Sample records for generation optical access

  1. Optical Subsystems for Next Generation Access Networks

    DEFF Research Database (Denmark)

    Lazaro, J.A; Polo, V.; Schrenk, B.


    Recent optical technologies are providing higher flexibility to next generation access networks: on the one hand, providing progressive FTTx and specifically FTTH deployment, progressively shortening the copper access network; on the other hand, also opening fixed-mobile convergence solutions...... in next generation PON architectures. It is provided an overview of the optical subsystems developed for the implementation of the proposed NG-Access Networks....

  2. Optical Subsystems for Next Generation Access Networks

    DEFF Research Database (Denmark)

    Lazaro, J.A; Polo, V.; Schrenk, B.


    Recent optical technologies are providing higher flexibility to next generation access networks: on the one hand, providing progressive FTTx and specifically FTTH deployment, progressively shortening the copper access network; on the other hand, also opening fixed-mobile convergence solutions...... in next generation PON architectures. It is provided an overview of the optical subsystems developed for the implementation of the proposed NG-Access Networks....

  3. Optimizing the next generation optical access networks

    DEFF Research Database (Denmark)

    Amaya Fernández, Ferney Orlando; Soto, Ana Cardenas; Tafur Monroy, Idelfonso


    of the optical amplification in the performance of the standardized PON is presented comparing the performance of the EDFA (Erbium Doped Fiber Amplifier) and the distributed Raman amplification. The effect of the Raman amplification in extending the reach of the NG-OAN is analyzed and some requirements......Several issues in the design and optimization of the next generation optical access network (NG-OAN) are presented. The noise, the distortion and the fiber optic nonlinearities are considered to optimize the video distribution link in a passive optical network (PON). A discussion of the effect...

  4. Optical coherent technologies in next generation access networks (United States)

    Iwatsuki, Katsumi; Tsukamoto, Katsutoshi


    This paper reviews optical coherent technologies in next generation access networks with the use of radio over fiber (RoF), which offer key enabling technologies of wired and wireless integrated and/or converged broadband access networks to accommodate rapidly widespread cloud computing services. We describe technical issues on conventional RoF based on subcarrier modulation (SCM) and their countermeasures. Two examples of RoF access networks with optical coherent technologies to solve the technical issues are introduced; a video distribution system with FM conversion and wired and wireless integrated wide-area access network with photonic up- and down-conversion.

  5. Potential of OFDM for next generation optical access (United States)

    Fritzsche, Daniel; Weis, Erik; Breuer, Dirk


    This paper shows the requirements for next generation optical access (NGOA) networks and analyzes the potential of OFDM (orthogonal frequency division multiplexing) for the use in such network scenarios. First, we show the motivation for NGOA systems based on the future requirements on FTTH access systems and list the advantages of OFDM in such scenarios. In the next part, the basics of OFDM and different methods to generate and detect optical OFDM signals are explained and analyzed. At the transmitter side the options include intensity modulation and the more advanced field modulation of the optical OFDM signal. At the receiver there is the choice between direct detection and coherent detection. As the result of this discussion we show our vision of the future use of OFDM in optical access networks.

  6. Modeling the video distribution link in the Next Generation Optical Access Networks

    DEFF Research Database (Denmark)

    Amaya, F.; Cárdenas, A.; Tafur Monroy, Idelfonso


    In this work we present a model for the design and optimization of the video distribution link in the next generation optical access network. We analyze the video distribution performance in a SCM-WDM link, including the noise, the distortion and the fiber optic nonlinearities. Additionally, we...

  7. Wireless and wireline service convergence in next generation optical access networks - the FP7 WISCON project

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Pang, Xiaodan; Lebedev, Alexander


    . In this paper, we will present the Marie Curie Framework Program 7 project “Wireless and wireline service convergence in next generation optical access networks” (WISCON), which focuses on the conception and study of novel architectures for wavelength-division-multiplexing (WDM) optical multi-modulation format...... radio-over-fiber (RoF) systems; this is a promising solution to implement broadband seamless wireless -wireline access networks. This project successfully concluded in autumn 2013, and is being follow up by another Marie Curie project entitled “flexible edge nodes for dynamic optical interconnection...

  8. ONU power saving modes in next generation optical access networks: progress, efficiency and challenges. (United States)

    Dixit, Abhishek; Lannoo, Bart; Colle, Didier; Pickavet, Mario; Demeester, Piet


    The optical network unit (ONU), installed at a customer's premises, accounts for about 60% of power in current fiber-to-the-home (FTTH) networks. We propose a power consumption model for the ONU and evaluate the ONU power consumption in various next generation optical access (NGOA) architectures. Further, we study the impact of the power savings of the ONU in various low power modes such as power shedding, doze and sleep.

  9. A Comparative Study of Multiplexing Schemes for Next Generation Optical Access Networks (United States)

    Imtiaz, Waqas A.; Khan, Yousaf; Shah, Pir Mehar Ali; Zeeshan, M.


    Passive optical network (PON) is a high bandwidth, economical solution which can provide the necessary bandwidth to end-users. Wavelength division multiplexed passive optical networks (WDM PONs) and time division multiplexed passive optical networks (TDM PONs) are considered as an evolutionary step for next-generation optical access (NGOA) networks. However they fail to provide highest transmission capacity, efficient bandwidth access, and robust dispersion tolerance. Thus future PONs are considered on simpler, efficient and potentially scalable, optical code division multiplexed (OCDM) PONs. This paper compares the performance of existing PONs with OCDM PON to determine a suitable scheme for NGOA networks. Two system parameter are used in this paper: fiber length, and bit rate. Performance analysis using Optisystem shows that; for a sufficient system performance parameters i.e. bit error rate (BER) ≤ 10-9, and maximum quality factor (Q) ≥ 6, OCDMA PON efficiently performs upto 50 km with 10 Gbit/s per ONU.

  10. Media access control and resource allocation for next generation passive optical networks

    CERN Document Server

    Ansari, Nirwan


    This book focuses on various Passive optical networks (PONs)  types, including currently deployed Ethernet PON (EPON) and Gigabit PON (GPON) as well as next generation WDM PON and OFDM PON. Also this book examines the integrated optical and wireless access networks. Concentrating on two issues in these networks: media access control (MAC) and resource allocation. These two problems can greatly affect performances of PONs such as network resource utilization and QoS of end users. Finally this book will discuss various solutions to address the MAC and resource allocation issues in various PON networks.

  11. Frequency interleaving towards spectrally efficient directly detected optical OFDM for next-generation optical access networks. (United States)

    Mehedy, Lenin; Bakaul, Masuduzzaman; Nirmalathas, Ampalavanapillai


    In this paper, we theoretically analyze and demonstrate that spectral efficiency of a conventional direct detection based optical OFDM system (DDO-OFDM) can be improved significantly using frequency interleaving of adjacent DDO-OFDM channels where OFDM signal band of one channel occupies the spectral gap of other channel and vice versa. We show that, at optimum operating condition, the proposed technique can effectively improve the spectral efficiency of the conventional DDO-OFDM system as much as 50%. We also show that such a frequency interleaved DDO-OFDM system, with a bit rate of 48 Gb/s within 25 GHz bandwidth, achieves sufficient power budget after transmission over 25 km single mode fiber to be used in next-generation time-division-multiplexed passive optical networks (TDM-PON). Moreover, by applying 64- quadrature amplitude modulation (QAM), the system can be further scaled up to 96 Gb/s with a power budget sufficient for 1:16 split TDM-PON.

  12. Energy Efficiency in TDMA-Based Next-Generation Passive Optical Access Networks

    KAUST Repository

    Dhaini, Ahmad R.


    Next-generation passive optical network (PON) has been considered in the past few years as a cost-effective broadband access technology. With the ever-increasing power saving concern, energy efficiency has been an important issue in its operations. In this paper, we propose a novel sleep-time sizing and scheduling framework for the implementation of green bandwidth allocation (GBA) in TDMA-PONs. The proposed framework leverages the batch-mode transmission feature of GBA to minimize the overhead due to frequent ONU on-off transitions. The optimal sleeping time sequence of each ONU is determined in every cycle without violating the maximum delay requirement. With multiple ONUs possibly accessing the shared media simultaneously, a collision may occur. To address this problem, we propose a new sleep-time sizing mechanism, namely Sort-And-Shift (SAS), in which the ONUs are sorted according to their expected transmission start times, and their sleep times are shifted to resolve any possible collision while ensuring maximum energy saving. Results show the effectiveness of the proposed framework and highlight the merits of our solutions.

  13. Multicore fronthaul and backhaul provision in next-generation optical access networks (United States)

    Llorente, Roberto; Morant, Maria; Macho, Andrés.


    This paper reports the experimental demonstration of a multicore fiber (MCF) system employing space-division multiplexing for the combined transmission of radio-over-fiber full-standard LTE-Advanced and WiMAX signals in a 4-core MCF optical fronthaul on a PON access network. Combining MCF fronthaul and PON access with RoF transmission enables the simultaneous transmission of downstream and upstream services in different cores. In this work, we propose and demonstrate a MCF fronthaul system providing combined fully-standard LTE-A and WiMAX signals using radio-over-fiber (RoF) transmission in a 4-core MCF media. The impact of the inter-core crosstalk in RoF transmissions is also evaluated and we studied the possibility of mitigating the crosstalk impairments with MIMO processing. The experimental performance of the PON access overlay employing optical polarization multiplexing is also reported.

  14. Spectrally efficient next-generation optical access network incorporating a novel CWDM uplink combiner. (United States)

    Ha, J Y; Wonfor, A; Ghiggino, P; Penty, R V; White, I H


    A novel wavelength division multiplexed subcarrier multiplexed (WDM/SCM) broadband (1-Gb/s per user) optical access network (OAN) architecture incorporating a coarse WDM (CWDM) uplink combiner is proposed. The concept is demonstrated through theoretical and experimental validation of a 10 x1-Gb/s quadurature-phase-shift keying (QPSK) SCM optical network. Low penalty transmission is demonstrated for a proof-of-principle dual channel system with a range of 25 km. In agreement with simulation, experiments show that channel spacings of only 1 GHz are viable for Q factors of more than 18 dB. Simulations indicate that the system will operate with 40 wavelengths, each carrying 10 SCM channels at 1 Gb/s.

  15. Centralized optical-frequency-comb-based RF carrier generator for DWDM fiber-wireless access systems

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Beltran, Marta; Sanchez, Jose;


    In this paper, we report on a gigabit capacity fiber-wireless system that enables smooth integration between high-speed wireless networks and dense wavelength-division-multiplexing (DWDM) access networks. By employing a centralized optical frequency comb, both the wireline and the wireless services....... For demonstration, we transmit a 2.5 Gbit/s signal through the proposed system and successfully achieve a bit-error-rate (BER) performance well below the 7% overhead forward error correction limit of the BER of 2 × 10¿3 for both the wireline and the wireless signals in the 60 GHz band after 25 km single-mode fiber...... for each DWDM user can be simultaneously supported. Besides, each baseband channel can be transparently upconverted tomultiple radio-frequency (RF) bands for different wireless standards, which can be flexibly filtered at the end user to select the on-demand RF band, depending on the wireless applications...

  16. DWDM Fiber-Wireless Access System with Centralized Optical Frequency Comb-based RF Carrier Generation

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Beltrán, Marta; Sánchez, José;


    We propose and experimentally demonstrate an optical wireless DWDM system at 60 GHz with optical incoherent heterodyne up-conversion using an optical frequency comb. Multiple users with wireline and wireless services are simultaneously supported.......We propose and experimentally demonstrate an optical wireless DWDM system at 60 GHz with optical incoherent heterodyne up-conversion using an optical frequency comb. Multiple users with wireline and wireless services are simultaneously supported....

  17. Novel wavelength division multiplex-radio over fiber-passive optical network architecture for multiple access points based on multitone generation and triple sextupling frequency (United States)

    Cheng, Guangming; Guo, Banghong; Liu, Songhao; Huang, Xuguang


    An innovative wavelength division multiplex-radio over fiber-passive optical network architecture for multiple access points (AP) based on multitone generation and triple sextupling frequency is proposed and demonstrated. A dual-drive Mach-Zehnder modulator (DD-MZM) is utilized to realize the multitone generation. Even sidebands are suppressed to make the adjacent frequency separation twice the frequency of the local oscillator by adjusting the modulation voltage of the DD-MZM. Due to adopting three fiber Bragg gratings to reflect the unmodulated sidebands for uplink communications source free at optical network unit (ONU), is achieved. The system can support at least three APs at one ONU simultaneously with a 30 km single-mode fiber (SMF) transmission and 5 Gb/s data rate both for uplink and downlink communications. The theoretical analysis and simulation results show the architecture has an excellent performance and will be a promising candidate in future hybrid access networks.

  18. Study on the energy-efficient scheme based on the interconnection of optical-network-units for next generation optical access network (United States)

    Lv, Yunxin; Jiang, Ning; Qiu, Kun; Xue, Chenpeng


    An energy-efficient scheme based on the interconnection of optical network unit (ONU) is introduced, which can significantly reduce the energy consumption of the low-traffic operation. The energy consumption model for the ONU-interconnected optical access network (OAN) based on the electronic switch (ES) technology is established, and the energy efficiency of the proposed scheme is analyzed and compared with that of the OAN using optical switch (OS). The simulation results demonstrate that the ONU-interconnected scheme can efficiently reduce the energy consumption of OAN, and it shows a good energy consumption performance under daily traffic model.

  19. Incoherent broadband optical pulse generation using an optical gate

    Institute of Scientific and Technical Information of China (English)

    Biao Chen; Qiong Jiang


    In two-dimensional (2D) time-spreading/wavelength-hopping optical code division multiple access (OCDMA) systems, employing less coherent broadband optical pulse sources allows lower electrical operating rate and better system performance. An optical gate based scheme for generating weakly coherent(approximately incoherent) broadband optical pulses was proposed and experimentally demonstrated. Inthis scheme, the terahertz optical asymmetric demultiplexer, together with a coherent narrowband controlpulse source, turns an incoherent broadband continuous-wave (CW) light source into the required pulse source.

  20. Design and implementation of flexible TWDM-PON with PtP WDM overlay based on WSS for next-generation optical access networks (United States)

    Wu, Bin; Yin, Hongxi; Qin, Jie; Liu, Chang; Liu, Anliang; Shao, Qi; Xu, Xiaoguang


    Aiming at the increasing demand of the diversification services and flexible bandwidth allocation of the future access networks, a flexible passive optical network (PON) scheme combining time and wavelength division multiplexing (TWDM) with point-to-point wavelength division multiplexing (PtP WDM) overlay is proposed for the next-generation optical access networks in this paper. A novel software-defined optical distribution network (ODN) structure is designed based on wavelength selective switches (WSS), which can implement wavelength and bandwidth dynamical allocations and suits for the bursty traffic. The experimental results reveal that the TWDM-PON can provide 40 Gb/s downstream and 10 Gb/s upstream data transmission, while the PtP WDM-PON can support 10 GHz point-to-point dedicated bandwidth as the overlay complement system. The wavelengths of the TWDM-PON and PtP WDM-PON are allocated dynamically based on WSS, which verifies the feasibility of the proposed structure.

  1. An optically accessible pyrolysis microreactor

    Energy Technology Data Exchange (ETDEWEB)

    Baraban, J. H.; Ellison, G. Barney [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 (United States); David, D. E. [Integrated Instrument Development Facility, CIRES, University of Colorado, Boulder, Colorado 80309-0216 (United States); Daily, J. W. [Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309 (United States)


    We report an optically accessible pyrolysis micro-reactor suitable for in situ laser spectroscopic measurements. A radiative heating design allows for completely unobstructed views of the micro-reactor along two axes. The maximum temperature demonstrated here is only 1300 K (as opposed to 1700 K for the usual SiC micro-reactor) because of the melting point of fused silica, but alternative transparent materials will allow for higher temperatures. Laser induced fluorescence measurements on nitric oxide are presented as a proof of principle for spectroscopic characterization of pyrolysis conditions.

  2. Triple-Play and 60-GHz Radio-over-Fiber Techniques for Next-Generation Optical Access Networks

    DEFF Research Database (Denmark)

    Llorente, R.; Walker, S.; Tafur Monroy, Idelfonso


    Radio-over-fiber techniques apply to fiber-to-thehome distributions to reach the customer premises with the services to be received with full-standard low-cost equipment. Bi-directional coarse wavelength division multiplexing (CWDM) radio-over-fiber transmission of triple-format full-standard ort......Radio-over-fiber techniques apply to fiber-to-thehome distributions to reach the customer premises with the services to be received with full-standard low-cost equipment. Bi-directional coarse wavelength division multiplexing (CWDM) radio-over-fiber transmission of triple-format full...... performance of radio-over-fiber optical transmission employing vertical-cavity surface-emitting lasers (VCSELs), and further wireless transmission, of standard OFDM UWB signals is reported when operating in the 60-GHz radio band. Performance is evaluated at 1.44 Gbit/s bitrate. PON transmission distance up...


    Directory of Open Access Journals (Sweden)

    I.M.M. Mohamed


    Full Text Available The ever-increasing demand for broader bandwidth per user, which results from the continuous development of new bandwidth-hungry services and applications, creates the motivation to upgrade the currently deployed Time-Division Multiplexing Passive Optical Networks (TDM-PONs to Next-Generation Optical Access Networks (NG-OANs. Beside the need for more bandwidth per user, a further extension in the range and an increase in the split ratio are highly desirable in PONs. These additional requirements can be achieved by adopting so-called Long-Reach Optical Access Networks (LR-OANs. LR-OANs offer a promising solution that ensures a significant number of users can be supported over a longer range. Moreover, they introduce a cost-effective approach in which both the access and metro segments of the telecommunication network are combined into one backhaul segment, which results in the consolidation of many central offices into one trunk-exchange. This cost-effective approach gave us the motivation to provide a comprehensive survey on the LR-OANs. In this study, we first provide a brief review of different potential technologies, proposed for next-generation optical access. We then provide a review of different stat-of-the-art LR-OAN architectures including opportunities and challenges in each one. A comparison among them based on key network specification is also provided.

  4. Optical frequency combs generated mechanically

    CERN Document Server

    Sumetsky, M


    It is shown that a highly equidistant optical frequency comb can be generated by the parametric excitation of an optical bottle microresonator with nanoscale effective radius variation by its natural mechanical vibrations.

  5. Editorial: Next Generation Access Networks (United States)

    Ruffini, Marco; Cincotti, Gabriella; Pizzinat, Anna; Vetter, Peter


    Over the past decade we have seen an increasing number of operators deploying Fibre-to-the-home (FTTH) solutions in access networks, in order to provide home users with a much needed network access upgrade, to support higher peak rates, higher sustained rates and a better and more uniform broadband coverage of the territory.

  6. Control of optics in random access analysers


    Truchaud, A.


    The technology behind random access analysers involves flexible optical systems which can measure absorbances for one reaction at different scheduled times, and for several reactions performed simultaneously at different wavelengths. Optics control involves light sources (continuous and flash mode), indexing of monochromatic filters, injection-moulded plastic cuvettes, optical fibres, and polychromatic analysis.

  7. Photonic devices for next-generation broadband fiber access networks (United States)

    Kazovsky, Leonid G.; Yen, She-Hwa; Wong, Shing-Wa


    Next-generation optical access networks will deliver substantial benefits to consumers including a dedicated high-QoS access to bit rates of hundreds of Megabits per second. They must include the following features such as: reduced total cost of ownership, higher reliability, lower energy consumption, better flexibility and efficiency. This paper will describe recent progress and technology toward that goal using novel photonic devices

  8. Broadband access technology for passive optical network (United States)

    Chi, Sien; Yeh, Chien-Hung; Chow, Chi-Wai


    We will introduce four related topics about fiber access network technologies for PONs. First, an upstream signal powerequalizer is proposed and designed using a FP-LD in optical line terminal applied to the TDM-PON, and a 20dB dynamic upstream power range from -5 to -25dBm having a 1.7dB maximal power variation is retrieved. The fiber-fault protection is also an important issue for PON. We investigate a simple and cost-effective TDM/WDM PON system with self-protected function. Next, using RSOA-based colorless WDM-PON is also demonstrated. We propose a costeffective CW light source into RSOA for 2.5Gb/s upstream in WDM-PON together with self-healing mechanism against fiber fault. Finally, we investigate a 4Gb/s OFDM-QAM for both upstream and downstream traffic in long-reach WDM/TDM PON system under 100km transmission without dispersion compensation. As a result, we believe that these key access technologies are emerging and useful for the next generation broadband FTTH networks.


    Directory of Open Access Journals (Sweden)

    Tony Tsang


    Full Text Available One of the most important multimedia applications is Internet protocol TV (IPTV for next-generation networks. IPTV provides triple-play services that require high-speed access networks with the functions of multicasting and quality of service (QoS guarantees. Among optical access networks, Ethernet passive optical networks (EPONs are regarded as among the best solutions to meet higher bandwidth demands. In this paper, we propose a new architecture for multicasting live IPTV traffic in optical access network. The proposed mechanism involves assigning a unique logical link identifier to each IPTV channel. To manage multicasting, a prior storing server in the optical line terminal (OLT and in each optical network unit (ONU is constructed. In this work, we propose a partial prior storing strategy that considers the changes in the popularity of the video content segments over time and the access patterns of the users to compute the utility of the objects in the prior storage. We also propose to partition the prior storage to avoid the eviction of the popular objects (those not accessed frequently by the unpopular ones which are accessed with higher frequency. The popularity distribution and ageing of popularity are measured from two online datasets and use the parameters in simulations. Simulation results show that our proposed architecture can improve the system performance and QoS parameters in terms of packet delay, jitter and packet loss

  10. High Optical Access Trap 2.0.

    Energy Technology Data Exchange (ETDEWEB)

    Maunz, Peter Lukas Wilhelm [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    The High Optical Access (HOA) trap was designed in collaboration with the Modular Universal Scalable Ion-trap Quantum Computer (MUSIQC) team, funded along with Sandia National Laboratories through IARPA's Multi Qubit Coherent Operations (MQCO) program. The design of version 1 of the HOA trap was completed in September 2012 and initial devices were completed and packaged in February 2013. The second version of the High Optical Access Trap (HOA-2) was completed in September 2014 and is available at IARPA's disposal.

  11. Achieving universal access to next generation networks

    DEFF Research Database (Denmark)

    Falch, Morten; Henten, Anders

    The paper examines investment dimensions of next generation networks in a universal service perspective in a European context. The question is how new network infrastructures for getting access to communication, information and entertainment services in the present and future information society...

  12. Optical access: networks and components (overview) (United States)

    Mynbaev, Djafar K.


    The exponential gtowth of traffic delivered to an individual customer both for business and personal needs puts tremendous pressure on the telecommunications networks. Because the development of the long-haul and metro networks has advanced rapidly and their capacity much eceeds demand, tremendous pressure now falls in the local networks to provide customers with access to the global telecom infrastructure. Building a broadband access network enabling fast delivery of high-volume traffic is the current task of network operators. A brief review of broadband access networks brings us to the conclusion that only wired optical networks can serve as an immediate and future solution to the "last-mile" problem. After discussin goptical access network classification, we focus mainly on passive optical networks (PON) because PON is a major technology today. From the network standpoint, we discuss the principle of PON operation, architectures, topologies, protocols and standards, design issues, and network management and services. We also discuss the main problems with PON and the use of WDM technology. From the hardware standpoint, we consider both active and passive components. We analyze the structure and elements of these components, including their technical characteristics.

  13. High speed OFDM-CDMA optical access network. (United States)

    Guo, X; Wang, Q; Zhou, L; Fang, L; Wonfor, A; Penty, R V; White, I H


    We demonstrate the feasibility of a 16 × 3.75 Gb/s (60 Gb/s aggregate) Orthogonal frequency division multiplexing-code division multiple access passive optical network for next-generation access applications. 3.75 Gb/s PON channel transmission over 25 km single-mode fiber shows 0.1 dB dispersion and 0.9 dB crosstalk penalties. Advantages of the system include high capacity, enhanced spectral efficiency, coding gain, and networking functions such as increased security and single-wavelength operation.

  14. Optimizing multimedia content delivery over next-generation optical networks


    Di Pascale, Emanuele


    This thesis analyzes the performance of a Peer-to-Peer (P2P) multimedia content delivery system for a network architecture based on next-generation Passive Optical Networks (PONs). A PON is an optical access technology that is able to deliver high bandwidth capacities at a fraction of the cost of traditional point-to-point fiber solutions; this is achieved by sharing the same feeder fiber among several customers through the use of optical splitters. Established standards such as G...

  15. Amplified CWDM-based Next Generation Broadband Access Networks (United States)

    Peiris, Sasanthi Chamarika

    The explosive growth of both fixed and mobile data-centric traffic along with the inevitable trend towards all-IP/Ethernet transport protocols and packet switched networks will ultimately lead to an all-packet-based converged fixed-mobile optical transport network from the core all the way out to the access network. To address the increasing capacity and speed requirements in the access networks, Wavelength-Division Multiplexed (WDM) and/or Coarse WDM (CWDM)-based Passive Optical Networks (PONs) are expected to emerge as the next-generation optical access infrastructures. However, due to several techno-economic hurdles, CWDM-PONs are still considered an expensive solution and have not yet made any significant inroads into the current access area. One of the key technology hurdles is the scalability of the CWDM-based PONs. Passive component optical insertion losses limit the reach of the network or the number of served optical network units (ONUs). In the recent years, optical amplified CWDM approaches have emerged and new designs of optical amplifiers have been proposed and demonstrated. The critical design parameter for these amplifiers is the very wide optical amplification bandwidth (e.g., 340 nm combined for both directions). The objective of this PhD dissertation work is first to engineer ring and tree-ring based PON architectures that can achieve longer unamplified PON reach and/or provide service to a greater number of ONUs and customers. Secondly is to develop new novel optical amplifier schemes to further address the scalability limitation of the CWDM-based PONs. Specifically, this work proposes and develops novel ultra wide-band hybrid Raman-Optical parametric amplifier (HROPA) schemes that operate over nearly the entire specified CWDM band to provide 340 nm bidirectional optical gain bandwidth over the amplified PON's downstream and upstream CWDM wavelength bands (about 170 nm in each direction). The performance of the proposed HROPA schemes is assessed

  16. Optical networks, last mile access and applications (United States)

    Leitgeb, E.; Gebhart, M.; Birnbacher, U.

    Free Space Optical (FSO) links can be used to setup FSO communication networks or to supplement radio and optical fiber networks. Hence, it is the broadband wireless solution for closing the "last mile" connectivity gap throughout metropolitan networks. Optical wireless fits well into dense urban areas and is ideally suited for urban applications. This paper gives an overview of free-space laser communications. Different network architectures will be described and investigated regarding reliability. The usage of "Optical Repeaters", Point-to-Point and Point-to-Multipoint solutions will be explained for setting up different network architectures. After having explained the different networking topologies and technologies, FSO applications will be discussed in section 2, including terrestrial applications for short and long ranges, and space applications. Terrestrial applications for short ranges cover the links between buildings on campus or different buildings of a company, which can be established with low-cost technology. For using FSO for long-range applications, more sophisticated systems have to be used. Hence, different techniques regarding emitted optical power, beam divergence, number of beams and tracking will be examined. Space applications have to be divided into FSO links through the troposphere, for example up- and downlinks between the Earth and satellites, and FSO links above the troposphere (e.g., optical inter-satellite links). The difference is that links through the troposphere are mainly influenced by weather conditions similar but not equal to terrestrial FSO links. Satellite orbits are above the atmosphere and therefore, optical inter-satellite links are not influenced by weather conditions. In section 3 the use of optical wireless for the last mile will be investigated and described in more detail. Therefore important design criteria for connecting the user to the "backbone" by FSO techniques will be covered, e.g., line of sight, network

  17. All-optical fast random number generator. (United States)

    Li, Pu; Wang, Yun-Cai; Zhang, Jian-Zhong


    We propose a scheme of all-optical random number generator (RNG), which consists of an ultra-wide bandwidth (UWB) chaotic laser, an all-optical sampler and an all-optical comparator. Free from the electric-device bandwidth, it can generate 10Gbit/s random numbers in our simulation. The high-speed bit sequences can pass standard statistical tests for randomness after all-optical exclusive-or (XOR) operation.

  18. Method for Generating a Compressed Optical Pulse

    DEFF Research Database (Denmark)


    There is presented a method of for generating a compressed optical pulse (112) comprising emitting from a wavelength tunable microcavity laser system (102), comprising an optical cavity (104) with a mechanically adjustable cavity length (L), a primary optical pulse (111) having a primary temporal...... width (Tl) while adjusting the optical cavity length (L) so that said primary optical pulse comprises temporally separated photons of different wavelengths, and transmitting said pulse through a dispersive medium (114), so as to generate a compressed optical pulse (112) with a secondary temporal width...

  19. Optical technologies in extended-reach access networks

    DEFF Research Database (Denmark)

    Wong, Elaine; Amaya Fernández, Ferney Orlando; Tafur Monroy, Idelfonso


    The merging of access and metro networks has been proposed as a solution to lower the unit cost of customer bandwidth. This paper reviews some of the recent advances and challenges in extended-reach optical access networks....

  20. Remote Access Unit for Optic-to-Wireless Conversion

    DEFF Research Database (Denmark)

    Chorchos, Łukasz; Rommel, Simon; Turkiewicz, J. P.

    In this paper we propose a design of a reconfigurable Remote Access Unit (RAU) interfacing optical dense wavelength division multiplexed (DWDM) networks with radio communication links. To generate a radio signal the device utilizes a principles of incoherent heterodyne signal upconversion...... to the chosen radio frequency. Both signals are fed into a photodiode with 90GHz bandwidth and transmitted with antenas. The local oscillator and tunable filter are controlled over processing unit that can be easily connected to the management network. The filter and local oscillator are widely tunable what...

  1. Optical solutions for unbundled access network (United States)

    Bacîş Vasile, Irina Bristena


    The unbundling technique requires finding solutions to guarantee the economic and technical performances imposed by the nature of the services that can be offered. One of the possible solutions is the optic one; choosing this solution is justified for the following reasons: it optimizes the use of the access network, which is the most expensive part of a network (about 50% of the total investment in telecommunications networks) while also being the least used (telephone traffic on the lines has a low cost); it increases the distance between the master station/central and the terminal of the subscriber; the development of the services offered to the subscribers is conditioned by the subscriber network. For broadband services there is a need for support for the introduction of high-speed transport. A proper identification of the factors that must be satisfied and a comprehensive financial evaluation of all resources involved, both the resources that are in the process of being bought as well as extensions are the main conditions that would lead to a correct choice. As there is no single optimal technology for all development scenarios, which can take into account all access systems, a successful implementation is always done by individual/particularized scenarios. The method used today for the selection of an optimal solution is based on statistics and analysis of the various, already implemented, solutions, and on the experience that was already gained; the main evaluation criterion and the most unbiased one is the ratio between the cost of the investment and the quality of service, while serving an as large as possible number of customers.

  2. Broadband Optical Access Technologies to Converge towards a Broadband Society in Europe (United States)

    Coudreuse, Jean-Pierre; Pautonnier, Sophie; Lavillonnière, Eric; Didierjean, Sylvain; Hilt, Benoît; Kida, Toshimichi; Oshima, Kazuyoshi

    This paper provides insights on the status of broadband optical access market and technologies in Europe and on the expected trends for the next generation optical access networks. The final target for most operators, cities or any other player is of course FTTH (Fibre To The Home) deployment although we can expect intermediate steps with copper or wireless technologies. Among the two candidate architectures for FTTH, PON (Passive Optical Network) is by far the most attractive and cost effective solution. We also demonstrate that Ethernet based optical access network is very adequate to all-IP networks without any incidence on the level of quality of service. Finally, we provide feedback from a FTTH pilot network in Colmar (France) based on Gigabit Ethernet PON technology. The interest of this pilot lies on the level of functionality required for broadband optical access networks but also on the development of new home network configurations.

  3. Experimental generation of optical coherence lattices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yahong; Cai, Yangjian, E-mail:, E-mail: [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Ponomarenko, Sergey A., E-mail:, E-mail: [Department of Electrical and Computer Engineering, Dalhousie University, Halifax, Nova Scotia B3J 2X4 (Canada)


    We report experimental generation and measurement of recently introduced optical coherence lattices. The presented optical coherence lattice realization technique hinges on a superposition of mutually uncorrelated partially coherent Schell-model beams with tailored coherence properties. We show theoretically that information can be encoded into and, in principle, recovered from the lattice degree of coherence. Our results can find applications to image transmission and optical encryption.

  4. Capillary Optics generate stronger X-rays (United States)


    NASA scientist, in the Space Sciences lab at Marshall, works with capillary optics that generate more intense X-rays than conventional sources. This capability is useful in studying the structure of important proteins.

  5. Optical Sound Generation and Amplification (United States)


    For this purpose we write ^s tRT VCp where u is the angular frequency, M is molecular weight, R is the gas con- stant, T is absolute temperature...compared to the relaxation time. In the case of polyatomic gases with molecular dipole moments and correspondingly high optical absorption coefficients, it...Andrea Prosperetti, Istituto di Fisica , Universita di Mllano, Italy. Measurements are pret.ented in this paper of the pulsation amplitude of an

  6. Accessible Content Generation for the Learning Disabled

    Directory of Open Access Journals (Sweden)

    Zainab Pirani


    Full Text Available The research for this paper was conducted to explore the various aspects of Learning Disabled students and how the student-centered learning environments have been influenced and aided by educational technology. The educational content material which plays the important role in the field of educational technology has to be transformed in the way accessible to the LD learner. This paper provides the guidelines for the same as well provides the comparative analysis in support of th guidelines provided.

  7. Optical Access Multiservice Architecture with Support to Smart Grid

    DEFF Research Database (Denmark)

    Gómez-Martínez, Alejandro; Amaya-Fernández, Ferney; Hincapié, Roberto


    The increasing demand of fixed and mobile applications, and considering that smart grid imposes new requirements to the access networks, in this paper we present an optical access architecture to support home multiservice including smart grid applications. We propose a migration path based in a WDM...

  8. Generation and propagation of optical vortices (United States)

    Rozas, David

    Optical vortices are singularities in phase fronts of laser beams. They are characterized by a dark core whose size (relative to the size of the background beam) may dramatically affect their behavior upon propagation. Previously, only large-core vortices have been extensively studied. The object of the research presented in this dissertation was to explore ways of generating small-core optical vortices (also called optical vortex filaments ), and to examine their propagation using analytical, numerical and experimental methods. Computer-generated holography enabled us to create arbitrary distributions of optical vortex filaments for experimental exploration. Hydrodynamic analogies were used to develop an heuristic model which described the dependence of vortex motion on other vortices and the background beam, both qualitatively and quantitatively. We predicted that pair of optical vortex filaments will rotate with angular rates inversely proportional to their separation distance (just like vortices in a fluid). We also reported the first experimental observation of this novel fluid-like effect. It was found, however, that upon propagation in linear media, the fluid-like rotation was not sustained owing to the overlap of diffracting vortex cores. Further numerical studies and experiments showed that rotation angle may be enhanced in nonlinear self-defocusing media. The results presented in this thesis offer us a better understanding of dynamics of propagating vortices which may result in applications in optical switching, optical data storage, manipulation of micro-particles and optical limiting for eye protection.

  9. Optical code division multiple access fundamentals and applications

    CERN Document Server

    Prucnal, Paul R


    Code-division multiple access (CDMA) technology has been widely adopted in cell phones. Its astonishing success has led many to evaluate the promise of this technology for optical networks. This field has come to be known as Optical CDMA (OCDMA). Surveying the field from its infancy to the current state, Optical Code Division Multiple Access: Fundamentals and Applications offers the first comprehensive treatment of OCDMA from technology to systems.The book opens with a historical perspective, demonstrating the growth and development of the technologies that would eventually evolve into today's

  10. Highly Reliable PON Optical Splitters for Optical Access Networks in Outside Environments (United States)

    Watanabe, Hiroshi; Araki, Noriyuki; Fujimoto, Hisashi

    Broadband optical access services are spreading throughout the world, and the number of fiber to the home (FTTH) subscribers is increasing rapidly. Telecom operators are constructing passive optical networks (PONs) to provide optical access services. Externally installed optical splitters for PONs are very important passive devices in optical access networks, and they must provide satisfactory performance as outdoor plant over long periods. Therefore, we calculate the failure rate of optical access networks and assign a failure rate to the optical splitters in optical access networks. The maximum cumulative failure rate of 1 × 8 optical splitters was calculated as 0.025 for an optical access fiber length of 2.1km and a 20-year operating lifetime. We examined planar lightwave circuit (PLC) type optical splitters for use as outside plant in terms of their optical characteristics and environmental reliability. We confirmed that PLC type optical splitters have sufficient optical performance for a PON splitter and sufficient reliability as outside plant in accordance with ITU-T standard values. We estimated the lifetimes of three kinds of PLC type optical splitters by using accelerated aging tests. The estimated failure rate of these splitters installed in optical access networks was below the target value for the cumulative failure rate, and we confirmed that they have sufficient reliability to maintain the quality of the network service. We developed 1 × 8 optical splitter modules with plug and socket type optical connectors and optical fiber cords for optical aerial closures designed for use as outside plant. These technologies make it easy to install optical splitters in an aerial optical closure. The optical splitter modules have sufficient optical performance levels for PONs because the insertion loss at the commercially used wavelengths of 1.31 and 1.55µm is less than the criterion established by ITU-T Recommendation G.671 for optical splitters. We performed a

  11. Bandpass sampling in heterodyne receivers for coherent optical access networks. (United States)

    Bakopoulos, Paraskevas; Dris, Stefanos; Schrenk, Bernhard; Lazarou, Ioannis; Avramopoulos, Hercules


    A novel digital receiver architecture for coherent heterodyne-detected optical signals is presented. It demonstrates the application of bandpass sampling in an optical communications context, to overcome the high sampling rate requirement of conventional receivers (more than twice the signal bandwidth). The concept is targeted for WDM coherent optical access networks, where applying heterodyne detection constitutes a promising approach to reducing optical hardware complexity. The validity of the concept is experimentally assessed in a 76 km WDM-PON scenario, where the developed DSP achieves a 50% ADC rate reduction with penalty-free operation.

  12. An economic analysis on optical Ethernet in the access network (United States)

    Kim, Sung Hwi; Nam, Dohyun; Yoo, Gunil; Kim, WoonHa


    Nowadays, Broadband service subscribers have increased exponentially and have almost saturated in Korea. Several types of solutions for broadband service applied to the field. Among several types of broadband services, most of subscribers provided xDSL service like ADSL or VDSL. Usually, they who live in an apartment provided Internet service by Ntopia network as FTTC structure that is a dormant network in economical view at KT. Under competitive telecom environment for new services like video, we faced with needing to expand or rebuild portions of our access networks, are looking for ways to provide any service that competitors might offer presently or in the near future. In order to look for new business model like FTTH service, we consider deploying optical access network. In spite of numerous benefits of PON until now, we cannot believe that PON is the best solution in Korea. Because we already deployed optical access network of ring type feeder cable and have densely population of subscribers that mainly distributed inside 6km from central office. So we try to utilize an existing Ntopia network for FTTH service under optical access environment. Despite of such situations, we try to deploy PON solution in the field as FTTC or FTTH architecture. Therefore we analyze PON structure in comparison with AON structure in order to look for optimized structure in Korea. At first, we describe the existing optical access networks and network architecture briefly. Secondly we investigate the cost of building optical access networks by modeling cost functions on AON and PON structure which based on Ethernet protocol, and analyze two different network architectures according to different deployment scenarios: Urban, small town, rural. Finally we suggest the economic and best solution with PON structure to optimize to optical access environment of KT.

  13. Deep optical access on multi-core and multi-mode fiber for integrated wireless applications (United States)

    Llorente, Roberto; Morant, Maria; Beltrán, Marta; Macho, Andrés.


    Deep integrated optical access networks target to provide great capillarity and multiple ONTs for cost- and energy-efficient pervasive connectivity seamless supporting integrated wireless. Several key optical technologies are herein reported supporting integrated deep optical access: Bundled radio-over-fiber transmission is proposed and demonstrated for the provision of quintuple-play services achieving 125 km SSMF optical reach. Bend-insensitive fiber in-building distribution is also proposed and demonstrated supporting joint legacy coaxial transmission. Multimode POF is also proposed and demonstrated suitable for joint in-building distribution of MATV and SMATV broadcasting signals. Optical comb technology us is also demonstrated suitable for mm-wave radio generation of multiband OFDM wireless signals. Finally, multicore fiber transmission is also proposed and demonstrated suitable for the transmission of LTE and WIMAX in wireless fronthaul applications in a minimized inter-core crosstalk penalty configuration.

  14. 3D optical vortices generated by micro-optical elements and its novel applications

    Institute of Scientific and Technical Information of China (English)

    BU J.; LIN J.; K. J. Moh; B. P. S. Ahluwalia; CHEN H. L.; PENG X.; NIU H. B.; YUAN X.C.


    In this paper we report on recent development in the areas of optical vortices generated by micro-optical elements and applications of optical vortices, including optical manipulation, radial polarization and secure free space optical communication

  15. Catenary optics for achromatic generation of perfect optical angular momentum. (United States)

    Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Zhao, Zeyu; Wang, Changtao; Hu, Chenggang; Gao, Ping; Huang, Cheng; Ren, Haoran; Li, Xiangping; Qin, Fei; Yang, Jing; Gu, Min; Hong, Minghui; Luo, Xiangang


    The catenary is the curve that a free-hanging chain assumes under its own weight, and thought to be a "true mathematical and mechanical form" in architecture by Robert Hooke in the 1670s, with nevertheless no significant phenomena observed in optics. We show that the optical catenary can serve as a unique building block of metasurfaces to produce continuous and linear phase shift covering [0, 2π], a mission that is extremely difficult if not impossible for state-of-the-art technology. Via catenary arrays, planar optical devices are designed and experimentally characterized to generate various kinds of beams carrying orbital angular momentum (OAM). These devices can operate in an ultra-broadband spectrum because the anisotropic modes associated with the spin-orbit interaction are almost independent of the incident light frequency. By combining the optical and topological characteristics, our approach would allow the complete control of photons within a single nanometric layer.

  16. Optical Generation of Fuzzy-Based Rules (United States)

    Gur, Eran; Mendlovic, David; Zalevsky, Zeev


    In the last third of the 20th century, fuzzy logic has risen from a mathematical concept to an applicable approach in soft computing. Today, fuzzy logic is used in control systems for various applications, such as washing machines, train-brake systems, automobile automatic gear, and so forth. The approach of optical implementation of fuzzy inferencing was given by the authors in previous papers, giving an extra emphasis to applications with two dominant inputs. In this paper the authors introduce a real-time optical rule generator for the dual-input fuzzy-inference engine. The paper briefly goes over the dual-input optical implementation of fuzzy-logic inferencing. Then, the concept of constructing a set of rules from given data is discussed. Next, the authors show ways to implement this procedure optically. The discussion is accompanied by an example that illustrates the transformation from raw data into fuzzy set rules.

  17. Analysis of physical layer performance of hybrid optical-wireless access network (United States)

    Shaddad, R. Q.; Mohammad, A. B.; Al-hetar, A. M.


    The hybrid optical-wireless access network (HOWAN) is a favorable architecture for next generation access network. It is an optimal combination of an optical backhaul and a wireless front-end for an efficient access network. In this paper, the HOWAN architecture is designed based on a wavelengths division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) at the optical backhaul and a wireless fidelity (WiFi) technology at the wireless front-end. The HOWAN is proposed that can provide blanket coverage of broadband and flexible connection for end-users. Most of the existing works, based on performance evaluation are concerned on network layer aspects. This paper reports physical layer performance in terms of the bit error rate (BER), eye diagram, and signal-to-noise ratio (SNR) of the communication system. It accommodates 8 wavelength channels with 32 optical network unit/wireless access points (ONU/APs). It is demonstrated that downstream and upstream of 2 Gb/s can be achieved by optical backhaul for each wavelength channel along optical fiber length of 20 km and a data rate of 54 Mb/s per ONU/AP along a 50 m outdoor wireless link.

  18. Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats. (United States)

    Li, Borui; Feng, Zhenhua; Tang, Ming; Xu, Zhilin; Fu, Songnian; Wu, Qiong; Deng, Lei; Tong, Weijun; Liu, Shuang; Shum, Perry Ping


    Towards the next generation optical access network supporting large capacity data transmission to enormous number of users covering a wider area, we proposed a hybrid wavelength-space division multiplexing (WSDM) optical access network architecture utilizing multicore fibers with advanced modulation formats. As a proof of concept, we experimentally demonstrated a WSDM optical access network with duplex transmission using our developed and fabricated multicore (7-core) fibers with 58.7km distance. As a cost-effective modulation scheme for access network, the optical OFDM-QPSK signal has been intensity modulated on the downstream transmission in the optical line terminal (OLT) and it was directly detected in the optical network unit (ONU) after MCF transmission. 10 wavelengths with 25GHz channel spacing from an optical comb generator are employed and each wavelength is loaded with 5Gb/s OFDM-QPSK signal. After amplification, power splitting, and fan-in multiplexer, 10-wavelength downstream signal was injected into six outer layer cores simultaneously and the aggregation downstream capacity reaches 300 Gb/s. -16 dBm sensitivity has been achieved for 3.8 × 10-3 bit error ratio (BER) with 7% Forward Error Correction (FEC) limit for all wavelengths in every core. Upstream signal from ONU side has also been generated and the bidirectional transmission in the same core causes negligible performance degradation to the downstream signal. As a universal platform for wired/wireless data access, our proposed architecture provides additional dimension for high speed mobile signal transmission and we hence demonstrated an upstream delivery of 20Gb/s per wavelength with QPSK modulation formats using the inner core of MCF emulating a mobile backhaul service. The IQ modulated data was coherently detected in the OLT side. -19 dBm sensitivity has been achieved under the FEC limit and more than 18 dB power budget is guaranteed.

  19. Optical label-controlled transparent metro-access network interface

    DEFF Research Database (Denmark)

    Osadchiy, Alexey Vladimirovich

    This thesis presents results obtained during the course of my PhD research on optical signal routing and interfacing between the metropolitan and access segments of optical networks. Due to both increasing capacity demands and variety of emerging services types, new technological challenges...... are arising for seamlessly interfacing metropolitan and access networks. Therefore, in this PhD project, I have analyzed those technological challenges and identified the key aspects to be addressed. I have also proposed and experimentally verified a number of solutions to metropolitan and access networks...... interfacing and signal routing. Equipment and infrastructure simplification was recognized as the path towards more efficient metropolitan and access networks providing a spectrum of high-bandwidth services to large number of users. Several approaches have been proposed and developed in order to enable...

  20. Multi terabits/s optical access transport technologies (United States)

    Binh, Le Nguyen; Wang Tao, Thomas; Livshits, Daniil; Gubenko, Alexey; Karinou, Fotini; Liu Ning, Gordon; Shkolnik, Alexey


    Tremendous efforts have been developed for multi-Tbps over ultra-long distance and metro and access optical networks. With the exponential increase demand on data transmission, storage and serving, especially the 5G wireless access scenarios, the optical Internet networking has evolved to data-center based optical networks pressuring on novel and economical access transmission systems. This paper reports (1) Experimental platforms and transmission techniques employing band-limited optical components operating at 10G for 100G based at 28G baud. Advanced modulation formats such as PAM-4, DMT, duo-binary etc are reported and their advantages and disadvantages are analyzed so as to achieve multi-Tbps optical transmission systems for access inter- and intra- data-centered-based networks; (2) Integrated multi-Tbps combining comb laser sources and micro-ring modulators meeting the required performance for access systems are reported. Ten-sub-carrier quantum dot com lasers are employed in association with wideband optical intensity modulators to demonstrate the feasibility of such sources and integrated micro-ring modulators acting as a combined function of demultiplexing/multiplexing and modulation, hence compactness and economy scale. Under the use of multi-level modulation and direct detection at 56 GBd an aggregate of higher than 2Tbps and even 3Tbps can be achieved by interleaved two comb lasers of 16 sub-carrier lines; (3) Finally the fundamental designs of ultra-compacts flexible filters and switching integrated components based on Si photonics for multi Tera-bps active interconnection are presented. Experimental results on multi-channels transmissions and performances of optical switching matrices and effects on that of data channels are proposed.

  1. Large optical 3D MEMS switches in access networks (United States)

    Madamopoulos, Nicholas; Kaman, Volkan; Yuan, Shifu; Jerphagnon, Olivier; Helkey, Roger; Bowers, John E.


    Interest is high among residential customers and businesses for advanced, broadband services such as fast Internet access, electronic commerce, video-on-demand, digital broadcasting, teleconferencing and telemedicine. In order to satisfy such growing demand of end-customers, access technologies such as fiber-to-the-home/building (FTTH/B) are increasingly being deployed. Carriers can reduce maintenance costs, minimize technology obsolescence and introduce new services easily by reducing active elements in the fiber access network. However, having a passive optical network (PON) also introduces operational and maintenance challenges. Increased diagnostic monitoring capability of the network becomes a necessity as more and more fibers are provisioned to deliver services to the end-customers. This paper demonstrates the clear advantages that large 3D optical MEMS switches offer in solving these access network problems. The advantages in preventative maintenance, remote monitoring, test and diagnostic capability are highlighted. The low optical insertion loss for all switch optical connections of the switch enables the monitoring, grooming and serving of a large number of PON lines and customers. Furthermore, the 3D MEMS switch is transparent to optical wavelengths and data formats, thus making it easy to incorporate future upgrades, such higher bit rates or DWDM overlay to a PON.

  2. Coded access optical sensor (CAOS) imager and applications (United States)

    Riza, Nabeel A.


    Starting in 2001, we proposed and extensively demonstrated (using a DMD: Digital Micromirror Device) an agile pixel Spatial Light Modulator (SLM)-based optical imager based on single pixel photo-detection (also called a single pixel camera) that is suited for operations with both coherent and incoherent light across broad spectral bands. This imager design operates with the agile pixels programmed in a limited SNR operations starring time-multiplexed mode where acquisition of image irradiance (i.e., intensity) data is done one agile pixel at a time across the SLM plane where the incident image radiation is present. Motivated by modern day advances in RF wireless, optical wired communications and electronic signal processing technologies and using our prior-art SLM-based optical imager design, described using a surprisingly simple approach is a new imager design called Coded Access Optical Sensor (CAOS) that has the ability to alleviate some of the key prior imager fundamental limitations. The agile pixel in the CAOS imager can operate in different time-frequency coding modes like Frequency Division Multiple Access (FDMA), Code-Division Multiple Access (CDMA), and Time Division Multiple Access (TDMA). Data from a first CAOS camera demonstration is described along with novel designs of CAOS-based optical instruments for various applications.

  3. Integrated optics bus access module for intramachine communication (United States)

    Karioja, Pentti; Tammela, Simo K. T.; Hannula, Tapio


    The feasibility of a passive bidirectional fiber optic bus and the packaging considerations of a bus access module have been studied. The bus uses 110/125 micrometers HCS fiber and passive integrated optic couplers for bus access. The access couplers are asymmetric and were fabricated using a Ag-Na ion exchange process. The asymmetry of the coupler was 5 dB, the launch loss to the bus was 6 dB and the tap-off loss to the node was 11 dB. With the integrated optics coupler it is possible to connect 6 nodes to the bidirectional bus. It is also possible to realize a simple, easy-to-use, and reliable bus access module for intramachine communication. The integrated optics coupler, a LED chip, and a PIN-diode chip and transceiver electronics are packaged in an electrical connector with a two-fiber optical cable pigtail. Active and passive components are butt coupled to the coupler. The 0.5 dB alignment tolerances for the fiber pigtails, the LED, and the PIN-diode chips are +/- 5 micrometers .

  4. Optical vortex beam generator at nanoscale level (United States)

    Garoli, Denis; Zilio, Pierfrancesco; Gorodetski, Yuri; Tantussi, Francesco; De Angelis, Francesco


    Optical beams carrying orbital angular momentum (OAM) can find tremendous applications in several fields. In order to apply these particular beams in photonic integrated devices innovative optical elements have been proposed. Here we are interested in the generation of OAM-carrying beams at the nanoscale level. We design and experimentally demonstrate a plasmonic optical vortex emitter, based on a metal-insulator-metal holey plasmonic vortex lens. Our plasmonic element is shown to convert impinging circularly polarized light to an orbital angular momentum state capable of propagating to the far-field. Moreover, the emerging OAM can be externally adjusted by switching the handedness of the incident light polarization. The device has a radius of few micrometers and the OAM beam is generated from subwavelength aperture. The fabrication of integrated arrays of PVLs and the possible simultaneous emission of multiple optical vortices provide an easy way to the large-scale integration of optical vortex emitters for wide-ranging applications. PMID:27404659

  5. Robust and Flexible Wavelength Division Multiplexed Optical Access Networks

    DEFF Research Database (Denmark)

    Wagner, Christoph; Eiselt, Michael; Grobe, Klaus

    Future wavelength division multiplexed (WDM) access networks should be as flexible as possible. One flexibility is port wavelength-agnosticism at the optical network unit (ONU) interface, achieved via tunable laser. At the same time such systems needs to be robust against crosstalk impairments...

  6. 1.25 Gbit/s bidirectional link in an access network employing a reconfigurable optical add/drop multiplexer and a reflective semiconductor optical amplifier

    NARCIS (Netherlands)

    Urban, P.J.; Laat, de M.M.; Klein, E.J.; Koonen, A.M.J.; Khoe, G.D.; Waardt, de H.; Marciniak, M.; Jaworski, M.; Zdabiwicz, M.


    In this paper, we demonstrate symmetrical bidirectional transmission of 1.25 Gbit/s wavelength channels in an access network link employing centralized light generation, colourless optical network unit (ONU) and a reconfigurable optical add/drop multiplexer (ROADM). The architecture of ONU is based

  7. 1.25 Gbit/s bidirectional link in an access network employing a reconfigurable optical add/drop multiplexer and a reflective semiconductor optical amplifier

    NARCIS (Netherlands)

    Urban, P.J.; de Laat, M.M.; Klein, E.J.; Koonen, A.M.J.; Khoe, G.D.; de Waardt, H.; Marciniak, M.; Jaworski, M.; Zdabiwicz, M.


    In this paper, we demonstrate symmetrical bidirectional transmission of 1.25 Gbit/s wavelength channels in an access network link employing centralized light generation, colourless optical network unit (ONU) and a reconfigurable optical add/drop multiplexer (ROADM). The architecture of ONU is based

  8. Optical pulse generator using liquid crystal light valve (United States)

    Collins, S. A., Jr.


    Numerical optical computing is discussed. A design for an optical pulse generator using a Hughes Liquid crystal light valve and intended for application as an optical clock in a numerical optical computer is considered. The pulse generator is similar in concept to the familiar electronic multivibrator, having a flip-flop and delay units.

  9. Modelling of new generation plasma optical devices

    Directory of Open Access Journals (Sweden)

    Litovko Irina V.


    Full Text Available The paper presents new generation plasma optical devices based on the electrostatic plasma lens configuration that opens a novel attractive possibility for effective high-tech practical applications. Original approaches to use of plasma accelerators with closed electron drift and open walls for the creation of a cost-effective low-maintenance plasma lens with positive space charge and possible application for low-cost, low-energy rocket engine are described. The preliminary experimental, theoretical and simulation results are presented. It is noted that the presented plasma devices are attractive for many different applications in the state-of-the-art vacuum-plasma processing.

  10. High-Capacity Hybrid Optical Fiber-Wireless Communications Links in Access Networks

    DEFF Research Database (Denmark)

    Pang, Xiaodan

    techniques with both coherent and incoherent optical sources are studied and demonstrated. Employments of advanced modulation formats including phase-shift keying (PSK), M-quadrature amplitude modulation (QAM) and orthogonal frequency-division multiplexing (OFDM) for high speed photonic-wireless transmission......Integration between fiber-optic and wireless communications systems in the "last mile" access networks is currently considered as a promising solution for both service providers and users, in terms of minimizing deployment cost, shortening upgrading period and increasing mobility and flexibility...... techniques. In conclusion, the results presented in the thesis show the feasibility of employing mm-wave signals, advanced modulation formats and spatial multiplexing technologies in next generation high capacity hybrid optical fiber-wireless access systems....

  11. Method for high-speed Manchester encoded optical signal generation

    DEFF Research Database (Denmark)

    Zhang, Jianfeng; Chi, Nan; Holm-Nielsen, Pablo Villanueva


    A method for high-speed Manchester encoded optical signal generation is proposed and demonstrated with a specially configured electro-optical modulator. A 10 Gb/s Manchester encoded optical signal was generated, and its bit-error-ratio (BER) performance was evaluated.......A method for high-speed Manchester encoded optical signal generation is proposed and demonstrated with a specially configured electro-optical modulator. A 10 Gb/s Manchester encoded optical signal was generated, and its bit-error-ratio (BER) performance was evaluated....

  12. Infrared Supercontinuum Generation in Optical Fibres

    DEFF Research Database (Denmark)

    Dupont, Sune Vestergaard Lund

    with laser-like intensity is obtained, which otherwise is impossible without the use of more complicated equipment. Until recently, supercontinuum covering the mid-infrared was not possible due to absorption in the silica glass optical fibres are made of. In our project infrared transparent materials...... evolution has been investigated and also the mechanisms governing the pulse broadening. The generated infrared light has some crucial advantages compared to normal visible light. Infrared light can especially be used for spectroscopy, where the specific molecular absorptions are probed directly. This we...... have used for infrared microscopy where substance recognition is obtained in addition to magnification. Choosing a specific wavelength images showing only one substance can consequently be generated. More simple light sources are already used in such infrared microscopes to investigate tissue assays...

  13. HOWRAN: An Hybrid Optical Wireless Radio Access Network for WiMAX Antennas Backhauling (United States)

    Gagnaire, Maurice; Youssef, Tony

    In comparison to existing 3G or 3G+ wireless systems, fourth generation (4G), long-term evolution (LTE) or mobile Wimax are characterized by higher bit rates, highly fluctuant traffic matrices and higher antenna’s density. Current backhauling techniques federating radio antennas are not suited to these new characteristics. Several investigations are carried out for the design of new generation radio access networks (NG-RAN) in charge of concentrating radio cellular traffic from the base stations to the core network. In this paper, we propose an original approach based on an Hybrid Optical Wireless Radio Access Network (HOWRAN) exploiting the benefits of radio-over-fiber technologies and of recent advances in the field of optical devices and systems. As an illustration, we apply the HOWRAN concept to the backhauling of fixed or mobile WiMAX base stations. The two main innovative aspects of HOWRAN are depicted: its hardware architecture and its control plane.

  14. Securing information using optically generated biometric keys (United States)

    Verma, Gaurav; Sinha, Aloka


    In this paper, we present a new technique to obtain biometric keys by using the fingerprint of a person for an optical image encryption system. The key generation scheme uses the fingerprint biometric information in terms of the amplitude mask (AM) and the phase mask (PM) of the reconstructed fingerprint image that is implemented using the digital holographic technique. Statistical tests have been conducted to check the randomness of the fingerprint PM key that enables its usage as an image encryption key. To explore the utility of the generated biometric keys, an optical image encryption system has been further demonstrated based on the phase retrieval algorithm and the double random phase encoding scheme in which keys for the encryption are used as the AM and the PM key. The advantage associated with the proposed scheme is that the biometric keys’ retrieval requires the simultaneous presence of the fingerprint hologram and the correct knowledge of the reconstruction parameters at the decryption stage, which not only verifies the authenticity of the person but also protects the valuable fingerprint biometric features of the keys. Numerical results are carried out to prove the feasibility and the effectiveness of the proposed encryption system.

  15. A wavelength selective bidirectional isolator for access optical networks (United States)

    Hu, Xi-kui; Huang, Zhang-di; Li, Su-shan; Xu, Fei; Chen, Beckham; Lu, Yan-qing


    A wavelength selective bidirectional optical isolator is proposed. Being different from conventional isolators, a well-designed wave plate is employed and works together with the Faraday rotator. Different wavelengths thus experience different phase retardation so that wavelength-dependent polarization states are obtained for bidirectional beams. As an example, a (1.49 μm, 1.31 μm) wavelength selective isolator is proposed, which means only 1.49 μm light can propagate along one-direction while the opposite wave is just for 1.31 μm light. Over 60 dB optical isolation is obtained by selecting suitable wave plate thickness and orientation. This interesting isolator may have promising applications in access optical networks.

  16. Wired and wireless convergent extended-reach optical access network using direct-detection of all-optical OFDM super-channel signal. (United States)

    Chow, C W; Yeh, C H; Sung, J Y; Hsu, C W


    We propose and demonstrate the feasibility of using all-optical orthogonal frequency division multiplexing (AO-OFDM) for the convergent optical wired and wireless access networks. AO-OFDM relies on all-optically generated orthogonal subcarriers; hence, high data rate (> 100 Gb/s) can be easily achieved without hitting the speed limit of electronic digital-to-analog and analog-to-digital converters (DAC/ADC). A proof-of-concept convergent access network using AO-OFDM super-channel (SC) is demonstrated supporting 40 - 100 Gb/s wired and gigabit/s 100 GHz millimeter-wave (MMW) ROF transmissions.

  17. A passive optical network based on optical code division multiplexing and time division multiple access technology

    Institute of Scientific and Technical Information of China (English)


    A passive optical network (PON) scheme based on optical code division multiplexing (OCDM) for the downstream traffics is proposed and analyzed in detail. In the PON, the downstream traffics are broadcasted by OCDM technology to guarantee the security, while the upstream traffics pass through the same optical fiber by the common time division multiple access (TDMA) technology to decrease the cost.This schemes are denoted as OCDM/TDMA-PON, which can be applied to an optical access network (OAN) with full services on demand, such as Internet protocol, video on demand, tele-presence and high quality audio. The proposed OCDM/TDMA-PON scheme combines advantages of PON, TDMA, and OCDM technology. Simulation results indicate that the designed scheme improves the OAN performance,and enhances flexibility and scalability of the system.

  18. The Live Access Server Scientific Product Generation Through Workflow Orchestration (United States)

    Hankin, S.; Calahan, J.; Li, J.; Manke, A.; O'Brien, K.; Schweitzer, R.


    The Live Access Server (LAS) is a well-established Web-application for display and analysis of geo-science data sets. The software, which can be downloaded and installed by anyone, gives data providers an easy way to establish services for their on-line data holdings, so their users can make plots; create and download data sub-sets; compare (difference) fields; and perform simple analyses. Now at version 7.0, LAS has been in operation since 1994. The current "Armstrong" release of LAS V7 consists of three components in a tiered architecture: user interface, workflow orchestration and Web Services. The LAS user interface (UI) communicates with the LAS Product Server via an XML protocol embedded in an HTTP "get" URL. Libraries (APIs) have been developed in Java, JavaScript and perl that can readily generate this URL. As a result of this flexibility it is common to find LAS user interfaces of radically different character, tailored to the nature of specific datasets or the mindset of specific users. When a request is received by the LAS Product Server (LPS -- the workflow orchestration component), business logic converts this request into a series of Web Service requests invoked via SOAP. These "back- end" Web services perform data access and generate products (visualizations, data subsets, analyses, etc.). LPS then packages these outputs into final products (typically HTML pages) via Jakarta Velocity templates for delivery to the end user. "Fine grained" data access is performed by back-end services that may utilize JDBC for data base access; the OPeNDAP "DAPPER" protocol; or (in principle) the OGC WFS protocol. Back-end visualization services are commonly legacy science applications wrapped in Java or Python (or perl) classes and deployed as Web Services accessible via SOAP. Ferret is the default visualization application used by LAS, though other applications such as Matlab, CDAT, and GrADS can also be used. Other back-end services may include generation of Google

  19. Multi-service small-cell cloud wired/wireless access network based on tunable optical frequency comb (United States)

    Xiang, Yu; Zhou, Kun; Yang, Liu; Pan, Lei; Liao, Zhen-wan; Zhang, Qiang


    In this paper, we demonstrate a novel multi-service wired/wireless integrated access architecture of cloud radio access network (C-RAN) based on radio-over-fiber passive optical network (RoF-PON) system, which utilizes scalable multiple- frequency millimeter-wave (MF-MMW) generation based on tunable optical frequency comb (TOFC). In the baseband unit (BBU) pool, the generated optical comb lines are modulated into wired, RoF and WiFi/WiMAX signals, respectively. The multi-frequency RoF signals are generated by beating the optical comb line pairs in the small cell. The WiFi/WiMAX signals are demodulated after passing through the band pass filter (BPF) and band stop filter (BSF), respectively, whereas the wired signal can be received directly. The feasibility and scalability of the proposed multi-service wired/wireless integrated C-RAN are confirmed by the simulations.

  20. A novel method for optical subcarrier label generation

    DEFF Research Database (Denmark)

    Zhang, Jianfeng; Chi, Nan; Holm-Nielsen, Pablo Villanueva;


    We propose a novel architecture for an optical subcarrier label transmitter. An optical signal consisting of a 10 Gb/s payload and a 156 Mb/s label was generated, and its performance was evaluated in a transmission link....

  1. Impairments Computation for Routing Purposes in a Transparent-Access Optical Network Based on Optical CDMA and WDM (United States)

    Musa, Ahmed


    Optical access networks are becoming more widespread and the use of multiple services might require a transparent optical network (TON). Multiplexing and privacy could benefit from the combination of wavelength division multiplexing (WDM) and optical coding (OC) and wavelength conversion in optical switches. The routing process needs to be cognizant of different resource types and characteristics such as fiber types, fiber linear impairments such as attenuation, dispersion, etc. as well as fiber nonlinear impairments such as four-wave mixing, cross-phase modulation, etc. Other types of impairments, generated by optical nodes or photonic switches, also affect the signal quality (Q) or the optical signal to noise ratio (OSNR), which is related to the bit error rate (BER). Therefore, both link and switch impairments must be addressed and somehow incorporated into the routing algorithm. However, it is not practical to fully integrate all photonic-specific attributes in the routing process. In this study, new routing parameters and constraints are defined that reflect the distinct characteristics of photonic networking. These constraints are applied to the design phase of TON and expressed as a cost or metric form that will be used in the network routing algorithm.

  2. Incoherent optical correlators and phase encoding of identification codes for access control or authentication (United States)

    Brasher, James D.; Johnson, Eric G.


    We show how phase-only filters can be used in incoherent optical correlators for security applications such as access control, identification, or authentication. As a specific example, a biometric signature, a fingerprint, is encoded in a phase-only representation. The phase encoding is accomplished with the method of generalized projections onto constraint sets implemented by an iterated Fourier transform algorithm. The operation of an incoherent optical security system using both a phase-only filter generated with the generalized projections algorithm and a phase-only matched filter is simulated. The results demonstrate that the selected access pattern was accepted while a false pattern was rejected by the security system and that better recognition and discrimination performance was attained with the phase-only filter produced by the generalized projections algorithm.

  3. Optical Code Generating Device Using 1×N Asymmetric Hollow Waveguide Couplers

    Institute of Scientific and Technical Information of China (English)

    Abang Annuar EHSAN; Sahbudin SHAARI; Mohd Kamil ABD.RAHMAN; Kee Mohd Rafique KEE ZAINAL ABIDIN


    An optical code generating device for security access system application is presented. The code generating device constructed using asymmetric hollow optical waveguide coupler design provides a unique series of output light intensities which are successively used as an optical code. The design of the waveguide is made using two major components which are asymmetric Y-junction splitter and a linear taper. Waveguiding is done using a hollow waveguide structure. Construction of higher level 1×N hollow waveguide coupler is done utilizing a basic 1×2 asymmetric waveguide coupler design together with a cascaded design scheme. Non-sequential ray tracing of the asymmetric hollow optical waveguide couplers is performed to predict the optical transmission properties of the waveguide. A representation of the code combination that can be generated from the device is obtained using combinatory number theory.

  4. Dynamic array generation and pattern formation for optical tweezers

    DEFF Research Database (Denmark)

    Mogensen, P.C.; Glückstad, J.


    The generalised phase contrast approach is used for the generation of optical arrays of arbitrary beam shape, suitable for applications in optical tweezers for the manipulation of biological specimens. This approach offers numerous advantages over current techniques involving the use of computer......-generated holograms or diffractive optical elements. We demonstrate a low-loss system for generating intensity patterns suitable for the trapping and manipulation of small particles or specimens....

  5. Optical continuum generation on a silicon chip (United States)

    Jalali, Bahram; Boyraz, Ozdal; Koonath, Prakash; Raghunathan, Varun; Indukuri, Tejaswi; Dimitropoulos, Dimitri


    Although the Raman effect is nearly two orders of magnitude stronger than the electronic Kerr nonlinearity in silicon, under pulsed operation regime where the pulse width is shorter than the phonon response time, Raman effect is suppressed and Kerr nonlinearity dominates. Continuum generation, made possible by the non-resonant Kerr nonlinearity, offers a technologically and economically appealing path to WDM communication at the inter-chip or intra-chip levels. We have studied this phenomenon experimentally and theoretically. Experimentally, a 2 fold spectral broadening is obtained by launching ~4ps optical pulses with 2.2GW/cm2 peak power into a conventional silicon waveguide. Theoretical calculations, that include the effect of two-photon-absorption, free carrier absorption and refractive index change indicate that up to >30 times spectral broadening is achievable in an optimized device. The broadening is due to self phase modulation and saturates due to two photon absorption. Additionally, we find that free carrier dynamics also contributes to the spectral broadening and cause the overall spectrum to be asymmetric with respect to the pump wavelength.

  6. RxGen General Optical Model Prescription Generator (United States)

    Sigrist, Norbert


    RxGen is a prescription generator for JPL's in-house optical modeling software package called MACOS (Modeling and Analysis for Controlled Optical Systems), which is an expert optical analysis software package focusing on modeling optics on dynamic structures, deformable optics, and controlled optics. The objectives of RxGen are to simplify and automate MACOS prescription generations, reducing errors associated with creating such optical prescriptions, and improving user efficiency without requiring MACOS proficiency. RxGen uses MATLAB (a high-level language and interactive environment developed by MathWorks) as the development and deployment platform, but RxGen can easily be ported to another optical modeling/analysis platform. Running RxGen within the modeling environment has the huge benefit that variations in optical models can be made an integral part of the modeling state. For instance, optical prescription parameters determined as external functional dependencies, optical variations by controlling the in-/exclusion of optical components like sub-systems, and/or controlling the state of all components. Combining the mentioned capabilities and flexibilities with RxGen's optical abstraction layer completely eliminates the hindering aspects for requiring proficiency in writing/editing MACOS prescriptions, allowing users to focus on the modeling aspects of optical systems, i.e., increasing productivity and efficiency. RxGen provides significant enhancements to MACOS and delivers a framework for fast prototyping as well as for developing very complex controlled optical systems.

  7. Asymmetric hollow POF coupler design for portable optical access card system (United States)

    Ehsan, Abang Annuar; Shaari, Sahbudin; Abd Rahman, Mohd Kamil


    An optical code generating device using plastic optical fiber (POF) coupler for portable optical access card system is presented. The code generating device constructed using asymmetric hollow POF coupler design provides a unique series of output light intensities which are successively used as an optical code. Each coupler will be assigned with a unique optical code based on the asymmetrical waveguide design. Non-sequential ray tracing simulation of various coupler designs showed a linear relationship between the tap-off ratio (TOFR) and the waveguide tap width. The results for the simulated and fabricated 1x2 asymmetric couplers show the same linear characteristics between the TOFR and the tap width. The simulated devices show a TOFR variation from 18.6% to 49.9% whereas the TOFR for the fabricated metal-based devices varies from 10.7% up to 47.7%, for a tap width of 500 μm to 1 mm. The insertion loss for the 1x2 asymmetric coupler at the tap line varies from 12.7 dB to 21.2 dB whereas for the bus line, the average insertion loss is about 12 dB.

  8. Strategies Towords Next Generation IP Over Optical Networks

    Institute of Scientific and Technical Information of China (English)


    A consensus is emerging in industry on utilizing an IP-Centric control plane within optical networks to support dynamic provisioning and restoration of lightpaths. At the same time, there are divergent views of how IP routers interact with optical core networks to achieve end-to-end connectivity. This paper describes the strategies of optical communication's future development towards next generation IP over Optical Networks. The desirable extent of network transparency in advanced all-optical network architecture is studied. Architectural alternatives for interconnecting IP routers over optical networks, and the concerned routing and signaling issues are described.

  9. Access Protocol For An Industrial Optical Fibre LAN (United States)

    Senior, John M.; Walker, William M.; Ryley, Alan


    A structure for OSI levels 1 and 2 of a local area network suitable for use in a variety of industrial environments is reported. It is intended that the LAN will utilise optical fibre technology at the physical level and a hybrid of dynamically optimisable token passing and CSMA/CD techniques at the data link (IEEE 802 medium access control - logical link control) level. An intelligent token passing algorithm is employed which dynamically allocates tokens according to the known upper limits on the requirements of each device. In addition a system of stochastic tokens is used to increase efficiency when the stochastic traffic is significant. The protocol also allows user-defined priority systems to be employed and is suitable for distributed or centralised implementation. The results of computer simulated performance characteristics for the protocol using a star-ring topology are reported which demonstrate its ability to perform efficiently with the device and traffic loads anticipated within an industrial environment.

  10. High-Speed Optical Local Access Network System Using Bi-Directional Polarization Multiplexing

    Institute of Scientific and Technical Information of China (English)

    Mitsuru Miyauchi; Yanjun Sun


    A high-speed and economical optical local access network system is proposed where bi-directional polarization multiplexing is applied to a bi-directional transmission. Experimental results using a prototype system confirmlow optical loss and environmental stabilities.

  11. High-Speed Optical Local Access Network System Using Bi-Directional Polarization Multiplexing

    Institute of Scientific and Technical Information of China (English)

    Mitsuru; Miyauchi; Yanjun; Sun


    A high-speed and economical optical local access network system is proposed where bi-directional polarization multiplexing is applied to a bi-directional transmission. Experimental results using a prototype system confirm low optical loss and environmental stabilities.

  12. Acquisition and Pointing for Mars Optical Access Link (United States)

    Regehr, Martin; Kovalik, Joseph; Biswas, Abhijit


    Optical characteristics can potentially benefit "access" links at Mars when transmitting data from surface to orbiting assets because of the higher gain and modulation bandwidth, compared to radio frequency (RF). Furthermore, higher bits/kg/W can be realized with low mass and power optical systems, enabling the streaming of high definition imagery. In this paper we present a conceptual design for a low complexity, autonomous optical communications link for returning data at 50-200 Mb/s from the Martian surface and for lower forward data rates of 50 kb/s to the surface. The pointing control is simplified by widening the transmitted laser beams (0.5 - 2.0 mrad) for the short distance (400-1200 Km) links. Link acquisition is based on the orbiter transceiver (OT) "blind"-pointing a laser beam to illuminate the lander transceiver (LT) on the surface. The LT acquires the link with a spectrally-filtered wide-field-of-view camera and subsequently tracks the orbiter transceiver with a two-axis, stepper-motor-actuator, to send back a laser modulated with high-rate data to the orbiting asset. The system design also has a provision for the OT transitioning from blind-pointing to closed loop tracking once it acquires the signal from the lander transceiver. Results from successful ground-based demonstrations performed at JPL, in which the pointing rate required to track an orbiter was emulated by mounting both transceivers on rotating stages, and in which we transmitted live video and pseudo-random data streams, are presented.

  13. Investigation of Coherent Multicarrier Code Division Multiple Access for Optical Access Networks

    Directory of Open Access Journals (Sweden)

    Ali Tamini


    Full Text Available Orthogonal frequency division multiplexing (OFDM has proved to be a promising technique to increase the reach and bit rate both in long‑haul communications and in passive optical networks. This paper, for the first time, investigates the use of OFDM combined with electrical CDMA in presence of coherent detection as a multiple access scheme. The proposed multicarrier‑CDMA system is simulated using Walsh‑Hadamard codes and its performance is compared to that of coherent WDM-OFDM system in terms of bit‑error‑rate and bandwidth efficiency. It is shown that MC‑CDMA benefits from better spectral efficiency while its performance slightly deteriorates in comparison to WDM-OFDM when the number of users is increased.

  14. Materials Development for Next Generation Optical Fiber (United States)

    Ballato, John; Dragic, Peter


    Optical fibers, the enablers of the Internet, are being used in an ever more diverse array of applications. Many of the rapidly growing deployments of fibers are in high-power and, particularly, high power-per-unit-bandwidth systems where well-known optical nonlinearities have historically not been especially consequential in limiting overall performance. Today, however, nominally weak effects, most notably stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) are among the principal phenomena restricting continued scaling to higher optical power levels. In order to address these limitations, the optical fiber community has focused dominantly on geometry-related solutions such as large mode area (LMA) designs. Since such scattering, and all other linear and nonlinear optical phenomena including higher order mode instability (HOMI), are fundamentally materials-based in origin, this paper unapologetically advocates material solutions to present and future performance limitations. As such, this paper represents a ‘call to arms’ for material scientists and engineers to engage in this opportunity to drive the future development of optical fibers that address many of the grand engineering challenges of our day. PMID:28788683

  15. All-optical pseudorandom bit sequences generator based on TOADs (United States)

    Sun, Zhenchao; Wang, Zhi; Wu, Chongqing; Wang, Fu; Li, Qiang


    A scheme for all-optical pseudorandom bit sequences (PRBS) generator is demonstrated with optical logic gate 'XNOR' and all-optical wavelength converter based on cascaded Tera-Hertz Optical Asymmetric Demultiplexer (TOADs). Its feasibility is verified by generation of return-to-zero on-off keying (RZ-OOK) 263-1 PRBS at the speed of 1 Gb/s with 10% duty radio. The high randomness of ultra-long cycle PRBS is validated by successfully passing the standard benchmark test.

  16. An optical ultrafast random bit generator (United States)

    Kanter, Ido; Aviad, Yaara; Reidler, Igor; Cohen, Elad; Rosenbluh, Michael


    The generation of random bit sequences based on non-deterministic physical mechanisms is of paramount importance for cryptography and secure communications. High data rates also require extremely fast generation rates and robustness to external perturbations. Physical generators based on stochastic noise sources have been limited in bandwidth to ~100 Mbit s-1 generation rates. We present a physical random bit generator, based on a chaotic semiconductor laser, having time-delayed self-feedback, which operates reliably at rates up to 300 Gbit s-1. The method uses a high derivative of the digitized chaotic laser intensity and generates the random sequence by retaining a number of the least significant bits of the high derivative value. The method is insensitive to laser operational parameters and eliminates the necessity for all external constraints such as incommensurate sampling rates and laser external cavity round trip time. The randomness of long bit strings is verified by standard statistical tests.

  17. High speed optical quantum random number generation. (United States)

    Fürst, Martin; Weier, Henning; Nauerth, Sebastian; Marangon, Davide G; Kurtsiefer, Christian; Weinfurter, Harald


    We present a fully integrated, ready-for-use quantum random number generator (QRNG) whose stochastic model is based on the randomness of detecting single photons in attenuated light. We show that often annoying deadtime effects associated with photomultiplier tubes (PMT) can be utilized to avoid postprocessing for bias or correlations. The random numbers directly delivered to a PC, generated at a rate of up to 50 Mbit/s, clearly pass all tests relevant for (physical) random number generators.

  18. All-Optical Field-Induced Second-Harmonic Generation

    CERN Document Server

    Davidson, Roderick B; Ziegler, Jed I; Avanesyan, Sergey M; Lawrie, Ben J; Haglund, Richard F


    Efficient frequency modulation techniques are crucial to the development of plasmonic metasurfaces for information processing and energy conversion. Nanoscale electric-field confinement in optically pumped plasmonic structures enables stronger nonlinear susceptibilities than are attainable in bulk materials. The interaction of three distinct electric fields in (chi)^3 optical processes allows for all-optical modulation of nonlinear signals. Here we demonstrate effcient third-order second harmonic generation (SHG) in a serrated nanogap plasmonic geometry that generates steep electric field gradients within a dielectric material. We utilize an ultrafast optical pump to control the plasmonically induced electric-fields and to generate bandwidth-limited ultrafast second-harmonic pulses driven by the control pulses. The combination of plasmonic metasurfaces with all-optical control and the freedom to choose the dielectric allow multiple generalizations of this concept and geometry to other four-wave mixing process...

  19. Generation of optical vorticity from topological defects

    Energy Technology Data Exchange (ETDEWEB)

    Fumeron, Sébastien [Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre Cedex (France); Pereira, Erms [Instituto de Física, Universidade Federal de Alagoas, 57072-900 Maceió, Alagoas (Brazil); Escola Politécnica de Pernambuco, Universidade de Pernambuco, Rua Benfíca, 455, 50720-001 Recife, PE (Brazil); Moraes, Fernando, E-mail: [Departamento de Física and Departamento de Matemática, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Departamento de Física, CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900 João Pessoa, PB (Brazil)


    The propagation of an electromagnetic wave along a chiral string (or screw dislocation) is studied. Adopting the formalism of differential forms, it is shown that the singular torsion of the defect is responsible for quantized modes. Moreover, it is demonstrated that the modes thus obtained have well defined orbital angular momentum, opening the possibility for applications relevant both for cosmology and for optics.

  20. Using CAP Dimensionality for Service and User Allocation for Optical Access Networks

    DEFF Research Database (Denmark)

    Binti Othman, Maisara; Zhang, Xu; Jensen, Jesper Bevensee


    The usability of carrierless amplitude and phase (CAP) modulation dimensions for service and user allocation for WDM optical access is experimentally demonstrated in a 2X2D-ODMA configuration.......The usability of carrierless amplitude and phase (CAP) modulation dimensions for service and user allocation for WDM optical access is experimentally demonstrated in a 2X2D-ODMA configuration....

  1. Multi-band local microwave signal generation based on an optical frequency comb generator (United States)

    Wang, Wen Ting; Liu, Jian Guo; Sun, Wen Hui; Chen, Wei; Zhu, Ning Hua


    We propose and experimental demonstrate a new method to generate multi-band local microwave signals based on an optical frequency comb generator (OFCG) by applying an optical sideband injection locking technique and an optical heterodyning technique. The generated microwave signal can cover multi bands from S band to Ka band. A tunable multiband microwave signal spanning from 5 GHz to 40 GHz can be generated by the beating between the optical carrier and injection locked modulation sidebands in a photodetector without an optical filter. The wavelength of the slave laser can be continuously and near-linearly adjusted by proper changing its bias current. By tuning the bias current of the slave laser, the wavelength of that is matched to one of the modulation sidebands of the OFCG. The performance of the arrangement in terms of the tunability and stability of the generated microwave signal is also studied.

  2. Optical generation of non-diffracting beams via photorefractive holography

    CERN Document Server

    Vieira, Tarcio A; Gesualdi, Marcos R R; Zamboni-Rached, Michel


    This work presents, for the first time the optical generation of non-diffracting beams via photorefractive holography. Optical generation of non-diffracting beams using conventional optics components is difficult and, in some instances, unfeasible, as it is wave fields given by superposition of non-diffracting beams. It is known that computer generated holograms and spatial light modulators (SLMs) successfully generate such beams. With photorefractive holography technique, the hologram of a non-diffracting beam is constructed (recorded) and reconstructed (reading) optically in a nonlinear photorefractive medium. The experimental realization of a non-diffracting beam was made in a photorefractive holography setup using a photorefractive Bi12SiO20 (BSO) crystal as the holographic recording medium, where the non-diffracting beams, the Bessel beam arrays and superposition of co-propagating Bessel beams (Frozen Waves) were obtained experimentally. The experimental results are in agreement with the theoretically pr...

  3. Generation and Analysis of Hidden Optical-Polarization States

    CERN Document Server

    Singh, Ravi S


    A hybrid Optical-Device (Phase-Conjugating Mirror Michelson Interferometer), made up of Phase-conjugate mirror along with ordinary mirror and Polarization Beam-splitter, is formally designed and investigated for the generation of an unusual Optical-Polarization States. This weird yet 'essentially single-mode' optical-polarization state has non-random 'ratio of amplitudes' and non-random 'sum of phases' in orthogonal bases-modes contrary to usual 'truly single-mode' optical-polarization states of which non-random 'ratio of amplitudes' and non-random 'difference of phases' serves as optical-polarization characteristic parameters. Since it is seen not to be characterized by Stokes parameters, one may, therefore, assign the name 'Hidden Optical-Polarization States (HOPS)'. HOPS are characterized by a set of parameters, namely, Hidden Optical-Polarization parameters. Formal experimental schemes are presented to experimentally measure these parameters and, thus, offering characterization of HOPS.

  4. A metro-access integrated network with all-optical virtual private network function using DPSK/ASK modulation format (United States)

    Tian, Yue; Leng, Lufeng; Su, Yikai


    All-optical virtual private network (VPN), which offers dedicated optical channels to connect users within a VPN group, is considered a promising approach to efficient internetworking with low latency and enhanced security implemented in the physical layer. On the other hand, time-division multiplexed (TDM) / wavelength-division multiplexed (WDM) network architecture based on a feeder-ring with access-tree topology, is considered a pragmatic migration scenario from current TDM-PONs to future WDM-PONs and a potential convergence scheme for access and metropolitan networks, due to its efficiently shared hardware and bandwidth resources. All-optical VPN internetworking in such a metro-access integrated structure is expected to cover a wider service area and therefore is highly desirable. In this paper, we present a TDM/WDM metro-access integrated network supporting all-optical VPN internetworking among ONUs in different sub- PONs based on orthogonal differential-phase-shift keying (DPSK) / amplitude-shift keying (ASK) modulation format. In each ONU, no laser but a single Mach-Zehnder modulator (MZM) is needed for the upstream and VPN signal generation, which is cost-effective. Experiments and simulations are performed to verify its feasibility as a potential solution to the future access service.

  5. Anomalous Mirror Symmetry Generated by Optical Illusion

    Directory of Open Access Journals (Sweden)

    Kokichi Sugihara


    Full Text Available This paper introduces a new concept of mirror symmetry, called “anomalous mirror symmetry”, which is physically impossible but can be perceived by human vision systems because of optical illusion. This symmetry is characterized geometrically and a method for creating cylindrical surfaces that create this symmetry is constructed. Examples of solid objects constructed by a 3D printer are also shown.

  6. Service Class Resource Management For Green Wireless-Optical Broadband Access NetworksWOBAN

    Directory of Open Access Journals (Sweden)



    Full Text Available Abstract-Broadband access networks have become an essential part of worldwide communication systems because of the exponential growth of broadband services such as video on demand high definition TV internet protocol TV and video conferencing. Exponential growth in the volume of wireless data boosted by the growing popularity of mobile devices such as smartphone and tablets has forced the telecommunication industries to rethink the way networks are currently designed and to focus on the development of high-capacity mobile broadband networks. In response to this challenge researchers have been working toward the development of an integrated wireless optical broadband access network. Two major candidate technologies which are currently known for their high capacity as well as quality of service QoS for multimedia traffic are passive optical networks PON and fourth generation 4G wireless networks. PON is a wired access technology well known for its cost efficiency and high capacity whereas 4G is a wireless broadband access technology which has achieved broad market acceptance because of its ease of deployment ability to offer mobility and its cost efficiency. Integration of PON and 4G technologies in the form of wireless-optical broadband access networks offers advantages such as extension of networks in rural areas support for mobile broadband services and quick deployment of broadband networks. These two technologies however have different design architectures for handling broadband services that require quality of service. For example 4G networks use traffic classification for supporting different QoS demands whereas the PON architecture has no such mechanism to differentiate between types of traffic. These two technologies also differ in their power saving mechanisms. Propose a service class mapping for the integrated PON-4G network which is based on the MG1 queuing model and class-based power saving mechanism which significantly improves the

  7. Access to Government-Generated Information: Current Issues and Implications. (United States)

    Williamson, Linda E.


    Reviews both historical and current policies for access to government information, and discusses such current trends in government information as paperwork reduction, commercialization, privatization, and electronic publishing. The possible impact of these trends on the library's ability to provide access to information is briefly considered. (CLB)

  8. Optical Nyquist channel generation using a comb-based tunable optical tapped-delay-line. (United States)

    Ziyadi, Morteza; Chitgarha, Mohammad Reza; Mohajerin-Ariaei, Amirhossein; Khaleghi, Salman; Almaiman, Ahmed; Cao, Yinwen; Willner, Moshe J; Tur, Moshe; Paraschis, Loukas; Langrock, Carsten; Fejer, Martin M; Touch, Joseph D; Willner, Alan E


    We demonstrate optical Nyquist channel generation based on a comb-based optical tapped-delay-line. The frequency lines of an optical frequency comb are used as the taps of the optical tapped-delay-line to perform a finite-impulse response (FIR) filter function. A single optical nonlinear element is utilized to multiplex the taps and form the Nyquist signal. The tunablity of the approach over the baud rate and modulation format is shown. Optical signal-to-noise ratio penalty of 2.8 dB is measured for the 11-tap Nyquist filtering of 32-Gbaud QPSK signal.

  9. Generation and propagation of radially polarized beams in optical fibers

    DEFF Research Database (Denmark)

    Ramachandran, Siddharth; Kristensen, P; Yan, M F


    Beams with polarization singularities have attracted immense recent attention in a wide array of scientific and technological disciplines. We demonstrate a class of optical fibers in which these beams can be generated and propagated over long lengths with unprecedented stability, even in the pres......Beams with polarization singularities have attracted immense recent attention in a wide array of scientific and technological disciplines. We demonstrate a class of optical fibers in which these beams can be generated and propagated over long lengths with unprecedented stability, even...... in the presence of strong bend perturbations. This opens the door to exploiting nonlinear fiber optics to manipulate such beams. This fiber also possesses the intriguingly counterintuitive property of being polarization maintaining despite being strictly cylindrically symmetric, a prospect hitherto considered...... infeasible with optical fibers. (C) 2009 Optical Society of America....

  10. Intense harmonics generation with customized photon frequency and optical vortex (United States)

    Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Zhang, Lingang; Ji, Liangliang; Wang, Xiaofeng; Xu, Zhizhan; Tajima, Toshiki


    An optical vortex with orbital angular momentum (OAM) enriches the light and matter interaction process, and helps reveal unexpected information in relativistic nonlinear optics. A scheme is proposed for the first time to explore the origin of photons in the generated harmonics, and produce relativistic intense harmonics with expected frequency and an optical vortex. When two counter-propagating Laguerre-Gaussian laser pulses impinge on a solid thin foil and interact with each other, the contribution of each input pulse in producing harmonics can be distinguished with the help of angular momentum conservation of photons, which is almost impossible for harmonic generation without an optical vortex. The generation of tunable, intense vortex harmonics with different photon topological charge is predicted based on the theoretical analysis and three-dimensional particle-in-cell simulations. Inheriting the properties of OAM and harmonics, the obtained intense vortex beam can be applied in a wide range of fields, including atom or molecule control and manipulation.

  11. Fiber optical magnetic field sensor for power generator monitoring (United States)

    Willsch, Michael; Bosselmann, Thomas; Villnow, Michael


    Inside of large electrical engines such as power generators and large drives, extreme electric and magnetic fields can occur which cannot be measured electrically. Novel fiber optical magnetic field sensors are being used to characterize the fields and recognize inner faults of large power generators.

  12. Multiple Access Techniques for Next Generation Wireless: Recent Advances and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Shree Krishna Sharma


    Full Text Available The advances in multiple access techniques has been one of the key drivers in moving from one cellular generation to another. Starting from the first generation, several multiple access techniques have been explored in different generations and various emerging multiplexing/multiple access techniques are being investigated for the next generation of cellular networks. In this context, this paper first provides a detailed review on the existing Space Division Multiple Access (SDMA related works. Subsequently, it highlights the main features and the drawbacks of various existing and emerging multiplexing/multiple access techniques. Finally, we propose a novel concept of clustered orthogonal signature division multiple access for the next generation of cellular networks. The proposed concept envisions to employ joint antenna coding in order to enhance the orthogonality of SDMA beams with the objective of enhancing the spectral efficiency of future cellular networks.

  13. A Next-Generation Apparatus for Lithium Optical Lattice Experiments (United States)

    Keshet, Aviv

    hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using an FPGA-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100ns achieved over effectively arbitrary sequence lengths. Experimental set-ups for producing, manipulating, and probing ultracold atomic gases can be quite complicated. To move forward with a quantum simulation program, it is necessary to have an apparatus that operates with a reliability that is not easily achieved in the face of this complexity. The design of a new apparatus is discussed. This Sodium-Lithium ultracold gas production machine has been engineered to incorporate as much experimental experience as possible to enhance its reliability. Particular attention has been paid to maximizing optical access and the utilization of this optical access, controlling the ambient temperature of the experiment, achieving a high vacuum, and simplifying subsystems where possible. The apparatus is now on the verge of producing degenerate gases, and should serve as a stable platform on which to perform future lattice quantum simulation experiments. (Copies available exclusively from MIT Libraries, - docs

  14. Embedded real-time control of optically amplified repeaters in broadband access networks (United States)

    Stubbe, Brecht; Vaes, Peter; Gouwy, Lieven; Coene, Chris; Qiu, Xing-Zhi; Staelens, Bart; Vandewege, Jan; Slabbinck, B. Hans; Martin, Claire M.; Van de Voorde, Ingrid


    This paper presents the use of distributed, intelligent control and management in optically amplified repeaters. These optical repeater units (ORUs) are used in an optical access network. A semiconductor optical amplifier (SOA) has been used in the upstream direction because of the possibility of fast switching. The real time control platform consists of both a hard- and a software part. The software control is handled with the embedded control system FORTRESS developed by IMEC.

  15. Optical klystron and harmonic generation free electron laser

    Directory of Open Access Journals (Sweden)

    Qika Jia


    Full Text Available The optical field evolution of an optical klystron free electron laser is analytically described for both low gain and high gain cases. The harmonic optical klystron (HOK in which the second undulator is resonant on the higher harmonic of the first undulator is analyzed as a harmonic amplifier. The optical field evolution equation of the HOK is derived analytically for both the CHG mode (coherent harmonic generation, the quadratic gain regime and the HGHG mode (high gain harmonic generation, the exponential gain regime, the effects of energy spread, energy modulation, and dispersion in the whole process are taken into account. The linear theory is given and discussed for the HGHG mode. The analytical formula is given for the CHG mode.

  16. Flexible-rate optical packet generation/detection and label swapping for optical label switching networks (United States)

    Wu, Zhongying; Li, Juhao; Tian, Yu; Ge, Dawei; Zhu, Paikun; Chen, Yuanxiang; Chen, Zhangyuan; He, Yongqi


    In recent years, optical label switching (OLS) gains lots of attentions due to its intrinsic advantages to implement protocol, bit-rate, granularity and data format transparency packet switching. In this paper, we propose a novel scheme to realize flexible-rate optical packet switching for OLS networks. At the transmitter node, flexible-rate packet is generated by parallel modulating different combinations of optical carriers generated from the optical multi-carrier generator (OMCG), among which the low-speed optical label occupies one carrier. At the switching node, label is extracted and re-generated in label processing unit (LPU). The payloads are switched based on routing information and new label is added after switching. At the receiver node, another OMCG serves as local oscillators (LOs) for optical payloads coherent detection. The proposed scheme offers good flexibility for dynamic optical packet switching by adjusting the payload bandwidth and could also effectively reduce the number of lasers, modulators and receivers for packet generation/detection. We present proof-of-concept demonstrations of flexible-rate packet generation/detection and label swapping in 12.5 GHz grid. The influence of crosstalk for cascaded label swapping is also investigated.

  17. Ultra-wideband noise radar based on optical waveform generation (United States)

    Grodensky, Daniel; Kravitz, Daniel; Zadok, Avi


    A microwave-photonic, ultra-wideband (UWB) noise radar system is proposed and demonstrated. The system brings together photonic generation of UWB waveforms and fiber-optic distribution. The use of UWB noise provides high ranging resolution and better immunity to interception and jamming. Distribution over fibers allows for the separation the radar-operating personnel and equipment from the location of the front-end. The noise waveforms are generated using the amplified spontaneous emission that is associated with stimulated Brillouin scattering in a standard optical fiber, or with an erbium-doped fiber amplifier. Our experiments demonstrate a proof of concept for an integrated radar system, driven by optically generated UWB noise waveforms of more than 1 GHz bandwidth that are distributed over 10 km distance. The detection of concealed metallic object and the resolving of two targets with the anticipated ranging resolution are reported.

  18. Fluidic vortices generated from optical vortices in a microdroplet cavity

    CERN Document Server

    Bar-David, Daniel; Martin, Leoplodo L; Carmon, Tal


    We harness the momentum of light resonating inside a micro-droplet cavity, to experimentally generate micro-flows within the envelope of the drop. We 3D map these optically induced flows by using fluorescent nanoparticles; which reveals circular micro-streams. The flows are parametrically studied and, as expected, exhibit an increase of rotation speed with optical power. The flow is non-circular only when we intentionally break the axial symmetry of the droplet. Besides the fundamental interest in light-flow interactions including in opto-fluidic cavities, the optically controlled flows can serve in bringing analytes into the maximum-power region of the microcavity.

  19. Optical-router-based dynamically reconfigurable photonic access network

    NARCIS (Netherlands)

    Roy, R.


    The Broadband photonics (BBP) project under the Freeband consortium of projects investigated the design of a dynamically reconfigurable photonic access network. Access networks form a key link in ensuring optimal bandwidth to the end user without which any improvements deeper in the network in the a

  20. Optical-router-based dynamically reconfigurable photonic access network

    NARCIS (Netherlands)

    Roy, Rajeev


    The Broadband photonics (BBP) project under the Freeband consortium of projects investigated the design of a dynamically reconfigurable photonic access network. Access networks form a key link in ensuring optimal bandwidth to the end user without which any improvements deeper in the network in the a

  1. Optical-router-based dynamically reconfigurable photonic access network

    NARCIS (Netherlands)

    Roy, R.


    The Broadband photonics (BBP) project under the Freeband consortium of projects investigated the design of a dynamically reconfigurable photonic access network. Access networks form a key link in ensuring optimal bandwidth to the end user without which any improvements deeper in the network in the

  2. Building a Generation Knowledge Source using Internet-Accessible Newswire

    CERN Document Server

    Radev, D R; Radev, Dragomir R.; Keown, Kathleen R. Mc


    In this paper, we describe a method for automatic creation of a knowledge source for text generation using information extraction over the Internet. We present a prototype system called PROFILE which uses a client-server architecture to extract noun-phrase descriptions of entities such as people, places, and organizations. The system serves two purposes: as an information extraction tool, it allows users to search for textual descriptions of entities; as a utility to generate functional descriptions (FD), it is used in a functional-unification based generation system. We present an evaluation of the approach and its applications to natural language generation and summarization.

  3. Fast quantum-optical random-number generators (United States)

    Durt, Thomas; Belmonte, Carlos; Lamoureux, Louis-Philippe; Panajotov, Krassimir; Van den Berghe, Frederik; Thienpont, Hugo


    In this paper we study experimentally the properties of three types of quantum -optical random-number generators and characterize them using the available National Institute for Standards and Technology statistical tests, as well as four alternate tests. The generators are characterized by a trade-off between, on one hand, the rate of generation of random bits and, on the other hand, the degree of randomness of the series which they deliver. We describe various techniques aimed at maximizing this rate without diminishing the quality (degree of randomness) of the series generated by it.

  4. Energy Saving Scheme Based On Traffic Forwarding For Optical Fiber Access Networks

    DEFF Research Database (Denmark)

    Lopez, G. Arturo Rodes; Estaran Tolosa, Jose Manuel; Vegas Olmos, Juan José;


    We report on an energy saving block that regroups and powers off OLTs during low traffic periods, resulting in energy savings up to 87,5% in the central office of optical access networks.......We report on an energy saving block that regroups and powers off OLTs during low traffic periods, resulting in energy savings up to 87,5% in the central office of optical access networks....

  5. Modeling and performance analysis of IP access interface in optical transmission networks with packet switching


    Lackovic, Marko; Bungarzeanu, Cristian


    The article analyzes the influence of the Internet Protocol (IP) access interface on the packet loss probability and delay times in the optical packet switched network. The network and node model have been proposed, and the structure of the IP access interface, including assembler and holder, have been included in the analysis. It has been shown that the increase of the maximum optical packet sizes, as well as use of the holding feature as contention resolution mechanism, decrease the packet ...

  6. Supercontinuum generation with bright and dark solitons in optical fibers

    CERN Document Server

    Milián, Carles; Kudlinski, Alexandre; Skryabin, Dmitry V


    We study numerically and experimentally supercontinuum generation in optical fibers with dark and bright solitons simultaneously contributing into the spectral broadening and dispersive wave generation. We report a novel type of weak trapped radiation arising due to interaction of bright solitons with the dark soliton background. This radiation expresses itself as two pulses with the continuously shifting spectra constituting the short and long wavelength limits of the continuum. Our theoretical and experimental results are in good agreement.

  7. Converged wireline and wireless signal distribution in optical fiber access networks

    DEFF Research Database (Denmark)

    Prince, Kamau

    This thesis presents results obtained during the course of my doctoral studies into the transport of fixed and wireless signaling over a converged otpical access infrastructure. In the formulation, development and assessment of a converged paradigma for multiple-services delivery via optical access...

  8. Non-orthogonal optical multicarrier access based on filter bank and SCMA. (United States)

    Liu, Bo; Zhang, Lijia; Xin, Xiangjun


    This paper proposes a novel non-orthogonal optical multicarrier access system based on filter bank and sparse code multiple access (SCMA). It offers released frequency offset and better spectral efficiency for multicarrier access. An experiment of 73.68 Gb/s filter bank-based multicarrier (FBMC) SCMA system with 60 km single mode fiber link is performed to demonstrate the feasibility. The comparison between fast Fourier transform (FFT) based multicarrier and the proposed scheme is also investigated in the experiment.

  9. World-wide ocean optics database WOOD (NODC Accession 0092528) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WOOD was developed to be a comprehensive publicly-available oceanographic bio-optical database providing global coverage. It includes nearly 250 major data sources...

  10. Micromanipulation of sperm by a laser generated optical trap

    Energy Technology Data Exchange (ETDEWEB)

    Tadir, Y.; Wright, W.H.; Vafa, O.; Ord, T.; Asch, R.H.; Berns, M.W. (Univ. of California, Irvine (USA))


    The force generated by the radiation pressure of a low power laser beam induces an optical trap which may be used to manipulate sperm. We studied the effect of the optical trap on sperm motility. A Nd:YAG laser beam was coupled to a conventional microscope and focused into the viewing plane by the objective lens. Sperm were caught in the trap and manipulated by a joy stick controlled motorized stage. After different exposure periods, the velocity and patterns were analysed by a computerized image processor. There were minor changes in sperm velocity when exposed to the trap for 30 seconds or less. A gradual decrease in the mean linear velocity was observed after 45 seconds of exposure. This optical micromanipulator may also be useful for studying the force generated by a single spermatozoa and evaluating the influence of drugs on motility.

  11. Performance analysis and experimental study on Flat Optical Comb Generation

    Directory of Open Access Journals (Sweden)

    Haining Li


    Full Text Available The performance of the optical frequency comb generation based on the re-circulating frequency shifter has been analyzed and demonstrated in this paper. We have theoretically analyzed the condition for flatness of the optical frequency comb and the relative intensity noise influence. We find out the influence to the flatness of optical comb owing to amplifier relative intensity noise and modulator relative factors imperfect, such as input RF signals amplitude and phase deviation and modulator defect owing to manufacture for the first time. Moreover, to verify the theoretical analysis, a 16 comb lines and spacing 12.5 GHz RFS generation system have also been carried out, and the results are in good agreement with the theoretical analysis results.

  12. Generation of optical coherent state superpositions for quantum information processing

    DEFF Research Database (Denmark)

    Tipsmark, Anders


    I dette projektarbejde med titlen “Generation of optical coherent state superpositions for quantum information processing” har målet været at generere optiske kat-tilstande. Dette er en kvantemekanisk superpositions tilstand af to koherente tilstande med stor amplitude. Sådan en tilstand er...

  13. Fast Cherenkov model of optical photons generation and transportation

    CERN Document Server

    The ATLAS collaboration


    This note describes the technical details of Fast Cherenkov model of optical photons generation and transportation: in particular, the mechanism of Cherenkov photons transportation through the straight bar geometry. As an example of usage, the implemetation of the method inside Quartic detector simulation in GEANT4 will be presented and compared to the nominal results.

  14. Development of a New Generation of Optical Slope Measuring Profiler

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, V.V.; Takacs, P.; McKinney, W.R.; Assoufid, L.; Siewert, F.; Zeschke, T.


    A collaboration including all DOE synchrotron laboratories and industrial vendors of X-ray optics, and with active participation of the HBZ-BESSY-II optics group, has been established to work together on a new slope measuring profiler - the Optical Slope Measuring System (OSMS). The slope measurement accuracy of the instrument is expected to be <50 nrad for the current and future metrology of X-ray optics for the next generation of light sources. The goals were to solidify a design that meets the needs of mirror specifications and also be affordable, and to create a common specification for fabrication of a multi-functional translation/scanning (MFTS) system for the OSMS. This was accomplished by two collaborative meetings at the ALS (March 26, 2010) and at the APS (May 6, 2010).

  15. Development of a new generation of optical slope measuring profiler

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V., E-mail: [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Takacs, Peter Z. [Brookhaven National Laboratory, Upton, NY 11973 (United States); McKinney, Wayne R. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Assoufid, Lahsen [X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Siewert, Frank; Zeschke, Thomas [Helmholtz Zentrum Berlin fuer Materialien und Energie, Elektronenspeicherring BESSY-II, Albert-Einstein-Street 15, 12489 Berlin (Germany)


    A collaboration including all DOE synchrotron laboratories and industrial vendors of X-ray optics, and with active participation of the HBZ-BESSY-II optics group, has been established to work together on a new slope measuring profiler-the Optical Slope Measuring System (OSMS). The slope measurement accuracy of the instrument is expected to be <50 nrad for the current and future metrology of X-ray optics for the next generation of light sources. The goals were to solidify a design that meets the needs of mirror specifications and also be affordable, and to create a common specification for fabrication of a multi-functional translation/scanning (MFTS) system for the OSMS. This was accomplished by two collaborative meetings at the ALS (March 26, 2010) and at the APS (May 6, 2010).

  16. Development of a new generation of optical slope measuring profiler

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V.; Takacs, Peter Z.; McKinney, Wayne R.; Assoufid, Lahsen; Siewert, Frank; Zeschke, Thomas


    A collaboration, including all DOE synchrotron labs, industrial vendors of x-ray optics, and with active participation of the HBZ-BESSY-II optics group has been established to work together on a new slope measuring profiler -- the optical slope measuring system (OSMS). The slope measurement accuracy of the instrument is expected to be<50 nrad for the current and future metrology of x-ray optics for the next generation of light sources. The goals were to solidify a design that meets the needs of mirror specifications and also be affordable; and to create a common specification for fabrication of a multi-functional translation/scanning (MFTS) system for the OSMS. This was accomplished by two collaborative meetings at the ALS (March 26, 2010) and at the APS (May 6, 2010).

  17. Optimized geometries for future generation optical lattice clocks

    CERN Document Server

    Krämer, Sebastian; Ritsch, Helmut


    Atoms trapped in magic wavelength optical lattices provide a Doppler- and collision-free dense ensemble of quantum emitters ideal for fast high precision spectroscopy and thus they are the basis of the best optical clock setups to date. Despite the minute optical dipole moments the inherent long range dipole-dipole interactions in such lattices at high densities generate measurable line shifts, increased dephasing and modified decay rates. We show that these effects can be resonantly enhanced or suppressed depending on lattice constant, geometry and excitation procedure. While these interactions generally limit the accuracy and precision of Ramsey spectroscopy, under optimal conditions collective effects can be exploited to yield zero effective shifts and long dipole lifetimes for a measurement precision beyond a noninteracting ensemble. In particular, 2D lattices with a lattice constant below the optical wavelength feature an almost ideal performance.

  18. All-optical generation of surface plasmons in graphene (United States)

    Constant, T. J.; Hornett, S. M.; Chang, D. E.; Hendry, E.


    Surface plasmons in graphene offer a compelling route to many useful photonic technologies. As a plasmonic material, graphene offers several intriguing properties, such as excellent electro-optic tunability, crystalline stability, large optical nonlinearities and extremely high electromagnetic field concentration. As such, recent demonstrations of surface plasmon excitation in graphene using near-field scattering of infrared light have received intense interest. Here we present an all-optical plasmon coupling scheme which takes advantage of the intrinsic nonlinear optical response of graphene. Free-space, visible light pulses are used to generate surface plasmons in a planar graphene sheet using difference frequency wave mixing to match both the wavevector and energy of the surface wave. By carefully controlling the phase matching conditions, we show that one can excite surface plasmons with a defined wavevector and direction across a large frequency range, with an estimated photon efficiency in our experiments approaching 10-5.

  19. Generation of arbitrary complex quasi-non-diffracting optical patterns

    CERN Document Server

    Ortiz-Ambriz, Antonio; Kartashov, Yaroslav V; Vysloukh, Victor A; Petrov, Dmitri; Garcia-Gracia, Hipolito; Gutiérrez-Vega, Julio C; Torner, Lluis


    Due to their unique ability to maintain an intensity distribution upon propagation, non-diffracting light fields are used extensively in various areas of science, including optical tweezers, nonlinear optics and quantum optics, in applications where complex transverse field distributions are required. However, the number and type of rigorously non-diffracting beams is severely limited because their symmetry is dictated by one of the coordinate system where the Helmholtz equation governing beam propagation is separable. Here, we demonstrate a powerful technique that allows the generation of a rich variety of quasi-non-diffracting optical beams featuring nearly arbitrary intensity distributions in the transverse plane. These can be readily engineered via modifications of the angular spectrum of the beam in order to meet the requirements of particular applications. Such beams are not rigorously non-diffracting but they maintain their shape over large distances, which may be tuned by varying the width of the angu...

  20. System Wide Implementation of Photonically Generated Impulse Radio Ultra-Wideband for Gigabit Fiber-Wireless Access

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Rodes Lopez, Roberto


    radio ultra-wideband (IR-UWB) signals at 781.25 Mbps with on-off keying (OOK) and binary phase shift keying (BPSK) modulation formats. We further advance the state-of-the-art to include multi-Gigabit IR-UWB signal generation. Both OOK and BPSK signals comply with the Federal Communications Commission......-of-the-art electronic generation method in terms of transmission bit-error rate performance. Moreover, photonic IR-UWB generation is shown to be capable of longer wireless reach due to its lower bandwidth limitation. Finally, we experimentally demonstrate the integration of a relaxation oscillations-based UWB photonic...... generation system into existing wavelength division multiplexing passive optical networks (WDM-PON) infrastructure. This provides converged Gigabit indoor wireless and wireline access services....

  1. Generation-based memory synchronization in a multiprocessor system with weakly consistent memory accesses (United States)

    Ohmacht, Martin


    In a multiprocessor system, a central memory synchronization module coordinates memory synchronization requests responsive to memory access requests in flight, a generation counter, and a reclaim pointer. The central module communicates via point-to-point communication. The module includes a global OR reduce tree for each memory access requesting device, for detecting memory access requests in flight. An interface unit is implemented associated with each processor requesting synchronization. The interface unit includes multiple generation completion detectors. The generation count and reclaim pointer do not pass one another.

  2. Generation-based memory synchronization in a multiprocessor system with weakly consistent memory accesses

    Energy Technology Data Exchange (ETDEWEB)

    Ohmacht, Martin


    In a multiprocessor system, a central memory synchronization module coordinates memory synchronization requests responsive to memory access requests in flight, a generation counter, and a reclaim pointer. The central module communicates via point-to-point communication. The module includes a global OR reduce tree for each memory access requesting device, for detecting memory access requests in flight. An interface unit is implemented associated with each processor requesting synchronization. The interface unit includes multiple generation completion detectors. The generation count and reclaim pointer do not pass one another.

  3. Rapid Process to Generate Beam Envelopes for Optical System Analysis (United States)

    Howard, Joseph; Seals, Lenward


    The task of evaluating obstructions in the optical throughput of an optical system requires the use of two disciplines, and hence, two models: optical models for the details of optical propagation, and mechanical models for determining the actual structure that exists in the optical system. Previous analysis methods for creating beam envelopes (or cones of light) for use in this obstruction analysis were found to be cumbersome to calculate and take significant time and resources to complete. A new process was developed that takes less time to complete beam envelope analysis, is more accurate and less dependent upon manual node tracking to create the beam envelopes, and eases the burden on the mechanical CAD (computer-aided design) designers to form the beam solids. This algorithm allows rapid generation of beam envelopes for optical system obstruction analysis. Ray trace information is taken from optical design software and used to generate CAD objects that represent the boundary of the beam envelopes for detailed analysis in mechanical CAD software. Matlab is used to call ray trace data from the optical model for all fields and entrance pupil points of interest. These are chosen to be the edge of each space, so that these rays produce the bounding volume for the beam. The x and y global coordinate data is collected on the surface planes of interest, typically an image of the field and entrance pupil internal of the optical system. This x and y coordinate data is then evaluated using a convex hull algorithm, which removes any internal points, which are unnecessary to produce the bounding volume of interest. At this point, tolerances can be applied to expand the size of either the field or aperture, depending on the allocations. Once this minimum set of coordinates on the pupil and field is obtained, a new set of rays is generated between the field plane and aperture plane (or vice-versa). These rays are then evaluated at planes between the aperture and field, at a

  4. Dynamic computer-generated nonlinear-optical holograms (United States)

    Liu, Haigang; Li, Jun; Fang, Xiangling; Zhao, Xiaohui; Zheng, Yuanlin; Chen, Xianfeng


    We propose and experimentally demonstrate dynamic nonlinear optical holograms by introducing the concept of computer-generated holograms for second-harmonic generation of a structured fundamental wave with a specially designed wave front. The generation of Laguerre-Gaussian second-harmonic beams is investigated in our experiment. Such a method, which only dynamically controls the wave front of the fundamental wave by a spatial light modulator, does not need domain inversion in nonlinear crystals and hence is a more flexible way to achieve the off-axis nonlinear second-harmonic beams. It can also be adopted in other schemes and has potential applications in nonlinear frequency conversion, optical signal processing, and real-time hologram, etc.

  5. A novel multipriority reservation protocol for plastic optical fiber access network

    Institute of Scientific and Technical Information of China (English)

    Ning Zhang(张宁); Rongjin Yu(于荣金)


    In this papcr, a novel multipriority reservation protocol for plastic optical fiber access network based onoptical code division multiplexing access (OCDMA) technology is proposed. Conventional OCDMA systemonly allows finite units to transmit and access simultaneously according to the number of channels. Theprotocol is proposed to resolve this problem. By using the reservation scheme and a distributed arbitrationalgorithm, channel collision and destination conflict can be avoided. The protocol can efficiently supportthe transmission of multimedia messages that require the different time-delays. At the same time, eachoptical network unit is equipped with a fixed optical encoder/decoder that is always tuned to channel forcontrol and the tunable optical encoder/decoder that is tuned to any of channel for data. The networkthroughput and average delay have been investigated by numerical analysis and simulation experiments.It is shown that the multipriority reservation protocol in this POF access network based on OCDMAtechnology is valid and efficient.

  6. Optical fiber tip for field-enhanced second harmonic generation. (United States)

    Pal, Sudipta Sarkar; Mondal, Samir K; Bajpai, Phun Phun; Kapur, Pawan


    We propose a simple optical fiber tip for field-enhanced second harmonic generation (SHG). The tip shows nonlinear phenomena of SHG over a wide range of sources, at least from 630 to 830 nm. The optical field corresponding to the second harmonic appears as a nondiffracting bottle beam with voids due to the surface curvature of the tip. The field-enhanced second harmonic can also induce surface plasmons, converting the tip to a plasmonic probe with reduced background signal. The tip can be useful in nanophotonics characterization. As an example, we demonstrate the tip's response as a surface-enhanced Raman spectroscopy probe.

  7. Optical sum-frequency generation in whispering gallery mode resonators

    CERN Document Server

    Strekalov, Dmitry V; Huang, Yu-Ping; Kumar, Prem


    We demonstrate sum-frequency generation in a nonlinear whispering gallery mode resonator between a telecom wavelength and the Rb D2 line, achieved through natural phase matching. Due to the strong optical field confinement and ultra high Q of the cavity, we achieve a 1000-fold enhancement in the conversion efficiency compared to existing waveguide-based devices. The experimental data are in agreement with the nonlinear dynamics and phase matching theory in the spherical geometry employed. The experimental and theoretical results point to a new platform to manipulate the color and quantum states of light waves toward applications such as atomic memory based quantum networking and logic operations with optical signals.

  8. Generating and probing entangled states for optical atomic clocks (United States)

    Braverman, Boris; Kawasaki, Akio; Vuletic, Vladan


    The precision of quantum measurements is inherently limited by projection noise caused by the measurement process itself. Spin squeezing and more complex forms of entanglement have been proposed as ways of surpassing this limitation. In our system, a high-finesse asymmetric micromirror-based optical cavity can mediate the atom-atom interaction necessary for generating entanglement in an 171 Yb optical lattice clock. I will discuss approaches for creating, characterizing, and optimally utilizing these nonclassical states for precision measurement, as well as recent progress toward their realization. This research is supported by DARPA QuASAR, NSF, and NSERC.

  9. Optical Kerr Frequency Comb Generation in Overmoded Resonators

    CERN Document Server

    Matsko, A B; Liang, W; Ilchenko, V S; Seidel, D; Maleki, L


    We show that scattering-based interaction among nearly degenerate optical modes is the key factor in low threshold generation of Kerr frequency combs in nonlinear optical resonators possessing small group velocity dispersion (GVD). The mode interaction is capable of producing drastic change in the local GVD, resulting in either a significant reduction or increase of the oscillation threshold. It is also responsible for the majority of observed combs in resonators characterized with large normal GVD. We present results of our numerical simulations as well as supporting experimental data.

  10. Physical layer secret key generation for fiber-optical networks. (United States)

    Kravtsov, Konstantin; Wang, Zhenxing; Trappe, Wade; Prucnal, Paul R


    We propose and experimentally demonstrate a method for generating and sharing a secret key using phase fluctuations in fiber optical links. The obtained key can be readily used to support secure communication between the parties. The security of our approach is based on a fundamental asymmetry associated with the optical physical layer: the sophistication of tools needed by an eavesdropping adversary to subvert the key establishment is significantly greater and more costly than the complexity needed by the legitimate parties to implement the scheme. In this sense, the method is similar to the classical asymmetric algorithms (Diffie-Hellman, RSA, etc.).

  11. Optical plasma torch electron bunch generation in plasma wakefield accelerators

    Directory of Open Access Journals (Sweden)

    G. Wittig


    Full Text Available A novel, flexible method of witness electron bunch generation in plasma wakefield accelerators is described. A quasistationary plasma region is ignited by a focused laser pulse prior to the arrival of the plasma wave. This localized, shapeable optical plasma torch causes a strong distortion of the plasma blowout during passage of the electron driver bunch, leading to collective alteration of plasma electron trajectories and to controlled injection. This optically steered injection is more flexible and faster when compared to hydrodynamically controlled gas density transition injection methods.

  12. Soliton generation from a multi-frequency optical signal

    Energy Technology Data Exchange (ETDEWEB)

    Panoiu, N-C [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States); Mel' nikov, I V [Center for Research in Engineering and Applied Sciences, Morelos State Autonomous University, Av. Universidad 1001, 62210 Cuernavaca (Mexico); Mihalache, D [Department of Theoretical Physics, Institute of Atomic Physics, PO Box MG-6, Bucharest (Romania); Etrich, C [Institute of Solid State Theory and Theoretical Optics, Friedrich Schiller University Jena, Max-Wien-Platz 1, Jena, D-07743 (Germany); Lederer, F [Institute of Solid State Theory and Theoretical Optics, Friedrich Schiller University Jena, Max-Wien-Platz 1, Jena, D-07743 (Germany)


    We present a comprehensive analysis of the generation of optical solitons in a monomode optical fibre from a superposition of soliton-like optical pulses at different frequencies. It is demonstrated that the structure of the emerging optical field is highly dependent on the number of input channels, the inter-channel frequency separation, the time shift between the pulses belonging to adjacent channels, and the polarization of the pulses. Also, it is found that there exists a critical frequency separation above which wavelength-division multiplexing with solitons is feasible and that this critical frequency increases with the number of transmission channels. Moreover, for the case in which only two channels are considered, we analyse the propagation of the emerging two-soliton solutions in the presence of several perturbations important for optical networks: bandwidth-limited amplification, nonlinear amplification, and amplitude and phase modulation. Finally, the influence of the birefringence of the fibre on the structure of the emerging optical field is discussed. (review article)

  13. Optical Channel Capacity Upgrade Based on Multiwavelength Conversion XGM Using Semiconductor Optical Amplifier for Access Networks

    Directory of Open Access Journals (Sweden)

    Mohammad Syuhaimi Ab-rahman


    Full Text Available This paper demonstrates a 10 Gb/s one-to-two-wavelength conversion configuration based on cross-gain modulation for optical access networks using a single TW-SOA. The method is capable of converting a signal data of specific wavelength 1541 nm to certain wavelengths of CW’s laser 1554 nm and 1558 nm with 4 nm spacing. The pump power level was classified due to channel response. A result obtained was the best power level offering wavelength converter between −6 and 3 dBm. The conversion efficiency achievement provided an acceptable result for probe signals. The findings of Q-factor performance were investigated. The Q values were found to be more than 9 for point to point transmission and 20 km fiber configurations for the original and converted signal. The technique implemented at 20 km and the power of all channels were adequate to provide a splitting ratio of 1/64 for the launched pump power 3 dBm.

  14. High speed nonlinear optical components for next-generation optical communications


    Cleary, Ciaran Sean


    Electronic signal processing systems currently employed at core internet routers require huge amounts of power to operate and they may be unable to continue to satisfy consumer demand for more bandwidth without an inordinate increase in cost, size and/or energy consumption. Optical signal processing techniques may be deployed in next-generation optical networks for simple tasks such as wavelength conversion, demultiplexing and format conversion at high speed (≥100Gb.s-1) to alleviate the pres...

  15. Deployment of a Testbed in a Brazilian Research Network using IPv6 and Optical Access Technologies (United States)

    Martins, Luciano; Ferramola Pozzuto, João; Olimpio Tognolli, João; Chaves, Niudomar Siqueira De A.; Reggiani, Atilio Eduardo; Hortêncio, Claudio Antonio


    This article presents the implementation of a testbed and the experimental results obtained with it on the Brazilian Experimental Network of the government-sponsored "GIGA Project." The use of IPv6 integrated to current and emerging optical architectures and technologies, such as dense wavelength division multiplexing and 10-gigabit Ethernet on the core and gigabit capable passive optical network and optical distribution network on access, were tested. These protocols, architectures, and optical technologies are promising and part of a brand new worldwide technological scenario that has being fairly adopted in the networks of enterprises and providers of the world.

  16. Chip-Scale Continuously Tunable Optical Orbital Angular Momentum Generator

    CERN Document Server

    Sun, Jie; Moresco, Michele; Coolbaugh, Douglas; Watts, Michael R


    Light carrying orbital angular momentum (OAM) has potential to impact a wide variety of applications ranging from optical communications to quantum information and optical forces for the excitation and manipulation of atoms, molecules, and micro-particles. The unique advantage of utilizing OAM in these applications relies, to a large extent, on the use of multiple different OAM states. Therefore, it is desirable to have a device that is able to gen- erate light with freely adjustable OAM states in an integrated form for large- scale integration. We propose and demonstrate a compact silicon photonic integrated circuit to generate a free-space optical beam with OAM state con- tinuously tuned from a single electrical input signal, realizing both integer and non-integer OAM states. The compactness and flexibility of the device and its compatibility with complementary metal-oxide-semiconductor (CMOS) pro- cessing hold promise for integration with other silicon photonic components for wide-ranging applications.

  17. Nonlinear optics at low powers: Alternative mechanism of on-chip optical frequency comb generation (United States)

    Rogov, Andrei S.; Narimanov, Evgenii E.


    Nonlinear optical effects provide a natural way of light manipulation and interaction and form the foundation of applied photonics, from high-speed signal processing and telecommunication to ultrahigh-bandwidth interconnects and information processing. However, relatively weak nonlinear response at optical frequencies calls for operation at high optical powers or boosting efficiency of nonlinear parametric processes by enhancing local-field intensity with high-quality-factor resonators near cavity resonance, resulting in reduced operational bandwidth and increased loss due to multiphoton absorption. We present an alternative to this conventional approach, with strong nonlinear optical effects at low local intensities, based on period-doubling bifurcations near nonlinear cavity antiresonance and apply it to low-power optical frequency comb generation in a silicon chip.

  18. Nonlinear optics at low powers: new mechanism of on-chip optical frequency comb generation

    CERN Document Server

    Rogov, Andrei


    Nonlinear optical effects provide a natural way of light manipulation and interaction, and form the foundation of applied photonics -- from high-speed signal processing and telecommunication, to ultra-high bandwidth interconnects and information processing. However, relatively weak nonlinear response at optical frequencies calls for operation at high optical powers, or boosting efficiency of nonlinear parametric processes by enhancing local field intensity with high quality-factor resonators near cavity resonance, resulting in reduced operational bandwidth and increased loss due to multi-photon absorption. Here, we present an alternative to this conventional approach, with strong nonlinear optical effects at substantially lower local intensities, based on period-doubling bifurcations near nonlinear cavity anti-resonance, and apply it to low-power optical comb generation in a silicon chip.

  19. Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Zhou, Binbin


    the dispersive wave. Finally, an investigation of recent experimental results uncovers a four-wave-mixing phenomenon related to Cherenkov radiation that is an additional generation mechanism of long-wavelength radiation that can occur during soliton compression. We discuss the conditions that lead......We show through theory and numerics that when few-cycle femtosecond solitons are generated through cascaded (phase-mismatched) second-harmonic generation, these broadband solitons can emit optical Cherenkov radiation in the form of linear dispersive waves located in the red part of the spectrum....... The beating between the dispersive wave and the soliton generates trailing temporal oscillations on the compressed soliton. Insertion of a simple short-wave pass filter after the crystal can restore a clean soliton. On the other hand, bandpass filtering around the dispersive wave peak results in near...

  20. Optical pulse generation system for the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Penko, F; Braucht,; Browning, D; Crane, J K; Dane, B; Deadrick, F; Dreifuerst, G; Henesian, M; Jones, B A; Kot, L; Laumann, C; Martinez, M; Moran, B; Rothenberg, J E; Skulina, K; Wilcox, R B


    We describe the Optical Pulse Generation (OPG) system for the National Ignition Facility ( NIF ). The OPG system begins with the Master Oscillator Room ( MOR ) where the initial, seed pulse for the entire laser system is produced and properly formatted to enhance ignition in the target. The formatting consists of temporally shaping the pulse and adding additional bandwidth to increase the coupling of the laser generated x-rays to the high density target plasma. The pulse produced in the MOR fans out to 48 identical preamplifier modules where it is amplified by a factor of ten billion and spatially shaped for injection into the 192 main amplifier chai

  1. Harnessing and control of optical rogue waves in supercontinuum generation. (United States)

    Dudley, John M; Genty, Goëry; Eggleton, Benjamin J


    We present a numerical study of the evolution dynamics of "optical rogue waves", statistically-rare extreme red-shifted soliton pulses arising from supercontinuum generation in photonic crystal fiber [D. R. Solli, et al. Nature 450, 1054-1058 (2007)]. Our specific aim is to use nonlinear Schrödinger equation simulations to identify ways in which the rogue wave dynamics can be actively controlled, and we demonstrate that rogue wave generation can be enhanced by an order of magnitude through a small modulation across the input pulse envelope and effectively suppressed through the use of a sliding frequency filter.

  2. Molecular system generation with strong resonance optical pumping

    Energy Technology Data Exchange (ETDEWEB)

    Kuntsevich, B.F.; Churakov, V.V.


    A study was made of molecular system generation modulated by three oscillating levels with a rotating structure with strong resonance optical pumping. Molecular behavior of the active medium is described by equations for the density matrix. The relationship between the amplification coefficient and pressure at various pumping intensities was examined. In approaching the assigned pumping field, an examination was made of how the generation field is affected by the volumetric density of the pumping energy, partial pressure of the buffer gas and frequency difference in the pumping channel.

  3. Second harmonic generation in thin optical fibers via cladding modes. (United States)

    Elzahaby, Eman A; Kandas, Ishac; Aly, Moustafa H


    Since silica goes under the category of amorphous materials, it is difficult to investigate important processes such as second harmonic generation (SHG) in silica-based fibers. In this paper, we proposed a method for SHG relaying on cladding modes as pump modes. Cladding modes are introduced in optical fibers through tilted long period grating (T-LPG), where power of core mode is transferred into cladding modes. By functionalizing T-LPG with nonlinear coating, the interaction occurs between cladding modes and the coating material, consequently second harmonic signal (SHS) is generated with efficiency up to 0.14%.

  4. Generation of Multiphoton Entangled States with Linear Optical Elements

    Institute of Scientific and Technical Information of China (English)

    SHENG Yu-Bo; DENG Fu-Guo; ZHOU Hong-Yu


    We propose a linear optical protocol to generate three-photon and four-photon entangled states without resorting to entangled sources. The setup in this protocol is composed of three beam splitters and two half-wave plates.We can obtain three-photon and four-photon entangled states with postselection, as with other protocols. This protocol has the advantage of high efficiency and is more feasible than others.

  5. Generation of frequency-chirped optical pulses with felix

    Energy Technology Data Exchange (ETDEWEB)

    Knippels, G.M.H.; Meer, A.F.G. van der; Mols, R.F.X.A.M. [FOM-Institute for Plasma Physics, Nieuwegein (Netherlands)] [and others


    Frequency-chirped optical pulses have been produced in the picosecond regime by varying the energy of the electron beam on a microsecond time scale. These pulses were then compressed close to their bandwidth limit by an external pulse compressor. The amount of chirp can be controlled by varying the sweep rate on the electron beam energy and by cavity desynchronisation. To examine the generated chirp we used the following diagnostics: a pulse compressor, a crossed beam autocorrelator, a multichannel electron spectrometer and multichannel optical spectrometer. The compressor is build entirely using reflective optics to permit broad band operation. The autocorrelator is currently operating from 6 {mu}m to 30 {mu}m with one single crystal. It has been used to measure pulses as short as 500 fs. All diagnostics are evacuated to prevent pulse shape distortion or pulse lengthening caused by absorption in ambient water vapour. Pulse length measurements and optical spectra will be presented for different electron beam sweep rates, showing the presence of a frequency chirp. Results on the compression of the optical pulses to their bandwidth limit are given for different electron sweep rates. More experimental results showing the dependence of the amount of chirp on cavity desynchronisation will be presented.

  6. Nanoscale optical properties of metal nanoparticles probed by Second Harmonic Generation microscopy. (United States)

    Shen, Hong; Nguyen, Ngoc; Gachet, David; Maillard, Vincent; Toury, Timothée; Brasselet, Sophie


    We report spatial and vectorial imaging of local fields' confinement properties in metal nanoparticles with branched shapes, using Second Harmonic Generation (SHG) microscopy. Taking advantage of the coherent nature of this nonlinear process, the technique provides a direct evidence of the coupling between the excitation polarization and both localization and polarization specificities of local fields at the sub-diffraction scale. These combined features, which are governed by the nanoparticles' symmetry, are not accessible using other contrasts such as linear optical techniques or two-photon luminescence.

  7. Adaptive coded spreading OFDM signal for dynamic-λ optical access network (United States)

    Liu, Bo; Zhang, Lijia; Xin, Xiangjun


    This paper proposes and experimentally demonstrates a novel adaptive coded spreading (ACS) orthogonal frequency division multiplexing (OFDM) signal for dynamic distributed optical ring-based access network. The wavelength can be assigned to different remote nodes (RNs) according to the traffic demand of optical network unit (ONU). The ACS can provide dynamic spreading gain to different signals according to the split ratio or transmission length, which offers flexible power budget for the network. A 10×13.12 Gb/s OFDM access with ACS is successfully demonstrated over two RNs and 120 km transmission in the experiment. The demonstrated method may be viewed as one promising for future optical metro access network.

  8. Effects of network node consolidation in optical access and aggregation networks on costs and power consumption (United States)

    Lange, Christoph; Hülsermann, Ralf; Kosiankowski, Dirk; Geilhardt, Frank; Gladisch, Andreas


    The increasing demand for higher bit rates in access networks requires fiber deployment closer to the subscriber resulting in fiber-to-the-home (FTTH) access networks. Besides higher access bit rates optical access network infrastructure and related technologies enable the network operator to establish larger service areas resulting in a simplified network structure with a lower number of network nodes. By changing the network structure network operators want to benefit from a changed network cost structure by decreasing in short and mid term the upfront investments for network equipment due to concentration effects as well as by reducing the energy costs due to a higher energy efficiency of large network sites housing a high amount of network equipment. In long term also savings in operational expenditures (OpEx) due to the closing of central office (CO) sites are expected. In this paper different architectures for optical access networks basing on state-of-the-art technology are analyzed with respect to network installation costs and power consumption in the context of access node consolidation. Network planning and dimensioning results are calculated for a realistic network scenario of Germany. All node consolidation scenarios are compared against a gigabit capable passive optical network (GPON) based FTTH access network operated from the conventional CO sites. The results show that a moderate reduction of the number of access nodes may be beneficial since in that case the capital expenditures (CapEx) do not rise extraordinarily and savings in OpEx related to the access nodes are expected. The total power consumption does not change significantly with decreasing number of access nodes but clustering effects enable a more energyefficient network operation and optimized power purchase order quantities leading to benefits in energy costs.

  9. Logical optical line terminal technologies towards flexible and highly reliable metro- and access-integrated networks (United States)

    Okamoto, Satoru; Sato, Takehiro; Yamanaka, Naoaki


    In this paper, flexible and highly reliable metro and access integrated networks with network virtualization and software defined networking technologies will be presented. Logical optical line terminal (L-OLT) technologies and active optical distribution networks (ODNs) are the key to introduce flexibility and high reliability into the metro and access integrated networks. In the Elastic Lambda Aggregation Network (EλAN) project which was started in 2012, a concept of the programmable optical line terminal (P-OLT) has been proposed. A role of the P-OLT is providing multiple network services that have different protocols and quality of service requirements by single OLT box. Accommodated services will be Internet access, mobile front-haul/back-haul, data-center access, and leased line. L-OLTs are configured within the P-OLT box to support the functions required for each network service. Multiple P-OLTs and programmable optical network units (P-ONUs) are connected by the active ODN. Optical access paths which have flexible capacity are set on the ODN to provide network services from L-OLT to logical ONUs (L-ONUs). The L-OLT to L-ONU path on the active ODN provides a logical connection. Therefore, introducing virtualization technologies becomes possible. One example is moving an L-OLT from one P-OLT to another P-OLT like a virtual machine. This movement is called L-OLT migration. The L-OLT migration provides flexible and reliable network functions such as energy saving by aggregating L-OLTs to a limited number of P-OLTs, and network wide optical access path restoration. Other L-OLT virtualization technologies and experimental results will be also discussed in the paper.

  10. Nanoparticle coated optical fibers for single microbubble generation (United States)

    Pimentel-Domínguez, Reinher; Hernández-Cordero, Juan


    The study of bubbles and bubbly flows is important in various fields such as physics, chemistry, medicine, geophysics, and even the food industry. A wide variety of mechanical and acoustic techniques have been reported for bubble generation. Although a single bubble may be generated with these techniques, controlling the size and the mean lifetime of the bubble remains a difficult task. Most of the optical methods for generation of microbubbles involve high-power pulsed laser sources focused in absorbing media such as liquids or particle solutions. With these techniques, single micron-sized bubbles can be generated with typical mean lifetimes ranging from nano to microseconds. The main problem with these bubbles is their abrupt implosion: this produces a shock wave that can potentially produce damages on the surroundings. These effects have to be carefully controlled in biological applications and in laser surgery, but thus far, not many options are available to effectively control micron-size bubble growth. In this paper, we present a new technique to generate microbubbles in non-absorbing liquids. In contrast to previous reports, the proposed technique uses low-power and a CW radiation from a laser diode. The laser light is guided through an optical fiber whose output end has been coated with nanostructures. Upon immersing the tip of the fiber in ethanol or water, micron-size bubbles can be readily generated. With this technique, bubble growth can be controlled through adjustments on the laser power. We have obtained micron-sized bubbles with mean lifetimes in the range of seconds. Furthermore, the generated bubbles do not implode, as verified with a high-speed camera and flow visualization techniques.

  11. A Review on Spectral Amplitude Coding Optical Code Division Multiple Access (United States)

    Kaur, Navpreet; Goyal, Rakesh; Rani, Monika


    This manuscript deals with analysis of Spectral Amplitude Coding Optical Code Division Multiple Access (SACOCDMA) system. The major noise source in optical CDMA is co-channel interference from other users known as multiple access interference (MAI). The system performance in terms of bit error rate (BER) degrades as a result of increased MAI. It is perceived that number of users and type of codes used for optical system directly decide the performance of system. MAI can be restricted by efficient designing of optical codes and implementing them with unique architecture to accommodate more number of users. Hence, it is a necessity to design a technique like spectral direct detection (SDD) technique with modified double weight code, which can provide better cardinality and good correlation property.

  12. Multirate IP traffic transmission in flexible access networks based on optical FFH-CDMA

    DEFF Research Database (Denmark)

    Raddo, Thiago R.; Sanches, Anderson L.; Tafur Monroy, Idelfonso


    In this paper, we propose a new IP transmission architecture over optical fast frequency hopping code-division multiple-access (OFFH-CDMA) network capable of supporting multirate transmissions for applications in flexible optical access networks. The proposed network architecture is independent...... transmission rate. Furthermore, to evaluate the network performance, we derive new expressions for the decoder bit error rate (BER), total BER, packet error rate (PER), and packet throughput. We analyze the performance of a two-class OFFH-CDMA packet network, where multirate transmissions are achieved via...

  13. Heterogeneous wireless/wireline optical access networks with the R-EAT as backend component (United States)

    Hagedorn, Klaus; Gindera, Ralf; Stohr, Andreas; Jager, Dieter


    A heterogeneous wireless/wireline optical transmission link using a reflection type electroabsorption transceiver (R-EAT) is presented. Simultaneous transmission of full-duplex broadband wireless LAN (WLAN) channels and 1Gb/s base band data is experimentally demonstrated. The system link employs sub-carrier multiplexing (SCM) and two optical channels for full duplex transmission of various analog WLAN channels and downlink digital base band data. The developed link architecture is suitable for simultaneous transmission of broadband wireline and wireless signals, it enables the coexistence and interoperability between wireline and wireless access technologies. The developed R-EAT component employed in this wireline/wireless access system, features "single-chip-component" base stations in access networks with star type topology where only a single optical fiber is used for bidirectional optical transmission. The R-EAT can be used within the optical C-band (1530- 1560nm) and is suitable for (D)WDM networks. Bit error rate measurements demonstrate the capabilities of the R-EAT for 1Gb/s base band transmission. The analog performance for WLAN transmission is characterised by a spurious free dynamic range (SFDR) of more than 75dB and 90dB for uplink and downlink transmission, respectively. The link gain for uplink and downlink transmission is -42dB and -37dB, respectively. The demonstrates the analog performances of the R-EAT for being used in wireless access networks such as W-LAN.

  14. Low-Cost Encoding Device for Optical Code Division Multiple Access System


    Mohammad S. Ab-Rahman; Boonchuan Ng; Norshilawati M. Ibrahim; Sahbudin Shaari


    Problem statement: Instead of using Fiber Bragg Grating (FBG) to develop the coded spectrums, which consist of expensive elements, the grating also are highly sensitive to environmental changes and this will contribute to the increment of capital and operational expenditures (CAPEX and OPEX). Approach: This study presented the development of low-cost 16-ports encoding device for Optical Code Division Multiple Access (OCDMA) systems based on Arrayed Waveguide Grating (AWG) devices and optical ...

  15. All-optical ion generation for ion trap loading

    CERN Document Server

    Sheridan, Kevin; Keller, Matthias; 10.1007/s00340-011-4563-7


    We have investigated the all-optical generation of ions by photo-ionisation of atoms generated by pulsed laser ablation. A direct comparison between a resistively heated oven source and pulsed laser ablation is reported. Pulsed laser ablation with 10 ns Nd:YAG laser pulses is shown to produce large calcium flux, corresponding to atomic beams produced with oven temperatures greater than 650 K. For an equivalent atomic flux, pulsed laser ablation is shown to produce a thermal load more than one order of magnitude smaller than the oven source. The atomic beam distributions obey Maxwell-Boltzmann statistics with most probable speeds corresponding to temperatures greater than 2200 K. Below a threshold pulse fluence between 280 mJ/cm^2 and 330 mJ/cm^2, the atomic beam is composed exclusively of ground state atoms. For higher fluences ions and excited atoms are generated.

  16. Generation of Optical Vortices by Linear Phase Ramps

    Directory of Open Access Journals (Sweden)

    Sunil Vyas


    Full Text Available Generation of optical vortices using linear phase ramps is experimentally demonstrated. When two regions of a wavefront have opposite phase gradients then along the line of phase discontinuity vortices can be generated. It is shown that vortices can evolve during propagation even with the unequal magnitude of tilt in the two regions of the wavefront. The number of vortices and their location depend upon the magnitude of tilt. vortex generation is experimentally realized by encoding phase mask on spatial light modulator and their presence is detected interferometrically. Numerical simulation has been performed to calculate the diffracted intensity distribution from the phase mask, and presence of vortices in the diffracted field is detected by computational techniques.

  17. Secure Communications in High Speed Fiber Optical Networks Using Code Division Multiple Access (CDMA) Transmission

    Energy Technology Data Exchange (ETDEWEB)

    Han, I; Bond, S; Welty, R; Du, Y; Yoo, S; Reinhardt, C; Behymer, E; Sperry, V; Kobayashi, N


    This project is focused on the development of advanced components and system technologies for secure data transmission on high-speed fiber optic data systems. This work capitalizes on (1) a strong relationship with outstanding faculty at the University of California-Davis who are experts in high speed fiber-optic networks, (2) the realization that code division multiple access (CDMA) is emerging as a bandwidth enhancing technique for fiber optic networks, (3) the realization that CDMA of sufficient complexity forms the basis for almost unbreakable one-time key transmissions, (4) our concepts for superior components for implementing CDMA, (5) our expertise in semiconductor device processing and (6) our Center for Nano and Microtechnology, which is where the majority of the experimental work was done. Here we present a novel device concept, which will push the limits of current technology, and will simultaneously solve system implementation issues by investigating new state-of-the-art fiber technologies. This will enable the development of secure communication systems for the transmission and reception of messages on deployed commercial fiber optic networks, through the CDMA phase encoding of broad bandwidth pulses. CDMA technology has been developed as a multiplexing technology, much like wavelength division multiplexing (WDM) or time division multiplexing (TDM), to increase the potential number of users on a given communication link. A novel application of the techniques created for CDMA is to generate secure communication through physical layer encoding. Physical layer encoding devices are developed which utilize semiconductor waveguides with fast carrier response times to phase encode spectral components of a secure signal. Current commercial technology, most commonly a spatial light modulator, allows phase codes to be changed at rates of only 10's of Hertz ({approx}25ms response). The use of fast (picosecond to nanosecond) carrier dynamics of semiconductors

  18. Coherent VUV- and X-ray generation with optical lasers

    CERN Document Server

    Sandner, W


    The laser concept, i.e. the active control over coherence properties of light, has partially transformed optical sciences into one of the most important key technologies of the next century. Consequently, various attempts have long been made to extend this concept towards VUV- and X-ray wavelengths, but have met considerable practical difficulties. Low-energy efficiency in inversion creation is one of the typical obstacles, extremely high-power requirements (e.g. for optical driver lasers) another. Only very recently several new, independent concepts have been successfully realized, and promise real breakthroughs in short-wavelength generation and application. Compact 'table-top' X-ray lasers have been operated in a saturated gain conditions, either through electric discharge pumping in a capillary or through short-pulse optical laser pumping in a transient inversion scheme. In addition, direct conversion of optical laser light into the VUV- and soft X-ray region has been accomplished. These new sources are r...

  19. Near-Nyquist optical pulse generation with fiber optical parametric amplification. (United States)

    Vedadi, Armand; Shoaie, Mohammad Amin; Brès, Camille-Sophie


    A novel method using optical fiber parametric amplification and phase modulation is proposed in order to generate Nyquist pulses. Using parabolic pulses as a pump, we show theoretically that it is possible to generate Nyquist pulses. Furthermore, we show that by using a sinusoidal pump (pump intensity modulated by an RF tone), it is possible to obtain pulses with characteristics that are close to Nyquist limited pulses. We demonstrate experimentally the generation of bandwidth limited pulses with full width half maximum of 14 ps at 10 GHz repetition rate. We also discuss limitations of this method and means to overcome these limitations.

  20. Differential geometry of the ruled surfaces optically generated by mirror scanning devices: II. Generation of helicoids and hyperbolic paraboloids. (United States)

    Li, Yajun


    The theory developed in Part I of this study [Y. Li, "Differential geometry of the ruled surfaces optically generated by mirror-scanning devices. I. Intrinsic and extrinsic properties of the scan field," J. Opt. Soc. Am. A28, 667 (2011)] for the ruled surfaces optically generated by single-mirror scanning devices is extended to multimirror scanning systems for an investigation of optical generation of the well-known ruled surfaces, such as helicoid, Plücker's conoid, and hyperbolic paraboloid.

  1. BPSK optical mm-wave signal generation by septupling frequency via a single optical phase modulator (United States)

    Wu, Peng; Ma, Jianxin


    In this paper, we have proposed a novel and simple scheme to generate the BPSK optical millimeter wave (MMW) signal with frequency septupling by using an optical phase modulator (PM) and a wavelength selective switch (WSS). In this scheme, the PM is driven by a radio frequency (RF) BPSK signal at the optimized modulation index of 4.89 to assure the 4th and 3rd-order sidebands have equal amplitudes. An wavelength selective switch (WSS) is used to abstract the -4th and +3rd-order sidebands from the spectrum generated by RF BPSK signal modulating the lightwave to form the BPSK optical MMW signal with frequency septupling the driving RF signal. In these two tones, only the +3rd-order sideband bears the BPSK signal while the -4th-order sideband is unmodulated since the phase information is canceled by the even times multiplication of the phase of BPSK signal. The MMW signal can avoid the pulse walk-off effect and the amplitude fading effect caused by the fiber chromatic dispersion. By adjusting the modulation index to assure the two tones have equal amplitude, the generated optical MMW signal has the maximal opto-electrical conversion efficiency and good transmission performance.

  2. Repetition rate tunable ultra-short optical pulse generation based on electrical pattern generator

    Institute of Scientific and Technical Information of China (English)

    Xin Fu; Hongming Zhang; Meng Yan; Minyu Yao


    @@ An actively mode-locked laser with tunable repetition rate is proposed and experimentally demonstrated based on a programmable electrical pattern generator.By changing the repetition rate of the electrical patterns applied on the in-cavity modulator, the repetition rate of the output optical pulse sequences changes accordingly while the pulse width of the optical pulse train remains almost constant.In other words, the output ultra-short pulse train has a tunable duty cycle.In a proof-of-principle experiment, optical pulses with repetition rates of 10, 5, 2.5 and 1.25 GHz are obtained by adjusting the electrical pattern applied on the in-cavity modulator while their pulse widths remain almost unchanged.

  3. Spontaneous generation of singularities in paraxial optical fields

    CERN Document Server

    Aiello, Andrea


    In nonrelativistic quantum mechanics the spontaneous generation of singularities in continue and finite wave functions, is a well understood phenomenon also occurring for free particles. We use the familiar analogy between the two-dimensional Schroedinger equation and the optical paraxial wave equation to show that even weakly-focused collimated light beams may develop a spatial singularity during free-space propagation. We find that according to the shape of the field, its amplitude may be either finite or infinite at the singular point.

  4. Quasi-Optical Cavity Virtual Cathode Oscillator for Microwave Generation

    Institute of Scientific and Technical Information of China (English)

    凌根深; 陈波; 周津娟


    A new configuration of a virtual cathode oscillator(VCO),i.e.,a quasi-optical cavity VCO,is proposed for highpower microwave generation.The analysis and simulation are carried out to investigate the characteristics of this configuration.In the numerical simulation,the microwave output power of 2.93 GW is obtained with an electron beam of 610 keV in electron energy and 26.7kA in the beam current.The beam-to-microwave power efficiency is 18%.The frequency is 17.5 GHz,and the output microwave mode is TEM10.

  5. Quantum entanglement in electron optics generation, characterization, and applications

    CERN Document Server

    Chandra, Naresh


    This monograph forms an interdisciplinary study in atomic, molecular, and quantum information (QI) science. Here a reader will find that applications of the tools developed in QI provide new physical insights into electron optics as well as properties of atoms & molecules which, in turn, are useful in studying QI both at fundamental and applied levels. In particular, this book investigates entanglement properties of flying electronic qubits generated in some of the well known processes capable of taking place in an atom or a molecule following the absorption of a photon. Here, one can generate Coulombic or fine-structure entanglement of electronic qubits. The properties of these entanglements differ not only from each other, but also from those when spin of an inner-shell photoelectron is entangled with the polarization of the subsequent fluorescence. Spins of an outer-shell electron and of a residual photoion can have free or bound entanglement in a laboratory.

  6. Phase Noise of Optically Generated Microwave Using Sideband Injection Locking

    Institute of Scientific and Technical Information of China (English)

    HUANG Jin; SUN Chang-Zheng; SONG Yu; XIONG Bing; LUO Yi


    Optically generated 20-GHz microwave carriers with phase noise lower than -75 dBc/Hz at 10 kHz offset and lower than -90 dBc/Hz at 100 kHz offset are obtained using single- and double-sideband injection locking. Within the locking range, the effect of sideband injection locking can be regarded as narrow-band amplification of the modulation sidebands. Increasing the current of slave laser will increase the power of beat signal and reduce the phase noise to a certain extent. Double-sideband injection locking can increase the power of the generated microwave carrier while keeping the phase noise at a low level. It is also revealed that partially destruction of coherence between the two beating lights in the course of sideband injection locking would impair the phase noise performance.

  7. Segmented glass optics for next generation X-ray telescopes . (United States)

    Proserpio, L.; Basso, S.; Civitani, M.; Citterio, O.; Conconi, P.; Ghigo, M.; Pareschi, G.; Salmaso, B.; Spiga, D.; Tagliaferri, G.

    The realization of X-Ray Optical Units, based on the use of slumped thin glass segments to form densely packed modules of mirrors in a Wolter type I optical design, is under investigation since some years at the Astronomical Observatory of Brera (INAF-OAB) in collaboration with the Max Planck institute for Extraterrestrial physics (MPE) and the European Space Agency (ESA). In order to reach the challenging requirements posed by next-generation X-ray telescopes, an innovative assembly approach to align and mount the IXO-like mirror segments has been developed, based on the use of glass reinforcing ribs that connect the plates to each-other. One of the most interesting features of this integration scheme is that it guarantees an active correction for existing figure errors: since the glasses are bonded into the optical unit while kept trough vacuum suction on the integration mould surface, they assume the exact shape of the mould itself. The status of the development is reviewed in this paper, from the basic idea to the latest results obtained with prototypes.

  8. Phase mismatched optical parametric generation in semiconductor magnetoplasma (United States)

    Dubey, Swati; Ghosh, S.; Jain, Kamal


    Optical parametric generation involves the interaction of pump, signal, and idler waves satisfying law of conservation of energy. Phase mismatch parameter plays important role for the spatial distribution of the field along the medium. In this paper instead of exactly matching wave vector, a small mismatch is admitted with a degree of phase velocity mismatch between these waves. Hence the medium must possess certain finite coherence length. This wave mixing process is well explained by coupled mode theory and one dimensional hydrodynamic model. Based on this scheme, expressions for threshold pump field and transmitted intensity have been derived. It is observed that the threshold pump intensity and transmitted intensity can be manipulated by varying doping concentration and magnetic field under phase mismatched condition. A compound semiconductor crystal of n-InSb is assumed to be shined at 77 K by a 10.6μm CO2 laser with photon energy well below band gap energy of the crystal, so that only free charge carrier influence the optical properties of the medium for the I.R. parametric generation in a semiconductor plasma medium. Favorable parameters were explored to incite the said process keeping in mind the cost effectiveness and conversion efficiency of the process.


    Energy Technology Data Exchange (ETDEWEB)

    Morris, J.R.


    Three investigations of difference frequency generation (DFG) of far-infrared radiation by optical mixing are described: a theory of DFG by monochromatic, focused Gaussian pump laser beams, a theory of DFG by a picosecond pump laser pulse, and an experiment using ruby-pumped dye lasers. First, the theory of far-infrared generation by optical mixing of monochromatic, focused Gaussian beams in a uniaxial crystal is developed, taking into account the effects of diffraction, absorption, double refraction, and multiple reflections and total reflection at the boundary surfaces. (Reflection and transmission coefficients of a uniaxial crystal slab are derived by a new matrix technique.) Results of numerical calculations are presented. Focusing the pump beams appreciably enhances the far-infrared output despite the strong far-infrared diffraction. In a 1-cm long crystal, the optimum focal spot size is approximately equal to or smaller than the far-infrared wavelength for output frequencies less than 100 cm{sup -1}. Double refraction of the pump beams is relatively unimportant. Both far-infrared absorption and boundary reflections have major effects on the far-infrared output and its angular distribution. The former is often the factor which limits the output power. We show that a simple model treating the nonlinear polarization as a constant lie-radius Gaussian distribution of radiating dipoles adequately describes the effect of pump-beam focusing. We also compare the results of our calculations with those for second-harmonic generation. Second, a theoretical calculation of far-infrared power spectra generated by picosecond pulses in a nonlinear crystal is developed. The results are illustrated with two practical examples: LiNbO{sub 3} slabs oriented for rectification of the optical e-ray and for beating of the optical o-ray with the optical e-ray. The former is phase matched at 0 cm{sup -1}; the latter, at both the forward-(FCPM) and backward-collinear phase

  10. Migration of optical core network to next generation networks - Carrier Grade Ethernet Optical Transport Network (United States)

    Glamočanin, D.


    In order to maintain the continuity of the telecom operators’ network construction, while monitoring development needs, increasing customers’ demands and application of technological improvements, it is necessary to migrate optical transport core network to the next generation networks - Carrier Grade Ethernet Optical Transport Network (OTN CE). The primary objective of OTN CE is to realize an environment that is based solely on the switching in the optical domain, i.e. the realization of transparent optical networks and optical switching to the second layer of ISO / OSI model. The realization of such a network provides opportunities for further development of existing, but also technologically more demanding, new services. It is also a prerequisite to provide higher scalability, reliability, security and quality of QoS service, as well as prerequisites for the establishment of SLA (Service Level Agreement) for existing services, especially traffic in real time. This study aims to clarify the proposed model, which has the potential to be eventually adjusted in accordance with new scientific knowledge in this field as well as market requirements.

  11. Passive Optical Access Networks: State of the Art and Future Evolution

    Directory of Open Access Journals (Sweden)

    Tommaso Muciaccia


    Full Text Available In the very last years, optical access networks are growing very rapidly, from both the network operators and the research interests points of view. Fiber To The Home (FTTH is already a reality in plenty of real contexts and there has been a further stimulus to the proposal of new solutions and the investigation of new possibilities, in order to optimize network performance and reduce capital and operational expenditure. A complete and systematic overview of passive optical access networks is presented in this paper, concerning both the hot research topics and the main operative issues about the design guidelines and the deployment of Passive Optical Networks (PON architectures, nowadays the most commonly implemented approach to realize optical fiber links in the access networks. A comparison of advantages and disadvantages of different multiplexing techniques is discussed, with specific reference to WDM-based networks, almost universally considered as the enabling technology for future proof bandwidth requirements. An exhaustive summary is also given about the-state-of-the-art of modulation and encoding techniques recently proposed by the scientific community, as well as the open challenges (such as colorless and coolerless ONUs for telecom companies and international standardization compliance.

  12. Delay-aware adaptive sleep mechanism for green wireless-optical broadband access networks (United States)

    Wang, Ruyan; Liang, Alei; Wu, Dapeng; Wu, Dalei


    Wireless-Optical Broadband Access Network (WOBAN) is capacity-high, reliable, flexible, and ubiquitous, as it takes full advantage of the merits from both optical communication and wireless communication technologies. Similar to other access networks, the high energy consumption poses a great challenge for building up WOBANs. To shot this problem, we can make some load-light Optical Network Units (ONUs) sleep to reduce the energy consumption. Such operation, however, causes the increased packet delay. Jointly considering the energy consumption and transmission delay, we propose a delay-aware adaptive sleep mechanism. Specifically, we develop a new analytical method to evaluate the transmission delay and queuing delay over the optical part, instead of adopting M/M/1 queuing model. Meanwhile, we also analyze the access delay and queuing delay of the wireless part. Based on such developed delay models, we mathematically derive ONU's optimal sleep time. In addition, we provide numerous simulation results to show the effectiveness of the proposed mechanism.

  13. Reaching the Connected Generation: "College Access Marketers" Slow in Adopting New Techniques (United States)

    Gastwirth, David


    This author states that "college access marketing" efforts aimed at increasing college attendance and success have been slow to incorporate new techniques such as "buzz marketing," "viral marketing," "product seeding," and "guerrilla marketing." Yet for a "connected generation" of potential college students, these kinds of strategies could be…

  14. Filter Bank Multicarrier (FBMC) for long-reach intensity modulated optical access networks (United States)

    Saljoghei, Arsalan; Gutiérrez, Fernando A.; Perry, Philip; Barry, Liam P.


    Filter Bank Multi Carrier (FBMC) is a modulation scheme which has recently attracted significant interest in both wireless and optical communications. The interest in optical communications arises due to FBMC's capability to operate without a Cyclic Prefix (CP) and its high resilience to synchronisation errors. However, the operation of FBMC in optical access networks has not been extensively studied either in downstream or upstream. In this work we use experimental work to investigate the operation of FBMC in intensity modulated Passive Optical Networks (PONs) employing direct detection in conjunction with both direct and external modulation schemes. The data rates and propagation lengths employed here vary from 8.4 to 14.8 Gb/s and 0-75 km. The results suggest that by using FBMC it is possible to accomplish CP-Less transmission up to 75 km of SSMF in passive links using cost effective intensity modulation and detection schemes.

  15. Electro-optical time gating based on Mach-Zehnder modulator for multiple access interference elimination in optical code-division multiple access networks (United States)

    Chen, Yinfang; Wang, Rong; Fang, Tao; Pu, Tao; Xiang, Peng; Zheng, Jilin; Zhu, Huatao


    An electro-optical time gating technique, which is based on an electrical return-to-zero (RZ) pulse driven Mach-Zehnder modulator (MZM) for eliminating multiple access interference (MAI) in optical code-division multiple access (OCDMA) networks is proposed. This technique is successfully simulated in an eight-user two-dimensional wavelength-hopping time-spreading system, as well as in a three-user temporal phase encoding system. Results show that in both systems the MAI noise is efficiently removed and the average received power penalty improved. Both achieve error-free transmissions at a bit rate of 2.5 Gb/s. In addition, we also individually discuss effects of parameters in two systems, such as the extinction ratio of the MZM, the duty cycle of the driven RZ pulse, and the time misalignment between the driven pulse and the decoded autocorrelation peak, on the output bit error rate performance. Our work shows that employing a common MZM as a thresholder provides another probability and an interesting cost-effective choice for a smart size, low energy, and less complex thresholding technique for integrated detection in OCDMA networks.

  16. Enabling technologies for millimeter-wave radio-over-fiber systems in next generation heterogeneous mobile access networks (United States)

    Zhang, Junwen; Yu, Jianjun; Wang, Jing; Xu, Mu; Cheng, Lin; Lu, Feng; Shen, Shuyi; Yan, Yan; Cho, Hyunwoo; Guidotti, Daniel; Chang, Gee-kung


    Fifth-generation (5G) wireless access network promises to support higher access data rate with more than 1,000 times capacity with respect to current long-term evolution (LTE) systems. New radio-access-technologies (RATs) based on higher carrier frequencies to millimeter-wave (MMW) radio-over-fiber, and carrier-aggregation (CA) using multi-band resources are intensively studied to support the high data rate access and effectively use of frequency resources in heterogeneous mobile network (Het-Net). In this paper, we investigate several enabling technologies for MMW RoF systems in 5G Het-Net. Efficient mobile fronthaul (MFH) solutions for 5G centralized radio access network (C-RAN) and beyond are proposed, analyzed and experimentally demonstrated based on the analog scheme. Digital predistortion based on memory polynomial for analog MFH linearization are presented with improved EVM performances and receiver sensitivity. We also propose and experimentally demonstrate a novel inter-/intra- RAT CA scheme for 5G Het- Net. The real-time standard 4G-LTE signal is carrier-aggregated with three broadband 60GHz MMW signals based on proposed optical-domain band-mapping method. RATs based on new waveforms have also been studied here to achieve higher spectral-efficiency (SE) in asynchronous environments. Full-duplex asynchronous quasi-gapless carrier aggregation scheme for MMW ROF inter-/intra-RAT based on the FBMC is also presented with 4G-LTE signals. Compared with OFDM-based signals with large guard-bands, FBMC achieves higher spectral-efficiency with better EVM performance at less received power and smaller guard-bands.

  17. Radio-over-optical waveguide system-on-wafer for massive delivery capacity 5G MIMO access networks (United States)

    Binh, Le N.


    Delivering maximum information capacity over MIMO antennae systems beam steering is critical so as to achieve the flexibility via beam steering, maximizing the number of users or community of users in Gb/s rate per user over distributed cloud-based optical-wireless access networks. This paper gives an overview of (i) demands of optical - wireless delivery with high flexibility, especially the beam steering of multi-Tbps information channels to information hungry community of users via virtualized beam steering MIMO antenna systems at the free-license mmW region; (ii) Proposing a novel photonic planar integrated waveguide systems composing several passive and active, passive and amplification photonic devices so as to generate mmW carrier and embedded baseband information channels to feed to antenna elements; (iii) Integration techniques to generate a radio over optical waveguide (RoOW) system-on-wafer (SoW) comprising MIMO planar antenna elements and associate photonic integrated circuits for both up- and down- links; (iv) Challenges encountered in the implementation of the SoW in both wireless and photonic domains; (v) Photonic modulation techniques to achieve maximum transmission capacity per wavelength per MIMO antenna system. (vi) A view on control-feedback systems for fast and accurate generation of phase pattern for MIMO beam steering via a bank of optical phase modulators to mmW carrier phases and their preservation in the converted mmW domain . (vi) The overall operational principles of the novel techniques and technologies based on the coherent mixing of two lightwave channels The entire SoW can be implemented on SOI Si-photonic technology or via hybrid integration. These technological developments and their pros- and cons- will be discussed to achieve 50Tera-bps over the extended 110 channel Cband single mode fiber with mmW centered at 58.6GHz and 7GHz free-license band.

  18. Low-Cost Encoding Device for Optical Code Division Multiple Access System

    Directory of Open Access Journals (Sweden)

    Mohammad S. Ab-Rahman


    Full Text Available Problem statement: Instead of using Fiber Bragg Grating (FBG to develop the coded spectrums, which consist of expensive elements, the grating also are highly sensitive to environmental changes and this will contribute to the increment of capital and operational expenditures (CAPEX and OPEX. Approach: This study presented the development of low-cost 16-ports encoding device for Optical Code Division Multiple Access (OCDMA systems based on Arrayed Waveguide Grating (AWG devices and optical switches. The encoding device is one of the new technologies that used to transmit the coded data in the optical communication system by using AWG and optical switches. It provided a high security for data transmission due to all data will be transmitted in binary code form. The output signals from AWG were coded with a binary code that given to an optical switch before it signal modulate with the carrier and transmitted to the receiver. The 16-ports encoding device used 16 Double Pole Double Throw (DPDT toggle switches to control the polarization of voltage source from +5 V to -5 V for 16 optical switches. When +5 V was given, the optical switch will give code '1' and vice versa. Results: We found that the insertion loss, crosstalk, uniformity and Optical Signal-Noise-Ratio (OSNR for the developed prototype are Conclusion: We had successful developed the AWG-based OCDMA encoding device prototype and characterized using linearity testing and continuous signal testing. The developed prototype was expected to be applied in the optical communication system on Passive Optical Networks (PONs.

  19. Engineering Rules for Optical Generation and Detection of High Speed Wireless Millimeter-wave Band Signals

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Zibar, Darko; Sambaraju, Rakesh


    We analyze the design requirements for 40 Gbit/s wireless generation and detection in the millimeter-wave band, combining baseband optical I/Q modulation and coherent detection with wireless optical heterodyning generation and single-side band electro-optical modulation....

  20. Optical Property Evaluation of Next Generation Thermal Control Coatings (United States)

    Jaworske, Donald A.; Deshpande, Mukund S.; Pierson, Edward A.


    Next generation white thermal control coatings were developed via the Small Business Innovative Research program utilizing lithium silicate chemistry as a binder. Doping of the binder with additives yielded a powder that was plasma spray capable and that could be applied to light weight polymers and carbon-carbon composite surfaces. The plasma sprayed coating had acceptable beginning-of-life and end-of-live optical properties, as indicated by a successful 1.5 year exposure to the space environment in low Earth orbit. Recent studies also showed the coating to be durable to simulated space environments consisting of 1 keV and 10 keV electrons, 4.5 MeV electrons, and thermal cycling. Large scale deposition was demonstrated on a polymer matrix composite radiator panel, leading to the selection of the coating for use on the Gravity Recovery And Interior Laboratory (GRAIL) mission.

  1. Integration of variable-rate OWC with OFDM-PON for hybrid optical access based on adaptive envelope modulation (United States)

    Chen, Chen; Zhong, Wen-De; Wu, Dehao


    In this paper, we investigate an integrated optical wireless communication (OWC) and orthogonal frequency division multiplexing based passive optical network (OFDM-PON) system for hybrid wired and wireless optical access, based on an adaptive envelope modulation technique. Both the outdoor and indoor wireless communications are considered in the integrated system. The data for wired access is carried by a conventional OFDM signal, while the data for wireless access is carried by an M-ary pulse amplitude modulation (M-PAM) signal which is modulated onto the envelope of a phase-modulated OFDM signal. By adaptively modulating the wireless M-PAM signal onto the envelope of the wired phase-modulated constant envelope OFDM (CE-OFDM) signal, hybrid wired and wireless optical access can be seamlessly integrated and variable-rate optical wireless transmission can also be achieved. Analytical bit-error-rate (BER) expressions are derived for both the CE-OFDM signal with M-PAM overlay and the overlaid unipolar M-PAM signal, which are verified by Monte Carlo simulations. The BER performances of wired access, indoor OWC wireless access and outdoor OWC wireless access are evaluated. Moreover, variable-rate indoor and outdoor optical wireless access based on the adaptive envelope modulation technique is also discussed.

  2. All-optical differential detection for suppressing multiple-access interference in coherent time-addressed optical CDMA systems. (United States)

    Kim, Sun-Jong; Kim, Tae-Young; Park, Chul; Park, Chang-Soo; Chun, Young


    A novel scheme for suppressing the multiple-access interference (MAI) in coherent time-addressed optical CDMA systems is proposed. This is based on a differential detection using the dual-control NOLM. The basic principle for MAI suppression is described. For experimental demonstration, two encoded channels are constructed and decoded. These decoded signals are sent to the dual-control NOLM and a high autocorrelation peak with suppressed MAI at the output of NOLM is observed. Signal-to-interference ratio is improved by 7 dB.

  3. Ethernet access network based on free-space optic deployment technology (United States)

    Gebhart, Michael; Leitgeb, Erich; Birnbacher, Ulla; Schrotter, Peter


    The satisfaction of all communication needs from single households and business companies over a single access infrastructure is probably the most challenging topic in communications technology today. But even though the so-called "Last Mile Access Bottleneck" is well known since more than ten years and many distribution technologies have been tried out, the optimal solution has not yet been found and paying commercial access networks offering all service classes are still rare today. Conventional services like telephone, radio and TV, as well as new and emerging services like email, web browsing, online-gaming, video conferences, business data transfer or external data storage can all be transmitted over the well known and cost effective Ethernet networking protocol standard. Key requirements for the deployment technology driven by the different services are high data rates to the single customer, security, moderate deployment costs and good scalability to number and density of users, quick and flexible deployment without legal impediments and high availability, referring to the properties of optical and wireless communication. We demonstrate all elements of an Ethernet Access Network based on Free Space Optic distribution technology. Main physical parts are Central Office, Distribution Network and Customer Equipment. Transmission of different services, as well as configuration, service upgrades and remote control of the network are handled by networking features over one FSO connection. All parts of the network are proven, the latest commercially available technology. The set up is flexible and can be adapted to any more specific need if required.

  4. Adaptation of AMO-FBMC-OQAM in optical access network for accommodating asynchronous multiple access in OFDM-based uplink transmission (United States)

    Jung, Sun-Young; Jung, Sang-Min; Han, Sang-Kook


    Exponentially expanding various applications in company with proliferation of mobile devices make mobile traffic exploded annually. For future access network, bandwidth efficient and asynchronous signals converged transmission technique is required in optical network to meet a huge bandwidth demand, while integrating various services and satisfying multiple access in perceived network resource. Orthogonal frequency division multiplexing (OFDM) is highly bandwidth efficient parallel transmission technique based on orthogonal subcarriers. OFDM has been widely studied in wired-/wireless communication and became a Long term evolution (LTE) standard. Consequently, OFDM also has been actively researched in optical network. However, OFDM is vulnerable frequency and phase offset essentially because of its sinc-shaped side lobes, therefore tight synchronism is necessary to maintain orthogonality. Moreover, redundant cyclic prefix (CP) is required in dispersive channel. Additionally, side lobes act as interference among users in multiple access. Thus, it practically hinders from supporting integration of various services and multiple access based on OFDM optical transmission In this paper, adaptively modulated optical filter bank multicarrier system with offset QAM (AMO-FBMC-OQAM) is introduced and experimentally investigated in uplink optical transmission to relax multiple access interference (MAI), while improving bandwidth efficiency. Side lobes are effectively suppressed by using FBMC, therefore the system becomes robust to path difference and imbalance among optical network units (ONUs), which increase bandwidth efficiency by reducing redundancy. In comparison with OFDM, a signal performance and an efficiency of frequency utilization are improved in the same experimental condition. It enables optical network to effectively support heterogeneous services and multiple access.

  5. Free Space Optics for Next Generation Cellular Backhaul

    KAUST Repository

    Zedini, Emna


    The exponential increase in the number of mobile users, coupled with the strong demand for high-speed data services results in a significant growth in the required cellular backhaul capacity. Optimizing the cost efficiency while increasing the capacity is becoming a key challenge to the cellular backhaul. It refers to connections between base stations and mobile switching nodes over a variety of transport technologies such as copper, optical fibers, and radio links. These traditional transmission technologies are either expensive, or cannot provide high data rates. This work is focused on the opportunities of free-space-optical (FSO) technology in next generation cellular back- haul. FSO is a cost effective and wide bandwidth solution as compared with the traditional radio-frequency (RF) transmission. Moreover, due to its ease of deployment, license-free operation, high transmission security, and insensitivity to interference, FSO links are becoming an attractive solution for next generation cellular networks. However, the widespread deployment of FSO links is hampered by the atmospheric turbulence-induced fading, weather conditions, and pointing errors. Increasing the reliability of FSO systems, while still exploiting their high data rate communications, is a key requirement in the deployment of an FSO-based backhaul. Therefore, the aim of this work is to provide different approaches to address these technical challenges. In this context, investigation of hybrid automatic repeat request (HARQ) protocols from an information-theoretic perspective is undertaken. Moreover, performance analysis of asymmetric RF/FSO dual-hop systems is studied. In such system models, multiple RF users can be multiplexed and sent over the FSO link. More specifically, the end-to-end performance metrics are presented in closed-form. This also has increased the interest to study the performance of dual-hop mixed FSO/RF systems, where the FSO link is used as a multicast channel that serves

  6. Free-space optics technology employed in an UMTS release 4 bearer independent core network access part (United States)

    Bibac, Ionut


    The UMTS Bearer Independent Core Network program introduced the 3rd Generation Partnership Program Release 4 BICN architecture into the legacy UMTS TDM-switched network. BICN is the application of calI server archltecture for voice and circuit switched data, enabling the provisioning of traditional circuit-switched services using a packet-switched transport network. Today"s business climate has made it essential for service providers to develop a comprehensive networking strategy that means introduction of RCBICN networks. The R4-BICN solution to the evolution of the Core Network in UMTS will enable operators to significantly reduce the capital and operational costs of delivering both traditional voice sewices and new multimedia services. To build the optical backbone, which can support the third generation (3G) packetized infrastructure, the operators could choose a fibre connection, or they could retain the benefits of a wireless connectivity by using a FSO - Free Space Optical lmk, the only wireless technology available that is capable of achieving data rates up to 2.4 Gbit/s. FSO offers viable alternatives for both core transmission networks and for replacing microwaves links in NodeB - RNC access networks. The paper and presentation aim to demonstrate the manner in which FSO products and networks are employed into R4-BICN design solutions.

  7. All-optical digital processor based on harmonic generation phenomena (United States)

    Shcherbakov, Alexandre S.; Rakovsky, Vsevolod Y.


    Digital optical processors are designed to combine ultra- parallel data procesing capabilities of optical aystems cnd high accur&cy of performed computations. The ultimate limit of the processing rate can be anticipated from all-optical parcllel erchitecturea based on networks o logic gates using materials exibiting strong electronic nonlinearities with response times less than 1O seconds1.

  8. Cutter Accessibility Map and Its Application for 5-axis Milling Tool-path Generation

    Institute of Scientific and Technical Information of China (English)

    L. L. Li; Y. F. Zhang


    In tool-path generation process for 5-axis face milling, the specification of cutter posture is one of the critical issues that contribute to the computation load. In this paper, a quick algorithm is presented to specify the cutter posture at a surface point based on the cutter's accessibility maps (A-maps) at all the sampled points, obtained during cutter selection. Integrated with this quick algorithm, an efficient approach is proposed to generate a set of iso-planar tool-paths for finishing a given surface withmaximum machining efficiency without violating the desirable profile and scallop height tolerance. One example is given to confirm the validity of the quick algorithm for cutter posture and the efficiency of the algorithm for tool-path generation.

  9. Capacity bounds for the 2-user Gaussian IM-DD optical multiple-access channel

    KAUST Repository

    Al-Ebraheemy, Omer M. S.


    Optical wireless communications (OWC) is a potential solution for coping with the mismatch between the users growing demand for higher data-rates and the wireless network capabilities. In this paper, a multi-user OWC scenario is studied from an in formation-theoretic perspective. The studied network consists of two users communicating simultaneously with one access point using OWC, thus establishing an optical uplink channel. The capacity of this network is an important metric which reflects the highest possible communication rates that can be achieved over this channel. Capacity outer and inner bounds are derived, and are shown to be fairly tight in the high signal-to-noise ratio regime. © 2016 IEEE.

  10. Joint robustness security in optical OFDM access system with Turbo-coded subcarrier rotation. (United States)

    Zhang, Lijia; Liu, Bo; Xin, Xiangjun; Wang, Yongjun


    This paper proposes a novel robust physical secure method for optical orthogonal frequency division multiplexing (OFDM) access system based on Turbo-coded subcarrier rotation. It can realize a secure communication while keep robustness to channel noise. The subcarrier rotation is controlled by the interleaver module of Turbo coding, which is under the charge of Logistic map. The random puncturing can further enhance the security. The channel feedback can ensure the puncturing module working at a suitable coding rate. A 72.28 Gb/s encrypted 16QAM-OFDM signal is successfully demonstrated in the experiment. The results show robust performance under different channel noise conditions and good resistance to illegal optical network unit (ONU).

  11. Optical interconnection network for parallel access to multi-rank memory in future computing systems. (United States)

    Wang, Kang; Gu, Huaxi; Yang, Yintang; Wang, Kun


    With the number of cores increasing, there is an emerging need for a high-bandwidth low-latency interconnection network, serving core-to-memory communication. In this paper, aiming at the goal of simultaneous access to multi-rank memory, we propose an optical interconnection network for core-to-memory communication. In the proposed network, the wavelength usage is delicately arranged so that cores can communicate with different ranks at the same time and broadcast for flow control can be achieved. A distributed memory controller architecture that works in a pipeline mode is also designed for efficient optical communication and transaction address processes. The scaling method and wavelength assignment for the proposed network are investigated. Compared with traditional electronic bus-based core-to-memory communication, the simulation results based on the PARSEC benchmark show that the bandwidth enhancement and latency reduction are apparent.

  12. The development of an optically accessible, high-power combustion test rig. (United States)

    Slabaugh, Carson D; Pratt, Andrew C; Lucht, Robert P; Meyer, Scott E; Benjamin, Michael; Lyle, Kent; Kelsey, Mark


    This work summarizes the development of a gas turbine combustion experiment which will allow advanced optical measurements to be made at realistic engine conditions. Facility requirements are addressed, including instrumentation and control needs for remote operation when working with high energy flows. The methodology employed in the design of the optically accessible combustion chamber is elucidated, including window considerations and thermal management of the experimental hardware under extremely high heat loads. Experimental uncertainties are also quantified. The stable operation of the experiment is validated using multiple techniques and the boundary conditions are verified. The successful prediction of operating conditions by the design analysis is documented and preliminary data are shown to demonstrate the capability of the experiment to produce high-fidelity datasets for advanced combustion research.

  13. Theory of THz generation by Optical Rectification using Tilted-Pulse-Fronts

    CERN Document Server

    Ravi, Koustuban; Carbajo, Sergio; Nanni, Emilio; Schimpf, Damian; Ippen, Erich; Kaertner, Franz


    A model for THz generation by optical rectification using tilted-pulse-fronts is developed. It simultaneously accounts for (i) the spatio-temporal distortions of the optical pump pulse, (ii) the nonlinear coupled interaction of THz and optical radiation in two spatial dimensions (2-D), (iii) self-phase modulation and (iv) stimulated Raman scattering. The model is validated by quantitative agreement with experiments and analytic calculations. We show that the optical pump beam is significantly broadened in the transverse-momentum (kx) domain as a consequence of the spectral broadening caused by THz generation. In the presence of this large frequency and transverse-momentum (or angular) spread, group velocity dispersion causes a spatio-temporal break-up of the optical pump pulse which inhibits further THz generation. The implications of these effects on energy scaling and optimization of optical-to-THz conversion efficiency are discussed. This suggests the use of optical pump pulses with elliptical beam profile...

  14. Nonlinear Pulse Shaping in Fibres for Pulse Generation and Optical Processing

    Directory of Open Access Journals (Sweden)

    Sonia Boscolo


    Full Text Available The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion.

  15. Optical code division multiple access secure communications systems with rapid reconfigurable polarization shift key user code (United States)

    Gao, Kaiqiang; Wu, Chongqing; Sheng, Xinzhi; Shang, Chao; Liu, Lanlan; Wang, Jian


    An optical code division multiple access (OCDMA) secure communications system scheme with rapid reconfigurable polarization shift key (Pol-SK) bipolar user code is proposed and demonstrated. Compared to fix code OCDMA, by constantly changing the user code, the performance of anti-eavesdropping is greatly improved. The Pol-SK OCDMA experiment with a 10 Gchip/s user code and a 1.25 Gb/s user data of payload has been realized, which means this scheme has better tolerance and could be easily realized.

  16. Novel secure and bandwidth efficient optical code division multiplexed system for future access networks (United States)

    Singh, Simranjit


    In this paper, a spectrally coded optical code division multiple access (OCDMA) system using a hybrid modulation scheme has been investigated. The idea is to propose an effective approach for simultaneous improvement of the system capacity and security. Data formats, NRZ (non-return to zero), DQPSK (differential quadrature phase shift keying), and PoISk (polarisation shift keying) are used to get the orthogonal modulated signal. It is observed that the proposed hybrid modulation provides efficient utilisation of bandwidth, increases the data capacity and enhances the data confidentiality over existing OCDMA systems. Further, the proposed system performance is compared with the current state-of-the-art OCDMA schemes.

  17. Studies of interfaces and vapors with Optical Second Harmonic Generation

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, Christopher Shane [Lawrence Berkeley Lab., CA (United States); California Univ., Berkeley, CA (United States). Dept. of Physics


    Optical Second Harmonic Generation (SHG) has been applied to the study of soap-like molecules adsorbed to the water-air interface. By calibrating the signal from a soluble monolayer with that of an insoluble homolog, absolute measurements of the surface density could be obtained and related to the bulk concentration and surface tension. We could then demonstrate that the soluble surfactant forms a single monolayer at the interface. Furthermore, it deviates significantly from the ideal case in that its activity coefficients are far from 1, yet those coefficients remain constant over a broad range of surface pressures. We present evidence of a first-order phase transition taking place during the adsorption of this soluble monolayer. We consider the effects of the non-ideal behavior and the phase transition on the microscopic model of adsorption, and formulate an alternative to the Langmuir picture of adsorption which is just as simple, yet it can more easily allow for non-ideal behavior. The second half of this thesis considers the problem of SHG in bulk metal vapors. The symmetry of the vapor forbids SHG, yet it has been observed. We consider several models whereby the symmetry of the vapor is broken by the presence of the laser and compare their predictions to new observations we have made using a few-picosecond laser pulse. The two-lobed output beam profile shows that it is the vapor-plus-beam combination whose symmetry is important. The dependence on vapor pressure demonstrates the coherent nature of the radiation, while the dependence on buffer gas pressure hints at a change of the symmetry in time. The time-dependence is measured directly with a preliminary pump-probe measurement. The magnitude and intensity dependence of the signal are also measured. All but one of the models are eliminated by this comparison.

  18. Cutting Off Access to Government Information: Loopholes in the Access to Information Act Generated by the Information Highway. (United States)

    Macaulay, Tyson


    In Canada, public access to federal government information is ruled by the Access to Information Act. This article explores loopholes in the Act, issues of data format and "tradeable" data (government information with substantial value), that could cause a conflict between its intent and effect. Tradeable data is troublesome because of…

  19. Conditional linear-optical measurement schemes generate effective photon nonlinearities

    CERN Document Server

    Lapaire, G G; Dowling, J P; Sipe, J E; Dowling, Jonathan P.


    We provide a general approach for the analysis of optical state evolution under conditional measurement schemes, and identify the necessary and sufficient conditions for such schemes to simulate unitary evolution on the freely propagating modes. If such unitary evolution holds, an effective photon nonlinearity can be identified. Our analysis extends to conditional measurement schemes more general than those based solely on linear optics.

  20. Seamless generation and provisioning of broadcasting and independent services in WDMPON access networks. (United States)

    Tang, Ming; Fu, Songnian; Shum, Perry Ping


    A novel broadcasting scheme for WDM-PON based fiber access networks is proposed in this paper and downstream system experiments has been demonstrated. The broadcasting data is generated via subcarrier modulation technique. By using a delayed interferometer, the un-modulated continuous-wave carrier is separated and acts as the seeder for FP-LD injection locking and direct modulation, which is compatible with current WDM-PON infrastructures. In experiments, 2.5 Gb/s broadcasting data and 2.5 Gb/s point-to-point data are successfully integrated and transmitted in a typical WDM-PON structure with good performance.

  1. Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors. (United States)

    Salomé, R; Kremer, Y; Dieudonné, S; Léger, J-F; Krichevsky, O; Wyart, C; Chatenay, D; Bourdieu, L


    Two-photon scanning microscopy (TPSM) is a powerful tool for imaging deep inside living tissues with sub-cellular resolution. The temporal resolution of TPSM is however strongly limited by the galvanometric mirrors used to steer the laser beam. Fast physiological events can therefore only be followed by scanning repeatedly a single line within the field of view. Because acousto-optic deflectors (AODs) are non-mechanical devices, they allow access at any point within the field of view on a microsecond time scale and are therefore excellent candidates to improve the temporal resolution of TPSM. However, the use of AOD-based scanners with femtosecond pulses raises several technical difficulties. In this paper, we describe an all-digital TPSM setup based on two crossed AODs. It includes in particular an acousto-optic modulator (AOM) placed at 45 degrees with respect to the AODs to pre-compensate for the large spatial distortions of femtosecond pulses occurring in the AODs, in order to optimize the spatial resolution and the fluorescence excitation. Our setup allows recording from freely selectable point-of-interest at high speed (1kHz). By maximizing the time spent on points of interest, random-access TPSM (RA-TPSM) constitutes a promising method for multiunit recordings with millisecond resolution in biological tissues.

  2. Capacity Bounds for the Gaussian IM-DD Optical Multiple-Access Channel

    KAUST Repository

    Chaaban, Anas


    Optical wireless communications (OWC) is a promising technology for closing the mismatch between the growing number of connected devices and the limited wireless network capabilities. Similar to downlink, uplink can also benefit from OWC for establishing connectivity between such devices and an optical access point. In this context, the incoherent intensitymodulation and direct-detection (IM-DD) scheme is desirable in practice. Hence, it is important to understand the fundamental limits of communication rates over an OWC uplink employing IM-DD, i.e., the channel capacity. This uplink, modeled as a Gaussian multiple-access channel (MAC) for indoors OWC, is studied in this paper, under the IM-DD constraints which form the main difference with the standard Gaussian MAC commonly studied in the radio-frequency context. Capacity region outer and inner bounds for this channel are derived. The bounds are fairly close at high signal-to-noise ratio (SNR), where a truncated- Gaussian input distribution achieves the capacity region within a constant gap. Furthermore, the bounds coincide at low SNR showing the optimality of on-off keying combined with successive cancellation decoding in this regime. At moderate SNR, an optimized uniformly-spaced discrete input distribution achieves fairly good performance.

  3. Helico-conical beams for generating optical twisters

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Daria, Vincent Ricardo Mancao


    at the focus even as the topological charge is increased. Such beams can be applied to fundamental studies of light and atoms such as in quantum entanglement of the DAM, toroidal traps for cold atoms and for optical manipulation of microscopic particles. OPTICAL TWISTERS An optical vortex or light beam...... interference takes place. Here, we describe a diffracting beam with a spiral profile on both the amplitUde and phase of the beam. The spiral beam is a special case of a general set of Helico-Conical beams described in our previous work [1,21. This family of beams is initially characterized with an apodized...

  4. Photonic multi-shape UWB pulse generation using a semiconductor optical amplifier-based nonlinear optical loop mirror

    Institute of Scientific and Technical Information of China (English)

    Luo Bo-Wen; Dong Jian-Ji; Yu Yuan; Yang Ting; Zhang Xin-Liang


    We propose and demonstrate a scheme to implement photonic multi-shape ultra-wideband (UWB) signal generation using a semiconductor optical amplifier (SOA) based nonlinear optical loop mirror (NOLM).By employing the cross phase modulation (XPM) effect,cross gain modulation (XGM),or both,multi-shape UWB waveforms are generated including monocycle,doublet,triplet,and quadruplet pulses.Both the shapes and polarities of the generated pulses are flexible to adjust,which may be very useful in UWB pulse shape modulation and pulse polarity modulation.

  5. Mach-zehnder based optical marker/comb generator for streak camera calibration (United States)

    Miller, Edward Kirk


    This disclosure is directed to a method and apparatus for generating marker and comb indicia in an optical environment using a Mach-Zehnder (M-Z) modulator. High speed recording devices are configured to record image or other data defining a high speed event. To calibrate and establish time reference, the markers or combs are indicia which serve as timing pulses (markers) or a constant-frequency train of optical pulses (comb) to be imaged on a streak camera for accurate time based calibration and time reference. The system includes a camera, an optic signal generator which provides an optic signal to an M-Z modulator and biasing and modulation signal generators configured to provide input to the M-Z modulator. An optical reference signal is provided to the M-Z modulator. The M-Z modulator modulates the reference signal to a higher frequency optical signal which is output through a fiber coupled link to the streak camera.

  6. A Compact, Waveguide Based Programmable Optical Comb Generator Project (United States)

    National Aeronautics and Space Administration — This NASA Phase I STTR effort will establish the feasibility of developing a compact broadband near to mid-IR programmable optical comb for use in laser based remote...

  7. Photonic integrated circuits for the generation of coherent optical signals


    Morrissey, Padraic E.


    The demand for optical bandwidth continues to increase year on year and is being driven primarily by entertainment services and video streaming to the home. Current photonic systems are coping with this demand by increasing data rates through faster modulation techniques, spectrally efficient transmission systems and by increasing the number of modulated optical channels per fibre strand. Such photonic systems are large and power hungry due to the high number of discrete components required i...

  8. Photodeposited diffractive optical elements of computer generated masks

    Energy Technology Data Exchange (ETDEWEB)

    Mirchin, N. [Electrical and Electronics Engineering Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel)]. E-mail:; Peled, A. [Electrical and Electronics Engineering Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel); Baal-Zedaka, I. [Electrical and Electronics Engineering Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel); Margolin, R. [Electrical and Electronics Engineering Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel); Zagon, M. [Electrical and Electronics Engineering Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel); Lapsker, I. [Physics Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel); Verdyan, A. [Physics Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel); Azoulay, J. [Physics Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel)


    Diffractive optical elements (DOE) were synthesized on plastic substrates using the photodeposition (PD) technique by depositing amorphous selenium (a-Se) films with argon lasers and UV spectra light. The thin films were deposited typically onto polymethylmethacrylate (PMMA) substrates at room temperature. Scanned beam and contact mask modes were employed using computer-designed DOE lenses. Optical and electron micrographs characterize the surface details. The films were typically 200 nm thick.

  9. Photodeposited diffractive optical elements of computer generated masks (United States)

    Mirchin, N.; Peled, A.; Baal-Zedaka, I.; Margolin, R.; Zagon, M.; Lapsker, I.; Verdyan, A.; Azoulay, J.


    Diffractive optical elements (DOE) were synthesized on plastic substrates using the photodeposition (PD) technique by depositing amorphous selenium (a-Se) films with argon lasers and UV spectra light. The thin films were deposited typically onto polymethylmethacrylate (PMMA) substrates at room temperature. Scanned beam and contact mask modes were employed using computer-designed DOE lenses. Optical and electron micrographs characterize the surface details. The films were typically 200 nm thick.

  10. Terahertz Generation in an Electrically Biased Optical Fiber: A Theoretical Investigation

    Directory of Open Access Journals (Sweden)

    Montasir Qasymeh


    Full Text Available We propose and theoretically investigate a novel approach for generating terahertz (THz radiation in a standard single-mode fiber. The optical fiber is mediated by an electrostatic field, which induces an effective second-order nonlinear susceptibility via the Kerr effect. The THz generation is based on difference frequency generation (DFG. A dispersive fiber Bragg grating (FBG is utilized to phase match the two interacting optical carriers. A ring resonator is utilized to boost the optical intensities in the biased optical fiber. A mathematical model is developed which is supported by a numerical analysis and simulations. It is shown that a wide spectrum of a tunable THz radiation can be generated, providing a proper design of the FBG and the optical carriers.

  11. All-Optical Quantum Random Bit Generation from Intrinsically Binary Phase of Parametric Oscillators

    CERN Document Server

    Marandi, Alireza; Vodopyanov, Konstantin L; Byer, Robert L


    True random number generators (RNGs) are desirable for applications ranging from cryptogra- phy to computer simulations. Quantum phenomena prove to be attractive for physical RNGs due to their fundamental randomness and immunity to attack [1]- [5]. Optical parametric down conversion is an essential element in most quantum optical experiments including optical squeezing [9], and generation of entangled photons [10]. In an optical parametric oscillator (OPO), photons generated through spontaneous down conversion of the pump initiate the oscillation in the absence of other inputs [11, 12]. This quantum process is the dominant effect during the oscillation build-up, leading to selection of one of the two possible phase states above threshold in a degenerate OPO [13]. Building on this, we demonstrate a novel all-optical quantum RNG in which the photodetection is not a part of the random process, and no post processing is required for the generated bit sequence. We implement a synchronously pumped twin degenerate O...

  12. A Linear Ion Trap with an Expanded Inscribed Diameter to Improve Optical Access for Fluorescence Spectroscopy (United States)

    Rajagopal, Vaishnavi; Stokes, Chris; Ferzoco, Alessandra


    We report a custom-geometry linear ion trap designed for fluorescence spectroscopy of gas-phase ions at ambient to cryogenic temperatures. Laser-induced fluorescence from trapped ions is collected from between the trapping rods, orthogonal to the excitation laser that runs along the axis of the linear ion trap. To increase optical access to the ion cloud, the diameter of the round trapping rods is 80% of the inscribed diameter, rather than the roughly 110% used to approximate purely quadrupolar electric fields. To encompass as much of the ion cloud as possible, the first collection optic has a 25.4 mm diameter and a numerical aperture of 0.6. The choice of geometry and collection optics yields 107 detected photons/s from trapped rhodamine 6G ions. The trap is coupled to a closed-cycle helium refrigerator, which in combination with two 50 Ohm heaters enables temperature control to below 25 K on the rod electrodes. The purpose of the instrument is to broaden the applicability of fluorescence spectroscopy of gas-phase ions to cases where photon emission is a minority relaxation pathway. Such studies are important to understand how the microenvironment of a chromophore influences excited state charge transfer processes. [Figure not available: see fulltext.

  13. Controllable optical bistability and multistability in asymmetric double quantum wells via spontaneously generated coherence

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuan; Deng, Li [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Chen, Aixi, E-mail: [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1 (Canada)


    We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device.

  14. Supercontinuum Spectra generation in the single-mode optical fibre with Concave dispersion profile

    Institute of Scientific and Technical Information of China (English)

    Xu Wen-Cheng; Gao Jie-Li; Liang Zhan-Qiang; Chen Qiao-Hong; Liu Song-Hao


    In this paper,a new method is proposed to generate broad supercontinuum (SC) spectra in the single-mode optical fibre with concave dispersion profile.We numerically simulate pulse evolutions and discuss physics mechanism in detail for SC spectrum generation in the optical fibre with concave dispersion profile.Furthermore,general criteria are presented for specifying the shape of SC spectrum by introducing normalized parameters,which are related to the fibres and the initial pump pulses.The results show that the flat and broad SC spectra are indeed generated in our proposed optical fibre.

  15. Benzothiazolium Single Crystals: A New Class of Nonlinear Optical Crystals with Efficient THz Wave Generation. (United States)

    Lee, Seung-Heon; Lu, Jian; Lee, Seung-Jun; Han, Jae-Hyun; Jeong, Chan-Uk; Lee, Seung-Chul; Li, Xian; Jazbinšek, Mojca; Yoon, Woojin; Yun, Hoseop; Kang, Bong Joo; Rotermund, Fabian; Nelson, Keith A; Kwon, O-Pil


    Highly efficient nonlinear optical organic crystals are very attractive for various photonic applications including terahertz (THz) wave generation. Up to now, only two classes of ionic crystals based on either pyridinium or quinolinium with extremely large macroscopic optical nonlinearity have been developed. This study reports on a new class of organic nonlinear optical crystals introducing electron-accepting benzothiazolium, which exhibit higher electron-withdrawing strength than pyridinium and quinolinium in benchmark crystals. The benzothiazolium crystals consisting of new acentric core HMB (2-(4-hydroxy-3-methoxystyryl)-3-methylbenzo[d]thiazol-3-ium) exhibit extremely large macroscopic optical nonlinearity with optimal molecular ordering for maximizing the diagonal second-order nonlinearity. HMB-based single crystals prepared by simple cleaving method satisfy all required crystal characteristics for intense THz wave generation such as large crystal size with parallel surfaces, moderate thickness and high optical quality with large optical transparency range (580-1620 nm). Optical rectification of 35 fs pulses at the technologically very important wavelength of 800 nm in 0.26 mm thick HMB crystal leads to one order of magnitude higher THz wave generation efficiency with remarkably broader bandwidth compared to standard inorganic 0.5 mm thick ZnTe crystal. Therefore, newly developed HMB crystals introducing benzothiazolium with extremely large macroscopic optical nonlinearity are very promising materials for intense broadband THz wave generation and other nonlinear optical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Optical monitoring of rheumatoid arthritis: Monte Carlo generated reconstruction kernels (United States)

    Minet, O.; Beuthan, J.; Hielscher, A. H.; Zabarylo, U.


    Optical imaging in biomedicine is governed by the light absorption and scattering interaction on microscopic and macroscopic constituents in the medium. Therefore, light scattering characteristics of human tissue correlate with the stage of some diseases. In the near infrared range the scattering event with the coefficient approximately two orders of magnitude greater than absorption plays a dominant role. When measuring the optical parameters variations were discovered that correlate with the rheumatoid arthritis of a small joint. The potential of an experimental setup for transillumination the finger joint with a laser diode and the pattern of the stray light detection are demonstrated. The scattering caused by skin contains no useful information and it can be removed by a deconvolution technique to enhance the diagnostic value of this non-invasive optical method. Monte Carlo simulations ensure both the construction of the corresponding point spread function and both the theoretical verification of the stray light picture in rather complex geometry.

  17. Chip-interleaved optical code division multiple access relying on a photon-counting iterative successive interference canceller for free-space optical channels. (United States)

    Zhou, Xiaolin; Zheng, Xiaowei; Zhang, Rong; Hanzo, Lajos


    In this paper, we design a novel Poisson photon-counting based iterative successive interference cancellation (SIC) scheme for transmission over free-space optical (FSO) channels in the presence of both multiple access interference (MAI) as well as Gamma-Gamma atmospheric turbulence fading, shot-noise and background light. Our simulation results demonstrate that the proposed scheme exhibits a strong MAI suppression capability. Importantly, an order of magnitude of BER improvements may be achieved compared to the conventional chip-level optical code-division multiple-access (OCDMA) photon-counting detector.

  18. Large optical glass blanks for the ELT generation (United States)

    Jedamzik, Ralf; Petzold, Uwe; Dietrich, Volker; Wittmer, Volker; Rexius, Olga


    The upcoming extremely large telescope projects like the E-ELT, TMT or GMT telescopes require not only large amount of mirror blank substrates but have also sophisticated instrument setups. Common instrument components are atmospheric dispersion correctors that compensate for the varying atmospheric path length depending on the telescope inclination angle. These elements consist usually of optical glass blanks that have to be large due to the increased size of the focal beam of the extremely large telescopes. SCHOTT has a long experience in producing and delivering large optical glass blanks for astronomical applications up to 1 m and in homogeneity grades up to H3 quality in the past. The most common optical glass available in large formats is SCHOTT N-BK7. But other glass types like F2 or LLF1 can also be produced in formats up to 1 m. The extremely large telescope projects partly demand atmospheric dispersion components even in sizes beyond 1m up to a range of 1.5 m diameter. The production of such large homogeneous optical glass banks requires tight control of all process steps. To cover this demand in the future SCHOTT initiated a research project to improve the large optical blank production process steps from melting to annealing and measurement. Large optical glass blanks are measured in several sub-apertures that cover the total clear aperture of the application. With SCHOTT's new stitching software it is now possible to combine individual sub-aperture measurements to a total homogeneity map of the blank. In this presentation first results will be demonstrated.

  19. All-Optical Generation of Surface Plasmons in Graphene

    CERN Document Server

    Constant, Thomas J; Chang, Darrick E; Hendry, Euan


    Here we present an all-optical plasmon coupling scheme, utilising the intrinsic nonlinear optical response of graphene. We demonstrate coupling of free-space, visible light pulses to the surface plasmons in a planar, un-patterned graphene sheet by using nonlinear wave mixing to match both the wavevector and energy of the surface wave. By carefully controlling the phase-matching conditions, we show that one can excite surface plasmons with a defined wavevector and direction across a large frequency range, with an estimated photon efficiency in our experiments approaching $10^{-5}$.

  20. Optical generation and control of quantum coherence in semiconductor nanostructures

    CERN Document Server

    Slavcheva, Gabriela


    The unprecedented control of coherence that can be exercised in quantum optics of atoms and molecules has stimulated increasing efforts in extending it to solid-state systems. One motivation to exploit the coherent phenomena comes from the emergence of the quantum information paradigm, however many more potential device applications ranging from novel lasers to spintronics are all bound up with issues in coherence. The book focuses on recent advances in the optical control of coherence in excitonic and polaritonic systems as model systems for the complex semiconductor dynamics towards the goal

  1. Energy-Efficient Next-Generation Passive Optical Networks Based on Sleep Mode and Heuristic Optimization (United States)

    Zulai, Luis G. T.; Durand, Fábio R.; Abrão, Taufik


    In this article, an energy-efficiency mechanism for next-generation passive optical networks is investigated through heuristic particle swarm optimization. Ten-gigabit Ethernet-wavelength division multiplexing optical code division multiplexing-passive optical network next-generation passive optical networks are based on the use of a legacy 10-gigabit Ethernet-passive optical network with the advantage of using only an en/decoder pair of optical code division multiplexing technology, thus eliminating the en/decoder at each optical network unit. The proposed joint mechanism is based on the sleep-mode power-saving scheme for a 10-gigabit Ethernet-passive optical network, combined with a power control procedure aiming to adjust the transmitted power of the active optical network units while maximizing the overall energy-efficiency network. The particle swarm optimization based power control algorithm establishes the optimal transmitted power in each optical network unit according to the network pre-defined quality of service requirements. The objective is controlling the power consumption of the optical network unit according to the traffic demand by adjusting its transmitter power in an attempt to maximize the number of transmitted bits with minimum energy consumption, achieving maximal system energy efficiency. Numerical results have revealed that it is possible to save 75% of energy consumption with the proposed particle swarm optimization based sleep-mode energy-efficiency mechanism compared to 55% energy savings when just a sleeping-mode-based mechanism is deployed.

  2. Quantum optical signatures in strong-field laser physics: Infrared photon counting in high-order-harmonic generation. (United States)

    Gonoskov, I A; Tsatrafyllis, N; Kominis, I K; Tzallas, P


    We analytically describe the strong-field light-electron interaction using a quantized coherent laser state with arbitrary photon number. We obtain a light-electron wave function which is a closed-form solution of the time-dependent Schrödinger equation (TDSE). This wave function provides information about the quantum optical features of the interaction not accessible by semi-classical theories. With this approach we can reveal the quantum optical properties of high harmonic generation (HHG) process in gases by measuring the photon statistics of the transmitted infrared (IR) laser radiation. This work can lead to novel experiments in high-resolution spectroscopy in extreme-ultraviolet (XUV) and attosecond science without the need to measure the XUV light, while it can pave the way for the development of intense non-classical light sources.

  3. Signal generation and processing at 100 Gb/s based on optical time division multiplexing

    Institute of Scientific and Technical Information of China (English)

    Li HUO; Qiang WANG; Yanfei XING; Caiyun LOU


    In this paper, we review our recent works in 100 Gb/s signal generation and processing. A high-speed 100 Gb/s system with on-off keying (0OK) modulation format is implemented by using optical time division multiplexing (OTDM) method. As modifications of this system, simultaneous multicolor optical signal generation and 100Gb/s return-to-zero (RZ)-to-non-return-to-zero (NRZ) format conversion are presented. We also demonstrate basic all-optical signal processing functions of 100 GHz clock recovery and 100 Gb/s all-optical 2R generation based on semiconductor optical amplifiers (SOAs).

  4. NRZ versus RZ over Absolute Added Correlative coding in optical metro-access networks (United States)

    Dong-Nhat, Nguyen; Elsherif, Mohamed A.; Le Minh, Hoa; Malekmohammadi, Amin


    This paper comparatively investigates the transmission performance of absolute added correlative coding (AACC) using non-return-to-zero (NRZ) and return-to-zero (RZ) pulse shapes with a binary intensity modulation direct detection receiver in 40 Gb/s optical metro-access networks operating at 1550 nm. It is shown that, for AACC transmission, the NRZ impulse shaping is superior in comparison to RZ in spectral efficiency, dispersion tolerance, residual dispersion and self-phase modulation (SPM) tolerance. However, RZ-AACC experiences a 1-2 dB advantage in receiver sensitivity over NRZ-AACC for back-to-back configuration as well as after 300-km single-mode fiber delivery.

  5. "Simultaneous measurement of flame impingement and piston surface temperatures in an optically accessible spark ignition engine" (United States)

    Ding, Carl-Philipp; Honza, Rene; Böhm, Benjamin; Dreizler, Andreas


    This paper shows the results of spatially resolved temperature measurements of the piston surface of an optically accessible direct injection spark ignition engine during flame impingement. High-speed thermographic phosphor thermometry (TPT), using Gd3Ga5O12:Cr,Ce, and planar laser-induced fluorescence of the hydroxyl radical (OH-PLIF) were used to investigate the temperature increase and the time and position of flame impingement at the piston surface. Measurements were conducted at two operating cases and showed heating rates of up to 16,000 K/s. The OH-PLIF measurements were used to localize flame impingement and calculate conditioned statistics of the temperature profiles. The TPT coating was characterized and its influence on the temperature measurements evaluated.

  6. Next Generation Flexible and Cognitive Heterogeneous Optical Networks

    DEFF Research Database (Denmark)

    Tomkos, Ioannis; Angelou, Marianna; Barroso, Ramón J. Durán


    Optical networking is the cornerstone of the Future Internet as it provides the physical infrastructure of the core backbone networks. Recent developments have enabled much better quality of service/experience for the end users, enabled through the much higher capacities that can be supported...

  7. Atomic quantum superposition state generation via optical probing

    DEFF Research Database (Denmark)

    Nielsen, Anne Ersbak Bang; Poulsen, Uffe Vestergaard; Negretti, Antonio


    We analyze the performance of a protocol to prepare an atomic ensemble in a superposition of two macroscopically distinguishable states. The protocol relies on conditional measurements performed on a light field, which interacts with the atoms inside an optical cavity prior to detection, and we...

  8. Induced abortion in Canada 1974-2005: trends over the first generation with legal access. (United States)

    Norman, Wendy V


    Canadian women currently entering menopause are the first generation with access to legal induced abortion throughout their reproductive years. Statistics Canada data from 1974 to 2005 on age-specific abortion and first-abortion rates were analyzed to determine the proportion of the cohort hypothetically and actually undergoing at least one induced abortion, as well as the age-specific trends. Among Canadian women who turned 45 years old in 2005, 31% had at least one abortion, with a median age at first abortion of 24 years. Since 1997, age-specific induced abortion rates overall and among teenagers have declined significantly, while rates among older women show less decline as age increases. Annually from 1974 to 2005, women aged 20-29 years account for 52% (SD 1.8%) of all abortions in Canada. Induced abortion is a common procedure experienced by nearly a third of Canadian women during their reproductive years. Consistently, half of all women accessing abortion are in their twenties. These findings suggest that Canadian women, particularly those in their twenties, experience a significant unmet need for effective contraception. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. SFO-Project: The New Generation of Sharable, Editable and Open-Access CFD Tutorials (United States)

    Javaherchi, Teymour; Javaherchi, Ardeshir; Aliseda, Alberto


    One of the most common approaches to develop a Computational Fluid Dynamic (CFD) simulation for a new case study of interest is to search for the most similar, previously developed and validated CFD simulation among other works. A simple search would result into a pool of written/visual tutorials. However, users should spend significant amount of time and effort to find the most correct, compatible and valid tutorial in this pool and further modify it toward their simulation of interest. SFO is an open-source project with the core idea of saving the above-mentioned time and effort. This is done via documenting/sharing scientific and methodological approaches to develop CFD simulations for a wide spectrum of fundamental and industrial case studies in three different CFD solvers; STAR-CCM +, FLUENT and Open FOAM (SFO). All of the steps and required files of these tutorials are accessible and editable under the common roof of Github (a web-based Git repository hosting service). In this presentation we will present the current library of 20 + developed CFD tutorials, discuss the idea and benefit of using them, their educational values and explain how the next generation of open-access and live resource of CFD tutorials can be built further hand-in-hand within our community.

  10. Towards a Next Generation Universally Accessible ‘Online Shopping-for-Apparel’ System

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Borum, Nanna; Christiansen, Line Gad


    This paper reports initial research findings from on-going longitudinal participatory design studies within a national (Danish) funded project to realize a gesture-controlled ‘Online shopping-for-apparel’ system – A Virtual Dressing Room (VDR). A product that reduces customer purchase returns......, reportedly up to 40%, which is a huge burden to the clothing industries as shopping percentile of sales online continues to increase, is targeted. Three studies are reported where results cumulate to highlight the need for continued research to realize a next-generation system to improve the user experience...... of online shopping for apparel where conclusions point to the need for adaptive user interface improvements. Unforeseen was that wheelchair-bound public especially responded positively to the potentials for the concept due to their limited mobility in shopping and this accessibility aspect can...

  11. Generation of Hidden Optical-Polarization: Squeezing and Non-Classicality


    Gupta, Gyaneshwar K.; Kumar, Akhilesh; Singh, Ravi S


    A monochromatic double-mode coherent light endowed with orthogonally polarized photons propagating collinearly is studied in Degenerate Parametric Amplification. Generation of Hidden Optical- Polarized States is shown by non-zero values of Index of Hidden Optical-Polarization. Squeezing in HOPS is demonstrated by recognizing a Squeezing function. The Non-Classical feature of HOPS is observed by 'degree of Hidden Optical-Polarization' which attains non-classical value 'greater than unity'. The...

  12. Glass and Process Development for the Next Generation of Optical Fibers: A Review

    Directory of Open Access Journals (Sweden)

    John Ballato


    Full Text Available Applications involving optical fibers have grown considerably in recent years with intense levels of research having been focused on the development of not only new generations of optical fiber materials and designs, but also on new processes for their preparation. In this paper, we review the latest developments in advanced materials for optical fibers ranging from silica, to semi-conductors, to particle-containing glasses, to chalcogenides and also in process-related innovations.

  13. Optical Pulse Generation with Self-Cascaded Electroabsorption Modulator

    Institute of Scientific and Technical Information of China (English)

    WU Jian; QiU Ji-Fang; ZHOU Guang-Tao; XU Kun; LIN Jin-Tong


    A novel scheme for pulse generation with a self-cascaded electroabsorption modulator is presented and experi mentally demonstrated at 10 GHz.In the case of optimal tuning of time delay in the fibre loop,the improvement of 50% on pulsewidth with improved extinction ratio is obtained and the narrowest pulse generated with this method is about 11 ps.

  14. The Design of Passive Optical Networking+Ethernet over Coaxial Cable Access Networking and Video-on-Demand Services Carrying (United States)

    Ji, Wei


    Video on demand is a very attractive service used for entertainment, education, and other purposes. The design of passive optical networking+Ethernet over coaxial cable accessing and a home gateway system is proposed. The network integrates the passive optical networking and Ethernet over coaxial cable to provide high dedicated bandwidth for the metropolitan video-on-demand services. Using digital video broadcasting, IP television protocol, unicasting, and broadcasting mechanisms maximizes the system throughput. The home gateway finishes radio frequency signal receiving and provides three kinds of interfaces for high-definition video, voice, and data, which achieves triple-play and wire/wireless access synchronously.

  15. Optical second harmonic generation induced by picosecond terahertz pulses in centrosymmetric antiferromagnet NiO (United States)

    Ovchinnikov, A. V.; Chefonov, O. V.; Agranat, M. B.; Grishunin, K. A.; Il'in, N. A.; Pisarev, R. V.; Kimel, A. V.; Kalashnikova, A. M.


    Optical second harmonic generation at the photon energy of 2ℏω = 2eV in the model centrosymmetric antiferromagnet NiO irradiated with picosecond terahertz pulses (0.4-2.5 THz) at room temperature is detected. The analysis of experimental results shows that induced optical second harmonic generation at the moment of the impact of a terahertz pulse arises through the electric dipole mechanism of the interaction of the electric field of a pump pulse with the electron subsystem of NiO. Temporal changes in optical second harmonic generation during 7 ps after the action of the pulse are also of an electric dipole origin and are determined by the effects of propagation of the terahertz pulse in a NiO platelet. Coherent oscillations of spins at the antiferromagnetic resonance frequency induced by the magnetic component of the terahertz pulse induce a relatively weak modulation of magnetic dipole optical second harmonic generation.

  16. A Mutual Pulse Injection-Seeding Scheme for Optical Short Pulse Generation

    Institute of Scientific and Technical Information of China (English)

    D.; N.; Wang


    A mutual pulse injection-seeding scheme is developed to produce wavelength tunable optical short pulse generation. The sidemode suppression ratio obtained is more than 31 dB over the wavelength-tuning rang of 18 nm.

  17. Fiber optic sensor solutions for increase of efficiency and availability of electric power generators (United States)

    Willsch, M.; Bosselmann, T.; Villnow, M.


    Multiple fiber optic sensors have been developed for strain, vibration, temperature, magnetic field and air flow measurement in electric power generators. This paper describes the recent state of development and reports about todays field experience.

  18. Optimization of computer-generated holograms for dynamic optical manipulation with uniform structured light spots

    Institute of Scientific and Technical Information of China (English)

    Jing Bu; Guanghui Yuan; Yuyang Sun; Siwei Zhu; Xiaocong Yuan


    An optimized iterative technique combining the merits of conventional Gerchber-Saxton (G-S) and adaptive-additive (A-A) algorithms to design multilevel computer-generated holograms for the creation of a desirable structured intensity pattern for multiple optical manipulation is theoretically adopted. Optical trap arrays are demonstrated with the help of liquid crystal spatial light modulator and a microscopic optical tweezer system. Additionally, continuous locked-in transport and deflection of microparticles with the generated optical lattice is proven experimentally. The proposed method possesses apparent high efficiency, high uniformity, and dynamic and reconfigurable advantages.%@@ An optimized iterative technique combining the merits of conventional Gerchber-Saxton (G-S) and adaptive-additive (A-A) algorithms to design multilevel computer-generated holograms for the creation of a desirable structured intensity pattern for multiple optical manipulation is theoretically adopted.Optical trap arrays are demonstrated with the help of liquid crystal spatial light modulator and a microscopic optical tweezer system.Additionally, continuous locked-in transport and deflection of microparticles with the generated optical lattice is proven experimentally.The proposed method possesses apparent high efficiency, high uniformity, and dynamic and reconfigurable advantages.

  19. Generating saddle points in the merit function landscape of optical systems

    NARCIS (Netherlands)

    Bociort, F.; Van Turnhout, M.


    Finding multiple local minima in the merit function landscape of optical system optimization is a difficult task, especially for complex designs that have a large number of variables. We discuss here a method that enables a rapid generation of new local minima for optical systems of arbitrary comple

  20. Third harmonic generation as a rapid selection tool for organic materials for nonlinear integrated optics devices

    NARCIS (Netherlands)

    Blom, F.C.; Driessen, A.; Hoekstra, Hugo; van Schoot, J.B.P.; van Schoot, Jan B.P.; Popma, T.J.A.


    In the long trajectory from the synthesis of organic nonlinear optical materials to the completed all-optical device it is highly desirable to be able to concentrate already in an early state on only a few promising materials. Third harmonic generation (THG) is a very convenient method as it allows

  1. Gaussian-shaped Optical Frequency Comb Generation for Microwave Photonic Filtering

    CERN Document Server

    Wu, Rui; Hamidi, Ehsan; Supradeepa, V R; Song, Min Hyup; Leaird, Daniel E; Weiner, Andrew M


    Using only electro-optic modulators, we generate a 41-line 10-GHz Gaussian-shaped optical frequency comb. We use this comb to demonstrate apodized microwave photonic filters with greater than 43-dB sidelobe suppression without the need for a pulse shaper.

  2. Third harmonic generation as a rapid selection tool for organic materials for nonlinear integrated optics devices

    NARCIS (Netherlands)

    Blom, Freek C.; Driessen, Alfred; Hoekstra, Hugo J.W.M.; Schoot, van Jan B.P.; Popma, Th.J.A.


    In the long trajectory from the synthesis of organic nonlinear optical materials to the completed all-optical device it is highly desirable to be able to concentrate already in an early state on only a few promising materials. Third harmonic generation (THG) is a very convenient method as it allows

  3. Java-Library for the Access, Storage and Editing of Calibration Metadata of Optical Sensors (United States)

    Firlej, M.; Kresse, W.


    The standardization of the calibration of optical sensors in photogrammetry and remote sensing has been discussed for more than a decade. Projects of the German DGPF and the European EuroSDR led to the abstract International Technical Specification ISO/TS 19159-1:2014 "Calibration and validation of remote sensing imagery sensors and data - Part 1: Optical sensors". This article presents the first software interface for a read- and write-access to all metadata elements standardized in the ISO/TS 19159-1. This interface is based on an xml-schema that was automatically derived by ShapeChange from the UML-model of the Specification. The software interface serves two cases. First, the more than 300 standardized metadata elements are stored individually according to the xml-schema. Secondly, the camera manufacturers are using many administrative data that are not a part of the ISO/TS 19159-1. The new software interface provides a mechanism for input, storage, editing, and output of both types of data. Finally, an output channel towards a usual calibration protocol is provided. The interface is written in Java. The article also addresses observations made when analysing the ISO/TS 19159-1 and compiles a list of proposals for maturing the document, i.e. for an updated version of the Specification.

  4. Optical Code-Division Multiple-Access and Wavelength Division Multiplexing: Hybrid Scheme Review

    Directory of Open Access Journals (Sweden)

    P. Susthitha Menon


    Full Text Available Problem statement: Hybrid Optical Code-Division Multiple-Access (OCDMA and Wavelength-Division Multiplexing (WDM have flourished as successful schemes for expanding the transmission capacity as well as enhancing the security for OCDMA. However, a comprehensive review related to this hybrid system are lacking currently. Approach: The purpose of this paper is to review the literature on OCDMA-WDM overlay systems, including our hybrid approach of one-dimensional coding of SAC OCDMA with WDM signals. In addition, we present an additional review of other categorios of hybrid WDM/OCDMA schemes, where codes of OCDMA can be employed on each WDM wavelength. Furthermore, an essential background of OCDMA, recent coding techniques and security issues are also presented. Results: Our results indicate that the feasibility of transmitting both OCDMA and WDM users on the same spectrum band can be achieved using MQC family code with an acceptable performance as well as good data confidentiality. In addition, the WDM interference signals can be suppressed properly for detection of optical broadband CDMA using notch filters. Conclusion: The paper provides a comprehensive overview of hybrid OCDMA-WDM systems and can be used as a baseline study for other scientists in the similar scope of research.

  5. 160 Gb/s OFDM transmission utilizing an all-optical symbol generator based on PLC (United States)

    Liang, Xiaojun; Qiao, Yaojun; Li, Wei; Mei, Junyao; Qin, Yi


    We demonstrate a 160 Gb/s orthogonal frequency division multiplexing (OFDM) system using an all-optical symbol generator based on planar light circuit (PLC) technology. Excellent bit error rate (BER) is observed after long-distance transmission. The proposed symbol generator fundamentally eliminates the processing speed limits introduced by electronics and is suitable for high integration, making it physically realizable to build high-speed all-optical OFDM systems with a large number of subcarriers.

  6. Optical Systems for the Fourth Generation Light Source, 4GLS

    CERN Document Server

    Quinn, Frances; MacDonald, Mike; Roper, Mark


    4GLS is a multi-user, multi-source facility proposed for construction at Daresbury Laboratory in the UK. By exploiting super-conducting linac technology with energy recovery, it will combine three free electron lasers and a range of conventional synchrotron radiation sources covering the THz to SXR region. The facility will provide femtosecond pulses at high repetition rate, with the FELs delivering GW power in the VUV and XUV region. This paper discusses the options and challenges for the optical systems associated with the suite of photon sources. The beamlines will need to operate both independently and in flexible, synchronised combinations. Together with the requirements for preserving the ultra-bright, fast pulse properties, this places unique demands on the design, layout and operational modes. The paper summarises current technical achievements and identifies the research and development necessary before detailed design of the 4GLS optical systems.

  7. Micro--structured crystalline resonators for optical frequency comb generation

    CERN Document Server

    Grudinin, Ivan S


    Optical frequency combs have recently been demonstrated in micro--resonators through nonlinear Kerr processes. Investigations in the past few years provided better understanding of micro--combs and showed that spectral span and mode locking are governed by cavity spectrum and dispersion. While various cavities provide unique advantages, dispersion engineering has been reported only for planar waveguides. In this Letter, we report a resonator design that combines dispersion control, mode crossing free spectrum, and ultra--high quality factor. We experimentally show that as the dispersion of a MgF2 resonator is flattened, the comb span increases reaching 700 nm with as low as 60 mW pump power at 1560 nm wavelength, corresponding to nearly 2000 lines separated by 46 GHz. The new resonator design may enable efficient low repetition rate coherent octave spanning frequency combs without the need for external broadening, ideal for applications in optical frequency synthesis, metrology, spectroscopy, and communicatio...

  8. Design of a single cylinder optical access to the combustion engine Scania D12

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Juergen


    In this work a maximum optical access to a diesel engine is developed. The combustion-process in the engine should be representative to the one in a standard engine, so the geometry of the combustion chamber is modified as little as possible. A Scania single cylinder, 2-litre engine was subjected to modifications allowing the optical access. Solutions to these problems are obtained by using the method of Product-Development, mainly based on the literature by Prof Dr.-Ing. Birkhofer at the Technical University of Darmstadt, Germany. An optical engine design of the Bowditch type was the chosen main working principle. This engine contains an extended cylinder, partly made of glass, a glass piston-crown and a mirror placed inside the extended piston. The laser sheet is led into the combustion chamber through the glass part of the cylinder, then gets reflected inside the combustion chamber and is led through the glass piston crown and via the mirror out of the engine. A redesign of the valve-train, using extended push-rods, is necessary. The demand to examine the combustion at Top-Dead-Centre (TDC) and the necessity of supporting the glass, give the reasons to do work on the cylinder head. This in return brings sealing problems, which have been solved. Another problem that occurs with that type of engine is that is has to run without oil-lubrication. Piston rings made of Rylon are used to solve this problem. A special feature of the engine that has been constructed here is that the inner surface of the glass may be cleaned without removing the cylinder head. This is obtained by a construction with a movable cylinder. In cleaning-state the cylinder is driven up and down together with the piston, while the head is supported by an outer structure. When running the engine, the cylinder is fixed to the structure. Furthermore this report contains the necessary calculations and integrity assessments on the critical parts of the construction. All calculations, except the

  9. Gigahertz to terahertz tunable all-optical single-side-band microwave generation via semiconductor optical amplifier gain engineering. (United States)

    Li, Fangxin; Helmy, Amr S


    We propose and demonstrate a technique to generate low-noise broadly tunable single-side-band microwaves using cascaded semiconductor optical amplifiers (SOAs) using no RF bias. The proposed technique uses no RF components and is based on polarization-state controlled gain-induced four-wave mixing in SOAs. Microwave generation from 40 to 875 GHz with a line-width ~22 KHz is experimentally demonstrated.

  10. Optical magnetic flux generation in superconductor

    Indian Academy of Sciences (India)

    Masayoshi Tonouchi


    The generation of the magnetic flux quanta inside the superconductors is studied as a new effect to destroy superconductivity using femtosecond (fs) laser. The vortices are successfully generated in the YBa2Cu3O7- thin film striplines by the fs laser. It is revealed that the vortex distribution in the strip reflects the fs laser beam profile.

  11. Suppression of optical beat interference-noise in orthogonal frequency division multiple access-passive optical network link using self-homodyne balanced detection (United States)

    Won, Yong-Yuk; Jung, Sang-Min; Han, Sang-Kook


    A new technique, which reduces optical beat interference (OBI) noise in orthogonal frequency division multiple access-passive optical network (OFDMA-PON) links, is proposed. A self-homodyne balanced detection, which uses a single laser for the optical line terminal (OLT) as well as for the optical network unit (ONU), reduces OBI noise and also improves the signal to noise ratio (SNR) of the discrete multi-tone (DMT) signal. The proposed scheme is verified by transmitting quadrature phase shift keying (QPSK)-modulated DMT signal over a 20-km single mode fiber. The optical signal to noise ratio (OSNR), that is required for BER of 10-5, is reduced by 2 dB in the balanced detection compared with a single channel due to the cancellation of OBI noise in conjunction with the local laser.

  12. Photon pair generation in multimode optical fibers via intermodal phase-matching

    CERN Document Server

    Pourbeyram, Hamed


    We present a detailed study of photon-pair generation in a multimode optical fiber via nonlinear four-wave mixing and intermodal phase-matching. We show that in multimode optical fibers, it is possible to generate correlated photon pairs in different fiber modes with large spectral shifts from the pump wavelength, such that the photon pairs are immune to contamination from spontaneous Raman scattering and residual pump photons. We also show that it is possible to generate factorable two-photon states exhibiting minimal spectral correlations between the photon pair components in conventional multimode fibers using commonly available pump lasers. It is also possible to simultaneously generate multiple factorable states from different FWM processes in the same fiber and over a wide range of visible spectrum by varying the pump wavelength without affecting the factorability of the states. Therefore, photon-pair generation in multimode optical fibers exhibits considerable potential for producing state engineered p...

  13. Lyapunov exponent of chaos generated by acousto-optic modulators with feedback (United States)

    Ghosh, Anjan K.; Verma, Pramode


    Generation of chaos from acousto-optic modulators with an electronic feedback has been studied for several years. Such chaotic signals have an important application in providing secure encryption in free-space optical communication systems. Lyapunov exponent is an important parameter for analysis of chaos generated by a nonlinear system. The Lyapunov exponent of an acousto-optic system is determined and calculated in this paper to understand the dependence of the chaotic response on the system parameters such as bias, feedback gain, input intensity and initial condition exciting the cell. Analysis of chaos using Lyapunov exponent is consistent with bifurcation analysis and is useful in encrypting data signals.

  14. Multipolar third-harmonic generation driven by optically-induced magnetic resonances

    CERN Document Server

    Smirnova, Daria A; Smirnov, Lev A; Kivshar, Yuri S


    We analyze the third-harmonic generation from high-index dielectric nanoparticles and discuss the basic features and multipolar nature of the parametrically generated electromagnetic fields near the Mie-type optical resonances in silicon particles. By combining both analytical and numerical methods, we study the nonlinear scattering from simple nanoparticle geometries such as spheres and disks driven by the magnetic dipole resonance. We reveal the approaches for manipulating and directing the resonantly enhanced nonlinear emission with subwavelength all-dielectric structures that can be of a particular interest for a design of nonlinear optical antennas and engineering the magnetic optical nonlinear response at nanoscale.

  15. Optical pulse shaper with integrated slab waveguide for arbitrary waveform generation using optical gradient force (United States)

    Liao, Sha-Sha; Min, Shu-Cun; Dong, Jian-Ji


    Integrated optical pulse shaper opens up possibilities for realizing the ultra high-speed and ultra wide-band linear signal processing with compact size and low power consumption. We propose a silicon monolithic integrated optical pulse shaper using optical gradient force, which is based on the eight-path finite impulse response. A cantilever structure is fabricated in one arm of the Mach—Zehnder interferometer (MZI) to act as an amplitude modulator. The phase shift feature of waveguide is analyzed with the optical pump power, and five typical waveforms are demonstrated with the manipulation of optical force. Unlike other pulse shaper schemes based on thermo—optic effect or electro—optic effect, our scheme is based on a new degree of freedom manipulation, i.e., optical force, so no microelectrodes are required on the silicon chip, which can reduce the complexity of fabrication. Besides, the chip structure is suitable for commercial silicon on an insulator (SOI) wafer, which has a top silicon layer of about 220 nm in thickness.

  16. Optical Device, System, and Method of Generating High Angular Momentum Beams (United States)

    Savchenkov, Anatoliy A. (Inventor); Matsko, Andrey B. (Inventor); Strekalov, Dmitry V. (Inventor); Grudinin, Ivan S. (Inventor); Maleki, Lute (Inventor)


    An optical device, optical system, and method of generating optical beams having high angular momenta are provided. The optical device includes a whispering gallery mode resonator defining a resonator radius and an elongated wavegWde having a length defined between a first end and a second end of the waveguide. The waveguide defines a waveguide radius which increases at least along a portion of the length of the waveguide in a direction from the first end to the second end. The waveguide radius at the first end of the waveguide is smaller than the resonator radius and the resonator is integrally formed with the first end of the waveguide.

  17. Carrier suppression in quadruple frequency modulation by cascaded optical external modulators for millimeter-wave generation

    Institute of Scientific and Technical Information of China (English)

    Xue Feng; Wei Zhang; Xiaoming Liu


    The optical carrier suppression in optical quadruple frequency modulation by cascaded external modulators is investigated theoretically and experimentally. Theoretical analysis demonstrates that the optical carrier suppression ratio is related with not only the initial phase difference of electrical signals applied on the two modulators, but also the optical phase shift between the two modulators. The maximum suppression ratio can be achieved when the total phase difference is equal to nπ+π/2(n=1,2…),which is verified by experiments. By properly controlling the total phase shift, 40-GHz millimeter-wave is generated by using a 10-GHz radio frequency (RF) source and the modulators.

  18. Generation of frequency-chirped optical pulses with FELIX (United States)

    Knippels, G. M. H.; van der Meer, A. F. G.; Mols, R. F. X. A. M.; Oepts, D.; van Amersfoort, P. W.


    By ramping the energy of the electron beam on a microsecond timescale, a frequency chirp on a picosecond timescale has been induced. The results of such an experiment are discussed as well as the results of an external pulse chirping experiment. Furthermore, the output of FELIX under normal operating conditions is investigated. For the first time a detailed series of measurements of the evolution of the optical micropulse into a train of subpulses is made when FELIX operates in the limit-cycle mode.

  19. Silencing and enhancement of second-harmonic generation in optical gap antennas. (United States)

    Berthelot, Johann; Bachelier, Guillaume; Song, Mingxia; Rai, Padmnabh; Colas des Francs, Gérard; Dereux, Alain; Bouhelier, Alexandre


    Amplifying local electromagnetic fields by engineering optical interactions between individual constituents of an optical antenna is considered fundamental for efficient nonlinear wavelength conversion in nanometer-scale devices. In contrast to this general statement we show that high field enhancement does not necessarily lead to an optimized nonlinear activity. In particular, we demonstrate that second-harmonic responses generated at strongly interacting optical gap antennas can be significantly suppressed. Numerical simulations are confirming silencing of second-harmonic in these coupled systems despite the existence of local field amplification. We then propose a simple approach to restore and amplify the second-harmonic signal by changing the manner in which electrically-connected optical antennas are interacting in the charge-transfer plasmon regime. Our observations provide critical design rules for realizing optimal structures that are essential for a broad variety of nonlinear surface-enhanced characterizations and for realizing the next generation of electrically-driven optical antennas.

  20. Development of a Handheld Line Information Reader and Generator for Efficient Management of Optical Communication Lines. (United States)

    Lee, Jaeyul; Kwon, Hyungwoo; Song, Jaewon; Jeon, Mansik; Kim, Jeehyun


    A handheld line information reader and a line information generator were developed for the efficient management of optical communication lines. The line information reader consists of a photo diode, trans-impedance amplifier, voltage amplifier, microcontroller unit, display panel, and communication modules. The line information generator consists of a laser diode, laser driving circuits, microcontroller unit, and communication modules. The line information reader can detect the optical radiation field of the test line by bending the optical fiber. To enhance the sensitivity of the line information reader, an additional lens was used with a focal length of 4.51 mm. Moreover, the simulation results obtained through BeamPROP(®) software from Synopsys, Inc. demonstrated a stronger optical radiation field of the fiber due to a longer transmission wavelength and larger bending angle of the fiber. Therefore, the developed devices can be considered as useful tools for the efficient management of optical communication lines.

  1. Monitoring applications of power generators for the increase of energy efficiency using novel fiber optical sensors (United States)

    Villnow, Michael; Willsch, Michael; Bosselmann, Thomas; Schmauss, Bernhard


    To verify optimization measures of power generators to improve the energy efficiency and to monitor critical parameters, fiber optical sensors have been developed and investigated. A fiber optical hot wire anemometer based on the thermooptic effect of Fiber Bragg Gratings was investigated to measure the flow distribution along the stator core. Fiber optical magnetic field sensors, based on the strain-optic effect of FBGs, were used to measure the magnetic field distribution on the end windings of a power generator. A novel fiber-optical accelerometer was used to measure the end winding vibrations. In this paper the functionality of each sensor is described and results of field test under real conditions are shown and discussed.

  2. Generation and dynamics of optical beams with polarization singularities

    CERN Document Server

    Cardano, Filippo; Marrucci, Lorenzo; de Lisio, Corrado; Santamato, Enrico


    We present a convenient method to generate vector beams of light having polarization singularities on their axis, via partial spin-to-orbital angular momentum conversion in a suitably patterned liquid crystal cell. The resulting polarization patterns exhibit a C-point on the beam axis and an L-line loop around it, and may have different geometrical structures such as \\qo{lemon}, \\qo{star}, and \\qo{vortex}. Our generation method allows us to control the radius of L-line loop around the central C-point. Moreover, we investigate the free-air propagation of these fields across a Rayleigh range.

  3. Generation and dynamics of optical beams with polarization singularities. (United States)

    Cardano, Filippo; Karimi, Ebrahim; Marrucci, Lorenzo; de Lisio, Corrado; Santamato, Enrico


    We present a convenient method to generate vector beams of light having polarization singularities on their axis, via partial spin-to-orbital angular momentum conversion in a suitably patterned liquid crystal cell. The resulting polarization patterns exhibit a C-point on the beam axis and an L-line loop around it, and may have different geometrical structures such as "lemon", "star", and "spiral". Our generation method allows us to control the radius of L-line loop around the central C-point. Moreover, we investigate the free-air propagation of these fields across a Rayleigh range.

  4. Optical Nyquist pulse generation using a time lens with spectral slicing. (United States)

    Wang, Dong; Huo, Li; Xing, Yanfei; Jiang, Xiangyu; Lou, Caiyun


    Optical Nyquist pulse generation based on a time lens with subsequent optical filtering is proposed. A nearly chirp-free 10-GHz 8.1-ps Nyquist pulse generator is experimentally demonstrated. By inserting group velocity dispersion (GVD) between cascaded phase and amplitude modulators, 11 tones ultraflat optical frequency comb (OFC) of 10-GHz frequency spacing within 0.9 dB power variation is obtained. The quasi-rectangular shape spectrum is then filtered out with a tunable rectangular-shaped optical band-pass filter (OBPF) and the quasi-linear chirp is compensated by a segment of standard single mode fiber (SSMF). By changing the wavelength of the continuous wave (CW) light, nearly chirp-free Nyquist pulses over C band are obtained. Furthermore, simultaneous dual-wavelength pulse generation is also demonstrated.

  5. A full-duplex optical access system with hybrid 64/16/4QAM-OFDM downlink (United States)

    He, Chao; Tan, Ze-fu; Shao, Yu-feng; Cai, Li; Pu, He-sheng; Zhu, Yun-le; Huang, Si-si; Liu, Yu


    A full-duplex optical passive access scheme is proposed and verified by simulation, in which hybrid 64/16/4-quadrature amplitude modulation (64/16/4QAM) orthogonal frequency division multiplexing (OFDM) optical signal is for downstream transmission and non-return-to-zero (NRZ) optical signal is for upstream transmission. In view of the transmitting and receiving process for downlink optical signal, in-phase/quadrature-phase (I/Q) modulation based on Mach-Zehnder modulator (MZM) and homodyne coherent detection technology are employed, respectively. The simulation results show that the bit error ratio ( BER) less than hardware decision forward error correction (HD-FEC) threshold is successfully obtained over transmission path with 20-km-long standard single mode fiber (SSMF) for hybrid downlink modulation OFDM optical signal. In addition, by dividing the system bandwidth into several subchannels consisting of some continuous subcarriers, it is convenient for users to select different channels depending on requirements of communication.

  6. Optical Pumping Experiments on Next Generation Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S J; Fournier, K B; Scott, H; Chung, H K; Lee, R W


    Laser-based plasma spectroscopic techniques have been used with great success to determine the line shapes of atomic transitions in plasmas, study the population kinetics of atomic systems embedded in plasmas, and look at the redistribution of radiation. However, the possibilities for optical lasers end for plasmas with n{sub e}>10{sup 22}cm{sup -3} as light propagation is severely altered by the plasma. The construction of the Tesla Test Facility(TTF) at DESY(Deutsche Elektronen-Synchrotron), a short pulse tunable free electron laser in the vacuum-ultraviolet and soft X-ray regime (VUV FEL), based on the SASE(self amplified spontaneous emission) process, will provide a major advance in the capability for dense plasma-related research. This source will provide 10{sup 13} photons in a 200 fs duration pulse that is tunable from {approx} 6nm to 100nm. Since an VUV FEL will not have the limitation associated with optical lasers the entire field of high density plasmas kinetics in laser produced plasma will then be available to study with tunable source. Thus, one will be able to use this and other FEL x-ray sources to pump individual transitions creating enhanced population in the excited states that can easily be monitored. We show two case studies illuminating different aspects of plasma spectroscopy.

  7. On the Design of Energy Efficient Optical Networks with Software Defined Networking Control Across Core and Access Networks

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Yan, Ying; Dittmann, Lars


    This paper presents a Software Defined Networking (SDN) control plane based on an overlay GMPLS control model. The SDN control platform manages optical core networks (WDM/DWDM networks) and the associated access networks (GPON networks), which makes it possible to gather global information...

  8. On the Design of Energy Efficient Optical Networks with Software Defined Networking Control Across Core and Access Networks

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Yan, Ying; Dittmann, Lars


    This paper presents a Software Defined Networking (SDN) control plane based on an overlay GMPLS control model. The SDN control platform manages optical core networks (WDM/DWDM networks) and the associated access networks (GPON networks), which makes it possible to gather global information...

  9. Load-Aware Radio Access Selection in Future Generation Satellite-Terrestrial Wireless Networks

    Directory of Open Access Journals (Sweden)

    M. Ali


    Full Text Available In the telecommunication networks the introduction of Next Generation Wireless Networks (NGWN has been described as the most significant change in wireless communication. The convergence of different access networks in NGWN allows generalized mobility, consistency and ubiquitous provision of services to mobile users. The general target of NGWN is to transport different types of information like voice,data, and other media like video in packets form like IP. The NGWNs offer significant savings in costs to the operators along with new and interesting services to the consumers. Major challenges in NGWN are efficient resource utilization, maintaining service quality, reliability and the security. This paper proposes a solution for seamless load aware Radio Access Technology (RAT selection based on interworking of different RATs in NGWN. In this paper novel load balancing algorithms have been proposed which have been simulated on the target network architecture for TCP data services. The IEEE 802.21 Media Independent Handover (MIH is utilized in load balancing specifically for mobility management, which enable low handover latency by reducing the target network detection time. The proposed method considers the network type, signal strength, data rate and network load as primary decision parameters for RAT selection process and consists of two different algorithms, one located inthe mobile terminal and the other at the network side. The network architecture, the proposed load balancing framework and RAT selection algorithms were simulated using NS2. Different attributes like load distribution in the wireless networks and average throughput to evaluate the effects of load balancing in considered scenarios.

  10. Computer Generated Optical Illusions: A Teaching and Research Tool. (United States)

    Bailey, Bruce; Harman, Wade

    Interactive computer-generated simulations that highlight psychological principles were investigated in this study in which 33 female and 19 male undergraduate college student volunteers of median age 21 matched line and circle sizes in six variations of Ponzo's illusion. Prior to working with the illusions, data were collected based on subjects'…

  11. Spin voltage generation through optical excitation of complementary spin populations (United States)

    Bottegoni, Federico; Celebrano, Michele; Bollani, Monica; Biagioni, Paolo; Isella, Giovanni; Ciccacci, Franco; Finazzi, Marco


    By exploiting the spin degree of freedom of carriers inside electronic devices, spintronics has a huge potential for quantum computation and dissipationless interconnects. Pure spin currents in spintronic devices should be driven by a spin voltage generator, able to drive the spin distribution out of equilibrium without inducing charge currents. Ideally, such a generator should operate at room temperature, be highly integrable with existing semiconductor technology, and not interfere with other spintronic building blocks that make use of ferromagnetic materials. Here we demonstrate a device that matches these requirements by realizing the spintronic equivalent of a photovoltaic generator. Whereas a photovoltaic generator spatially separates photoexcited electrons and holes, our device exploits circularly polarized light to produce two spatially well-defined electron populations with opposite in-plane spin projections. This is achieved by modulating the phase and amplitude of the light wavefronts entering a semiconductor (germanium) with a patterned metal overlayer (platinum). The resulting light diffraction pattern features a spatially modulated chirality inside the semiconductor, which locally excites spin-polarized electrons thanks to electric dipole selection rules.

  12. Optical Generation of Single- or Two-Mode Excited Entangled Coherent States

    Institute of Scientific and Technical Information of China (English)

    REN Zhen-Zhong; JING Hui; ZHANG Xian-Zhou


    With nonlinear Mach-Zehnder interferometer (NLMZI) and a type-Ⅰ beta-barium borate (BBO) crystal, we optically generate single-mode excited entangled coherent states. This scheme can be easily generalized to generate two-mode excited entangled coherent states. We simply analyse different influences of single- and two-mode photon excitations on entangled coherent states.

  13. All-optical random number generation using highly nonlinear fibers by numerical simulation (United States)

    Wang, Juanfen; Liang, Junqiang; Li, Pu; Yang, Lingzhen; Wang, Yuncai


    A new scheme of all-optical random number generation based on the nonlinear effects in highly nonlinear fibers (HNLF) is proposed. The scheme is comprised of ultra-wide band chaotic entropy source, all-optical sampler, all-optical comparator and all-optical exclusive-or (XOR), which are mainly realized by four-wave mixing (FWM) and cross-phase modulation (XPM) in highly nonlinear fibers. And we achieve 10 Gbit/s random numbers through numerically simulating all the processes. The entire operations are completed in the all-optical domain, which may overcome the bottleneck problem of electronic devices, and apply directly in high-speed all-optical communication network.

  14. Terahertz generation by optical rectification in uniaxial birefringent crystals (United States)

    Rowley, J. D.; Wahlstrand, J. K.; Zawilski, K. T.; Schunemann, P. G.; Giles, N. C.; Bristow, A. D.


    The angular dependence of terahertz (THz) emission from birefringent crystals can differ significantly from that of cubic crystals. Here we consider optical rectification in uniaxial birefringent materials, such as chalcopyrite crystals. The analysis is verified in (110)-cut ZnGeP_2 and compared to (zincblende) GaP. Although the crystals share the same nonzero second-order tensor elements, the birefringence in chalcopyrite crystals cause the pump pulse polarization to evolve as it propagates through the crystal, resulting in a drastically different angular dependence in chalcopyrite crystals. The analysis is extended to {012}- and {114}-cut chalcopyrite crystals and predicts more efficient conversion for the {114} crystal cut over the {012}- and {110}-cuts.

  15. Optical transponder DC probe [for pulsed power generator

    CERN Document Server

    Thompson, M C


    The Atlas Pulse Power, Marx Bank will produce significant electromagnetic interference potential (EMI) via its 192 spark-gaps and trigger systems (36 more spark gaps). The authors have a need to measure DC charge components to a fair degree of accuracy during charge to ensure a safe and balanced system. Isolation from elevated- deck and/or high EMI environments during DC voltage or current measurement has classically been approached using frequency modulation (FM) of an imposed carrier on an optical fiber coupled system. There are shortcomings in most systems that can generally be compensated for by various means. In their application of remote sensing, the power to run this remote probe was a central issue. As such the authors took another approach to monitor the DC charge record for the Atlas' Marx banks. (0 refs).

  16. Detection, Evaluation, and Optimization of Optical Signals Generated by Fiber Optic Bragg Gratings Under Dynamic Excitations (United States)

    Adamovsky, Grigory; Lekki, John; Lock, James A.


    The dynamic response of a fiber optic Bragg grating to mechanical vibrations is examined both theoretically and experimentally. The theoretical expressions describing the consequences of changes in the grating's reflection spectrum are derived for partially coherent beams in an interferometer. The analysis is given in terms of the dominant wavelength, optical bandwidth, and optical path difference of the interfering signals. Changes in the reflection spectrum caused by a periodic stretching and compression of the grating were experimentally measured using an unbalanced Michelson interferometer, a Michelson interferometer with a non-zero optical path difference. The interferometer's sensitivity to changes in dominant wavelength of the interfering beams was measured as a function of interferometer unbalance and was compared to theoretical predictions. The theoretical analysis enables the user to determine the optimum performance for an unbalanced interferometer.

  17. Characteristics and stability of soliton crystals in optical fibres for the purpose of optical frequency comb generation (United States)

    Zajnulina, M.; Böhm, M.; Bodenmüller, D.; Blow, K.; Boggio, J. M. Chavez; Rieznik, A. A.; Roth, M. M.


    We study the properties of a soliton crystal, a bound state of several optical pulses that propagate with a fixed temporal separation through the optical fibres of the proposed approach for generation of optical frequency combs (OFC) for astronomical spectrograph calibration. This approach - also being suitable for subpicosecond pulse generation for other applications - consists of a conventional single-mode fibre and a suitably pumped Erbium-doped fibre. Two continuous-wave lasers are used as light source. The soliton crystal arises out of the initial deeply modulated laser field at low input powers; for higher input powers, it dissolves into free solitons. We study the soliton crystal build-up in the first fibre stage with respect to different fibre parameters (group-velocity dispersion, nonlinearity, and optical losses) and to the light source characteristics (laser frequency separation and intensity difference). We show that the soliton crystal can be described by two quantities, its fundamental frequency and the laser power-threshold at which the crystal dissolves into free solitons. The soliton crystal exhibits features of a linear and nonlinear optical pattern at the same time and is insensitive to the initial laser power fluctuations. We perform our studies using the numerical technique called Soliton Radiation Beat Analysis.

  18. Optical frequency combs generated by four-wave mixing in a dual wavelength Brillouin laser cavity

    Directory of Open Access Journals (Sweden)

    Qing Li


    Full Text Available We propose and demonstrate the generation of optical frequency combs via four-wave mixing in a dual wavelength Brillouin laser cavity. When pumped by two continuous-wave lasers with a varied frequency separation, dual wavelength Brillouin lasers with reduced linewidth and improved optical signal to noise ratios are generated in a direction opposite to the pump laser. Simultaneously, cavity-enhanced cascaded four-wave mixing between dual wavelength Brillouin lasers occurs in the laser cavity, causing the generation of broadband optical frequency combs with step tunable mode spacing from 40 to 1300 GHz. Compared to the cavity-less case, the number of the comb lines generated in the dual wavelength Brillouin laser cavity is increased by ∼38 times.

  19. Dynamical mean field theory of optical third harmonic generation


    Jafari, S. A.; Tohyama, T.; Maekawa, S.


    We formulate the third harmonic generation (THG) within the dynamical mean field theory (DMFT) approximation of the Hubbard model. In the limit of large dimensions, where DMFT becomes exact, the vertex corrections to current vertices are identically zero, and hence the calculation of the THG spectrum reduces to a time-ordered convolution, followd by appropriate analytic continuuation. We present the typical THG spectrum of the Hubbard model obtained by this method. Within our DMFT calculation...

  20. Evaluation of the optical axis tilt of Zinc oxide films via noncollinear second harmonic generation

    CERN Document Server

    Bovino, Fabio Antonio; Belardini, Alessandro; Sibilia, Concita


    We investigated noncollinear second harmonic generation form Zinc oxide films, grown on glass substrates by dual ion beam sputtering technique. At a fixed incidence angle, the generated signal is investigated by scanning the polarization state of both fundamental beams. We show that the map of the generated signal as a function of polarization states of both pump beams, together with the analytical curves, allows to retrieve the orientation of the optical axis and, eventually, its angular tilt, with respect to the surface normal

  1. Inspiring the Next Generation through Real Time Access to Ocean Exploration (United States)

    Bell, K. L.; Ballard, R. D.; Witten, A. B.; O'Neal, A.; Argenta, J.


    Using live-access exposure to actual shipboard research activities where exciting discoveries are made can be a key contributor to engaging students and their families in learning about earth science and STEM subjects. The number of bachelor's degrees awarded annually in the Earth sciences peaked at nearly 8000 in 1984, and has since declined more than 50%; for the last several years, the number of bachelor's degrees issued in U.S. schools in the geosciences has hovered around 2500 (AGI, 2009). In 2008, the last year for which the data are published, only 533 Ph.D.s were awarded in Earth, Atmospheric and Ocean sciences (NSF, 2009). By 2030, the supply of geoscientists for the petroleum industry is expected to fall short of the demand by 30,000 scientists (AGI, 2009). The National Science Foundation (NSF) reports that minority students earn approximately 15% of all bachelor's degrees in science and engineering, but only 4.6% of degrees in the geosciences. Both of these percentages are very low in comparison to national and state populations, where Hispanics and African-Americans make up 29% of the U.S. overall. The Ocean Exploration Trust (OET) is a non-profit organization whose mission is to explore the world's ocean, and to capture the excitement of that exploration for audiences of all ages, but primarily to inspire and motivate the next generation of explorers. The flagship of OET's exploratory programs is the Exploration Vessel Nautilus, on which annual expeditions are carried out to support our mission. The ship is equipped with state of the art satellite telecommunications "telepresence" technology that enables 24/7 world-wide real time access to the data being collected by the ships remotely operated vehicles. It is this "live" access that affords OET and its partners the opportunity to engage and inspire audiences across the United States and abroad. OET has formed partnerships with a wide-range of educational organizations that collectively offer life

  2. Food Safety in the Age of Next Generation Sequencing, Bioinformatics, and Open Data Access. (United States)

    Taboada, Eduardo N; Graham, Morag R; Carriço, João A; Van Domselaar, Gary


    Public health labs and food regulatory agencies globally are embracing whole genome sequencing (WGS) as a revolutionary new method that is positioned to replace numerous existing diagnostic and microbial typing technologies with a single new target: the microbial draft genome. The ability to cheaply generate large amounts of microbial genome sequence data, combined with emerging policies of food regulatory and public health institutions making their microbial sequences increasingly available and public, has served to open up the field to the general scientific community. This open data access policy shift has resulted in a proliferation of data being deposited into sequence repositories and of novel bioinformatics software designed to analyze these vast datasets. There also has been a more recent drive for improved data sharing to achieve more effective global surveillance, public health and food safety. Such developments have heightened the need for enhanced analytical systems in order to process and interpret this new type of data in a timely fashion. In this review we outline the emergence of genomics, bioinformatics and open data in the context of food safety. We also survey major efforts to translate genomics and bioinformatics technologies out of the research lab and into routine use in modern food safety labs. We conclude by discussing the challenges and opportunities that remain, including those expected to play a major role in the future of food safety science.

  3. Food Safety in the Age of Next Generation Sequencing, Bioinformatics, and Open Data Access

    Directory of Open Access Journals (Sweden)

    Eduardo N. Taboada


    Full Text Available Public health labs and food regulatory agencies globally are embracing whole genome sequencing (WGS as a revolutionary new method that is positioned to replace numerous existing diagnostic and microbial typing technologies with a single new target: the microbial draft genome. The ability to cheaply generate large amounts of microbial genome sequence data, combined with emerging policies of food regulatory and public health institutions making their microbial sequences increasingly available and public, has served to open up the field to the general scientific community. This open data access policy shift has resulted in a proliferation of data being deposited into sequence repositories and of novel bioinformatics software designed to analyze these vast datasets. There also has been a more recent drive for improved data sharing to achieve more effective global surveillance, public health and food safety. Such developments have heightened the need for enhanced analytical systems in order to process and interpret this new type of data in a timely fashion. In this review we outline the emergence of genomics, bioinformatics and open data in the context of food safety. We also survey major efforts to translate genomics and bioinformatics technologies out of the research lab and into routine use in modern food safety labs. We conclude by discussing the challenges and opportunities that remain, including those expected to play a major role in the future of food safety science.

  4. Development of adjustable grazing incidence optics for Generation-X (United States)

    Reid, Paul B.; Murray, Stephen S.; Trolier-McKinstry, Susan; Freeman, Mark; Juda, Michael; Podgorski, William; Ramsey, Brian; Schwartz, Daniel


    For X-ray astronomy, 0.1 arc-second imaging resolution will result in a significant advance in our understanding of the Universe. Similarly, the advent of low cost high performance X-ray mirrors will also increase the likelihood of more X-ray telescopes being funded and built. We discuss the development plans of two different types of adjustable grazing incidence optics: one being a tenth arc-second resolution bimorph mirror approach also suitable for extremely large collecting areas, and the second being a few arc-second radially adjustable mirror approach more suitable for modest sized telescopes. Bimorph mirrors will be developed using thin (0.1 - 0.4 mm) thermally formed glass or electroplated metal mirror segments with thin film piezo-electric actuators deposited directly on the mirror back surface. Mirror figure will be adjusted on-orbit. Radially adjustable mirrors will employ discreet radially electrostrictive actuators for mirror alignment and low spatial error frequency figure correction during assembly and alignment. In this paper we report on. In this paper we describe mirror design and our development plans for both mirror concepts.

  5. Band-gap nonlinear optical generation: The structure of internal optical field and the structural light focusing

    Energy Technology Data Exchange (ETDEWEB)

    Zaytsev, Kirill I., E-mail:; Katyba, Gleb M.; Yakovlev, Egor V.; Yurchenko, Stanislav O., E-mail: [Bauman Moscow State Technical University, 2nd Baumanskaya str. 5, Moscow 105005 (Russian Federation); Gorelik, Vladimir S. [P. N. Lebedev Physics Institute of the Russian Academy of Sciences, Leninskiy Prospekt 53, Moscow 119991 (Russian Federation)


    A novel approach for the enhancement of nonlinear optical effects inside globular photonic crystals (PCs) is proposed and systematically studied via numerical simulations. The enhanced optical harmonic generation is associated with two- and three-dimensional PC pumping with the wavelength corresponding to different PC band-gaps. The interactions between light and the PC are numerically simulated using the finite-difference time-domain technique for solving the Maxwell's equations. Both empty and infiltrated two-dimensional PC structures are considered. A significant enhancement of harmonic generation is predicted owing to the highly efficient PC pumping based on the structural light focusing effect inside the PC structure. It is shown that a highly efficient harmonic generation could be attained for both the empty and infiltrated two- and three-dimensional PCs. We are demonstrating the ability for two times enhancement of the parametric decay efficiency, one order enhancement of the second harmonic generation, and two order enhancement of the third harmonic generation in PC structures in comparison to the nonlinear generations in appropriate homogenous media. Obviously, the nonlinear processes should be allowed by the molecular symmetry. The criteria of the nonlinear process efficiency are specified and calculated as a function of pumping wavelength position towards the PC globule diameter. Obtained criterion curves exhibit oscillating characteristics, which indicates that the highly efficient generation corresponds to the various PC band-gap pumping. The highest efficiency of nonlinear conversions could be reached for PC pumping with femtosecond optical pulses; thus, the local peak intensity would be maximized. Possible applications of the observed phenomenon are also discussed.

  6. High speed all optical Nyquist signal generation and full-band coherent detection. (United States)

    Zhang, Junwen; Yu, Jianjun; Fang, Yuan; Chi, Nan


    Spectrum efficient data transmission is of key interest for high capacity optical communication systems considering the limited available bandwidth. Transmission of the high speed signal with higher-order modulation formats within the Nyquist bandwidth using coherent detection brings attractive performance advantages. However, high speed Nyquist signal generation with high order modulation formats is challenging. Electrical Nyquist pulse generation is restricted by the limited sampling rate and processor capacities of digital-to-analog convertor devices, while the optical Nyquist signals can provide a much higher symbol rate using time domain multiplexing method. However, most optical Nyquist signals are based on direct detection with simple modulation formats. Here we report the first experimental demonstration of high speed all optical Nyquist signal generation based on Sinc-shaped pulse generation and time-division multiplexing with high level modulation format and full-band coherent detection. Our experiments demonstrate a highly flexible and compatible all optical high speed Nyquist signal generation and detection scheme for future fiber communication systems.

  7. Access to long-term optical memories using photon echoes retrieved from electron spins in semiconductor quantum wells (United States)

    Poltavtsev, S. V.; Langer, L.; Yugova, I. A.; Salewski, M.; Kapitonov, Y. V.; Yakovlev, D. R.; Karczewski, G.; Wojtowicz, T.; Akimov, I. A.; Bayer, M.


    We use spontaneous (two-pulse) and stimulated (three-pulse) photon echoes for studying the coherent evolution of optically excited ensemble of trions which are localized in semiconductor CdTe/CdMgTe quantum well. Application of transverse magnetic field leads to the Larmor precession of the resident electron spins, which shuffles optically induced polarization between optically accessible and inaccessible states. This results in several spectacular phenomena. First, magnetic field induces oscillations of spontaneous photon echo amplitude. Second, in three-pulse excitation scheme, the photon echo decay is extended by several orders of magnitude. In this study, short-lived optical excitation which is created by the first pulse is coherently transferred into a long-lived electron spin state using the second optical pulse. This coherent spin state of electron ensemble persists much longer than any optical excitation in the system, preserving information on initial optical field, which can be retrieved as a photon echo by means of third optical pulse.

  8. Generation of high-energy self-phase-stabilized pulses by difference-frequency generation followed by optical parametric amplification. (United States)

    Manzoni, C; Vozzi, C; Benedetti, E; Sansone, G; Stagira, S; Svelto, O; De Silvestri, S; Nisoli, M; Cerullo, G


    We produce ultrabroadband self-phase-stabilized near-IR pulses by a novel approach where a seed pulse, obtained by difference-frequency generation of a hollow-fiber broadened supercontinuum, is amplified by a two-stage optical parametric amplifier. Energies up to 20 microJ with a pulse spectrum extending from 1.2 to 1.6 microm are demonstrated, and a route for substantial energy scaling is indicated.

  9. Optical amplification and pulse interleaving for low noise photonic microwave generation

    CERN Document Server

    Quinlan, Franklyn; Fortier, Tara M; Zhou, Qiugui; Cross, Allen; Campbell, Joe C; Diddams, Scott A


    We investigate the impact of pulse interleaving and optical amplification on the spectral purity of microwave signals generated by photodetecting the pulsed output of an Er:fiber-based optical frequency comb. It is shown that the microwave phase noise floor can be extremely sensitive to delay length errors in the interleaver, and the contribution of the quantum noise from optical amplification to the phase noise can be reduced ~10 dB for short pulse detection. We exploit optical amplification, in conjunction with high power handling modified uni-traveling carrier photodetectors, to generate a phase noise floor on a 10 GHz carrier of -175 dBc/Hz, the lowest ever demonstrated in the photodetection of a mode-locked fiber laser. At all offset frequencies, the photodetected 10 GHz phase noise performance is comparable to or better than the lowest phase noise results yet demonstrated with stabilized Ti:sapphire frequency combs.

  10. Three-dimensional analysis of optical forces generated by an active tractor beam using radial polarization. (United States)

    Carretero, Luis; Acebal, Pablo; Blaya, Salvador


    We theoretically study the three-dimensional behavior of nanoparticles in an active optical conveyor. To do this, we solved the Langevin equation when the forces are generated by a focusing system at the near field. Analytical expressions for the optical forces generated by the optical conveyor were obtained by solving the Richards and Wolf vectorial diffraction integrals in an approximated form when a mask of two annular pupils is illuminated by a radially polarized Hermite-Gauss beam. Trajectories, in both the transverse plane and the longitudinal direction, are analyzed showing that the behavior of the optical conveyor can be optimized by conveniently choosing the configuration of the mask of the two annular pupils (inner and outer radius of the two rings) in order to trap and transport all particles at the focal plane.

  11. Limitations to THz generation by optical rectification using tilted pulse fronts

    CERN Document Server

    Ravi, Koustuban; Carbajo, Sergio; Wu, Xiaojun; Kartner, Franz


    Terahertz (THz) generation by optical rectification (OR) using tilted pulse fronts is studied. We show that the back-action of THz on the optical pulse causes the large experimentally observed cascaded frequency down shift and spectral broadening of the optical pump pulse. In the presence of this large spectral broadening, group velocity dispersion due to angular dispersion enhances phase mismatch and is shown to be the strongest limitation to terahertz generation in lithium niobate. It is seen that the exclusion of THz back-action in modeling OR, leads to a significant overestimation of optical to THz conversion efficiencies. 1-D and 2-D spatial models which for the first time simultaneously include terahertz back-action, angular and material dispersion, absorption, self-phase modulation and stimulated Raman scattering are developed to study the process. The simulation results are supported by experiments.

  12. MEGARA: a new generation optical spectrograph for GTC (United States)

    Gil de Paz, A.; Gallego, J.; Carrasco, E.; Iglesias-Páramo, J.; Cedazo, R.; Vílchez, J. M.; García-Vargas, M. L.; Arrillaga, X.; Carrera, M. A.; Castillo-Morales, A.; Castillo-Domínguez, E.; Eliche-Moral, M. C.; Ferrusca, D.; González-Guardia, E.; Lefort, B.; Maldonado, M.; Marino, R. A.; Martínez-Delgado, I.; Morales Durán, I.; Mujica, E.; Páez, G.; Pascual, S.; Pérez-Calpena, A.; Sánchez-Penim, A.; Sánchez-Blanco, E.; Tulloch, S.; Velázquez, M.; Zamorano, J.; Aguerri, A. L.; Barrado y Naváscues, D.; Bertone, E.; Cardiel, N.; Cava, A.; Cenarro, J.; Chávez, M.; García, M.; Guichard, J.; Gúzman, R.; Herrero, A.; Huélamo, N.; Hughes, D.; Jiménez-Vicente, J.; Kehrig, C.; Márquez, I.; Masegosa, J.; Mayya, Y. D.; Méndez-Abreu, J.; Mollá, M.; Muñoz-Tuñón, C.; Peimbert, M.; Pérez-González, P. G.; Pérez Montero, E.; Rodríguez, M.; Rodríguez-Espinosa, J. M.; Rodríguez-Merino, L.; Rosa-González, D.; Sánchez-Almeida, J.; Sánchez Contreras, C.; Sánchez-Blázquez, P.; Sánchez Moreno, F. M.; Sánchez, S. F.; Sarajedini, A.; Serena, F.; Silich, S.; Simón-Díaz, S.; Tenorio-Tagle, G.; Terlevich, E.; Terlevich, R.; Torres-Peimbert, S.; Trujillo, I.; Tsamis, Y.; Vega, O.; Villar, V.


    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is an optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) designed for the GTC 10.4m telescope in La Palma. MEGARA offers two IFU fiber bundles, one covering 12.5x11.3 arcsec2 with a spaxel size of 0.62 arcsec (Large Compact Bundle; LCB) and another one covering 8.5x6.7 arcsec2 with a spaxel size of 0.42 arcsec (Small Compact Bundle; SCB). The MEGARA MOS mode will allow observing up to 100 objects in a region of 3.5x3.5 arcmin2 around the two IFU bundles. Both the LCB IFU and MOS capabilities of MEGARA will provide intermediate-to-high spectral resolutions (RFWHM~6,000, 12,000 and 18,700, respectively for the low-, mid- and high-resolution Volume Phase Holographic gratings) in the range 3650-9700ÅÅ. These values become RFWHM~7,000, 13,500, and 21,500 when the SCB is used. A mechanism placed at the pseudo-slit position allows exchanging the three observing modes and also acts as focusing mechanism. The spectrograph is a collimator-camera system that has a total of 11 VPHs simultaneously available (out of the 18 VPHs designed and being built) that are placed in the pupil by means of a wheel and an insertion mechanism. The custom-made cryostat hosts an E2V231-84 4kx4k CCD. The UCM (Spain) leads the MEGARA Consortium that also includes INAOE (Mexico), IAA-CSIC (Spain), and UPM (Spain). MEGARA is being developed under a contract between GRANTECAN and UCM. The detailed design, construction and AIV phases are now funded and the instrument should be delivered to GTC before the end of 2016.

  13. Optical studies of shock generated transient supersonic base flows (United States)

    Liang, P.-Y.; Bershader, D.; Wray, A.


    A shock tube employing interferometric and schlieren techniques is used to study transient base flow phenomena following shock wave passage over two plane bluff bodies: a hemicircular cylinder and a cylinder with the Galileo Jovian probe profile. An attempt is made to understand the physics of transition from transient to steady state flow, and to provide code verification for a study employing the Illiac IV computer. Transient base flow interactions include a series of shock diffraction, regular, and Mach reflections, coupled with boundary layer development, separation, and recompression. Vorticity generation and transport underlie these features. The quantitative verification of the computer code includes comparisons of transient pressure and density fields, near wake geometries, and bow shock standoff distances.

  14. A new generation active arrays for optical flexibility in astronomical instrumentation (United States)

    Kroes, G.; Jaskó, A.; Pragt, J. H.; Venema, L.; De Haan, M.


    Throughout the history of telescopes and astronomical instrumentation, new ways were found to open up unexplored possibilities in fundamental astronomical research by increasing the telescope size and instrumentation complexity. The ever demanding requirements on instrument performance pushes instrument complexity to the edge. In order to take the next leap forward in instrument development the optical design freedom needs to be increased drastically. The use of more complex and more accurate optics allows for shorter optical trains with smaller sizes, smaller number of components and reduced fabrication and alignment verification time and costs. Current optics fabrication is limited in surface form complexity and/or accuracy. Traditional active and adaptive optics lack the needed intrinsic long term stability and simplicity in design, manufacturing, verification and control. This paper explains how and why active arrays literally provide a flexible but stable basis for the next generation optical instruments. Combing active arrays with optically high quality face sheets more complex and accurate optical surface forms can be provided including extreme a-spherical (freeform) surfaces and thus allow for optical train optimization and even instrument reconfiguration. A zero based design strategy is adopted for the development of the active arrays addressing fundamental issues in opto-mechanical engineering. The various choices are investigated by prototypes and Finite Element Analysis. Finally an engineering concept will be presented following a highly stable adjustment strategy allowing simple verification and control. The Optimization metrology is described in an additional paper for this conference by T. Agócs et al.

  15. All-optical pulse data generation in a semiconductor optical amplifier gain controlled by a reshaped optical clock injection (United States)

    Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh


    Wavelength-maintained all-optical pulse data pattern transformation based on a modified cross-gain-modulation architecture in a strongly gain-depleted semiconductor optical amplifier (SOA) is investigated. Under a backward dark-optical-comb injection with 70% duty-cycle reshaping from the received data clock at 10GHz, the incoming optical data stream is transformed into a pulse data stream with duty cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. The high-pass filtering effect of the gain-saturated SOA greatly improves the extinction ratio of data stream by 8dB and reduces its bit error rate to 10-12 at -18dBm.

  16. Studies of surfaces using optical second-harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Tom, H.W.K.


    The experiments reported in this thesis demonstrate the use of second-harmonic generation (SHG) and sum-frequency generation (SFG) in reflection from surfaces to study various surface properties. The experiments firmly establish SHG as a viable new surface probe that complements existing surface probes in ultrahigh vacuum environments and is in many ways unique for studying interfaces between dense media. Surface structural symmetry can be revealed through the anisotropy in the SH signal from the surface as the sample is rotated about its normal. The form of this anisotropy is derived in theory and verified with an experiment on the Si(100) and (111) surfaces. The SHG and SFG signals from molecules adsorbed on noninteracting substrates have a direct relationship to the number, average orientation, and spectroscopic properties of the molecules. The SH intensity was used to measure the isotherm for adsorption of p-nitrobenzoic acid from ethanolic solution to fused silica. Experiments performed on a strongly-interacting well-characterized Rh(111) surface in ultrahigh vacuum establish the sensitivity of the SH probe in corroboration with other surface probes. For the first time, the SH coverage-dependence was fit by theory in a quantitative way for the case of O-atom adsorption. The sensitivity of SH to adsorption at different sites was established for CO on top- and bridge-sites. SHG was shown to be surface specific in that the SHG from alkali metal surfaces originates from the first two monolayers. SH sensitivity to the adsorption of catalytically-important hydrocarbons and to chemical processes such as benzene dehydrogenation was also demonstrated. 122 references, 27 figures, 2 tables.

  17. Efficient Scheme for the Generation of Atomic Schroedinger Cat States in an Optical Cavity

    Institute of Scientific and Technical Information of China (English)

    ZHENGShi-Biao; LINLi-Hua; JIANGYun-Kun


    An efficient scheme is proposed for the generation of atomic Schroedinger cat states in an optical cavity. In the scheme N three-level atoms are loaded in the optical cavity. Raman coupling of two ground states is achieved via a laser tield and the cavity mode. The cavity mode is always in the vacuum state and the atoms have no probability of being populated in the excited state. Thus, the scheme is insensitive to both the cavity decay and spontaneous emission.

  18. Efficient Scheme for the Generation of Atomic Schrodinger Cat States in an Optical Cavity

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shi-Biao; LIN Li-Hua; JIANG Yun-Kun


    An efficient scheme is proposed for the generation of atomic Schrodinger cat states in an optical cavity. Inthe scheme N three-level atoms are loaded in the optical cavity. Raman coupling of two ground states is achieved via alaser field and the cavity mode. The cavity mode is always in the vacuum state and the atoms have no probability ofbeing populated in the excited state. Thus, the scheme is insensitive to both the cavity decay and spontaneous emission.

  19. Second-Harmonic Generation in Optical Fibres Induced by a Cross-Phase Modulation Effect

    Institute of Scientific and Technical Information of China (English)

    CUI Wei-Na; HUANG Guo-Xiang


    @@ When two optical pulses copropagate inside a single-modefibre, intensity-dependent refractive index couples the pulses through a cross-phase modulation (XPM). We show that a second-harmonic generation (SHG) on a continuous-wave background is possible in the optical fibre induced by the XPM effect. By means of a multiscale method the nonlinearly coupled envelope equations for the SHG are derived and their explicit solutions are provided and discussed.

  20. Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium. (United States)

    Butet, Jérémy; Duboisset, Julien; Bachelier, Guillaume; Russier-Antoine, Isabelle; Benichou, Emmanuel; Jonin, Christian; Brevet, Pierre-François


    We report the optical second harmonic generation from individual 150 nm diameter gold nanoparticles dispersed in gelatin. The quadratic hyperpolarizability of the particles is determined and the input polarization dependence of the second harmonic intensity obtained. These results are found in excellent agreement with ensemble measurements and finite element simulations. These results open up new perspectives for the investigation of the nonlinear optical properties of noble metal nanoparticles.

  1. Experimental study on optical image encryption with asymmetric double random phase and computer-generated hologram. (United States)

    Xi, Sixing; Wang, Xiaolei; Song, Lipei; Zhu, Zhuqing; Zhu, Bowen; Huang, Shuai; Yu, Nana; Wang, Huaying


    Optical image encryption, especially double-random-phase-based, is of great interest in information security. In this work, we experimentally demonstrate the security and feasibility of optical image encryption with asymmetric double random phase and computer-generated hologram (CGH) by using spatial light modulator. First of all, the encrypted image modulated by asymmetric double random phase is numerically encoded into real-value CGH. Then, the encoded real-value CGH is loaded on the spatial light modulator and optically decrypted in self-designed experimental system. Experimental decryption results are in agreement with numerical calculations under the prober/mistaken phase keys condition. This optical decryption technology opens a window of optical encryption practical application and shows great potential for digital multimedia product copyright protection and holographic false trademark.

  2. MEMS acceleration sensor with remote optical readout for continuous power generator monitoring

    Directory of Open Access Journals (Sweden)

    Tormen Maurizio


    Full Text Available Miniaturized accelerometers with remote optical readout are required devices for the continuous monitoring of vibrations inside power generators. In turbo and hydro generators, end-winding vibrations are present during operation causing in the long term undesirable out-of-service repairs. Continuous monitoring of these vibrations is therefore mandatory. The high electromagnetic fields in the generators impose the use of devices immune to electromagnetic interferences. In this paper a MEMS based accelerometer with remote optical readout is presented. Advantages of the proposed device are the use of a differential optical signal to reject the common mode signal and noise, the reduced number of steps for the MEMS chip fabrication and for the system assembly, and the reduced package volume.

  3. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B. [Particle Beam Physics Laboratory, UCLA, Los Angeles, CA 90095 (United States); Bruhwiler, David L. [RadiaSoft LLC, Boulder, CO 80304 (United States); RadiaBeam Technologies LLC (United States); Smith, Jonathan [Tech-X UK Ltd, Daresbury, Cheshire WA4 4FS (United Kingdom); Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G. [Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Hidding, Bernhard [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)


    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical “plasma torch” distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  4. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes (United States)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander; Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B.; Bruhwiler, David L.; Smith, Jonathan; Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G.; Hidding, Bernhard


    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical "plasma torch" distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  5. An improved optical tweezers assay for measuring the force generation of single kinesin molecules. (United States)

    Nicholas, Matthew P; Rao, Lu; Gennerich, Arne


    Numerous microtubule-associated molecular motors, including several kinesins and cytoplasmic dynein, produce opposing forces that regulate spindle and chromosome positioning during mitosis. The motility and force generation of these motors are therefore critical to normal cell division, and dysfunction of these processes may contribute to human disease. Optical tweezers provide a powerful method for studying the nanometer motility and piconewton force generation of single motor proteins in vitro. Using kinesin-1 as a prototype, we present a set of step-by-step, optimized protocols for expressing a kinesin construct (K560-GFP) in Escherichia coli, purifying it, and studying its force generation in an optical tweezers microscope. We also provide detailed instructions on proper alignment and calibration of an optical trapping microscope. These methods provide a foundation for a variety of similar experiments.

  6. Generation of optical vortices with the same topological charges and controllable separation distances using diffraction gratings (United States)

    Ghasempour Ardakani, Abbas; Safarzadeh, Fatemeh


    In this paper, we first generate optical vortices with different topological charges, using the method of computer-generated holograms. Then, we separate one of the optical vortices from others with a special topological charge and pass it through a diffraction grating with a specified line spacing. It is observed that the vortex beam, after passing through the grating, converts to several separated vortices with the same topological charge whose value is similar to the topological charge of the input vortex. Finally, we show that the distance between generated vortices can be controlled with the variation of spacing between grating lines. So, the proposed setup in this paper can be exploited as an optical vortex divider which is useful in communication and trapping systems.

  7. Achieving College Access Goals: The Relevance of New Media in Reaching First-Generation and Low-Income Teens (United States)

    Krywosa, Jessica


    With so much interest around the use of new media, many people concerned with improving college access are striving to master this emerging set of resources in order to better reach students, who without encouragement, are unlikely to pursue higher education. But, how much do individuals understand about the way low-income, first-generation, and…

  8. Generating Nanostructures with Multiphoton Absorption Polymerization using Optical Trap Assisted Nanopatterning (United States)

    Tsai, Yu-Cheng; Leitz, Karl-Heinz; Fardel, Romain; Schmidt, Michael; Arnold, Craig B.

    The need to generate sub 100 nm features is of interest for a variety of applications including optics, optoelectronics, and plasmonics. To address this requirement, several advanced optical lithography techniques have been developed based on either multiphoton absorption polymerization or near-field effects. In this paper, we combine strengths from multiphoton absorption and near field using optical trap assisted nanopatterning (OTAN). A Gaussian beam is used to position a microsphere in a polymer precursor fluid near a substrate. An ultrafast laser is focused by that microsphere to induce multiphoton polymerization in the near field, leading additive direct-write nanoscale processing.

  9. Cavity Optical Pulse Extraction: ultra-short pulse generation as seeded Hawking radiation. (United States)

    Eilenberger, Falk; Kabakova, Irina V; de Sterke, C Martijn; Eggleton, Benjamin J; Pertsch, Thomas


    We show that light trapped in an optical cavity can be extracted from that cavity in an ultrashort burst by means of a trigger pulse. We find a simple analytic description of this process and show that while the extracted pulse inherits its pulse length from that of the trigger pulse, its wavelength can be completely different. Cavity Optical Pulse Extraction is thus well suited for the development of ultrashort laser sources in new wavelength ranges. We discuss similarities between this process and the generation of Hawking radiation at the optical analogue of an event horizon with extremely high Hawking temperature. Our analytic predictions are confirmed by thorough numerical simulations.

  10. All-optical control of unipolar pulse generation in spatially extended arrays of optical oscillators with nonlinear field coupling

    CERN Document Server

    Pakhomov, A V; Babushkin, I V; Arkhipov, M V; Tolmachev, Yu A; Rosanov, N N


    We study the optical response of a resonant medium possessing the nonlinear coupling to external field under excitation by few-cycle pump pulses. A theoretical approach is developed, allowing to analyze unipolar half-cycle pulse generation in such a geometry. Our approach is applicable for the arbitrary coupling functions as well as arbitrarily curved pump pulse wavefronts and defines a general framework to produce unipolar pulses of desired form.

  11. Controlled generation of high-intensity optical rogue waves by induced modulation instability. (United States)

    Zhao, Saili; Yang, Hua; Chen, Nengsong; Zhao, Chujun


    Optical rogue waves are featured as the generation of high amplitude events at low probability in optical systems. Moreover, the formation of optical rogue waves is unpredictable and transient in photonic crystal fibers. In this paper, we put forward a method to generate high-intensity optical rogue waves in a more controlled way based on induced modulation instability, which can suppress the noise effect and hence play a leading role in the process of pulse evolution. Our numerical simulations indicate that the generation of rogue wave can be controlled when seeding at the optimal modulation frequency and the intensity of rogue wave can be enhanced with appropriate modulation depth. Further, high-intensity rogue wave can also be ejected in the fiber with a shorter propagation length by regulating the modulation depth. These results all provide a better understanding of optical rogue wave, which can contribute to the generation of tunable long-wavelength spectral components and selective excitation of mid-infrared supercontinuum.

  12. Coherent transfer of optical orbital angular momentum in multi-order Raman sideband generation

    CERN Document Server

    Strohaber, J; Sokolov, A V; Kolomenskii, A A; Paulus, G G; Schuessler, H A


    Experimental results from the generation of Raman sidebands using optical vortices are presented. By generating two sets of sidebands originating from different locations in a Raman active crystal, one set containing optical orbital angular momentum and the other serving as a reference, a Young's double slit experiment was simultaneously realized for each sideband. The interference between the two sets of sidebands was used to determine the helicity and topological charge in each order. Topological charges in all orders were found to be discrete and follow selection rules predicted by a cascaded Raman process.

  13. Coherent transfer of optical orbital angular momentum in multi-order Raman sideband generation. (United States)

    Strohaber, J; Zhi, M; Sokolov, A V; Kolomenskii, A A; Paulus, G G; Schuessler, H A


    Experimental results from the generation of Raman sidebands using optical vortices are presented. By generating two sets of sidebands originating from different locations in a Raman-active crystal, one set containing optical orbital angular momentum and the other serving as a reference, Young's double slit experiment was simultaneously realized for each sideband. The interference between the two sets of sidebands was used to determine the helicity and topological charge in each order. Topological charges in all orders were found to be discrete and follow selection rules predicted by a cascaded Raman process.

  14. High frequency optical pulse generation by frequency doubling using polarization rotation (United States)

    Liu, Yang


    In this work, we propose and experimentally characterize a stable 40 GHz optical pulse generation by frequency doubling using polarization rotation in a phase modulator (PM). Only half the electrical driving frequency is required (i.e. 20 GHz); hence the deployment cost can be reduced. Besides, precise control of the bias of the PM is not required. The generated optical pulses have a high center-mode-suppression-ratio (CMSR) of  >  28 dB. The single sideband (SSB) noise spectrum is also measured, and the time-domain waveforms under different CMSRs are also analyzed and discussed.

  15. Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators. (United States)

    Missey, M; Dominic, V; Powers, P; Schepler, K L


    We used elliptical beams to demonstrate aperture scaling effects in nanosecond single-grating and multigrating periodically poled lithium niobate (PPLN) monolithic optical parametric oscillators and generators. Increasing the cavity Fresnel number in single-grating crystals broadened both the beam divergence and the spectral bandwidth. Both effects are explained in terms of the phase-matching geometry. These effects are suppressed when a multigrating PPLN crystal is used because the individual gratings provide small effective subapertures. A flood-pumped multigrating optical parametric generator displayed a low output beam divergence and contained 19 pairs of signal and idler frequencies.

  16. Optical frequency comb generation from aluminum nitride micro-ring resonator

    CERN Document Server

    Jung, Hojoong; Fong, King Y; Zhang, Xufeng; Tang, Hong X


    Aluminum nitride is an appealing nonlinear optical material for on-chip wavelength conversion. Here we report optical frequency comb generation from high quality factor aluminum nitride micro-ring resonators integrated on silicon substrates. By engineering the waveguide structure to achieve near-zero dispersion at telecommunication wavelengths and optimizing the phase matching for four-wave mixing, frequency combs are generated with a single wavelength continuous-wave pump laser. The Kerr coefficient (n2) of aluminum nitride is further extracted from our experimental results.

  17. Short optical pulse generated by integrated MQW DBR laser/EA-modulator (United States)

    Chen, Young-Kai; Tanbun-Ek, Tawee; Logan, Ralph A.; Tate, A. R.; Sergent, A. M.; Wecht, K. W.; Sciortino, Paul F., Jr.; Raybon, Gregory; Froberg, Nan M.; Johnson, Anthony M.


    We report on the generation of short optical pulses by utilizing the non-linear absorption characteristics of a multiple quantum well (MQW) electro-absorption modulator, which is monolithically integrated with a MQW wavelength-tunable distributed Bragg reflector (DBR) laser on a single chip. Optical pulses as short as 39 ps and 15 ps have been generated at a repetition rate of 3 GHz and 10 GHz, respectively, with a broad tuning range of 5.4 nm near 1554 nm lasing wavelength.

  18. Antenna Optics and Receiver Concept for the Next Generation Very Large Array (United States)

    McKinnon, Mark M.; Srikanth, Sivasankaran; Grammer, Wes; Pospieszalski, Marian; Sturgis, Silver


    The Next Generation Very Large Array (ngVLA) is envisioned to be an interferometric array with 10 times the effective collecting area and 10 times higher spatial resolution than the current VLA, operating over a frequency range of 1.2-116 GHz. Achieving these goals will require about 300 antennas of nominally 18m diameter on baselines of 300km. Options for the optical configuration of the antennas and possible receiver configurations to cover the ngVLA frequency range are presented. The options for the antenna optics take into account performance, cost, receiver accessibility for maintenance purposes, and receiver distribution in the focal plane. Both on-axis and off-axis configurations are considered. The off-axis design has the advantages of higher gain, low near-in sidelobes, lower antenna temperature, and reduced standing waves. The main advantage of the on-axis configuration is its lower cost. The trade-off between subreflector opening angle and feed size is presented. The performance of different dual-offset reflector geometries is summarized. The ngVLA receivers will be cryogenically-cooled with cryostats integrating multiple receiver bands for reduced maintenance and operating costs. The total number of bands required depends on their fractional bandwidth: maximizing this reduces the band count and number of cryostats, but with a penalty in sensitivity. For the higher frequencies, waveguide-bandwidth receivers are proposed to cover 11-50 GHz and 70-116 GHz in four separate bands, possibly integrated into a single cryostat. Corrugated conical feeds will be used, providing good aperture efficiency and symmetric, uniform beam shape. For 1.2-11 GHz, waveguide-bandwidth receivers are not practical due to the large number of receiver/feed combinations needed to cover the ~9:1 frequency range. Also, the large size of the feeds and polarizers mandates individual cryostats for each band. A possible compromise is two 3:1-bandwidth receivers with smooth

  19. Long term reliability and machine operation diagnosis with fiber optic sensors at large turbine generators (United States)

    Bosselmann, T.; Strack, S.; Villnow, M.; Weidner, J. R.; Willsch, M.


    The increasing quantity of renewable energy in electric power generation leads to a higher flexibility in the operation of conventional power plants. The turbo generator has to face the influence of frequent start-stop-operation on thermal movement and vibration of the stator end windings. Large indirect cooled turbo generators have been equipped with FBG strain and temperature sensors to monitor the influence of peak load operation. Fiber optic accelerometers measure the vibration of the end windings at several turbine generators since many years of operation. The long term reliability of fiber optic vibration, temperature and strain sensors has been successfully proved during years of online operation. The analysis of these data in correlation to significant operation parameter lead to important diagnostic information.

  20. SRS generation spanning over two octaves in a graded-index multimode optical fiber

    CERN Document Server

    Pourbeyram, Hamed; Mafi, Arash


    We report on the generation of new wavelengths, mediated by the stimulated Raman scattering process and extending over two octaves covering 523 to 1750 nm wavelength range, in a standard telecommunication graded-index multimode optical fiber. Despite the highly multimode nature of the pump, the Raman peaks are generated in specific modes of the fiber, confirming substantial beam cleanup during the stimulated Raman scattering process.

  1. Nonlinear Fano Profiles in the Optical Second-Harmonic Generation from Silver Nanoparticles

    CERN Document Server

    Butet, J; Russier-Antoine, I; Bertorelle, F; Mosset, A; Lascoux, N; Jonin, C; Benichou, E; Brevet, P -F


    The resonance effects on the optical second harmonic generation from 140 nm silver nanoparticles is studied experimentally by hyper-Rayleigh scattering and numerically by finite element method calculations. We find that the interferences between the broad dipolar and narrow octupolar surface plasmon resonances leads to nonlinear Fano profiles that can be externally controlled by the incident polarization angle. These profiles are responsible for the nonlinear plasmon-induced transparency in the second harmonic generation.

  2. Fifth-Order Harmonic Generation using a Coherent Controlled Two-Pulsed Optical Field

    Institute of Scientific and Technical Information of China (English)

    刘婷婷; 王大威; 陆伟新; 孙泉; 杨宏; 蒋红兵; 龚旗煌


    We have experimentally studied the characteristics of fifth-order harmonic radiation produced by two coherent femtosecond laser pulses with a changeable relative phase. The intensities of harmonic generation are found to increase vith the coherent degree. In one optical period, the temporal variation of harmonics exhibits an asymmetric characteristic, vhich is interpreted in terms of ionization theory and the deformation of the wave packets of fundamental field contribution to harmonic generation.

  3. Generation of broadband mid-infrared pulses from an optical parametric amplifier. (United States)

    Brida, D; Manzoni, C; Cirmi, G; Marangoni, M; De Silvestri, S; Cerullo, G


    We report on the direct generation of broadband mid-IR pulses from an optical parametric amplifier. Several crystals with extended IR transparency, when pumped at 800 nm, display a broad phase-matching bandwidth around 1 mum, allowing for the generation of idler pulses spanning the 3-5 mum wavelength range. Using LiIO(3), we produce 2muJ pulses tunable in the 3-4 mum range with bandwidth supporting 30-fs transform-limited duration.

  4. Multi-rate soliton pulse train generator based on novel fiber optic components (United States)

    Sova, Raymond Michael

    As data rates for communication, signal processing, and optical sensing systems increase beyond 50 Gb/sec, ultra-fast optical pulse train generators will play a key role in their development. In this research, an all-fiber optical soliton pulse train generator is developed that operates at discrete rates from 50 to 400 Gb/sec with stable subpicosecond pulses. It is based on the following three novel fiber optic components: (1) all-fiber birefringence filter, (2) dual-wavelength fiber ring laser and (3) fiber-based soliton pulse train generation and compression stage. A multi-segment birefringence comb filter is developed to provide discrete tuning of the free spectral range from 0.8 to 3.2 nm and continuous tuning of the absolute position of the transmission peaks over the entire free spectral range. Two, three and four segment filters are constructed and implemented in Lyot and Lyot-Sagnac filter configurations to demonstrate the tuning properties and provide compound filters for use in the dual-wavelength fiber ring laser. Theoretical transmission functions are derived for two-segment filters. The experimental results are in excellent agreement with theoretical models based on the Jones matrix technique. The dual-wavelength laser consists of a PM amplifier, the tunable birefringence filter and a high-Q filter based on saturable absorber properties of un-pumped Erbium-doped fiber. Tunable compound birefringence filters are designed to operate the dual-wavelength laser over the entire erbium amplifier gain region (1530 to 1565 nm) with discrete tuning of the channel separation from 0.8 to 3.2 nm. Stable tunable dual-wavelength single-longitudinal mode operation is demonstrated and initial laser properties such as dual-relaxation oscillations, laser linewidth, polarization, and multi-wavelength stability are characterized. Induced modulation instability in optical fiber is used to generate pulse trains from the fiber ring laser output signal. Through modeling, the

  5. Coherent Harmonic Generation using the Elettra Storage-Ring Optical Klystron A Numerical Analysis

    CERN Document Server

    Curbis, F


    Coherent harmonic generation can be obtained by means of frequency up-conversion of a high-power external laser focused into the first undulator of an optical klystron. The standard configuration is based on a single-pass device, where the seed laser is synchronized with an electron beam entering the first undulator of the optical klystron after being accelerated using a linear accelerator. As an alternative, the optical klystron may be installed on a storage ring, where it is normally used as interaction region for an oscillator free-electron laser. In this case, removing the optical cavity and using an external seed, one obtains a configuration which is similar to the standard one but also presents some peculiar characteristics. In this paper we investigate the possibility of harmonic generation using the Elettra storage-ring optical klystron. We explore different experimental set-ups varying the beam energy, the seed characteristics and the strength of the optical-klystron dispersive section. We also study...

  6. All-optical hash code generation and verification for low latency communications. (United States)

    Paquot, Yvan; Schröder, Jochen; Pelusi, Mark D; Eggleton, Benjamin J


    We introduce an all-optical, format transparent hash code generator and a hash comparator for data packets verification with low latency at high baudrate. The device is reconfigurable and able to generate hash codes based on arbitrary functions and perform the comparison directly in the optical domain. Hash codes are calculated with custom interferometric circuits implemented with a Fourier domain optical processor. A novel nonlinear scheme featuring multiple four-wave mixing processes in a single waveguide is implemented for simultaneous phase and amplitude comparison of the hash codes before and after transmission. We demonstrate the technique with single polarisation BPSK and QPSK signals up to a data rate of 80 Gb/s.

  7. Ultraviolet Light Generation and Transport in the Final Optics Assembly of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Wegner, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hackel, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Feit, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Parham, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kozlowski, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Whitman, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The design of the National Ignition Facility (NIF) includes a Final Optics Assembly (FOA) subsystem for ultraviolet (UV) light generation and transport for each of the 192 beamlines. Analytical and experimental work has been done to help understand and predict the performance of FOA.

  8. Generation of non-classical optical fields by a beam splitter with second-order nonlinearity

    CERN Document Server

    Prakash, Hari


    We propose quantum-mechanical model of a beam splitter with second-order nonlinearity and show that non-classical features such as squeezing and sub-Poissonian photon statistics of optical fields can be generated in output fundamental and second harmonic modes when we mix coherent light beams via such a nonlinear beam splitter.

  9. Optical necklaces generated by the diffraction on a stack of dielectric wedges

    Energy Technology Data Exchange (ETDEWEB)

    Izdebskaya, Yana [Nonlinear Physics Centre, Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200 (Australia); Department of Physics, V.I. Vernandsky Taurida National University, Simferopol 95007, Crimea (Ukraine)], E-mail:


    We demonstrate that the regular ring-shaped arrays of Gaussian beams, or optical necklaces, can be generated using diffraction on a stack of dielectric wedges. A condition for self-similarity and structural stability of the beams has been derived and shows good comparison with experimental data.

  10. Integration of Optically Generated Impulse Radio UWB Signals into Baseband WDM-PON

    DEFF Research Database (Denmark)

    Pham, Tien Thang; Yu, Xianbin; Dittmann, Lars


    We propose a compact integration system to simultaneously provide wireline and wireless (baseband and ultra-wide band (UWB)) services to end-users in a WDM-PON. A 1-Gbps UWB signal is optically generated and shares the same wavelength with the baseband signal. Error-free performance was achieved ...

  11. Cross-polarized wave generation by effective cubic nonlinear optical interaction. (United States)

    Petrov, G I; Albert, O; Etchepare, J; Saltiel, S M


    A new cubic nonlinear optical effect in which a linearly polarized wave propagating in a single quadratic medium is converted into a wave that is cross polarized to the input wave is observed in BBO crystal. The effect is explained by cascading of two different second-order processes: second-harmonic generation and difference frequency mixing.

  12. Color controllable polarization entanglement generation in optical fiber at telecommunication wavelengths. (United States)

    Karmakar, Sanjit; Meyers, Ronald E


    This article proposes a polarized entangled photon source in optical fiber with low Raman noise that features the controllable generation of specific signal and idler wavelengths (colors) by varying the pump power. The novel two color source can provide needed telecom entangled photon wavelengths for applications in quantum communications, quantum computing, and quantum imaging.

  13. Ultra-Short Optical Pulse Generation with Single-Layer Graphene

    CERN Document Server

    Lee, C -C; Bunch, J S; Schibli, T R


    Pulses as short as 260 fs have been generated in a diode-pumped low-gain Er:Yb:glass laser by exploiting the nonlinear optical response of single-layer graphene. The application of this novel material to solid-state bulk lasers opens up a way to compact and robust lasers with ultrahigh repetition rates.

  14. Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification

    NARCIS (Netherlands)

    Witte, S.; Zinkstok, R.T.; Hogervorst, W.; Eikema, K.S.E.


    We demonstrate the generation of 9.8 +/- 0.3 fs laser pulses with a peak power exceeding one terawatt at 30 Hz repetition rate, using optical parametric chirped pulse amplification. The amplifier is pumped by 140 mJ, 60 ps pulses at 532 nm, and amplifies seed pulses from a Ti: Sapphire oscillator to

  15. Generation of optical vortex dipole from superposition of two transversely scaled Gaussian beams. (United States)

    Naik, Dinesh N; Pradeep Chakravarthy, T; Viswanathan, Nirmal K


    We propose a distinct concept on the generation of optical vortex through coupling between the amplitude and phase differences of the superposing beams. For the proof-of-concept demonstration, we propose a simple free-space optics recipe for the controlled synthesis of an optical beam with a vortex dipole by superposing two transversely scaled Gaussian beams. The experimental demonstration using a Sagnac interferometer introduces the desired amount of radial shear and linear phase difference between the two out-of-phase Gaussian beams to create a vortex pair of opposite topological charge in the superposed beam. Flexibility to tune their location and separation using the choice of direction of the linear phase difference and the amount of amplitude difference between the superposing beams has potential applications in optical tweezers and traps utilizing the local variation in angular momentum across the beam cross section.

  16. Generation of two types of nonclassical optical states using an optical parametric oscillator with a PPKTP crystal (United States)

    Huo, Meiru; Qin, Jiliang; Yan, Zhihui; Jia, Xiaojun; Peng, Kunchi


    As important members of nonclassical states of light, squeezed states and entangled states are basic resources for realizing quantum measurements and constructing quantum information networks. We experimentally demonstrate that the two types of nonclassical optical states can be generated from an optical parametric oscillator (OPO) involving a periodically poled KTiOPO4 crystal with a domain-inversion period of 51.7 μm, by changing the polarization of the pump laser. When a vertically polarized 671 nm laser is used to pump the OPO, the intra-cavity frequency-down-conversion with type-0 quasi-phase matching is realized and the output optical beam is a quadrature amplitude squeezed state of light at the wavelength of 1342 nm with the fluctuation of quadrature component of 3.17 dB below the quantum noise limit (QNL). If the pump laser is horizontally polarized, the condition of the type-II quasi-phase matching is satisfied and the output optical beam becomes Einstein-Podolsky-Rosen entangled state of light with correlation variances of both quadrature amplitude-sum and quadrature phase-difference of 2.2 dB below the corresponding QNL.

  17. Cellular resolution optical access to brain regions in fissures: imaging medial prefrontal cortex and grid cells in entorhinal cortex. (United States)

    Low, Ryan J; Gu, Yi; Tank, David W


    In vivo two-photon microscopy provides the foundation for an array of powerful techniques for optically measuring and perturbing neural circuits. However, challenging tissue properties and geometry have prevented high-resolution optical access to regions situated within deep fissures. These regions include the medial prefrontal and medial entorhinal cortex (mPFC and MEC), which are of broad scientific and clinical interest. Here, we present a method for in vivo, subcellular resolution optical access to the mPFC and MEC using microprisms inserted into the fissures. We chronically imaged the mPFC and MEC in mice running on a spherical treadmill, using two-photon laser-scanning microscopy and genetically encoded calcium indicators to measure network activity. In the MEC, we imaged grid cells, a widely studied cell type essential to memory and spatial information processing. These cells exhibited spatially modulated activity during navigation in a virtual reality environment. This method should be extendable to other brain regions situated within deep fissures, and opens up these regions for study at cellular resolution in behaving animals using a rapidly expanding palette of optical tools for perturbing and measuring network structure and function.

  18. Quantum-optical catalysis generating "Schroedinger kittens" by means of linear optics

    CERN Document Server

    Lvovsky, A I


    We report preparation and characterization of coherent superposition states t |0> + alpha |1> of electromagnetic field by conditional measurements on a beamsplitter. The state is generated in one of the beam splitter output channels if a coherent state and a single-photon Fock state |1> are present in the two input ports and a single photon is registered in the other beam splitter output. The single photon thus plays a role of a "catalyst": it is explicitly present in both the input and the output channels of the interaction yet facilitates generation of a nonclassical state of light.

  19. Converged Wireless and Wireline Access System Based on Optical Phase Modulation for Both Radio-Over-Fiber and Baseband Signals

    DEFF Research Database (Denmark)

    Yu, Xianbin; Jensen, Jesper Bevensee; Zibar, Darko


    We propose and experimentally investigate a scheme for transmitting a phase-modulated radio-over-fiber (RoF) signal along an existing fiber infrastructure without degradation of the existing baseband signal. Optical phase encoding of both signals, namely a baseband 21.4-Gb/s nonreturn......-to-zero differential quaternary phase-shift keyed signal and a 5.25-GHz RoF carrying 1.25 Gb/s, enables the use of identical optical receiver structures. The experimental results show that both receivers achieve error-free operation after 80-km standard single-mode fiber transmission. The proposed scheme has potential...... applications for converged wireless and wireline optical access networks....

  20. Variable aberration generator using a high-order even aspheric singlet for testing optical surfaces (United States)

    Lu, Jinfeng; Chen, Shanyong; Xue, Shuai


    Traditional null optics is generally designed for a particular optical surface. It must be redesigned when the test surface is changed no matter the null optic is reflective, transmitted or a CGH. Development of advanced optical machining and testing based on deterministic figuring and null test makes it possible to apply high-order aspheres. This paper presents a plano-concave singlet to realize variable aberration correction for testing different surfaces. The concave surface is an even asphere with high-order terms. By changing the axial distances among the transmission sphere, the null singlet and the test surface, variable aberrations are generated to meet the aberration balance requirement for various surfaces. The residual aberrations are confirmed within the vertical dynamic range of measurement of the interferometer. It enables flexible testing of optical surfaces without dedicated null optics. The optical design verifies that the aspheric singlet can be used to test conic surfaces with different conic constant and radius of curvature ranging from ellipsoid, paraboloid to hyperboloid and an even asphere.

  1. Optical generation of millimeter-wave pulses using a fiber Bragg grating in a fiber-optics system. (United States)

    Ye, Qing; Qu, Ronghui; Fang, Zujie


    A scheme is proposed to transform an optical pulse into a millimeter-wave frequency modulation pulse by using a weak fiber Bragg grating (FBG) in a fiber-optics system. The Fourier transformation method is used to obtain the required spectrum response function of the FBG for the Gaussian pulse, soliton pulse, and Lorenz shape pulse. On the condition of the first-order Born approximation of the weak fiber grating, the relation of the refractive index distribution and the spectrum response function of the FBG satisfies the Fourier transformation, and the corresponding refractive index distribution forms are obtained for single-frequency modulation and linear-frequency modulation millimeter-wave pulse generation. The performances of the designed fiber gratings are also studied by a numerical simulation method for a supershort pulse transmission.

  2. Syudy of Token Generation for Burst Traffic Shaping in Optical Burst Switching Networks

    Institute of Scientific and Technical Information of China (English)

    Tang Wan; So Won-ho; Lu Ji-guang; Kim Young-chon


    Traffic shaping is one of important control operation to guarantee the Quality of Service (QoS) in optical burst switching (OBS) networks. The efficiency of traffic shaping is mainly determined by token generation method. In this paper, token generation methods of traffic shaping are evaluated by using three kinds of probability distribution, and are analyzed in terms of burst blocking probability, throughput and correlation by simulation. The simulation results show that the token generation methods decrease the burst correlation of Label Switched Paths (LSPs), and solve traffic congestion as well. The different burst arrival processes have small impact on the blocking probability for OBS networks.

  3. Generating optical freeform surfaces considering both coordinates and normals of discrete data points. (United States)

    Zhu, Jun; Wu, Xiaofei; Yang, Tong; Jin, Guofan


    Through direct design methods, both coordinates and normals of discrete data points on a freeform surface are usually obtained, but traditionally the freeform surface is generated by only fitting the coordinates. In this paper, a novel generating method that fits both the coordinates and the normals is proposed based on the mathematical multiobjective optimization theory. This new method is suited for generating some freeform polynomial surfaces. Two design examples are introduced, and their optical performance is significantly improved when applying the new method compared with the traditional method. This new method is validated to be effective, and it is widely useful as long as the coordinates and the normals are provided in advance.

  4. Analysis of All-Optical State Generator for "Encoding a Qubit in an Oscillator" (United States)

    Policarpo, S. C.; Vasconcelos, H. M.


    The fault-tolerant quantum computation scheme proposed by Gottesman (Phys. Rev. A 64, 012310 (2001)) can be performed using relatively simple linear optical resources and provides a natural protection against arbitrary small errors. On the other hand, preparing the initial GKP states is a difficult task. A few proposals to generate GKP states have been done over the last years. Our objective here is to analyze the performance of a particular GKP generator that uses cat states, linear optical devices, squeezing, and homodyne detection. We use numerical simulations to study the behavior of the fidelity between the generated and the ideal states and show that the proposal in consideration is indeed a promising scheme.

  5. Generation of efficient THz radiation by optical rectification in DAST crystal using tunable femtosecond laser pulses (United States)

    Venkatesh, Mottamchetty; Thirupugalmani, K.; Rao, K. S.; Brahadeeswaran, S.; Chaudhary, A. K.


    We report the efficient THz generation by optical rectification from an indigenously grown organic DAST crystal using the 140 fs oscillator laser pulses tunable in between 780 and 850 nm. The generated THz pulse profile and powers have been measured using the photoconductive (PC) antennas and pyroelectric detector, respectively. The highest THz peak amplitude and power is obtained at 825 nm central wavelength. We have theoretically explained the enhancement of THz radiation based on the matching of average optical group refractive index and average THz refractive index of the DAST crystal at 825 nm. In addition, the dependence of THz peak amplitude and THz power on laser power have been carried out. The measured quantum conversion efficiency (QCE) of 0.5 and 1.5 THz bands are of the order 3.7 × 10-3, 1.4 × 10-3, respectively. Finally, an attempt has been made to study the effect of polarizations on generated THz signal.

  6. Optical differential phase-shift keyed signal generation, transmission and detection (United States)

    Lize, Yannick Keith

    When encoding information on an electromagnetic wave such as infrared light, to be transmitted through an optical fibre in telecommunication networks, any of the physical properties of light can be modulated. Light has a frequency, intensity, polarization and a phase. Until recently, optical communication systems strictly employed conventional intensity (IM) modulation signals in either non return-to-zero (NRZ) or return-to-zero (RZ) format. But a number of advanced optical modulation formats have attracted increasing attention in the last few years. One prime example is the phase-shift-keyed (PSK) family of formats which carry the information on the optical phase. Since absolute phase is not easily detected through coherent demodulation, differential encoding in which the phase of the preceding bit is used as a relative phase reference for demodulation has become a method of choice for phase modulated signals. The result in the differential-phase-shift-keyed (DPSK) formats, which carry the information in the difference in optical phase between successive bits. In this thesis by article, composed of six papers, we investigate the generation, transmission and demodulation of DPSK in optical fibre transmission systems. We propose a novel way to encode optical packets using DPSK in our investigation of the generation. We also investigate transmission effects monitoring using a novel partial-bit delay interferometer-assisted clock tone monitoring method for sensitive optical-signal-to-noise ratio (OSNR), chromatic dispersion and polarization mode dispersion monitoring. Then we look at the demodulation of DPSK, first investigating the reduced tolerances and power penalties of DPSK demodulation when more than one bit delay is used in the interferometer. We also propose an optical error correction method combining DPSK optical logic gates with electronic logic gates to improve receiver sensitivity and transmission impairment tolerances. Finally we redefine the previously

  7. Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers

    Energy Technology Data Exchange (ETDEWEB)

    Zajnulina, M.; Giannone, D.; Haynes, R.; Roth, M. M. [innoFSPEC-VKS, Leibniz Institute for Astrophysics, An der Sternwarte 16, 14482 Potsdam (Germany); Böhm, M. [innoFSPEC-InFaSe, University of Potsdam, Am Mühlenberg 3, 14476 Golm (Germany); Blow, K. [Aston Institute of Photonic Technologies, Aston Triangle, Birmingham B4 7ET (United Kingdom); Rieznik, A. A. [Instituto Tecnologico de Buenos Aires and CONICET, Buenos Aires (Argentina)


    We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.

  8. [3 + 3]-Cycloaddition of Donor-Acceptor Cyclopropanes with Nitrile Imines Generated in Situ: Access to Tetrahydropyridazines. (United States)

    Garve, Lennart K B; Petzold, Martin; Jones, Peter G; Werz, Daniel B


    Donor-acceptor cyclopropanes are reacted under the influence of a Lewis acid with hydrazonyl chlorides to afford tetrahydropyridazines. Formally, this transformation can be regarded as a [3 + 3]-cycloaddition of three-membered rings and nitrile imines generated in situ. This efficient method provides fast access to a variety of structurally diverse pyridazine derivatives. The structure of a typical product was confirmed by X-ray crystallography.

  9. Cross-layer Framework for Fine-grained Channel Access in Next Generation High-density WiFi Networks


    ZHAO, HAITAO; Zhang, Shaojie; Garcia-Palacios, Francisco


    Densely deployed WiFi networks will play a crucial role in providing the capacity for next generation mobile internet. However, due to increasing interference, overlapped channels in WiFi networks and throughput efficiency degradation, densely deployed WiFi networks is not a guarantee to obtain higher throughput. An emergent challenge is how to efficiently utilize scarce spectrum resources, by matching physical layer resources to traffic demand. In this aspect, access control allocation strat...

  10. Chaotic oscillation and random-number generation based on nanoscale optical-energy transfer (United States)

    Naruse, Makoto; Kim, Song-Ju; Aono, Masashi; Hori, Hirokazu; Ohtsu, Motoichi


    By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantum dots (QDs), with one QD smaller than the other, between which energy transfers via optical near-field interactions. When the system is pumped by continuous-wave radiation and incorporates a timing delay between two energy transfers within the system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test suites, we confirm that the signals are sufficiently random to qualify the system as a random-number generator (RNG). This study reveals that even relatively simple nanodevices that interact locally with each other through optical energy transfer at scales far below the wavelength of irradiating light can exhibit complex oscillatory dynamics. These findings are significant for applications such as ultrasmall RNGs.

  11. Polarization-, carrier-, and format-selectable optical flow generation based on a multi-flow transmitter using passive polymers

    DEFF Research Database (Denmark)

    Katopodis, V.; Spyropoulou, M.; Tsokos, C.;


    . Multiflow operation is realized by two polymer boards allowing optical carrier management and optional polarization multiplexing on chip. Optical carrier generation is performed also on chip using three tunable InP gain chips hybridly integrated on the input polyboard. Single and dual optical flow...

  12. Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul. (United States)

    Alavi, S E; Soltanian, M R K; Amiri, I S; Khalily, M; Supa'at, A S M; Ahmad, H


    5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated.

  13. Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul (United States)

    Alavi, S. E.; Soltanian, M. R. K.; Amiri, I. S.; Khalily, M.; Supa'At, A. S. M.; Ahmad, H.


    5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated.

  14. Optic flow estimation on trajectories generated by bio-inspired closed-loop flight. (United States)

    Shoemaker, Patrick A; Hyslop, Andrew M; Humbert, J Sean


    We generated panoramic imagery by simulating a fly-like robot carrying an imaging sensor, moving in free flight through a virtual arena bounded by walls, and containing obstructions. Flight was conducted under closed-loop control by a bio-inspired algorithm for visual guidance with feedback signals corresponding to the true optic flow that would be induced on an imager (computed by known kinematics and position of the robot relative to the environment). The robot had dynamics representative of a housefly-sized organism, although simplified to two-degree-of-freedom flight to generate uniaxial (azimuthal) optic flow on the retina in the plane of travel. Surfaces in the environment contained images of natural and man-made scenes that were captured by the moving sensor. Two bio-inspired motion detection algorithms and two computational optic flow estimation algorithms were applied to sequences of image data, and their performance as optic flow estimators was evaluated by estimating the mutual information between outputs and true optic flow in an equatorial section of the visual field. Mutual information for individual estimators at particular locations within the visual field was surprisingly low (less than 1 bit in all cases) and considerably poorer for the bio-inspired algorithms that the man-made computational algorithms. However, mutual information between weighted sums of these signals and comparable sums of the true optic flow showed significant increases for the bio-inspired algorithms, whereas such improvement did not occur for the computational algorithms. Such summation is representative of the spatial integration performed by wide-field motion-sensitive neurons in the third optic ganglia of flies.

  15. Widely tunable second-harmonic generation in a chalcogenide-tellurite hybrid optical fiber. (United States)

    Cheng, Tonglei; Gao, Weiqing; Kawashima, Hiroyasu; Deng, Dinghuan; Liao, Meisong; Matsumoto, Morio; Misumi, Takashi; Suzuki, Takenobu; Ohishi, Yasutake


    When a chalcogenide-tellurite hybrid optical fiber with a high refractive index difference Δn=0.24 is pumped by an optical parametric oscillator with a pump wavelength from 1700 to 3000 nm, widely tunable second-harmonic generation (SHG) from 850 to 1502 nm is obtained. The observation of SHG is primarily due to the surface nonlinearity polarization at the core-cladding interface and the second-harmonic signal remains stable at the maximal level throughout the laser pulse irradiation.

  16. Anderson localisation and optical-event horizons in rogue-soliton generation

    CERN Document Server

    Saleh, Mohammed F; Biancalana, Fabio


    We show that the true origin of rogue solitons in optical fibres is due to the combined action of linear Anderson localisation and the formation of optical-event horizons. Anderson localised modes are formed in certain temporal locations due to the random background noise. Such localised modes seed the formation of solitary waves at those preferred locations, while the strongest Anderson mode generates the rogue soliton. The event horizon effect between dispersive waves and solitons produces an artificial collective acceleration that favours the collision of solitons during the rogue wave formation.

  17. Organic inclusion complex novel materials for optical second-harmonic generation in ultraviolet region (United States)

    Meng, Fanqing; Lu, Mengkai


    Herein is presented a new class of materials for second harmonic generation (SHG) -- organic inclusion complex, in which 'SHG-active units' (guest) are incorporated into chiral handle polycondensed anions (host) through short hydrogen bonds. The former can provide nonlinear optical response. The latter is expected to produce noncentrosymmetric structural 'molecular framework' and improve fundamental properties of materials such as thermal stability, mechanical strength and fabrication behavior, et al. Several new SHG active inclusion complexes were synthesized. In particular, optically fine bulk crystals of urea-(d)tartaric acid (UDT) and urea-(dl)tartaric acid (UDLT) have been obtained. They have good powder SHG intensity and short cutoff wavelengths.

  18. Specifics of short-wavelength generation in a continuous wave fiber optical parametric oscillator (United States)

    Zlobina, E. A.; Mishra, V.; Kablukov, S. I.; Singh, S. P.; Varshney, S. K.; Babin, S. A.


    We investigate factors limiting short-wavelength generation and therefore tuning range of the continuous wave all-fiber optical parametric oscillator based on birefringent photonic crystal fiber pumped by a tunable linearly polarized ytterbium-doped fiber laser. Influence of the longitudinal dispersion fluctuations in the fiber on the threshold of the fiber optical parametric oscillators is numerically studied. It is shown that even low fluctuations (<0.5 nm) of the zero dispersion wavelength in 18 m-long fiber result in a significant increase of the threshold at large parametric shifts.

  19. Optical microwave generation using two parallel DFB lasers integrated with Y-branch waveguide coupler

    Institute of Scientific and Technical Information of China (English)

    Xie Hong-Yun; Wang Lu; Zhao Ling-Juan; Zhu Hong-Liang; Wang Wei


    A new device of two parallel distributed feedback (DFB) lasers integrated monolithically with Y-branch waveguide coupler was fabricated by means of quantum well intermixing. Optical microwave signal was generated in the Y-branch waveguide coupler through frequency beating of the two laser modes coming from two DFB laser in parallel, which had a small difference in frequency. Continuous rapid tuning of optical microwave signal from 13 to 42 GHz were realized by adjusting independently the driving currents injected into the two DFB lasers.

  20. Optical network unit placement in Fiber-Wireless (FiWi) access network by Moth-Flame optimization algorithm (United States)

    Singh, Puja; Prakash, Shashi


    Hybrid wireless-optical broadband access network (WOBAN) or Fiber-Wireless (FiWi) is the integration of wireless access network and optical network. This hybrid multi-domain network adopts the advantages of wireless and optical domains and serves the demand of technology savvy users. FiWi exhibits the properties of cost effectiveness, robustness, flexibility, high capacity, reliability and is self organized. Optical Network Unit (ONU) placement problem in FiWi contributes in simplifying the network design and enhances the performance in terms of cost efficiency and increased throughput. Several individual-based algorithms, such as Simulated Annealing (SA), Tabu Search, etc. have been suggested for ONU placement, but these algorithms suffer from premature convergence (trapping in a local optima). The present research work undertakes the deployment of FiWi and proposes a novel nature-inspired heuristic paradigm called Moth-Flame optimization (MFO) algorithm for multiple optical network units' placement. MFO is a population based algorithm. Population-based algorithms are better in handling local optima avoidance. The simulation results are compared with the existing Greedy and Simulated Annealing algorithms to optimize the position of ONUs. To the best of our knowledge, MFO algorithm has been used for the first time in this domain, moreover it has been able to provide very promising and competitive results. The performance of MFO algorithm has been analyzed by varying the 'b' parameter. MFO algorithm results in faster convergence than the existing strategies of Greedy and SA and returns a lower value of overall cost function. The results exhibit the dependence of the objective function on the distribution of wireless users also.


    Institute of Scientific and Technical Information of China (English)

    Li Ou; Wu Jiangxing; Lan Julong


    A new segmented correlating decoder of synchronous optical CDMA using modified prime sequence codes is proposed. The performance of the proposed system is analyzed under the assumption of Poisson shot noise model for the receiver photodetector. The decoder technique is shown to be more effective to improve the bit error probability performance than the method using an optical hard-limiter.

  2. Security Attacks in Optical Access Networks – Simultaneous Detection and Localization

    DEFF Research Database (Denmark)

    Saltykov, Anton; Glagolev, Sergey; Jensen, Jesper Bevensee


    Fiber macrobend tapping is a simple yet unsolved security breach in passive optical networks. We prove the possibility of such attacks, and propose a novel method for their detection and localization.......Fiber macrobend tapping is a simple yet unsolved security breach in passive optical networks. We prove the possibility of such attacks, and propose a novel method for their detection and localization....

  3. Using IP as Transport Technology in Third Generation and Beyond Radio Access Networks

    NARCIS (Netherlands)

    Bader, Attila; Westberg, Lars; Karagiannis, Georgios; de Meer, H; Bhatti, N.T.

    This paper discusses the motivation for developing a new QoS signaling protocol for IP-based Radio Access Networks. It describes the main characteristics of these networks and the special requirements imposed by these characteristics on QoS signaling solutions.

  4. Open DeveloperSpace: An Enabling Infrastructure for Stakeholders to Generate New Access Solutions. (United States)

    Vanderheiden, Gregg; Riedel, Till; Peissner, Matthias; Clark, Colin; Peinado, Ignacio; Atkins, Tony; Tsakou, Gianna; Basman, Antranig; Bates, Simon; Gill, Avtar


    The DeveloperSpace, one of the core components of GPII, is a self-sustainable infrastructure and collaborative environment, where developers, implementers, consumers, prosumers and other directly and indirectly involved actors (e.g. teachers, caregivers, clinicians) may interact with and play a role in its viability and the development of new access solutions.

  5. Effects of Recognition on Subsequent Recall: Comments on "Determinants of Recognition and Recall: Accessibility and Generation" (United States)

    Broadbent, Donald E.; Broadbent, Margaret H. P.


    Attempts have been made by Rabinowitz, Mandler, and Patterson (AA 527 084) to show that both recall and recognition involve the accessibility of individual words. Their recall tests preceded recognition tests, or vice versa, thus contaminating each other; a fresh experiment is presented to confirm that this is so. (Editor)

  6. In vivo optical virtual biopsy of human oral cavity with harmonic generation microscopy (United States)

    Tsai, M.-R.; Chen, S.-Y.; Shieh, D.-B.; Lou, P.-J.; Sun, C.-K.


    Oral cancer ranked number four in both cancer incident and mortality in Taiwanese male population. Early disease diagnosis and staging is essential for its clinical success. However, most patients were diagnosed in their late disease stage as ideal prescreening procedures are yet to be developed especially when dealing with a large surface of precancerous lesions. Therefore, how to detect and confirm the diagnosis of these early stage lesions are of significant clinical value. Harmonic generation process naturally occurred in biological molecules and requires no energy deposition to the target molecule. Thus harmonic generation microscopy (HGM) could potentially serve as a noninvasive tool for screening of human oral mucosal diseases. The in vivo optical biopsy of human oral cavity with HGM could be achieved with high spatial resolution to resolve dynamic physiological process in the oral mucosal tissue with equal or superior quality but devoid of complicated physical biopsy procedures. The second harmonic generation (SHG) provide significant image contrast for biomolecules with repetitive structures such as the collagen fibers in the lamina propria and the mitotic spindles in dividing cells. The cell morphology in the epithelial layer, blood vessels and blood cells flow through the capillaries can be revealed by third harmonic generation (THG) signals. Tissue transparent technology was used to increase the optical penetration of the tissue. In conclusion, this report demonstrates the first in vivo optical virtual biopsy of human oral mucosa using HGM and revealed a promising future for its clinical application for noninvasive in vivo diseases diagnosis.

  7. Optical emission spectroscopy of the Linac4 and superconducting proton Linac plasma generators

    Energy Technology Data Exchange (ETDEWEB)

    Lettry, J.; Kronberger, M.; Mahner, E.; Schmitzer, C.; Sanchez, J.; Scrivens, R.; Midttun, O.; O' Neil, M.; Pereira, H.; Paoluzzi, M. [European Organization for Nuclear Research, CERN, 1211 Geneva 23 (Switzerland); Fantz, U.; Wuenderlich, D. [Max-Planck-Institut fuer Plasmaphysik, IPP, 85748 Garching (Germany); Kalvas, T.; Koivisto, H.; Komppula, J.; Myllyperkioe, P.; Tarvainen, O. [Department of Physics, University of Jyvaeskylae, 40500 Jyvaeskylae (Finland)


    CERN's superconducting proton Linac (SPL) study investigates a 50 Hz high-energy, high-power Linac for H{sup -} ions. The SPL plasma generator is an evolution of the DESY ion source plasma generator currently operated at CERN's Linac4 test stand. The plasma generator is a step towards a particle source for the SPL, it is designed to handle 100 kW peak RF-power at a 6% duty factor. While the acquisition of an integrated hydrogen plasma optical spectrum is straightforward, the measurement of a time-resolved spectrum requires dedicated amplification schemes. The experimental setup for visible light based on photomultipliers and narrow bandwidth filters and the UV spectrometer setup are described. The H{sub {alpha}}, H{sub {beta}}, and H{sub {gamma}} Balmer line intensities, the Lyman band and alpha transition were measured. A parametric study of the optical emission from the Linac4 ion source and the SPL plasma generator as a function of RF-power and gas pressure is presented. The potential of optical emission spectrometry coupled to RF-power coupling measurements for on-line monitoring of short RF heated hydrogen plasma pulses is discussed.

  8. Fast and Efficient XML Data Access for Next-Generation Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Hannes L Röst

    Full Text Available In mass spectrometry-based proteomics, XML formats such as mzML and mzXML provide an open and standardized way to store and exchange the raw data (spectra and chromatograms of mass spectrometric experiments. These file formats are being used by a multitude of open-source and cross-platform tools which allow the proteomics community to access algorithms in a vendor-independent fashion and perform transparent and reproducible data analysis. Recent improvements in mass spectrometry instrumentation have increased the data size produced in a single LC-MS/MS measurement and put substantial strain on open-source tools, particularly those that are not equipped to deal with XML data files that reach dozens of gigabytes in size.Here we present a fast and versatile parsing library for mass spectrometric XML formats available in C++ and Python, based on the mature OpenMS software framework. Our library implements an API for obtaining spectra and chromatograms under memory constraints using random access or sequential access functions, allowing users to process datasets that are much larger than system memory. For fast access to the raw data structures, small XML files can also be completely loaded into memory. In addition, we have improved the parsing speed of the core mzML module by over 4-fold (compared to OpenMS 1.11, making our library suitable for a wide variety of algorithms that need fast access to dozens of gigabytes of raw mass spectrometric data.Our C++ and Python implementations are available for the Linux, Mac, and Windows operating systems. All proposed modifications to the OpenMS code have been merged into the OpenMS mainline codebase and are available to the community at

  9. Widely tunable picosecond optical parametric generation and amplification in BiB(3)O(6). (United States)

    Sun, Zhipei; Ghotbi, Masood; Zadeh, Majid E


    Efficient generation of widely tunable picosecond pulses from the visible to near-infrared is demonstrated by optical parametric generation and amplification in BiB(3)O(6). Pumped by the second harmonic of an amplified mode-locked Nd:YAG laser at 532 nm, also generated in BiB(3)O(6), a signal and idler tuning range of 740-1893 nm has been achieved with angle tuning under type I (o?e+e) phase-matching in the optical yz-plane. With 40-ps pump pulses of 420-muJ energy, single-pass signal pulse energies of up to 48.6 muJ have been obtained at total OPA pump to signal and idler conversion efficiency as high as 30%. Significant temperature tuning under type I (o?e+e) noncritical interaction along the optical z-axis is also demonstrated, extending the signal tuning range from 740 nm down to 676 nm and idler tuning range from 1893 nm up to 2497 nm. Using second harmonic generation of the amplified signal pulses, also in BiB(3)O(6),wavelength extension to 370-500 nm has been achieved at 24% conversion efficiency, providing 10-muJ pulses across the tuning range. Optical parametric generation and amplification in BiB(3)O(6) under strong two-photon absorption pumped by 210-muJ pulses at 355 nm is also reported, providing amplified signal pulse energies of 14.2 muJ at OPA conversion efficiency as high as 21% and a spectral coverage across 450-1674 nm.

  10. Bandwidth-allocated algorithm modeled with matrix theory for traffic-orientated multisubsystem-based virtual passive optical network in metro-access optical network (United States)

    Xia, Weidong; Gan, Chaoqin; Chen, Bingqin; Xie, Weilun; Zhang, YuChao; Gou, Kaiyu


    In a metro-access optical network, a bandwidth-allocated algorithm is proposed for traffic-orientated multisubsystem-based virtual passive optical network (MS-VPON) that can implement the syncretism of multiple systems such as time division multiplexing-PON (TDM-PON), wavelength division multiplexing-PON (WDM-PON), and orthogonal frequency division multiplexing-PON (OFDM-PON). VPONs are constructed based on traffic and different VPONs are separated by different types of traffic. The bandwidth-allocated algorithm is modeled with a matrix theory to determine which VPON can be admitted and then a bandwidth is assigned to these VPONs. With the algorithm, the network value can be maximized. Two cases are investigated to demonstrate the effectiveness of the proposed algorithm in the bandwidth-utilized ratio and VPONs' admission probability.

  11. Ultralow-phase-noise millimetre-wave signal generator assisted with an electro-optics-modulator-based optical frequency comb. (United States)

    Ishizawa, A; Nishikawa, T; Goto, T; Hitachi, K; Sogawa, T; Gotoh, H


    Low-noise millimetre-wave signals are valuable for digital sampling systems, arbitrary waveform generation for ultra-wideband communications, and coherent radar systems. However, the phase noise of widely used conventional signal generators (SGs) will increase as the millimetre-wave frequency increases. Our goal has been to improve commercially available SGs so that they provide a low-phase-noise millimetre-wave signal with assistance from an electro-optics-modulator-based optical frequency comb (EOM-OFC). Here, we show that the phase noise can be greatly reduced by bridging the vast frequency difference between the gigahertz and terahertz ranges with an EOM-OFC. The EOM-OFC serves as a liaison that magnifies the phase noise of the SG. With the EOM-OFC used as a phase noise "booster" for a millimetre-wave signal, the phase noise of widely used SGs can be reduced at an arbitrary frequency f (6 ≦ f ≦ 72 GHz).

  12. Channel characteristic division OFDM-PON for next generation optical access. (United States)

    Cheng, Lin; Wen, He; Zheng, Xiaoping; Zhang, Hanyi; Zhou, Bingkun


    A novel OFDM-PON structure based on channel characteristic division is proposed to reduce the sampling and computation requirement at the ONUs. In this method, the preprocessed downstream signal propagated to the ONUs is diversely aliased on spectrum by the sub-Nyquist sampling. With the subcarriers in OFDM symbols distorted according to the channel characteristics and overlaid by sections, users can recover the expected original data sent to the specific ONU lossless. Based on this method, the receiving capability of one of the 32 ONUs in a 40-Gb/s 32-QAM channel characteristic division OFDM-PON experiment is tested. The experiment confirms that the sampling rates and FFT sizes can be reduced to 1/32 on average compared to the conventional method. This new method also supports dynamic bandwidth allocations and improves the system efficiency and security by realizing the addressing process in the physical layer.

  13. Performance of an improved first generation optical CT scanner for 3D dosimetry. (United States)

    Qian, Xin; Adamovics, John; Wuu, Cheng-Shie


    Performance analysis of a modified 3D dosimetry optical scanner based on the first generation optical CT scanner OCTOPUS is presented. The system consists of PRESAGE dosimeters, the modified 3D scanner, and a new developed in-house user control panel written in Labview program which provides more flexibility to optimize mechanical control and data acquisition technique. The total scanning time has been significantly reduced from initial 8 h to ∼2 h by using the modified scanner. The functional performance of the modified scanner has been evaluated in terms of the mechanical integrity uncertainty of the data acquisition process. Optical density distribution comparison between the modified scanner, OCTOPUS and the treatment plan system has been studied. It has been demonstrated that the agreement between the modified scanner and treatment plans is comparable with that between the OCTOPUS and treatment plans.

  14. Arbitrary waveform generator and differentiator employing an integrated optical pulse shaper. (United States)

    Liao, Shasha; Ding, Yunhong; Dong, Jianji; Yang, Ting; Chen, Xiaolin; Gao, Dingshan; Zhang, Xinliang


    We propose and demonstrate an optical arbitrary waveform generator and high-order photonic differentiator based on a four-tap finite impulse response (FIR) silicon-on-insulator (SOI) on-chip circuit. Based on amplitude and phase modulation of each tap controlled by thermal heaters, we obtain several typical waveforms such as triangular waveform, sawtooth waveform, square waveform and Gaussian waveform, etc., assisted by an optical frequency comb injection. Unlike other proposed schemes, our scheme does not require a spectral disperser which is difficult to fabricate on chip with high resolution. In addition, we demonstrate first-, second- and third-order differentiators based on the optical pulse shaper. Our scheme can switch the differentiator patterns from first- to third-order freely. In addition, our scheme has distinct advantages of compactness, capability for integration with electronics.

  15. All-optical generation of DFT-S-OFDM superchannels using periodic sinc pulses. (United States)

    Lowery, Arthur James; Zhu, Chen; Viterbo, Emanuele; Corcoran, Bill


    Discrete-Fourier-transform spread (DFT-S) optical Orthogonal Frequency Division Multiplexed (OFDM) signals offer improved nonlinearity performance in long haul optical communications systems, and can be used to form superchannels. In this paper we propose how DFT-S-OFDM superchannels can be generated and demultiplexed using all-optical techniques, and demonstrate the feasibility using numerical simulations. We also discuss how each wavelength channel is similar to recently proposed Orthogonally Time-Division Multiplexed (OrthTDM) systems using periodic-sinc pulses from, for example, a Nyquist laser. The key difference between OrthTDM and DFT-S-OFDM is the synchronization of the symbol boundaries of every modulation tributary; because of this we show that OrthTDM cannot be formed into superchannels that can be demultiplexed without penalties, but DFT-S-OFDM can be.

  16. Asynchronous Free-Space Optical CDMA Communications System for Last-mile Access Network

    DEFF Research Database (Denmark)

    Jurado-Navas, Antonio; Raddo, Thiago R.; Sanches, Anderson L.


    We propose a new hybrid asynchronous OCDMA-FSO communications system for access network solutions. New ABER expressions are derived under gamma-gamma scintillation channels, where all users can surprisingly achieve error-free transmissions when FEC is employed....

  17. The Design of the M-B-Quadro Optical Switch and Its Access Control Strategies

    Institute of Scientific and Technical Information of China (English)


    This paper proposes a new simple contention resolution switching architecture, M-B-Quadro, and its underlying access control strategies. By incorporating delay and buffer lines, the switching node can effectively obtain very low packet deflection probability.

  18. Engaging the optics community in the development of informative, accessible resources focusing on careers (United States)

    Poulin-Girard, Anne-Sophie; Gingras, F.; Zambon, V.; Thériault, G.


    Young people often have biased and pre-conceived ideas about scientists and engineers that can dissuade them from considering a career in optics. This situation is compounded by the fact that existing resources on careers in optics are not suitable since they mostly focus on more general occupations such as a physicist and an electrical engineer. In addition, the linguistic register is not adapted for students, and many of these resources are only available to guidance counselors. To create appropriate resources that will inform high school students on different career opportunities in optics and photonics, we sought the collaboration of our local optics community. We selected seven specific occupations: entrepreneur in optics, university professor, teacher, technician, research and development engineer, sales representative and graduate student in optics. For each career, a list of daily tasks was created from the existing documentation by a guidance counselor and was validated by an expert working in the field of optics. Following a process of validation, we built surveys in which professionals were asked to select the tasks that best represented their occupation. The surveys were also used to gather other information such as level of education and advice for young people wishing to pursue careers in optics. Over 175 professionals answered the surveys. With these results, we created a leaflet and career cards that are available online and depict the activities of people working in optics and photonics. We hope that these resources will help counter the negative bias against scientific careers and inform teenagers and young adults on making career choices that are better suited to their preferences and aspirations.

  19. Seamless Optical Fiber-Wireless Millimeter- Wave Transmission Link for Access Networks

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Lebedev, Alexander; Vegas Olmos, Juan José;


    This paper presents an experimental demonstration of a millimeter-wave wireless bridge in the W-band for transparent broadband fiber access in the sub-urban areas, where full fiber connections are impracticable.......This paper presents an experimental demonstration of a millimeter-wave wireless bridge in the W-band for transparent broadband fiber access in the sub-urban areas, where full fiber connections are impracticable....

  20. Optical harmonics generation in metal/dielectric heterostructures in the presence of Tamm plasmon-polaritons (United States)

    Afinogenov, B. I.; Popkova, A. A.; Bessonov, V. O.; Fedyanin, A. A.


    We have studied an influence of Tamm plasmon-polaritons (TPPs) excitation on the nonlinear-optical response of one-dimensional photonic crystal/metal structures. It was shown that in case when the fundamental radiation is in resonance with the TPP, second-harmonic generation in the sample is enhanced over two times of magnitude in comparison with a bare metal film. Using methods of nonlinear transfer matrices it was demonstrated that the third-order nonlinear response of a metal/dielectric heterostructure, when both fundamental and third-harmonic radiation are in resonance with the first- and third-order TPPs respectively, can be enhanced via two mechanisms: fundamental field localization and optical harmonic resonant tunneling. The overall enhancement of the third harmonic generation in that case can exceed three orders of magnitude in comparison with the non-resonant case.

  1. Design and verification of diffractive optical elements for speckle generation of 3-D range sensors (United States)

    Du, Pei-Qin; Shih, Hsi-Fu; Chen, Jenq-Shyong; Wang, Yi-Shiang


    The optical projection using speckles is one of the structured light methods that have been applied to three-dimensional (3-D) range sensors. This paper investigates the design and fabrication of diffractive optical elements (DOEs) for generating the light field with uniformly distributed speckles. Based on the principles of computer generated holograms, the iterative Fourier transform algorithm was adopted for the DOE design. It was used to calculate the phase map for diffracting the incident laser beam into a goal pattern with distributed speckles. Four patterns were designed in the study. Their phase maps were first examined by a spatial light modulator and then fabricated on glass substrates by microfabrication processes. Finally, the diffraction characteristics of the fabricated devices were verified. The experimental results show that the proposed methods are applicable to the DOE design of 3-D range sensors. Furthermore, any expected diffraction area and speckle density could be possibly achieved according to the relations presented in the paper.

  2. Generation-X mirror technology development plan and the development of adjustable x-ray optics (United States)

    Reid, Paul B.; Davis, William; O'Dell, Stephen; Schwartz, Daniel A.; Tolier-McKinstry, Susan; Wilke, Rudeger H. T.; Zhang, William


    Generation-X is being studied as an extremely high resolution, very large area grazing incidence x-ray telescope. Under a NASA Advanced Mission Concepts Study, we have developed a technology plan designed to lead to the 0.1 arcsec (HPD) resolution adjustable optics with 50 square meters of effective area necessary to meet Generation-X requirements. We describe our plan in detail. In addition, we report on our development activities of adjustable grazing incidence optics via the fabrication of bimorph mirrors. We have successfully deposited thin-film piezo-electric material on the back surface of thin glass mirrors. We report on the electrical and mechanical properties of the bimorph mirrors. We also report on initial finite element modeling of adjustable grazing incidence mirrors; in particular, we examine the impact of how the mirrors are supported - the boundary conditions - on the deformations which can be achieved.

  3. Single-sideband photonic microwave generation with an optically injected quantum-dot semiconductor laser. (United States)

    Chen, Chih-Ying; Cheng, Chih-Hao; Lin, Fan-Yi


    We studied single-sideband (SSB) photonic microwave generation with a high sideband rejection ratio (SRR) based on the period-one dynamical states of an optically injected quantum-dot (QD) semiconductor laser and demonstrated that the SSB signals have SRRs of approximately 15 dB higher than those generated with a conventional quantum-well semiconductor laser under conditions of optimal microwave power. The enhancement of SRR in the QD laser, which is important in mitigating the power penalty effect in applications such as radio-over-fiber optical communications, could be primarily attributed to a lower carrier decay rate in the dots, smaller linewidth enhancement factor, and reduced photon decay rate.

  4. Design and verification of diffractive optical elements for speckle generation of 3-D range sensors (United States)

    Du, Pei-Qin; Shih, Hsi-Fu; Chen, Jenq-Shyong; Wang, Yi-Shiang


    The optical projection using speckles is one of the structured light methods that have been applied to three-dimensional (3-D) range sensors. This paper investigates the design and fabrication of diffractive optical elements (DOEs) for generating the light field with uniformly distributed speckles. Based on the principles of computer generated holograms, the iterative Fourier transform algorithm was adopted for the DOE design. It was used to calculate the phase map for diffracting the incident laser beam into a goal pattern with distributed speckles. Four patterns were designed in the study. Their phase maps were first examined by a spatial light modulator and then fabricated on glass substrates by microfabrication processes. Finally, the diffraction characteristics of the fabricated devices were verified. The experimental results show that the proposed methods are applicable to the DOE design of 3-D range sensors. Furthermore, any expected diffraction area and speckle density could be possibly achieved according to the relations presented in the paper.

  5. Thermo-optical Properties of Gold Nanoparticles and Carbon Nanotubes: Characterization of Heat Generation (United States)

    Hernandez-Martinez, Pedro L.; Richardson, Hugh H.; Govorov, Alexander O.


    We investigate the system of optically excited nanostructures in a matrix aiming to understand heat generation at the nanoscale level. We study two kinds of structures: spherical gold nanoparticles (NPs) and carbon nanotubes (CNTs). The heating processes occur under light illumination and for Au NPs involve the plasmon resonance[1,2,3]. For the matrix, we consider air, AlGaN and Si. Theoretical calculations and experimental data are combined to make a quantitative measure of the amount of heat generated by optically excited Au NPs and CNTs. [1] Richardson H.H, Carlson M.T, Tandler, P.J, Hernandez P, Govorov A.O, Nano Letters 9(3) 1139-1146 (2009). [2] Govorov A.O, Richardson H.H, NanoToday 2(1) 30-38 (2007). [3] Govorov A.O, Zhang W, Skeini T, Richardson H., Lee J, and Kotov N, Nanoscale Res. Lett. 1:84--90 (2006).

  6. Optical arbitrary waveform generation based on multi-wavelength semiconductor fiber ring laser (United States)

    Li, Peili; Ma, Xiaolu; Shi, Weihua; Xu, Enming


    A new scheme of generating optical arbitrary waveforms based on multi-wavelength semiconductor fiber ring laser (SFRL) is proposed. In this novel scheme, a wide and flat optical frequency comb (OFC) is provided directly by multi-wavelength SFRL, whose central frequency and comb spacing are tunable. OFC generation, de-multiplexing, amplitude and phase modulation, and multiplexing are implementing in an intensity and phase tunable comb filter, as induces the merits of high spectral coherence, satisfactory waveform control and low system loss. By using the mode couple theory and the transfer matrix method, the theoretical model of the scheme is established. The impacts of amplitude control, phase control, number of spectral line, and injection current of semiconductor optical amplifier (SOA) on the waveform similarity are studied using the theoretical model. The results show that, amplitude control and phase control error should be smaller than 1% and 0.64% respectively to achieve high similarity. The similarity of the waveform is improved with the increase of the number of spectral line. When the injection current of SOA is in a certain range, the optical arbitrary waveform reaches a high similarity.

  7. A toolbox for generating single-stranded DNA in optical tweezers experiments. (United States)

    Candelli, Andrea; Hoekstra, Tjalle P; Farge, Geraldine; Gross, Peter; Peterman, Erwin J G; Wuite, Gijs J L


    Essential genomic transactions such as DNA-damage repair and DNA replication take place on single-stranded DNA (ssDNA) or require specific single-stranded/double-stranded DNA (ssDNA/dsDNA) junctions (SDSJ). A significant challenge in single-molecule studies of DNA-protein interactions using optical trapping is the design and generation of appropriate DNA templates. In contrast to dsDNA, only a limited toolbox is available for the generation of ssDNA constructs for optical tweezers experiments. Here, we present several kinds of DNA templates suitable for single-molecule experiments requiring segments of ssDNA of several kilobases in length. These different biotinylated dsDNA templates can be tethered between optically trapped microspheres and can, by the subsequent use of force-induced DNA melting, be converted into partial or complete ssDNA molecules. We systematically investigated the time scale and efficiency of force-induced melting at different ionic strengths for DNA molecules of different sequences and lengths. Furthermore, we quantified the impact of microspheres of different sizes on the lifetime of ssDNA tethers in optical tweezers experiments. Together, these experiments provide deeper insights into the variables that impact the production of ssDNA for single molecules studies and represent a starting point for further optimization of DNA templates that permit the investigation of protein binding and kinetics on ssDNA. Copyright © 2013 Wiley Periodicals, Inc.

  8. Chaotic oscillation and random-number generation based on nanoscale optical-energy transfer

    CERN Document Server

    Naruse, Makoto; Aono, Masashi; Hori, Hirokazu; Ohtsu, Motoichi


    By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantum dots (QDs), with one QD smaller than the other, between which energy transfers via optical near-field interactions. When the system is pumped by continuous-wave radiation and incorporates a timing delay between two energy transfers within the system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test suites, we confirm that the signals are sufficiently random to qualify the system as a random-number generator (R...

  9. Physical and optical data collected from drifting buoys between May 1993 - December 1996 (NODC Accession 0000586) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling and downwelling irradiances were collected from surface optical drifter buoys off the California coast (NE Pacific limit-180) from 05 May 1993 to 06...

  10. Layer 2 and 3 contention resolution and radio-over-fiber in OCDMA PON for transparent optical access in personal networks

    NARCIS (Netherlands)

    Huiszoon, B.; Hartog, F.T.H. den; Larrodé, M.G.; Koonen, A.M.J.


    In this paper, we analyze, for the first time, the eminent role of optical transparent networking in personal networks. We show how an optical access network mitigates many issues with respect to connectivity and mobility management. A concrete personal network user-scenario deduces requirements for

  11. SeaBASS Bio-optical and pigment data collected from 1979-08-22 to 2011-12-14 (NCEI Accession 0086308) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains SeaWiFS Bio-optical Archive and Storage System (SeaBASS) bio-optical, pigment, and other data collected from 1979-08-22 to 2011-12-14....

  12. Strong terahertz generation by optical rectification of a super-Gaussian laser beam (United States)

    Kumar, Subodh; Kishor Singh, Ram; Sharma, R. P.


    Terahertz (THz) generation by optical rectification of a laser beam having spatially super-Gaussian and temporally Gaussian intensity profile is investigated when it is propagating in a pre-formed rippled density plasma. The quasi-static ponderomotive force which is generated due to the variation in intensity of laser pulse leads to a nonlinear current density in the direction transverse to the direction of propagation which drives a radiation. The frequency of this radiation falls in the THz range if the pulse duration of the laser is chosen suitably. The density ripple provides the phase matching. The yield of generated THz has been compared when the phase matching is exact and when there is slight mismatch of phases. The variation in the intensity of the generated THz with the index of super-Gaussian pulse has also been studied.

  13. THz Generation by Optical Rectification and Competition with Other Nonlinear Processes

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhen-Yu; HAMEAU Sophie; TIGNON Jér(o)me


    We present a study of the competition between tera-hertz (THz) generation by optical rectification in (110)Zn Te crystals,two-photon absorption,second harmonic generation and flee-carrier absorption.The two-photon nonlinear absorption coefficient,second harmonic generation efficiency and flee-carrier absorption coefficient in the THz range are measured independently.The incident pump field is shown to be depleted by two-photon absorption and the THz radiation is shown to be reduced,upon focusing,by free-carrier absorption.The reduction of the generated THz radiation upon tight focusing is explained,provided that one also takes into account diffraction effects from the sub-wavelength THz source.

  14. Effects of chirp of pump pulses on broadband terahertz pulse spectra generated by optical rectification (United States)

    Hamazaki, Junichi; Furusawa, Kentaro; Sekine, Norihiko; Kasamatsu, Akifumi; Hosako, Iwao


    The effects of the chirp of the pump pulse in broadband terahertz (THz) pulse generation by optical rectification (OR) in GaP were systematically investigated. It was found that the pre-compensation for the dispersion of GaP is important for obtaining smooth and single-peaked THz spectra as well as high power-conversion efficiency. It was also found that an excessive amount of chirp leads to distortions in THz spectra, which can be quantitatively analyzed by using a simple model. Our results highlight the importance of accurate control over the chirp of the pump pulse for generating broadband THz pulses by OR.

  15. Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs

    DEFF Research Database (Denmark)

    Couny, F.; Benabid, F.; Roberts, John;


    crystal fiber. The waveguidance results not from a photonic band gap but from the inhibited coupling between the core and cladding modes. The spectrum consists of up to 45 high-order Stokes and anti-Stokes lines and is generated by driving the confined gas with a single, moderately powerful (10-kilowatt......Ultrabroad coherent comb-like optical spectra spanning several octaves are a chief ingredient in the emerging field of attoscience. We demonstrate generation and guidance of a three-octave spectral comb, spanning wavelengths from 325 to 2300 nanometers, in a hydrogen-filled hollow-core photonic...

  16. A novel optical lithography implement utilizing third harmonic generation via metallic tip enhanced near field (United States)

    Zhang, Hui; Zhu, Ning; Mei, Ting; He, Miao; Li, Hao; Chen, Zhenshi


    A novel scheme for near-field optical lithography utilizing a metallic tip illuminated by femtosecond laser pulses with proper polarization has been presented. The strongly enhanced near field at the metallic tip offers a localized excitation source for the third harmonic generation in the nonlinear material. The generated third harmonic via excitation of nonlinear photoresist provides good exposure contrast due to the cubic intensity dependence. The spatial resolution of this novel lithography scheme is shown to be better than that of the conventional lithography technique.

  17. Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides

    CERN Document Server

    Matsuda, Nobuyuki; Shimizu, Kaoru; Tokura, Yasuhiro; Kuramochi, Eiichi; Notomi, Masaya; 10.1364/OE.21.008596


    We demonstrate the generation of quantum-correlated photon pairs from a Si photonic-crystal coupled-resonator optical waveguide. A slow-light supermode realized by the collective resonance of high-Q and small-mode-volume photonic-crystal cavities successfully enhanced the efficiency of the spontaneous four-wave mixing process. The generation rate of photon pairs was improved by two orders of magnitude compared with that of a photonic-crystal line defect waveguide without a slow-light effect.

  18. Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides. (United States)

    Matsuda, Nobuyuki; Takesue, Hiroki; Shimizu, Kaoru; Tokura, Yasuhiro; Kuramochi, Eiichi; Notomi, Masaya


    We demonstrate the generation of quantum-correlated photon pairs from a Si photonic-crystal coupled-resonator optical waveguide. A slow-light supermode realized by the collective resonance of high-Q and small-mode-volume photonic-crystal cavities successfully enhanced the efficiency of the spontaneous four-wave mixing process. The generation rate of photon pairs was improved by two orders of magnitude compared with that of a photonic-crystal line defect waveguide without a slow-light effect.

  19. A 15-meter Multi-Gigabit W-band Bidirectional Wireless Bridge in Fiber-Optic Access Networks

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Vegas Olmos, Juan José; Lebedev, Alexander;


    We present a bidirectional wireless bridge in the W-band enabling the seamless convergence between the wireless and fiber-optic access networks. In the downlink, a 16 Gbit/s QPSK signal is photonically up-converted at the wireless transmitter and electrically down-converted at the wireless receiver....... The down-converted signal is re-modulated on to the lightwave and transmit further through the fiber-optic system. In the uplink, both up-and down-conversion are performed by electrical means. Furthermore, we investigate both passive and active wireless transmitters in this work for both downlink...... and uplink transmissions. With an active wireless transmitter, up to 15 meters wireless transmission is successfully achieved with a BER below the 7% FEC limit in the downlink....

  20. Optical steering of thermally generated microbubbles in a liquid for targeted metallic nanoparticle delivery (United States)

    Krishnappa, Arjun; Abeywickrema, Ujitha; Banerjee, Partha


    A novel mathematical model is developed to investigate the behavior of thermally generated microbubbles in the presence of optical radiation to understand the mechanism of their steering. Forces acting on a bubble are studied in detail using a general force model. It has been proposed that these microbubbles with agglomerated metallic nanoparticles can be used for targeted drug delivery. The model can be extended to include the steering of bubbles with agglomerated silver or gold nanoparticles on their surface.

  1. Biological Effects of Laser Radiation. Volume IV. Optical Second Harmonic Generation in Biological Tissues. (United States)


    the result of a photochemical rather tha a phototherml 3 mob~aim. The specific concern of this chesis is the generation of optical eecoed-harmoi...local fundamental field at frequency w and a, 0 and * are complex coefficients . While 9q. (3) is a scalar equation, it still reflects an important...aniso- tropic property of a nonlinear dipole. That is, the coefficient 8 and all other even order term coefficients vanish if )j simply changes sign

  2. Investigation of the power characteristics of a Gunn-diode quasi-optical generator


    Borodkin, A. I.; Bulgakov, B. M.; Chernyshov, I. Yu.


    The results of investigations of the power characteristics of a quasi-optical millimeter-wave Gunn diode generator are given. The efficiency of power output from an open resonator is investigated. It is shown that the impedances of a Gunn diode and an open resonator can be matched using a radial resonator. The conditions under which the Gunn diode provides maximum power into the load are studied.

  3. 13.5 nm High Harmonic Generation Driven by a Visible Noncollinear Optical Parametric Amplifier (United States)


    light source. We build a high energy tunable visible Optical Parametric Amplifier, and drive High Harmonic Generation in Argon and Helium . We study how...wavelength of 13.5 nm. The results agree well with a previously developed theoretical model. We predict that using a 630-nm driver in Helium could have a...light on the photo resist. Current techniques are capable of producing sub-100-nm features by using UV light at 193 nm from excimer lasers, but for

  4. Fibre-optic photochemical stroke: generating and measuring photochemical changes inside the brain (United States)

    Tsiminis, G.; Klarić, T. S.; Schartner, E. P.; Warren-Smith, S. C.; Lewis, M. D.; Koblar, S. A.; Monro, T. M.


    We report here on the development of a method to induce a stroke in a specific location within a mouse brain through the use of an optical fibre. By capturing the emitted fluorescence signal generated using the same fibre it is then possible to monitor photochemical changes within the brain in real-time, potentially reducing the requirement for post-operative histology to determine if a stroke has successfully been induced within the animal.

  5. Converged wireline and wireless signal transport over optical fibre access links

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Prince, Kamau; Osadchiy, Alexey Vladimirovich


    This article reviews emerging trends in converged optical-wireless communication systems and outline the role that photonic technologies are playing in making the vision of a wireline-wireless converged signal transport network a reality.......This article reviews emerging trends in converged optical-wireless communication systems and outline the role that photonic technologies are playing in making the vision of a wireline-wireless converged signal transport network a reality....

  6. The history and evolution of optically accessible research engines and their impact on our understanding of engine combustion

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Paul C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)


    The development and application of optically accessible engines to further our understanding of in-cylinder combustion processes is reviewed, spanning early efforts in simplified engines to the more recent development of high-pressure, high-speed engines that retain the geometric complexities of modern production engines. Limitations of these engines with respect to the reproduction of realistic metal test engine characteristics and performance are identified, as well as methods that have been used to overcome these limitations. Finally, the role of the work performed in these engines on clarifying the fundamental physical processes governing the combustion process and on laying the foundation for predictive engine simulation is summarized.

  7. WDM Optical Access Network for Full-Duplex and Reconfigurable Capacity Assignment Based on PolMUX Technique

    Directory of Open Access Journals (Sweden)

    Jose Mora


    Full Text Available We present a novel bidirectional WDM-based optical access network featuring reconfigurable capacity assignment. The architecture relies on the PolMUX technique allowing a compact, flexible, and bandwidth-efficient router in addition to source-free ONUs and color-less ONUs for cost/complexity minimization. Moreover, the centralized architecture contemplates remote management and control of polarization. High-quality transmission of digital signals is demonstrated through different routing scenarios where all channels are dynamically assigned in both downlink and uplink directions.

  8. Fourier optics along a hybrid optical fiber for Bessel-like beam generation and its applications in multiple-particle trapping. (United States)

    Kim, Jongki; Jeong, Yoonseob; Lee, Sejin; Ha, Woosung; Shin, Jeon-Soo; Oh, Kyunghwan


    Highly efficient Bessel-like beam generation was achieved based on a new all-fiber method that implements Fourier transformation of a micro annular aperture along a concatenated composite optical fiber. The beam showed unique characteristics of tilted washboard optical potential in the transverse plane and sustained a nondiffracting length over 400 μm along the axial direction. Optical trapping of multiple dielectric particles and living Jurkat cells were successfully demonstrated along the axial direction of the beam in the water.

  9. Generation and excitation of different orbital angular momentum states in a tunable microstructure optical fiber. (United States)

    Huang, Wei; Liu, Yan-ge; Wang, Zhi; Zhang, Wanchen; Luo, Mingming; Liu, Xiaoqi; Guo, Junqi; Liu, Bo; Lin, Lie


    A tunable microstructure optical fiber for different orbital angular momentum states generation is proposed and investigated by simulation. The microstructure optical fiber is composed of a high refractive index ring and a hollow core surrounded by four small air holes. The background material of the microstructure fiber is pure silica. The hollow core and the surrounded four small air holes are infiltrated by optical functional material whose refractive index can be modulated via physical parameters, leading to the conversion between circular polarized fundamental mode and different orbital angular momentum states at tunable operating wavelengths. A theoretical model is established and the coupling mechanism is systematically analyzed and investigated based on coupled mode theory. The fiber length can be designed specifically to reach the maximum coupling efficiency for every OAM mode respectively, and can also be fixed at a certain value for several OAM modes generation under tunable refractive index conditions. The proposed fiber coupler is flexible and compact, making it a good candidate for tunable OAM generation and sensing systems.

  10. Photonic generation of linearly chirped millimeter wave based on comb-spacing tunable optical frequency comb (United States)

    Xia, Zongyang; Xie, Weilin; Sun, Dongning; Shi, Hongxiao; Dong, Yi; Hu, Weisheng


    We demonstrated a photonic approach to generate a phase-continuous frequency-linear-chirped millimeter-wave (mm-wave) signal with high linearity based on continuous-wave phase modulated optical frequency comb and cascaded interleavers. Through linearly sweeping the frequency of the radio frequency (RF) driving signal, high-order frequency-linear-chirped optical comb lines are generated and then extracted by the cascaded interleavers. By beating the filtered high-order comb lines, center frequency and chirp range multiplied linear-chirp microwave signals are generated. Frequency doubled and quadrupled linear-chirp mm-wave signals of range 48.6 to 52.6 GHz and 97.2 to 105.2 GHz at chirp rates of 133.33 and 266.67 GHz/s are demonstrated with the ±1st and ±2nd optical comb lines, respectively, while the RF driving signal is of chirp range 24.3 to 26.3 GHz and chirp time 30 ms.

  11. Raman Based Dispersive Systems for Short Pulse Generation and Optical Signal Processing (United States)

    Kalyoncu, Salih Kagan

    Spatiotemporal dispersive systems have been widely utilized for nonlinear optics and optical signal processing applications. This thesis is dedicated to the investigation of dispersive and nonlinear properties of optical fibers, temporal dispersion for real time operation and spatially dispersed pulse shaping systems. In particular, this thesis is focused on Raman based dispersive systems based on such promising techniques as dispersion management, photonic time stretching and space-to-wavelength mapping for synchronous pulse generation and all-optical RF arbitrary waveform generation incorporated with mature MEMS technology. The first part of this thesis discusses a novel technique of using dispersion managed system for synchronous first and second order pulsed Raman lasers that can achieve frequency spacing of up to 1000 cm-1, which are widely utilized for CARS microscopy applications. In particular, I focus on analytical and numerical analysis of pulsed stability derived for Raman lasers by using dispersion-managed telecom fibers and pumping at near 1530 nm telecom wavelengths. I show the evolution of the first and second order Stokes signals at the output for different peak pump power and the net anomalous dispersion combinations. I determine the stability condition for dispersion-managed synchronous Raman lasers up to second order. In the second part of the thesis, the noise performance of the amplified time stretched systems is investigated. Amplified time stretched systems enabling real time applications such as high-speed analog-to-digital converters, RF arbitrary waveform generation and dispersive imaging are performance limited by the noise cumulated in the system. In particular, I analyze the noise performance and hence the effective number of bits (ENOB) performance of time stretch ADCs with distributed and lumped amplifications. I estimate that distributed amplification in time stretch system with >10GHz analog bandwidth exhibit up to 16dB higher SNR

  12. Generating single-photon catalyzed coherent states with quantum-optical catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xue-xiang, E-mail: [Center for Quantum Science and Technology, Jiangxi Normal University, Nanchang 330022 (China); Yuan, Hong-chun [College of Electrical and Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou 213002 (China)


    We theoretically generate single-photon catalyzed coherent states (SPCCSs) by means of quantum-optical catalysis based on the beam splitter (BS) or the parametric amplifier (PA). These states are obtained in one of the BS (or PA) output channels if a coherent state and a single-photon Fock state are present in two input ports and a single photon is registered in the other output port. The success probabilities of the detection (also the normalization factors) are discussed, which is different for BS and PA catalysis. In addition, we prove that the generated states catalyzed by BS and PA devices are actually the same quantum states after analyzing photon number distribution of the SPCCSs. The quantum properties of the SPCCSs, such as sub-Poissonian distribution, anti-bunching effect, quadrature squeezing effect, and the negativity of the Wigner function are investigated in detail. The results show that the SPCCSs are non-Gaussian states with an abundance of nonclassicality. - Highlights: • We generate single-photon catalyzed coherent states with quantum-optical catalysis. • We prove the equivalent effects of the lossless beam splitter and the non-degenerate parametric amplifier. • Some nonclassical properties of the generated states are investigated in detail.

  13. ACCESS I: An Optical Transmission Spectrum of GJ 1214b Reveals a Heterogeneous Stellar Photosphere (United States)

    Rackham, Benjamin; Espinoza, Néstor; Apai, Dániel; López-Morales, Mercedes; Jordán, Andrés; Osip, David J.; Lewis, Nikole K.; Rodler, Florian; Fraine, Jonathan D.; Morley, Caroline V.; Fortney, Jonathan J.


    GJ 1214b is the most studied sub-Neptune exoplanet to date. Recent measurements have shown its near-infrared transmission spectrum to be flat, pointing to a high-altitude opacity source in the exoplanet's atmosphere, either equilibrium condensate clouds or photochemical hazes. Many photometric observations have been reported in the optical by different groups, though simultaneous measurements spanning the entire optical regime are lacking. We present an optical transmission spectrum (4500–9260 Å) of GJ 1214b in 14 bins, measured with Magellan/IMACS repeatedly over three transits. We measure a mean planet-to-star radius ratio of {R}p/{R}s=0.1146+/- 2× {10}-4 and mean uncertainty of σ ({R}p/{R}s)=8.7× {10}-4 in the spectral bins. The optical transit depths are shallower on average than observed in the near-infrared. We present a model for jointly incorporating the effects of a composite photosphere and atmospheric transmission through the exoplanet's limb (the CPAT model), and use it to examine the cases of absorber and temperature heterogeneities in the stellar photosphere. We find the optical and near-infrared measurements are best explained by the combination of (1) photochemical haze in the exoplanetary atmosphere with a mode particle size r = 0.1 μm and haze-forming efficiency {f}{haze}=10 % and (2) faculae in the unocculted stellar disk with a temperature contrast {{Δ }}T={354}-46+46 K, assuming 3.2% surface coverage. The CPAT model can be used to assess potential contributions of heterogeneous stellar photospheres to observations of exoplanet transmission spectra, which will be important for searches for spectral features in the optical.

  14. Gigabit Access Passive Optical Network Using Wavelength Division Multiplexing—GigaWaM

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Suhr, Lau; Prince, Kamau;


    passive optical network (WDM-PON) architecture that can deliver symmetric 1 Gb/s to 64 users over 20 km standard single mode fiber using the L and C bands for down and upstream, respectively. During the course of the project, a number of key enabling technologies were developed including tunable...... transceivers, athermal 50 GHz spaced arrayed waveguide grating multiplexer devices, novel hybridization technologies for integration of passive and active electro-optic devices, and system-level algorithms that ensure the quality of service. The outcome of the project proved a reliable, cost...

  15. Channel access schemes and fiber optic configurations for integrated-services local area networks. Ph.D. Thesis (United States)

    Nassehi, M. Mehdi


    Local Area Networks are in common use for data communications and have enjoyed great success. Recently, there is a growing interest in using a single network to support many applications in addition to traditional data traffic. These additional applications introduce new requirements in terms of volume of traffic and real-time delivery of data which are not met by existing networks. To satisfy these requirements, a high-bandwidth tranmission medium, such as fiber optics, and a distributed channel access scheme for the efficient sharing of the bandwidth among the various applications are needed. As far as the throughput-delay requirements of the various application are concerned, a network structure along with a distributed channel access are proposed which incorporate appropriate scheduling policies for the transmission of outstanding messages on the network. A dynamic scheduling policy was devised which outperforms all existing policies in terms of minimizing the expected cost per message. A broadcast mechanism was devised for the efficient dissemination of all relevant information. Fiber optic technology is considered for the high-bandwidth transmisison medium.

  16. Comparison of Monolithic Optical Frequency Comb Generators Based on Passively Mode-Locked Lasers for Continuous Wave mm-Wave and Sub-THz Generation

    DEFF Research Database (Denmark)

    Criado, A. R.; de Dios, C.; Acedo, P.;


    In this paper, two different Passive Mode-Locked Laser Diodes (PMLLD) structures, a Fabry–Perot cavity and a ring cavity laser are characterized and evaluated as monolithic Optical Frequency Comb Generators (OFCG) for CW sub-THz generation. An extensive characterization of the devices under study...

  17. Applying Fourth Generation Management to Access Services: Reinventing Customer Service and Process Management (United States)

    Hasty, Douglas F.


    Are librarians doing all they can to ensure that customer services are delivered with the customer in mind? Librarians are great at helping, but we sometimes need help with identifying customers, defining their needs, developing services, and reviewing the processes behind the services. Fourth Generation Management provides new insight for…

  18. Electrically controlled nonlinear optical generation and signal processing in plasmonic metamaterials (Conference Presentation) (United States)

    Cai, Wenshan


    Metamaterials have offered not only the unprecedented opportunity to generate unconventional electromagnetic properties that are not found in nature, but also the exciting potential to create customized nonlinear media with tailored high-order effects. Two particularly compelling directions of current interests are active metamaterials, where the optical properties can be purposely manipulated by external stimuli, and nonlinear metamaterials, which enable intensity-dependent frequency conversion of light. By exploring the interaction of these two directions, we leverage the electrical and optical functions simultaneously supported in nanostructured metals and demonstrate electrically-controlled nonlinear processes from photonic metamaterials. We show that a variety of nonlinear optical phenomena, including the wave mixing and the optical rectification, can be purposely modulated by applied voltage signals. In addition, electrically-induced and voltage-controlled nonlinear effects facilitate us to demonstrate the backward phase matching in a negative index material, a long standing prediction in nonlinear metamaterials. Other results to be covered in this talk include photon-drag effect in plasmonic metamaterials and ion-assisted nonlinear effects from metamaterials in electrolytes. Our results reveal a grand opportunity to exploit optical metamaterials as self-contained, dynamic electrooptic systems with intrinsically embedded electrical functions and optical nonlinearities. Reference: L. Kang, Y. Cui, S. Lan, S. P. Rodrigues, M. L. Brongersma, and W. Cai, Nature Communications, 5, 4680 (2014). S. P. Rodrigues and W.Cai, Nature Nanotechnology, 10, 387 (2015). S. Lan, L. Kang, D. T. Schoen, S. P. Rodrigues, Y. Cui, M. L. Brongersma, and W. Cai, Nature Materials, 14, 807 (2015).

  19. Yellow nanosecond sum-frequency generating optical parametric oscillator using periodically poled LiNbO3

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Bruun-Larsen, M.; Balle-Petersen, O.;


    Nanosecond yellow light has been generated through simultaneously phase matched sum-frequency generation and optical parametric oscillation in a periodically poled LiNbO3 crystal. 300 mW of yellow light at a wavelength of 586 nm has been generated from 1.3 W of laser power from a Q-switched Yb...

  20. Second-harmonic mode coupling in microresonator-based optical frequency comb generation

    CERN Document Server

    Xue, Xiaoxiao; Xuan, Yi; Jaramillo-Villegas, Jose A; Wang, Pei-Hsun; Leaird, Daniel E; Erkintalo, Miro; Qi, Minghao; Weiner, Andrew M


    Microresonator-based optical frequency comb (microcomb) generation can potentially achieve ultra-compact volume and low power consumption for portable applications. The comb formation is a consequence of cascaded four-wave-mixing due to the third-order Kerr nonlinearity. Mode coupling can affect the comb self-starting and mode-locking behaviors, resulting in complex dynamics that is far from well understood. Understanding the mechanism of mode coupling in comb generation proves highly important to achieve stable and robust microcomb sources. Here, we report a nonlinear mode coupling mechanism in microresonators with simultaneous second- and third-order nonlinearities. The nonlinear dynamics governed by the third-order nonlinearity is altered by second-harmonic mode coupling. As a demonstration of this effect, second-harmonic assisted coherent comb generation is achieved in the normal dispersion region, where comb creation is prohibited in the absence of mode coupling. Since second-order nonlinearity has been ...

  1. Direct generation of optical frequency combs in $\\chi^{(2)}$ nonlinear cavities

    CERN Document Server

    Mosca, S; Parisi, M; Maddaloni, P; Santamaria, L; De Natale, P; De Rosa, M


    Quadratic nonlinear processes are currently exploited for frequency comb transfer and extension from the visible and near infrared regions to other spectral ranges where direct comb generation cannot be accomplished. However, frequency comb generation has been directly observed in continuously-pumped quadratic nonlinear crystals placed inside an optical cavity. At the same time, an introductory theoretical description of the phenomenon has been provided, showing a remarkable analogy with the dynamics of third-order Kerr microresonators. Here, we give an overview of our recent work on $\\chi^{(2)}$ frequency comb generation. Furthermore, we generalize the preliminary three-wave spectral model to a many-mode comb and present a stability analysis of different cavity field regimes. Although at a very early stage, our work lays the groundwork for a novel class of highly efficient and versatile frequency comb synthesizers based on second-order nonlinear materials.

  2. Generation of Vector Partially Coherent Optical Sources Using Phase-Only Spatial Light Modulators (United States)

    Hyde, Milo W.; Bose-Pillai, Santasri; Voelz, David G.; Xiao, Xifeng


    A simple and flexible optical system for generating electromagnetic or vector partially coherent sources or beams is presented. The alternative design controls field amplitude (beam shape), coherence, and polarization using only spatial light modulators. This improvement makes the apparatus simpler to construct and significantly increases the flexibility of vector partially coherent source generators by allowing many different types of sources to be produced without changing the physical setup. The system's layout and theoretical foundations are thoroughly discussed. The utility and flexibility of the proposed system are demonstrated by producing a vector Schell-model and non-Schell-model source. The experimental results are compared to theoretical predictions to validate the design. Lastly, design aspects, which must be considered when building a vector partially coherent source generator for a specific application, are discussed.

  3. Direct generation of optical frequency combs in χ(2 nonlinear cavities

    Directory of Open Access Journals (Sweden)

    Mosca Simona


    Full Text Available Quadratic nonlinear processes are currently exploited for frequency comb transfer and extension from the visible and near infrared regions to other spectral ranges where direct comb generation cannot be accomplished. However, frequency comb generation has been directly observed in continuously pumped quadratic nonlinear crystals placed inside an optical cavity. At the same time, an introductory theoretical description of the phenomenon has been provided, showing a remarkable analogy with the dynamics of third-order Kerr microresonators. Here, we give an overview of our recent work on χ(2 frequency comb generation. Furthermore, we generalize the preliminary three-wave spectral model to a many-mode comb and present a stability analysis of different cavity field regimes. Although our work is a very early stage, it lays the groundwork for a novel class of highly efficient and versatile frequency comb synthesizers based on second-order nonlinear materials.

  4. Coherent detection passive optical access network enabling converged delivery of broadcast and dedicated broadband services

    DEFF Research Database (Denmark)

    Osadchiy, Alexey Vladimirovich; Prince, Kamau; Guerrero Gonzalez, Neil


    We propose a passive optical network architecture based on coherent detection for converged delivery of broadcast services from a dedicated remote broadcast server and user-specific services from a local central office. We experimentally demonstrate this architecture with mixed traffic types...

  5. ACCESS I: An Optical Transmission Spectrum of GJ 1214b Reveals a Heterogeneous Stellar Photosphere

    CERN Document Server

    Rackham, Benjamin; Apai, Dániel; López-Morales, Mercedes; Jordán, Andrés; Osip, David J; Lewis, Nikole K; Rodler, Florian; Fraine, Jonathan D; Morley, Caroline V; Fortney, Jonathan J


    GJ 1214b is the most studied sub-Neptune exoplanet to date. Recent measurements have shown its near-infrared transmission spectrum to be flat, pointing to a high-altitude opacity source in the exoplanet's atmosphere, either equilibrium condensate clouds or photochemical hazes. Many photometric observations have been reported in the optical by different groups, though simultaneous measurements spanning the entire optical regime are lacking. We present an optical transmission spectrum ($4,500-9,260$\\AA) of GJ 1214b in 14 bins measured with Magellan/IMACS repeatedly over three transits. We measure a mean planet-to-star radius ratio of ${R_{p}/R_{s} = 0.1146\\pm{2\\times10^{-4}}}$ and mean uncertainty of $\\sigma(R_{p}/R_{s})=8.7\\times10^{-4}$ in the spectral bins. The optical transit depths are shallower on average than observed in the near-infrared. We present a model for jointly incorporating the effects of a composite photosphere and atmospheric transmission (CPAT) through the exoplanet's limb, and use it to exa...

  6. Application of real image display and generation technique in space optical system (United States)

    He, Ruicong; Lin, Li


    In space optical system, image display and generation can be influenced by various factors such as stray light, space distance, orbit parameters and so on. To acquire accurate and clear image, these factors should be considered. Before acquiring the real image, simulation is necessary. Through comparing the simulated image with the real one, accuracy can be proved. This paper focuses on building a three-dimensional (3D) model of a satellite and simulating its orbit according to the real data. The 3D images of the satellite should be acquired in specific positions and postures from a camera on another satellite. 3D Studio Max is the software used in the process to build models, simulate and generate images. It is a 3D computer graphics program for making 3D animations, models, and images. Also in the paper, stray light relevant to the satellite surfaces is analyzed. Tracepro is the software used in the stray light analyze to trace the light on the surfaces. It is an optical engineering software program for designing and analyzing optical and illumination systems. Stray light analyzing result is addicted to the 3D images, so that the images are more precise. Therefore, the final images can be complete images including light intensity information of the satellite surfaces which makes the images more real.

  7. The optical design of GMOX: a next-generation instrument concept for Gemini (United States)

    Barkhouser, Robert; Robberto, Massimo; Smee, Stephen A.; Ninkov, Zoran; Gennaro, Mario; Heckman, Timothy


    We present the optical design of GMOX, the Gemini Multi-Object eXtra-wide-band spectrograph. GMOX was selected as part of the Gemini Instrument Feasibility Study to develop capabilities and requirements for the next facility instrument (Gen4#3) for the observatory. We envision GMOX covering the entire optical/near-IR wavelength range accessible from the ground, from 3500 Å in the U band up to 2.4 μm in the K band, with nominal resolving power R≃5,000. To maximize efficiency, the bandpass is split into three spectrograph arms - blue, red, and near-infrared - with the near-infrared arm further split into three channels covering the Y+J, H, and K bands. At the heart of each arm is a Digital Micromirror Device (DMD) serving as a programmable slit array. This technology will enable GMOX to simultaneously acquire hundreds of spectra of faint sources in crowded fields with unparalleled spatial resolution, optimally adapting to both seeing-limited and diffraction limited conditions provided by ALTAIR and GeMS at Gemini North and South, respectively. Fed by GeMS at f/33, GMOX can synthesize slits as small as 40 mas (corresponding to a single HST/WFC3 CCD pixel) over its entire 85"x45" field of view. With either ALTAIR or the native telescope focal ratio of f/16, both the slit and field sizes double. In this paper we discuss the conceptual optical design of GMOX including, for each arm: the pre-slit optics, DMD slit array, off-axis Schmidt collimator, VPH grating, and refractive spectrograph and slit-viewing cameras.

  8. TWDM-PON-AN optical backhaul solution for hybrid optical wireless networks (United States)

    Naqshbandi, Fayiqa; Jha, Rakesh Kumar


    To improve the performance of broadband access networks Full Service Access Network selected Time and wavelength division multiplexed Passive Optical Network (TWDM-PON) as the primary solution for next-generation optical access (Next-Generation Passive Optical Networks 2 (NGPON2)). This paper reviews the recent progress in this access technology. Different possible solutions for the-next generation access are explained. Comparison of the different TWDM architectures experimentally demonstrated so far is made considering the large split, long reach and high capacity requirements of NGPON2. Major technical challenges in implementing the TWDM networks are discussed. Possible options for designing hybrid wireless-wireline architectures are explained taking care of the high bandwidth provided by the optical networks and high mobility of wireless networks. Also an integrated optical wireless architecture is suggested using TWDM-PON as an optical backhaul.

  9. Ready Access to Proquinazid Haptens via Cross-Coupling Chemistry for Antibody Generation and Immunoassay Development (United States)

    Esteve-Turrillas, Francesc A.; Mercader, Josep V.; Parra, Javier; Agulló, Consuelo; Abad-Somovilla, Antonio; Abad-Fuentes, Antonio


    Bioconjugate preparation is a fundamental step for antibody generation and immunoassay development to small chemical compounds. For analytical targets holding in their structure an aryl halogen atom, cross-coupling reactions may be a simple and efficient way to obtain functionalized derivatives; thus offering great potential to elicit robust and selective immune responses after being coupled to immunogenic carrier proteins. However, substitution of the halogen atom by an aliphatic chain might eventually compromise the affinity and specificity of the resulting antibodies. In order to address this issue, proquinazid, a new-generation fungicide with outstanding performance, was chosen as model analyte. Two functionalized derivatives differing in spacer arm rigidity were synthesized by Sonogashira cross-coupling chemistry. These haptens were covalently coupled to bovine serum albumin and the resulting immunoconjugates were employed for rabbit vaccination. Antibodies were tested for proquinazid recognition by direct and indirect competitive immunoassay, and IC50 values in the low nanomolar range were found, thus demonstrating the suitability of this straightforward synthetic strategy for the generation of immunoreagents to compounds bearing an aryl halide. Following antibody characterization, competitive immunoassays were developed and employed to determine proquinazid residues in grape musts, and their analytical performance was satisfactorily validated by comparison with GC–MS. Besides having described the development of the first immunochemical method for proquinazid analysis, an efficient functionalization approach for analytes comprising aryl halides is reported. PMID:26214507

  10. Ready Access to Proquinazid Haptens via Cross-Coupling Chemistry for Antibody Generation and Immunoassay Development.

    Directory of Open Access Journals (Sweden)

    Francesc A Esteve-Turrillas

    Full Text Available Bioconjugate preparation is a fundamental step for antibody generation and immunoassay development to small chemical compounds. For analytical targets holding in their structure an aryl halogen atom, cross-coupling reactions may be a simple and efficient way to obtain functionalized derivatives; thus offering great potential to elicit robust and selective immune responses after being coupled to immunogenic carrier proteins. However, substitution of the halogen atom by an aliphatic chain might eventually compromise the affinity and specificity of the resulting antibodies. In order to address this issue, proquinazid, a new-generation fungicide with outstanding performance, was chosen as model analyte. Two functionalized derivatives differing in spacer arm rigidity were synthesized by Sonogashira cross-coupling chemistry. These haptens were covalently coupled to bovine serum albumin and the resulting immunoconjugates were employed for rabbit vaccination. Antibodies were tested for proquinazid recognition by direct and indirect competitive immunoassay, and IC50 values in the low nanomolar range were found, thus demonstrating the suitability of this straightforward synthetic strategy for the generation of immunoreagents to compounds bearing an aryl halide. Following antibody characterization, competitive immunoassays were developed and employed to determine proquinazid residues in grape musts, and their analytical performance was satisfactorily validated by comparison with GC-MS. Besides having described the development of the first immunochemical method for proquinazid analysis, an efficient functionalization approach for analytes comprising aryl halides is reported.

  11. Variable weight Khazani-Syed code using hybrid fixed-dynamic technique for optical code division multiple access system (United States)

    Anas, Siti Barirah Ahmad; Seyedzadeh, Saleh; Mokhtar, Makhfudzah; Sahbudin, Ratna Kalos Zakiah


    Future Internet consists of a wide spectrum of applications with different bit rates and quality of service (QoS) requirements. Prioritizing the services is essential to ensure that the delivery of information is at its best. Existing technologies have demonstrated how service differentiation techniques can be implemented in optical networks using data link and network layer operations. However, a physical layer approach can further improve system performance at a prescribed received signal quality by applying control at the bit level. This paper proposes a coding algorithm to support optical domain service differentiation using spectral amplitude coding techniques within an optical code division multiple access (OCDMA) scenario. A particular user or service has a varying weight applied to obtain the desired signal quality. The properties of the new code are compared with other OCDMA codes proposed for service differentiation. In addition, a mathematical model is developed for performance evaluation of the proposed code using two different detection techniques, namely direct decoding and complementary subtraction.

  12. An Introductory Mixed-Methods Intersectionality Analysis of College Access and Equity: An Examination of First-Generation Asian Americans and Pacific Islanders (United States)

    Museus, Samuel D.


    In this article, the author discusses how researchers can use mixed-methods approaches and intersectional analyses to understand college access among first-generation Asian American and Pacific Islanders (AAPIs). First, he discusses the utility of mixed-methods approaches and intersectionality research in studying college access. Then, he…

  13. Photo-generated THz antennas: All-optical control of plasmonic materials

    CERN Document Server

    Georgiou, Giorgos; Mulder, Peter; Bauhuis, Gerard J; Schermer, John J; Rivas, Jaime Gómez


    Localized surface plasmon polaritons in conducting structures give rise to enhancements of electromagnetic local fields and extinction efficiencies. Resonant conducting structures are conventionally fabricated with a fixed geometry that determines their plasmonic response. Here, we challenge this conventional approach by demonstrating the photo-generation of plasmonic materials (THz plasmonic antennas) on a flat semiconductor layer by the structured optical illumination through a spatial light modulator. Free charge carriers are photo-excited only on selected areas, which enables the definition of different plasmonic antennas on the same sample by simply changing the illumination pattern, thus without the need of physically structuring the sample. These results open a wide range of possibilities for an all-optical spatial and temporal control of resonances on plasmonic surfaces and the concomitant control of THz extinction and local field enhancements.

  14. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ngah Demon, Siti Zulaikha [School of Materials Science, Japan Advanced Institute of Science and Technology, 923-1292 Ishikawa (Japan); Department of Physics, Centre of Defence Foundation Studies, National Defence University of Malaysia, 53 000 Kuala Lumpur (Malaysia); Miyauchi, Yoshihiro [Department of Applied Physics, School of Applied Sciences, National Defense Academy of Japan, 239-8686 Kanagawa (Japan); Mizutani, Goro, E-mail: [School of Materials Science, Japan Advanced Institute of Science and Technology, 923-1292 Ishikawa (Japan); Matsushima, Toshinori; Murata, Hideyuki [School of Materials Science, Japan Advanced Institute of Science and Technology, 923-1292 Ishikawa (Japan)


    Highlights: • SHG phase from the interfaces of ITO/CuPc and ITO/pentacene was observed. • Optical dispersion of the organic thin film was taken into account. • Phase shift from bare ITO was 140° for ITO/CuPc and 160° for ITO/pentacene. - Abstract: We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕ{sub interface} with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.

  15. Non-thermal hot electrons ultrafastly generating hot optical phonons in graphite (United States)

    Ishida, Y.; Togashi, T.; Yamamoto, K.; Tanaka, M.; Taniuchi, T.; Kiss, T.; Nakajima, M.; Suemoto, T.; Shin, S.


    Investigation of the non-equilibrium dynamics after an impulsive impact provides insights into couplings among various excitations. A two-temperature model (TTM) is often a starting point to understand the coupled dynamics of electrons and lattice vibrations: the optical pulse primarily raises the electronic temperature Tel while leaving the lattice temperature Tl low; subsequently the hot electrons heat up the lattice until Tel = Tl is reached. This temporal hierarchy owes to the assumption that the electron-electron scattering rate is much larger than the electron-phonon scattering rate. We report herein that the TTM scheme is seriously invalidated in semimetal graphite. Time-resolved photoemission spectroscopy (TrPES) of graphite reveals that fingerprints of coupled optical phonons (COPs) occur from the initial moments where Tel is still not definable. Our study shows that ultrafast-and-efficient phonon generations occur beyond the TTM scheme, presumably associated to the long duration of the non-thermal electrons in graphite.

  16. Short optical pulse generation at 40 GHz with a bulk electro-absorption modulator packaged device (United States)

    Langlois, Patrick; Moore, Ronald; Prosyk, Kelvin; O'Keefe, Sean; Oosterom, Jill A.; Betty, Ian; Foster, Robert; Greenspan, Jonathan; Singh, Priti


    Short optical pulse generation at 40GHz and 1540nm wavelength is achieved using fully packaged bulk quaternary electro-absorption modulator modules. Experimental results obtained with broadband and narrowband optimized packaged modules are presented and compared against empirical model predictions. Pulse duty cycle, extinction ratio and chirp are studied as a function of sinusoidal drive voltage and detuning between operating wavelength and modulator absorption band edge. Design rules and performance trade-offs are discussed. Low-chirp pulses with a FWHM of ~12ps and sub-4ps at a rate of 40GHz are demonstrated. Optical time-domain demultiplexing of a 40GHz to a 10GHz pulse train is also demonstrated with better than 20dB extinction ratio.

  17. Optical sum-frequency generation in a whispering-gallery-mode resonator (United States)

    Strekalov, Dmitry V.; Kowligy, Abijith S.; Huang, Yu-Ping; Kumar, Prem


    We demonstrate sum-frequency generation between a telecom wavelength and the Rb D2 line, achieved through natural phase matching in a nonlinear whispering gallery mode resonator. Due to the strong optical field confinement and ultra high Q of the cavity, the process saturates already at sub-mW pump peak power, at least two orders of magnitude lower than in existing waveguide-based devices. The experimental data are in agreement with the nonlinear dynamics and phase matching theory based on spherical geometry. Our experimental and theoretical results point toward a new platform for manipulating the color and quantum states of light waves for applications such as atomic memory based quantum networking and logic operations with optical signals.

  18. A new generation of plastic optical fibers and its functional exploiting

    Institute of Scientific and Technical Information of China (English)


    A major problem of plastic optical fibers(POFs) is large transmission loss in comparison with silica fibers.After adopting a new optical fiber structure,hollow-core Bragg fiber with cobweb-structured cladding,which can suppress the absorption losses of constituent materials by a factor of about 104―106,the problem of POFs with large losses is solved ultimately.With the advantage of flexibility and easy bending,the POFs with this structure can guide light with low transmission loss for information and energy in the wavelength range of visible light to terahertz(THz) wave(0.4―1000μm).This new generation of POFs will find many applications

  19. Optics At The Arctic Circle, An Example Of Application-Oriented Research Generating New Industrial Activities (United States)

    Lammasniemi, Jorma; Myllyla, Risto; Hannula, Tapio


    This paper discusses research/industry interaction in application-oriented research groups specializing in the development of optoelectronic instruments and measurement methods. The research groups are working in Oulu, a city in Northern Finland, in an industrial environment consisting originally of pulp and paper industries together with metalworking and engineering industries. These established industrial areas are active in adopting new technologies for automation and process renewal. Furthermore, new emerging businesses are being generated through pilot installations and new product ideas created by research groups. The technologies considered are optical and infrared process analyzers, semiconductor laser-based dimension measurements and optoelectronic hybrid module fabrication. Examples of new products and enterprises employing these technologies are given. Additional skills and education especially in miniature optics and related constructions, are considered important for the future.

  20. Generation of 2.1 m wavelength from degenerate high gray track resistant potassium titanyl phosphate optical parametric oscillator

    Indian Academy of Sciences (India)

    S Verma; C Mishra; V Kumar; M Yadav; K C Bahuguna; N S Vasan; S P Gaba


    This paper presents the experimental results of degenerate optical parametric generation using a high gray track resistant potassium titanyl phosphate (HGTR KTP) optical parametric oscillator (OPO). An average output power of 7 W at 10 kHz has been achieved that includes both signal and idler powers near degeneracy using 20Waverage power from a 1064 nm Nd:YVO4 pump source corresponding to an optical conversion efficiency of 35%.

  1. Dispersion design of all-normal dispersive microstructured optical fibers for coherent supercontinuum generation (United States)

    Hartung, Alexander; Heidt, Alexander M.; Bartelt, Hartmut


    Recently, the generation of coherent, octave-spanning, and recompressible supercontinuum (SC) light has been demonstrated in optical fibers with all-normal group velocity dispersion (GVD) behavior by femtosecond pumping. In the normal dispersion regime, soliton dynamics are suppressed and the SC generation process is mainly due to self-phase modulation and optical wave breaking. This makes such white light sources suitable for time-resolved applications. The broadest spectra can be obtained when the pump wavelength equals the wavelength of maximum all-normal GVD. Therefore each available pump wavelength requires a specifically designed optical fiber with suitable GVD to unfold its full power. We investigate the possibilities to shift the all-normal maximum dispersion wavelength in microstructured optical fibers from the near infra red (NIR) to the ultra violet (UV). In general, a submicron guiding fiber core surrounded by a holey region is required to overcome the material dispersion of silica. Photonic crystal fibers (PCFs) with a hexagonal array of holes as well as suspended core fibers are simulated for this purpose over a wide field of parameters. The PCFs are varied concerning their air hole diameter and pitch and the suspended core fibers are varied concerning the number of supporting walls and the wall width. We show that these two fiber types complement each other well in their possible wavelength regions for allnormal GVD. While the PCFs are suitable for obtaining a maximum all-normal GVD in the NIR, suspended core fibers are well applicable in the visible wavelength range.

  2. Flat-top pulse generation by the optical Fourier transform technique for ultrahigh speed signal processing

    DEFF Research Database (Denmark)

    Palushani, Evarist; Oxenløwe, Leif Katsuo; Galili, Michael;


    This paper reports on the generation of 1.6-ps fullwidth at half-maximum flat-top pulses by the optical Fourier transform technique, and the utilization of these pulses in a 320-Gb/s demultiplexing experiment. It is demonstrated how a narrow pulse having a 15-nm wide third-order super-Gaussian sp......This paper reports on the generation of 1.6-ps fullwidth at half-maximum flat-top pulses by the optical Fourier transform technique, and the utilization of these pulses in a 320-Gb/s demultiplexing experiment. It is demonstrated how a narrow pulse having a 15-nm wide third-order super......-Gaussian spectral intensity profile is mapped into a flat-top pulse resembling its spectrum by simple propagation in SMF. Theoretical and experimental descriptions are given on flat-top pulse generation, and an experimental validation of the systems performance of the pulses is carried out, demonstrating a benefit...

  3. In vivo optical virtual biopsy of human oral mucosa with harmonic generation microscopy (United States)

    Tsai, Ming-Rung; Chen, Szu-Yu; Shieh, Dar-Bin; Lou, Pei-Jen; Sun, Chi-Kuang


    Recent clinical studies on human skin indicated that in vivo multi-harmonic generation microscopy (HGM) can achieve sub-micron resolution for histopathological analysis with a high penetration depth and leave no energy or photodamages in the interacted tissues. It is thus highly desired to apply HGM for in vivo mucosa histopathological diagnosis. In this paper, the first in vivo optical virtual biopsy of human oral mucosa by using epi-HGM is demonstrated. We modified an upright microscope to rotate the angle of objective for in vivo observation. Our clinical study reveals the capability of HGM to in vivo image cell distributions in human oral mucosa, including epithelium and lamina propria with a high penetration depth greater than 280 μm and a high spatial resolution better than 500 nm. We also found that the third-harmonic-generation (THG) contrast on nucleus depends strongly on its thicknesses, in agreement with a numerical simulation. Besides, 4% acetic acid was found to be able to enhance the THG contrast of nucleus in oral mucosa, while such enhancement was found to decay due to the metabolic clearance of the contrast enhancer by the oral mucosa. Our clinical study indicated that, the combined epi-THG and epi-second-harmonic-generation (SHG) microscopy is a promising imaging tool for in vivo noninvasive optical virtual biopsy and disease diagnosis in human mucosa. PMID:21833368


    Directory of Open Access Journals (Sweden)

    Ion DONA


    Full Text Available The European consumer exigencies, the mechanisms of the Common Agricultural Policy, the European norms and standards, the ecological productions are as many challenges to which the producers, processors, traders and decision makers in the agro food field, and specifically for our research, in the cereals field, must face in order for the Romanian products to be present on an external market, as well as on an internal market that are increasingly competitive.In this paper we have concluded a brief analysis of the cereals market nationally and on a European level, and of the common support policies in this sector, of the common market organizations, as well as of the implications of the accession over the trade of cereal products. Also, we have made several recommendations within this paper targeting the specific sectorial aspects of the cereals sector: in order to fully profit from the possibilities offered by the Common Agricultural Policy instruments and from the demand and prices growth its necessary that Romanian producers organize and make, together, major investments in cereals conditioning and storage systems; the majority of Romanian producers sell the cereals immediately after harvest, when prices are at their lowest level; storage in good conditions of the harvest could allow a substantial increase of profit.

  5. Gain transient control for wavelength division multiplexed access networks using semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Osadchiy, Alexey Vladimirovich; Kjær, Rasmus;


    measurements how a near-saturated semiconductor optical amplifier (SOA) can be used to control these gain transients. An SOA is shown to reduce the penalty of transients originating in an EDFA from 2.3 dB to 0.2 dB for 10 Gb/s transmission over standard single mode fiber using a 231-1 PRBS pattern. The results...

  6. VCSEL-based gigabit IR-UWB link for converged communication and sensing applications in optical metro-access networks

    DEFF Research Database (Denmark)

    Pham, Tien Thang; Gibbon, Timothy Braidwood; Tafur Monroy, Idelfonso


    We report on experimental demonstration of an impulse radio ultrawideband (IR-UWB) based converged communication and sensing system. A 1550-nm VCSEL-generated IR-UWB signal is used for 2-Gbps wireless data distribution over 800-m and 50-km single mode fiber links which present short-range in......-building and long-reach access network applications. The IR-UWB signal is also used to simultaneously measure the rotational speed of a blade spinning between 18 and 30 Hz. To the best of our knowledge, this is the very first demonstration of a simultaneous gigabit UWB telecommunication and wireless UWB sensing...... application, paving the way forward for the development and deployment of converged UWB VCSEL-based technologies in access and in-building networks of the future....

  7. Experimental Generation of Riemann Waves in Optics: A Route to Shock Wave Control (United States)

    Wetzel, Benjamin; Bongiovanni, Domenico; Kues, Michael; Hu, Yi; Chen, Zhigang; Trillo, Stefano; Dudley, John M.; Wabnitz, Stefano; Morandotti, Roberto


    We report the first observation of Riemann (simple) waves, which play a crucial role for understanding the dynamics of any shock-bearing system. This was achieved by properly tailoring the phase of an ultrashort light pulse injected into a highly nonlinear fiber. Optical Riemann waves are found to evolve in excellent quantitative agreement with the remarkably simple inviscid Burgers equation, whose applicability in physical systems is often challenged by viscous or dissipative effects. Our method allows us to further demonstrate a viable novel route to efficiently control the shock formation by the proper shaping of a laser pulse phase. Our results pave the way towards the experimental study, in a convenient benchtop setup, of complex physical phenomena otherwise difficult to access.

  8. Experimental Generation of Riemann Waves in Optics: A Route to Shock Wave Control. (United States)

    Wetzel, Benjamin; Bongiovanni, Domenico; Kues, Michael; Hu, Yi; Chen, Zhigang; Trillo, Stefano; Dudley, John M; Wabnitz, Stefano; Morandotti, Roberto


    We report the first observation of Riemann (simple) waves, which play a crucial role for understanding the dynamics of any shock-bearing system. This was achieved by properly tailoring the phase of an ultrashort light pulse injected into a highly nonlinear fiber. Optical Riemann waves are found to evolve in excellent quantitative agreement with the remarkably simple inviscid Burgers equation, whose applicability in physical systems is often challenged by viscous or dissipative effects. Our method allows us to further demonstrate a viable novel route to efficiently control the shock formation by the proper shaping of a laser pulse phase. Our results pave the way towards the experimental study, in a convenient benchtop setup, of complex physical phenomena otherwise difficult to access.

  9. Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique (United States)

    Qi, Guohua; Yao, Jianping; Seregelyi, J.; Paquet, S.; Belisle, C.


    A new technique to generate and distribute a wide-band continuously tunable millimeter-wave signal using an optical external modulator and a wavelength-fixed optical notch filter is proposed. The optical intensity modulator is biased to suppress the odd-order optical sidebands. The wavelength-fixed optical notch filter is then used to filter out the optical carrier. Two second-order optical sidebands are obtained at the output of the notch filter. A millimeter-wave signal that has four times the frequency of the microwave drive signal is generated by beating the two second-order optical sidebands at a photodetector. Since no tunable optical filter is used, the system is easy to implement. A system using an LiNbO3 intensity modulator and a fiber Bragg grating filter is built. A stable and high spectral purity millimeter-wave signal tunable from 32 to 50 GHz is obtained by tuning the microwave drive signal from 8 to 12.5 GHz. The integrity of the generated millimeter-wave signal is maintained after transmission over a 25-km standard single-mode fiber. Theoretical analysis on the harmonic suppression with different modulation depths and filter attenuations is also discussed.

  10. Business and regulation of access networks of new generation. an approximation to the Spanish case using real options; Negocio y regulacion de las redes de acceso de nueva generacion. Aproximacion al caso espanol aplicando opciones reales

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo Olmedo, F.; Perez Amaral, T.


    Telecommunications carriers are deploying the so called New Generation Access (NGA) networks. These networks consist in substituting the last part of the network (the one that ends in the premises of the client) with optical fiber. This part of the network used to be made of copper. The investments in NGA imply considerable risks but can also constitute an impulse for other sectors. This research proposes a method for the evaluation of these investments including the implied real options. We also consider the regulatory implications of the obligations of renting the network to competitors. (Author) 22 refs.

  11. Study on RZ-4PAM downstream signals with duty cycles of 33% and 50% for optical access system application (United States)

    Chen, Fu-ping; Shao, Yu-feng; Chen, Lao; Shen, Shi-lu; Wang, Anrong; Luo, Ying-xiang; Zhao, Yun-jie


    4-ary pulse amplitude modulation (4PAM) signals with 33% and 50% return-to-zero (RZ) clocks are generated for passive optical network (PON). We demonstrate that RZ-4PAM signals with duty cycles of 33% and 50% after transmission over 20-km-long single mode fiber (SMF) at 10 Gbit/s can be directly detected by using one photo detector, and the original data can also be restored by one M-ary threshold detector and one 4PAM sequence decoder. The optical spectra of 33% and 50% RZ-4PAM signals are measured, and their eye-diagrams before and after transmission are also analyzed. Simulation results show that 33% and 50% RZ-4PAM downlink signals can be received effectively, and the received power values are -15.1 dBm and -13.8 dBm when the bit error rate (BER) is 10-6. Moreover, 33% RZ-4PAM optical signals have better reception performance than 50% RZ-4PAM optical signals.

  12. Generation of Bessel Beams at mm- and Sub mm-wavelengths by Binary Optical Elements (United States)

    Yu, Y. Z.; Dou, W. B.


    In this paper, binary optical elements (BOE’s) are designed for generating Bessel beams at mm- and sub mm- wavelengths. The design tool is to combine a genetic algorithm (GA) for global optimization with a two-dimension finite-difference time-domain (2-D FDTD) method for rigorous electromagnetic computation. The design process for converting a normally incident Gaussian beam into a Bessel beam is described in detail. Numerical results demonstrate that the designed BOE’s can not only successfully produce arbitrary order Bessel beams, but also have higher diffraction efficiencies when compared with amplitude holograms.

  13. Next generation nanolithography based on Ru/Be and Rh/Sr multilayer optics

    Directory of Open Access Journals (Sweden)

    N. I. Chkhalo


    Full Text Available A prospective move to 10.5 and 11.2 nm wavelengths, as an alternative to 6.7 and 13.5 nm, for next generation nanolithography is discussed. Ten-mirror optical systems based on Ru/Be, Mo/Be, Rh/Sr, Mo/Si, and La/B multilayers were compared for efficiency at their working wavelengths. It is shown that a transition to 10.5 nm and 11.2 nm may be a solution to the problem of increasing performance and resolution of a projection system.

  14. General analysis of group velocity effects in collinear optical parametric amplifiers and generators. (United States)

    Arisholm, Gunnar


    Group velocity mismatch (GVM) is a major concern in the design of optical parametric amplifiers (OPAs) and generators (OPGs) for pulses shorter than a few picoseconds. By simplifying the coupled propagation equations and exploiting their scaling properties, the number of free parameters for a collinear OPA is reduced to a level where the parameter space can be studied systematically by simulations. The resulting set of figures show the combinations of material parameters and pulse lengths for which high performance can be achieved, and they can serve as a basis for a design.

  15. Generation of nearly 3D-unpolarized evanescent optical near fields using total internal reflection. (United States)

    Hassinen, Timo; Popov, Sergei; Friberg, Ari T; Setälä, Tero


    We analyze the time-domain partial polarization of optical fields composed of two evanescent waves created in total internal reflection by random electromagnetic beams with orthogonal planes of incidence. We show that such a two-beam configuration enables to generate nearly unpolarized, genuine three-component (3D) near fields. This result complements earlier studies on spectral polarization, which state that at least three symmetrically propagating beams are required to produce a 3D-unpolarized near field. The degree of polarization of the near field can be controlled by adjusting the polarization states and mutual correlation of the incident beams.

  16. Optical image encryption based on binary Fourier transform computer-generated hologram and pixel scrambling technology (United States)

    Wang, Yong-Ying; Wang, Yu-Rong; Wang, Yong; Li, Hui-Juan; Sun, Wen-Jia


    A new method of optical image encryption with binary Fourier transform computer-generated hologram (CGH) and pixel-scrambling technology is presented. In this method, the orders of the pixel scrambling, as well as the encrypted image, are used as the keys to decrypt the original image. Therefore, higher security is achieved. Furthermore, the encrypted image is binary, so it is easy to be fabricated and robust against noise and distortion. Computer simulation results are given to verify the feasibility of this method and its robustness against occlusion and additional noise.

  17. A proposal for the generation of optical frequency comb in temperature insensitive microcavity (United States)

    Lei, Xun; Bian, Dandan; Chen, Shaowu


    We numerically simulate the generation of an optical frequency comb (OFC) in a microring based on the traditional Si3N4 strip waveguide and a temperature compensated slot waveguide. The results show that OFCs are susceptible to temperature with strip waveguide while they can keep stable when temperature changes 10 K in either low-Q (105) or high-Q (106) microcavity with the well-designed slot waveguide, which has great superiority in practical applications where the temperature drift of the cavity due to the intense pump or surrounding change is unavoidable. Project supported by the National Natural Science Foundation of China (Grant Nos. 61435002, 61527823, and 61321063).

  18. Mid-Infrared Optical Frequency Combs based on Difference Frequency Generation for Molecular Spectroscopy

    CERN Document Server

    Cruz, Flavio C; Johnson, Todd; Ycas, Gabriel; Klose, Andrew; Giorgetta, Fabrizio R; Coddington, Ian; Diddams, Scott A


    Mid-infrared femtosecond optical frequency combs were produced by difference frequency generation of the spectral components of a near-infrared comb in a 3-mm-long MgO:PPLN crystal. We observe strong pump depletion and 9.3 dB parametric gain in the 1.5 \\mu m signal, which yields powers above 500 mW (3 \\mu W/mode) in the idler with spectra covering 2.8 \\mu m to 3.5 \\mu m. Potential for broadband, high-resolution molecular spectroscopy is demonstrated by absorption spectra and interferograms obtained by heterodyning two combs.

  19. Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification. (United States)

    Witte, S; Zinkstok, R; Hogervorst, W; Eikema, K


    We demonstrate the generation of 9.8+/-0.3 fs laser pulses with a peak power exceeding one terawatt at 30 Hz repetition rate, using optical parametric chirped pulse amplification. The amplifier is pumped by 140 mJ, 60 ps pulses at 532 nm, and amplifies seed pulses from a Ti:Sapphire oscillator to 23 mJ/pulse, resulting in 10.5 mJ/pulse after compression while amplified fluorescence is kept below 1%. We employ grating-based stretching and compression in combination with an LCD phase-shaper, allowing compression close to the Fourier limit of 9.3 fs.

  20. Ultra-broadband Photonic Harmonic Mixer Based on Optical Comb Generation

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei;


    We propose a novel photonic harmonic mixer operating at frequencies up to the millimeter-wave (MMW) band. By combining a broadband fiber-wireless signal with highorder harmonics of a fundamental local oscillator in an optical frequency comb generator, frequency down-conversion can be implemented...... is experimentally demonstrated. Moreover, the error vector magnitude (EVM) performance of a multi-gigabit quadrature phase shift keying (QPSK) signal at 62.5, 82.5 and 102.5GHz carrier frequencies is studied to evaluate the downconversion efficiency. The proposed photonic harmonic mixer can be a candidate...

  1. Generating topological optical flux lattices for ultracold atoms by modulated Raman and radio-frequency couplings (United States)

    Yu, Jinlong; Xu, Zhi-Fang; You, Li


    We propose a scheme to dynamically generate optical flux lattices with nontrivial band topology using amplitude-modulated Raman lasers and radio-frequency (rf) magnetic fields. By tuning the strength of Raman and rf fields, three distinct phases are realized at unit filling for a unit cell. Respectively, these three phases correspond to normal insulator, topological Chern insulator, and semimetal. Nearly nondispersive bands are found to appear in the topological phase, which promises opportunities for investigating strongly correlated quantum states within a simple cold-atom setup. The validity of our proposal is confirmed by comparing the Floquet quasienergies from the evolution operator with the spectrum of the effective Hamiltonian.

  2. Concise review: alchemy of biology: generating desired cell types from abundant and accessible cells. (United States)

    Pournasr, Behshad; Khaloughi, Keynoush; Salekdeh, Ghasem Hosseini; Totonchi, Mehdi; Shahbazi, Ebrahim; Baharvand, Hossein


    A major goal of regenerative medicine is to produce cells to participate in the generation, maintenance, and repair of tissues that are damaged by disease, aging, or trauma, such that function is restored. The establishment of induced pluripotent stem cells, followed by directed differentiation, offers a powerful strategy for producing patient-specific therapies. Given how laborious and lengthy this process can be, the conversion of somatic cells into lineage-specific stem/progenitor cells in one step, without going back to, or through, a pluripotent stage, has opened up tremendous opportunities for regenerative medicine. However, there are a number of obstacles to overcome before these cells can be widely considered for clinical applications. Here, we focus on induced transdifferentiation strategies to convert mature somatic cells to other mature cell types or progenitors, and we summarize the challenges that need to be met if the potential applications of transdifferentiation technology are to be achieved. Copyright © 2011 AlphaMed Press.

  3. Computer generated hologram null test of a freeform optical surface with rectangular aperture (United States)

    Su, Ping; Ma, Jianshe; Tan, Qiaofeng; Kang, Guoguo; Liu, Yi; Jin, Guofan


    In null computed generated hologram (CGH) test of optical elements, fitting method is needed in null CGH design to generate continuous phase function from the ray-traced discrete phase data. The null CGH for freeform testing usually has a deformed aperture and a high order phase function, because of the aberrations introduced by freeform wavefront propagation. With traditional Zernike polynomial fitting method, selection of an orthogonal basis set and choosing number of terms are needed before fitting. Zernike polynomial fitting method is not suitable in null CGH design for freeform testing; a novel CGH design method with cubic B-spline interpolation is developed. For a freeform surface with 18×18 mm2 rectangular aperture and 630 μm peak-to-valley undulation, the null CGH with a curved rectangular aperture is designed by using the method proposed. Simulation and experimental results proved the feasibility of the novel CGH design method.

  4. Soliton fission and supercontinuum generation in photonic crystal fibre for optical coherence tomography application

    Indian Academy of Sciences (India)

    K Porsezian; R Vasantha Jayakantha Raja


    We present a practical design of novel photonic crystal fibre (PCF) to investigate the nonlinear propagation of femtosecond pulses for the application of optical coherence tomography (OCT) based on supercontinuum generation (SCG) process. In addition, this paper contains a brief introduction of the physical phenomena of soliton and SCG. Typically, here we discuss how the ultrabroadband radiation in PCF can be generated by SCG through various nonlinear effects of the fibre. To accomplish the proposed aim, we put forth liquid core PCF (LCPCF) structure filled with chloroform for OCT measurements of the eye. From the proposed design, we observe that proposed LCPCFs with liquid material exhibit significant broadened wavelength spectrum with low input pulse energy over small propagation distances for the OCT application.

  5. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification. (United States)

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi


    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.

  6. Performance optimization of an external enhancement resonator for optical second-harmonic generation (United States)

    Jurdik, E.; Hohlfeld, J.; van Etteger, A. F.; Toonen, A. J.; Meerts, W. L.; van Kempen, H.; Rasing, Th.


    We study the factors that ultimately limit the performance of an external enhancement resonator for optical second-harmonic generation (SHG). To describe the resonant SHG process we introduce a theoretical model that accounts for the intensity-dependent cavity loss that is due to harmonic generation and that also includes a realistic assumption about the shape and the frequency width of the laser mode. With the help of this model we optimized the performance of a doubling cavity based on a lithium triborate (LBO) crystal. This cavity was used for frequency doubling the output of a single-frequency titanium-doped sapphire laser at 850 nm. We were able to push the total second-harmonic conversion efficiency to 53% (a 1.54-W pump resulted in 820 mW of second-harmonic light), which to our knowledge is the best result ever reported for a LBO-based doubling cavity. , Laser-focused atomic deposition.

  7. Label-free imaging of thick tissue at 1550 nm using a femtosecond optical parametric generator. (United States)

    Trägårdh, Johanna; Robb, Gillian; Gadalla, Kamal K E; Cobb, Stuart; Travis, Christopher; Oppo, Gian-Luca; McConnell, Gail


    We have developed a simple wavelength-tunable optical parametric generator (OPG), emitting broadband ultrashort pulses with peak wavelengths at 1530-1790 nm, for nonlinear label-free microscopy. The OPG consists of a periodically poled lithium niobate crystal, pumped at 1064 nm by a ultrafast Yb:fiber laser with high pulse energy. We demonstrate that this OPG can be used for label-free imaging, by third-harmonic generation, of nuclei of brain cells and blood vessels in a >150 μm thick brain tissue section, with very little decay of intensity with imaging depth and no visible damage to the tissue at an incident average power of 15 mW.

  8. Two-mode optical state truncation and generation of maximally entangled states in pumped nonlinear couplers

    CERN Document Server

    Miranowicz, A; Miranowicz, Adam; Leonski, Wieslaw


    Schemes for optical-state truncation of two cavity modes are analysed. The systems, referred to as the nonlinear quantum scissors devices, comprise two coupled nonlinear oscillators (Kerr nonlinear coupler) with one or two of them pumped by external classical fields. It is shown that the quantum evolution of the pumped couplers can be closed in a two-qubit Hilbert space spanned by vacuum and single-photon states only. Thus, the pumped couplers can behave as a two-qubit system. Analysis of time evolution of the quantum entanglement shows that Bell states can be generated. A possible implementation of the couplers is suggested in a pumped double-ring cavity with resonantly enhanced Kerr nonlinearities in an electromagnetically-induced transparency scheme. The fragility of the generated states and their entanglement due to the standard dissipation and phase damping are discussed by numerically solving two types of master equations.

  9. Generating 2 micron continuous-wave ytterbium-doped fiber laser-based optical parametric effect (United States)

    Paul, M. C.; Latiff, A. A.; Hisyam, M. B.; Rusdi, M. F. M.; Harun, S. W.


    We report an efficient method for generating a 2 micron laser based on an optical parametric oscillator (OPO). It uses a long piece of a newly developed double-clad ytterbium-doped fiber (YDF), which is obtained by doping multi-elements of ZrO2, CeO2 and CaO in a phospho-alumina-silica glass as a gain medium. The efficient 2 micron laser generation is successful due to the presence of partially crystalline Yb-doped ZrO2 nano-particles that serve as a nonlinear material in a linear cavity configuration and high watt-level pump power. Stable self-wavelength double lasing at 2122 nm with an efficiency of 7.15% is successfully recorded. At a maximum pump power of 4.1 W, the output power is about 201 mW.

  10. High-frequency signal generation using 1550 nm VCSEL subject to two-frequency optical injection (United States)

    Consoli, Antonio; Quirce, Ana; Valle, Angel; Esquivias, Ignacio; Pesquera, Luis; García Tijero, Jose Manuel


    We experimentally investigate high-frequency microwave signal generation using a 1550 nm single-mode VCSEL subject to two-frequency optical injection. We first consider a situation in which the injected signals come from two similar VCSELs. The polarization of the injected light is parallel to that of the injected VCSEL. We obtain that the VCSEL can be locked to one of the injected signals, but the observed microwave signal is originated by beating at the photodetector. In a second situation we consider injected signals that come from two external cavity tunable lasers with a significant increase of the injected power with respect to the VCSEL-by-VCSEL injection case. The polarization of the injected light is orthogonal to that of the free-running slave VCSEL. We show that in this case it is possible to generate a microwave signal inside the VCSEL cavity.

  11. Optical harmonic generation enhanced due to ultrafast intensity fluctuations (Conference Presentation) (United States)

    Kopylov, Denis A.; Spasibko, Kirill Y.; Krutyanskiy, Viktor L.; Murzina, Tatiana V.; Leuchs, Gerd; Chekhova, Maria V.


    The effect of the quantum properties of light on nonlinear processes has been well studied theoretically. It has been shown that the efficiency of n-photon nonlinear processes in many cases scales as the normalized n-th order correlation function. For light with high intensity correlation function, the efficiency of the n-th harmonic generation will be considerably higher than for coherent light. The experimental observation of this effect remained difficult until recently, because of the absence of bright sources with strong and fast intensity fluctuations. For the experimental demonstration of statistical effects in optical harmonic generation we use as a pump the radiation of high-gain parametric down conversion. Such light shows quantum properties (e.g. quadrature or two-mode squeezing) and has large number of photons in one mode. The normalized n-th order correlation function for this light is (2n - 1)!!, which makes it more attractive for nonlinear processes than both coherent and thermal light. For the generation of optical harmonics we used broadband parametric down conversion around frequency-degeneracy (1600 nm) produced in 1cm BBO crystal from Ti:Sapphire laser (800 nm, 1.6ps, 5kHz, 3W mean intensity). Due to spectral filtering and post-selection technique we could vary the statistics of light from coherent to super-bunched, which allowed us to demonstrate the efficiency enhancement for second-, third-, and fourth-harmonic generation. The obtained experimental results show a good agreement with the theory.

  12. Experimental and theoretical investigation of relative optical band gaps in graphene generations (United States)

    Bhatnagar, Deepika; Singh, Sukhbir; Yadav, Sriniwas; Kumar, Ashok; Kaur, Inderpreet


    Size and chemical functionalization dependant optical band gaps in graphene family nanomaterials were investigated by experimental and theoretical study using Tauc plot and density functional theory (DFT). We have synthesized graphene oxide through a modified Hummer’s method using graphene nanoplatelets and sequentially graphene quantum dots through hydrothermal reduction. The experimental results indicate that the optical band gap in graphene generations was altered by reducing the size of graphene sheets and attachment of chemical functionalities like epoxy, hydroxyl and carboxyl groups plays a crucial role in varying optical band gaps. It is further confirmed by DFT calculations that the π orbitals were more dominatingly participating in transitions shown by projected density of states and the molecular energy spectrum represented the effect of attached functional groups along with discreteness in energy levels. Theoretical results were found to be in good agreement with experimental results. All of the above different variants of graphene can be used in native or modified form for sensor design and optoelectronic applications.

  13. Field enhancement at silicon surfaces by gold ellipsoids probed by optical second-harmonic generation spectroscopy (United States)

    Ulriksen, Hans Ulrik; Pedersen, Kjeld


    Optical second-harmonic generation (SHG) spectroscopy has been used to determine the field enhancements from Au nanoparticles on a silicon substrate. Au particles with diameters from 30 to 250 nm have been deposited on a Si substrate passivated by a 1 nm thick surface oxide. The linear optical spectra are dominated by a horizontal plasmon resonance near 1.0 eV, and the experimental spectra are modelled by the island film model in order to extract the linear properties of the metal particles. SHG spectroscopy from this system shows resonances from the metal particles and from the silicon/oxide substrate. By following the evolution of these Si resonances with the size of the Au particles, the field enhancement in the Si surface has been modelled. The effect of the Au particles on SHG at the Si E1 resonance is a combination of charge transfer through the thin oxide that changes the space charge region and an enhancement of the optical field in a thin surface layer of the Si substrate.

  14. On the possible ultrasonic inspection of micro-bubbles generated by the optical fiber tip

    Directory of Open Access Journals (Sweden)

    V. V. Kazakov


    Full Text Available We demonstrate the possibility of detection and monitoring of bubbles emerging near the tip of an optical fiber by means of ultrasonic method. The excitation of bubbles at their resonant frequencies is performed using short ultrasonic pulses having a wide frequency range simultaneously with their modulation by means of a long pulse of a monochromatic frequency. This method allows detection of bubbles of various sizes. Used signal processing method, which allows increased bubble detection accuracy, is proposed for research in environments of biological-like medium which show continuous variations in structure and properties when exposed to optical emission. The method has been demonstrated on model objects: in a liquid and in a biological tissue phantom using various methods of bubble generation (hydrolysis and optical emission. We studied bubble formation by the tip of a fiber of the surgical laser LSP-007/10 “IRE Polus” with a wavelength of 0.97μm coated with a highly absorbing graphite layer.

  15. 3D micro-optical elements for generation of tightly focused vortex beams

    Directory of Open Access Journals (Sweden)

    Balčytis Armandas


    Full Text Available Orbital angular momentum carrying light beams are usedfor optical trapping and manipulation. This emerging trend provides new challenges involving device miniaturization for improved performance and enhanced functionality at the microscale. Here we discus a new fabrication method based on combining the additive 3D structuring capability laser photopolymerization and the substractive sub-wavelength resolution patterning of focused ion beam lithography to produce micro-optical elements capable of compound functionality. As a case in point of this approach binary spiral zone pattern based high numerical aperture micro-lenses capable of generating topological charge carrying tightly focused vortex beams in a single wavefront transformation step are presented. The devices were modelled using finite-difference time-domain simulations, and the theoretical predictions were verified by optically characterizing the propagation properties of light transmitted through the fabricated structures. The resulting devices had focal lengths close to the predicted values of f = 18 µm and f = 13 µm as well as topological charge ℓ dependent vortex focal spot sizes of ~ 1:3 µm and ~ 2:0 µm for ℓ = 1 and ℓ = 2 respectively.

  16. Hybrid scheduling mechanisms for Next-generation Passive Optical Networks based on network coding (United States)

    Zhao, Jijun; Bai, Wei; Liu, Xin; Feng, Nan; Maier, Martin


    Network coding (NC) integrated into Passive Optical Networks (PONs) is regarded as a promising solution to achieve higher throughput and energy efficiency. To efficiently support multimedia traffic under this new transmission mode, novel NC-based hybrid scheduling mechanisms for Next-generation PONs (NG-PONs) including energy management, time slot management, resource allocation, and Quality-of-Service (QoS) scheduling are proposed in this paper. First, we design an energy-saving scheme that is based on Bidirectional Centric Scheduling (BCS) to reduce the energy consumption of both the Optical Line Terminal (OLT) and Optical Network Units (ONUs). Next, we propose an intra-ONU scheduling and an inter-ONU scheduling scheme, which takes NC into account to support service differentiation and QoS assurance. The presented simulation results show that BCS achieves higher energy efficiency under low traffic loads, clearly outperforming the alternative NC-based Upstream Centric Scheduling (UCS) scheme. Furthermore, BCS is shown to provide better QoS assurance.

  17. Ultra-stable optical frequency dissemination on a multi-access fibre network

    CERN Document Server

    Bercy, Anthony; Pottie, Paul-Eric; Amy-Klein, Anne


    We report the dissemination of an ultrastable optical frequency signal to two distant users simultaneously using a branching network. The ultrastable signal is extracted along a main fibre link; it is optically tracked with a narrow-linewidth laser diode, which light is injected in a secondary link. The propagation noise of both links is actively compensated. We implement this scheme with two links of 50-km fibre spools, the extraction being setup at the mid-point of the main link. We show that the extracted signal at the end of the secondary link exhibits fractional frequency instability of 1.4x10-15 at 1-s measurement time, almost equal to the 1.3x10-15 instability of the main link output end. The long-term instabilities are also very similar, at a level of 3-5x10-20 at 3x104-s integration time. We also show that the setting up of this extraction device, or a simpler one, at the main link input, can test the proper functioning of the noise rejection on this main link. This work is a significant step towards...

  18. Growth direction of oblique angle electron beam deposited silicon monoxide thin films identified by optical second-harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Vejling Andersen, Søren; Lund Trolle, Mads; Pedersen, Kjeld [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst (Denmark)


    Oblique angle deposited (OAD) silicon monoxide (SiO) thin films forming tilted columnar structures have been characterized by second-harmonic generation. It was found that OAD SiO leads to a rotationally anisotropic second-harmonic response, depending on the optical angle of incidence. A model for the observed dependence of the second-harmonic signal on optical angle of incidence allows extraction of the growth direction of OAD films. The optically determined growth directions show convincing agreement with cross-sectional scanning electron microscopy images. In addition to a powerful characterization tool, these results demonstrate the possibilities for designing nonlinear optical devices through SiO OAD.

  19. Structuring waveguide-grating-based wavelength-division multiplexing/optical code division multiple access network codecs over topology of concentric circles (United States)

    Huang, Jen-Fa; Nieh, Ta-Chun; Chen, Kai-Sheng


    The cyclic period and free spectral range of arrayed-waveguide gratings (AWG) in a wavelength-division multiplexing/optical code division multiple access optical code division multiple access network are exploited. The total optical network unit (ONU) of network capacity is partitioned into groups of different wavelength in accordance with the geographical location of subscribers based on the radial distance of the ONU to the optical line terminal. Combining concentric circles round by round for ONU groups enables a fixed round-trip time in the data transmission and a significant increase in system performance. Using AWG router, the proposed topology of concentric circles retains signature orthogonality and minimizes wavelength collisions on the photo-detector. Furthermore, the adoption of extended M-sequence codes corresponding to the AWG codec provides a simpler, more efficient coding procedure and accommodates more users in a single group.

  20. Studies of thin films and surfaces with optical harmonic generation and electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wilk, Dieter Emre [Univ. of California, Berkeley, CA (United States)


    Optical second harmonic generation (SHG) and sum frequency generation (SFG) were used to study C60 thin solid films (low energy ED forbidden electronic excitations), and electron spectroscopy was used to study organic overlayers (xylenes) on Pt(111). Theory of SHG from a thin film is described in terms of surface and bulk contributions as well as local and nonlocal contributions to the optical nonlinearities. (1)In situ SHG data on C60 films during UHV film growth can be described in terms of only nonlocal contributions to both surface and bulk nonlinear susceptibilities. Microscopic origin of SHG response is discussed in terms of electric quadrupole and ED transitions of C60. (2)Adsorption and thermal decomposition of ortho- and para-xylene on Pt(111) is studied using HREELS, LEED, AES, and thermal desorption spectroscopy. We have observed preferential decomposition of the methyl groups which leads to distinct decomposition pathways for ortho- and para-xylene on Pt(111).