Collective motion and the generator coordinate method
International Nuclear Information System (INIS)
Passos, E.J.V. de
1981-01-01
The generator coordinate method is used to construct a collective subspace of the many-body Hylbert space. The construction is based on the analysis of the properties of the overlaps of the generator states. Some well-known misbehaviours of the generator coordinate weight functions are clearly identified as of kinematical origin. A standard orthonormal representation in the collective subspace is introduced which eliminates them. It is also indicated how appropriate collective dynamical variables can be defined a posteriori. To illustrate the properties of the collective subspaces applications are made to a) translational invariant overlap kernels b) to one and two-conjugate parameter families of generator states. (Author) [pt
The generator coordinate method in nuclear physics
International Nuclear Information System (INIS)
Giraud, B.G.
1981-01-01
The generator coordinate method is introduced as a physical description of a N-body system in a subspace of a reduced number of degrees of freedom. Special attention is placed on the identification of these special, 'collective' degrees of freedom. It is shown in particular that the method has close links with the Born-Oppenheimer approximation and also that considerations of differential geometry are useful in the theory. A set of applications is discussed and in particular the case of nuclear collisions is considered. (Author) [pt
Microscopic approach to the generator coordinate method
International Nuclear Information System (INIS)
Haider, Q.; Gogny, D.; Weiss, M.S.
1989-01-01
In this paper, we solve different theoretical problems associated with the calculation of the kernel occurring in the Hill-Wheeler integral equations within the framework of generator coordinate method. In particular, we extend the Wick's theorem to nonorthogonal Bogoliubov states. Expressions for the overlap between Bogoliubov states and for the generalized density matrix are also derived. These expressions are valid even when using an incomplete basis, as in the case of actual calculations. Finally, the Hill-Wheeler formalism is developed for a finite range interaction and the Skyrme force, and evaluated for the latter. 20 refs., 1 fig., 4 tabs
Generator Coordinate Method Analysis of Xe and Ba Isotopes
Higashiyama, Koji; Yoshinaga, Naotaka; Teruya, Eri
Nuclear structure of Xe and Ba isotopes is studied in terms of the quantum-number projected generator coordinate method (GCM). The GCM reproduces well the energy levels of high-spin states as well as low-lying states. The structure of the low-lying states is analyzed through the GCM wave functions.
Local Gaussian approximation in the generator coordinate method
International Nuclear Information System (INIS)
Onishi, Naoki; Une, Tsutomu.
1975-01-01
A transformation from a non-orthogonal representation to an orthogonal representation of wave functions is studied in the generator coordinate method. A differential equation can be obtained by the transformation for a case that the eigenvalue equation of the overlap kernel is solvable. By assuming local Gaussian overlap, we derive a Schroedinger-type equation for the collective motion from the Hill-Wheeler integral equation. (auth.)
Local Gaussian approximation in the generator coordinate method
Energy Technology Data Exchange (ETDEWEB)
Onishi, N [Tokyo Univ. (Japan). Coll. of General Education; Une, Tsutomu
1975-02-01
A transformation from a non-orthogonal representation to an orthogonal representation of wave functions is studied in the generator coordinate method. A differential equation can be obtained by the transformation for a case that the eigenvalue equation of the overlap kernel is solvable. By assuming local Gaussian overlap, we derive a Schroedinger-type equation for the collective motion from the Hill-Wheeler integral equation.
A study of the relationship between the semi-classical and the generator coordinate methods
International Nuclear Information System (INIS)
Passos, E.J.V. de; Souza Cruz, F.F. de.
Using a very simple type of wave-packet which is obtained by letting unitary displacement operators having as generators canonical operators Q and P in the many-body Hilbert space act on a reference state, the relatinship between the semi-classical and the generator coordinate methods is investigated. The semi-classical method is based on the time-dependent variational principle whereas in the generator coordinate method the wave-packets are taken as generator states. To establish the equivalence of the two-methods, the concept of redundancy of the wave-packet and the importance of the zero-point energy effects are examined in detail, using tools developed in previous works. A numerical application to the case of the Goldhaber-Teller mode in 4 He is made. (Author) [pt
International Nuclear Information System (INIS)
Didong, M.
1976-01-01
The extend generator-coordinated method is discussed and a procedure is given for the solution of the Hill-Wheeler equation. The HFB-theory, the particle-number and angular-momentum projections necessary for symmetry, and the modified surprice delta interaction are discussed. The described procedures are used to calculate 72 Ge, 70 Zn and 74 Ge properties. (BJ) [de
Study between the semi-classical and the generator-coordinate methods
International Nuclear Information System (INIS)
Souza Cruz, F.F. de.
1979-01-01
In this work it is performed a comparison between two microscopic theories of the colective movement: semi-classical theory and the quantum theory from the generator -coordinate method. In boths cases, it is used wave packets |p,q> which depend on two canonical conjugate parameters. These wave packets are constructed by the action of displacement unitory operators, which are generated by canonical operators Q-circumflex and P-circumflex on a referencial state. (A.C.A.S.) [pt
Roper resonances and generator coordinate method in the chiral-soliton model
International Nuclear Information System (INIS)
Meissner, T.; Gruemmer, F.; Goeke, K.; Harvey, M.
1989-01-01
The nucleon and Δ Roper resonances are described by means of the generator coordinate method in the framework of the nontopological chiral-soliton model. Solitons with various sizes are constructed with a constrained variational technique. The masses of all known Roper resonances come out to within 150 MeV of their experimental values. A nucleon compression modulus of about 4 GeV is extracted. The limits of the approach due to the polarization of the Dirac vacuum are displayed
Generator coordinate method for triaxial quadrupole collective dynamics in strontium isotopes
International Nuclear Information System (INIS)
Bonche, P.; Dobaczewski, J.; Flocard, H.; Heenen, P.H.
1991-01-01
We discuss the algebraic structure of the generator coordinate method for triaxial quadrupole collective motion. The collective solutions are classified according to the representations of the permutation group of the intrinsic axes. Our method amounts to an approximate angular momentum projection. We apply it to a study of the spherical to deformed shape transition in light even strontium isotopes 78-88 Sr. We find that triaxial configurations play a significant role in explaining the structure of the transitional isotopes 80-82 Sr
Application of the generator coordinate method to neutron-rich Se and Ge isotopes
Directory of Open Access Journals (Sweden)
Higashiyama Koji
2014-03-01
Full Text Available The quantum-number projected generator coordinate method (GCM is applied to the neutron-rich Se and Ge isotopes, where the monopole and quadrupole pairing plus quadrupole-quadrupole interaction is employed as an effective interaction. The energy spectra obtained by the GCM are compared to both the shell model results and the experimental data. The GCM reproduces well the energy levels of high-spin states as well as the low-lying states. The structure of the low-lying collective states is analyzed through the GCM wave functions.
Investigations in the problem of pion condensation using generator co-ordinate methods
International Nuclear Information System (INIS)
Chattopadhyay, P.; Providencia, J. da
1981-01-01
Pion condensation in neutron matter has been investigated using the generator coordinate methode and a simple p-wave interaction. The assumption of a condensed mode corresponding to one pion momentum (determined variationally) helps evaluate all the necessary matrix elements exactly. The technique of charge projection from a coherent state of negative pions is discussed, and calculations have been carried out for the cases of average charge conversation, charge projection before variation and for a charge conserving trial function. The ground-state energies and the lowest excitations of the system are obtained from numerical solutions of the Hill-Wheeler equation. (orig.)
Effective nucleus-nucleus potentials derived from the generator coordinate method
Energy Technology Data Exchange (ETDEWEB)
Friedrich, H; Canto, L F [Oxford Univ. (UK). Dept. of Theoretical Physics
1977-11-07
The equivalence of the generator coordinate method (GCM) and the resonating group method (RGM) and the formal equivalence of the RGM and the orthogonality condition model (OCM) lead to a relation connecting the effective nucleus-nucleus potentials of the OCM with matrix elements of the GCM. This relation may be used to derive effective nucleus-nucleus potentials directly from GCM matrix elements without explicit reference to the potentials of the RGM. In a first application local and l-independent effective potentials are derived from diagonal GCM matrix elements which represent the energy surfaces of a two-centre shell model. Using these potentials the OCM can reproduce the results of a full RGM calculation very well for the elastic scattering of two ..cap alpha..-particles and fairly well for elastic /sup 16/O-/sup 16/O scattering.
International Nuclear Information System (INIS)
Chen, H.T.; Muether, H.; Faessler, A.
1978-01-01
Pairing vibrational and isospin rotational states are described in different approximations based on particle number and isospin projected, proton-proton, neutron-neutron and proton-neutron pairing wave functions and on the generator coordinate method (GCM). The investigations are performed in models for which an exact group theoretical solution exists. It turns out that a particle number and isospin projection is essential to yield a good approximation to the ground state or isospin yrast state energies. For strong pairing correlations (pairing force constant equal to the single-particle level distance) isospin cranking (-ωTsub(x)) yields with particle number projected pairing wave function also good agreement with the exact energies. GCM wave functions generated by particle number and isospin projected BCS functions with different amounts of pairing correlations yield for the lowest T=0 and T=2 states energies which are practically indistinguishable from the exact solutions. But even the second and third lowest energies of charge-symmetric states are still very reliable. Thus it is concluded that also in realistic cases isospin rotational and pairing vibrational states may be described in the framework of the GCM method with isospin and particle number projected generating wave functions. (Auth.)
International Nuclear Information System (INIS)
Beck, R.; Mihailovic, M.V.; Poljsak, M.
1980-05-01
Collisions between complex nuclei are described variationally in terms of the GCM with the aim to provide an evidence that it is a manageable calculational procedure. The variational principle of Kohn and Kato is used to derive the expression for the K matrix. The space of scattering states is spanned entirely by antisymmetrized products of shell model wave functions describing separate clusters; the generator coordinate is the separation between the two shell model potentials. Scattering boundary conditions are enforced by solving an integral equation for the channel GC amplitude in each open channel separately. The main part of evaluation of collision parameters is performed by calculating double integrals of a form factor between channel GC amplitudes. A theorem about a property of the form factors is proved which allows reduction of the amount of work needed to calculate double integrals. The application of the method to the elastic 3 H to 4 He scattering has shown the feasibility of the calculation. It is shown how an analysis of calculated scattering parameters and corresponding scattering states in terms of quasibound states enables one to make a consistent comparison with experiment and to extract some knowledge of the reaction mechanism. Finally a comparative list of the calculational procedures of the GCM and RGM for reactions is made. (author)
Energy Technology Data Exchange (ETDEWEB)
Canto, L F [Oxford Univ. (UK). Dept. of Theoretical Physics
1977-03-21
The elastic scattering of two /sup 16/O nuclei is studied by the generator coordinate method. Phase shifts are calculated and compared to the results of calculations by the resonating group method. A method to include absorption in the generator coordinate method is suggested and 13 and 19 MeV angular distributions are calculated. The agreement with experiment is appreciably improved.
Jiao, C. F.; Engel, J.; Holt, J. D.
2017-11-01
We use the generator-coordinate method (GCM) with realistic shell-model interactions to closely approximate full shell-model calculations of the matrix elements for the neutrinoless double-β decay of 48Ca, 76Ge, and 82Se. We work in one major shell for the first isotope, in the f5 /2p g9 /2 space for the second and third, and finally in two major shells for all three. Our coordinates include not only the usual axial deformation parameter β , but also the triaxiality angle γ and neutron-proton pairing amplitudes. In the smaller model spaces our matrix elements agree well with those of full shell-model diagonalization, suggesting that our Hamiltonian-based GCM captures most of the important valence-space correlations. In two major shells, where exact diagonalization is not currently possible, our matrix elements are only slightly different from those in a single shell.
International Nuclear Information System (INIS)
Schmidt, Andre Campos Kersten
1995-01-01
The effects of different vibrational modes on the isomerization process of polyatomic molecules, or solvent's effects on reaction rates are object of up-to-date interest. In general, such many body phenomena are, in principle, multidimensional, and they first require a reduction of relevant degrees of freedom. In order to investigated, some aspects of the intra-molecular proton tunneling on a malonaldehyde molecule, we use the Generator Coordinate Method. The model used to describe such a process is the so-called System-Bath model, where the system is the reaction coordinate and the bath are the intrinsic degrees of freedom (vibrational modes of the molecule), which are described by a harmonic oscillator set linearly coupled to the system. The reduction of the multidimensional problem to the effective unidimensional one is done using a energy related variational principle on the intrinsic degrees of freedom. we obtained analytically a effective Hamiltonian where the effects of the various degrees of freedom reveal themselves in the appearance of a effective mass and in changes of the shape of the potential barrier. The analyticity of the method was crucial on identifying clearly the roles played by the different physical parameters involved. (author)
Collective mass and zero-point energy in the generator-coordinate method
International Nuclear Information System (INIS)
Fiolhais, C.
1982-01-01
The aim of the present thesis if the study of the collective mass parameters and the zero-point energies in the GCM framework with special regards to the fission process. After the derivation of the collective Schroedinger equation in the framework of the Gaussian overlap approximation the inertia parameters are compared with those of the adiabatic time-dependent Hartree-Fock method. Then the kinetic and the potential zero-point energy occurring in this formulation are studied. Thereafter the practical application of the described formalism is discussed. Then a numerical calculation of the GCM mass parameter and the zero-point energy for the fission process on the base of a two-center shell model with a pairing force in the BCS approximation is presented. (HSI) [de
Microscopic description of the collisions between nuclei. [Generator coordinate kernels
Energy Technology Data Exchange (ETDEWEB)
Canto, L F; Brink, D M [Oxford Univ. (UK). Dept. of Theoretical Physics
1977-03-21
The equivalence of the generator coordinate method and the resonating group method is used in the derivation of two new methods to describe the scattering of spin-zero fragments. Both these methods use generator coordinate kernels, but avoid the problem of calculating the generator coordinate weight function in the asymptotic region. The scattering of two ..cap alpha..-particles is studied as an illustration.
Directory of Open Access Journals (Sweden)
Lacroix D.
2010-03-01
Full Text Available Among the different theoretical approaches able to describe fission, microscopic ones can help us in the understanding of this process, as they have the advantage of describing the nuclear structure and the dynamics in a consistent manner. The sole input of the calculations is the nucleon-nucleon interaction. Such a microscopic time-dependent and quantum mechanical formalism has already been used, based on the Gaussian Overlap Approximation of the Generator Coordinate Method with the adiabatic approximation, to analyze the collective dynamics of low-energy fission in 238U [1]. However, at higher energies, a few MeV above the barrier, the adiabatic approximation doesn’t seem valid anymore. Indeed, manifestations of proton pair breaking have been observed in 238U and 239U for an excitation energy of 2.3 MeV above the barrier [2–4]. Taking the intrinsic excitations into account during the fission process will enable us to determine the coupling between collective and intrinsic degrees of freedom, in particular from saddle to scission. Guidelines of the new formalism under development are presented and some preliminary results on overlaps between non excited and excited states are discussed.
International Nuclear Information System (INIS)
Bernard, R.; Goutte, H.; Gogny, D.; Dubray, N.; Lacroix, D.
2009-01-01
Among the different theoretical approaches able to describe fission, microscopic ones can help us in the understanding of this process, as they have the advantage of describing the nuclear structure and the dynamics in a consistent manner. The sole input of the calculations is the nucleon-nucleon interaction. Such a microscopic time-dependent and quantum mechanical formalism has already been used, based on the Gaussian Overlap Approximation of the Generator Coordinate Method with the adiabatic approximation, to analyze the collective dynamics of low-energy fission in 238 U. However, at higher energies, a few MeV above the barrier, the adiabatic approximation doesn't seem valid anymore. Indeed, manifestations of proton pair breaking have been observed in 238 U and 239 U for an excitation energy of 2.3 MeV above the barrier. Taking the intrinsic excitations into account during the fission process will enable us to determine the coupling between collective and intrinsic degrees of freedom, in particular from saddle to scission. Guidelines of the new formalism under development are presented and some preliminary results on overlaps between non excited and excited states are discussed.
International Nuclear Information System (INIS)
Flocard, Hubert.
1975-01-01
Using the same effective interaction depending only on 6 parameters a large number of nuclear properties are calculated, and the results are compared with experiment. Total binding energies of all nuclei of the chart table are reproduced within 5MeV. It is shown that the remaining discrepancy is coherent with the increase of total binding energy that can be expected from the further inclusion of collective motion correlations. Monopole, quadrupole and hexadecupole part of the charge densities are also reproduced with good accuracy. The deformation energy curves of many nuclei ranging from carbon to superheavy elements are calculated, and the different features of these curves are discussed. It should be noted that the fission barrier of actinide nuclei has been obtained and the results exhibit the well known two-bump shape. In addition the fusion energy curve of two 16 O merging in one nucleus 32 S has been completed. Results concerning monopole, dipole and quadrupole giant resonances of light nuclei obtained within the frame of the generator coordinate method are also presented. The calculated position of these resonances agree well with present available data [fr
International Nuclear Information System (INIS)
Villars, F.
1975-01-01
The objective of the work is to draw attention to the essential equivalence of the two apparently quite distinct ways of describing nuclear collective dyanmics, the adiabatic time-dependent Hartree-Fock method (ADTHF) on the one hand, and the Generator Coordinate (GC) method on the other hand. To demonstrate this relation, an analysis of the simplest case, in which collective motion is described by a single collective para- meter q(t) is presented. In the ATDHF approach, two self-consistency conditions are obtained; the resultant expressions for the collective potential and kinetic energies represent a special case of the more general results of Baranger and Veneroni. In the G.C. approach to the same system (with the same collective parameter q), the narrow overlap approximation must be made, as the counterpart of the adiabatic approximation in the TDHF method. In its conventional form, the G.C. method leads to a different expression for the collective kinetic energy. It is shown however, that a simple generalization of the G.C.-wave function leads to corrections determined by a variational principle. In leading order, the corrected expression for the collective kinetic energy is identical with the TDHF result In both cases, the collective inertia is determined by a self-consistent cranking formula
Regnier, D.; Dubray, N.; Verrière, M.; Schunck, N.
2018-04-01
The time-dependent generator coordinate method (TDGCM) is a powerful method to study the large amplitude collective motion of quantum many-body systems such as atomic nuclei. Under the Gaussian Overlap Approximation (GOA), the TDGCM leads to a local, time-dependent Schrödinger equation in a multi-dimensional collective space. In this paper, we present the version 2.0 of the code FELIX that solves the collective Schrödinger equation in a finite element basis. This new version features: (i) the ability to solve a generalized TDGCM+GOA equation with a metric term in the collective Hamiltonian, (ii) support for new kinds of finite elements and different types of quadrature to compute the discretized Hamiltonian and overlap matrices, (iii) the possibility to leverage the spectral element scheme, (iv) an explicit Krylov approximation of the time propagator for time integration instead of the implicit Crank-Nicolson method implemented in the first version, (v) an entirely redesigned workflow. We benchmark this release on an analytic problem as well as on realistic two-dimensional calculations of the low-energy fission of 240Pu and 256Fm. Low to moderate numerical precision calculations are most efficiently performed with simplex elements with a degree 2 polynomial basis. Higher precision calculations should instead use the spectral element method with a degree 4 polynomial basis. We emphasize that in a realistic calculation of fission mass distributions of 240Pu, FELIX-2.0 is about 20 times faster than its previous release (within a numerical precision of a few percents).
Power Generation and Distribution via Distributed Coordination Control
Kim, Byeong-Yeon; Oh, Kwang-Kyo; Ahn, Hyo-Sung
2014-01-01
This paper presents power coordination, power generation, and power flow control schemes for supply-demand balance in distributed grid networks. Consensus schemes using only local information are employed to generate power coordination, power generation and power flow control signals. For the supply-demand balance, it is required to determine the amount of power needed at each distributed power node. Also due to the different power generation capacities of each power node, coordination of pow...
Non-adiabatic generator-coordinate calculation of H2+
International Nuclear Information System (INIS)
Tostes, J.G.R.; Para Univ., Belem; Toledo Piza, A.F.R. de
1982-10-01
A non-adiabatic calculation of the few lowest J=O states in the H 2+ molecule done within the framework of the Generator Coordinate Method is reported. Substantial accuracy is achivied with the diagonalization of matrices of very modest dimensions. The resulting wavefunctions are strongly dominated by just a few basis states. The computational scheme is set up so as to take the best advantage of good analytical approximations to existing adiabatic molecular wavefunctions. (Author) [pt
Distributed coordination of energy storage with distributed generators
Yang, Tao; Wu, Di; Stoorvogel, Antonie Arij; Stoustrup, Jakob
2016-01-01
With a growing emphasis on energy efficiency and system flexibility, a great effort has been made recently in developing distributed energy resources (DER), including distributed generators and energy storage systems. This paper first formulates an optimal DER coordination problem considering
Strained coordinate methods in rotating stars. II
International Nuclear Information System (INIS)
Smith, B.L.
1977-01-01
It was shown in a previous paper (Smith, 1976) that the method of strained coordinates may be usefully employed in the determination of the structure of rotating polytropes. In the present work this idea is extended to Main-Sequence stars with conservative centrifugal fields. The structure variables, pressure, density and temperature are considered pure functions of an auxiliary coordinate s (the strained coordinate) and the governing equations written in a form that closely resembles the structure equations for spherical stars but with the correction factors that are functions of s. A systematic, order-by-order derivation of these factors is outlined and applied in detail to a Cowling-model star in uniform rotation. The techniques can be extended beyond first order and external boundary conditions are applied, as they should be, at the true surface of the star. Roche approximations are not needed. (Auth.)
Generation of coordinates in PC for graphics of polar figure
International Nuclear Information System (INIS)
Macias B, L.R.
1991-10-01
The preferential orientation, not alone it exists in metals, but also in minerals or in general in crystalline materials, notwithstanding in the metals it can be transformed by means of those processes of having mechanical worked such as laminate, wrapping, etc. To the preferable orientation of the crystals is also known as texture and since the properties of the crystalline materials lens depend on the orientation that present its glasses, it is important to know its texture. The difficulty for to represent and to describe the grade of preferential orientation in textured materials take to F. Weber to adapt the stereo graphic projection of a monocrystal to a poles figure. Later on, its appeared but methods to obtain the polar figure, among them, that of reflection of L. G. Schultz, but again a technique appears it specifies for its obtaining. In all the cases, the methodology is the following one: a) It is obtained by means of the diffraction process, the correspondent spectra in digitized form. b) it is applied process of having softened mathematician of the spectrum. c) there are determined the fi coordinates, beta and intensity for graph nts of the polar figure. d) Its are graph the points generated in c obtaining the polar figures. The objective of this work, is leaving of a softened spectra, to generate the coordinated fi, beta and corresponding intensity to proceed to their graph and generation of the polar figure. In this specific work, the methodology of Philips is used that consists in making a sweeping in hairspring form with the radiation to detect in these points the execution of the Bragg law. (Author)
Directional Overcurrent Relays Coordination Problems in Distributed Generation Systems
Jakub Ehrenberger; Jan Švec
2017-01-01
This paper proposes a new approach to the distributed generation system protection coordination based on directional overcurrent protections with inverse-time characteristics. The key question of protection coordination is the determination of correct values of all inverse-time characteristics coefficients. The coefficients must be correctly chosen considering the sufficiently short tripping times and the sufficiently long selectivity times. In the paper a new approach to protection coordinat...
Inflow Turbulence Generation Methods
Wu, Xiaohua
2017-01-01
Research activities on inflow turbulence generation methods have been vigorous over the past quarter century, accompanying advances in eddy-resolving computations of spatially developing turbulent flows with direct numerical simulation, large-eddy simulation (LES), and hybrid Reynolds-averaged Navier-Stokes-LES. The weak recycling method, rooted in scaling arguments on the canonical incompressible boundary layer, has been applied to supersonic boundary layer, rough surface boundary layer, and microscale urban canopy LES coupled with mesoscale numerical weather forecasting. Synthetic methods, originating from analytical approximation to homogeneous isotropic turbulence, have branched out into several robust methods, including the synthetic random Fourier method, synthetic digital filtering method, synthetic coherent eddy method, and synthetic volume forcing method. This article reviews major progress in inflow turbulence generation methods with an emphasis on fundamental ideas, key milestones, representative applications, and critical issues. Directions for future research in the field are also highlighted.
A Clustering Method for Data in Cylindrical Coordinates
Directory of Open Access Journals (Sweden)
Kazuhisa Fujita
2017-01-01
Full Text Available We propose a new clustering method for data in cylindrical coordinates based on the k-means. The goal of the k-means family is to maximize an optimization function, which requires a similarity. Thus, we need a new similarity to obtain the new clustering method for data in cylindrical coordinates. In this study, we first derive a new similarity for the new clustering method by assuming a particular probabilistic model. A data point in cylindrical coordinates has radius, azimuth, and height. We assume that the azimuth is sampled from a von Mises distribution and the radius and the height are independently generated from isotropic Gaussian distributions. We derive the new similarity from the log likelihood of the assumed probability distribution. Our experiments demonstrate that the proposed method using the new similarity can appropriately partition synthetic data defined in cylindrical coordinates. Furthermore, we apply the proposed method to color image quantization and show that the methods successfully quantize a color image with respect to the hue element.
Directional Overcurrent Relays Coordination Problems in Distributed Generation Systems
Directory of Open Access Journals (Sweden)
Jakub Ehrenberger
2017-09-01
Full Text Available This paper proposes a new approach to the distributed generation system protection coordination based on directional overcurrent protections with inverse-time characteristics. The key question of protection coordination is the determination of correct values of all inverse-time characteristics coefficients. The coefficients must be correctly chosen considering the sufficiently short tripping times and the sufficiently long selectivity times. In the paper a new approach to protection coordination is designed, in which not only some, but all the required types of short-circuit contributions are taken into account. In radial systems, if the pickup currents are correctly chosen, protection coordination for maximum contributions is enough to ensure selectivity times for all the required short-circuit types. In distributed generation systems, due to different contributions flowing through the primary and selective protections, coordination for maximum contributions is not enough, but all the short-circuit types must be taken into account, and the protection coordination becomes a complex problem. A possible solution to the problem, based on an appropriately designed optimization, has been proposed in the paper. By repeating a simple optimization considering only one short-circuit type, the protection coordination considering all the required short-circuit types has been achieved. To show the importance of considering all the types of short-circuit contributions, setting optimizations with one (the highest and all the types of short-circuit contributions have been performed. Finally, selectivity time values are explored throughout the entire protected section, and both the settings are compared.
Liseikin, Vladimir D
2017-01-01
This new edition provides a description of current developments relating to grid methods, grid codes, and their applications to actual problems. Grid generation methods are indispensable for the numerical solution of differential equations. Adaptive grid-mapping techniques, in particular, are the main focus and represent a promising tool to deal with systems with singularities. This 3rd edition includes three new chapters on numerical implementations (10), control of grid properties (11), and applications to mechanical, fluid, and plasma related problems (13). Also the other chapters have been updated including new topics, such as curvatures of discrete surfaces (3). Concise descriptions of hybrid mesh generation, drag and sweeping methods, parallel algorithms for mesh generation have been included too. This new edition addresses a broad range of readers: students, researchers, and practitioners in applied mathematics, mechanics, engineering, physics and other areas of applications.
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Andre Campos Kersten
1995-12-31
The effects of different vibrational modes on the isomerization process of polyatomic molecules, or solvent`s effects on reaction rates are object of up-to-date interest. In general, such many body phenomena are, in principle, multidimensional, and they first require a reduction of relevant degrees of freedom. In order to investigated, some aspects of the intra-molecular proton tunneling on a malonaldehyde molecule, we use the Generator Coordinate Method. The model used to describe such a process is the so-called System-Bath model, where the system is the reaction coordinate and the bath are the intrinsic degrees of freedom (vibrational modes of the molecule), which are described by a harmonic oscillator set linearly coupled to the system. The reduction of the multidimensional problem to the effective unidimensional one is done using a energy related variational principle on the intrinsic degrees of freedom. we obtained analytically a effective Hamiltonian where the effects of the various degrees of freedom reveal themselves in the appearance of a effective mass and in changes of the shape of the potential barrier. The analyticity of the method was crucial on identifying clearly the roles played by the different physical parameters involved. (author) 17 refs., 29 figs.
Magnetohydrodynamic generation method
International Nuclear Information System (INIS)
Masai, Tadahisa; Ishibashi, Eiichi; Kojima, Akihiro.
1967-01-01
The present invention relates to a magneto-hydrodynamic generation method which increases the conductivity of active gas and the generated energy. In the conventional method of open-cycle magnetohydrodynamic generation, the working fluid does not possess a favorable electric conductivity since the collision cross section is large when the combustion is carried out in a condition of excess oxygen. Furthermore, combustion under a condition of oxygen shortage is uncapable of completely converting the generated energy. The air preheater or boiler is not sufficient to collect the waste gas resulting in damage and other economic disadvantages. In the present invention, the combustion gas caused by excess fuel in the combuster is supplied to the generator as the working gas, to which air or fully oxidized air is added to be reheated. While incomplete gas used for heat collection is not adequate, the unburned damage may be eliminated by combusting again and increasing the gas temperature and heat collection rate. Furthermore, a diffuser is mounted at the rear side of the generator to decrease the gas combustion rate. Thus, even when directly absorbing the preheated fully oxidized air or the ordinary air, the boiler is free from damage caused by combustion delay or impulsive force. (M. Ishida)
Liseikin, Vladimir D
2010-01-01
This book is an introduction to structured and unstructured grid methods in scientific computing, addressing graduate students, scientists as well as practitioners. Basic local and integral grid quality measures are formulated and new approaches to mesh generation are reviewed. In addition to the content of the successful first edition, a more detailed and practice oriented description of monitor metrics in Beltrami and diffusion equations is given for generating adaptive numerical grids. Also, new techniques developed by the author are presented, in particular a technique based on the inverted form of Beltrami’s partial differential equations with respect to control metrics. This technique allows the generation of adaptive grids for a wide variety of computational physics problems, including grid clustering to given function values and gradients, grid alignment with given vector fields, and combinations thereof. Applications of geometric methods to the analysis of numerical grid behavior as well as grid ge...
Illustration of distributed generation effects on protection system coordination
Alawami, Hussain Adnan
Environmental concerns, market forces, and emergence of new technologies have recently resulted in restructuring electric utility from vertically integrated networks to competitive deregulated entities. Distributed generation (DG) is playing a major role in such deregulated markets. When they are installed in small amounts and small sizes, their impacts on the system may be negligible. When their penetration levels increase as well as their sizes, however, they may start affecting the system performance from more than one aspect. Power system protection needs to be re-assessed after the emergence of DG. This thesis attempts to illustrate the impact of DG on the power system protection coordination. It will study the operation of the impedance relays, fuses, reclosers and overcurrent relays when a DG is added to the distribution network. Different DG sizes, distances from the network and locations within the distribution system will be considered. Power system protection coordination is very sensitive to the DG size where it is not for the DG distance. DG location has direct impact on the operation of the protective devices especially when it is inserted in the middle point of the distribution system. Key Words, Distributed Generation, Impedance relay, fuses, reclosers, overcurrent relays, power system protection coordination.
Buha Danilo; Buha Boško; Jačić Dušan; Gligorov Saša; Božilov Marko; Marinković Savo; Milosavljević Srđan
2016-01-01
The relay protection settings performed in the largest thermal powerplant (TE "Nikola Tesla B") are reffered and explained in this paper. The first calculation step is related to the coordination of the maximum stator current limiter settings, the overcurrent protection with inverse characteristics settings and the permitted overload of the generator stator B1. In the second calculation step the settings of impedance generator protection are determined, and the methods and criteria according ...
Microgrids and distributed generation systems: Control, operation, coordination and planning
Che, Liang
Distributed Energy Resources (DERs) which include distributed generations (DGs), distributed energy storage systems, and adjustable loads are key components in microgrid operations. A microgrid is a small electric power system integrated with on-site DERs to serve all or some portion of the local load and connected to the utility grid through the point of common coupling (PCC). Microgrids can operate in both grid-connected mode and island mode. The structure and components of hierarchical control for a microgrid at Illinois Institute of Technology (IIT) are discussed and analyzed. Case studies would address the reliable and economic operation of IIT microgrid. The simulation results of IIT microgrid operation demonstrate that the hierarchical control and the coordination strategy of distributed energy resources (DERs) is an effective way of optimizing the economic operation and the reliability of microgrids. The benefits and challenges of DC microgrids are addressed with a DC model for the IIT microgrid. We presented the hierarchical control strategy including the primary, secondary, and tertiary controls for economic operation and the resilience of a DC microgrid. The simulation results verify that the proposed coordinated strategy is an effective way of ensuring the resilient response of DC microgrids to emergencies and optimizing their economic operation at steady state. The concept and prototype of a community microgrid that interconnecting multiple microgrids in a community are proposed. Two works are conducted. For the coordination, novel three-level hierarchical coordination strategy to coordinate the optimal power exchanges among neighboring microgrids is proposed. For the planning, a multi-microgrid interconnection planning framework using probabilistic minimal cut-set (MCS) based iterative methodology is proposed for enhancing the economic, resilience, and reliability signals in multi-microgrid operations. The implementation of high-reliability microgrids
Energy Technology Data Exchange (ETDEWEB)
Barbaro, M. [ENEA, Centro Ricerche `Ezio Clementel`, Bologna (Italy). Dipt. Innovazione
1997-11-01
A numerical method is described which generates an orthogonal curvilinear mesh, subject to the constraint that mesh lines are matched to all boundaries of a closed, simply connected two-dimensional region of arbitrary shape. The method is based on the solution, by an iterative finite-difference technique, of an elliptic differential system of equations for the Cartesian coordinates of the orthogonal grid nodes. The interior grid distribution is controlled by a technique which ensures that coordinate lines can be concentrated as desired. Examples of orthogonal meshes inscribed in various geometrical figures are included.
The open method of coordination in vocational education and training
DEFF Research Database (Denmark)
Cort, Pia
2009-01-01
Analysis of EU modes of governance within the Copenhagen Process with a specific focus on the Open Method of Coordination.......Analysis of EU modes of governance within the Copenhagen Process with a specific focus on the Open Method of Coordination....
A numerical test of the collective coordinate method
International Nuclear Information System (INIS)
Dobrowolski, T.; Tatrocki, P.
2008-01-01
The purpose of this Letter is to compare the dynamics of the kink interacting with the imperfection which follows from the collective coordinate method with the numerical results obtained on the ground of the field theoretical model. We showed that for weekly interacting kinks the collective coordinate method works similarly well for low and extremely large speeds
The Generation of Three-Dimensional Body-Fitted Coordinate Systems for Viscous Flow Problems.
1982-07-01
Geometries," NASA TM X-3206, 1975. iq p] Papers Written Under The Contract 1. "Basic Differential Models For Coordinate Generation ", Z . U. A. Warsi...8217 Ii (C) (4’) p Figure 1. Coordinate Surfaces fr. I • BASIC DIFFERENTIAL MODELS FOR COORDINATE GENERATION Z . U. A. WARSI* Department of Aerospace
Distributed Coordinate Descent Method for Learning with Big Data
Richtárik, Peter; Takáč, Martin
2013-01-01
In this paper we develop and analyze Hydra: HYbriD cooRdinAte descent method for solving loss minimization problems with big data. We initially partition the coordinates (features) and assign each partition to a different node of a cluster. At every iteration, each node picks a random subset of the coordinates from those it owns, independently from the other computers, and in parallel computes and applies updates to the selected coordinates based on a simple closed-form formula. We give bound...
Directory of Open Access Journals (Sweden)
Buha Danilo
2016-01-01
Full Text Available The relay protection settings performed in the largest thermal powerplant (TE "Nikola Tesla B" are reffered and explained in this paper. The first calculation step is related to the coordination of the maximum stator current limiter settings, the overcurrent protection with inverse characteristics settings and the permitted overload of the generator stator B1. In the second calculation step the settings of impedance generator protection are determined, and the methods and criteria according to which the calculations are done are described. Criteria used to provide the protection to fulfill the backup protection role in the event of malfunction of the main protection of the transmission system. are clarified. The calculation of all protection functions (32 functions of generator B1 were performed in the project "Coordination of relay protection blocks B1 and B2 with the system of excitation and power system protections -TENT B".
International Nuclear Information System (INIS)
Takagi, T.; Miki, K.; Chen, B.C.J.; Sha, W.T.
1985-01-01
A new method is presented for numerically generating boundary-fitted coordinate systems for arbitrarily curved surfaces. The three-dimensional surface has been expressed by functions of two parameters using the geometrical modeling techniques in computer graphics. This leads to new quasi-one- and two-dimensional elliptic partial differential equations for coordinate transformation. Since the equations involve the derivatives of the surface expressions, the grids geneated by the equations distribute on the surface depending on its slope and curvature. A computer program GRID-CS based on the method was developed and applied to a surface of the second order, a torus and a surface of a primary containment vessel for a nuclear reactor. These applications confirm that GRID-CS is a convenient and efficient tool for grid generation on arbitrarily curved surfaces
A microscopic study of the S band in the generator co-ordinate approach
International Nuclear Information System (INIS)
Wuest, E.; Ansari, A.
1985-04-01
Using particle number and spin projected cranked Hartree-Fock-Bogolubov (CHFB) wave functions in the generator co-ordinate method (GCM) with the cranking frequency as a GC the shortcomings of the usual CHFB theory are removed and the ground as well as the s band are studied simultaneously. In particular, low-spin properties of the s band are discussed for a backbending nucleus 158 Dy. (author)
Distributed optimization for systems design : an augmented Lagrangian coordination method
Tosserams, S.
2008-01-01
This thesis presents a coordination method for the distributed design optimization of engineering systems. The design of advanced engineering systems such as aircrafts, automated distribution centers, and microelectromechanical systems (MEMS) involves multiple components that together realize the
Generation of symmetry coordinates for crystals using multiplier representations of the space groups
DEFF Research Database (Denmark)
Hansen, Flemming Yssing
1978-01-01
Symmetry coordinates play an important role in the normal-mode calculations of crystals. It is therefore of great importance to have a general method, which may be applied for any crystal at any wave vector, to generate these. The multiplier representations of the space groups as given by Kovalev...... and the projection-operator technique provide a basis for such a method. The method is illustrated for the nonsymmorphic D36 space group, and the theoretical background for the representations of space groups in general is reviewed and illustrated on the example above. It is desirable to perform the projection...... of symmetry coordinates in such a way that they may be used for as many wave vectors as possible. We discuss how to achieve this goal. The detailed illustrations should make it simple to apply the theory in any other case....
Heat and electricity generating methods
International Nuclear Information System (INIS)
Buter, J.
1977-01-01
A short synopsis on the actual methods of heating of lodgings and of industrial heat generation is given. Electricity can be generated in steam cycles heated by burning of fossil fuels or by nuclear energy. A valuable contribution to the electricity economy is produced in the hydroelectric power plants. Besides these classical methods, also the different procedures of direct electricity generation are treated: thermoelectric, thermionic, magnetohydrodynamic power sources, solar and fuel cells. (orig.) [de
Open Method of Co-Ordination for Demoi-Cracy?
DEFF Research Database (Denmark)
Borrás, Susana; Radaelli, Claudio
2014-01-01
Under which conditions does the open method of co-ordination match the standards for demoi-cracy? To answer this question, we need some explicit standards about demoi-cracy. In fact, open co-ordination serves three different but interrelated purposes in European Union policy: to facilitate...... convergence; to support learning processes; and to encourage exploration of policy innovation. By intersecting standards and purposes, we find open co-ordination is neither inherently ‘good’ nor ‘bad’ for demoi-cracy, as it depends on how it has been put into practice. Therefore, we qualify the answer...
A method to correct coordinate distortion in EBSD maps
DEFF Research Database (Denmark)
Zhang, Yubin; Elbrønd, Andreas Benjamin; Lin, Fengxiang
2014-01-01
Drift during electron backscatter diffraction mapping leads to coordinate distortions in resulting orientation maps, which affects, in some cases significantly, the accuracy of analysis. A method, thin plate spline, is introduced and tested to correct such coordinate distortions in the maps after...... the electron backscatter diffraction measurements. The accuracy of the correction as well as theoretical and practical aspects of using the thin plate spline method is discussed in detail. By comparing with other correction methods, it is shown that the thin plate spline method is most efficient to correct...
International Nuclear Information System (INIS)
Lasorne, Benjamin; Sicilia, Fabrizio; Bearpark, Michael J.; Robb, Michael A.; Worth, Graham A.; Blancafort, Lluis
2008-01-01
A new practical method to generate a subspace of active coordinates for quantum dynamics calculations is presented. These reduced coordinates are obtained as the normal modes of an analytical quadratic representation of the energy difference between excited and ground states within the complete active space self-consistent field method. At the Franck-Condon point, the largest negative eigenvalues of this Hessian correspond to the photoactive modes: those that reduce the energy difference and lead to the conical intersection; eigenvalues close to 0 correspond to bath modes, while modes with large positive eigenvalues are photoinactive vibrations, which increase the energy difference. The efficacy of quantum dynamics run in the subspace of the photoactive modes is illustrated with the photochemistry of benzene, where theoretical simulations are designed to assist optimal control experiments
The volume of fluid method in spherical coordinates
Janse, A.M.C.; Janse, A.M.C.; Dijk, P.E.; Kuipers, J.A.M.
2000-01-01
The volume of fluid (VOF) method is a numerical technique to track the developing free surfaces of liquids in motion. This method can, for example, be applied to compute the liquid flow patterns in a rotating cone reactor. For this application a spherical coordinate system is most suited. The novel
A method to correct coordinate distortion in EBSD maps
International Nuclear Information System (INIS)
Zhang, Y.B.; Elbrønd, A.; Lin, F.X.
2014-01-01
Drift during electron backscatter diffraction mapping leads to coordinate distortions in resulting orientation maps, which affects, in some cases significantly, the accuracy of analysis. A method, thin plate spline, is introduced and tested to correct such coordinate distortions in the maps after the electron backscatter diffraction measurements. The accuracy of the correction as well as theoretical and practical aspects of using the thin plate spline method is discussed in detail. By comparing with other correction methods, it is shown that the thin plate spline method is most efficient to correct different local distortions in the electron backscatter diffraction maps. - Highlights: • A new method is suggested to correct nonlinear spatial distortion in EBSD maps. • The method corrects EBSD maps more precisely than presently available methods. • Errors less than 1–2 pixels are typically obtained. • Direct quantitative analysis of dynamic data are available after this correction
DEFF Research Database (Denmark)
Wu, Dan; Tang, Fen; Guerrero, Josep M.
2014-01-01
In this paper, a decentralized control for coordinate both active and reactive powers is proposed for islanded microgrids. Compared with the conventional droop control strategies, the proposed control realizes decentralized power distribution among renewable energy sources (RES) and energy storage...... systems (ESS) according to the local source conditions. Based on bus-signaling method, the ESS is able to limit charging power by decreasing RES power generation automatically. As well, the reactive power coordinated control makes the RES units able to support reactive power in a decentralized way, which...... allows ESS providing for more active power availability. Moreover, the reactive power is distributed according to the apparent power capacity of each unit. The control strategy principle is simple and easy to implement without extra communication requirements. Real time hardware-in-the-loop results...
Presentation of quantum Brownian movement in the collective coordinate method
International Nuclear Information System (INIS)
Oksak, A.I.; Sukhanov, A.D.
2003-01-01
Two explicitly solved models of quantum randomized processes described by the Langevin equation, i. e. a free quantum Brownian particle and a quantum Brownian harmonic oscillator, are considered. The Hamiltonian (string) realization of the models reveals soliton-like structure of classical solutions. Accordingly, the method of zero mode collective coordinate is an adequate means for describing the models quantum dynamics [ru
Coordinating contracts in SCM : a review of methods and literature
Hezarkhani, B.; Kubiak, W.
2010-01-01
Supply chain coordination through contracts has been a burgeoning area of research in recent years. In spite of rapid development of research, there are only a few structured analyses of assumptions, methods, and applicability of insights in this field. The aim of this paper is to provide a
Directory of Open Access Journals (Sweden)
A.M. Ibrahim
2016-09-01
Full Text Available This paper presents an adaptive protection coordination scheme for optimal coordination of DOCRs in interconnected power networks with the impact of DG, the used coordination technique is the Artificial Bee Colony (ABC. The scheme adapts to system changes; new relays settings are obtained as generation-level or system-topology changes. The developed adaptive scheme is applied on the IEEE 30-bus test system for both single- and multi-DG existence where results are shown and discussed.
DEFF Research Database (Denmark)
Petersen, Lennart; Iov, Florin
2017-01-01
This study focuses on distributed voltage control coordination between renewable generation plants in medium-voltage distribution grids (DGs). A distributed offline coordination concept has been defined in a previous publication, leading to satisfactory voltage regulation in the DG. However, here...
Nagata, Takeshi; Tao, Yasuhiro; Utatani, Masahiro; Sasaki, Hiroshi; Fujita, Hideki
This paper proposes a multi-agent approach to maintenance scheduling in restructured power systems. The restructuring of electric power industry has resulted in market-based approaches for unbundling a multitude of service provided by self-interested entities such as power generating companies (GENCOs), transmission providers (TRANSCOs) and distribution companies (DISCOs). The Independent System Operator (ISO) is responsible for the security of the system operation. The schedule submitted to ISO by GENCOs and TRANSCOs should satisfy security and reliability constraints. The proposed method consists of several GENCO Agents (GAGs), TARNSCO Agents (TAGs) and a ISO Agent(IAG). The IAG’s role in maintenance scheduling is limited to ensuring that the submitted schedules do not cause transmission congestion or endanger the system reliability. From the simulation results, it can be seen the proposed multi-agent approach could coordinate between generation and transmission maintenance schedules.
International Nuclear Information System (INIS)
Matyushenko, N.N.; Titov, Yu.G.
1982-01-01
Programs of atom coordinate generation and space symmetry groups in a form of equivalent point systems are presented. Programs of generation and coordinate output from an on-line storage are written in the FORTRAN language for the ES computer. They may be used in laboratories specialized in studying atomic structure and material properties, in colleges and by specialists in other fields of physics and chemistry
Fast Coordinated Control of DFIG Wind Turbine Generators for Low and High Voltage Ride-Through
DEFF Research Database (Denmark)
Wang, Yun; Wu, Qiuwei; Xu, Honghua
2014-01-01
This paper presents a fast coordinated control scheme of the rotor side converter (RSC), the DC chopper and the grid side converter (GSC) of doubly fed induction generator (DFIG) wind turbine generators (WTGs) which is to improve the low voltage ride through (LVRT) and high voltage ride through...... were proposed considering the characteristics of the DFIG WTGs during voltage changes. The fast coordinated control of RSC and GSC were developed based on the characteristic analysis in order to realize efficient LVRT and HVRT of the DFIG WTGs. The proposed fast coordinated control schemes were...
Coordinated Control of PV Generation and EVs Charging Based on Improved DECell Algorithm
Directory of Open Access Journals (Sweden)
Guo Zhao
2015-01-01
Full Text Available Recently, the coordination of EVs’ charging and renewable energy has become a hot research all around the globe. Considering the requirements of EV owner and the influence of the PV output fluctuation on the power grid, a three-objective optimization model was established by controlling the EVs charging power during charging process. By integrating the meshing method into differential evolution cellular (DECell genetic algorithm, an improved differential evolution cellular (IDECell genetic algorithm was presented to solve the multiobjective optimization model. Compared to the NSGA-II and DECell, the IDECell algorithm showed better performance in the convergence and uniform distribution. Furthermore, the IDECell algorithm was applied to obtain the Pareto front of nondominated solutions. Followed by the normalized sorting of the nondominated solutions, the optimal solution was chosen to arrive at the optimized coordinated control strategy of PV generation and EVs charging. Compared to typical charging pattern, the optimized charging pattern could reduce the fluctuations of PV generation output power, satisfy the demand of EVs charging quantity, and save the total charging cost.
International Nuclear Information System (INIS)
Nisten, E.
2010-02-01
The increase in the distributed generation of electricity, with wind turbines and solar panels, necessitates investments in the distribution network. The current tariff regulation in the Dutch electricity industry, with its ex post evaluation of the efficiency of investments and the frontier shift in the x-factor, delays these investments. In the unbundled electricity industry, the investments in the network need to be coordinated with those in the distributed generation of electricity to enable the DSOs to build enough network capacity. The current Dutch regulations do not provide for a sufficient information exchange between the generators and the system operators to coordinate the investments. This paper analyses these two effects of the Dutch regulation, and suggests improvements to the regulation of the network connection and transportation tariffs to allow for sufficient network capacity and coordination between the investments in the network and in the generation of electricity. These improvements include locally differentiated tariffs that increase with an increasing concentration of distributed generators.
An integration weighting method to evaluate extremum coordinates
International Nuclear Information System (INIS)
Ilyushchenko, V.I.
1990-01-01
The numerical version of the Laplace asymptotics has been used to evaluate the coordinates of extrema of multivariate continuous and discontinuous test functions. The performed computer experiments demonstrate the high efficiency of the integration method proposed. The saturating dependence of extremum coordinates on such parameters as a number of integration subregions and that of K going /theoretically/ to infinity has been studied in detail for the limitand being a ratio of two Laplace integrals with exponentiated K. The given method is an integral equivalent of that of weighted means. As opposed to the standard optimization methods of the zero, first and second order the proposed method can be successfully applied to optimize discontinuous objective functions, too. There are possibilities of applying the integration method in the cases, when the conventional techniques fail due to poor analytical properties of the objective functions near extremal points. The proposed method is efficient in searching for both local and global extrema of multimodal objective functions. 12 refs.; 4 tabs
DEFF Research Database (Denmark)
Zhou, Xiaoping; Chen, Yandong; Zhou, Leming
2018-01-01
storage unit (ESU) are added into hybrid single/three-phase microgrid, and a power coordinated control method with frequency support capability is proposed for hybrid single/three-phase microgrid in this study. PEU is connected with three single-phase microgrids to coordinate power exchange among three...... phases and provide frequency support for hybrid microgrid. Meanwhile, a power coordinated control method based on the droop control is proposed for PEU to alleviate three-phase power imbalance and reduce voltage fluctuation of hybrid microgrid. Besides, ESU is injected into the DC-link to buffer......Due to the intermittent output power of distributed generations (DGs) and the variability of loads, voltage fluctuation and three-phase power imbalance easily occur when hybrid single/three-phase microgrid operates in islanded mode. To address these issues, the power exchange unit (PEU) and energy...
On metal-oxygen coordination. A statistical method to determine coordination number. Pt. 1
International Nuclear Information System (INIS)
Chiari, G.
1990-01-01
The environment around the Ca cation for compounds involving bonded oxygen has been studied for 254 inorganic structures containing a total of 368 polyhedra. Selection was made on the bases of the accuracy of the structural data. The coordination number (CN) was assigned using the criteria of maximum gap in the Ca-O distances and balanced bond-valence sums for Ca, but 32 cases were still difficult to assign unambiguously. A series of variables related to the Ca-O distances were calculated and averaged for each value of CN. The Gaussian curves representing the distribution of these variables for each CN overlap strongly. By way of contrast, the volume of the coordination polyhedra (Vol) showed well separated curves. Statistical analysis was applied to the set of structures with known CN, with seven variables and then with Vol alone, which seems to discriminate between the various CN groups equally well. A strong linear dependence was found for CN versus Vol. A method is proposed to assign CN in uncertain cases based on the equation: CN=0.197 (2)Vol+2.83 (5). Application of this equation to the unassigned cases compares favourably with discriminant analysis using the larger set of variables. (orig.)
DEFF Research Database (Denmark)
Petersen, Lennart; Iov, Florin; Hansen, Anca Daniela
2016-01-01
This paper focusses on voltage control support and coordination between renewable generation plants in medium voltage distribution systems. An exemplary benchmark grid in Denmark, including a number of flexible ReGen plants providing voltage control functionality, is used as a base case. First......, voltage sensitivity analysis is performed to quantify node voltage variations due to injections of reactive power for given operational points of the network. The results are then used to develop an adaptive voltage droop control method, where various droop settings are allocated to each ReGen plant...... according to the sensitivity indices of corresponding node voltages and the location of respective ReGen plants in the distribution system. Case studies are performed in time-domain to analyze the impact of voltage fluctuations due to active power variations of ReGen plants in order to verify...
DEFF Research Database (Denmark)
Yao, Jun; Li, Qing; Chen, Zhe
2013-01-01
in the multiple synchronous rotating reference frames. In order to counteract the adverse effects of the voltage harmonics upon the DFIG, the SGSC generates series compensation control voltages to keep the stator voltage sinusoidal and symmetrical, which allows the use of the conventional vector control strategy......This paper presents a coordinated control method for a doubly-fed induction generator (DFIG)-based wind-power generation system with a series grid-side converter (SGSC) under distorted grid voltage conditions. The detailed mathematical models of the DFIG system with SGSC are developed...
Methods of reconstruction of multi-particle events in the new coordinate-tracking setup
Vorobyev, V. S.; Shutenko, V. V.; Zadeba, E. A.
2018-01-01
At the Unique Scientific Facility NEVOD (MEPhI), a large coordinate-tracking detector based on drift chambers for investigations of muon bundles generated by ultrahigh energy primary cosmic rays is being developed. One of the main characteristics of the bundle is muon multiplicity. Three methods of reconstruction of multiple events were investigated: the sequential search method, method of finding the straight line and method of histograms. The last method determines the number of tracks with the same zenith angle in the event. It is most suitable for the determination of muon multiplicity: because of a large distance to the point of generation of muons, their trajectories are quasiparallel. The paper presents results of application of three reconstruction methods to data from the experiment, and also first results of the detector operation.
Directory of Open Access Journals (Sweden)
Timothy D Wiggin
Full Text Available The cellular and network basis for most vertebrate locomotor central pattern generators (CPGs is incompletely characterized, but organizational models based on known CPG architectures have been proposed. Segmental models propose that each spinal segment contains a circuit that controls local coordination and sends longer projections to coordinate activity between segments. Unsegmented/continuous models propose that patterned motor output is driven by gradients of neurons and synapses that do not have segmental boundaries. We tested these ideas in the larval zebrafish, an animal that swims in discrete episodes, each of which is composed of coordinated motor bursts that progress rostrocaudally and alternate from side to side. We perturbed the spinal cord using spinal transections or strychnine application and measured the effect on fictive motor output. Spinal transections eliminated episode structure, and reduced both rostrocaudal and side-to-side coordination. Preparations with fewer intact segments were more severely affected, and preparations consisting of midbody and caudal segments were more severely affected than those consisting of rostral segments. In reduced preparations with the same number of intact spinal segments, side-to-side coordination was more severely disrupted than rostrocaudal coordination. Reducing glycine receptor signaling with strychnine reversibly disrupted both rostrocaudal and side-to-side coordination in spinalized larvae without disrupting episodic structure. Both spinal transection and strychnine decreased the stability of the motor rhythm, but this effect was not causal in reducing coordination. These results are inconsistent with a segmented model of the spinal cord and are better explained by a continuous model in which motor neuron coordination is controlled by segment-spanning microcircuits.
Fast Coordinated Control of DFIG Wind Turbine Generators for Low and High Voltage Ride-Through
Directory of Open Access Journals (Sweden)
Yun Wang
2014-06-01
Full Text Available This paper presents a fast coordinated control scheme of the rotor side converter (RSC, the Direct Current (DC chopper and the grid side converter (GSC of doubly fed induction generator (DFIG wind turbine generators (WTGs to improve the low voltage ride through (LVRT and high voltage ride through (HVRT capability of the DFIG WTGs. The characteristics of DFIG WTGs under voltage sags and swells were studied focusing on the DFIG WTG stator flux and rotor voltages during the transient periods of grid voltage changes. The protection schemes of the rotor crowbar circuit and the DC chopper circuit were proposed considering the characteristics of the DFIG WTGs during voltage changes. The fast coordinated control of RSC and GSC were developed based on the characteristic analysis in order to realize efficient LVRT and HVRT of the DFIG WTGs. The proposed fast coordinated control schemes were verified by time domain simulations using Matlab-Simulink.
OPEN METHOD OF COORDINATION AND EUROPEAN COOPERATION OPPORTUNITIES
Directory of Open Access Journals (Sweden)
STEGĂROIU CARINA-ELENA
2014-08-01
Full Text Available The theoretical 3-level model used to analyse the Open Method of Coordination belongs to a “rational” view of the international cooperation. Although considered to be a far too simplistic framework to be able to accurately describe a highly complex phenomenon, it does justice to the idea that actors have predetermined preferences in specific areas and they systematically act in order to achieve those priorities within the constraints of an institutional system. According to this hypothesis, the OMC has been analysed by breaking the process down into three stages (i.e. the influence of the internal structure, the intergovernmental negotiation model and the institutional choice. Detailed theories have been used to describe each stage (e.g. neoliberalism, neorealism, neofunctionalism, institutionalism, but also abiding by the overall rational context. In conclusion, these elements will be amassed in order to create a comprehensive explanation of this complex phenomenon.
Coordinated Optimal Operation Method of the Regional Energy Internet
Directory of Open Access Journals (Sweden)
Rishang Long
2017-05-01
Full Text Available The development of the energy internet has become one of the key ways to solve the energy crisis. This paper studies the system architecture, energy flow characteristics and coordinated optimization method of the regional energy internet. Considering the heat-to-electric ratio of a combined cooling, heating and power unit, energy storage life and real-time electricity price, a double-layer optimal scheduling model is proposed, which includes economic and environmental benefit in the upper layer and energy efficiency in the lower layer. A particle swarm optimizer–individual variation ant colony optimization algorithm is used to solve the computational efficiency and accuracy. Through the calculation and simulation of the simulated system, the energy savings, level of environmental protection and economic optimal dispatching scheme are realized.
Refining developmental coordination disorder subtyping with multivariate statistical methods
Directory of Open Access Journals (Sweden)
Lalanne Christophe
2012-07-01
Full Text Available Abstract Background With a large number of potentially relevant clinical indicators penalization and ensemble learning methods are thought to provide better predictive performance than usual linear predictors. However, little is known about how they perform in clinical studies where few cases are available. We used Random Forests and Partial Least Squares Discriminant Analysis to select the most salient impairments in Developmental Coordination Disorder (DCD and assess patients similarity. Methods We considered a wide-range testing battery for various neuropsychological and visuo-motor impairments which aimed at characterizing subtypes of DCD in a sample of 63 children. Classifiers were optimized on a training sample, and they were used subsequently to rank the 49 items according to a permuted measure of variable importance. In addition, subtyping consistency was assessed with cluster analysis on the training sample. Clustering fitness and predictive accuracy were evaluated on the validation sample. Results Both classifiers yielded a relevant subset of items impairments that altogether accounted for a sharp discrimination between three DCD subtypes: ideomotor, visual-spatial and constructional, and mixt dyspraxia. The main impairments that were found to characterize the three subtypes were: digital perception, imitations of gestures, digital praxia, lego blocks, visual spatial structuration, visual motor integration, coordination between upper and lower limbs. Classification accuracy was above 90% for all classifiers, and clustering fitness was found to be satisfactory. Conclusions Random Forests and Partial Least Squares Discriminant Analysis are useful tools to extract salient features from a large pool of correlated binary predictors, but also provide a way to assess individuals proximities in a reduced factor space. Less than 15 neuro-visual, neuro-psychomotor and neuro-psychological tests might be required to provide a sensitive and
DEFF Research Database (Denmark)
Petersen, Lennart; Iov, Florin; Hansen, Anca Daniela
2016-01-01
This paper focusses on voltage control support and coordination between renewable generation plants in medium voltage distribution systems. An exemplary benchmark grid in Denmark, including a number of flexible ReGen plants providing voltage control functionality, is used as a base case. First...
International Nuclear Information System (INIS)
Kyotoku, M.; Chen, H.T.
1979-01-01
Analytical expressions for the projected-BCS energies and reaction transition rates among the isovector pairing collective states are obtained by the recognition of symmetry properties in a class of BCS wave functions. As a consequence, a simplified generator coordinate treatment is suggested [pt
Devices and methods for generating an aerosol
Bisetti, Fabrizio; Scribano, Gianfranco
2016-01-01
Aerosol generators and methods of generating aerosols are provided. The aerosol can be generated at a stagnation interface between a hot, wet stream and a cold, dry stream. The aerosol has the benefit that the properties of the aerosol can
Power generation systems and methods
Jones, Jack A. (Inventor); Chao, Yi (Inventor)
2011-01-01
A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.
DEFF Research Database (Denmark)
Sun, Qiuye; Han, Renke; Zhang, Huaguang
2015-01-01
With the bidirectional power flow provided by the Energy Internet, various methods are promoted to improve and increase the energy utilization between Energy Internet and Main-Grid. This paper proposes a novel distributed coordinated controller combined with a multi-agent-based consensus algorithm...... which is applied to distributed generators in the Energy Internet. Then, the decomposed tasks, models, and information flow of the proposed method are analyzed. The proposed coordinated controller installed between the Energy Internet and the Main-Grid keeps voltage angles and amplitudes consensus while...... providing accurate power-sharing and minimizing circulating currents. Finally, the Energy Internet can be integrated into the Main-Grid seamlessly if necessary. Hence the Energy Internet can be operated as a spinning reserve system. Simulation results are provided to show the effectiveness of the proposed...
Teodor, V. G.; Baroiu, N.; Susac, F.; Oancea, N.
2016-11-01
The modelling of a curl of surfaces associated with a pair of rolling centrodes, when it is known the profile of the rack-gear's teeth profile, by direct measuring, as a coordinate matrix, has as goal the determining of the generating quality for an imposed kinematics of the relative motion of tool regarding the blank. In this way, it is possible to determine the generating geometrical error, as a base of the total error. The generation modelling allows highlighting the potential errors of the generating tool, in order to correct its profile, previously to use the tool in machining process. A method developed in CATIA is proposed, based on a new method, namely the method of “relative generating trajectories”. They are presented the analytical foundation, as so as some application for knows models of rack-gear type tools used on Maag teething machines.
International Nuclear Information System (INIS)
Warnock, R.L.; Ellison, J.A.; Univ. of New Mexico, Albuquerque, NM
1997-08-01
Data from orbits of a symplectic integrator can be interpolated so as to construct an approximation to the generating function of a Poincare map. The time required to compute an orbit of the symplectic map induced by the generator can be much less than the time to follow the same orbit by symplectic integration. The construction has been carried out previously for full-turn maps of large particle accelerators, and a big saving in time (for instance a factor of 60) has been demonstrated. A shortcoming of the work to date arose from the use of canonical polar coordinates, which precluded map construction in small regions of phase space near coordinate singularities. This paper shows that Cartesian coordinates can also be used, thus avoiding singularities. The generator is represented in a basis of tensor product B-splines. Under weak conditions the spline expansion converges uniformly as the mesh is refined, approaching the exact generator of the Poincare map as defined by the symplectic integrator, in some parallelepiped of phase space centered at the origin
Talpalar, Adolfo E.; Rybak, Ilya A.
2015-01-01
The locomotor gait in limbed animals is defined by the left-right leg coordination and locomotor speed. Coordination between left and right neural activities in the spinal cord controlling left and right legs is provided by commissural interneurons (CINs). Several CIN types have been genetically identified, including the excitatory V3 and excitatory and inhibitory V0 types. Recent studies demonstrated that genetic elimination of all V0 CINs caused switching from a normal left-right alternating activity to a left-right synchronized “hopping” pattern. Furthermore, ablation of only the inhibitory V0 CINs (V0D subtype) resulted in a lack of left-right alternation at low locomotor frequencies and retaining this alternation at high frequencies, whereas selective ablation of the excitatory V0 neurons (V0V subtype) maintained the left–right alternation at low frequencies and switched to a hopping pattern at high frequencies. To analyze these findings, we developed a simplified mathematical model of neural circuits consisting of four pacemaker neurons representing left and right, flexor and extensor rhythm-generating centers interacting via commissural pathways representing V3, V0D, and V0V CINs. The locomotor frequency was controlled by a parameter defining the excitation of neurons and commissural pathways mimicking the effects of N-methyl-D-aspartate on locomotor frequency in isolated rodent spinal cord preparations. The model demonstrated a typical left-right alternating pattern under control conditions, switching to a hopping activity at any frequency after removing both V0 connections, a synchronized pattern at low frequencies with alternation at high frequencies after removing only V0D connections, and an alternating pattern at low frequencies with hopping at high frequencies after removing only V0V connections. We used bifurcation theory and fast-slow decomposition methods to analyze network behavior in the above regimes and transitions between them. The model
Apparatuses and methods for generating electric fields
Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L
2013-08-06
Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.
Gas-generated thermal oxidation of a coordination cluster for an anion-doped mesoporous metal oxide.
Hirai, Kenji; Isobe, Shigehito; Sada, Kazuki
2015-12-18
Central in material design of metal oxides is the increase of surface area and control of intrinsic electronic and optical properties, because of potential applications for energy storage, photocatalysis and photovoltaics. Here, we disclose a facile method, inspired by geochemical process, which gives rise to mesoporous anion-doped metal oxides. As a model system, we demonstrate that simple calcination of a multinuclear coordination cluster results in synchronic chemical reactions: thermal oxidation of Ti8O10(4-aminobenzoate)12 and generation of gases including amino-group fragments. The gas generation during the thermal oxidation of Ti8O10(4-aminobenzoate)12 creates mesoporosity in TiO2. Concurrently, nitrogen atoms contained in the gases are doped into TiO2, thus leading to the formation of mesoporous N-doped TiO2. The mesoporous N-doped TiO2 can be easily synthesized by calcination of the multinuclear coordination cluster, but shows better photocatalytic activity than the one prepared by a conventional sol-gel method. Owing to an intrinsic designability of coordination compounds, this facile synthetic will be applicable to a wide range of metal oxides and anion dopants.
Method for protecting an electric generator
Kuehnle, Barry W.; Roberts, Jeffrey B.; Folkers, Ralph W.
2008-11-18
A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.
Microplasma generator and methods therefor
Hopwood, Jeffrey A
2015-04-14
A low-temperature, atmospheric-pressure microplasma generator comprises at least one strip of metal on a dielectric substrate. A first end of the strip is connected to a ground plane and the second end of the strip is adjacent to a grounded electrode, with a gap being defined between the second end of the strip and the grounded electrode. High frequency power is supplied to the strip. The frequency is selected so that the length of the strip is an odd integer multiple of 1/4 of the wavelength traveling on the strip. A microplasma forms in the gap between the second end of the strip and the grounded electrode due to electric fields in that region. A microplasma generator array comprises a plurality of strongly-coupled resonant strips in close proximity to one another. At least one of the strips has an input for high-frequency electrical power. The remaining strips resonate due to coupling from the at least one powered strip. The array can provide a continuous line or ring of plasma. The microplasma generator can be used to alter the surface of a substrate, such as by adding material (deposition), removal of material (etching), or modifying surface chemistry.
DEFF Research Database (Denmark)
Fajardo, L.A.; Iov, F.; Medina, R.J.A.
2007-01-01
A phase coordinates induction generator model with time varying electrical parameters as influenced by magnetic saturation and rotor deep bar effects, is presented in this paper. The model exhibits a per-phase formulation, uses standard data sheet for characterization of the electrical parameters...... are conducted in a representative sized system and results show aptness of the proposed model over other two models. This approach is also constructive to support grid code requirements....
Improved method for methane generation
DEFF Research Database (Denmark)
2010-01-01
A method for treatment of a material comprising lignocellulosic fibres is disclosed. More particularly, the treatment increases the accessibility of the lignocellulosic fibres for following microbial or biological processes....
Energy Technology Data Exchange (ETDEWEB)
Basiuk, Vladimir A., E-mail: basiuk@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Department of Chemistry,Tufts University, 62 Talbot Avenue, Medford, MA 02155 (United States); Alzate-Carvajal, Natalia [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Henao-Holguín, Laura V. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Rybak-Akimova, Elena V. [Department of Chemistry,Tufts University, 62 Talbot Avenue, Medford, MA 02155 (United States); Basiuk, Elena V., E-mail: elbg1111@gmail.com [Department of Chemistry,Tufts University, 62 Talbot Avenue, Medford, MA 02155 (United States); Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico)
2016-05-15
Highlights: • [Ni(cyclam)]{sup 2+} and [Ni(tet b)]{sup 2+} cations coordinate to carboxylic groups of GO. • The coordination takes place under basic conditions in aqueous-based medium. • The coordination results in the conversion from low-spin to high-spin Ni(II). • Functionalized GO samples were characterized by various instrumental techniques. - Abstract: We describe a novel approach to functionalization of graphene oxide (GO) which allows for a facile generation of paramagnetic centers from two diamagnetic components. Coordination attachment of [Ni(cyclam)]{sup 2+} or [Ni(tet b)]{sup 2+} tetraazamacrocyclic cations to carboxylic groups of GO takes place under basic conditions in aqueous-based reaction medium. The procedure is very straightforward and does not require high temperatures or other harsh conditions. Changing the coordination geometry of Ni(II) from square-planar tetracoordinated to pseudooctahedral hexacoordinated brings about the conversion from low-spin to high-spin state of the metal centers. Even though the content of tetraazamacrocyclic complexes in functionalized GO samples was found to be relatively low (nickel content of ca. 1 wt%, as determined by thermogravimetric analysis, elemental analysis and energy dispersive X-ray spectroscopy), room temperature magnetic susceptibility measurements easily detected the appearance of paramagnetic properties in GO + [Ni(cyclam)] and GO + [Ni(tet b)] nanohybrids, with effective magnetic moments of 1.95 BM and 2.2 BM for, respectively. According to density functional theory calculations, the main spin density is localized at the macrocyclic complexes, without considerable extension to graphene sheet, which suggests insignificant ferromagnetic coupling in the nanohybrids, in agreement with the results of magnetic susceptibility measurements. The coordination attachment of Ni(II) tetraazamacrocycles to GO results in considerable changes in Fourier-transform infrared and X-ray photoelectron spectra
International Nuclear Information System (INIS)
Kamphuis, I.G.; Hommelberg, M.P.F.; Warmer, C.J.; Kok, J.K.
2007-01-01
Different driving forces push the electricity production towards decentralization. The projected increase of distributed power generation on the residential level with an increasing proportion of intermittent renewable energy resources poses problems for continuously matching the energy balance when coordination takes place centrally. On the other hand, new opportunities arise by intelligent clustering of generators and demand in so-called Virtual Power Plants. Part of the responsibility for new coordination mechanisms, then, has to be laid locally. To achieve this, the current electricity infrastructure is expected to evolve into a network of networks (including ICT (Information and Communication Technology)-networks), in which all system parts communicate with one another, are aware of each other's context and may influence each other. In this paper, a multi-agent systems approach, using price signal-vectors from an electronic market is presented as an appropriate technology needed for massive control and coordination tasks in these future electricity networks. The PowerMatcher, a market-based control concept for supply and demand matching (SDM) in electricity networks, is discussed. The results within a simulation study show the ability to raise the simultaneousness of electricity production and consumption within (local) control clusters with cogeneration and heat-pumps by exchanging price signals and coordinated allocation using market algorithms. The control concept, however, can also be applied in other business cases like reduction of imbalance cost in commercial portfolios or virtual power plant operators, utilizing distributed generators. Furthermore, a PowerMatcher-based field test configuration with 15 Stirling-engine powered micro-CHP's is described, which is currently in operation within a field test in the Netherlands
Ilik, Semih C.; Arsoy, Aysen B.
2017-07-01
Integration of distributed generation (DG) such as renewable energy sources to electrical network becomes more prevalent in recent years. Grid connection of DG has effects on load flow directions, voltage profile, short circuit power and especially protection selectivity. Applying traditional overcurrent protection scheme is inconvenient when system reliability and sustainability are considered. If a fault happens in DG connected network, short circuit contribution of DG, creates additional branch element feeding the fault current; compels to consider directional overcurrent (OC) protection scheme. Protection coordination might get lost for changing working conditions when DG sources are connected. Directional overcurrent relay parameters are determined for downstream and upstream relays when different combinations of DG connected singular or plural, on radial test system. With the help of proposed flow chart, relay parameters are updated and coordination between relays kept sustained for different working conditions in DigSILENT PowerFactory program.
Aithal, Abhiram; Ferrante, Antonino
2017-11-01
In order to perform direct numerical simulations (DNS) of turbulent flows over curved surfaces and axisymmetric bodies, we have developed the numerical methodology to solve the incompressible Navier-Stokes (NS) equations in curvilinear coordinates for orthogonal meshes. The orthogonal meshes are generated by solving a coupled system of non-linear Poisson equations. The NS equations in orthogonal curvilinear coordinates are discretized in space on a staggered mesh using second-order central-difference scheme and are solved with an FFT-based pressure-correction method. The momentum equation is integrated in time using the second-order Adams-Bashforth scheme. The velocity field is advanced in time by applying the pressure correction to the approximate velocity such that it satisfies the divergence free condition. The novelty of the method stands in solving the variable coefficient Poisson equation for pressure using an FFT-based Poisson solver rather than the slower multigrid methods. We present the verification and validation results of the new numerical method and the DNS results of transitional flow over a curved axisymmetric body.
Insulation co-ordination aspects for power stations with generator circuit-breakers
International Nuclear Information System (INIS)
Sanders, M.; Koeppl, G.; Kreuzer, J.
1995-01-01
The generator circuit-breaker (gen. c.b.) located between the generator and the step-up transformer, is now being applied world-wide. It has become a recognized electrical component of power stations which is largely due to economical advantages and increased power station availability. Technical protection considerations for power stations have always been the reason for discussion and the object of improvement. With the use of a gen. c.b., some points of view need to be considered anew. Not only the protection system in case of fault conditions will be influenced, but also the insulation co-ordination philosophy. Below the results of some calculations concerning expected overvoltages are presented. These calculations are based on a transformer rated 264/15.5kV, 220 MVA. But the results are transferable to other power plants. Some measurements carried out on a transformer of the same rating complement the calculations. The findings may contribute to an improvement in insulation co-ordination and protection of the electrical system generator--step-up transformer
Energy Technology Data Exchange (ETDEWEB)
Simoes Costa, A J.A.; Silva, A S; Freitas, F D [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Eletrica
1994-12-31
Two distinct approaches for the coordinated setting of multimachine power system controllers are presented. The first strategy is based on the re-allocation of the poles related to the electromechanical modes of the system through decentralized control. The second method is a coordinated global procedure based on structurally constrained optimal control. Both approaches considered power system stabilizers and supplementary signals for static var compensators as the controllers to be adjusted. Other types of controllers, such as FACTS devices, can also be tuned by using the proposed techniques. A 13-machine, 77-bus power system which is based on the Brazilian South-Southeast interconnected network is employed to assess the performance of the proposed methods. (author) 14 refs., 1 fig., 7 tabs.
DEFF Research Database (Denmark)
Hashempour, Mohammad M.; Firoozabadi, Mehdi Savaghebi; Quintero, Juan Carlos Vasquez
2016-01-01
This paper proposes a control architecture of distributed generators (DGs) inverters and shunt active power filters (APFs) in microgrids to compensate voltage harmonics in a coordinated way. For this, a hierarchical control structure is proposed that includes two control levels. The primary (local......) control consists of power controllers, selective virtual impedance loops and proportional-resonant (PR) voltage/current controllers. The secondary (central) control manages the compensation level of voltage harmonic distortion of sensitive load bus (SLB). Compensation of SLB harmonics by control of DGs...... excessive harmonics or overloading of interface inverters. Effectiveness of the proposed control scheme is demonstrated through simulation studies....
DEFF Research Database (Denmark)
Hashempour, Mohammad M.; Savaghebi, Mehdi; Quintero, Juan Carlos Vasquez
2016-01-01
This paper proposes a control architecture of distributed generators (DGs) inverters and shunt active power filters (APFs) in microgrids to compensate voltage harmonics in a coordinated way. For this, a hierarchical control structure is proposed that includes two control levels. The primary (local......) control consists of power controllers, selective virtual impedance loops and proportional-resonant (PR) voltage/current controllers. The secondary (central) control manages the compensation level of voltage harmonic distortion of sensitive load bus (SLB). Compensation of SLB harmonics by control of DGs...... excessive harmonics or overloading of interface inverters. Effectiveness of the proposed control scheme is demonstrated through simulation studies....
DEFF Research Database (Denmark)
Zhao, Haoran; Wu, Qiuwei; Wang, Chengshan
2015-01-01
Microgrid is an efficient solution to integraterenewable energy sources (RES) into power systems. Inorder to deal with the intermittent characteristics of therenewable energy based distributed generation (DG) units,a fuzzy-logic based coordinated control strategy of thebattery energy storage system...... (BESS) and dispatchableDG units is proposed in this paper for the microgridmanagement system (MMS). In the proposed coordinatedcontrol strategy, the BESS is used to mitigate the activepower exchange at the point of common coupling of themicrogrid for the grid-connected operation, and is used forthe...... frequency control for the island operation. Theeffectiveness of the proposed control strategy was verifiedby case studies using DIgSILENT/PowerFactroy....
Directory of Open Access Journals (Sweden)
Zhang Ge
2016-01-01
Full Text Available By analyzing the mechanism of the low voltage ride through on the permanent magnet direct drive synchronous wind power generating units, this paper proposes a coordinated control strategy for permanent magnet synchronous generator. In order to avoid over speed operation of the generation units, over voltage on DC capacitor and over current on convert, the improved pitch angle control and inverter control are used. When the grid voltage drops, the captured wind power is cut down by the variable pitch system, which limits the speed of the generator, the generator side converter keeps the DC capacitor voltage stabile; and the grid side converter provides reactive power to the grid to help the grid voltage recover. The control strategy does not require any additional hardware equipment, with existing control means, the unit will be able to realize low voltage ride through. Finally, based on Matlab/Simulink to build permanent magnet direct drive wind power generation system, the simulation results verify the correctness and effectiveness of the control strategy.
He, Jun; Zeller, Matthias; Hunter, Allen D; Xu, Zhengtao
2012-01-25
We describe a white emitting coordination network solid that can be conveniently applied as a thin film onto a commercial UV-LED lamp for practical white lighting applications. The solid state material was discovered in an exercise of exploring molecular building blocks equipped with secondary groups for fine-tuning the structures and properties of coordination nets. Specifically, CH(3)SCH(2)CH(2)S- and (S)-CH(3)(OH)CHCH(2)S- (2-hydroxylpropyl) were each attached as secondary groups to the 2,5- positions of 1,4-benzenedicarboxylic acid (bdc), and the resultant molecules (L1 and L2, respectively) were crystallized with Pb(II) into the topologically similar 3D nets of PbL1 and PbL2, both consisting of interlinked Pb-carboxyl chains. While the CH(3)S- groups in PbL1 are not bonded to the Pb(II) centers, the hydroxy groups in PbL2 participate in coordinating to Pb(II) and thus modify the bonding features around the Pb(II), but only to a slight and subtle degree (e.g., Pb-O distances 2.941-3.116 Å). Interestingly, the subtle change in structure significantly impacts the properties, i.e., while the photoluminescence of PbL1 is yellowish green, PbL2 features bright white emission. Also, the homochiral side group in PbL2 imparts significant second harmonic generation, in spite of its seemingly weak association with the main framework (the NLO-phore). In a broad perspective, this work showcases the idea of secondary group participation (SGP) in the construction of coordination networks, an idea that parallels that of hemilabile ligands in organometallics and points to an effective strategy in developing advanced functions in solid state framework materials. © 2011 American Chemical Society
Directory of Open Access Journals (Sweden)
Einat eFuchs
2011-01-01
Full Text Available Animals’ ability to demonstrate both stereotyped and adaptive locomotor behavior is largely dependent on the interplay between centrally-generated motor patterns and the sensory inputs that shape them. We utilized a combined experimental and theoretical approach to investigate the relative importance of CPG interconnections vs. intersegmental afferents in the cockroach: an animal that is renowned for rapid and stable locomotion. We simultaneously recorded coxal levator and depressor motor neurons (MN in the thoracic ganglia of Periplaneta americana, while sensory feedback was completely blocked or allowed only from one intact stepping leg. In the absence of sensory feedback, we observed a coordination pattern with consistent phase relationship that shares similarities with a double tripod gait, suggesting central, feedforward control. This intersegmental coordination pattern was then reinforced in the presence of sensory feedback from a single stepping leg. Specifically, we report on transient stabilization of phase differences between activity recorded in the middle and hind thoracic MN following individual front-leg steps, suggesting a role for afferent phasic information in the coordination of motor circuits at the different hemiganglia. Data were further analyzed using stochastic models of coupled oscillators and maximum likelihood techniques to estimate underlying physiological parameters, such as uncoupled endogenous frequencies of hemisegmental oscillators and coupling strengths and directions. We found that descending ipsilateral coupling is stronger than ascending coupling, while left-right coupling in both the meso- and meta-thoracic ganglia appear to be symmetrical. We discuss our results in comparison with recent findings in stick insects that share similar neural and body architectures, and argue that the two species may exemplify opposite extremes of a fast-slow locomotion continuum, mediated through different intersegmental
International Nuclear Information System (INIS)
Antonov, A.N.; Petkov, I.Zh.; Christov, C.V.
1984-11-01
The generator coordinate method with a square-well construction potential and Skyrme-like interactions is applied to calculate characteristics of 4 He and 16 O nuclei. The corresponding nucleon momentum distributions have a high momentum component, which differs from the results obtained with a harmonic oscillator potential. (author)
Vapor generation methods for explosives detection research
Energy Technology Data Exchange (ETDEWEB)
Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.
2012-12-01
The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.
Devices and methods for generating an aerosol
Bisetti, Fabrizio
2016-03-03
Aerosol generators and methods of generating aerosols are provided. The aerosol can be generated at a stagnation interface between a hot, wet stream and a cold, dry stream. The aerosol has the benefit that the properties of the aerosol can be precisely controlled. The stagnation interface can be generated, for example, by the opposed flow of the hot stream and the cold stream. The aerosol generator and the aerosol generation methods are capable of producing aerosols with precise particle sizes and a narrow size distribution. The properties of the aerosol can be controlled by controlling one or more of the stream temperatures, the saturation level of the hot stream, and the flow times of the streams.
A method for generating hydrogen from water
International Nuclear Information System (INIS)
Godin, Paul; Mascarello, Jean; Millet, Jacques.
1974-01-01
Description is given of a method and an installation for generating hydrogen from water, through an endothermic cycle of several successive chemical reactions involving intermediate substances regenerated during said cycle, said reactions occuring at different temperatures. The reaction which takes place at the highest temperature is carried out electrochemically. This can be applied to power-generating units comprising a nuclear reactor [fr
International Nuclear Information System (INIS)
Choi, D.H.; Song, Y.C.; Kim, J.H.; Kim, J.G.
2004-01-01
The inspection of steam-generator tubes in nuclear power plants needs to collect test signals in a highly radiated region that is not accessible by humans. In general, a robot equipped with a camera and a test probe is used to handle such a dangerous environment. The robot moves the probe to right below a tube to be inspected and then the probe is inserted into the tube. The inspection signals are acquired while the probe is pulling back. Currently, an operator in a control room controls all the process remotely. To make a fully automatic inspection system, first of all, a control mechanism is needed to position the probe to the proper location. This is so called a hand-eye coordination problem. In this paper, a hand-eye coordination method for a robot has been presented. The proposed method consists of the two consecutive control modes: rough positioning and fine-tuning. The rough positioning controller tries to position its probe near a target place using kinematics information and the known environments, and then the fine-tuning controller tries to adjust the probe to the target using the image acquired by the camera attached to the robot. The usefulness of the proposed method has been tested and verified through experiments. (orig.)
International Nuclear Information System (INIS)
Artyukhov, V.I.; Vakar, K.B.; Makarov, V.I.; Ovchinnikov, N.I.; Perevezentsev, V.N.; Rzhevkin, V.R.; Shemyakin, V.V.; Yakovlev, G.V.
1980-01-01
Described are cases of coordinate detection of the acoustic emission (AE) sources during AE-testing of power reactors using analog systems. Five testing variants of design linear elements are considered and fields of their practical application to welded joint testing are pointed out. Described is the method of coordinate detection based on ''multibeam'' effect
The Open Method of Coordination and the Implementation of the Bologna Process
Veiga, Amelia; Amaral, Alberto
2006-01-01
In this paper the authors argue that the use of the Open Method of Coordination (OMC) in the implementation of the Bologna process presents coordination problems that do not allow for the full coherence of the results. As the process is quite complex, involving three different levels (European, national and local) and as the final actors in the…
4D CAD Based Method for Supporting Coordination of Urban Subsurface Utility Projects
olde Scholtenhuis, Léon Luc; Hartmann, T.; Doree, Andries G.
Coordinators of inner city utility construction works face increasing difficulty in managing their projects due to tight physical restrictions, strict deadlines and growing stakeholder fragmentation. This paper therefore presents a 4D CAD based coordination method that supports project plan scoping,
Non-linear M -sequences Generation Method
Directory of Open Access Journals (Sweden)
Z. R. Garifullina
2011-06-01
Full Text Available The article deals with a new method for modeling a pseudorandom number generator based on R-blocks. The gist of the method is the replacement of a multi digit XOR element by a stochastic adder in a parallel binary linear feedback shift register scheme.
TWO-LEVEL HIERARCHICAL COORDINATION QUEUING METHOD FOR TELECOMMUNICATION NETWORK NODES
Directory of Open Access Journals (Sweden)
M. V. Semenyaka
2014-07-01
Full Text Available The paper presents hierarchical coordination queuing method. Within the proposed method a queuing problem has been reduced to optimization problem solving that was presented as two-level hierarchical structure. The required distribution of flows and bandwidth allocation was calculated at the first level independently for each macro-queue; at the second level solutions obtained on lower level for each queue were coordinated in order to prevent probable network link overload. The method of goal coordination has been determined for multilevel structure managing, which makes it possible to define the order for consideration of queue cooperation restrictions and calculation tasks distribution between levels of hierarchy. Decisions coordination was performed by the method of Lagrange multipliers. The study of method convergence has been carried out by analytical modeling.
Experimental substantiation of methodic of 11-13 years old boxers’ coordination development
Directory of Open Access Journals (Sweden)
Yong Qiang Liu
2015-06-01
Full Text Available Purpose: experimental substantiation of methodic of junior boxers’ coordination training. Material: in the research 18 boxers of 11-13 year old age participated. In total, during 4 months 42 trainings were conducted. Total time of coordination load’s fulfillment at each training was 15-45 minutes. Results: dynamic of results in control tests was statistically confident in the tested parameters of movements. It proves effectiveness of usage the tasks with complex-coordination orientation, accented on impact on sensor-informational and motor systems of movements in junior boxers’ trainings. Conclusions: coordination training in boxing at initial stage shall include specialized varied means and methods, which would facilitate formation of motor condition and skills’ basis. Motor condition and skills are a reserve for further rising of coordination abilities’ level of junior sportsmen.
Möller, Thorsten; Schuldt, Heiko; Gerber, Andreas; Klusch, Matthias
2006-06-01
Healthcare digital libraries (DLs) increasingly make use of dedicated services to access functionality and/or data. Semantic (web) services enhance single services and facilitate compound services, thereby supporting advanced applications on top of a DL. The traditional process management approach tends to focus on process definition at build time rather than on actual service events in run time, and to anticipate failures in order to define appropriate strategies. This paper presents a novel approach where service coordination is distributed among a set of agents. A dedicated component plans compound semantic services on demand for a particular application. In failure, the planner is reinvoked to define contin- gency strategies. Finally, matchmaking is effected at runtime by choosing the appropriate service provider. These combined technologies will provide key support for highly flexible next-generation DL applications. Such technologies are under development within CASCOM.
Energy Technology Data Exchange (ETDEWEB)
Tung, Wu-Hsiung, E-mail: wstong@iner.gov.tw; Lee, Tien-Tso; Kuo, Weng-Sheng; Yaur, Shung-Jung
2017-03-15
Highlights: • An optimization method for axial enrichment distribution in a BWR fuel was developed. • Block coordinate descent method is employed to search for optimal solution. • Scoping libraries are used to reduce computational effort. • Optimization search space consists of enrichment difference parameters. • Capability of the method to find optimal solution is demonstrated. - Abstract: An optimization method has been developed to search for the optimal axial enrichment distribution in a fuel assembly for a boiling water reactor core. The optimization method features: (1) employing the block coordinate descent method to find the optimal solution in the space of enrichment difference parameters, (2) using scoping libraries to reduce the amount of CASMO-4 calculation, and (3) integrating a core critical constraint into the objective function that is used to quantify the quality of an axial enrichment design. The objective function consists of the weighted sum of core parameters such as shutdown margin and critical power ratio. The core parameters are evaluated by using SIMULATE-3, and the cross section data required for the SIMULATE-3 calculation are generated by using CASMO-4 and scoping libraries. The application of the method to a 4-segment fuel design (with the highest allowable segment enrichment relaxed to 5%) demonstrated that the method can obtain an axial enrichment design with improved thermal limit ratios and objective function value while satisfying the core design constraints and core critical requirement through the use of an objective function. The use of scoping libraries effectively reduced the number of CASMO-4 calculation, from 85 to 24, in the 4-segment optimization case. An exhausted search was performed to examine the capability of the method in finding the optimal solution for a 4-segment fuel design. The results show that the method found a solution very close to the optimum obtained by the exhausted search. The number of
Hoellinger, Thomas; Petieau, Mathieu; Duvinage, Matthieu; Castermans, Thierry; Seetharaman, Karthik; Cebolla, Ana-Maria; Bengoetxea, Ana; Ivanenko, Yuri; Dan, Bernard; Cheron, Guy
2013-01-01
The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator (CPG) processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank, and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.
Directory of Open Access Journals (Sweden)
A. A. Gurskiy
2016-09-01
Full Text Available The coordinating control system by drives of the robot-manipulator is presented in this article. The purpose of the scientific work is the development and research of the new algorithms for parametric synthesis of the coordinating control systems. To achieve this aim it is necessary to develop the system generating the required parametric synthesis algorithms and performing the necessary procedures according to the generated algorithm. This scientific work deals with the synthesis of Petri net in the specific case with the automatic generation of Petri nets.
Energy Technology Data Exchange (ETDEWEB)
Mezzacappa, Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Endeve, Eirik [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hauck, Cory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xing, Yulong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-02-01
We extend the positivity-preserving method of Zhang & Shu [49] to simulate the advection of neutral particles in phase space using curvilinear coordinates. The ability to utilize these coordinates is important for non-equilibrium transport problems in general relativity and also in science and engineering applications with specific geometries. The method achieves high-order accuracy using Discontinuous Galerkin (DG) discretization of phase space and strong stabilitypreserving, Runge-Kutta (SSP-RK) time integration. Special care in taken to ensure that the method preserves strict bounds for the phase space distribution function f; i.e., f ϵ [0, 1]. The combination of suitable CFL conditions and the use of the high-order limiter proposed in [49] is su cient to ensure positivity of the distribution function. However, to ensure that the distribution function satisfies the upper bound, the discretization must, in addition, preserve the divergencefree property of the phase space ow. Proofs that highlight the necessary conditions are presented for general curvilinear coordinates, and the details of these conditions are worked out for some commonly used coordinate systems (i.e., spherical polar spatial coordinates in spherical symmetry and cylindrical spatial coordinates in axial symmetry, both with spherical momentum coordinates). Results from numerical experiments - including one example in spherical symmetry adopting the Schwarzschild metric - demonstrate that the method achieves high-order accuracy and that the distribution function satisfies the maximum principle.
International Nuclear Information System (INIS)
Yang, Xiao-Jun; Srivastava, H.M.; He, Ji-Huan; Baleanu, Dumitru
2013-01-01
In this Letter, we propose to use the Cantor-type cylindrical-coordinate method in order to investigate a family of local fractional differential operators on Cantor sets. Some testing examples are given to illustrate the capability of the proposed method for the heat-conduction equation on a Cantor set and the damped wave equation in fractal strings. It is seen to be a powerful tool to convert differential equations on Cantor sets from Cantorian-coordinate systems to Cantor-type cylindrical-coordinate systems.
Method of operating a thermoelectric generator
Reynolds, Michael G; Cowgill, Joshua D
2013-11-05
A method for operating a thermoelectric generator supplying a variable-load component includes commanding the variable-load component to operate at a first output and determining a first load current and a first load voltage to the variable-load component while operating at the commanded first output. The method also includes commanding the variable-load component to operate at a second output and determining a second load current and a second load voltage to the variable-load component while operating at the commanded second output. The method includes calculating a maximum power output of the thermoelectric generator from the determined first load current and voltage and the determined second load current and voltage, and commanding the variable-load component to operate at a third output. The commanded third output is configured to draw the calculated maximum power output from the thermoelectric generator.
Energy Technology Data Exchange (ETDEWEB)
Macias B, L.R
1991-10-15
The preferential orientation, not alone it exists in metals, but also in minerals or in general in crystalline materials, notwithstanding in the metals it can be transformed by means of those processes of having mechanical worked such as laminate, wrapping, etc. To the preferable orientation of the crystals is also known as texture and since the properties of the crystalline materials lens depend on the orientation that present its glasses, it is important to know its texture. The difficulty for to represent and to describe the grade of preferential orientation in textured materials take to F. Weber to adapt the stereo graphic projection of a monocrystal to a poles figure. Later on, its appeared but methods to obtain the polar figure, among them, that of reflection of L. G. Schultz, but again a technique appears it specifies for its obtaining. In all the cases, the methodology is the following one: a) It is obtained by means of the diffraction process, the correspondent spectra in digitized form. b) it is applied process of having softened mathematician of the spectrum. c) there are determined the fi coordinates, beta and intensity for graph nts of the polar figure. d) Its are graph the points generated in c obtaining the polar figures. The objective of this work, is leaving of a softened spectra, to generate the coordinated fi, beta and corresponding intensity to proceed to their graph and generation of the polar figure. In this specific work, the methodology of Philips is used that consists in making a sweeping in hairspring form with the radiation to detect in these points the execution of the Bragg law. (Author)
International Nuclear Information System (INIS)
Nishiyama, Seiya; Morita, Hiroyuki; Ohnishi, Hiromasa
2004-01-01
The traditional Tamm-Dancoff (TD) method is one of the standard procedures for solving the Schroedinger equation of fermion many-body systems. However, it meets a serious difficulty when an instability occurs in the symmetry-adapted ground state of the independent particle approximation (IPA) and when the stable IPA ground state becomes of broken symmetry. If one uses the stable but broken symmetry IPA ground state as the starting approximation, TD wave functions also become of broken symmetry. On the contrary, if we start from a symmetry-adapted but unstable wave function, the convergence of the TD expansion becomes bad. Thus, the requirements of symmetry and rapid convergence are not in general compatible in the conventional TD expansion of the systems with strong collective correlations. Along the same line as Fukutome's, we give a group-theoretical deduction of a U(n) dyadic TD equation by using a matrix-valued generator coordinate
Directory of Open Access Journals (Sweden)
Paula eFitzpatrick
2013-04-01
Full Text Available Children with Autism Spectrum Disorder (ASD suffer from numerous impairments in social interaction that affect both their mental and bodily coordination with others. We explored here whether interpersonal motor coordination may be an important key for understanding the profound social problems of children with ASD. We employed a set of experimental techniques to evaluate not only traditional cognitive measures of social competence but also the dynamical structure of social coordination by using dynamical measures of social motor coordination and analyzing the time series records of behavior. Preliminary findings suggest that children with ASD were equivalent to typically developing children on many social performance outcome measures. However, significant relationships were found between cognitive social measures (e.g., intentionality and dynamical social motor measures. In addition, we found that more perceptually-based measures of social coordination were not associated with social motor coordination. These findings suggest that social coordination may not be a unitary construct and point to the promise of this multi-method and process-oriented approach to analyzing social coordination as an important pathway for understanding ASD-specific social deficits.
Pilot/Controller Coordinated Decision Making in the Next Generation Air Transportation System
Bearman, Chris; Miller, Ronald c.; Orasanu, Judith M.
2011-01-01
Introduction: NextGen technologies promise to provide considerable benefits in terms of enhancing operations and improving safety. However, there needs to be a thorough human factors evaluation of the way these systems will change the way in which pilot and controllers share information. The likely impact of these new technologies on pilot/controller coordinated decision making is considered in this paper using the "operational, informational and evaluative disconnect" framework. Method: Five participant focus groups were held. Participants were four experts in human factors, between x and x research students and a technical expert. The participant focus group evaluated five key NextGen technologies to identify issues that made different disconnects more or less likely. Results: Issues that were identified were: Decision Making will not necessarily improve because pilots and controllers possess the same information; Having a common information source does not mean pilots and controllers are looking at the same information; High levels of automation may lead to disconnects between the technology and pilots/controllers; Common information sources may become the definitive source for information; Overconfidence in the automation may lead to situations where appropriate breakdowns are not initiated. Discussion: The issues that were identified lead to recommendations that need to be considered in the development of NextGen technologies. The current state of development of these technologies provides a good opportunity to utilize recommendations at an early stage so that NextGen technologies do not lead to difficulties in resolving breakdowns in coordinated decision making.
International Nuclear Information System (INIS)
2007-12-01
Steam generator heat exchanger tube degradations happen in WWER Nuclear Power Plant (NPP). The situation varies from country to country and from NPP to NPP. More severe degradation is observed in WWER-1000 NPPs than in case of WWER-440s. The reasons for these differences could be, among others, differences in heat exchanger tube material (chemical composition, microstructure, residual stresses), in thermal and mechanical loadings, as well as differences in water chemistry. However, WWER steam generators had not been designed for eddy current testing which is the usual testing method in steam generators of western PWRs. Moreover, their supplier provided neither adequate methodology and criteria nor equipment for planning and implementing In-Service Inspection (ISI). Consequently, WWER steam generator ISI infrastructure was established with delay. Even today, there are still big differences in the eddy current inspection strategy and practice as well as in the approach to steam generator heat exchanger tube structural integrity assessment (plugging criteria for defective tubes vary from 40 to 90% wall thickness degradation). Recognizing this situation, the WWER operating countries expressed their need for a joint effort to develop methodology to establish reasonable commonly accepted integrity assessment criteria for the heat exchanger tubes. The IAEA's programme related to steam generator life management is embedded into the systematic activity of its Technical Working Group on Life Management of Nuclear Power Plants (TWG-LMNPP). Under the advice of the TWG-LMNPP, an IAEA coordinated research project (CRP) on Verification of WWER Steam Generator Tube Integrity was launched in 2001. It was completed in 2005. Thirteen organizations involved in in-service inspection of steam generators in WWER operating countries participated: Croatia, Czech Republic, Finland, France, Hungary, Russian Federation, Slovakia, Spain, Ukraine, and the USA. The overall objective was to
Method and apparatus for thermal power generation
International Nuclear Information System (INIS)
Mangus, J.D.
1979-01-01
A method is described for power generation from a recirculating superheat-reheat circuit with multiple expansion stages which alleviates complex control systems and minimizes thermal cycling of system components, particularly the reheater. The invention includes preheating cold reheat fluid from the first expansion stage prior to its entering the reheater with fluid from the evaporator or drum component
Apparatus and method for thermal power generation
International Nuclear Information System (INIS)
Cohen, P.; Redding, A.H.
1978-01-01
An improved thermal power plant and method of power generation is described which minimizes thermal stress and chemical impurity buildup in the vaporizing component, particularly beneficial under loss of normal feed fluid and startup conditions. The invention is particularly applicable to a liquid metal fast breeder reactor plant
Methods and procedures of succession of generations
International Nuclear Information System (INIS)
Homann, A.; Bendzko, R.
2001-01-01
The presentation describes the methods and procedures of the succession of generations in the nuclear industry. The industrial development required specialised knowledge and creativity on a changing level. The relations ship between knowledge-transfer and transfer of the responsibility must be taken into account. The knowledge-transfer has to be planned as an investment. (authors)
Short run hydrothermal coordination with network constraints using an interior point method
International Nuclear Information System (INIS)
Lopez Lezama, Jesus Maria; Gallego Pareja, Luis Alfonso; Mejia Giraldo, Diego
2008-01-01
This paper presents a lineal optimization model to solve the hydrothermal coordination problem. The main contribution of this work is the inclusion of the network constraints to the hydrothermal coordination problem and its solution using an interior point method. The proposed model allows working with a system that can be completely hydraulic, thermal or mixed. Results are presented on the IEEE 14 bus test system
Carter, Richard J [Richland, WA; McCall, Jonathon D [West Richland, WA; Whitney, Paul D [Richland, WA; Gregory, Michelle L [Richland, WA; Turner, Alan E [Kennewick, WA; Hetzler, Elizabeth G [Kennewick, WA; White, Amanda M [Kennewick, WA; Posse, Christian [Seattle, WA; Nakamura, Grant C [Kennewick, WA
2010-10-26
Lexicon generation methods, computer implemented lexicon editing methods, lexicon generation devices, lexicon editors, and articles of manufacture are described according to some aspects. In one aspect, a lexicon generation method includes providing a seed vector indicative of occurrences of a plurality of seed terms within a plurality of text items, providing a plurality of content vectors indicative of occurrences of respective ones of a plurality of content terms within the text items, comparing individual ones of the content vectors with respect to the seed vector, and responsive to the comparing, selecting at least one of the content terms as a term of a lexicon usable in sentiment analysis of text.
The NASA Community Coordinated Modeling Center (CCMC) Next Generation Space Weather Data Warehouse
Maddox, M. M.; Kuznetsova, M. M.; Pulkkinen, A. A.; Zheng, Y.; Rastaetter, L.; Chulaki, A.; Pembroke, A. D.; Wiegand, C.; Mullinix, R.; Boblitt, J.; Mendoza, A. M. M.; Swindell, M. J., IV; Bakshi, S. S.; Mays, M. L.; Shim, J. S.; Hesse, M.; Collado-Vega, Y. M.; Taktakishvili, A.; MacNeice, P. J.
2014-12-01
The Community Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center enables, supports, and performs research and development for next generation space science and space weather models. The CCMC currently hosts a large and expanding collection of state-or-the-art, physics-based space weather models that have been developed by the international research community. There are many tools and services provided by the CCMC that are currently available world-wide, along with the ongoing development of new innovative systems and software for research, discovery, validation, visualization, and forecasting. Over the history of the CCMC's existence, there has been one constant engineering challenge - describing, managing, and disseminating data. To address the challenges that accompany an ever-expanding number of models to support, along with a growing catalog of simulation output - the CCMC is currently developing a flexible and extensible space weather data warehouse to support both internal and external systems and applications. This paper intends to chronicle the evolution and future of the CCMC's data infrastructure, and the current infrastructure re-engineering activities that seek to leverage existing community data model standards like SPASE and the IMPEx Simulation Data Model.
Ryland, Elizabeth S.; Lin, Ming-Fu; Benke, Kristin; Verkamp, Max A.; Zhang, Kaili; Vura-Weis, Josh
2017-06-01
Extreme ultraviolet (XUV) spectroscopy is an inner shell technique that probes the M_{2,3}-edge excitation of atoms. Absorption of the XUV photon causes a 3p→3d transition, the energy and shape of which is directly related to the element and ligand environment. This technique is thus element-, oxidation state-, spin state-, and ligand field specific. A process called high-harmonic generation (HHG) enables the production of ultrashort (˜20fs) pulses of collimated XUV photons in a tabletop instrument. This allows transient XUV spectroscopy to be conducted as an in-lab experiment, where it was previously only possible at accelerator-based light sources. Additionally, ultrashort pulses provide the capability for unprecedented time resolution (˜50fs IRF). This technique has the capacity to serve a pivotal role in the study of electron and energy transfer processes in materials and chemical biology. I will present the XUV transient absorption instrument we have built, along with ultrafast transient M_{2,3}-edge absorption data of a series of small inorganic molecules in order to demonstrate the high specificity and time resolution of this tabletop technique as well as how our group is applying it to the study of ultrafast electronic dynamics of coordination complexes.
A Novel Method for Generating Encryption Keys
Directory of Open Access Journals (Sweden)
Dascalescu Ana Cristina
2009-12-01
Full Text Available The development of the informational society, which has led to an impressive growth of the information volume circulating in the computer networks, has accelerated the evolution and especially the use of modern cryptography instruments. Today, the commercial products use standard cryptographic libraries that implement certified and tested cryptographic algorithms. Instead, the fragility ofencryption algorithms is given by compositional operations like key handling or key generation. In this sense, the article proposes an innovative method to generate pseudorandom numbers which can be used for the construction of secure stream encryption keys. The proposed method is based on the mathematical complements based on the algebra of the finite fields and uses a particularized structure of the linear feedback shift registers.
DEFF Research Database (Denmark)
Romani Dalmau, Aina; Martinez Perez, David; Diaz de Cerio Mendaza, Iker
2015-01-01
The increase of distributed generation is expected to generate instabilities, such as power imbalances or voltage deviations in the power system. At the distribution level, maintaining the bus voltages within the stipulated limits is one of the major challenges for the distribution system operator....... Under low penetration levels, several voltage regulation elements have been efficiently employed up to now. However, under large distributed generation levels, the traditional techniques have to be coordinated with new upcoming solutions, such us demand response. In this paper a simple and decentralized...... of the on-load tap changer and the reactive power from dispersed generation while maximizing the capacity usage of the Power-to-Gas load....
Method of generating a computer readable model
DEFF Research Database (Denmark)
2008-01-01
A method of generating a computer readable model of a geometrical object constructed from a plurality of interconnectable construction elements, wherein each construction element has a number of connection elements for connecting the construction element with another construction element. The met......A method of generating a computer readable model of a geometrical object constructed from a plurality of interconnectable construction elements, wherein each construction element has a number of connection elements for connecting the construction element with another construction element....... The method comprises encoding a first and a second one of the construction elements as corresponding data structures, each representing the connection elements of the corresponding construction element, and each of the connection elements having associated with it a predetermined connection type. The method...... further comprises determining a first connection element of the first construction element and a second connection element of the second construction element located in a predetermined proximity of each other; and retrieving connectivity information of the corresponding connection types of the first...
The computer coordination method and research of inland river traffic based on ship database
Liu, Shanshan; Li, Gen
2018-04-01
A computer coordinated management method for inland river ship traffic is proposed in this paper, Get the inland ship's position, speed and other navigation information by VTS, building ship's statics and dynamic data bases, writing a program of computer coordinated management of inland river traffic by VB software, Automatic simulation and calculation of the meeting states of ships, Providing ship's long-distance collision avoidance information. The long-distance collision avoidance of ships will be realized. The results show that, Ships avoid or reduce meetings, this method can effectively control the macro collision avoidance of ships.
Coordination of size-control, reproduction and generational memory in freshwater planarians
Yang, Xingbo; Kaj, Kelson J.; Schwab, David J.; Collins, Eva-Maria S.
2017-06-01
Uncovering the mechanisms that control size, growth, and division rates of organisms reproducing through binary division means understanding basic principles of their life cycle. Recent work has focused on how division rates are regulated in bacteria and yeast, but this question has not yet been addressed in more complex, multicellular organisms. We have, over the course of several years, assembled a unique large-scale data set on the growth and asexual reproduction of two freshwater planarian species, Dugesia japonica and Girardia tigrina, which reproduce by transverse fission and succeeding regeneration of head and tail pieces into new planarians. We show that generation-dependent memory effects in planarian reproduction need to be taken into account to accurately capture the experimental data. To achieve this, we developed a new additive model that mixes multiple size control strategies based on planarian size, growth, and time between divisions. Our model quantifies the proportions of each strategy in the mixed dynamics, revealing the ability of the two planarian species to utilize different strategies in a coordinated manner for size control. Additionally, we found that head and tail offspring of both species employ different mechanisms to monitor and trigger their reproduction cycles. Thus, we find a diversity of strategies not only between species but between heads and tails within species. Our additive model provides two advantages over existing 2D models that fit a multivariable splitting rate function to the data for size control: firstly, it can be fit to relatively small data sets and can thus be applied to systems where available data is limited. Secondly, it enables new biological insights because it explicitly shows the contributions of different size control strategies for each offspring type.
Liu, Bailing; Zhang, Fumin; Qu, Xinghua; Shi, Xiaojia
2016-01-01
Coordinate transformation plays an indispensable role in industrial measurements, including photogrammetry, geodesy, laser 3-D measurement and robotics. The widely applied methods of coordinate transformation are generally based on solving the equations of point clouds. Despite the high accuracy, this might result in no solution due to the use of ill conditioned matrices. In this paper, a novel coordinate transformation method is proposed, not based on the equation solution but based on the geometric transformation. We construct characteristic lines to represent the coordinate systems. According to the space geometry relation, the characteristic line scan is made to coincide by a series of rotations and translations. The transformation matrix can be obtained using matrix transformation theory. Experiments are designed to compare the proposed method with other methods. The results show that the proposed method has the same high accuracy, but the operation is more convenient and flexible. A multi-sensor combined measurement system is also presented to improve the position accuracy of a robot with the calibration of the robot kinematic parameters. Experimental verification shows that the position accuracy of robot manipulator is improved by 45.8% with the proposed method and robot calibration. PMID:26901203
Directory of Open Access Journals (Sweden)
Bailing Liu
2016-02-01
Full Text Available Coordinate transformation plays an indispensable role in industrial measurements, including photogrammetry, geodesy, laser 3-D measurement and robotics. The widely applied methods of coordinate transformation are generally based on solving the equations of point clouds. Despite the high accuracy, this might result in no solution due to the use of ill conditioned matrices. In this paper, a novel coordinate transformation method is proposed, not based on the equation solution but based on the geometric transformation. We construct characteristic lines to represent the coordinate systems. According to the space geometry relation, the characteristic line scan is made to coincide by a series of rotations and translations. The transformation matrix can be obtained using matrix transformation theory. Experiments are designed to compare the proposed method with other methods. The results show that the proposed method has the same high accuracy, but the operation is more convenient and flexible. A multi-sensor combined measurement system is also presented to improve the position accuracy of a robot with the calibration of the robot kinematic parameters. Experimental verification shows that the position accuracy of robot manipulator is improved by 45.8% with the proposed method and robot calibration.
International Nuclear Information System (INIS)
Goriely, S.; Dimitriou, P.
2016-07-01
A summary is given of the 1 st Research Coordination Meeting of the new IAEA Co-ordinated Research Project (CRP) on Updating the Photonuclear Data Library and Generating a Reference Database for Photon Strength Functions. Participants presented their work, reviewed the current status of the field with regards to measurements, theoretical models and evaluations, discussed the scope of the work to be undertaken and agreed on a list of priorities and task assignments necessary to achieve the goals of the CRP. A summary of the presentations and discussions is presented in this report. (author)
Energy Technology Data Exchange (ETDEWEB)
Ashcraft, C. Chace [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Niederhaus, John Henry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robinson, Allen C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-29
We present a verification and validation analysis of a coordinate-transformation-based numerical solution method for the two-dimensional axisymmetric magnetic diffusion equation, implemented in the finite-element simulation code ALEGRA. The transformation, suggested by Melissen and Simkin, yields an equation set perfectly suited for linear finite elements and for problems with large jumps in material conductivity near the axis. The verification analysis examines transient magnetic diffusion in a rod or wire in a very low conductivity background by first deriving an approximate analytic solution using perturbation theory. This approach for generating a reference solution is shown to be not fully satisfactory. A specialized approach for manufacturing an exact solution is then used to demonstrate second-order convergence under spatial refinement and tem- poral refinement. For this new implementation, a significant improvement relative to previously available formulations is observed. Benefits in accuracy for computed current density and Joule heating are also demonstrated. The validation analysis examines the circuit-driven explosion of a copper wire using resistive magnetohydrodynamics modeling, in comparison to experimental tests. The new implementation matches the accuracy of the existing formulation, with both formulations capturing the experimental burst time and action to within approximately 2%.
Phase Coordinate System and p-q Theory Based Methods in Active Filtering Implementation
Directory of Open Access Journals (Sweden)
POPESCU, M.
2013-02-01
Full Text Available This paper is oriented towards implementation of the main theories of powers in the compensating current generation stage of a three-phase three-wire shunt active power system. The system control is achieved through a dSPACE 1103 platform which is programmed under the Matlab/Simulink environment. Four calculation blocks included in a specifically designed Simulink library are successively implemented in the experimental setup. The first two approaches, namely those based on the Fryze-Buchholz-Depenbrock theory and the generalized instantaneous reactive power theory, make use of phase quantities without any transformation of the coordinate system and provide the basis for calculating the compensating current when total compensation is desired. The others are based on the p-q theory concepts and require the direct and reverse transformation to/from the two-phases stationary reference frame. They are used for total compensation and partial compensation of the current harmonic distortion. The experimental results, in terms of active filtering performances, validate the control strategies implementation and provide arguments in choosing the most appropriate method.
Directory of Open Access Journals (Sweden)
Juin-Ling Tseng
2016-01-01
Full Text Available Facial animation is one of the most popular 3D animation topics researched in recent years. However, when using facial animation, a 3D facial animation model has to be stored. This 3D facial animation model requires many triangles to accurately describe and demonstrate facial expression animation because the face often presents a number of different expressions. Consequently, the costs associated with facial animation have increased rapidly. In an effort to reduce storage costs, researchers have sought to simplify 3D animation models using techniques such as Deformation Sensitive Decimation and Feature Edge Quadric. The studies conducted have examined the problems in the homogeneity of the local coordinate system between different expression models and in the retainment of simplified model characteristics. This paper proposes a method that applies Homogeneous Coordinate Transformation Matrix to solve the problem of homogeneity of the local coordinate system and Maximum Shape Operator to detect shape changes in facial animation so as to properly preserve the features of facial expressions. Further, root mean square error and perceived quality error are used to compare the errors generated by different simplification methods in experiments. Experimental results show that, compared with Deformation Sensitive Decimation and Feature Edge Quadric, our method can not only reduce the errors caused by simplification of facial animation, but also retain more facial features.
Method for generating hydrogen for fuel cells
Ahmed, Shabbir; Lee, Sheldon H. D.; Carter, John David; Krumpelt, Michael
2004-03-30
A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.
Coordinated control of wind generation and energy storage for power system frequency regulation
Baone, Chaitanya Ashok
Large-scale centralized synchronous generators have long been the primary actors in exercising active power and frequency control, and much of the existing grid control framework is predicated upon their dynamic terminal characteristics. Important among these characteristics is the inertia of such generators. These play key roles in determining the electromechanical stability of the electric power grid. Modern wind generator systems are partially or fully connected to the grid through power electronic interfaces, and hence do not present the same level of inertial coupling. The absence of inertial frequency response from modern wind generator systems is a topic of growing concern in power engineering practice, as the penetration of wind generation is expected to grow dramatically in the next few years. Solutions proposed in the literature have sought to address this problem by seeking to mimic the inherent inertial response characteristics of traditional synchronous generators via control loops added to wind generators. Recent literature has raised concerns regarding this approach, and the work here will further examine its shortcomings, motivating approaches that seek to optimally design for the characteristics of the equipment exercising the control, rather than forcing new technologies to mimic the characteristics of synchronous machines. In particular, this work will develop a new approach to power system frequency regulation, with features suited to distributed energy storage devices such as grid-scale batteries and wind turbine speed and blade pitch control. The dynamic characteristics of these new technologies are treated along with existing mechanisms, such as synchronous machine governor control, to develop a comprehensive multi-input control design approach. To make the method practically feasible for geographically distributed power systems, an observer-based distributed control design utilizing phasor measurement unit (PMU) signals along with local
International Nuclear Information System (INIS)
Mshelia, E.D.
1994-07-01
The method of normal coordinates of the theory of vibrations is used in decoupling the motion of n oscillators (1 ≤ n ≤4) representing intrinsic degrees of freedom coupled to collective motion in a quantum mechanical model that allows the determination of the probability for energy transfer from collective to intrinsic excitations in a dissipative system. (author). 21 refs
Investigation of Sm(3) and Eu(3) coordination compounds with pyrazolones by IR spectroscopy method
International Nuclear Information System (INIS)
Panyushkin, V.T.; Grishenko, T.V.; Afanas'ev, Yu.A.; Garnovskij, A.D.; Osipov, O.A.
1978-01-01
The synthesis is described of the coordination nitrate compounds of Sm(3) and Eu(3) with pyrazolones: 4-aminoantipyrine (A), 1-ethylpyridyl- 3-phenyl-pyrazolone-5(B); 1-(3'-ethylpyridyl)-3(phenylamine-n)-pyrazolone-5(C). It has been determined by the infrared spectroscopy method that exocyclic oxygen atom is the place of coordination bond localization in the pentioned compounds. The infrared spectra analysis of complexes in the 1700-1800 cm -1 region makes it possible to mention bidentate character of NO 3 -groups in the studied complex compounds
The Open Method of Coordination and the New Governance Patterns in the EU
DEFF Research Database (Denmark)
Borras, Susana; Jacobsson, Kerstin
2004-01-01
tradition in the EU, and looks at how the three dominant logics of co-ordination are linked to diverse modes of hte IMC. The subsequent sections focus on teh potential impact of the OMC on the policy and politics dimensions of the EU. Theoretically inspired assumptions about policy learning and partial......The aim of this article is to establish an analytical framework for studying the impact of the open method of coordination (OMC) on three levels of political action within the EU, namely the policy, politics and polity. First, the article examines the novelties of the OMC vis-à-vis the soft law...
CONSTRUCTION THEORY AND NOISE ANALYSIS METHOD OF GLOBAL CGCS2000 COORDINATE FRAME
Directory of Open Access Journals (Sweden)
Z. Jiang
2018-04-01
Full Text Available The definition, renewal and maintenance of geodetic datum has been international hot issue. In recent years, many countries have been studying and implementing modernization and renewal of local geodetic reference coordinate frame. Based on the precise result of continuous observation for recent 15 years from state CORS (continuously operating reference system network and the mainland GNSS (Global Navigation Satellite System network between 1999 and 2007, this paper studies the construction of mathematical model of the Global CGCS2000 frame, mainly analyzes the theory and algorithm of two-step method for Global CGCS2000 Coordinate Frame formulation. Finally, the noise characteristic of the coordinate time series are estimated quantitatively with the criterion of maximum likelihood estimation.
Spatial pattern of Amazonian timber species using cartesian and spatial coordinates method
Directory of Open Access Journals (Sweden)
Tiago Monteiro Condé
2016-06-01
Full Text Available Geographic information system (GIS applied to forest analysis permit the recognition and analysis of spatial patterns of species in two and three dimensional. The aim of this study to demonstrate the efficiency of cartesian and spatial coordinates method (MCCE, method of correcting UTM coordinates of trees location in accordance with the location of field or Cartesian (X ,Y, combined with natural neighbor index (ANND in recognition and analysis of spatial distribution patterns of four commercial timber species in forest management in Caracaraí, Roraima State, Brazil. Simulations were performed on 9 ha, divided into 100 plots of 100 m2 each. Collected data were DBH > 10 cm, commercial and total heights, cartesian coordinates (X,Y and spatial coordinates (UTM. Random spatial patterns were observed in Eschweilera bracteosa and Manilkara huberi. The dispersed and rare spatial patterns were observed in Dinizia excelsa and Cedrelinga cateniformis. MCCE proved to be an efficient method in the recognition and analysis of spatial patterns of native species from Amazon rain forest, as forest planning becomes easier by 2D and 3D simulations.
Method for steam generator water level measurement
International Nuclear Information System (INIS)
Srinivasan, J.S.
1991-01-01
This paper describes a nuclear power plant, a method of controlling the steam generator water level, wherein the steam generator has an upper level tap corresponding to an upper level, a lower level, a riser positioned between the lower and upper taps, and level sensor means for indicating water level between a first range limit and a second range limit, the sensor means being connected to at least the lower tap. It comprises: calculating a measure of velocity head at about the lower level tap; calculating a measure of full water level as the upper level less the measure of velocity head; calibrating the level sensor means to provide an output at the first limit corresponding to an input thereto representative of the measure of full level; calculating a high level setpoint equal to the level of the riser less a bias amount which is a function of the position of the riser relative to the span between the taps; and controlling the water level when the sensor means indicates that the high level setpoint has been reached
Method and system of nuclear energy generation
International Nuclear Information System (INIS)
Wilke, W.
1975-01-01
The method is based on the nuclear reaction Li 6 (n,α)H 3 . Thermal neutrons, whose generation require a power reactor, are fed to a lithium deuterite target in such a manner that part of the tritons produced in this reaction undergo nuclear fusion of the kind d(T,n)α with the deuterons of the target. The remaining tritons are reacted with additional deuterons. The tritium produced in this reaction is processed and fed back to the lithium target over a triton source. It is also possible to process the tritium to a target, feed deuterons to it, and in addition to give the neutrons produced from the T(d,n)α reaction after slowing down to thermal energy to the lithium target. (DG/LH) [de
Thermonuclear reaction generation method and device
International Nuclear Information System (INIS)
Imazaki, Kazuo
1998-01-01
The present invention provides a method of and a device for causing thermonuclear reaction capable of obtaining extremely high profits (about 1000 times), capable of forming a target which is strong against instability upon implosion as a problem of an inertia process and capable of realizing utilization of nuclear fusion. Namely, elementary particles such as pion, muon and K particles are deposited a portion or some portion of thermonuclear fuel materials by using high energy ions and highly brilliant γ rays generated from a high energy accelerator. The thermonuclear fuel materials are compressed to high density. The nuclear fusion reaction is promoted to ignite and burn thermonuclear fuels. A portion of nuclear fuels is ignited selectively by the means. High profits can be obtained. Since there is no need to attain implosion rate required for self ignition of nuclear fuels, a target of low aspect ratio can be used. (I.S.)
Bucci, Davide; Martin, Bruno; Morand, Alain
2012-03-01
This paper deals with a full vectorial generalization of the aperiodic Fourier modal method (AFMM) in cylindrical coordinates. The goal is to predict some key characteristics such as the bending losses of waveguides having an arbitrary distribution of the transverse refractive index. After a description of the method, we compare the results of the cylindrical coordinates AFMM with simulations by the finite-difference time-domain (FDTD) method performed on an S-bend structure made by a 500 nm × 200 nm silicon core (n=3.48) in silica (n=1.44) at a wavelength λ=1550 nm, the bending radius varying from 0.5 up to 2 μm. The FDTD and AFMM results show differences comparable to the variations obtained by changing the parameters of the FDTD simulations.
Directory of Open Access Journals (Sweden)
I. O. Zharinov
2015-05-01
Full Text Available Subject of research. The problem of software-based compensation of technological variation in chromaticity coordinates of liquid crystal panels is considered. A method of software-based compensation of technological variation in chromaticity coordinates is proposed. The method provides the color reproduction characteristics of the series-produced samples on-board indication equipment corresponding to the sample equipment, which is taken as the standard. Method. Mathematical calculation of the profile is performed for the given model of the liquid crystal panel. The coefficients that correspond to the typical values of the chromaticity coordinates for the vertices of the triangle color coverage constitute a reference mathematical model of the plate LCD panel from a specific manufacturer. At the stage of incoming inspection the sample of the liquid crystal panel, that is to be implemented within indication equipment, is mounted on the lighting test unit, where Nokia-Test control is provided by the formation of the RGB codes for display the image of a homogeneous field in the red, green, blue and white. The measurement of the (x,y-chromaticity coordinates in red, green, blue and white colors is performed using a colorimeter with the known value of absolute error. Instead of using lighting equipment, such measurements may be carried out immediately on the sample indication equipment during customizing procedure. The measured values are used to calculate individual LCD-panel profile coefficients through the use of Grassman's transformation, establishing mutual relations between the XYZ-color coordinates and RGB codes to be used for displaying the image on the liquid crystal panel. The obtained coefficients are to be set into the memory of the graphics controller together with the functional software and then used for image displaying. Main results. The efficiency of the proposed method of software-based compensation for technological variation of
AN ENCODING METHOD FOR COMPRESSING GEOGRAPHICAL COORDINATES IN 3D SPACE
Directory of Open Access Journals (Sweden)
C. Qian
2017-09-01
Full Text Available This paper proposed an encoding method for compressing geographical coordinates in 3D space. By the way of reducing the length of geographical coordinates, it helps to lessen the storage size of geometry information. In addition, the encoding algorithm subdivides the whole space according to octree rules, which enables progressive transmission and loading. Three main steps are included in this method: (1 subdividing the whole 3D geographic space based on octree structure, (2 resampling all the vertices in 3D models, (3 encoding the coordinates of vertices with a combination of Cube Index Code (CIC and Geometry Code. A series of geographical 3D models were applied to evaluate the encoding method. The results showed that this method reduced the storage size of most test data by 90 % or even more under the condition of a speed of encoding and decoding. In conclusion, this method achieved a remarkable compression rate in vertex bit size with a steerable precision loss. It shall be of positive meaning to the web 3d map storing and transmission.
Comparison of steam generator methods in PISC
International Nuclear Information System (INIS)
Lahdenperae, K.; Kankare, M.
1996-01-01
The main objective of the study (PISC III, action 5) was the experimental evaluation of the performance of methods used in in-service inspection of steam generator tubes used in nuclear power plants. The study was organized by the Joint Research Center of the European Community (JRC). The round robin test with blind boxes started in 1991. During the study training boxes and blind boxes were circulated in 29 laboratories in Europe, Japan and the USA. The boxes contained steam generator tubes with artificial and natural (chemically induced) flaws. The material was inconell. The blind boxes contained 66 tubes and 95 flaws. All flaws were introduced into different discontinuities, under support plates, above the tube sheet and into U-bends. The flaws included volumetric flaws (wastage, pitting, wear), axial and circumferential notches and chemically induced SCC cracks and IGA. After the round robin test the reference laboratory performed the destructive examination of reported flaws. The flaw detection probability (FDP) for all flaws and for teams inspecting all tubes was 60-85%. The detection of flaws deeper than 40% of the wall thickness was good. Flaws with a depth of less than 20% were not detected. When all flaws were considered, depth sizing was found to have a wide dispersion. Similarly, measured lengths did not as a rule correlate with true lengths. The classification of flaws in cracks and of volumetric flaws was not very successful, the correct classification probability being only about 70%. Evaluation of the flaws showed some shortcomings. The correct rejection probability was at best 83% for teams inspecting all boxes. (3 refs.)
DEFF Research Database (Denmark)
Wu, Dan; Tang, Fen; Dragicevic, Tomislav
2013-01-01
In this paper, a distributed coordinated control scheme based on frequency-bus-signaling (FBS) method for a low-voltage AC three phase microgrid is proposed. The control scheme is composed by two levels. Firstly a primary local control which is different for the DGs and the ESS is proposed. The ESS...... control is implemented to restore the frequency deviation produced by the primary ESS controller while preserving the coordinated control performance. Real-time simulation results show the feasibility of the proposed approach by showing the operation of the microgrid in different scenarios....
Immersion and Invariance-Based Coordinated Generator Excitation and SVC Control for Power Systems
Directory of Open Access Journals (Sweden)
Adirak Kanchanaharuthai
2014-01-01
Full Text Available A nonlinear coordinated control of excitation and SVC of an electrical power system is proposed for transient stability, and voltage regulation enhancement after the occurrence of a large disturbance and a small perturbation. Using the concept of Immersion and Invariance (I&I design methodology, the proposed nonlinear controller is used to not only achieve power angle stability, frequency and voltage regulation but also ensure that the closed-loop system is transiently and asymptotically stable. In order to show the effectiveness of the proposed controller design, the simulation results illustrate that, in spite of the case where a large perturbation occurs on the transmission line or there is a small perturbation to mechanical power inputs, the proposed controller can not only keep the system transiently stable but also simultaneously accomplish better dynamic properties of the system as compared to operation with the existing controllers designed through a coordinated passivation technique controller and a feedback linearization scheme, respectively.
Method and apparatus for generating neutrons
International Nuclear Information System (INIS)
Cranberg, L.
1978-01-01
An apparatus and method for generating high-energy neutrons are disclosed. Neutron emissive target material is deposited on one or more surfaces on a rotatable, hollow, toroidal target support. The surfaces are bombarded by beams of ions of generally rectangular cross section, so that when the bombarded surfaces are viewed end-wise, a compact, generally square source of neutrons is provided, such as is required for collimation. A combination of molecular and atomic ions emitted from at least one conventional accelerator are passed through a magnetic field for the purpose of separating the ions into one homogeneous group of atomic and one homogeneous group of molecular ions before the ions are allowed to impinge on the target surfaces. One accelerator directs ions to each target surface as the target rotates. Coolant is directed through a cavity within the toroidal support for the purpose of cooling the target support and target material. A refrigerated surface is placed in close proximity to the target surface to condense vapors which might prove harmful to the target and for thermally cooling said target
International Nuclear Information System (INIS)
Umegaki, Kikuo; Miki, Kazuyoshi
1990-01-01
A numerical method is developed to solve three-dimensional incompressible viscous flow in complicated geometry using curvilinear coordinate transformation and domain decomposition technique. In this approach, a complicated flow domain is decomposed into several subdomains, each of which has an overlapping region with neighboring subdomains. Curvilinear coordinates are numerically generated in each subdomain using the boundary-fitted coordinate transformation technique. The modified SMAC scheme is developed to solve Navier-Stokes equations in which the convective terms are discretized by the QUICK method. A fully vectorized computer program is developed on the basis of the proposed method. The program is applied to flow analysis in a semicircular curved, 90deg elbow and T-shape branched pipes. Computational time with the vector processor of the HITAC S-810/20 supercomputer system, is reduced to 1/10∼1/20 of that with a scalar processor. (author)
METHOD FOR DETERMINING THE SPATIAL COORDINATES IN THE ACTIVE STEREOSCOPIC SYSTEM
Directory of Open Access Journals (Sweden)
Valery V. Korotaev
2014-11-01
Full Text Available The paper deals with the structural scheme of active stereoscopic system and algorithm of its operation, providing the fast calculation of the spatial coordinates. The system includes two identical cameras, forming a stereo pair, and a laser scanner, which provides vertical scanning of the space before the system by the laser beam. A separate synchronizer provides synchronous operation of the two cameras. The developed algorithm of the system operation is implemented in MATLAB. In the proposed algorithm, the influence of background light is eliminated by interframe processing. The algorithm is based on precomputation of coordinates for epipolar lines and corresponding points in stereoscopic image. These data are used to quick calculation of the three-dimensional coordinates of points that form the three-dimensional images of objects. Experiment description on a physical model is given. Experimental results confirm the efficiency of the proposed active stereoscopic system and its operation algorithm. The proposed scheme of active stereoscopic system and calculating method for the spatial coordinates can be recommended for creation of stereoscopic systems, operating in real time and at high processing speed: devices for face recognition, systems for the position control of railway track, automobile active safety systems.
Optimization Method of Intersection Signal Coordinated Control Based on Vehicle Actuated Model
Directory of Open Access Journals (Sweden)
Chen Zhao-Meng
2015-01-01
Full Text Available Traditional timing green wave control with predetermined cycle, split, and offset cannot adapt for dynamic real-time traffic flow. This paper proposes a coordinated control method for variable cycle time green wave bandwidth optimization integrated with traffic-actuated control. In the coordinated control, green split is optimized in real time by the measured presence of arriving and/or standing vehicles in each intersection and simultaneously green waves along arterials are guaranteed. Specifically, the dynamic bound of green wave is firstly determined, and then green early-start and green late-start algorithms are presented respectively to accommodate the fluctuations in vehicle arrival rates in each phase. Numerical examples show that the proposed method improves green time, expands green wave bandwidth, and reduces queuing.
Libraries for spectrum identification: Method of normalized coordinates versus linear correlation
International Nuclear Information System (INIS)
Ferrero, A.; Lucena, P.; Herrera, R.G.; Dona, A.; Fernandez-Reyes, R.; Laserna, J.J.
2008-01-01
In this work it is proposed that an easy solution based directly on linear algebra in order to obtain the relation between a spectrum and a spectrum base. This solution is based on the algebraic determination of an unknown spectrum coordinates with respect to a spectral library base. The identification capacity comparison between this algebraic method and the linear correlation method has been shown using experimental spectra of polymers. Unlike the linear correlation (where the presence of impurities may decrease the discrimination capacity), this method allows to detect quantitatively the existence of a mixture of several substances in a sample and, consequently, to beer in mind impurities for improving the identification
Coordinate alignment of combined measurement systems using a modified common points method
Zhao, G.; Zhang, P.; Xiao, W.
2018-03-01
The co-ordinate metrology has been extensively researched for its outstanding advantages in measurement range and accuracy. The alignment of different measurement systems is usually achieved by integrating local coordinates via common points before measurement. The alignment errors would accumulate and significantly reduce the global accuracy, thus need to be minimized. In this thesis, a modified common points method (MCPM) is proposed to combine different traceable system errors of the cooperating machines, and optimize the global accuracy by introducing mutual geometric constraints. The geometric constraints, obtained by measuring the common points in individual local coordinate systems, provide the possibility to reduce the local measuring uncertainty whereby enhance the global measuring certainty. A simulation system is developed in Matlab to analyze the feature of MCPM using the Monto-Carlo method. An exemplary setup is constructed to verify the feasibility and efficiency of the proposed method associated with laser tracker and indoor iGPS systems. Experimental results show that MCPM could significantly improve the alignment accuracy.
Steam generator leak detection using acoustic method
International Nuclear Information System (INIS)
Goluchko, V.V.; Sokolov, B.M.; Bulanov, A.N.
1982-05-01
The main requirements to meet by a device for leak detection in sodium - water steam generators are determined. The potentialities of instrumentation designed based on the developed requirements have been tested using a model of a 550 kw steam generator [fr
DEFF Research Database (Denmark)
Bak-Jensen, Birgitte; Kawady, T.A.; Abdel-Rahman, Mansour Hassan
2010-01-01
is investigated. Simulation test cases using MATLAB-Simulink are implemented on a 365-MW wind farm in AL-Zaafarana, Egypt. The simulation results show the influence of the FRT capability on the protective relaying coordination in wind farms, showing that the FRT may work in situations where is were expected......Fault Ride-Through (FRT) capabilities set up according to the grid codes may affect the performance of related protective elements during fault periods. Therefore, in this paper the coordination between the FRT capability and over-current protection of DFIG Wind Generators in MV networks...... not to work, and then disabling the over-current protection, which should have worked in this situation....
DEFF Research Database (Denmark)
Cha, Seung-Tae; Zhao, Haoran; Wu, Qiuwei
2012-01-01
into the islanding operation mode, while the centralized joint load frequency control (CJLFC) utilizing DGs handles the secondary frequency regulation. The BESS with the associated controllers has been modelled in Real-time digital simulator (RTDS) in order to identify the improvement of the frequency and voltage......This paper describes a coordinated control scheme of battery energy storage system (BESS) and distributed generations (DGs) for electric distribution grid operation. The BESS is designed to stabilize frequency and voltages as a primary control after the electric distribution system enters...... response. The modified IEEE 9-bus system, which is comprised of several DG units, wind power plant and the BESS, has been employed to illustrate the performance of the proposed coordinated flexible control scheme using RTDS in order to verify its practical efficacy....
Drury, H. A.; Van Essen, D. C.; Anderson, C. H.; Lee, C. W.; Coogan, T. A.; Lewis, J. W.
1996-01-01
We present a new method for generating two-dimensional maps of the cerebral cortex. Our computerized, two-stage flattening method takes as its input any well-defined representation of a surface within the three-dimensional cortex. The first stage rapidly converts this surface to a topologically correct two-dimensional map, without regard for the amount of distortion introduced. The second stage reduces distortions using a multiresolution strategy that makes gross shape changes on a coarsely sampled map and further shape refinements on progressively finer resolution maps. We demonstrate the utility of this approach by creating flat maps of the entire cerebral cortex in the macaque monkey and by displaying various types of experimental data on such maps. We also introduce a surface-based coordinate system that has advantages over conventional stereotaxic coordinates and is relevant to studies of cortical organization in humans as well as non-human primates. Together, these methods provide an improved basis for quantitative studies of individual variability in cortical organization.
International Nuclear Information System (INIS)
2006-01-01
The objectives of this CRP are to evaluate various generator and concentration technologies for 188 W- 188 Re, 99 Mo- 99 mTc and 90 Sr- 90 Y generators, to optimize generator fabrication and use, to standardize quality control techniques for the eluted radionuclides and to provide standardized procedures to participating laboratories. The following issues will be addressed during the CRP. - Development of reproducible methodologies for the preparation of 188 W- 188 Re, 99 Mo- 99 mTc and 90 Sr- 90 Y generators. - Development and evaluation of chromatography adsorbents (Zr/Ti composites) having higher binding capacities and demonstration of their utility in the preparation of column generators for 188 Re and 99 mTc. - Comparison and optimization of technologies for post elution concentration of 188 Re and 99 mTc in order to improve the radioactive concentration. - Development of quality control techniques and specifications for generator eluted therapeutic radionuclides
Chang, Hung-Chieh; Lin, Pei-Chun
2014-02-01
Economic dispatch is the short-term determination of the optimal output from a number of electricity generation facilities to meet the system load while providing power. As such, it represents one of the main optimization problems in the operation of electrical power systems. This article presents techniques to substantially improve the efficiency of the canonical coordinates method (CCM) algorithm when applied to nonlinear combined heat and power economic dispatch (CHPED) problems. The improvement is to eliminate the need to solve a system of nonlinear differential equations, which appears in the line search process in the CCM algorithm. The modified algorithm was tested and the analytical solution was verified using nonlinear CHPED optimization problems, thereby demonstrating the effectiveness of the algorithm. The CCM methods proved numerically stable and, in the case of nonlinear programs, produced solutions with unprecedented accuracy within a reasonable time.
Method to detect steam generator tube leakage
International Nuclear Information System (INIS)
Watabe, Kiyomi
1994-01-01
It is important for plant operation to detect minor leakages from the steam generator tube at an early stage, thus, leakage detection has been performed using a condenser air ejector gas monitor and a steam generator blow down monitor, etc. In this study highly-sensitive main steam line monitors have been developed in order to identify leakages in the steam generator more quickly and accurately. The performance of the monitors was verified and the demonstration test at the actual plant was conducted for their intended application to the plants. (author)
International Nuclear Information System (INIS)
Avila, Gustavo; Carrington, Tucker
2015-01-01
In this paper, we improve the collocation method for computing vibrational spectra that was presented in Avila and Carrington, Jr. [J. Chem. Phys. 139, 134114 (2013)]. Using an iterative eigensolver, energy levels and wavefunctions are determined from values of the potential on a Smolyak grid. The kinetic energy matrix-vector product is evaluated by transforming a vector labelled with (nondirect product) grid indices to a vector labelled by (nondirect product) basis indices. Both the transformation and application of the kinetic energy operator (KEO) scale favorably. Collocation facilitates dealing with complicated KEOs because it obviates the need to calculate integrals of coordinate dependent coefficients of differential operators. The ideas are tested by computing energy levels of HONO using a KEO in bond coordinates
International Nuclear Information System (INIS)
Zhang Wen; Haas, Stephan
2009-01-01
An implementation of the fast multiple method (FMM) is performed for magnetic systems with long-ranged dipolar interactions. Expansion in spherical harmonics of the original FMM is replaced by expansion of polynomials in Cartesian coordinates, which is considerably simpler. Under open boundary conditions, an expression for multipole moments of point dipoles in a cell is derived. These make the program appropriate for nanomagnetic simulations, including magnetic nanoparticles and ferrofluids. The performance is optimized in terms of cell size and parameter set (expansion order and opening angle) and the trade off between computing time and accuracy is quantitatively studied. A rule of thumb is proposed to decide the appropriate average number of dipoles in the smallest cells, and an optimal choice of parameter set is suggested. Finally, the superiority of Cartesian coordinate FMM is demonstrated by comparison to spherical harmonics FMM and FFT.
Coordinator Role Mobility Method for Increasing the Life Expectancy of Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Jurenoks Aleksejs
2017-05-01
Full Text Available The general problem of wireless sensor network nodes is the low-power batteries that significantly limit the life expectancy of a network. Nowadays the technical solutions related to energy resource management are being rapidly developed and integrated into the daily lives of people. The energy resource management systems use sensor networks for receiving and processing information during the realia time. The present paper proposes using a coordinator role mobility method for controlling the routing processes for energy balancing in nodes, which provides dynamic network reconfiguration possibilities. The method is designed to operate fully in the background and can be integrated into any exiting working system.
Self-consistent collective coordinate method for large amplitude collective motions
International Nuclear Information System (INIS)
Sakata, F.; Hashimoto, Y.; Marumori, T.; Une, T.
1982-01-01
A recent development of the self-consistent collective coordinate method is described. The self-consistent collective coordinate method was proposed on the basis of the fundamental principle called the invariance principle of the Schroedinger equation. If this is formulated within a framework of the time dependent Hartree Fock (TDHF) theory, a classical version of the theory is obtained. A quantum version of the theory is deduced by formulating it within a framework of the unitary transformation method with auxiliary bosons. In this report, the discussion is concentrated on a relation between the classical theory and the quantum theory, and an applicability of the classical theory. The aim of the classical theory is to extract a maximally decoupled collective subspace out of a huge dimensional 1p - 1h parameter space introduced by the TDHF theory. An intimate similarity between the classical theory and a full quantum boson expansion method (BEM) was clarified. Discussion was concentrated to a simple Lipkin model. Then a relation between the BEM and the unitary transformation method with auxiliary bosons was discussed. It became clear that the quantum version of the theory had a strong relation to the BEM, and that the BEM was nothing but a quantum analogue of the present classical theory. The present theory was compared with the full TDHF calculation by using a simple model. (Kato, T.)
Massive coordination of dispersed generation using PowerMatcher based software agents
International Nuclear Information System (INIS)
Kamphuis, I.G.; Hommelberg, M.P.F.; Warmer, C.J.; Kok, J.K.
2007-01-01
One of the outcomes of the EU-Fifth framework CRISP-project (http://crisp.ecn.nl/), has been the development of a real-time control strategy based on the application of distributed intelligence (ICT) to coordinate demand and supply in electricity grids. This PowerMatcher approach has been validated in two real-life and real-time field tests. The experiments aimed at controlled coordination of dispersed electricity suppliers (DG-RES) and demanders in distributed grids enabled by ICT-networks. Optimization objectives for the technology in the tests were minimization of imbalance in a commercial portfolio and mitigation of strong load variations in a distribution network with residential micro-CHPs. With respect to the number of ICT-nodes, the field tests were on a relatively small-scale. However, application of the technology has yielded some very encouraging results in both occasions. In the present paper, lessons learned from the field experiments are discussed. Furthermore, it contains an account of the roadmap for scaling up these field-tests with a larger number of nodes and with more diverse appliance/installation types. Due to its autonomous decision making agent-paradigm, the PowerMatcher software technology is expected to be widely more scaleable than central coordination approaches. Indeed, it is based on microeconomic theory and is expected to work best if it is applied on a massive scale in transparent market settings. A set of various types of supply and demand appliances was defined and implemented in a PowerMatcher software simulation environment. A massive amount of these PowerMatcher node-agents each representing such a devicetype was utilized in a number of scenario calculations. As the production of DG-RES-resources and the demand profiles are strongly dependent on the time-of-year, climate scenarios leading to operational snapshots of the cluster were taken for a number of representative periods. The results of these larger scale simulations as
Proposed guidelines for synthetic accelerogram generation methods
International Nuclear Information System (INIS)
Shaw, D.E.; Rizzo, P.C.; Shukla, D.K.
1975-01-01
With the advent of high speed digital computation machines and discrete structural analysis techniques, it has become attractive to use synthetically generated accelerograms as input in the seismic design and analysis of structures. Several procedures are currently available which can generate accelerograms which match a given design response spectra while not paying significant attention to other properties of seismic accelerograms. This paper studies currently available artificial time history generation techniques from the standpoint of various properties of seismic time histories consisting of; 1. Response Spectra; 2. Peak Ground Acceleration; 3. Total Duration; 4. Time dependent enveloping functions defining the rise time to strong motion, duration of significant shaking and decay of the significant shaking portion of the seismic record; 5. Fourier Amplitude and Phase Spectra; 6. Ground Motion Parameters; 7. Apparent Frequency; with the aim of providing guidelines of the time history parameters based on historic strong motion seismic records. (Auth.)
Coordinated Demand Response and Distributed Generation Management in Residential Smart Microgrids
DEFF Research Database (Denmark)
Anvari-Moghaddam, Amjad; Mokhtari, Ghassem; Guerrero, Josep M.
2016-01-01
potentials to increase the functionality of a typical demand-side management (DSM) strategy, and typical implementation of building-level DERs by integrating them into a cohesive, networked package that fully utilizes smart energy-efficient end-use devices, advanced building control/automation systems......Nowadays with the emerging of small-scale integrated energy systems (IESs) in form of residential smart microgrids (SMGs), a large portion of energy can be saved through coordinated scheduling of smart household devices and management of distributed energy resources (DERs). There are significant......, and an integrated communications architecture to efficiently manage energy and comfort at the end-use location. By the aid of such technologies, residential consumers have also the capability to mitigate their energy costs and satisfy their own requirements paying less attention to the configuration of the energy...
Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates.
Wang, Bo; Yang, Ke R; Xu, Xuefei; Isegawa, Miho; Leverentz, Hannah R; Truhlar, Donald G
2014-09-16
atoms for capping dangling bonds, and we have shown that they can greatly improve the accuracy. Finally we present a new approach that goes beyond QM/MM by combining the convenience of molecular mechanics with the accuracy of fitting a potential function to electronic structure calculations on a specific system. To make the latter practical for systems with a large number of degrees of freedom, we developed a method to interpolate between local internal-coordinate fits to the potential energy. A key issue for the application to large systems is that rather than assigning the atoms or monomers to fragments, we assign the internal coordinates to reaction, secondary, and tertiary sets. Thus, we make a partition in coordinate space rather than atom space. Fits to the local dependence of the potential energy on tertiary coordinates are arrayed along a preselected reaction coordinate at a sequence of geometries called anchor points; the potential energy function is called an anchor points reactive potential. Electrostatically embedded fragment methods and the anchor points reactive potential, because they are based on treating an entire system by quantum mechanical electronic structure methods but are affordable for large and complex systems, have the potential to open new areas for accurate simulations where combined QM/MM methods are inadequate.
Empirical Methods in Natural Language Generation
Krahmer, Emiel; Theune, Mariet
Natural language generation (NLG) is a subfield of natural language processing (NLP) that is often characterized as the study of automatically converting non-linguistic representations (e.g., from databases or other knowledge sources) into coherent natural language text. In recent years the field
Method for servicing a steam generator
International Nuclear Information System (INIS)
Cooper, J.W. Jr.; Castner, R.P.
1982-01-01
The servicing of a steam generator is made easier by mapping the tubesheet with a remotely controlled probe to locate precisely each hole in the sheet. The locations are stored and used to maneuver various tools into position to perform operations on each tube hole
An arbitrary curvilinear-coordinate method for particle-in-cell modeling
International Nuclear Information System (INIS)
Fichtl, C A; Finn, J M; Cartwright, K L
2012-01-01
A new approach to kinetic simulation of plasmas in complex geometries, based on the particle-in-cell (PIC) simulation method, is explored. In the two-dimensional (2D) electrostatic version of our method, called the arbitrary curvilinear-coordinate PIC method, all essential PIC operations are carried out in 2D on a uniform grid on the unit square logical domain, and mapped to a nonuniform boundary-fitted grid on the physical domain. As the resulting logical grid equations of motion are not separable, we have developed an extension of the semi-implicit modified leapfrog integration technique to preserve the symplectic nature of the logical grid particle mover. A generalized, curvilinear-coordinate formulation of Poisson's equations to solve for the electrostatic fields on the uniform logical grid is also developed. By our formulation, we compute the plasma charge density on the logical grid based on the particles' positions on the logical domain. That is, the plasma particles are weighted to the uniform logical grid and the self-consistent mean electrostatic fields obtained from the solution of the logical grid Poisson equation are interpolated to the particle positions on the logical grid. This process eliminates the complexity associated with the weighting and interpolation processes on the nonuniform physical grid and allows us to run the PIC method on arbitrary boundary-fitted meshes. (paper)
Directory of Open Access Journals (Sweden)
P. Wang
2018-04-01
Full Text Available In the image plane of GB-SAR, identification of deformation distribution is usually carried out by artificial interpretation. This method requires analysts to have adequate experience of radar imaging and target recognition, otherwise it can easily cause false recognition of deformation target or region. Therefore, it is very meaningful to connect two-dimensional (2D plane coordinate system with the common three-dimensional (3D terrain coordinate system. To improve the global accuracy and reliability of the transformation from 2D coordinates of GB-SAR images to local 3D coordinates, and overcome the limitation of traditional similarity transformation parameter estimation method, 3D laser scanning data is used to assist the transformation of GB-SAR image coordinates. A straight line fitting method for calculating horizontal angle was proposed in this paper. After projection into a consistent imaging plane, we can calculate horizontal rotation angle by using the linear characteristics of the structure in radar image and the 3D coordinate system. Aided by external elevation information by 3D laser scanning technology, we completed the matching of point clouds and pixels on the projection plane according to the geometric projection principle of GB-SAR imaging realizing the transformation calculation of GB-SAR image coordinates to local 3D coordinates. Finally, the effectiveness of the method is verified by the GB-SAR deformation monitoring experiment on the high slope of Geheyan dam.
Wang, P.; Xing, C.
2018-04-01
In the image plane of GB-SAR, identification of deformation distribution is usually carried out by artificial interpretation. This method requires analysts to have adequate experience of radar imaging and target recognition, otherwise it can easily cause false recognition of deformation target or region. Therefore, it is very meaningful to connect two-dimensional (2D) plane coordinate system with the common three-dimensional (3D) terrain coordinate system. To improve the global accuracy and reliability of the transformation from 2D coordinates of GB-SAR images to local 3D coordinates, and overcome the limitation of traditional similarity transformation parameter estimation method, 3D laser scanning data is used to assist the transformation of GB-SAR image coordinates. A straight line fitting method for calculating horizontal angle was proposed in this paper. After projection into a consistent imaging plane, we can calculate horizontal rotation angle by using the linear characteristics of the structure in radar image and the 3D coordinate system. Aided by external elevation information by 3D laser scanning technology, we completed the matching of point clouds and pixels on the projection plane according to the geometric projection principle of GB-SAR imaging realizing the transformation calculation of GB-SAR image coordinates to local 3D coordinates. Finally, the effectiveness of the method is verified by the GB-SAR deformation monitoring experiment on the high slope of Geheyan dam.
Directory of Open Access Journals (Sweden)
Wojciech Rosloniec
2010-01-01
Full Text Available The TLS ESPRIT method is investigated in application to estimation of angular coordinates (angles of arrival of two moving objects at the presence of an external, relatively strong uncorrelated signal. As a radar antenna system, the 32-element uniform linear array (ULA is used. Various computer simulations have been carried out in order to demonstrate good accuracy and high spatial resolution of the TLS ESPRIT method in the scenario outlined above. It is also shown that accuracy and angle resolution can be significantly increased by using the proposed preprocessing (beamforming. The most of simulation results, presented in a graphical form, have been compared to the corresponding equivalent results obtained by using the ESPRIT method and conventional amplitude monopulse method aided by the coherent Doppler filtration.
Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa
2013-04-09
Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.
DEFF Research Database (Denmark)
Kjaerulff, O; Kiehn, O
1996-01-01
The isolated spinal cord of the newborn rat contains networks that are able to create a patterned motor output resembling normal locomotor movements. In this study, we sought to localize the regions of primary importance for rhythm and pattern generation using specific mechanical lesions. We used...... ventral root recordings to monitor neuronal activity and tested the ability of various isolated parts of the caudal thoraciclumbar cord to generate rhythmic bursting in a combination of 5-HT and NMDA. In addition, pathways mediating left/right and rostrocaudal burst alternation were localized. We found......, these pathways were distributed along the lumbar enlargement. Both lateral and ventral funiculi were sufficient to coordinate activity in the rostral and caudal regions. We conclude that the networks organizing locomotor-related activity in the spinal cord of the newborn rat are distributed....
Monitoring method for steam generator operation
International Nuclear Information System (INIS)
Tamaoki, Tetsuo
1991-01-01
In an LMFBR plant having an once-through steam generator, reduction of life of a heat transfer pipe caused by heat cycle fatigue is monitored by early finding for the occurrence of abnormality in the inside of the steam generator and by continuous monitoring for the position of departure from nucleate boiling (DNB), which are difficult with existent static characteristic analysis codes. That is, RMS values of fluctuations in temperature signals sent from thermocouples for measuring the fluid temperature in the vicinity of heat transfer pipe disposed along a primary channel of the once-through type steam generator. The abnormality in heat transfer performance is monitored by the distribution change of the RMS values. Subsequently, DNB point on the side of water and steam is determined by the distribution of the RMS value. Then, accumulated values of the product between the time in which the starting point stays in the DNB region and a life consumption amount per unit time given in accordance with the operation condition are monitored. Accordingly, thermal fatigue failure of the heat transfer pipe due to temperature fluctuation in the DNB region is monitored. (I.S.)
International Nuclear Information System (INIS)
1995-12-01
99 Tc m is the workhorse of nuclear medicine and currently accounts for over 80% of all in vivo diagnostic procedures. This radionuclide is made available to nuclear medicine centers in the form of a generator wherein the parent 99 Mo (generally produced by the fission of 235 U) is retained on a column of alumina and the daughter 99 Tc m produced by the decay of 99 Mo is separated out by elution of the column with saline solution. Fission 99 Mo is now routinely produced only in a few large production centers in the world and the short half-life of 99 Mo poses transportation problems. Recognizing the need to develop alternative technologies for the production of 99 Tc m generators in developing Member States operating medium neutron flux research reactors, the IAEA initiated a co-ordinated research programme (CRP) in 1983. As a result of the work carried out under the auspices of this CRP (1983-1989), it became apparent that technologies based on low temperature sublimation processes and polymolybade gels showed excellent potential for the preparation of reliable and economical 99 Tc m generators. Generators based on elution of polymolybade gels have since been developed and evaluated. Further, based on their own research work and publication from other sources, the experts who participated in this CRP have made a detailed evaluation of other possible alternative technologies for the production of 99 Tc m generators using 99 Mo produced by the non-fission route. 24 refs, 16 figs
Entropy generation method to quantify thermal comfort
Boregowda, S. C.; Tiwari, S. N.; Chaturvedi, S. K.
2001-01-01
The present paper presents a thermodynamic approach to assess the quality of human-thermal environment interaction and quantify thermal comfort. The approach involves development of entropy generation term by applying second law of thermodynamics to the combined human-environment system. The entropy generation term combines both human thermal physiological responses and thermal environmental variables to provide an objective measure of thermal comfort. The original concepts and definitions form the basis for establishing the mathematical relationship between thermal comfort and entropy generation term. As a result of logic and deterministic approach, an Objective Thermal Comfort Index (OTCI) is defined and established as a function of entropy generation. In order to verify the entropy-based thermal comfort model, human thermal physiological responses due to changes in ambient conditions are simulated using a well established and validated human thermal model developed at the Institute of Environmental Research of Kansas State University (KSU). The finite element based KSU human thermal computer model is being utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal responses to different environmental conditions. The output from the simulation, which include human thermal responses and input data consisting of environmental conditions are fed into the thermal comfort model. Continuous monitoring of thermal comfort in comfortable and extreme environmental conditions is demonstrated. The Objective Thermal Comfort values obtained from the entropy-based model are validated against regression based Predicted Mean Vote (PMV) values. Using the corresponding air temperatures and vapor pressures that were used in the computer simulation in the regression equation generates the PMV values. The preliminary results indicate that the OTCI and PMV values correlate well under ideal conditions. However, an experimental study
Optimization of an auto-thermal ammonia synthesis reactor using cyclic coordinate method
A-N Nguyen, T.; Nguyen, T.-A.; Vu, T.-D.; Nguyen, K.-T.; K-T Dao, T.; P-H Huynh, K.
2017-06-01
The ammonia synthesis system is an important chemical process used in the manufacture of fertilizers, chemicals, explosives, fibers, plastics, refrigeration. In the literature, many works approaching the modeling, simulation and optimization of an auto-thermal ammonia synthesis reactor can be found. However, they just focus on the optimization of the reactor length while keeping the others parameters constant. In this study, the other parameters are also considered in the optimization problem such as the temperature of feed gas enters the catalyst zone, the initial nitrogen proportion. The optimal problem requires the maximization of an objective function which is multivariable function and subject to a number of equality constraints involving the solution of coupled differential equations and also inequality constraint. The cyclic coordinate search was applied to solve the multivariable-optimization problem. In each coordinate, the golden section method was applied to find the maximum value. The inequality constraints were treated using penalty method. The coupled differential equations system was solved using Runge-Kutta 4th order method. The results obtained from this study are also compared to the results from the literature.
Generator coordinate representation of the time independent mean field theory of collisions
International Nuclear Information System (INIS)
Giraud, B.G.; Lemm, J.; Weiguny, A.; Wierling, A.
1991-01-01
We show how matrix elements of the T-matrix can be easily estimated on a basis of Slater determinants, with a mean field approximation. Linear superpositions of these Slater determinants then generate plane waves, or distorted (Coulomb) waves. This provides physical matrix elements of T
Paterakis, N.G.; Erdinc, O.; Pappi, I.N.; Bakirtzis, A.G.; Catalao, J.P.S.
2016-01-01
In this paper, the optimal operation of a neighborhood of smart households in terms of minimizing the total energy procurement cost is analyzed. Each household may comprise several assets such as electric vehicles, controllable appliances, energy storage and distributed generation. Bi-directional
Delay generation methods with reduced memory requirements
DEFF Research Database (Denmark)
Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt
2003-01-01
Modern diagnostic ultrasound beamformers require delay information for each sample along the image lines. In order to avoid storing large amounts of focusing data, delay generation techniques have to be used. In connection with developing a compact beamformer architecture, recursive algorithms were......) For the best parametric approach, the gate count was 2095, the maximum operation speed was 131.9 MHz, the power consumption at 40 MHz was 10.6 mW, and it requires 4 12-bit words for each image line and channel. 2) For the piecewise-linear approximation, the corresponding numbers are 1125 gates, 184.9 MHz, 7...
Improved method for eliminating center-of-mass coordinates from matrix elements in oscillator basis
International Nuclear Information System (INIS)
Richardson, R.H.; Shapiro, J.Y.
1986-01-01
This paper presents a concise, efficient method of reducing potential energy matrix elements to relative coordinates, when one is using an oscillator basis. It is especially suited to computer calculations. One nice feature of the method is its modular form, which allows a wide range of calculations. Separate FORTRAN subroutines have been written which calculate and store tables of the one-dimensional brackets of an equation that is presented and the single particle brackets from the isotropic to the axially symmetric oscillator equations. The tables are used by other subroutines which calculate the modified brackets and the brackets with spin. The methods developed here are a substantial improvement over what has been done heretofore, and open up new possibilities for performing nuclear structure calculations
International Nuclear Information System (INIS)
Basovets, S.K.; Krupyanskij, Yu.F.; Kurinov, I.V.; Suzdalev, I.P.; Goldanskij, V.I.; Uporov, I.V.; Shaitan, K.V.; Rubin, A.B.
1988-01-01
A method of Moessbauer Fourier spectroscopy is developed to determine the correlation function of coordinates of a macromolecular system. The method does not require the use of an a priori dynamic model. The application of the method to the analysis of RSMR data for human serum albumin has demonstrated considerable changes in the dynamic behavior of the protein globule when the temperature is changed from 270 to 310 K. The main conclusions of the present work is the simultaneous observation of low-frequency (τ≥10 -9 sec) and high-frequency (τ -9 sec) large-scaled motions, that is the two-humped distribution of correlation times of protein motions. (orig.)
International Nuclear Information System (INIS)
Nagai, Katsuaki; Ushijima, Satoru
2010-01-01
A numerical prediction method has been proposed to predict Bingham plastic fluids with free-surface in a two-dimensional container. Since the linear relationships between stress tensors and strain rate tensors are not assumed for non-Newtonian fluids, the liquid motions are described with Cauchy momentum equations rather than Navier-Stokes equations. The profile of a liquid surface is represented with the two-dimensional curvilinear coordinates which are represented in each computational step on the basis of the arbitrary Lagrangian-Eulerian (ALE) method. Since the volumes of the fluid cells are transiently changed in the physical space, the geometric conservation law is applied to the finite volume discretizations. As a result, it has been shown that the present method enables us to predict reasonably the Bingham plastic fluids with free-surface in a container.
Nagai, Katsuaki; Ushijima, Satoru
2010-06-01
A numerical prediction method has been proposed to predict Bingham plastic fluids with free-surface in a two-dimensional container. Since the linear relationships between stress tensors and strain rate tensors are not assumed for non-Newtonian fluids, the liquid motions are described with Cauchy momentum equations rather than Navier-Stokes equations. The profile of a liquid surface is represented with the two-dimensional curvilinear coordinates which are represented in each computational step on the basis of the arbitrary Lagrangian-Eulerian (ALE) method. Since the volumes of the fluid cells are transiently changed in the physical space, the geometric conservation law is applied to the finite volume discretizations. As a result, it has been shown that the present method enables us to predict reasonably the Bingham plastic fluids with free-surface in a container.
International Nuclear Information System (INIS)
Batra, Chirayu; Janin, Denis
2017-01-01
IYNC in a Nutshell: The mission - IYNC (International Youth Nuclear Congress) is the global network of a new generation of nuclear professionals to: •Communicate the benefits of nuclear science and applications •Promote the peaceful use of nuclear power •Provide a platform for networking •Facilitate knowledge transfer between generations and across boundaries; The structure - IYNC is a non-profit organization run by: •11 Officers •Board of Directors •50 National Representatives (e.g. YGN) •20 Members at Large •Dedicated committees and team for projects (30+) → more than 80 volunteers; The activities - •Biannual Congress (IYNCWiN18) •Grants Committee •YGN Startup & Support •Bulletin, Newsletter – sign up www.iync.org •Innovation4Nuclear (I4N) •Nuclear4Climate •Annual Board of Directors. YGN (Young Generation Network): What is a YGN? • A group of young professionals and students interested in nuclear science and technology; Benefits: •Knowledge transfer •Train the future international leaders •Networking •Attracts, develops and retains young professionals
International Nuclear Information System (INIS)
Fukuda, Yoshiyuki; Schrod, Nikolas; Schaffer, Miroslava; Feng, Li Rebekah; Baumeister, Wolfgang; Lucic, Vladan
2014-01-01
Correlative microscopy allows imaging of the same feature over multiple length scales, combining light microscopy with high resolution information provided by electron microscopy. We demonstrate two procedures for coordinate transformation based correlative microscopy of vitrified biological samples applicable to different imaging modes. The first procedure aims at navigating cryo-electron tomography to cellular regions identified by fluorescent labels. The second procedure, allowing navigation of focused ion beam milling to fluorescently labeled molecules, is based on the introduction of an intermediate scanning electron microscopy imaging step to overcome the large difference between cryo-light microscopy and focused ion beam imaging modes. These methods make it possible to image fluorescently labeled macromolecular complexes in their natural environments by cryo-electron tomography, while minimizing exposure to the electron beam during the search for features of interest. - Highlights: • Correlative light microscopy and focused ion beam milling of vitrified samples. • Coordinate transformation based cryo-correlative method. • Improved correlative light microscopy and cryo-electron tomography
Method of generalized coordinates and an application to Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Dienes, J.K.
1978-01-01
The method of generalized coordinates is extended to the analysis of continuous bodies for which the degrees of freedom are independent velocity distributions in the spatial coordinates. The corresponding Lagrange equations contain generalized convective terms as well as the usual generalized forces and masses. Since the existence of a potential is not assumed, the equations of motion can be applied to media with arbitrary (possible dissipative) constitutive laws. Material deformation is characterized by the rate of strain, which is taken as the symmetric part of the velocity gradient, making the approach valid for arbitrarily large deformations. As an example, infinitesimal Rayleigh-Taylor instability is considered by analytic methods. Then, large amplitude Rayleigh-Taylor instability is represented with a single-degree-of-freedom analysis that shows the development (by numerical integration) of the known spike-and-bubble configuration of the unstable interface. The infinitesimal stability of a plastically deforming solid and the growth of the instability to large amplitudes are also considered
An improved method for calculating self-motion coordinates for redundant manipulators
International Nuclear Information System (INIS)
Reister, D.B.
1997-04-01
For a redundant manipulator, the objective of redundancy resolution is to follow a specified path in Cartesian space and simultaneously perform another task (for example, maximize an objective function or avoid obstacles) at every point along the path. The conventional methods have several drawbacks: a new function must be defined for each task, the extended Jacobian can be singular, closed cycles in Cartesian space may not yield closed cycles in joint space, and the objective is point-wise redundancy resolution (to determine a single point in joint space for each point in Cartesian space). The author divides the redundancy resolution problem into two parts: (1) calculate self-motion coordinates for all possible positions of a manipulator at each point along a Cartesian path and (2) determination of optimal self-motion coordinates that maximize an objective function along the path. This paper will discuss the first part of the problem. The path-wise approach overcomes all of the drawbacks of conventional redundancy resolution methods: no need to define a new function for each task, extended Jacobian cannot be singular, and closed cycles in extended Cartesian space will yield closed cycles in joint space
Method and apparatus for generating acoustic waves
International Nuclear Information System (INIS)
Rao, G.V.; Gopal, R.
1982-01-01
A portable source of acoustic waves comprises a sample of iron-nickel alloy including an austenite phase cooled to become martensite, and a wave guide to transmit the acoustic waves. The source is applied to the pressure boundary region of a pressurized water reactor to simulate an actual metal flaw and test the calibration of the monitoring and surveillance system. With at most 29.7% nickel in the sample, the source provides acoustic emission due to ductile deformation, and with at least 30% nickel the acoustic emission is characteristic of a brittle deformation. Thus, the monitoring and surveillance system can be tested in either or both situations. In the prior art, synthetic waveform signals were used for such calibration but found not suitable for on-line simulation of the surveillance system. This invention provides an improved system in that it generates true acoustic signals. (author)
DEFF Research Database (Denmark)
Morace, Renata Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo
2005-01-01
This paper deals with the uncertainty estimation of measurements performed on optical coordinate measuring machines (CMMs). Two different methods were used to assess the uncertainty of circle diameter measurements using an optical CMM: the sensitivity analysis developing an uncertainty budget...
International Nuclear Information System (INIS)
Nishino, Atsuhiro; Ueda, Kazunaga; Fujii, Kenichi
2017-01-01
To allow the application of torque standards in various industries, we have been developing torque standard machines based on a lever deadweight system, i.e. a torque generation method using gravity. However, this method is not suitable for expanding the low end of the torque range, because of the limitations to the sizes of the weights and moment arms. In this study, the working principle of the torque generation method using an electromagnetic force was investigated by referring to watt balance experiments used for the redefinition of the kilogram. Applying this principle to a rotating coordinate system, an electromagnetic force type torque standard machine was designed and prototyped. It was experimentally demonstrated that SI-traceable torque could be generated by converting electrical power to mechanical power. Thus, for the first time, SI-traceable torque was successfully realized using a method other than that based on the force of gravity. (paper)
A simple method for generating exactly solvable quantum mechanical potentials
Williams, B W
1993-01-01
A simple transformation method permitting the generation of exactly solvable quantum mechanical potentials from special functions solving second-order differential equations is reviewed. This method is applied to Gegenbauer polynomials to generate an attractive radial potential. The relationship of this method to the determination of supersymmetric quantum mechanical superpotentials is discussed, and the superpotential for the radial potential is also derived. (author)
Improvement of Simulation Method in Validation of Software of the Coordinate Measuring Systems
Nieciąg, Halina
2015-10-01
Software is used in order to accomplish various tasks at each stage of the functioning of modern measuring systems. Before metrological confirmation of measuring equipment, the system has to be validated. This paper discusses the method for conducting validation studies of a fragment of software to calculate the values of measurands. Due to the number and nature of the variables affecting the coordinate measurement results and the complex character and multi-dimensionality of measurands, the study used the Monte Carlo method of numerical simulation. The article presents an attempt of possible improvement of results obtained by classic Monte Carlo tools. The algorithm LHS (Latin Hypercube Sampling) was implemented as alternative to the simple sampling schema of classic algorithm.
Improvement of Simulation Method in Validation of Software of the Coordinate Measuring Systems
Directory of Open Access Journals (Sweden)
Nieciąg Halina
2015-10-01
Full Text Available Software is used in order to accomplish various tasks at each stage of the functioning of modern measuring systems. Before metrological confirmation of measuring equipment, the system has to be validated. This paper discusses the method for conducting validation studies of a fragment of software to calculate the values of measurands. Due to the number and nature of the variables affecting the coordinate measurement results and the complex character and multi-dimensionality of measurands, the study used the Monte Carlo method of numerical simulation. The article presents an attempt of possible improvement of results obtained by classic Monte Carlo tools. The algorithm LHS (Latin Hypercube Sampling was implemented as alternative to the simple sampling schema of classic algorithm.
Directory of Open Access Journals (Sweden)
Sorin Cristian ALBU
2015-12-01
Full Text Available The purpose of this paper is to make the geometric model to the Archimedean spiral, curve often used in practice. Although it is a widely used, in AutoCAD there is no command with which to represent the Archimedean spiral. The method used for determining the mathematical relationships that define the spiral is the coordinate transformation, and for the calculation of the points which define it, is use AutoLISP, representation being made in AutoCAD. The result of this work is to develop an AutoLISP program which can represent the Archimedean spiral, presented a method that can be applied to the representation of any curves used in the technique.
Energy Technology Data Exchange (ETDEWEB)
Vaillon, R; Lallemand, M; Lemonnier, D [Ecole Nationale Superieure de Mecanique et d` Aerotechnique (ENSMA), 86 - Poitiers (France)
1997-12-31
The method of discrete ordinates, which is more and more widely used in radiant heat transfer studies, is mainly developed in Cartesian, (r,z) and (r,{Theta}) cylindrical, and spherical coordinates. In this study, the approach of this method is performed in orthogonal curvilinear coordinates: determination of the radiant heat transfer equation, treatment of the angular redistribution terms, numerical procedure. Some examples of application are described in 2-D geometry defined in curvilinear coordinates along a curve and at the thermal equilibrium. A comparison is made with the discrete ordinates method in association with the finite-volumes method in non structured mesh. (J.S.) 27 refs.
Energy Technology Data Exchange (ETDEWEB)
Vaillon, R.; Lallemand, M.; Lemonnier, D. [Ecole Nationale Superieure de Mecanique et d`Aerotechnique (ENSMA), 86 - Poitiers (France)
1996-12-31
The method of discrete ordinates, which is more and more widely used in radiant heat transfer studies, is mainly developed in Cartesian, (r,z) and (r,{Theta}) cylindrical, and spherical coordinates. In this study, the approach of this method is performed in orthogonal curvilinear coordinates: determination of the radiant heat transfer equation, treatment of the angular redistribution terms, numerical procedure. Some examples of application are described in 2-D geometry defined in curvilinear coordinates along a curve and at the thermal equilibrium. A comparison is made with the discrete ordinates method in association with the finite-volumes method in non structured mesh. (J.S.) 27 refs.
Directory of Open Access Journals (Sweden)
Wen Liu
2016-12-01
Full Text Available Indoor positioning technologies has boomed recently because of the growing commercial interest in indoor location-based service (ILBS. Due to the absence of satellite signal in Global Navigation Satellite System (GNSS, various technologies have been proposed for indoor applications. Among them, Wi-Fi fingerprinting has been attracting much interest from researchers because of its pervasive deployment, flexibility and robustness to dense cluttered indoor environments. One challenge, however, is the deployment of Access Points (AP, which would bring a significant influence on the system positioning accuracy. This paper concentrates on WLAN based fingerprinting indoor location by analyzing the AP deployment influence, and studying the advantages of coordinate-based clustering compared to traditional RSS-based clustering. A coordinate-based clustering method for indoor fingerprinting location, named Smallest-Enclosing-Circle-based (SEC, is then proposed aiming at reducing the positioning error lying in the AP deployment and improving robustness to dense cluttered environments. All measurements are conducted in indoor public areas, such as the National Center For the Performing Arts (as Test-bed 1 and the XiDan Joy City (Floors 1 and 2, as Test-bed 2, and results show that SEC clustering algorithm can improve system positioning accuracy by about 32.7% for Test-bed 1, 71.7% for Test-bed 2 Floor 1 and 73.7% for Test-bed 2 Floor 2 compared with traditional RSS-based clustering algorithms such as K-means.
Liu, Wen; Fu, Xiao; Deng, Zhongliang
2016-12-02
Indoor positioning technologies has boomed recently because of the growing commercial interest in indoor location-based service (ILBS). Due to the absence of satellite signal in Global Navigation Satellite System (GNSS), various technologies have been proposed for indoor applications. Among them, Wi-Fi fingerprinting has been attracting much interest from researchers because of its pervasive deployment, flexibility and robustness to dense cluttered indoor environments. One challenge, however, is the deployment of Access Points (AP), which would bring a significant influence on the system positioning accuracy. This paper concentrates on WLAN based fingerprinting indoor location by analyzing the AP deployment influence, and studying the advantages of coordinate-based clustering compared to traditional RSS-based clustering. A coordinate-based clustering method for indoor fingerprinting location, named Smallest-Enclosing-Circle-based (SEC), is then proposed aiming at reducing the positioning error lying in the AP deployment and improving robustness to dense cluttered environments. All measurements are conducted in indoor public areas, such as the National Center For the Performing Arts (as Test-bed 1) and the XiDan Joy City (Floors 1 and 2, as Test-bed 2), and results show that SEC clustering algorithm can improve system positioning accuracy by about 32.7% for Test-bed 1, 71.7% for Test-bed 2 Floor 1 and 73.7% for Test-bed 2 Floor 2 compared with traditional RSS-based clustering algorithms such as K-means.
International Nuclear Information System (INIS)
Stefanovic, D.
1975-09-01
The research work of this contract was oriented towards the study of different methods in neutron transport theory. Authors studied analytical solution of the neutron slowing down transport equation and extension of this solution to include the energy dependence of the anisotropy of neutron scattering. Numerical solution of the fast and resonance transport equation for the case of mixture of scatterers including inelastic effects were also reviewed. They improved the existing formalism for treating the scattering of neutrons on water molecules; Identifying modal analysis as the Galerkin method, general conditions for modal technique applications have been investigated. Inverse problems in transport theory were considered. They obtained the evaluation of an advanced level distribution function, made improvement of the standard formalism for treating the inelastic scattering and development of a cluster nuclear model for this evaluation. Authors studied the neutron transport treatment in space energy groups for criticality calculation of a reactor core, and development of the Monte Carlo sampling scheme from the neutron transport equation
Fossil fuel combined cycle power generation method
Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN
2008-10-21
A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.
Cong, Wang; Xu, Lingdi; Li, Ang
2017-10-01
Large aspheric surface which have the deviation with spherical surface are being used widely in various of optical systems. Compared with spherical surface, Large aspheric surfaces have lots of advantages, such as improving image quality, correcting aberration, expanding field of view, increasing the effective distance and make the optical system compact, lightweight. Especially, with the rapid development of space optics, space sensor resolution is required higher and viewing angle is requred larger. Aspheric surface will become one of the essential components in the optical system. After finishing Aspheric coarse Grinding surface profile error is about Tens of microns[1].In order to achieve the final requirement of surface accuracy,the aspheric surface must be quickly modified, high precision testing is the basement of rapid convergence of the surface error . There many methods on aspheric surface detection[2], Geometric ray detection, hartmann detection, ronchi text, knifeedge method, direct profile test, interferometry, while all of them have their disadvantage[6]. In recent years the measure of the aspheric surface become one of the import factors which are restricting the aspheric surface processing development. A two meter caliber industrial CMM coordinate measuring machine is avaiable, but it has many drawbacks such as large detection error and low repeatability precision in the measurement of aspheric surface coarse grinding , which seriously affects the convergence efficiency during the aspherical mirror processing. To solve those problems, this paper presents an effective error control, calibration and removal method by calibration mirror position of the real-time monitoring and other effective means of error control, calibration and removal by probe correction and the measurement mode selection method to measure the point distribution program development. This method verified by real engineer examples, this method increases the original industrial
Thermoelectric generator and method of forming same
International Nuclear Information System (INIS)
Wilson, K.T.
1981-01-01
A thermoelectric device is disclosed which comprises the formation of a multiplicity of thermocouples on a substrate in a narrow strip form, the thermocouples being formed by printing with first and second inks formed of suitable different powdered metals with a proper binder or flux. The thermocouples are formed in series and the opposed coupled areas are melted to form an intermingling of the two metals and the strips may be formed in substantial lengths and rolled onto a reel, or in relatively short strip form and disposed in a side-by-side abutting relationship in substantial numbers to define a generally rectangular panel form with opposed ends in electrical connection. The method of forming the panels includes the steps of feeding a suitable substrate, either in a continuous roll or sheet form, through first and second printers to form the series connected multiplicity of thermocouples thereon. From the printers the sheet or strip passes through a melter such as an induction furnace and from the furnace it passes through a sheeter, if the strip is in roll form. The sheets are then slit into narrow strips relative to the thermocouples, printed thereon and the strips are then formed into a bundle. A predetermined number of bundles are assembled into a panel form
Häyrynen, Teppo; Osterkryger, Andreas Dyhl; de Lasson, Jakob Rosenkrantz; Gregersen, Niels
2017-09-01
Recently, an open geometry Fourier modal method based on a new combination of an open boundary condition and a non-uniform k-space discretization was introduced for rotationally symmetric structures, providing a more efficient approach for modeling nanowires and micropillar cavities [J. Opt. Soc. Am. A33, 1298 (2016)JOAOD61084-752910.1364/JOSAA.33.001298]. Here, we generalize the approach to three-dimensional (3D) Cartesian coordinates, allowing for the modeling of rectangular geometries in open space. The open boundary condition is a consequence of having an infinite computational domain described using basis functions that expand the whole space. The strength of the method lies in discretizing the Fourier integrals using a non-uniform circular "dartboard" sampling of the Fourier k space. We show that our sampling technique leads to a more accurate description of the continuum of the radiation modes that leak out from the structure. We also compare our approach to conventional discretization with direct and inverse factorization rules commonly used in established Fourier modal methods. We apply our method to a variety of optical waveguide structures and demonstrate that the method leads to a significantly improved convergence, enabling more accurate and efficient modeling of open 3D nanophotonic structures.
HEURISTIC METHOD OF SHIPS SELECTION FOR THE COORDINATED WORK OF WATER TRANSPORT
Directory of Open Access Journals (Sweden)
O. V. Shcherbina
2018-02-01
Full Text Available Purpose. The study aims to develop a formulation methodology for ship selection in the coordinated work of sea and river transport using a heuristic approach. Methodology. To realize the purpose set in the study, the authors carried out an analysis of domestic and foreign literature sources on the current topic, studied specifics and conditions for the effective operation of marine mono-hulled ships and composite tug/barge towing ones. Findings. The analysis results allowed formulating the heuristics methods that ensure the selection of the type sizes of tug/barge towing ships for the mixed «river-sea» navigation from the priority range of ships of the existing fleet. The proposed method makes it possible to select ships in a more appropriate manner according to the established scheme of work. Rational combinations of technical and operational characteristics of such pairs as «barges and tows», «tug/barge towing ship and sea-going ship», «tug/barge towing ship and restrictive characteristics of the area of navigation» are a prerequisite for the shipping company profit growth by increasing the capacity of ships. Originality. For the first time, the authors applied a heuristic approach to the selection of tug/barge towing ships and sea-going ones for coordinated work with the performance of cargo operations on the raid of the estuary port when transporting bulk goods. The basis of the approach is the selection of a rational mix of technical and operational characteristics of barges and tugs. The proposed approach allows determining the best combination of ship type sizes in the organization of coordinated work of sea and river transport. At the same time, the continuity of the goods transportation process from the sea ports to the river ones located in the depth of the country (and in the opposite direction is ensured. Practical value. The presented methodology is a logical continuation of the cycle of studies performed by the authors. The
International Nuclear Information System (INIS)
Liu Yi; Kanhere, Pushkar D.; Wong, Chui Ling; Tian Yuefeng; Feng Yuhua; Boey, Freddy; Wu, Tom; Chen Hongyu; White, Tim J.; Chen Zhong; Zhang Qichun
2010-01-01
A novel chalcogenide, [Mn 2 Sb 2 S 5 (N 2 H 4 ) 3 ] (1), has been synthesized by the hydrazine-hydrothermal method. X-ray crystallography study reveals that the new compound 1 crystallizes in space group P1-bar (no. 2) of the triclinic system. The structure features an open neutral three-dimensional framework, where two-dimensional mesh-like inorganic layers are bridged by intra- and inter-layer hydrazine ligands. Both two Mn1 and Mn2 sites adopt distorted octahedral coordination. While two Sb1 and Sb2 sites exhibit two different coordination geometries, the Sb1 site is coordinated with three S atoms to generate a SbS 3 trigonal-pyramidal geometry, and the Sb2 site adopts a SbS 4 trigonal bipyramidal coordination geometry. It has an optical band gap of about ∼2.09 eV, which was deduced from the diffuse reflectance spectrum, and displays photocatalytic behaviors under visible light irradiation. Magnetic susceptibility measurements show compound 1 obeys the Curie-Weiss law in the range of 50-300 K. -- Graphical abstract: A novel chalcogenide, [Mn 2 Sb 2 S 5 (N 2 H 4 ) 3 ] (1), synthesized by hydrazine-hydrothermal method, has a band gap of about ∼2.09 eV and displays photocatalytic behaviors under visible light irradiation. Display Omitted
The interpolation method based on endpoint coordinate for CT three-dimensional image
International Nuclear Information System (INIS)
Suto, Yasuzo; Ueno, Shigeru.
1997-01-01
Image interpolation is frequently used to improve slice resolution to reach spatial resolution. Improved quality of reconstructed three-dimensional images can be attained with this technique as a result. Linear interpolation is a well-known and widely used method. The distance-image method, which is a non-linear interpolation technique, is also used to convert CT value images to distance images. This paper describes a newly developed method that makes use of end-point coordinates: CT-value images are initially converted to binary images by thresholding them and then sequences of pixels with 1-value are arranged in vertical or horizontal directions. A sequence of pixels with 1-value is defined as a line segment which has starting and end points. For each pair of adjacent line segments, another line segment was composed by spatial interpolation of the start and end points. Binary slice images are constructed from the composed line segments. Three-dimensional images were reconstructed from clinical X-ray CT images, using three different interpolation methods and their quality and processing speed were evaluated and compared. (author)
Ding, Chuan; Wang, Kaihong; Huang, Xiaoying
2014-01-01
In a distribution channel, channel members are not always self-interested, but altruistic in some conditions. Based on this assumption, this paper adopts a behavior game method to analyze and forecast channel members’ decision behavior based on result fairness preference and reciprocal fairness preference by embedding a fair preference theory in channel research of coordination. The behavior game forecasts that a channel can achieve coordination if channel members consider behavior elemen...
The AgMIP Coordinated Climate-Crop Modeling Project (C3MP): Methods and Protocols
Shukla, Sonali P.; Ruane, Alexander Clark
2014-01-01
Climate change is expected to alter a multitude of factors important to agricultural systems, including pests, diseases, weeds, extreme climate events, water resources, soil degradation, and socio-economic pressures. Changes to carbon dioxide concentration ([CO2]), temperature, and water (CTW) will be the primary drivers of change in crop growth and agricultural systems. Therefore, establishing the CTW-change sensitivity of crop yields is an urgent research need and warrants diverse methods of investigation. Crop models provide a biophysical, process-based tool to investigate crop responses across varying environmental conditions and farm management techniques, and have been applied in climate impact assessment by using a variety of methods (White et al., 2011, and references therein). However, there is a significant amount of divergence between various crop models' responses to CTW changes (Rotter et al., 2011). While the application of a site-based crop model is relatively simple, the coordination of such agricultural impact assessments on larger scales requires consistent and timely contributions from a large number of crop modelers, each time a new global climate model (GCM) scenario or downscaling technique is created. A coordinated, global effort to rapidly examine CTW sensitivity across multiple crops, crop models, and sites is needed to aid model development and enhance the assessment of climate impacts (Deser et al., 2012). To fulfill this need, the Coordinated Climate-Crop Modeling Project (C3MP) (Ruane et al., 2014) was initiated within the Agricultural Model Intercomparison and Improvement Project (AgMIP; Rosenzweig et al., 2013). The submitted results from C3MP Phase 1 (February 15, 2013-December 31, 2013) are currently being analyzed. This chapter serves to present and update the C3MP protocols, discuss the initial participation and general findings, comment on needed adjustments, and describe continued and future development. AgMIP aims to improve
Theoretical and methodical going near development of coordinating capabilities of young people
Directory of Open Access Journals (Sweden)
Kolumbet A.N.
2012-04-01
Full Text Available An estimation over of positions of conception of coordination and coordinating capabilities is brought in the field of theory of physical education. Data of modern scientific literature on development and perfection of coordinating capabilities are considered. It is shown approaches according to classifications. The further ways of development of motive coordinations of young people are certain. An analysis over is brought 177 publications of domestic and foreign scientists and researchers. Find data allow to establish that now there is enough accumulated material which allows to step over the traditional aspects of pedagogical process of mastering the man of motive abilities and skills
International Nuclear Information System (INIS)
Serezhkin, V.N.; Buslaev, Yu.A.; Mikhajlov, Yu.N.
1997-01-01
New method for determination of coordination numbers (CN) of atoms in crystal structures, based on the model of interatomic interaction, within the frames whereof each atom is approximated by two spheres with the common center in the atom nuclei, is proposed. One of the spheres specifies conditionally isolated (chemically unbound) atom and its radius is a constant, which for atoms of the given chemical sort in the structure of any compound is equal to quasi-orbital Sleiter radius. The sphere of the other radius specifies chemically bound atom and coincides with the sphere, the volume whereof is equal to the volume of the Voronoj-Dirichlet polyhedron of the corresponding atom in the structure of the concrete crystal. Using a series of examples, workability of the given method for CN determination of atoms in structures of both simple substances and chemical compounds (alkali, transition metals, U, Th). Good agreement of the obtained results with the generally accepted CN s of atoms for the considered crystals is noted and a number of principal advantages of the new method, as compared to classical one of the CNs evaluation, is demonstrated
A Method for the Realization of an Interruption Generator Based on Voltage Source Converters
Directory of Open Access Journals (Sweden)
Junhui Li
2017-10-01
Full Text Available In this paper we described the structure and working principle of an interruption generator based on voltage source converters (VSCs. The main circuit parameters of the VSCs are determined according to the target of power transfer capability, harmonic suppression, and dynamic response capability. A state feedback linearization method in nonlinear differential geometry theory was used for dq axis current decoupling, based on the mathematical model used in the dq coordinate system of VSCs. The direct current control strategy was adopted to achieve the independent regulation of active power and reactive power. The proportional integral (PI link was used to optimize the dynamic performance of the controller, and PI parameters were adjusted. Disturbance voltage waves were generated by the regular sampling method. PSCAD/EMTDC simulation results and physical prototype experiments showed that the device could generate various disturbance voltage waveforms steadily, and had good dynamic and steady-state performance.
Dallat, Clare
2009-01-01
This paper examines the risk communication strategies currently being employed by seven outdoor education co-ordinators in Government schools in Victoria, Australia. Of particular interest are the beliefs and assumptions held by these co-ordinators in relation to communicating risk with parents. Current policy stipulates that parents must be…
Directory of Open Access Journals (Sweden)
Wei Zhang
2014-01-01
Full Text Available The underwater recovery of autonomous underwater vehicles (AUV is a process of 6-DOF motion control, which is related to characteristics with strong nonlinearity and coupling. In the recovery mission, the vehicle requires high level control accuracy. Considering an AUV called BSAV, this paper established a kinetic model to describe the motion of AUV in the horizontal plane, which consisted of nonlinear equations. On the basis of this model, the main coupling variables were analyzed during recovery. Aiming at the strong coupling problem between the heading control and sway motion, we designed a decoupling compensator based on the fuzzy theory and the decoupling theory. We analyzed to the rules of fuzzy compensation, the input and output membership functions of fuzzy compensator, through compose operation and clear operation of fuzzy reasoning, and obtained decoupling compensation quantity. Simulation results show that the fuzzy decoupling controller effectively reduces the overshoot of the system, and improves the control precision. Through the water tank experiments and analysis of experimental data, the effectiveness and feasibility of AUV recovery movement coordinated control based on fuzzy decoupling method are validated successful, and show that the fuzzy decoupling control method has a high practical value in the recovery mission.
International Nuclear Information System (INIS)
Rosenfeld, M.; Kwak, D.; Vinokur, M.
1988-01-01
A solution method based on a fractional step approach is developed for obtaining time-dependent solutions of the three-dimensional, incompressible Navier-Stokes equations in generalized coordinate systems. The governing equations are discretized conservatively by finite volumes using a staggered mesh system. The primitive variable formulation uses the volume fluxes across the faces of each computational cell as dependent variables. This procedure, combined with accurate and consistent approximations of geometric parameters, is done to satisfy the discretized mass conservation equation to machine accuracy as well as to gain favorable convergence properties of the Poisson solver. The discretized equations are second-order-accurate in time and space and no smoothing terms are added. An approximate-factorization scheme is implemented in solving the momentum equations. A novel ZEBRA scheme with four-color ordering is devised for the efficient solution of the Poisson equation. Several two and three-dimensional solutions are compared with other numerical and experimental results to validate the present method. 23 references
Directory of Open Access Journals (Sweden)
Jian Zhang
2016-12-01
Full Text Available In the environment of intelligent transportation systems, traffic condition data would have higher resolution in time and space, which is especially valuable for managing the interrupted traffic at signalized intersections. There exist a lot of algorithms for offset tuning, but few of them take the advantage of modern traffic detection methods such as probe vehicle data. This study proposes a method using probe trajectory data to optimize and adjust offsets in real time. The critical point, representing the changing vehicle dynamics, is first defined as the basis of this approach. Using the critical points related to different states of traffic conditions, such as free flow, queue formation, and dissipation, various traffic status parameters can be estimated, including actual travel speed, queue dissipation rate, and standing queue length. The offset can then be adjusted on a cycle-by-cycle basis. The performance of this approach is evaluated using a simulation network. The results show that the trajectory-based approach can reduce travel time of the coordinated traffic flow when compared with using well-defined offline offset.
International Nuclear Information System (INIS)
Sun Xingdong
2014-01-01
The coordinated instrumentation control and protection technology between reactor and steam turbine generator (TG) usually is very significant and complicated for a new construction of nuclear power plant, because it carries the safety, economy and availability of nuclear power plant. Based on successful practice of a nuclear power plant, the experience on interface design and hardware architecture of coordinated instrumentation control and protection technology between reactor and steam turbine generator was abstracted and researched. In this paper, the key points and engineering experience were introduced to give the helpful instructions for the new project. (author)
Method to implement the CCD timing generator based on FPGA
Li, Binhua; Song, Qian; He, Chun; Jin, Jianhui; He, Lin
2010-07-01
With the advance of the PFPA technology, the design methodology of digital systems is changing. In recent years we develop a method to implement the CCD timing generator based on FPGA and VHDL. This paper presents the principles and implementation skills of the method. Taking a developed camera as an example, we introduce the structure, input and output clocks/signals of a timing generator implemented in the camera. The generator is composed of a top module and a bottom module. The bottom one is made up of 4 sub-modules which correspond to 4 different operation modes. The modules are implemented by 5 VHDL programs. Frame charts of the architecture of these programs are shown in the paper. We also describe implementation steps of the timing generator in Quartus II, and the interconnections between the generator and a Nios soft core processor which is the controller of this generator. Some test results are presented in the end.
The Effect of Coordinated Teaching Method Practices on Some Motor Skills of 6-Year-Old Children
Altinkok, Mustafa
2017-01-01
Purpose: This study was designed to examine the effects of Coordinated Teaching Method activities applied for 10 weeks on 6-year-old children, and to examine the effects of these activities on the development of some motor skills in children. Research Methods: The "Experimental Research Model with Pre-test and Post-test Control Group"…
Novel methods of ozone generation by micro-plasma concept
Energy Technology Data Exchange (ETDEWEB)
Fateev, A.; Chiper, A.; Chen, W.; Stamate, E.
2008-02-15
The project objective was to study the possibilities for new and cheaper methods of generating ozone by means of different types of micro-plasma generators: DBD (Dielectric Barrier Discharge), MHCD (Micro-Hollow Cathode Discharge) and CPED (Capillary Plasma Electrode Discharge). This project supplements another current project where plasma-based DeNOx is being studied and optimised. The results show potentials for reducing ozone generation costs by means of micro-plasmas but that further development is needed. (ln)
Extensions of von Neumann's method for generating random variables
International Nuclear Information System (INIS)
Monahan, J.F.
1979-01-01
Von Neumann's method of generating random variables with the exponential distribution and Forsythe's method for obtaining distributions with densities of the form e/sup -G//sup( x/) are generalized to apply to certain power series representations. The flexibility of the power series methods is illustrated by algorithms for the Cauchy and geometric distributions
"Method, system and storage medium for generating virtual brick models"
DEFF Research Database (Denmark)
2009-01-01
An exemplary embodiment is a method for generating a virtual brick model. The virtual brick models are generated by users and uploaded to a centralized host system. Users can build virtual models themselves or download and edit another user's virtual brick models while retaining the identity...
A Method of Erasing Data Using Random Number Generators
井上,正人
2012-01-01
Erasing data is an indispensable step for disposal of computers or external storage media. Except physical destruction, erasing data means writing random information on entire disk drives or media. We propose a method which erases data safely using random number generators. These random number generators create true random numbers based on quantum processes.
Generating and testing methods for consumer-oriented product development
International Nuclear Information System (INIS)
2001-10-01
In order to obtain a good insight into various design methods that can be used by product developers to enable them to develop and test useful domotics products (domotics: intelligent systems for the home), an inventory has been made of the methods used in the Netherlands. The inventory is directed at two categories of methods: (1) Methods of getting better acquainted with the user and/or the problem, and of generating novel solutions: generative methods; and (2) Methods of assessing solutions (through various phases of the designing process): testing methods. The first category of methods concentrates on the designing process. In other words: how can the designer realise as much as possible of the workability of (domotics) products during the designing process? The second category aims at testing a design (in whatever shape: drawing, prototype, functional computer animation, etc.) through its users. These are methods of assessing a design at various stages of the designing process [nl
Trajectory Generation Method with Convolution Operation on Velocity Profile
Energy Technology Data Exchange (ETDEWEB)
Lee, Geon [Hanyang Univ., Seoul (Korea, Republic of); Kim, Doik [Korea Institute of Science and Technology, Daejeon (Korea, Republic of)
2014-03-15
The use of robots is no longer limited to the field of industrial robots and is now expanding into the fields of service and medical robots. In this light, a trajectory generation method that can respond instantaneously to the external environment is strongly required. Toward this end, this study proposes a method that enables a robot to change its trajectory in real-time using a convolution operation. The proposed method generates a trajectory in real time and satisfies the physical limits of the robot system such as acceleration and velocity limit. Moreover, a new way to improve the previous method, which generates inefficient trajectories in some cases owing to the characteristics of the trapezoidal shape of trajectories, is proposed by introducing a triangle shape. The validity and effectiveness of the proposed method is shown through a numerical simulation and a comparison with the previous convolution method.
International Nuclear Information System (INIS)
Tomiyama, Akio; Matsuoka, Toshiyuki.
1995-01-01
A simple numerical method for solving a transient incompressible two-fluid model was proposed in the present study. A general curvilinear coordinate system was adopted in this method for predicting transient flows in practical engineering devices. The simplicity of the present method is due to the fact that the field equations and constitutive equations were expressed in a tensor form in the general curvilinear coordinate system. When a conventional rectangular mesh is adopted in a calculation, the method reduces to a numerical method for a Cartesian coordinate system. As an example, the present method was applied to transient air-water bubbly flow in a vertical U-tube. It was confirmed that the effects of centrifugal and gravitational forces on the phase distribution in the U-tube were reasonably predicted. (author)
Song, Hummy; Ryan, Molly; Tendulkar, Shalini; Fisher, Josephine; Martin, Julia; Peters, Antoinette S; Frolkis, Joseph P; Rosenthal, Meredith B; Chien, Alyna T; Singer, Sara J
Team-based care is essential for delivering high-quality, comprehensive, and coordinated care. Despite considerable research about the effects of team-based care on patient outcomes, few studies have examined how team dynamics relate to provider outcomes. The aim of this study was to examine relationships among team dynamics, primary care provider (PCP) clinical work satisfaction, and patient care coordination between PCPs in 18 Harvard-affiliated primary care practices participating in Harvard's Academic Innovations Collaborative. First, we administered a cross-sectional survey to all 548 PCPs (267 attending clinicians, 281 resident physicians) working at participating practices; 65% responded. We assessed the relationship of team dynamics with PCPs' clinical work satisfaction and perception of patient care coordination between PCPs, respectively, and the potential mediating effect of patient care coordination on the relationship between team dynamics and work satisfaction. In addition, we embedded a qualitative evaluation within the quantitative evaluation to achieve a convergent mixed methods design to help us better understand our findings and illuminate relationships among key variables. Better team dynamics were positively associated with clinical work satisfaction and quality of patient care coordination between PCPs. Coordination partially mediated the relationship between team dynamics and satisfaction for attending clinicians, suggesting that higher satisfaction depends, in part, on better teamwork, yielding more coordinated patient care. We found no mediating effects for resident physicians. Qualitative results suggest that sources of satisfaction from positive team dynamics for PCPs may be most relevant to attending clinicians. Improving primary care team dynamics could improve clinical work satisfaction among PCPs and patient care coordination between PCPs. In addition to improving outcomes that directly concern health care providers, efforts to
Study on coordination of ventricular contraction by a phase analysis method in tetralogy of Fallot
International Nuclear Information System (INIS)
Chen Xianying; Zhu Hongyu; Li Xinmin; Wang Zhiguo; Zhang Guoxu; Zhang Zhaozhong; Wang Kaigeng
2001-01-01
Objective: Quantitative study on the characters of left ventricular (LV) wall motion and assessing degree of satisfaction of surgical repair of tetralogy of Fallot with phase standard deviation (PSD). Methods: PSD was calculated by equilibrium radionuclide ventriculography in 24 normal controls and 59 patients of tetralogy of Fallot before and after operation. Results: LV PSD was (9.7 +- 2.8) degree in 24 normal controls and (20.5 +- 15.5) degree and (10.0 +- 7.2) degree in 51(86.4%) of 59 patients of tetralogy of Fallot before and after surgical repair, respectively, and the difference was statistically significant (P < 0.01). LV PSD was (11.2 +- 7.8) degree and (21.3 +- 9.3) degree, respectively before and after surgical repair in the remaining 8(13.4%) patients and the LV PSD was increased significantly after operation (P < 0.05). Conclusions: LV PSD is coordinate with improving degree of ventricular wall motion and heart function after surgical repair of tetralogy of Fallot. PSD is one of the heart function parameters for reflecting the degree of satisfaction of the surgical repair
Optimization of Control Points Number at Coordinate Measurements based on the Monte-Carlo Method
Korolev, A. A.; Kochetkov, A. V.; Zakharov, O. V.
2018-01-01
Improving the quality of products causes an increase in the requirements for the accuracy of the dimensions and shape of the surfaces of the workpieces. This, in turn, raises the requirements for accuracy and productivity of measuring of the workpieces. The use of coordinate measuring machines is currently the most effective measuring tool for solving similar problems. The article proposes a method for optimizing the number of control points using Monte Carlo simulation. Based on the measurement of a small sample from batches of workpieces, statistical modeling is performed, which allows one to obtain interval estimates of the measurement error. This approach is demonstrated by examples of applications for flatness, cylindricity and sphericity. Four options of uniform and uneven arrangement of control points are considered and their comparison is given. It is revealed that when the number of control points decreases, the arithmetic mean decreases, the standard deviation of the measurement error increases and the probability of the measurement α-error increases. In general, it has been established that it is possible to repeatedly reduce the number of control points while maintaining the required measurement accuracy.
Yang, Weichao; Xu, Kui; Lian, Jijian; Bin, Lingling; Ma, Chao
2018-05-01
Flood is a serious challenge that increasingly affects the residents as well as policymakers. Flood vulnerability assessment is becoming gradually relevant in the world. The purpose of this study is to develop an approach to reveal the relationship between exposure, sensitivity and adaptive capacity for better flood vulnerability assessment, based on the fuzzy comprehensive evaluation method (FCEM) and coordinated development degree model (CDDM). The approach is organized into three parts: establishment of index system, assessment of exposure, sensitivity and adaptive capacity, and multiple flood vulnerability assessment. Hydrodynamic model and statistical data are employed for the establishment of index system; FCEM is used to evaluate exposure, sensitivity and adaptive capacity; and CDDM is applied to express the relationship of the three components of vulnerability. Six multiple flood vulnerability types and four levels are proposed to assess flood vulnerability from multiple perspectives. Then the approach is applied to assess the spatiality of flood vulnerability in Hainan's eastern area, China. Based on the results of multiple flood vulnerability, a decision-making process for rational allocation of limited resources is proposed and applied to the study area. The study shows that multiple flood vulnerability assessment can evaluate vulnerability more completely, and help decision makers learn more information about making decisions in a more comprehensive way. In summary, this study provides a new way for flood vulnerability assessment and disaster prevention decision. Copyright © 2018 Elsevier Ltd. All rights reserved.
A method for generating subgroup parameters from resonance tables
International Nuclear Information System (INIS)
Devan, K.; Mohanakrishnan, P.
1993-01-01
A method for generating subgroup or band parameters from resonance tables is described. A computer code SPART was written using this method. This code generates the subgroup parameters for any number of bands within the specified broad groups at different temperatures by reading the required input data from the binary cross section library in the Cadarache format. The results obtained with SPART code for two bands were compared with that obtained from GROUPIE code and a good agreement was obtained. Results of the generation of subgroup parameters in four bands for sample case of 239 Pu from resonance tables of Cadarache Ver.2 library is also presented. (author). 8 refs., 2 tabs
International Nuclear Information System (INIS)
Hickman, C.; Thompson, P.D.; Barnes, J.
2006-01-01
Modification of the Solid Radioactive Waste Management Facility at Point Lepreau Generating Station is required to accommodate waste generated during and after an 18-month maintenance outage during which the station would be Refurbished. The modification of the facility triggered both federal and provincial environmental assessment requirements, and these assessments were conducted in a 'coordinated' and cooperative fashion. In this project, the coordinated approach worked well, and provided some significant advantages to the proponent, the public and the regulators. However, there are opportunities for further improvement in future projects, and this paper explores the advantages and disadvantages of this 'co-ordinated' approach. As part of this exploration, there is a discussion of administrative and regulatory changes that the province is considering for the environmental assessment process, and a discussion of the need for a formal 'harmonization' agreement. (author)
ORTHO IMAGE AND DTM GENERATION WITH INTELLIGENT METHODS
Directory of Open Access Journals (Sweden)
H. Bagheri
2013-10-01
Finally the artificial intelligence methods, like genetic algorithms as well as neural networks, were examined on sample data for optimizing interpolation and for generating Digital Terrain Models. The results then were compared with existing conventional methods and it appeared that these methods have a high capacity in heights interpolation and that using these networks for interpolating and optimizing the weighting methods based on inverse distance leads to a high accurate estimation of heights.
Directory of Open Access Journals (Sweden)
Julia Karbunarova
2016-06-01
Full Text Available Purpose: to determine the influence of the author's methodic of teaching swimming on coordination skills of children with hearing disability of primary school age. Material & Methods: in 20 deaf children’s who are studies in special school of Lviv region we make experimental and control groups, and defined the level of static balance by methodic of Romberg and Bondarevskyy, preserve the active balance while walking on the increase by test «Walk on gymnastic beam» and comprehensive display of coordination skills we used test «Three somersaults forward». The survey was conducted before and after the implementation of our methods of teaching swimming. Results: revealed low level of capacity to preserve static balance and ability to preserve the active balance while walking on the increase at the beginning of research. Conclusion: the defined positive impact of the methodic of teaching swimming in deaf children of experimental group according to results of static balance.
Zhao, Yu; Shi, Chen-Xiao; Kwon, Ki-Chul; Piao, Yan-Ling; Piao, Mei-Lan; Kim, Nam
2018-03-01
We propose a fast calculation method for a computer-generated hologram (CGH) of real objects that uses a point cloud gridding method. The depth information of the scene is acquired using a depth camera and the point cloud model is reconstructed virtually. Because each point of the point cloud is distributed precisely to the exact coordinates of each layer, each point of the point cloud can be classified into grids according to its depth. A diffraction calculation is performed on the grids using a fast Fourier transform (FFT) to obtain a CGH. The computational complexity is reduced dramatically in comparison with conventional methods. The feasibility of the proposed method was confirmed by numerical and optical experiments.
Directory of Open Access Journals (Sweden)
Abdul Wadood
2018-04-01
Full Text Available In an electrical power system, the coordination of the overcurrent relays plays an important role in protecting the electrical system by providing primary as well as backup protection. To reduce power outages, the coordination between these relays should be kept at the optimum value to minimize the total operating time and ensure that the least damage occurs under fault conditions. It is also imperative to ensure that the relay setting does not create an unintentional operation and consecutive sympathy trips. In a power system protection coordination problem, the objective function to be optimized is the sum of the total operating time of all main relays. In this paper, the coordination of overcurrent relays in a ring fed distribution system is formulated as an optimization problem. Coordination is performed using proposed continuous particle swarm optimization. In order to enhance and improve the quality of this solution a local search algorithm (LSA is implanted into the original particle swarm algorithm (PSO and, in addition to the constraints, these are amalgamated into the fitness function via the penalty method. The results achieved from the continuous particle swarm optimization algorithm (CPSO are compared with other evolutionary optimization algorithms (EA and this comparison showed that the proposed scheme is competent in dealing with the relevant problems. From further analyzing the obtained results, it was found that the continuous particle swarm approach provides the most globally optimum solution.
Radon generator and the method of radium carrier fabrication
International Nuclear Information System (INIS)
Czerski, B.
1992-01-01
The radon generator construction and the method of radium carrier fabrication has been the subject of the patent. The generator is a cylindrical vessel with gas valves system and two filters inside. Between them the radium carrier has been located. As a carrier polyurethane foam has been used. The carrier is obtained in a generator vessel from polyester resin in the presence of activated mixture of engine oil, zinc-organic catalyst and toluene. To the obtained mixture the radium chloride in the solution of hydrochloric acid is added. The carrier foam is produced by mechanical stirring of substrates inside the vessel and drying in 50 C in a heater. 1 fig
Synchronization Methods for Three Phase Distributed Power Generation Systems
DEFF Research Database (Denmark)
Timbus, Adrian Vasile; Teodorescu, Remus; Blaabjerg, Frede
2005-01-01
Nowadays, it is a general trend to increase the electricity production using Distributed Power Generation Systems (DPGS) based on renewable energy resources such as wind, sun or hydrogen. If these systems are not properly controlled, their connection to the utility network can generate problems...... on the grid side. Therefore, considerations about power generation, safe running and grid synchronization must be done before connecting these systems to the utility network. This paper is mainly dealing with the grid synchronization issues of distributed systems. An overview of the synchronization methods...
International Nuclear Information System (INIS)
Peng Shuaijun; Wu Zhifang
2008-01-01
Fast online inspection in steel pipe production is a big challenge. Radiographic CT imaging technology, a high performance non-destructive testing method, is quite appropriate for inspection and quality control of steel pipes. The method of rotating polar-coordinate is used to reconstruct the steel pipe section from few projections with the purpose of inspecting it online. It reduces the projection number needed and the data collection time, and accelerates the reconstruction algorithm and saves the inspection time evidently. The results of simulation experiment and actual experiment indicate that the image quality and reconstruction time of rotating polar-coordinate method meet the requirements of inspecting the steel tube section online basically. The study is of some theoretical significance and the method is expected to be widely used in practice. (authors)
Primitive polynomials selection method for pseudo-random number generator
Anikin, I. V.; Alnajjar, Kh
2018-01-01
In this paper we suggested the method for primitive polynomials selection of special type. This kind of polynomials can be efficiently used as a characteristic polynomials for linear feedback shift registers in pseudo-random number generators. The proposed method consists of two basic steps: finding minimum-cost irreducible polynomials of the desired degree and applying primitivity tests to get the primitive ones. Finally two primitive polynomials, which was found by the proposed method, used in pseudorandom number generator based on fuzzy logic (FRNG) which had been suggested before by the authors. The sequences generated by new version of FRNG have low correlation magnitude, high linear complexity, less power consumption, is more balanced and have better statistical properties.
EXPRESS METHOD OF BARCODE GENERATION FROM FACIAL IMAGES
Directory of Open Access Journals (Sweden)
G. A. Kukharev
2014-03-01
Full Text Available In the paper a method of generating of standard type linear barcodes from facial images is proposed. The method is based on use of the histogram of facial image brightness, averaging the histogram on a limited number of intervals, quantization of results in a range of decimal numbers from 0 to 9 and table conversion into the final barcode. The proposed solution is computationally low-cost and not requires the use of specialized software on image processing that allows generating of facial barcodes in mobile systems, and thus the proposed method can be interpreted as an express method. Results of tests on the Face94 and CUHK Face Sketch FERET Databases showed that the proposed method is a new solution for use in the real-world practice and ensures the stability of generated barcodes in changes of scale, pose and mirroring of a facial image, and also changes of a facial expression and shadows on faces from local lighting. The proposed method is based on generating of a standard barcode directly from the facial image, and thus contains the subjective information about a person's face.
2012-08-01
Sciandrone, On the convergence of the block nonlinear Gauss - Seidel method under convex constraints , Oper. Res. Lett., 26 (2000), pp. 127–136. [23] S.P...include nonsmooth functions. Our main interest is the block coordinate descent (BCD) method of the Gauss - Seidel type, which mini- mizes F cyclically over...original objective around the current iterate . They do not use extrapolation either and only have subsequence convergence . There are examples of ri
International Nuclear Information System (INIS)
Kobayasi, Masato; Matsuyanagi, Kenichi; Nakatsukasa, Takashi; Matsuo, Masayuki
2003-01-01
The adiabatic self-consistent collective coordinate method is applied to an exactly solvable multi-O(4) model that is designed to describe nuclear shape coexistence phenomena. The collective mass and dynamics of large amplitude collective motion in this model system are analyzed, and it is shown that the method yields a faithful description of tunneling motion through a barrier between the prolate and oblate local minima in the collective potential. The emergence of the doublet pattern is clearly described. (author)
The Researches on Cycle-Changeable Generation Settlement Method
XU, Jun; LONG, Suyan; LV, Jianhu
2018-03-01
Through the analysis of the business characteristics and problems of price adjustment, a cycle-changeable generation settlement method is proposed to support any time cycle settlement, and put forward a complete set of solutions, including the creation of settlement tasks, time power dismantle, generating fixed cycle of electricity, net energy split. At the same time, the overall design flow of cycle-changeable settlement is given. This method supports multiple price adjustments during the month, and also is an effective solution to the cost reduction of month-after price adjustment.
One New Method to Generate 3-Dimensional Virtual Mannequin
Xiu-jin, Shi; Zhi-jun, Wang; Jia-jin, Le
The personal virtual mannequin is very important in electronic made to measure (eMTM) system. There is one new easy method to generate personal virtual mannequin. First, the characteristic information of customer's body is got from two photos. Secondly, some human body part templates corresponding with the customer are selected from the templates library. Thirdly, these templates are modified and assembled according to certain rules to generate a personalized 3-dimensional human, and then the virtual mannequin is realized. Experimental result shows that the method is easy and feasible.
The frequency-independent control method for distributed generation systems
DEFF Research Database (Denmark)
Naderi, Siamak; Pouresmaeil, Edris; Gao, Wenzhong David
2012-01-01
In this paper a novel frequency-independent control method suitable for distributed generation (DG) is presented. This strategy is derived based on the . abc/. αβ transformation and . abc/. dq transformation of the ac system variables. The active and reactive currents injected by the DG are contr......In this paper a novel frequency-independent control method suitable for distributed generation (DG) is presented. This strategy is derived based on the . abc/. αβ transformation and . abc/. dq transformation of the ac system variables. The active and reactive currents injected by the DG...
Using Drawings and Collages as Data Generation Methods With Children
Directory of Open Access Journals (Sweden)
Nokhanyo Nomakhwezi Mayaba
2015-12-01
Full Text Available Appropriate data generation methods are key to a successful research project to attain rich and relevant data. When doing research with children, the methods selected should be age appropriate and enable them to contribute their ideas in the research process. However, data generation with children is not “child’s play”—it is a challenging task that requires careful design on the part of the researcher. We conducted a study in South Africa with children between the ages of 9 and 14 who were orphaned and rendered vulnerable by HIV and AIDS in order to explore if, and how, the use of participatory visual methods might enhance resilience. In this article, we provide a reflective account of the research process and discuss lessons learnt from our experiences of using drawings and collage as data generation methods when doing research with children. This article contributes to the literature on the use of participatory visual methods as data generation strategies with children highlighting some caveats and offering insight into how challenges could be circumvented.
Steam generator tube rupture simulation using extended finite element method
Energy Technology Data Exchange (ETDEWEB)
Mohanty, Subhasish, E-mail: smohanty@anl.gov; Majumdar, Saurin; Natesan, Ken
2016-08-15
Highlights: • Extended finite element method used for modeling the steam generator tube rupture. • Crack propagation is modeled in an arbitrary solution dependent path. • The FE model is used for estimating the rupture pressure of steam generator tubes. • Crack coalescence modeling is also demonstrated. • The method can be used for crack modeling of tubes under severe accident condition. - Abstract: A steam generator (SG) is an important component of any pressurized water reactor. Steam generator tubes represent a primary pressure boundary whose integrity is vital to the safe operation of the reactor. SG tubes may rupture due to propagation of a crack created by mechanisms such as stress corrosion cracking, fatigue, etc. It is thus important to estimate the rupture pressures of cracked tubes for structural integrity evaluation of SGs. The objective of the present paper is to demonstrate the use of extended finite element method capability of commercially available ABAQUS software, to model SG tubes with preexisting flaws and to estimate their rupture pressures. For the purpose, elastic–plastic finite element models were developed for different SG tubes made from Alloy 600 material. The simulation results were compared with experimental results available from the steam generator tube integrity program (SGTIP) sponsored by the United States Nuclear Regulatory Commission (NRC) and conducted at Argonne National Laboratory (ANL). A reasonable correlation was found between extended finite element model results and experimental results.
Steam generator tube rupture simulation using extended finite element method
International Nuclear Information System (INIS)
Mohanty, Subhasish; Majumdar, Saurin; Natesan, Ken
2016-01-01
Highlights: • Extended finite element method used for modeling the steam generator tube rupture. • Crack propagation is modeled in an arbitrary solution dependent path. • The FE model is used for estimating the rupture pressure of steam generator tubes. • Crack coalescence modeling is also demonstrated. • The method can be used for crack modeling of tubes under severe accident condition. - Abstract: A steam generator (SG) is an important component of any pressurized water reactor. Steam generator tubes represent a primary pressure boundary whose integrity is vital to the safe operation of the reactor. SG tubes may rupture due to propagation of a crack created by mechanisms such as stress corrosion cracking, fatigue, etc. It is thus important to estimate the rupture pressures of cracked tubes for structural integrity evaluation of SGs. The objective of the present paper is to demonstrate the use of extended finite element method capability of commercially available ABAQUS software, to model SG tubes with preexisting flaws and to estimate their rupture pressures. For the purpose, elastic–plastic finite element models were developed for different SG tubes made from Alloy 600 material. The simulation results were compared with experimental results available from the steam generator tube integrity program (SGTIP) sponsored by the United States Nuclear Regulatory Commission (NRC) and conducted at Argonne National Laboratory (ANL). A reasonable correlation was found between extended finite element model results and experimental results.
A steam generating unit identification using subspace methods
International Nuclear Information System (INIS)
Poshtan, J.; Mojallali, H.
2002-01-01
A Valid boiler model is a tool for the improvement of the steam generation control system and hence results boiler efficiency enhancement. However, methods of obtaining such a model are not readily found in the open literature and are often specific to a particular plant. This paper presents boiler model using a new method in system identification called S ubspace methods . This method is shown to provide an accurate state space model for boiler in a few numbers of operations, directly from input-output data without any prior knowledge of the system equations and any requirement to several stages of testing
Alternative methods of modeling wind generation using production costing models
International Nuclear Information System (INIS)
Milligan, M.R.; Pang, C.K.
1996-08-01
This paper examines the methods of incorporating wind generation in two production costing models: one is a load duration curve (LDC) based model and the other is a chronological-based model. These two models were used to evaluate the impacts of wind generation on two utility systems using actual collected wind data at two locations with high potential for wind generation. The results are sensitive to the selected wind data and the level of benefits of wind generation is sensitive to the load forecast. The total production cost over a year obtained by the chronological approach does not differ significantly from that of the LDC approach, though the chronological commitment of units is more realistic and more accurate. Chronological models provide the capability of answering important questions about wind resources which are difficult or impossible to address with LDC models
Method of generating ploynucleotides encoding enhanced folding variants
Energy Technology Data Exchange (ETDEWEB)
Bradbury, Andrew M.; Kiss, Csaba; Waldo, Geoffrey S.
2017-05-02
The invention provides directed evolution methods for improving the folding, solubility and stability (including thermostability) characteristics of polypeptides. In one aspect, the invention provides a method for generating folding and stability-enhanced variants of proteins, including but not limited to fluorescent proteins, chromophoric proteins and enzymes. In another aspect, the invention provides methods for generating thermostable variants of a target protein or polypeptide via an internal destabilization baiting strategy. Internally destabilization a protein of interest is achieved by inserting a heterologous, folding-destabilizing sequence (folding interference domain) within DNA encoding the protein of interest, evolving the protein sequences adjacent to the heterologous insertion to overcome the destabilization (using any number of mutagenesis methods), thereby creating a library of variants. The variants in the library are expressed, and those with enhanced folding characteristics selected.
Reducing waste generation and radiation exposure by analytical method modification
International Nuclear Information System (INIS)
Ekechukwu, A.A.
1996-01-01
The primary goal of an analytical support laboratory has traditionally been to provide accurate data in a timely and cost effective fashion. Added to this goal is now the need to provide the same high quality data while generating as little waste as possible. At the Savannah River Technology Center (SRTC), we have modified and reengineered several methods to decrease generated waste and hence reduce radiation exposure. These method changes involved improving detection limits (which decreased the amount of sample required for analysis), decreasing reaction and analysis time, decreasing the size of experimental set-ups, recycling spent solvent and reagents, and replacing some methods. These changes had the additional benefits of reducing employee radiation exposure and exposure to hazardous chemicals. In all cases, the precision, accuracy, and detection limits were equal to or better than the replaced method. Most of the changes required little or no expenditure of funds. This paper describes these changes and discusses some of their applications
Photonic arbitrary waveform generator based on Taylor synthesis method
DEFF Research Database (Denmark)
Liao, Shasha; Ding, Yunhong; Dong, Jianji
2016-01-01
Arbitrary waveform generation has been widely used in optical communication, radar system and many other applications. We propose and experimentally demonstrate a silicon-on-insulator (SOI) on chip optical arbitrary waveform generator, which is based on Taylor synthesis method. In our scheme......, a Gaussian pulse is launched to some cascaded microrings to obtain first-, second- and third-order differentiations. By controlling amplitude and phase of the initial pulse and successive differentiations, we can realize an arbitrary waveform generator according to Taylor expansion. We obtain several typical...... waveforms such as square waveform, triangular waveform, flat-top waveform, sawtooth waveform, Gaussian waveform and so on. Unlike other schemes based on Fourier synthesis or frequency-to-time mapping, our scheme is based on Taylor synthesis method. Our scheme does not require any spectral disperser or large...
Bao, Weizhu
2013-01-01
We propose a simple, efficient, and accurate numerical method for simulating the dynamics of rotating Bose-Einstein condensates (BECs) in a rotational frame with or without longrange dipole-dipole interaction (DDI). We begin with the three-dimensional (3D) Gross-Pitaevskii equation (GPE) with an angular momentum rotation term and/or long-range DDI, state the twodimensional (2D) GPE obtained from the 3D GPE via dimension reduction under anisotropic external potential, and review some dynamical laws related to the 2D and 3D GPEs. By introducing a rotating Lagrangian coordinate system, the original GPEs are reformulated to GPEs without the angular momentum rotation, which is replaced by a time-dependent potential in the new coordinate system. We then cast the conserved quantities and dynamical laws in the new rotating Lagrangian coordinates. Based on the new formulation of the GPE for rotating BECs in the rotating Lagrangian coordinates, a time-splitting spectral method is presented for computing the dynamics of rotating BECs. The new numerical method is explicit, simple to implement, unconditionally stable, and very efficient in computation. It is spectral-order accurate in space and second-order accurate in time and conserves the mass on the discrete level. We compare our method with some representative methods in the literature to demonstrate its efficiency and accuracy. In addition, the numerical method is applied to test the dynamical laws of rotating BECs such as the dynamics of condensate width, angular momentum expectation, and center of mass, and to investigate numerically the dynamics and interaction of quantized vortex lattices in rotating BECs without or with the long-range DDI.Copyright © by SIAM.
First Generation College Student Leadership Potential: A Mixed Methods Analysis
Hojan-Clark, Jane M.
2010-01-01
This mixed methods research compared the leadership potential of traditionally aged first generation college students to that of college students whose parents are college educated. A college education provides advantages to those who can obtain it (Baum & Payea, 2004; Black Issues in Higher Education, 2005; Education and the Value of…
A device and method for generating a polybinary signal
DEFF Research Database (Denmark)
2018-01-01
The present disclosure relates to a method for generating an L-level polybinary signal, comprising the steps of: providing a baseband signal with a spectrum defined by a predefined frequency period, f p ; filtering the baseband signal using a low-pass filter having a pre-defined cut-off frequency...
Directory of Open Access Journals (Sweden)
Shahrokh Shojaeean
2013-04-01
Full Text Available Considering the growing trend of the consumption of the electric power and the global tendency to substitute new renewable sources of energy, this paper proposes a Monte Carlo based method to determine an optimal level of this change. Considering the limitation of the wind farms in continuous supply of electric power, hydrostatic power storage facilities are used beside wind farms so that the electric power could be stored and fed in a continuous flow into power systems. Due to the gradual exclusion of conventional generators and 5 percent annual load increments, LOLE index was used in order to calculate the amount of the wind power and the capacity of the necessary power storage facility. To this end, LOLE index was calculated for the first year as the reference index for the estimation of the amount of wind power and the capacity of the storage facility in consequent years. For the upcoming years, calculations have been made to account for the gradual exclusion of conventional generators in proportion to load increments. The proposed method has been implemented and simulated on IEEE-RTS test system.
Directory of Open Access Journals (Sweden)
Abouzar Samimi
2016-01-01
Full Text Available One of the most significant control schemes in optimal operation of distribution networks is Volt/Var control (VVC. Owing to the radial structure of distribution systems and distribution lines with a small X/R ratio, the active power scheduling affects the VVC issue. A Distribution System Operator (DSO procures its active and reactive power requirements from Distributed Generations (DGs along with the wholesale electricity market. This paper proposes a new operational scheduling method based on a joint day-ahead active/reactive power market at the distribution level. To this end, based on the capability curve, a generic reactive power cost model for DGs is developed. The joint active/reactive power dispatch model presented in this paper motivates DGs to actively participate not only in the energy markets, but also in the VVC scheme through a competitive market. The proposed method which will be performed in an offline manner aims to optimally determine (i the scheduled active and reactive power values of generation units; (ii reactive power values of switched capacitor banks; and (iii tap positions of transformers for the next day. The joint active/reactive power dispatch model for daily VVC is modeled in GAMS and solved with the DICOPT solver. Finally, the plausibility of the proposed scheduling framework is examined on a typical 22-bus distribution test network over a 24-h period.
Energy Technology Data Exchange (ETDEWEB)
Hickman, C.; Thompson, P.D. [Point Lepreau Generating Station, Point Lepreau Refurbishment Project, Lepreau, New Brunswick (Canada); Barnes, J. [Jacques Whitford Environment Ltd., Fredericton, New Brunswick (Canada)
2006-07-01
Modification of the Solid Radioactive Waste Management Facility at Point Lepreau Generating Station is required to accommodate waste generated during and after an 18-month maintenance outage during which the station would be Refurbished. The modification of the facility triggered both federal and provincial environmental assessment requirements, and these assessments were conducted in a 'coordinated' and cooperative fashion. In this project, the coordinated approach worked well, and provided some significant advantages to the proponent, the public and the regulators. However, there are opportunities for further improvement in future projects, and this paper explores the advantages and disadvantages of this 'co-ordinated' approach. As part of this exploration, there is a discussion of administrative and regulatory changes that the province is considering for the environmental assessment process, and a discussion of the need for a formal 'harmonization' agreement. (author)
Measurement of micro Bubbles generated by a pressurized dissolution method
Energy Technology Data Exchange (ETDEWEB)
Hosokawa, S; Tanaka, K; Tomiyama, A [Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan); Maeda, Y; Yamaguchi, S; Ito, Y, E-mail: hosokawa@mech.kobe-u.ac.j [Panasonic Electric Works Co., Ltd., 1048 Kadoma, Osaka 571-8686 (Japan)
2009-02-01
Diameters of micro-bubbles are apt to range from about one mm to several-hundred mm, and therefore, it is difficult to measure a correct diameter distribution using a single measurement method. In this study, diameters of bubbles generated by a pressurized dissolution method are measured by using phase Doppler anemometry (PDA) and an image processing method, which is based on the Sobel filter and Hough transform. The diameter distribution and the Sauter mean diameter of micro bubbles are evaluated based on the diameters measured by both methods. Experiments are conducted for several mass flow rates of dissolved gas and of air bubbles entrained in the upstream of the decompression nozzle to examine effects of the entrained bubbles on bubble diameter. As a result, the following conclusions are obtained: (1) Diameter distribution of micro bubbles can be accurately measured for a wide range of diameter by using PDA and the image processing method. (2) The mean diameter of micro-bubbles generated by gasification of dissolved gas is smaller than that generated by breakup of air bubbles entrained in the upstream of the decompression nozzle. (3) The mean bubble diameter increases with the entrainment of air bubbles in the upstream of the decompression nozzle at a constant mass flow rate of dissolved gas.
Measurement of micro Bubbles generated by a pressurized dissolution method
International Nuclear Information System (INIS)
Hosokawa, S; Tanaka, K; Tomiyama, A; Maeda, Y; Yamaguchi, S; Ito, Y
2009-01-01
Diameters of micro-bubbles are apt to range from about one mm to several-hundred mm, and therefore, it is difficult to measure a correct diameter distribution using a single measurement method. In this study, diameters of bubbles generated by a pressurized dissolution method are measured by using phase Doppler anemometry (PDA) and an image processing method, which is based on the Sobel filter and Hough transform. The diameter distribution and the Sauter mean diameter of micro bubbles are evaluated based on the diameters measured by both methods. Experiments are conducted for several mass flow rates of dissolved gas and of air bubbles entrained in the upstream of the decompression nozzle to examine effects of the entrained bubbles on bubble diameter. As a result, the following conclusions are obtained: (1) Diameter distribution of micro bubbles can be accurately measured for a wide range of diameter by using PDA and the image processing method. (2) The mean diameter of micro-bubbles generated by gasification of dissolved gas is smaller than that generated by breakup of air bubbles entrained in the upstream of the decompression nozzle. (3) The mean bubble diameter increases with the entrainment of air bubbles in the upstream of the decompression nozzle at a constant mass flow rate of dissolved gas.
Study on boundary search method for DFM mesh generation
Directory of Open Access Journals (Sweden)
Li Ri
2012-08-01
Full Text Available The boundary mesh of the casting model was determined by direct calculation on the triangular facets extracted from the STL file of the 3D model. Then the inner and outer grids of the model were identified by the algorithm in which we named Inner Seed Grid Method. Finally, a program to automatically generate a 3D FDM mesh was compiled. In the paper, a method named Triangle Contraction Search Method (TCSM was put forward to ensure not losing the boundary grids; while an algorithm to search inner seed grids to identify inner/outer grids of the casting model was also brought forward. Our algorithm was simple, clear and easy to construct program. Three examples for the casting mesh generation testified the validity of the program.
A new comparison method for dew-point generators
Heinonen, Martti
1999-12-01
A new method for comparing dew-point generators was developed at the Centre for Metrology and Accreditation. In this method, the generators participating in a comparison are compared with a transportable saturator unit using a dew-point comparator. The method was tested by constructing a test apparatus and by comparing it with the MIKES primary dew-point generator several times in the dew-point temperature range from -40 to +75 °C. The expanded uncertainty (k = 2) of the apparatus was estimated to be between 0.05 and 0.07 °C and the difference between the comparator system and the generator is well within these limits. In particular, all of the results obtained in the range below 0 °C are within ±0.03 °C. It is concluded that a new type of a transfer standard with characteristics most suitable for dew-point comparisons can be developed on the basis of the principles presented in this paper.
Apparatus, System, and Method for On-Chip Thermoelectricity Generation
Hussain, Muhammad Mustafa
2012-01-26
An apparatus, system, and method for a thermoelectric generator. In some embodiments, the thermoelectric generator comprises a first thermoelectric region and a second thermoelectric region, where the second thermoelectric region may be coupled to the first thermoelectric region by a first conductor. In some embodiments, a second conductor may be coupled to the first thermoelectric region and a third conductor may be coupled to the second thermoelectric region. In some embodiments, the first conductor may be in a first plane, the first thermoelectric region and the second thermoelectric region may be in a second plane, and the second conductor and the third conductor may be in a third plane.
Efficiency of Choice Set Generation Methods for Bicycle Routes
DEFF Research Database (Denmark)
Halldórsdóttir, Katrín; Rieser-Schüssler, Nadine; W. Axhausen, Kay
behaviour, observed choices and alternatives composing the choice set of each cyclist are necessary. However, generating the alternative choice sets can prove challenging. This paper analyses the efficiency of various choice set generation methods for bicycle routes in order to contribute to our...... travelling information with GPS loggers, compared to self-reported RP data, is more accurate geographic locations and routes. Also, the GPS traces give more reliable information on times and prevent trip underreporting, and it is possible to collect information on many trips by the same person without...
Program generator for the Incomplete Cholesky Conjugate Gradient (ICCG) method
International Nuclear Information System (INIS)
Kuo-Petravic, G.; Petravic, M.
1978-04-01
The Incomplete Cholesky Conjugate Gradient (ICCG) method has been found very effective for the solution of sparse systems of linear equations. Its implementation on a computer, however, requires a considerable amount of careful coding to achieve good machine efficiency. Furthermore, the resulting code is necessarily inflexible and cannot be easily adapted to different problems. We present in this paper a code generator GENIC which, given a small amount of information concerning the sparsity pattern and size of the system of equations, generates a solver package. This package, called SOLIC, is tailor made for a particular problem and can be easily incorporated into any user program
Apparatus, System, and Method for On-Chip Thermoelectricity Generation
Hussain, Muhammad Mustafa; Fahad, Hossain M.; Rojas, Jhonathan Prieto
2012-01-01
An apparatus, system, and method for a thermoelectric generator. In some embodiments, the thermoelectric generator comprises a first thermoelectric region and a second thermoelectric region, where the second thermoelectric region may be coupled to the first thermoelectric region by a first conductor. In some embodiments, a second conductor may be coupled to the first thermoelectric region and a third conductor may be coupled to the second thermoelectric region. In some embodiments, the first conductor may be in a first plane, the first thermoelectric region and the second thermoelectric region may be in a second plane, and the second conductor and the third conductor may be in a third plane.
Fast calculation method for computer-generated cylindrical holograms.
Yamaguchi, Takeshi; Fujii, Tomohiko; Yoshikawa, Hiroshi
2008-07-01
Since a general flat hologram has a limited viewable area, we usually cannot see the other side of a reconstructed object. There are some holograms that can solve this problem. A cylindrical hologram is well known to be viewable in 360 deg. Most cylindrical holograms are optical holograms, but there are few reports of computer-generated cylindrical holograms. The lack of computer-generated cylindrical holograms is because the spatial resolution of output devices is not great enough; therefore, we have to make a large hologram or use a small object to fulfill the sampling theorem. In addition, in calculating the large fringe, the calculation amount increases in proportion to the hologram size. Therefore, we propose what we believe to be a new calculation method for fast calculation. Then, we print these fringes with our prototype fringe printer. As a result, we obtain a good reconstructed image from a computer-generated cylindrical hologram.
Hornikx, Maarten; Dragna, Didier
2015-07-01
The Fourier pseudospectral time-domain method is an efficient wave-based method to model sound propagation in inhomogeneous media. One of the limitations of the method for atmospheric sound propagation purposes is its restriction to a Cartesian grid, confining it to staircase-like geometries. A transform from the physical coordinate system to the curvilinear coordinate system has been applied to solve more arbitrary geometries. For applicability of this method near the boundaries, the acoustic velocity variables are solved for their curvilinear components. The performance of the curvilinear Fourier pseudospectral method is investigated in free field and for outdoor sound propagation over an impedance strip for various types of shapes. Accuracy is shown to be related to the maximum grid stretching ratio and deformation of the boundary shape and computational efficiency is reduced relative to the smallest grid cell in the physical domain. The applicability of the curvilinear Fourier pseudospectral time-domain method is demonstrated by investigating the effect of sound propagation over a hill in a nocturnal boundary layer. With the proposed method, accurate and efficient results for sound propagation over smoothly varying ground surfaces with high impedances can be obtained.
Teamwork methods for accountable care: relational coordination and TeamSTEPPS®.
Gittell, Jody Hoffer; Beswick, Joanne; Goldmann, Don; Wallack, Stanley S
2015-01-01
To deliver greater value in the accountable care context, the Institute of Medicine argues for a culture of teamwork at multiple levels--across professional and organizational siloes and with patients and their families and communities. The logic of performance improvement is that data are needed to target interventions and to assess their impact. We argue that efforts to build teamwork will benefit from teamwork measures that provide diagnostic information regarding the current state and teamwork interventions that can respond to the opportunities identified in the current state. We identify teamwork measures and teamwork interventions that are validated and that can work across multiple levels of teamwork. We propose specific ways to combine them for optimal effectiveness. We review measures of teamwork documented by Valentine, Nembhard, and Edmondson and select those that they identified as satisfying the four criteria for psychometric validation and as being unbounded and therefore able to measure teamwork across multiple levels. We then consider teamwork interventions that are widely used in the U.S. health care context, are well validated based on their association with outcomes, and are capable of working at multiple levels of teamwork. We select the top candidate in each category and propose ways to combine them for optimal effectiveness. We find relational coordination is a validated multilevel teamwork measure and TeamSTEPPS® is a validated multilevel teamwork intervention and propose specific ways for the relational coordination measure to enhance the TeamSTEPPS intervention. Health care systems and change agents seeking to respond to the challenges of accountable care can use TeamSTEPPS as a validated multilevel teamwork intervention methodology, enhanced by relational coordination as a validated multilevel teamwork measure with diagnostic capacity to pinpoint opportunities for improving teamwork along specific dimensions (e.g., shared knowledge
Power-generation method using combined gas and steam turbines
Energy Technology Data Exchange (ETDEWEB)
Liu, C; Radtke, K; Keller, H J
1997-03-20
The invention concerns a method of power generation using a so-called COGAS (combined gas and steam) turbine installation, the aim being to improve the method with regard to the initial costs and energy consumption so that power can be generated as cheaply as possible. This is achieved by virtue of the fact that air taken from the surrounding atmosphere is splint into an essentially oxygen-containing stream and an essentially nitrogen-containing stream and the two streams fed further at approximately atmospheric pressure. The essentially nitrogen-containing stream is mixed with an air stream to form a mixed nitrogen/air stream and the mixed-gas stream thus produced is brought to combustion chamber pressure in the compressor of the gas turbine, the combustion of the combustion gases in the combustion chamber of the gas turbine being carried out with the greater part of this compressed mixed-gas stream. (author) figs.
International Nuclear Information System (INIS)
Kubota, Yoshiki
2017-01-01
In situ synchrotron powder diffraction measurement of gas adsorption and crystal structure analysis for porous coordination polymers (PCPs) were performed. From the obtained accurate crystal structure in both atomic and charge density levels, not only the position and orientation of adsorbed gas molecules but also the interaction between the adsorbed gas molecule and host framework were found. The information enables us to understand the mechanism of gas adsorption phenomena and functions of PCPs. It will give us the guiding principles for the novel functional materials design. (author)
Method for repairing a steam turbine or generator rotor
International Nuclear Information System (INIS)
Clark, R.E.; Amos, D.R.
1987-01-01
A method is described for repairing low alloy steel steam turbine or generator rotors, the method comprising: a. machining mating attachments on a replacement end and a remaining portion of the original rotor; b. mating the replacement end and the original rotor; c. welding the replacement end to the original rotor by narrow-gap gas metal arc or submerged arc welding up to a depth of 1/2-2 inches from the rotor surface; d. gas tungsten arc welding the remaining 1/2-2 inches; e. boring out the mating attachment and at least the inside 1/4 inch of the welding; and f. inspecting the bore
A straightness error measurement method matched new generation GPS
International Nuclear Information System (INIS)
Zhang, X B; Lu, H; Jiang, X Q; Li, Z
2005-01-01
The axis of the non-diffracting beam produced by an axicon is very stable and can be adopted as the datum line to measure the spatial straightness error in continuous working distance, which may be short, medium or long. Though combining the non-diffracting beam datum-line with LVDT displace detector, a new straightness error measurement method is developed. Because the non-diffracting beam datum-line amends the straightness error gauged by LVDT, the straightness error is reliable and this method is matchs new generation GPS
kebci, Zahia; Belkhir, Abderrahmane; Mezeghrane, Abdelaziz; Lamrous, Omar; Baida, Fadi Issam
2018-03-01
The objective of this work is to develop a code based on the finite difference time domain method in cylindrical coordinates (CC-FDTD) that integrates the Drude Critical Points model (DCP) and to apply it in the study of a metallic C-shaped waveguide (CSWG). The integrated dispersion model allows an accurate description of noble metals in the optical range and working in cylindrical coordinates is necessary to bypass the staircase effect induced by a Cartesian mesh especially in the case of curved geometrical forms. The CC-FDTD code developed as a part of this work is more general than the Body-Of-Revolution-FDTD algorithm that can only handle structures exhibiting a complete cylindrical symmetry. A N-order CC-FDTD code is then derived and used to perform a parametric study of an infinitly-long CSWG for nano-optic applications. Propagation losses and dispersion diagrams are given for different geometrical parameters.
Simple method to generate and fabricate stochastic porous scaffolds
Energy Technology Data Exchange (ETDEWEB)
Yang, Nan, E-mail: y79nzw@163.com; Gao, Lilan; Zhou, Kuntao
2015-11-01
Considerable effort has been made to generate regular porous structures (RPSs) using function-based methods, although little effort has been made for constructing stochastic porous structures (SPSs) using the same methods. In this short communication, we propose a straightforward method for SPS construction that is simple in terms of methodology and the operations used. Using our method, we can obtain a SPS with functionally graded, heterogeneous and interconnected pores, target pore size and porosity distributions, which are useful for applications in tissue engineering. The resulting SPS models can be directly fabricated using additive manufacturing (AM) techniques. - Highlights: • Random porous structures are constructed based on their regular counterparts. • Functionally graded random pores can be constructed easily. • The scaffolds can be directly fabricated using additive manufacturing techniques.
Delahoyde, Theresa
Nursing education is experiencing a generational phenomenon with student enrollment spanning three generations. Classrooms of the 21st century include the occasional Baby Boomer and a large number of Generation X and Generation Y students. Each of these generations has its own unique set of characteristics that have been shaped by values, trends, behaviors, and events in society. These generational characteristics create vast opportunities to learn, as well as challenges. One such challenge is the use of teaching methods that are congruent with nursing student preferences. Although there is a wide range of studies conducted on student learning styles within the nursing education field, there is little research on the preferred teaching methods of nursing students. The purpose of this quantitative, descriptive study was to compare the preferred teaching methods of multi-generational baccalaureate nursing students with faculty use of teaching methods. The research study included 367 participants; 38 nursing faculty and 329 nursing students from five different colleges within the Midwest region. The results of the two-tailed t-test found four statistically significant findings between Generation X and Y students and their preferred teaching methods including; lecture, listening to the professor lecture versus working in groups; actively participating in group discussion; and the importance of participating in group assignments. The results of the Analysis of Variance (ANOVA) found seventeen statistically significant findings between levels of students (freshmen/sophomores, juniors, & seniors) and their preferred teaching methods. Lecture was found to be the most frequently used teaching method by faculty as well as the most preferred teaching method by students. Overall, the support for a variety of teaching methods was also found in the analysis of data.
Ortho Image and DTM Generation with Intelligent Methods
Bagheri, H.; Sadeghian, S.
2013-10-01
Nowadays the artificial intelligent algorithms has considered in GIS and remote sensing. Genetic algorithm and artificial neural network are two intelligent methods that are used for optimizing of image processing programs such as edge extraction and etc. these algorithms are very useful for solving of complex program. In this paper, the ability and application of genetic algorithm and artificial neural network in geospatial production process like geometric modelling of satellite images for ortho photo generation and height interpolation in raster Digital Terrain Model production process is discussed. In first, the geometric potential of Ikonos-2 and Worldview-2 with rational functions, 2D & 3D polynomials were tested. Also comprehensive experiments have been carried out to evaluate the viability of the genetic algorithm for optimization of rational function, 2D & 3D polynomials. Considering the quality of Ground Control Points, the accuracy (RMSE) with genetic algorithm and 3D polynomials method for Ikonos-2 Geo image was 0.508 pixel sizes and the accuracy (RMSE) with GA algorithm and rational function method for Worldview-2 image was 0.930 pixel sizes. For more another optimization artificial intelligent methods, neural networks were used. With the use of perceptron network in Worldview-2 image, a result of 0.84 pixel sizes with 4 neurons in middle layer was gained. The final conclusion was that with artificial intelligent algorithms it is possible to optimize the existing models and have better results than usual ones. Finally the artificial intelligence methods, like genetic algorithms as well as neural networks, were examined on sample data for optimizing interpolation and for generating Digital Terrain Models. The results then were compared with existing conventional methods and it appeared that these methods have a high capacity in heights interpolation and that using these networks for interpolating and optimizing the weighting methods based on inverse
A Trajectory Generation Method Based on Edge Detection for Auto-Sealant Cartesian Robot
Directory of Open Access Journals (Sweden)
Eka Samsul Maarif
2014-07-01
Full Text Available This paper presents algorithm ingenerating trajectory for sealant process using captured image. Cartesian robot as auto-sealant in manufacturing process has increased productivity, reduces human error and saves time. But, different sealant path in many engine models means not only different trajectory but also different program. Therefore robot with detection ability to generate its own trajectory is needed. This paper describes best lighting technique in capturing image and applies edge detection in trajectory generation as the solution. The algorithm comprises image capturing, Canny edge detection, integral projection in localizing outer most edge, scanning coordinates, and generating vector direction codes. The experiment results show that the best technique is diffuse lighting at 10 Cd. The developed method gives connected point to point trajectory which forms sealant path with a point to next point distance is equal to 90° motor rotation. Directional movement for point to point trajectory is controlled by generated codes which are ready to be sent by serial communication to robot controller as instruction for motors which actuate axes X and Y directions.
Generation method of educational materials using qualitative reasoning
International Nuclear Information System (INIS)
Yoshimura, Seiichi; Yamada, Shigeo; Fujisawa, Noriyoshi.
1992-01-01
Central Research Institute of Electric Power Industry has developed a nuclear power plant educational system in which educational materials for several events are included. The system effectively teaches operators by tailoring the event explanations to their knowledge levels of understanding. The preparation of the educational materials, however, is laborious and this becomes one of the problems in the practical use of the system. Discussed in the present paper is a basic explanation generation method using qualitative reasoning. This has been developed to solve the problem. Qualitative equations describing a recirculation pumps trip were transformed into production rules. These were stored in the knowledge base of an event explanation generation system together with explanation sentences. When an operator selects a certain variable's time-interval in which he wants to know the reasons for a variable change, the inference engine searches for the rule which satisfies both the qualitative value and qualitative differential value concerned with this time-interval. Then the event explanation generation section provides explanations by combining the explanation sentences attached to the rules. This paper demonstrates that it is possible to apply qualitative reasoning to such complex reactor systems, and also that explanations can be generated using the simulation results from a transient analysis code. (author)
International Nuclear Information System (INIS)
2001-03-01
Irradiation to control insect infestation of food is increasingly accepted and applied, especially as a phytosanitary treatment of food as an alternative to fumigation. However, unlike other processes for insect control, irradiation does not always result in immediate insect death. Thus, it is conceivable that fresh and dried fruits and tree nuts, which have been correctly irradiated to meet insect disinfestation/quarantine requirements, may still contain live insects at the time of importation. There is, however, a movement by plant quarantine authorities away from inspecting to ensure the absence of live insects in imported consignments towards examining through administrative procedures that a treatment required by law has been given. Nevertheless, there is a need to provide plant quarantine inspectors with a reliable objective method to verify that a minimum absorbed dose of radiation was given to supplement administrative procedures. Such an objective method is expected to bolster the confidence of the inspectors in clearing the consignment without delay and to facilitate trade in irradiated commodities. The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture initiated a co-ordinated research project (CRP) in 1994 to generate data on the verification of absorbed dose of irradiation in fresh, dried fruits and tree nuts for insect disinfestation/quarantine purposes. A standardized label dose indicator available commercially was used to verify the minimum/maximum absorbed dose of the irradiated commodities for these purposes as required by regulations in certain countries. It appears that such a label dose indicator with certain modifications could be made available to assist national authorities and the food industry to verify the absorbed dose of irradiation to facilitate trade in such irradiated commodities. This TECDOC reports on the accomplishments of this co-ordinated research project and includes the papers presented by the participants
Computation of resonances by two methods involving the use of complex coordinates
International Nuclear Information System (INIS)
Bylicki, M.; Nicolaides, C.A.
1993-01-01
We have studied two different systems producing resonances, a highly excited multielectron Coulombic negative ion (the He - 2s2p 2 4 P state) and a hydrogen atom in a magnetic field, via the complex-coordinate rotation (CCR) and the state-specific complex-eigenvalue Schroedinger equation (CESE) approaches. For the He - 2s2p 2 4 P resonance, a series of large CCR calculations, up to 353 basis functions with explicit r ij dependence, were carried out to serve as benchmarks. For the magnetic-field problem, the CCR results were taken from the literature. Comparison shows that the state-specific CESE theory allows the physics of the problem to be incorporated systematically while keeping the overall size of the computation tractable regardless of the number of electrons
Distribution network planning method considering distributed generation for peak cutting
International Nuclear Information System (INIS)
Ouyang Wu; Cheng Haozhong; Zhang Xiubin; Yao Liangzhong
2010-01-01
Conventional distribution planning method based on peak load brings about large investment, high risk and low utilization efficiency. A distribution network planning method considering distributed generation (DG) for peak cutting is proposed in this paper. The new integrated distribution network planning method with DG implementation aims to minimize the sum of feeder investments, DG investments, energy loss cost and the additional cost of DG for peak cutting. Using the solution techniques combining genetic algorithm (GA) with the heuristic approach, the proposed model determines the optimal planning scheme including the feeder network and the siting and sizing of DG. The strategy for the site and size of DG, which is based on the radial structure characteristics of distribution network, reduces the complexity degree of solving the optimization model and eases the computational burden substantially. Furthermore, the operation schedule of DG at the different load level is also provided.
Efficient Pruning Method for Ensemble Self-Generating Neural Networks
Directory of Open Access Journals (Sweden)
Hirotaka Inoue
2003-12-01
Full Text Available Recently, multiple classifier systems (MCS have been used for practical applications to improve classification accuracy. Self-generating neural networks (SGNN are one of the suitable base-classifiers for MCS because of their simple setting and fast learning. However, the computation cost of the MCS increases in proportion to the number of SGNN. In this paper, we propose an efficient pruning method for the structure of the SGNN in the MCS. We compare the pruned MCS with two sampling methods. Experiments have been conducted to compare the pruned MCS with an unpruned MCS, the MCS based on C4.5, and k-nearest neighbor method. The results show that the pruned MCS can improve its classification accuracy as well as reducing the computation cost.
OCL-BASED TEST CASE GENERATION USING CATEGORY PARTITIONING METHOD
Directory of Open Access Journals (Sweden)
A. Jalila
2015-10-01
Full Text Available The adoption of fault detection techniques during initial stages of software development life cycle urges to improve reliability of a software product. Specification-based testing is one of the major criterions to detect faults in the requirement specification or design of a software system. However, due to the non-availability of implementation details, test case generation from formal specifications become a challenging task. As a novel approach, the proposed work presents a methodology to generate test cases from OCL (Object constraint Language formal specification using Category Partitioning Method (CPM. The experiment results indicate that the proposed methodology is more effective in revealing specification based faults. Furthermore, it has been observed that OCL and CPM form an excellent combination for performing functional testing at the earliest to improve software quality with reduced cost.
Directory of Open Access Journals (Sweden)
Gąska A.
2014-02-01
Full Text Available Nowadays, simulators facilitate tasks performed daily by the engineers of different branches, including coordinate metrologists. Sometimes it is difficult or almost impossible to program a Coordinate Measuring Machine (CMM using standard methods. This happens, for example, during measurements of nano elements or in cases when measurements are performed on high-precision (accurate measuring machines which work in strictly air-conditioned spaces and the presence of the operator in such room during the programming of CMM could cause an increase in temperature, which in turn could make it necessary to wait some time until conditions stabilize. This article describes functioning of a simulator and its usage during Coordinate Measuring Machine programming in the latter situation. Article also describes a general process of programming CMMs which ensures the correct machine performance after starting the program on a real machine. As an example proving the presented considerations, measurement of exemplary workpiece, which was performed on the machine working in the strictly air-conditioned room, was described
A method for generating high resolution satellite image time series
Guo, Tao
2014-10-01
There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation
Ekberg, Peter; Stiblert, Lars; Mattsson, Lars
2014-05-01
High-quality photomasks are a prerequisite for the production of flat panel TVs, tablets and other kinds of high-resolution displays. During the past years, the resolution demand has become more and more accelerated, and today, the high-definition standard HD, 1920 × 1080 pixels2, is well established, and already the next-generation so-called ultra-high-definition UHD or 4K display is entering the market. Highly advanced mask writers are used to produce the photomasks needed for the production of such displays. The dimensional tolerance in X and Y on absolute pattern placement on these photomasks, with sizes of square meters, has been in the range of 200-300 nm (3σ), but is now on the way to be <150 nm (3σ). To verify these photomasks, 2D ultra-precision coordinate measurement machines are used with even tighter tolerance requirements. The metrology tool MMS15000 is today the world standard tool used for the verification of large area photomasks. This paper will present a method called Z-correction that has been developed for the purpose of improving the absolute X, Y placement accuracy of features on the photomask in the writing process. However, Z-correction is also a prerequisite for achieving X and Y uncertainty levels <90 nm (3σ) in the self-calibration process of the MMS15000 stage area of 1.4 × 1.5 m2. When talking of uncertainty specifications below 200 nm (3σ) of such a large area, the calibration object used, here an 8-16 mm thick quartz plate of size approximately a square meter, cannot be treated as a rigid body. The reason for this is that the absolute shape of the plate will be affected by gravity and will therefore not be the same at different places on the measurement machine stage when it is used in the self-calibration process. This mechanical deformation will stretch or compress the top surface (i.e. the image side) of the plate where the pattern resides, and therefore spatially deform the mask pattern in the X- and Y-directions. Errors due
International Nuclear Information System (INIS)
Ekberg, Peter; Stiblert, Lars; Mattsson, Lars
2014-01-01
High-quality photomasks are a prerequisite for the production of flat panel TVs, tablets and other kinds of high-resolution displays. During the past years, the resolution demand has become more and more accelerated, and today, the high-definition standard HD, 1920 × 1080 pixels 2 , is well established, and already the next-generation so-called ultra-high-definition UHD or 4K display is entering the market. Highly advanced mask writers are used to produce the photomasks needed for the production of such displays. The dimensional tolerance in X and Y on absolute pattern placement on these photomasks, with sizes of square meters, has been in the range of 200–300 nm (3σ), but is now on the way to be <150 nm (3σ). To verify these photomasks, 2D ultra-precision coordinate measurement machines are used with even tighter tolerance requirements. The metrology tool MMS15000 is today the world standard tool used for the verification of large area photomasks. This paper will present a method called Z-correction that has been developed for the purpose of improving the absolute X, Y placement accuracy of features on the photomask in the writing process. However, Z-correction is also a prerequisite for achieving X and Y uncertainty levels <90 nm (3σ) in the self-calibration process of the MMS15000 stage area of 1.4 × 1.5 m 2 . When talking of uncertainty specifications below 200 nm (3σ) of such a large area, the calibration object used, here an 8–16 mm thick quartz plate of size approximately a square meter, cannot be treated as a rigid body. The reason for this is that the absolute shape of the plate will be affected by gravity and will therefore not be the same at different places on the measurement machine stage when it is used in the self-calibration process. This mechanical deformation will stretch or compress the top surface (i.e. the image side) of the plate where the pattern resides, and therefore spatially deform the mask pattern in the X- and Y
International Nuclear Information System (INIS)
Kimura, Momoko; Nawa, Hiroyuki; Yoshida, Kazuhito; Muramatsu, Atsushi; Fuyamada, Mariko; Goto, Shigemi; Ariji, Eiichiro; Tokumori, Kenji; Katsumata, Akitoshi
2009-01-01
We propose a method for evaluating the reliability of a coordinate system based on maxillofacial skeletal landmarks and use it to assess two coordinate systems. Scatter plots and 95% confidence ellipses of an objective landmark were defined as an index for demonstrating the stability of the coordinate system. A head phantom was positioned horizontally in reference to the Frankfurt horizontal and occlusal planes and subsequently scanned once in each position using cone-beam computed tomography. On the three-dimensional images created with a volume-rendering procedure, six dentists twice set two different coordinate systems: coordinate system 1 was defined by the nasion, sella, and basion, and coordinate system 2 was based on the left orbitale, bilateral porions, and basion. The menton was assigned as an objective landmark. The scatter plot and 95% ellipse of the menton indicated the high-level reliability of coordinate system 2. The patterns with the two coordinate systems were similar between data obtained in different head positions. The method presented here may be effective for evaluating the reliability (reproducibility) of coordinate systems based on skeletal landmarks. (author)
Design of nuclear power generation plants adopting model engineering method
International Nuclear Information System (INIS)
Waki, Masato
1983-01-01
The utilization of model engineering as the method of design has begun about ten years ago in nuclear power generation plants. By this method, the result of design can be confirmed three-dimensionally before actual production, and it is the quick and sure method to meet the various needs in design promptly. The adoption of models aims mainly at the improvement of the quality of design since the high safety is required for nuclear power plants in spite of the complex structure. The layout of nuclear power plants and piping design require the model engineering to arrange rationally enormous quantity of things in a limited period. As the method of model engineering, there are the use of check models and of design models, and recently, the latter method has been mainly taken. The procedure of manufacturing models and engineering is explained. After model engineering has been completed, the model information must be expressed in drawings, and the automation of this process has been attempted by various methods. The computer processing of design is in progress, and its role is explained (CAD system). (Kako, I.)
DEFF Research Database (Denmark)
Liu, Yao; Hou, Xiaochao; Wang, Xiaofeng
2016-01-01
The increasing penetration of renewable generators can be a significant challenge due to the fluctuation of their power generation. Energy storage (ES) units are one solution to improve power supply quality and guarantee system stability. In this paper, a hybrid microgrid is built based...... on photovoltaic (PV) generator and ES; and coordinated control is proposed and developed to achieve power management in a decentralized manner. This control scheme contains three different droop strategies according to characteristics of PV and ES. First, the modified droop control is proposed for PV, which can...... take full utilization of renewable energy and avoid regulating output active power frequently. Second, to maintain the direct current (DC) bus voltage stability, a novel droop control incorporating a constant power band is presented for DC-side ES. Third, a cascade droop control is designed...
Electrical motor/generator drive apparatus and method
Su, Gui Jia
2013-02-12
The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.
International Nuclear Information System (INIS)
1998-01-01
The Coordinated research program on Intercomparison of analysis methods for seismically isolated nuclear structures involved participants from Italy, Japan, Republic of Korea, Russia, United Kingdom, USA, EC. The purpose of the meeting was to review the progress on the finite element prediction of the force-deformation behaviour of seismic isolators and to discuss the first set of analytical results for the prediction of the response of base-oscillated structures to earthquake inputs. The intercomparison of predictions of bearing behaviour has identified important unexpected issues requiring deeper investigation
International Nuclear Information System (INIS)
Latynin, V.A.; Reshetov, V.A.; Karaseva, L.N.
1988-01-01
Numerical solution of the Stephen problem by the strained coordinate method is presented for an one-dimensional sphere. Differential formulae of heat fluxes from moving interfaces do not take into account volume heat capacities of the front nodes. Calculations, carried out according to these balanced formulae, as well as according to those usually used, have shown that the balanced formulae permit to reduce approximately by an order the number of nodes on the sphere radius, if similar accuracy of heat balance of the whole process of melting or crystallization is observed. 2 refs.; 1 fig
Simple method of generating and distributing frequency-entangled qudits
Jin, Rui-Bo; Shimizu, Ryosuke; Fujiwara, Mikio; Takeoka, Masahiro; Wakabayashi, Ryota; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Gerrits, Thomas; Sasaki, Masahide
2016-11-01
High-dimensional, frequency-entangled photonic quantum bits (qudits for d-dimension) are promising resources for quantum information processing in an optical fiber network and can also be used to improve channel capacity and security for quantum communication. However, up to now, it is still challenging to prepare high-dimensional frequency-entangled qudits in experiments, due to technical limitations. Here we propose and experimentally implement a novel method for a simple generation of frequency-entangled qudts with d\\gt 10 without the use of any spectral filters or cavities. The generated state is distributed over 15 km in total length. This scheme combines the technique of spectral engineering of biphotons generated by spontaneous parametric down-conversion and the technique of spectrally resolved Hong-Ou-Mandel interference. Our frequency-entangled qudits will enable quantum cryptographic experiments with enhanced performances. This distribution of distinct entangled frequency modes may also be useful for improved metrology, quantum remote synchronization, as well as for fundamental test of stronger violation of local realism.
Fuel processor and method for generating hydrogen for fuel cells
Ahmed, Shabbir [Naperville, IL; Lee, Sheldon H. D. [Willowbrook, IL; Carter, John David [Bolingbrook, IL; Krumpelt, Michael [Naperville, IL; Myers, Deborah J [Lisle, IL
2009-07-21
A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.
Bahr, Damon; Monroe, Eula E.; Shaha, Steven H.
2013-01-01
The purpose of this study was to compare changes in beliefs of two groups of preservice teachers involved in two types of opportunities to immediately apply methods for teaching accompanying an elementary mathematics methods course. Students in one group applied the methods learned in class through weekly 30-minute peer-teaching sessions, while…
Numerical methods on flow instabilities in steam generator
International Nuclear Information System (INIS)
Yoshikawa, Ryuji; Hamada, Hirotsugu; Ohshima, Hiroyuki; Yanagisawa, Hideki
2008-06-01
The phenomenon of two-phase flow instability is important for the design and operation of many industrial systems and equipment, such as steam generators. The designer's job is to predict the threshold of flow instability in order to design around it or compensate for it. So it is essential to understand the physical phenomena governing such instability and to develop computational tools to model the dynamics of boiling systems. In Japan Atomic Energy Agency, investigations on heat transfer characteristics of steam generator are being performed for the development of Sodium-cooled Fast Breeder Reactor. As one part of the research work, the evaluations of two-phase flow instability in the steam generator are being carried out experimentally and numerically. In this report, the numerical methods were studied for two-phase flow instability analysis in steam generator. For numerical simulation purpose, the special algorithm to calculate inlet flow rate iteratively with inlet pressure and outlet pressure as boundary conditions for the density-wave instability analysis was established. There was no need to solve property derivatives and large matrices, so the spurious numerical instabilities caused by discontinuous property derivatives at boiling boundaries were avoided. Large time-step was possible. The flow instability in single heat transfer tube was successfully simulated with homogeneous equilibrium model by using the present algorithm. Then the drift-flux model including the effects of subcooled boiling and two phase slip was adopted to improve the accuracy. The computer code was developed after selecting the correlations of drift velocity and distribution parameter. The capability of drift flux model together with the present algorithm for simulating density-wave instability in single tube was confirmed. (author)
Next Generation Nuclear Plant Methods Technical Program Plan
Energy Technology Data Exchange (ETDEWEB)
Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus
2010-12-01
One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.
Next Generation Nuclear Plant Methods Technical Program Plan -- PLN-2498
Energy Technology Data Exchange (ETDEWEB)
Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus
2010-09-01
One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.
An improved method for generating axenic entomopathogenic nematodes.
Yadav, Shruti; Shokal, Upasana; Forst, Steven; Eleftherianos, Ioannis
2015-09-19
Steinernema carpocapsae are parasitic nematodes that invade and kill insects. The nematodes are mutualistically associated with the bacteria Xenorhabdus nematophila and together form an excellent model to study pathogen infection processes and host anti-nematode/antibacterial immune responses. To determine the contribution of S. carpocapsae and their associated X. nematophila to the successful infection of insects as well as to investigate the interaction of each mutualistic partner with the insect immune system, it is important to develop and establish robust methods for generating nematodes devoid of their bacteria. To produce S. carpocapsae nematodes without their associated X. nematophila bacteria, we have modified a previous method, which involves the use of a X. nematophila rpoS mutant strain that fails to colonize the intestine of the worms. We confirmed the absence of bacteria in the nematodes using a molecular diagnostic and two rounds of an axenicity assay involving appropriate antibiotics and nematode surface sterilization. We used axenic and symbiotic S. carpocapsae to infect Drosophila melanogaster larvae and found that both types of nematodes were able to cause insect death at similar rates. Generation of entomopathogenic nematodes lacking their mutualistic bacteria provides an excellent tool to dissect the molecular and genetic basis of nematode parasitism and to identify the insect host immune factors that participate in the immune response against nematode infections.
International Nuclear Information System (INIS)
Schek, I.; Wyatt, R.E.
1986-01-01
Molecular multiphoton processes are treated in the Recursive Residue Generation Method (A. Nauts and R.E. Wyatt, Phys. Rev. Lett 51, 2238 (1983)) by converting the molecular-field Hamiltonian matrix into tridiagonal form, using the Lanczos equations. In this study, the self-energies (diagonal) and linking (off-diagaonal) terms in the tridiagonal matrix are obtained by comparing linked moment diagrams in both representations. The dynamics of the source state is introduced and computed in terms of the linked and the irreducible moments
Basovets, S. K.; Uporov, I. V.; Shaitan, K. V.; Krupyanskii, Yu. F.; Kurinov, I. V.; Suzdalev, I. P.; Rubin, A. B.; Goldanskii, V. I.
1988-12-01
A method of Mössbauer Fourier spectroscopy is developed to determine the correlation function of coordinates of a macromolecular system. The method does not require the use of an a priori dynamic model. The application of the method to the analysis of RSMR data for human serum albumin has demonstrated considerable changes in the dynamic behavior of the protein globule when the temperature is changed from 270 to 310 K. The main conclusions of the present work is the simultaneous observation of low-frequency (τ≥10-9 sec) and high-frequency (τ≪10-9 sec) large-scaled motions, that is the two-humped distribution of correlation times of protein motions.
Comparison of DNA Quantification Methods for Next Generation Sequencing.
Robin, Jérôme D; Ludlow, Andrew T; LaRanger, Ryan; Wright, Woodring E; Shay, Jerry W
2016-04-06
Next Generation Sequencing (NGS) is a powerful tool that depends on loading a precise amount of DNA onto a flowcell. NGS strategies have expanded our ability to investigate genomic phenomena by referencing mutations in cancer and diseases through large-scale genotyping, developing methods to map rare chromatin interactions (4C; 5C and Hi-C) and identifying chromatin features associated with regulatory elements (ChIP-seq, Bis-Seq, ChiA-PET). While many methods are available for DNA library quantification, there is no unambiguous gold standard. Most techniques use PCR to amplify DNA libraries to obtain sufficient quantities for optical density measurement. However, increased PCR cycles can distort the library's heterogeneity and prevent the detection of rare variants. In this analysis, we compared new digital PCR technologies (droplet digital PCR; ddPCR, ddPCR-Tail) with standard methods for the titration of NGS libraries. DdPCR-Tail is comparable to qPCR and fluorometry (QuBit) and allows sensitive quantification by analysis of barcode repartition after sequencing of multiplexed samples. This study provides a direct comparison between quantification methods throughout a complete sequencing experiment and provides the impetus to use ddPCR-based quantification for improvement of NGS quality.
International Nuclear Information System (INIS)
Hsieh, B.J.
1977-01-01
A rectilinear shell element formulated in the convected (co-rotational) coordinates is used to investigate the effects of edge conditions on the behaviors of thin shells of revolution under suddenly applied uniform loading. The equivalent generalized nodal forces under uniform loading are computed to the third order of the length of each element. A dynamic buckling load is defined as the load at which a great change in the response is observed for a small change in the loading. The problem studied is a shallow spherical cap. The cap is discretized into a finite number of elements. This discretization introduces some initial imperfections into the shell model. Nonetheless, the effect of this artificial imperfection is isolated from the effect of the edge conditions provided the same number of elements is used in all the cases. Four different edge conditions for the cap are used. These boundary conditions are fixed edge, hinged edge, roller edge and free edge. The apex displacement of the cap is taken as the measure for the response of the cap, and the dynamic buckling load is obtained by examining the response of the cap under different levels of loadings. Dynamic buckling loads can be found for all cases but for the free edge case. They are 0.28q for both fixed and hinged cases and 0.13 q for the roller case, where q is the classic static buckling load of a complete spherical shell with the same geometric dimensions and material properties. In the case of free edge, the motions of the cap are composed of mostly rigid body motion and small vibrations. The vibration of the cap is stable up to 1 q loading. The cap does snap through at higher loading. However, no loading can be clearly identified as buckling load
Energy Technology Data Exchange (ETDEWEB)
Drif, M. [Grupo de Investigacion IDEA, Departamento de Electronica, Escuela Politecnica Superior, Universidad de Jaen, Campus Las Lagunillas, 23071 Jaen (Spain); Centre de Developpement des Energies Renouvelables, BP 62, Route de l' Observatoire, 16340 Bouzareah, Algiers (Algeria); Perez, P.J.; Aguilera, J.; Aguilar, J.D. [Grupo de Investigacion IDEA, Departamento de Electronica, Escuela Politecnica Superior, Universidad de Jaen, Campus Las Lagunillas, 23071 Jaen (Spain)
2008-09-15
A new method for estimating the irradiance on a partially shaded photovoltaic generator system is proposed. The basic principle of this method consists of two parts: firstly, an approximation of the obstacles' outline or the local horizon by a set of linear functions. Here, a survey of the surroundings is based on the reading of the topographic coordinates of the only significant points of all the objects surrounding the photovoltaic generator. Secondly, the irradiance on the photovoltaic plane is estimated using an accurate model such as the Perez et al. model and assuming that the shading affects both the direct radiation and a part of the diffuse component (circumsolar component). The aim of this paper is to present the principles of the proposed method and the algorithm used for calculating the irradiance on shaded planes. In addition, the results of the comparison between the simulated and measured values of this method are presented. (author)
Determination of feature generation methods for PTZ camera object tracking
Doyle, Daniel D.; Black, Jonathan T.
2012-06-01
Object detection and tracking using computer vision (CV) techniques have been widely applied to sensor fusion applications. Many papers continue to be written that speed up performance and increase learning of artificially intelligent systems through improved algorithms, workload distribution, and information fusion. Military application of real-time tracking systems is becoming more and more complex with an ever increasing need of fusion and CV techniques to actively track and control dynamic systems. Examples include the use of metrology systems for tracking and measuring micro air vehicles (MAVs) and autonomous navigation systems for controlling MAVs. This paper seeks to contribute to the determination of select tracking algorithms that best track a moving object using a pan/tilt/zoom (PTZ) camera applicable to both of the examples presented. The select feature generation algorithms compared in this paper are the trained Scale-Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF), the Mixture of Gaussians (MoG) background subtraction method, the Lucas- Kanade optical flow method (2000) and the Farneback optical flow method (2003). The matching algorithm used in this paper for the trained feature generation algorithms is the Fast Library for Approximate Nearest Neighbors (FLANN). The BSD licensed OpenCV library is used extensively to demonstrate the viability of each algorithm and its performance. Initial testing is performed on a sequence of images using a stationary camera. Further testing is performed on a sequence of images such that the PTZ camera is moving in order to capture the moving object. Comparisons are made based upon accuracy, speed and memory.
Energy Technology Data Exchange (ETDEWEB)
Ko, N.Y.; Seo, D.J. [Chosun University, Kwangju (Korea)
2003-04-01
This paper presents a new method driving multiple robots to their goal position without collision. Each robot adjusts its motion based on the information on the goal locations, velocity, and position of the robot and the velocity and position of the other robots. To consider the movement of the robots in a work area, we adopt the concept of avoidability measure. The avoidability measure figures the degree of how easily a robot can avoid other robots considering the following factors: the distance from the robot to the other robots, velocity of the robot and the other robots. To implement the concept in moving robot avoidance, relative distance between the robots is derived. Our method combines the relative distance with an artificial potential field method. The proposed method is simulated for several cases. The results show that the proposed method steers robots to open space anticipating the approach of other robots. In contrast, the usual potential field method sometimes fails preventing collision or causes hasty motion, because it initiates avoidance motion later than the proposed method. The proposed method can be used to move robots in a robot soccer team to their appropriate position without collision as fast as possible. (author). 21 refs., 10 figs., 13 tabs.
Wada, Yuji; Yuge, Kohei; Tanaka, Hiroki; Nakamura, Kentaro
2017-07-01
Numerical analysis on the rotation of an ultrasonically levitated droplet in centrifugal coordinate is discussed. A droplet levitated in an acoustic chamber is simulated using the distributed point source method and the moving particle semi-implicit method. Centrifugal coordinate is adopted to avoid the Laplacian differential error, which causes numerical divergence or inaccuracy in the global coordinate calculation. Consequently, the duration of calculation stability has increased 30 times longer than that in a the previous paper. Moreover, the droplet radius versus rotational acceleration characteristics show a similar trend to the theoretical and experimental values in the literature.
Palmisano, Alida; Zhao, Yingdong; Li, Ming-Chung; Polley, Eric C; Simon, Richard M
2017-09-01
Trials involving genomic-driven treatment selection require the coordination of many teams interacting with a great variety of information. The need of better informatics support to manage this complex set of operations motivated the creation of OpenGeneMed. OpenGeneMed is a stand-alone and customizable version of GeneMed (Zhao et al. GeneMed: an informatics hub for the coordination of next-generation sequencing studies that support precision oncology clinical trials. Cancer Inform 2015;14(Suppl 2):45), a web-based interface developed for the National Cancer Institute Molecular Profiling-based Assignment of Cancer Therapy (NCI-MPACT) clinical trial coordinated by the NIH. OpenGeneMed streamlines clinical trial management and it can be used by clinicians, lab personnel, statisticians and researchers as a communication hub. It automates the annotation of genomic variants identified by sequencing tumor DNA, classifies the actionable mutations according to customizable rules and facilitates quality control in reviewing variants. The system generates summarized reports with detected genomic alterations that a treatment review team can use for treatment assignment. OpenGeneMed allows collaboration to happen seamlessly along the clinical pipeline; it helps reduce errors made transferring data between groups and facilitates clear documentation along the pipeline. OpenGeneMed is distributed as a stand-alone virtual machine, ready for deployment and use from a web browser; its code is customizable to address specific needs of different clinical trials and research teams. Examples on how to change the code are provided in the technical documentation distributed with the virtual machine. In summary, OpenGeneMed offers an initial set of features inspired by our experience with GeneMed, a system that has been proven to be efficient and successful for coordinating the application of next-generation sequencing in the NCI-MPACT trial. Published by Oxford University Press 2016. This
Directory of Open Access Journals (Sweden)
Björklund Martin
2008-12-01
Full Text Available Abstract Background Chronic neck pain is a common problem and is often associated with changes in sensorimotor functions, such as reduced proprioceptive acuity of the neck, altered coordination of the cervical muscles, and increased postural sway. In line with these findings there are studies supporting the efficacy of exercises targeting different aspects of sensorimotor function, for example training aimed at improving proprioception and muscle coordination. To further develop this type of exercises we have designed a novel device and method for neck coordination training. The aim of the study was to investigate the clinical applicability of the method and to obtain indications of preliminary effects on sensorimotor functions, symptoms and self-rated characteristics in non-specific chronic neck pain Methods The study was designed as an uncontrolled clinical trial including fourteen subjects with chronic non-specific neck pain. A new device was designed to allow for an open skills task with adjustable difficulty. With visual feedback, subjects had to control the movement of a metal ball on a flat surface with a rim strapped on the subjects' head. Eight training sessions were performed over a four week period. Skill acquisition was measured throughout the intervention period. After intervention subjects were interviewed about their experience of the exercise and pain and sensorimotor functions, including the fast and slow components of postural sway and jerkiness-, range-, position sense-, movement time- and velocity of cervical rotation, were measured. At six-month follow up, self-rated pain, health and functioning was collected. Results The subjects improved their skill to perform the exercise and were overall positive to the method. No residual negative side-effects due to the exercise were reported. After intervention the fast component of postural sway (p = 0.019 and jerkiness of cervical rotation (p = 0.032 were reduced. The follow up
International Nuclear Information System (INIS)
Pashchenko, A.B.
1997-07-01
The present report summarizes the final results of the IAEA Co-ordinated Research Programme on ''Activation Cross Section for the Generator of Long-lived Radionuclides of Importance in Fusion Reactor Technology''. The goal of the CRP was to obtain reliable information (experimental and evaluated) for 16 long-lived activation reactions of special importance to fusion reactor technology. By limiting the scope of the CRP to just 16 reactions it was possible to establish a very effective focus to the joint effort of many laboratories that has led to the generation of a set of valuable new data which provide satisfactory answers to several questions of technological concern to fusion. (author). 11 refs, 5 tabs
Generation of Submicron Bubbles using Venturi Tube Method
Wiraputra, I. G. P. A. E.; Edikresnha, D.; Munir, M. M.; Khairurrijal
2016-08-01
In this experiment, submicron bubbles that have diameters less than 1 millimeter were generated by mixing water and gas by hydrodynamic cavitation method. The water was forced to pass through a venturi tube in which the speed of the water will increase in the narrow section, the throat, of the venturi. When the speed of water increased, the pressure would drop at the throat of the venturi causing the outside air to be absorbed via the gas inlet. The gas was then trapped inside the water producing bubbles. The effects of several physical parameters on the characteristics of the bubbles will be discussed thoroughly in this paper. It was found that larger amount of gas pressure during compression will increase the production rate of bubbles and increase the density of bubble within water.
A method for generating double-ring-shaped vector beams
Huan, Chen; Xiao-Hui, Ling; Zhi-Hong, Chen; Qian-Guang, Li; Hao, Lv; Hua-Qing, Yu; Xu-Nong, Yi
2016-07-01
We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator (SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature because it depends on the optical length. Then a Pancharatnam-Berry phase (PBP) optical element is used to manipulate the local polarization of the optical field by modulating the geometric phase. The experimental results show that this scheme can effectively create double-ring-shaped vector beams. It provides much greater flexibility to manipulate the phase and polarization by simultaneously modulating the dynamic and the geometric phases. Project supported by the National Natural Science Foundation of China (Grant No. 11547017), the Hubei Engineering University Research Foundation, China (Grant No. z2014001), and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB578).
Wang, Yan-Ning; Huo, Qi-Sheng; Zhang, Ping; Yu, Jie-Hui; Xu, Ji-Qing
2016-10-01
By utilizing the hydrothermal in situ acylation of organic acids with N2H4, three acylhydrazidate-coordinated compounds [Mn(L1)2(H2O)2] (L1 = 2,3-quinolinedicarboxylhydrazidate; HL1 = 2,3-dihydropyridazino[4,5-b] quinoline-1,4-dione) 1, [Mn2(ox)(L2)2(H2O)6]·2H2O (L2 = benzimidazolate-5,6-dicarboxylhydrazide; HL2 = 6,7-dihydro-1H-imidazo[4,5-g]phthalazine-5,8-dione; ox = oxalate) 2, and [Cd(HL3)(bpy)] (L3 = 4,5-di(3‧-carboxylphenyl)phthalhydrazidate; H3L3 = 6,7-dihydro-1H-imidazo[4,5-g]phthalazine-5,8-dione; bpy = 2,2‧-bipyridine) 3, as well as two acylhydrazide molecules L4 (L4 = oxepino[2,3,4-de:7,6,5-d‧e‧]diphthalazine-4,10(5H,9H)-dione) 4 and L5 (L5 = 4,5-dibromophthalhydrazide; L5 = 6,7-dibromo-2,3-dihydrophthalazine-1,4-dione) 5 were obtained. X-ray single-crystal diffraction analysis reveals that (i) 1 only possesses a mononuclear structure, but it self-assembles into a 2-D supramolecular network via the Nhydrazinesbnd H ⋯ Nhydrazine and Owsbnd H ⋯ Ohydroxylimino interactions; (ii) 2 exhibits a dinuclear structure. Ox acts as the linker, while L2 just serves as a terminal ligand; (iii) In 3, L3 acts as a 3-connected node to propagate the 7-coordinated Cd2 + centers into a 1-D double-chain structure; (iv) 4 is a special acylhydrazide molecule. Two sbnd OH groups for the intermediates 3,3‧-biphthalhydrazide further lose one water molecule to form 4; (v) 5 is a common monoacylhydrazide molecule. Via the Nhydrazinesbnd H ⋯ Ohydrazine, Ohydroxyliminosbnd H ⋯ Oacylamino and the π ⋯ π interactions, it self-assembles into a 2-D supramolecular network. The photoluminescence analysis reveals that 4 emits light with the maxima at 510 nm.
Directory of Open Access Journals (Sweden)
K. Li
2015-08-01
Full Text Available At the present, in trend of shifting the old 2D-output oriented survey to a new 3D-output oriented survey based on BIM technology, the corresponding working methods and workflow for data capture, process, representation, etc. have to be changed.Based on case study of two buildings in the Summer Palace of Beijing, and Jiayuguan Pass at the west end of the Great Wall (both World Heritage sites, this paper puts forward a “structure-and-type method” by means of typological method used in archaeology, Revit family system, and the tectonic logic of building to realize a good coordination between understanding of historic buildings and BIM modelling.
Directory of Open Access Journals (Sweden)
Xiandong Li
2018-02-01
Full Text Available Arcing horns are widely used in high voltage overhead lines to protect insulator strings from being destroyed by the free burning arcs caused by lightening faults. In this paper, we focus on the insulation coordination of arcing horns on the electrode lines of a 5000 MW, ±800 kV high voltage direct current (HVDC system. The protection performance of arcing horns are determined by the characteristics of not only the external system but also the fault arc. Therefore, the behaviors and characteristics of long free burning arcs are investigated by the experiments at first. In order to evaluate the protection performance of arcing horns, the static stability criterion U-I characteristic method is introduced. The influence factors on the protection performance of arcing horns are analyzed theoretically. Finally, the improvement methods for the protection performance of arcing horns are proposed, and the diversified configuration strategy of arcing horns is recommended for cost saving.
Directory of Open Access Journals (Sweden)
Javad Morsali
2017-02-01
Full Text Available In this paper, fractional order proportional-integral-differential (FOPID controller is employed in the design of thyristor controlled series capacitor (TCSC-based damping controller in coordination with the secondary integral controller as automatic generation control (AGC loop. In doing so, the contribution of the TCSC in tie-line power exchange is extracted mathematically for small load disturbance. Adjustable parameters of the proposed FOPID-based TCSC damping controller and the AGC loop are optimized concurrently via an improved particle swarm optimization (IPSO algorithm which is reinforced by chaotic parameter and crossover operator to obtain a globally optimal solution. The powerful FOMCON toolbox is used along with MATLAB for handling fractional order modeling and control. An interconnected multi-source power system is simulated regarding the physical constraints of generation rate constraint (GRC nonlinearity and governor dead band (GDB effect. Simulation results using FOMCON toolbox demonstrate that the proposed FOPID-based TCSC damping controller achieves the greatest dynamic performance under different load perturbation patterns in comparison with phase lead-lag and classical PID-based TCSC damping controllers, all in coordination with the integral AGC. Moreover, sensitivity analyses are performed to show the robustness of the proposed controller under various uncertainty scenarios.
Directory of Open Access Journals (Sweden)
Guttorm Raknes
Full Text Available We describe a method that uses crowdsourced postcode coordinates and Google maps to estimate average distance and travel time for inhabitants of a municipality to a casualty clinic in Norway. The new method was compared with methods based on population centroids, median distance and town hall location, and we used it to examine how distance affects the utilisation of out-of-hours primary care services. At short distances our method showed good correlation with mean travel time and distance. The utilisation of out-of-hours services correlated with postcode based distances similar to previous research. The results show that our method is a reliable and useful tool for estimating average travel distances and travel times.
Raknes, Guttorm; Hunskaar, Steinar
2014-01-01
We describe a method that uses crowdsourced postcode coordinates and Google maps to estimate average distance and travel time for inhabitants of a municipality to a casualty clinic in Norway. The new method was compared with methods based on population centroids, median distance and town hall location, and we used it to examine how distance affects the utilisation of out-of-hours primary care services. At short distances our method showed good correlation with mean travel time and distance. The utilisation of out-of-hours services correlated with postcode based distances similar to previous research. The results show that our method is a reliable and useful tool for estimating average travel distances and travel times.
Generating method-specific Reference Ranges - A harmonious outcome?
Lee, Graham R; Griffin, Alison; Halton, Kieran; Fitzgibbon, Maria C
2017-12-01
When laboratory Reference Ranges (RR) do not reflect analytical methodology, result interpretation can cause misclassification of patients and inappropriate management. This can be mitigated by determining and implementing method-specific RRs, which was the main objective of this study. Serum was obtained from healthy volunteers (Male + Female, n > 120) attending hospital health-check sessions during June and July 2011. Pseudo-anonymised aliquots were stored (at - 70 °C) prior t° analysis on Abbott ARCHITECT c16000 chemistry and i 2000SR immunoassay analysers. Data were stratified by gender where appropriate. Outliers were excluded statistically (Tukey method) to generate non-parametric RRs (2.5th + 97.5th percentiles). RRs were compared to those quoted by Abbott and UK Pathology Harmony (PH) where possible. For 7 selected tests, RRs were verified using a data mining approach. For chemistry tests (n = 23), Upper or Lower Reference Limits (LRL or URL) were > 20% different from Abbott ranges in 25% of tests (11% from PH ranges) but in 38% for immunoassay tests (n = 13). RRs (mmol/L) for sodium (138-144), potassium (3.8-4.9) and chloride (102-110) were considerably narrower than PH ranges (133-146, 3.5-5.0 and 95-108, respectively). The gender difference for ferritin (M: 29-441, F: 8-193 ng/mL) was more pronounced than reported by Abbott (M: 22-275, F: 5-204 ng/mL). Verification studies showed good agreement for chemistry tests (mean [SD] difference = 0.4% [1.2%]) but less so for immunoassay tests (27% [29%]), particularly for TSH (LRL). Where resource permits, we advocate using method-specific RRs in preference to other sources, particularly where method bias and lack of standardisation limits RR transferability and harmonisation.
2016-05-11
REPORT NUMBER 9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) AOARD UNIT 45002 APO AP 96338-5002 10. SPONSOR/MONITOR’S ACRONYM(S) AFRL/AFOSR IOA...orders of magnitude less memory than our competitors . We implemented our methods on MAPREDUCE with two widely-applicable optimization techniques...local disk caching and greedy row assignment. They speeded up our methods up to 98.2x and also the competitors up to 5.9x. 15. SUBJECT TERMS 16
Thermoelectric generator cooling system and method of control
Prior, Gregory P; Meisner, Gregory P; Glassford, Daniel B
2012-10-16
An apparatus is provided that includes a thermoelectric generator and an exhaust gas system operatively connected to the thermoelectric generator to heat a portion of the thermoelectric generator with exhaust gas flow through the thermoelectric generator. A coolant system is operatively connected to the thermoelectric generator to cool another portion of the thermoelectric generator with coolant flow through the thermoelectric generator. At least one valve is controllable to cause the coolant flow through the thermoelectric generator in a direction that opposes a direction of the exhaust gas flow under a first set of operating conditions and to cause the coolant flow through the thermoelectric generator in the direction of exhaust gas flow under a second set of operating conditions.
DEFF Research Database (Denmark)
Häyrynen, Teppo; Østerkryger, Andreas Dyhl; de Lasson, Jakob Rosenkrantz
2017-01-01
Recently, an open geometry Fourier modal method based on a new combination ofan open boundary condition and a non-uniform $k$-space discretization wasintroduced for rotationally symmetric structures providing a more efficientapproach for modeling nanowires and micropillar cavities [J. Opt. Soc. A...... moreaccurate and efficient modeling of open 3D nanophotonic structures....
Feng, Lei; Zhang, Yugui
2017-08-01
Dispersion analysis is an important part of in-seam seismic data processing, and the calculation accuracy of the dispersion curve directly influences pickup errors of channel wave travel time. To extract an accurate channel wave dispersion curve from in-seam seismic two-component signals, we proposed a time-frequency analysis method based on single-trace signal processing; in addition, we formulated a dispersion calculation equation, based on S-transform, with a freely adjusted filter window width. To unify the azimuth of seismic wave propagation received by a two-component geophone, the original in-seam seismic data undergoes coordinate rotation. The rotation angle can be calculated based on P-wave characteristics, with high energy in the wave propagation direction and weak energy in the vertical direction. With this angle acquisition, a two-component signal can be converted to horizontal and vertical directions. Because Love channel waves have a particle vibration track perpendicular to the wave propagation direction, the signal in the horizontal and vertical directions is mainly Love channel waves. More accurate dispersion characters of Love channel waves can be extracted after the coordinate rotation of two-component signals.
Methods and apparatus for cooling wind turbine generators
Salamah, Samir A [Niskayuna, NY; Gadre, Aniruddha Dattatraya [Rexford, NY; Garg, Jivtesh [Schenectady, NY; Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee [Alplaus, NY; Carl, Jr., Ralph James
2008-10-28
A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.
Design of time interval generator based on hybrid counting method
Energy Technology Data Exchange (ETDEWEB)
Yao, Yuan [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Zhaoqi [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Lu, Houbing [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hefei Electronic Engineering Institute, Hefei 230037 (China); Chen, Lian [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Jin, Ge, E-mail: goldjin@ustc.edu.cn [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2016-10-01
Time Interval Generators (TIGs) are frequently used for the characterizations or timing operations of instruments in particle physics experiments. Though some “off-the-shelf” TIGs can be employed, the necessity of a custom test system or control system makes the TIGs, being implemented in a programmable device desirable. Nowadays, the feasibility of using Field Programmable Gate Arrays (FPGAs) to implement particle physics instrumentation has been validated in the design of Time-to-Digital Converters (TDCs) for precise time measurement. The FPGA-TDC technique is based on the architectures of Tapped Delay Line (TDL), whose delay cells are down to few tens of picosecond. In this case, FPGA-based TIGs with high delay step are preferable allowing the implementation of customized particle physics instrumentations and other utilities on the same FPGA device. A hybrid counting method for designing TIGs with both high resolution and wide range is presented in this paper. The combination of two different counting methods realizing an integratable TIG is described in detail. A specially designed multiplexer for tap selection is emphatically introduced. The special structure of the multiplexer is devised for minimizing the different additional delays caused by the unpredictable routings from different taps to the output. A Kintex-7 FPGA is used for the hybrid counting-based implementation of a TIG, providing a resolution up to 11 ps and an interval range up to 8 s.
Design of time interval generator based on hybrid counting method
International Nuclear Information System (INIS)
Yao, Yuan; Wang, Zhaoqi; Lu, Houbing; Chen, Lian; Jin, Ge
2016-01-01
Time Interval Generators (TIGs) are frequently used for the characterizations or timing operations of instruments in particle physics experiments. Though some “off-the-shelf” TIGs can be employed, the necessity of a custom test system or control system makes the TIGs, being implemented in a programmable device desirable. Nowadays, the feasibility of using Field Programmable Gate Arrays (FPGAs) to implement particle physics instrumentation has been validated in the design of Time-to-Digital Converters (TDCs) for precise time measurement. The FPGA-TDC technique is based on the architectures of Tapped Delay Line (TDL), whose delay cells are down to few tens of picosecond. In this case, FPGA-based TIGs with high delay step are preferable allowing the implementation of customized particle physics instrumentations and other utilities on the same FPGA device. A hybrid counting method for designing TIGs with both high resolution and wide range is presented in this paper. The combination of two different counting methods realizing an integratable TIG is described in detail. A specially designed multiplexer for tap selection is emphatically introduced. The special structure of the multiplexer is devised for minimizing the different additional delays caused by the unpredictable routings from different taps to the output. A Kintex-7 FPGA is used for the hybrid counting-based implementation of a TIG, providing a resolution up to 11 ps and an interval range up to 8 s.
Simple method for generating adjustable trains of picosecond electron bunches
Directory of Open Access Journals (Sweden)
P. Muggli
2010-05-01
Full Text Available A simple, passive method for producing an adjustable train of picosecond electron bunches is demonstrated. The key component of this method is an electron beam mask consisting of an array of parallel wires that selectively spoils the beam emittance. This mask is positioned in a high magnetic dispersion, low beta-function region of the beam line. The incoming electron beam striking the mask has a time/energy correlation that corresponds to a time/position correlation at the mask location. The mask pattern is transformed into a time pattern or train of bunches when the dispersion is brought back to zero downstream of the mask. Results are presented of a proof-of-principle experiment demonstrating this novel technique that was performed at the Brookhaven National Laboratory Accelerator Test Facility. This technique allows for easy tailoring of the bunch train for a particular application, including varying the bunch width and spacing, and enabling the generation of a trailing witness bunch.
Construction of the Cylindrical Ozone Generator by Silent Discharge Method
International Nuclear Information System (INIS)
Agus Purwadi; Widdi Usada; Suryadi; Isyuniarto; Sri Sukmajaya
2002-01-01
It has been constructed the ozone generator by silent discharge method. Anode and cathode of discharge tube were made of stainless steel (SS) in the cylinder form with diameters of 22 mm and 25 mm, the length of 100 mm and 110 mm, the equal thickness of 1 mm respectively. The dielectric was made of cylinder glass with diameter of 23 cm, the length of 105 cm and the thickness of 1 mm. The testing of apparatus was carried out by using discharge voltage of 12.5 kV and frequency of 1.5 kHz. Identification of the ozone gas formation was marked by the existing of special ozone smell and the separated of iodine molecule (yellow colour) from the potassium iodide solution which contaminated gas out put from the ozonizer. By using absorbing method can be shown that the ozone production rate was 0.196 mg/s by using oxygen gas input and 0.065 mg/s by using ordinary air input. (author)
Introduction to the methods of estimating nuclear power generating costs
Energy Technology Data Exchange (ETDEWEB)
1961-11-01
The present report prepared by the Agency with the guidance and assistance of a panel of experts from Member States, the names of whom will be found at the end of this report, represents the first step in the methods of cost evaluation. The main objectives of the report are: (1) The preparation of a full list of the cost items likely to be encountered so that the preliminary estimates for a given nuclear power system can be relied upon in deciding on its economic merits. (2) A survey of the methods currently used for the estimation of the generating costs of the power produced by a nuclear station. The survey is intended for a wide audience ranging from engineers to public officials with an interest in the prospects of nuclear power. An attempt has therefore been made to refrain from detailed technical discussions in order to make the presentation easily understandable to readers with only a very general knowledge of the principles of nuclear engineering. 3 figs, tabs.
Introduction to the methods of estimating nuclear power generating costs
International Nuclear Information System (INIS)
1961-01-01
The present report prepared by the Agency with the guidance and assistance of a panel of experts from Member States, the names of whom will be found at the end of this report, represents the first step in the methods of cost evaluation. The main objectives of the report are: (1) The preparation of a full list of the cost items likely to be encountered so that the preliminary estimates for a given nuclear power system can be relied upon in deciding on its economic merits. (2) A survey of the methods currently used for the estimation of the generating costs of the power produced by a nuclear station. The survey is intended for a wide audience ranging from engineers to public officials with an interest in the prospects of nuclear power. An attempt has therefore been made to refrain from detailed technical discussions in order to make the presentation easily understandable to readers with only a very general knowledge of the principles of nuclear engineering. 3 figs, tabs
International Nuclear Information System (INIS)
Mika, J.
1975-09-01
Originally the work was oriented towards two main topics: a) difference and integral methods in neutron transport theory. Two computers were used for numerical calculations GIER and CYBER-72. During the first year the main effort was shifted towards basic theoretical investigations. At the first step the ANIS code was adopted and later modified to check various finite difference approaches against each other. Then the general finite element method and the singular perturbation method were developed. The analysis of singularities of the one-dimensional neutron transport equation in spherical geometry has been done and presented. Later the same analysis for the case of cylindrical symmetry has been carried out. The second and the third year programme included the following topics: 1) finite difference methods in stationary neutron transport theory; 2)mathematical fundamentals of approximate methods for solving the transport equation; 3) singular perturbation method for the time-dependent transport equation; 4) investigation of various iterative procedures in reactor calculations. This investigation will help to better understanding of the mathematical basis for existing and developed numerical methods resulting in more effective algorithms for reactor computer codes
A method of PSF generation for 3D brightfield deconvolution.
Tadrous, P J
2010-02-01
This paper addresses the problem of 3D deconvolution of through focus widefield microscope datasets (Z-stacks). One of the most difficult stages in brightfield deconvolution is finding the point spread function. A theoretically calculated point spread function (called a 'synthetic PSF' in this paper) requires foreknowledge of many system parameters and still gives only approximate results. A point spread function measured from a sub-resolution bead suffers from low signal-to-noise ratio, compounded in the brightfield setting (by contrast to fluorescence) by absorptive, refractive and dispersal effects. This paper describes a method of point spread function estimation based on measurements of a Z-stack through a thin sample. This Z-stack is deconvolved by an idealized point spread function derived from the same Z-stack to yield a point spread function of high signal-to-noise ratio that is also inherently tailored to the imaging system. The theory is validated by a practical experiment comparing the non-blind 3D deconvolution of the yeast Saccharomyces cerevisiae with the point spread function generated using the method presented in this paper (called the 'extracted PSF') to a synthetic point spread function. Restoration of both high- and low-contrast brightfield structures is achieved with fewer artefacts using the extracted point spread function obtained with this method. Furthermore the deconvolution progresses further (more iterations are allowed before the error function reaches its nadir) with the extracted point spread function compared to the synthetic point spread function indicating that the extracted point spread function is a better fit to the brightfield deconvolution model than the synthetic point spread function.
Shielded radioisotope generator and method for using same
International Nuclear Information System (INIS)
Fries, B.A.
1976-01-01
A nuclide generator for on-site radioisotope generation is disclosed in which the formation of a short-lived daughter radioisotope from its longer-lived parent features batch flow of eluting reagent interior of the generator in a completely shielded environment
International Nuclear Information System (INIS)
Hu, Nan; Cerviño, Laura; Segars, Paul; Lewis, John; Shan, Jinlu; Jiang, Steve; Zheng, Xiaolin; Wang, Ge
2014-01-01
With the rapidly increasing application of adaptive radiotherapy, large datasets of organ geometries based on the patient’s anatomy are desired to support clinical application or research work, such as image segmentation, re-planning, and organ deformation analysis. Sometimes only limited datasets are available in clinical practice. In this study, we propose a new method to generate large datasets of organ geometries to be utilized in adaptive radiotherapy. Given a training dataset of organ shapes derived from daily cone-beam CT, we align them into a common coordinate frame and select one of the training surfaces as reference surface. A statistical shape model of organs was constructed, based on the establishment of point correspondence between surfaces and non-uniform rational B-spline (NURBS) representation. A principal component analysis is performed on the sampled surface points to capture the major variation modes of each organ. A set of principal components and their respective coefficients, which represent organ surface deformation, were obtained, and a statistical analysis of the coefficients was performed. New sets of statistically equivalent coefficients can be constructed and assigned to the principal components, resulting in a larger geometry dataset for the patient’s organs. These generated organ geometries are realistic and statistically representative
Wang, Yan-hui; Li, Jing-yi
2015-05-01
It is one of the important strategies in the new period of national poverty alleviation and development to maintain the basic balance between the ecological environment and economic development, and to promote the coordinated sustainable development of economy and ecological environment. Taking six contiguous special poverty-stricken areas as the study areas, a coupling coordination evaluation method between eco-environment quality and economic development level in contiguous special poverty-stricken areas was explored in this paper. The region' s ecological poverty index system was proposed based on the natural attribute of ecological environment, and the ecological environment quality evaluation method was built up by using AHP weighting method, followed by the design of the coupling coordination evaluation method between the ecological environment indices and the county economic poverty comprehensive indices. The coupling coordination degrees were calculated and their spatial representation differentiations were analyzed respectively at district, province, city, and county scales. Results showed that approximately half of the counties in the study areas achieved the harmoniously coordinated development. However, the ecological environmental quality and the economic development in most counties could not be synchronized, where mountains, rivers and other geographic features existed roughly as a dividing line of the coordinated development types. The phenomena of dislocation between the ecological environment and economic development in state-level poor counties were more serious than those of local poor counties.
DEFF Research Database (Denmark)
Nedergaard, Peter
2005-01-01
The purpose of this paper is to address two normative and interlinked methodological and theoretical questions concerning the Open Method of Coordination (OMC): First, what is the most appropriate approach to learning in the analyses of the processes of the European Employment Strategy (EES......)? Second, how should mutual learning processes be diffused among the Member States in order to be efficient? In answering these two questions the paper draws on a social constructivist approach to learning thereby contributing to the debate about learning in the political science literature. At the same...... time, based on the literature and participatory observations, it is concluded that the learning effects of the EES are probably somewhat larger than what is normally suggested, but that successful diffusion still depends on a variety of contextual factors. At the end of the paper a path for empirical...
DEFF Research Database (Denmark)
de Sousa, David P; Miller, Christopher J; Chang, Yingyue
2017-01-01
The nonheme iron(IV) oxo complex [FeIV(O)(tpenaH)]2+ and its conjugate base [FeIV(O)(tpena)]+ [tpena- = N,N,N'-tris(2-pyridylmethyl)ethylenediamine-N'-acetate] have been prepared electrochemically in water by bulk electrolysis of solutions prepared from [FeIII2(μ-O)(tpenaH)2](ClO4)4 at potentials...... of the electrochemically generated iron(IV) oxo complexes, in terms of the broad range of substrates examined, represents an important step toward the goal of cost-effective electrocatalytic water purification....
A coordinate transform method for one-speed neutron transport in composite slabs
International Nuclear Information System (INIS)
Haidar, N.H.S.
1988-01-01
The optical path transformation is applied to reduce the one-speed neutron transport equation for a class of composite subcritical slabs to single-region problems. The class idealises, within the uncertainty of the one-speed model, a variety of practical situations such as U-D 2 O-C-Zr-Pb or Pu-U-Na-Fe symmetric reactor assemblies; which may possibly contain a symmetrically anisotropic neutron source. A closed form double series solution, which turns out to be quite convenient for design and optimisation purposes, has been obtained, in terms of discontinuous functions for the multi-regional angular flux by application of a double finite Legendre transform. Disadvantage factor evaluations for a U-C lattice cell resulting from a low-order P 0 P 1 approximation of this method are found to be in full agreement with hybrid diffusion-transport estimates. (author)
Fang, Cheng; Butler, David Lee
2013-05-01
In this paper, an innovative method for CMM (Coordinate Measuring Machine) self-calibration is proposed. In contrast to conventional CMM calibration that relies heavily on a high precision reference standard such as a laser interferometer, the proposed calibration method is based on a low-cost artefact which is fabricated with commercially available precision ball bearings. By optimizing the mathematical model and rearranging the data sampling positions, the experimental process and data analysis can be simplified. In mathematical expression, the samples can be minimized by eliminating the redundant equations among those configured by the experimental data array. The section lengths of the artefact are measured at arranged positions, with which an equation set can be configured to determine the measurement errors at the corresponding positions. With the proposed method, the equation set is short of one equation, which can be supplemented by either measuring the total length of the artefact with a higher-precision CMM or calibrating the single point error at the extreme position with a laser interferometer. In this paper, the latter is selected. With spline interpolation, the error compensation curve can be determined. To verify the proposed method, a simple calibration system was set up on a commercial CMM. Experimental results showed that with the error compensation curve uncertainty of the measurement can be reduced to 50%.
International Nuclear Information System (INIS)
Sakata, Fumihiko; Marumori, Toshio; Hashimoto, Yukio; Une, Tsutomu.
1983-05-01
The geometry of the self-consistent collective-coordinate (SCC) method formulated within the framework of the time-dependent Hartree-Fock (TDHF) theory is investigated by associating the variational parameters with a symplectic manifold (a TDHF manifold). With the use of a canonical-variables parametrization, it is shown that the TDHF equation is equivalent to the canonical equations of motion in classical mechanics in the TDHF manifold. This enables us to investigate geometrical structure of the SCC method in the language of the classical mechanics. The SCC method turns out to give a prescription how to dynamically extract a ''maximally-decoupled'' collective submanifold (hypersurface) out of the TDHF manifold, in such a way that a certain kind of trajectories corresponding to the large-amplitude collective motion under consideration can be reproduced on the hypersurface as precisely as possible. The stability of the hypersurface at each point on it is investigated, in order to see whether the hypersurface obtained by the SCC method is really an approximate integral surface in the TDHF manifold or not. (author)
Initialization methods and ensembles generation for the IPSL GCM
Labetoulle, Sonia; Mignot, Juliette; Guilyardi, Eric; Denvil, Sébastien; Masson, Sébastien
2010-05-01
The protocol used and developments made for decadal and seasonal predictability studies at IPSL (Paris, France) are presented. The strategy chosen is to initialize the IPSL-CM5 (NEMO ocean and LMDZ atmosphere) model only at the ocean-atmosphere interface, following the guidance and expertise gained from ocean-only NEMO experiments. Two novel approaches are presented for initializing the coupled system. First, a nudging of sea surface temperature and wind stress towards available reanalysis is made with the surface salinity climatologically restored. Second, the heat, salt and momentum fluxes received by the ocean model are computed as a linear combination of the fluxes computed by the atmospheric model and by a CORE-style bulk formulation using up-to-date reanalysis. The steps that led to these choices are presented, as well as a description of the code adaptation and a comparison of the computational cost of both methods. The strategy for the generation of ensembles at the end of the initialization phase is also presented. We show how the technical environment of IPSL-CM5 (LibIGCM) was modified to achieve these goals.
International Nuclear Information System (INIS)
Hsieh, B.J.
1977-01-01
The instability of axisymmetric shells has been used in engineering fields as a safety device such as the rupture discs used in the LMFBR (Liquid Metal Fast Breeder Reactor) design to relieve the excessive pressure caused by the water and sodium reaction when there is a leak in the piping system. Hence, the analysis of the instability of shells under time varying loading is becoming more and more important. However, notorious discrepancy has been observed between various analytical predications and experimental results for the buckling of shells. Various theories have been proposed to explain these discrepancies. Most of these theories are concerned with two aspects: initial imperfections and asymmetric responses. Both theories do narrow the gap between theoretical and experimental results; however, the remaining discrepancy is still not small. Other possible causes of this discrepancy have to be studied- among them, the boundary conditions. It has been pointed out that the slip at the boundary may have noticeable effect on the transient behavior of a plate. In this paper, the effect of various boundary conditions on the dynamic instability of axisymmetric shells is studied using the numerical discretization technique--convective finite element method
Directory of Open Access Journals (Sweden)
Yao Liu
2016-08-01
Full Text Available The increasing penetration of renewable generators can be a significant challenge due to the fluctuation of their power generation. Energy storage (ES units are one solution to improve power supply quality and guarantee system stability. In this paper, a hybrid microgrid is built based on photovoltaic (PV generator and ES; and coordinated control is proposed and developed to achieve power management in a decentralized manner. This control scheme contains three different droop strategies according to characteristics of PV and ES. First, the modified droop control is proposed for PV, which can take full utilization of renewable energy and avoid regulating output active power frequently. Second, to maintain the direct current (DC bus voltage stability, a novel droop control incorporating a constant power band is presented for DC-side ES. Third, a cascade droop control is designed for alternating current (AC-side ES. Thus, the ES lifetime is prolonged. Moreover, interlinking converters (ICs provide a bridge between AC/DC buses in a hybrid microgrid. The power control of IC is enabled when the AC- or DC-side suffer from active power demand shortage. In particular, if the AC microgrid does not satisfy the reactive power demand, IC then acts as a static synchronous compensator (STATCOM. The effectiveness of the proposed strategies is verified by simulations.
Saraswat, Prabhav; MacWilliams, Bruce A; Davis, Roy B
2012-04-01
Several multi-segment foot models to measure the motion of intrinsic joints of the foot have been reported. Use of these models in clinical decision making is limited due to lack of rigorous validation including inter-clinician, and inter-lab variability measures. A model with thoroughly quantified variability may significantly improve the confidence in the results of such foot models. This study proposes a new clinical foot model with the underlying strategy of using separate anatomic and technical marker configurations and coordinate systems. Anatomical landmark and coordinate system identification is determined during a static subject calibration. Technical markers are located at optimal sites for dynamic motion tracking. The model is comprised of the tibia and three foot segments (hindfoot, forefoot and hallux) and inter-segmental joint angles are computed in three planes. Data collection was carried out on pediatric subjects at two sites (Site 1: n=10 subjects by two clinicians and Site 2: five subjects by one clinician). A plaster mold method was used to quantify static intra-clinician and inter-clinician marker placement variability by allowing direct comparisons of marker data between sessions for each subject. Intra-clinician and inter-clinician joint angle variability were less than 4°. For dynamic walking kinematics, intra-clinician, inter-clinician and inter-laboratory variability were less than 6° for the ankle and forefoot, but slightly higher for the hallux. Inter-trial variability accounted for 2-4° of the total dynamic variability. Results indicate the proposed foot model reduces the effects of marker placement variability on computed foot kinematics during walking compared to similar measures in previous models. Copyright © 2011 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Kumagai, Hiromichi; Kinoshita, Izumi
2001-01-01
To prevent the expansion of tube damage and to maintain structural integrity in the steam generators (SGs) of a fast breeder reactor (FBR), it is necessary to detect precisely and immediately any leakage of water from heat transfer tubes. Therefore, the Doppler method was developed. Previous studies have revealed that, in the SG full-sector model that simulates actual SGs, the Doppler method can detect bubbles of 0.4 l/s within a few seconds. However in consideration of the dissolution rate of hydrogen generated by a sodium-water reaction even from a small water leak, it is necessary to detect smaller leakages of water from the heat transfer tubes. The detection sensitivity of the Doppler method and the influence of background noise were experimentally investigated. In-water experiments were performed using the SG model. The results show that the Doppler method can detect bubbles of 0.01 l/s (equivalent to a water leak rate of about 0.01 g/s) within a few seconds and that the background noise has little effect on water leak detection performance. The Doppler method thus has great potential for the detection of water leakage in SGs. (author)
Apparatus and method for inhibiting the generation of excessive radiation
International Nuclear Information System (INIS)
Hernandez, F.; Chamberlain, J.
1991-01-01
This patent describes an apparatus for generating electron radiation or X-ray radiation. It comprises accelerator means for generating and accelerating electrons to form an electron beam which has a predetermined low intensity level for the generation of the electron radiation or a predetermined high intensity level for the generation of the X-ray radiation; supporting means for supporting a scattering foil and a target and for selectively moving either the foil into the trajectory of the electron beam having the low intensity level for generating the electron radiation upon impingement of the electrons there or on the target into the trajectory of the electron beam having the high intensity level for generating the X-ray radiation upon impingement of the electrons thereon; detecting means operable by the supporting means for sensing the position of the target relative to the trajectory of the electron beam; and inhibiting means coupled to the accelerator means and to the detecting means for preventing the generation of an electron beam having the high intensity level if the foil and not the target is positioned in the trajectory of the electron beam
DEFF Research Database (Denmark)
Rodriguez, Pedro; Luna, Alvaro; Hermoso, Juan Ramon
2011-01-01
The operation of distributed power generation systems under grid fault conditions is a key issue for the massive integration of renewable energy systems. Several studies have been conducted to improve the response of such distributed generation systems under voltage dips. In spite of being less s...
Review of islanding detection methods for distributed generation
DEFF Research Database (Denmark)
Chen, Zhe; Mahat, Pukar; Bak-Jensen, Birgitte
2008-01-01
This paper presents an overview of power system islanding and islanding detection techniques. Islanding detection techniques, for a distribution system with distributed generation (DG), can broadly be divided into remote and local techniques. A remote islanding detection technique is associated...
Nuclear steam generator sludge lance method and apparatus
International Nuclear Information System (INIS)
Shirey, R.A.; Murray, D.E.
1991-01-01
This paper describes a sludge lancing system for removing sludge deposits from an interior region of a steam generator. It comprises: a peripheral fluid injection means for injecting a fluid at a high pressure about a periphery of the steam generator, the peripheral fluid injection means comprising at least one elongated fluid conduit, at least one injection nozzle and a joint positioned at a predetermined point along the elongated fluid conduit for permitting the peripheral fluid injection means to bend to a predetermined angle at the joint within the steam generator; a reciprocable fluid injection means for injecting a fluid at a high pressure toward the sludge deposits and dislodging the sludge deposits; and a supporting means positioned within the interior of the steam generator for supporting the reciprocable fluid injection means throughout the reciprocation of the reciprocable fluid injection means
Xu, Xin-Xin; Cui, Zhong-Ping; Qi, Ji; Liu, Xiao-Xia
2013-03-21
To improve the photocatalytic activity of a coordination polymer in the visible light region, polyaniline (PANI) was loaded onto its surface through a facile in situ chemical oxidation polymerization process. The resulting PANI loaded coordination polymer composite materials with excellent stability exhibit significantly higher photocatalytic activities than the pure coordination polymer photocatalyst on the degradation of methyl orange (MO) under visible light irradiation. This enhancement can be ascribed to the introduction of PANI on the surface of the coordination polymer, which leads to efficient separation of photogenerated electron-hole pairs as well as a significant expansion of the photoresponse region. Finally, we discussed the influence of acidity on the morphology and photocatalytic activity of the composite material. An optimal condition to obtain the PANI loaded coordination polymer composite material with excellent photocatalytic activity has been obtained.
Cold weather hydrogen generation system and method of operation
Dreier, Ken Wayne; Kowalski, Michael Thomas; Porter, Stephen Charles; Chow, Oscar Ken; Borland, Nicholas Paul; Goyette, Stephen Arthur
2010-12-14
A system for providing hydrogen gas is provided. The system includes a hydrogen generator that produces gas from water. One or more heat generation devices are arranged to provide heating of the enclosure during different modes of operation to prevent freezing of components. A plurality of temperature sensors are arranged and coupled to a controller to selectively activate a heat source if the temperature of the component is less than a predetermined temperature.
Optimized Method for Generating and Acquiring GPS Gold Codes
Directory of Open Access Journals (Sweden)
Khaled Rouabah
2015-01-01
Full Text Available We propose a simpler and faster Gold codes generator, which can be efficiently initialized to any desired code, with a minimum delay. Its principle consists of generating only one sequence (code number 1 from which we can produce all the other different signal codes. This is realized by simply shifting this sequence by different delays that are judiciously determined by using the bicorrelation function characteristics. This is in contrast to the classical Linear Feedback Shift Register (LFSR based Gold codes generator that requires, in addition to the shift process, a significant number of logic XOR gates and a phase selector to change the code. The presence of all these logic XOR gates in classical LFSR based Gold codes generator provokes the consumption of an additional time in the generation and acquisition processes. In addition to its simplicity and its rapidity, the proposed architecture, due to the total absence of XOR gates, has fewer resources than the conventional Gold generator and can thus be produced at lower cost. The Digital Signal Processing (DSP implementations have shown that the proposed architecture presents a solution for acquiring Global Positioning System (GPS satellites signals optimally and in a parallel way.
Power systems with nuclear-electric generators - Modelling methods
International Nuclear Information System (INIS)
Valeca, Serban Constantin
2002-01-01
This is a vast analysis on the issue of sustainable nuclear power development with direct conclusions regarding the Nuclear Programme of Romania. The work is targeting specialists and decision making boards. Specific to the nuclear power development is its public implication, the public being most often misinformed by non-professional media. The following problems are debated thoroughly: - safety, nuclear risk, respectively, is treated in chapter 1 and 7 aiming at highlighting the quality of nuclear power and consequently paving the way to public acceptance; - the environment considered both as resource of raw materials and medium essential for life continuation, which should be appropriately protected to ensure healthy and sustainable development of human society; its analysis is also presented in chapter 1 and 7, where the problem of safe management of radioactive waste is addressed too; - investigation methods based on information science of nuclear systems, applied in carrying out the nuclear strategy and planning are widely analyzed in the chapter 2, 3 and 6; - optimizing the processes by following up the structure of investment and operation costs, and, generally, the management of nuclear units is treated in the chapter 5 and 7; - nuclear weapon proliferation as a possible consequence of nuclear power generation is treated as a legal issue. The development of Romanian NPP at Cernavoda, practically, the core of the National Nuclear Programme, is described in chapter 8. Actually, the originality of the present work consists in the selection and adaptation from a multitude of mathematical models applicable to the local and specific conditions of nuclear power plant at Cernavoda. The Romanian economy development and power development oriented towards reduction of fossil fuel consumption and protection of environment, most reliably ensured by the nuclear power, is discussed in the frame of the world trends of the energy production. Various scenarios are
Directory of Open Access Journals (Sweden)
Cohen Eyal
2012-10-01
Full Text Available Abstract Background Primary care medical homes may improve health outcomes for children with special healthcare needs (CSHCN, by improving care coordination. However, community-based primary care practices may be challenged to deliver comprehensive care coordination to complex subsets of CSHCN such as children with medical complexity (CMC. Linking a tertiary care center with the community may achieve cost effective and high quality care for CMC. The objective of this study was to evaluate the outcomes of community-based complex care clinics integrated with a tertiary care center. Methods A before- and after-intervention study design with mixed (quantitative/qualitative methods was utilized. Clinics at two community hospitals distant from tertiary care were staffed by local community pediatricians with the tertiary care center nurse practitioner and linked with primary care providers. Eighty-one children with underlying chronic conditions, fragility, requirement for high intensity care and/or technology assistance, and involvement of multiple providers participated. Main outcome measures included health care utilization and expenditures, parent reports of parent- and child-quality of life [QOL (SF-36®, CPCHILD©, PedsQL™], and family-centered care (MPOC-20®. Comparisons were made in equal (up to 1 year pre- and post-periods supplemented by qualitative perspectives of families and pediatricians. Results Total health care system costs decreased from median (IQR $244 (981 per patient per month (PPPM pre-enrolment to $131 (355 PPPM post-enrolment (p=.007, driven primarily by fewer inpatient days in the tertiary care center (p=.006. Parents reported decreased out of pocket expenses (p© domains [Health Standardization Section (p=.04; Comfort and Emotions (p=.03], while total CPCHILD© score decreased between baseline and 1 year (p=.003. Parents and providers reported the ability to receive care close to home as a key benefit. Conclusions Complex
Method to produce a sup(99m)Tc generator
International Nuclear Information System (INIS)
Brown, J.L.; Harris, O.A.
1977-01-01
A 400 millicurie Tc generator for medical application is made on the basis of chromatographic Al 2 O3 plased in a glass generator clumn. The Al 2 O 3 is subjected to thermal activation at 394K. A charge with sodium molybdate 99 solution training a pH value of 3.5 fallowe. After washing the generator with acetic, a 0.9% NaCl solution is added. The remaining solution is sucked off by introducing air through the column. The eluate has a molybdenum cost ent of 0.001 to 0.005 μCi Mo/mCi Tc 99m. The pH-value of the eluate is between 5.0 and 5.3. The aluminium ion content is less than 0.3 g/ml. (DG) [de
Coordinated Voltage Control of Active Distribution Network
Directory of Open Access Journals (Sweden)
Xie Jiang
2016-01-01
Full Text Available This paper presents a centralized coordinated voltage control method for active distribution network to solve off-limit problem of voltage after incorporation of distributed generation (DG. The proposed method consists of two parts, it coordinated primal-dual interior point method-based voltage regulation schemes of DG reactive powers and capacitors with centralized on-load tap changer (OLTC controlling method which utilizes system’s maximum and minimum voltages, to improve the qualified rate of voltage and reduce the operation numbers of OLTC. The proposed coordination has considered the cost of capacitors. The method is tested using a radial edited IEEE-33 nodes distribution network which is modelled using MATLAB.
Directory of Open Access Journals (Sweden)
Jalid Abdelilah
2016-01-01
Full Text Available In engineering industry, control of manufactured parts is usually done on a coordinate measuring machine (CMM, a sensor mounted at the end of the machine probes a set of points on the surface to be inspected. Data processing is performed subsequently using software, and the result of this measurement process either validates or not the conformity of the part. Measurement uncertainty is a crucial parameter for making the right decisions, and not taking into account this parameter can, therefore, sometimes lead to aberrant decisions. The determination of the uncertainty measurement on CMM is a complex task for the variety of influencing factors. Through this study, we aim to check if the uncertainty propagation model developed according to the guide to the expression of uncertainty in measurement (GUM approach is valid, we present here a comparison of the GUM and Monte Carlo methods. This comparison is made to estimate a flatness deviation of a surface belonging to an industrial part and the uncertainty associated to the measurement result.
A method of generating moving objects on the constrained network
Zhang, Jie; Ma, Linbing
2008-10-01
Moving objects databases have become an important research issue in recent years. In case large real data sets acquired by GPS, PDA or other mobile devices are not available, benchmarking requires the generation of artificial data sets following the real-world behavior of spatial objects that change their locations over time. In the field of spatiotemporal databases, a number of publications about the generation of test data are restricted to few papers. However, most of the existing moving-object generators assume a fixed and often unrealistic mobility model and do not consider several important characteristics of the network. In this paper, a new generator is presented to solve these problems. First of all, the network is realistic transportation network of Guangzhou. Second, the observation records of vehicle flow are available. Third, in order to simplify the whole simulation process and to help us visualize the process, this framework is built under .Net development platform of Microsoft and ArcEngine9 environment.
Efficiency of choice set generation methods for bicycle routes
DEFF Research Database (Denmark)
Halldórsdóttir, Katrín; Rieser-Schussler, Nadine; Axhausen, Kay W.
2014-01-01
for scenic routes, dedicated cycle lanes, and road type. Data consisted of 778 bicycle trips traced by GPS and carried out by 139 persons living in the Greater Copenhagen Area, in Denmark. Results suggest that both the breadth first search on link elimination and the doubly stochastic generation function...
International Nuclear Information System (INIS)
Burger, M. J.
1981-01-01
1 - Description of problem or function: The ZONE program is a finite element mesh generator which produces the nodes and element description of any two-dimensional geometry. The geometry is divided into a mesh of quadrilateral and triangular zones defined by node points taken in a counter-clockwise sequence. The zones are arranged sequentially in an ordered march through the geometry. The order can be chosen so that the minimum bandwidth is obtained. The mesh that is generated can be used as input to any two-dimensional as well as any axisymmetrical structure program. 2 - Method of solution: The basic concept used is the definition of a two-dimensional structure by the intersection of two sets of lines which describe the geometric and material boundaries. A set of lines called meridians define the geometric and material boundaries and generally run in the same direction. Another set of linear line segments called rays which intersect the meridians are also defined at the material and geometric boundaries. The section of the structure between successive rays is called a region. The ray segment between any two consecutive ray-meridian intersections or void area in the structure is called a layer and is described as passing through, or bounding a material. The boundaries can be directly defined as a sequence of straight line segments or can be computed in terms of elliptic segments or circular arcs. A meridian or ray can also be made to follow a previously-defined meridian or ray at a fixed distance by invoking an offset option. 3 - Restrictions on the complexity of the problem: The following are limited only by a DIMENSION statement. The code currently has a maxima of: 100 coordinate points defining a meridian or ray, 40 meridians, 40 layers. There are no limits on the number of zones or nodes for any problems
Methods for preventing steam generator failure or degradation
International Nuclear Information System (INIS)
Green, S.J.
1986-01-01
PWR steam generators have suffered from a variety of degradation phenomena. This paper identifies the corrosion-related defects and their probable causes and suggests approaches to correct and prevent corrosive activity. In the attempt to solve the degradation problems, research programs have concentrated on modifying materials, stresses, and the chemical environment in both new and operating steam generators. The following corrosion-related defects have been studied: tube wastage, denting, primary side (ID) intergranular stress corrosion cracking (IGSCC), OD-initiated intergranular attack (IGA), pitting, and corrosion fatigue. Plants affected by wastage have greatly reduced their problem by adopting an all volatile treatment (AVT). In the case of denting, a less aggressive chemical environment is recommended. Primary side IGSCC responds to temperature reduction, stress relief, and material improvements, while flushing and boric acid addition minimizes OD-initiated IGA. It has further been shown that pitting can be minimized by sludge lancing and by reducing impurity ingress. (author)
Wind turbine/generator set and method of making same
Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.
2013-06-04
A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.
Method and apparatus involving the generation of x-rays
International Nuclear Information System (INIS)
Neal, W.R.; Little, R.G.
1978-01-01
An electron gun assembly generates an accelerated and sharply focused electron beam which is deflected in a predetermined path to impinge upon an extended split anode structure in a selected scanning pattern with approximately half the beam current impinging on each half of the split anode. A signal proportional to the difference between the two currents from each half of the split anode provides feedback control to the beam deflection system for constraining the beam to follow the fissure of the split anode. X-rays which are generated at the point of beam impingement on the split anode constitute a moving source of x-rays as the point of beam impingement travels in the selected pattern along the anode
Work system innovation: Designing improvement methods for generative capability
DEFF Research Database (Denmark)
Hansen, David; Møller, Niels
2013-01-01
This paper explores how a work system’s capability for improvement is influenced by its improvement methods. Based on explorative case study at a Lean manufacturing facility, the methods problem solving and Appreciative Inquiry were compared through in-depth qualitative studies over a 12-month...
EPA's analytical methods for water: The next generation
International Nuclear Information System (INIS)
Hites, R.A.; Budde, W.L.
1991-01-01
By the late 1970s, it had become clear to EPA that organic compounds were polluting many of the nation's waters. By 1977, as a result of a lawsuit by several environmentally concerned plaintiffs, EPA had focused on a list of 114 'priority' organic pollutants. Its long-term goal was the regulation of specific compounds that were found to pose significant environmental problems, a daunting task. Tens of thousands of samples needed to be measured by hundreds of different laboratories. Clearly, there were concerns about the comparability of data among laboratories. The result was a series of laboratory-based analytical 'methods.' These EPA methods are detailed, step-by-step directions (recipes) that describe everything the analyst needs to know to complete a satisfactory analysis. During the 1970s the first set of methods was developed; this was the '600 series' for the analysis of organic compounds in wastewater. In 1979 and the 1980s, a set of '500 series' methods, focusing on drinking water, was developed. By now, many of the 500 and 600 series methods are in widespread use, and it is clear that there are considerably overlaps among the methods in terms of both procedures and analytes. Indiana University was asked by EPA to consider the question, 'Is it possible to revise or eliminate some of the 500 and 600 series methods and effect a savings of time and money?' This and related questions were studied and recommendations were developed
A novel method of generating and remembering international morse codes
Digital Repository Service at National Institute of Oceanography (India)
Charyulu, R.J.K.
untethered communications have been advanced, despite as S.O.S International Morse Code will be at rescue as an emergency tool, when all other modes fail The details of hte method and actual codes have been enumerated....
Nondestructive testing method for a new generation of electronics
Directory of Open Access Journals (Sweden)
Azin Anton
2018-01-01
Full Text Available The implementation of the Smart City system needs reliable and smoothly operating electronic equipment. The study is aimed at developing a nondestructive testing method for electronic equipment and its components. This method can be used to identify critical design defects of printed circuit boards (PCB and to predict their service life, taking into account the nature of probable operating loads. The study uses an acoustic emission method to identify and localize critical design defects of printed circuit boards. Geometric dimensions of detected critical defects can be determined by the X-ray tomography method. Based on the results of the study, a method combining acoustic emission and X-ray tomography was developed for nondestructive testing of printed circuit boards. The stress-strain state of solder joints containing detected defects was analyzed. This paper gives an example of using the developed method for estimating the degree of damage to joints between PCB components and predicting the service life of the entire PCB.
Verification of a Subgroup Generation Method for Thorium Fuel Assemblies
International Nuclear Information System (INIS)
Sim, Ohsung; Kim, Myunghyun
2013-01-01
Resonance parameter consists of subgroup level and weight. The subgroup weight is obtained by solving the ultrafine slowing down equation and fixed source problem. That means this cross section library procedure considers conservation of the shielded cross section for pin-cell in order to obtain subgroup parameters. There are some isotopes to be concerned for research such as actinides and thorium. Minor actinides(MA) are existing with very small amount in a spent fuel, but effect is not negligible in a high burnup fuel assemblies. Some MAs have high fission cross sections under thermal neutron spectrum. Thorium isotopes was not investigated as much as uranium, but it has high potential for future application. In this study, a new cross section library to be replaced with HELIOS library was generated and compared for the assembly calculation, specially for assembly with thorium. An average capture cross section value at a certain fuel pin and multiplication factor of assembly were compared with nTRACER calculation with HELIOS library and Monte Carlo calculation of MCNP with ENDF-B/II. The accuracy of library data generated for thorium isotope in nTRACER calculation was tested for WASB model. There was a great improvement in K-eff and capture cross section for this assembly compared with old library, HELIOS library
International Nuclear Information System (INIS)
Hughes, Larry; Bell, Jeff
2006-01-01
The increasing popularity of on-site power generation is driving the demand for methods to compensate customer-generators that supply electricity to the grid. Although many practices exist for providing such compensation, confusion surrounds the terms often used to describe such practices (notably, net metering and net billing). To help clarify this situation, the following paper proposes a taxonomy that distinguishes between 16 distinct compensation practices
Li, Xian-Ying; Hu, Shi-Min
2013-02-01
Harmonic functions are the critical points of a Dirichlet energy functional, the linear projections of conformal maps. They play an important role in computer graphics, particularly for gradient-domain image processing and shape-preserving geometric computation. We propose Poisson coordinates, a novel transfinite interpolation scheme based on the Poisson integral formula, as a rapid way to estimate a harmonic function on a certain domain with desired boundary values. Poisson coordinates are an extension of the Mean Value coordinates (MVCs) which inherit their linear precision, smoothness, and kernel positivity. We give explicit formulas for Poisson coordinates in both continuous and 2D discrete forms. Superior to MVCs, Poisson coordinates are proved to be pseudoharmonic (i.e., they reproduce harmonic functions on n-dimensional balls). Our experimental results show that Poisson coordinates have lower Dirichlet energies than MVCs on a number of typical 2D domains (particularly convex domains). As well as presenting a formula, our approach provides useful insights for further studies on coordinates-based interpolation and fast estimation of harmonic functions.
Research on Generating Method of Embedded Software Test Document Based on Dynamic Model
Qu, MingCheng; Wu, XiangHu; Tao, YongChao; Liu, Ying
2018-03-01
This paper provides a dynamic model-based test document generation method for embedded software that provides automatic generation of two documents: test requirements specification documentation and configuration item test documentation. This method enables dynamic test requirements to be implemented in dynamic models, enabling dynamic test demand tracking to be easily generated; able to automatically generate standardized, standardized test requirements and test documentation, improved document-related content inconsistency and lack of integrity And other issues, improve the efficiency.
Superconducting generators and motors and methods for employing same
Energy Technology Data Exchange (ETDEWEB)
Tomsic, Michael J.; Long, Larry
2017-08-29
A superconducting electrical generator or motor having a plurality of cryostats is described. The cryostats contain coolant and a first cryostat encloses at least one of a plurality of superconducting coils. A first coil is in superconducting electrical communication with a second coil contained in a second cryostat through a superconducting conduction cooling cable enclosing a conductor. The first cryostat and the second cryostat may be in fluid communication through at least one cryogen channel within the at least one superconducting conduction cooling cable. In other embodiments, none of the plurality of cryostats may be in fluid communication and the cable may be cooled by conduction along the conductor from the first or second cryostat, or from both. The conductor may have different segments at temperatures equal to or above the temperature of the coolant and the superconducting conduction cooling cables may be connected through quick connect fittings.
New methods of generation of ultrashort laser pulses for ranging
Jelinkova, Helena; Hamal, Karel; Kubecek, V.; Prochazka, Ivan
1993-01-01
To reach the millimeter satellite laser ranging accuracy, the goal for nineties, new laser ranging techniques have to be applied. To increase the laser ranging precision, the application of the ultrashort laser pulses in connection with the new signal detection and processing techniques, is inevitable. The two wavelength laser ranging is one of the ways to measure the atmospheric dispersion to improve the existing atmospheric correction models and hence, to increase the overall system ranging accuracy to the desired value. We are presenting a review of several nonstandard techniques of ultrashort laser pulses generation, which may be utilized for laser ranging: compression of the nanosecond pulses using stimulated Brillouin and Raman backscattering; compression of the mode-locked pulses using Raman backscattering; passive mode-locking technique with nonlinear mirror; and passive mode-locking technique with the negative feedback.
Methods and criterions for IV generation system choice
International Nuclear Information System (INIS)
Carre, F; Fiorini, G. L.
2005-01-01
The international forum of IV generation has been built up in 2000, initiated by the American Energy Department with an initial participation of nine countries (and of ten today). In a primary phase of these works, which was finished in October 2002, the forum objects were to define the list of nuclear systems conditions which could be ready to use in 2030 to make a sustainable energy development, and select previously the most promising technology to attain these purposes. This article presents, with its trumps and limits, the methodology which was used to select, starting from 120 propositions, one set of 6 systems which includes key technologies for the nuclears of the 21st century. (Authors)
Alternative method for steam generation for thermal oxidation of silicon
Spiegelman, Jeffrey J.
2010-02-01
Thermal oxidation of silicon is an important process step in MEMS device fabrication. Thicker oxide layers are often used as structural components and can take days or weeks to grow, causing high gas costs, maintenance issues, and a process bottleneck. Pyrolytic steam, which is generated from hydrogen and oxygen combustion, was the default process, but has serious drawbacks: cost, safety, particles, permitting, reduced growth rate, rapid hydrogen consumption, component breakdown and limited steam flow rates. Results from data collected over a 24 month period by a MEMS manufacturer supports replacement of pyrolytic torches with RASIRC Steamer technology to reduce process cycle time and enable expansion previously limited by local hydrogen permitting. Data was gathered to determine whether Steamers can meet or exceed pyrolytic torch performance. The RASIRC Steamer uses de-ionized water as its steam source, eliminating dependence on hydrogen and oxygen. A non-porous hydrophilic membrane selectively allows water vapor to pass. All other molecules are greatly restricted, so contaminants in water such as dissolved gases, ions, total organic compounds (TOC), particles, and metals can be removed in the steam phase. The MEMS manufacturer improved growth rate by 7% over the growth range from 1μm to 3.5μm. Over a four month period, wafer uniformity, refractive index, wafer stress, and etch rate were tracked with no significant difference found. The elimination of hydrogen generated a four-month return on investment (ROI). Mean time between failure (MTBF) was increased from 3 weeks to 32 weeks based on three Steamers operating over eight months.
International Nuclear Information System (INIS)
Yaita, T.; Hirata, M.; Narita, H.; Tachimori, S.; Yamamoto, H.; Edelstein, N.M.; Bucher, J.J.; Shuh, D.K.; Rao, L.
2001-01-01
Co-ordination properties of diglycol-amide (DGA) to trivalent curium and to the trivalent lanthanides were studied by the EXAFS, the XRD and the XPS methods. The structural determinations by both the crystal XRD and the solution EXAFS methods showed that the DGA co-ordinated to the trivalent lanthanide ion in a tridentate fashion: co-ordination of three oxygen atoms of each ligand to the metal ion. The bond distances of Er-O (carbonyl) and Er-O (ether) in the Er-DGA complex were 2.35 Angstrom, and 2.46 Angstrom, respectively, while the atom distances of Cm-O (carbonyl) and Cm-O (ether) in the Cm-DGA complex were 2.42 Angstrom and 3.94 Angstrom, respectively from the EXAFS data for the Cm-DGA complex. Accordingly, the DGA would behave only as a semi-tridentate in the co-ordination to trivalent curium in solution. We determined the valence band structures of the Er-DGA complex by the XPS in order to clarify the bond properties of the complex, and assigned the XPS spectrum by using the DV-DS molecular orbital calculation method. (authors)
International Nuclear Information System (INIS)
Tang, Pingzhou; Chen, Di; Hou, Yushuo
2016-01-01
As the world’s energy problem becomes more severe day by day, photovoltaic power generation has opened a new door for us with no doubt. It will provide an effective solution for this severe energy problem and meet human’s needs for energy if we can apply photovoltaic power generation in real life, Similar to wind power generation, photovoltaic power generation is uncertain. Therefore, the forecast of photovoltaic power generation is very crucial. In this paper, entropy method and extreme learning machine (ELM) method were combined to forecast a short-term photovoltaic power generation. First, entropy method is used to process initial data, train the network through the data after unification, and then forecast electricity generation. Finally, the data results obtained through the entropy method with ELM were compared with that generated through generalized regression neural network (GRNN) and radial basis function neural network (RBF) method. We found that entropy method combining with ELM method possesses higher accuracy and the calculation is faster.
Nuclear power generating station equipment qualification method and apparatus
International Nuclear Information System (INIS)
Fero, A.H.; Potochnik, L.M.; Riling, R.W.; Semethy, K.F.
1990-01-01
This patent describes a method of monitoring an object piece of qualified equipment in a nuclear power plant. It comprises providing a first passive mimic means for mimicking the effect of radiation received by the object piece on the object piece; providing a second mimic means for mimicking the effect of a thermal history of the object piece on the object piece and mounting the first passive mimic means and the second mimic means in close proximity to the object piece
Apparatus and method for generating high density pulses of electrons
International Nuclear Information System (INIS)
Lee, C.; Oettinger, P.E.
1981-01-01
An apparatus and method are described for the production of high density pulses of electrons using a laser energized emitter. Caesium atoms from a low pressure vapour atmosphere are absorbed on and migrate from a metallic target rapidly heated by a laser to a high temperature. Due to this heating time being short compared with the residence time of the caesium atoms adsorbed on the target surface, copious electrons are emitted which form a high current density pulse. (U.K.)
NOx generation method from recovered nitric acid by electrolysis
International Nuclear Information System (INIS)
Suzuki, Y.; Shimizu, H.; Inoue, M.; Fujiso, M.; Shibuya, M.; Iwamoto, F.; Outou, Y.; Ochi, E.; Tsuyuki, T.
1998-01-01
An R and D has been conducted on an electrolytic NO x generation process utilizing recovered nitric acid from a PUREX reprocessing plant. The purpose of the study is to drastically reduce the amount of low-level-liquid waste(LLW). The research program phase-1, constituting mainly of electrochemical reaction mechanism study, material balance evaluation and process design study, finished in 1995. The results were presented in the previous papers). The research program phase-2 has started in 1995. The schedule is as follows: FY 1991-1994: Research program phase-1 Basic study using electrolysis equipment with 100-700 cm 2 electrodes FY 1995-1999: Research program phase-2 Process performance test by larger scale electrolysis equipment with 3.6 m 2 electrodes - pilot plant design (FY 1995) - pilot plant construction (FY 1996) - engineering data acquisition (FY 1997-1999). The process consists of many unit operations such as electrolysis, oxidation, nitric acid concentration, NO x compression and storage, NO x recovery, off-gas treatment and acid supplier. This paper outlines the pilot test plant. (author)
Method and apparatus for generating highly luminous flame
Energy Technology Data Exchange (ETDEWEB)
Gitman, G.M.
1992-05-12
A combustion process and apparatus are provided for generating a variable high temperature, highly luminous flame with low NOx emission by burning gaseous and liquid materials with oxygen and air. More particularly, the invention provides a process in which there is initial control of fuel, oxygen, and air flows and the delivery of the oxidizers to a burner as two oxidizing gases having different oxygen concentrations (for example, pure oxygen and air, or oxygen and oxygen-enriched air). A first oxidizing gas containing a high oxygen concentration is injected as a stream into the central zone of a combustion tunnel or chamber, and part of the fuel (preferably the major part) is injected into the central pyrolysis zone to mix with the first oxidizing gas to create a highly luminous high-temperature flame core containing microparticles of carbon of the proper size for maximum luminosity and high temperature, and a relatively small amount of hydrocarbon radicals. In addition, part of the fuel (preferably the minor part) is injected in a plurality of streams about the flame core to mix with a second oxidizing gas (containing a lower oxygen concentration than the first oxidizing gas) and injecting the second oxidizing mixture about the flame core and the minor fuel flow to mix with the minor fuel flow. This creates a plurality of fuel-lean (oxygen-rich) flames which are directed toward the luminous flame core to form a final flame pattern having high temperature, high luminosity, and low NOx content. 6 figs.
Practical methods for generating alternating magnetic fields for biomedical research
Christiansen, Michael G.; Howe, Christina M.; Bono, David C.; Perreault, David J.; Anikeeva, Polina
2017-08-01
Alternating magnetic fields (AMFs) cause magnetic nanoparticles (MNPs) to dissipate heat while leaving surrounding tissue unharmed, a mechanism that serves as the basis for a variety of emerging biomedical technologies. Unfortunately, the challenges and costs of developing experimental setups commonly used to produce AMFs with suitable field amplitudes and frequencies present a barrier to researchers. This paper first presents a simple, cost-effective, and robust alternative for small AMF working volumes that uses soft ferromagnetic cores to focus the flux into a gap. As the experimental length scale increases to accommodate animal models (working volumes of 100s of cm3 or greater), poor thermal conductivity and volumetrically scaled core losses render that strategy ineffective. Comparatively feasible strategies for these larger volumes instead use low loss resonant tank circuits to generate circulating currents of 1 kA or greater in order to produce the comparable field amplitudes. These principles can be extended to the problem of identifying practical routes for scaling AMF setups to humans, an infrequently acknowledged challenge that influences the extent to which many applications of MNPs may ever become clinically relevant.
Next Generation Sequencing Methods for Diagnosis of Epilepsy Syndromes
Directory of Open Access Journals (Sweden)
Paul Dunn
2018-02-01
Full Text Available Epilepsy is a neurological disorder characterized by an increased predisposition for seizures. Although this definition suggests that it is a single disorder, epilepsy encompasses a group of disorders with diverse aetiologies and outcomes. A genetic basis for epilepsy syndromes has been postulated for several decades, with several mutations in specific genes identified that have increased our understanding of the genetic influence on epilepsies. With 70-80% of epilepsy cases identified to have a genetic cause, there are now hundreds of genes identified to be associated with epilepsy syndromes which can be analyzed using next generation sequencing (NGS techniques such as targeted gene panels, whole exome sequencing (WES and whole genome sequencing (WGS. For effective use of these methodologies, diagnostic laboratories and clinicians require information on the relevant workflows including analysis and sequencing depth to understand the specific clinical application and diagnostic capabilities of these gene sequencing techniques. As epilepsy is a complex disorder, the differences associated with each technique influence the ability to form a diagnosis along with an accurate detection of the genetic etiology of the disorder. In addition, for diagnostic testing, an important parameter is the cost-effectiveness and the specific diagnostic outcome of each technique. Here, we review these commonly used NGS techniques to determine their suitability for application to epilepsy genetic diagnostic testing.
A third-generation dispersion and third-generation hydrogen bonding corrected PM6 method
DEFF Research Database (Denmark)
Kromann, Jimmy Charnley; Christensen, Anders Steen; Svendsen, Casper Steinmann
2014-01-01
We present new dispersion and hydrogen bond corrections to the PM6 method, PM6-D3H+, and its implementation in the GAMESS program. The method combines the DFT-D3 dispersion correction by Grimme et al. with a modified version of the H+ hydrogen bond correction by Korth. Overall, the interaction...... in GAMESS, while the corresponding numbers for PM6-DH+ implemented in MOPAC are 54, 17, 15, and 2. The PM6-D3H+ method as implemented in GAMESS offers an attractive alternative to PM6-DH+ in MOPAC in cases where the LBFGS optimizer must be used and a vibrational analysis is needed, e.g., when computing...... vibrational free energies. While the GAMESS implementation is up to 10 times slower for geometry optimizations of proteins in bulk solvent, compared to MOPAC, it is sufficiently fast to make geometry optimizations of small proteins practically feasible....
Current state and development trends of inspections of steam generator tubes by eddy currents method
International Nuclear Information System (INIS)
Kubis, S.; Herman, M.
1988-01-01
The requirements are presented for steam generator tube testing and the factors are discussed affecting the accuracy of measurement by the eddy currents method. The individual types of the eddy currents method are described, such as the single-frequency method, the multi-frequency method and the pulse eddy currents method. The demands are summed up on manipulator systems whose design is adapted to the steam generator configuration conditions. (E.S.). 5 figs., 16 possu
D. Schipper (Danny); L.M. Gerrits (Lasse)
2017-01-01
textabstractEarly in 2014, the Dutch railway system spiralled out of control after traffic management was confronted with the decision to take four double switches and two rail tracks out of service. A lack of coordination between the responsible teams resulted in the decision to stop all traffic in
Directory of Open Access Journals (Sweden)
Jian Zuo
2017-04-01
Full Text Available The potential of utilizing doubly-fed induction generator (DFIG-based wind farms to improve power system damping performance and to enhance small signal stability has been proposed by many researchers. However, the simultaneous coordinated tuning of a DFIG power oscillation damper (POD with other damping controllers is rarely involved. A simultaneous robust coordinated multiple damping controller design strategy for a power system incorporating power system stabilizer (PSS, static var compensator (SVC POD and DFIG POD is presented in this paper. This coordinated damping control design strategy is addressed as an eigenvalue-based optimization problem to increase the damping ratios of oscillation modes. Both local and inter-area electromechanical oscillation modes are intended in the optimization design process. Wide-area phasor measurement unit (PMU signals, selected by the joint modal controllability/ observability index, are utilized as SVC and DFIG POD feedback modulation signals to suppress inter-area oscillation modes. The robustness of the proposed coordinated design strategy is achieved by simultaneously considering multiple power flow situations and operating conditions. The recently proposed Grey Wolf optimizer (GWO algorithm is adopted to efficiently optimize the parameter values of multiple damping controllers. The feasibility and effectiveness of the proposed coordinated design strategy are demonstrated through frequency-domain eigenvalue analysis and nonlinear time-domain simulation studies in two modified benchmark test systems. Moreover, the dynamic response simulation results also validate the robustness of the recommended coordinated multiple damping controllers under various system operating conditions.
MCAPM: All particle method generator and collision package
International Nuclear Information System (INIS)
Rathkopf, J.A.
1992-11-01
MCAPM (Monte Carlo All Particle Method) is a collection of subroutines that read the data necessary for and perform the physics involved in collisions of neutrons, protons, deuterons, helium-3, alphas, and gammas with background material. These subroutines are divided into two packages. The first package, gen2000, reads the cross sections and distributions from binary libraries that describe in-flight reactions and formats them in a form appropriate for use by the second package. Libraries are organized by incident particle type, but contain information describing the attributes of all output particles. The method of tabulating cross section data depends on the incident particle type. Neutron and charged particle cross sections are multi-group; gamma cross sections are log-log interpolated from an energy grid consistent over all target elements. The second package, bang2000, uses these data to perform the collision physics. Each Monte Carlo particle possesses a discrete energy value allowing the kinematics of collisions to be performed on a continuous energy basis. The result of the kinematics is the attributes (type, number, energy, and direction) of all the particles emerging from the collision. MCAPM is modular and has been ported to a variety of platforms
Kinematic method for beam energy determination at electrostatic generators
International Nuclear Information System (INIS)
Thomas, H.J.; Gersch, H.U.; Hentschel, E.; Wohlfahrt, D.
1975-06-01
The applicability of the kinematics of nuclear reactions to the energy determination of a particle beam is discussed. Most favourable conditions are obtained for the kinematic cross over of particles elastically and inelastically scattered at targets with different masses. At tandem energies between 4 and 15 MeV this method permits an exact determination with a precision of about 1 keV. The scattered particles must be measured at about 170 0 with a precision of the scattering angle of 0.1 0 . For the energy determination of a proton beam the compounds LiF, LiCl, or deuterium enriched hydrocarbons are found to be proper target materials. Experimental results with a LiF-target are described. (author)
Data Mining Methods to Generate Severe Wind Gust Models
Directory of Open Access Journals (Sweden)
Subana Shanmuganathan
2014-01-01
Full Text Available Gaining knowledge on weather patterns, trends and the influence of their extremes on various crop production yields and quality continues to be a quest by scientists, agriculturists, and managers. Precise and timely information aids decision-making, which is widely accepted as intrinsically necessary for increased production and improved quality. Studies in this research domain, especially those related to data mining and interpretation are being carried out by the authors and their colleagues. Some of this work that relates to data definition, description, analysis, and modelling is described in this paper. This includes studies that have evaluated extreme dry/wet weather events against reported yield at different scales in general. They indicate the effects of weather extremes such as prolonged high temperatures, heavy rainfall, and severe wind gusts. Occurrences of these events are among the main weather extremes that impact on many crops worldwide. Wind gusts are difficult to anticipate due to their rapid manifestation and yet can have catastrophic effects on crops and buildings. This paper examines the use of data mining methods to reveal patterns in the weather conditions, such as time of the day, month of the year, wind direction, speed, and severity using a data set from a single location. Case study data is used to provide examples of how the methods used can elicit meaningful information and depict it in a fashion usable for management decision making. Historical weather data acquired between 2008 and 2012 has been used for this study from telemetry devices installed in a vineyard in the north of New Zealand. The results show that using data mining techniques and the local weather conditions, such as relative pressure, temperature, wind direction and speed recorded at irregular intervals, can produce new knowledge relating to wind gust patterns for vineyard management decision making.
Directory of Open Access Journals (Sweden)
Vikhlyaeva Nataliya V.
2017-10-01
Full Text Available The article presents the methodical bases of assessing the innovation processes of power generating companies with use of opportunities of cognitive modeling. It is specified that the method of cognitive modeling allows to remove contradictions concerning the interrelationship of the factors determining the innovation processes of the energy generating companies that usually arise when the results of research on the elements of the innovation system are being coordinated. Based on the arguments and practical examples, provided in the article, it was concluded that application of the method of cognitive modeling in the process of assessing the innovative capabilities of energy-generating companies is a sufficiently flexible and effective tool for supporting decision-making on strategic directions of their development.
State Generation Method for Humanoid Motion Planning Based on Genetic Algorithm
Directory of Open Access Journals (Sweden)
Xuyang Wang
2012-05-01
Full Text Available A new approach to generate the original motion data for humanoid motion planning is presented in this paper. And a state generator is developed based on the genetic algorithm, which enables users to generate various motion states without using any reference motion data. By specifying various types of constraints such as configuration constraints and contact constraints, the state generator can generate stable states that satisfy the constraint conditions for humanoid robots. To deal with the multiple constraints and inverse kinematics, the state generation is finally simplified as a problem of optimizing and searching. In our method, we introduce a convenient mathematic representation for the constraints involved in the state generator, and solve the optimization problem with the genetic algorithm to acquire a desired state. To demonstrate the effectiveness and advantage of the method, a number of motion states are generated according to the requirements of the motion.
State Generation Method for Humanoid Motion Planning Based on Genetic Algorithm
Directory of Open Access Journals (Sweden)
Xuyang Wang
2008-11-01
Full Text Available A new approach to generate the original motion data for humanoid motion planning is presented in this paper. And a state generator is developed based on the genetic algorithm, which enables users to generate various motion states without using any reference motion data. By specifying various types of constraints such as configuration constraints and contact constraints, the state generator can generate stable states that satisfy the constraint conditions for humanoid robots.To deal with the multiple constraints and inverse kinematics, the state generation is finally simplified as a problem of optimizing and searching. In our method, we introduce a convenient mathematic representation for the constraints involved in the state generator, and solve the optimization problem with the genetic algorithm to acquire a desired state. To demonstrate the effectiveness and advantage of the method, a number of motion states are generated according to the requirements of the motion.
Deng, Zhengping; Li, Shuanggao; Huang, Xiang
2018-06-01
In the assembly process of large-size aerospace products, the leveling and horizontal alignment of large components are essential prior to the installation of an inertial navigation system (INS) and the final quality inspection. In general, the inherent coordinate systems of large-scale coordinate measuring devices are not coincident with the geodetic horizontal system, and a dual-axis compensation system is commonly required for the measurement of difference in heights. These compensation systems are expensive and dedicated designs for different devices at present. Considering that a large-size assembly site usually needs more than one measuring device, a compensation approach which is versatile for different devices would be a more convenient and economic choice for manufacturers. In this paper, a flexible and cost-effective compensation method is proposed. Firstly, an auxiliary measuring device called a versatile compensation fixture (VCF) is designed, which mainly comprises reference points for coordinate transformation and a dual-axis inclinometer, and a kind of network tighten points (NTPs) are introduced and temporarily deployed in the large measuring space to further reduce transformation error. Secondly, the measuring principle of height difference is studied, based on coordinate transformation theory and trigonometry while considering the effects of earth curvature, and the coordinate transformation parameters are derived by least squares adjustment. Thirdly, the analytical solution of leveling uncertainty is analyzed, based on which the key parameters of the VCF and the proper deployment of NTPs are determined according to the leveling accuracy requirement. Furthermore, the proposed method is practically applied to the assembly of a large helicopter by developing an automatic leveling and alignment system. By measuring four NTPs, the leveling uncertainty (2σ) is reduced by 29.4% to about 0.12 mm, compared with that without NTPs.
Energy Technology Data Exchange (ETDEWEB)
Sidler, Rolf, E-mail: rsidler@gmail.com [Center for Research of the Terrestrial Environment, University of Lausanne, CH-1015 Lausanne (Switzerland); Carcione, José M. [Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42c, 34010 Sgonico, Trieste (Italy); Holliger, Klaus [Center for Research of the Terrestrial Environment, University of Lausanne, CH-1015 Lausanne (Switzerland)
2013-02-15
We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge–Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid–solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently benchmarked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.
Online Optimization Method for Operation of Generators in a Micro Grid
Hayashi, Yasuhiro; Miyamoto, Hideki; Matsuki, Junya; Iizuka, Toshio; Azuma, Hitoshi
Recently a lot of studies and developments about distributed generator such as photovoltaic generation system, wind turbine generation system and fuel cell have been performed under the background of the global environment issues and deregulation of the electricity market, and the technique of these distributed generators have progressed. Especially, micro grid which consists of several distributed generators, loads and storage battery is expected as one of the new operation system of distributed generator. However, since precipitous load fluctuation occurs in micro grid for the reason of its smaller capacity compared with conventional power system, high-accuracy load forecasting and control scheme to balance of supply and demand are needed. Namely, it is necessary to improve the precision of operation in micro grid by observing load fluctuation and correcting start-stop schedule and output of generators online. But it is not easy to determine the operation schedule of each generator in short time, because the problem to determine start-up, shut-down and output of each generator in micro grid is a mixed integer programming problem. In this paper, the authors propose an online optimization method for the optimal operation schedule of generators in micro grid. The proposed method is based on enumeration method and particle swarm optimization (PSO). In the proposed method, after picking up all unit commitment patterns of each generators satisfied with minimum up time and minimum down time constraint by using enumeration method, optimal schedule and output of generators are determined under the other operational constraints by using PSO. Numerical simulation is carried out for a micro grid model with five generators and photovoltaic generation system in order to examine the validity of the proposed method.
International Nuclear Information System (INIS)
Taunier, S.; Wintergerst, M.; De Bouvier, O.; Pokor, C.; Carrette, F.; Toivonen, A.; Ranchoux, G.; Bretelle, J.L.
2010-01-01
The release of corrosion products by the various components of the primary system into the cooling water may induce some issues on reactor control and on radiation dose rates. Heavy crud deposits may occur on the fuel clad surface and lead to axial offset anomalies (AOA) and in extreme cases, to fuel failures. This deposition phenomenon is apparently associated with steam generator (SG) materials, water chemistry, thermal hydraulics, fuel cleaning or reactor operation history. Moreover, under intense neutron flux, these corrosion products are activated and their dissolution and deposition in the primary system may further increase the out-of-core radioactive contamination and result in radiation dose rates. Several ways are available to reduce the amount and transportation of corrosion products in the primary coolant. A first approach is related to the materials used in the primary system. As one of the main contributors to the release of corrosion products, the Ni-alloy used for the steam generators (SG) tubes has to be properly selected, manufactured and 'passivated'. The paper presents the recent feedback regarding the primary coolant chemistry and radiochemistry after Steam Generators Replacements (SGR). The modified startup procedure of the plant after SGR is also described, as well as its potential benefits on the primary coolant behavior. A second approach is to optimize the primary water chemistry to reduce the release and the transport of the corrosion products through the pH control. This kind of control is important, since higher fuel enrichments are currently used in our reactors, in order to get longer production cycles through higher burn-ups. To ensure the core reactivity control in the PWRs, the concentration of boric acid is increased in the primary water at the beginning of cycle (BOC). As a consequence, the resulting lower pH can induce a higher release of corrosion products from the steam generators. That is why, to keep an almost
Morgan-Fletcher, S; McKenzie, A L
1996-03-01
The problem of matching radiation beams was tackled by Siddon in 1980 using co-ordinate transformations. Since then, the need to distinguish between individual collimators in prescriptions of treatment set-up, brought about by the widespread use of 3-D treatment planning systems and asymmetric fields, as well as a reversal of the rotation sense in the turntable co-ordinate system proposed by the International Electrotechnical Commission, have made it necessary to revisit this particular problem. This paper builds upon Siddon's general equations for the particular case of matching beams, and derives expressions for calculating treatment-unit settings which may be used in a computer program without the need to perform matrix manipulation. The expression treat the individual collimator jaws separately.
Explicitly computing geodetic coordinates from Cartesian coordinates
Zeng, Huaien
2013-04-01
This paper presents a new form of quartic equation based on Lagrange's extremum law and a Groebner basis under the constraint that the geodetic height is the shortest distance between a given point and the reference ellipsoid. A very explicit and concise formulae of the quartic equation by Ferrari's line is found, which avoids the need of a good starting guess for iterative methods. A new explicit algorithm is then proposed to compute geodetic coordinates from Cartesian coordinates. The convergence region of the algorithm is investigated and the corresponding correct solution is given. Lastly, the algorithm is validated with numerical experiments.
Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin
2018-04-01
In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.
Application of Integrated Neural Network Method to Fault Diagnosis of Nuclear Steam Generator
International Nuclear Information System (INIS)
Zhou Gang; Yang Li
2009-01-01
A new fault diagnosis method based on integrated neural networks for nuclear steam generator (SG) was proposed in view of the shortcoming of the conventional fault monitoring and diagnosis method. In the method, two neural networks (ANNs) were employed for the fault diagnosis of steam generator. A neural network, which was used for predicting the values of steam generator operation parameters, was taken as the dynamics model of steam generator. The principle of fault monitoring method using the neural network model is to detect the deviations between process signals measured from an operating steam generator and corresponding output signals from the neural network model of steam generator. When the deviation exceeds the limit set in advance, the abnormal event is thought to occur. The other neural network as a fault classifier conducts the fault classification of steam generator. So, the fault types of steam generator are given by the fault classifier. The clear information on steam generator faults was obtained by fusing the monitoring and diagnosis results of two neural networks. The simulation results indicate that employing integrated neural networks can improve the capacity of fault monitoring and diagnosis for the steam generator. (authors)
Weaver, Brian T; Braman, Jerrod E; Haut, Roger C
2016-06-01
A direct method to express the center of pressure (CoP) measured by an insole pressure sensor system (IPSS) into a known coordinate system measured by motion tracking equipment is presented. A custom probe was constructed with reflective markers to allow its tip to be precisely tracked with motion tracking equipment. This probe was utilized to activate individual sensors on an IPSS that was placed in a shoe fitted with reflective markers used to establish a local shoe coordinate system. When pressed onto the IPSS the location of the probe's tip was coincident with the CoP measured by the IPSS (IPSS-CoP). Two separate pushes (i.e., data points) were used to develop vectors in each respective coordinate system. Simple vector mathematics determined the rotational and translational components of the transformation matrix needed to express the IPSS-CoP into the local shoe coordinate system. Validation was performed by comparing IPSS-CoP with an embedded force plate measured CoP (FP-CoP) from data gathered during kinematic trials. Six male subjects stood on an embedded FP and performed anterior/posterior (AP) sway, internal rotation, and external rotation of the body relative to a firmly planted foot. The IPSS-CoP was highly correlated with the FP-CoP for all motions, root mean square errors (RMSRRs) were comparable to other research, and there were no statistical differences between the displacement of the IPSS-CoP and FP-CoP for both the AP and medial/lateral (ML) axes, respectively. The results demonstrated that this methodology could be utilized to determine the transformation variables need to express IPSS-CoP into a known coordinate system measured by motion tracking equipment and that these variables can be determined outside the laboratory anywhere motion tracking equipment is available.
Czech Academy of Sciences Publication Activity Database
Steiner, Jakub
-, č. 274 (2005), s. 1-26 ISSN 1211-3298 Institutional research plan: CEZ:AV0Z70850503 Keywords : coordination * crises * cycles and fluctuations Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp274.pdf
Czech Academy of Sciences Publication Activity Database
Steiner, Jakub
2008-01-01
Roč. 63, č. 1 (2008), s. 308-327 ISSN 0899-8256 Institutional research plan: CEZ:AV0Z70850503 Keywords : global games * coordination * crises * cycles and fluctuations Subject RIV: AH - Economics Impact factor: 1.333, year: 2008
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-07-01
This document summarizes the results of a co-ordinated research programme on ``The Use of Nuclear Techniques for Improvement of Crop Production in Salt-affected Soils``. It aims at providing scientists experimental evidence of demonstrating technical feasibility of biological amelioration of salt affected soils as an alternative option of using expensive chemical amendments in soil reclamation complementing engineering structures of farm drainage systems or option of leaving the saline areas as barren lands in spite of the fact that arable agricultural lands have exhausted. 68 refs, 26 figs, 32 tabs.
International Nuclear Information System (INIS)
1995-07-01
This document summarizes the results of a co-ordinated research programme on ''The Use of Nuclear Techniques for Improvement of Crop Production in Salt-affected Soils''. It aims at providing scientists experimental evidence of demonstrating technical feasibility of biological amelioration of salt affected soils as an alternative option of using expensive chemical amendments in soil reclamation complementing engineering structures of farm drainage systems or option of leaving the saline areas as barren lands in spite of the fact that arable agricultural lands have exhausted. 68 refs, 26 figs, 32 tabs
Energy Technology Data Exchange (ETDEWEB)
NONE
2003-02-01
The report contains 13 papers presented at the final research co-ordination meeting of the CRP. The subjects covered include processes and technologies for treatment and conditioning of liquid radioactive wastes. It quite often includes the application of several steps, such as filtration, precipitation, sorption, ion exchange, evaporation and/or membrane separation to meet the requirements both for the release of decontaminated effluents into the environment and the conditioning of waste concentrates for disposal. Combination of the processes and their consecutive or simultaneous application is also described. It results in an improved decontamination, waste volume reduction, safety and overall cost effectiveness in the treatment, conditioning and disposal of these wastes.
International Nuclear Information System (INIS)
2003-02-01
The report contains 13 papers presented at the final research co-ordination meeting of the CRP. The subjects covered include processes and technologies for treatment and conditioning of liquid radioactive wastes. It quite often includes the application of several steps, such as filtration, precipitation, sorption, ion exchange, evaporation and/or membrane separation to meet the requirements both for the release of decontaminated effluents into the environment and the conditioning of waste concentrates for disposal. Combination of the processes and their consecutive or simultaneous application is also described. It results in an improved decontamination, waste volume reduction, safety and overall cost effectiveness in the treatment, conditioning and disposal of these wastes
Directory of Open Access Journals (Sweden)
Chuan Ding
2014-01-01
preference and they are not jealous of manufacturers’ benefit, manufacturers will be more friendly to retailers. In such case, the total utility of the channel is higher compared with that of self-interest channel, and the utility of channel members is Pareto improved. If both manufactures and retailers consider reciprocal fairness preference, the manufacturers will give a lower wholesale price to the retailers. In return, the retailers will also reduce retail prices. Therefore, the total utility of the channels will not be less than the total utility of the channel coordination, as long as the reciprocity wholesale prices meet certain conditions.
Directory of Open Access Journals (Sweden)
Yunlong eLu
2015-06-01
Full Text Available The development of sperm cells from microspores involves a set of finely regulated molecular and cellular events and the coordination of these events. The mechanisms underlying these events and their interconnections remain a major challenge. Systems analysis of genome-wide molecular networks and functional modules with high-throughput omics approaches is crucial for understanding the mechanisms; however, this study is hindered because of the difficulty in isolating a large amount of cells of different types, especially generative cells (GCs, from the pollen. Here, we optimized the conditions of tomato pollen germination and pollen tube growth to allow for long-term growth of pollen tubes in vitro with sperm cells (SCs generated in the tube. Using this culture system, we developed methods for isolating GCs, SCs and vegetative-cell nuclei (VN from just-germinated tomato pollen grains and growing pollen tubes and their purification by Percoll density gradient centrifugation. The purity and viability of isolated GCs and SCs were confirmed by microscopy examination and fluorescein diacetate staining, respectively, and the integrity of VN was confirmed by propidium iodide staining. We could obtain about 1.5 million GCs and 2.0 million SCs each from 180 mg initiated pollen grains, and 10 million VN from 270 mg initiated pollen grains germinated in vitro in each experiment. These methods provide the necessary preconditions for systematic biology studies of SC development and differentiation in higher plants.
Lu, Yunlong; Wei, Liqin; Wang, Tai
2015-01-01
The development of sperm cells (SCs) from microspores involves a set of finely regulated molecular and cellular events and the coordination of these events. The mechanisms underlying these events and their interconnections remain a major challenge. Systems analysis of genome-wide molecular networks and functional modules with high-throughput "omics" approaches is crucial for understanding the mechanisms; however, this study is hindered because of the difficulty in isolating a large amount of cells of different types, especially generative cells (GCs), from the pollen. Here, we optimized the conditions of tomato pollen germination and pollen tube growth to allow for long-term growth of pollen tubes in vitro with SCs generated in the tube. Using this culture system, we developed methods for isolating GCs, SCs and vegetative cell nuclei (VN) from just-germinated tomato pollen grains and growing pollen tubes and their purification by Percoll density gradient centrifugation. The purity and viability of isolated GCs and SCs were confirmed by microscopy examination and fluorescein diacetate staining, respectively, and the integrity of VN was confirmed by propidium iodide staining. We could obtain about 1.5 million GCs and 2.0 million SCs each from 180 mg initiated pollen grains, and 10 million VN from 270 mg initiated pollen grains germinated in vitro in each experiment. These methods provide the necessary preconditions for systematic biology studies of SC development and differentiation in higher plants.
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-04-01
It is well recognized that diagnostic radiology is the largest contributor to the collective dose from all man-made sources of radiation. Large differences in radiation doses from the same procedures among different X ray rooms have led to the conclusion that there is a potential for dose reduction. A Co-ordinated Research Programme on Radiation Doses in Diagnostic Radiology and Methods for Dose Reduction, involving Member States with different degrees of development, was launched by the IAEA in co-operation with the CEC. This report summarizes the results of the second and final Research Co-ordination Meeting held in Vienna from 4 to 8 October 1993. 22 refs, 6 figs and tabs.
International Nuclear Information System (INIS)
1995-04-01
It is well recognized that diagnostic radiology is the largest contributor to the collective dose from all man-made sources of radiation. Large differences in radiation doses from the same procedures among different X ray rooms have led to the conclusion that there is a potential for dose reduction. A Co-ordinated Research Programme on Radiation Doses in Diagnostic Radiology and Methods for Dose Reduction, involving Member States with different degrees of development, was launched by the IAEA in co-operation with the CEC. This report summarizes the results of the second and final Research Co-ordination Meeting held in Vienna from 4 to 8 October 1993. 22 refs, 6 figs and tabs
International Nuclear Information System (INIS)
Hashimoto, Y.; Marumori, T.; Sakata, F.
1987-01-01
With the purpose of clarifying characteristic difference of the optimum collective submanifolds in nonresonant and resonant cases, we develop an improved method of solving the basic equations of the self-consistent collective-coordinate (SCC) method for large-amplitude collective motion. It is shown that, in the resonant cases, there inevitably arise essential coupling terms which break the maximal-decoupling property of the collective motion, and we have to extend the optimum collective submanifold so as to properly treat the degrees of freedom which bring about the resonances
Directory of Open Access Journals (Sweden)
Venu Gopal
2014-07-01
Full Text Available In this paper, we propose a new three-level implicit nine point compact finite difference formulation of O(k2 + h4 based on non-polynomial tension spline approximation in r-direction and finite difference approximation in t-direction for the numerical solution of one dimensional wave equation in polar co-ordinates. We describe the mathematical formulation procedure in details and also discuss the stability of the method. Numerical results are provided to justify the usefulness of the proposed method.
A synthetic-eddy-method for generating inflow conditions for large-eddy simulations
International Nuclear Information System (INIS)
Jarrin, N.; Benhamadouche, S.; Laurence, D.; Prosser, R.
2006-01-01
The generation of inflow data for spatially developing turbulent flows is one of the challenges that must be addressed prior to the application of LES to industrial flows and complex geometries. A new method of generation of synthetic turbulence, suitable for complex geometries and unstructured meshes, is presented herein. The method is based on the classical view of turbulence as a superposition of coherent structures. It is able to reproduce prescribed first and second order one point statistics, characteristic length and time scales, and the shape of coherent structures. The ability of the method to produce realistic inflow conditions in the test cases of a spatially decaying homogeneous isotropic turbulence and of a fully developed turbulent channel flow is presented. The method is systematically compared to other methods of generation of inflow conditions (precursor simulation, spectral methods and algebraic methods)
The importance of the keyword-generation method in keyword mnemonics.
Campos, Alfredo; Amor, Angeles; González, María Angeles
2004-01-01
Keyword mnemonics is under certain conditions an effective approach for learning foreign-language vocabulary. It appears to be effective for words with high image vividness but not for words with low image vividness. In this study, two experiments were performed to assess the efficacy of a new keyword-generation procedure (peer generation). In Experiment 1, a sample of 363 high-school students was randomly into four groups. The subjects were required to learn L1 equivalents of a list of 16 Latin words (8 with high image vividness, 8 with low image vividness), using a) the rote method, or the keyword method with b) keywords and images generated and supplied by the experimenter, c) keywords and images generated by themselves, or d) keywords and images previously generated by peers (i.e., subjects with similar sociodemographic characteristics). Recall was tested immediately and one week later. For high-vivideness words, recall was significantly better in the keyword groups than the rote method group. For low-vividness words, learning method had no significant effect. Experiment 2 was basically identical, except that the word lists comprised 32 words (16 high-vividness, 16 low-vividness). In this experiment, the peer-generated-keyword group showed significantly better recall of high-vividness words than the rote method groups and the subject generated keyword group; again, however, learning method had no significant effect on recall of low-vividness words.
International Nuclear Information System (INIS)
1992-10-01
The purpose of this Second Research Co-ordinated Meeting (12-16 August 1991) on Rapid Instrumental and Separation Methods for Monitoring Radionuclides in Food and Environmental Samples is to discuss the progress of the programmes since the First Research Co-ordination Meeting, discuss how to validate the methodologies developed (e.g. reference samples, intercomparisons), and outline a schedule for CRP completion by the end of 1992. Radioactive contamination of the environment after a nuclear accident, such as had occurred at Chernobyl, is of serious concern to government officials and members of the general public. In 1990/1991 the Agency was asked to organize the International Chernobyl Project to assess the situation in the USSR. A network of laboratories was organized to carry out the environmental assessment needed for this project. The following recommendations are based on the experience gained by many of the laboratories involved in this project. 1. Maintain a network of analytical laboratories with special skills and experience to provide assessments of radionuclide contamination in the environment in case of a radiological emergency. 2. Methodologies for assessment of contamination in the environment should take into consideration potential trajectories, radioecology, and food chain parameters. 3. Focus on areas of representative sample collection, is situ instrumental and chemical analysis, as well as advanced streamlined laboratory analyses which will facilitate the timeline of an assessment. 4. Conduct intercomparison and testing of technologies, employing standard reference materials and procedures, and field measurements at significantly contaminated area. 5. Conduct training of Member State laboratory personnel through fellowships, special courses, and workshops. 5 refs
A. Ball
Overview From a technical perspective, CMS has been in “beam operation” state since 6th November. The detector is fully closed with all components operational and the magnetic field is normally at the nominal 3.8T. The UXC cavern is normally closed with the radiation veto set. Access to UXC is now only possible during downtimes of LHC. Such accesses must be carefully planned, documented and carried out in agreement with CMS Technical Coordination, Experimental Area Management, LHC programme coordination and the CCC. Material flow in and out of UXC is now strictly controlled. Access to USC remains possible at any time, although, for safety reasons, it is necessary to register with the shift crew in the control room before going down.It is obligatory for all material leaving UXC to pass through the underground buffer zone for RP scanning, database entry and appropriate labeling for traceability. Technical coordination (notably Stephane Bally and Christoph Schaefer), the shift crew and run ...
Classification of methods for annual energy harvesting calculations of photovoltaic generators
International Nuclear Information System (INIS)
Rus-Casas, C.; Aguilar, J.D.; Rodrigo, P.; Almonacid, F.; Pérez-Higueras, P.J.
2014-01-01
Highlights: • The paper presents a novel classification of methods for annual energy harvesting calculation of grid-connected PV systems. • The methods are classified in direct and indirect methods. • Direct methods directly calculate the energy. Indirect methods calculate the energy from the power. • The classification can help the PV professionals in order to choose the most suitable method for each application. - Abstract: Estimating the energy provided by the generators of grid-connected photovoltaic systems is important in order to analyze their economic viability and supervise their operation. The energy harvesting calculation of a photovoltaic generator is not trivial; there are a lot of methods for this calculation. The aim of this paper is to develop a novel classification of methods for annual energy harvesting calculation of a generator of a grid-connected photovoltaic system. The methods are classified in two groups: (1) those that indirectly calculate the energy, i.e. they first calculate the power and from this, they calculate the energy, and (2) those that directly calculate the energy. Furthermore, the indirect methods are grouped in two categories: those that first calculate the I–V curve of the generator and from this, they calculate the power, and those that directly calculate the power. The study has shown that the existing methods differ in simplicity and accuracy, so that the proposed classification is useful in order to choose the most suitable method for each specific application
Who Gets the Job? First-Generation College Students' Perceptions of Employer Screening Methods
Parks-Yancy, Rochelle; Cooley, Delonia
2018-01-01
What are first-generation college students' (FGCS) perspectives of employment screening methods? The authors investigate which methods FGCS believe are likely to cause an employer to extend a job offer and which methods yield the best pool of job applicants. Survey data were collected from undergraduate business majors. They were analyzed using…
Transonic Airfoil Flow Simulation. Part I: Mesh Generation and Inviscid Method
Directory of Open Access Journals (Sweden)
Vladimir CARDOS
2010-06-01
Full Text Available A calculation method for the subsonic and transonic viscous flow over airfoil using thedisplacement surface concept is described. Part I presents a mesh generation method forcomputational grid and a finite volume method for the time-dependent Euler equations. The inviscidsolution is used for the inviscid-viscous coupling procedure presented in the Part II.
New method for protection of parallel generator; Novo metodo para protecao do gerador em paralelismo
Energy Technology Data Exchange (ETDEWEB)
Silva, M R.C. da [Elfa-Seg Eletronica Ltda. (Brazil)
1988-07-01
The protection of synchronous machinery, especially generators working in parallel with the pertaining electric power utility have been extensively discussed specially because of the growing importance of co-generation in Brazil. This work discusses existing efficient methods and suggests new ways of proceeding this protection. 8 refs., 2 figs.
Method for Generating Pseudorandom Sequences with the Assured Period Based on R-blocks
Directory of Open Access Journals (Sweden)
M. A. Ivanov
2011-03-01
Full Text Available The article describes the characteristics of a new class of fast-acting pseudorandom number generators, based on the use of stochastic adders or R-blocks. A new method for generating pseudorandom sequences with the assured length of period is offered.
Mixed Methods Case Study of Generational Patterns in Responses to Shame and Guilt
Ng, Tony
2013-01-01
Moral socialization and moral learning are antecedents of moral motivation. As many as 4 generations interact in workplace and education settings; hence, a deeper understanding of the moral motivation of members of those generations is needed. The purpose of this convergent mixed methods case study was to understand the moral motivation of 5…
Mastmeyer, André; Engelke, Klaus; Fuchs, Christina; Kalender, Willi A
2006-08-01
We have developed a new hierarchical 3D technique to segment the vertebral bodies in order to measure bone mineral density (BMD) with high trueness and precision in volumetric CT datasets. The hierarchical approach starts with a coarse separation of the individual vertebrae, applies a variety of techniques to segment the vertebral bodies with increasing detail and ends with the definition of an anatomic coordinate system for each vertebral body, relative to which up to 41 trabecular and cortical volumes of interest are positioned. In a pre-segmentation step constraints consisting of Boolean combinations of simple geometric shapes are determined that enclose each individual vertebral body. Bound by these constraints viscous deformable models are used to segment the main shape of the vertebral bodies. Volume growing and morphological operations then capture the fine details of the bone-soft tissue interface. In the volumes of interest bone mineral density and content are determined. In addition, in the segmented vertebral bodies geometric parameters such as volume or the length of the main axes of inertia can be measured. Intra- and inter-operator precision errors of the segmentation procedure were analyzed using existing clinical patient datasets. Results for segmented volume, BMD, and coordinate system position were below 2.0%, 0.6%, and 0.7%, respectively. Trueness was analyzed using phantom scans. The bias of the segmented volume was below 4%; for BMD it was below 1.5%. The long-term goal of this work is improved fracture prediction and patient monitoring in the field of osteoporosis. A true 3D segmentation also enables an accurate measurement of geometrical parameters that may augment the clinical value of a pure BMD analysis.
Improved method of generating bit reversed numbers for calculating fast fourier transform
Digital Repository Service at National Institute of Oceanography (India)
Suresh, T.
Fast Fourier Transform (FFT) is an important tool required for signal processing in defence applications. This paper reports an improved method for generating bit reversed numbers needed in calculating FFT using radix-2. The refined algorithm takes...
Uchida, Takeyoshi; Kikuchi, Tsuneo
2013-07-01
Ultrasonic power is one of the key quantities closely related to the safety of medical ultrasonic equipment. An ultrasonic power standard is required for establishment of safety. Generally, an ultrasonic power standard below approximately 20 W is established by the radiation force balance (RFB) method as the most accurate measurement method. However, RFB is not suitable for high ultrasonic power because of thermal damage to the absorbing target. Consequently, an alternative method to RFB is required. We have been developing a measurement technique for high ultrasonic power by the calorimetric method. In this study, we examined the effect of heat generation of an ultrasound transducer on ultrasonic power measured by the calorimetric method. As a result, an excessively high ultrasonic power was measured owing to the effect of heat generation from internal loss in the transducer. A reference ultrasound transducer with low heat generation is required for a high ultrasonic power standard established by the calorimetric method.
Applicability of the minimum entropy generation method for optimizing thermodynamic cycles
Institute of Scientific and Technical Information of China (English)
Cheng Xue-Tao; Liang Xin-Gang
2013-01-01
Entropy generation is often used as a figure of merit in thermodynamic cycle optimizations.In this paper,it is shown that the applicability of the minimum entropy generation method to optimizing output power is conditional.The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power when the total heat into the system of interest is not prescribed.For the cycles whose working medium is heated or cooled by streams with prescribed inlet temperatures and prescribed heat capacity flow rates,it is theoretically proved that both the minimum entropy generation rate and the minimum entropy generation number correspond to the maximum output power when the virtual entropy generation induced by dumping the used streams into the environment is considered.However,the minimum principle of entropy generation is not tenable in the case that the virtual entropy generation is not included,because the total heat into the system of interest is not fixed.An irreversible Carnot cycle and an irreversible Brayton cycle are analysed.The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power if the heat into the system of interest is not prescribed.
Applicability of the minimum entropy generation method for optimizing thermodynamic cycles
International Nuclear Information System (INIS)
Cheng Xue-Tao; Liang Xin-Gang
2013-01-01
Entropy generation is often used as a figure of merit in thermodynamic cycle optimizations. In this paper, it is shown that the applicability of the minimum entropy generation method to optimizing output power is conditional. The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power when the total heat into the system of interest is not prescribed. For the cycles whose working medium is heated or cooled by streams with prescribed inlet temperatures and prescribed heat capacity flow rates, it is theoretically proved that both the minimum entropy generation rate and the minimum entropy generation number correspond to the maximum output power when the virtual entropy generation induced by dumping the used streams into the environment is considered. However, the minimum principle of entropy generation is not tenable in the case that the virtual entropy generation is not included, because the total heat into the system of interest is not fixed. An irreversible Carnot cycle and an irreversible Brayton cycle are analysed. The minimum entropy generation rate and the minimum entropy generation number do not correspond to the maximum output power if the heat into the system of interest is not prescribed. (general)
Evaluation of methods used for the direct generation of response spectra
International Nuclear Information System (INIS)
Mayers, R.L.; Muraki, T.; Jones, L.R.; Donikian, R.
1983-01-01
The paper presents an alternate methodology by which seismic in-structure response spectra may be generated directly from either ground or floor excitation spectra. The method is based upon stochastic concepts and utilizes the modal superposition solution. The philosophy of the method is based upon the notion that the evaluation of 'peak' response in uncertain excitation environments is only meaningful in a probabilistic sense. This interpretation of response spectra facilitates the generation of in-structure spectra for any non-exceedance probability (NEP). The method is validated by comparisons with a set of deterministic time-history analyses with three example models: an eleven-story building model, a containment structure stick model, and a floor mounted control panel, subjected to ten input spectrum compatible acceleration time-histories. A significant finding resulting from these examples is that the time-history method portrayed substantial variation in the resulting in-structure spectra, and therefore is unreliable for the generation of spectra. It is shown that the average of the time-history generated spectra can be estimated by the direct generation procedure, and reliable spectra may be generated for 85 NEP levels. The methodology presented herein is shown to be valid for both primary and secondary systems. Also included in the paper, is a review of the stochastic methods proposed by Singh and Der Kiureghian et. al., and the Fourier transform method proposed by Scanlan et al. (orig./HP)
Directory of Open Access Journals (Sweden)
Shan Yang
2016-01-01
Full Text Available Power flow calculation and short circuit calculation are the basis of theoretical research for distribution network with inverter based distributed generation. The similarity of equivalent model for inverter based distributed generation during normal and fault conditions of distribution network and the differences between power flow and short circuit calculation are analyzed in this paper. Then an integrated power flow and short circuit calculation method for distribution network with inverter based distributed generation is proposed. The proposed method let the inverter based distributed generation be equivalent to Iθ bus, which makes it suitable to calculate the power flow of distribution network with a current limited inverter based distributed generation. And the low voltage ride through capability of inverter based distributed generation can be considered as well in this paper. Finally, some tests of power flow and short circuit current calculation are performed on a 33-bus distribution network. The calculated results from the proposed method in this paper are contrasted with those by the traditional method and the simulation method, whose results have verified the effectiveness of the integrated method suggested in this paper.
Streamline integration as a method for two-dimensional elliptic grid generation
Energy Technology Data Exchange (ETDEWEB)
Wiesenberger, M., E-mail: Matthias.Wiesenberger@uibk.ac.at [Institute for Ion Physics and Applied Physics, Universität Innsbruck, A-6020 Innsbruck (Austria); Held, M. [Institute for Ion Physics and Applied Physics, Universität Innsbruck, A-6020 Innsbruck (Austria); Einkemmer, L. [Numerical Analysis group, Universität Innsbruck, A-6020 Innsbruck (Austria)
2017-07-01
We propose a new numerical algorithm to construct a structured numerical elliptic grid of a doubly connected domain. Our method is applicable to domains with boundaries defined by two contour lines of a two-dimensional function. Furthermore, we can adapt any analytically given boundary aligned structured grid, which specifically includes polar and Cartesian grids. The resulting coordinate lines are orthogonal to the boundary. Grid points as well as the elements of the Jacobian matrix can be computed efficiently and up to machine precision. In the simplest case we construct conformal grids, yet with the help of weight functions and monitor metrics we can control the distribution of cells across the domain. Our algorithm is parallelizable and easy to implement with elementary numerical methods. We assess the quality of grids by considering both the distribution of cell sizes and the accuracy of the solution to elliptic problems. Among the tested grids these key properties are best fulfilled by the grid constructed with the monitor metric approach. - Graphical abstract: - Highlights: • Construct structured, elliptic numerical grids with elementary numerical methods. • Align coordinate lines with or make them orthogonal to the domain boundary. • Compute grid points and metric elements up to machine precision. • Control cell distribution by adaption functions or monitor metrics.
An Efficient Method for Generation of Transgenic Rats Avoiding Embryo Manipulation
Directory of Open Access Journals (Sweden)
Bhola Shankar Pradhan
2016-01-01
Full Text Available Although rats are preferred over mice as an animal model, transgenic animals are generated predominantly using mouse embryos. There are limitations in the generation of transgenic rat by embryo manipulation. Unlike mouse embryos, most of the rat embryos do not survive after male pronuclear DNA injection which reduces the efficiency of generation of transgenic rat by this method. More importantly, this method requires hundreds of eggs collected by killing several females for insertion of transgene to generate transgenic rat. To this end, we developed a noninvasive and deathless technique for generation of transgenic rats by integrating transgene into the genome of the spermatogonial cells by testicular injection of DNA followed by electroporation. After standardization of this technique using EGFP as a transgene, a transgenic disease model displaying alpha thalassemia was successfully generated using rats. This efficient method will ease the generation of transgenic rats without killing the lives of rats while simultaneously reducing the number of rats used for generation of transgenic animal.
Energy Technology Data Exchange (ETDEWEB)
Janjai, S.; Deeyai, P. [Laboratory of Tropical Atmospheric Physics, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand)
2009-04-15
This paper presents the comparison of methods for generating typical meteorological year (TMY) data set using a 10-year period of meteorological data from four stations in a tropical environment of Thailand. These methods are the Sadia National Laboratory method, the Danish method and the Festa and Ratto method. In investigating their performance, these methods were employed to generate TMYs for each station. For all parameters of the TMYs and the stations, statistical test indicates that there is no significant difference between the 10-year average values of these parameters and the corresponding average values from TMY generated from each method. The TMY obtained from each method was also used as input data to simulate two solar water heating systems and two photovoltaic systems with different sizes at the four stations by using the TRNSYS simulation program. Solar fractions and electrical output calculated using TMYs are in good agreement with those computed employing the 10-year period hourly meteorological data. It is concluded that the performance of the three methods has no significant difference for all stations under this investigation. Due to its simplicity, the method of Sandia National Laboratories is recommended for the generation of TMY for this tropical environment. The TMYs developed in this work can be used for solar energy and energy conservation applications at the four locations in Thailand. (author)
A method for generating subgroup parameters from resonance tables and the SPART code
International Nuclear Information System (INIS)
Devan, K.; Mohanakrishnan, P.
1995-01-01
A method for generating subgroup or band parameters from resonance tables is described. A computer code SPART was written using this method. This code generates the subgroup parameters for any number of bands within the specified broad groups at different temperatures by reading the required input data from the binary cross section library in the Cadarache format. The results obtained with SPART code for two bands were compared with that obtained from GROUPIE code and a good agreement was obtained. Results of the generation of subgroup parameters in four bands for sample case of 239 Pu from resonance tables of Cadarache Ver.2 library is also presented. 6 refs, 2 tabs
Do-it-yourself networks: a novel method of generating weighted networks.
Shanafelt, D W; Salau, K R; Baggio, J A
2017-11-01
Network theory is finding applications in the life and social sciences for ecology, epidemiology, finance and social-ecological systems. While there are methods to generate specific types of networks, the broad literature is focused on generating unweighted networks. In this paper, we present a framework for generating weighted networks that satisfy user-defined criteria. Each criterion hierarchically defines a feature of the network and, in doing so, complements existing algorithms in the literature. We use a general example of ecological species dispersal to illustrate the method and provide open-source code for academic purposes.
A method for generating stochastic 3D tree models with Python in Autodesk Maya
Directory of Open Access Journals (Sweden)
Nemanja Stojanović
2016-12-01
Full Text Available This paper introduces a method for generating 3D tree models using stochastic L-systems with stochastic parameters and Perlin noise. L-system is the most popular method for plant modeling and Perlin noise is extensively used for generating high detailed textures. Our approach is probabilistic. L-systems with a random choice of parameters can represent observed objects quite well and they are used for modeling and generating realistic plants. Textures and normal maps are generated with combinations of Perlin noises what make these trees completely unique. Script for generating these trees, textures and normal maps is written with Python/PyMEL/NumPy in Autodesk Maya.
Energy Technology Data Exchange (ETDEWEB)
Anon.
1986-07-15
While physics Laboratories are having to absorb cuts in resources, the machines they rely on are becoming more and more complex, requiring increasingly sophisticated systems. Rather than being a resourceful engineer or physicist able to timber together solutions in his 'backyard', the modern controls specialist has become a professional in his own right. Because of possible conflicts between increasing sophistication on one hand and scarcer resources on the other, there was felt a need for more contacts among controls specialists to exchange experiences, coordinate development and discuss 'family problems', away from meetings where the main interest is on experimental physics.
DEFF Research Database (Denmark)
Timmermans, Bram; Zabala-Iturriagagoitia, Jon Mikel
2013-01-01
Public procurement for innovation is a matter of using public demand to trigger innovation. Empirical studies have demonstrated that demand-based policy instruments can be considered to be a powerful tool in stimulating innovative processes among existing firms; however, the existing literature has...... not focused on the role this policy instrument can play in the promotion of (knowledge-intensive) entrepreneurship. This paper investigates this link in more detail and introduces the concept of coordinated unbundling as a strategy that can facilitate this purpose. We also present a framework on how...
International Nuclear Information System (INIS)
Anon.
1986-01-01
While physics Laboratories are having to absorb cuts in resources, the machines they rely on are becoming more and more complex, requiring increasingly sophisticated systems. Rather than being a resourceful engineer or physicist able to timber together solutions in his 'backyard', the modern controls specialist has become a professional in his own right. Because of possible conflicts between increasing sophistication on one hand and scarcer resources on the other, there was felt a need for more contacts among controls specialists to exchange experiences, coordinate development and discuss 'family problems', away from meetings where the main interest is on experimental physics
International Nuclear Information System (INIS)
Harris, J.E.; Gorman, J.A.; Turner, A.P.L.
1997-03-01
The objectives of this project were to develop a computer-based method for probabilistic assessment of inspection strategies for steam generator tubes, and to document the source code and to provide a user's manual for it. The program CANTIA was created to fulfill this objective, and the documentation and verification of the code is provided in this volume. The user's manual for CANTIA is provided as a separate report. CANTIA uses Monte Carlo techniques to determine approximate probabilities of steam generator tube failures under accident conditions and primary-to-secondary leak rates under normal and accident conditions at future points in time. The program also determines approximate future flaw distributions and non-destructive examination results from the input data. The probabilities of failure and leak rates and the future flaw distributions can be influenced by performing inspections of the steam generator tubes at some future points in time, and removing defective tubes from the population. The effect of different inspection and maintenance strategies can therefore be determined as a direct effect on the probability of tube failure and primary-to-secondary leak rate
International Nuclear Information System (INIS)
Morimoto, Yuuichi; Fukuda, Mitsuko
1995-01-01
An automated generation method for test specifications has been developed for sequential control software in plant control equipment. Sequential control software can be represented as sequential circuits. The control software implemented in a control equipment is designed from these circuit diagrams. In logic tests of VLSI's, path sensitizing methods are widely used to generate test specifications. But the method generates test specifications at a single time only, and can not be directly applied to sequential control software. The basic idea of the proposed method is as follows. Specifications of each logic operator in the diagrams are defined in the software design process. Therefore, test specifications of each operator in the control software can be determined from these specifications, and validity of software can be judged by inspecting all of the operators in the logic circuit diagrams. Candidates for sensitized paths, on which test data for each operator propagates, can be generated by the path sensitizing method. To confirm feasibility of the method, it was experimentally applied to control software in digital control equipment. The program could generate test specifications exactly, and feasibility of the method was confirmed. (orig.) (3 refs., 7 figs.)
Application of a non-contiguous grid generation method to complex configurations
International Nuclear Information System (INIS)
Chen, S.; McIlwain, S.; Khalid, M.
2003-01-01
An economical non-contiguous grid generation method was developed to efficiently generate structured grids for complex 3D problems. Compared with traditional contiguous grids, this new approach generated grids for different block clusters independently and was able to distribute the grid points more economically according to the user's specific topology design. The method was evaluated by applying it to a Navier-Stokes computation of flow past a hypersonic projectile. Both the flow velocity and the heat transfer characteristics of the projectile agreed qualitatively with other numerical data in the literature and with available field data. Detailed grid topology designs for 3D geometries were addressed, and the advantages of this approach were analysed and compared with traditional contiguous grid generation methods. (author)
International Nuclear Information System (INIS)
1995-01-01
The Co-ordinated Research Programme (CRP) on Rapid Instrumental and Separation Methods for Monitoring Radionuclides in Food and Environmental Samples was established by the Agency following a Consultants' Meeting on the same topic, which was held 5-9 September 1988 in Vienna. It was completed in 1992. At various times during its course it encompassed 15 participants from 14 countries. The scope of work and objectives of the CRP were established at the Consultants' Meeting. It was agreed that the CRP should focus on the development of rapid methods for the determination of radionuclides in food and environmental samples during the intermediate and late post-accident phases. The rapid methods developed during the course of the CRP were intended to permit a timely and accurate determination of radionuclides at concentrations at least one order of magnitude below those specified for Derived Intervention Levels (DILs) for food by the WHO/FAO and the IAEA. Research Co-ordination meetings were held in Warsaw, Poland in September 1989 and in Vienna, Austria in 1991. Reports of the meetings are available from the Agency on Request. This document comprises copies of final reports from the participants and selected contributions presented by the participants at the meetings. The contributions were selected on the basis of being able to stand alone, without further explanation. Where there was an overlap in the information presented by a participant at both meetings, the most complete contribution was selected
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-07-01
The Co-ordinated Research Programme (CRP) on Rapid Instrumental and Separation Methods for Monitoring Radionuclides in Food and Environmental Samples was established by the Agency following a Consultants' Meeting on the same topic, which was held 5-9 September 1988 in Vienna. It was completed in 1992. At various times during its course it encompassed 15 participants from 14 countries. The scope of work and objectives of the CRP were established at the Consultants' Meeting. It was agreed that the CRP should focus on the development of rapid methods for the determination of radionuclides in food and environmental samples during the intermediate and late post-accident phases. The rapid methods developed during the course of the CRP were intended to permit a timely and accurate determination of radionuclides at concentrations at least one order of magnitude below those specified for Derived Intervention Levels (DILs) for food by the WHO/FAO and the IAEA. Research Co-ordination meetings were held in Warsaw, Poland in September 1989 and in Vienna, Austria in 1991. Reports of the meetings are available from the Agency on Request. This document comprises copies of final reports from the participants and selected contributions presented by the participants at the meetings. The contributions were selected on the basis of being able to stand alone, without further explanation. Where there was an overlap in the information presented by a participant at both meetings, the most complete contribution was selected.
Directory of Open Access Journals (Sweden)
Sheeja Rajasingh
Full Text Available Human induced pluripotent stem cells (iPSCs derived cardiomyocytes (iCMCs would provide an unlimited cell source for regenerative medicine and drug discoveries. The objective of our study is to generate functional cardiomyocytes from human iPSCs and to develop a novel method of measuring contractility of CMCs. In a series of experiments, adult human skin fibroblasts (HSF and human umbilical vein endothelial cells (HUVECs were treated with a combination of pluripotent gene DNA and mRNA under specific conditions. The iPSC colonies were identified and differentiated into various cell lineages, including CMCs. The contractile activity of CMCs was measured by a novel method of frame-by-frame cross correlation (particle image velocimetry-PIV analysis. Our treatment regimen transformed 4% of HSFs into iPSC colonies at passage 0, a significantly improved efficiency compared with use of either DNA or mRNA alone. The iPSCs were capable of differentiating both in vitro and in vivo into endodermal, ectodermal and mesodermal cells, including CMCs with >88% of cells being positive for troponin T (CTT and Gata4 by flow cytometry. We report a highly efficient combination of DNA and mRNA to generate iPSCs and functional iCMCs from adult human cells. We also report a novel approach to measure contractility of iCMCs.
Rajasingh, Sheeja; Thangavel, Jayakumar; Czirok, Andras; Samanta, Saheli; Roby, Katherine F; Dawn, Buddhadeb; Rajasingh, Johnson
2015-01-01
Human induced pluripotent stem cells (iPSCs) derived cardiomyocytes (iCMCs) would provide an unlimited cell source for regenerative medicine and drug discoveries. The objective of our study is to generate functional cardiomyocytes from human iPSCs and to develop a novel method of measuring contractility of CMCs. In a series of experiments, adult human skin fibroblasts (HSF) and human umbilical vein endothelial cells (HUVECs) were treated with a combination of pluripotent gene DNA and mRNA under specific conditions. The iPSC colonies were identified and differentiated into various cell lineages, including CMCs. The contractile activity of CMCs was measured by a novel method of frame-by-frame cross correlation (particle image velocimetry-PIV) analysis. Our treatment regimen transformed 4% of HSFs into iPSC colonies at passage 0, a significantly improved efficiency compared with use of either DNA or mRNA alone. The iPSCs were capable of differentiating both in vitro and in vivo into endodermal, ectodermal and mesodermal cells, including CMCs with >88% of cells being positive for troponin T (CTT) and Gata4 by flow cytometry. We report a highly efficient combination of DNA and mRNA to generate iPSCs and functional iCMCs from adult human cells. We also report a novel approach to measure contractility of iCMCs.
A. Ball
2010-01-01
Operational Experience At the end of the first full-year running period of LHC, CMS is established as a reliable, robust and mature experiment. In particular common systems and infrastructure faults accounted for <0.6 % CMS downtime during LHC pp physics. Technical operation throughout the entire year was rather smooth, the main faults requiring UXC access being sub-detector power systems and rack-cooling turbines. All such problems were corrected during scheduled technical stops, in the shadow of tunnel access needed by the LHC, or in negotiated accesses or access extensions. Nevertheless, the number of necessary accesses to the UXC averaged more than one per week and the technical stops were inevitably packed with work packages, typically 30 being executed within a few days, placing a high load on the coordination and area management teams. It is an appropriate moment for CMS Technical Coordination to thank all those in many CERN departments and in the Collaboration, who were involved in CMS techni...
Directory of Open Access Journals (Sweden)
Nhan Charles
2012-02-01
Full Text Available Abstract Background In Quebec, the influenza A (H1N1 pandemic was managed using a top-down style that left many involved players with critical views and frustrations. We aimed to describe physicians' perceptions - infectious diseases specialists/medical microbiologists (IDMM and public health/preventive medicine specialists (PHPMS - in regards to issues encountered with the pandemics management at the physician level and highlight suggested improvements for future healthcare emergencies. Methods In April 2010, Quebec IDMM and PHPMS physicians were invited to anonymously complete a web-based learning needs assessment. The survey included both open-ended and multiple-choice questions. Descriptive statistics were used to report on the frequency distribution of multiple choice responses whereas thematic content analysis was used to analyse qualitative data generated from the survey and help understand respondents' experience and perceptions with the pandemics. Results Of the 102 respondents, 85.3% reported difficulties or frustrations in their practice during the pandemic. The thematic analysis revealed two core themes describing the problems experienced in the pandemic management: coordination and resource-related difficulties. Coordination issues included communication, clinical practice guidelines, decision-making, roles and responsibilities, epidemiological investigation, and public health expert advisory committees. Resources issues included laboratory resources, patient management, and vaccination process. Conclusion Together, the quantitative and qualitative data suggest a need for improved coordination, a better definition of roles and responsibilities, increased use of information technologies, merged communications, and transparency in the decisional process. Increased flexibility and less contradiction in clinical practice guidelines from different sources and increased laboratory/clinical capacity were felt critical to the proper
Ok, Kang Min; Chi, Eun Ok; Halasyamani, P Shiv
2006-08-01
Characterization methods for bulk non-centrosymmetric compounds are described. These methods include second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. In this tutorial review with each phenomenon, details are given of the measurement techniques along with a brief history and background. Finally, data interpretation is discussed.
Addressing Next Generation Science Standards: A Method for Supporting Classroom Teachers
Pellien, Tamara; Rothenburger, Lisa
2014-01-01
The Next Generation Science Standards (NGSS) will define science education for the foreseeable future, yet many educators struggle to see the bridge between current practice and future practices. The inquiry-based methods used by Extension professionals (Kress, 2006) can serve as a guide for classroom educators. Described herein is a method of…
New generation methods for spur, helical, and spiral-bevel gears
Litvin, F. L.; Tsung, W.-J.; Coy, J. J.; Handschuh, R. F.; Tsay, C.-B. P.
1987-01-01
New methods for generating spur, helical, and spiral-bevel gears are proposed. These methods provide the gears with conjugate gear tooth surfaces, localized bearing contact, and reduced sensitivity to gear misalignment. Computer programs have been developed for simulating gear meshing and bearing contact.
A method for the generation of random multiple Coulomb scattering angles
International Nuclear Information System (INIS)
Campbell, J.R.
1995-06-01
A method for the random generation of spatial angles drawn from non-Gaussian multiple Coulomb scattering distributions is presented. The method employs direct numerical inversion of cumulative probability distributions computed from the universal non-Gaussian angular distributions of Marion and Zimmerman. (author). 12 refs., 3 figs
Directory of Open Access Journals (Sweden)
Hee-Jong Choi
2011-12-01
Full Text Available In the present study, a new hull panel generation algorithm, namely panel cutting method, was developed to predict flow phenomena around a ship using the Rankine source potential based panel method, where the iterative method was used to satisfy the nonlinear free surface condition and the trim and sinkage of the ship was taken into account. Numerical computations were performed to investigate the validity of the proposed hull panel generation algorithm for Series 60 (CB=0.60 hull and KRISO container ship (KCS, a container ship designed by Maritime and Ocean Engineering Research Institute (MOERI. The computational results were validated by comparing with the existing experimental data.
Choi, Hee-Jong; Chun, Ho-Hwan; Park, Il-Ryong; Kim, Jin
2011-12-01
In the present study, a new hull panel generation algorithm, namely panel cutting method, was developed to predict flow phenomena around a ship using the Rankine source potential based panel method, where the iterative method was used to satisfy the nonlinear free surface condition and the trim and sinkage of the ship was taken into account. Numerical computations were performed to investigate the validity of the proposed hull panel generation algorithm for Series 60 (CB=0.60) hull and KRISO container ship (KCS), a container ship designed by Maritime and Ocean Engineering Research Institute (MOERI). The computational results were validated by comparing with the existing experimental data.
Development of source term evaluation method for Korean Next Generation Reactor
Energy Technology Data Exchange (ETDEWEB)
Lee, Keon Jae; Cheong, Jae Hak; Park, Jin Baek; Kim, Guk Gee [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1997-10-15
This project had investigate several design features of radioactive waste processing system and method to predict nuclide concentration at primary coolant basic concept of next generation reactor and safety goals at the former phase. In this project several prediction methods of source term are evaluated conglomerately and detailed contents of this project are : model evaluation of nuclide concentration at Reactor Coolant System, evaluation of primary and secondary coolant concentration of reference Nuclear Power Plant(NPP), investigation of prediction parameter of source term evaluation, basic parameter of PWR, operational parameter, respectively, radionuclide removal system and adjustment values of reference NPP, suggestion of source term prediction method of next generation NPP.
Directory of Open Access Journals (Sweden)
F. Bazdidi Tehrani
2017-02-01
of windward wall of the second building. Among the various inflow turbulence generation methods, the vortex method is the most precise method and no-inlet perturbation method is the least precise method.
Directory of Open Access Journals (Sweden)
Mohamed Mostafa R.
2016-01-01
Full Text Available Self-Excited Permanent Magnet Induction Generator (PMIG is commonly used in wind energy generation systems. The difficulty of Self-Excited Permanent Magnet Induction Generator (SEPMIG modeling is the circuit parameters of the generator vary at each load conditions due to the a change in the frequency and stator voltage. The paper introduces a new modeling for SEPMIG using Gauss-sidle relaxation method. The SEPMIG characteristics using the proposed method are studied at different load conditions according to the wind speed variation, load impedance changes and different shunted capacitor values. The system modeling is investigated due to the magnetizing current variation, the efficiency variation, the power variation and power factor variation. The proposed modeling system satisfies high degree of simplicity and accuracy.
Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D
2013-09-17
Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.
Quantifying linguistic coordination
DEFF Research Database (Denmark)
Fusaroli, Riccardo; Tylén, Kristian
task (Bahrami et al 2010, Fusaroli et al. 2012) we extend to linguistic coordination dynamical measures of recurrence employed in the analysis of sensorimotor coordination (such as heart-rate (Konvalinka et al 2011), postural sway (Shockley 2005) and eye-movements (Dale, Richardson and Kirkham 2012......). We employ nominal recurrence analysis (Orsucci et al 2005, Dale et al 2011) on the decision-making conversations between the participants. We report strong correlations between various indexes of recurrence and collective performance. We argue this method allows us to quantify the qualities...
Integrated circuit test-port architecture and method and apparatus of test-port generation
Teifel, John
2016-04-12
A method and apparatus are provided for generating RTL code for a test-port interface of an integrated circuit. In an embodiment, a test-port table is provided as input data. A computer automatically parses the test-port table into data structures and analyzes it to determine input, output, local, and output-enable port names. The computer generates address-detect and test-enable logic constructed from combinational functions. The computer generates one-hot multiplexer logic for at least some of the output ports. The one-hot multiplexer logic for each port is generated so as to enable the port to toggle between data signals and test signals. The computer then completes the generation of the RTL code.
Effect of nanoparticles generation method on ionic conductivity in Yttria stabilized zirconia
International Nuclear Information System (INIS)
Khare, J.; Joshi, M.P.; Kukreja, L.M.; Satapathy, S.
2013-01-01
Yttria stabilized zirconia nanoparticles were generated in pulsed and CW mode of laser operation using CO 2 laser based laser vaporization method. Impedance spectroscopic measurements were carried out in frequency range of 100 Hz - 1 MHz at various temperatures ranging from room temperature to 500 C. The deconvolution of grain and grain boundary contribution were obtained from impedance spectra by an equivalent circuit analysis. Grain and grain boundary ionic conductivity of pellet made from nanoparticles generated in pulsed mode was two orders of magnitude large in comparison to pellets made from nanoparticles generated in CW mode of laser operation. The difference in ionic conductivities of pellets made from nanoparticles generated in pulsed mode and CW mode were explained on the basis of defect associations in nanoparticles produced during nanoparticles generation. (author)
Energy Technology Data Exchange (ETDEWEB)
Han, Yinfeng, E-mail: hanyinfeng@gmail.com; Wang, Chang' an; Zheng, Zebao; Sun, Jiafeng; Nie, Kun; Zuo, Jian; Zhang, Jianping
2015-07-15
Two coordination polymers, ([Mn{sub 2}(L1){sub 2}(μ{sub 2}-H{sub 2}O)(H{sub 2}O){sub 4}]·5H{sub 2}O){sub n}1 and ([Ni(L1)(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n}2 (H{sub 2}L1=2,2′-dithiobisnicotinic acid), were prepared by the solvothermal reactions of the Mn(II) or Ni(II) ions with 2-mercaptonanicotinic acid. In 1, the [Mn{sub 2}(COO){sub 4}] units are connected by the 2,2′-dithiobisnicotinic dianion to form a two-dimensional (4,4)-connected network. In 2, the adjacent Ni(II) ions are connected by the carboxyl groups of the 2,2′-dithiobisnicotinic dianion to form an one-dimensional inorganic rod-shaped chain [Ni(COO){sub 2}]{sub n}, which are further interconnected by the 2,2′-dithiobisnicotinic ligand, giving rise to a two-dimensional framework. Variable-temperature magnetic susceptibilities of 1 and 2 exhibit overall weak antiferromagnetic coupling between the adjacent metal ions. - Graphical abstract: Two 2D coordination polymers were synthesized by transition-metal/in-situ oxidation of 2-mercaptonicotinic acid. The compounds pack into 2D frameworks by the carboxyl groups of 2,2′-dithiobisnicotinic dianion and exhibit overall weak antiferromagnetic coupling. - Highlights: • Two 2D coordination polymers containing 2,2′-dithiobisnicotinic dianion. • In situ oxidation and dehydro coupling reaction of 2-mercaptonbenzoic acid. • Two compounds display weak antiferromagnetic exchanges.
Yang, Shan; Tong, Xiangqian
2016-01-01
Power flow calculation and short circuit calculation are the basis of theoretical research for distribution network with inverter based distributed generation. The similarity of equivalent model for inverter based distributed generation during normal and fault conditions of distribution network and the differences between power flow and short circuit calculation are analyzed in this paper. Then an integrated power flow and short circuit calculation method for distribution network with inverte...
Directory of Open Access Journals (Sweden)
Y. D. Filipchik
2011-01-01
Full Text Available The paper considers an impact of various methods for control of an exciting current pertaining to a synchronous generator on the nature of transient processes. A control algorithm for the exciting current in relation to changes in sliding and acceleration of a generator rotor has been proposed in the paper. The algorithm makes it possible to improve quality of the transient processes due to reduction of oscillation range concerning as an active power so a δ-angle as well.
Wroblewski, David [Mentor, OH; Katrompas, Alexander M [Concord, OH; Parikh, Neel J [Richmond Heights, OH
2009-09-01
A method and apparatus for optimizing the operation of a power generating plant using artificial intelligence techniques. One or more decisions D are determined for at least one consecutive time increment, where at least one of the decisions D is associated with a discrete variable for the operation of a power plant device in the power generating plant. In an illustrated embodiment, the power plant device is a soot cleaning device associated with a boiler.
Forman, Michael A; Young, Derek
2012-09-18
Examples of methods for generating data based on a communications channel are described. In one such example, a processing unit may generate a first vector representation based in part on at least two characteristics of a communications channel. A constellation having at least two dimensions may be addressed with the first vector representation to identify a first symbol associated with the first vector representation. The constellation represents a plurality of regions, each region associated with a respective symbol. The symbol may be used to generate data, which may stored in an electronic storage medium and used as a cryptographic key or a spreading code or hopping sequence in a modulation technique.
A method of computer aided design with self-generative models in NX Siemens environment
Grabowik, C.; Kalinowski, K.; Kempa, W.; Paprocka, I.
2015-11-01
Currently in CAD/CAE/CAM systems it is possible to create 3D design virtual models which are able to capture certain amount of knowledge. These models are especially useful in an automation of routine design tasks. These models are known as self-generative or auto generative and they can behave in an intelligent way. The main difference between the auto generative and fully parametric models consists in the auto generative models ability to self-organizing. In this case design model self-organizing means that aside from the possibility of making of automatic changes of model quantitative features these models possess knowledge how these changes should be made. Moreover they are able to change quality features according to specific knowledge. In spite of undoubted good points of self-generative models they are not so often used in design constructional process which is mainly caused by usually great complexity of these models. This complexity makes the process of self-generative time and labour consuming. It also needs a quite great investment outlays. The creation process of self-generative model consists of the three stages it is knowledge and information acquisition, model type selection and model implementation. In this paper methods of the computer aided design with self-generative models in NX Siemens CAD/CAE/CAM software are presented. There are the five methods of self-generative models preparation in NX with: parametric relations model, part families, GRIP language application, knowledge fusion and OPEN API mechanism. In the paper examples of each type of the self-generative model are presented. These methods make the constructional design process much faster. It is suggested to prepare this kind of self-generative models when there is a need of design variants creation. The conducted research on assessing the usefulness of elaborated models showed that they are highly recommended in case of routine tasks automation. But it is still difficult to distinguish
Two methods for estimating limits to large-scale wind power generation.
Miller, Lee M; Brunsell, Nathaniel A; Mechem, David B; Gans, Fabian; Monaghan, Andrew J; Vautard, Robert; Keith, David W; Kleidon, Axel
2015-09-08
Wind turbines remove kinetic energy from the atmospheric flow, which reduces wind speeds and limits generation rates of large wind farms. These interactions can be approximated using a vertical kinetic energy (VKE) flux method, which predicts that the maximum power generation potential is 26% of the instantaneous downward transport of kinetic energy using the preturbine climatology. We compare the energy flux method to the Weather Research and Forecasting (WRF) regional atmospheric model equipped with a wind turbine parameterization over a 10(5) km2 region in the central United States. The WRF simulations yield a maximum generation of 1.1 We⋅m(-2), whereas the VKE method predicts the time series while underestimating the maximum generation rate by about 50%. Because VKE derives the generation limit from the preturbine climatology, potential changes in the vertical kinetic energy flux from the free atmosphere are not considered. Such changes are important at night when WRF estimates are about twice the VKE value because wind turbines interact with the decoupled nocturnal low-level jet in this region. Daytime estimates agree better to 20% because the wind turbines induce comparatively small changes to the downward kinetic energy flux. This combination of downward transport limits and wind speed reductions explains why large-scale wind power generation in windy regions is limited to about 1 We⋅m(-2), with VKE capturing this combination in a comparatively simple way.
Bao, Weizhu; Marahrens, Daniel; Tang, Qinglin; Zhang, Yanzhi
2013-01-01
We propose a simple, efficient, and accurate numerical method for simulating the dynamics of rotating Bose-Einstein condensates (BECs) in a rotational frame with or without longrange dipole-dipole interaction (DDI). We begin with the three
Energy Technology Data Exchange (ETDEWEB)
Chylewska, A.; Jacewicz, D.; Zarzeczanska, D. [Department of Chemistry, University of Gdansk, Sobieskiego 18/19, 80-952 Gdansk (Poland); Chmurzynski, L. [Department of Chemistry, University of Gdansk, Sobieskiego 18/19, 80-952 Gdansk (Poland)], E-mail: lech@chem.univ.gda.pl
2008-08-15
The acid-base properties of analogous complex ions of chromium(III) and cobalt(III) in aqueous solution have been studied. The equilibrium constants for all metal complexes were determined by using potentiometric and spectrophotometric titration methods. First, dissociation constants for the studied complexes of Cr(III) and Co(III) were determined by means of the potentiometric titration method and using the STOICHIO computer programme. Then, pH-spectrophotometric titrations were performed and the OriginPro 7.5 computer programme was used to calculate the same constants. The measurements using both methods were carried out under the same conditions of temperature, T = 298.15 K, and over the same pH range 2.00-10.00, respectively. It turned out that the two methods used enabled us to obtain acidity constants in very good agreement.
International Nuclear Information System (INIS)
Chylewska, A.; Jacewicz, D.; Zarzeczanska, D.; Chmurzynski, L.
2008-01-01
The acid-base properties of analogous complex ions of chromium(III) and cobalt(III) in aqueous solution have been studied. The equilibrium constants for all metal complexes were determined by using potentiometric and spectrophotometric titration methods. First, dissociation constants for the studied complexes of Cr(III) and Co(III) were determined by means of the potentiometric titration method and using the STOICHIO computer programme. Then, pH-spectrophotometric titrations were performed and the OriginPro 7.5 computer programme was used to calculate the same constants. The measurements using both methods were carried out under the same conditions of temperature, T = 298.15 K, and over the same pH range 2.00-10.00, respectively. It turned out that the two methods used enabled us to obtain acidity constants in very good agreement
A method for generating skewed random numbers using two overlapping uniform distributions
International Nuclear Information System (INIS)
Ermak, D.L.; Nasstrom, J.S.
1995-02-01
The objective of this work was to implement and evaluate a method for generating skewed random numbers using a combination of uniform random numbers. The method provides a simple and accurate way of generating skewed random numbers from the specified first three moments without an a priori specification of the probability density function. We describe the procedure for generating skewed random numbers from unifon-n random numbers, and show that it accurately produces random numbers with the desired first three moments over a range of skewness values. We also show that in the limit of zero skewness, the distribution of random numbers is an accurate approximation to the Gaussian probability density function. Future work win use this method to provide skewed random numbers for a Langevin equation model for diffusion in skewed turbulence
A DCT-Based Driving Cycle Generation Method and Its Application for Electric Vehicles
Directory of Open Access Journals (Sweden)
Cheng Lin
2015-01-01
Full Text Available Nowadays, many widely used driving cycle (DC representing and generating methods are designed for traditional vehicles with internal combustion engines (ICE. The real-world driving is viewed as a sequence of acceleration, cruise, deceleration, and idle modes. The emission and fuel consumption in each period should be taken into account carefully. However, for electric vehicles (EVs, most of them are powered by low or zero-emission renewable energy sources. The working status and energy management algorithms of them are very different from traditional vehicles. To facilitate the EV design, we proposed a novel DC representing and construction method to generate DCs for EVs. The whole driving route is divided into several length-fixed segments and each of these segments is converted into a frequency sequence. After doing that, we can adjust the frequency and amplitude of the generated driving cycle directly. The experiment results showed that the proposed method was effective and convenient.
International Nuclear Information System (INIS)
Wallin, K.; Voskamp, R.; Schmibauer, J.; Ostermeyer, H.; Nagel, G.
2011-01-01
The cost of steam generator inspections in nuclear power plants is high. A new quantitative assessment methodology for the accumulation of flaws due to stochastic causes like fretting has been developed for cases where limited inspection data is available. Additionally, a new quantitative assessment methodology for the accumulation of environment related flaws, caused e.g. by corrosion in steam generator tubes, has been developed. The method that combines deterministic information regarding flaw initiation and growth with stochastic elements connected to environmental aspects requires only knowledge of the experimental flaw accumulation history. The method, combining both types of flaw types, provides a complete description of the flaw accumulation and there are several possible uses of the method. The method can be used to evaluate the total life expectancy of the steam generator and simple statistically defined plugging criteria can be established based on flaw behaviour. This way the inspection interval and inspection coverage can be optimized with respect to allowable flaws and the method can recognize flaw type subsets requiring more frequent inspection intervals. The method can also be used to develop statistically realistic safety factors accounting for uncertainties in inspection flaw sizing and detection. The statistical assessment method has been showed to be robust and insensitive to different assessments of plugged tubes. Because the procedure is re-calibrated after each inspection, it reacts effectively to possible changes in the steam generator environment. Validation of the assessment method is provided for real steam generators, both in the case of stochastic damage as well as environment related flaws. (authors)
Systematic analysis method for radioactive wastes generated from nuclear research facilities
International Nuclear Information System (INIS)
Kameo, Yutaka; Ishimori, Ken-ichiro; Haraga, Tomoko; Shimada, Asako; Katayama, Atsushi; Nakashima, Mikio; Takahashi, Kuniaki
2011-01-01
Analytical methods have been developed for the simple and rapid determination of radioactive nuclides, which are selected as important nuclides for the safety assessment of the disposal of wastes generated from research facilities. We advanced the development of a high-efficiency nondestructive measurement technique for γ-ray-emitting nuclides, simple and rapid methods for the pretreatment of hard-to-dissolve samples and subsequent radiochemical separation, and rapid determination methods for long-lived nuclides. In order to establish a system to analyze the important nuclides in various kinds of sample, actual radioactive wastes such as concentrated liquid waste, activated concrete, and metal pipes were analyzed by the present method. The results showed that the present method was well suited for a rapid and simple determination of low-level radioactive wastes generated from research facilities. (author)
Alfieri, Luisa
2015-12-01
Power quality (PQ) disturbances are becoming an important issue in smart grids (SGs) due to the significant economic consequences that they can generate on sensible loads. However, SGs include several distributed energy resources (DERs) that can be interconnected to the grid with static converters, which lead to a reduction of the PQ levels. Among DERs, wind turbines and photovoltaic systems are expected to be used extensively due to the forecasted reduction in investment costs and other economic incentives. These systems can introduce significant time-varying voltage and current waveform distortions that require advanced spectral analysis methods to be used. This paper provides an application of advanced parametric methods for assessing waveform distortions in SGs with dispersed generation. In particular, the Standard International Electrotechnical Committee (IEC) method, some parametric methods (such as Prony and Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT)), and some hybrid methods are critically compared on the basis of their accuracy and the computational effort required.