapping protein-encoding genes in Pseudomonas fluorescens Pf0-1.

    Science.gov (United States)

    Silby, Mark W; Levy, Stuart B

    2008-06-13

    The annotated genome sequences of prokaryotes seldom include overlapping genes encoded opposite each other by the same stretch of DNA. However, antisense transcription is becoming recognized as a widespread phenomenon in eukaryotes, and examples have been linked to important biological processes. Pseudomonas fluorescens inhabits aquatic and terrestrial environments, and can be regarded as an environmental generalist. The genetic basis for this ecological success is not well understood. In a previous search for soil-induced genes in P. fluorescens Pf0-1, ten antisense genes were discovered. These were termed 'cryptic' genes, as they had escaped detection by gene-hunting algorithms, and lacked easily recognizable promoters. In this communication, we designate such genes as 'non-predicted' or 'hidden'. Using reverse transcription PCR, we show that at each of six non-predicted gene loci chosen for study, transcription occurs from both 'sense' and 'antisense' DNA strands. Further, at least one of these hidden antisense genes, iiv14, encodes a protein, as does the sense transcript, both identified by poly-histidine tags on the C-terminus of the proteins. Mutational and complementation studies showed that this novel antisense gene was important for efficient colonization of soil, and multiple copies in the wildtype host improved the speed of soil colonization. Introduction of a stop codon early in the gene eliminated complementation, further implicating the protein in colonization of soil. We therefore designate iiv14 "cosA". These data suggest that, as is the case with eukaryotes, some bacterial genomes are more densely coded than currently recognized.

  5. The ctnG gene encodes carbonic anhydrase involved in mycotoxin citrinin biosynthesis from Monascus aurantiacus.

    Science.gov (United States)

    Li, Yan-Ping; Tang, Xiao; Wu, Wei; Xu, Yang; Huang, Zhi-Bing; He, Qing-Hua

    2015-01-01

    Citrinin, a fungal secondary metabolite of polyketide origin, is moderately nephrotoxic to vertebrates, including humans. Citrinin is synthesised by condensation of acetyl-CoA and malonyl-CoA. Six genes involved in the citrinin biosynthesis, including pksCT, ctnA and ctnB, have been cloned in Monascus purpureus. The pksCT gene encodes a polyketide synthase; ctnA is a regulatory factor; and ctnB encodes an oxidoreductase. When the three genes were respectively disrupted, the disruption strains drastically decreased citrinin production or barely produced citrinin. Ten new genes have been discovered in Monascus aurantiacus besides the above six genes. One of these gene displayed the highest similarity to the β-carbonic anhydrase gene from Aspergillus oryzae (74% similarity) and was designated ctnG. To learn more about the citrinin biosynthetic pathway, a ctnG-replacement vector was constructed to disrupt ctnG with the hygromycin resistance gene as the selection marker, then transformed into M. aurantiacus Li AS3.4384 by a protoplast-PEG method. The citrinin content of three disruptants was reduced to about 50%, meanwhile pigment production decreased by 23%, respectively, over those of the wild-type strains. ctnG was deduced to be involved in the formation of malonyl-CoA as a common precursor of red pigments and citrinin. Therefore, the disruption of the ctnG gene decreased citrinin and pigment production. M. aurantiacus Li AS3.4384 can produce higher concentrations of citrinin than other strains such as M. purpureus and M. ruber. Establishing the function of citrinin biosynthetic genes in M. aurantiacus is helpful in understanding the citrinin synthetic pathway and adopting some strategies to control contamination.

  6. Bioinformatics and protein modelling of the GS element of Mycobacteriumavium subsp. paratuberculosis (MAP) and GS-encoded proteins as drugtargets and vaccine components

    Institute of Scientific and Technical Information of China (English)

    Joe Sheridan; Tim Bull; Nazira Sumar; Jun Cheng; John Hermon-Taylor

    2000-01-01

    AIM To determine the function and cellular localization of GS-encoded proteins and to assess their potentialas drug targets and vaccine components.METHODS Bioinformatics software was used to predict the function of GS-encoded proteins and theirlocation within MAP. Protein modelling software was used to build protein structures.RESULTS The gene gsa is a truncated glycosyl transferase and probably non-functional. gsbA and gsbBproduce GDP-fucose which is methylated by gsc and acetylated by mpa. gsd is a fucosyl transferase whichattaches fucose to subterminal rhamnose on cell surface glycopeptidolipid. gsa, gsbA and gsbB and gsc arelocated within the cytoplasm. mpa is embedded in the plasma membrane with 10 transmembrane regions anda conspicuous extracellular loop. gsd is lipid-linked and predicted to localize to the microbial cell surface.CONCLUSION GS encodes the biosynthetic machinery to give MAP a surface coat of methylated andacetylated fucose which may contribute to its protease-resistant nature and ability to minimize immunerecognition. The gsbA/gsbB operon and gsd are promising drug targets and gsd is a good candidatecomponent of a new class of anti-MAP vaccines.

  7. The promoter of the glucoamylase-encoding gene of Aspergillus niger functions in Ustilago maydis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.L. (Dept. of Agriculture, Madison, WI (United States) Univ. of Wisconsin, Madison (United States)); Gaskell, J.; Cullen, D. (Dept. of Agriculture, Madison, WI (United States)); Berka, R.M.; Yang, M.; Henner, D.J. (Genentech Inc., San Francisco, CA (United States))

    1990-01-01

    Promoter sequences from the Aspergillus niger glucoamylase-encoding gene (glaA) were linked to the bacterial hygromycin (Hy) phosphotransferase-encoding gene (hph) and this chimeric marker was used to select Hy-resistant (Hy[sup R]) Ustilago maydis transformants. This is an example of an Ascomycete promoter functioning in a Basidiomycete. Hy[sup R] transformants varied with respect to copy number of integrated vector, mitotic stability, and tolerance to Hy. Only 216 bp of glaA promoter sequence is required for expression in U. maydis but this promoter is not induced by starch as it is in Aspergillus spp. The transcription start points are the same in U. maydis and A. niger.

  8. Molecular cloning and chromosomal localization of the ADH7 gene encoding human class IV ({sigma}) ADH

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Hirokazu; Baraona, E.; Lieber, C.S. [Mount Sinai School of Medicine, Bronx, NY (United States)

    1996-01-15

    The ADH7 gene encoding human Class IV ({sigma}) alcohol dehydrogenase (ADH) was cloned from a Caucasian genomic DNA library and characterized. It has nine exons and eight introns that span about 22 kb, and its intron insertion is identical to that of the other ADH genes (ADH1 to ADH5). The nucleotide sequences of the exons encoding 374 amino acids are identical to the previously reported cDNA sequence of {sigma} ADH. Fluorescence in situ hybridization analysis showed that ADH7 is located on human chromosome 4q23-q24, close to the ADH cluster locus (4q21-q25). These data are consistent with the view that Class IV ADH is a member of the ADH family and is phylogenetically close to the other ADHs. 15 refs., 2 figs., 1 tab.

  9. Enterotoxigenicity of Vibrio parahaemolyticus with and without genes encoding thermostable direct hemolysin.

    OpenAIRE

    Nishibuchi, M.; Fasano, A; Russell, R G; Kaper, J B

    1992-01-01

    Vibrio parahaemolyticus produces a thermostable direct hemolysin (TDH) that has been implicated in the pathogenesis of diarrheal disease caused by this organism. However, previous studies attempting to demonstrate the contribution of the hemolysin to virulence have been inconclusive. We investigated this putative virulence factor by using an isogenic TDH-negative (TDH-) strain constructed by specifically inactivating the two copies of the tdh gene encoding TDH. The enterotoxigenicities of the...

  10. Detection of Leishmania spp. based on the gene encoding HSP20

    OpenAIRE

    Montalvo, Ana M; Departamento de Parasitología, Instituto de Medicina Tropical Pedro Kourí. La Habana, Cuba.; Fraga, Jorge; Departamento de Parasitología, Instituto de Medicina Tropical Pedro Kourí. La Habana, Cuba.; Rodríguez, Omaira; Laboratorio de referencia e investigación en enfermedades tropicales de sanidad militar. Bogotá, Colombia.; Blanco, Orestes; Departamento de Parasitología, Instituto de Medicina Tropical Pedro Kourí. La Habana, Cuba.; Llanos-Cuentas, Alejandro; Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia. Lima, Perú.; García, Ana L.; Universidad de San Simón. Cochabamba, Bolivia.; Valencia, Braulio M; Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia. Lima, Perú.; Muskus, Carlos; Programa de Estudio y Control de Enfermedades Tropicales, Universidad de Antioquia. Medellín, Colombia.; Van der Auwera, Gert; Biomedical Sciences Department. Institute of Tropical Medicine of Antwerp. Amberes, Bélgica.; Requena, José M; Centro de Biología Molecular Severo Ochoa. Madrid, España.

    2014-01-01

    Objectives. Explore a new target for molecular diagnosis of Leishmania. Materials and methods. We evaluated the utility of the gene that encodes the heat shock protein 20-kDa (Hsp20) for detecting Leishmania by polymerase chain reaction (PCR). PCR was normalized and analytical parameters were determined, as well as the validity and diagnostic accuracy, and concordance with the PCR - 18S. PCR-Hsp20 with DNA was obtained from a group of clinical samples from different sources. Results. The anal...

  11. Sca1, a previously undescribed paralog from autotransporter protein-encoding genes in Rickettsia species

    Directory of Open Access Journals (Sweden)

    Raoult Didier

    2006-02-01

    Full Text Available Abstract Background Among the 17 genes encoding autotransporter proteins of the "surface cell antigen" (sca family in the currently sequenced Rickettsia genomes, ompA, sca5 (ompB and sca4 (gene D, have been extensively used for identification and phylogenetic purposes for Rickettsia species. However, none of these genes is present in all 20 currently validated Rickettsia species. Of the remaining 14 sca genes, sca1 is the only gene to be present in all nine sequenced Rickettsia genomes. To estimate whether the sca1 gene is present in all Rickettsia species and its usefulness as an identification and phylogenetic tool, we searched for sca1genes in the four published Rickettsia genomes and amplified and sequenced this gene in the remaining 16 validated Rickettsia species. Results Sca1 is the only one of the 17 rickettsial sca genes present in all 20 Rickettsia species. R. prowazekii and R. canadensis exhibit a split sca1 gene whereas the remaining species have a complete gene. Within the sca1 gene, we identified a 488-bp variable sequence fragment that can be amplified using a pair of conserved primers. Sequences of this fragment are specific for each Rickettsia species. The phylogenetic organization of Rickettsia species inferred from the comparison of sca1 sequences strengthens the classification based on the housekeeping gene gltA and is similar to those obtained from the analyses of ompA, sca5 and sca4, thus suggesting similar evolutionary constraints. We also observed that Sca1 protein sequences have evolved under a dual selection pressure: with the exception of typhus group rickettsiae, the amino-terminal part of the protein that encompasses the predicted passenger domain, has evolved under positive selection in rickettsiae. This suggests that the Sca1 protein interacts with the host. In contrast, the C-terminal portion containing the autotransporter domain has evolved under purifying selection. In addition, sca1 is transcribed in R. conorii

  12. Ribosomal protein L7a is encoded by a gene (Surf-3) within the tightly clustered mouse surfeit locus.

    Science.gov (United States)

    Giallongo, A; Yon, J; Fried, M

    1989-01-01

    The mouse Surfeit locus, which contains a cluster of at least four genes (Surf-1 to Surf-4), is unusual in that adjacent genes are separated by no more than 73 base pairs (bp). The heterogeneous 5' ends of Surf-1 and Surf-2 are separated by only 15 to 73 bp, the 3' ends of Surf-1 and Surf-3 are only 70 bp apart, and the 3' ends of Surf-2 and Surf-4 overlap by 133 bp. This very tight clustering suggests a cis interaction between adjacent Surfeit genes. The Surf-3 gene (which could code for a basic polypeptide of 266 amino acids) is a highly expressed member of a pseudogene-containing multigene family. By use of an anti-peptide serum (against the C-terminal nine amino acids of the putative Surf-3 protein) for immunofluorescence and immunoblotting of mouse cell components and by in vitro translation of Surf-3 cDNA hybrid-selected mRNA, the Surf-3 gene product was identified as a 32-kilodalton ribosomal protein located in the 60S ribosomal subunit. From its subunit location, gel migration, and homology with a limited rat ribosomal peptide sequence, the Surf-3 gene was shown to encode the mouse L7a ribosomal protein. The Surf-3 gene is highly conserved through evolution and was detected by nucleic acid hybridization as existing in multiple copies (multigene families) in other mammals and as one or a few copies in birds, Xenopus, Drosophila, and Schizosaccharomyces pombe. The Surf-3 C-terminal anti-peptide serum detects a 32-kilodalton protein in other mammals, birds, and Xenopus but not in Drosophila and S. pombe. The possible effect of interaction of the Surf-3 ribosomal protein gene with adjacent genes in the Surfeit locus at the transcriptional or posttranscriptional level or both levels is discussed. Images PMID:2648130

  13. Enterotoxin-Encoding Genes in Staphylococcus spp. from Food Handlers in a University Restaurant.

    Science.gov (United States)

    da Silva, Sabina Dos Santos Paulino; Cidral, Thiago André; Soares, Maria José dos Santos; de Melo, Maria Celeste Nunes

    2015-11-01

    Food handlers carrying enterotoxin-producing Staphylococcus are a potential source of food poisoning. The aim of this study was to analyze genes encoding enterotoxins in coagulase-positive Staphylococcus (CoPS) and coagulase-negative Staphylococcus (CoNS) isolated from the anterior nostrils and hands of food handlers at a university restaurant in the city of Natal, Northeast Brazil. Thirty food handlers were screened for the study. The isolates were subjected to Gram staining, a bacitracin sensitivity test, mannitol fermentation, and catalase and coagulase tests. CoNS and CoPS strains were subsequently identified by a Vitek 2 System (BioMerieux, France) and various biochemical tests. Polymerase chain reaction was used to detect genes for enterotoxins A, B, C, D, E, G, H, and I (sea, seb, sec, sed, see, seg, seh, and sei) and a disc-diffusion method was used to determine susceptibility to several classes of antimicrobials. All food handlers presented staphylococci on their hands and/or noses. The study found 58 Staphylococcus spp., of which 20.7% were CoPS and 79.3% were CoNS. S. epidermidis was the most prevalent species. Twenty-nine staphylococci (50%) were positive for one or more enterotoxin genes, and the most prevalent genes were seg and sei, each with a frequency of 29.3%. Indeed, CoNS encoded a high percentage of enterotoxin genes (43.5%). However, S. aureus encoded even more enterotoxin genes (75%). Most isolates showed sensitivity to the antibiotics used for testing, except for penicillin (only 35% sensitive). The results from this study reinforce that coagulase-negative as well as coagulase-positive staphylococci isolated from food handlers are capable of genotypic enterotoxigenicity.

  14. Characterization and phylogenetic analysis of environmental stress-responsive SAP gene family encoding A20/AN1 zinc finger proteins in tomato.

    Science.gov (United States)

    Solanke, Amolkumar U; Sharma, Manoj K; Tyagi, Akhilesh K; Sharma, Arun Kumar

    2009-08-01

    Characterization of genes responsive to stress is important for efforts on improving stress tolerance of plants. To address components involved in stress tolerance of tomato (Solanum lycopersicum), a stress-responsive gene family encoding A20/AN1 zinc finger proteins was characterized. In the present study, 13 members of this gene family were cloned from tomato cultivar Pusa Ruby and named as Stress Associated Protein (SAP) genes. Out of 13 genes, 12 have been mapped on their respective chromosomes. Expression of these genes in response to cold, heat, salt, desiccation, wounding, abscisic acid, oxidative and submergence stresses was analysed. All tomato SAP genes were found to be responsive to one or other type of environmental stress. The phylogenetic analysis of these genes, along with their orthologs from Solanaceae species suggests the presence of a common set of SAP genes in the studied Solanaceae species. The present study characterizes a SAP gene family, which encodes A20/AN1 zinc finger containing proteins from tomato for the first time. Genes showing high expression in response to a particular stress can be exploited for improving stress tolerance of tomato and other Solanaceae members.

  15. Cloning of an epoxide hydrolase encoding gene from Rhodotorula mucilaginosa and functional expresion in Yarrowia lipolytica

    CSIR Research Space (South Africa)

    Labuschagne, M

    2007-01-01

    Full Text Available -joining method with the Kimura two-parameter distance measure. Confidence values were estimated from bootstrap analysis of 1000 replicates. The bar length corresponds to 10% amino acid dissimilarity amino acid) and the HGXP motif that contains the oxyanion... the isolation and cloning of an EH-encoding gene and its cDNA from Rhodotorula mucilaginosa and the functional expression of this gene in Y. lipolytica. Materials and methods Strains and culture conditions R. mucilaginosa (CBS 8596), Y. lipolytica strain...

  16. Cloning and Characterization of upp, a Gene Encoding Uracil Phosphoribosyltransferase from Lactococcus lactis

    DEFF Research Database (Denmark)

    Martinussen, Jan; Hammer, Karin

    1994-01-01

    Uracil phosphoribosyltransferase catalyzes the key reaction in the salvage of uracil in many microorganisms. The gene encoding uracil phosphoribosyltransferase (upp) was cloned from Lactococcus lactis subsp. cremoris MG1363 by complementation of an Escherichia coli mutant. The gene was sequenced...... construction of an internal deletion, a upp mutant was constructed by a double-crossover event. This implicated the utilization of a plasmid with a thermosensitive origin of replication and a new and easy way to screen for double crossover events in both gram-positive and gram-negative bacterial strains...

  17. A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis.

    Science.gov (United States)

    Town, M; Jean, G; Cherqui, S; Attard, M; Forestier, L; Whitmore, S A; Callen, D F; Gribouval, O; Broyer, M; Bates, G P; van't Hoff, W; Antignac, C

    1998-04-01

    Nephropathic cystinosis, an autosomal recessive disorder resulting from defective lysosomal transport of cystine, is the most common inherited cause of renal Fanconi syndrome. The cystinosis gene has been mapped to chromosome 17p13. We found that the locus D17S829 was homozygously deleted in 23 out of 70 patients, and identified a novel gene, CTNS, which mapped to the deletion interval. CTNS encodes an integral membrane protein, cystinosin, with features of a lysosomal membrane protein. Eleven different mutations, all predicted to cause loss of function of the protein, were found to segregate with the disorder.

  18. Structures of genes encoding phospholipase A2 inhibitors from the serum of Trimeresurus flavoviridis snake.

    Science.gov (United States)

    Nobuhisa, I; Deshimaru, M; Chijiwa, T; Nakashima, K; Ogawa, T; Shimohigashi, Y; Fukumaki, Y; Hattori, S; Kihara, H; Ohno, M

    1997-05-20

    Inhibitors (PLIs) against snake venom gland phospholipases A2 (PLA2s) have been found in their sera. A cDNA encoding a PLI from Trimeresurus flavoviridis (Tf, habu snake, Crotalinae) serum, cPLI-A, was isolated from the Tf liver cDNA library and sequenced. Northern blot analysis with cPLI-A showed that PLIs are expressed only in liver. Genes for PLIs, gPLI-A and gPLI-B, were isolated from the Tf genomic DNA library and their nucleotide (nt) sequences were determined. The genes consisted of four exons and three introns, and exon 4 encoded the carbohydrate recognition domain (CRD)-like motif. Comparison of the nt sequences between gPLI-A and gPLI-B showed that these genes are highly homologous, including introns, except that exon 3 is rich in nonsynonymous nt substitutions which are almost four times as frequent as synonymous nt substitutions. This evolutionary feature of PLI genes is different from that of venom gland PLA2 isozyme genes in which nonsynonymous nt substitutions are spread over the entire mature protein-coding region.

  19. Genome analysis and identification of gelatinase encoded gene in Enterobacter aerogenes

    Science.gov (United States)

    Shahimi, Safiyyah; Mutalib, Sahilah Abdul; Khalid, Rozida Abdul; Repin, Rul Aisyah Mat; Lamri, Mohd Fadly; Bakar, Mohd Faizal Abu; Isa, Mohd Noor Mat

    2016-11-01

    In this study, bioinformatic analysis towards genome sequence of E. aerogenes was done to determine gene encoded for gelatinase. Enterobacter aerogenes was isolated from hot spring water and gelatinase species-specific bacterium to porcine and fish gelatin. This bacterium offers the possibility of enzymes production which is specific to both species gelatine, respectively. Enterobacter aerogenes was partially genome sequenced resulting in 5.0 mega basepair (Mbp) total size of sequence. From pre-process pipeline, 87.6 Mbp of total reads, 68.8 Mbp of total high quality reads and 78.58 percent of high quality percentage was determined. Genome assembly produced 120 contigs with 67.5% of contigs over 1 kilo base pair (kbp), 124856 bp of N50 contig length and 55.17 % of GC base content percentage. About 4705 protein gene was identified from protein prediction analysis. Two candidate genes selected have highest similarity identity percentage against gelatinase enzyme available in Swiss-Prot and NCBI online database. They were NODE_9_length_26866_cov_148.013245_12 containing 1029 base pair (bp) sequence with 342 amino acid sequence and NODE_24_length_155103_cov_177.082458_62 which containing 717 bp sequence with 238 amino acid sequence, respectively. Thus, two paired of primers (forward and reverse) were designed, based on the open reading frame (ORF) of selected genes. Genome analysis of E. aerogenes resulting genes encoded gelatinase were identified.

  20. A putative gene cluster from a Lyngbya wollei bloom that encodes paralytic shellfish toxin biosynthesis.

    Directory of Open Access Journals (Sweden)

    Troco K Mihali

    Full Text Available Saxitoxin and its analogs cause the paralytic shellfish-poisoning syndrome, adversely affecting human health and coastal shellfish industries worldwide. Here we report the isolation, sequencing, annotation, and predicted pathway of the saxitoxin biosynthetic gene cluster in the cyanobacterium Lyngbya wollei. The gene cluster spans 36 kb and encodes enzymes for the biosynthesis and export of the toxins. The Lyngbya wollei saxitoxin gene cluster differs from previously identified saxitoxin clusters as it contains genes that are unique to this cluster, whereby the carbamoyltransferase is truncated and replaced by an acyltransferase, explaining the unique toxin profile presented by Lyngbya wollei. These findings will enable the creation of toxin probes, for water monitoring purposes, as well as proof-of-concept for the combinatorial biosynthesis of these natural occurring alkaloids for the production of novel, biologically active compounds.

  1. Cloning and sequencing of the gene encoding LipL21 in the vaccinal leptospira serovars

    Directory of Open Access Journals (Sweden)

    Rasoul Hoseinpur

    2016-01-01

    Full Text Available Background: Leptospirosis is a zoonotic disease in humans and animals, caused by the bacterium Leptospira interrogans. Gene expressing LipL21 is one of the genes identified in the bacterium, existing only in the pathogenic strains. The aim of this study was to cloning and analyzing the sequence of the gene encoding surface lipoprotein, LipL21, in five vaccinal leptospira serovars in Iran. Material and Methods: Pathogenic Leptospira interrogans serovars were cultured in EMJH medium with 10% rabbit serum. After genomic DNA extraction, PCR with specific primers was employed and the resulting product inserted in a vector then transferred into E. Coli DH5&alpha. The recombinant plasmids were finally sent for sequencing. Results: The analysis of gene lipL21 in domestic vaccinal serovars and comparison of them with other serovars in the GenBank database revealed that three vaccinal serovars serjo hardjo, canicola and pomona had 100% similarity with each other and grippotyphosa serovar had the highest difference with the vaccinal serovars. In general, the results showed that this gene is a highly conserved gene in the domestic vaccinal serovars and serovars in the GenBank database with more than 95.7 percent similarity. Conclusion: These results showed that the gene, lipL21, is highly conserved in the vaccinal serovars (similarities > 96.4 %. Therefore, the gene encoding surface protein LipL21 can serve as a useful serologic test with high specificity and sensitivity for diagnosis of leptospirosis in clinical samples and in future as an effective subunit vaccine candidate to be used.

  2. Molecular characterization of genes encoding inward rectifier potassium (Kir) channels in the bed bug (Cimex lectularius).

    Science.gov (United States)

    Mamidala, Praveen; Mittapelly, Priyanka; Jones, Susan C; Piermarini, Peter M; Mittapalli, Omprakash

    2013-04-01

    The molecular genetics of inward-rectifier potassium (Kir) channels in insects is poorly understood. To date, Kir channel genes have been characterized only from a few representative dipterans (i.e., fruit flies and mosquitoes). The goal of the present study was to characterize Kir channel cDNAs in a hemipteran, the bed bug (Cimex lectularius). Using our previously reported bed bug transcriptome (RNA-seq), we identified two cDNAs that encode putative Kir channels. One was a full-length cDNA that encodes a protein belonging to the insect 'Kir3' clade, which we designate as 'ClKir3'. The other was a partial cDNA that encodes a protein with similarity to both the insect 'Kir1' and 'Kir2' clades, which we designate as 'ClKir1/2'. Quantitative real-time PCR analysis revealed that ClKir1/2 and ClKir3 exhibited peak expression levels in late-instar nymphs and early-instar nymphs, respectively. Furthermore, ClKir3, but not ClKir1/2, showed tissue-specific expression in Malpighian tubules of adult bed bugs. Lastly, using an improved procedure for delivering double-stranded RNA (dsRNA) to male and female bed bugs (via the cervical membrane) we demonstrate rapid and systemic knockdown of ClKir3 transcripts. In conclusion, we demonstrate that the bed bug possesses at least two genes encoding Kir channels, and that RNAi is possible for at least Kir3, thereby offering a potential approach for elucidating the roles of Kir channel genes in bed bug physiology.

  3. Mutagenesis in sequence encoding of human factor VII for gene therapy of hemophilia

    Directory of Open Access Journals (Sweden)

    B Kazemi

    2009-12-01

    Full Text Available "nBackground: Current treatment of hemophilia which is one of the most common bleeding disorders, involves replacement therapy using concentrates of FVIII and FIX .However, these concentrates have been associated with viral infections and thromboembolic complications and development of antibodies. "nThe use of recombinant human factor VII (rhFVII is effective  for the treatment of patients with  hemophilia A or B, who develop antibodies ( referred as inhibitors against  replacement therapy , because it induces coagulation independent of FVIII and FIX. However, its short half-life and high cost have limited its use. One potential solution to this problem may be the use of FVIIa gene transfer, which would attain continuing therapeutic levels of expression from a single injection. The aim of this study was to engineer a novel hFVII (human FVII gene containing a cleavage site for the intracellular protease and furin, by PCR mutagenesis "nMethods: The sequence encoding light and heavy chains of hFVII, were amplified by using hFVII/pTZ57R and specific primers, separately. The PCR products were cloned in pTZ57R vector. "nResults and discussion: Cloning was confirmed by restriction analysis or PCR amplification using specific primers and plasmid universal primers. Mutagenesis of sequence encoding light and heavy chain was confirmed by restriction enzyme. "nConclusion: In the present study, it was provided recombinant plasmids based on mutant form of DNA encoding light and heavy chains.  Joining mutant form of DNA encoding light chain with mutant heavy chain led to a new variant of hFVII. This variant can be activated by furin and an increase in the proportion of activated form of FVII. This mutant form of hFVII may be used for gene therapy of hemophilia.

  4. Cloning and expression profiles of 15 genes encoding WRKY transcription factor in wheat (Triticum aestivem L.)

    Institute of Scientific and Technical Information of China (English)

    Hualing Wu; Zhongfu Ni; Yingyin Yao; Ganggang Guo; Qixin Sun

    2008-01-01

    WRKY proteins are involved in various physiological processes, including biotic and abiotic stress responses, hormone responses and development. However, no systematic identification, expression and function analysis of WRKY genes in wheat were reported. In this study, we isolated 15 wheat cDNAs with complete open reading frame (ORF) encoding putative WRKY proteins using in silico cloning. Phylogenetic analysis indicated that the 15 wheat WRKY genes belonged to three major WRKY groups. Expression analysis revealed that most genes expressed drastically in leaf, except TaWRKY10 which expressed in crown intensively. Four genes were strongly up-regulated with the senescence of leaves. Eight genes were responsive to low temperature, high temperature, NaCl or PEG treatment. Moreover, differential expression patterns were also observed between wheat hybrid and its parents, and some genes were more responsive to PEG treatment in the hybrid. These results demonstrated that wheat WRKY genes are involved in leaf senescing and abiotic stresses. And the changed expression of these WRKY genes in hybrid might contribute to the heterosis by improving the stress tolerance in hybrids.

  5. Heterogenic expression of genes encoding secreted proteins at the periphery of Aspergillus niger colonies.

    Science.gov (United States)

    Vinck, Arman; de Bekker, Charissa; Ossin, Adam; Ohm, Robin A; de Vries, Ronald P; Wösten, Han A B

    2011-01-01

    Colonization of a substrate by fungi starts with the invasion of exploring hyphae. These hyphae secrete enzymes that degrade the organic material into small molecules that can be taken up by the fungus to serve as nutrients. We previously showed that only part of the exploring hyphae of Aspergillus niger highly express the glucoamylase gene glaA. This was an unexpected finding since all exploring hyphae are exposed to the same environmental conditions. Using GFP as a reporter, we here demonstrate that the acid amylase gene aamA, the α-glucuronidase gene aguA, and the feruloyl esterase gene faeA of A. niger are also subject to heterogenic expression within the exploring mycelium. Coexpression studies using GFP and dTomato as reporters showed that hyphae that highly express one of these genes also highly express the other genes encoding secreted proteins. Moreover, these hyphae also highly express the amylolytic regulatory gene amyR, and the glyceraldehyde-3-phosphate dehydrogenase gene gpdA. In situ hybridization demonstrated that the high expressers are characterized by a high 18S rRNA content. Taken together, it is concluded that two subpopulations of hyphae can be distinguished within the exploring mycelium of A. niger. The experimental data indicate that these subpopulations differ in their transcriptional and translational activity.

  6. Identification and characterization of multiple Spidroin 1 genes encoding major ampullate silk proteins in Nephila clavipes.

    Science.gov (United States)

    Gaines, W A; Marcotte, W R

    2008-09-01

    Spider dragline silk is primarily composed of proteins called major ampullate spidroins (MaSps) that consist of a large repeat array flanked by nonrepetitive N- and C-terminal domains. Until recently, there has been little evidence for more than one gene encoding each of the two major spidroin silk proteins, MaSp1 and MaSp2. Here, we report the deduced N-terminal domain sequences for two distinct MaSp1 genes from Nephila clavipes (MaSp1A and MaSp1B) and for MaSp2. All three MaSp genes are co-expressed in the major ampullate gland. A search of the GenBank database also revealed two distinct MaSp1 C-terminal domain sequences. Sequencing confirmed that both MaSp1 genes are present in all seven Nephila clavipes spiders examined. The presence of nucleotide polymorphisms in these genes confirmed that MaSp1A and MaSp1B are distinct genetic loci and not merely alleles of the same gene. We experimentally determined the transcription start sites for all three MaSp genes and established preliminary pairing between the two MaSp1 N- and C-terminal domains. Phylogenetic analysis of these new sequences and other published MaSp N- and C-terminal domain sequences illustrated that duplications of MaSp genes may be widespread among spider species.

  7. Cloning and sequence analysis of a gene encoding polygalacturonase-inhibiting protein from cotton

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Polygalacturonase-inhibiting proteins (PGIP) play important roles in plant defense of pathogen, especially fungi. A pair of degenerated primers is designed based on the conserved sequence of 20 other known pgip genes and used to amplify Gossypium barbadense cultivation 7124 cDNA library by touch-down PCR. A 561 bp internal fragment of the pgip gene is obtained and used to design the primers for rapid amplification of cDNA ends. A composite pgip gene sequence is constructed from the products of 5′ and 3′ RACE, which are 666 bp and 906 bp respectively. Analysis of nucleic acid sequence shows 69.2% and 68.7% similarity to Citrus and Poncirus pgip genes, respectively. Its open reading frame of the gene encodes a polypeptide of 330 amino acids, in which 10 leucine-rich repeats arrange tandemly. A new set of primers is designed to the 5′ and 3′ ends of the gene, which allows amplification of the full-length gene from the cotton cDNA library. Genomic DNA analysis reveals that this gene has no intron.

  8. Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2α.

    Science.gov (United States)

    van Patot, Martha C Tissot; Gassmann, Max

    2011-01-01

    Living at high altitude is demanding and thus drives adaptational mechanisms. The Tibetan population has had a longer evolutionary period to adapt to high altitude than other mountain populations such as Andeans. As a result, some Tibetans living at high altitudes do not show markedly elevated red blood cell production as compared to South American high altitude natives such as Quechuas or Aymaras, thereby avoiding high blood viscosity creating cardiovascular risk. Unexpectedly, the responsible mutation(s) reducing red blood cell production do not involve either the gene encoding the blood hormone erythropoietin (Epo), or the corresponding regulatory sequences flanking the Epo gene. Similarly, functional mutations in the hypoxia-inducible transcription factor 1α (HIF-1α) gene that represents the oxygen-dependent subunit of the HIF-1 heterodimer, the latter being the main regulator of over 100 hypoxia-inducible genes, have not been described so far. It was not until very recently that three independent groups showed that the gene encoding HIF-2α, EPAS-1 (Wenger et al. 1997), represents a key gene mutated in Tibetan populations adapted to living at high altitudes (Beall et al. 2010 , Yi et al. 2010 , Simonson et al. 2010). Hypoxia-inducible transcription factors were first identified by the description of HIF-1 (Semenza et al. 1991 , 1992), which was subsequently found to enhance transcription of multiple genes that encode proteins necessary for rescuing from hypoxic exposure, including erythropoietic, angiogenic and glycolytic proteins. Then HIF-2 was identified (Ema et al. 1997 ; Flamme et al. 1997 ; Hogenesch et al. 1997 ; and Tian et al. 1997) and although it is highly similar to HIF-1 and has the potential to bind (Camenisch et al. 2001) and mediate (Mole et al. 2009) many of the same genes as HIF-1, its biological actions in response to hypoxia are distinct from those of HIF-1 (reviewed by Loboda et al. 2010). By now, several of these HIF-2 mediated

  9. Improve Survival Prediction Using Principal Components of Gene Expression Data

    Institute of Scientific and Technical Information of China (English)

    Yi-Jing Shen; Shu-Guang Huang

    2006-01-01

    The purpose of many microarray studies is to find the association between gene expression and sample characteristics such as treatment type or sample phenotype.There has been a surge of efforts developing different methods for delineating the association. Aside from the high dimensionality of microarray data, one well recognized challenge is the fact that genes could be complicatedly inter-related, thus making many statistical methods inappropriate to use directly on the expression data. Multivariate methods such as principal component analysis (PCA) and clustering are often used as a part of the effort to capture the gene correlation, and the derived components or clusters are used to describe the association between gene expression and sample phenotype. We propose a method for patient population dichotomization using maximally selected test statistics in combination with the PCA method, which shows favorable results. The proposed method is compared with a currently well-recognized method.

  10. Comparative sequence analysis of double stranded RNA binding protein encoding gene of parapoxviruses from Indian camels

    Directory of Open Access Journals (Sweden)

    G. Nagarajan

    2014-03-01

    Full Text Available The dsRNA binding protein (RBP encoding gene of parapoxviruses (PPVs from the Dromedary camels, inhabitating different geographical region of Rajasthan, India were amplified by polymerase chain reaction using the primers of pseudocowpoxvirus (PCPV from Finnish reindeer and cloned into pGEM-T for sequence analysis. Analysis of RBP encoding gene revealed that PPV DNA from Bikaner shared 98.3% and 76.6% sequence identity at the amino acid level, with Pali and Udaipur PPV DNA, respectively. Reference strains of Bovine papular stomatitis virus (BPSV and PCPV (reindeer PCPV and human PCPV shared 52.8% and 86.9% amino acid identity with RBP gene of camel PPVs from Bikaner, respectively. But different strains of orf virus (ORFV from different geographical areas of the world shared 69.5–71.7% amino acid identity with RBP gene of camel PPVs from Bikaner. These findings indicate that the camel PPVs described are closely related to bovine PPV (PCPV in comparison to caprine and ovine PPV (ORFV.

  11. Characterization and Expression of Genes Encoding Three Small Heat Shock Proteins in Sesamia inferens (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Meng Sun

    2014-12-01

    Full Text Available The pink stem borer, Sesamia inferens (Walker, is a major pest of rice and is endemic in China and other parts of Asia. Small heat shock proteins (sHSPs encompass a diverse, widespread class of stress proteins that have not been characterized in S. inferens. In the present study, we isolated and characterized three S. inferens genes that encode members of the α-crystallin/sHSP family, namely, Sihsp21.4, Sihsp20.6, and Sihsp19.6. The three cDNAs encoded proteins of 187, 183 and 174 amino acids with calculated molecular weights of 21.4, 20.6 and 19.6 kDa, respectively. The deduced amino acid sequences of the three genes showed strong similarity to sHSPs identified in other lepidopteran insects. Sihsp21.4 contained an intron, but Sihsp20.6 and Sihsp19.6 lacked introns. Real-time quantitative PCR analyses revealed that Sihsp21.4 was most strongly expressed in S. inferens heads; Whereas expression of Sihsp20.6 and Sihsp19.6 was highest in eggs. The three S. inferens sHSP genes were up-regulated during low temperature stress. In summary, our results show that S. inferens sHSP genes have distinct regulatory roles in the physiology of S. inferens.

  12. A corm-specific gene encodes tarin, a major globulin of taro (Colocasia esculenta L. Schott).

    Science.gov (United States)

    Bezerra, I C; Castro, L A; Neshich, G; de Almeida, E R; de Sá, M F; Mello, L V; Monte-Neshich, D C

    1995-04-01

    A gene encoding a globulin from a major taro (Colocasia esculenta L. Schott) corm protein family, tarin (G1, ca. 28 kDa) was isolated from a lambda Charon 35 library, using a cDNA derived from a highly abundant corm-specific mRNA, as probe. The gene, named tar1, and the corresponding cDNA were characterized and compared. No introns were found. The major transcription start site was determined by primer extension analysis. The gene has an open reading frame (ORF) of 765 bp, and the deduced amino acid sequence indicated a precursor polypeptide of 255 residues that is post-translationally processed into two subunits of about 12.5 kDa each. The deduced protein is 45% homologous to curculin, a sweet-tasting protein found in the fruit pulp of Curculigo latifolia and 40% homologous to a mannose-binding lectin from Galanthus nivalis. Significant similarity was also found at the nucleic acid sequence level with genes encoding lectins from plant species of the Amaryllidaceae and Lilliaceae families.

  13. Transcriptional analysis of genes encoding β-glucosidase of Schizophyllum commune KUC9397 under optimal conditions.

    Science.gov (United States)

    Lee, Young Min; Lee, Hanbyul; Heo, Young Mok; Lee, Hwanhwi; Hong, Joo-Hyun; Kim, Jae-Jin

    2017-05-01

    The present study was conducted to determine the gene responsible for beta-glucosidase (BGL) production and to generate a full-length complementary DNA (cDNA) of one of the putative BGL genes, which showed a significant expression level when Schizophyllum commune KUC9397 was grown in optimized medium. The relative expression levels of seven genes encoding BGL of S. commune KUC9397 were determined with real-time quantitative reverse transcription PCR in cellulose-containing optimized medium (OM) compared to glucose-containing basal medium (BM). The most abundant transcript was bgl3a in OM. The transcript number of the bgl3a increased more than 57.60-fold when S. commune KUC9397 was grown on cellulose-containing OM compared to that on glucose-containing BM. The bgl3a was identified, and a deduced amino acid sequence of bgl3a shared homology (97%) with GH3 BGL of S. commune H4-8. This is the first report showing the transcription levels of genes encoding BGL and identification of full-length cDNA of glycoside hydrolase 3 (GH3) BGL from S. commune. Furthermore, this study is one of the steps for consolidated bioprocessing of lignocellulosic biomass to bioethanol.

  14. [Cloning and structure of gene encoded alpha-latrocrustoxin from the Black widow spider venom].

    Science.gov (United States)

    Danilevich, V N; Luk'ianov, S A; Grishin, E V

    1999-07-01

    The primary structure of the crusta gene encoding alpha-latrocrustoxin (alpha-LCT), a high molecular mass neurotoxin specific to crustaceans, was determined in the black widow spider Latrodectus mactans tredicimguttatus genome. The total length of the sequenced DNA was 4693 bp. The structural part of the black widow spider chromosome gene encoding alpha-LCT does not contain introns. The sequenced DNA contains a single extended open reading frame (4185 bp) and encodes a protein precursor of alpha-LCT, comprising 1395 aa. We assume the Met residue at position -10 relative to the N-terminal residue of Glu1 of the mature toxin to be the first one in the protein precursor. The calculated molecular mass of the precursor (156147 Da) exceeds that of the mature toxin by approximately 30 kDa. These data are in agreement with the notion that over the course of maturation the protein precursor undergoes double processing--cleavage of a decapeptide from the N-terminal part and of a approximately 200-aa fragment from the C-terminal part. alpha-LCT displayed a number of imperfect ankyrin-like repeats and areas of structural homology with earlier studied latrotoxins; the highest homology degree (62%) was revealed with alpha-latroinsectotoxin (alpha-LIT).

  15. Characterization and evolution of a gene encoding a Trimeresurus flavoviridis serum protein that inhibits basic phospholipase A2 isozymes in the snake's venom.

    Science.gov (United States)

    Nobuhisa, I; Inamasu, S; Nakai, M; Tatsui, A; Mimori, T; Ogawa, T; Shimohigashi, Y; Fukumaki, Y; Hattori, S; Kihara, H; Ohno, M

    1997-11-01

    The proteins that bind phospholipase A2 (PLA2) isozymes of Trimeresurus flavoviridis (habu snake, crotalinae) venom were fractionated from sera on four columns, each conjugated with one of four PLA2 isozymes. Five proteins, termed PLA2 inhibitors (PLI) I-V, were obtained as the binding components. The combinations of the binding components differed depending on the PLA2 isozymes. PLI-IV and PLI-V correspond to PLI-A and PLI-B, respectively, which were known to bind to a major [Asp49]PLA2, PLA2, and contained a segment similar to the carbohydrate-recognition domain of C-type lectins. PLI-I, which is a major component of inhibitory proteins against three basic PLA2 isozymes, PLA-B (a basic [Asp49]PLA2) and basic proteins I and II (both [Lys49]PLA2s), has been isolated, and its partial amino acid sequence has been determined. A cDNA encoding PLI-I was isolated from a T. flavoviridis liver cDNA library and sequenced. PLI-I cDNA encoded 200 amino acid residues, including a signal peptide of 19 amino acid residues. One sugar chain was predicted to occur at position 157. A gene coding for PLI-I was isolated. It is 9.6-kb long and consists of five exons and four introns. Comparison of the exon-intron structure of the PLI-I gene with those of genes encoding urokinase-type-plasminogen-activator receptor (uPAR), Ly-6, CD59 and neurotoxins showed that they have characteristic unit encoding approximately 90 amino acid residues, which is divided over two exons. This strongly suggests that the PLI-I gene belongs to the uPAR, Ly-6, CD59 and neurotoxin gene family. There are two types of structurally different inhibitors against PLA2 isozymes in T. flavoviridis serum with different evolutionary origins.

  16. Genome-wide identification and mapping of NBS-encoding resistance genes in Solanum tuberosum group phureja.

    Directory of Open Access Journals (Sweden)

    Roberto Lozano

    Full Text Available The majority of disease resistance (R genes identified to date in plants encode a nucleotide-binding site (NBS and leucine-rich repeat (LRR domain containing protein. Additional domains such as coiled-coil (CC and TOLL/interleukin-1 receptor (TIR domains can also be present. In the recently sequenced Solanum tuberosum group phureja genome we used HMM models and manual curation to annotate 435 NBS-encoding R gene homologs and 142 NBS-derived genes that lack the NBS domain. Highly similar homologs for most previously documented Solanaceae R genes were identified. A surprising ∼41% (179 of the 435 NBS-encoding genes are pseudogenes primarily caused by premature stop codons or frameshift mutations. Alignment of 81.80% of the 577 homologs to S. tuberosum group phureja pseudomolecules revealed non-random distribution of the R-genes; 362 of 470 genes were found in high density clusters on 11 chromosomes.

  17. A plasmid-encoded UmuD homologue regulates expression of Pseudomonas aeruginosa SOS genes.

    Science.gov (United States)

    Díaz-Magaña, Amada; Alva-Murillo, Nayeli; Chávez-Moctezuma, Martha P; López-Meza, Joel E; Ramírez-Díaz, Martha I; Cervantes, Carlos

    2015-07-01

    The Pseudomonas aeruginosa plasmid pUM505 contains the umuDC operon that encodes proteins similar to error-prone repair DNA polymerase V. The umuC gene appears to be truncated and its product is probably not functional. The umuD gene, renamed umuDpR, possesses an SOS box overlapped with a Sigma factor 70 type promoter; accordingly, transcriptional fusions revealed that the umuDpR gene promoter is activated by mitomycin C. The predicted sequence of the UmuDpR protein displays 23 % identity with the Ps. aeruginosa SOS-response LexA repressor. The umuDpR gene caused increased MMC sensitivity when transferred to the Ps. aeruginosa PAO1 strain. As expected, PAO1-derived knockout lexA-  mutant PW6037 showed resistance to MMC; however, when the umuDpR gene was transferred to PW6037, MMC resistance level was reduced. These data suggested that UmuDpR represses the expression of SOS genes, as LexA does. To test whether UmuDpR exerts regulatory functions, expression of PAO1 SOS genes was evaluated by reverse transcription quantitative PCR assays in the lexA-  mutant with or without the pUC_umuD recombinant plasmid. Expression of lexA, imuA and recA genes increased 3.4-5.3 times in the lexA-  mutant, relative to transcription of the corresponding genes in the lexA+ strain, but decreased significantly in the lexA- /umuDpR transformant. These results confirmed that the UmuDpR protein is a repressor of Ps. aeruginosa SOS genes controlled by LexA. Electrophoretic mobility shift assays, however, did not show binding of UmuDpR to 5' regions of SOS genes, suggesting an indirect mechanism of regulation.

  18. Phylogenetic and evolutionary analysis of NBS-encoding genes in Rosaceae fruit crops.

    Science.gov (United States)

    Xu, Qiang; Wen, Xiaopeng; Deng, Xiuxin

    2007-07-01

    Phylogenetic relationships of the nucleotide binding site (NBS)-encoding resistance gene homologues (RGHs) among 12 species in five genera of Rosaceae fruit crops were evaluated. A total of 228 Rosaceous RGHs were deeply separated into two distinct clades, designated as TIR (sequences within this clade containing a Toll Interleukin-1 Receptor domain) and NonTIR (sequences lacking a TIR domain). Most Rosaceous RGH genes were phylogenetically distinct from Arabidopsis, Rice or Pine genes, except for a few Rosaceous members which grouped closely with Arabidopsis genes. Within Rosaceae, sequences from multiple species were often phylogenetically clustered together, forming heterogenous groups, however, apple- and chestnut rose-specific groups really exist. Gene duplication followed by sequence divergence were proposed as the mode for the evolution of a large number of distantly or closely related RGH genes in Rosaceae, and this mode may play a role in the generation of new resistance specificity. Positively selected sites within NBS-coding region were detected and thus nucleotide variation within NBS domain may function in determining disease resistance specificity. This study also discusses the synteny of a genomic region that encompass powdery mildew resistance locus among Malus, Prunus and Rosa, which may have potential use for fruit tree disease breeding and important gene cloning.

  19. The Hd0053 gene of Haemophilus ducreyi encodes an alpha2,3-sialyltransferase.

    Science.gov (United States)

    Li, Yanhong; Sun, Mingchi; Huang, Shengshu; Yu, Hai; Chokhawala, Harshal A; Thon, Vireak; Chen, Xi

    2007-09-21

    Haemophilus ducreyi is a Gram-negative bacterium that causes chancroid, a sexually transmitted genital ulcer disease. Different lipooligosaccharide (LOS) structures have been identified from H. ducreyi strain 35000, including those sialylated glycoforms. Surface LOS of H. ducreyi is considered an important virulence factor that is involved in ulcer formation, cell adhesion, and invasion of host tissue. Gene Hd0686 of H. ducreyi, designated lst (for lipooligosaccharide sialyltransferase), was identified to encode an alpha2,3-sialyltransferase that is important for the formation of sialylated LOS. Here, we show that Hd0053 of H. ducreyi genomic strain 35000HP, the third member of the glycosyltransferase family 80 (GT80), also encodes an alpha2,3-sialyltransferase that may be important for LOS sialylation.

  20. PRS1 is a key member of the gene family encoding phosphoribosylpyrophosphate synthetase in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Carter, Andrew T.; Beiche, Flora; Hove-Jensen, Bjarne;

    1997-01-01

    In Saccharomyces cerevisiae the metabolite phosphoribosyl-pyrophosphate (PRPP) is required for purine, pyrimidine, tryptophan and histidine biosynthesis. Enzymes that can synthesize PRPP can be encoded by at least four genes. We have studied 5-phospho-ribosyl-1(α)-pyrophosphate synthetases (PRS......) genetically and biochemically. Each of the four genes, all of which are transcribed, has been disrupted in haploid yeast strains of each mating type and although all disruptants are able to grow on complete medium, differences in growth rate and enzyme activity suggest that disruption of PRS1 or PRS3 has...... a significant effect on cell metabolism, whereas disruption of PRS2 or PRS4 has little measurable effect. Using Western blot analysis with antisera raised against peptides derived from the non-homology region (NHR) and the N-terminal half of the PRS1 gene product it has been shown that the NHR is not removed...

  1. Identification and characterization of the Vibrio anguillarum prtV gene encoding a new metalloprotease

    Science.gov (United States)

    Mo, Zhaolan; Guo, Dongsheng; Mao, Yunxiang; Ye, Xuhong; Zou, Yuxia; Xiao, Peng; Hao, Bin

    2010-01-01

    We cloned and sequenced a prtV-like gene from Vibrio anguillarum M3 strain. This prtV gene encodes a putative protein of 918 amino acids, and is highly homologous to the V. cholerae prtV gene. We found that a prtV insertion mutant strain displayed lower gelatinase activity on gelatin agar, lower protease activity against azocasein, and lower activity for four glycosidases. This prtV mutant strain also had increased activity for two esterases in its extracellular products, as analyzed by the API ZYM system. In addition, the prtV mutant strain exhibited decreased growth in turbot intestinal mucus and reduced hemolytic activity on turbot erythrocytes. Infection experiments showed that the LD50 of the prtV mutant strain increased by at least 1 log compared to the wild-type in turbot fish. We propose that prtV plays an important role in the pathogenesis of V. anguillarum.

  2. Function-Based Metagenomic Library Screening and Heterologous Expression Strategy for Genes Encoding Phosphatase Activity.

    Science.gov (United States)

    Villamizar, Genis A Castillo; Nacke, Heiko; Daniel, Rolf

    2017-01-01

    The release of phosphate from inorganic and organic phosphorus compounds can be mediated enzymatically. Phosphate-releasing enzymes, comprising acid and alkaline phosphatases, are recognized as useful biocatalysts in applications such as plant and animal nutrition, bioremediation and diagnostic analysis. Metagenomic approaches provide access to novel phosphatase-encoding genes. Here, we describe a function-based screening approach for rapid identification of genes conferring phosphatase activity from small-insert and large-insert metagenomic libraries derived from various environments. This approach bears the potential for discovery of entirely novel phosphatase families or subfamilies and members of known enzyme classes hydrolyzing phosphomonoester bonds such as phytases. In addition, we provide a strategy for efficient heterologous phosphatase gene expression.

  3. Screening and analysis of hepatocellular carcinomaassociated antigens and their encoding genes

    Institute of Scientific and Technical Information of China (English)

    SHI Yongyu; WANG Hongcheng; LI Yan; PANG Xuewen; SUN Wensheng; CHEN Weifeng

    2003-01-01

    Identification of hepatocellular carcinoma- associated tumor antigens is necessary and pivotal for specific immunotherapy in hepatocellular carcinoma (HCC) patients. In the present study, HCC cDNAs are constructed into ZAP cDNA expression library and screened by sera of patients with HCC. The positive clones are DNA sequenced and analyzed by bioinformatics. Thirty-one genes of hepatocellular carcinoma-associated tumor antigens are identified, of which 1 is unknown and 30 are known. The proteins encoded by these known genes can be classified into 8 categories: constitutive molecules of hepatocytes, RNA transcription and splicing-associated molecules, protein metabolism-associated molecules, energy synthesis-associated molecules, signal transduction molecules, cell adhesion molecules, immunosuppressive molecules, and proteins with unknown function. Among these genes, CAGE is a cancer-testis (CT) antigen. It is concluded that identification of hepatocellular carcinoma-associated tumor antigens provides potential targets for immunotherapy of HCC patients and facilitates explanation of carcinogenesis of HCC.

  4. Genes encoding FAD-binding proteins in Volvariella volvacea exhibit differential expression in homokaryons and heterokaryons.

    Science.gov (United States)

    Meng, Li; Yan, Junjie; Xie, Baogui; Li, Yu; Chen, Bingzhi; Liu, Shuyan; Li, Dan; Yang, Zhiyun; Zeng, Xiancheng; Deng, Youjin; Jiang, Yuji

    2013-10-01

    Flavin adenine dinucleotide (FAD)-binding proteins play a vital role in energy transfer and utilization during fungal growth and mycelia aggregation. We sequenced the genome of Volvariella volvacea, an economically important edible fungus, and discovered 41 genes encoding FAD-binding proteins. Gene expression profiles revealed that the expression levels of four distinctly differentially expressed genes in heterokaryotic strain H1521 were higher than in homokaryotic strains PYd15 and PYd21 combined. These observations were validated by quantitative real-time PCR. The results suggest that the differential expression of FAD-binding proteins may be important in revealing the distinction between homokaryons and heterokaryons on the basis of FAD-binding protein functionality.

  5. Expression of signal transduction system encoding genes of Yersinia pseudotuberculosis IP32953 at 28°C and 3°C.

    Directory of Open Access Journals (Sweden)

    Eveliina Palonen

    Full Text Available Yersinia pseudotuberculosis is a significant psychrotrophic food pathogen whose cold tolerance mechanisms are poorly understood. Signal transduction systems serve to monitor the environment, but no systematic investigation of their role at cold temperatures in Y. pseudotuberculosis has yet been undertaken. The relative expression levels of 54 genes predicted to encode proteins belonging to signal transduction systems in Y. pseudotuberculosis IP32953 were determined at 28°C and 3°C by quantitative real-time reverse transcription-PCR. The relative expression levels of 44 genes were significantly (p<0.05 higher at 3°C than at 28°C. Genes encoding the two-component system CheA/CheY had the highest relative expression levels at 3°C. Mutational analysis revealed that cheA is important for growth and motility at 3°C. The relative expression level of one gene, rssB, encoding an RpoS regulator, was significantly (p<0.05 lower at 3°C than at 28°C. The results suggest that several signal transduction systems might be used during growth at low temperature, and at least, CheA/CheY two-component system is important for low-temperature growth.

  6. Chromosome locations of genes encoding human signal transduction adapter proteins, Nck (NCK), Shc (SHC1), and Grb2 (GRB2)

    DEFF Research Database (Denmark)

    Huebner, K; Kastury, K; Druck, T;

    1994-01-01

    Abnormalities due to chromosomal aberration or point mutation in gene products of growth factor receptors or in ras gene products, which lie on the same signaling pathway, can cause disease in animals and humans. Thus, it can be important to determine chromosomal map positions of genes encoding "...

  7. Evolutionary Characteristics of Missing Proteins: Insights into the Evolution of Human Chromosomes Related to Missing-Protein-Encoding Genes.

    Science.gov (United States)

    Xu, Aishi; Li, Guang; Yang, Dong; Wu, Songfeng; Ouyang, Hongsheng; Xu, Ping; He, Fuchu

    2015-12-01

    Although the "missing protein" is a temporary concept in C-HPP, the biological information for their "missing" could be an important clue in evolutionary studies. Here we classified missing-protein-encoding genes into two groups, the genes encoding PE2 proteins (with transcript evidence) and the genes encoding PE3/4 proteins (with no transcript evidence). These missing-protein-encoding genes distribute unevenly among different chromosomes, chromosomal regions, or gene clusters. In the view of evolutionary features, PE3/4 genes tend to be young, spreading at the nonhomology chromosomal regions and evolving at higher rates. Interestingly, there is a higher proportion of singletons in PE3/4 genes than the proportion of singletons in all genes (background) and OTCSGs (organ, tissue, cell type-specific genes). More importantly, most of the paralogous PE3/4 genes belong to the newly duplicated members of the paralogous gene groups, which mainly contribute to special biological functions, such as "smell perception". These functions are heavily restricted into specific type of cells, tissues, or specific developmental stages, acting as the new functional requirements that facilitated the emergence of the missing-protein-encoding genes during evolution. In addition, the criteria for the extremely special physical-chemical proteins were first set up based on the properties of PE2 proteins, and the evolutionary characteristics of those proteins were explored. Overall, the evolutionary analyses of missing-protein-encoding genes are expected to be highly instructive for proteomics and functional studies in the future.

  8. Pseudomonas aeruginosa LysR PA4203 regulator NmoR acts as a repressor of the PA4202 nmoA> gene, encoding a nitronate monooxygenase

    DEFF Research Database (Denmark)

    Vercammen, Ken; Wei, Qing; Charlier, Daniel;

    2015-01-01

    The PA4203 gene encodes a LysR regulator and lies between the ppgL gene (PA4204), which encodes a periplasmic gluconolactonase, and, in the opposite orientation, the PA4202 (nmoA) gene, coding for a nitronate monooxygenase, and ddlA (PA4201), encoding a d-alanine alanine ligase. The intergenic re...

  9. Cloning and Characterization of Glyceraldehyde-3-phosphate Dehydrogenase Encoding Gene in Gracilaria/Gracilariopsis lemaneiformis

    Institute of Scientific and Technical Information of China (English)

    REN Xueying; SUI Zhenghong; ZHANG Xuecheng

    2006-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays important roles in various cellular processes. A cytosolic GAPDH encoding gene (gpd) of Gracilaria/Gracilariopsis lemaneiformis was cloned and characterized. Deduced amino acid sequence of the enzyme of G. lemaneiformis had high homology with those of seven red algae. The 5'-untranslated regions of the GAPDHs encoding genes of these red algae varied greatly. GAPDHs of these red algae shared the highly conserved glyceraldehyde 3-phosphate dehydrogenase active site ASCTTNCL. However, such active site of Cyanidium caldarium was different from those of the other six algae at the last two residues (CL to LF), thus the spatial structure of its GAPDH active center may be different from those of the other six. Phylogenetic analysis indicated that GAPDH of G. lemaneiformis might have undergone an evolution similar to those of Porphyra yezoensis, Chondrus crispus, and Gracilaria verrucosa. C. caldarium had a closer evolutionary relationship with Cyanidioschyzon merolae than with Cyanidium sp. Virtual Northern blot analysis revealed that gpd of G. lemaneiformis expressed constitutively, which suggested that it might be house-keeping and could be adapted as an inner control in gene expression analysis of G. lemaneiformis.

  10. The lethal toxin from Australian funnel-web spiders is encoded by an intronless gene.

    Science.gov (United States)

    Pineda, Sandy Steffany; Wilson, David; Mattick, John S; King, Glenn F

    2012-01-01

    Australian funnel-web spiders are generally considered the most dangerous spiders in the world, with envenomations from the Sydney funnel-web spider Atrax robustus resulting in at least 14 human fatalities prior to the introduction of an effective anti-venom in 1980. The clinical envenomation syndrome resulting from bites by Australian funnel-web spiders is due to a single 42-residue peptide known as δ-hexatoxin. This peptide delays the inactivation of voltage-gated sodium channels, which results in spontaneous repetitive firing and prolongation of action potentials, thereby causing massive neurotransmitter release from both somatic and autonomic nerve endings. Here we show that δ-hexatoxin from the Australian funnel-web spider Hadronyche versuta is produced from an intronless gene that encodes a prepropeptide that is post-translationally processed to yield the mature toxin. A limited sampling of genes encoding unrelated venom peptides from this spider indicated that they are all intronless. Thus, in distinct contrast to cone snails and scorpions, whose toxin genes contain introns, spiders may have developed a quite different genetic strategy for evolving their venom peptidome.

  11. The lethal toxin from Australian funnel-web spiders is encoded by an intronless gene.

    Directory of Open Access Journals (Sweden)

    Sandy Steffany Pineda

    Full Text Available Australian funnel-web spiders are generally considered the most dangerous spiders in the world, with envenomations from the Sydney funnel-web spider Atrax robustus resulting in at least 14 human fatalities prior to the introduction of an effective anti-venom in 1980. The clinical envenomation syndrome resulting from bites by Australian funnel-web spiders is due to a single 42-residue peptide known as δ-hexatoxin. This peptide delays the inactivation of voltage-gated sodium channels, which results in spontaneous repetitive firing and prolongation of action potentials, thereby causing massive neurotransmitter release from both somatic and autonomic nerve endings. Here we show that δ-hexatoxin from the Australian funnel-web spider Hadronyche versuta is produced from an intronless gene that encodes a prepropeptide that is post-translationally processed to yield the mature toxin. A limited sampling of genes encoding unrelated venom peptides from this spider indicated that they are all intronless. Thus, in distinct contrast to cone snails and scorpions, whose toxin genes contain introns, spiders may have developed a quite different genetic strategy for evolving their venom peptidome.

  12. Cloning and sequence analysis of gene encoding plasma aquaporin of Tamarix albiflonum

    Institute of Scientific and Technical Information of China (English)

    DONG Yuzhi; YANG Chuanping; ZHANG Daoyuan; WANG Yucheng

    2007-01-01

    Plant aquaporins are water-selected-channels in plants and are involved in seed germination,cell elongation,stoma movement,fertilization and so on.Some plant aquapotins also play an important role in drought stress response.In this paper,the gene encoding the Tamarix albiflonum Aquaporin (AQP) was amplified by 5'rapid amplification of cDNA end (RACE) on the basis of the sequence information obtained from the expressed sequence tag of the subtractive hybridization library constructed under PEG6000 stress.The cDNA of the T.albiflonum AQP gene is 1,043 bp long,encoding a protein of 287 amino acids with a predicted molecular mass of 30.9 kDa,has 6 transmembrane regions,and possessing the major intrinsic protein (MIP) family signal consensus sequence SGXHXNPAVT and the higher plant plasma membrane intrinsic protein (PIP) highly conservative sequence GGGANXXXXGY and TGI/TNPARSL /FGAA I/VI/VF/YN.A comparative molecular analysis of the nucleotide sequence in National Center for Biotechnology Information (NCBI) databases showed that it shared 95% homology with the gene ofArabidopsis thaliana (MIP-C),with a theoretical isoelectric point 8.84.

  13. A lepidopteran-specific gene family encoding valine-rich midgut proteins.

    Directory of Open Access Journals (Sweden)

    Jothini Odman-Naresh

    Full Text Available Many lepidopteran larvae are serious agricultural pests due to their feeding activity. Digestion of the plant diet occurs mainly in the midgut and is facilitated by the peritrophic matrix (PM, an extracellular sac-like structure, which lines the midgut epithelium and creates different digestive compartments. The PM is attracting increasing attention to control lepidopteran pests by interfering with this vital function. To identify novel PM components and thus potential targets for insecticides, we performed an immunoscreening with anti-PM antibodies using an expression library representing the larval midgut transcriptome of the tobacco hornworm, Manduca sexta. We identified three cDNAs encoding valine-rich midgut proteins of M. sexta (MsVmps, which appear to be loosely associated with the PM. They are members of a lepidopteran-specific family of nine VMP genes, which are exclusively expressed in larval stages in M. sexta. Most of the MsVMP transcripts are detected in the posterior midgut, with the highest levels observed for MsVMP1. To obtain further insight into Vmp function, we expressed MsVMP1 in insect cells and purified the recombinant protein. Lectin staining and glycosidase treatment indicated that MsVmp1 is highly O-glycosylated. In line with results from qPCR, immunoblots revealed that MsVmp1 amounts are highest in feeding larvae, while MsVmp1 is undetectable in starving and molting larvae. Finally using immunocytochemistry, we demonstrated that MsVmp1 localizes to the cytosol of columnar cells, which secrete MsVmp1 into the ectoperitrophic space in feeding larvae. In starving and molting larvae, MsVmp1 is found in the gut lumen, suggesting that the PM has increased its permeability. The present study demonstrates that lepidopteran species including many agricultural pests have evolved a set of unique proteins that are not found in any other taxon and thus may reflect an important adaptation in the highly specialized lepidopteran

  14. A lepidopteran-specific gene family encoding valine-rich midgut proteins.

    Science.gov (United States)

    Odman-Naresh, Jothini; Duevel, Margret; Muthukrishnan, Subbaratnam; Merzendorfer, Hans

    2013-01-01

    Many lepidopteran larvae are serious agricultural pests due to their feeding activity. Digestion of the plant diet occurs mainly in the midgut and is facilitated by the peritrophic matrix (PM), an extracellular sac-like structure, which lines the midgut epithelium and creates different digestive compartments. The PM is attracting increasing attention to control lepidopteran pests by interfering with this vital function. To identify novel PM components and thus potential targets for insecticides, we performed an immunoscreening with anti-PM antibodies using an expression library representing the larval midgut transcriptome of the tobacco hornworm, Manduca sexta. We identified three cDNAs encoding valine-rich midgut proteins of M. sexta (MsVmps), which appear to be loosely associated with the PM. They are members of a lepidopteran-specific family of nine VMP genes, which are exclusively expressed in larval stages in M. sexta. Most of the MsVMP transcripts are detected in the posterior midgut, with the highest levels observed for MsVMP1. To obtain further insight into Vmp function, we expressed MsVMP1 in insect cells and purified the recombinant protein. Lectin staining and glycosidase treatment indicated that MsVmp1 is highly O-glycosylated. In line with results from qPCR, immunoblots revealed that MsVmp1 amounts are highest in feeding larvae, while MsVmp1 is undetectable in starving and molting larvae. Finally using immunocytochemistry, we demonstrated that MsVmp1 localizes to the cytosol of columnar cells, which secrete MsVmp1 into the ectoperitrophic space in feeding larvae. In starving and molting larvae, MsVmp1 is found in the gut lumen, suggesting that the PM has increased its permeability. The present study demonstrates that lepidopteran species including many agricultural pests have evolved a set of unique proteins that are not found in any other taxon and thus may reflect an important adaptation in the highly specialized lepidopteran digestive tract facing

  15. The Novel Gene CRNDE Encodes a Nuclear Peptide (CRNDEP Which Is Overexpressed in Highly Proliferating Tissues.

    Directory of Open Access Journals (Sweden)

    Lukasz Michal Szafron

    Full Text Available CRNDE, recently described as the lncRNA-coding gene, is overexpressed at RNA level in human malignancies. Its role in gametogenesis, cellular differentiation and pluripotency has been suggested as well. Herein, we aimed to verify our hypothesis that the CRNDE gene may encode a protein product, CRNDEP. By using bioinformatics methods, we identified the 84-amino acid ORF encoded by one of two CRNDE transcripts, previously described by our research team. This ORF was cloned into two expression vectors, subsequently utilized in localization studies in HeLa cells. We also developed a polyclonal antibody against CRNDEP. Its specificity was confirmed in immunohistochemical, cellular localization, Western blot and immunoprecipitation experiments, as well as by showing a statistically significant decrease of endogenous CRNDEP expression in the cells with transient shRNA-mediated knockdown of CRNDE. Endogenous CRNDEP localizes predominantly to the nucleus and its expression seems to be elevated in highly proliferating tissues, like the parabasal layer of the squamous epithelium, intestinal crypts or spermatocytes. After its artificial overexpression in HeLa cells, in a fusion with either the EGFP or DsRed Monomer fluorescent tag, CRNDEP seems to stimulate the formation of stress granules and localize to them. Although the exact role of CRNDEP is unknown, our preliminary results suggest that it may be involved in the regulation of the cell proliferation. Possibly, CRNDEP also participates in oxygen metabolism, considering our in silico results, and the correlation between its enforced overexpression and the formation of stress granules. This is the first report showing the existence of a peptide encoded by the CRNDE gene.

  16. Identification and characterization of the Arabidopsis gene encoding the tetrapyrrole biosynthesis enzyme uroporphyrinogen III synthase.

    Science.gov (United States)

    Tan, Fui-Ching; Cheng, Qi; Saha, Kaushik; Heinemann, Ilka U; Jahn, Martina; Jahn, Dieter; Smith, Alison G

    2008-03-01

    UROS (uroporphyrinogen III synthase; EC 4.2.1.75) is the enzyme responsible for the formation of uroporphyrinogen III, the precursor of all cellular tetrapyrroles including haem, chlorophyll and bilins. Although UROS genes have been cloned from many organisms, the level of sequence conservation between them is low, making sequence similarity searches difficult. As an alternative approach to identify the UROS gene from plants, we used functional complementation, since this does not require conservation of primary sequence. A mutant of Saccharomyces cerevisiae was constructed in which the HEM4 gene encoding UROS was deleted. This mutant was transformed with an Arabidopsis thaliana cDNA library in a yeast expression vector and two colonies were obtained that could grow in the absence of haem. The rescuing plasmids encoded an ORF (open reading frame) of 321 amino acids which, when subcloned into an Escherichia coli expression vector, was able to complement an E. coli hemD mutant defective in UROS. Final proof that the ORF encoded UROS came from the fact that the recombinant protein expressed with an N-terminal histidine-tag was found to have UROS activity. Comparison of the sequence of AtUROS (A. thaliana UROS) with the human enzyme found that the seven invariant residues previously identified were conserved, including three shown to be important for enzyme activity. Furthermore, a structure-based homology search of the protein database with AtUROS identified the human crystal structure. AtUROS has an N-terminal extension compared with orthologues from other organisms, suggesting that this might act as a targeting sequence. The precursor protein of 34 kDa translated in vitro was imported into isolated chloroplasts and processed to the mature size of 29 kDa. Confocal microscopy of plant cells transiently expressing a fusion protein of AtUROS with GFP (green fluorescent protein) confirmed that AtUROS was targeted exclusively to chloroplasts in vivo.

  17. Multiple ace genes encoding acetylcholinesterases of Caenorhabditis elegans have distinct tissue expression.

    Science.gov (United States)

    Combes, Didier; Fedon, Yann; Toutant, Jean-Pierre; Arpagaus, Martine

    2003-08-01

    ace-1 and ace-2 genes encoding acetylcholinesterase in the nematode Caenorhabditis elegans present 35% identity in coding sequences but no homology in noncoding regions (introns, 5'- and 3'-untranslated regions). A 5'-region of ace-2 was defined by rescue of ace-1;ace-2 mutants. When green fluorescent protein (GFP) expression was driven by this regulatory region, the resulting pattern was distinct from that of ace-1. This latter gene is expressed in all body-wall and vulval muscle cells (Culetto et al., 1999), whereas ace-2 is expressed almost exclusively in neurons. ace-3 and ace-4 genes are located in close proximity on chromosome II (Combes et al., 2000). These two genes were first transcribed in vivo as a bicistronic messenger and thus constitute an ace-3;ace-4 operon. However, there was a very low level of monocistronic mRNA of ace-4 (the upstream gene) in vivo, and no ACE-4 enzymatic activity was ever detected. GFP expression driven by a 5' upstream region of the ace-3;ace-4 operon was detected in several muscle cells of the pharynx (pm3, pm4, pm5 and pm7) and in the two canal associated neurons (CAN cells). A dorsal row of body-wall muscle cells was intensively labelled in larval stages but no longer detected in adults. The distinct tissue-specific expression of ace-1, ace-2 and ace-3 (coexpressed only in pm5 cells) indicates that ace genes are not redundant.

  18. Expression of a synthetic gene encoding human insulin-like growth factor I in cultured mouse fibroblasts.

    OpenAIRE

    Bayne, M L; Cascieri, M A; Kelder, B; Applebaum, J; Chicchi, G; Shapiro, J A; Pasleau, F.; Kopchick, J. J.

    1987-01-01

    A synthetic gene encoding human insulin-like growth factor I (hIGF-I) was assembled and inserted into an expression vector containing the cytomegalovirus immediate early (CMV-IE) transcriptional regulatory region and portions of the bovine growth hormone gene. The recombinant plasmid encodes a 97 amino acid fusion protein containing the first 27 amino acids of the bovine growth hormone precursor and the 70 amino acids of hIGF-I. This plasmid, when transiently introduced into cultured mouse fi...

  19. Rapid identification of genes encoding DNA polymerases by function-based screening of metagenomic libraries derived from glacial ice.

    Science.gov (United States)

    Simon, Carola; Herath, Judith; Rockstroh, Stephanie; Daniel, Rolf

    2009-05-01

    Small-insert and large-insert metagenomic libraries were constructed from glacial ice of the Northern Schneeferner, which is located on the Zugspitzplatt in Germany. Subsequently, these libraries were screened for the presence of DNA polymerase-encoding genes by complementation of an Escherichia coli polA mutant. Nine novel genes encoding complete DNA polymerase I proteins or domains typical of these proteins were recovered.

  20. Rapid Identification of Genes Encoding DNA Polymerases by Function-Based Screening of Metagenomic Libraries Derived from Glacial Ice▿

    OpenAIRE

    2009-01-01

    Small-insert and large-insert metagenomic libraries were constructed from glacial ice of the Northern Schneeferner, which is located on the Zugspitzplatt in Germany. Subsequently, these libraries were screened for the presence of DNA polymerase-encoding genes by complementation of an Escherichia coli polA mutant. Nine novel genes encoding complete DNA polymerase I proteins or domains typical of these proteins were recovered.

  1. Reduction of antinutritional glucosinolates in Brassica oilseeds by mutation of genes encoding transporters

    DEFF Research Database (Denmark)

    Nour-Eldin, Hussam Hassan; Madsen, Svend Roesen; Engelen, Steven

    2017-01-01

    The nutritional value of Brassica seed meals is reduced by the presence of glucosinolates, which are toxic compounds involved in plant defense. Mutation of the genes encoding two glucosinolate transporters (GTRs) eliminated glucosinolates from Arabidopsis thaliana seeds, but translation of loss...... over multiple generations and maintained in field trials of two mutant populations at three locations. Successful translation of the gtr loss-of-function phenotype from model plant to two Brassica crops suggests that our transport engineering approach could be broadly applied to reduce seed...

  2. Identification and characterization of an oleate hydratase-encoding gene from Bifidobacterium breve

    Science.gov (United States)

    O'Connell, Kerry Joan; Motherway, Mary O'Connell; Hennessey, Alan A; Brodhun, Florian; Ross, R Paul; Feussner, Ivo; Stanton, Catherine; Fitzgerald, Gerald F; van Sinderen, Douwe

    2013-01-01

    Bifidobacteria are common commensals of the mammalian gastrointestinal tract. Previous studies have suggested that a bifidobacterial myosin cross reactive antigen (MCRA) protein plays a role in bacterial stress tolerance, while this protein has also been linked to the biosynthesis of conjugated linoleic acid (CLA) in bifidobacteria. In order to increase our understanding on the role of MCRA in bifidobacteria we created and analyzed an insertion mutant of the MCRA-encoding gene of B. breve NCFB 2258. Our results demonstrate that the MCRA protein of B. breve NCFB 2258 does not appear to play a role in CLA production, yet is an oleate hydratase, which contributes to bifidobacterial solvent stress protection. PMID:23851389

  3. Effects of Shensong Yangxin capsule on pacemaker channels encoded by human HCN4 gene

    Institute of Scientific and Technical Information of China (English)

    SUN Li-ping; LI Ning; WU Yi-ling; PU Jie-lin

    2010-01-01

    @@ Shensong Yangxin (SSYX) is one of the compound recipes of Chinese materia medica including 12ingredients such as Panax ginseng, dwarf lilyturf tuber,nardostachys root, etc. Small-scale randomized multi-centre clinical trials suggested that SSYX reduced the number of ventricular extrasystoles in patients with or without structural heart disease.1 Besides excellent antiarrhythmic efficacy,2 SSYX also improved bradycardia in some patients, which was evidenced by animal studies3 as well. However, the antiarrhythmic mechanisms of SSYX have not been fully understood.Our previous studies have explored effect of SSYX on many channels except hyperpolarization-activated cation channel encoded by human hHCN4 gene.4

  4. Isolation and Functional Characterisation of the Genes Encoding △8-Sphingolipid Desaturase from Brassica rapa

    Institute of Scientific and Technical Information of China (English)

    Shu-Fen Li; Li-Ying Song; Wei-Bo Yin; Yu-Hong Chen; Liang Chen; Ji-Lin Li; Richard R.-C. Wang; Zan-Min Hu

    2012-01-01

    △8-Sphingolipid desaturase is the key enzyme that catalyses desaturation at the C8 position of the long-chain base of sphingolipids in higher plants.There have been no previous studies on the genes encoding △8-sphingolipid desaturases in Brassica rapa.In this study,four genes encoding △8-sphingolipid desaturases from B.rapa were isolated and characterised.Phylogenetic analyses indicated that these genes could be divided into two groups:BrD8A,BrD8C and BrD8D in group Ⅰ,and BrD8B in group Ⅱ.The two groups of genes diverged before the separation of Arabidopsis and Brassica.Though the four genes shared a high sequence similarity,and their coding desaturases all located in endoplasmic reticulum,they exhibited distinct expression patterns.Heterologous expression in Saccharomyces cerevisiae revealed that BrD8A/B/C/D were functionally diverse △8-sphingolipid desaturases that catalyse different ratios of the two products 8(Z)- and 8(E)-C18-phytosphingenine.The aluminium tolerance of transgenic yeasts expressing BrD8A/B/C/D was enhanced compared with that of control cells.Expression of BrD8A in A rabidopsis changed the ratio of 8(Z):8(E)-C 18-phytosphingenine in transgenic plants.The information reported here provides new insights into the biochemical functional diversity and evolutionary relationship of △8-sphingolipid desaturase in plants and lays a foundation for further investigation of the mechanism of 8(Z)- and 8(E)-C18-phytosphingenine biosynthesis.

  5. The Saccharomyces cerevisiae LSB6 gene encodes phosphatidylinositol 4-kinase activity.

    Science.gov (United States)

    Han, Gil-Soo; Audhya, Anjon; Markley, Daniel J; Emr, Scott D; Carman, George M

    2002-12-06

    The LSB6 gene product was identified from the Saccharomyces Genome Data Base (locus YJL100W) as a putative member of a novel type II phosphatidylinositol (PI) 4-kinase family. Cell extracts lacking the LSB6 gene had a reduced level of PI 4-kinase activity. In addition, multicopy plasmids containing the LSB6 gene directed the overexpression of PI 4-kinase activity in cell extracts of wild-type cells, in an lsb6Delta mutant, in a pik1(ts) stt4(ts) double mutant, and in an pik1(ts) stt4(ts) lsb6Delta triple mutant. The heterologous expression of the S. cerevisiae LSB6 gene in Escherichia coli resulted in the expression of a protein that possessed PI 4-kinase activity. Although the lsb6Delta mutant did not exhibit a growth phenotype and failed to exhibit a defect in phosphoinositide synthesis in vivo, the overexpression of the LSB6 gene could partially suppress the lethal phenotype of an stt4Delta mutant defective in the type III STT4-encoded PI 4-kinase indicating that Lsb6p functions as a PI 4-kinase in vivo. Lsb6p was localized to the membrane fraction of the cell, and when overexpressed, GFP-tagged Lsb6p was observed on both the plasma membrane and the vacuole membrane. The enzymological properties (pH optimum, dependence on magnesium or manganese as a cofactor, the dependence of activity on Triton X-100, the dependence on the PI surface concentration, and temperature sensitivity) of the LSB6-encoded enzyme were very similar to the membrane-associated 55-kDa PI 4-kinase previously purified from S. cerevisiae.

  6. Expression analysis of the Theileria parva subtelomere-encoded variable secreted protein gene family.

    Directory of Open Access Journals (Sweden)

    Jacqueline Schmuckli-Maurer

    Full Text Available BACKGROUND: The intracellular protozoan parasite Theileria parva transforms bovine lymphocytes inducing uncontrolled proliferation. Proteins released from the parasite are assumed to contribute to phenotypic changes of the host cell and parasite persistence. With 85 members, genes encoding subtelomeric variable secreted proteins (SVSPs form the largest gene family in T. parva. The majority of SVSPs contain predicted signal peptides, suggesting secretion into the host cell cytoplasm. METHODOLOGY/PRINCIPAL FINDINGS: We analysed SVSP expression in T. parva-transformed cell lines established in vitro by infection of T or B lymphocytes with cloned T. parva parasites. Microarray and quantitative real-time PCR analysis revealed mRNA expression for a wide range of SVSP genes. The pattern of mRNA expression was largely defined by the parasite genotype and not by host background or cell type, and found to be relatively stable in vitro over a period of two months. Interestingly, immunofluorescence analysis carried out on cell lines established from a cloned parasite showed that expression of a single SVSP encoded by TP03_0882 is limited to only a small percentage of parasites. Epitope-tagged TP03_0882 expressed in mammalian cells was found to translocate into the nucleus, a process that could be attributed to two different nuclear localisation signals. CONCLUSIONS: Our analysis reveals a complex pattern of Theileria SVSP mRNA expression, which depends on the parasite genotype. Whereas in cell lines established from a cloned parasite transcripts can be found corresponding to a wide range of SVSP genes, only a minority of parasites appear to express a particular SVSP protein. The fact that a number of SVSPs contain functional nuclear localisation signals suggests that proteins released from the parasite could contribute to phenotypic changes of the host cell. This initial characterisation will facilitate future studies on the regulation of SVSP gene

  7. Modulation of the expression of mimivirus-encoded translation-related genes in response to nutrient availability during Acanthamoeba castellanii infection

    Directory of Open Access Journals (Sweden)

    Lorena eSilva

    2015-06-01

    Full Text Available The complexity of giant virus genomes is intriguing, especially the presence of genes encoding components of the protein translation machinery such as transfer RNAs and aminoacyl-tRNA-synthetases; these features are uncommon among other viruses. Although orthologs of these genes are codified by their hosts, one can hypothesize that having these translation-related genes might represent a gain of fitness during infection. Therefore, the aim of this study was to evaluate the expression of translation-related genes by mimivirus during infection of Acanthamoeba castellanii under different nutritional conditions. In silico analysis of amino acid usage revealed remarkable differences between the mimivirus isolates and the A. castellanii host. Relative expression analysis by quantitative PCR revealed that mimivirus was able to modulate the expression of eight viral translation-related genes according to the amoebal growth condition, with a higher induction of gene expression under starvation. Some mimivirus isolates presented differences in translation-related gene expression; notably, polymorphisms in the promoter regions correlated with these differences. Two mimivirus isolates did not encode the tryptophanyl-tRNA synthetase in their genomes, which may be linked with low conservation pressure based on amino acid usage analysis. Taken together, our data suggest that mimivirus can modulate the expression of translation-related genes in response to nutrient availability in the host cell, allowing the mimivirus to adapt to different hosts growing under different nutritional conditions.

  8. Construction, cloning, and expression of synthetic genes encoding spider dragline silk.

    Science.gov (United States)

    Prince, J T; McGrath, K P; DiGirolamo, C M; Kaplan, D L

    1995-08-29

    Synthetic genes encoding recombinant spider silk proteins have been constructed, cloned, and expressed. Protein sequences were derived from Nephila clavipes dragline silk proteins and reverse-translated to the corresponding DNA sequences. Codon selection was chosen to maximize expression levels in Escherichia coli. DNA "monomer" sequences were multimerized to encode high molecular weight synthetic spider silks using a "head-to-tail" construction strategy. Multimers were cloned into a prokaryotic expression vector and the encoded silk proteins were expressed in E. coli upon induction with IPTG. Four multimer, ranging in size from 14.7 to 41.3 kDa, were chosen for detailed analysis. These proteins were isolated by immobilized metal affinity chromatography and purified using reverse-phase HPLC. The composition and identity of the purified proteins were confirmed by amino acid composition analysis, N-terminal sequencing, laser desorption mass spectroscopy, and Western analysis using antibodies reactive to native spider dragline silk. Circular dichroism measurements indicate that the synthetic spider silks have substantial beta-sheet structure.

  9. Isolation and sequence analysis of a cDNA clone encoding the fifth complement component

    DEFF Research Database (Denmark)

    Lundwall, Åke B; Wetsel, Rick A; Kristensen, Torsten

    1985-01-01

    obtained further predicted an arginine-rich sequence (RPRR) immediately upstream of the N-terminal threonine of C5a, indicating that the promolecule form of C5 is synthesized with a beta alpha-chain orientation as previously shown for pro-C3 and pro-C4. The C5 cDNA clone was sheared randomly by sonication......We have used available protein sequence data for the anaphylatoxin (C5a) portion of the fifth component of human complement (residues 19-25) to synthesize a mixed-sequence oligonucleotide probe. The labeled oligonucleotide was then used to screen a human liver cDNA library, and a single candidate cDNA...... clone of 1.85 kilobase pairs was isolated. Hybridization of the mixed-sequence probe to the complementary strand of the plasmid insert and sequence analysis by the dideoxy method predicted the expected protein sequence of C5a (positions 1-12), amino-terminal to the anticipated priming site. The sequence...

  10. Independent component analysis of Alzheimer's DNA microarray gene expression data

    Directory of Open Access Journals (Sweden)

    Vanderburg Charles R

    2009-01-01

    Full Text Available Abstract Background Gene microarray technology is an effective tool to investigate the simultaneous activity of multiple cellular pathways from hundreds to thousands of genes. However, because data in the colossal amounts generated by DNA microarray technology are usually complex, noisy, high-dimensional, and often hindered by low statistical power, their exploitation is difficult. To overcome these problems, two kinds of unsupervised analysis methods for microarray data: principal component analysis (PCA and independent component analysis (ICA have been developed to accomplish the task. PCA projects the data into a new space spanned by the principal components that are mutually orthonormal to each other. The constraint of mutual orthogonality and second-order statistics technique within PCA algorithms, however, may not be applied to the biological systems studied. Extracting and characterizing the most informative features of the biological signals, however, require higher-order statistics. Results ICA is one of the unsupervised algorithms that can extract higher-order statistical structures from data and has been applied to DNA microarray gene expression data analysis. We performed FastICA method on DNA microarray gene expression data from Alzheimer's disease (AD hippocampal tissue samples and consequential gene clustering. Experimental results showed that the ICA method can improve the clustering results of AD samples and identify significant genes. More than 50 significant genes with high expression levels in severe AD were extracted, representing immunity-related protein, metal-related protein, membrane protein, lipoprotein, neuropeptide, cytoskeleton protein, cellular binding protein, and ribosomal protein. Within the aforementioned categories, our method also found 37 significant genes with low expression levels. Moreover, it is worth noting that some oncogenes and phosphorylation-related proteins are expressed in low levels. In

  11. The RFC2 gene encoding a subunit of replication factor C of Saccharomyces cerevisiae.

    OpenAIRE

    Noskov, V; Maki, S.; Kawasaki, Y.; Leem, S H; Ono, B; Araki, H; Pavlov, Y; Sugino, A

    1994-01-01

    Replication Factor C (RF-C) of Saccharomyces cerevisiae is a complex that consists of several different polypeptides ranging from 120- to 37 kDa (Yoder and Burgers, 1991; Fien and Stillman, 1992), similar to human RF-C. We have isolated a gene, RFC2, that appears to be a component of the yeast RF-C. The RFC2 gene is located on chromosome X of S. cerevisiae and is essential for cell growth. Disruption of the RFC2 gene led to a dumbbell-shaped terminal morphology, common to mutants having a def...

  12. Modeling the fitness consequences of a cyanophage-encoded photosynthesis gene.

    Directory of Open Access Journals (Sweden)

    Jason G Bragg

    Full Text Available BACKGROUND: Phages infecting marine picocyanobacteria often carry a psbA gene, which encodes a homolog to the photosynthetic reaction center protein, D1. Host encoded D1 decays during phage infection in the light. Phage encoded D1 may help to maintain photosynthesis during the lytic cycle, which in turn could bolster the production of deoxynucleoside triphosphates (dNTPs for phage genome replication. METHODOLOGY/PRINCIPAL FINDINGS: To explore the consequences to a phage of encoding and expressing psbA, we derive a simple model of infection for a cyanophage/host pair--cyanophage P-SSP7 and Prochlorococcus MED4--for which pertinent laboratory data are available. We first use the model to describe phage genome replication and the kinetics of psbA expression by host and phage. We then examine the contribution of phage psbA expression to phage genome replication under constant low irradiance (25 microE m(-2 s(-1. We predict that while phage psbA expression could lead to an increase in the number of phage genomes produced during a lytic cycle of between 2.5 and 4.5% (depending on parameter values, this advantage can be nearly negated by the cost of psbA in elongating the phage genome. Under higher irradiance conditions that promote D1 degradation, however, phage psbA confers a greater advantage to phage genome replication. CONCLUSIONS/SIGNIFICANCE: These analyses illustrate how psbA may benefit phage in the dynamic ocean surface mixed layer.

  13. The embryonic expression patterns of zebrafish genes encoding LysM-domains.

    Science.gov (United States)

    Laroche, F J F; Tulotta, C; Lamers, G E M; Meijer, A H; Yang, P; Verbeek, F J; Blaise, M; Stougaard, J; Spaink, H P

    2013-10-01

    The function and structure of LysM-domain containing proteins are very diverse. Although some LysM domains are able to bind peptidoglycan or chitin type carbohydrates in bacteria, in fungi and in plants, the function(s) of vertebrate LysM domains and proteins remains largely unknown. In this study we have identified and annotated the six zebrafish genes of this family, which encode at least ten conceptual LysM-domain containing proteins. Two distinct sub-families called LysMD and OXR were identified and shown to be highly conserved across vertebrates. The detailed characterization of LysMD and OXR gene expression in zebrafish embryos showed that all the members of these sub-families are strongly expressed maternally and zygotically from the earliest stages of a vertebrate embryonic development. Moreover, the analysis of the spatio-temporal expression patterns, by whole mount and fluorescent in situ hybridizations, demonstrates pronounced LysMD and OXR gene expression in the zebrafish brain and nervous system during stages of larval development. None of the zebrafish LysMD or OXR genes was responsive to challenge with bacterial pathogens in embryo models of Salmonella and Mycobacterium infections. In addition, the expression patterns of the OXR genes were mapped in a zebrafish brain atlas. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Genome mining demonstrates the widespread occurrence of gene clusters encoding bacteriocins in cyanobacteria.

    Science.gov (United States)

    Wang, Hao; Fewer, David P; Sivonen, Kaarina

    2011-01-01

    Cyanobacteria are a rich source of natural products with interesting biological activities. Many of these are peptides and the end products of a non-ribosomal pathway. However, several cyanobacterial peptide classes were recently shown to be produced through the proteolytic cleavage and post-translational modification of short precursor peptides. A new class of bacteriocins produced through the proteolytic cleavage and heterocyclization of precursor proteins was recently identified from marine cyanobacteria. Here we show the widespread occurrence of bacteriocin gene clusters in cyanobacteria through comparative analysis of 58 cyanobacterial genomes. A total of 145 bacteriocin gene clusters were discovered through genome mining. These clusters encoded 290 putative bacteriocin precursors. They ranged in length from 28 to 164 amino acids with very little sequence conservation of the core peptide. The gene clusters could be classified into seven groups according to their gene organization and domain composition. This classification is supported by phylogenetic analysis, which further indicated independent evolutionary trajectories of gene clusters in different groups. Our data suggests that cyanobacteria are a prolific source of low-molecular weight post-translationally modified peptides.

  15. Genome mining demonstrates the widespread occurrence of gene clusters encoding bacteriocins in cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Hao Wang

    Full Text Available Cyanobacteria are a rich source of natural products with interesting biological activities. Many of these are peptides and the end products of a non-ribosomal pathway. However, several cyanobacterial peptide classes were recently shown to be produced through the proteolytic cleavage and post-translational modification of short precursor peptides. A new class of bacteriocins produced through the proteolytic cleavage and heterocyclization of precursor proteins was recently identified from marine cyanobacteria. Here we show the widespread occurrence of bacteriocin gene clusters in cyanobacteria through comparative analysis of 58 cyanobacterial genomes. A total of 145 bacteriocin gene clusters were discovered through genome mining. These clusters encoded 290 putative bacteriocin precursors. They ranged in length from 28 to 164 amino acids with very little sequence conservation of the core peptide. The gene clusters could be classified into seven groups according to their gene organization and domain composition. This classification is supported by phylogenetic analysis, which further indicated independent evolutionary trajectories of gene clusters in different groups. Our data suggests that cyanobacteria are a prolific source of low-molecular weight post-translationally modified peptides.

  16. MHC class I-like genes in cattle, MHCLA, with similarity to genes encoding NK cell stimulatory ligands.

    Science.gov (United States)

    Larson, Joshua H; Rebeiz, Mark J; Stiening, Chad M; Windish, Ryan L; Beever, Jonathan E; Lewin, Harris A

    2003-04-01

    A comparative genomics approach for mining databases of expressed sequence tags (ESTs) was used to identify two members of a novel MHC class I gene family in cattle. These paralogous genes, named MHC class I-like gene family A1 ( MHCLA1) and MHCLA2, were shown by phylogenetic analysis to be related to human and mouse genes encoding NK cell stimulatory ligands, ULBP, RAET, H60 and Raet-1. Radiation hybrid mapping placed cattle MHCLA1 on BTA9, which, on the basis of existing comparative mapping data, identified the ULBP, RAET1, H60 and Raet1 genes as homologues of the cattle MHCLA genes. However, the human and mouse orthologues of MHCLA1 and MHCLA2 could not be defined due to extensive sequence divergence from all known members of the ULBP1/ RAET1/H60/Raet1 gene family. The cattle MHCLA1 molecule is predicted to be missing an alpha(3) domain, similar to the human and mouse homologues. Like the human ULBP genes, MHCLA1 was found to be transcribed constitutively in a variety of fetal and adult tissues by RT-PCR. The patterns of hybridization obtained by Southern blotting using MHCLA1 as a probe and DNA from 14 species representing five mammalian orders suggests that the MHCLA genes evolved rapidly in the Cetartiodactyla. Previous findings demonstrating that ULBPs serve as ligands for the NK cell NKG2D stimulatory receptor, and that this interaction can be blocked by a human cytomegalovirus glycoprotein that binds to ULBPs, suggests that the extensive divergence found among the cattle, human and mouse MHCLA homologues is due to selection exerted by viral pathogens.

  17. Cloning and characterization of a delta-6 desaturase encoding gene from Nannochloropsis oculata

    Institute of Scientific and Technical Information of China (English)

    MA Xiaolei; YU Jianzhong; ZHU Baohua; PAN Kehou; PAN Jin; YANG Guanpin

    2011-01-01

    A gene (NANOC-D6D) encoding a desaturase that removes two hydrogen atoms from fatty acids at delta 6 position was isolated from a eDNA library of Nannochloropsis oculata (Droop)D. J. Hibberd (Eustigmatophyceae). The unicellular marine microalga N. oculata synthesizes rich long chain polyunsaturated fatty acids (LCPUFAs), including eicosapentaenoic acid (20:5n-3, EPA).The deduced protein contains 474 amino acids that fold into 4 trans-membrane domains. The neighbor-joining phylogenetic tree indicates that NANOC-D6D is phylogenetically close to the delta-6 fatty acid desaturase of marine microalgae such as Glossomastix chrysoplasta, Thalassiosira pseudonana, and Phaeodactylum tricornutum. The gene was expressed in Saccharomyces cerevisiae INVSc1 to verify the substrate specificity of NANOC-D6D. Our results suggest that the recombinant NANOC-D6D simultaneously desaturates linoleic acid (LA) and α-linolenic acid (ALA).

  18. [Lignocellulose degrading bacteria and their genes encoding cellulase/hemicellulase in rumen--a review].

    Science.gov (United States)

    Chen, Furong; Zhu, Yaxin; Dong, Xiuzhu; Liu, Lihua; Huang, Li; Dai, Xin

    2010-08-01

    Rumen of ruminant animals is known as a natural reactor involved in highly efficient lignocelluloses degradation. Rumen fibrolytic microbes have attracted an increasing attention for their potential value in biofuel research. Studies on rumen microbes have traditionally entailed the isolation of fibrolytic bacteria and subsequent analysis of fibrolytic enzymes. Developments in genomic and metagenomic approaches have made it possible to isolate directly genes and gene clusters encoding fibrolytic activities from rumen samples, permitting a global analysis of mechanisms of degradation of lignocellulose in rumen. Research in this field shows that lignocellulose degradation in rumen is a complex process involving a number of different microbes and is effected by a huge array of hydrolytic enzymes in a concerted fashion. This review briefly summarizes results from recent studies, especially metagenomic studies, on lignocellulose degradation in rumen.

  19. Cloning and characterization of a delta-6 desaturase encoding gene from Nannochloropsis oculata

    Science.gov (United States)

    Ma, Xiaolei; Yu, Jianzhong; Zhu, Baohua; Pan, Kehou; Pan, Jin; Yang, Guanpin

    2011-03-01

    A gene ( NANOC-D6D) encoding a desaturase that removes two hydrogen atoms from fatty acids at delta 6 position was isolated from a cDNA library of Nannochloropsis oculata (Droop) D. J. Hibberd (Eustigmatophyceae). The unicellular marine microalga N. oculata synthesizes rich long chain polyunsaturated fatty acids (LCPUFAs), including eicosapentaenoic acid (20:5n-3, EPA). The deduced protein contains 474 amino acids that fold into 4 trans-membrane domains. The neighbor-joining phylogenetic tree indicates that NANOC-D6D is phylogenetically close to the delta-6 fatty acid desaturase of marine microalgae such as Glossomastix chrysoplasta, Thalassiosira pseudonana, and Phaeodactylum tricornutum. The gene was expressed in Saccharomyces cerevisiae INVScl to verify the substrate specificity of NANOC-D6D. Our results suggest that the recombinant NANOC-D6D simultaneously desaturates linoleic acid (LA) and α-linolenic acid (ALA).

  20. Cloning and characterization of a gene encoding cysteine proteases from senescent leaves of Gossypium hirsutum

    Institute of Scientific and Technical Information of China (English)

    SHEN Fafu; YU Shuxun; HAN Xiulan; FAN Shuli

    2004-01-01

    A gene encoding a cysteine proteinase was isolated from senescent leave of cotton (Gossypium hirsutum) cv liaomian No. 9 by utilizing rapid amplification of cDNA ends polymerase chain reaction (RACE-PCR), and a set of consensus oligonucleotide primers was designed to anneal the conserved sequences of plant cysteine protease genes. The cDNA, which designated Ghcysp gene, contained 1368 bp terminating in a poly(A)+ trail, and included a putative 5′(98 bp) and a 3′(235 bp) non-coding region. The opening reading frame (ORF) encodes polypeptide 344 amino acids with the predicted molecular mass of 37.88 kD and theoretical pI of 4.80. A comparison of the deduced amino acid sequence with the sequence in the GenBank database has shown considerable sequence similarity to a novel family of plant cysteine proteases. This putative cotton Ghcysp protein shows from 67% to 82% identity to the other plants. All of them share catalytic triad of residues, which are highly conserved in three regions. Hydropaths analysis of the amino acid sequence shows that the Ghcysp is a potential membrane protein and localizes to the vacuole, which has a transmembrane helix between resides 7-25. A characteristic feature of Ghcysp is the presence of a putative vacuole-targeting signal peptide of 19-amino acid residues at the N-terminal region. The expression of Ghcysp gene was determined using northern blot analysis. The Ghcysp mRNA levels are high in development senescent leaf but below the limit of detection in senescent root, hypocotyl, faded flower, 6 d post anthesis ovule, and young leaf.

  1. Bioinformatic identification of genes encoding C1q-domain containing proteins in zebrafish

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    C1q is the first subcomponent of classical pathway in the complement system and a major link between innate and acquired immunities. The globular (gC1q) domain similar with C1q was also found in many non-complement C1q-domain-containing (C1qDC) proteins which have similar crystal structure to that of the multifunctional tumor necrosis factor (TNF) ligand family, and also have diverse functions. In this study, we identified a total of 52 independent gene sequences encoding C1q-domain-containing proteins through comprehensive searches of zebrafish genome, cDNA and EST databases. In comparison to 31 orthologous genes in human and different numbers in other species, a significant selective pressure was suggested during vertebrate evolution. Domain organization of C1q-domain-containing (C1qDC) proteins mainly includes a leading signal peptide, a collagen-like region of variable length, and a C-terminal C1q domain. There are 11 highly conserved residues within the C1q domain, among which 2 are invariant within the zebrafish gene set. A more extensive database searches also revealed homologous C1qDC proteins in other vertebrates, invertebrates and even bacterium, but no homologous sequences for encoding C1qDC proteins were found in many species that have a more recent evolutionary history with zebrafish. Therefore, further studies on C1q-domain-containing genes among different species will help us understand evolutionary mechanism of innate and acquired immunities.

  2. The Drosophila immunoglobulin gene turtle encodes guidance molecules involved in axon pathfinding

    Directory of Open Access Journals (Sweden)

    Al-Anzi Bader

    2009-08-01

    Full Text Available Abstract Background Neuronal growth cones follow specific pathways over long distances in order to reach their appropriate targets. Research over the past 15 years has yielded a large body of information concerning the molecules that regulate this process. Some of these molecules, such as the evolutionarily conserved netrin and slit proteins, are expressed in the embryonic midline, an area of extreme importance for early axon pathfinding decisions. A general model has emerged in which netrin attracts commissural axons towards the midline while slit forces them out. However, a large number of commissural axons successfully cross the midline even in the complete absence of netrin signaling, indicating the presence of a yet unidentified midline attractant. Results The evolutionarily conserved Ig proteins encoded by the turtle/Dasm1 genes are found in Drosophila, Caenorhabditis elegans, and mammals. In Drosophila the turtle gene encodes five proteins, two of which are diffusible, that are expressed in many areas, including the vicinity of the midline. Using both molecular null alleles and transgenic expression of the different isoforms, we show that the turtle encoded proteins function as non-cell autonomous axonal attractants that promote midline crossing via a netrin-independent mechanism. turtle mutants also have either stalled or missing axon projections, while overexpression of the different turtle isoforms produces invasive neurons and branching axons that do not respect the histological divisions of the nervous system. Conclusion Our findings indicate that the turtle proteins function as axon guidance cues that promote midline attraction, axon branching, and axonal invasiveness. The latter two capabilities are required by migrating axons to explore densely packed targets.

  3. Cloning, sequencing and expression of the gene encoding the extracellular metalloprotease of Aeromonas caviae.

    Science.gov (United States)

    Kawakami, K; Toma, C; Honma, Y

    2000-01-01

    A gene (apk) encoding the extracellular protease of Aeromonas caviae Ae6 has been cloned and sequenced. For cloning the gene, the DNA genomic library was screened using skim milk LB agar. One clone harboring plasmid pKK3 was selected for sequencing. Nucleotide sequencing of the 3.5 kb region of pKK3 revealed a single open reading frame (ORF) of 1,785 bp encoding 595 amino acids. The deduced polypeptide contained a putative 16-amino acid signal peptide followed by a large propeptide. The N-terminal amino acid sequence of purified recombinant protein (APK) was consistent with the DNA sequence. This result suggested a mature protein of 412 amino acids with a molecular mass of 44 kDa. However, the molecular mass of purified recombinant APK revealed 34 kDa by SDS-PAGE, suggesting that further processing at the C-terminal region took place. The 2 motifs of zinc binding sites deduced are highly conserved in the APK as well as in other zinc metalloproteases including Vibrio proteolyticus neutral protease, Emp V from Vibrio vulnificus, HA/P from Vibrio cholerae, and Pseudomonas aeruginosa elastase. Proteolytic activity was inhibited by EDTA, Zincov, 1,10-phenanthroline and tetraethylenepentamine while unaffected by the other inhibitors tested. The protease showed maximum activity at pH 7.0 and was inactivated by heating at 80 C for 15 min. These results together suggest that APK belongs to the thermolysin family of metalloendopeptidases.

  4. Three synonymous genes encode calmodulin in a reptile, the Japanese tortoise, Clemmys japonica

    Directory of Open Access Journals (Sweden)

    Kouji Shimoda

    2002-01-01

    Full Text Available Three distinct calmodulin (CaM-encoding cDNAs were isolated from a reptile, the Japanese tortoise (Clemmys japonica, based on degenerative primer PCR. Because of synonymous codon usages, the deduced amino acid (aa sequences were exactly the same in all three genes and identical to the aa sequence of vertebrate CaM. The three cDNAs, referred to as CaM-A, -B, and -C, seemed to belong to the same type as CaMI, CaMII, and CaMIII, respectively, based on their sequence identity with those of the mammalian cDNAs and the glutamate codon biases. Northern blot analysis detected CaM-A and -B as bands corresponding to 1.8 kb, with the most abundant levels in the brain and testis, while CaM-C was detected most abundantly in the brain as bands of 1.4 and 2.0 kb. Our results indicate that, in the tortoise, CaM protein is encoded by at least three non-allelic genes, and that the ‘multigene-one protein' principle of CaM synthesis is applicable to all classes of vertebrates, from fishes to mammals.

  5. Characterization of a gene which encodes a mannosyltransferase homolog of Paracoccidioides brasiliensis.

    Science.gov (United States)

    Costa, Alessandra A; Gómez, Francisco J; Pereira, Maristela; Felipe, M Sueli S; Jesuino, Rosália S A; Deepe, George S; de Almeida Soares, Célia M

    2002-08-01

    We screened an expression library of the yeast form of Paracoccidioides brasiliensis with a pool of human sera that was pre-adsorbed with mycelium, from patients with paracoccidioidomycosis (PCM). A sequence (PbYmnt) was obtained and characterized. A genomic clone was obtained by PCR of P. brasiliensis total DNA. The sequence contained a single open reading frame (ORF) encoding a protein of 357 amino acid residues, with a molecular mass of 39.78 kDa. The deduced amino acid sequence exhibited identity to mannosyl- and glycosyltransferases from several sources. A DXD motif was present in the translated gene and this sequence is characteristic of the glycosyltransferases. Hydropathy analysis revealed a single transmembrane region near the amino terminus of the molecule that suggested a type II membrane protein. The PbYmnt was expressed preferentially in the yeast parasitic phase. The accession number of the nucleotide sequence of PbYmnt and its flanking regions is AF374353. A recombinant protein was generated in Escherichia coli. Our data suggest that PbYmnt encodes one member of a glycosyltransferase family of proteins and that our strategy was useful in the isolation of differentially expressed genes.

  6. Life without putrescine: disruption of the gene-encoding polyamine oxidase in Ustilago maydis odc mutants.

    Science.gov (United States)

    Valdés-Santiago, Laura; Guzmán-de-Peña, Doralinda; Ruiz-Herrera, José

    2010-11-01

    In previous communications the essential role of spermidine in Ustilago maydis was demonstrated by means of the disruption of the genes encoding ornithine decarboxylase (ODC) and spermidine synthase (SPE). However, the assignation of specific roles to each polyamine in different cellular functions was not possible because the spermidine added to satisfy the auxotrophic requirement of odc/spe double mutants is partly back converted into putrescine. In this study, we have approached this problem through the disruption of the gene-encoding polyamine oxidase (PAO), required for the conversion of spermidine into putrescine, and the construction of odc/pao double mutants that were unable to synthesize putrescine by either ornithine decarboxylation or retroconversion from spermidine. Phenotypic analysis of the mutants provided evidence that putrescine is only an intermediary in spermidine biosynthesis, and has no direct role in cell growth, dimorphic transition, or any other vital function of U. maydis. Nevertheless, our results show that putrescine may play a role in the protection of U. maydis against salt and osmotic stress, and possibly virulence. Evidence was also obtained that the retroconversion of spermidine into putrescine is not essential for U. maydis growth but may be important for its survival under natural conditions.

  7. OsHT, a Rice Gene Encoding for a Plasma-Membrane Localized Histidine Transporter

    Institute of Scientific and Technical Information of China (English)

    Di LIU; Wei GONG; Yong BAI; Jing-Chu LUO; Yu-Xian ZHU

    2005-01-01

    Using a degenerative probe designed according to the most conservative region of a known Lys- and His-specific amino acid transporter (LHT1) from Arabidopsis, we isolated a full-length cDNA named OsHT (histidine transporter of Oryza sativa L.) by screening the rice cDNA library. The cDNA is 1.3kb in length and the open reading frame encodes for a 441 amino acid protein with a calculated molecular mass of 49 kDa. Multiple sequence alignments showed that OsHT shares a high degree of sequence conservation at the deduced amino acid level with the Arabidopsis LHT1 and six putative lysine and histidine transporters. Computational analysis indicated that OsHT is an integral membrane protein with 11 putative transmembrane helices. This was confirmed by the transient expression assay because the OsHT-GFP fusion protein was, indeed, localized mainly in the plasma membrane of onion epidermal cells. Functional complementation experiments demonstrated that OsHT was able to work as a histidine transporter in Saccharomyces cerevisiae, suggesting that OsHT is a gene that encodes for a histidine transporter from rice.This is the first time that an LHT-type amino acid transporter gene has been cloned from higher plants other than A rabidopsis.

  8. Cloning and Expression Analysis of a Prion Protein Encoding Gene in Guppy (Poecilia reticulata)

    Institute of Scientific and Technical Information of China (English)

    WU Suihan; WEI Qiwei; YANG Guanpin; WANG Dengqiang; ZOU Guiwei; CHEN Daqing

    2008-01-01

    The full length eDNA of a prion protein (PrP) encoding gene of guppy (Poecilia reticulata) and the corresponding ge-nomic DNA were cloned.The cDNA was 2245 bp in length and contained an open reading frame (ORF) of 1545 bp encoding a pro-tein of 515 amino acids,which held all typical structural characteristics of the functional PrP.The cloned genomic DNA fragmentcorresponding to the eDNA was 3720 bp in length,consisting of 2 introns and 2 exons.The 5' untranslated region of eDNA origi-nated from the 2 exons,while the ORF originated from the second exon.Although the gene was transcribed in diverse tissues in-cluding brain,eye,liver,intestine,muscle and tail,its transcript was most abundant in the brain.In addition,the transcription of thegene was enhanced by 5 salinity,implying that it was associated with the response of guppy to saline stress.

  9. Lipophilic proteins encoded by mitochondrial and nuclear genes in Neurospora crassa.

    Science.gov (United States)

    Küntzel, H; Pieniaźek, N J; Pieniaźek, D; Leister, D E

    1975-06-01

    Mitochondrial proteins soluble in neutral chloroform-methanol (2:1) were separated from lipids by ether precipitation and resolved by Sephadex G-200 filtration in the presence of dodecylsulfate into two major fractions eluting in the excluded region (peak I) and in a region of an apparent molecular weight 8000 (peak II). Residual phospholipids are found only in peak II. Peak I consists of several aggregated small polypeptides of molecular weights around 8000, which can be disaggregated by mild oxidation with performic acid. Cycloheximide stimulates almost two-fold incorporation of radioactive phenylalanine into peak I proteins but inhibits labelling of peak II proteins by 95%. Chloramphenicol and ethidium bromide inhibit the synthesis of peak I proteins by 70% and 95% respectively, but do not affect labelling of peak II proteins. At least 30% of the translation products of mitochondrial DNA in vitro behave like peak I proteins: they are soluble in organic solvents, they aggregate in dodecylsulfate buffer after removal of phospholipids and they contain species of molecular weights around 8000 that disaggregate upon oxidation. The data strongly suggest that the proteins of peak I are encoded by mitochondrial genes and synthesized on mitochondrial ribosomes, whereas the proteins of peak II are encoded by nuclear genes and synthesized on cytoplasmic ribosomes. Both groups of lipophilic proteins are very similar in their molecular weights, but the mitochondrially coded peak I proteins have the unique property of forming large heat-stable aggregates in the presence of dodecylsulfate.

  10. The Relationship Between Transcript Expression Levels of Nuclear Encoded (TFAM, NRF1 and Mitochondrial Encoded (MT-CO1 Genes in Single Human Oocytes During Oocyte Maturation

    Directory of Open Access Journals (Sweden)

    Ghaffari Novin M.

    2015-06-01

    Full Text Available In some cases of infertility in women, human oocytes fail to mature when they reach the metaphase II (MII stage. Mitochondria plays an important role in oocyte maturation. A large number of mitochondrial DNA (mtDNA, copied in oocytes, is essential for providing adenosine triphosphate (ATP during oocyte maturation. The purpose of this study was to identify the relationship between transcript expression levels of the mitochondrial encoded gene (MT-CO1 and two nuclear encoded genes, nuclear respiratory factor 1 (NRF1 and mitochondrial transcription factor A (TFAM in various stages of human oocyte maturation. Nine consenting patients, age 21-35 years old, with male factors were selected for ovarian stimulation and intracytoplasmic sperm injection (ICSI procedures. mRNA levels of mitochondrial- related genes were performed by singlecell TaqMan® quantitative real-time polymerase chain reaction (qRT-PCR. There was no significant relationship between the relative expression levels in germinal vesicle (GV stage oocytes (p = 0.62. On the contrary, a significant relationship was seen between the relative expression levels of TFAM and NRF1 and the MT-CO1 genes at the stages of metaphase I (MI and MII (p = 0.03 and p = 0.002. A relationship exists between the transcript expression levels of TFAM and NRF1, and MT-CO1 genes in various stages of human oocyte maturation.

  11. [Expression of genes encoding defense factors in the snail Planorbarius corneus (Gastropoda, Pulmonata) infested with trematodes].

    Science.gov (United States)

    Prokhorova, E E; Tsymbalenko, N V; Ataev, G L

    2010-01-01

    Because many species of gastropods are intermediate hosts for trematodes, these molluscs are often used as model-organisms in the studies of invertebrate immune system. Revealing of the ways in which the defense factors functioning became possible due to the use of the methods of molecular biology. Contemporary molecular methods allow analyzing the defense factors allocations and levels of their expression. We investigated the expression of genes encoding defense factors in gastropods by the example of the snail Planorbarius corneus from water bodies of the Leningrad Oblast under infestation with trematods. The snails naturally infested with the parthenites of trematode species belonging to the families Strigeidae, Notocotylidae, Plagiorchiidae, and Schistosomatida were used as the experimental sample. Uninfested snails were used as a control sample. Several genes encoding the factors, which have been recently found involved in the anti-trematode defense reactions in pulmonates, were chosen, namely fibrinogen-related protein, C-lectin, calcium-binding protein, and cystatin-like protein. The genes' expression was analyzed on total mRNA samples by the reverse transcription with the polymerase chain reaction. It was shown than expression levels of the genes under consideration are different in uninfested snails and in the snails infested with different trematode species. Thus, in the mollusks infested with the parthenites of Cotylurus sp. and Bilharziella polonica, the expression levels of the genes of all factors under study were increased, while in the infested Notocotylus sp. n Plagiorchis sp., only expression levels of C-lectin and cystatin-like protein were increased. Results of the expression analysis confirm the role of hemocytes and cells of hepatopancreas in the production of humoral defense factors. In the snails infested with trematodes, the expression levels of C-lectin and calcium-binding protein genes are increased in haemocytes, while the genes of

  12. Characterization of the gene encoding pisatin demethylase (FoPDA1) in Fusarium oxysporum.

    Science.gov (United States)

    Coleman, Jeffrey J; Wasmann, Catherine C; Usami, Toshiyuki; White, Gerard J; Temporini, Esteban D; McCluskey, Kevin; VanEtten, Hans D

    2011-12-01

    The pea pathogen Fusarium oxysporum f. sp. pisi is able to detoxify pisatin produced as a defense response by pea, and the gene encoding this detoxification mechanism, FoPDA1, was 82% identical to the cytochrome P450 pisatin demethylase PDA1 gene in Nectria haematococca. A survey of F. oxysporum f. sp. pisi isolates demonstrated that, as in N. haematococca, the PDA gene of F. oxysporum f. sp. pisi is generally located on a small chromosome. In N. haematococca, PDA1 is in a cluster of pea pathogenicity (PEP) genes. Homologs of these PEP genes also were found in the F. oxysporum f. sp. pisi isolates, and PEP1 and PEP5 were sometimes located on the same small chromosomes as the FoPDA1 homologs. Transforming FoPDA1 into a pda(?) F. oxysporum f. sp. lini isolate conferred pda activity and promoted pathogenicity on pea to some transformants. Different hybridization patterns of FoPDA1 were found in F. oxysporum f. sp. pisi but these did not correlate with the races of the fungus, suggesting that races within this forma specialis arose independently of FoPDA1. FoPDA1 also was present in the formae speciales lini, glycines, and dianthi of F. oxysporum but they had mutations resulting in nonfunctional proteins. However, an active FoPDA1 was present in F. oxysporum f. sp. phaseoli and it was virulent on pea. Despite their evolutionary distance, the amino acid sequences of FoPDA1 of F. oxysporum f. sp. pisi and F. oxysporum f. sp. phaseoli revealed only six amino acid differences, consistent with a horizontal gene transfer event accounting for the origin of these genes.

  13. Analysis of essential Arabidopsis nuclear genes encoding plastid-targeted proteins.

    Directory of Open Access Journals (Sweden)

    Linda J Savage

    Full Text Available The Chloroplast 2010 Project (http://www.plastid.msu.edu/ identified and phenotypically characterized homozygous mutants in over three thousand genes, the majority of which encode plastid-targeted proteins. Despite extensive screening by the community, no homozygous mutant alleles were available for several hundred genes, suggesting that these might be enriched for genes of essential function. Attempts were made to generate homozygotes in ~1200 of these lines and 521 of the homozygous viable lines obtained were deposited in the Arabidopsis Biological Resource Center (http://abrc.osu.edu/. Lines that did not yield a homozygote in soil were tested as potentially homozygous lethal due to defects either in seed or seedling development. Mutants were characterized at four stages of development: developing seed, mature seed, at germination, and developing seedlings. To distinguish seed development or seed pigment-defective mutants from seedling development mutants, development of seeds was assayed in siliques from heterozygous plants. Segregating seeds from heterozygous parents were sown on supplemented media in an attempt to rescue homozygous seedlings that could not germinate or survive in soil. Growth of segregating seeds in air and air enriched to 0.3% carbon dioxide was compared to discover mutants potentially impaired in photorespiration or otherwise responsive to CO2 supplementation. Chlorophyll fluorescence measurements identified CO2-responsive mutants with altered photosynthetic parameters. Examples of genes with a viable mutant allele and one or more putative homozygous-lethal alleles were documented. RT-PCR of homozygotes for potentially weak alleles revealed that essential genes may remain undiscovered because of the lack of a true null mutant allele. This work revealed 33 genes with two or more lethal alleles and 73 genes whose essentiality was not confirmed with an independent lethal mutation, although in some cases second leaky alleles

  14. Ammonia-regulated expression of a soybean gene encoding cytosolic glutamine synthetase in transgenic Lotus corniculatus.

    Science.gov (United States)

    Miao, G H; Hirel, B; Marsolier, M C; Ridge, R W; Verma, D P

    1991-01-01

    A full-length cDNA clone encoding cytosolic glutamine synthetase (GS), expressed in roots and root nodules of soybean, was isolated by direct complementation of an Escherichia coli gln A- mutant. This sequence is induced in roots by the availability of ammonia. A 3.5-kilobase promoter fragment of a genomic clone (lambda GS15) corresponding to this cDNA was isolated and fused with a reporter [beta-glucuronidase (GUS)] gene. The GS-GUS fusion was introduced into a legume (Lotus corniculatus) and a nonlegume (tobacco) plant by way of Agrobacterium-mediated transformations. This chimeric gene was found to be expressed in a root-specific manner in both tobacco and L. corniculatus, the expression being restricted to the growing root apices and the vascular bundles of the mature root. Treatment with ammonia increased the expression of this chimeric gene in the legume background (i.e., L. corniculatus); however, no induction was observed in tobacco roots. Histochemical localization of GUS activity in ammonia-treated transgenic L. corniculatus roots showed a uniform distribution across all cell types. These data suggest that the tissue specificity of the soybean cytosolic GS gene is conserved in both tobacco and L. corniculatus; however, in the latter case, this gene is ammonia inducible. Furthermore, the ammonia-enhanced GS gene expression in L. corniculatus is due to an increase in transcription. That this gene is directly regulated by externally supplied or symbiotically fixed nitrogen is also evident from the expression of GS-GUS in the infection zone, including the uninfected cells, and the inner cortex of transgenic L. corniculatus nodules, where a flux of ammonia is encountered by this tissue. The lack of expression of GS-GUS in the outer cortex of the nodules suggests that ammonia may not be able to diffuse outside the endodermis.

  15. Small gene family encoding an eggshell (chorion) protein of the human parasite Schistosoma mansoni

    Energy Technology Data Exchange (ETDEWEB)

    Bobek, L.A.; Rekosh, D.M.; Lo Verde, P.T.

    1988-08-01

    The authors isolated six independent genomic clones encoding schistosome chorion or eggshell proteins from a Schistosoma mansoni genomic library. A linkage map of five of the clones spanning 35 kilobase pairs (kbp) of the S. mansoni genome was constructed. The region contained two eggshell protein genes closely linked, separated by 7.5 kbp of intergenic DNA. The two genes of the cluster were arranged in the same orientation, that is, they were transcribed from the same strand. The sixth clone probably represents a third copy of the eggshell gene that is not contained within the 35-kbp region. The 5- end of the mRNA transcribed from these genes was defined by primer extension directly off the RNA. The ATCAT cap site sequence was homologous to a silkmoth chorion PuTCATT cap site sequence, where Pu indicates any purine. DNA sequence analysis showed that there were no introns in these genes. The DNA sequences of the three genes were very homologous to each other and to a cDNA clone, pSMf61-46, differing only in three or four nucleotices. A multiple TATA box was located at positions -23 to -31, and a CAAAT sequence was located at -52 upstream of the eggshell transcription unit. Comparison of sequences in regions further upstream with silkmoth and Drosophila sequences revealed very short elements that were shared. One such element, TCACGT, recently shown to be an essential cis-regulatory element for silkmoth chorion gene promoter function, was found at a similar position in all three organisms.

  16. On the role of PDZ domain-encoding genes in Drosophila border cell migration.

    Science.gov (United States)

    Aranjuez, George; Kudlaty, Elizabeth; Longworth, Michelle S; McDonald, Jocelyn A

    2012-11-01

    Cells often move as collective groups during normal embryonic development and wound healing, although the mechanisms governing this type of migration are poorly understood. The Drosophila melanogaster border cells migrate as a cluster during late oogenesis and serve as a powerful in vivo genetic model for collective cell migration. To discover new genes that participate in border cell migration, 64 out of 66 genes that encode PDZ domain-containing proteins were systematically targeted by in vivo RNAi knockdown. The PDZ domain is one of the largest families of protein-protein interaction domains found in eukaryotes. Proteins that contain PDZ domains participate in a variety of biological processes, including signal transduction and establishment of epithelial apical-basal polarity. Targeting PDZ proteins effectively assesses a larger number of genes via the protein complexes and pathways through which these proteins function. par-6, a known regulator of border cell migration, was a positive hit and thus validated the approach. Knockdown of 14 PDZ domain genes disrupted migration with multiple RNAi lines. The candidate genes have diverse predicted cellular functions and are anticipated to provide new insights into the mechanisms that control border cell movement. As a test of this concept, two genes that disrupted migration were characterized in more detail: big bang and the Dlg5 homolog CG6509. We present evidence that Big bang regulates JAK/STAT signaling, whereas Dlg5/CG6509 maintains cluster cohesion. Moreover, these results demonstrate that targeting a selected class of genes by RNAi can uncover novel regulators of collective cell migration.

  17. Isolation and characterization of 17 different genes encoding putative endopolygalacturonase genes from Rhizopus oryzae

    Science.gov (United States)

    Polygalacturonase enzymes are a valuable aid in the retting of flax for production of linens and, more recently, production of biofuels from citrus wastes. In a search of the recently sequenced Rhizopus oryzae strain 99-880 genome database, 18 putative endopolygalacturonase genes were identified, w...

  18. Molecular and genetic analysis of the gene encoding the Saccharomyces cerevisiae strand exchange protein Sep1.

    Science.gov (United States)

    Tishkoff, D X; Johnson, A W; Kolodner, R D

    1991-05-01

    Vegetatively grown Saccharomyces cerevisiae cells contain an activity that promotes a number of homologous pairing reactions. A major portion of this activity is due to strand exchange protein 1 (Sep1), which was originally purified as a 132,000-Mr species (R. Kolodner, D. H. Evans, and P. T. Morrison, Proc. Natl. Acad. Sci. USA 84:5560-5564, 1987). The gene encoding Sep1 was cloned, and analysis of the cloned gene revealed a 4,587-bp open reading frame capable of encoding a 175,000-Mr protein. The protein encoded by this open reading frame was overproduced and purified and had a relative molecular weight of approximately 160,000. The 160,000-Mr protein was at least as active in promoting homologous pairing as the original 132,000-Mr species, which has been shown to be a fragment of the intact 160,000-Mr Sep1 protein. The SEP1 gene mapped to chromosome VII within 20 kbp of RAD54. Three Tn10LUK insertion mutations in the SEP1 gene were characterized. sep1 mutants grew more slowly than wild-type cells, showed a two- to fivefold decrease in the rate of spontaneous mitotic recombination between his4 heteroalleles, and were delayed in their ability to return to growth after UV or gamma irradiation. Sporulation of sep1/sep1 diploids was defective, as indicated by both a 10- to 40-fold reduction in spore formation and reduced spore viability of approximately 50%. The majority of sep1/sep1 diploid cells arrested in meiosis after commitment to recombination but prior to the meiosis I cell division. Return-to-growth experiments showed that sep1/sep1 his4X/his4B diploids exhibited a five- to sixfold greater meiotic induction of His+ recombinants than did isogenic SEP1/SEP1 strains. sep1/sep1 mutants also showed an increased frequency of exchange between HIS4, LEU2, and MAT and a lack of positive interference between these markers compared with wild-type controls. The interaction between sep1, rad50, and spo13 mutations suggested that SEP1 acts in meiosis in a pathway that is

  19. Gene cloning and characterization of the protein encoded by the Neospora caninum bradyzoite-specific antigen gene BAG1.

    Science.gov (United States)

    Kobayashi, T; Narabu, S; Yanai, Y; Hatano, Y; Ito, A; Imai, S; Ike, K

    2013-06-01

    Neospora caninum is an Apicomplexan parasite that causes repeated abortion and stillbirth in cattle. The aim of this study was to clone the gene encoding the N. caninum orthologue (NcBAG1) of the Toxoplasma gondii bradyzoite-specific protein TgBAG1 and characterize its expression pattern in the parasite. Isolation of the full-length 684-bp gene revealed that it shared 78.3% sequence similarity with TgBAG1. NcBAG1 encodes a predicted protein of 227 amino acids with 80.3% similarity to TgBAG1. A putative signal peptide sequence and an invariant GVL motif characteristic of small heat-shock proteins were identified in the predicted N. caninum amino acid sequence. We expressed the NcBAG1 gene as a recombinant glutathione S-transferase fusion protein (rNcBAG1) in Escherichia coli and used the purified 60 kDa protein to obtain a monoclonal antibody (Mab). rNcBAG1 reacted to Mabs specific for NcBAG1 and TgBAG1. No reaction between the NcBAG1 Mab and N. caninum tachyzoites was observed. Although the predicted molecular mass of NcBAG1 is 25 kDa, Western blot analysis of parasite lysates using the NcBAG1 Mab revealed a cross-reactive protein of approximately 30 kDa. Additionally, immunofluorescence assays using the tachyzoite-specific Mab for NcSAG1 and the bradyzoite-specific Mab for TgBAG1 or NcSAG4 revealed NcBAG1-specific expression in bradyzoites in cultures exposed to sodium nitroprusside, a reagent that increases the frequency of bradyzoites. Interestingly, the NcBAG1 protein was identified in the cytoplasm of the bradyzoite-stage parasites. This preliminary analysis of the NcBAG1 gene will assist investigations into the role of this protein in N. caninum .

  20. Molecular characterization of genes encoding the quinolone resistance determining regions of Malaysian Streptococcus pneumoniae strains

    Directory of Open Access Journals (Sweden)

    Kumari N

    2008-01-01

    Full Text Available Genes encoding the quinolones resistance determining regions (QRDRs in Streptococcus pneumoniae were detected by PCR and the sequence analysis was carried out to identify point mutations within these regions. The study was carried out to observe mutation patterns among S. pneumoniae strains in Malaysia. Antimicrobial susceptibility testing of 100 isolates was determined against various antibiotics, out of which 56 strains were categorised to have reduced susceptibility to ciprofloxacin (≥2 μg/mL. These strains were subjected to PCR amplification for presence of the gyrA, parC , gyrB and parE genes. Eight representative strains with various susceptibilities to fluoroquinolones were sequenced. Two out of the eight isolates that were sequenced were shown to have a point mutation in the gyrA gene at position Ser81. The detection of mutation at codon Ser81 of the gyrA gene suggested the potential of developing fluoroquinolone resistance among S. pneumoniae isolates in Malaysia. However, further experimental work is required to confirm the involvement of this mutation in the development of fluoroquinolone resistance in Malaysia.

  1. The pep4 gene encoding proteinase A is involved in dimorphism and pathogenesis of Ustilago maydis.

    Science.gov (United States)

    Soberanes-Gutiérrez, Cinthia V; Juárez-Montiel, Margarita; Olguín-Rodríguez, Omar; Hernández-Rodríguez, César; Ruiz-Herrera, José; Villa-Tanaca, Lourdes

    2015-10-01

    Vacuole proteases have important functions in different physiological processes in fungi. Taking this aspect into consideration, and as a continuation of our studies on the analysis of the proteolytic system of Ustilago maydis, a phytopathogenic member of the Basidiomycota, we have analysed the role of the pep4 gene encoding the vacuolar acid proteinase PrA in the pathogenesis and morphogenesis of the fungus. After confirmation of the location of the protease in the vacuole using fluorescent probes, we obtained deletion mutants of the gene in sexually compatible strains of U. maydis (FB1 and FB2), and analysed their phenotypes. It was observed that the yeast to mycelium dimorphic transition induced by a pH change in the medium, or the use of a fatty acid as sole carbon source, was severely reduced in Δpep4 mutants. In addition, the virulence of the mutants in maize seedlings was reduced, as revealed by the lower proportion of plants infected and the reduction in size of the tumours induced by the pathogen, when compared with wild-type strains. All of these phenotypic alterations were reversed by complementation of the mutant strains with the wild-type gene. These results provide evidence of the importance of the pep4 gene for the morphogenesis and virulence of U. maydis.

  2. The Pun1 gene for pungency in pepper encodes a putative acyltransferase.

    Science.gov (United States)

    Stewart, Charles; Kang, Byoung-Cheorl; Liu, Kede; Mazourek, Michael; Moore, Shanna L; Yoo, Eun Young; Kim, Byung-Dong; Paran, Ilan; Jahn, Molly M

    2005-06-01

    Pungency in Capsicum fruits is due to the accumulation of the alkaloid capsaicin and its analogs. The biosynthesis of capsaicin is restricted to the genus Capsicum and results from the acylation of an aromatic moiety, vanillylamine, by a branched-chain fatty acid. Many of the enzymes involved in capsaicin biosynthesis are not well characterized and the regulation of the pathway is not fully understood. Based on the current pathway model, candidate genes were identified in public databases and the literature, and genetically mapped. A published EST co-localized with the Pun1 locus which is required for the presence of capsaicinoids. This gene, AT3, has been isolated and its nucleotide sequence has been determined in an array of genotypes within the genus. AT3 showed significant similarity to acyltransferases in the BAHD superfamily. The recessive allele at this locus contains a deletion spanning the promoter and first exon of the predicted coding region in every non-pungent accession tested. Transcript and protein expression of AT3 was tissue-specific and developmentally regulated. Virus-induced gene silencing of AT3 resulted in a decrease in the accumulation of capsaicinoids, a phenotype consistent with pun1. In conclusion, gene mapping, allele sequence data, expression profile and silencing analysis collectively indicate that the Pun1 locus in pepper encodes a putative acyltransferase, and the pun1 allele, used in pepper breeding for nearly 50 000 years, results from a large deletion at this locus.

  3. BAGEL3: Automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides.

    Science.gov (United States)

    van Heel, Auke J; de Jong, Anne; Montalbán-López, Manuel; Kok, Jan; Kuipers, Oscar P

    2013-07-01

    Identifying genes encoding bacteriocins and ribosomally synthesized and posttranslationally modified peptides (RiPPs) can be a challenging task. Especially those peptides that do not have strong homology to previously identified peptides can easily be overlooked. Extensive use of BAGEL2 and user feedback has led us to develop BAGEL3. BAGEL3 features genome mining of prokaryotes, which is largely independent of open reading frame (ORF) predictions and has been extended to cover more (novel) classes of posttranslationally modified peptides. BAGEL3 uses an identification approach that combines direct mining for the gene and indirect mining via context genes. Especially for heavily modified peptides like lanthipeptides, sactipeptides, glycocins and others, this genetic context harbors valuable information that is used for mining purposes. The bacteriocin and context protein databases have been updated and it is now easy for users to submit novel bacteriocins or RiPPs. The output has been simplified to allow user-friendly analysis of the results, in particular for large (meta-genomic) datasets. The genetic context of identified candidate genes is fully annotated. As input, BAGEL3 uses FASTA DNA sequences or folders containing multiple FASTA formatted files. BAGEL3 is freely accessible at http://bagel.molgenrug.nl.

  4. Biodiversity of genes encoding anti-microbial traits within plant associated microbes

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2015-04-01

    Full Text Available The plant is an attractive versatile home for diverse associated microbes. A subset of these microbes produce a diversity of anti-microbial natural products including polyketides, non-ribosomal peptides, terpenoids, heterocylic nitrogenous compounds, volatile compounds, bacteriocins and lytic enzymes. In recent years, detailed molecular analysis has led to a better understanding of the underlying genetic mechanisms. New genomic and bioinformatic tools have permitted comparisons of orthologous genes between species, leading to predictions of the associated evolutionary mechanisms responsible for diversification at the genetic and corresponding biochemical levels. The purpose of this review is to describe the biodiversity of biosynthetic genes of plant-associated bacteria and fungi that encode selected examples of antimicrobial natural products. For each compound, the target pathogen and biochemical mode of action are described, in order to draw attention to the complexity of these phenomena. We review recent information of the underlying molecular diversity and draw lessons through comparative genomic analysis of the orthologous genes. We conclude by discussing emerging themes and gaps, discuss the metabolic pathways in the context of the phylogeny and ecology of their microbial hosts, and discuss potential evolutionary mechanisms that led to the diversification of biosynthetic gene clusters.

  5. The Saccharomyces cerevisiae YPR184w gene encodes the glycogen debranching enzyme.

    Science.gov (United States)

    Teste, M A; Enjalbert, B; Parrou, J L; François, J M

    2000-12-01

    The YPR184w gene encodes a 1536-amino acid protein that is 34-39% identical to the mammal, Drosophila melanogaster and Caenorhabditis elegans glycogen debranching enzyme. The N-terminal part of the protein possesses the four conserved sequences of the alpha-amylase superfamily, while the C-terminal part displays 50% similarity with the C-terminal of other eukaryotic glycogen debranching enzymes. Reliable measurement of alpha-1,4-glucanotransferase and alpha-1, 6-glucosidase activity of the yeast debranching enzyme was determined in strains overexpressing YPR184w. The alpha-1, 4-glucanotransferase activity of a partially purified preparation of debranching enzyme preferentially transferred maltosyl units than maltotriosyl. Deletion of YPR184w prevents glycogen degradation, whereas overexpression had no effect on the rate of glycogen breakdown. In response to stress and growth conditions, the transcriptional control of YPR184w gene, renamed GDB1 (for Glycogen DeBranching gene), is strictly identical to that of other genes involved in glycogen metabolism.

  6. Evidence of gene conversion in genes encoding the Gal/GalNac lectin complex of Entamoeba.

    Directory of Open Access Journals (Sweden)

    Gareth D Weedall

    2011-06-01

    Full Text Available The human gut parasite Entamoeba histolytica, uses a lectin complex on its cell surface to bind to mucin and to ligands on the intestinal epithelia. Binding to mucin is necessary for colonisation and binding to intestinal epithelia for invasion, therefore blocking this binding may protect against amoebiasis. Acquired protective immunity raised against the lectin complex should create a selection pressure to change the amino acid sequence of lectin genes in order to avoid future detection. We present evidence that gene conversion has occurred in lineages leading to E. histolytica strain HM1:IMSS and E. dispar strain SAW760. This evolutionary mechanism generates diversity and could contribute to immune evasion by the parasites.

  7. Evidence of gene conversion in genes encoding the Gal/GalNac lectin complex of Entamoeba.

    Directory of Open Access Journals (Sweden)

    Gareth D Weedall

    2011-06-01

    Full Text Available The human gut parasite Entamoeba histolytica, uses a lectin complex on its cell surface to bind to mucin and to ligands on the intestinal epithelia. Binding to mucin is necessary for colonisation and binding to intestinal epithelia for invasion, therefore blocking this binding may protect against amoebiasis. Acquired protective immunity raised against the lectin complex should create a selection pressure to change the amino acid sequence of lectin genes in order to avoid future detection. We present evidence that gene conversion has occurred in lineages leading to E. histolytica strain HM1:IMSS and E. dispar strain SAW760. This evolutionary mechanism generates diversity and could contribute to immune evasion by the parasites.

  8. Characterization of the gene encoding the polymorphic immunodominant molecule, a neutralizing antigen of Theileria parva

    Energy Technology Data Exchange (ETDEWEB)

    Toye, P.G.; Metzelaar, M.J.; Wijngaard, P.L.J. [Univ. Hospital, Utrecht (Netherlands)] [and others

    1995-08-01

    Theileria parva, a tick-transmitted protozoan parasite related to Plasmodium spp., causes the disease East Coast fever, an acute and usually fatal lymphoproliferative disorder of cattle in Africa. Previous studies using sera from cattle that have survived infection identified a polymorphic immunodominant molecule (PIM) that is expressed by both the infective sporozoite stage of the parasite and the intracellular schizont. Here we show that mAb specific for the PIM Ag can inhibit sporozoite invasion of lymphocytes in vitro. A cDNA clone encoding the PIM Ag of the T. parva (Muguga) stock was obtained by using these mAb in a novel eukaryotic expression cloning system that allows isolation of cDNA encoding cytoplasmic or surface Ags. To establish the molecular basis of the polymorphism of PIM, the cDNA of the PIM Ag from a buffalo-derived T. parva stock was isolated and its sequence was compared with that of the cattle-derived Muguga PIM. The two cDNAs showed considerable identity in both the 5{prime} and 3{prime} regions, but there was substantial sequence divergence in the central regions. Several types of repeated sequences were identified in the variant regions. In the Muguga form of the molecule, there were five tandem repeats of the tetrapeptide, QPEP, that were shown, by transfection of a deleted version of the PIM gene, not to react with several anti-PIM mAbs. By isolating and sequencing the genomic version of the gene, we identified two small introns in the 3{prime} region of the gene. Finally, we showed that polyclonal rat Abs against recombinant PIM neutralize sporozoite infectivity in vitro, suggesting that the PIM Ag should be evaluated for its capacity to immunize cattle against East Coast Fever.

  9. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1.

    Science.gov (United States)

    Rust, S; Rosier, M; Funke, H; Real, J; Amoura, Z; Piette, J C; Deleuze, J F; Brewer, H B; Duverger, N; Denèfle, P; Assmann, G

    1999-08-01

    Tangier disease (TD) was first discovered nearly 40 years ago in two siblings living on Tangier Island. This autosomal co-dominant condition is characterized in the homozygous state by the absence of HDL-cholesterol (HDL-C) from plasma, hepatosplenomegaly, peripheral neuropathy and frequently premature coronary artery disease (CAD). In heterozygotes, HDL-C levels are about one-half those of normal individuals. Impaired cholesterol efflux from macrophages leads to the presence of foam cells throughout the body, which may explain the increased risk of coronary heart disease in some TD families. We report here refining of our previous linkage of the TD gene to a 1-cM region between markers D9S271 and D9S1866 on chromosome 9q31, in which we found the gene encoding human ATP cassette-binding transporter 1 (ABC1). We also found a change in ABC1 expression level on cholesterol loading of phorbol ester-treated THP1 macrophages, substantiating the role of ABC1 in cholesterol efflux. We cloned the full-length cDNA and sequenced the gene in two unrelated families with four TD homozygotes. In the first pedigree, a 1-bp deletion in exon 13, resulting in truncation of the predicted protein to approximately one-fourth of its normal size, co-segregated with the disease phenotype. An in-frame insertion-deletion in exon 12 was found in the second family. Our findings indicate that defects in ABC1, encoding a member of the ABC transporter superfamily, are the cause of TD.

  10. Isolation of cDNA Fragment of Gene Encoding for Actin from Melastoma malabthricum.

    Directory of Open Access Journals (Sweden)

    Suharsono

    2010-11-01

    Full Text Available Isolation of cDNA Fragment of Gene Encoding for Actin from Melastoma malabthricum. M. malabathricumgrows well in acidic soil with high Al solubility, thereby it can be used as a model plant for tolerance to aluminum andacid stresses. Actin is housekeeping gene used as an internal control for gene expression analysis. The objective of thisresearch was to isolate and clone the cDNA fragments of MmACT encoding for actin of M. malabathricum. Total RNAwas isolated and used as the template for cDNA synthesis by reverse transcription. Four cDNA fragments of MmACT,called MmACT1, MmACT2, MmACT3, and MmACT4, had been isolated and inserted into pGEM-T Easy plasmid.Nucleotide sequence analysis showed that the size of MmACT1 and MmACT2 is 617 bp, whereas MmACT3 andMmACT4 is 735 bp. The similarity among these four MmACT is about 78%-99% based on nucleotide sequence andabout 98%-100% based on amino acid sequence. Phylogenetic analysis based on amino acid sequence showed that at1% dissimilarity, the MmACT1, MmACT2, MmACT3 and the ACT5 Populus trichocarpha are clustered in one group,while the MmACT4 is grouped with ACT9 P. trichocarpa and ACT1 Gossypium hirsutum, and these two groups areseparated from actin group of monocotyledonous plants. The sequence of MmACT fragments were registered inGenBank/EMBL/DDBJ database with accession numbers AB500686, AB500687, AB500688, and AB500689.

  11. The Saccharomyces cerevisiae ICL2 Gene Encodes a Mitochondrial 2-Methylisocitrate Lyase Involved in Propionyl-Coenzyme A Metabolism

    NARCIS (Netherlands)

    Luttik, Marijke A.H.; Kötter, Peter; Salomons, Florian A.; Klei, Ida J. van der; Dijken, Johannes P. van; Pronk, Jack T.

    2000-01-01

    The Saccharomyces cerevisiae ICL1 gene encodes isocitrate lyase, an essential enzyme for growth on ethanol and acetate. Previous studies have demonstrated that the highly homologous ICL2 gene (YPR006c) is transcribed during the growth of wild-type cells on ethanol. However, even when multiple copies

  12. Prevalence of genes encoding for members of the staphylococcal leukotoxin family among clinical isolates of Staphylococcus aureus

    NARCIS (Netherlands)

    von Eiff, Christof; Friedrich, Alexander W.; Peters, Georg; Becker, Karsten

    2004-01-01

    Well-characterized Staphylococcus aureus nasal and blood isolates (N = 429) were tested by polymerase chain reaction for the prevalence of genes that encode leukocidal toxins. The leukotoxin genes lukE+lukD were found at high prevalence, significantly more so in blood (82%) than in nasal isolates (6

  13. Prevalence of genes encoding for members of the staphylococcal leukotoxin family among clinical isolates of Staphylococcus aureus

    NARCIS (Netherlands)

    von Eiff, Christof; Friedrich, Alexander W.; Peters, Georg; Becker, Karsten

    Well-characterized Staphylococcus aureus nasal and blood isolates (N = 429) were tested by polymerase chain reaction for the prevalence of genes that encode leukocidal toxins. The leukotoxin genes lukE+lukD were found at high prevalence, significantly more so in blood (82%) than in nasal isolates

  14. Degradation of Benzene by Pseudomonas veronii 1YdBTEX2 and 1YB2 Is Catalyzed by Enzymes Encoded in Distinct Catabolism Gene Clusters

    Science.gov (United States)

    de Lima-Morales, Daiana; Chaves-Moreno, Diego; Wos-Oxley, Melissa L.; Jáuregui, Ruy; Vilchez-Vargas, Ramiro

    2015-01-01

    Pseudomonas veronii 1YdBTEX2, a benzene and toluene degrader, and Pseudomonas veronii 1YB2, a benzene degrader, have previously been shown to be key players in a benzene-contaminated site. These strains harbor unique catabolic pathways for the degradation of benzene comprising a gene cluster encoding an isopropylbenzene dioxygenase where genes encoding downstream enzymes were interrupted by stop codons. Extradiol dioxygenases were recruited from gene clusters comprising genes encoding a 2-hydroxymuconic semialdehyde dehydrogenase necessary for benzene degradation but typically absent from isopropylbenzene dioxygenase-encoding gene clusters. The benzene dihydrodiol dehydrogenase-encoding gene was not clustered with any other aromatic degradation genes, and the encoded protein was only distantly related to dehydrogenases of aromatic degradation pathways. The involvement of the different gene clusters in the degradation pathways was suggested by real-time quantitative reverse transcription PCR. PMID:26475106

  15. The pink gene encodes the Drosophila orthologue of the human Hermansky-Pudlak syndrome 5 (HPS5) gene.

    Science.gov (United States)

    Syrzycka, Monika; McEachern, Lori A; Kinneard, Jennifer; Prabhu, Kristel; Fitzpatrick, Kathleen; Schulze, Sandra; Rawls, John M; Lloyd, Vett K; Sinclair, Donald A R; Honda, Barry M

    2007-06-01

    Hermansky-Pudlak syndrome (HPS) consists of a set of human autosomal recessive disorders, with symptoms resulting from defects in genes required for protein trafficking in lysosome-related organelles such as melanosomes and platelet dense granules. A number of human HPS genes and rodent orthologues have been identified whose protein products are key components of 1 of 4 different protein complexes (AP-3 or BLOC-1, -2, and -3) that are key participants in the process. Drosophila melanogaster has been a key model organism in demonstrating the in vivo significance of many genes involved in protein trafficking pathways; for example, mutations in the "granule group" genes lead to changes in eye colour arising from improper protein trafficking to pigment granules in the developing eye. An examination of the chromosomal positioning of Drosophila HPS gene orthologues suggested that CG9770, the Drosophila HPS5 orthologue, might correspond to the pink locus. Here we confirm this gene assignment, making pink the first eye colour gene in flies to be identified as a BLOC complex gene.

  16. Molecular cloning and primary sequence analysis of a gene encoding a putative shitinase gene in Brassica oleracea var.capitata

    Institute of Scientific and Technical Information of China (English)

    TANGGUOQING; YONGYANBAI; 等

    1996-01-01

    Chitinase,which catalyzes the hydrolysis of the β-1,4-acetyl-D-glucosamine linkages of the fungal cell wall polymer chitin,is involved in inducible plants defense system.By construction of cabbage(Brassica oleracea var. capitata) genomic library and screening the library with pRCH8,a probe of rice chitinase gene fragment,a chitinase genomic sequence was isolated.The complete uncleotide sequence of the putative cabbage chitinase gene (cabch29) was determined,with its longest open reading frame (ORF) encoding a polypeptide of 413 aa.This polypeptide consists of a 21 aa N-terminal signal peptide,two chitin-binding domains different from those of other classes of plant chitinases,and a catalytic domain.Homology analysis illustrated that this cabch29 gene has 58.8% identity at the nucleotide level with the pRCH8 ORF probe and has 50% identity at the amino acid level tiwh the catalytic domains of chitinase from bean,maize and sugar beet.Meanwhile,several kinds of cis-elements,such as TATA box,CAAT box,GATA motif,ASF-1 binding site,wound-response elements and AATAAA,have also been discovered in the flanking region of cabch29 gene.

  17. Expression of genes encoding the calcium signalosome in cellular and transgenic models of Huntington’s disease

    Directory of Open Access Journals (Sweden)

    Magdalena eCzeredys

    2013-11-01

    Full Text Available Huntington’s disease (HD is a hereditary neurodegenerative disease caused by the expansion of a polyglutamine stretch in the huntingtin (HTT protein and characterized by dysregulated calcium homeostasis. We investigated whether these disturbances are correlated with changes in the mRNA level of the genes that encode proteins involved in calcium homeostasis and signaling (i.e., the calciosome. Using custom-made TaqMan low-density arrays containing probes for 96 genes, we quantified mRNA in the striatum in YAC128 mice, a model of HD, and wildtype mice. HTT mutation caused the increased expression of some components of the calcium signalosome, including calretinin, presenilin 2, and calmyrin 1, and the increased expression of genes indirectly involved in calcium homeostasis, such as huntingtin-associated protein 1 and calcyclin-binding protein. To verify these findings in a different model, we used PC12 cells with an inducible expression of mutated full-length HTT. Using single-cell imaging with Fura-2AM, we found that store-operated Ca2+ entry but not endoplasmic reticulum store content was changed as a result of the expression of mutant HTT. Statistically significant downregulation of the Orai calcium channel subunit 2, calmodulin, and septin 4 was detected in cells that expressed mutated HTT. Our data indicate that the dysregulation of calcium homeostasis correlates with changes in the gene expression of members of the calciosome. These changes, however, differed in the two models of HD used in this study. Our results indicate that each HD model exhibits distinct features that may only partially resemble the human disease.

  18. Protein levels of genes encoded on chromosome 21 in fetal Down Syndrome brain (Part V): overexpression of phosphatidyl-inositol-glycan class P protein (DSCR5).

    Science.gov (United States)

    Ferrando-Miguel, R; Cheon, M S; Lubec, G

    2004-06-01

    Down Syndrome (DS, trisomy 21) is the most common genetic cause of mental retardation. The completed sequencing of genes encoded on chromosome 21 provides excellent basic information, however the molecular mechanisms leading to the phenotype of DS remain to be elucidated. Although overexpression of chromosome 21 encoded genes has been documented information at the protein expression level is mandatory as it is the proteins that carry out function. We therefore decided to evaluated expression level of seven proteins whose genes are encoded on chromosome 21: DSCR4, DSCR5, DSCR6; KIR4.2, GIRK2, KCNE1 and KCNE2 in fetal cortex brain of DS and controls at the early second trimester of pregnancy by Western blotting. beta-actin and neuron specific enolase (NSE) were used to normalise cell loss and neuronal loss. DSCR5 (PIG-P), a component of glycosylphosphatidylinositol- N-acetylglucosaminyltransferase (GPI-GnT), was overexpressed about twofold, even when levels were normalised with NSE. DSCR6 was overexpressed in addition but when normalised versus NSE, levels were comparable to controls. DSCR4 was not detectable in fetal brain. Potassium channels KIR4.2 and GIRK2 were comparable between DS and controls, whereas KCNE1 and KCNE2 were not detectable. Quantification of these proteins encoded on chromosome 21 revealed that not all gene products of the DS critical region are overexpressed in DS brain early in life, indicating that the DS phenotype cannot be simply explained by the gene dosage effect hypothesis. Overexpression of PIG-P (DSCR5) may lead to or represent impaired glycosylphosphatidylinositol- N-acetylglucosaminyltransferase mediated posttranslational modifications and subsequent anchoring of proteins to the plasma membrane.

  19. The Zebrafish moonshine Gene Encodes Transcriptional Intermediary Factor 1γ, an Essential Regulator of Hematopoiesis

    Science.gov (United States)

    Ransom, David G; Bahary, Nathan; Niss, Knut; Traver, David; Burns, Caroline; Trede, Nikolaus S; Paffett-Lugassy, Noelle; Saganic, Walter J; Lim, C. Anthoney; Hersey, Candace; Zhou, Yi; Barut, Bruce A; Lin, Shuo; Kingsley, Paul D; Palis, James; Orkin, Stuart H

    2004-01-01

    Hematopoiesis is precisely orchestrated by lineage-specific DNA-binding proteins that regulate transcription in concert with coactivators and corepressors. Mutations in the zebrafish moonshine (mon) gene specifically disrupt both embryonic and adult hematopoiesis, resulting in severe red blood cell aplasia. We report that mon encodes the zebrafish ortholog of mammalian transcriptional intermediary factor 1γ (TIF1γ) (or TRIM33), a member of the TIF1 family of coactivators and corepressors. During development, hematopoietic progenitor cells in mon mutants fail to express normal levels of hematopoietic transcription factors, including gata1, and undergo apoptosis. Three different mon mutant alleles each encode premature stop codons, and enforced expression of wild-type tif1γ mRNA rescues embryonic hematopoiesis in homozygous mon mutants. Surprisingly, a high level of zygotic tif1γ mRNA expression delineates ventral mesoderm during hematopoietic stem cell and progenitor formation prior to gata1 expression. Transplantation studies reveal that tif1γ functions in a cell-autonomous manner during the differentiation of erythroid precursors. Studies in murine erythroid cell lines demonstrate that Tif1γ protein is localized within novel nuclear foci, and expression decreases during erythroid cell maturation. Our results establish a major role for this transcriptional intermediary factor in the differentiation of hematopoietic cells in vertebrates. PMID:15314655

  20. Demonstration of expression of a neuropeptide-encoding gene in crustacean hemocytes.

    Science.gov (United States)

    Wu, Su-Hua; Chen, Yan-Jhou; Huang, Shao-Yen; Tsai, Wei-Shiun; Wu, Hsin-Ju; Hsu, Tsan-Ting; Lee, Chi-Ying

    2012-04-01

    Crustacean hyperglycemic hormone (CHH) was originally identified in a neuroendocrine system-the X-organ/sinus gland complex. In this study, a cDNA (Prc-CHH) encoding CHH precursor was cloned from the hemocyte of the crayfish Procambarus clarkii. Analysis of tissues by a CHH-specific enzyme-linked immunosorbent assay (ELISA) confirmed the presence of CHH in hemocytes, the levels of which were much lower than those in the sinus gland, but 2 to 10 times higher than those in the thoracic and cerebral ganglia. Total hemocytes were separated by density gradient centrifugation into layers of hyaline cell (HC), semi-granular cell (SGC), and granular cell (GC). Analysis of extracts of each layer using ELISA revealed that CHH is present in GCs (202.8±86.7 fmol/mg protein) and SGCs (497.8±49.4 fmol/mg protein), but not in HCs. Finally, CHH stimulated the membrane-bound guanylyl cyclase (GC) activity of hemocytes in a dose-dependent manner. These data for the first time confirm that a crustacean neuropeptide-encoding gene is expressed in cells essential for immunity and its expression in hemocytes is cell type-specific. Effect of CHH on the membrane-bound GC activity of hemocyte suggests that hemocyte is a target site of CHH. Possible functions of the hemocyte-derived CHH are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Cloning and sequence analysis of complete gene encoding an alkaline lipase from Penicillium cyclopium.

    Science.gov (United States)

    Zhang, H M; Wu, M C; Guo, J; Li, J F

    2011-01-01

    The complete gene (PG37 lipI) encoding an alkaline lipase (PG37 LipI) was cloned from the genomic DNA of Penicillium cyclopium PG37. The cloned PG37 lipI is 2020 bp in length, consisting of 632 bp of the 5' flanking promoter region and 1388 bp of the downstream fragment that contains 6 exons and 5 short introns. The promoter region harbors putative TATA box, CAAT box and several transcription factor binding sites. The open reading frame (ORF) encodes a PG37 LipI of 285 amino acid residues, which was predicted to contain a 20-aa signal peptide, a 7-aa propeptide and a 258-aa mature peptide with a conserved motif Gly-X-Ser-X-Gly. However, PG37 LipI shows only 32%, 30%, 28% and 26% identity with lipases of Aspergillus parasiticus, Penicillium camembertii, Thermomyces lanuginosus and Rhizomucor miehei, respectively. It was predicted that the main secondary structures of PG37 LipI are alpha-helix and random coil. Three amino acid residues, Ser132-Asp188-His241, compose the enzymatic active center in the tertiary structure.

  2. The zebrafish moonshine gene encodes transcriptional intermediary factor 1gamma, an essential regulator of hematopoiesis.

    Directory of Open Access Journals (Sweden)

    David G Ransom

    2004-08-01

    Full Text Available Hematopoiesis is precisely orchestrated by lineage-specific DNA-binding proteins that regulate transcription in concert with coactivators and corepressors. Mutations in the zebrafish moonshine (mon gene specifically disrupt both embryonic and adult hematopoiesis, resulting in severe red blood cell aplasia. We report that mon encodes the zebrafish ortholog of mammalian transcriptional intermediary factor 1gamma (TIF1gamma (or TRIM33, a member of the TIF1 family of coactivators and corepressors. During development, hematopoietic progenitor cells in mon mutants fail to express normal levels of hematopoietic transcription factors, including gata1, and undergo apoptosis. Three different mon mutant alleles each encode premature stop codons, and enforced expression of wild-type tif1gamma mRNA rescues embryonic hematopoiesis in homozygous mon mutants. Surprisingly, a high level of zygotic tif1gamma mRNA expression delineates ventral mesoderm during hematopoietic stem cell and progenitor formation prior to gata1 expression. Transplantation studies reveal that tif1gamma functions in a cell-autonomous manner during the differentiation of erythroid precursors. Studies in murine erythroid cell lines demonstrate that Tif1gamma protein is localized within novel nuclear foci, and expression decreases during erythroid cell maturation. Our results establish a major role for this transcriptional intermediary factor in the differentiation of hematopoietic cells in vertebrates.

  3. Modulation of Gene Expression by Polymer Nanocapsule Delivery of DNA Cassettes Encoding Small RNAs.

    Directory of Open Access Journals (Sweden)

    Ming Yan

    Full Text Available Small RNAs, including siRNAs, gRNAs and miRNAs, modulate gene expression and serve as potential therapies for human diseases. Delivery to target cells remains the fundamental limitation for use of these RNAs in humans. To address this challenge, we have developed a nanocapsule delivery technology that encapsulates small DNA molecules encoding RNAs into a small (30 nm polymer nanocapsule. For proof of concept, we transduced DNA expression cassettes for three small RNAs. In one application, the DNA cassette encodes an shRNA transcriptional unit that downregulates CCR5 and protects from HIV-1 infection. The DNA cassette nanocapsules were further engineered for timed release of the DNA cargo for prolonged knockdown of CCR5. Secondly, the nanocapsules provide an efficient means for delivery of gRNAs in the CRISPR/Cas9 system to mutate integrated HIV-1. Finally, delivery of microRNA-125b to mobilized human CD34+ cells enhances survival and expansion of the CD34+ cells in culture.

  4. Generation of MANAbodies specific to HLA-restricted epitopes encoded by somatically mutated genes.

    Science.gov (United States)

    Skora, Andrew D; Douglass, Jacqueline; Hwang, Michael S; Tam, Ada J; Blosser, Richard L; Gabelli, Sandra B; Cao, Jianhong; Diaz, Luis A; Papadopoulos, Nickolas; Kinzler, Kenneth W; Vogelstein, Bert; Zhou, Shibin

    2015-08-11

    Mutant epitopes encoded by cancer genes are virtually always located in the interior of cells, making them invisible to conventional antibodies. We here describe an approach to identify single-chain variable fragments (scFvs) specific for mutant peptides presented on the cell surface by HLA molecules. We demonstrate that these scFvs can be successfully converted to full-length antibodies, termed MANAbodies, targeting "Mutation-Associated Neo-Antigens" bound to HLA. A phage display library representing a highly diverse array of single-chain variable fragment sequences was first designed and constructed. A competitive selection protocol was then used to identify clones specific for mutant peptides bound to predefined HLA types. In this way, we obtained two scFvs, one specific for a peptide encoded by a common KRAS mutant and the other by a common epidermal growth factor receptor (EGFR) mutant. The scFvs bound to these peptides only when the peptides were complexed with HLA-A2 (KRAS peptide) or HLA-A3 (EGFR peptide). We converted one scFv to a full-length antibody (MANAbody) and demonstrate that the MANAbody specifically reacts with mutant peptide-HLA complex even when the peptide differs by only one amino acid from the normal, WT form.

  5. Characterization of a ribonuclease gene and encoded protein from the reptile, Iguana iguana.

    Science.gov (United States)

    Nitto, Takeaki; Lin, Cynthia; Dyer, Kimberly D; Wagner, Robert A; Rosenberg, Helene F

    2005-06-06

    In this work we identify an intronless open reading frame encoding an RNase A ribonuclease from genomic DNA from the Iguana iguana IgH2 cell line. The iguana RNase is expressed primarily in pancreas, and represents the majority of the specific enzymatic activity in this tissue. The encoded sequence shares many features with its better-known mammalian counterparts including the crucial His12, Lys40 and His114 catalytic residues and efficient hydrolytic activity against yeast tRNA substrate (k(cat)/K(m)=6 x 10(4) M(-1) s(-1)), albeit at a reduced pH optimum (pH 6.0). Although the catalytic activity of the iguana RNase is not diminished by human placental RI, iguana RNase is not bactericidal nor is it cytotoxic even at micromolar concentrations. Phylogenetic analysis indicates moderate (46%) amino acid sequence similarity to a pancreatic RNase isolated from Chelydra serpentina (snapping turtle) although no specific relationship could be determined between these RNases and the pancreatic ribonucleases characterized among mammalian species. Further analysis of ribonucleases from non-mammalian vertebrate species is needed in order to define relationships and lineages within the larger RNase A gene superfamily.

  6. Genetic variability of Chlamydophila abortus strains assessed by PCR-RFLP analysis of polymorphic membrane protein-encoding genes.

    Science.gov (United States)

    Sait, Michelle; Clark, Ewan M; Wheelhouse, Nicholas; Spalding, Lucy; Livingstone, Morag; Sachse, Konrad; Markey, Bryan K; Magnino, Simone; Siarkou, Victoria I; Vretou, Evangelia; Caro, María R; Yaga, Raja; Lainson, F Alex; Smith, David G E; Wright, Frank; Longbottom, David

    2011-08-05

    This study used PCR-RFLP to investigate the genetic variability of pmp-encoding genes from fifty-two Chlamydophila abortus (C. abortus) strains originating from abortion cases from various geographical regions and host species. Six primer pairs were used to PCR-amplify DNA fragments encoding eighteen pmps. PCR products were digested using four restriction endonucleases and Bayesian methodologies were used to compare RFLP profiles and assign strains to a RFLP genotype. Strains could be assigned to 2 genotypes in the region encoding pmp18D, 3 genotypes in the regions encoding pmp1A-pmp2B, pmp3E-pmp6H and pmp11G-pmp15G, 4 genotypes in the region encoding pmp7G-pmp10G and 5 genotypes in the region encoding pmp16G-pmp17G. In all regions, the majority of strains (88.4-96.1%) had the same genotype as the reference strain S26/3. No correlation could be made between genotype, host species or geographical origin except for the two variant Greek strains, LLG and POS, which formed a discrete genotype in all pmp-encoding regions except pmp18D. Relative rates of evolution calculated for each pmp-encoding gene locus suggest that differing selective pressures and functional constraints may exist on C. abortus polymorphic membrane proteins. These findings suggest that although intraspecies heterogeneity of pmp-encoding genes in C. abortus is low, the sequence heterogeneity should be an important consideration when using pmps as the basis for novel diagnostics or vaccine development.

  7. Evidence for negative selection on the gene encoding rhoptry-associated protein 1 (RAP-1) in Plasmodium spp.

    Science.gov (United States)

    Pacheco, M Andreína; Ryan, Elizabeth M; Poe, Amanda C; Basco, Leonardo; Udhayakumar, Venkatachalam; Collins, Williams E; Escalante, Ananias A

    2010-07-01

    Assessing how natural selection, negative or positive, operates on genes with low polymorphism is challenging. We investigated the genetic diversity of orthologous genes encoding the rhoptry-associated protein 1 (RAP-1), a low polymorphic protein of malarial parasites that is involved in erythrocyte invasion. We applied evolutionary genetic methods to study the polymorphism in RAP-1 from Plasmodium falciparum (n=32) and Plasmodium vivax (n=6), the two parasites responsible for most human malaria morbidity and mortality, as well as RAP-1 orthologous in closely related malarial species found in non-human primates (NHPs). Overall, genes encoding RAP-1 are highly conserved in all Plasmodium spp. included in this investigation. We found no evidence for natural selection, positive or negative, acting on the gene encoding RAP-1 in P. falciparum or P. vivax. However, we found evidence that the orthologous genes in non-human primate parasites (Plasmodium cynomolgi, Plasmodium inui, and Plasmodium knowlesi) are under purifying (negative) selection. We discuss the importance of considering negative selection while studying genes encoding proteins with low polymorphism and how selective pressures may differ among orthologous genes in closely related malarial parasites species. Copyright 2010 Elsevier B.V. All rights reserved.

  8. The carB gene encoding the large subunit of carbamoylphosphate synthetase from Lactococcus lactis is transcribed monocistronically

    DEFF Research Database (Denmark)

    Martinussen, Jan; Hammer, Karin

    1998-01-01

    The biosynthesis of carbamoylphosphate is catalysed by the heterodimeric enzyme carbamoylphosphate synthetase (CPSase). The genes encoding the two subunits in procaryotes are normally transcribed as an operon, whereas in Lactococcus lactis, the gene encoding the large subunit (carB) is shown...... to be an isolated transcriptional unit. Carbamoylphosphate is a precursor in the biosynthesis of both pyrimidine nucleotides and arginine. By mutant analysis L. lactis is shown to possess only one carB gene; the same gene product is thus required for both biosynthetic pathways. Furthermore, arginine may satisfy...... the requirement for carbamoylphosphate in pyrimidine biosynthesis through degradation by the arginine deiminase pathway. The expression of the carB gene is subject to regulation at the level of transcription by pyrimidines most probably by an attenuator mechanism. Upstream of the carB gene, an open reading frame...

  9. Mining gene expression data by interpreting principal components

    Directory of Open Access Journals (Sweden)

    Mortazavi Ali

    2006-04-01

    Full Text Available Abstract Background There are many methods for analyzing microarray data that group together genes having similar patterns of expression over all conditions tested. However, in many instances the biologically important goal is to identify relatively small sets of genes that share coherent expression across only some conditions, rather than all or most conditions as required in traditional clustering; e.g. genes that are highly up-regulated and/or down-regulated similarly across only a subset of conditions. Equally important is the need to learn which conditions are the decisive ones in forming such gene sets of interest, and how they relate to diverse conditional covariates, such as disease diagnosis or prognosis. Results We present a method for automatically identifying such candidate sets of biologically relevant genes using a combination of principal components analysis and information theoretic metrics. To enable easy use of our methods, we have developed a data analysis package that facilitates visualization and subsequent data mining of the independent sources of significant variation present in gene microarray expression datasets (or in any other similarly structured high-dimensional dataset. We applied these tools to two public datasets, and highlight sets of genes most affected by specific subsets of conditions (e.g. tissues, treatments, samples, etc.. Statistically significant associations for highlighted gene sets were shown via global analysis for Gene Ontology term enrichment. Together with covariate associations, the tool provides a basis for building testable hypotheses about the biological or experimental causes of observed variation. Conclusion We provide an unsupervised data mining technique for diverse microarray expression datasets that is distinct from major methods now in routine use. In test uses, this method, based on publicly available gene annotations, appears to identify numerous sets of biologically relevant genes. It

  10. Structure and expression of the gene encoding the vasoactive intestinal peptide precursor

    Energy Technology Data Exchange (ETDEWEB)

    Linder, S.; Barkhem, T.; Norberg, A.; Persson, H.; Schalling, M.; Hoekfelt, T.; Magnusson, G.

    1987-01-01

    The gene encoding the human vasoactive intestinal peptide (VIP) and the histidine-methionine amide (PHM-27) peptide hormone was isolated from lambda phage libraries. The human gene was found to be composed of seven exons spanning approx. = 9 kilobase pairs. The first exon codes for an untranslated leader sequence, and the second exon codes for a putative signal peptide. DNA sequences coding for the VIP and PHM-27 hormones are located in two different exons. Southern blot analysis with genomic DNA suggested that a single copy of the VIP/PHM-27 gene is present in the human haploid genome. The expression of VIP/PHM-27 precursor mRNA in various tissues in the rate was analyzed by RNA gel blot hybridization. In the organs examined, expression was only detected in the brain and duodenum. RNA isolated from various regions of the rat brain - including the cortex, hypothalamus, and hippocampus - hybridized to both VIP- and PHM-27-specific probes. The same pattern of hybridization was found when VIP- and PHM-27-specific probes were used, suggested that possible differences in the localization of VIP and PHM-27 peptides between different brain regions cannot be accounted for by differential RNA processing.

  11. The Eukaryotic DNMT2 Genes Encode a New Class of Cytosine-5 DNA Methyltransferases

    Institute of Scientific and Technical Information of China (English)

    Lin-YaTang; M.NarsaReddy; VanyaRasheva; Tai-LinLee; Meng-JauLin; Ming-ShiuHung; C.-K.JamesShen

    2005-01-01

    DNMT2 is a subgroup of the eukaryotic cytosine-5 DNA methyltransferase gene family. Unlike the other family members, proteins encoded by DNMT2 genes were not known before to possess DNA methyltransferase activities. Most recently, we have showm that thegenome of Drosophila S2 cells stably expressing an exogenous Drosophila dDNMT2 cDNA became anoma-lously methylated at the 5'-positions of cytosines(Reddy, M. N., Tang, L. Y., Lee, T. L., and Shen, C.-K. J.(2003) Oncogene, in press). We present evidence here that the genomes of transgenic flies overexpressing the dDnmt2 protein also became hypermethylated at specific regions. Furthermore, transient transfection studies in combination with sodium bisulfite sequencing demonstrated that dDnmt2 as well as its mousc ortholog, mDnmt2, are capable of methylating a cotrans-fected plasmid DNA. These data provide solid evidence that the fly and mouse DNMT2 gene products are genuine cytosine-5 DNA methyltransferases.

  12. Analysis of a polygalacturonase gene of Ustilago maydis and characterization of the encoded enzyme.

    Science.gov (United States)

    Castruita-Domínguez, José P; González-Hernández, Sandra E; Polaina, Julio; Flores-Villavicencio, Lérida L; Alvarez-Vargas, Aurelio; Flores-Martínez, Alberto; Ponce-Noyola, Patricia; Leal-Morales, Carlos A

    2014-05-01

    Ustilago maydis is a pathogenic fungus that produces the corn smut. It is a biotrophic parasite that depends on living plant tissues for its proliferation and development. Polygalacturonases are secreted by pathogens to solubilize the plant cell-wall and are required for pathogen virulence. In this paper, we report the isolation of a U. maydis polygalacturonase gene (Pgu1) and the functional and structural characterization of the encoded enzyme. The U. maydis Pgu1 gene is expressed when the fungus is grown in liquid culture media containing different carbon sources. In plant tissue, the expression increased as a function of incubation time. Pgu1 gene expression was detected during plant infection around 10 days post-infection with U. maydis FB-D12 strain in combination with teliospore formation. Synthesis and secretion of active recombinant PGU1 were achieved using Pichia pastoris, the purified enzyme had a optimum temperature of 34 °C, optimum pH of 4.5, a Km of 57.84 g/L for polygalacturonic acid, and a Vmax of 28.9 µg/min mg. Structural models of PGU1 based on homologous enzymes yielded a typical right-handed β-helix fold of pectinolytic enzymes classified in the glycosyl hydrolases family 28, and the U. maydis PGU1 is related with endo rather than exo polygalacturonases.

  13. Sudden infant death syndrome caused by cardiac arrhythmias: only a matter of genes encoding ion channels?

    Science.gov (United States)

    Sarquella-Brugada, Georgia; Campuzano, Oscar; Cesar, Sergi; Iglesias, Anna; Fernandez, Anna; Brugada, Josep; Brugada, Ramon

    2016-03-01

    Sudden infant death syndrome is the unexpected demise of a child younger than 1 year of age which remains unexplained after a complete autopsy investigation. Usually, it occurs during sleep, in males, and during the first 12 weeks of life. The pathophysiological mechanism underlying the death is unknown, and the lethal episode is considered multifactorial. However, in cases without a conclusive post-mortem diagnosis, suspicious of cardiac arrhythmias may also be considered as a cause of death, especially in families suffering from any cardiac disease associated with sudden cardiac death. Here, we review current understanding of sudden infant death, focusing on genetic causes leading to lethal cardiac arrhythmias, considering both genes encoding ion channels as well as structural proteins due to recent association of channelopathies and desmosomal genes. We support a comprehensive analysis of all genes associated with sudden cardiac death in families suffering of infant death. It allows the identification of the most plausible cause of death but also of family members at risk, providing cardiologists with essential data to adopt therapeutic preventive measures in families affected with this lethal entity.

  14. Tomato Ve disease resistance genes encode cell surface-like receptors

    Science.gov (United States)

    Kawchuk, Lawrence M.; Hachey, John; Lynch, Dermot R.; Kulcsar, Frank; van Rooijen, Gijs; Waterer, Doug R.; Robertson, Albert; Kokko, Eric; Byers, Robert; Howard, Ronald J.; Fischer, Rainer; Prüfer, Dirk

    2001-01-01

    In tomato, Ve is implicated in race-specific resistance to infection by Verticillium species causing crop disease. Characterization of the Ve locus involved positional cloning and isolation of two closely linked inverted genes. Expression of individual Ve genes in susceptible potato plants conferred resistance to an aggressive race 1 isolate of Verticillium albo-atrum. The deduced primary structure of Ve1 and Ve2 included a hydrophobic N-terminal signal peptide, leucine-rich repeats containing 28 or 35 potential glycosylation sites, a hydrophobic membrane-spanning domain, and a C-terminal domain with the mammalian E/DXXXLφ or YXXφ endocytosis signals (φ is an amino acid with a hydrophobic side chain). A leucine zipper-like sequence occurs in the hydrophobic N-terminal signal peptide of Ve1 and a Pro-Glu-Ser-Thr (PEST)-like sequence resides in the C-terminal domain of Ve2. These structures suggest that the Ve genes encode a class of cell-surface glycoproteins with receptor-mediated endocytosis-like signals and leucine zipper or PEST sequences. PMID:11331751

  15. Identification of genes encoding granule-bound starch synthase involved in amylose metabolism in banana fruit.

    Directory of Open Access Journals (Sweden)

    Hongxia Miao

    Full Text Available Granule-bound starch synthase (GBSS is responsible for amylose synthesis, but the role of GBSS genes and their encoded proteins remains poorly understood in banana. In this study, amylose content and GBSS activity gradually increased during development of the banana fruit, and decreased during storage of the mature fruit. GBSS protein in banana starch granules was approximately 55.0 kDa. The protein was up-regulated expression during development while it was down-regulated expression during storage. Six genes, designated as MaGBSSI-1, MaGBSSI-2, MaGBSSI-3, MaGBSSI-4, MaGBSSII-1, and MaGBSSII-2, were cloned and characterized from banana fruit. Among the six genes, the expression pattern of MaGBSSI-3 was the most consistent with the changes in amylose content, GBSS enzyme activity, GBSS protein levels, and the quantity or size of starch granules in banana fruit. These results suggest that MaGBSSI-3 might regulate amylose metabolism by affecting the variation of GBSS levels and the quantity or size of starch granules in banana fruit during development or storage.

  16. The Candida albicans-specific gene EED1 encodes a key regulator of hyphal extension.

    LENUS (Irish Health Repository)

    Martin, Ronny

    2011-04-01

    The extension of germ tubes into elongated hyphae by Candida albicans is essential for damage of host cells. The C. albicans-specific gene EED1 plays a crucial role in this extension and maintenance of filamentous growth. eed1Δ cells failed to extend germ tubes into long filaments and switched back to yeast growth after 3 h of incubation during growth on plastic surfaces. Expression of EED1 is regulated by the transcription factor Efg1 and ectopic overexpression of EED1 restored filamentation in efg1Δ. Transcriptional profiling of eed1Δ during infection of oral tissue revealed down-regulation of hyphal associated genes including UME6, encoding another key transcriptional factor. Ectopic overexpression of EED1 or UME6 rescued filamentation and damage potential in eed1Δ. Transcriptional profiling during overexpression of UME6 identified subsets of genes regulated by Eed1 or Ume6. These data suggest that Eed1 and Ume6 act in a pathway regulating maintenance of hyphal growth thereby repressing hyphal-to-yeast transition and permitting dissemination of C. albicans within epithelial tissues.

  17. Knockdown of Five Genes Encoding Uncharacterized Proteins Inhibits Entamoeba histolytica Phagocytosis of Dead Host Cells.

    Science.gov (United States)

    Sateriale, Adam; Miller, Peter; Huston, Christopher D

    2016-04-01

    Entamoeba histolytica is the protozoan parasite that causes invasive amebiasis, which is endemic to many developing countries and characterized by dysentery and liver abscesses. The virulence of E. histolytica correlates with the degree of host cell engulfment, or phagocytosis, and E. histolytica phagocytosis alters amebic gene expression in a feed-forward manner that results in an increased phagocytic ability. Here, we used a streamlined RNA interference screen to silence the expression of 15 genes whose expression was upregulated in phagocytic E. histolytica trophozoites to determine whether these genes actually function in the phagocytic process. When five of these genes were silenced, amebic strains with significant decreases in the ability to phagocytose apoptotic host cells were produced. Phagocytosis of live host cells, however, was largely unchanged, and the defects were surprisingly specific for phagocytosis. Two of the five encoded proteins, which we named E. histolytica ILWEQ (EhILWEQ) and E. histolytica BAR (EhBAR), were chosen for localization via SNAP tag labeling and localized to the site of partially formed phagosomes. Therefore, both EhILWEQ and EhBAR appear to contribute to E. histolytica virulence through their function in phagocytosis, and the large proportion (5/15 [33%]) of gene-silenced strains with a reduced ability to phagocytose host cells validates the previously published microarray data set demonstrating feed-forward control of E. histolytica phagocytosis. Finally, although only limited conclusions can be drawn from studies using the virulence-deficient G3 Entamoeba strain, the relative specificity of the defects induced for phagocytosis of apoptotic cells but not healthy cells suggests that cell killing may play a rate-limiting role in the process of Entamoeba histolytica host cell engulfment.

  18. Knockdown of Five Genes Encoding Uncharacterized Proteins Inhibits Entamoeba histolytica Phagocytosis of Dead Host Cells

    Science.gov (United States)

    Sateriale, Adam; Miller, Peter

    2016-01-01

    Entamoeba histolytica is the protozoan parasite that causes invasive amebiasis, which is endemic to many developing countries and characterized by dysentery and liver abscesses. The virulence of E. histolytica correlates with the degree of host cell engulfment, or phagocytosis, and E. histolytica phagocytosis alters amebic gene expression in a feed-forward manner that results in an increased phagocytic ability. Here, we used a streamlined RNA interference screen to silence the expression of 15 genes whose expression was upregulated in phagocytic E. histolytica trophozoites to determine whether these genes actually function in the phagocytic process. When five of these genes were silenced, amebic strains with significant decreases in the ability to phagocytose apoptotic host cells were produced. Phagocytosis of live host cells, however, was largely unchanged, and the defects were surprisingly specific for phagocytosis. Two of the five encoded proteins, which we named E. histolytica ILWEQ (EhILWEQ) and E. histolytica BAR (EhBAR), were chosen for localization via SNAP tag labeling and localized to the site of partially formed phagosomes. Therefore, both EhILWEQ and EhBAR appear to contribute to E. histolytica virulence through their function in phagocytosis, and the large proportion (5/15 [33%]) of gene-silenced strains with a reduced ability to phagocytose host cells validates the previously published microarray data set demonstrating feed-forward control of E. histolytica phagocytosis. Finally, although only limited conclusions can be drawn from studies using the virulence-deficient G3 Entamoeba strain, the relative specificity of the defects induced for phagocytosis of apoptotic cells but not healthy cells suggests that cell killing may play a rate-limiting role in the process of Entamoeba histolytica host cell engulfment. PMID:26810036

  19. Overproduction of lactimidomycin by cross-overexpression of genes encoding Streptomyces antibiotic regulatory proteins.

    Science.gov (United States)

    Zhang, Bo; Yang, Dong; Yan, Yijun; Pan, Guohui; Xiang, Wensheng; Shen, Ben

    2016-03-01

    The glutarimide-containing polyketides represent a fascinating class of natural products that exhibit a multitude of biological activities. We have recently cloned and sequenced the biosynthetic gene clusters for three members of the glutarimide-containing polyketides-iso-migrastatin (iso-MGS) from Streptomyces platensis NRRL 18993, lactimidomycin (LTM) from Streptomyces amphibiosporus ATCC 53964, and cycloheximide (CHX) from Streptomyces sp. YIM56141. Comparative analysis of the three clusters identified mgsA and chxA, from the mgs and chx gene clusters, respectively, that were predicted to encode the PimR-like Streptomyces antibiotic regulatory proteins (SARPs) but failed to reveal any regulatory gene from the ltm gene cluster. Overexpression of mgsA or chxA in S. platensis NRRL 18993, Streptomyces sp. YIM56141 or SB11024, and a recombinant strain of Streptomyces coelicolor M145 carrying the intact mgs gene cluster has no significant effect on iso-MGS or CHX production, suggesting that MgsA or ChxA regulation may not be rate-limiting for iso-MGS and CHX production in these producers. In contrast, overexpression of mgsA or chxA in S. amphibiosporus ATCC 53964 resulted in a significant increase in LTM production, with LTM titer reaching 106 mg/L, which is five-fold higher than that of the wild-type strain. These results support MgsA and ChxA as members of the SARP family of positive regulators for the iso-MGS and CHX biosynthetic machinery and demonstrate the feasibility to improve glutarimide-containing polyketide production in Streptomyces strains by exploiting common regulators.

  20. The abp gene in Geobacillus stearothermophilus T-6 encodes a GH27 β-L-arabinopyranosidase.

    Science.gov (United States)

    Salama, Rachel; Alalouf, Onit; Tabachnikov, Orly; Zolotnitsky, Gennady; Shoham, Gil; Shoham, Yuval

    2012-07-30

    In this study we demonstrate that the abp gene in Geobacillus stearothermophilus T-6 encodes a family 27 glycoside hydrolase β-L-arabinopyranosidase. The catalytic constants towards the chromogenic substrate pNP-β-L-arabinopyranoside were 0.8±0.1 mM, 6.6±0.3 s(-1), and 8.2±0.3 s(-1) mM(-1) for K(m), k(cat) and k(cat)/K(m), respectively. (13)C NMR spectroscopy unequivocally showed that Abp is capable of removing β-L-arabinopyranose residues from the natural arabino-polysaccharide, larch arabinogalactan. Most family 27 enzymes are active on galactose and contain a conserved Asp residue, whereas in Abp this residue is Ile67, which shifts the specificity of the enzyme towards arabinopyranoside.

  1. Human subtelomeric WASH genes encode a new subclass of the WASP family.

    Directory of Open Access Journals (Sweden)

    Elena V Linardopoulou

    2007-12-01

    Full Text Available Subtelomeres are duplication-rich, structurally variable regions of the human genome situated just proximal of telomeres. We report here that the most terminally located human subtelomeric genes encode a previously unrecognized third subclass of the Wiskott-Aldrich Syndrome Protein family, whose known members reorganize the actin cytoskeleton in response to extracellular stimuli. This new subclass, which we call WASH, is evolutionarily conserved in species as diverged as Entamoeba. We demonstrate that WASH is essential in Drosophila. WASH is widely expressed in human tissues, and human WASH protein colocalizes with actin in filopodia and lamellipodia. The VCA domain of human WASH promotes actin polymerization by the Arp2/3 complex in vitro. WASH duplicated to multiple chromosomal ends during primate evolution, with highest copy number reached in humans, whose WASH repertoires vary. Thus, human subtelomeres are not genetic junkyards, and WASH's location in these dynamic regions could have advantageous as well as pathologic consequences.

  2. Plasmodium falciparum var genes expressed in children with severe malaria encode CIDRα1 domains

    DEFF Research Database (Denmark)

    Jespersen, Jakob S.; Wang, Christian W.; Mkumbaye, Sixbert I.;

    2016-01-01

    Most severe Plasmodium falciparum infections are experienced by young children. Severe symptoms are precipitated by vascular sequestration of parasites expressing a particular subset of the polymorphic P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion molecules. Parasites binding human...... endothelial protein C receptor (EPCR) through the CIDRα1 domain of certain PfEMP1 were recently associated with severe malaria in children. However, it has remained unclear to which extend the EPCR-binding CIDRα1 domains epitomize PfEMP1 expressed in severe malaria. Here, we characterized the near full......-length transcripts dominating the var transcriptome in children with severe malaria and found that the only common feature of the encoded PfEMP1 was CIDRα1 domains. Such genes were highly and dominantly expressed in both children with severe malarial anaemia and cerebral malaria. These observations support...

  3. The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development.

    Science.gov (United States)

    Estevez, M; Attisano, L; Wrana, J L; Albert, P S; Massagué, J; Riddle, D L

    1993-10-14

    The bone morphogenetic protein (BMP) family is a conserved group of signalling molecules within the transforming growth factor-beta (TGF-beta) superfamily. This group, including the Drosophila decapentaplegic (dpp) protein and the mammalian BMPs, mediates cellular interactions and tissue differentiation during development. Here we show that a homologue of human BMPs controls a developmental switch in the life cycle of the free-living soil nematode Caenorhabditis elegans. Starvation and overcrowding induce C. elegans to form a developmentally arrested, third-stage dauer larva. The daf-4 gene, which acts to inhibit dauer larva formation and promote growth, encodes a receptor protein kinase similar to the daf-1, activin and TGF-beta receptor serine/threonine kinases. When expressed in monkey COS cells, the daf-4 receptor binds human BMP-2 and BMP-4. The daf-4 receptor is the first to be identified for any growth factor in the BMP family.

  4. Gene ercA, encoding a putative iron-containing alcohol dehydrogenase, is involved in regulation of ethanol utilization in Pseudomonas aeruginosa.

    Science.gov (United States)

    Hempel, Niels; Görisch, Helmut; Mern, Demissew S

    2013-09-01

    Several two-component regulatory systems are known to be involved in the signal transduction pathway of the ethanol oxidation system in Pseudomonas aeruginosa ATCC 17933. These sensor kinases and response regulators are organized in a hierarchical manner. In addition, a cytoplasmic putative iron-containing alcohol dehydrogenase (Fe-ADH) encoded by ercA (PA1991) has been identified to play an essential role in this regulatory network. The gene ercA (PA1991) is located next to ercS, which encodes a sensor kinase. Inactivation of ercA (PA1991) by insertion of a kanamycin resistance cassette created mutant NH1. NH1 showed poor growth on various alcohols. On ethanol, NH1 grew only with an extremely extended lag phase. During the induction period on ethanol, transcription of structural genes exa and pqqABCDEH, encoding components of initial ethanol oxidation in P. aeruginosa, was drastically reduced in NH1, which indicates the regulatory function of ercA (PA1991). However, transcription in the extremely delayed logarithmic growth phase was comparable to that in the wild type. To date, the involvement of an Fe-ADH in signal transduction processes has not been reported.

  5. OVER-EXPRESSION OF GENE ENCODING FATTY ACID METABOLIC ENZYMES IN FISH

    Directory of Open Access Journals (Sweden)

    Alimuddin Alimuddin

    2008-12-01

    Full Text Available Eicosapentaenoic acid (EPA, 20:5n-3 and docosahexaenoic acid (DHA, 22:6n-3 have important nutritional benefits in humans. EPA and DHA are mainly derived from fish, but the decline in the stocks of major marine capture fishes could result in these fatty acids being consumed less. Farmed fish could serve as promising sources of EPA and DHA, but they need these fatty acids in their diets. Generation of fish strains that are capable of synthesizing enough amounts of EPA/DHA from the conversion of α-linolenic acid (LNA, 18:3n-3 rich oils can supply a new EPA/DHA source. This may be achieved by over-expression of genes encoding enzymes involved in HUFA biosynthesis. In aquaculture, the successful of this technique would open the possibility to reduce the enrichment of live food with fish oils for marine fish larvae, and to completely substitute fish oils with plant oils without reducing the quality of flesh in terms of EPA and DHA contents. Here, three genes, i.e. Δ6-desaturase-like (OmΔ6FAD, Δ5-desaturase-like (OmΔ5FAD and elongase-like (MELO encoding EPA/DHA metabolic enzymes derived from masu salmon (Oncorhynchus masou were individually transferred into zebrafish (Danio rerio as a model to increase its ability for synthesizing EPA and DHA. Fatty acid analysis showed that EPA content in whole body of the second transgenic fish generation over-expressing OmΔ6FAD gene was 1.4 fold and that of DHA was 2.1 fold higher (P<0.05 than those in non-transgenic fish. The EPA content in whole body of transgenic fish over-expressing OmΔ5FAD gene was 1.21-fold, and that of DHA was 1.24-fold higher (P<0.05 than those in nontransgenic fish. The same patterns were obtained in transgenic fish over-expressing MELO gene. EPA content was increased by 1.30-fold and DHA content by 1.33-fold higher (P<0.05 than those in non-transgenic fish. The results of studies demonstrated that fatty acid content of fish can be enhanced by over

  6. A pair of two-component regulatory genes ecrA1/A2 in S. coelicolor

    Institute of Scientific and Technical Information of China (English)

    李永泉; 岑沛霖; 陈时飞; 吴凡; 郑静

    2004-01-01

    Two-component genes are kinds of genetic elements involved in regulation of antibiotic production in Streptomyces coelicolor. DNA microarray analysis revealed that ecrA1/A2, which mapped at distant sites from red locus and encode respectively the kinase and regulator, expressed coordinately with genes of Red specific biosynthetic pathway, ecrA1 and ecrA2 gene-disruptive mutants were constructed using homogenotisation by reciprocal double crossover. Fermentation data showed that the undecylprodigiosin (Red) level of production was lower than that of wild-type strain. However, the change of the actinorhodin (Act) production level was not significant compared with wild type. Thus, these experiment results confirmed that the two-component system ecrA 1/A2 was positive regulatory element for red gene cluster.

  7. A pair of two-component regulatory genes ecrA1/A2 in S.coelicolor

    Institute of Scientific and Technical Information of China (English)

    李永泉; 岑沛霖; 陈时飞; 吴丹; 郑静

    2004-01-01

    Two-component genes are kinds of genetic elements involved in regulation of antibiotic production in Streptomyces coelicolor. DNA microarray analysis revealed that ecrA1/A2, which mapped at distant sites from red locus and encode respectively the kinase and regulator, expressed coordinately with genes of Red specific biosynthetic pathway, ecrA1 and ecrA2 gene-disruptive mutants were constructed using homogenotisation by reciprocal double crossover. Fermentation data showed that the undecylprodigiosin (Red) level of production was lower than that of wild-type strain. However, the change of the actinorhodin (Act) production level was not significant compared with wild type. Thus, these experiment results confirmed that the two-component system ecrA 1/A2 was positive regulatory element for red gene cluster.

  8. Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ida, Yoshihiro; Furusawa, Chikara; Hirasawa, Takashi; Shimizu, Hiroshi

    2012-02-01

    We analyzed the effects of the deletions of genes encoding alcohol dehydrogenase (ADH) isozymes of Saccharomyces cerevisiae. The decrease in ethanol production by ADH1 deletion alone could be partially compensated by the upregulation of other isozyme genes, while the deletion of all known ADH isozyme genes stably disrupted ethanol production. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Identification and characterization of a gene encoding a putative lysophosphatidyl acyltransferase from Arachis hypogaea

    Indian Academy of Sciences (India)

    Si-Long Chen; Jia-Quan Huang; Lei Yong; Yue-Ting Zhang; Xiao-Ping Ren; Yu-Ning Chen; Hui-Fang Jiang; Li-Ying Yan; Yu-Rong Li; Bo-Shou Liao

    2012-12-01

    Lysophosphatidyl acyltransferase (LPAT) is the important enzyme responsible for the acylation of lysophosphatidic acid (LPA), leading to the generation of phosphatidic acid (PA) in plant. Its encoding gene is an essential candidate for oil crops to improve oil composition and increase seed oil content through genetic engineering. In this study, a full-length AhLPAT4 gene was isolated via cDNA library screening and rapid amplification of cDNA ends (RACE); our data demonstrated that AhLPAT4 had 1631 nucleotides, encoding a putative 43.8 kDa protein with 383 amino acid residues. The deduced protein included a conserved acyltransferase domain and four motifs (I–IV) with putative LPA and acyl-CoA catalytic and binding sites. Bioinformatic analysis indicated that AhLPAT4 contained four transmembrane domains (TMDs), localized to the endoplasmic reticulum (ER) membrane; detailed analysis indicated that motif I and motifs II–III in AhLPAT4 were separated by the third TMD, which located on cytosolic and ER luminal side respectively, and hydrophobic residues on the surface of AhLPAT4 protein fold to form a hydrophobic tunnel to accommodate the acyl chain. Subcellular localization analysis confirmed that AhLPAT4 was a cytoplasm protein. Phylogenetic analysis revealed that AhLPAT4 had a high homology (63.7–78.3%) with putative LPAT4 proteins from Glycine max, Arabidopsis thaliana and Ricinus communis. AhLPAT4 was ubiquitously expressed in diverse tissues except in flower, which is almost undetectable. The expression analysis in different developmental stages in peanut seeds indicated that AhLPAT4 did not coincide with oil accumulation.

  10. Isolation and Expression Analysis of Two Genes Encoding Cinnamate 4-Hydroxylase from Cotton (Gossypium hirsutum)

    Institute of Scientific and Technical Information of China (English)

    NI Zhi-yong; LI Bo; Neumann MPeter; L Meng; FAN Ling

    2014-01-01

    Two genes (GhC4H1 and GhC4H2) that encode putative cotton cinnamate 4-hydroxylases that catalyze the second step in the phenylpropanoid pathway were isolated from developing cotton ifbers. GhC4H1 and GhC4H2 each contain open reading frames of 1 518 base pairs (bp) in length and both encode proteins consisting of 505 amino acid residues. They are 90.89%identical to each other at the amino acid sequence level and belong to class I of plant C4Hs. GhC4H1 and GhC4H2 genomic DNA are 2 247 and 2 161 bp long, respectively, and contain two introns located at conserved positions relative to the coding sequence. GhC4H1 and GhC4H2 promoters were isolated and found to contain many cis-elements (boxes P, L and AC-I element) previously identiifed in the promoters of other phenylpropanoid pathway genes. Histochemical staining showed GUS expression driven by the GhC4H1 and GhC4H2 promoters in ovules and ifbers tissues. GhC4H1 and GhC4H2 were also widely expressed in other cotton tissues. GhC4H2 expression reached its highest level during the elongation stage of ifber development, whereas GhC4H1 expression increased during the secondary wall development period in cotton ifbers. Our results contribute to a better understanding of the biochemical role of GhC4H1 and GhC4H2 in cotton ifber development.

  11. WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatula WRKY family and characterization of group-III gene(s).

    Science.gov (United States)

    Kumar, Kamal; Srivastava, Vikas; Purayannur, Savithri; Kaladhar, V Chandra; Cheruvu, Purnima Jaiswal; Verma, Praveen Kumar

    2016-06-01

    The WRKY genes have been identified as important transcriptional modulators predominantly during the environmental stresses, but they also play critical role at various stages of plant life cycle. We report the identification of WRKY domain (WD)-encoding genes from galegoid clade legumes chickpea (Cicer arietinum L.) and barrel medic (Medicago truncatula). In total, 78 and 98 WD-encoding genes were found in chickpea and barrel medic, respectively. Comparative analysis suggests the presence of both conserved and unique WRKYs, and expansion of WRKY family in M. truncatula primarily by tandem duplication. Exclusively found in galegoid legumes, CaWRKY16 and its orthologues encode for a novel protein having a transmembrane and partial Exo70 domains flanking a group-III WD. Genomic region of galegoids, having CaWRKY16, is more dynamic when compared with millettioids. In onion cells, fused CaWRKY16-EYFP showed punctate fluorescent signals in cytoplasm. The chickpea WRKY group-III genes were further characterized for their transcript level modulation during pathogenic stress and treatments of abscisic acid, jasmonic acid, and salicylic acid (SA) by real-time PCR. Differential regulation of genes was observed during Ascochyta rabiei infection and SA treatment. Characterization of A. rabiei and SA inducible gene CaWRKY50 showed that it localizes to plant nucleus, binds to W-box, and have a C-terminal transactivation domain. Overexpression of CaWRKY50 in tobacco plants resulted in early flowering and senescence. The in-depth comparative account presented here for two legume WRKY genes will be of great utility in hastening functional characterization of crop legume WRKYs and will also help in characterization of Exo70Js. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  12. Lactobacillus plantarum gene clusters encoding putative cell-surface protein complexes for carbohydrate utilization are conserved in specific gram-positive bacteria

    Directory of Open Access Journals (Sweden)

    Muscariello Lidia

    2006-05-01

    Full Text Available Abstract Background Genomes of gram-positive bacteria encode many putative cell-surface proteins, of which the majority has no known function. From the rapidly increasing number of available genome sequences it has become apparent that many cell-surface proteins are conserved, and frequently encoded in gene clusters or operons, suggesting common functions, and interactions of multiple components. Results A novel gene cluster encoding exclusively cell-surface proteins was identified, which is conserved in a subgroup of gram-positive bacteria. Each gene cluster generally has one copy of four new gene families called cscA, cscB, cscC and cscD. Clusters encoding these cell-surface proteins were found only in complete genomes of Lactobacillus plantarum, Lactobacillus sakei, Enterococcus faecalis, Listeria innocua, Listeria monocytogenes, Lactococcus lactis ssp lactis and Bacillus cereus and in incomplete genomes of L. lactis ssp cremoris, Lactobacillus casei, Enterococcus faecium, Pediococcus pentosaceus, Lactobacillius brevis, Oenococcus oeni, Leuconostoc mesenteroides, and Bacillus thuringiensis. These genes are neither present in the genomes of streptococci, staphylococci and clostridia, nor in the Lactobacillus acidophilus group, suggesting a niche-specific distribution, possibly relating to association with plants. All encoded proteins have a signal peptide for secretion by the Sec-dependent pathway, while some have cell-surface anchors, novel WxL domains, and putative domains for sugar binding and degradation. Transcriptome analysis in L. plantarum shows that the cscA-D genes are co-expressed, supporting their operon organization. Many gene clusters are significantly up-regulated in a glucose-grown, ccpA-mutant derivative of L. plantarum, suggesting catabolite control. This is supported by the presence of predicted CRE-sites upstream or inside the up-regulated cscA-D gene clusters. Conclusion We propose that the CscA, CscB, CscC and Csc

  13. MitoRes: a resource of nuclear-encoded mitochondrial genes and their products in Metazoa

    Directory of Open Access Journals (Sweden)

    Grillo Giorgio

    2006-01-01

    Full Text Available Abstract Background Mitochondria are sub-cellular organelles that have a central role in energy production and in other metabolic pathways of all eukaryotic respiring cells. In the last few years, with more and more genomes being sequenced, a huge amount of data has been generated providing an unprecedented opportunity to use the comparative analysis approach in studies of evolution and functional genomics with the aim of shedding light on molecular mechanisms regulating mitochondrial biogenesis and metabolism. In this context, the problem of the optimal extraction of representative datasets of genomic and proteomic data assumes a crucial importance. Specialised resources for nuclear-encoded mitochondria-related proteins already exist; however, no mitochondrial database is currently available with the same features of MitoRes, which is an update of the MitoNuc database extensively modified in its structure, data sources and graphical interface. It contains data on nuclear-encoded mitochondria-related products for any metazoan species for which this type of data is available and also provides comprehensive sequence datasets (gene, transcript and protein as well as useful tools for their extraction and export. Description MitoRes http://www2.ba.itb.cnr.it/MitoRes/ consolidates information from publicly external sources and automatically annotates them into a relational database. Additionally, it also clusters proteins on the basis of their sequence similarity and interconnects them with genomic data. The search engine and sequence management tools allow the query/retrieval of the database content and the extraction and export of sequences (gene, transcript, protein and related sub-sequences (intron, exon, UTR, CDS, signal peptide and gene flanking regions ready to be used for in silico analysis. Conclusion The tool we describe here has been developed to support lab scientists and bioinformaticians alike in the characterization of molecular

  14. L-lactic acid production from D-xylose with Candida sonorensis expressing a heterologous lactate dehydrogenase encoding gene.

    Science.gov (United States)

    Koivuranta, Kari T; Ilmén, Marja; Wiebe, Marilyn G; Ruohonen, Laura; Suominen, Pirkko; Penttilä, Merja

    2014-08-08

    Bioplastics, like polylactic acid (PLA), are renewable alternatives for petroleum-based plastics. Lactic acid, the monomer of PLA, has traditionally been produced biotechnologically with bacteria. With genetic engineering, yeast have the potential to replace bacteria in biotechnological lactic acid production, with the benefits of being acid tolerant and having simple nutritional requirements. Lactate dehydrogenase genes have been introduced to various yeast to demonstrate this potential. Importantly, an industrial lactic acid producing process utilising yeast has already been implemented. Utilisation of D-xylose in addition to D-glucose in production of biochemicals such as lactic acid by microbial fermentation would be beneficial, as it would allow lignocellulosic raw materials to be utilised in the production processes. The yeast Candida sonorensis, which naturally metabolises D-xylose, was genetically modified to produce L-lactic acid from D-xylose by integrating the gene encoding L-lactic acid dehydrogenase (ldhL) from Lactobacillus helveticus into its genome. In microaerobic, CaCO3-buffered conditions a C. sonorensis ldhL transformant having two copies of the ldhL gene produced 31 g l-1 lactic acid from 50 g l-1 D-xylose free of ethanol.Anaerobic production of lactic acid from D-xylose was assessed after introducing an alternative pathway of D-xylose metabolism, i.e. by adding a xylose isomerase encoded by XYLA from Piromyces sp. alone or together with the xylulokinase encoding gene XKS1 from Saccharomyces cerevisiae. Strains were further modified by deletion of the endogenous xylose reductase encoding gene, alone or together with the xylitol dehydrogenase encoding gene. Strains of C. sonorensis expressing xylose isomerase produced L-lactic acid from D-xylose in anaerobic conditions. The highest anaerobic L-lactic acid production (8.5 g l-1) was observed in strains in which both the xylose reductase and xylitol dehydrogenase encoding genes had been

  15. Identification of antithrombin-modulating genes. Role of LARGE, a gene encoding a bifunctional glycosyltransferase, in the secretion of proteins?

    Directory of Open Access Journals (Sweden)

    María Eugenia de la Morena-Barrio

    Full Text Available The haemostatic relevance of antithrombin together with the low genetic variability of SERPINC1, and the high heritability of plasma levels encourage the search for modulating genes. We used a hypothesis-free approach to identify these genes, evaluating associations between plasma antithrombin and 307,984 polymorphisms in the GAIT study (352 individuals from 21 Spanish families. Despite no SNP reaching the genome wide significance threshold, we verified milder positive associations in 307 blood donors from a different cohort. This validation study suggested LARGE, a gene encoding a protein with xylosyltransferase and glucuronyltransferase activities that forms heparin-like linear polysaccharides, as a potential modulator of antithrombin based on the significant association of one SNPs, rs762057, with anti-FXa activity, particularly after adjustment for age, sex and SERPINC1 rs2227589 genotype, all factors influencing antithrombin levels (p = 0.02. Additional results sustained this association. LARGE silencing inHepG2 and HEK-EBNA cells did not affect SERPINC1 mRNA levels but significantly reduced the secretion of antithrombin with moderate intracellular retention. Milder effects were observed on α1-antitrypsin, prothrombin and transferrin. Our study suggests LARGE as the first known modifier of plasma antithrombin, and proposes a new role for LARGE in modulating extracellular secretion of certain glycoproteins.

  16. Identification of Antithrombin-Modulating Genes. Role of LARGE, a Gene Encoding a Bifunctional Glycosyltransferase, in the Secretion of Proteins?

    Science.gov (United States)

    de la Morena-Barrio, María Eugenia; Buil, Alfonso; Antón, Ana Isabel; Martínez-Martínez, Irene; Miñano, Antonia; Gutiérrez-Gallego, Ricardo; Navarro-Fernández, José; Aguila, Sonia; Souto, Juan Carlos; Vicente, Vicente; Soria, José Manuel; Corral, Javier

    2013-01-01

    The haemostatic relevance of antithrombin together with the low genetic variability of SERPINC1, and the high heritability of plasma levels encourage the search for modulating genes. We used a hypothesis-free approach to identify these genes, evaluating associations between plasma antithrombin and 307,984 polymorphisms in the GAIT study (352 individuals from 21 Spanish families). Despite no SNP reaching the genome wide significance threshold, we verified milder positive associations in 307 blood donors from a different cohort. This validation study suggested LARGE, a gene encoding a protein with xylosyltransferase and glucuronyltransferase activities that forms heparin-like linear polysaccharides, as a potential modulator of antithrombin based on the significant association of one SNPs, rs762057, with anti-FXa activity, particularly after adjustment for age, sex and SERPINC1 rs2227589 genotype, all factors influencing antithrombin levels (p = 0.02). Additional results sustained this association. LARGE silencing inHepG2 and HEK-EBNA cells did not affect SERPINC1 mRNA levels but significantly reduced the secretion of antithrombin with moderate intracellular retention. Milder effects were observed on α1-antitrypsin, prothrombin and transferrin. Our study suggests LARGE as the first known modifier of plasma antithrombin, and proposes a new role for LARGE in modulating extracellular secretion of certain glycoproteins. PMID:23705025

  17. An algorithm for network-based gene prioritization that encodes knowledge both in nodes and in links.

    Directory of Open Access Journals (Sweden)

    Chad Kimmel

    Full Text Available BACKGROUND: Candidate gene prioritization aims to identify promising new genes associated with a disease or a biological process from a larger set of candidate genes. In recent years, network-based methods - which utilize a knowledge network derived from biological knowledge - have been utilized for gene prioritization. Biological knowledge can be encoded either through the network's links or nodes. Current network-based methods can only encode knowledge through links. This paper describes a new network-based method that can encode knowledge in links as well as in nodes. RESULTS: We developed a new network inference algorithm called the Knowledge Network Gene Prioritization (KNGP algorithm which can incorporate both link and node knowledge. The performance of the KNGP algorithm was evaluated on both synthetic networks and on networks incorporating biological knowledge. The results showed that the combination of link knowledge and node knowledge provided a significant benefit across 19 experimental diseases over using link knowledge alone or node knowledge alone. CONCLUSIONS: The KNGP algorithm provides an advance over current network-based algorithms, because the algorithm can encode both link and node knowledge. We hope the algorithm will aid researchers with gene prioritization.

  18. Discovery of nuclear-encoded genes for the neurotoxin saxitoxin in dinoflagellates.

    Science.gov (United States)

    Stüken, Anke; Orr, Russell J S; Kellmann, Ralf; Murray, Shauna A; Neilan, Brett A; Jakobsen, Kjetill S

    2011-01-01

    Saxitoxin is a potent neurotoxin that occurs in aquatic environments worldwide. Ingestion of vector species can lead to paralytic shellfish poisoning, a severe human illness that may lead to paralysis and death. In freshwaters, the toxin is produced by prokaryotic cyanobacteria; in marine waters, it is associated with eukaryotic dinoflagellates. However, several studies suggest that saxitoxin is not produced by dinoflagellates themselves, but by co-cultured bacteria. Here, we show that genes required for saxitoxin synthesis are encoded in the nuclear genomes of dinoflagellates. We sequenced >1.2×10(6) mRNA transcripts from the two saxitoxin-producing dinoflagellate strains Alexandrium fundyense CCMP1719 and A. minutum CCMP113 using high-throughput sequencing technology. In addition, we used in silico transcriptome analyses, RACE, qPCR and conventional PCR coupled with Sanger sequencing. These approaches successfully identified genes required for saxitoxin-synthesis in the two transcriptomes. We focused on sxtA, the unique starting gene of saxitoxin synthesis, and show that the dinoflagellate transcripts of sxtA have the same domain structure as the cyanobacterial sxtA genes. But, in contrast to the bacterial homologs, the dinoflagellate transcripts are monocistronic, have a higher GC content, occur in multiple copies, contain typical dinoflagellate spliced-leader sequences and eukaryotic polyA-tails. Further, we investigated 28 saxitoxin-producing and non-producing dinoflagellate strains from six different genera for the presence of genomic sxtA homologs. Our results show very good agreement between the presence of sxtA and saxitoxin-synthesis, except in three strains of A. tamarense, for which we amplified sxtA, but did not detect the toxin. Our work opens for possibilities to develop molecular tools to detect saxitoxin-producing dinoflagellates in the environment.

  19. Virus-induced gene-silencing in wheat spikes and grains and its application in functional analysis of HMW-GS-encoding genes

    Directory of Open Access Journals (Sweden)

    Ma Meng

    2012-08-01

    Full Text Available Abstract Background The Barley stripe mosaic virus (BSMV-based vector has been developed and used for gene silencing in barley and wheat seedlings to assess gene functions in pathogen- or insect-resistance, but conditions for gene silencing in spikes and grains have not been evaluated. In this study, we explored the feasibility of using BSMV for gene silencing in wheat spikes or grains. Results Apparent photobleaching on the spikes infected with BSMV:PDS at heading stage was observed after13 days post inoculation (dpi, and persisted until 30dpi, while the spikes inoculated with BSMV:00 remained green during the same period. Grains of BSMV:PDS infected spikes also exhibited photobleaching. Molecular analysis indicated that photobleached spikes or grains resulted from the reduction of endogenous PDS transcript abundances, suggesting that BSMV:PDS was able to induce PDS silencing in wheat spikes and grains. Inoculation onto wheat spikes from heading to flowering stage was optimal for efficient silencing of PDS in wheat spikes. Furthermore, we used the BSMV-based system to reduce the transcript level of 1Bx14, a gene encoding for High-molecular-weight glutenin subunit 1Bx14 (HMW-GS 1Bx14, by 97 % in the grains of the BSMV:1Bx14 infected spikes at 15dpi, compared with that in BSMV:00 infected spikes, and the reduction persisted until at least 25 dpi. The amount of the HMW-GS 1Bx14 was also detectably decreased. The percentage of glutenin macropolymeric proteins in total proteins was significantly reduced in the grains of 1Bx14-silenced plants as compared with that in the grains of BSMV:00 infected control plants, indicating that HMW-GS 1Bx14 is one of major components participating in the formation of glutenin macropolymers in wheat grains. Conclusion This is one of the first reports of successful application of BSMV-based virus-induced-gene-silencing (VIGS for gene knockdown in wheat spikes and grains and its application in functional analysis of

  20. Expression of the Genes Encoding the Trk and Kdp Potassium Transport Systems of Mycobacterium tuberculosis during Growth In Vitro

    Directory of Open Access Journals (Sweden)

    Moloko C. Cholo

    2015-01-01

    Full Text Available Two potassium (K+-uptake systems, Trk and Kdp, are operative in Mycobacterium tuberculosis (Mtb, but the environmental factors triggering their expression have not been determined. The current study has evaluated the expression of these genes in the Mtb wild-type and a trk-gene knockout strain at various stages of logarithmic growth in relation to extracellular K+ concentrations and pH. In both strains, mRNA levels of the K+-uptake encoding genes were relatively low compared to those of the housekeeping gene, sigA, at the early- and mid-log phases, increasing during late-log. Increased gene expression coincided with decreased K+ uptake in the context of a drop in extracellular pH and sustained high extracellular K+ concentrations. In an additional series of experiments, the pH of the growth medium was manipulated by the addition of 1N HCl/NaOH. Decreasing the pH resulted in reductions in both membrane potential and K+ uptake in the setting of significant induction of genes encoding both K+ transporters. These observations are consistent with induction of the genes encoding the active K+ transporters of Mtb as a strategy to compensate for loss of membrane potential-driven uptake of K+ at low extracellular pH. Induction of these genes may promote survival in the acidic environments of the intracellular vacuole and granuloma.

  1. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature

    DEFF Research Database (Denmark)

    Busk, Peter Kamp; Lange, Mette; Pilgaard, Bo

    2014-01-01

    . In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important...... feature as it provides a direct route to predict function from primary sequence. Furthermore, we used Peptide Pattern Recognition to compare the cellulose-degrading enzyme activities encoded by 39 fungal genomes. The results indicated that cellobiohydrolases and AA9 lytic polysaccharide monooxygenases...

  2. Sequence variation in the alpha-toxin encoding plc gene of Clostridium perfringens strains isolated from diseased and healthy chickens

    DEFF Research Database (Denmark)

    Abildgaard, L; Engberg, RM; Pedersen, Karl

    2009-01-01

    The aim of the present study was to analyse the genetic diversity of the alpha-toxin encoding plc gene and the variation in a-toxin production of Clostridium perfringens type A strains isolated from presumably healthy chickens and chickens suffering from either necrotic enteritis (NE) or cholangio......-hepatitis. The a-toxin encoding plc genes from 60 different pulsed-field gel electrophoresis (PFGE) types (strains) of C perfringens were sequenced and translated in silico to amino acid sequences and the a-toxin production was investigated in batch cultures of 45 of the strains using an enzyme...

  3. Cloning, expression and characteristics of a novel alkalistable and thermostable xylanase encoding gene (Mxyl retrieved from compost-soil metagenome.

    Directory of Open Access Journals (Sweden)

    Digvijay Verma

    Full Text Available BACKGROUND: The alkalistable and thermostable xylanases are in high demand for pulp bleaching in paper industry and generating xylooligosaccharides by hydrolyzing xylan component of agro-residues. The compost-soil samples, one of the hot environments, are expected to be a rich source of microbes with thermostable enzymes. METHODOLOGY/PRINCIPAL FINDINGS: Metagenomic DNA from hot environmental samples could be a rich source of novel biocatalysts. While screening metagenomic library constructed from DNA extracted from the compost-soil in the p18GFP vector, a clone (TSDV-MX1 was detected that exhibited clear zone of xylan hydrolysis on RBB xylan plate. The sequencing of 6.321 kb DNA insert and its BLAST analysis detected the presence of xylanase gene that comprised 1077 bp. The deduced protein sequence (358 amino acids displayed homology with glycosyl hydrolase (GH family 11 xylanases. The gene was subcloned into pET28a vector and expressed in E. coli BL21 (DE3. The recombinant xylanase (rMxyl exhibited activity over a broad range of pH and temperature with optima at pH 9.0 and 80°C. The recombinant xylanase is highly thermostable having T1/2 of 2 h at 80°C and 15 min at 90°C. CONCLUSION/SIGNIFICANCE: This is the first report on the retrieval of xylanase gene through metagenomic approach that encodes an enzyme with alkalistability and thermostability. The recombinant xylanase has a potential application in paper and pulp industry in pulp bleaching and generating xylooligosaccharides from the abundantly available agro-residues.

  4. Typing of Panton-Valentine Leukocidin-encoding Phages and lukSF-PV Gene Sequence Variation in Staphylococcus aureus from China

    Directory of Open Access Journals (Sweden)

    Huanqiang Zhao

    2016-08-01

    Full Text Available Panton-Valentine leucocidin (PVL, encoded by lukSF-PV genes, a bi-component and pore-forming toxin, is carried by different staphylococcal bacteriophages. The prevalence of PVL in Staphylococcus aureus (S. aureus have been reported around the globe. However, the data on PVL-encoding phage types, lukSF-PV gene variation and chromosomal phage insertion sites for PVL-positive S. aureus are limited, especially in China. In order to obtain a more complete understanding of the molecular epidemiology of PVL-positive S. aureus, an integrated and modified PCR-based scheme was applied to detect the PVL-encoding phage types. Phage insertion locus and the lukSF-PV variant were determined by PCR and sequencing. Meanwhile, the genetic background was characterized by staphylococcal cassette chromosome mec (SCCmec typing, staphylococcal protein A (spa gene polymorphisms typing, pulsed-field gel electrophoresis (PFGE typing, accessory gene regulator (agr locus typing and multilocus sequence typing (MLST. Seventy eight (78/1175, 6.6% isolates possessed the lukSF-PV genes and 59.0% (46/78 of PVL-positive strains belonged to CC59 lineage. Eight known different PVL-encoding phage types were detected, and Φ7247PVL/ΦST5967PVL (n=13 and ΦPVL (n=12 were the most prevalent among them. While 25 (25/78, 32.1% isolates, belonging to ST30 and ST59 clones, were unable to be typed by the modified PCR-based scheme. Single nucleotide polymorphisms (SNPs were identified at five locations in the lukSF-PV genes, two of which were non-synonymous. Maximum-likelihood tree analysis of attachment sites sequences detected six SNP profiles for attR and eight for attL, respectively. In conclusion, the PVL-positive S. aureus mainly harbored Φ7247PVL/ΦST5967PVL and ΦPVL in the regions studied. lukSF-PV gene sequences, PVL-encoding phages and phage insertion locus generally varied with lineages. Moreover, PVL-positive clones that have emerged worldwide likely carry distinct phages.

  5. Typing of Panton-Valentine Leukocidin-Encoding Phages and lukSF-PV Gene Sequence Variation in Staphylococcus aureus from China.

    Science.gov (United States)

    Zhao, Huanqiang; Hu, Fupin; Jin, Shu; Xu, Xiaogang; Zou, Yuhan; Ding, Baixing; He, Chunyan; Gong, Fang; Liu, Qingzhong

    2016-01-01

    Panton-Valentine leukocidin (PVL, encoded by lukSF-PV genes), a bi-component and pore-forming toxin, is carried by different staphylococcal bacteriophages. The prevalence of PVL in Staphylococcus aureus has been reported around the globe. However, the data on PVL-encoding phage types, lukSF-PV gene variation and chromosomal phage insertion sites for PVL-positive S. aureus are limited, especially in China. In order to obtain a more complete understanding of the molecular epidemiology of PVL-positive S. aureus, an integrated and modified PCR-based scheme was applied to detect the PVL-encoding phage types. Phage insertion locus and the lukSF-PV variant were determined by PCR and sequencing. Meanwhile, the genetic background was characterized by staphylococcal cassette chromosome mec (SCCmec) typing, staphylococcal protein A (spa) gene polymorphisms typing, pulsed-field gel electrophoresis (PFGE) typing, accessory gene regulator (agr) locus typing and multilocus sequence typing (MLST). Seventy eight (78/1175, 6.6%) isolates possessed the lukSF-PV genes and 59.0% (46/78) of PVL-positive strains belonged to CC59 lineage. Eight known different PVL-encoding phage types were detected, and Φ7247PVL/ΦST5967PVL (n = 13) and ΦPVL (n = 12) were the most prevalent among them. While 25 (25/78, 32.1%) isolates, belonging to ST30, and ST59 clones, were unable to be typed by the modified PCR-based scheme. Single nucleotide polymorphisms (SNPs) were identified at five locations in the lukSF-PV genes, two of which were non-synonymous. Maximum-likelihood tree analysis of attachment sites sequences detected six SNP profiles for attR and eight for attL, respectively. In conclusion, the PVL-positive S. aureus mainly harbored Φ7247PVL/ΦST5967PVL and ΦPVL in the regions studied. lukSF-PV gene sequences, PVL-encoding phages, and phage insertion locus generally varied with lineages. Moreover, PVL-positive clones that have emerged worldwide likely carry distinct phages.

  6. Differential expression of nuclear- and organelle-encoded genes during tomato fruit development.

    Science.gov (United States)

    Piechulla, B

    1988-12-01

    Steady-state mRNA levels of nuclear-and organelle-encoded genes were determined during fruit development and ripening. Transcripts specific for subunits of the mitochondrial and chloroplast ATPase complexes appear simultaneously and reach high levels two to three weeks after anthesis, but follow a different expression pattern during the ripening period. While the chloroplast-specific mRNA levels continuously decrease to low levels in ripe tomato fruits, the transcripts specific for two mitochondrial ATPase subunits continue to be present at relative high levels in red fruits. Transcript levels for the fructose-1,6-bisphosphate aldolase increase significantly during ripening. Structural proteins such as the alpha-subunit of tubulin and the hydroxyproline-rich glycoprotein extensin are expressed during maximal fruit growth. In addition, comparisons of mRNA levels of different genes in several plant organs (leaf, fruit, stem, and root) show characteristic differences. The results presented in this paper demonstrate that changes at the transcriptional or post-transcriptional level during fruit development can be correlated with morphological and physiological alterations.

  7. The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases.

    Science.gov (United States)

    Chatton, B; Walter, P; Ebel, J P; Lacroute, F; Fasiolo, F

    1988-01-05

    S1 mapping on the VAS1 structural gene indicates the existence of two classes of transcripts initiating at distinct in-frame translation start codons. The longer class of VAS1 transcripts initiates upstream of both ATG codons located 138 base pairs away and the shorter class downstream of the first ATG. A mutation that destroys the first AUG on the long message results in respiratory deficiency but does not affect viability. Mutation of the ATG at position 139 leads to lethality because the initiating methionine codon of the essential cytoplasmic valyl-tRNA synthetase has been destroyed. N-terminal protein sequence data further confirm translation initiation at ATG-139 for the cytoplasmic valyl-tRNA synthetase. From these results, we conclude that the VAS1 single gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. The presequence of the mitochondrial valyl-tRNA synthetase shows amino acid composition but not the amphiphilic character of imported mitochondrial proteins. From mutagenesis of the ATG-139 we conclude that the presequence specifically targets the cytoplasmically synthesized mitochondrial valyl-tRNA synthetase to the mitochondrial outer membrane and prevents binding of the enzyme core to cytoplasmic tRNAVal.

  8. The cmbT gene encodes a novel major facilitator multidrug resistance transporter in Lactococcus lactis.

    Science.gov (United States)

    Filipic, Brankica; Golic, Natasa; Jovcic, Branko; Tolinacki, Maja; Bay, Denice C; Turner, Raymond J; Antic-Stankovic, Jelena; Kojic, Milan; Topisirovic, Ljubisa

    2013-01-01

    Functional characterization of the multidrug resistance CmbT transporter was performed in Lactococcus lactis. The cmbT gene is predicted to encode an efflux protein homologous to the multidrug resistance major facilitator superfamily. The cmbT gene (1377 bp) was cloned and overexpressed in L. lactis NZ9000. Results from cell growth studies revealed that the CmbT protein has an effect on host cell resistance to lincomycin, cholate, sulbactam, ethidium bromide, Hoechst 33342, sulfadiazine, streptomycin, rifampicin, puromycin and sulfametoxazole. Moreover, in vivo transport assays showed that overexpressed CmbT-mediated extrusion of ethidium bromide and Hoechst 33342 was higher than in the control L. lactis NZ9000 strain. CmbT-mediated extrusion of Hoechst 33342 was inhibited by the ionophores nigericin and valinomycin known to dissipate proton motive force. This indicates that CmbT-mediated extrusion is based on a drug-proton antiport mechanism. Taking together results obtained in this study, it can be concluded that CmbT is a novel major facilitator multidrug resistance transporter candidate in L. lactis, with a possible signaling role in sulfur metabolism.

  9. Identification and characterization of the genes encoding a unique surface (S-) layer of Tannerella forsythia.

    Science.gov (United States)

    Lee, Seok-Woo; Sabet, Mojgan; Um, Heung-Sik; Yang, Jun; Kim, Hyeong C; Zhu, Weidong

    2006-04-12

    A newly emerged periodontopathic pathogen Tannerella forsythia (formerly Bacteroides forsythus), a Gram-negative, filament-shaped, strict anaerobic, non-pigmented oral bacterium, possesses a surface (S-) layer. In our previous studies, the S-layer has been isolated, and shown to mediate hemagglutination, adhesion/invasion of epithelial cell, and murine subcutaneous abscess formation. In the present study, biochemical and molecular genetic characterization of the S-layer are reported. Amino acid sequencing and mass spectrometry indicated that the S-layer is composed of two different proteins, termed 200 and 210 kDa proteins. It was also shown that these proteins are glycosylated. The genes encoding the core proteins of these glycoproteins, designated as tfsA and tfsB, have been identified in silico, cloned, and their sequences have been determined. The tfsA (3.5 kb) and tfsB (4.1 kb) genes are located in tandem, and encode for 135 and 152 kDa proteins, respectively. An apparent discrepancy in molecular weights, 135 vs. 200 kDa and 152 vs. 210 kDa, is accounted for carbohydrate residues attached to the core proteins. Amino acid sequence comparison exhibited a 24% similarity between the 200 and 210 kDa proteins. Further sequence analyses showed that TfsA and TfsB possess putative signal peptide sequences with cleavage sites at alanine residues, and transmembrane domains on the C-terminal region. Northern blot and RT-PCR analyses confirmed an operon structure of tfsAB, suggesting co-regulation of these genes in producing the S-layer. Putative promoter sequences and transcription termination sequences for this operon have also been identified. Comparison with database indicates that the S-layer of T. forsythia has a unique structure exhibiting no homology to other known S-layers of prokaryotic organisms. The present study shows that the T. forsythia S-layer is very unique, since it appears to be composed of two large glycoproteins, and it does not reveal any homology to

  10. Evolutionary genomics of plant genes encoding N-terminal-TM-C2 domain proteins and the similar FAM62 genes and synaptotagmin genes of metazoans

    Directory of Open Access Journals (Sweden)

    Craxton Molly

    2007-07-01

    Full Text Available Abstract Background Synaptotagmin genes are found in animal genomes and are known to function in the nervous system. Genes with a similar domain architecture as well as sequence similarity to synaptotagmin C2 domains have also been found in plant genomes. The plant genes share an additional region of sequence similarity with a group of animal genes named FAM62. FAM62 genes also have a similar domain architecture. Little is known about the functions of the plant genes and animal FAM62 genes. Indeed, many members of the large and diverse Syt gene family await functional characterization. Understanding the evolutionary relationships among these genes will help to realize the full implications of functional studies and lead to improved genome annotation. Results I collected and compared plant Syt-like sequences from the primary nucleotide sequence databases at NCBI. The collection comprises six groups of plant genes conserved in embryophytes: NTMC2Type1 to NTMC2Type6. I collected and compared metazoan FAM62 sequences and identified some similar sequences from other eukaryotic lineages. I found evidence of RNA editing and alternative splicing. I compared the intron patterns of Syt genes. I also compared Rabphilin and Doc2 genes. Conclusion Genes encoding proteins with N-terminal-transmembrane-C2 domain architectures resembling synaptotagmins, are widespread in eukaryotes. A collection of these genes is presented here. The collection provides a resource for studies of intron evolution. I have classified the collection into homologous gene families according to distinctive patterns of sequence conservation and intron position. The evolutionary histories of these gene families are traceable through the appearance of family members in different eukaryotic lineages. Assuming an intron-rich eukaryotic ancestor, the conserved intron patterns distinctive of individual gene families, indicate independent origins of Syt, FAM62 and NTMC2 genes. Resemblances

  11. Analysis of the structural genes encoding M-factor in the fission yeast Schizosaccharomyces pombe: identification of a third gene, mfm3

    DEFF Research Database (Denmark)

    Kjaerulff, S; Davey, William John; Nielsen, O

    1994-01-01

    We previously identified two genes, mfm1 and mfm2, with the potential to encode the M-factor mating pheromone of the fission yeast Schizosaccharomyces pombe (J. Davey, EMBO J. 11:951-960, 1992), but further analysis revealed that a mutant strain lacking both genes still produced active M-factor. ...

  12. Structural, functional and mutational analysis of the pfr gene encoding a ferritin from Helicobacter pylori.

    Science.gov (United States)

    Bereswill, S; Waidner, U; Odenbreit, S; Lichte, F; Fassbinder, F; Bode, G; Kist, M

    1998-09-01

    The function of the pfr gene encoding the ferritin from Helicobacter pylori was investigated using the Fur titration assay (FURTA) in Escherichia coli, and by characterization of a pfr-deficient mutant strain of H. pylori. Nucleotide sequence analysis revealed that the pfr region is conserved among strains (> 95% nucleotide identity). Two transcriptional start sites, at least one of them preceded by a sigma 70-dependent promoter, were identified. Provision of the H. pylori pfr gene on a multicopy plasmid resulted in reversal of the Fur-mediated repression of the fhuF gene in E. coli, thus enabling the use of the FURTA for cloning of the ferritin gene. Inactivation of the pfr gene, either by insertion of a resistance cassette or by deletion of the up- and downstream segments, abolished this function. Immunoblot analysis with a Pfr-specific antiserum detected the Pfr protein in H. pylori and in E. coli carrying the pfr gene on a plasmid. Pfr-deficient mutants of H. pylori were generated by marker-exchange mutagenesis. These were more susceptible than the parental strain to killing by various metal ions including irons, copper and manganese, whereas conditions of oxidative stress or iron deprivation were not discriminative. Analysis by element-specific electron microscopy revealed that growth of H. pylori in the presence of iron induces the formation of two kinds of cytoplasmic aggregates: large vacuole-like bodies and smaller granules containing iron in association with oxygen or phosphorus. Neither of these structures was detected in the pfr-deficient mutant strain. Furthermore, the ferritin accumulated under iron overload and the pfr-deficient mutant strains lacked expression of a 12 kDa protein which was negatively regulated by iron in the parental strain. The results indicate that the nonhaem-iron ferritin is involved in the formation of iron-containing subcellular structures and contributes to metal resistance of H. pylori. Further evidence for an interaction of

  13. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily.

    Science.gov (United States)

    Meyers, B C; Dickerman, A W; Michelmore, R W; Sivaramakrishnan, S; Sobral, B W; Young, N D

    1999-11-01

    The nucleotide binding site (NBS) is a characteristic domain of many plant resistance gene products. An increasing number of NBS-encoding sequences are being identified through gene cloning, PCR amplification with degenerate primers, and genome sequencing projects. The NBS domain was analyzed from 14 known plant resistance genes and more than 400 homologs, representing 26 genera of monocotyledonous, dicotyle-donous and one coniferous species. Two distinct groups of diverse sequences were identified, indicating divergence during evolution and an ancient origin for these sequences. One group was comprised of sequences encoding an N-terminal domain with Toll/Interleukin-1 receptor homology (TIR), including the known resistance genes, N, M, L6, RPP1 and RPP5. Surprisingly, this group was entirely absent from monocot species in searches of both random genomic sequences and large collections of ESTs. A second group contained monocot and dicot sequences, including the known resistance genes, RPS2, RPM1, I2, Mi, Dm3, Pi-B, Xa1, RPP8, RPS5 and Prf. Amino acid signatures in the conserved motifs comprising the NBS domain clearly distinguished these two groups. The Arabidopsis genome is estimated to contain approximately 200 genes that encode related NBS motifs; TIR sequences were more abundant and outnumber non-TIR sequences threefold. The Arabidopsis NBS sequences currently in the databases are located in approximately 21 genomic clusters and 14 isolated loci. NBS-encoding sequences may be more prevalent in rice. The wide distribution of these sequences in the plant kingdom and their prevalence in the Arabidopsis and rice genomes indicate that they are ancient, diverse and common in plants. Sequence inferences suggest that these genes encode a novel class of nucleotide-binding proteins.

  14. Differential expression of genes encoding neuronal ion-channel subunits in major depression, bipolar disorder and schizophrenia: implications for pathophysiology.

    Science.gov (United States)

    Smolin, Bella; Karry, Rachel; Gal-Ben-Ari, Shunit; Ben-Shachar, Dorit

    2012-08-01

    Evidence concerning ion-channel abnormalities in the pathophysiology of common psychiatric disorders is still limited. Given the significance of ion channels in neuronal activity, neurotransmission and neuronal plasticity we hypothesized that the expression patterns of genes encoding different ion channels may be altered in schizophrenia, bipolar and unipolar disorders. Frozen samples of striatum including the nucleus accumbens (Str-NAc) and the lateral cerebellar hemisphere of 60 brains from depressed (MDD), bipolar (BD), schizophrenic and normal subjects, obtained from the Stanley Foundation Brain Collection, were assayed. mRNA of 72 different ion-channel subunits were determined by qRT-PCR and alteration in four genes were verified by immunoblotting. In the Str-NAc the prominent change was observed in the MDD group, in which there was a significant up-regulation in genes encoding voltage-gated potassium-channel subunits. However, in the lateral cerebellar hemisphere (cerebellum), the main change was observed in schizophrenia specimens, as multiple genes encoding various ion-channel subunits were significantly down-regulated. The impaired expression of genes encoding ion channels demonstrates a disease-related neuroanatomical pattern. The alterations observed in Str-NAc of MDD may imply electrical hypo-activity of this region that could be of relevance to MDD symptoms and treatment. The robust unidirectional alteration of both excitatory and inhibitory ion channels in the cerebellum may suggests cerebellar general hypo-transcriptional activity in schizophrenia.

  15. The highly abundant chlorophyll-protein complex of iron-deficient Synechococcus sp. PCC7942 (CP43') is encoded by the isiA gene.

    Science.gov (United States)

    Burnap, R L; Troyan, T; Sherman, L A

    1993-11-01

    A chlorophyll (Chl)-protein complex designated CPVI-4 becomes the major pigment-protein complex in Synechococcus sp. PCC7942 cells grown under conditions of iron limitation. Work by Laudenbach et al. (J Bacteriol [1988] 170: 5018-5026) has identified an iron-repressible operon, designated isiAB, containing the flavodoxin gene and a gene predicted to encode a Chl-binding protein resembling CP43 of photosystem II. To test the hypothesis that the CP43-like protein is a component of the CPVI-4 complex, we have inactivated the isiAB operon in Synechococcus sp. PCC7942 using directed insertional mutagenesis. Mutant cells grown under conditions of iron limitation exhibit pronounced changes in their spectroscopic and photosynthetic properties relative to similarly grown wild-type cells. Notably, the strong 77 K fluorescence emission at 685 nm, which dominates the spectrum of iron-deficient wild-type cells, is dramatically reduced in the mutant. The loss of this emission appears to unmask the otherwise obscured photosystem II emissions at 685 and 695 nm. Most importantly, mildly denaturing gel electrophoresis shows that mutant cells no longer express the CPVI-4 complex, indicating that the isiA gene encodes a component of this abundant Chl-protein complex.

  16. Expression of Signal Transduction System Encoding Genes of Yersinia pseudotuberculosis IP32953 at 28°C and 3°C

    Science.gov (United States)

    Palonen, Eveliina; Lindström, Miia; Karttunen, Reija; Somervuo, Panu; Korkeala, Hannu

    2011-01-01

    Yersinia pseudotuberculosis is a significant psychrotrophic food pathogen whose cold tolerance mechanisms are poorly understood. Signal transduction systems serve to monitor the environment, but no systematic investigation of their role at cold temperatures in Y. pseudotuberculosis has yet been undertaken. The relative expression levels of 54 genes predicted to encode proteins belonging to signal transduction systems in Y. pseudotuberculosis IP32953 were determined at 28°C and 3°C by quantitative real-time reverse transcription-PCR. The relative expression levels of 44 genes were significantly (ptwo-component system CheA/CheY had the highest relative expression levels at 3°C. Mutational analysis revealed that cheA is important for growth and motility at 3°C. The relative expression level of one gene, rssB, encoding an RpoS regulator, was significantly (psignal transduction systems might be used during growth at low temperature, and at least, CheA/CheY two-component system is important for low-temperature growth. PMID:21949852

  17. Characterization of a Thioredoxin-1 Gene from Taenia solium and Its Encoding Product.

    Science.gov (United States)

    Jiménez, Lucía; Rodríguez-Lima, Oscar; Ochoa-Sánchez, Alicia; Landa, Abraham

    2015-01-01

    Taenia solium thioredoxin-1 gene (TsTrx-1) has a length of 771 bp with three exons and two introns. The core promoter gene presents two putative stress transcription factor binding sites, one putative TATA box, and a transcription start site (TSS). TsTrx-1 mRNA is expressed higher in larvae than in adult. This gene encodes a protein of 107 amino acids that presents the Trx active site (CGPC), the classical secondary structure of the thioredoxin fold, and the highest degree of identity with the Echinococcus granulosus Trx. A recombinant TsTrx-1 (rTsTrx-1) was produced in Escherichia coli with redox activity. Optimal activity for rTsTrx-1 was at pH 6.5 in the range of 15 to 25°C. The enzyme conserved activity for 3 h and lost it in 24 h at 37°C. rTsTrx-1 lost 50% activity after 1 h and lost activity completely in 24 h at temperatures higher than 55°C. Best storage temperature for rTsTrx-1 was at -70°C. It was inhibited by high concentrations of H₂O₂ and methylglyoxal (MG), but it was inhibited neither by NaCl nor by anti-rTsTrx-1 rabbit antibodies that strongly recognized a ~12 kDa band in extracts from several parasites. These TsTrx-1 properties open the opportunity to study its role in relationship T. solium-hosts.

  18. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase.

    Science.gov (United States)

    Liu, Yi; Shi, Zi; Maximova, Siela; Payne, Mark J; Guiltinan, Mark J

    2013-12-05

    The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo.

  19. The Novel Neuronal Ceroid Lipofuscinosis Gene MFSD8 Encodes a Putative Lysosomal Transporter

    Science.gov (United States)

    Siintola, Eija ; Topcu, Meral ; Aula, Nina ; Lohi, Hannes ; Minassian, Berge A. ; Paterson, Andrew D. ; Liu, Xiao-Qing ; Wilson, Callum ; Lahtinen, Ulla ; Anttonen, Anna-Kaisa ; Lehesjoki, Anna-Elina 

    2007-01-01

    The late-infantile–onset forms are the most genetically heterogeneous group among the autosomal recessively inherited neurodegenerative disorders, the neuronal ceroid lipofuscinoses (NCLs). The Turkish variant was initially considered to be a distinct genetic entity, with clinical presentation similar to that of other forms of late-infantile–onset NCL (LINCL), including age at onset from 2 to 7 years, epileptic seizures, psychomotor deterioration, myoclonus, loss of vision, and premature death. However, Turkish variant LINCL was recently found to be genetically heterogeneous, because mutations in two genes, CLN6 and CLN8, were identified to underlie the disease phenotype in a subset of patients. After a genomewide scan with single-nucleotide–polymorphism markers and homozygosity mapping in nine Turkish families and one Indian family, not linked to any of the known NCL loci, we mapped a novel variant LINCL locus to chromosome 4q28.1-q28.2 in five families. We identified six different mutations in the MFSD8 gene (previously denoted “MGC33302”), which encodes a novel polytopic 518–amino acid membrane protein that belongs to the major facilitator superfamily of transporter proteins. MFSD8 is expressed ubiquitously, with several alternatively spliced variants. Like the majority of the previously identified NCL proteins, MFSD8 localizes mainly to the lysosomal compartment. However, the function of MFSD8 remains to be elucidated. Analysis of the genome-scan data suggests the existence of at least three more genes in the remaining five families, further corroborating the great genetic heterogeneity of LINCLs. PMID:17564970

  20. Non-hepatic tumors change the activity of genes encoding copper trafficking proteins in the liver.

    Science.gov (United States)

    Babich, Polina S; Skvortsov, Alexey N; Rusconi, Paolo; Tsymbalenko, Nadezhda V; Mutanen, Marja; Puchkova, Ludmila V; Broggini, Massimo

    2013-07-01

    To assess the statistical relationship between tumor growth and copper metabolism, we performed a metaanalysis of studies in which patients with neoplasms were characterized according to any of the copper status indexes (atomic copper serum concentration, serum oxidase activity, ceruloplasmin protein content). Our metaanalysis shows that in the majority of cases (more than 3100 patients), tumor growth positively correlates with the copper status indexes. Nude athymic CD-1 nu/nu mice with subcutaneous tumors of human origin, C57Bl/6J mice with murine melanoma and Apc(Min) mice with spontaneously developing adenomas throughout the intestinal tract were studied to experimentally determine the relationship between tumor progression, liver copper metabolism, and copper status indexes. We showed that the copper status indexes increased significantly during tumor growth. In the liver tissue of tumor-bearing mice, ceruloplasmin gene expression, as well as the expression of genes related to ceruloplasmin metallation (CTR1 and ATP7B), increased significantly. Moreover, the presence of an mRNA splice variant encoding a form of ceruloplasmin anchored to the plasma membrane by glycosylphosphatidyl inositol, which is atypical for hepatocytes, was also detected. The ATP7A copper transporter gene, which is normally expressed in the liver only during embryonic copper metabolism, was also activated. Depletion of holo-ceruloplasmin resulted in retardation of human HCT116 colon carcinoma cell growth in nude mice and induced DNA fragmentation in tumor cells. In addition, the concentration of cytochrome c increased significantly in the cytosol, while decreasing in the mitochondria. We discuss a possible trans-effect of developing tumors on copper metabolism in the liver.

  1. Mutations of the CEP290 gene encoding a centrosomal protein cause Meckel-Gruber syndrome.

    Science.gov (United States)

    Frank, Valeska; den Hollander, Anneke I; Brüchle, Nadina Ortiz; Zonneveld, Marijke N; Nürnberg, Gudrun; Becker, Christian; Du Bois, Gabriele; Kendziorra, Heide; Roosing, Susanne; Senderek, Jan; Nürnberg, Peter; Cremers, Frans P M; Zerres, Klaus; Bergmann, Carsten

    2008-01-01

    Meckel-Gruber syndrome (MKS) is an autosomal recessive, lethal multisystemic disorder characterized by meningooccipital encephalocele, cystic kidney dysplasia, hepatobiliary ductal plate malformation, and postaxial polydactyly. Recently, genes for MKS1 and MKS3 were identified, putting MKS on the list of ciliary disorders (ciliopathies). By positional cloning in a distantly related multiplex family, we mapped a novel locus for MKS to a 3-Mb interval on 12q21. Sequencing of the CEP290 gene located in the minimal critical region showed a homozygous 1-bp deletion supposed to lead to loss of function of the encoded centrosomal protein CEP290/nephrocystin-6. CEP290 is thought to be involved in chromosome segregation and localizes to cilia, centrosomes, and the nucleus. Subsequent analysis of another consanguineous multiplex family revealed homozygous haplotypes and the same frameshift mutation. Our findings add to the increasing body of evidence that ciliopathies can cause a broad spectrum of disease phenotypes, and pleiotropic effects of CEP290 mutations range from single organ involvement with isolated Leber congenital amaurosis to Joubert syndrome and lethal early embryonic multisystemic malformations in Meckel-Gruber syndrome. We compiled clinical and genetic data of all patients with CEP290 mutations described so far. No clear-cut genotype-phenotype correlations were apparent as almost all mutations are nonsense, frameshift, or splice-site changes and scattered throughout the gene irrespective of the patients' phenotypes. Conclusively, other factors than the type and location of CEP290 mutations may underlie phenotypic variability. (c) 2007 Wiley-Liss, Inc.

  2. Identification and functional characterization of K+ transporters encoded by Legionella pneumophila kup genes

    Science.gov (United States)

    Hori, Juliana I.; Pereira, Marcelo S.F.; Roy, Craig R.; Nagai, Hiroki; Zamboni, Dario S.

    2013-01-01

    Summary Legionnaires’ disease is an emerging, severe, pneumonia-like illness caused by the Gram-negative intracellular bacteria Legionella pneumophila, which are able to infect and replicate intracellularly in macrophages. Little is known regarding the mechanisms used by intracellular L. pneumophila for the acquisition of specific nutrients that are essential for bacterial replication. Here, we investigate three L. pneumophila genes with high similarity to the E. coli K+ transporters. These three genes were expressed by L. pneumophila and have been designated kupA, kupB and kupC. Investigation using the L. pneumophila kup mutants revealed that kupA is involved in K+ acquisition during axenic growth. The kupA mutants replicated efficiently in rich axenic media, but poorly in a chemically defined medium. The kupA mutants were defective in the recruitment of polyubiquitinated proteins to the Legionella-containing vacuole that is formed in macrophages and displayed an intracellular multiplication defect during the replication in Acanthamoeba castellanii and in mouse macrophages. We found that bafilomycin treatment of macrophages was able to rescue the growth defects of kupA mutants, but it did not influence the replication of wild-type bacteria. The defects identified in kupA mutants of L. pneumophila were complemented by the expression E. coli trkD/Kup gene in trans, a bona fide K+ transporter encoded by E. coli. Collectively, our data indicate that KupA is a functional K+ transporter expressed by L. pneumophila that facilitates the bacterial replication intracellularly and in nutrient-limited conditions. PMID:23848378

  3. Identification and functional characterization of K(+) transporters encoded by Legionella pneumophila kup genes.

    Science.gov (United States)

    Hori, Juliana I; Pereira, Marcelo S F; Roy, Craig R; Nagai, Hiroki; Zamboni, Dario S

    2013-12-01

    Legionnaires' disease is an emerging, severe, pneumonia-like illness caused by the Gram-negative intracellular bacteria Legionella pneumophila, which are able to infect and replicate intracellularly in macrophages. Little is known regarding the mechanisms used by intracellular L. pneumophila for the acquisition of specific nutrients that are essential for bacterial replication. Here, we investigate three L. pneumophila genes with high similarity to the Escherichia coli K(+) transporters. These three genes were expressed by L. pneumophila and have been designated kupA, kupB and kupC. Investigation using the L. pneumophila kup mutants revealed that kupA is involved in K(+) acquisition during axenic growth. The kupA mutants replicated efficiently in rich axenic media, but poorly in a chemically defined medium. The kupA mutants were defective in the recruitment of polyubiquitinated proteins to the Legionella-containing vacuole that is formed in macrophages and displayed an intracellular multiplication defect during the replication in Acanthamoeba castellanii and in mouse macrophages. We found that bafilomycin treatment of macrophages was able to rescue the growth defects of kupA mutants, but itdid not influence the replication of wild-type bacteria. The defects identified in kupA mutants of L. pneumophila were complemented by the expression E. coli trkD/Kup gene in trans, a bona fide K(+) transporter encoded by E. coli. Collectively, our data indicate that KupA is a functional K(+) transporter expressed by L. pneumophila that facilitates the bacterial replication intracellularly and in nutrient-limited conditions.

  4. Effects of eukaryotic expression plasmid encoding human tumstatin gene on endothelial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    YANG Ya-pei; XU Chun-xiao; HOU Guo-sheng; XIN Jia-xuan; WANG Wei; LIU Xian-xi

    2010-01-01

    Background Tumstatin is a novel endogenous angiogenesis inhibitor which is widely studied using purified protein.The current study evaluates the antiangiogenic effects of tumstatin-overexpression plasmid in vitro, reveals the mechanism underlying the vascular endothelial cell growth inhibition and searches for a novel method administering tumstatin persistently.Methods The eukaryotic expression plasmid pcDNA-tumstatin encoding tumstatin gene was constructed and transfected to human umbilical vein endothelial cell ECV304 and human renal carcinoma cell ACHN.Expression of tumstatin in the two cell lines was determined by RT-PCR and Western blotting.Vascular endothelial cell proliferation was assessed by CCK-8 assay and cell cycle was analyzed by flow cytometry.To investigate the mechanism by which pcDNA-tumstatin inhibited vascular endothelial cell proliferation in vitro, cyclin D1 protein was detected by Western blotting.Results DNA sequence confirmed that pcDNA-tumstatin was successfully constructed.RT-PCR and Western blotting indicated that tumstatin could express in the two cell lines effectively.After tumstatin gene transfer, ECV304 cell growth was significantly inhibited and the cell cycle was arrested in G1 phase.And Western blotting showed that pcDNA-tumstatin decreased the level of cyclin D1 protein.Conclusions Overexpression of tumstatin mediated by pcDNA 3.1 (+) specially inhibited vascular endothelial cells by arresting vascular endothelial cell in G1 phase resulting from downregulation of cyclin D1 and administration of tumstatin using a gene therapy might be a novel strategy for cancer therapy.

  5. The occurrence of subtilase-cytotoxin-encoding genes in environmental Escherichia coli isolated from a Northern California estuary.

    Science.gov (United States)

    Pereira, Maria das Graças C; Byrne, Barbara A; Nguyen, Trân B H; Lewis, David J; Atwill, E Robert

    2013-06-01

    The presence of subtilase-cytotoxin-encoding genes was determined in 397 environmental Escherichia coli strains isolated from water, suspended solids, and sediments sampled from different hydrological and environmental conditions in a California estuary. A total of 7 strains (1.76%) were found to harbor subtilase-cytotoxin-encoding genes. Using primers targeting subA only, we generated PCR amplicons from 2 strains; while using primers targeting the 3' end of SubA downstream to the 5' end of SubB, amplicons of 232 bp were generated from 5 additional strains. The 556 bp subA sequences were almost identical to that in the subtilase-cytotoxin-positive strain ED 591 (98%), while subAB sequences of 2 non-Shiga-toxigenic strains revealed 100% similarity with the Shiga-toxigenic E. coli O113:H21 strain 98NK2 that was isolated from an outbreak of hemolytic uremic syndrome. Additionally, the serogroup O113:H21 was present in this collection of environmental E. coli, and it was found to harbor stx2d, hra1 that encodes the heat resistant agglutinin 1, and a subAB sequence similar to that in the non-Shiga-toxigenic E. coli subtilase cytotoxin strain ED 591. To further understand potential health risks posed by strains encoding SubAB, future epidemiological studies should consider screening isolates for subAB regardless of the presence of Shiga-toxin-encoding genes.

  6. Principal component analysis of gene frequencies of Chinese populations

    Institute of Scientific and Technical Information of China (English)

    肖春杰; L.L.Cavalli-Sforza; E.Minch; 杜若甫

    2000-01-01

    Principal components (PCs) were calculated based on gene frequencies of 130 alleles at 38 loci in Chinese populations, and geographic PC maps were constructed. The first PC map of the Han shows the genetic difference between Southern and Northern Mongoloids, while the second PC indicates the gene flow between Caucasoid and Mongoloids. The first PC map of the Chinese ethnic minorities is similar to that of the second PC map of the Han, while their second PC map is similar to the first PC map of the Han. When calculating PC with the gene frequency data from both the Han and ethnic minorities, the first and second PC maps most resemble those of the ethnic minorities alone. The third and fourth PC maps of Chinese populations may reflect historical events that allowed the expansion of the populations in the highly civilized regions. A clear-cut boundary between Southern and Northern Mongoloids in the synthetic map of the Chinese populations was observed in the zone of the Yangtze River. We suggest that the a

  7. Nuclear factor-κB regulates the expression of multiple genes encoding liver transport proteins.

    Science.gov (United States)

    Balasubramaniyan, Natarajan; Ananthanarayanan, Meenakshisundaram; Suchy, Frederick J

    2016-04-15

    In this study we identified the mechanisms underlying the inhibitory effects of NF-κB on the expression of genes encoding multiple liver transport proteins. Well-conserved NF-κB binding sites were found in the promoters of farnesoid X receptor (FXR)-target genes. An electromobility shift assay (EMSA) demonstrated the specific interaction between the NF-κB p65 protein and a (32)P-labeled BSEP NF-κB response element (NF-κBE). Chromatin immunoprecipitation (ChIP) analysis confirmed binding of NF-κB p65 to the BSEP locus but not the FXRE in vitro. NF-κB p65 overexpression in Huh-7 cells markedly repressed FXR/RXR transactivation of the BSEP, ABCG5/G8, MRP2, and FXR promoters, which was totally reversed by expression of the IκBα super-repressor. NF-κB interacted directly with FXR on coimmunoprecipitation, suggesting another level for the inhibitory effects of NF-κB on FXR-target genes. In vivo ChIP analysis with liver nuclei obtained from mice after 3 days of common bile duct ligation (BDL) or 6 h post-lipopolysaccharide (LPS) injection showed a markedly increased recruitment of NF-κB p65 to the Bsep promoter compared with controls. There was also increased recruitment of the corepressor silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) and histone deacetylase (HDAC)3 and HDAC2 to the NF-κB sites. We also found that NF-κB p65 was recruited to NF-κB binding sites in the promoters of organic solute transporter, OSTα and OSTβ, and unexpectedly activated rather than repressed gene expression. In mouse liver after BDL NF-κB recruitment to Ostα and Ostβ promoters was associated with increased binding of the potent coactivator cAMP response element binding protein (CREB)-binding protein (CBP)/p300 to the NF-κBE and depletion of CBP/p300 at the FXR element. Overall, these studies demonstrate a novel role for NF-κB in adaptation to obstructive and LPS-induced cholestasis acting through recruitment to specific NF-κB binding sites in

  8. Residual plastids of bleached mutants of Euglena gracilis and their effects on the expression of nucleus-encoded genes

    Institute of Scientific and Technical Information of China (English)

    WANG Jiangxin; SHI Zhixin; XU Xudong

    2004-01-01

    Bleached mutants of Euglena gracilis were obtained by treatment with ofloxacin (Ofl)and streptomycin (Sm) respectively. As shown by electron microscopy, the residual plastids contain prothylakoids in an Ofl mutant, and the highly developed and tightly stacked membranous structure found in cells of two Sm mutants. Nine genes of the plastid genome were examined with PCR, showing that ribosomal protein genes and most other plastid genes were lost in all but one Sm mutant. Using differential display and RT-PCR, it was shown that chloroplast degeneration could cause changes in transcription of certain nucleus-encoded genes during heterotrophic growth in darkness.

  9. Cloning and functional characterization of the SUR2/SYR2 gene encoding sphinganine hydroxylase in Pichia ciferrii.

    Science.gov (United States)

    Bae, Jung-Hoon; Sohn, Jung-Hoon; Park, Chang-Seo; Rhee, Joon-Shick; Choi, Eui-Sung

    2004-04-15

    Saccharomyces cerevisiae sphinganine C4-hydroxylase encoded by the SUR2 gene catalyses the conversion of sphinganine to phytosphingosine. We isolated the SUR2 gene from Pichia ciferrii using nucleotide sequence homology to S. cerevisiae SUR2 to study hydroxylation of sphinganine in the sphingoid base overproducing yeast P. ciferrii. A positive clone was confirmed by nucleotide sequencing. A syringomycin-E resistance phenotype of a S. cerevisiae sur2-null mutant was complemented by expression of the cloned P. ciferrii SUR2 gene. Restoration of phytosphingosine production in the complemented strain was also confirmed, indicating that the cloned gene is a functional homologue of S. cerevisiae SUR2. .

  10. Cloning and expression of the gene encoding (R)-specific carbonyl reductase from Candida parapsilosis CCTCC M203011

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The gene which encodes (R)-specific carbonyl reductase (rCR) from Candida parapsilosis CCTCC M203011 was cloned, sequenced and compared with genes from the GenBank. The results indicated that rCR gene was 1011 bp, encoding a protein of 336 amino acids with a molecular weight of 35.9 kDa, and its nucleotide sequence showed 99% similarity to those of other members of the alcohol dehydrogenase superfamily. The rCR gene could express in recombinant strain Escherichia coli JM 109, and the expression plasmid could produce (R)-1-pheny-1,2-ethanediol (100% e.e., 80.14% yield) fromβ-hydroxyacetophenone without any additive to regenerate NAD+ from NADH.

  11. Investigation of the fatty acid transporter-encoding genes SLC27A3 and SLC27A4 in autism

    OpenAIRE

    Motoko Maekawa; Yoshimi Iwayama; Tetsuo Ohnishi; Manabu Toyoshima; Chie Shimamoto; Yasuko Hisano; Tomoko Toyota; Shabeesh Balan; Hideo Matsuzaki; Yasuhide Iwata; Shu Takagai; Kohei Yamada; Motonori Ota; Satoshi Fukuchi; Yohei Okada

    2015-01-01

    The solute carrier 27A (SLC27A) gene family encodes fatty acid transport proteins (FATPs) and includes 6 members. During fetal and postnatal periods of development, the growing brain requires a reliable supply of fatty acids. Because autism spectrum disorders (ASD) are now recognized as disorders caused by impaired early brain development, it is possible that functional abnormalities of SLC27A genes may contribute to the pathogenesis of ASD. Here, we confirmed the expression of SLC27A3 and SL...

  12. Cloning and structure of a yeast gene encoding a general transcription initiation factor TFIID that binds to the TATA box.

    Science.gov (United States)

    Horikoshi, M; Wang, C K; Fujii, H; Cromlish, J A; Weil, P A; Roeder, R G

    1989-09-28

    The TATA sequence-binding factor TFIID plays a central role both in promoter activation by RNA polymerase II and other common initiation factors, and in promoter regulation by gene-specific factors. The sequence of yeast TFIID, which seems to be encoded by a single gene, contains interesting structural motifs that are possibly involved in these functions, and is similar to sequences of bacterial sigma factors.

  13. A Kunjin replicon vector encoding granulocyte macrophage colony-stimulating factor for intra-tumoral gene therapy

    NARCIS (Netherlands)

    Hoang-Le, D.; Smeenk, L.; Anraku, I.; Pijlman, G.P.; Wang, X.J.; Vrij, de J.; Liu, W.J.; Le, T.T.; Schroder, W.A.; Khromykh, A.A.; Suhrbier, A.

    2009-01-01

    We have recently developed a non-cytopathic RNA replicon-based viral vector system based on the flavivirus Kunjin. Here, we illustrate the utility of the Kunjin replicon system for gene therapy. Intra-tumoral injections of Kunjin replicon virus-like particles encoding granulocyte colony-stimulating

  14. Expression of genes encoding F-1-ATPase results in uncoupling of glycolysis from biomass production in Lactococcus lactis

    DEFF Research Database (Denmark)

    Købmann, Brian Jensen; Solem, Christian; Pedersen, M.B.

    2002-01-01

    We studied how the introduction of an additional ATP-consuming reaction affects the metabolic fluxes in Lactococcus lactis. Genes encoding the hydrolytic part of the F-1 domain of the membrane-bound (F1F0) H+-ATPase were expressed from a range of synthetic constitutive promoters. Expression...

  15. Expression of the Immediate-Early Gene-Encoded Protein Egr-1 ("zif268") during in Vitro Classical Conditioning

    Science.gov (United States)

    Mokin, Maxim; Keifer, Joyce

    2005-01-01

    Expression of the immediate-early genes (IEGs) has been shown to be induced by activity-dependent synaptic plasticity or behavioral training and is thought to play an important role in long-term memory. In the present study, we examined the induction and expression of the IEG-encoded protein Egr-1 during an in vitro neural correlate of eyeblink…

  16. Cloning and functional expression in Escherichia coli of the gene encoding the di- and tripeptide transport protein of Lactobacillus helveticus

    NARCIS (Netherlands)

    Nakajima, H.; Hagting, A; Kunji, E.R S; Poolman, B.; Konings, W.N

    1997-01-01

    The gene encoding the di- and tripeptide transport protein (DtpT) of Lactobacillus helveticus (DtpT(LH)) was cloned with the aid of the inverse PCR technique and used to complement the dipeptide transport-deficient and proline-auxotrophic Escherichia coil E1772. Functional expression of the peptide

  17. Alterations in Gene Expression of Components of the Renin-Angiotensin System and Its Related Enzymes in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Benjamin Goldstein

    2017-01-01

    Full Text Available Objectives. The study assessed the existence and significance of associations between the expression of fifteen renin-angiotensin system component genes and lung adenocarcinoma. Materials and Methods. NCBI’s built-in statistical tool, GEO2R, was used to calculate Student’s t-tests for the associations found in a DNA expression study of adenocarcinoma and matched healthy lung tissue samples. The raw data was processed with GeneSpring™ and then used to generate figures with and without Sidak’s multiple comparison correction. Results. Ten genes were found to be significantly associated with adenocarcinoma. Seven of these associations remained statistically significant after correction for multiple comparisons. Notably, AGTR2, which encodes the AT2 angiotensin II receptor subtype, was significantly underexpressed in adenocarcinoma tissue (p<0.01. AGTR1, ACE, ENPEP, MME, and PRCP, which encode the AT1 angiotensin II receptor, angiotensin-converting enzyme, aminopeptidase N, neprilysin, and prolylcarboxypeptidase, respectively, were also underexpressed. AGT, which encodes angiotensinogen, the angiotensin peptide precursor, was overexpressed in adenocarcinoma tissue. Conclusion. The results suggest an association between the expression of the genes for renin-angiotensin system-related proteins and adenocarcinoma. While further research is necessary to conclusively demonstrate a link between the renin-angiotensin system and lung cancers, the results suggest that the renin-angiotensin system plays a role in the pathology of adenocarcinoma.

  18. Identification and regulation of expression of a gene encoding a filamentous hemagglutinin-related protein in Bordetella holmesii

    Directory of Open Access Journals (Sweden)

    Gross Roy

    2007-11-01

    Full Text Available Abstract Background Bordetella holmesii is a human pathogen closely related to B. pertussis, the etiological agent of whooping cough. It is able to cause disease in immunocompromised patients, but also whooping cough-like symptoms in otherwise healthy individuals. However, virtually nothing was known so far about the underlying virulence mechanisms and previous attempts to identify virulence factors related to those of B. pertussis were not successful. Results By use of a PCR approach we were able to identify a B. holmesii gene encoding a protein with significant sequence similarities to the filamentous hemagglutinin (FHA of B. avium and to a lesser extent to the FHA proteins of B. pertussis, B. parapertussis, and B. bronchiseptica. For these human and animal pathogens FHA is a crucial virulence factor required for successful colonization of the host. Interestingly, the B. holmesii protein shows a relatively high overall sequence similarity with the B. avium protein, while sequence conservation with the FHA proteins of the human and mammalian pathogens is quite limited and is most prominent in signal sequences required for their export to the cell surface. In the other Bordetellae expression of the fhaB gene encoding FHA was shown to be regulated by the master regulator of virulence, the BvgAS two-component system. Recently, we identified orthologs of BvgAS in B. holmesii, and here we show that this system also contributes to regulation of fhaB expression in B. holmesii. Accordingly, the purified BvgA response regulator of B. holmesii was shown to bind specifically in the upstream region of the fhaB promoter in vitro in a manner similar to that previously described for the BvgA protein of B. pertussis. Moreover, by deletion analysis of the fhaB promoter region we show that the BvgA binding sites are relevant for in vivo transcription from this promoter in B. holmesii. Conclusion The data reported here show that B. holmesii is endowed with a

  19. The UmGcn5 gene encoding histone acetyltransferase from Ustilago maydis is involved in dimorphism and virulence.

    Science.gov (United States)

    González-Prieto, Juan Manuel; Rosas-Quijano, Raymundo; Domínguez, Angel; Ruiz-Herrera, José

    2014-10-01

    We isolated a gene encoding a histone acetyltransferase from Ustilago maydis (DC.) Cda., which is orthologous to the Saccharomyces cerevisiae GCN5 gene. The gene was isolated from genomic clones identified by their specific hybridization to a gene fragment obtained by the polymerase chain reaction (PCR). This gene (Umgcn5; um05168) contains an open reading frame (ORF) of 1421bp that encodes a putative protein of 473 amino acids with a Mr. of 52.6kDa. The protein exhibits a high degree of homology with histone acetyltransferases from different organisms. Null a2b2 ΔUmgcn5 mutants were constructed by substitution of the region encoding the catalytic site with a hygromycin B resistance cassette. Null a1b1 ΔUmgcn5 mutants were isolated from genetic crosses of a2b2 ΔUmgcn5 and a1b1 wild-type strains in maize. Mutants displayed a slight reduction in growth rate under different conditions, and were more sensitive than the wild type to stress conditions, but more important, they grew as long mycelial cells, and formed fuzz-like colonies under all conditions where wild-type strains grew in the yeast-like morphology and formed smooth colonies. This phenotype was not reverted by cAMP addition. Mutants were not virulent to maize plants, and were unable to form teliospores. These phenotypic alterations of the mutants were reverted by their transformation with the wild-type gene.

  20. Transcriptional regulation of the genes encoding chitin and β-1,3-glucan synthases from Ustilago maydis.

    Science.gov (United States)

    Robledo-Briones, Mariana; Ruiz-Herrera, José

    2012-07-01

    Transcriptional regulation of genes encoding chitin synthases (CHS) and β-1,3-glucan synthase (GLS) from Ustilago maydis was studied. Transcript levels were measured during the growth curve of yeast and mycelial forms, in response to ionic and osmotic stress, and during infection of maize plants. Expression of the single GLS gene was constitutive. In contrast, CHS genes expression showed differences depending on environmental conditions. Transcript levels were slightly higher in the mycelial forms, the highest levels occurring at the log phase. Ionic and osmotic stress induced alterations in the expression of CHS genes, but not following a defined pattern, some genes were induced and others repressed by the tested compounds. Changes in transcripts were more apparent during the pathogenic process. At early infection stages, only CHS6 gene showed significant transcript levels, whereas at the period of tumor formation CHS7 and CHS8 genes were also were induced.

  1. The pyrH gene of Lactococcus lactis subsp. cremoris encoding UMP kinase is transcribed as part of an operon including the frr1 gene encoding ribosomal recycling factor

    DEFF Research Database (Denmark)

    Wadskov-Hansen, Steen Lüders; Martinussen, Jan; Hammer, Karin

    2000-01-01

    establishing the ability of the encoded protein to synthesize UDP. The pyrH gene in L. lactis is flanked downstream by frr1 encoding ribosomal recycling factor 1 and upstream by an open reading frame, orfA, of unknown function. The three genes were shown to constitute an operon transcribed in the direction orf......A-pyrH-frr1 from a promoter immediately in front of orfA. This operon belongs to an evolutionary highly conserved gene cluster, since the organization of pyrH on the chromosomal level in L. lactis shows a high resemblance to that found in Bacillus subtilis as well as in Escherichia coli and several other...

  2. The life-extending gene Indy encodes an exchanger for Krebs-cycle intermediates.

    Science.gov (United States)

    Knauf, Felix; Mohebbi, Nilufar; Teichert, Carsten; Herold, Diana; Rogina, Blanka; Helfand, Stephen; Gollasch, Maik; Luft, Friedrich C; Aronson, Peter S

    2006-07-01

    A longevity gene called Indy (for 'I'm not dead yet'), with similarity to mammalian genes encoding sodium-dicarboxylate cotransporters, was identified in Drosophila melanogaster. Functional studies in Xenopus oocytes showed that INDY mediates the flux of dicarboxylates and citrate across the plasma membrane, but the specific transport mechanism mediated by INDY was not identified. To test whether INDY functions as an anion exchanger, we examined whether substrate efflux is stimulated by transportable substrates added to the external medium. Efflux of [14C]citrate from INDY-expressing oocytes was greatly accelerated by the addition of succinate to the external medium, indicating citrate-succinate exchange. The succinate-stimulated [14C]citrate efflux was sensitive to inhibition by DIDS (4,4'-di-isothiocyano-2,2'-disulphonic stilbene), as demonstrated previously for INDY-mediated succinate uptake. INDY-mediated efflux of [14C]citrate was also stimulated by external citrate and oxaloacetate, indicating citrate-citrate and citrate-oxaloacetate exchange. Similarly, efflux of [14C]succinate from INDY-expressing oocytes was stimulated by external citrate, alpha-oxoglutarate and fumarate, indicating succinate-citrate, succinate-alpha-oxoglutarate and succinate-fumarate exchange respectively. Conversely, when INDY-expressing Xenopus oocytes were loaded with succinate and citrate, [14C]succinate uptake was markedly stimulated, confirming succinate-succinate and succinate-citrate exchange. Exchange of internal anion for external citrate was markedly pH(o)-dependent, consistent with the concept that citrate is co-transported with a proton. Anion exchange was sodium-independent. We conclude that INDY functions as an exchanger of dicarboxylate and tricarboxylate Krebs-cycle intermediates. The effect of decreasing INDY activity, as in the long-lived Indy mutants, may be to alter energy metabolism in a manner that favours lifespan extension.

  3. Mutations in CDC45, Encoding an Essential Component of the Pre-initiation Complex, Cause Meier-Gorlin Syndrome and Craniosynostosis.

    Science.gov (United States)

    Fenwick, Aimee L; Kliszczak, Maciej; Cooper, Fay; Murray, Jennie; Sanchez-Pulido, Luis; Twigg, Stephen R F; Goriely, Anne; McGowan, Simon J; Miller, Kerry A; Taylor, Indira B; Logan, Clare; Bozdogan, Sevcan; Danda, Sumita; Dixon, Joanne; Elsayed, Solaf M; Elsobky, Ezzat; Gardham, Alice; Hoffer, Mariette J V; Koopmans, Marije; McDonald-McGinn, Donna M; Santen, Gijs W E; Savarirayan, Ravi; de Silva, Deepthi; Vanakker, Olivier; Wall, Steven A; Wilson, Louise C; Yuregir, Ozge Ozalp; Zackai, Elaine H; Ponting, Chris P; Jackson, Andrew P; Wilkie, Andrew O M; Niedzwiedz, Wojciech; Bicknell, Louise S

    2016-07-07

    DNA replication precisely duplicates the genome to ensure stable inheritance of genetic information. Impaired licensing of origins of replication during the G1 phase of the cell cycle has been implicated in Meier-Gorlin syndrome (MGS), a disorder defined by the triad of short stature, microtia, and a/hypoplastic patellae. Biallelic partial loss-of-function mutations in multiple components of the pre-replication complex (preRC; ORC1, ORC4, ORC6, CDT1, or CDC6) as well as de novo stabilizing mutations in the licensing inhibitor, GMNN, cause MGS. Here we report the identification of mutations in CDC45 in 15 affected individuals from 12 families with MGS and/or craniosynostosis. CDC45 encodes a component of both the pre-initiation (preIC) and CMG helicase complexes, required for initiation of DNA replication origin firing and ongoing DNA synthesis during S-phase itself, respectively, and hence is functionally distinct from previously identified MGS-associated genes. The phenotypes of affected individuals range from syndromic coronal craniosynostosis to severe growth restriction, fulfilling diagnostic criteria for Meier-Gorlin syndrome. All mutations identified were biallelic and included synonymous mutations altering splicing of physiological CDC45 transcripts, as well as amino acid substitutions expected to result in partial loss of function. Functionally, mutations reduce levels of full-length transcripts and protein in subject cells, consistent with partial loss of CDC45 function and a predicted limited rate of DNA replication and cell proliferation. Our findings therefore implicate the preIC as an additional protein complex involved in the etiology of MGS and connect the core cellular machinery of genome replication with growth, chondrogenesis, and cranial suture homeostasis.

  4. Cloning of the Gene Encoding Urease Subunit A in Helicobacter Pylori

    Institute of Scientific and Technical Information of China (English)

    施理; 张宜俊; 陈劼; 候晓华

    2004-01-01

    Summary: The gene encoding urease subunit A (ureA) of Helicobacter pylori (H. pylori) was cloned from H. pylori isolate by polymerase chain reaction (PCR). Sterile distilled water instead of DNA served as negative control. The nucleotide sequence of the amplified product was determined.Homologous analysis of the ureA against that reported by Clayton CL and the GenBank and SwissProt databases were performed with the BLAST program at the Genome Net through the Internet.0.8 kb PCR product was amplified from all H. pylori clinical isolators. The nucleotide sequence of the ureA was determined. The nucleotide sequence of the ureA began with ATG as the initiation codon and terminated in TAA as stop codon. The coding regions had a 44 % G+ C content. The DNA sequence was 98 % homologous to that reported by Clayton CL (688 out of 702 residues were identical). The derived amino-acid sequences of the ureA were 99 % homologous to that reported by Clayton CL (232 out of 234 residues were identical). The nucleotide sequence and the predicted protein showed significant homology to ureA of H. pylori in the NCBI Entrez database.

  5. The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin-related processes.

    Science.gov (United States)

    Yoshikawa, Takanori; Ito, Momoyo; Sumikura, Tsuyoshi; Nakayama, Akira; Nishimura, Takeshi; Kitano, Hidemi; Yamaguchi, Isomaro; Koshiba, Tomokazu; Hibara, Ken-Ichiro; Nagato, Yasuo; Itoh, Jun-Ichi

    2014-06-01

    Auxin is a fundamental plant hormone and its localization within organs plays pivotal roles in plant growth and development. Analysis of many Arabidopsis mutants that were defective in auxin biosynthesis revealed that the indole-3-pyruvic acid (IPA) pathway, catalyzed by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) and YUCCA (YUC) families, is the major biosynthetic pathway of indole-3-acetic acid (IAA). In contrast, little information is known about the molecular mechanisms of auxin biosynthesis in rice. In this study, we identified a auxin-related rice mutant, fish bone (fib). FIB encodes an orthologue of TAA genes and loss of FIB function resulted in pleiotropic abnormal phenotypes, such as small leaves with large lamina joint angles, abnormal vascular development, small panicles, abnormal organ identity and defects in root development, together with a reduction in internal IAA levels. Moreover, we found that auxin sensitivity and polar transport activity were altered in the fib mutant. From these results, we suggest that FIB plays a pivotal role in IAA biosynthesis in rice and that auxin biosynthesis, transport and sensitivity are closely interrelated.

  6. Idiopathic neonatal necrotising fasciitis caused by community-acquired MSSA encoding Panton Valentine Leukocidin genes.

    LENUS (Irish Health Repository)

    Dunlop, Rebecca L E

    2012-02-01

    Neonatal necrotising fasciitis is very rare in comparison to the adult presentation of the disease and a Plastic Surgeon may only encounter one such case during his or her career. Often this is initially misdiagnosed and managed as simple cellulitis. It generally affects previously healthy babies, the site is often the lower back area and a history of minor skin trauma may be elicited. The causative organism is usually Streptococcus or polymicrobial, as is the case in the adult population. We present the case of a previously healthy 11-day-old infant with idiopathic, rapidly progressive necrotising fasciitis of the back, cause by Methicillin sensitive Staphylococcus aureus (MSSA) infection. The strain was isolated and found to encode the Panton-Valentine Leukocidin genes, which have been associated with particularly severe necrotising infections in other sites, with high mortality. These strains are the subject of specific treatment and eradication guidance in the UK but awareness of this and the importance of obtaining detailed culture typing is likely to be low amongst Plastic Surgeons.

  7. Cloning, mapping and mutation analysis of human gene GJB5 encoding gap junction protein b-5

    Institute of Scientific and Technical Information of China (English)

    XIA; Jiahui; (夏家辉); ZHENG; Duo; (郑多),; TANG; Dongsheng; (唐冬生); DAI; Heping; (戴和平); PAN; Qian; (潘乾); LONG; Zhigao; (龙志高); LIAO; Xiaodong; (廖晓东)

    2001-01-01

    By homologous EST searching and nested PCR a new human gene GJB5 encoding gap junction protein b-5 was identified. GJB5 was genetically mapped to human chromosome 1p33-p35 by FISH. RT-PCR revealed that it was expressed in skin, placenta and fetal skin. DNA sequencing of GJB5 was carried out in 142 patients with sensorineural hearing impairment and probands of 36 families with genetic diseases, including erythrokeratodermia (5 families), Charcot-Marie-Tooth disease (13), ptosis (4), and retinitis pigmentosa and deafness (14). Two missense mutations (686A→G, H229R; 25C→T, L9F) were detected in two sensorineural hearing impairment families. A heterologous deletion of 18 bp within intron was found in 3 families with heredity hearing impairment, and in one of the 3 families, a missense mutation (R265P) was identified also. But the deletion and missense mutation seemed not segregating with hearing impairment in the family. No abnormal mRNA or mRNA expression was detected in deletion carriers by RT-PCR analysis in skin tissue. Mutation analysis in 199 unaffected individuals revealed that two of them were carriers with the same 18 bp deletion.

  8. Cloning, mapping and mutation analysis of human gene GJB5 encoding gap junction protein b-5

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By homologous EST searching and nested PCR a new human gene GJB5encoding gap junction protein b-5 was identified. GJB5 was genetically mapped to human chromosome 1p33-p35 by FISH. RT-PCR revealed that it was expressed in skin, placenta and fetal skin. DNA sequencing of GJB5 was carried out in 142 patients with sensorineural hearing impairment and probands of 36 families with genetic diseases, including erythrokeratodermia (5 families), Charcot-Marie-Tooth disease (13), ptosis (4), and retinitis pigmentosa and deafness (14). Two missense mutations (686A→G, H229R; 25C→T, L9F) were detected in two sensorineural hearing impairment families. A heterologous deletion of 18 bp within intron was found in 3 families with heredity hearing impairment, and in one of the 3 families, a missense mutation (R265P) was identified also. But the deletion and missense mutation seemed not segregating with hearing impairment in the family. No abnormal mRNA or mRNA expression was detected in deletion carriers by RT-PCR analysis in skin tissue. Mutation analysis in 199 unaffected individuals revealed that two of them were carriers with the same 18 bp deletion.

  9. Early transcription factor subunits are encoded by vaccinia virus late genes.

    Science.gov (United States)

    Gershon, P D; Moss, B

    1990-06-01

    The vaccinia virus early transcription factor (VETF) was shown to be a virus-encoded heterodimer. The gene for the 82-kDa subunit was identified as open reading frame (ORF) A8L, based on the N-terminal sequence of factor purified by using DNA-affinity magnetic beads. The 70-kDa subunit of VETF was refractory to N-terminal analysis, and so N-terminal sequences were obtained for three internal tryptic peptides. All three peptides matched sequences within ORF D6R. ORFs A8L and D6R are located within the central region of the vaccinia virus genome and are separated by about 13,600 base pairs. Proteins corresponding to the 3' ends of ORFs A8L and D6R were overexpressed in Escherichia coli and used to prepare antisera that bound to the larger and smaller subunits, respectively, of affinity-purified VETF. Immunoblot analysis of proteins from infected cells indicated that both subunits are expressed exclusively in the late phase of infection, just prior to their packaging in virus particles. The two subunits of VETF have no significant local or overall amino acid sequence homology to one another, to other entries in biological sequence data bases including bacterial sigma factors, or to recently determined sequences of some eukaryotic transcription factors. The 70-kDa subunit, however, has motifs in common with a super-family of established and putative DNA and RNA helicases.

  10. Preparation and characterization of polyclonal antibody against Kaposi's sarcoma-associated herpesvirus lytic gene encoding RTA.

    Science.gov (United States)

    Fan, Weifei; Tang, Qiao; Shen, Chenyou; Qin, Di; Lu, Chun; Yan, Qin

    2015-11-01

    Replication and transcription activator (RTA) is a critical lytic protein encoded by Kaposi's sarcoma-associated herpesvirus (KSHV). To prepare rabbit polyclonal antibody against RTA, three antigenic polypeptides of KSHV RTA were initially synthesized. The fragment of RTA was cloned into p3FlagBsd to construct the recombinant plasmid, pRTA-Flag. 293 T and EA.hy926 cells were transfected with pRTA-Flag to obtain RTA-Flag fusion protein, which was detected using anti-Flag antibody. Next, New Zealand white rabbits were immunized with keyhole limpet hemocyanin-conjugated peptides to generate polyclonal antibodies against RTA. Enzyme-linked immunosorbent assays were performed to characterize the polyclonal antibodies, and the titers of the polyclonal antibodies against RTA were greater than 1:11,000. Western blotting and immunofluorescence assay revealed that the prepared antibody reacted specifically with the RTA-Flag fusion protein as well as the native viral protein in KSHV-infected primary effusion lymphoma cells. Collectively, our work successfully constructed the recombinant expression vector, pRTA-Flag, and prepared the polyclonal antibody against RTA, which was valuable for investigating the biochemical and biological functions of the critical KSHV lytic gene.

  11. Component Thermodynamical Selection Based Gene Expression Programming for Function Finding

    Directory of Open Access Journals (Sweden)

    Zhaolu Guo

    2014-01-01

    Full Text Available Gene expression programming (GEP, improved genetic programming (GP, has become a popular tool for data mining. However, like other evolutionary algorithms, it tends to suffer from premature convergence and slow convergence rate when solving complex problems. In this paper, we propose an enhanced GEP algorithm, called CTSGEP, which is inspired by the principle of minimal free energy in thermodynamics. In CTSGEP, it employs a component thermodynamical selection (CTS operator to quantitatively keep a balance between the selective pressure and the population diversity during the evolution process. Experiments are conducted on several benchmark datasets from the UCI machine learning repository. The results show that the performance of CTSGEP is better than the conventional GEP and some GEP variations.

  12. Evolutionary analysis and lateral gene transfer of two-component regulatory systems associated with heavy-metal tolerance in bacteria.

    Science.gov (United States)

    Bouzat, Juan L; Hoostal, Matthew J

    2013-05-01

    Microorganisms have adapted intricate signal transduction mechanisms to coordinate tolerance to toxic levels of metals, including two-component regulatory systems (TCRS). In particular, both cop and czc operons are regulated by TCRS; the cop operon plays a key role in bacterial tolerance to copper, whereas the czc operon is involved in the efflux of cadmium, zinc, and cobalt from the cell. Although the molecular physiology of heavy metal tolerance genes has been extensively studied, their evolutionary relationships are not well-understood. Phylogenetic relationships among heavy-metal efflux proteins and their corresponding two-component regulatory proteins revealed orthologous and paralogous relationships from species divergences and ancient gene duplications. The presence of heavy metal tolerance genes on bacterial plasmids suggests these genes may be prone to spread through horizontal gene transfer. Phylogenetic inferences revealed nine potential examples of lateral gene transfer associated with metal efflux proteins and two examples for regulatory proteins. Notably, four of the examples suggest lateral transfer across major evolutionary domains. In most cases, differences in GC content in metal tolerance genes and their corresponding host genomes confirmed lateral gene transfer events. Three-dimensional protein structures predicted for the response regulators encoded by cop and czc operons showed a high degree of structural similarity with other known proteins involved in TCRS signal transduction, which suggests common evolutionary origins of functional phenotypes and similar mechanisms of action for these response regulators.

  13. Localization of eight additional genes in the human major histocompatibility complex, including the gene encoding the casein kinase II {beta} subunit (CSNK2B)

    Energy Technology Data Exchange (ETDEWEB)

    Albertella, M.R.; Jones, H.; Thomson, W. [Oxford Univ. (United Kingdom)] [and others

    1996-09-01

    A wide range of autoimmune and other diseases are known to be associated with the major histocompatibility complex. Many of these diseases are linked to the genes encoding the polymorphic histocompatibility complex. Many of these diseases are linked to the genes encoding the polymorphic histocompatibility antigens in the class I and class II regions, but some appear to be more strongly associated with genes in the central 1100-kb class III region, making it important to characterize this region fully for the presence of novel genes. An {approximately}220-kb segment of DNA in the class III region separating the Hsp70 (HSPA1L) and BAT1 (D6S8IE) genes, which was previously known to contain 14 genes. Genomic DNA fragments spanning the gaps between the known genes were used as probes to isolate cDNAs corresponding to five new genes within this region. Evidence from Northern blot analysis and exon trapping experiments that suggested the presence of at least two more new genes was also obtained. Partial cDNA and complete exonic genomic sequencing of one of the new genes has identified it as the casein kinase II{beta} subunit (CSNK2B). Two of the other novel genes lie within a region syntenic to that implicated in susceptibility to experimental allergic orchitis in the mouse, an autoimmune disease of the testis, and represent additional candidates for the Orch-1 locus associated with this disease. In addition, characterization of the 13-kb intergenic gap separating the RD (D6545) and G11 (D6S60E) genes has revealed the presence of a gene encoding a 1246-amino-acid polypeptide that shows significant sequence similarity to the yeast anti-viral Ski2p gene product. 49 refs., 8 figs.

  14. Mice lacking three Loci encoding 14 glutathione transferase genes: a novel tool for assigning function to the GSTP, GSTM, and GSTT families.

    Science.gov (United States)

    Xiang, Zhidan; Snouwaert, John N; Kovarova, Martina; Nguyen, Mytrang; Repenning, Peter W; Latour, Anne M; Cyphert, Jaime M; Koller, Beverly H

    2014-06-01

    Glutathione S-transferases (GSTs) form a superfamily defined by their ability to catalyze the conjugation of glutathione with electrophilic substrates. These enzymes are proposed to play a critical role in protection of cellular components from damage mediated by reactive metabolites. Twenty-two cytosolic GSTs, grouped into seven families, are recognized in mice. This complexity hinders the assignment of function to a subset or family of these genes. We report generation of a mouse line in which the locus encoding three GST gene families is deleted. This includes the four Gstt genes spanning 65 kb on chromosome 10 and the seven Gstm genes found on a 150 kb segment of DNA chromosome 3. In addition, we delete two Gstp genes on chromosome 19 as well as a third related gene located 15 kb telomeric to Gstp1 and Gstp2, which we identify as a potential new member of this gene family. We show that, despite the loss of up to 75% of total GST activity in some tissues from these animals, the mice are healthy and fertile, with normal life expectancy. The normal development and health of these animals make them an appropriate model for defining the role of these families in redox homeostasis and metabolism of drugs and environmental pollutants.

  15. Cloning and sequencing of the chicken egg-white avidin-encoding gene and its relationship with the avidin-related genes Avr1-Avr5.

    Science.gov (United States)

    Wallén, M J; Laukkanen, M O; Kulomaa, M S

    1995-08-19

    The gene encoding chicken egg-white avidin (Avd) was amplified from chromosomal DNA, cloned and sequenced. The entire coding region of preavidin (pre-Avd) containing four exons was identified by comparing the Avd gene (1119 bp) with the cDNA. It has a high identity percentage (91-95%) with the previously isolated Avd-related genes 1-5 (Avr1-Avr5). Interestingly, comparison of Avd with the Avr genes showed that the introns were better conserved (on average 97%) than the exons (90%). The Avd gene, as well as the cDNA, encodes a Gln residue at position 53 of the mature protein, which is in contrast to the previously determined amino-acid sequence.

  16. RNA-Seq Analysis of the Expression of Genes Encoding Cell Wall Degrading Enzymes during Infection of Lupin (Lupinus angustifolius) by Phytophthora parasitica.

    Science.gov (United States)

    Blackman, Leila M; Cullerne, Darren P; Torreña, Pernelyn; Taylor, Jen; Hardham, Adrienne R

    2015-01-01

    RNA-Seq analysis has shown that over 60% (12,962) of the predicted transcripts in the Phytophthora parasitica genome are expressed during the first 60 h of lupin root infection. The infection transcriptomes included 278 of the 431 genes encoding P. parasitica cell wall degrading enzymes. The transcriptome data provide strong evidence of global transcriptional cascades of genes whose encoded proteins target the main categories of plant cell wall components. A major cohort of pectinases is predominantly expressed early but as infection progresses, the transcriptome becomes increasingly dominated by transcripts encoding cellulases, hemicellulases, β-1,3-glucanases and glycoproteins. The most highly expressed P. parasitica carbohydrate active enzyme gene contains two CBM1 cellulose binding modules and no catalytic domains. The top 200 differentially expressed genes include β-1,4-glucosidases, β-1,4-glucanases, β-1,4-galactanases, a β-1,3-glucanase, an α-1,4-polygalacturonase, a pectin deacetylase and a pectin methylesterase. Detailed analysis of gene expression profiles provides clues as to the order in which linkages within the complex carbohydrates may come under attack. The gene expression profiles suggest that (i) demethylation of pectic homogalacturonan occurs before its deacetylation; (ii) cleavage of the backbone of pectic rhamnogalacturonan I precedes digestion of its side chains; (iii) early attack on cellulose microfibrils by non-catalytic cellulose-binding proteins and enzymes with auxiliary activities may facilitate subsequent attack by glycosyl hydrolases and enzymes containing CBM1 cellulose-binding modules; (iv) terminal hemicellulose backbone residues are targeted after extensive internal backbone cleavage has occurred; and (v) the carbohydrate chains on glycoproteins are degraded late in infection. A notable feature of the P. parasitica infection transcriptome is the high level of transcription of genes encoding enzymes that degrade β-1

  17. Recognizing genes and other components of genomic structure

    Energy Technology Data Exchange (ETDEWEB)

    Burks, C. (Los Alamos National Lab., NM (USA)); Myers, E. (Arizona Univ., Tucson, AZ (USA). Dept. of Computer Science); Stormo, G.D. (Colorado Univ., Boulder, CO (USA). Dept. of Molecular, Cellular and Developmental Biology)

    1991-01-01

    The Aspen Center for Physics (ACP) sponsored a three-week workshop, with 26 scientists participating, from 28 May to 15 June, 1990. The workshop, entitled Recognizing Genes and Other Components of Genomic Structure, focussed on discussion of current needs and future strategies for developing the ability to identify and predict the presence of complex functional units on sequenced, but otherwise uncharacterized, genomic DNA. We addressed the need for computationally-based, automatic tools for synthesizing available data about individual consensus sequences and local compositional patterns into the composite objects (e.g., genes) that are -- as composite entities -- the true object of interest when scanning DNA sequences. The workshop was structured to promote sustained informal contact and exchange of expertise between molecular biologists, computer scientists, and mathematicians. No participant stayed for less than one week, and most attended for two or three weeks. Computers, software, and databases were available for use as electronic blackboards'' and as the basis for collaborative exploration of ideas being discussed and developed at the workshop. 23 refs., 2 tabs.

  18. Principal component analysis of gene frequencies of Chinese populations

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Principal components (PCs) were calculated based on gene frequencies of 130 alleles at 38 loci in Chinese populations, and geographic PC maps were constructed. The first PC map of the Han shows the genetic difference between Southern and Northern Mongoloids, while the second PC indicates the gene flow between Caucasoid and Mongoloids. The first PC map of the Chinese ethnic minorities is similar to that of the second PC map of the Han, while their second PC map is similar to the first PC map of the Han. When calculating PC with the gene frequency data from both the Han and ethnic minorities, the first and second PC maps most resemble those of the ethnic minorities alone. The third and fourth PC maps of Chinese populations may reflect historical events that allowed the expansion of the populations in the highly civilized regions. A clear-cut boundary between Southern and Northern Mongoloids in the synthetic map of the Chinese populations was observed in the zone of the Yangtze River. We suggest that the ancestors of Southern and Northern Mongoloids had already separated before reaching Asia. The ancestors of the Southern Mongoloids may result from the initial expansion from Africa or the Middle East, via the south coast of Asia, toward Southeast Asia, and ultimately South China. Upon reaching the Yangtze River, they might even have crossed the river to occupy the nearby regions for a period of time. The ancestors of the Northern Mongoloids probably expanded from Africa via the Northern Pamirs, first went eastward, then towards the south to reach the Yangtze River. The expansion of the Northern Mongoloids toward the south of the Yangtze River happened only in the last 2 or 3 thousand years.

  19. AIB1 gene amplification and the instability of polyQ encoding sequence in breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Clarke Robert

    2006-05-01

    Full Text Available Abstract Background The poly Q polymorphism in AIB1 (amplified in breast cancer gene is usually assessed by fragment length analysis which does not reveal the actual sequence variation. The purpose of this study is to investigate the sequence variation of poly Q encoding region in breast cancer cell lines at single molecule level, and to determine if the sequence variation is related to AIB1 gene amplification. Methods The polymorphic poly Q encoding region of AIB1 gene was investigated at the single molecule level by PCR cloning/sequencing. The amplification of AIB1 gene in various breast cancer cell lines were studied by real-time quantitative PCR. Results Significant amplifications (5–23 folds of AIB1 gene were found in 2 out of 9 (22% ER positive cell lines (in BT-474 and MCF-7 but not in BT-20, ZR-75-1, T47D, BT483, MDA-MB-361, MDA-MB-468 and MDA-MB-330. The AIB1 gene was not amplified in any of the ER negative cell lines. Different passages of MCF-7 cell lines and their derivatives maintained the feature of AIB1 amplification. When the cells were selected for hormone independence (LCC1 and resistance to 4-hydroxy tamoxifen (4-OH TAM (LCC2 and R27, ICI 182,780 (LCC9 or 4-OH TAM, KEO and LY 117018 (LY-2, AIB1 copy number decreased but still remained highly amplified. Sequencing analysis of poly Q encoding region of AIB1 gene did not reveal specific patterns that could be correlated with AIB1 gene amplification. However, about 72% of the breast cancer cell lines had at least one under represented (3CAA(CAG9(CAACAG3(CAACAGCAG2CAA of the original cell line, a number of altered poly Q encoding sequences were found in the derivatives of MCF-7 cell lines. Conclusion These data suggest that poly Q encoding region of AIB1 gene is somatic unstable in breast cancer cell lines. The instability and the sequence characteristics, however, do not appear to be associated with the level of the gene amplification.

  20. Cloning of HBsAg-encoded genes in different vectors and their expression in eukaryotic cells

    Institute of Scientific and Technical Information of China (English)

    Shan Qin; Hong Tang; Lian-San Zhao; Fang He; Yong Lin; Li Liu; Xiao-Mei He

    2003-01-01

    AIM: To compare the efficiency of different plasmids as DNA vectors by cloning three HBsAg-encoded genes into two eukaryotic expression vectors, pRc/CMV and pSG5UTPL/Flag, and to express HBsAg S, MS, and LS proteins in SP2/0 cells, and to establish monoclone SP2/0 cell strains that are capable of expressing S or S2S proteins stably.METHODS: Segments of S, preS2-S, preS1-preS2-S genes of Hepatitis B virus were amplified by routine PCR and preS1S fragment was amplified by Over-Lap Extension PCR. The amplified segments were cleaved with restricted endonuclease Hind Ⅲ/Not Ⅰ followed by ligation with pRc/CMV, or BamHI/EcoR Ⅰ followed by ligation with pSG5UTPL/Flag. After the plasmid vectors were cleaved with the correspond enzymes, the amplified segments were inserted into pRc/CMV or pSGSUTPL/Flag plasmid vectors with T4DNA ligase. KOZAK sequence was added before the initial ATG code of each fragment using specific primer. The inserted segments in the recombinant plasmids were sequenced after subcloning. BALB/c mice myeloma cells (SP2/0 cell line) were transfected with the recombinant plasmids. The expressions of the different recombinants were compared by Western-blot, using a monoclonal anti-HBs antibody as the primary antibody and peroxidase-labeled multi-linker as the secondary. Stable SP2/0-pRc/CMV-S or SP2/0- pRc/CMV-MS clones were established through clone screening with G418.RESULTS: Fragments with anticipated size were harvested after PCR. After recombination and screening, the sequences of the inserted segments in the recombinants were confirmed to be S, preS2S, preSl-preS2S and preSlS encoding genes,determined by sequencing. The results of Western-blot hybridization were positive for the anticipated proteins.Among them, pRc/CMV-S or pRc/CMV-MS demonstrated the highest expressing their respective antigen.CONCLUSION: Eight recombinant plasmids expressing S,M, L or preSlS proteins are obtained. For hepatitis surface antigen expression in eukaryotic cells

  1. Gene electro transfer of plasmid encoding vascular endothelial growth factor for enhanced expression and perfusion in the ischemic swine heart.

    Science.gov (United States)

    Hargrave, Barbara; Strange, Robert; Navare, Sagar; Stratton, Michael; Burcus, Nina; Murray, Len; Lundberg, Cathryn; Bulysheva, Anna; Li, Fanying; Heller, Richard

    2014-01-01

    Myocardial ischemia can damage heart muscle and reduce the heart's pumping efficiency. This study used an ischemic swine heart model to investigate the potential for gene electro transfer of a plasmid encoding vascular endothelial growth factor for improving perfusion and, thus, for reducing cardiomyopathy following acute coronary syndrome. Plasmid expression was significantly greater in gene electro transfer treated tissue compared to injection of plasmid encoding vascular endothelial growth factor alone. Higher gene expression was also seen in ischemic versus non-ischemic groups with parameters 20 Volts (ptransfer of plasmid encoding vascular endothelial growth factor had increased perfusion in the area at risk compared to control groups. Troponin and creatine kinase increased across all groups, suggesting equivalent ischemia in all groups prior to treatment. Echocardiography was used to assess ejection fraction, cardiac output, stroke volume, left ventricular end diastolic volume, and left ventricular end systolic volume. No statistically significant differences in these parameters were detected during a 2-week time period. However, directional trends of these variables were interesting and offer valuable information about the feasibility of gene electro transfer of vascular endothelial growth factor in the ischemic heart. The results demonstrate that gene electro transfer can be applied safely and can increase perfusion in an ischemic area. Additional study is needed to evaluate potential efficacy.

  2. Genes encoding a group of related small secreted proteins from the gut of Hessian fly larvae [Mayetiola destructor (Say)

    Institute of Scientific and Technical Information of China (English)

    MING-SHUN CHEN; XIANG LIU; YU-CHENG ZHU; JOHN C. REESE; GERALD E. WILDE

    2006-01-01

    A group of related genes has been isolated and characterized from the gut of Hessian fly larvae [Mayetiola destructor (Say)]. Members in this group appear to encode proteins with secretary signal peptides at the N-terminals. The mature putative proteins are small, acidic proteins with calculated molecular masses of 14.5 to 15.3 kDa, and isoelectric points from 4.56 to 4.88. Northern blot analysis revealed that these genes are expressed predominantly in the gut of Hessian fly larvae and pupae. Two related genes, G10K1 and G10K2, were isolated as tandem repeats. Both genes contain three exons and two introns.The intron/exon boundaries were conserved in terms of amino acid encoding, suggesting that they arose by gene duplication. The fact that the frequency of this group of clones in a gut cDNA library higher than that of total cDNA clones encoding digestive enzymes suggested that this group of proteins may perform an important function in the gut physiology of this insect. However, the exact functions of these proteins are as yet known since no sequence similarity could be identified between these proteins and any known sequences in public databases using standard methods.

  3. The rgg0182 gene encodes a transcriptional regulator required for the full Streptococcus thermophilus LMG18311 thermal adaptation

    Directory of Open Access Journals (Sweden)

    Bertin Stéphane

    2011-10-01

    Full Text Available Abstract Background Streptococcus thermophilus is an important starter strain for the production of yogurt and cheeses. The analysis of sequenced genomes of four strains of S. thermophilus indicates that they contain several genes of the rgg familly potentially encoding transcriptional regulators. Some of the Rgg proteins are known to be involved in bacterial stress adaptation. Results In this study, we demonstrated that Streptococcus thermophilus thermal stress adaptation required the rgg0182 gene which transcription depends on the culture medium and the growth temperature. This gene encoded a protein showing similarity with members of the Rgg family transcriptional regulator. Our data confirmed that Rgg0182 is a transcriptional regulator controlling the expression of its neighboring genes as well as chaperones and proteases encoding genes. Therefore, analysis of a Δrgg0182 mutant revealed that this protein played a role in the heat shock adaptation of Streptococcus thermophilus LMG18311. Conclusions These data showed the importance of the Rgg0182 transcriptional regulator on the survival of S. thermophilus during dairy processes and more specifically during changes in temperature.

  4. Hypersensitive Response of Plasmid-Encoded AHL Synthase Gene to Lifestyle and Nutrient by Ensifer adhaerens X097

    Directory of Open Access Journals (Sweden)

    Yanhua Zeng

    2017-06-01

    Full Text Available It is known that some bacteria, especially members of the family Rhizobiaceae, have multiple N-acyl homoserine lactones (AHL synthase genes and produce multiple AHL signals. However, how bacteria selectively utilize these multiple genes and signals to cope with changing environments is poorly understood. Ensifer adhaerens is an important microorganism in terms of biotechnology, ecology and evolutionary. In this study, we investigated the AHL-based QS system of E. adhaerens X097 and its response to different lifestyles or nutrients. Draft genome sequence data indicated that X097 harbored three distinct AHL synthase genes (ensI1, 2, 3 and seven luxR homologs, which was different from other E. adhaerens strains. In vitro expression indicated that plasmid-encoded ensI1 and ensI2 directed production of multiple AHLs, while chromosome-encoded ensI3 only directed production of C14-HSL. Predicted three dimensional structure of EnsI3 was quite different from that of EnsI1 and EnsI2. X097 produced different AHL profiles in Luria-Bertani (LB and NFB medium, under biofilm and planktonic lifestyle, respectively. Notably, expression of ensI1 and ensI2 but not ensI3 is hypersensitive to different lifestyles and nutrients. The hypersensitive response of plasmid-encoded AHL synthase genes to different culture conditions may shed a light on the phylogenetic development of AHL synthase genes in Rhizobiaceae family.

  5. Transgenic tomatoes express an antigenic polypeptide containing epitopes of the diphtheria, pertussis and tetanus exotoxins, encoded by a synthetic gene.

    Science.gov (United States)

    Soria-Guerra, Ruth Elena; Rosales-Mendoza, Sergio; Márquez-Mercado, Crisóforo; López-Revilla, Rubén; Castillo-Collazo, Rosalba; Alpuche-Solís, Angel Gabriel

    2007-07-01

    A current priority of vaccinology is the development of multicomponent vaccines that protect against several pathogens. The diphtheria-pertussis-tetanus (DPT) vaccine prevents the symptoms of three serious and often fatal diseases due to the exotoxins produced by Corynebacterium diphteriae, Bordetella pertussis and Clostridium tetani. We are attempting to develop an edible DPT multicomponent vaccine in plants, based on the fusion of protective exotoxin epitopes encoded by synthetic genes. By means of Agrobacterium mediated transformation we generated transgenic tomatoes with a plant-optimised synthetic gene encoding a novel polypeptide containing two adjuvant and six DPT immunoprotective exotoxin epitopes joined by peptide linkers. In transformed tomato plants, integration of the synthetic DPT (sDPT) gene detected by PCR was confirmed by Southern blot, and specific transcripts of the expected molecular size were detected by RT-PCR. Expression of the putative polypeptide encoded by the sDPT gene was detected by immunoassay with specific antibodies to the diphtheria, pertussis and tetanus exotoxins. The sDPT gene is therefore integrated, transcribed and translated as the expected recombinant sDPT multiepitope polypeptide in transgenic tomatoes that constitute a potential edible vaccine.

  6. Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Jandova, Jana; Janda, Jaroslav [Southern Arizona VA Healthcare System, Department of Medicine, Dermatology Division and Arizona Cancer Center, University of Arizona, 1515 N Campbell Avenue, Tucson, AZ 857 24 (United States); Sligh, James E, E-mail: jsligh@azcc.arizona.edu [Southern Arizona VA Healthcare System, Department of Medicine, Dermatology Division and Arizona Cancer Center, University of Arizona, 1515 N Campbell Avenue, Tucson, AZ 857 24 (United States)

    2012-10-15

    We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarray analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-{kappa}B (NF-{kappa}B) is a key transcription factor for production of MMPs. An inhibitor of NF-{kappa}B activation, Bay 11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-{kappa}B in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids. -- Highlights: Black-Right-Pointing-Pointer Cybrids are useful models to study the role of mtDNA changes in cancer development. Black-Right-Pointing-Pointer mtDNA changes affect the expression of nuclear

  7. Theoretical model of the three-dimensional structure of a disease resistance gene homolog encoding resistance protein in Vigna mungo.

    Science.gov (United States)

    Basak, Jolly; Bahadur, Ranjit P

    2006-10-01

    Plant disease resistance (R) genes, the key players of innate immunity system in plants encode 'R' proteins. 'R' protein recognizes product of avirulance gene from the pathogen and activate downstream signaling responses leading to disease resistance. No three dimensional (3D) structural information of any 'R' proteins is available as yet. We have reported a 'R' gene homolog, the 'VMYR1', encoding 'R' protein in Vigna mungo. Here, we describe the homology modeling of the 'VMYR1' protein. The model was created by using the 3D structure of an ATP-binding cassette transporter protein from Vibrio cholerae as a template. The strategy for homology modeling was based on the high structural conservation in the superfamily of P-loop containing nucleoside triphosphate hydrolase in which target and template proteins belong. This is the first report of theoretical model structure of any 'R' proteins.

  8. Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages.

    Science.gov (United States)

    Hensel, M; Shea, J E; Waterman, S R; Mundy, R; Nikolaus, T; Banks, G; Vazquez-Torres, A; Gleeson, C; Fang, F C; Holden, D W

    1998-10-01

    The type III secretion system of Salmonella pathogenicity island 2 (SPI-2) is required for systemic infection of this pathogen in mice. Cloning and sequencing of a central region of SPI-2 revealed the presence of genes encoding putative chaperones and effector proteins of the secretion system. The predicted products of the sseB, sseC and sseD genes display weak but significant similarity to amino acid sequences of EspA, EspD and EspB, which are secreted by the type III secretion system encoded by the locus of enterocyte effacement of enteropathogenic Escherichia coli. The transcriptional activity of an sseA::luc fusion gene was shown to be dependent on ssrA, which is required for the expression of genes encoding components of the secretion system apparatus. Strains carrying nonpolar mutations in sseA, sseB or sseC were severely attenuated in virulence, strains carrying mutations in sseF or sseG were weakly attenuated, and a strain with a mutation in sseE had no detectable virulence defect. These phenotypes were reflected in the ability of mutant strains to grow within a variety of macrophage cell types: strains carrying mutations in sseA, sseB or sseC failed to accumulate, whereas the growth rates of strains carrying mutations in sseE, sseF or sseG were only modestly reduced. These data suggest that, in vivo, one of the functions of the SPI-2 secretion system is to enable intracellular bacterial proliferation.

  9. Predominance of a versatile-peroxidase-encoding gene, mnp4, as demonstrated by gene replacement via a gene targeting system for Pleurotus ostreatus.

    Science.gov (United States)

    Salame, Tomer M; Knop, Doriv; Tal, Dana; Levinson, Dana; Yarden, Oded; Hadar, Yitzhak

    2012-08-01

    Pleurotus ostreatus (the oyster mushroom) and other white rot filamentous basidiomycetes are key players in the global carbon cycle. P. ostreatus is also a commercially important edible fungus with medicinal properties and is important for biotechnological and environmental applications. Efficient gene targeting via homologous recombination (HR) is a fundamental tool for facilitating comprehensive gene function studies. Since the natural HR frequency in Pleurotus transformations is low (2.3%), transformed DNA is predominantly integrated ectopically. To overcome this limitation, a general gene targeting system was developed by producing a P. ostreatus PC9 homokaryon Δku80 strain, using carboxin resistance complemented by the development of a protocol for hygromycin B resistance protoplast-based DNA transformation and homokaryon isolation. The Δku80 strain exhibited exclusive (100%) HR in the integration of transforming DNA, providing a high efficiency of gene targeting. Furthermore, the Δku80 strains produced showed a phenotype similar to that of the wild-type PC9 strain, with similar growth fitness, ligninolytic functionality, and capability of mating with the incompatible strain PC15 to produce a dikaryon which retained its resistance to the corresponding selection and was capable of producing typical fruiting bodies. The applicability of this system is demonstrated by inactivation of the versatile peroxidase (VP) encoded by mnp4. This enzyme is part of the ligninolytic system of P. ostreatus, being one of the nine members of the manganese-peroxidase (MnP) gene family, and is the predominantly expressed VP in Mn(2+)-deficient media. mnp4 inactivation provided a direct proof that mnp4 encodes a key VP responsible for the Mn(2+)-dependent and Mn(2+)-independent peroxidase activity under Mn(2+)-deficient culture conditions.

  10. Diversification of genes encoding granule-bound starch synthase in monocots and dicots is marked by multiple genome-wide duplication events.

    Directory of Open Access Journals (Sweden)

    Jun Cheng

    Full Text Available Starch is one of the major components of cereals, tubers, and fruits. Genes encoding granule-bound starch synthase (GBSS, which is responsible for amylose synthesis, have been extensively studied in cereals but little is known about them in fruits. Due to their low copy gene number, GBSS genes have been used to study plant phylogenetic and evolutionary relationships. In this study, GBSS genes have been isolated and characterized in three fruit trees, including apple, peach, and orange. Moreover, a comprehensive evolutionary study of GBSS genes has also been conducted between both monocots and eudicots. Results have revealed that genomic structures of GBSS genes in plants are conserved, suggesting they all have evolved from a common ancestor. In addition, the GBSS gene in an ancestral angiosperm must have undergone genome duplication ∼251 million years ago (MYA to generate two families, GBSSI and GBSSII. Both GBSSI and GBSSII are found in monocots; however, GBSSI is absent in eudicots. The ancestral GBSSII must have undergone further divergence when monocots and eudicots split ∼165 MYA. This is consistent with expression profiles of GBSS genes, wherein these profiles are more similar to those of GBSSII in eudicots than to those of GBSSI genes in monocots. In dicots, GBSSII must have undergone further divergence when rosids and asterids split from each other ∼126 MYA. Taken together, these findings suggest that it is GBSSII rather than GBSSI of monocots that have orthologous relationships with GBSS genes of eudicots. Moreover, diversification of GBSS genes is mainly associated with genome-wide duplication events throughout the evolutionary course of history of monocots and eudicots.

  11. Structure and heterologous expression of the gene encoding the cell surface glycoprotein from Haloarcula japonica strain TR-1.

    Science.gov (United States)

    Wakai, H; Takada, K; Nakamura, S; Horikoshi, K

    1995-01-01

    The gene encoding the cell surface glycoprotein (CSG) of Haloarcula japonica strain TR-1 was cloned and sequenced. The structural gene consisted from an open reading frame of 2,586 bp. A potential promoter sequence was found about 150 bp upstream of the ATG initiation codon. N-terminal amino acid sequence of the Ha. japonica CSG revealed that the mature CSG consisted of 828 amino acids. Five potential N-glycosylation sites were found in the mature sequence. The cloned CSG gene of Ha. japonica was expressed in closely-related halophilic archaea.

  12. Silencing of the major family of NBS-LRR-encoding genes in lettuce results in the loss of multiple resistance specificities

    NARCIS (Netherlands)

    Wroblewski, T.; Piskurewicz, U.; Finkers-Tomczak, A.M.; Ochoa, O.; Michelmore, R.

    2007-01-01

    The RGC2 gene cluster in lettuce (Lactuca sativa) is one of the largest known families of genes encoding nucleotide binding site¿leucine-rich repeat (NBS¿LRR) proteins. One of its members, RGC2B, encodes Dm3 which determines resistance to downy mildew caused by the oomycete Bremia lactucae carrying

  13. Cloning and characterization of the gsk gene encoding guanosine kinase of Escherichia coli

    DEFF Research Database (Denmark)

    Harlow, Kenneth W.; Nygaard, Per; Hove-Jensen, Bjarne

    1995-01-01

    The Escherichia coli gsk gene encoding guanosine kinase was cloned from the Kohara gene library by complementation of the E. coli gsk-1 mutant allele. The cloned DNA fragment was sequenced and shown to encode a putative polypeptide of 433 amino acids with a molecular mass of 48,113 Da. Minicell...

  14. Cloning, characterization, expression analysis and inhibition studies of a novel gene encoding Bowman-Birk type protease inhibitor from rice bean

    Science.gov (United States)

    This paper presents the first study describing the isolation, cloning and characterization of a full length gene encoding Bowman-Birk protease inhibitor (RbTI) from rice bean (Vigna umbellata). A full-length protease inhibitor gene with complete open reading frame of 327bp encoding 109 amino acids w...

  15. Regulation of three genes encoding cell-wall-degrading enzymes of Trichoderma aggressivum during interaction with Agaricus bisporus.

    Science.gov (United States)

    Abubaker, Kamal S; Sjaarda, Calvin; Castle, Alan J

    2013-06-01

    Members of the genus Trichoderma are very effective competitors of a variety of fungi. Cell-wall-degrading enzymes, including proteinases, glucanases, and chitinases, are commonly secreted as part of the competitive process. Trichoderma aggressivum is the causative agent of green mould disease of the button mushroom, Agaricus bisporus. The structures of 3 T. aggressivum genes, prb1 encoding a proteinase, ech42 encoding an endochitinase, and a β-glucanase gene, were determined. Promoter elements in the prb1 and ech42 genes suggested that transcription is regulated by carbon and nitrogen levels and by stress. Both genes had mycoparasitism-related elements indicating potential roles for the protein products in competition. The promoter of the β-glucanase gene contained CreA and AreA binding sites indicative of catabolite regulation but contained no mycoparasitism elements. Transcription of the 3 genes was measured in mixed cultures of T. aggressivum and A. bisporus. Two A. bisporus strains, U1, which is sensitive to green mould disease, and SB65, which shows some resistance, were used in co-cultivation tests to assess possible roles of the genes in disease production and severity. prb1 and ech42 were coordinately upregulated after 5 days, whereas β-glucanase transcription was upregulated from day 0 with both Agaricus strains. Upregulation was much less pronounced in mixed cultures of T. aggressivum with the resistant strain, SB65, than with the sensitive strain, U1. These observations suggested that the proteins encoded by these genes have roles in both nutrition and in severity of green mould disease.

  16. Genuine genetic redundancy in maleylacetate-reductase-encoding genes involved in degradation of haloaromatic compounds by Cupriavidus necator JMP134.

    Science.gov (United States)

    Pérez-Pantoja, Danilo; Donoso, Raúl A; Sánchez, Miguel A; González, Bernardo

    2009-11-01

    Maleylacetate reductases (MAR) are required for biodegradation of several substituted aromatic compounds. To date, the functionality of two MAR-encoding genes (tfdF(I) and tfdF(II)) has been reported in Cupriavidus necator JMP134(pJP4), a known degrader of aromatic compounds. These two genes are located in tfd gene clusters involved in the turnover of 2,4-dichlorophenoxyacetate (2,4-D) and 3-chlorobenzoate (3-CB). The C. necator JMP134 genome comprises at least three other genes that putatively encode MAR (tcpD, hqoD and hxqD), but confirmation of their functionality and their role in the catabolism of haloaromatic compounds has not been assessed. RT-PCR expression analyses of C. necator JMP134 cells exposed to 2,4-D, 3-CB, 2,4,6-trichlorophenol (2,4,6-TCP) or 4-fluorobenzoate (4-FB) showed that tfdF(I) and tfdF(II) are induced by haloaromatics channelled to halocatechols as intermediates. In contrast, 2,4,6-TCP only induces tcpD, and any haloaromatic compounds tested did not induce hxqD and hqoD. However, the tcpD, hxqD and hqoD gene products showed MAR activity in cell extracts and provided the MAR function for 2,4-D catabolism when heterologously expressed in MAR-lacking strains. Growth tests for mutants of the five MAR-encoding genes in strain JMP134 showed that none of these genes is essential for degradation of the tested compounds. However, the role of tfdF(I)/tfdF(II) and tcpD genes in the expression of MAR activity during catabolism of 2,4-D and 2,4,6-TCP, respectively, was confirmed by enzyme activity tests in mutants. These results reveal a striking example of genetic redundancy in the degradation of aromatic compounds.

  17. Autonomous assembly of synthetic oligonucleotides built from an expanded DNA alphabet. Total synthesis of a gene encoding kanamycin resistance

    Directory of Open Access Journals (Sweden)

    Kristen K. Merritt

    2014-10-01

    Full Text Available Background: Many synthetic biologists seek to increase the degree of autonomy in the assembly of long DNA (L-DNA constructs from short synthetic DNA fragments, which are today quite inexpensive because of automated solid-phase synthesis. However, the low information density of DNA built from just four nucleotide “letters”, the presence of strong (G:C and weak (A:T nucleobase pairs, the non-canonical folded structures that compete with Watson–Crick pairing, and other features intrinsic to natural DNA, generally prevent the autonomous assembly of short single-stranded oligonucleotides greater than a dozen or so.Results: We describe a new strategy to autonomously assemble L-DNA constructs from fragments of synthetic single-stranded DNA. This strategy uses an artificially expanded genetic information system (AEGIS that adds nucleotides to the four (G, A, C, and T found in standard DNA by shuffling hydrogen-bonding units on the nucleobases, all while retaining the overall Watson–Crick base-pairing geometry. The added information density allows larger numbers of synthetic fragments to self-assemble without off-target hybridization, hairpin formation, and non-canonical folding interactions. The AEGIS pairs are then converted into standard pairs to produce a fully natural L-DNA product. Here, we report the autonomous assembly of a gene encoding kanamycin resistance using this strategy. Synthetic fragments were built from a six-letter alphabet having two AEGIS components, 5-methyl-2’-deoxyisocytidine and 2’-deoxyisoguanosine (respectively S and B, at their overlapping ends. Gaps in the overlapped assembly were then filled in using DNA polymerases, and the nicks were sealed by ligase. The S:B pairs in the ligated construct were then converted to T:A pairs during PCR amplification. When cloned into a plasmid, the product was shown to make Escherichia coli resistant to kanamycin. A parallel study that attempted to assemble similarly sized genes

  18. MYB98 Positively Regulates a Battery of Synergid-Expressed Genes Encoding Filiform Apparatus–Localized Proteins[W

    Science.gov (United States)

    Punwani, Jayson A.; Rabiger, David S.; Drews, Gary N.

    2007-01-01

    The synergid cells within the female gametophyte are essential for reproduction in angiosperms. MYB98 encodes an R2R3-MYB protein required for pollen tube guidance and filiform apparatus formation by the synergid cells. To test the predicted function of MYB98 as a transcriptional regulator, we determined its subcellular localization and examined its DNA binding properties. We show that MYB98 binds to a specific DNA sequence (TAAC) and that a MYB98–green fluorescent protein fusion protein localizes to the nucleus, consistent with a role in transcriptional regulation. To identify genes regulated by MYB98, we tested previously identified synergid-expressed genes for reduced expression in myb98 female gametophytes and identified 16 such genes. We dissected the promoter of one of the downstream genes, DD11, and show that it contains a MYB98 binding site required for synergid expression, suggesting that DD11 is regulated directly by MYB98. To gain insight into the functions of the downstream genes, we chose five genes and determined the subcellular localization of the encoded proteins. We show that these five proteins are secreted into the filiform apparatus, suggesting that they play a role in either the formation or the function of this unique structure. Together, these data suggest that MYB98 functions as a transcriptional regulator in the synergid cells and activates the expression of genes required for pollen tube guidance and filiform apparatus formation. PMID:17693534

  19. The cDNA sequences encoding two components of the polymeric fraction of the intracellular hemoglobin of Glycera dibranchiata.

    Science.gov (United States)

    Zafar, R S; Chow, L H; Stern, M S; Scully, J S; Sharma, P R; Vinogradov, S N; Walz, D A

    1990-12-15

    The intracellular hemoglobin of the polychaete Glycera dibranchiata consists of several components, some of which self-associate into a "polymeric" fraction. The cDNA library constructed from the poly(A+) mRNA of Glycera erythrocytes (Simons, P. C., and Satterlee, J. D. (1989) Biochemistry 28, 8525-8530) was screened with two oligodeoxynucleotide probes corresponding to the amino acid sequences MEEKVP and AMNSKV. Each of the two probes identified a full-length positive insert; these were sequenced using the dideoxynucleotide chain termination method. One clone was 630 bases long and contained 36 bases of 5'-untranslated RNA, a reading frame of 441 bases coding for the 147 amino acids of globin P2 including the residues MEEKVP, and a 3'-untranslated region of 153 bases. The other clone was 540 bases long and contained 24 bases of 5'-untranslated RNA, an open reading frame of 441 bases coding for globin P3 including the residues AMNSKV, and a 3'-untranslated region of 75 bases. The inferred amino acid sequences of the two globins were in agreement with the partial amino acid sequences obtained by chemical methods. The P2 and P3 globin sequences, together with the previously determined P1 sequence of a complete insert and partial sequences P4, P5, and P6 obtained from partial inserts (Zafar, R. S., Chow, L. H., Stern, M. S., Vinogradov, S. N., and Walz, D. A. (1990) Biochim. Biophys. Acta, in press) suggest that there are at least six components in the polymeric fraction of Glycera hemoglobin, which is in agreement with the results of polyacrylamide gel electrophoresis in Tris/glycine buffer, pH 8.3, 6 M urea. Nothern and dot blot analyses of Glycera erythrocyte poly(A+) mRNA using the foregoing two cDNA probes clearly demonstrated the presence of mature messages encoding both types of globins. Comparison of the polymeric sequences P1, P2, and P3 with the "monomeric" globins M-II and M-IV using the alignment and templates of Bashford et al. (Bashford, D., Chothia, C

  20. Characterization of mouse UDP-glucose pyrophosphatase, a Nudix hydrolase encoded by the Nudt14 gene

    Energy Technology Data Exchange (ETDEWEB)

    Heyen, Candy A.; Tagliabracci, Vincent S.; Zhai, Lanmin [Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Roach, Peter J., E-mail: proach@iupui.edu [Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States)

    2009-12-25

    Recombinant mouse UDP-glucose pyrophosphatase (UGPPase), encoded by the Nudt14 gene, was produced in Escherichia coli and purified close to homogeneity. The enzyme catalyzed the conversion of [{beta}-{sup 32}P]UDP-glucose to [{sup 32}P]glucose-1-P and UMP, confirming that it hydrolyzed the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. The enzyme was also active toward ADP-ribose. Activity is dependent on the presence of Mg{sup 2+} and was greatest at alkaline pH above 8. Kinetic analysis indicated a K{sub m} of {approx}4 mM for UDP-glucose and {approx}0.3 mM for ADP-ribose. Based on V{sub max}/K{sub m} values, the enzyme was {approx}20-fold more active toward ADP-ribose. UGPPase behaves as a dimer in solution and can be cross-linked to generate a species of M{sub r} 54,000 from a monomer of 30,000 as judged by SDS-PAGE. The dimerization was not affected by the presence of glucose-1-P or UDP-glucose. Using antibodies raised against the recombinant protein, Western analysis indicated that UGPPase was widely expressed in mouse tissues, including skeletal muscle, liver, kidney, heart, lung, fat, heart and pancreas with a lower level in brain. It was generally present as a doublet when analyzed by SDS-PAGE, suggesting the occurrence of some form of post-translational modification. Efforts to interconvert the species by adding or inhibiting phosphatase activity were unsuccessful, leaving the nature of the modification unknown. Sequence alignments and database searches revealed related proteins in species as distant as Drosophila melanogaster and Caenorhabditis elegans.

  1. Characterization of a Chitin Synthase Encoding Gene and Effect of Diflubenzuron in Soybean Aphid, Aphis Glycines

    Directory of Open Access Journals (Sweden)

    Raman Bansal, M. A. Rouf Mian, Omprakash Mittapalli, Andy P. Michel

    2012-01-01

    Full Text Available Chitin synthases are critical enzymes for synthesis of chitin and thus for subsequent growth and development in insects. We identified the cDNA of chitin synthase gene (CHS in Aphis glycines, the soybean aphid, which is a serious pest of soybean. The full-length cDNA of CHS in A. glycines (AyCHS was 5802 bp long with an open reading frame of 4704 bp that encoded for a 1567 amino acid residues protein. The predicted AyCHS protein had a molecular mass of 180.05 kDa and its amino acid sequence contained all the signature motifs (EDR, QRRRW and TWGTR of chitin synthases. The quantitative real-time PCR (qPCR analysis revealed that AyCHS was expressed in all major tissues (gut, fat body and integument; however, it had the highest expression in integument (~3.5 fold compared to gut. Interestingly, the expression of AyCHS in developing embryos was nearly 7 fold higher compared to adult integument, which probably is a reflection of embryonic molts in hemimetabolus insects. Expression analysis in different developmental stages of A. glycines revealed a consistent AyCHS expression in all stages. Further, through leaf dip bioassay, we tested the effect of diflubenzuron (DFB, Dimilin ®, a chitin-synthesis inhibitor, on A. glycines' survival, fecundity and body weight. When fed with soybean leaves previously dipped in 50 ppm DFB solution, A. glycines nymphs suffered significantly higher mortality compared to control. A. glycines nymphs feeding on diflubenzuron treated leaves showed a slightly enhanced expression (1.67 fold of AyCHS compared to nymphs on untreated leaves. We discussed the potential applications of the current study to develop novel management strategies using chitin-synthesis inhibitors and using RNAi by knocking down AyCHS expression.

  2. Improvement in efficacy of DNA vaccine encoding HIV-1 Vif by LIGHT gene adjuvant.

    Science.gov (United States)

    Du, Jiani; Wu, Xiaoyu; Long, Fengying; Wen, Jiejun; Hao, Wenli; Chen, Ran; Kong, Xiaobo; Qian, Min; Jiang, Wenzheng

    2013-02-01

    DNA vaccine can induce the prolonged immune responses against the encoded antigen with the appropriate adjuvant. To study the immunogenicity of the HIV-1 vif DNA vaccine in inducing the humoral and cellular immune responses and the immunoadjuvant effect of LIGHT, which is a member of TNF superfamily and can stimulate the proliferation of naïve T cells as a co-stimulatory molecule, DNA vaccine plasmid pcDNA-Vif was constructed by inserting HIV-1 vif gene into the downstream of CMV promoter in eukaryotic expression vector pcDNA3.1(+). In vitro expression of HIV-1 Vif in pcDNA-Vif-transfected HeLa cells was confirmed in transcriptional and protein level by RT-PCR and Western blot, respectively. After BALB/c mice were injected muscularly with DNA vaccines for three times, the specific immune responses were analyzed. The data showed that anti-Vif antibody response, Vif-specific T cell proliferation, and CTL activities were induced in the mice that were inoculated with HIV-1 vif DNA vaccine plasmid. Interestingly, stronger humoral and cellular immune responses were detected in mice that were immunized with plasmid pcDNA-Vif and pcDNA-LIGHT together compared to the single immunization with plasmid pcDNA-Vif alone. Together, the results of the study suggest that candidate HIV-1 DNA vaccine can elicit HIV-1 Vif-specific immune responses in mice and that LIGHT plays the role of immunoadjuvant in co-immunization with DNA vaccine.

  3. cDNA sequence, gene structure, and in vitro expression of ace-1, the gene encoding acetylcholinesterase of class A in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Arpagaus, M; Fedon, Y; Cousin, X; Chatonnet, A; Bergé, J B; Fournier, D; Toutant, J P

    1994-04-01

    Three genes, ace-1, ace-2, and ace-3, encode three acetylcholinesterase classes (A, B, and C) in the nematode Caenorhabditis elegans. A fragment of genomic DNA was amplified by a polymerase chain reaction (PCR) using degenerate oligonucleotides based on sequences conserved in the cholinesterase family. This fragment mapped to chromosome X at a position that perfectly matched the location of ace-1 previously determined by genetic methods. Comparison of genomic and cDNA sequences showed that the open reading frame was interrupted by eight introns. The product of ace-1 (ACE-1, 620 amino acids) presented 42% identity with Torpedo and human acetylcholinesterases, 41% with human butyrylcholinesterase, and 35% with Drosophila acetylcholinesterase. The overall structure of cholinesterases was conserved in ACE-1 as indicated by the conserved sequence positions of Ser-216, His-468, and Glu-346 (S200, H440, E327 in Torpedo (AChE) as components of the catalytic triad, of the six cysteines which form three intrachain disulfide bonds, and of Trp-99(84), a critical side chain in the choline binding site. Spodoptera Sf9 cells were infected by a recombinant baculovirus containing ace-1 cDNA. The secreted enzyme was active and existed as hydrophilic 5 and 11.5 S molecular forms. It hydrolyzed both acetylthiocholine and butyrylthiocholine and was inhibited by acetylthiocholine above 10 mM.

  4. Erwinia carotovora DsbA mutants: evidence for a periplasmic-stress signal transduction system affecting transcription of genes encoding secreted proteins.

    Science.gov (United States)

    Vincent-Sealy, L V; Thomas, J D; Commander, P; Salmond, G P

    1999-08-01

    The dsbA genes, which encode major periplasmic disulfide-bond-forming proteins, were isolated from Erwinia carotovora subsp. carotovora (Ecc) and Erwinia carotovora subsp. atroseptica (Eca), and the dsbC gene, encoding another periplasmic disulfide oxidoreductase was isolated from Ecc. All three genes were sequenced and mutants deficient in these genes were created by marker exchange mutagenesis. The Ecc mutants were severely affected in activity and secretion of pectate lyase, probably due to the absence of functional PelC, which is predicted to require disulfide bond formation to achieve its correct conformation prior to secretion across the outer membrane. Similarly, endopolygalacturonase, also predicted to possess disulfide bonds, displayed reduced activity. The major Ecc cellulase (CelV) does not contain cysteine residues and was still secreted in dsbA-deficient strains. This observation demonstrated unequivocally that the localization and activity of the individual components of the Out apparatus are independent of disulfide bond formation. Surprisingly, cellulase activity was shown to be increased approximately two- to threefold in the DsbA mutant. This phenomenon resulted from transcriptional up-regulation of celV gene expression. In contrast, transcription of both pelC and peh were down-regulated in dsbA-deficient strains when compared to the wild-type. Protease (Prt) activity and secretion were unaffected in the Ecc dsbA mutant. Prt activity was considerably reduced in the double dsbA dsbC mutant. However Prt was secreted normally in this strain. The Eca dsbA mutant was found to be non-motile, suggesting that disulfide bond formation is essential for motility in this strain. All of the dsb mutants showed reduced tissue maceration in planta. These results suggest that a feedback regulation system operates in Ecc. In this system, defects in periplasmic disulfide bond formation act as a signal which is relayed to the transcription machinery regulating gene

  5. AMD-associated genes encoding stress-activated MAPK pathway constituents are identified by interval-based enrichment analysis.

    Directory of Open Access Journals (Sweden)

    John Paul SanGiovanni

    Full Text Available PURPOSE: To determine whether common DNA sequence variants within groups of genes encoding elements of stress-activated mitogen-activated protein kinase (MAPK signaling pathways are, in aggregate, associated with advanced AMD (AAMD. METHODS: We used meta-regression and exact testing methods to identify AAMD-associated SNPs in 1177 people with AAMD and 1024 AMD-free elderly peers from 3 large-scale genotyping projects on the molecular genetics of AMD. SNPs spanning independent AAMD-associated genomic intervals were examined with a multi-locus-testing method (INRICH for enrichment within five sets of genes encoding constituents of stress-activated MAPK signaling cascades. RESULTS: Four-of-five pathway gene sets showed enrichment with AAMD-associated SNPs; findings persisted after adjustment for multiple testing in two. Strongest enrichment signals (P = 0.006 existed in a c-Jun N-terminal kinase (JNK/MAPK cascade (Science Signaling, STKE CMP_10827. In this pathway, seven independent AAMD-associated regions were resident in 6 of 25 genes examined. These included sequence variants in: 1 three MAP kinase kinase kinases (MAP3K4, MAP3K5, MAP3K9 that phosphorylate and activate the MAP kinase kinases MAP2K4 and MAP2K7 (molecules that phosphorylate threonine and tyrosine residues within the activation loop of JNK; 2 a target of MAP2K7 (JNK3A1 that activates complexes involved in transcriptional regulation of stress related genes influencing cell proliferation, apoptosis, motility, metabolism and DNA repair; and 3 NR2C2, a transcription factor activated by JNK1A1 (a drugable molecule influencing retinal cell viability in model systems. We also observed AAMD-related sequence variants resident in genes encoding PPP3CA (a drugable molecule that inactivates MAP3K5, and two genes (TGFB2, TGFBR2 encoding factors involved in MAPK sensing of growth factors/cytokines. CONCLUSIONS: Linkage disequilibrium (LD-independent genomic enrichment analysis yielded

  6. Exons I and VII of the gene (Ker10) encoding human keratin 10 undergo structural rearrangements within repeats.

    Science.gov (United States)

    Tkachenko, A V; Buchman, V L; Bliskovsky, V V; Shvets YuP; Kisselev, L L

    1992-07-15

    A genomic fragment containing the K51 gene previously isolated from a rat genomic library by hybridization with the v-mos probe in nonstringent conditions [Chumakov et al., Dokl. Akad. Nauk SSSR 290 (1986) 1252-1254], resembles a human keratin type-I-encoding gene [Shvets et al., Mol. Biol. 24 (1990) 663-677]. This genomic clone, K51, has been used as a probe to search for related human genes. A recombinant clone, HK51, with a 1.5-kb insert, was isolated from a human embryonic skin cDNA library, and its nucleotide (nt) sequence was determined. Analysis has shown that the cloned cDNA encodes human keratin 10 (Ker10). All presently known nt sequences of the human Ker10-encoding gene (Ker10) are not identical. Differences are concentrated in the 5'-end of the first exon and in the middle of the seventh exon within repeats. In spite of structural rearrangements in two of eight exons, the reading frame and position of the stop codon are preserved. The genetic rearrangements cause changes in hydrophobicity profiles of the N and C termini of Ker10. It was also noticed that insertion of one nt leads to the formation of an unusual 3'-end of the transcript.

  7. The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS in Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Hartmann Michelle

    2007-11-01

    Full Text Available Abstract Background The major uptake system responsible for the transport of fructose, glucose, and sucrose in Corynebacterium glutamicum ATCC 13032 is the phosphoenolpyruvate:sugar phosphotransferase system (PTS. The genes encoding PTS components, namely ptsI, ptsH, and ptsF belong to the fructose-PTS gene cluster, whereas ptsG and ptsS are located in two separate regions of the C. glutamicum genome. Due to the localization within and adjacent to the fructose-PTS gene cluster, two genes coding for DeoR-type transcriptional regulators, cg2118 and sugR, are putative candidates involved in the transcriptional regulation of the fructose-PTS cluster genes. Results Four transcripts of the extended fructose-PTS gene cluster that comprise the genes sugR-cg2116, ptsI, cg2118-fruK-ptsF, and ptsH, respectively, were characterized. In addition, it was shown that transcription of the fructose-PTS gene cluster is enhanced during growth on glucose or fructose when compared to acetate. Subsequently, the two genes sugR and cg2118 encoding for DeoR-type regulators were mutated and PTS gene transcription was found to be strongly enhanced in the presence of acetate only in the sugR deletion mutant. The SugR regulon was further characterized by microarray hybridizations using the sugR mutant and its parental strain, revealing that also the PTS genes ptsG and ptsS belong to this regulon. Binding of purified SugR repressor protein to a 21 bp sequence identified the SugR binding site as an AC-rich motif. The two experimentally identified SugR binding sites in the fructose-PTS gene cluster are located within or downstream of the mapped promoters, typical for transcriptional repressors. Effector studies using electrophoretic mobility shift assays (EMSA revealed the fructose PTS-specific metabolite fructose-1-phosphate (F-1-P as a highly efficient, negative effector of the SugR repressor, acting in the micromolar range. Beside F-1-P, other sugar-phosphates like fructose

  8. Identification and Partial Sequence of a PLD -like Gene Encoding for Phospholipase D in Peanut

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Preharvest aflatoxin contamination has been identified by thepeanut industry as the most serious challenge facing the industry worldwide. Drought stress is the most important environmental factor exacerbat ing Aspergillus inection and aflatoxin contamination in peanut. Development of resistant peanut cultivars would represent a major advance for the U.S. Peanut industry. In this study, we identify a novel PLD - like gene, encoding a putative phospholipase D, a main enzyme responsible for the drought - induced degradation of membrane phospholipids in plants. This cloned PLDI fragment has 1069 bp nucleic acids and the deduced amino acid sequence shows high identity with known PLD genes, having similar conserved features, such as two HXKXXXXD motifs. Further study is needed to genetically and physiologically characterize the PLD in peanut and to gain a better understanding of its function and relationship with drought - tolerance.%花生工业界认为收获前花生黄曲霉毒素的污染是全世界花生工业界面临的最严峻的挑战.干旱胁迫是加重花生黄曲霉真菌侵染和毒素污染最重要的环境因素.选育花生抗性品种将使美国花生工业处于优势地位.在这一研究报告中,我们鉴定出了一个新的类PLD基因,它编码磷脂酶D.在植物体中,这个酶是负责干旱诱导降解细胞膜磷脂的主要酶.克隆的PLDI片段有1069个核甘酸对长.推导的氨基酸序列与已知的PLD基因有很高的同一性,包括相似的保守序列特征,比如两个HXKXXXXD基元.对花生PLD基因特性需要从遗传和生理上作进一步研究,以便更好地理解这个基因的功能及其与花生耐干旱性的关系.

  9. SseA is a chaperone for the SseB and SseD translocon components of the Salmonella pathogenicity-island-2-encoded type III secretion system.

    Science.gov (United States)

    Ruiz-Albert, Javier; Mundy, Rosanna; Yu, Xiu-Jun; Beuzón, Carmen R; Holden, David W

    2003-05-01

    The type III secretion system (TTSS) encoded by the Salmonella pathogenicity island 2 (SPI-2) is required for bacterial replication inside macrophages and for systemic infection in mice. Many TTSS secreted proteins, including effectors and components of the translocon, require chaperones which promote their stability, prevent their premature interactions or facilitate their secretion. In this study, the function of the first gene (sseA) of one of the SPI-2 operons (sseA-G) was investigated. This operon includes genes that encode translocon components (SseB, SseC and SseD), translocated proteins (SseF and SseG) and putative chaperones (SscA and SscB). sseA encodes a 12.5 kDa protein with a C-terminal region with the potential to form a coiled-coil structure, but no sequence similarity to other proteins. Mutation of sseA results in severe virulence attenuation and an intracellular replication defect. It is shown here that SseA is not a secreted protein, but is required for SPI-2-dependent translocation of two effector proteins (SifA and PipB). Furthermore, the translocon components SseB and SseD were not detected in an sseA mutant strain. By using a yeast two-hybrid assay and column binding experiments, it is demonstrated that SseA interacts directly with SseB and SseD. These results indicate that SseA is a chaperone for SseB and SseD. The inability of an sseA mutant to assemble the SPI-2 TTSS translocon accounts for its high level of virulence attenuation in vivo. To the authors' knowledge, this is the first chaperone described for the SPI-2 TTSS.

  10. A negative element involved in Kaposi's sarcoma-associated herpesvirus-encoded ORF11 gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lei [Los Alamos National Laboratory

    2009-01-01

    The ORF11 of the Kaposi's sarcoma-associated herpesvirus (KSHV) is a lytic viral gene with delayed-early expression kinetics. How the ORF11 gene expression is regulated in the KSHV lytic cascade is largely unknown. Here we report that the deletion of the KSHV viral IL-6 gene from the viral genome leads to deregulated ORF11 gene expression. The KSHV-encoded viral IL-6 protein was found not to be essentially involved in the regulation of ORF11, suggesting a potential transcriptional cis-regulation. A negative element was identified downstream of the ORF11 gene, which suppresses the ORF11 basal promoter activity in a position-independent manner.

  11. Construction and expression of retroviruses encoding dual drug resistance genes in human umbilical cord blood CD34+ cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A series of retroviral vectors encoding human mdr1 gene alone as well as in combination with either human mgmt gene or human mutant Ser31-dhfr gene are engineered. The resultant retroviruses are used to transduce human umbilical cord blood CD34+ cells. It has been shown that expression of dual drug resistance genes in transduced cells confers a broad range of resistance to both kinds of corresponding drugs. These data suggest a rationale for the use of such double chemoresistance gene constructs in an in vivo model in which transduced hematopoietic cells will acquire multiple protection against the cytotoxic side effects of combination chemotherapy and may have future application in chemoprotection of normal tissues, thus killing tumor cells more effectively.

  12. Determination of ploidy level and isolation of genes encoding acetyl-CoA carboxylase in Japanese Foxtail (Alopecurus japonicus.

    Directory of Open Access Journals (Sweden)

    Hongle Xu

    Full Text Available Ploidy level is important in biodiversity studies and in developing strategies for isolating important plant genes. Many herbicide-resistant weed species are polyploids, but our understanding of these polyploid weeds is limited. Japanese foxtail, a noxious agricultural grass weed, has evolved herbicide resistance. However, most studies on this weed have ignored the fact that there are multiple copies of target genes. This may complicate the study of resistance mechanisms. Japanese foxtail was found to be a tetraploid by flow cytometer and chromosome counting, two commonly used methods in the determination of ploidy levels. We found that there are two copies of the gene encoding plastidic acetyl-CoA carboxylase (ACCase in Japanese foxtail and all the homologous genes are expressed. Additionally, no difference in ploidy levels or ACCase gene copy numbers was observed between an ACCase-inhibiting herbicide-resistant and a herbicide-sensitive population in this study.

  13. Magnaporthe oryzae MTP1 gene encodes a type Ⅲ transmembrane protein involved in conidiation and conidial germination

    Institute of Scientific and Technical Information of China (English)

    Qin LU; Jian-ping LU; Xiao-dong LI; Xiao-hong LIU; Hang MIN; Fu-cheng LIN

    2008-01-01

    In this study the MTP1 gene, encoding a type Ⅲ integral transmembrane protein, was isolated fi'om the rice blast fungus Magnaporthe oryzae. The Mtpl protein is 520 amino acids long and is comparable to the Ytpl protein of Saccharomyces cerevisiae with 46% sequence similarity. Prediction programs and MTP1-GFP (green fluorescent protein) fusion expression results indicate that Mtpl is a protein located at several membranes in the cytoplasm. The functions of the MTP1 gene in the growth and development of the fungus were studied using an MTP1 gene knockout mutant. The MTP1 gene was primarily ex-pressed at the hyphal and conidial stages and is necessary for conidiation and conidial germination, but is not required for patho-genicity. The △mtpl mutant grew more efficiently than the wild type strain on non-fermentable carbon sources, implying that the MTP1 gene has a unique role in respiratory growth and carbon source use.

  14. The Ph-3 gene from Solanum pimpinellifolium encodes CC-NBS-LRR protein conferring resistance to Phytophthora infestans.

    Science.gov (United States)

    Zhang, Chunzhi; Liu, Lei; Wang, Xiaoxuan; Vossen, Jack; Li, Guangcun; Li, Tao; Zheng, Zheng; Gao, Jianchang; Guo, Yanmei; Visser, Richard G F; Li, Junming; Bai, Yuling; Du, Yongchen

    2014-06-01

    Ph-3 is the first cloned tomato gene for resistance to late blight and encodes a CC-NBS-LRR protein. Late blight, caused by Phytophthora infestans, is one of the most destructive diseases in tomato. The resistance (R) gene Ph-3, derived from Solanum pimpinellifolium L3708, provides resistance to multiple P. infestans isolates and has been widely used in tomato breeding programmes. In our previous study, Ph-3 was mapped into a region harbouring R gene analogues (RGA) at the distal part of long arm of chromosome 9. To further narrow down the Ph-3 interval, more recombinants were identified using the flanking markers G2-4 and M8-2, which defined the Ph-3 gene to a 26 kb region according to the Heinz1706 reference genome. To clone the Ph-3 gene, a bacterial artificial chromosome (BAC) library was constructed using L3708 and one BAC clone B25E21 containing the Ph-3 region was identified. The sequence of the BAC clone B25E21 showed that only one RGA was present in the target region. A subsequent complementation analysis demonstrated that this RGA, encoding a CC-NBS-LRR protein, was able to complement the susceptible phenotype in cultivar Moneymaker. Thus this RGA was considered the Ph-3 gene. The predicted Ph-3 protein shares high amino acid identity with the chromosome-9-derived potato resistance proteins against P. infestans (Rpi proteins).

  15. Cloning and characterization of SmZF1, a gene encoding a Schistosoma mansoni zinc finger protein

    Directory of Open Access Journals (Sweden)

    Souza Paulo R Eleutério de

    2001-01-01

    Full Text Available The zinc finger motifs (Cys2His2 are found in several proteins playing a role in the regulation of transcripton. SmZF1, a Schistosoma mansoni gene encoding a zinc finger protein was initially isolated from an adult worm cDNA library, as a partial cDNA. The full sequence of the gene was obtained by subcloning and sequencing cDNA and genomic fragments. The collated gene sequence is 2181 nt and the complete cDNA sequence is 705 bp containing the full open reading frame of the gene. Analysis of the genome sequence revealed the presence of three introns interrupting the coding region. The open reading frame theoretically encodes a protein of 164 amino acids, with a calculated molecular mass of 18,667Da. The predicted protein contains three zinc finger motifs, usually present in transcription regulatory proteins. PCR amplification with specific primers for the gene allowed for the detection of the target in egg, cercariae, schistosomulum and adult worm cDNA libraries indicating the expression of the mRNA in these life cycle stages of S. mansoni. This pattern of expression suggests the gene plays a role in vital functions of different life cycle stages of the parasite. Future research will be directed to elucidate the functional role of SmZF1.

  16. The carB Gene Encoding the Large Subunit of Carbamoylphosphate Synthetase from Lactococcus lactis Is Transcribed Monocistronically

    Science.gov (United States)

    Martinussen, Jan; Hammer, Karin

    1998-01-01

    The biosynthesis of carbamoylphosphate is catalyzed by the heterodimeric enzyme carbamoylphosphate synthetase. The genes encoding the two subunits of this enzyme in procaryotes are normally transcribed as an operon, but the gene encoding the large subunit (carB) in Lactococcus lactis is shown to be transcribed as an isolated unit. Carbamoylphosphate is a precursor in the biosynthesis of both pyrimidine nucleotides and arginine. By mutant analysis, L. lactis is shown to possess only one carB gene; the same gene product is thus required for both biosynthetic pathways. Furthermore, arginine may satisfy the requirement for carbamoylphosphate in pyrimidine biosynthesis through degradation by means of the arginine deiminase pathway. The expression of the carB gene is subject to regulation at the level of transcription by pyrimidines, most probably by an attenuator mechanism. Upstream of the carB gene, an open reading frame showing a high degree of similarity to those of glutathione peroxidases from other organisms was identified. PMID:9721272

  17. [Impact of benzo [a] pyrene the expression of mitochondrion-encoded genes in the earthworm Eisenia fetida].

    Science.gov (United States)

    Zheng, Sen-lin; Song, Yu-fang; Qiu, Xiao-yan; Sun, Tie-heng; Zhang, Wei; Ackland, M L

    2008-02-01

    The earthworm Eisenia fetida's benzo [a] pyrene (BaP) exposure experiments were carried out in artificial soil according to ISO 11268-1:1993. And then the upregulated and downregulated subtractive cDNA libraries were constructed by Clontech PCR-Select cDNA Subtration Kit. From the BaP exposure upregulated subtractive cDNA library, several cDNA segments matched mitochondrion-encoded genes were found, including cytochrome c oxidase subunit I (CO I), subunit II (CO II), subunit Ill (CO III), NADH dehydrogenase subunit 1 (NDH1), and ATP synthase subunit 6. The result indicated BaP and the subsequent oxidative stress disturbed the expression of mitochondrion-encoded genes, and this was potential biomarker for oxidative stress following xenobiotic exposure.

  18. A deletion in the gene encoding sphingomyelin phosphodiesterase 3 (Smpd3) results in osteogenesis and dentinogenesis imperfecta in the mouse.

    Science.gov (United States)

    Aubin, Isabelle; Adams, Carolyn P; Opsahl, Sibylle; Septier, Dominique; Bishop, Colin E; Auge, Nathalie; Salvayre, Robert; Negre-Salvayre, Anne; Goldberg, Michel; Guénet, Jean-Louis; Poirier, Christophe

    2005-08-01

    The mouse mutation fragilitas ossium (fro) leads to a syndrome of severe osteogenesis and dentinogenesis imperfecta with no detectable collagen defect. Positional cloning of the locus identified a deletion in the gene encoding neutral sphingomyelin phosphodiesterase 3 (Smpd3) that led to complete loss of enzymatic activity. Our knowledge of SMPD3 function is consistent with the pathology observed in mutant mice and provides new insight into human pathologies.

  19. Variation in the Gene Encoding the Serotonin Transporter is Associated with a Measure of Sociopathy in Alcoholics

    OpenAIRE

    Herman, Aryeh I.; Conner, Tamlin S.; Anton, Raymond F; Gelernter, Joel; Kranzler, Henry R.; Covault, Jonathan

    2011-01-01

    The present study examined the association between a measure of sociopathy and 5-HTTLPR genotype in a sample of individuals from Project MATCH, a multi-center alcohol treatment trial. 5-HTTLPR, an insertion/deletion polymorphism in SLC6A4, the gene encoding the serotonin transporter protein, results in functionally distinct long (L) and short (S) alleles. The S allele has been associated with a variety of psychiatric disorders and symptoms including alcohol dependence, but it is unknown wheth...

  20. The Issue of Secretion in Heterologous Expression of Clostridium cellulolyticum Cellulase-Encoding Genes in Clostridium acetobutylicum ATCC 824▿

    Science.gov (United States)

    Mingardon, Florence; Chanal, Angélique; Tardif, Chantal; Fierobe, Henri-Pierre

    2011-01-01

    The genes encoding the cellulases Cel5A, Cel8C, Cel9E, Cel48F, Cel9G, and Cel9M from Clostridium cellulolyticum were cloned in the C. acetobutylicum expression vector pSOS952 under the control of a Gram-positive constitutive promoter. The DNA encoding the native leader peptide of the heterologous cellulases was maintained. The transformation of the solventogenic bacterium with the corresponding vectors generated clones in the cases of Cel5A, Cel8C, and Cel9M. Analyses of the recombinant strains indicated that the three cellulases are secreted in an active form to the medium. A large fraction of the secreted cellulases, however, lost the C-terminal dockerin module. In contrast, with the plasmids pSOS952-cel9E, pSOS952-cel48F, and pSOS952-cel9G no colonies were obtained, suggesting that the expression of these genes has an inhibitory effect on growth. The deletion of the DNA encoding the leader peptide of Cel48F in pSOS952-cel48F, however, generated strains of C. acetobutylicum in which mature Cel48F accumulates in the cytoplasm. Thus, the growth inhibition observed when the wild-type cel48F gene is expressed seems related to the secretion of the cellulase. The weakening of the promoter, the coexpression of miniscaffoldin-encoding genes, or the replacement of the native signal sequence of Cel48F by that of secreted heterologous or endogenous proteins failed to generate strains secreting Cel48F. Taken together, our data suggest that a specific chaperone(s) involved in the secretion of the key family 48 cellulase, and probably Cel9G and Cel9E, is missing or insufficiently synthesized in C. acetobutylicum. PMID:21378034

  1. Toward understanding the functional role of Ss-RIOK-1, a RIO protein kinase-encoding gene of Strongyloides stercoralis.

    Directory of Open Access Journals (Sweden)

    Wang Yuan

    2014-08-01

    Full Text Available Some studies of Saccharomyces cerevisiae and mammals have shown that RIO protein kinases (RIOKs are involved in ribosome biogenesis, cell cycle progression and development. However, there is a paucity of information on their functions in parasitic nematodes. We aimed to investigate the function of RIOK-1 encoding gene from Strongyloides stercoralis, a nematode parasitizing humans and dogs.The RIOK-1 protein-encoding gene Ss-riok-1 was characterized from S. stercoralis. The full-length cDNA, gDNA and putative promoter region of Ss-riok-1 were isolated and sequenced. The cDNA comprises 1,828 bp, including a 377 bp 5'-UTR, a 17 bp 3'-UTR and a 1,434 bp ORF encoding a protein of 477 amino acids containing a RIOK-1 signature motif. The genomic sequence of the Ss-riok-1 coding region is 1,636 bp in length and has three exons and two introns. The putative promoter region comprises 4,280 bp and contains conserved promoter elements, including four CAAT boxes, 12 GATA boxes, eight E-boxes (CANNTG and 38 TATA boxes. The Ss-riok-1 gene is transcribed throughout all developmental stages with the highest transcript abundance in the infective third-stage larva (iL3. Recombinant Ss-RIOK-1 is an active kinase, capable of both phosphorylation and auto-phosphorylation. Patterns of transcriptional reporter expression in transgenic S. stercoralis larvae indicated that Ss-RIOK-1 is expressed in neurons of the head, body and tail as well as in pharynx and hypodermis.The characterization of the molecular and the temporal and spatial expression patterns of the encoding gene provide first clues as to functions of RIOKs in the biological processes of parasitic nematodes.

  2. Identification and Molecular Characterization of a Gene Encoding a Protective Leishmania amazonensis Trp-Asp (WD) Protein

    OpenAIRE

    2004-01-01

    Several Leishmania proteins have been identified and characterized in pursuit of understanding pathogenesis and protection in cutaneous leishmaniasis. In the present study, we utilized sera from infected BALB/c mice to screen a Leishmania amazonensis amastigote cDNA expression library and obtained the full-length gene that encodes a novel Trp-Asp (WD) protein designated LAWD (for Leishmania antigenic WD protein). The WD family of proteins mediates protein-protein interactions and coordinates ...

  3. Draft Genome Sequence of Escherichia coli S51, a Chicken Isolate Harboring a Chromosomally Encoded mcr-1 Gene.

    Science.gov (United States)

    Zurfluh, Katrin; Tasara, Taurai; Poirel, Laurent; Nordmann, Patrice; Stephan, Roger

    2016-08-04

    We present the draft genome of Escherichia coli S51, a colistin-resistant extended-spectrum β-lactamase-producing strain isolated in 2015 from raw chicken meat imported from Germany. Assembly and annotation of this draft genome resulted in a 4,994,918-bp chromosome and revealed a chromosomally encoded mcr-1 gene responsible for the colistin resistance of the strain. Copyright © 2016 Zurfluh et al.

  4. Excretion of putrescine by the putrescine-ornithine antiporter encoded by the potE gene of Escherichia coli.

    OpenAIRE

    Kashiwagi, K; Miyamoto, S.; Suzuki, F; Kobayashi, H.; Igarashi, K.

    1992-01-01

    Excretion of putrescine from Escherichia coli was assessed by measuring its uptake into inside-out membrane vesicles. The vesicles were prepared from wild-type E. coli or E. coli transformed with plasmids containing one of the three polyamine transport systems. The results indicate that excretion of putrescine is catalyzed by the putrescine transport protein, encoded by the potE gene located at 16 min on the E. coli chromosome. Loading of ornithine (or lysine) inside the vesicles was essentia...

  5. Heterologous expression and biochemical characterization of an α1,2-mannosidase encoded by the Candida albicans MNS1 gene

    OpenAIRE

    2008-01-01

    Protein glycosylation pathways, commonly found in fungal pathogens, offer an attractive new area of study for the discovery of antifungal targets. In particular, these post-translational modifications are required for virulence and proper cell wall assembly in Candida albicans, an opportunistic human pathogen. The C. albicans MNS1 gene is predicted to encode a member of the glycosyl hydrolase family 47, with 1,2-mannosidase activity. In order to characterise its activity, we first cloned the ...

  6. Gene electro transfer of plasmid encoding vascular endothelial growth factor for enhanced expression and perfusion in the ischemic swine heart.

    Directory of Open Access Journals (Sweden)

    Barbara Hargrave

    Full Text Available Myocardial ischemia can damage heart muscle and reduce the heart's pumping efficiency. This study used an ischemic swine heart model to investigate the potential for gene electro transfer of a plasmid encoding vascular endothelial growth factor for improving perfusion and, thus, for reducing cardiomyopathy following acute coronary syndrome. Plasmid expression was significantly greater in gene electro transfer treated tissue compared to injection of plasmid encoding vascular endothelial growth factor alone. Higher gene expression was also seen in ischemic versus non-ischemic groups with parameters 20 Volts (p<0.03, 40 Volts (p<0.05, and 90 Volts (p<0.05, but not with 60 Volts (p<0.09 while maintaining a pulse width of 20 milliseconds. The group with gene electro transfer of plasmid encoding vascular endothelial growth factor had increased perfusion in the area at risk compared to control groups. Troponin and creatine kinase increased across all groups, suggesting equivalent ischemia in all groups prior to treatment. Echocardiography was used to assess ejection fraction, cardiac output, stroke volume, left ventricular end diastolic volume, and left ventricular end systolic volume. No statistically significant differences in these parameters were detected during a 2-week time period. However, directional trends of these variables were interesting and offer valuable information about the feasibility of gene electro transfer of vascular endothelial growth factor in the ischemic heart. The results demonstrate that gene electro transfer can be applied safely and can increase perfusion in an ischemic area. Additional study is needed to evaluate potential efficacy.

  7. Digital encoding of cellular mRNAs enabling precise and absolute gene expression measurement by single-molecule counting.

    Science.gov (United States)

    Fu, Glenn K; Wilhelmy, Julie; Stern, David; Fan, H Christina; Fodor, Stephen P A

    2014-03-18

    We present a new approach for the sensitive detection and accurate quantitation of messenger ribonucleic acid (mRNA) gene transcripts in single cells. First, the entire population of mRNAs is encoded with molecular barcodes during reverse transcription. After amplification of the gene targets of interest, molecular barcodes are counted by sequencing or scored on a simple hybridization detector to reveal the number of molecules in the starting sample. Since absolute quantities are measured, calibration to standards is unnecessary, and many of the relative quantitation challenges such as polymerase chain reaction (PCR) bias are avoided. We apply the method to gene expression analysis of minute sample quantities and demonstrate precise measurements with sensitivity down to sub single-cell levels. The method is an easy, single-tube, end point assay utilizing standard thermal cyclers and PCR reagents. Accurate and precise measurements are obtained without any need for cycle-to-cycle intensity-based real-time monitoring or physical partitioning into multiple reactions (e.g., digital PCR). Further, since all mRNA molecules are encoded with molecular barcodes, amplification can be used to generate more material for multiple measurements and technical replicates can be carried out on limited samples. The method is particularly useful for small sample quantities, such as single-cell experiments. Digital encoding of cellular content preserves true abundance levels and overcomes distortions introduced by amplification.

  8. PABPN1 overexpression leads to upregulation of genes encoding nuclear proteins that are sequestered in oculopharyngeal muscular dystrophy nuclear inclusions.

    Science.gov (United States)

    Corbeil-Girard, Louis-Philippe; Klein, Arnaud F; Sasseville, A Marie-Josée; Lavoie, Hugo; Dicaire, Marie-Josée; Saint-Denis, Anik; Pagé, Martin; Duranceau, André; Codère, François; Bouchard, Jean-Pierre; Karpati, George; Rouleau, Guy A; Massie, Bernard; Langelier, Yves; Brais, Bernard

    2005-04-01

    Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disease caused by expanded (GCN)12-17 stretches encoding the N-terminal polyalanine domain of the poly(A) binding protein nuclear 1 (PABPN1). OPMD is characterized by intranuclear inclusions (INIs) in skeletal muscle fibers, which contain PABPN1, molecular chaperones, ubiquitin, proteasome subunits, and poly(A)-mRNA. We describe an adenoviral model of PABPN1 expression that produces INIs in most cells. Microarray analysis revealed that PABPN1 overexpression reproducibly changed the expression of 202 genes. Sixty percent of upregulated genes encode nuclear proteins, including many RNA and DNA binding proteins. Immunofluorescence microscopy revealed that all tested nuclear proteins encoded by eight upregulated genes colocalize with PABPN1 within the INIs: CUGBP1, SFRS3, FKBP1A, HMG2, HNRPA1, PRC1, S100P, and HSP70. In addition, CUGBP1, SFRS3, and FKBP1A were also found in OPMD muscle INIs. This study demonstrates that a large number of nuclear proteins are sequestered in OPMD INIs, which may compromise cellular function.

  9. Identification of genes expressed in cultures of E. coli lysogens carrying the Shiga toxin-encoding prophage Φ24B

    Directory of Open Access Journals (Sweden)

    Riley Laura M

    2012-03-01

    Full Text Available Abstract Background Shigatoxigenic E. coli are a global and emerging health concern. Shiga toxin, Stx, is encoded on the genome of temperate, lambdoid Stx phages. Genes essential for phage maintenance and replication are encoded on approximately 50% of the genome, while most of the remaining genes are of unknown function nor is it known if these annotated hypothetical genes are even expressed. It is hypothesized that many of the latter have been maintained due to positive selection pressure, and that some, expressed in the lysogen host, have a role in pathogenicity. This study used Change Mediated Antigen Technology (CMAT™ and 2D-PAGE, in combination with RT-qPCR, to identify Stx phage genes that are expressed in E. coli during the lysogenic cycle. Results Lysogen cultures propagated for 5-6 hours produced a high cell density with a low proportion of spontaneous prophage induction events. The expression of 26 phage genes was detected in these cultures by differential 2D-PAGE of expressed proteins and CMAT. Detailed analyses of 10 of these genes revealed that three were unequivocally expressed in the lysogen, two expressed from a known lysogenic cycle promoter and one uncoupled from the phage regulatory network. Conclusion Propagation of a lysogen culture in which no cells at all are undergoing spontaneous lysis is impossible. To overcome this, RT-qPCR was used to determine gene expression profiles associated with the growth phase of lysogens. This enabled the definitive identification of three lambdoid Stx phage genes that are expressed in the lysogen and seven that are expressed during lysis. Conservation of these genes in this phage genome, and other Stx phages where they have been identified as present, indicates their importance in the phage/lysogen life cycle, with possible implications for the biology and pathogenicity of the bacterial host.

  10. Identification of genes expressed in cultures of E. coli lysogens carrying the Shiga toxin-encoding prophage Φ24B.

    Science.gov (United States)

    Riley, Laura M; Veses-Garcia, Marta; Hillman, Jeffrey D; Handfield, Martin; McCarthy, Alan J; Allison, Heather E

    2012-03-22

    Shigatoxigenic E. coli are a global and emerging health concern. Shiga toxin, Stx, is encoded on the genome of temperate, lambdoid Stx phages. Genes essential for phage maintenance and replication are encoded on approximately 50% of the genome, while most of the remaining genes are of unknown function nor is it known if these annotated hypothetical genes are even expressed. It is hypothesized that many of the latter have been maintained due to positive selection pressure, and that some, expressed in the lysogen host, have a role in pathogenicity. This study used Change Mediated Antigen Technology (CMAT)™ and 2D-PAGE, in combination with RT-qPCR, to identify Stx phage genes that are expressed in E. coli during the lysogenic cycle. Lysogen cultures propagated for 5-6 hours produced a high cell density with a low proportion of spontaneous prophage induction events. The expression of 26 phage genes was detected in these cultures by differential 2D-PAGE of expressed proteins and CMAT. Detailed analyses of 10 of these genes revealed that three were unequivocally expressed in the lysogen, two expressed from a known lysogenic cycle promoter and one uncoupled from the phage regulatory network. Propagation of a lysogen culture in which no cells at all are undergoing spontaneous lysis is impossible. To overcome this, RT-qPCR was used to determine gene expression profiles associated with the growth phase of lysogens. This enabled the definitive identification of three lambdoid Stx phage genes that are expressed in the lysogen and seven that are expressed during lysis. Conservation of these genes in this phage genome, and other Stx phages where they have been identified as present, indicates their importance in the phage/lysogen life cycle, with possible implications for the biology and pathogenicity of the bacterial host.

  11. INCURVATA2 Encodes the Catalytic Subunit of DNA Polymerase α and Interacts with Genes Involved in Chromatin-Mediated Cellular Memory in Arabidopsis thaliana

    Science.gov (United States)

    Barrero, José María; González-Bayón, Rebeca; del Pozo, Juan Carlos; Ponce, María Rosa; Micol, José Luis

    2007-01-01

    Cell type–specific gene expression patterns are maintained by the stable inheritance of transcriptional states through mitosis, requiring the action of multiprotein complexes that remodel chromatin structure. Genetic and molecular interactions between chromatin remodeling factors and components of the DNA replication machinery have been identified in Schizosaccharomyces pombe, indicating that some epigenetic marks are replicated simultaneously to DNA with the participation of the DNA replication complexes. This model of epigenetic inheritance might be extended to the plant kingdom, as we report here with the positional cloning and characterization of INCURVATA2 (ICU2), which encodes the putative catalytic subunit of the DNA polymerase α of Arabidopsis thaliana. The strong icu2-2 and icu2-3 insertional alleles caused fully penetrant zygotic lethality when homozygous and incompletely penetrant gametophytic lethality, probably because of loss of DNA polymerase activity. The weak icu2-1 allele carried a point mutation and caused early flowering, leaf incurvature, and homeotic transformations of sepals into carpels and of petals into stamens. Further genetic analyses indicated that ICU2 interacts with TERMINAL FLOWER2, the ortholog of HETEROCHROMATIN PROTEIN1 of animals and yeasts, and with the Polycomb group (PcG) gene CURLY LEAF. Another PcG gene, EMBRYONIC FLOWER2, was found to be epistatic to ICU2. Quantitative RT-PCR analyses indicated that a number of regulatory genes were derepressed in the icu2-1 mutant, including genes associated with flowering time, floral meristem, and floral organ identity. PMID:17873092

  12. INCURVATA2 encodes the catalytic subunit of DNA Polymerase alpha and interacts with genes involved in chromatin-mediated cellular memory in Arabidopsis thaliana.

    Science.gov (United States)

    Barrero, José María; González-Bayón, Rebeca; del Pozo, Juan Carlos; Ponce, María Rosa; Micol, José Luis

    2007-09-01

    Cell type-specific gene expression patterns are maintained by the stable inheritance of transcriptional states through mitosis, requiring the action of multiprotein complexes that remodel chromatin structure. Genetic and molecular interactions between chromatin remodeling factors and components of the DNA replication machinery have been identified in Schizosaccharomyces pombe, indicating that some epigenetic marks are replicated simultaneously to DNA with the participation of the DNA replication complexes. This model of epigenetic inheritance might be extended to the plant kingdom, as we report here with the positional cloning and characterization of INCURVATA2 (ICU2), which encodes the putative catalytic subunit of the DNA polymerase alpha of Arabidopsis thaliana. The strong icu2-2 and icu2-3 insertional alleles caused fully penetrant zygotic lethality when homozygous and incompletely penetrant gametophytic lethality, probably because of loss of DNA polymerase activity. The weak icu2-1 allele carried a point mutation and caused early flowering, leaf incurvature, and homeotic transformations of sepals into carpels and of petals into stamens. Further genetic analyses indicated that ICU2 interacts with TERMINAL FLOWER2, the ortholog of HETEROCHROMATIN PROTEIN1 of animals and yeasts, and with the Polycomb group (PcG) gene CURLY LEAF. Another PcG gene, EMBRYONIC FLOWER2, was found to be epistatic to ICU2. Quantitative RT-PCR analyses indicated that a number of regulatory genes were derepressed in the icu2-1 mutant, including genes associated with flowering time, floral meristem, and floral organ identity.

  13. Characterization of high-level expression and sequencing of the Escherichia coli K-12 cynS gene encoding cyanase.

    OpenAIRE

    Sung, Y C; Anderson, P. M.; Fuchs, J A

    1987-01-01

    Restriction fragments containing the gene encoding cyanase, cynS, without its transcriptional regulatory sequences were placed downstream of lac and tac promoters in various pUC derivatives to maximize production of cyanase. Plasmid pSJ105, which contains the cynS gene and an upstream open reading frame, gave the highest expression of cyanase. Approximately 50% of the total soluble protein in stationary-phase cultures of a lac-deleted strain containing plasmid pSJ105 was cyanase. The inserted...

  14. Cloning and characterization of three genes encoding Qb-SNARE proteins in rice.

    Science.gov (United States)

    Bao, Yong-Mei; Wang, Jian-Fei; Huang, Ji; Zhang, Hong-Sheng

    2008-03-01

    Qb-SNARE proteins belong to the superfamily of SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) and function as important components of the vesicle trafficking machinery in eukaryotic cells. Here, we report three novel plant SNARE (NPSN) genes isolated from rice and named OsNPSN11, OsNPSN12 and OsNPSN13. They have about 70% nucleotide identity over their entire coding regions and similar genomic organization with ten exons and nine introns in each gene. Multiple alignment of deduced amino acid sequences indicate that the OsNPSNs proteins are homologous to AtNPSNs from Arabidopsis, containing a Qb-SNARE domain and a membrane-spanning domain in the C-terminal region. Semi-quantitative RT-PCR assays showed that the OsNPSNs were ubiquitously and differentially expressed in roots, culms, leaves, immature spikes and flowering spikes. The expression of OsNPSNs was significantly activated in rice seedlings treated with H(2)O(2), but down-regulated under NaCl and PEG6000 stresses. Transient expression method in onion epidermal cells revealed that OsNPSNs were located in the plasma membrane. Transformed yeast cells with OsNPSNs had better growth rates than empty-vector transformants when cultured on either solid or liquid selective media containing various concentrations of H(2)O(2), but more sensitive to NaCl and mannitol stresses. The 35S:OsNPSN11 transgenic tobacco also showed more tolerance to H(2)O(2) and sensitivity to NaCl and mannitol than non-transgenic tobacco. These results indicate that OsNPSNs may be involved in different aspects of the signal transduction in plant and yeast responses to abiotic stresses.

  15. Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (pppGpp synthase

    Directory of Open Access Journals (Sweden)

    Kalinowski Jörn

    2006-09-01

    Full Text Available Background The stringent response is the initial reaction of microorganisms to nutritional stress. During stringent response the small nucleotides (pppGpp act as global regulators and reprogram bacterial transcription. In this work, the genetic network controlled by the stringent response was characterized in the amino acid-producing Corynebacterium glutamicum. Results The transcriptome of a C. glutamicum rel gene deletion mutant, unable to synthesize (pppGpp and to induce the stringent response, was compared with that of its rel-proficient parent strain by microarray analysis. A total of 357 genes were found to be transcribed differentially in the rel-deficient mutant strain. In a second experiment, the stringent response was induced by addition of DL-serine hydroxamate (SHX in early exponential growth phase. The time point of the maximal effect on transcription was determined by real-time RT-PCR using the histidine and serine biosynthetic genes. Transcription of all of these genes reached a maximum at 10 minutes after SHX addition. Microarray experiments were performed comparing the transcriptomes of SHX-induced cultures of the rel-proficient strain and the rel mutant. The differentially expressed genes were grouped into three classes. Class A comprises genes which are differentially regulated only in the presence of an intact rel gene. This class includes the non-essential sigma factor gene sigB which was upregulated and a large number of genes involved in nitrogen metabolism which were downregulated. Class B comprises genes which were differentially regulated in response to SHX in both strains, independent of the rel gene. A large number of genes encoding ribosomal proteins fall into this class, all being downregulated. Class C comprises genes which were differentially regulated in response to SHX only in the rel mutant. This class includes genes encoding putative stress proteins and global transcriptional regulators that might be

  16. Comparative and evolutionary studies of mammalian arylsulfatase and sterylsulfatase genes and proteins encoded on the X-chromosome.

    Science.gov (United States)

    Holmes, Roger S

    2017-06-01

    At least 19 sulfatase genes have been reported on the human genome, including four arylsulfatase (ARS) genes (ARSD; ARSE; ARSF; ARSH) and a sterylsulfatase (STS) gene located together on the X-chromosome. Bioinformatic analyses of mammalian genomes were undertaken using known human STS and ARS amino acid sequences to study the evolution of these genes and proteins encoded on eutherian and marsupial genomes. Several domain regions and key residues were conserved including signal peptides, active site residues, metal (Ca(2+)) and substrate binding sequences, transmembranes and N-glycosylation sites. Phylogenetic analyses describe the relationships and potential origins of these genes during mammalian evolution. Primate ARSH enzymes lacked signal peptide sequences which may influence their biological functions. CpG117 and CpG92 were detected within the 5' region of the human STS and ARSD genes, respectively, and miR-205 within the 3'-UTR for the human STS gene, using bioinformatic methods A proposal is described for a primordial invertebrate STS-like gene serving as an ancestor for unequal cross over events generating the gene complex on the eutherian mammalian X-chromosome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A novel human gene encoding a G-protein-coupled receptor (GPR15) is located on chromosome 3

    Energy Technology Data Exchange (ETDEWEB)

    Heiber, M.; Marchese, A.; O`Dowd, B.F. [Univ. of Toronto, Ontario (Canada)] [and others

    1996-03-05

    We used sequence similarities among G-protein-coupled receptor genes to discover a novel receptor gene. Using primers based on conserved regions of the opioid-related receptors, we isolated a PCR product that was used to locate the full-length coding region of a novel human receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor encoded by GPR15 with other receptors revealed that it shared sequence identity with the angiotensin II AT1 and AT2 receptors, the interleukin 8b receptor, and the orphan receptors GPR1 and AGTL1. GPR15 was mapped to human chromosome 3q11.2-q13.1. 12 refs., 2 figs.

  18. The yeast Dekkera bruxellensis genome contains two orthologs of the ARO10 gene encoding for phenylpyruvate decarboxylase.

    Science.gov (United States)

    de Souza Liberal, Anna Theresa; Carazzolle, Marcelo Falsarella; Pereira, Gonçalo Amarante; Simões, Diogo Ardaillon; de Morais, Marcos Antonio

    2012-07-01

    The yeast Dekkera bruxellensis possesses important physiological traits that enable it to grow in industrial environments as either spoiling yeast of wine production or a fermenting strain used for lambic beer, or fermenting yeast in the bioethanol production process. In this work, in silico analysis of the Dekkera genome database allowed the identification of two paralogous genes encoding for phenylpyruvate decarboxylase (DbARO10) that represents a unique trait among the hemiascomycetes. The molecular analysis of the theoretical protein confirmed its protein identity. Upon cultivation of the cell in medium containing phenylpyruvate, both increases in gene expression and in phenylpyruvate decarboxylase activity were observed. Both genes were differentially expressed depending on the culture condition and the type of metabolism, which indicated the difference in the biological function of their corresponding proteins. The importance of the duplicated DbARO10 genes in the D. bruxellensis genome was discussed and represents the first effort to understand the production of flavor by this yeast.

  19. Cloning, Expression Profiling and Functional Analysis of CnHMGS, a Gene Encoding 3-hydroxy-3-Methylglutaryl Coenzyme A Synthase from Chamaemelum nobile.

    Science.gov (United States)

    Cheng, Shuiyuan; Wang, Xiaohui; Xu, Feng; Chen, Qiangwen; Tao, Tingting; Lei, Jing; Zhang, Weiwei; Liao, Yongling; Chang, Jie; Li, Xingxiang

    2016-03-08

    Roman chamomile (Chamaemelum nobile L.) is renowned for its production of essential oils, which major components are sesquiterpenoids. As the important enzyme in the sesquiterpenoid biosynthesis pathway, 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGS) catalyze the crucial step in the mevalonate pathway in plants. To isolate and identify the functional genes involved in the sesquiterpene biosynthesis of C. nobile L., a HMGS gene designated as CnHMGS (GenBank Accession No. KU529969) was cloned from C. nobile. The cDNA sequence of CnHMGS contained a 1377 bp open reading frame encoding a 458-amino-acid protein. The sequence of the CnHMGS protein was highly homologous to those of HMGS proteins from other plant species. Phylogenetic tree analysis revealed that CnHMGS clustered with the HMGS of Asteraceae in the dicotyledon clade. Further functional complementation of CnHMGS in the mutant yeast strain YSC6274 lacking HMGS activity demonstrated that the cloned CnHMGS cDNA encodes a functional HMGS. Transcript profile analysis indicated that CnHMGS was preferentially expressed in flowers and roots of C. nobile. The expression of CnHMGS could be upregulated by exogenous elicitors, including methyl jasmonate and salicylic acid, suggesting that CnHMGS was elicitor-responsive. The characterization and expression analysis of CnHMGS is helpful to understand the biosynthesis of sesquiterpenoid in C. nobile at the molecular level and also provides molecular wealth for the biotechnological improvement of this important medicinal plant.

  20. Cloning of genes encoding nonhost hypersensitive response-inducing elicitors from Phytophthora boehmeriae

    Institute of Scientific and Technical Information of China (English)

    LI Jun; ZHANG HaiFeng; ZHANG ZhengGuang; WANG YuanChao; ZHENG XiaoBo

    2007-01-01

    We have devised a high-throughput functional cloning method to isolate cDNAs from Phytophthora boehmeriae of which the products elicit a hypersensitive response (HR) in tobacco. The cDNAs were cloned into a binary potato virus X (PVX)-based expression vector and transformed into Agrobacterium tumefeciens (Mog101). 4100 colonies were individually toothpick-inoculated onto leaflets of Nicotiana benthamiana. 12 cDNAs were identified whose expression induced formation of a necrotic lesion around the inoculation site. 7 of these clones have different sequences. One of these clones PBC43 encodes specific elicitin. Clone PBC163 encodes a protein highly homologous to Rab; PBC241 encodes a prohibitin protein; PBN62 encodes a Heat Shock Protein 60 (HSP60). The other five cDNAs reveal no homology to known protein and are thus considered novel. These observations suggest that this functional screening method is a versatile strategy to identify cDNAs of pathogens that encode elicitors and other HR-inducing proteins.

  1. The pkI gene encoding pyruvate kinase I links to the luxZ gene which enhances bioluminescence of the lux operon from Photobacterium leiognathi.

    Science.gov (United States)

    Lin, J W; Lu, H C; Chen, H Y; Weng, S F

    1997-10-09

    Partial 3'-end nucleotide sequence of the pkI gene (GenBank accession No. AF019143) from Photobacterium leiognathi ATCC 25521 has been determined, and the encoded pyruvate kinase I is deduced. Pyruvate kinase I is the key enzyme of glycolysis, which converts phosphoenol pyruvate to pyruvate. Alignment and comparison of pyruvate kinase Is from P. leiognathi, E. coli and Salmonella typhimurium show that they are homologous. Nucleotide sequence reveals that the pkI gene is linked to the luxZ gene that enhances bioluminescence of the lux operon from P. leiognathi. The gene order of the pkI and luxZ genes is-pk1-ter-->-R&R"-luxZ-ter"-->, whereas ter is transcriptional terminator for the pkI and related genes, and R&R" is the regulatory region and ter" is transcriptional terminator for the luxZ gene. It clearly elicits that the pkI gene and luxZ gene are divided to two operons. Functional analysis confirms that the potential hairpin loop omega T is the transcriptional terminator for the pkI and related genes. It infers that the pkI and related genes are simply linked to the luxZ gene in P. leiognathi genome.

  2. aes, the gene encoding the esterase B in Escherichia coli, is a powerful phylogenetic marker of the species

    Directory of Open Access Journals (Sweden)

    Tuffery Pierre

    2009-12-01

    Full Text Available Abstract Background Previous studies have established a correlation between electrophoretic polymorphism of esterase B, and virulence and phylogeny of Escherichia coli. Strains belonging to the phylogenetic group B2 are more frequently implicated in extraintestinal infections and include esterase B2 variants, whereas phylogenetic groups A, B1 and D contain less virulent strains and include esterase B1 variants. We investigated esterase B as a marker of phylogeny and/or virulence, in a thorough analysis of the esterase B-encoding gene. Results We identified the gene encoding esterase B as the acetyl-esterase gene (aes using gene disruption. The analysis of aes nucleotide sequences in a panel of 78 reference strains, including the E. coli reference (ECOR strains, demonstrated that the gene is under purifying selection. The phylogenetic tree reconstructed from aes sequences showed a strong correlation with the species phylogenetic history, based on multi-locus sequence typing using six housekeeping genes. The unambiguous distinction between variants B1 and B2 by electrophoresis was consistent with Aes amino-acid sequence analysis and protein modelling, which showed that substituted amino acids in the two esterase B variants occurred mostly at different sites on the protein surface. Studies in an experimental mouse model of septicaemia using mutant strains did not reveal a direct link between aes and extraintestinal virulence. Moreover, we did not find any genes in the chromosomal region of aes to be associated with virulence. Conclusion Our findings suggest that aes does not play a direct role in the virulence of E. coli extraintestinal infection. However, this gene acts as a powerful marker of phylogeny, illustrating the extensive divergence of B2 phylogenetic group strains from the rest of the species.

  3. Effect of long-term actual spaceflight on the expression of key genes encoding serotonin and dopamine system

    Science.gov (United States)

    Popova, Nina; Shenkman, Boris; Naumenko, Vladimir; Kulikov, Alexander; Kondaurova, Elena; Tsybko, Anton; Kulikova, Elisabeth; Krasnov, I. B.; Bazhenova, Ekaterina; Sinyakova, Nadezhda

    The effect of long-term spaceflight on the central nervous system represents important but yet undeveloped problem. The aim of our work was to study the effect of 30-days spaceflight of mice on Russian biosatellite BION-M1 on the expression in the brain regions of key genes of a) serotonin (5-HT) system (main enzymes in 5-HT metabolism - tryptophan hydroxylase-2 (TPH-2), monoamine oxydase A (MAO A), 5-HT1A, 5-HT2A and 5-HT3 receptors); b) pivotal enzymes in DA metabolism (tyrosine hydroxylase, COMT, MAO A, MAO B) and D1, D2 receptors. Decreased expression of genes encoding the 5-HT catabolism (MAO A) and 5-HT2A receptor in some brain regions was shown. There were no differences between “spaceflight” and control mice in the expression of TPH-2 and 5-HT1A, 5-HT3 receptor genes. Significant changes were found in genetic control of DA system. Long-term spaceflight decreased the expression of genes encoding the enzyme in DA synthesis (tyrosine hydroxylase in s.nigra), DA metabolism (MAO B in the midbrain and COMT in the striatum), and D1 receptor in hypothalamus. These data suggested that 1) microgravity affected genetic control of 5-HT and especially the nigrostriatal DA system implicated in the central regulation of muscular tonus and movement, 2) the decrease in the expression of genes encoding key enzyme in DA synthesis, DA degradation and D1 receptor contributes to the movement impairment and dyskinesia produced by the spaceflight. The study was supported by Russian Foundation for Basic Research grant № 14-04-00173.

  4. The Cryptic dsdA Gene Encodes a Functional D-Serine Dehydratase in Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Li, Guoqing; Lu, Chung-Dar

    2016-06-01

    D-Serine, an important neurotransmitter, also contributes to bacterial adaptation and virulence in humans. It was reported that Pseudomonas aeruginosa PAO1 can grow on D-serine as the sole nitrogen source, and growth was severely reduced in the dadA mutant devoid of the D-alanine dehydrogenase with broad substrate specificity. In this study, the dsdA gene (PA3357) encoding a putative D-serine dehydratase was subjected to further characterization. Growth on D-serine as the sole source of nitrogen was retained in the ∆dsdA mutant and was abolished completely in the ∆dadA and ∆dadA-∆dsdA mutants. However, when complemented by dsdA on a plasmid, the double mutant was able to grow on D-serine as the sole source of carbon and nitrogen, supporting the proposed biochemical function of DsdA in the conversion of D-serine into pyruvate and ammonia. Among D- and L-amino acids tested, only D-serine and D-threonine could serve as the substrates of DsdA, and the Km of DsdA with D-serine was calculated to be 330 μM. Comparative genomics revealed that this cryptic dsdA gene was highly conserved in strains of P. aeruginosa, and that most strains of Pseudomonas putida possess putative dsdCAX genes encoding a transcriptional regulator DsdC and a D-serine transporter DsdX as in enteric bacteria. In conclusion, this study supports the presence of a cryptic dsdA gene encoding a functional D-serine dehydratase in P. aeruginosa, and the absence of dsdA expression in response to exogenous D-serine might be due to the loss of regulatory elements for gene activation during evolution.

  5. [Research on the gene structure of duck hepatitis B virus and its encoding proteins].

    Science.gov (United States)

    Liu, Qiang; Jia, Ren-Yong

    2012-11-01

    Duck hepatitis B virus (DHBV) belongs to the Avihepadnavirus genus of the Hepadnaviridae, and it not only has the same replication pattern, but also has the similar genomic and antigenic structures to Hepatitis B virus (HBV). The genome of DHBV is a partially double-stranded closed circular DNA. The genome consists of three distinct open reading frames (ORFs): ORF-PreS/S, ORF-PreC/C and ORF-P, which all locate on the negative DNA strand and encode four separate proteins. The ORF-PreS/S encodes envelope proteins L and S, and the ORF-PreC/C and ORF-P encode capsid proteins C and polymerase proteins P, respectively. The characteristics of genome structure,viral proteins features and functions were described in this review in order to provide useful information for the further study of DHBV and the duck model infected by DHBV.

  6. Cloning, structural characterization, and chromosomal localization of the gene encoding the human prostaglandin E(2) receptor EP2 subtype.

    Science.gov (United States)

    Smock, S L; Pan, L C; Castleberry, T A; Lu, B; Mather, R J; Owen, T A

    1999-09-17

    Northern blot analysis of human placental RNA using a probe to the 5' end of the human prostaglandin E(2) (PGE(2)) EP2 receptor subtype coding region revealed the existence of a high abundance, low molecular weight transcript. To investigate the origin of this transcript, and its possible relationship to the human EP2 mRNA, we have cloned and characterized the gene encoding the human PGE(2) EP2 receptor subtype, identified transcriptional initiation and termination sites in two tissues (spleen and thymus), and determined its chromosomal localization. The human EP2 gene consists of two exons separated by a large intron, utilizes a common initiation site in both spleen and thymus at 1113 bp upstream of the translation initiation site, and has 3' transcript termini at 1140 bp and 1149 bp downstream of the translation stop site in spleen and thymus respectively. Southern and fluorescence in situ hybridization analysis demonstrated the human EP2 gene to be a single copy gene located in band 22 of the long arm of chromosome 14 (14q22). Though our initial interest in this gene was to investigate potential differential splicing of the human EP2 gene in placenta, this work demonstrates that the atypical transcript observed in placenta probably arises from a distinct, yet related, gene. Knowledge of the sequence, structure, and transcription events associated with the human EP2 gene will enable a broader understanding of its regulation and potential role in normal physiology and disease.

  7. Mycobacterium tuberculosis DosR regulon gene Rv0079 encodes a putative, 'dormancy associated translation inhibitor (DATIN'.

    Directory of Open Access Journals (Sweden)

    Ashutosh Kumar

    Full Text Available Mycobacterium tuberculosis is a major human pathogen that has evolved survival mechanisms to persist in an immune-competent host under a dormant condition. The regulation of M. tuberculosis metabolism during latent infection is not clearly known. The dormancy survival regulon (DosR regulon is chiefly responsible for encoding dormancy related functions of M. tuberculosis. We describe functional characterization of an important gene of DosR regulon, Rv0079, which appears to be involved in the regulation of translation through the interaction of its product with bacterial ribosomal subunits. The protein encoded by Rv0079, possibly, has an inhibitory role with respect to protein synthesis, as revealed by our experiments. We performed computational modelling and docking simulation studies involving the protein encoded by Rv0079 followed by in vitro translation and growth curve analysis experiments, involving recombinant E. coli and Bacille Calmette Guérin (BCG strains that overexpressed Rv0079. Our observations concerning the interaction of the protein with the ribosomes are supportive of its role in regulation/inhibition of translation. We propose that the protein encoded by locus Rv0079 is a 'dormancy associated translation inhibitor' or DATIN.

  8. Decoding the encoding of functional brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms.

    Science.gov (United States)

    Xie, Jianwen; Douglas, Pamela K; Wu, Ying Nian; Brody, Arthur L; Anderson, Ariana E

    2017-04-15

    Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet other mathematical constraints provide alternate biologically-plausible frameworks for generating brain networks. Non-negative matrix factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks. The assumptions of independence, positivity, and sparsity to encode task-related brain networks are compared; the resulting brain networks within scan for different constraints are used as basis functions to encode observed functional activity. These encodings are then decoded using machine learning, by using the time series weights to predict within scan whether a subject is viewing a video, listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects. The sparse coding algorithm of L1 Regularized Learning outperformed 4 variations of ICA (pcoding algorithms. Holding constant the effect of the extraction algorithm, encodings using sparser spatial networks (containing more zero-valued voxels) had higher classification accuracy (pcoding algorithms suggests that algorithms which enforce sparsity, discourage multitasking, and promote local specialization may capture better the underlying source processes than those which allow inexhaustible local processes such as ICA. Negative BOLD signal may capture task-related activations. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Conserved cis-regulatory modules in promoters of genes encoding wheat high-molecular-weight glutenin subunits.

    Science.gov (United States)

    Ravel, Catherine; Fiquet, Samuel; Boudet, Julie; Dardevet, Mireille; Vincent, Jonathan; Merlino, Marielle; Michard, Robin; Martre, Pierre

    2014-01-01

    The concentration and composition of the gliadin and glutenin seed storage proteins (SSPs) in wheat flour are the most important determinants of its end-use value. In cereals, the synthesis of SSPs is predominantly regulated at the transcriptional level by a complex network involving at least five cis-elements in gene promoters. The high-molecular-weight glutenin subunits (HMW-GS) are encoded by two tightly linked genes located on the long arms of group 1 chromosomes. Here, we sequenced and annotated the HMW-GS gene promoters of 22 electrophoretic wheat alleles to identify putative cis-regulatory motifs. We focused on 24 motifs known to be involved in SSP gene regulation. Most of them were identified in at least one HMW-GS gene promoter sequence. A common regulatory framework was observed in all the HMW-GS gene promoters, as they shared conserved cis-regulatory modules (CCRMs) including all the five motifs known to regulate the transcription of SSP genes. This common regulatory framework comprises a composite box made of the GATA motifs and GCN4-like Motifs (GLMs) and was shown to be functional as the GLMs are able to bind a bZIP transcriptional factor SPA (Storage Protein Activator). In addition to this regulatory framework, each HMW-GS gene promoter had additional motifs organized differently. The promoters of most highly expressed x-type HMW-GS genes contain an additional box predicted to bind R2R3-MYB transcriptional factors. However, the differences in annotation between promoter alleles could not be related to their level of expression. In summary, we identified a common modular organization of HMW-GS gene promoters but the lack of correlation between the cis-motifs of each HMW-GS gene promoter and their level of expression suggests that other cis-elements or other mechanisms regulate HMW-GS gene expression.

  10. Locus heterogeneity disease genes encode proteins with high interconnectivity in the human protein interaction network.

    Science.gov (United States)

    Keith, Benjamin P; Robertson, David L; Hentges, Kathryn E

    2014-01-01

    Mutations in genes potentially lead to a number of genetic diseases with differing severity. These disease genes have been the focus of research in recent years showing that the disease gene population as a whole is not homogeneous, and can be categorized according to their interactions. Locus heterogeneity describes a single disorder caused by mutations in different genes each acting individually to cause the same disease. Using datasets of experimentally derived human disease genes and protein interactions, we created a protein interaction network to investigate the relationships between the products of genes associated with a disease displaying locus heterogeneity, and use network parameters to suggest properties that distinguish these disease genes from the overall disease gene population. Through the manual curation of known causative genes of 100 diseases displaying locus heterogeneity and 397 single-gene Mendelian disorders, we use network parameters to show that our locus heterogeneity network displays distinct properties from the global disease network and a Mendelian network. Using the global human proteome, through random simulation of the network we show that heterogeneous genes display significant interconnectivity. Further topological analysis of this network revealed clustering of locus heterogeneity genes that cause identical disorders, indicating that these disease genes are involved in similar biological processes. We then use this information to suggest additional genes that may contribute to diseases with locus heterogeneity.

  11. Aggregatibacter actinomycetemcomitans QseBC is activated by catecholamines and iron and regulates genes encoding proteins associated with anaerobic respiration and metabolism

    Science.gov (United States)

    Weigel, WA; Demuth, DR; Torres-Escobar, A; Juárez-Rodríguez, MD

    2015-01-01

    Aggregatibacter actinomycetemcomitans QseBC regulates its own expression and is essential for biofilm growth and virulence. However, the signal that activates the QseC sensor has not been identified and the qseBC regulon has not been defined. In this study, we show that QseC is activated by catecholamine hormones and iron but not by either component alone. Activation of QseC requires an EYRDD motif in the periplasmic domain of the sensor and site-specific mutations in EYRDD or the deletion of the periplasmic domain inhibits catecholamine/iron-dependent induction of the ygiW-qseBC operon. Catecholamine/iron-dependent induction of transcription also requires interaction of the QseB response regulator with its binding site in the ygiW-qseBC promoter. Whole genome microarrays were used to compare gene expression profiles of A. actinomycetemcomitans grown in a chemically defined medium with and without catecholamine and iron supplementation. Approximately 11.5% of the A. actinomycetemcomitans genome was differentially expressed by at least two-fold upon exposure to catecholamines and iron. The expression of ferritin was strongly induced, suggesting that intracellular iron storage capacity is increased upon QseBC activation. Consistent with this, genes encoding iron binding and transport proteins were down-regulated by QseBC. Strikingly, 57% of the QseBC up-regulated genes (56/99) encode proteins associated with anaerobic metabolism and respiration. Most of these up-regulated genes were recently reported to be induced during in vivo growth of A. actinomycetemcomitans. These results suggest that detection of catecholamines and iron by QseBC may alter the cellular metabolism of A. actinomycetemcomitans for increased fitness and growth in an anaerobic host environment. PMID:25923132

  12. Antibiotic resistance and OXA-type carbapenemases-encoding genes in airborne Acinetobacter baumannii isolated from burn wards.

    Science.gov (United States)

    Gao, Jing; Zhao, Xiaonan; Bao, Ying; Ma, Ruihua; Zhou, Yufa; Li, Xinxian; Chai, Tongjie; Cai, Yumei

    2014-03-01

    The study was conducted to investigate drug resistance, OXA-type carbapenemases-encoding genes and genetic diversity in airborne Acinetobacter baumannii (A. baumannii) in burn wards. Airborne A. baumannii were collected in burn wards and their corridors using Andersen 6-stage air sampler from January to June 2011. The isolates susceptibility to 13 commonly used antibiotics was examined according to the CLSI guidelines; OXA-type carbapenemases-encoding genes and molecular diversity of isolates were analyzed, respectively. A total of 16 non-repetitive A. baumannii were isolated, with 10 strains having a resistance rate of greater than 50% against the 13 antibiotics. The resistance rate against ceftriaxone, cyclophosvnamide, ciprofloxacin, and imipenem was 93.75% (15/16), but no isolate observed to be resistant to cefoperazone/sulbactam. Resistance gene analyses showed that all 16 isolates carried OXA-51, and 15 isolates carried OXA-23 except No.15; but OXA-24 and OXA-58 resistance genes not detected. The isolates were classified into 13 genotypes (A-M) according to repetitive extragenic palindromic sequence PCR (REP-PCR) results and only six isolates had a homology ≥90%. In conclusion, airborne A. baumannii in the burn wards had multidrug resistance and complex molecular diversity, and OXA-23 and OXA-51 were dominant mechanisms for resisting carbapenems.

  13. Cloning and characterization of the gene encoding the PepF endopeptidase from the aquatic bacterium Caulobacter crescentus

    Directory of Open Access Journals (Sweden)

    Braz Vânia S.

    2002-01-01

    Full Text Available The metallopeptidases have a very important role in bacteria, being involved in several processes that rely on protein turnover, such as nutrition, degradation of signal peptides, protein localization and virulence. We have cloned and characterized the gene of the metalloendopeptidase PepF from the aquatic bacterium Caulobacter crescentus. The gene upstream of pepF (orf1 encodes a conserved hypothetical protein found in Mycobacterium and Streptomyces. pepF is co-transcribed with the gene downstream (orf3, which encodes a protein that belongs to the ABC1 protein kinase family, suggesting that these two proteins may share a common function in the cell. The C. crescentus PepF protein possesses the conserved HEXGH motif present in zinc binding domains of PepF homologs. Disruption of the pepF gene by insertion of a vector sequence did not produced any growth defect, but the mutant strain possesses only 30% of the specific activity of endopeptidases present in the wild type strain. Deletions and point mutations in the regulatory region showed that there are two putative promoter regions, and the operon expression is independent of the transcription regulator CtrA. The results indicate that PepF is not essential for either growth or development of this bacterium using peptides as the sole carbon source, suggesting that other peptidases can be sharing this function.

  14. Multi-species sequence comparison reveals conservation of ghrelin gene-derived splice variants encoding a truncated ghrelin peptide.

    Science.gov (United States)

    Seim, Inge; Jeffery, Penny L; Thomas, Patrick B; Walpole, Carina M; Maugham, Michelle; Fung, Jenny N T; Yap, Pei-Yi; O'Keeffe, Angela J; Lai, John; Whiteside, Eliza J; Herington, Adrian C; Chopin, Lisa K

    2016-06-01

    The peptide hormone ghrelin is a potent orexigen produced predominantly in the stomach. It has a number of other biological actions, including roles in appetite stimulation, energy balance, the stimulation of growth hormone release and the regulation of cell proliferation. Recently, several ghrelin gene splice variants have been described. Here, we attempted to identify conserved alternative splicing of the ghrelin gene by cross-species sequence comparisons. We identified a novel human exon 2-deleted variant and provide preliminary evidence that this splice variant and in1-ghrelin encode a C-terminally truncated form of the ghrelin peptide, termed minighrelin. These variants are expressed in humans and mice, demonstrating conservation of alternative splicing spanning 90 million years. Minighrelin appears to have similar actions to full-length ghrelin, as treatment with exogenous minighrelin peptide stimulates appetite and feeding in mice. Forced expression of the exon 2-deleted preproghrelin variant mirrors the effect of the canonical preproghrelin, stimulating cell proliferation and migration in the PC3 prostate cancer cell line. This is the first study to characterise an exon 2-deleted preproghrelin variant and to demonstrate sequence conservation of ghrelin gene-derived splice variants that encode a truncated ghrelin peptide. This adds further impetus for studies into the alternative splicing of the ghrelin gene and the function of novel ghrelin peptides in vertebrates.

  15. Molecular and functional analyses of the metC gene of Lactococcus lactis, encoding cystathionine beta-lyase.

    Science.gov (United States)

    Fernández, M; van Doesburg, W; Rutten, G A; Marugg, J D; Alting, A C; van Kranenburg, R; Kuipers, O P

    2000-01-01

    The enzymatic degradation of amino acids in cheese is believed to generate aroma compounds and therefore to be essential for flavor development. Cystathionine beta-lyase (CBL) can convert cystathionine to homocysteine but is also able to catalyze an alpha, gamma elimination. With methionine as a substrate, it produces volatile sulfur compounds which are important for flavor formation in Gouda cheese. The metC gene, which encodes CBL, was cloned from the Lactococcus lactis model strain MG1363 and from strain B78, isolated from a cheese starter culture and known to have a high capacity to produce volatile compounds. The metC gene was found to be cotranscribed with a downstream cysK gene, which encodes a putative cysteine synthase. The MetC proteins of both strains were overproduced in strain MG1363 with the NICE (nisin-controlled expression) system, resulting in a >25-fold increase in cystathionine lyase activity. A disruption of the metC gene was achieved in strain MG1363. Determination of enzymatic activities in the overproducing and knockout strains revealed that MetC is essential for the degradation of cystathionine but that at least one lyase other than CBL contributes to methionine degradation via alpha, gamma elimination to form volatile aroma compounds.

  16. Integrase-mediated recombination of the veb1 gene cassette encoding an extended-spectrum β-lactamase.

    Directory of Open Access Journals (Sweden)

    Daniel Aubert

    Full Text Available The veb1 gene cassette encodes the extended spectrum β-lactamase, VEB-1 that is increasingly isolated from worldwide Gram-negative rods. Veb1 is commonly inserted into the variable region of different class 1 integrons in which it is always associated with a downstream-located aadB gene cassette encoding an aminoglycoside adenylyltransferase. In Pseudomonas aeruginosa, the majority of veb1-containing integrons also carry an insertion sequence, IS1999 that is inserted upstream of the veb1 gene cassette and disrupts the integron specific recombination site, attI1. Investigation of the recombination properties of the sites surrounding veb1 revealed that insertion of IS1999 reduces significantly the recombination frequency of attI1 and that veb1 attC is not efficient for recombination in contrast to aadB attC. Subsequent sequence optimisation of veb1 attC by mutagenesis, into a more consensual attC site resembling aadB attC, successfully improved recombination efficiency. Overall, this work gives some insights into the organisation of veb1-containing integrons. We propose that IS1999 and the nature of veb1 attC stabilize the veb1 gene cassette environment likely by impairing recombination events upstream or downstream of veb1, respectively.

  17. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature.

    Directory of Open Access Journals (Sweden)

    Peter K Busk

    Full Text Available The cellulose-degrading fungal enzymes are glycoside hydrolases of the GH families and lytic polysaccharide monooxygenases. The entanglement of glycoside hydrolase families and functions makes it difficult to predict the enzymatic activity of glycoside hydrolases based on their sequence. In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important feature as it provides a direct route to predict function from primary sequence. Furthermore, we used Peptide Pattern Recognition to compare the cellulose-degrading enzyme activities encoded by 39 fungal genomes. The results indicated that cellobiohydrolases and AA9 lytic polysaccharide monooxygenases are hallmarks of cellulose-degrading fungi except brown rot fungi. Furthermore, a high number of AA9, endocellulase and β-glucosidase genes were identified, not in what are known to be the strongest, specialized lignocellulose degraders but in saprophytic fungi that can use a wide variety of substrates whereas only few of these genes were found in fungi that have a limited number of natural, lignocellulotic substrates. This correlation suggests that enzymes with different properties are necessary for degradation of cellulose in different complex substrates. Interestingly, clustering of the fungi based on their predicted enzymes indicated that Ascomycota and Basidiomycota use the same enzymatic activities to degrade plant cell walls.

  18. Cloning and expression in Escherichia coli of a new gene of Schistosoma japonicum encoding casein kinase Ⅱ beta subunit

    Institute of Scientific and Technical Information of China (English)

    彭寨玉; 余新炳; 吴忠道; 徐劲; 吴德; 李孜

    2004-01-01

    Background Nowadays it is now a focus topic in schistosomiasis research to find ideal vaccine candidates and new drug targets for developing anti-schistosomiasis vaccine. We cloned a new gene, casein kinase Ⅱ beta subunit, of Schistosoma japonicum (S. japonicum) and express it in Escherichia coli (E.coli).Methods The ESTs obtained in our laboratory were analyzed by homologous searching, and a new gene was recognized. The full-length cDNA of the new gene was obtained by joining the 3'RACE PCR fragment and the EST clone. To express the new gene, the cDNA was cloned into pGEX-4T-1 vector and then transformed into E.coli JM109. The recombinant protein was analyzed by SDS-PAGE and Western-blot. Results A 908 bp cDNA was isolated from S. japonicum and identified to be casein kinase Ⅱ beta subunit gene by sequence analysis. The open reading frame of the gene encodes a protein of 217 amino acids exhibiting 75.8%, 75.8%, 73.9%, 68.2%, 51.6% identity to the amino acids sequence of the corresponding genes of Homo sapiens (H. sapiens), Xenopus laevi (X. laevi), Drosophila melanogaster (D. melanogaster), Caenorhabditis elegan (C. elegan), and Schizosaccharomyces pombe (S. promber) respectively. The predicted molecular weight of the protein was 24.921 kDa. The new cDNA sequence had been submitted to GenBank, and its accession number is AY241391. This cDNA was subcloned into the pGEX-4T-1 vector and expressed in E.coli JM109.The recombinant protein could be recognized by the S. japonicum infected rabbit serum. Conclusion The full-length cDNA sequences encoding S. japonicum casein kinase Ⅱ beta subunit were firstly sequenced, cloned, and expressed in E.coli.

  19. Functional analysis of the Phycomyces carRA gene encoding the enzymes phytoene synthase and lycopene cyclase.

    Directory of Open Access Journals (Sweden)

    Catalina Sanz

    Full Text Available Phycomyces carRA gene encodes a protein with two domains. Domain R is characterized by red carR mutants that accumulate lycopene. Domain A is characterized by white carA mutants that do not accumulate significant amounts of carotenoids. The carRA-encoded protein was identified as the lycopene cyclase and phytoene synthase enzyme by sequence homology with other proteins. However, no direct data showing the function of this protein have been reported so far. Different Mucor circinelloides mutants altered at the phytoene synthase, the lycopene cyclase or both activities were transformed with the Phycomyces carRA gene. Fully transcribed carRA mRNA molecules were detected by Northern assays in the transformants and the correct processing of the carRA messenger was verified by RT-PCR. These results showed that Phycomyces carRA gene was correctly expressed in Mucor. Carotenoids analysis in these transformants showed the presence of ß-carotene, absent in the untransformed strains, providing functional evidence that the Phycomyces carRA gene complements the M. circinelloides mutations. Co-transformation of the carRA cDNA in E. coli with different combinations of the carotenoid structural genes from Erwinia uredovora was also performed. Newly formed carotenoids were accumulated showing that the Phycomyces CarRA protein does contain lycopene cyclase and phytoene synthase activities. The heterologous expression of the carRA gene and the functional complementation of the mentioned activities are not very efficient in E. coli. However, the simultaneous presence of both carRA and carB gene products from Phycomyces increases the efficiency of these enzymes, presumably due to an interaction mechanism.

  20. Cluster of genes that encode positive and negative elements influencing filament length in a heterocyst-forming cyanobacterium.

    Science.gov (United States)

    Merino-Puerto, Victoria; Herrero, Antonia; Flores, Enrique

    2013-09-01

    The filamentous, heterocyst-forming cyanobacteria perform oxygenic photosynthesis in vegetative cells and nitrogen fixation in heterocysts, and their filaments can be hundreds of cells long. In the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, the genes in the fraC-fraD-fraE operon are required for filament integrity mainly under conditions of nitrogen deprivation. The fraC operon transcript partially overlaps gene all2395, which lies in the opposite DNA strand and ends 1 bp beyond fraE. Gene all2395 produces transcripts of 1.35 kb (major transcript) and 2.2 kb (minor transcript) that overlap fraE and whose expression is dependent on the N-control transcription factor NtcA. Insertion of a gene cassette containing transcriptional terminators between fraE and all2395 prevented production of the antisense RNAs and resulted in an increased length of the cyanobacterial filaments. Deletion of all2395 resulted in a larger increase of filament length and in impaired growth, mainly under N2-fixing conditions and specifically on solid medium. We denote all2395 the fraF gene, which encodes a protein restricting filament length. A FraF-green fluorescent protein (GFP) fusion protein accumulated significantly in heterocysts. Similar to some heterocyst differentiation-related proteins such as HglK, HetL, and PatL, FraF is a pentapeptide repeat protein. We conclude that the fraC-fraD-fraE←fraF gene cluster (where the arrow indicates a change in orientation), in which cis antisense RNAs are produced, regulates morphology by encoding proteins that influence positively (FraC, FraD, FraE) or negatively (FraF) the length of the filament mainly under conditions of nitrogen deprivation. This gene cluster is often conserved in heterocyst-forming cyanobacteria.

  1. Cloning and Expressing of a Gene Encoding Cytosolic Copper/Zinc Superoxide Dismutase in the Upland Cotton

    Institute of Scientific and Technical Information of China (English)

    HU Gen-hai; YU Shu-xun; FAN Shu-li; SONG Mei-zhen

    2007-01-01

    In this study, a gene encoding a superoxide dismutase (SOD) was cloned from senescent leaves of cotton (Gossypium hirsutum), and its expressing profile was analyzed. The gene was cloned by rapid amplification of cDNA ends (RACE)method. Northern blotting was used to show the profile of the gene expression, and the enzyme activity was mensurated by NBT deoxidization method in different growth periods. The full length of a gene of cytosolic copper/zinc superoxide dismutase (Cu/Zn-SOD) was isolated from cotton (GenBank Accession Number: DQ445093). The sequence of cDNA contained 682 bp, the opening reading frame 456 bp, and encoded polypeptide 152 amino acids with the predicted molecular mass of 15.03 kD and theoretical pI of 6.09. The amino acid sequence was similar with the other plants from 82 to 87%. Southern blotting showed that the gene had different number of copies in different cotton species. Northern blotting suggested that the gene had different expression in different tissues and development stages. The enzyme activity was the highest in peak flowering stage. The cotton cytosolic (Cu/Zn-SOD) had lower copies in the upland cotton. The copper/zinc superoxide dismutase mRNA expressing level showed regular changing in the whole development stages; it was lower in the former stages, higher in latter stages and the highest at the peak flowering stage. The curve of the copper/zinc superoxide dismutase mRNA expressing level was consistent with that of the Cu/Zn-SOD enzyme activity.The copper/zinc superoxide dismutase mRNA expressing levels of different organs showed that the gene was higher in the root, leaf, and lower in the flower.

  2. Analysis of viral protein-2 encoding gene of avian encephalomyelitis virus from field specimens in Central Java region, Indonesia

    Directory of Open Access Journals (Sweden)

    Aris Haryanto

    2016-01-01

    Full Text Available Aim: Avian encephalomyelitis (AE is a viral disease which can infect various types of poultry, especially chicken. In Indonesia, the incidence of AE infection in chicken has been reported since 2009, the AE incidence tends to increase from year to year. The objective of this study was to analyze viral protein 2 (VP-2 encoding gene of AE virus (AEV from various species of birds in field specimen by reverse transcription polymerase chain reaction (RT-PCR amplification using specific nucleotides primer for confirmation of AE diagnosis. Materials and Methods: A total of 13 AEV samples are isolated from various species of poultry which are serologically diagnosed infected by AEV from some areas in central Java, Indonesia. Research stage consists of virus samples collection from field specimens, extraction of AEV RNA, amplification of VP-2 protein encoding gene by RT-PCR, separation of RT-PCR product by agarose gel electrophoresis, DNA sequencing and data analysis. Results: Amplification products of the VP-2 encoding gene of AEV by RT-PCR methods of various types of poultry from field specimens showed a positive results on sample code 499/4/12 which generated DNA fragment in the size of 619 bp. Sensitivity test of RT-PCR amplification showed that the minimum concentration of RNA template is 127.75 ng/μl. The multiple alignments of DNA sequencing product indicated that positive sample with code 499/4/12 has 92% nucleotide homology compared with AEV with accession number AV1775/07 and 85% nucleotide homology with accession number ZCHP2/0912695 from Genbank database. Analysis of VP-2 gene sequence showed that it found 46 nucleotides difference between isolate 499/4/12 compared with accession number AV1775/07 and 93 nucleotides different with accession number ZCHP2/0912695. Conclusions: Analyses of the VP-2 encoding gene of AEV with RT-PCR method from 13 samples from field specimen generated the DNA fragment in the size of 619 bp from one sample with

  3. The Escherichia coli Serogroup O1 and O2 Lipopolysaccharides Are Encoded by Multiple O-antigen Gene Clusters

    Science.gov (United States)

    Delannoy, Sabine; Beutin, Lothar; Mariani-Kurkdjian, Patricia; Fleiss, Aubin; Bonacorsi, Stéphane; Fach, Patrick

    2017-01-01

    Escherichia coli strains belonging to serogroups O1 and O2 are frequently associated with human infections, especially extra-intestinal infections such as bloodstream infections or urinary tract infections. These strains can be associated with a large array of flagellar antigens. Because of their frequency and clinical importance, a reliable detection of E. coli O1 and O2 strains and also the frequently associated K1 capsule is important for diagnosis and source attribution of E. coli infections in humans and animals. By sequencing the O-antigen clusters of various O1 and O2 strains we showed that the serogroups O1 and O2 are encoded by different sets of O-antigen encoding genes and identified potentially new O-groups. We developed qPCR-assays to detect the various O1 and O2 variants and the K1-encoding gene. These qPCR assays proved to be 100% sensitive and 100% specific and could be valuable tools for the investigations of zoonotic and food-borne infection of humans with O1 and O2 extra-intestinal (ExPEC) or Shiga toxin-producing E. coli (STEC) strains.

  4. Comparative genomics of the family Vibrionaceae reveals the wide distribution of genes encoding virulence-associated proteins

    Directory of Open Access Journals (Sweden)

    Cai Hong

    2010-06-01

    Full Text Available Abstract Background Species of the family Vibrionaceae are ubiquitous in marine environments. Several of these species are important pathogens of humans and marine species. Evidence indicates that genetic exchange plays an important role in the emergence of new pathogenic strains within this family. Data from the sequenced genomes of strains in this family could show how the genes encoded by all these strains, known as the pangenome, are distributed. Information about the core, accessory and panproteome of this family can show how, for example, genes encoding virulence-associated proteins are distributed and help us understand how virulence emerges. Results We deduced the complete set of orthologs for eleven strains from this family. The core proteome consists of 1,882 orthologous groups, which is 28% of the 6,629 orthologous groups in this family. There were 4,411 accessory orthologous groups (i.e., proteins that occurred in from 2 to 10 proteomes and 5,584 unique proteins (encoded once on only one of the eleven genomes. Proteins that have been associated with virulence in V. cholerae were widely distributed across the eleven genomes, but the majority was found only on the genomes of the two V. cholerae strains examined. Conclusions The proteomes are reflective of the differing evolutionary trajectories followed by different strains to similar phenotypes. The composition of the proteomes supports the notion that genetic exchange among species of the Vibrionaceae is widespread and that this exchange aids these species in adapting to their environments.

  5. The decarboxylation of the weak-acid preservative, sorbic acid, is encoded by linked genes in Aspergillus spp.

    Science.gov (United States)

    Plumridge, Andrew; Melin, Petter; Stratford, Malcolm; Novodvorska, Michaela; Shunburne, Lee; Dyer, Paul S; Roubos, Johannes A; Menke, Hildegard; Stark, Jacques; Stam, Hein; Archer, David B

    2010-08-01

    The ability to resist anti-microbial compounds is of key evolutionary benefit to microorganisms. Aspergillus niger has previously been shown to require the activity of a phenylacrylic acid decarboxylase (encoded by padA1) for the decarboxylation of the weak-acid preservative sorbic acid (2,4-hexadienoic acid) to 1,3-pentadiene. It is now shown that this decarboxylation process also requires the activity of a putative 4-hydroxybenzoic acid (3-octaprenyl-4-hydroxybenzoic acid) decarboxylase, encoded by a gene termed ohbA1, and a putative transcription factor, sorbic acid decarboxylase regulator, encoded by sdrA. The padA1,ohbA1 and sdrA genes are in close proximity to each other on chromosome 6 in the A. niger genome and further bioinformatic analysis revealed conserved synteny at this locus in several Aspergillus species and other ascomycete fungi indicating clustering of metabolic function. This cluster is absent from the genomes of A. fumigatus and A. clavatus and, as a consequence, neither species is capable of decarboxylating sorbic acid. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Molecular cloning and functional expression analysis of a new gene encoding geranylgeranyl diphosphate synthase from hazel (Corylus avellana L. Gasaway).

    Science.gov (United States)

    Wang, Yechun; Miao, Zhiqi; Tang, Kexuan

    2010-10-01

    Geranylgeranyl diphosphate synthase (GGPPS) [EC 2.5.1.29] catalyzes the biosynthesis of geranylgeranyl diphosphate (GGPP), which is a key precursor for diterpenes such as taxol. Herein, a full-length cDNA encoding GGPPS (designated as CgGGPPS) was cloned and characterized from hazel (Corylus avellana L. Gasaway), a taxol-producing angiosperms. The full-length cDNA of CgGGPPS was 1515 bp with a 1122 bp open reading frame (ORF) encoding a 373 amino acid polypeptide. The CgGGPPS genomic DNA sequence was also obtained, revealing CgGGPPS gene was not interrupted by an intron. Southern blot analysis indicated that CgGGPPS belonged to a small gene family. Tissue expression pattern analysis indicated that CgGGPPS expressed the highest in leaves. RT-PCR analysis indicated that CgGGPPS expression could be induced by exogenous methyl jasmonate acid. Furthermore, carotenoid accumulation was observed in Escherichia coli carrying pACCAR25ΔcrtE plasmid carrying CgGGPPS. The result revealed that cDNA encoded a functional GGPP synthase.

  7. 基于规则生成的ERP智能零件编码器%The Rule-based Generated Intelligent Components Encoder of ERP

    Institute of Scientific and Technical Information of China (English)

    白俊; 龙伟; 黄敏

    2011-01-01

    In order to achiew the integration of CPD and CAX / PDM / ERP, manufacturing process requires the components coding system based on product family as the basic core module. Aiming at the ERP system of oil drilling equipment, it proposcs a reference model of rule - based components coding and designs a rulebased generated intelligent components encoder. The encoder can be applied to the ERP system of different coding rules and generate unique components coding%以产品族为基础的零件编码系统,是制造业实现CPD与CAX/PDM/ERP有机集成的基础性核心模块.针对石油钻井成套设备的ERP系统,提出了一个基于规则生成的零件编码的参考模型,并设计构造了基于规则生成的智能零件编码器.该编码器可应用于规则定制不同的ERP系统中,生成具有惟一性的零件编码.

  8. A novel gene encoding xanthan lyase of Paenibacillus alginolyticus strain XL-1

    NARCIS (Netherlands)

    Ruijssenaars, H.J.; Hartmans, S.; Verdoes, J.C.

    2000-01-01

    Xanthan-modifying enzymes are powerful tools in studying structure-function relationships of this polysaccharide. One of these modifying enzymes is xanthan lyase, which removes the terminal side chain residue of xanthan. In this paper, the cloning and sequencing of the first xanthan lyase-encoding g

  9. The bovine T cell receptor alpha/delta locus contains over 400 V genes and encodes V genes without CDR2.

    Science.gov (United States)

    Reinink, Peter; Van Rhijn, Ildiko

    2009-07-01

    Alphabeta T cells and gammadelta T cells perform nonoverlapping immune functions. In mammalian species with a high percentage of very diverse gammadelta T cells, like ruminants and pigs, it is often assumed that alphabeta T cells are less diverse than gammadelta T cells. Based on the bovine genome, we have created a map of the bovine TRA/TRD locus and show that, in cattle, in addition to the anticipated >100 TRDV genes, there are also >300 TRAV or TRAV/DV genes. Among the V genes in the TRA/TRD locus, there are several genes that lack a CDR2 and are functionally rearranged and transcribed and, in some cases, have an extended CDR1. The number of bovine V genes is a multiple of the number in mice and humans and may encode T cell receptors that use a novel way of interacting with antigen.

  10. Fasciola hepatica mucin-encoding gene: expression, variability and its potential relevance in host-parasite relationship.

    Science.gov (United States)

    Cancela, Martín; Santos, Guilherme B; Carmona, Carlos; Ferreira, Henrique B; Tort, José Francisco; Zaha, Arnaldo

    2015-12-01

    Fasciola hepatica is the causative agent of fasciolosis, a zoonosis with significant impact both in human and animal health. Understanding the basic processes of parasite biology, especially those related to interactions with its host, will contribute to control F. hepatica infections and hence liver pathology. Mucins have been described as important mediators for parasite establishment within its host, due to their key roles in immune evasion. In F. hepatica, mucin expression is upregulated in the mammalian invasive newly excysted juvenile (NEJ) stage in comparison with the adult stage. Here, we performed sequencing of mucin cDNAs prepared from NEJ RNA, resulting in six different cDNAs clusters. The differences are due to the presence of a tandem repeated sequence of 66 bp encoded by different exons. Two groups of apomucins one with three and the other with four repeats, with 459 and 393 bp respectively, were identified. These cDNAs have open reading frames encoding Ser-Thr enriched proteins with an N-terminal signal peptide, characteristic of apomucin backbone. We cloned a 4470 bp gene comprising eight exons and seven introns that encodes all the cDNA variants identified in NEJs. By real time polymerase chain reaction and high-resolution melting approaches of individual flukes we infer that fhemuc-1 is a single-copy gene, with at least two different alleles. Our data suggest that both gene polymorphism and alternative splicing might account for apomucin variability in the fhemuc-1 gene that is upregulated in NEJ invasive stage. The relevance of this variation in host-parasite interplay is discussed.

  11. Impact of recombination on polymorphism of genes encoding Kunitz-type protease inhibitors in the genus Solanum.

    Science.gov (United States)

    Speranskaya, Anna S; Krinitsina, Anastasia A; Kudryavtseva, Anna V; Poltronieri, Palmiro; Santino, Angelo; Oparina, Nina Y; Dmitriev, Alexey A; Belenikin, Maxim S; Guseva, Marina A; Shevelev, Alexei B

    2012-08-01

    The group of Kunitz-type protease inhibitors (KPI) from potato is encoded by a polymorphic family of multiple allelic and non-allelic genes. The previous explanations of the KPI variability were based on the hypothesis of random mutagenesis as a key factor of KPI polymorphism. KPI-A genes from the genomes of Solanum tuberosum cv. Istrinskii and the wild species Solanum palustre were amplified by PCR with subsequent cloning in plasmids. True KPI sequences were derived from comparison of the cloned copies. "Hot spots" of recombination in KPI genes were independently identified by DnaSP 4.0 and TOPALi v2.5 software. The KPI-A sequence from potato cv. Istrinskii was found to be 100% identical to the gene from Solanum nigrum. This fact illustrates a high degree of similarity of KPI genes in the genus Solanum. Pairwise comparison of KPI A and B genes unambiguously showed a non-uniform extent of polymorphism at different nt positions. Moreover, the occurrence of substitutions was not random along the strand. Taken together, these facts contradict the traditional hypothesis of random mutagenesis as a principal source of KPI gene polymorphism. The experimentally found mosaic structure of KPI genes in both plants studied is consistent with the hypothesis suggesting recombination of ancestral genes. The same mechanism was proposed earlier for other resistance-conferring genes in the nightshade family (Solanaceae). Based on the data obtained, we searched for potential motifs of site-specific binding with plant DNA recombinases. During this work, we analyzed the sequencing data reported by the Potato Genome Sequencing Consortium (PGSC), 2011 and found considerable inconsistence of their data concerning the number, location, and orientation of KPI genes of groups A and B. The key role of recombination rather than random point mutagenesis in KPI polymorphism was demonstrated for the first time. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  12. Cloning and Characterization of a Salt Tolerance-Associated Gene Encoding Trehalose-6-Phosphate Synthase in Sweetpotato

    Institute of Scientific and Technical Information of China (English)

    JIANG Tao; ZHAI Hong; WANG Fei-bing; ZHOU Hua-nan; SI Zeng-zhi; HE Shao-zhen; LIU Qing-chang

    2014-01-01

    Trehalose plays an important role in metabolic regulation and abiotic stress tolerance in a variety of organisms. In plants, its biosynthesis is catalyzed by two key enzymes:trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP). In the present study, a TPS gene, named IbTPS, was ifrst isolated from sweetpotato (Ipomoea batatas (L.) Lam.) cv. Lushu 3 by rapid ampliifcation of cDNA ends (RACE). The open reading frame (ORF) contained 2 580 nucleotides encoding 859 amino acids with a molecular weight of 97.433 kDa and an isoelectric point (pI) of 5.7. The deduced amino acid sequence showed high identities with TPS of other plants. Real-time quantitative PCR analysis revealed that the expression level of IbTPS gene was signiifcantly higher in stems of Lushu 3 than in its leaves and roots. Subcellular localization analysis in onion epidermal cells indicated that IbTPS gene was located in the nucleus. Transgenic tobacco (cv. Wisconsin 38) plants over-expressing IbTPS gene exhibited signiifcantly higher salt tolerance compared with the control plant. Trehalose and proline content was found to be signiifcantly more accumulated in transgenic tobacco plants than in the wild-type and several stress tolerance related genes were up-regulated. These results suggest that IbTPS gene may enhance salt tolerance of plants by increasing the amount of treahalose and proline and regulating the expression of stress tolerance related genes.

  13. Ankyrin repeat domain-encoding genes in the wPip strain of Wolbachia from the Culex pipiens group

    Directory of Open Access Journals (Sweden)

    Parkhill Julian

    2007-09-01

    Full Text Available Abstract Background Wolbachia are obligate endosymbiotic bacteria maternally transmitted through the egg cytoplasm that are responsible for several reproductive disorders in their insect hosts, such as cytoplasmic incompatibility (CI in infected mosquitoes. Species in the Culex pipiens complex display an unusually high number of Wolbachia-induced crossing types, and based on present data, only the wPip strain is present. Results The sequencing of the wPip strain of Wolbachia revealed the presence of 60 ankyrin repeat domain (ANK encoding genes and expression studies of these genes were carried out in adult mosquitoes. One of these ANK genes, pk2, is shown to be part of an operon of three prophage-associated genes with sex-specific expression, and is present in two identical copies in the genome. Another homolog of pk2 is also present that is differentially expressed in different Cx. pipiens group strains. A further two ANK genes showed sex-specific regulation in wPip-infected Cx. pipiens group adults. Conclusion The high number, variability and differential expression of ANK genes in wPip suggest an important role in Wolbachia biology, and the gene family provides both markers and promising candidates for the study of reproductive manipulation.

  14. Expression of the immediate-early gene-encoded protein Egr-1 (zif268) during in vitro classical conditioning.

    Science.gov (United States)

    Mokin, Maxim; Keifer, Joyce

    2005-01-01

    Expression of the immediate-early genes (IEGs) has been shown to be induced by activity-dependent synaptic plasticity or behavioral training and is thought to play an important role in long-term memory. In the present study, we examined the induction and expression of the IEG-encoded protein Egr-1 during an in vitro neural correlate of eyeblink classical conditioning. The results showed that Egr-1 protein expression as determined by immunocytochemistry and Western blot analysis rapidly increased during the early stages of conditioning and remained elevated during the later stages. Further, expression of Egr-1 protein required NMDA receptor activation as it was blocked by bath application of AP-5. These findings suggest that the IEG-encoded proteins such as Egr-1 are activated during relatively simple forms of learning in vertebrates. In this case, Egr-1 may have a functional role in the acquisition phase of conditioning as well as in maintaining expression of conditioned responses.

  15. Zea mI, the maize homolog of the allergen-encoding Lol pI gene of rye grass.

    Science.gov (United States)

    Broadwater, A H; Rubinstein, A L; Chay, C H; Klapper, D G; Bedinger, P A

    1993-09-15

    Sequence analysis of a pollen-specific cDNA from maize has identified a homolog (Zea mI) of the gene (Lol pI) encoding the major allergen of rye-grass pollen. The protein encoded by the partial cDNA sequence is 59.3% identical and 72.7% similar to the comparable region of the reported amino acid sequence of Lol pIA. Southern analysis indicates that this cDNA represents a member of a small multigene family in maize. Northern analysi