WorldWideScience

Sample records for generation iii candu

  1. CANDU technology for generation III + AND IV reactors

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    2005-01-01

    Atomic Energy of Canada Limited (AECL) is the original developer of the CANDU?reactor, one of the three major commercial power reactor designs now used throughout the world. For over 60 years, AECL has continued to evolve the CANDU design from the CANDU prototypes in the 1950s and 1960s through to the second generation reactors now in operation, including the Generation II+ CANDU 6. The next phase of this evolution, the Generation III+ Advanced CANDU ReactorTM (ACRTM), continues the strategy of basing next generation technology on existing CANDU reactors. Beyond the ACR, AECL is developing the Generation IV CANDU Super Critical Water Reactor. Owing to the evolutionary nature of these advanced reactors, advanced technology from the development programs is also being applied to operating CANDU plants, for both refurbishments and upgrading of existing systems and components. In addition, AECL is developing advanced technology that covers the entire life cycle of the CANDU plant, including waste management and decommissioning. Thus, AECL maintains state-of-the-art expertise and technology to support both operating and future CANDU plants. This paper outlines the scale of the current core knowledge base that is the foundation for advancement and support of CANDU technology. The knowledge base includes advancements in materials, fuel, safety, plant operations, components and systems, environmental technology, waste management, and construction. Our approach in each of these areas is to develop the underlying science, carry out integrated engineering scale tests, and perform large-scale demonstration testing. AECL has comprehensive R and D and engineering development programs to cover all of these elements. The paper will show how the ongoing expansion of the CANDU knowledge base has led to the development of the Advanced CANDU Reactor. The ACR is a Generation III+ reactor with substantially reduced costs, faster construction, and enhanced passive safety and operating

  2. Models for coolant void reactivity evaluation in Candu Generation II and III+

    International Nuclear Information System (INIS)

    Popov, Alexi V.; Chambon, Richard P.; Le Tellier, Romain; Marleau, Guy; Hebert, Alain

    2008-01-01

    In the simulation of large-break loss-of-coolant accidents, homogenised cross-sections from trans- port calculations are used. These are usually computed in single cells or lattices representative for an infinite repeated pattern. Large coolant accidents in Candu, however, usually exhibit a checkerboard pattern of cooled and voided channels represented by lattices. It is reasonable, therefore, that homogenised cross-sections be produced in assemblies of lattices. This allows simulating the checkerboard voiding pat- tern and more realistically reproducing the lattice boundary conditions. The result is better simulation of the accident and more precise evaluation of coolant-void reactivity. For the present study, homogenised cross-sections are generated in a 2x2 heterogeneous assembly of four lattices for Generation II and III+ Candu designs. Results of reactivity calculations with the reactor code are compared to those using the traditional method. The difference is significant for Generation III+ Candu. (authors)

  3. Next generation CANDU plants

    International Nuclear Information System (INIS)

    Hedges, K.R.; Yu, S.K.W.

    1998-01-01

    Future CANDU designs will continue to meet the emerging design and performance requirements expected by the operating utilities. The next generation CANDU products will integrate new technologies into both the product features as well as into the engineering and construction work processes associated with delivering the products. The timely incorporation of advanced design features is the approach adopted for the development of the next generation of CANDU. AECL's current products consist of 700MW Class CANDU 6 and 900 MW Class CANDU 9. Evolutionary improvements are continuing with our CANDU products to enhance their adaptability to meet customers ever increasing need for higher output. Our key product drivers are for improved safety, environmental protection and improved cost effectiveness. Towards these goals we have made excellent progress in Research and Development and our investments are continuing in areas such as fuel channels and passive safety. Our long term focus is utilizing the fuel cycle flexibility of CANDU reactors as part of the long term energy mix

  4. The next generation CANDU 6

    International Nuclear Information System (INIS)

    Hopwood, J.M.

    1999-01-01

    AECL's product line of CANDU 6 and CANDU 9 nuclear power plants are adapted to respond to changing market conditions, experience feedback and technological development by a continuous improvement process of design evolution. The CANDU 6 Nuclear Power Plant design is a successful family of nuclear units, with the first four units entering service in 1983, and the most recent entering service this year. A further four CANDU 6 units are under construction. Starting in 1996, a focused forward-looking development program is under way at AECL to incorporate a series of individual improvements and integrate them into the CANDU 6, leading to the evolutionary development of the next-generation enhanced CANDU 6. The CANDU 6 improvements program includes all aspects of an NPP project, including engineering tools improvements, design for improved constructability, scheduling for faster, more streamlined commissioning, and improved operating performance. This enhanced CANDU 6 product will combine the benefits of design provenness (drawing on the more than 70 reactor-years experience of the seven operating CANDU 6 units), with the advantages of an evolutionary next-generation design. Features of the enhanced CANDU 6 design include: Advanced Human Machine Interface - built around the Advanced CANDU Control Centre; Advanced fuel design - using the newly demonstrated CANFLEX fuel bundle; Improved Efficiency based on improved utilization of waste heat; Streamlined System Design - including simplifications to improve performance and safety system reliability; Advanced Engineering Tools, -- featuring linked electronic databases from 3D CADDS, equipment specification and material management; Advanced Construction Techniques - based on open top equipment installation and the use of small skid mounted modules; Options defined for Passive Heat Sink capability and low-enrichment core optimization. (author)

  5. CANDU steam generator life management

    International Nuclear Information System (INIS)

    Tapping, R.L.; Nickerson, J.; Spekkens, P.; Maruska, C.

    1998-01-01

    Steam generators are a critical component of a nuclear power reactor, and can contribute significantly to station unavailability, as has been amply demonstrated in Pressurized Water Reactors (PWRs). CANDU steam generators are not immune to steam generator degradation, and the variety of CANDU steam generator designs and tube materials has led to some unexpected challenges. However, aggressive remedial actions, and careful proactive maintenance activities, have led to a decrease in steam generator-related station unavailability of Canadian CANDUs. AECL and the CANDU utilities have defined programs that will enable existing or new steam generators to operate effectively for 40 years. Research and development work covers corrosion and mechanical degradation of tube bundles and internals, chemistry, thermalhydraulics, fouling, inspection and cleaning, as well as provision for specially tool development for specific problem solving. A major driving force is development of CANDU-specific fitness-for-service guidelines, including appropriate inspection and monitoring technology to measure steam generator condition. Longer-range work focuses on development of intelligent on-line monitoring for the feedwater system and steam generator. New designs have reduced risk of corrosion and fouling, are more easily inspected and cleaned, and are less susceptible to mechanical damage. The Canadian CANDU utilities have developed programs for remedial actions to combat degradation of performance (Gentilly-2, Point Lepreau, Bruce A/B, Pickering A/B), and have developed strategic plans to ensure that good future operation is ensured. The research and development program, as well as operating experience, has identified where improvements in operating practices and/or designs can be made in order to ensure steam generator design life at an acceptable capacity factory. (author)

  6. Qinshan Phase III (CANDU) nuclear power project quality assurance

    International Nuclear Information System (INIS)

    Wang Lingen; Du Jinxiang

    2001-01-01

    The completion and implementation of quality assurance system of Qinshan Phase III (CANDU) nuclear power project are presented. Some comments and understanding with consideration of the project characteristics are put forward

  7. Considerations in selecting tubing materials for CANDU steam generators

    International Nuclear Information System (INIS)

    Hemmings, R.L.

    1978-01-01

    Corrosion resistance is the major consideration in selecting tubing material for CANDU steam generators. Corrosion, and additional considerations, lead to the following steam generator tubing material recommendations: for CANDU-BPHWR's (boiling pressurized heavy water reactors) low-cobalt Incoloy-800; for CANDU-PHWR's (pressurized, non-boiling, heavy water reactors), low-cobalt Monel-400

  8. Candu technology: the next generation now

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Duffey, R.B.; Torgerson, D.F.

    2001-01-01

    We describe the development philosophy, direction and concepts that are being utilized by AECL to refine the CANDU reactor to meet the needs of current and future competitive energy markets. The technology development path for CANDU reactors is based on the optimization of the pressure tube concept. Because of the inherent modularity and flexibility of this basis for the core design, it is possible to provide a seamless and continuous evolution of the reactor design and performance. There is no need for a drastic shift in concept, in technology or in fuel. By continual refinement of the flow and materials conditions in the channels, the basic reactor can be thermally and operationally efficient, highly competitive and economic, and highly flexible in application. Thus, the design can build on the successful construction and operating experience of the existing plants, and no step changes in development direction are needed. This approach minimizes investor, operator and development risk but still provides technological, safety and performance advances. In today's world energy markets, major drivers for the technology development are: (a) reduced capital cost; (b) improved operation; (c) enhanced safety; and (d) fuel cycle flexibility. The drivers provide specific numerical targets. Meeting these drivers ensures that the concept meets and exceeds the customer economic, performance, safety and resource use goals and requirements, including the suitable national and international standards. This logical development of the CANDU concept leads naturally to the 'Next Generation' of CANDU reactors. The major features under development include an optimized lattice for SEU (slightly enriched uranium) fuel, light water cooling coupled with heavy water moderation, advanced fuel channels and CANFLEX fuel, optimization of plant performance, enhanced thermal and BOP (balance of plant) efficiency, and the adoption of layout and construction technology adapted from successful on

  9. Advancing the CANDU reactor: From generation to generation

    International Nuclear Information System (INIS)

    Hopwood, Jerry; Duffey, Romney B.; Yu, Steven; Torgerson, Dave F.

    2006-01-01

    Emphasizing safety, reliability and economics, the CANDU reactor development strategy is one of continuous improvement, offering value and assured support to customers worldwide. The Advanced CANDU Reactor (ACR-1000) generation, designed by Atomic Energy of Canada Limited (AECL), meets the new economic expectation for low-cost power generation with high capacity factors. The ACR is designed to meet customer needs for reduced capital cost, shorter construction schedule, high plant capacity factor, low operating cost, increased operating life, simple component replacement, enhanced safety features, and low environmental impact. The ACR-1000 design evolved from the internationally successful medium-sized pressure tube reactor (PTR) CANDU 6 and incorporates operational feedback from eight utilities that operate 31 CANDU units. This technical paper provides a brief description of the main features of the ACR-1000, and its major role in the development path of the generations of the pressure tube reactor concept. The motivation, philosophy and design approach being taken for future generation of CANDU pressure tube reactors are described

  10. CANDU co-generation opportunities

    International Nuclear Information System (INIS)

    Meneley, D.A.; Duffey, R.B.; Pendergast, D.R.

    2000-01-01

    Modern technology makes use of natural energy 'wealth' (uranium) to produce useful energy 'currency' (electricity) that can be used to society's benefit. This energy currency can be further applied to help solve a difficult problem faced by mankind. Within the next few years we must reduce our use of the same fuels which have made many countries wealthy - fossil fuels. Fortunately, electricity can be called upon to produce another currency, namely hydrogen, which has some distinct advantages. Unlike electricity, hydrogen can be stored and can be recovered for later use as fuel. It also is extremely useful in chemical processes and refining. To achieve the objective of reducing greenhouse gas emissions hydrogen must, of course, be produced using a method which does not emit such gases. This paper summarizes four larger studies carried out in Canada in the past few years. From these results we conclude that there are several significant opportunities to use nuclear fission for various co-generation technologies that can lead to more appropriate use of energy resources and to reduced emissions. (author)

  11. Development situation about the Canadian CANDU Nuclear Power Generating Stations

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Yu Mi; Kim, Yong Hee; Park, Joo Hwan

    2009-07-15

    The CANDU reactor is the most versatile commercial power reactor in the world. The acronym 'CANDU', a registered trademark of Atomic Energy of Canada Limited, stands for 'CANada Deuterium Uranium'. CANDU uses heavy water as moderator and uranium (originally, natural uranium) as fuel. All current power reactors in Canada are of the CANDU type. Canada exports CANDU type reactor in abroad. CANDU type is used as the nuclear power plants to produce electrical. Today, there are 41 CANDU reactors in use around the world, and the design has continuously evolved to maintain into unique technology and performance. The CANDU-6 power reactor offers a combination of proven, superior and state-of-the-art technology. CANDU-6 was designed specifically for electricity production, unlike other major reactor types. One of its characteristics is a very high operating and fuel efficiency. Canada Nuclear Power Generating Stations were succeeded in a commercial reactor of which the successful application of heavy water reactor, natural uranium method and that on-power fuelling could be achieved. It was achieved through the joint development of a major project by strong support of the federal government, public utilities and private enterprises. The potential for customization to any country's needs, with competitive development and within any level of domestic industrial infrastructure, gives CANDU technology strategic importance in the 21st century.

  12. Development situation about the Canadian CANDU Nuclear Power Generating Stations

    International Nuclear Information System (INIS)

    Jeon, Yu Mi; Kim, Yong Hee; Park, Joo Hwan

    2009-07-01

    The CANDU reactor is the most versatile commercial power reactor in the world. The acronym 'CANDU', a registered trademark of Atomic Energy of Canada Limited, stands for 'CANada Deuterium Uranium'. CANDU uses heavy water as moderator and uranium (originally, natural uranium) as fuel. All current power reactors in Canada are of the CANDU type. Canada exports CANDU type reactor in abroad. CANDU type is used as the nuclear power plants to produce electrical. Today, there are 41 CANDU reactors in use around the world, and the design has continuously evolved to maintain into unique technology and performance. The CANDU-6 power reactor offers a combination of proven, superior and state-of-the-art technology. CANDU-6 was designed specifically for electricity production, unlike other major reactor types. One of its characteristics is a very high operating and fuel efficiency. Canada Nuclear Power Generating Stations were succeeded in a commercial reactor of which the successful application of heavy water reactor, natural uranium method and that on-power fuelling could be achieved. It was achieved through the joint development of a major project by strong support of the federal government, public utilities and private enterprises. The potential for customization to any country's needs, with competitive development and within any level of domestic industrial infrastructure, gives CANDU technology strategic importance in the 21st century

  13. Valve maintainability in CANDU-PHW nuclear generating stations

    International Nuclear Information System (INIS)

    Pothier, N.E.; Crago, W.A.

    1977-09-01

    Design, application, layout and administrative factors which affect valve maintainability in CANDU-PHW power reactors are identified and discussed. Some of these are illustrated by examples based on prototype reactor operation experience. Valve maintainability improvements resulting from laboratory development and maintainability analysis, have been incorporated in commercial CANDU-PHW nuclear generating stations. These, also, are discussed and illustrated. (author)

  14. The ageing of CANDU steam generator due to localized corrosion

    International Nuclear Information System (INIS)

    Lucan, D.; Fulger, M.; Jinescu, Ghe.

    2001-01-01

    The principal types of corrosion are presented which can occur in CANDU steam generator. There are also presented the operation conditions, the specifications referring to the water chemistry and the construction materials of Steam Generator, the factors that have a great influence on the corrosion behaviour during the whole exploitation period of this equipment. The most important elements of CANDU Steam Generator ageing management program are also discussed. (R. P.)

  15. Trends in the capital costs of CANDU generating stations

    International Nuclear Information System (INIS)

    Yu, A.M.

    1982-09-01

    This paper consolidates the actual cost experience gained by Atomic Energy of Canada Limited, Ontario Hydro, and other Canadian electric utlities in the planning, design and construction of CANDU-PHWR (CANada Deuterium Uranium-Pressurized Heavy Water Reactor) generating stations over the past 30 years. For each of the major CANDU-PHWR generating stations in operation and under construction in Canada, an analysis is made to trace the evolution of the capital cost estimates. Major technical, economic and other parameters that affect the cost trends of CANDU-PHWR generating stations are identified and their impacts assessed. An analysis of the real cost of CANDU generating stations is made by eliminating interest during construction and escalation, and the effects of planned deferment of in-service dates. An historical trend in the increase in the real cost of CANDU power plants is established. Based on the cost experience gained in the design and construction of CANDU-PHWR units in Canada, as well as on the assessment of parameters that influence the costs of such projects, the future costs of CANDU-PHWRs are presented

  16. Key thrusts in next generation CANDU. Annex 10

    International Nuclear Information System (INIS)

    Shalaby, B.A.; Torgerson, D.F.; Duffey, R.B.

    2002-01-01

    Current electricity markets and the competitiveness of other generation options such as CCGT have influenced the directions of future nuclear generation. The next generation CANDU has used its key characteristics as the basis to leap frog into a new design featuring improved economics, enhanced passive safety, enhanced operability and demonstrated fuel cycle flexibility. Many enabling technologies spinning of current CANDU design features are used in the next generation design. Some of these technologies have been developed in support of existing plants and near term designs while others will need to be developed and tested. This paper will discuss the key principles driving the next generation CANDU design and the fuel cycle flexibility of the CANDU system which provide synergism with the PWR fuel cycle. (author)

  17. Cost and schedule reduction for next-generation Candu

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Yu, S.; Pakan, M.; Soulard, M.

    2002-01-01

    AECL has developed a suite of technologies for Candu R reactors that enable the next step in the evolution of the Candu family of heavy-water-moderated fuel-channel reactors. These technologies have been combined in the design for the Advanced Candu Reactor TM1 (ACRTM), AECL's next generation Candu power plant. The ACR design builds extensively on the existing Candu experience base, but includes innovations, in design and in delivery technology, that provide very substantial reductions in capital cost and in project schedules. In this paper, main features of next generation design and delivery are summarized, to provide the background basis for the cost and schedule reductions that have been achieved. In particular the paper outlines the impact of the innovative design steps for ACR: - Selection of slightly enriched fuel bundle design; - Use of light water coolant in place of traditional Candu heavy water coolant; - Compact core design with unique reactor physics benefits; - Optimized coolant and turbine system conditions. In addition to the direct cost benefits arising from efficiency improvement, and from the reduction in heavy water, the next generation Candu configuration results in numerous additional indirect cost benefits, including: - Reduction in number and complexity of reactivity mechanisms; - Reduction in number of heavy water auxiliary systems; - Simplification in heat transport and its support systems; - Simplified human-machine interface. The paper also describes the ACR approach to design for constructability. The application of module assembly and open-top construction techniques, based on Candu and other worldwide experience, has been proven to generate savings in both schedule durations and overall project cost, by reducing premium on-site activities, and by improving efficiency of system and subsystem assembly. AECL's up-to-date experience in the use of 3-D CADDS and related engineering tools has also been proven to reduce both engineering and

  18. Next Generation CANDU: Conceptual Design for a Short Construction Schedule

    International Nuclear Information System (INIS)

    Hopwood, Jerry M.; Love, Ian J.W.; Elgohary, Medhat; Fairclough, Neville

    2002-01-01

    Atomic Energy of Canada Ltd. (AECL) has very successful experience in implementing new construction methods at the Qinshan (Phase III) twin unit CANDU 6 plant in China. This paper examines the construction method that must be implemented during the conceptual design phase of a project if short construction schedules are to be met. A project schedule of 48 months has been developed for the nth unit of NG (Next Generation) CANDU with a 42 month construction period from 1. Concrete to In-Service. An overall construction strategy has been developed involving paralleling project activities that are normally conducted in series. Many parts of the plant will be fabricated as modules and be installed using heavy lift cranes. The Reactor Building (RB), being on the critical path, has been the focus of considerable assessment, looking at alternative ways of applying the construction strategy to this building. A construction method has been chosen which will result in excess of 80% of internal work being completed as modules or as very streamlined traditional construction. This method is being further evaluated as the detailed layout proceeds. Other areas of the plant have been integrated into the schedule and new construction methods are being applied to these so that further modularization and even greater paralleling of activities will be achieved. It is concluded that the optimized construction method is a requirement, which must be implemented through all phases of design to make a 42 month construction schedule a reality. If the construction methods are appropriately chosen, the schedule reductions achieved will make nuclear more competitive. (authors)

  19. Future generations of CANDU: advantages and development with passive safety

    International Nuclear Information System (INIS)

    Duffey, R. B.

    2006-01-01

    Atomic Energy of Canada Limited (AECL) advances water reactor and CANDLT technology using an evolutionary development strategy. This strategy ensures that innovations are based firmly on current experience and keeps our development programs focused on one reactor concept, reducing risks, development costs, and product development cycle times. It also assures our customers that our products will never become obsolete or unsupported, and the continuous line of water reactor development is secure and supported into the future. Using the channel reactor advantage of modularity, the subdivided core has the advantage of passive safety by heat removal to the low- pressure moderator. With continuous improvements, the Advanced CANDU Reactor TM (ACR-1000TM) concept will likely remain highly competitive for a number of years and leads naturally to the next phase of CANDU development, namely the Generation IV CANDU -SCWR concept. This is conventional water technology, since supercritical boilers and turbines have been operating for some time in coal-fired power plants. Significant cost, safety, and performance advantages would result from the CANDU-SCWR concept, plus the flexibility of a range of plant sizes suitable for both small and large electric grids, and the ability for co-generation of electric power, process heat, and hydrogen. In CANDU-SCWR, novel developments are included in the primary circuit layout and channel design. The R and D in Canada is integrated with the Generation IV international Forum (GIF) plans, and has started on examining replaceable insulating liners that would ensure channel life, and on providing completely passive reactor decay heat removal directly to the moderator heat sink without forced cooling. In the interests of sustainability, hydrogen production by a CANDU- SCWR is also be included as part of the system requirements, where the methods for hydrogen production will depend on the outlet temperature of the reactor

  20. CANDU steam generator tubing material service experience and allied development

    International Nuclear Information System (INIS)

    Hart, A.E.; Lesurf, J.E.

    1976-01-01

    This paper covers the following aspects for the tube materials in CANDU-PHW steam generators: inservice performance with respect to tube leaks and coolant activity attributable to boiler tube corrosion, selection of tube materials for use with non-boiling and boiling primary coolants, supporting development on corrosion, vibration, fretting wear, tube inspection, leak detection and plugging of defective tubes. (author)

  1. CANDU steam generator life management: laboratory data and plant experience

    International Nuclear Information System (INIS)

    Tapping, R.L.; Nickerson, J.H.; Subash, N.; Wright, M.D.

    2001-10-01

    As CANDU reactors enter middle age, and the potential value of the plants in a deregulated market is realized, life management and life extension issues become increasingly important. An accurate assessment of critical components, such as the CANDU 6 steam generators (SGs), is crucial for successful life extension, and in this context, material issues are a key factor. For example, service experience with Alloy 900 tubing indicates very low levels of degradation within CANDU SGs; the same is also noted worldwide. With little field data for extrapolation, life management and life extension decisions for the tube bundles rely heavily on laboratory data. Similarly, other components of the SGs, in particular the secondary side internals, have only limited inspection data upon which to base a condition assessment. However, in this case there are also relatively little laboratory data. Decisions on life management and life extension are further complicated--not only is inspection access often restricted, but repair or replacement options for internal components are, by definition, also limited. The application of CANDU SG life management and life extension requires a judicious blend of in-service data, laboratory research and development (R and D) and materials and engineering judgment. For instance, the available laboratory corrosion and fretting wear data for Alloy 800 SG tubing have been compared with plant experience (with all types of tubing), and with crevice chemistry simulations, in order to provide an appropriate inspection guide for a 50-year SG life. A similar approach has been taken with other SG components, where the emphasis has been on known degradation mechanisms worldwide. This paper provides an outline of the CANDU SG life management program, including the results to date, a summary of the supporting R and D program showing the integration with condition assessment and life management activities, and the approach taken to life extension for a typical

  2. Heat exchanger tubing materials for CANDU nuclear generating stations

    International Nuclear Information System (INIS)

    Taylor, G.F.

    1977-07-01

    The performance of steam generator tubing (nickel-chromium-iron alloy in NPD and nickel-copper alloy in Douglas Point and Pickering generating stations) has been outstanding and no corrosion-induced failures have occurred. The primary coolant will be allowed to boil in the 600 MW (electrical) CANDU-PHW reactors. An iron-nickel-chromium alloy has been selected for the steam generator tubing because it will result in lower radiation fields than the alloys used before. It is also more resistant than nickel-chromium-iron alloy to stress corrosion cracking in the high purity water of the primary circuit, an unlikely but conceivable hazard associated with higher operating temperatures. Austenitic alloy and ferritic-austenitic stainless steel tubing have been selected for the moderator coolers in CANDU reactors being designed and under construction. These materials will reduce the radiation fields around the moderator circuit while retaining the good resistance to corrosion in service water that has characterized the copper-nickel alloys now in use. Brass and bronze tubes in feedwater heaters and condensers have given satisfactory service but do, however, complicate corrosion control in the steam cycle and, to reduce the transport of corrosion products from the feedtrain to the steam generator, stainless steel is preferred for feedwater heaters and stainlss steel or titanium for condensers. (author)

  3. Safety systems and safety analysis of the Qinshan phase III CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Cai Jianping; Shen Sen; Barkman, N.

    1999-01-01

    The author introduces the Canadian nuclear reactor safety philosophy and the Qinshan Phase III CANDU NPP safety systems and safety analysis, which are designed and performed according to this philosophy. The concept of 'defence-in-depth' is a key element of the Canadian nuclear reactor safety philosophy. The design concepts of redundancy, diversity, separation, equipment qualification, quality assurance, and use of appropriate design codes and standards are adopted in the design. Four special safety systems as well as a set of reliable safety support systems are incorporated in the design of Qinshan phase III CANDU for accident mitigation. The assessment results for safety systems performance show that the fundamental safety criteria for public dose, and integrity of fuel, channels and the reactor building, are satisfied

  4. The CANDU-PHW generating system waste arisings

    International Nuclear Information System (INIS)

    Simmons, G.R.

    1979-03-01

    In this report, the volume of material and level of contained radioactive nuclides are tabulated for wastes arising from four fuel cycles which might be operated in CANDU-PHW (CANada Deuterium Uranium - Pressurized Heavy Water) reactors. The data presented, based on Canadian experience and/or studies, cover the range of conditioned waste volumes which could be expected from steady-state (no growth), CANDU-PHW-powered electrical generating systems. The wastes arising from operation and decommissioning of facilities in each phase of each fuel cycle are estimated. Each fuel cycle is considered to operate in isolation with the data given in terms of quantities per gigawatt-year of electricity produced. Three of the fuel cycles for which data are presented, the natural uranium once-through cycle, the plutonium-enriched uranium cycle (plutonium recycle) and the low-burnup uranium-enriched thorium cycle (thorium and uranium recycle), were studied by INFCE WG.7 (the International Nuclear Fuel Cycle Evaluation, Working Group 7) as fuel cycles 4, 5 and 6. The high-burnup uranium-enriched thorium cycle is included for comparison. INFCE WG.7 selected many common reference parameters which are applied uniformly to all seven INFCE WG.7 reference fuel cycles in determining waste arisings. Where these parameters differ from the data of Canadian origin given in the body of this report, the INFCE WG.7 data are given in an appendix. The waste management costs associated with operation of each INFCE WG.7 reference fuel cycle were calculated and compared by the working group. An arbitrary set of costing parameters and disposal technologies was selected by the working group for application to each of the reference fuel cycles. The waste management and disposal costs for the PHW reactor fuel cycles based on these arbitrary cost parameters are given in an appendix. (author)

  5. Maintenance and plugging technology for CANDU steam generator tubing

    International Nuclear Information System (INIS)

    Prince, J.; Nicholson, A.; Hare, J.; McGoey, L.; Stafford, T.; Gowthorpe, P.

    2006-01-01

    In order to keep aging steam generators in service and to successfully manage the life of these critical components, the capability must exist to perform tube plugging and other complex maintenance activities in-situ. In the early days of CANDU steam generator operation, the only option was to perform these activities manually, which had inherent safety and quality risks. The challenge was to be able to perform these activities remotely thus eliminating some of the confined space and radiological exposure risks. The additional challenge was to develop equipment and techniques which would result in significantly improved quality, particularly for the completed plug welds which would be returned to service. Over the past fifteen years, this technology has matured and has produced remarkable results in field application. Some 14000 tube plugs have been successfully installed to date using automated plugging techniques. This paper presents an overview of the development of techniques available to utilities for steam generator tube plugging as well as some highlights of other steam generator tube maintenance activities such as primary side tube removal and tube end damage repair. Aspects covered in the paper include plug and procedure development, automated equipment and manipulators for tool deployment, process controls and personnel requirements. Recently, the steam generator tube plugging performed by OPG has been incorporated into a formal quality program under the requirements of ASME NCA 4000. An overview of the quality program will be presented and details of some of the important aspects of the quality program will be discussed. (author)

  6. Safety design of next generation SUI of CANDU stations

    International Nuclear Information System (INIS)

    Nasimi, Elnara; Gabbar, Hossam A.

    2013-01-01

    Highlights: ► Review of current SUI technologies and challenges. ► Propose a new type of SUI detectors. ► Propose a new SUI system architecture and layout. ► Propose implementation procedure for SUI with reduced risks. - Abstract: Due to the age and operating experience of Nuclear Power Plants, equipment ageing and obsolescence has become one of the main challenges that need to be resolved for all systems, structures and components in order to ensure a safe and reliable production of energy. This paper summarizes the research into a methodology for modernization of Start-Up Instrumentation (SUI), both in-core and Control Room equipment, using a new generation of detectors and cables in order to manage obsolescence. The main objective of this research is to develop a new systematic approach to SUI installation/replacement procedure development and optimization. Although some additional features, such as real-time data monitoring and storage/archiving solutions for SUI systems are also examined to take full advantage of today's digital technology, the objectives of this study do not include detailed parametrical studies of detector or system performance. Instead, a number of technological, operational and maintenance issues associated with Start-Up Instrumentation systems at Nuclear Power Plants (NPPs) will be identified and a structured approach for developing a replacement/installation procedure that can be standardized and used across all of the domestic CANDU (Canadian Deuterium Uranium) stations is proposed.

  7. The next generation of CANDU technologies: profiling the potential for hydrogen fuel

    International Nuclear Information System (INIS)

    Hopwood, J.M.

    2001-01-01

    This report discusses the Next-generation CANDU Power Reactor technologies currently under development at AECL. The innovations introduced into proven CANDU technologies include a compact reactor core design, which reduces the size by a factor of one third for the same power output; improved thermal efficiency through higher-pressure steam turbines; reduced use of heavy water (one quarter of the heavy water required for existing plants), thus reducing the cost and eliminating many material handling concerns; use of slightly enriched uranium to extend fuel life to three times that of existing natural uranium fuel and additions to CANDU's inherent passive safety. With these advanced features, the capital cost of constructing the plant can be reduced by up to 40 per cent compared to existing designs. The clean, affordable CANDU-generated electricity can be used to produce hydrogen for fuel cells for the transportation sector, thereby reducing emissions from the transportation sector

  8. Passive safety features for next generation CANDU power plants

    International Nuclear Information System (INIS)

    Natalizio, A.; Hart, R.S.; Lipsett, J.J.; Soedijono, P.; Dick, J.E.

    1989-01-01

    CANDU offers an evolutionary approach to simpler and safer reactors. The CANDU 3, an advanced CANDU, currently in the detailed design stage, offers significant improvements in the areas of safety, design simplicity, constructibility, operability, maintainability, schedule and cost. These are being accomplished by retaining all of the well known CANDU benefits, and by relying on the use of proven components and technologies. A major safety benefit of CANDU is the moderator system which is separate from the coolant. The presence of a cold moderator reduces the consequences arising from a LOCA or loss of heat sink event. In existing CANDU plants even the severe accident - LOCA with failure of the emergency core cooling system - is a design basis event. Further advances toward a simpler and more passively safe reactor will be made using the same evolutionary approach. Building on the strength of the moderator system to mitigate against severe accidents, a passive moderator cooling system, depending only on the law of gravity to perform its function, will be the next step of development. AECL is currently investigating a number of other features that could be incorporated in future evolutionary CANDU designs to enhance protection against accidents, and to limit off-site consequences to an acceptable level, for even the worst event. The additional features being investigated include passive decay heat removal from the heat transport system, a simpler emergency core cooling system and a containment pressure suppression/venting capability for beyond design basis events. Central to these passive decay heat removal schemes is the availability of a short-term heat sink to provide a decay heat removal capability of at least three days, without any station services. Preliminary results from these investigations confirm the feasibility of these schemes. (author)

  9. A survey on the corrosion susceptibility of Alloy 800 CANDU steam generator tubing materials

    International Nuclear Information System (INIS)

    Lu, Y.C.; Dupuis, M.; Burns, D.

    2008-01-01

    To provide support for a proactive steam generator (SG) aging management strategy, a survey on the corrosion susceptibility of the archived Alloy 800 tubing from CANDU SGs under plausible crevice chemistry conditions was conducted to assess the potential material degradation issues in CANDU SGs. Archived Alloy 800 samples were collected from four CANDU utilities. High-temperature electrochemical analysis was carried out to assess the corrosion susceptibility of the archived SG tubing under simulated CANDU crevice chemistry conditions at both 150 o C and 300 o C. The potentiodynamic polarization results obtained from the archived CANDU SG tubes were compared to the data from ex-service tubes removed from Darlington Nuclear Generating Station (DNGS) SGs and a reference nuclear grade Alloy 800 tubing. It was found that the removed Darlington SG tubes, with signs of in-service degradation, were more susceptible to pitting corrosion than the reference nuclear grade Alloy 800 tubing. At 150 o C, under the same neutral crevice chemistry conditions, the potentiodynamic polarization curve of the ex-service Darlington SG tubing has an active peak, which is a sign of propensity to crevice/underdeposit corrosion. This active peak was not observed in any of the potentiodynamic polarization curves of all archived Alloy 800 CANDU SG tubing indicating that archived CANDU SG tubes are less susceptible to the underdeposit corrosion under SG startup conditions. The corrosion behaviour of the archived Alloy 800 tubes from CANDU SG was similar to that of the reference nuclear grade Alloy 800 tubing. The results of this survey suggest that the Alloy 800 tubing materials used in the existing CANDU utilities (other than ex-service DNGS tubing) will continue to have reliable performance under specified CANDU operating conditions. Ex-service SG tubing from DNGS, although showing lower than average corrosion resistance, still has a wide acceptable operating margin and the in

  10. Risk analysis due to the extension of STI for CANDU diesel generators

    Energy Technology Data Exchange (ETDEWEB)

    Jee, Moon Hak; Choi, Kwang Hee; Jung, Hyun Jong; Choi, Seong Soo [Korea electric Power Research Institute, Taejon (Korea, Republic of); Lim, Jae Won [Atomic Creative Technology Company, Taejon (Korea, Republic of); Song, Jin Bae [KHNP, Kyungju (Korea, Republic of)

    2005-07-01

    The purpose of this study is to provide technical rationale for the extension of the Surveillance Test Interval (STI) of the Standby Diesel Generator (SDG) and the Emergency Power Supply Diesel Generator (EPSDG) of CANDU plants in Korea in a reliability aspect. The current STI of 2 weeks aims to be extended to 4 weeks through this study.

  11. Preliminary analysis for u tube degradation in CANDU steam generator using CATHENA

    Energy Technology Data Exchange (ETDEWEB)

    Shin, So Eun; Lee, Jeong Hun; Park, Tong Kyu; Hwang, Su Hyun [FNC Technology Co., Seoul (Korea, Republic of); Jung, Jong Yeo [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    The interest in plant safety and integrity has been increasing due to long term operation of nuclear power plants (NPPs) and lots of efforts have been devoted to developing the degradation evaluation model for all the Structure, System, and Components (SSCs) of NPPs in these days. The efforts, however, were mainly concentrated on pressurized light water reactors (PWRs) in domestic. In contrast, the study for the aging degradation of counterparts of CANDU (CANada Deuterium Uranium) reactors has been rarely performed, even though Wolsong unit 1 (WS1), that is a CANDU 6 NPP in Korea, has been operating for almost 30 years. Therefore, the assessment of the aging degradation is required and the proper and exact evaluation model for the aging degradation of SCCs of CANDU, especially WS1, is urgently needed. In this study, the aging degradation of steam generators (SGs) in WS1 was mainly discussed. Based on cases of the aging degradation of SGs in overseas CANDU reactors, the major potential aging mechanisms of SGs were estimated since there has been no case of accident due to degradation in CANDU NPPs in Korea . Some core parameters which are indicators of the degree of degradation were calculated by CATHENA (Canadian algorithm for thermal hydraulic network analysis). In the result of comparing two calculation cases; core parameters for only aged SGs in fresh plant and those for all the aged component, it can be concluded that aging of SGs is a main component in the degradation assessment of CANDU NPPs, and keeping the integrity of steam generator (SG) tubes is important to guarantee the safety of the NPPs.

  12. CANDU: study and review

    Energy Technology Data Exchange (ETDEWEB)

    Morad, César M., E-mail: cesar.morad@usp.br [Universidade de São Paulo (POLI/USP), SP (Brazil). Escola Politécnica; Stefani, Giovanni L. de, E-mail: giovanni.stefani@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Santos, Thiago A. dos, E-mail: thiago.santos@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo André, SP (Brazil)

    2017-07-01

    The CANDU (Canadian Deuterium Uranium) is a nuclear reactor developed by AECL (Atomic Energy of Canada Limited). The first small-scale reactor is known as NPD and was made in 1955 and commenced operation in 1962. It is a pressurized heavy water reactor and uses D2O as moderator and coolant and therefore uses natural uranium as fuel. There have been two major types of CANDU reactors, the original design of around 500 MWe that was intended to be used in multi-reactor installations in large plants, and the rationalized CANDU6 which has units in Argentina, South Korea, Pakistan, Romania and China. Throughout the 1980s and 90s the nuclear power market suffered a major crash, with few new plants being constructed in North America or Europe. Design work continued through, however, and a number of new design concepts were introduced that dramatically improved safety, capital costs, economics and overall performance. These Generation III+ and Generation IV machines became a topic of considerable interest in the early 2000s as it appeared a nuclear renaissance was underway and large numbers of new reactors would be built over the next decade. The present work aims to study the reactors of the CANDU type, exploring from its creation to studies directed to G-III and G-IV reactors. (author)

  13. CANDU: study and review

    International Nuclear Information System (INIS)

    Morad, César M.; Santos, Thiago A. dos

    2017-01-01

    The CANDU (Canadian Deuterium Uranium) is a nuclear reactor developed by AECL (Atomic Energy of Canada Limited). The first small-scale reactor is known as NPD and was made in 1955 and commenced operation in 1962. It is a pressurized heavy water reactor and uses D2O as moderator and coolant and therefore uses natural uranium as fuel. There have been two major types of CANDU reactors, the original design of around 500 MWe that was intended to be used in multi-reactor installations in large plants, and the rationalized CANDU6 which has units in Argentina, South Korea, Pakistan, Romania and China. Throughout the 1980s and 90s the nuclear power market suffered a major crash, with few new plants being constructed in North America or Europe. Design work continued through, however, and a number of new design concepts were introduced that dramatically improved safety, capital costs, economics and overall performance. These Generation III+ and Generation IV machines became a topic of considerable interest in the early 2000s as it appeared a nuclear renaissance was underway and large numbers of new reactors would be built over the next decade. The present work aims to study the reactors of the CANDU type, exploring from its creation to studies directed to G-III and G-IV reactors. (author)

  14. Economics of CANDU-PHW

    International Nuclear Information System (INIS)

    McConnell, L.G.; Woodhead, L.W.; Fanjoy, G.R.

    1982-03-01

    The CANDU-Pressurized Heavy Water (CANDU-PHW) type of nuclear-electric generating station has been developed jointly by Atomic Energy of Canada Limited and Ontario Hydro. This paper discusses the cost of producing electricity from CANDU, presents actual cost experience of CANDU and coal in Ontario, presents projected CANDU and coal costs in Ontario and compares CANDU and Light Water Reactor cost estimates in Ontario

  15. Economics of CANDU-PHW

    International Nuclear Information System (INIS)

    Jackson, H.A.; Woodhead, L.W.; Fanjoy, G.R.

    1984-03-01

    The CANDU-Pressurized Heavy Water (CANDU-PHW) type of nuclear-electric generating station has been developed jointly by Atomic Energy of Canada Limited and Ontario Hydro. This paper discusses the cost of producing electricity from CANDU, presents actual cost experience of CANDU and coal in Ontario, presents projected CANDU and coal costs in Ontario and compares CANDU and Light Water Reactor cost estimates in Ontario

  16. Economics of CANDU-PHW

    International Nuclear Information System (INIS)

    Jackson, H.A.; Horton, E.P.; Woodhead, L.W.; Fanjoy, G.R.

    1985-03-01

    The CANDU-Pressurized Heavy Water (CANDU-PHW) type of nuclear-electric generating station has been developed jointly by Atomic Energy of Canada Limited and Ontario Hydro. This paper discusses the cost of producing electricity from CANDU, presents actual cost experience of CANDU and coal in Ontario, presents projected CANDU and coal costs in Ontario and compares CANDU and Light Water Reactor cost estimates in Ontario

  17. Supporting CANDU operators-CANDU owners group

    International Nuclear Information System (INIS)

    Collingwood, B.R.

    1997-01-01

    The CANDU Owners Group (COG) was formed in 1984 by the Canadian CANDU owning utilities and Atomic Energy of Canada limited (AECL). Participation was subsequently extended to all CANDU owners world-wide. The mandate of the COG organization is to provide a framework for co-operation, mutual assistance and exchange of information for the successful support, development, operation, maintenance and economics of CANDU nuclear electric generating stations. To meet these objectives COG established co-operative programs in two areas: 1. Station Support. 2. Research and Development. In addition, joint projects are administered by COG on a case by case basis where CANDU owners can benefit from sharing of costs

  18. CANDU operating experience

    International Nuclear Information System (INIS)

    McConnell, L.G.; Woodhead, L.W.; Fanjoy, G.R.

    1982-03-01

    The CANDU Pressurized Heavy Water (CANDU-PHW) type of nuclear electric generating station has been developed jointly by Atomic Energy of Canada Limited and Ontario Hydro. This paper highlights Ontario Hydro's operating experience using the CANDU-PHW system, with a focus on the operating performance and costs, reliability of system components and nuclear safety considerations both to the workers and the public

  19. Eddy Currents Inspection of CANDU Steam Generator Tubes using Zetec's ZR-1 Robot. Experience in Romania

    International Nuclear Information System (INIS)

    Scott Hower; Luiza Vladu; Adrian Nichisov; Mihai Cretu

    2006-01-01

    Full text of publication follows: The commercial operation of Unit 1 of Cernavoda NPP started on 2 December, 1996. The unit's reactor type is PHWR-CANDU 6 (electrical capacity 706 MWe), using natural uranium. The nuclear fuel is manufactured in Romania. The Cernavoda nuclear power plant has four CANDU - design steam generators that have been in service since 1996. The paper introduces the new ZR-1 Robot System for Inspection and Maintenance/Repair from Zetec that combines the newest state-of-the-art robotics technology with Zetec experience - based innovation to address the needs for inspection and repair of steam generators. The multipurpose ZR-1 can be easily installed to perform the necessary eddy current inspection and remain installed ready for follow-up maintenance and repair. It has superior technical performances and a modular three axis motion of arm that enables 100% coverage of tube sheet. Automated, repeatable, and precise positioning of tool heads ensures accurate delivery and reducing costly rework and reduces inspection time by 30%. The modular, light weight, and portable design permits easy assembly and disassembly through small openings and it reduces setup/tear down time by 30%. The first deployment of the new ZR-1 Robot was made in September 2004 at the Cernavoda NPP inspection outage. The unit's reactor type is PHWR-CANDU 6 (electrical capacity 706 MWe), using natural uranium; the nuclear fuel is manufactured in Romania. The Cernavoda nuclear power plant Unit 1 has four CANDU - design steam generators that have been in service since 1996. The paper presents also the Zetec's field experience and customer experience with this system. It describes the equipment setup in Cernavoda's steam generators mock-up, functional tests and calibration. Finally, provides details on the execution of the inspection, options for standardizing the inspection techniques and conclusions. (authors)

  20. Recent experience related to neutronic transients in Ontario Hydro CANDU nuclear generating stations

    International Nuclear Information System (INIS)

    Frescura, G.M.; Smith, A.J.; Lau, J.H.

    1991-01-01

    Ontario Hydro presently operates 18 CANDU reactors in the province of Ontario, Canada. All of these reactors are of the CANDU Pressurized Heavy Water design, although their design features differ somewhat reflecting the evolution that has taken place from 1971 when the first Pickering unit started operation to the present as the Darlington units are being placed in service. Over the last three years, two significant neutronic transients took place at the Pickering Nuclear Generating Station 'A' (NGS A) one of which resulted in a number of fuel failures. Both events provided valuable lessons in the areas of operational safety, fuel performance And accident analysis. The events and the lessons learned are discussed in this paper

  1. The structural aging assessment program: ranking methodology for CANDU nuclear generating station concrete components

    International Nuclear Information System (INIS)

    Philipose, K.E.; Muhkerjee, P.K.; McColm, E.J.

    1997-01-01

    Most of the major structural components in CANDU nuclear generating stations are constructed of reinforced concrete. Although passive in nature, these structures perform many critical safety functions in the operation of each facility. Aging can affect the structural capacity and integrity of structures. The reduction in capacity due to aging is not addressed in design codes. Thus a program is warranted to monitor the aging of safety-related CANDU plant structures and to prioritize those that require maintenance and repairs. Prioritization of monitoring efforts is best accomplished by focusing on those structures judged to be the most critical to plant performance and safety. The safety significance of each sub-element and its degradation with time can be evaluated using a numerical rating system. This will simplify the utility's efforts, thereby saving maintenance costs while providing a higher degree of assurance that performance is maintained. This paper describes the development of a rating system (ranking procedure) as part of the Plant Life Management of CANDU generating station concrete structures and illustrates its application to an operating plant. (author)

  2. Generation III+ Reactor Portfolio

    International Nuclear Information System (INIS)

    2010-03-01

    While the power generation needs of utilities are unique and diverse, they are all faced with the double challenge of meeting growing electricity needs while curbing CO 2 emissions. To answer these diverse needs and help tackle this challenge, AREVA has developed several reactor models which are briefly described in this document: The EPR TM Reactor: designed on the basis of the Konvoi (Germany) and N4 (France) reactors, the EPRTM reactor is an evolutionary model designed to achieve best-in-class safety and operational performance levels. The ATMEA1 TM reactor: jointly designed by Mitsubishi Heavy Industries and AREVA through ATMEA, their common company. This reactor design benefits from the competencies and expertise of the two mother companies, which have commissioned close to 130 reactor units. The KERENA TM reactor: Designed on the basis of the most recent German BWR reactors (Gundremmingen) the KERENA TM reactor relies on proven technology while also including innovative, yet thoroughly tested, features. The optimal combination of active and passive safety systems for a boiling water reactor achieves a very low probability of severe accident

  3. Advanced CANDU reactors

    International Nuclear Information System (INIS)

    Dunn, J.T.; Finlay, R.B.; Olmstead, R.A.

    1988-12-01

    AECL has undertaken the design and development of a series of advanced CANDU reactors in the 700-1150 MW(e) size range. These advanced reactor designs are the product of ongoing generic research and development programs on CANDU technology and design studies for advanced CANDU reactors. The prime objective is to create a series of advanced CANDU reactors which are cost competitive with coal-fired plants in the market for large electricity generating stations. Specific plant designs in the advanced CANDU series will be ready for project commitment in the early 1990s and will be capable of further development to remain competitive well into the next century

  4. Two-phase flow induced vibrations in CANDU steam generators

    International Nuclear Information System (INIS)

    Gidi, A.

    2009-01-01

    The U-Bend region of nuclear steam generators tube bundles have suffered from two-phase cross flow induced vibrations. Tubes in this region have experienced high amplitude vibrations leading to catastrophic failures. Turbulent buffeting and fluid-elastic instability has been identified as the main causes. Previous investigations have focused on flow regime and two-phase flow damping ratio. However, tube bundles in steam generators have vapour generated on the surface of the tubes, which might affect the flow regime, void fraction distribution, turbulent intensity levels and tube-flow interaction, all of which have the potential to change the tube vibration response. A cantilevered tube bundle made of electric cartridges heaters was built and tested in a Freon-11 flow loop at McMaster University. Tubes were arranged in a parallel triangular configuration. The bundle was exposed to two-phase cross flows consisting of different combinations of void from two sources, void generated upstream of the bundle and void generated at the surface of the tubes. Tube tip vibration response was measured optically and void fraction was measured by gamma densitometry technique. It was found that tube vibration amplitude in the transverse direction was reduced by a factor of eight for void fraction generated at the tube surfaces only, when compared to the upstream only void generation case. The main explanation for this effect is a reduction in the correlation length of the turbulent buffeting forcing function. Theoretical calculations of the tube vibration response due to turbulent buffeting under the same experimental conditions predicted a similar reduction in tube amplitude. The void fraction for the fluid-elastic instability threshold in the presence of tube bundle void fraction generation was higher than that for the upstream void fraction generation case. The first explanation of this difference is the level of turbulent buffeting forces the tube bundle was exposed to

  5. Computer functions in overall plant control of candu generating stations

    International Nuclear Information System (INIS)

    Chou, Q.B.; Stokes, H.W.

    1976-01-01

    System Planning Specifications form the basic requirements for the performance of the plant including its response to abnormal situations. The rules for the computer control programs are devised from these, taking into account limitations imposed by the reactor, heat transport and turbine-generator systems. The paper outlines these specifications and the limitations imposed by the major items of plant equipment. It describes the functions of each of the main programs, their interactions and the control modes used in the existing Ontario Hydro's nuclear station or proposed for future stations. Some simulation results showing the performance of the overall unit control system and plans for future studies are discussed. (orig.) [de

  6. Susceptibility of CANDU steam generator preheater to cavitation erosion

    International Nuclear Information System (INIS)

    Laroche, S.L.; Sun, L.; Pietralik, J.M.

    2012-01-01

    In 2009, Darlington Steam Generator (SG) tube inspections revealed some tubes had degraded in the preheater. The tube degradation occurred at the clearance gap between the tube and the preheater baffle and reached up to 50% through-wall depth at the baffles in the middle portion of the preheater. The general pattern of the damage and the elemental composition analysis suggested that the degradation was the result of a hydrodynamic process, such as cavitation erosion. Cavitation erosion occurs when vapour bubbles exist or form in the flowing liquid and then these bubbles collapse violently in the vicinity of the wall. These bubbles collapse when steam bubbles contact water that is sufficiently subcooled, below the saturation temperature. In the gap between the tube and the preheater baffle, low flow will exist due to the pressure difference across the baffle plate. In addition, heat transfer occurs from the primary-side fluid to the secondary-side fluid within this clearance gap that is driven by the primary-to-secondary temperature difference. Factors, such as the tube position in the baffle hole and fouling, influence the local conditions and can cause subcooled boiling that result in cavitation. This paper presents a study of flow and heat transfer phenomena to determine the factors contributing to cavitation erosion in SG preheaters. The analysis used the THIRST1 code for a 3-dimensional thermalhydraulic simulation of the steam generators and the ANSYS FLUENT®2 code for detailed calculations of flow and heat transfer in the clearance gaps. This study identifies that tubes in the preheater region are susceptible to cavitation erosion and indicates that this area should be part of the station inspection program because, regardless of preheater design, some tubes may experience the thermalhydraulic conditions and undergo degradations similar to those observed for the tubes in Darlington SGs. (author)

  7. CANDU steam generator aging management: Some perspectives after 20 years in-service experience

    International Nuclear Information System (INIS)

    Tapping, R.I.; Nickerson, J.; Subash, N.; Roy, S.

    2002-01-01

    CANDU units have been placed in lay-up whilst condition assessments and rehabilitation programs are carried out. These rehabilitations, although costly, are justified economically. The economics require careful evaluation of current condition and, especially challenging, of remaining life. Review of the current condition of the SGs that have been laid up demonstrates the importance of layup chemistry control practices, and the variability introduced by the different tube materials. Questions arising from the layup condition, and its impact on future life, are difficult to address quantitatively. Further R and D is required to define the linkage between layup condition and future aging degradation. At CANDU 6 plants, there has been an excellent steam generator service record with little or no significant active degradation to date and several of the utilities are actively pursuing the option of planning for extended operation. At three of the older CANDU 6 plants, detailed and comprehensive life assessment studies of the steam generating equipment, the interfacing systems, the external support structure, the tubing, and all the key internal sub-components, has been completed. The studies involved a very thorough assessment of tubing corrosion mechanisms that can occur in various forms in nuclear steam generators. CANDU-6 SGs are tubed with Alloy 800M (M means m odified ) and have experienced relatively little SG tube corrosion to date. Despite this excellent record, it is well known that steam generators provide challenges for the assurance of continued on-going good health, as operation continues through to design life and particularly for a significant period of extended operation beyond. While the prognosis for life attainment and for extended operation of CANDU 6 Steam Generators is good, it has also been found that this conclusion is very dependent upon implementation of the recommended program enhancements of inspections, maintenance, chemistry control and

  8. Technical basis for the CANDU steam generator tube fitness-for-service guidelines

    International Nuclear Information System (INIS)

    Kozluk, M.J.; Scarth, D.A.; Graham, D.B.

    2002-01-01

    Active degradation mechanisms in steam generators and preheaters in Canadian CANDU T M generating stations are managed through Steam Generator Programs that incorporate tube inspection, maintenance (cleaning), fitness-for-service assessment, and preventative plugging as part of the overall steam generator management strategy. Steam generator and preheater tubes are inspected in accordance with the CSA Standard CAN/CSA-N285.4-94[l]. When a detected flaw indication does not satisfy the criteria of acceptance by examination, CSA-N285.4-94 permits a fitness-for-service assessment to determine acceptability. In 1999 Ontario Power Generation issued, for trial use, fitness-for-service guidelines for steam generator and preheater tubes in CANDU nuclear power plants. The main objectives of the Fitness-for-Service Guidelines are to provide reasonable assurance that tube structural integrity is maintained, and to provide reasonable assurance that there are adequate margins between estimated accumulated dose and applicable site dose limits. The Fitness-for-Service Guidelines are intended to provide industry-standard acceptance criteria and evaluation procedures for assessing the condition of steam generator and preheater tubes in terms of tube structural integrity, operational leak rate, and consequential leakage during an upset or abnormal event. This paper describes the technical basis for the minimum required safety factors specified in Table IC-1 of the Fitness-for-Service Guidelines and for the flaw models used to develop the flaw stability requirements in the nonmandatory, Appendix C of the Fitness-for-Service Guidelines. (author)

  9. The CANDU 80

    International Nuclear Information System (INIS)

    Hart, R.S.

    1998-01-01

    AECL has completed the conceptual design of a small CANDU plant with an output, in the range of 300 MWth (called the CANDU 80), suitable for a variety of electrical and co-generation applications including desalination, oil sands oil extraction and processing, and the provision of electricity and heat to areas with low demand. This paper provides a brief overview of the CANDU 80, and discusses key features contributing to safety and operational margins

  10. The CANDU 9

    International Nuclear Information System (INIS)

    Hart, R.S.

    1994-01-01

    The CANDU 9 plants are single unit versions of the Bruce B design, incorporating relevant technical advances made in CANDU 6, and the newer Darlington and CANDU 3 designs. This paper describes the CANDU 9 480/SEU, with an electrical output of about 1050 MW. In this designation, 480 refers to the number of fuel channels, and SEU to slightly enriched uranium. Emphasis is placed on evolutionary design, and the use of well proven design features, to ensure regulatory licensability and reliable operation. Safety is enhanced through simplification and improvement of key systems and components. Relatively low energy costs result from reduced specific capital cost, reduced operating and maintenance cost, and reduced radiation exposure to personnel. Standardization is emphasized inasmuch as all key components (steam generators, heat transport pumps, pressure tubes fuelling machines etc.) ar of the same design as those in operating CANDU stations. Advanced CANDU fuel cycles are readily accommodated. 1 ref., 1 tab., 11 figs

  11. Ontario Hydro CANDU operating experience

    International Nuclear Information System (INIS)

    Jackson, H.A.; Woodhead, L.W.; Fanjoy, G.R.

    1984-03-01

    The CANDU Pressurized Heavy Water (CANDU-PHW) type of nuclear-electric generating station has been developed jointly by Atomic Energy of Canada Limited and Ontario Hydro. This report highlights Ontario Hydro's operating experience using the CANDU-PHW system, with a focus on the operating performance and costs, reliability of system components and nuclear safety considerations for the workers and the public

  12. Ontario Hydro CANDU operating experience

    International Nuclear Information System (INIS)

    Bartholomew, R.W.; Woodhead, L.W.; Horton, E.P.; Nichols, M.J.; Daly, I.N.

    1987-01-01

    The CANDU Pressurized Heavy Water (CANDU-PHW) type of nuclear-electric generating station has been developed jointly by Atomic Energy of Canada Limited and Ontario Hydro. This report highlights Ontario Hydro's operating experience using the CANDU-PHW system, with a focus on worker and public safety, operating performance and costs, and reliability of system components

  13. Characteristics of U-tube assembly design for CANDU 6 type steam generators

    International Nuclear Information System (INIS)

    Park, Jun Su; Jeong, Seung Ha

    1996-06-01

    Since the first operation of nuclear steam generator early 1960s, its performance requirements have been met but the steam generator problems have been met but the steam generator problems have been major cause of reducing the operational reliability, plant safety and availability. U-tube assembly of steam generator forms the primary system pressure boundary of the plant and have experienced several types of tube degradation problems. Tube failure and leakage resulting from the degradation will cause radioactive contamination of secondary system by the primary coolant, and this may lead to unplanned plant outages and costly repair operations such as tube plugging or steam generator replacement. For the case of steam generators for heavy water reactors, e.g. Wolsong 2, 3, and 4 NPP, a high cost of heavy water will be imposed additionally. During the plant operation, steam generator tubes can potentially be subject to adverse environmental conditions which will cause damages to U-tube assembly. Types of the damage depend upon the combined effects of design factors, materials and chemical environment of steam generator, and they are the pure water stress corrosion cracking, intergranular attack, pitting, wastage, denting, fretting and fatigue, etc. In this report, a comprehensive review of major design factors of recirculating steam generators has been performed against the potential tube damages. Then the design characteristics of CANDU-type Wolsong steam generator were investigated in detail, including tube material, thermalhydraulic aspects, tube-to-tubesheet joint, tube supports, water chemistry and sludge management. 9 tabs., 18 figs., 38 refs. (Author) .new

  14. Eddy Currents Inspection of CANDU Steam Generator Tubes using Zetec's ZR-1 Robot. Experience in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Scott Hower [Zetec Inc. (Romania); Luiza Vladu; Adrian Nichisov; Mihai Cretu [COMPCONTROL ING. (Romania)

    2006-07-01

    Full text of publication follows: The commercial operation of Unit 1 of Cernavoda NPP started on 2 December, 1996. The unit's reactor type is PHWR-CANDU 6 (electrical capacity 706 MWe), using natural uranium. The nuclear fuel is manufactured in Romania. The Cernavoda nuclear power plant has four CANDU - design steam generators that have been in service since 1996. The paper introduces the new ZR-1 Robot System for Inspection and Maintenance/Repair from Zetec that combines the newest state-of-the-art robotics technology with Zetec experience - based innovation to address the needs for inspection and repair of steam generators. The multipurpose ZR-1 can be easily installed to perform the necessary eddy current inspection and remain installed ready for follow-up maintenance and repair. It has superior technical performances and a modular three axis motion of arm that enables 100% coverage of tube sheet. Automated, repeatable, and precise positioning of tool heads ensures accurate delivery and reducing costly rework and reduces inspection time by 30%. The modular, light weight, and portable design permits easy assembly and disassembly through small openings and it reduces setup/tear down time by 30%. The first deployment of the new ZR-1 Robot was made in September 2004 at the Cernavoda NPP inspection outage. The unit's reactor type is PHWR-CANDU 6 (electrical capacity 706 MWe), using natural uranium; the nuclear fuel is manufactured in Romania. The Cernavoda nuclear power plant Unit 1 has four CANDU - design steam generators that have been in service since 1996. The paper presents also the Zetec's field experience and customer experience with this system. It describes the equipment setup in Cernavoda's steam generators mock-up, functional tests and calibration. Finally, provides details on the execution of the inspection, options for standardizing the inspection techniques and conclusions. (authors)

  15. Corrosion control in CANDU nuclear power reactors

    International Nuclear Information System (INIS)

    Lesurf, J.E.

    1974-01-01

    Corrosion control in CANDU reactors which use pressurized heavy water (PHW) and boiling light water (BLW) coolants is discussed. Discussions are included on pressure tubes, primary water chemistry, fuel sheath oxidation and hydriding, and crud transport. It is noted that corrosion has not been a significant problem in CANDU nuclear power reactors which is a tribute to design, material selection, and chemistry control. This is particularly notable at the Pickering Nuclear Generating Station which will have four CANDU-PHW reactors of 540 MWe each. The net capacity factor for Pickering-I from first full power (May 1971) to March 1972 was 79.5 percent, and for Pickering II (first full power November 1971) to March 1972 was 83.5 percent. Pickering III has just reached full power operation (May 1972) and Pickering IV is still under construction. Gentilly CANDU-BLW reached full power operation in May 1972 after extensive commissioning tests at lower power levels with no major corrosion or chemistry problems appearing. Experience and operating data confirm that the value of careful attention to all aspects of corrosion control and augur well for future CANDU reactors. (U.S.)

  16. SARAPAN-A simulated-annealing-based tool to generate random patterned-channel-age in CANDU fuel management analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kastanya, Doddy [Safety and Licensing Department, Candesco Division of Kinectrics Inc., Toronto (Canada)

    2017-02-15

    In any reactor physics analysis, the instantaneous power distribution in the core can be calculated when the actual bundle-wise burnup distribution is known. Considering the fact that CANDU (Canada Deuterium Uranium) utilizes on-power refueling to compensate for the reduction of reactivity due to fuel burnup, in the CANDU fuel management analysis, snapshots of power and burnup distributions can be obtained by simulating and tracking the reactor operation over an extended period using various tools such as the *SIMULATE module of the Reactor Fueling Simulation Program (RFSP) code. However, for some studies, such as an evaluation of a conceptual design of a next-generation CANDU reactor, the preferred approach to obtain a snapshot of the power distribution in the core is based on the patterned-channel-age model implemented in the *INSTANTAN module of the RFSP code. The objective of this approach is to obtain a representative snapshot of core conditions quickly. At present, such patterns could be generated by using a program called RANDIS, which is implemented within the *INSTANTAN module. In this work, we present an alternative approach to derive the patterned-channel-age model where a simulated-annealing-based algorithm is used to find such patterns, which produce reasonable power distributions.

  17. SARAPAN—A Simulated-Annealing-Based Tool to Generate Random Patterned-Channel-Age in CANDU Fuel Management Analyses

    Directory of Open Access Journals (Sweden)

    Doddy Kastanya

    2017-02-01

    Full Text Available In any reactor physics analysis, the instantaneous power distribution in the core can be calculated when the actual bundle-wise burnup distribution is known. Considering the fact that CANDU (Canada Deuterium Uranium utilizes on-power refueling to compensate for the reduction of reactivity due to fuel burnup, in the CANDU fuel management analysis, snapshots of power and burnup distributions can be obtained by simulating and tracking the reactor operation over an extended period using various tools such as the *SIMULATE module of the Reactor Fueling Simulation Program (RFSP code. However, for some studies, such as an evaluation of a conceptual design of a next-generation CANDU reactor, the preferred approach to obtain a snapshot of the power distribution in the core is based on the patterned-channel-age model implemented in the *INSTANTAN module of the RFSP code. The objective of this approach is to obtain a representative snapshot of core conditions quickly. At present, such patterns could be generated by using a program called RANDIS, which is implemented within the *INSTANTAN module. In this work, we present an alternative approach to derive the patterned-channel-age model where a simulated-annealing-based algorithm is used to find such patterns, which produce reasonable power distributions.

  18. CANDU-BLW-250

    Energy Technology Data Exchange (ETDEWEB)

    Pon, G. A. [Atomic Energy of Canada Ltd, Sheridan Park, ON (Canada)

    1968-04-15

    The plant ''La Centrale nucleaire de Gentiliy'' is located between Montreal and Quebec City on the south shore of the St. Lawrence River. Startup is scheduled for 1971. A CANDU-BLW reactor is the nuclear steam generator. This reactor utilizes a heavy-water moderator, natural uranium oxide fuel, and a boiling light-water coolant. To be economic, this type of plant must have a minimum light-water inventory in the reactor core. A minimum inventory is obtained (a) by reducing the cross-sectional area for coolant flow to a minimum, and (b) by operating at a low coolant density. In CANDU-BLW-250, this is accomplished by operating a closed spaced fuel rod bundle at high steam quality. These features and others in the BLW concept lead to a number of areas of concern and they are summarized below: (i) Heat transfer. It is intended that under normal operating conditions the fuel sheaths will always be wetted with coolant. Some experiments and backup calculations are presented to support this specification. (ii) Hydrodynamic stability. Experiments and analysis indicate that the plant has a considerable over-power capacity before instability is predicted. (iii) Control. This plant does have a positive power coefficient and the transient performance with various disturbances is detailed. (iv) Safety. The positive power coefficient leads to concern over the loss of coolant accident. The results of some accident analyses are presented. (author)

  19. CANDU-BLW-250

    Energy Technology Data Exchange (ETDEWEB)

    Pon, G A

    1967-09-15

    The plant 'La Centrale nucleaire de Gentilly' is located between Montreal and Quebec City on the south shore of the St. Lawrence River and start-up is scheduled for 1971. A CANDU-BLW reactor is the nuclear steam generator. his reactor utilizes a heavy water moderator, natural uranium oxide fuel, and a boiling light water coolant. To be economic, this type of plant must have a minimum light water inventory in the reactor core. A minimum inventory is obtained (a) by reducing the cross-sectional area for coolant flow to a minimum, and (b) by operating at a low-coolant density. In CANDU-BLW-250, this is accomplished by operating a closed spaced fuel rod bundle at high steam quality. These features and others in the BLW concept lead to a number of areas of concern and they are summarized below: (1) Heat Transfer: It is intended that under normal operating conditions the fuel sheaths will always be wetted with coolant. (ii) Hydrodynamic Stability: Experiments and analysis indicate that the plant has a considerable over-power capacity before instability is predicted. (iii) Control: This plant does have a positive power coefficient and the transient performance with various disturbances are detailed. (iv) Safety: The positive power coefficient leads to concern over the loss of coolant accident. The results of some accident analysis are presented. (author)

  20. Experimental modeling of flow-induced vibration of multi-span U-tubes in a CANDU steam generator

    International Nuclear Information System (INIS)

    Mohany, A.; Feenstra, P.; Janzen, V.P.; Richard, R.

    2009-01-01

    Flow-induced vibration of the tubes in a nuclear steam generator is a concern for designers who are trying to increase the life span of these units. The dominant excitation mechanisms are fluidelastic instability and random turbulence excitation. The outermost U-bend region of the tubes is of greatest concern because the flow is almost perpendicular to the tube axis and the unsupported span is relatively long. The support system in this region must be well designed in order to minimize fretting wear of the tubes at the support locations. Much of the previous testing was conducted on straight single-span or cantilevered tubes in cross-flow. However, the dynamic response of steam generator multi-span U-tubes with clearance supports is expected to be different. Accurate modeling of the tube dynamics is important to properly simulate the dynamic interaction of the tube and supports. This paper describes a test program that was developed to measure the dynamic response of a bundle of steam generator U-tubes with Anti-Vibration Bar (AVB) supports, subjected to Freon two-phase cross-flow. The tube bundle has similar geometrical conditions to those expected for future CANDU steam generators. Future steam generators will be larger than previous CANDU steam generators, nearly twice the heat transfer area, with significant changes in process conditions in the U-bend region, such as increased steam quality and a broader range of flow velocities. This test program was initiated at AECL to demonstrate that the tube support design for future CANDU steam generators will meet the stringent requirements associated with a 60 year design life. The main objective of the tests is to address the issue of in-plane and out-of-plane fluidelastic instability and random turbulent excitation of a U-tube bundle with Anti-Vibration Bar (AVB) supports. Details of the test rig, measurement techniques and preliminary instrumentation results are described in the paper. (author)

  1. The next generation of CANDU: reactor design to meet future energy markets

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Love, J.W.; Wren, D.J.

    2001-01-01

    Nuclear power plant designs for the future must respond to increasingly demanding market requirements. This means that value can be gained from substantial product development directed at these requirements. For the CANDU system, AECL has adopted the revolutionary approach, accommodating significant changes to design while retaining traditional CANDU strengths. The focus of the new design is to achieve a 40% reduction in capital cost, quicken construction time and higher efficiency. Key aspects of the new design include: light water coolant, smaller core, slightly enriched fuel, higher temperature and pressure coolant. Work is well advanced on the preliminary design

  2. CANDU 3000

    International Nuclear Information System (INIS)

    Keillor, Mac

    1987-01-01

    In this article, the CANDU 300 design, and the team that designed it, are featured. The CANDU 300 will operate at an energy cost similar to that of the larger CANDU units, but is sized for emerging markets. Ease of construction is an important feature: for example, full 360-degree access is available to each of the five buildings during construction; and the whole plant consists of about 90 modules, which can be built in separate locations, and hoisted into place

  3. CATHENA analysis of CANDU 6 steam generators for steam main break at a remote location

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2009-07-01

    CATHENA (Canadian Algorithm for THErmalhydraulic Network Analysis) is a nonequilibrium, two-phase, two fluid network analysis code that has been in use for over two decades by various groups in Canada and around the world. It is the primary Thermalhydraulics network analysis tool used by Atomic Energy Canada Ltd. (AECL) in the design, safety and licensing analysis of power and research reactors as well as test facilities. In the thermalhydraulic model, the liquid and vapor phases may have different pressures, velocities, and temperatures. The objective of the present paper is to present the detailed modeling of a CANDU 6 Steam Generator (SG) using the transient, thermalhydraulics network code CATHENA. The model represents the secondary side, primary side and the main steam system including the main steam line up to the assumed break location. The present model is designed such that the transient pressure drops across Tube Support Plates (TSP) could be extracted. The resistances of degraded/fouled TSPs were modeled by using the increased/reduced flow area of the TSPs. CATHENA then calculates the flow resistance in two-phase flow based on the area contraction/expansion at the TSPs. Three sets of simulations were performed; one with the degraded steam generator data provided by the utility users, and the other two with waterlanced (cleaned with high pressure water jet) TSPs. One run assumed the flow area increased by 25 percent, the other run assumed the flow area increased by 50 percent. on the hot side of the SG. No significant changes in the break discharge rates were observed between the runs. However, the steam generator downcomer flow for the waterlanced case did not reverse during the blowdown as was calculated for the degraded case. As expected, the pressure drop across the TSPs was decreased in the waterlanced cases comparing with degraded cases. The CATHENA simulation provides estimates of the velocity, density, and quality in the tube bundle as well as

  4. Incentives for improvement of CANDU

    International Nuclear Information System (INIS)

    Hart, R.S.; Dunn, J.T.; Finlay, R.B.

    1988-12-01

    CANDU is a relatively young technology which has demonstrated many achievements as an electrical power generation system. These achievements include an unsurpassed safety record, high annual and lifetime capacity factors, low electricity cost and a broad range of other performance strengths which together indicate that the CANDU technology is fundamentally sound. Known capabilities not yet fully exploited, such as advanced fuel cycle options, indicate that CANDU technology will continue to pay strong dividends on research, development and design investment. This provides a strong incentive for the improvement of CANDU on a continuing basis

  5. Enhanced CANDU 6 Reactor

    International Nuclear Information System (INIS)

    Azeez, S.; Alizadeh, A.; Girouard, P.

    2005-01-01

    Full text: The CANDU 6 power reactor is visionary in its approach, remarkable for its on-power refuelling capability and proven over years of safe, economical and reliable power production. Developed by Atomic Energy of Canada Ltd, the CANDU 6 design offers excellent performance utilizing state-of-the-art technology. The first CANDU 6 plants went into service in the early 1980's as leading edge technology and the design has been continuously advanced to maintain superior performance with an outstanding safety record. The first CANDU 6 plants- Gentilly 2 and Point Lepreau in Canada, Embalse in Argentina and Wolsong- Unit 1 in Korea have been in service for more than 21 years and are still producing electricity at peak performance and to the end of 2004, their average lifetime Capacity Factor was 83.2%. The newer CANDU 6 units in Romania (Cernavoda 1), Korea (Wolsong-Units 2, 3 and 4) and Qinshan (Phase III- Units 1 and 2) have also been performing at outstanding levels. The average lifetime Capacity Factor of the 10 CANDU 6 operating units around the world has been 87% to the end of 2004. Building on these successes, AECL is committed to the further development of this highly successful design, now focussing on meeting customer's needs for reduced costs, further improvements to plant operation and performance, enhanced safety and incorporating up-to-date technology as warranted. This has resulted in AECL embarking on improving the CANDU 6 design through an upgraded product termed as the 'Enhanced CANDU 6' (EC6)- which incorporates several attractive but proven features that will make the CANDU 6 reactor even more economical, safer and easier to operate. Some of the key features that will be incorporated in the EC6 include increasing the plant's power output, shortening the overall project schedule, decreasing the capital cost, dealing with obsolescence issues, optimizing maintenance outages and incorporating lessons learnt through feedback obtained from the

  6. Role of computers in CANDU safety systems

    International Nuclear Information System (INIS)

    Hepburn, G.A.; Gilbert, R.S.; Ichiyen, N.M.

    1985-01-01

    Small digital computers are playing an expanding role in the safety systems of CANDU nuclear generating stations, both as active components in the trip logic, and as monitoring and testing systems. The paper describes three recent applications: (i) A programmable controller was retro-fitted to Bruce ''A'' Nuclear Generating Station to handle trip setpoint modification as a function of booster rod insertion. (ii) A centralized monitoring computer to monitor both shutdown systems and the Emergency Coolant Injection system, is currently being retro-fitted to Bruce ''A''. (iii) The implementation of process trips on the CANDU 600 design using microcomputers. While not truly a retrofit, this feature was added very late in the design cycle to increase the margin against spurious trips, and has now seen about 4 unit-years of service at three separate sites. Committed future applications of computers in special safety systems are also described. (author)

  7. CANDU lectures

    International Nuclear Information System (INIS)

    Rouben, B.

    1984-06-01

    This document is a compilation of notes prepared for two lectures given by the author in the winter of 1983 at the Institut de Genie Nucleaire, Ecole Polytechnique, Montreal. The first lecture gives a physical description of the CANDU reactor core: the nuclear lattice, the reactivity mechanisms, their functions and properties. This lecture also covers various aspects of reactor core physics and describes different calculational methods available. The second lecture studies the numerous facets of fuel management in CANDU reactors. The important variables in fuel management, and the rules guiding the refuelling strategy, are presented and illustrated by means of results obtained for the CANDU 600

  8. The steam generator programme of PISC III

    International Nuclear Information System (INIS)

    Birac, C.; Herkenrath, H.

    1990-12-01

    The PISC III Actions are intended to extend the results and methodologies of the previous PISC excercises, i.e. the validation of the capabilities of the various examination techniques when used on real defects in real components under real conditions of inspection. Being aware of the important safety role that steam generator tubes play as barrier between primary and secondary cooling system and of the industrial problems that the degradation of these tubes can create, the PISC III Management Board agreed to include in the PISC III Programme a special Action on Steam Generator Tubes Testing (SGT). It was decided to organize the programme in three phases, including Round Robin Tests (RRT): - capability tests on loose tubes, - capability tests on transportable mock-ups, - reliability tests on fixed mock-ups including some interesting SURRY tubes

  9. Joint studies on large CANDU

    International Nuclear Information System (INIS)

    Lee, Ikhwan; Yu, S. K. W.

    1994-01-01

    from economic, safety and strategic viewpoints. A large number of research and development programs are now in place at AECL and KAERI that will permit substantial improvements to be realized in the next generation of CANDU okabts, Furthermore, opportunities exist for engineered improvements based on the research and development in advancing the generic CANDU Technology. Final Large CANDU joint study report with technical deliverables will be issued 1994 October. Phase 2 R and D program of the joint studies will be determined this year and implemented in next year. CANDU neutron economy permits versatility in choices of fuel cycles. This allows a utility to choose fuel cycle options for lower fuelling cost, better security of supply, and ultimately for much lower spent-fuel volume, than with PWR's alone. To meet Korea's strategic requirements, CANDU should be an integral part of the electricity supply mix.

  10. CANDU 9 fuelling machine carriage

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, D J; Slavik, J F [Atomic Energy of Canada Ltd., Saskatoon, SK (Canada)

    1997-12-31

    Continuous, on-power refuelling is a key feature of all CANDU reactor designs and is essential to maintaining high station capacity factors. The concept of a fuelling machine carriage can be traced to the early CANDU designs, such as the Douglas Point Nuclear Generating Station. In the CANDU 9 480NU unit, the combination of a mobile carriage and a proven fuelling machine head design comprises an effective means of transporting fuel between the reactor and the fuel transfer ports. It is a suitable alternative to the fuelling machine bridge system that has been utilized in the CANDU 6 reactor units. The CANDU 9 480NU fuel handling system successfully combines features that meet the project requirements with respect to fuelling performance, functionality, seismic qualification and the use of proven components. The design incorporates improvements based on experience and applicable current technologies. (author). 4 figs.

  11. CANDU 9 fuelling machine carriage

    International Nuclear Information System (INIS)

    Ullrich, D.J.; Slavik, J.F.

    1996-01-01

    Continuous, on-power refuelling is a key feature of all CANDU reactor designs and is essential to maintaining high station capacity factors. The concept of a fuelling machine carriage can be traced to the early CANDU designs, such as the Douglas Point Nuclear Generating Station. In the CANDU 9 480NU unit, the combination of a mobile carriage and a proven fuelling machine head design comprises an effective means of transporting fuel between the reactor and the fuel transfer ports. It is a suitable alternative to the fuelling machine bridge system that has been utilized in the CANDU 6 reactor units. The CANDU 9 480NU fuel handling system successfully combines features that meet the project requirements with respect to fuelling performance, functionality, seismic qualification and the use of proven components. The design incorporates improvements based on experience and applicable current technologies. (author). 4 figs

  12. Steps to Advanced CANDU 600

    International Nuclear Information System (INIS)

    Oh, Yongshick; Brooks, G. L.

    1988-01-01

    The CANDU nuclear power system was developed from merging of AECL heavy water reactor technology with Ontario Hydro electrical power station expertise. The original four units of Ontario Hydro's Pickering Generating Station are the first full-scale commercial application of the CANDU system. AECL and Ontario Hydro then moved to the next evolutionary step, a more advanced larger scale design for four units at the Bruce Generating Station. CANDU 600 followed as a single unit nuclear electric power station design derived from an amalgam of features of the multiple unit Pickering and Bruce designs. The design of the CANDU 600 nuclear steam supply system is based on the Pickering design with improvements derived from the Bruce design. For example, most CANDU 600 auxiliary systems are based on Bruce systems, whereas the fuel handling system is based on the Pickering system. Four CANDU 600 units are in operation, and five are under construction in Romania. For the additional four units at Pickering Generating Station 'B', Ontario Hydro selected a replica of the Pickering 'A' design with limited design changes to maintain a high level of standardization across all eight units. Ontario Hydro applied a similar policy for the additional four units at Bruce Generating Station 'B'. For the four unit Darlington station, Ontario Hydro selected a design based on Bruce with improvements derived from operating experience, the CANDU 600 design and development programs

  13. Design specifications to ensure flow-induced vibration and fretting-wear performance in CANDU steam generators and heat exchangers

    International Nuclear Information System (INIS)

    Janzen, V.P.; Han, Y.; Pettigrew, M.J.

    2009-01-01

    Preventing flow-induced vibration and fretting-wear problems in steam generators and heat exchangers requires design specifications that bring together specific guidelines, analysis methods, requirements and appropriate performance criteria. This paper outlines the steps required to generate and support such design specifications for CANDU nuclear steam generators and heat exchangers, and relates them to typical steam-generator design features and computer modeling capabilities. It also describes current issues that are driving changes to flow-induced vibration and fretting-wear specifications that can be applied to the design process for component refurbishment, replacement or new designs. These issues include recent experimental or field evidence for new excitation mechanisms, e.g., the possibility of in-plane fluidelastic instability of U-tubes, the demand for longer reactor and component lifetimes, the need for better predictions of dynamic properties and vibration response, e.g., two-phase random-turbulence excitation, and requirements to consider system 'excursions' or abnormal scenarios, e.g., a main steam line break in the case of steam generators. The paper describes steps being taken to resolve these issues. (author)

  14. CANDU fuel

    International Nuclear Information System (INIS)

    MacEwan, J.R.; Notley, M.J.F.; Wood, J.C.; Gacesa, M.

    1982-09-01

    The direction of CANDU fuel development was set in 1957 with the decision to build pressure tube reactors. Short - 50 cm long - rodded bundles of natural UO 2 clad in Zircaloy were adopted to facilitate on-power fuelling to improve uranium utilization. Progressive improvements were made during 25 years of development, involving 650 man years and 180 million dollars. Today's CANDU bundle is based on the knowledge gained from extensive irradiation testing and experience in power reactors. The main thrust of future development is to demonstrate that the present bundle is suitable, with minor modifications, for thorium fuels

  15. Experimental research regarding the corrosion of incoloy-800 and SA 508 cl.2 in the CANDU steam generator

    International Nuclear Information System (INIS)

    Lucan, D.; Fulger, M.; Savu, G.; Velciu, L.

    2004-01-01

    Steam generators (SGs) are crucial components of pressurized water reactors. The failure of the steam generator as a result of tube degradation by corrosion has been a major cause of Pressurized Water Reactor (PWR) plant unavailability. Steam generator problems have caused major economic losses in terms of lost electricity production through forced unit outages and, in cases of extreme damage, as additional direct cost for large-scale repair or replacement of steam generators. Steam generator tubes are susceptible to failure by a variety of mechanisms, the vast majority of which are related a corrosion. The feedwater that enters into the steam generators under normal operating conditions is extremely pure, but nevertheless contains low levels (generally in the μg/l concentration range) of impurities such as iron, chloride, sulphate, silicate, etc. When water is converted to steam and exits the steam generator, the non-volatile impurities are left behind. As a result, their concentration in the bulk steam generator water is considerably higher than those in the feedwater. Nevertheless, the concentrations of corrosive impurities are still generally sufficiently low that the bulk water is not significantly aggressive towards steam generator materials. The excellent performance to date of CANDU steam generators can be attributed, in part, to their design and performance characteristics, which typically involve higher recirculation ratios and lower heat fluxes and temperatures. The purpose of this paper consists in assessment of generalized corrosion behaviour of the tubes materials (Incoloy-800) and tubesheet material (carbon steel SA 508 cl.2) at the normal secondary circuit parameters (temperature-260 deg C, pressure-5.1MPa). The testing environment was the demineralized water without impurities, at pH=9.5 regulated with morpholine and ciclohexilamine (all volatile treatment - AVT). The results are presented like micrographies and graphics representing loss of metal

  16. Cost comparison of 4x500 MW coal-fuelled and 4x850 MW CANDU nuclear generating stations

    International Nuclear Information System (INIS)

    Costa, M.

    1981-01-01

    The lifetime costs for a 4x850 MW CANDU generating station are compared to those for 4x500 MW bituminous coal-fuelled generating stations. Two types of coal-fuelled stations are considered; one burning U.S. coal which includes flue gas desulfurization and one burning Western Canadian coal. Current estimates for the capital costs, operation and maintenance costs, fuel costs, decommissioning costs and irradiated fuel management costs are shown. The results show: (1) The accumulated discounted costs of nuclear generation, although initially higher, are lower than coal-fuelled generation after two or three years. (2) Fuel costs provide the major contribution to the total lifetime costs for coal-fuelled stations whereas capital costs are the major item for the nuclear station. (3) The break even lifetime capacity factor between nuclear and U.S. coal-fuelled generation is projected to be 5%; that for nuclear and Canadian coal-fuelled generation is projected to be 9%. (4) Large variations in the costs are required before the cost advantage of nuclear generation is lost. (5) Comparison with previous results shows that the nuclear alternative has a greater cost advantage in the current assessment. (6) The total unit energy cost remains approximately constant throughout the station life for nuclear generation while that for coal-fuelled generation increases significantly due to escalating fuel costs. The 1978 and 1979 actual total unit energy cost to the consumer for several Ontario Hydro stations are detailed, and projected total unit energy costs for several Ontario Hydro stations are shown in terms of escalated dollars and in 1980 constant dollars

  17. Investigation of techniques for the application of safeguards to the CANDU 600 MW(e) nuclear generating station

    International Nuclear Information System (INIS)

    Smythe, W.D.

    1978-06-01

    A cooperative program with the Canadian Atomic Energy Control Board, Atomic Energy of Canada Limited and the IAEA was established in 1975: to determine the diversion possibilities at the CANDU type reactors using a diversion path analysis; to detect the diversion of nuclear materials using material accountancy and surveillance/containment. Specific techniques and instrumentation, some of which are unique to the CANDU reactor, were developed. 10 appendices bring together the relevant reports and memoranda of results for the Douglas Point Program

  18. CANDU passive shutdown systems

    Energy Technology Data Exchange (ETDEWEB)

    Hart, R S; Olmstead, R A [AECL CANDU, Sheridan Park Research Community, Mississauga, ON (Canada)

    1996-12-01

    CANDU incorporates two diverse, passive shutdown systems, independent of each other and from the reactor regulating system. Both shutdown systems function in the low pressure, low temperature, moderator which surrounds the fuel channels. The shutdown systems are functionally different, physically separate, and passive since the driving force for SDS1 is gravity and the driving force for SDS2 is stored energy. The physics of the reactor core itself ensures a degree of passive safety in that the relatively long prompt neutron generation time inherent in the design of CANDU reactors tend to retard power excursions and reduces the speed required for shutdown action, even for large postulated reactivity increases. All passive systems include a number of active components or initiators. Hence, an important aspect of passive systems is the inclusion of fail safe (activated by active component failure) operation. The mechanisms that achieve the fail safe action should be passive. Consequently the passive performance of the CANDU shutdown systems extends beyond their basic modes of operation to include fail safe operation based on natural phenomenon or stored energy. For example, loss of power to the SDS1 clutches results in the drop of the shutdown rods by gravity, loss of power or instrument air to the injection valves of SDS2 results in valve opening via spring action, and rigorous self checking of logic, data and timing by the shutdown systems computers assures a fail safe reactor trip through the collapse of a fluctuating magnetic field or the discharge of a capacitor. Event statistics from operating CANDU stations indicate a significant decrease in protection system faults that could lead to loss of production and elimination of protection system faults that could lead to loss of protection. This paper provides a comprehensive description of the passive shutdown systems employed by CANDU. (author). 4 figs, 3 tabs.

  19. Non-electrical CANDU applications

    International Nuclear Information System (INIS)

    Hopwood, Jerry; Kuran, Sermet; Zhou, Xi; Ivanco, Michael; Rolfe, Brian; Mancuso, Connie; Duffey, Romney

    2005-01-01

    AECL has performed studies to utilize CANDU nuclear energy in areas other than electrical generation. The studies presented in this paper include using CANDU for applications in non-traditional areas which expand the use of zero-greenhouse gas energy source. The Oil sands industry demands significant energy input and the majority of the energy required for bitumen extraction is steam and hot water. As the primary production of a CANDU plant is steam, it can satisfy the steam and hot water requirement without a major modification to the Nuclear Steam Plant (NSP). Reverse Osmosis (RO) has been identified by the IAEA as the most promising method for nuclear desalination. Since the RO desalination efficiency increases as its feedwater temperature rises, using condenser cooling water from a CANDU plant as the feedwater for a RO plant and sharing other facilities between these two plants results in significant benefits in capital and operating costs of a desalination plant. Electrolysis powered by nuclear-generated electricity is the technology currently available to produce hydrogen without greenhouse gas emissions. By using the cheaper electricity available at off-peak periods in an open electricity market, this technology could be economically competitive, improve overall energy system efficiency and reduce overall energy system carbon intensity. The paper summarizes the background, technical approaches, feasibility considerations, along with economic comparisons between CANDU nuclear energy and the traditional energy sources for each study. The results show that the CANDU technology is a promising energy source for various industries. (author)

  20. CANDU development

    International Nuclear Information System (INIS)

    Brooks, G.L.

    1981-06-01

    Evolution of the 950 MW(e) CANDU reactor is summarized. The design was specifically aimed at the export market. Factors considered in the design were that 900-1000 MW is the maximum practical size for most countries; many countries have warmer condenser cooling water than Canada; the plant may be located on coastal sites; seismic requirements may be more stringent; and the requirements of international, as well as Canadian, standards must be satisfied. These considerations resulted in a 600-channel reactor capable of accepting condenser cooling water at 32 0 C. To satisfy the requirement for a proven design, the 950 MW CANDU draws upon the basic features of the Bruce and Pickering plants which have demonstrated high capacity factors

  1. The future for CANDU

    International Nuclear Information System (INIS)

    Foster, J.S.

    1977-06-01

    Canada could have 60,000 MW(e) of installed nuclear-electric generating capacity by the year 2000 and have exported the plan to generate a further 5,000 MW(e). While the CANDU reactor can readily be scaled up to larger unit sizes, its real potential lies in the even greater efficiency that can be obtained by using alternative fuel cycles. The thorium - uranium-233 fuel cycle, for instance, makes it possible to attain a conversion factor of unity, or a little better, on a feed of pure thorium in a substantially unmodified CANDU reactor. Further developments, such as spallation, offer means of converting fertile to fissile material to provide a fissile inventory for an expanding system. The coincidence of expected future shortages of other energy supplies with continuing good experience in the nuclear field should assist in creating a climate that will permit accelerated nuclear power development. (author)

  2. CANDU project development

    Energy Technology Data Exchange (ETDEWEB)

    Hedges, K R [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1996-12-31

    Advanced CANDU reactor design strategy follows an evolutionary approach, taking manageable steps in the development of power plants from today`s available designs, and in parallel carrying out longer-term studies to develop future-generation reactor concepts. The major emphasis is on safety, on on reducing cost and schedule. New features are developed and thoroughly proof-tested before introduction into designs, in order to maximize owner confidence. (author). 4 figs.

  3. CANDU project development

    International Nuclear Information System (INIS)

    Hedges, K.R.

    1995-01-01

    Advanced CANDU reactor design strategy follows an evolutionary approach, taking manageable steps in the development of power plants from today's available designs, and in parallel carrying out longer-term studies to develop future-generation reactor concepts. The major emphasis is on safety, on on reducing cost and schedule. New features are developed and thoroughly proof-tested before introduction into designs, in order to maximize owner confidence. (author). 4 figs

  4. Passive heat removal in CANDU

    International Nuclear Information System (INIS)

    Hart, R.S.

    1997-01-01

    CANDU has a tradition of incorporating passive systems and passive components whenever they are shown to offer performance that is equal to or better than that of active systems, and to be economic. Examples include the two independent shutdown systems that employ gravity and stored energy respectively, the dousing subsystem of the CANDU 6 containment system, and the ability of the moderator to cool the fuel in the event that all coolant is lost from the fuel channels. CANDU 9 continues this tradition, incorporating a reserve water system (RWS) that increases the inventory of water in the reactor building and profiles a passive source of makeup water and/or heat sinks to various key process systems. The key component of the CANDU 9 reserve water system is a large (2500 cubic metres) water tank located at a high elevation in the reactor building. The reserve water system, while incorporating the recovery system functions, and the non-dousing functions of the dousing tank in CANDU 6, embraces other key systems to significantly extend the passive makeup/heat sink capability. The capabilities of the reserve water system include makeup to the steam generators secondary side if all other sources of water are lost; makeup to the heat transport system in the event of a leak in excess of the D 2 O makeup system capability; makeup to the moderator in the event of a moderator leak when the moderator heat sink is required; makeup to the emergency core cooling (ECC) system to assure NPSH to the ECC pumps during a loss of coolant accident (LOCA), and provision of a passive heat sink for the shield cooling system. Other passive designs are now being developed by AECL. These will be incorporated in future CANDU plants when their performance has been fully proven. This paper reviews the passive heat removal systems and features of current CANDU plants and the CANDU 9, and briefly reviews some of the passive heat removal concepts now being developed. (author)

  5. Enhanced candu 6 reactor: status

    International Nuclear Information System (INIS)

    Azeez, S.; Girouard, P.

    2006-01-01

    The CANDU 6 power reactor is visionary in its approach, renowned for its on-power refuelling capability and proven over years of safe, economical and reliable power production. Developed by Atomic Energy of Canada Limited (AECL), the CANDU 6 design offers excellent performance utilizing state-of-the-art technology. The first CANDU 6 plants went into service in the early 1980s as leading edge technology and the design has been continuously advanced to maintain superior performance with an outstanding safety record. The first set of CANDU 6 plants - Gentilly 2 and Point Lepreau in Canada, Embalse in Argentina and Wolsong- Unit 1 in Korea - have been in service for more than 22 years and are still producing electricity at peak performance; to the end of 2004, their average Lifetime Capacity Factor was 83.2%. The newer CANDU 6 units in Romania (Cernavoda 1), Korea (Wolsong-Units 2, 3 and 4) and Qinshan (Phase III- Units 1 and 2) have also been performing at outstanding levels. The average lifetime Capacity Factor of the 10 CANDU 6 operating units around the world has been 87% to the end of 2004. Building on these successes, AECL is committed to the further development of this highly successful design, now focussing on meeting customers' needs for reduced costs, further improvements to plant operation and performance, enhanced safety and incorporating up-to-date technology, as warranted. This has resulted in AECL embarking on improving the CANDU 6 design through an upgraded product termed the ''Enhanced CANDU 6'' (EC6), which incorporates several attractive but proven features that make the CANDU 6 reactor even more economical, safer and easier to operate. Some of the key features that are being incorporated into the EC6 include increasing the plant's power output, shortening the overall project schedule, decreasing the capital cost, dealing with obsolescence issues, optimizing maintenance outages and incorporating lessons learnt through feedback obtained from the

  6. Chemical control and design considerations for CANDU-PHW steam generators

    International Nuclear Information System (INIS)

    Frost, C.R.; Churchill, B.R.

    1978-01-01

    Ontario Hydro presently operates eight nuclear power units with a total capacitiy of about 4000 MW(e) net. Operating experience has been with Monel-400 and with Inconel-600 tubed steam generators using sodium phosphate or all volatile control of the boiler steam and water system. With a heavy water Heat Transport System, steam generator tube integrity is an essential ingredient of economical power production. Only three steam generator tube failures have occurred so far in about 40 unit-years operation. None was attributable to corrosion. Factors in the good reliability are, careful engineering design, good quality control at all stages of tubing and steam generator manufacture and close chemical control. The continuing evolution of our steam generator design means that future requirements will be more stringent. (author)

  7. Corrosion Processes of the CANDU Steam Generator Materials in the Presence of Silicon Compounds

    International Nuclear Information System (INIS)

    Lucan, Dumitra; Fulger, Manuela; Velciu, Lucian; Lucan, Georgiana; Jinescu, Gheorghita

    2006-01-01

    The feedwater that enters the steam generators (SG) under normal operating conditions is extremely pure but, however, it contains low levels (generally in the μg/l concentration range) of impurities such as iron, chloride, sulphate, silicate, etc. When water is converted into steam and exits the steam generator, the non-volatile impurities are left behind. As a result of their concentration, the bulk steam generator water is considerably higher than the one in the feedwater. Nevertheless, the concentrations of corrosive impurities are in general sufficiently low so that the bulk water is not significantly aggressive towards steam generator materials. The impurities and corrosion products existing in the steam generator concentrate in the porous deposits on the steam generator tubesheet. The chemical reactions that take place between the components of concentrated solutions generate an aggressive environment. The presence of this environment and of the tubesheet crevices lead to localized corrosion and thus the same tubes cannot ensure the heat transfer between the fluids of the primary and secondary circuits. Thus, it becomes necessary the understanding of the corrosion process that develops into SG secondary side. The purpose of this paper is the assessment of corrosion behavior of the tubes materials (Incoloy-800) at the normal secondary circuit parameters (temperature = 2600 deg C, pressure = 5.1 MPa). The testing environment was demineralized water containing silicon compounds, at a pH=9.5 regulated with morpholine and cyclohexyl-amine (all volatile treatment - AVT). The paper presents the results of metallographic examinations as well as the results of electrochemical measurements. (authors)

  8. Severe accident analysis of a steam generator tube rupture accident using MAAP-CANDU to support level 2 PSA for the Point Lepreau Generating Station Refurbishment Project

    Energy Technology Data Exchange (ETDEWEB)

    Petoukhov, S.M.; Brown, M.J. [Canadian Nuclear Laboratories, Chalk River, ON (Canada)

    2015-07-01

    A Level 2 Probabilistic Safety Assessment was performed for the Point Lepreau Generating Station. The MAAP-CANDU code was used to simulate the progression of postulated severe core damage accidents and fission product releases. This paper discusses the results for the reference case of the Steam Generator Tube Rupture initiating event. The reference case, dictated by the Level 2 Probabilistic Safety Assessment, was extreme and assumed most safety-related plant systems were not available: all steam generator feedwater; the emergency water supply; the moderator, shield and shutdown cooling systems; and all stages of emergency core cooling. The reference case also did not credit any post Fukushima lessons or any emergency mitigating equipment. The reference simulation predicted severe core damage beginning at 3.7 h, containment failure at 6.4 h, moderator boil off by 8.2 h, and calandria vessel failure at 42 h. A total release of 5.3% of the initial inventory of radioactive isotopes of Cs, Rb and I was predicted by the end of the simulation (139 h). Almost all noble gas fission products were released to the environment, primarily after the containment failure. No hydrogen/carbon monoxide burning was predicted. (author)

  9. Plutonium dispositioning in CANDU

    International Nuclear Information System (INIS)

    Boczar, P.G.; Feinroth, H.; Luxat, J.C.

    1995-07-01

    Recently, the U.S. Department of Energy (DOE) sponsored Atomic Energy of Canada Limited (AECL) to evaluate salient technical, strategic, schedule, and cost-related parameters of using CANDU reactors for dispositioning of weapons-grade plutonium in the form of Mixed OXide (MOX) fuel. A study team, consisting of key staff from the CANDU reactor designers and researchers (AECL), operators (Ontario Hydro) and fuel suppliers, analyzed all significant factors involved in such application, with the objective of identifying an arrangement that would permit the burning of MOX in CANDU at the earliest date. One of Ontario Hydro's multi-unit stations, Bruce A nuclear generating station (4x769 MW(e)), was chosen as the reference for the study. The assessment showed that no significant modifications of reactor or process systems are necessary to operate with a full MOX core. Plant modifications would be limited to fuel handling and modifications necessary to accommodate enhanced security and safeguards requirements. No safety limitations were identified

  10. Some environmental effects of emissions from CANDU nuclear generating stations and heavy water plants

    International Nuclear Information System (INIS)

    Effer, W.R.

    Non-radioactive releases during normal operation of Ontario Hydro's nuclear generating stations and heavy water plants are summarized and related to existing regulations and guidelines. Low-grade heat in the circulating cooling water discharge is the most important of the non-radioactive effluents. Some of the hydrological, biological and water quality aspects of thermal discharges are discussed in relation to the operation of Ontario Hydro's thermal generating stations on the Great Lakes. Chemical releases to air or water include chlorine, hydrogen sulphide, water treatment plant effluents, oily waste water and sewage lagoon effluents. The significance of the first two of these releases to the environment is reviewed, particularly in relation to Great Lakes water quality and biological concerns. (author)

  11. Quality Products - The CANDU Approach

    International Nuclear Information System (INIS)

    Ingolfsrud, L. John

    1989-01-01

    The prime focus of the CANDU concept (natural uranium fuelled-heavy water moderated reactor) from the beginning has economy, heavy water losses and radiation exposures also were strong incentives for ensuring good design and reliable equipment. It was necessary to depart from previously accepted commercial standards and to adopt those now accepted in industries providing quality products. Also, through feedback from operating experience and specific design and development programs to eliminate problems and improve performance, CANDU has evolved into today's successful product and one from which future products will readily evolve. Many lessons have been learned along the way. On the one hand, short cuts of failures to understand basic requirements have been costly. On the other hand, sound engineering and quality equipment have yielded impressive economic advantages through superior performance and the avoidance of failures and their consequential costs. The achievement of lifetime economical performance demands quality products, good operation and good maintenance. This paper describes some of the basic approaches leading to high CANDU station reliability and overall excellent performance, particularly where difficulties have had to be overcome. Specific improvements in CANDU design and in such CANDU equipment as heat transport pumps, steam generators, valves, the reactor, fuelling machines and station computers, are described. The need for close collaboration among designers, nuclear laboratories, constructors, operators and industry is discussed. This paper has reviewed some of the key components in the CANDU system as a means of indicating the overall effort that is required to provide good designs and highly reliable equipment. This has required a significant investment in people and funding which has handsomely paid off in the excellent performance of CANDU stations. The close collaboration between Atomic Energy of Canada Limited, Canadian industry and the

  12. Corrosion of the CANDU steam generator tubesheet due to aqueous environment pH

    International Nuclear Information System (INIS)

    Lucan, D.; Fulger, M.; Velciu, L.

    2009-01-01

    There is a side environment that is known to be affected significantly by several factors dependent on the balance of plant conditions (condenser leaks, condensate polishing, and coolant system materials) as well on the operational conditions, particularly through their thermal-hydraulic effects. The presence of tube-tubesheet crevices and restricted flow areas within sludge or surface deposits provides for local concentration sites for various impurities, including the acidic ones. The generalized corrosion can occur and can affect the steam generator performances. It is very important to understand the generalized corrosion mechanism with the purpose of evaluating the amount of corrosion products which exist in the steam generator after a determined period of operation. The purpose of this work consists in the assessment of corrosion behavior of the tubesheet material (carbon steel SA508 cl.2) at normal secondary circuit parameters (temperature, 260 deg. C, pressure, 5.1 MPa). The testing environment was the demineralized water without impurities, at different pH values regulated with morpholine and cyclohexylamine (all volatile treatment - AVT). The results are presented like micrographs, potentiodynamic curves and graphics representing loss of metal by corrosion, corrosion rate, the total corrosion products, the adherent corrosion products, the released corrosion products and the release of the metal. (authors)

  13. The assessment of the impurities concentration into CANDU steam generator crevices

    International Nuclear Information System (INIS)

    Lucan, D.; Fulger, M.; Florea, S.; Jinescu, Ghe.; Woinaroschy, Al.

    2001-01-01

    Crevice corrosion involves a number of simultaneous and interacting operations, including mass transfer processes, production of metal ions within the crevice and hydrolysis reactions, resulting in a very aggressive solution from the point of view of corrosion. These intermediary corrosion processes are in a complex interdependence and they imply a number of important parameters, including both the crevice gap and depth. The major goal of this paper was development of a mathematical model for the calculation of the concentrations of impurities (Na + , Cl - , Fe 2+ ) into crevices and experimental research related to this process. There were identified the important experimental parameters that require further experimental research. This model considers all the processes that interfere in the impurities concentration mechanism achieved into the crevice but it also makes some assumptions for the easy solving of mathematical equations. Because the measurement of the impurities concentration into the steam generator and/or deposition in the crevices solutions is not achievable, one cannot estimate the corrosion intensity inside these locations. The mathematical model presented in this paper may predict the impurities concentration in the crevices. Based on the results obtained in the study of corrosion one can appreciate the corrosion intensity in the materials with crevices or conceive an experimental program, which could lead to results. The predictive quality of the model may contribute to the choice of new design solutions, development of new alloys and criteria of material selection. (authors)

  14. CANDU operating experience

    International Nuclear Information System (INIS)

    McConnell, L.G.; Woodhead, L.W.; Fanjoy, G.R.; Thurygill, E.W.

    1980-05-01

    The CANDU-PHW program is based upon 38 years of heavy water reactor experience with 35 years of operating experience. Canada has had 72 reactor years of nuclear-electric operations experience with 10 nuclear units in 4 generating stations during a period of 18 years. All objectives have been met with outstanding performance: worker safety, public safety, environmental emissions, reliable electricity production, and low electricity cost. The achievement has been realized through total teamwork involving all scientific disciplines and all project functions (research, design, manufacturing, construction, and operation). (auth)

  15. CANDU combined cycles featuring gas-turbine engines

    International Nuclear Information System (INIS)

    Vecchiarelli, J.; Choy, E.; Peryoga, Y.; Aryono, N.A.

    1998-01-01

    In the present study, a power-plant analysis is conducted to evaluate the thermodynamic merit of various CANDU combined cycles in which continuously operating gas-turbine engines are employed as a source of class IV power restoration. It is proposed to utilize gas turbines in future CANDU power plants, for sites (such as Indonesia) where natural gas or other combustible fuels are abundant. The primary objective is to eliminate the standby diesel-generators (which serve as a backup supply of class III power) since they are nonproductive and expensive. In the proposed concept, the gas turbines would: (1) normally operate on a continuous basis and (2) serve as a reliable backup supply of class IV power (the Gentilly-2 nuclear power plant uses standby gas turbines for this purpose). The backup class IV power enables the plant to operate in poison-prevent mode until normal class IV power is restored. This feature is particularly beneficial to countries with relatively small and less stable grids. Thermodynamically, the advantage of the proposed concept is twofold. Firstly, the operation of the gas-turbine engines would directly increase the net (electrical) power output and the overall thermal efficiency of a CANDU power plant. Secondly, the hot exhaust gases from the gas turbines could be employed to heat water in the CANDU Balance Of Plant (BOP) and therefore improve the thermodynamic performance of the BOP. This may be accomplished via several different combined-cycle configurations, with no impact on the current CANDU Nuclear Steam Supply System (NSSS) full-power operating conditions when each gas turbine is at maximum power. For instance, the hot exhaust gases may be employed for feedwater preheating and steam reheating and/or superheating; heat exchange could be accomplished in a heat recovery steam generator, as in conventional gas-turbine combined-cycle plants. The commercially available GateCycle power plant analysis program was applied to conduct a

  16. CANDU nuclear power system

    International Nuclear Information System (INIS)

    1981-01-01

    This report provides a summary of the components that make up a CANDU reactor. Major emphasis is placed on the CANDU 600 MW(e) design. The reasons for CANDU's performance and the inherent safety of the system are also discussed

  17. The CANDU 9 distributed control system design process

    International Nuclear Information System (INIS)

    Harber, J.E.; Kattan, M.K.; Macbeth, M.J.

    1997-01-01

    Canadian designed CANDU pressurized heavy water nuclear reactors have been world leaders in electrical power generation. The CANDU 9 project is AECL's next reactor design. Plant control for the CANDU 9 station design is performed by a distributed control system (DCS) as compared to centralized control computers, analog control devices and relay logic used in previous CANDU designs. The selection of a DCS as the platform to perform the process control functions and most of the data acquisition of the plant, is consistent with the evolutionary nature of the CANDU technology. The control strategies for the DCS control programs are based on previous CANDU designs but are implemented on a new hardware platform taking advantage of advances in computer technology. This paper describes the design process for developing the CANDU 9 DCS. Various design activities, prototyping and analyses have been undertaken in order to ensure a safe, functional, and cost-effective design. (author)

  18. Qinshan CANDU project open top construction method

    International Nuclear Information System (INIS)

    Petrunik, K.J.; Wittann, K.; Khan, A.; Ricciuti, R.; Ivanov, A.; Chen, S.

    2003-01-01

    The significant schedule reductions achieved on the Qinshan CANDU Project were due in large part to the incorporation of advanced construction technologies in project design and delivery. For the Qinshan Project, a number of key advantages were realized through the use of the 'Open Top' construction method. This paper discusses the Qinshan Phase III CANDU Project Open Top implementation method. The Open Top method allowed major equipment to be installed simply, via the use of a Very Heavy Lift (VHL) crane and permitted the use of large-scale modularization. The advantages of Open Top construction, such as simplified access, more flexible project scheduling, improved construction safety and quality, and reduced labours are presented. The large-scale modularization of the Reactor Building Dousing System and the Open Top installation method and advantages relative to traditional CANDU 6 construction practices are also presented. Finally, major improvements for future CANDU plant construction using the Open Top method are discussed. (author)

  19. ROP design for Enhanced CANDU 6 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J.; Scherbakova, D; Kastanya, D.; Ovanes, M. [Candu Energy Inc., Mississauga, Ontario (Canada)

    2011-07-01

    The Enhanced CANDU 6 (EC6) nuclear power plant is a mid-sized pressurized heavy water reactor design, based on the highly successful CANDU 6 (C6) family of power plants, upgraded to meet today's Canadian and international safety requirements and to satisfy Generation III expectations. The EC6 reactor is equipped with two independent Regional Overpower Protection (ROP) systems to prevent overpowers in the reactor fuel. The ROP system design, retaining the traditional C6 methodology, is determined to cover the End-of-Life (EOL) reactor core condition since the reactor operating/thermal margin gradually decreases as plant equipment ages. Several design changes have been incorporated into the reference C6 plant to mitigate the ageing effect on the ROP trip margin. This paper outlines the basis for the EC6 ROP physics design and presents the ROP related improvements made in the EC6 design to ensure that full power operation is not limited by the ROP throughout the entire life of the reactor. (author)

  20. CANDU advanced fuel cycles

    International Nuclear Information System (INIS)

    Slater, J.B.

    1986-03-01

    This report is based on informal lectures and presentations made on CANDU Advanced Fuel Cycles over the past year or so, and discusses the future role of CANDU in the changing environment for the Canadian and international nuclear power industry. The changing perspectives of the past decade lead to the conclusion that a significant future market for a CANDU advanced thermal reactor will exist for many decades. Such a reactor could operate in a stand-alone strategy or integrate with a mixed CANDU-LWR or CANDU-FBR strategy. The consistent design focus of CANDU on enhanced efficiency of resource utilization combined with a simple technology to achieve economic targets, will provide sufficient flexibility to maintain CANDU as a viable power producer for both the medium- and long-term future

  1. Assessing the thermal-hydraulic behaviour of steam generators in a CANDU-6 type NPP in the event of MSSV blockage on the open-setting

    International Nuclear Information System (INIS)

    Dinca, Elena

    2004-01-01

    This work aims at achieving an analysis regarding the thermal-hydraulic behaviour of a CANDU-6 type NPP in the event of the blockage on open-setting of an MSSV (Main Steam Safety Valve) for steam relief from steam generators. The systems studied are main steam and feedwater mixture in the secondary circuit, particularly being analyzed the behaviour of the steam generators as well as the primary heat transfer and the control system of heavy water pressure and inventory in the primary system. One supposes that the MSSV blockage occurs directly after its opening in the event of an accident that led to the a steam pressure rise in the steam generators up to the threshold value of MSSV o penning. The analysis was applied to two events of initiation which lead to MSSV o penning, namely a Class IV loss of electric supply and loss of vacuum in turbine condenser. In the simulation of the events selected for analysis a long elapse of time is supposed (3600 seconds) and no operator intervention while the NPP is operating at rating power and equilibrium fuel regime. Each of the two events were analyzed for two distinct sets of conditions of event initiation and evolution. The study was focussed on the behaviour of NPP, particularly of the steam generators, and on the estimation of the amount of water in the secondary circuit released into the atmosphere during the event. The analysis is of deterministic type and supplies information required by the Probabilistic Safety Assessment (PSA) applied to nuclear facilities in establishing the operation procedures and documentation. The analysis was based on design data for a CANDU-6 NPP and the HYDN3 code for thermal-hydraulic computation in CANDU type NPPs. In the paper there are presented the analysis, methodology, models, hypotheses and the input data as well as the analyzed cases. Within the computing code some models were developed to allow simulating the event sequences chosen for analyses. The results are plotted and

  2. Generating equilateral random polygons in confinement III

    International Nuclear Information System (INIS)

    Diao, Y; Ernst, C; Montemayor, A; Ziegler, U

    2012-01-01

    In this paper we continue our earlier studies (Diao et al 2011 J. Phys. A: Math. Theor. 44 405202, Diao et al J. Phys. A: Math. Theor. 45 275203) on the generation methods of random equilateral polygons confined in a sphere. The first half of this paper is concerned with the generation of confined equilateral random walks. We show that if the selection of a vertex is uniform subject to the position of its previous vertex and the confining condition, then the distributions of the vertices are not uniform, although there exists a distribution such that if the initial vertex is selected following this distribution, then all vertices of the random walk follow this same distribution. Thus in order to generate a confined equilateral random walk, the selection of a vertex cannot be uniform subject to the position of its previous vertex and the confining condition. We provide a simple algorithm capable of generating confined equilateral random walks whose vertex distribution is almost uniform in the confinement sphere. In the second half of this paper we show that any process generating confined equilateral random walks can be turned into a process generating confined equilateral random polygons with the property that the vertex distribution of the polygons approaches the vertex distribution of the walks as the polygons get longer and longer. In our earlier studies, the starting point of the confined polygon is fixed at the center of the sphere. The new approach here allows us to move the starting point of the confined polygon off the center of the sphere. (paper)

  3. Nuclear energy in Canada: the CANDU system

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1979-10-01

    Nuclear electricity in Canada is generated by CANDU nuclear power stations. The CANDU reactor - a unique Canadian design - is fuelled by natural uranium and moderated by heavy water. The system has consistently outperformed other comparable nuclear power systems in the western world, and has an outstanding record of reliability, safety and economy. As a source of energy it provides the opportunity for decreasing our dependence on dwindling supplies of conventional fossil fuels. (auth)

  4. Economics of CANDU

    International Nuclear Information System (INIS)

    McConnell, L.G.; Woodhead, L.W.

    1981-02-01

    The cost of producing electricity from CANDU reactors is discussed. The total unit energy cost of base-load electricity from CANDU reactors is compared with that of coal-fired plants in Ontario. In 1980 nuclear power was 8.41 m$/kW.h less costly for plants of similar size and vintage. Comparison of CANDU with pressurized water reactors indicated that the latter would be about 26 percent more costly in Ontario

  5. Role of operator response guidelines in CANDU 9 design program

    International Nuclear Information System (INIS)

    Jaitly, R.K.

    2000-01-01

    The CANDU 9 is a large version of the CANDU Pressurized Heavy Water Reactor (PHWR) system developed in Canada. With an electrical output of approximately 935 MWe, the CANDU 9 complements the established mid-size CANDU 6 (700 MWe) and makes use of proven technology updated with state of the art features resulting from ongoing development. The CANDU 9 builds on the reactor and process system designs of the operating Darlington and Bruce B plants, and incorporates a modified CANDU 6 station layout, as well as improved construction methods and operational features. A high level of standardization has always been a feature of CANDU reactors. This theme is emphasized in the CANDU 9; all key components (reactor core, steam generators, coolant pumps, pressure tubes, etc.) are of the same design as those proven in service in the operating CANDU power stations. Including Probabilistic Safety Assessment (PSA) as part of the CANDU 9 design process from the outset of the program was seen as key to ensuring completeness of safety related requirements. The PSA work provided an in-depth understanding of the plant response to various postulated accidents. As well, the time frame for recovery and the related operator actions were identified. This information together with AECL's experience in supporting the development of Emergency Operating Procedures (EOPs) for the operating CANDU reactors are the basis for preparation of CANDU 9 Operator Response Guidelines (ORGs). Technical content, format and human factors considerations adopted for the ORGs are such that these can be readily converted to EOPs. The scope of ORGs includes generic as well as event specific ORGs. This dual approach is required to provide defense-in-depth. This paper describes the process used to prepare ORGs for the CANDU 9 reactor and discusses important benefits gained from the application of ORGs as input to the control center design and future preparation of the EOPs. (author)

  6. A view from Cheyenne Mountain: Generation III's perspective of Keystone III.

    Science.gov (United States)

    Bliss, Erika; Cadwallader, Kara; Steyer, Terrence E; Clements, Deborah S; Devoe, Jennifer E; Fink, Kenneth; Khubesrian, Marina; Lyons, Paul; Steiner, Elizabeth; Weismiller, David

    2014-01-01

    In October 2000 the family of family medicine convened the Keystone III conference at Cheyenne Mountain Resort. Keystone III participants included members of Generation I (entered practice before 1970), Generation II (entered 1970-1990), and Generation III (entered after 1990). They represented a wide range of family physicians, from medical students to founders of the discipline, and from small-town solo practice to academic medicine. During the conference, the three generations worked together and separately thinking about the past, present, and future of family medicine, our roles in it, and how the understanding of a family physician and our discipline had and would continue to evolve. After the conference, the 10 Generation III members wrote the article published here, reflecting on our experiences as new physicians and physicians in training, and the similarities and differences between our experiences and those of physicians in Generations I and II. Key similarities included commitment to whole-person care, to a wide scope of practice, to community health, and to ongoing engagement with our discipline. Key differences included our understanding of availability, the need for work-life balance, the role of technology in the physician-patient relationship, and the perceptions of the relationship between medicine and a range of outside forces such as insurance and government. This article, presented with only minor edits, thus reflects accurately our perceptions in late 2000. The accompanying editorial reflects our current perspective.

  7. CANDU 3 - Modularization

    International Nuclear Information System (INIS)

    McAskie, M.J.

    1991-01-01

    The CANDU 3 Heavy Water Reactor is the newest design developed by AECL CANDU. It has set as a major objective, the achievement of significant reductions in both cost and schedule over previous designs. The basic construction strategy is to incorporate extensive modularization of the plant in order to parallel the civil and mechanical installation works. This results in a target 38 month construction schedule from first concrete to in-service compared to 68 months for the Wolsong-1 CANDU 6 actually achieved and the 54 months envisaged for an improved CANDU 6. This paper describes the module concepts that have been developed and explains how they contribute to the overall construction program and achieve the desired cost and schedule targets set for the CANDU 3. (author). 7 figs, 2 tabs

  8. The Monte Carlo event generator DPMJET-III

    International Nuclear Information System (INIS)

    Roesler, S.; Engel, R.

    2001-01-01

    A new version of the Monte Carlo event generator DPMJET is presented. It is a code system based on the Dual Parton Model and unifies all features of the DTUNUC-2, DPMJET-II and PHOJET1.12 event generators. DPMJET-III allows the simulation of hadron-hadron, hadron-nucleus, nucleus-nucleus, photon-hadron, photon-photon and photon-nucleus interactions from a few GeV up to the highest cosmic ray energies. (orig.)

  9. Eddy currents inspection of CANDU steam generator' tubes using Zetec's ZR-1 Robot: experience in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Hower, S. [Zetec Inc., Quebec, Quebec (Canada); Serban, M. [CNE-Prod U1 Cernavoda (Romania); Vladu, L. [Compcontrol Ing., Bucharest (Romania)

    2006-07-01

    'Full text:' The paper introduces the new ZR-1 Robot System for Inspection and Maintenance/Repair from Zetec that combines the newest state-of-the-art robotics technology with Zetec experience-based innovation to address the needs for inspection and repair of steam generators. The multipurpose ZR-1 can be easily installed to perform the necessary eddy current inspection and remain installed ready for follow-up maintenance and repair. It has superior technical performances and a modular three axis motion of arm that enables 100% coverage of tube sheet. Automated, repeatable, and precise positioning of toolheads, ensures accurate delivery and reducing costly rework and reduces inspection time by 30%. The modular, lightweight, and portable design permits easy assembly and disassembly through small openings and it reduces setup/tear down time by 30%. The first deployment of the new ZR-1 Robot was made in September 2004 at the Cernavoda NPP inspection outage. The Cernavoda plant has four Advanced 600 MW CANDU-design generators that have been in service since 1996. The paper presents also the Zetec's filed experience and customer experience with this system. It describes the equipment setup in Cernavoda's generator mock-up, functional testes and calibration. Finally, provides details on the execution of the inspection, options for standardizing the inspection techniques and conclusions. (author)

  10. Localization of CANDU technology

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Ala

    2010-09-15

    The CANDU pressurized heavy water reactor's principal design features suit it particularly well for technology transfer and localization. When the first commercial CANDU reactors of 540 MWe entered service in 1971, Canada's population of less than 24 million supported a 'medium' level of industrial development, lacking the heavy industrial capabilities of larger countries like the USA, Japan and Europe. A key motivation for Canada in developing the CANDU design was to ensure that Canada would have the autonomous capacity to build and operate nuclear power reactors without depending on foreign sources for key components or enriched fuel.

  11. CANDU nuclear reactor technology

    International Nuclear Information System (INIS)

    Kakaria, B. K.

    1994-01-01

    AECL has over 40 years of experience in the nuclear field. Over the past 20 years, this unique Canadian nuclear technology has made a worldwide presence, In addition to 22 CANDU reactors in Canada, there are also two in India, one in Pakistan, one in Argentina, four in Korea and five in Romania. CANDU advancements are based on evolutionary plant improvements. They consist of system performance improvements, design technology improvements and research and development in support of advanced nuclear power. Given the good performance of CANOU plants, it is important that this CANDU operating experience be incorporated into new and repeat designs

  12. Team CANDU : ready for the marketplace

    International Nuclear Information System (INIS)

    Howieson, J.Q.

    2007-01-01

    This paper outlines the partnership between AECL and a number of leading global nuclear suppliers to market the Candu power reactor. The mission of the CANDU team is to develop market opportunities for CANDU technology and deliver successful CANDU projects

  13. Mathematical modeling of CANDU-PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, F.A.; Aly, R.A.; El-Shal, A.O. [Atomic Energy Authority, Cairo (Egypt)

    2001-07-01

    The paper deals with the transient studies of CANDU 600 pressurized Heavy Water Reactor (PHWR) system. This study involved mathematical modeling of CANDU PHWR major system components and the developments of software to study the thermodynamic performances. Modeling of CANDU-PHWR was based on lumped parameter technique.The integrated CANDU-PHWR model includes the neutronic, reactivity, fuel channel heat transfer, piping and the preheater type U-tube steam generator (PUTSG). The nuclear reactor power was modelled using the point kinetics equations with six groups of delayed neutrons and reactivity feed back due to the changes in fuel temperature and coolant temperature. The complex operation of the preheater type U-tube steam generator (PUTSG) is represented by a non-linear dynamic model using a state variable, moving boundary and lumped parameter techniques. The secondary side of the PUTSG model has six separate lumps including a preheater region, a lower boiling section, a mixing region, a riser, a chimmeny section, and a down-corner. The tube side of PUTSG has three main thermal zones. The PUTSG model is based on conservation of mass, energy and momentum relation-ships. The CANDU-PHWR integrated model are coded in FORTRAN language and solved by using a standard numerical technique. The adequacy of the model was tested by assessing the physical plausibility of the obtained results. (author)

  14. CANDU in Romania

    International Nuclear Information System (INIS)

    Keillor, M.

    1990-01-01

    The author, a former journalist, and now manager of media relations at AECL CANDU, visited Romania to get a first-hand account of conditions at the Cernavoda site. He refutes allegations of slave labour, or inhuman conditions

  15. Marketing CANDU internationally

    International Nuclear Information System (INIS)

    Langstaff, J.H.

    1980-06-01

    The market for CANDU reactor sales, both international and domestic, is reviewed. It is reasonable to expect that between five and ten reactors can be sold outside Canada before the end of the centry, and new domestic orders should be forthcoming as well. AECL International has been created to market CANDU, and is working together with the Canadian nuclear industry to promote the reactor and to assemble an attractive package that can be offered abroad. (L.L.)

  16. Privatize Candu (question mark)

    International Nuclear Information System (INIS)

    Kelly, Thomas.

    1981-01-01

    A report sponsored by a group of nuclear suppliers and the Royal Bank suggested that the Candu reactor system would sell better if it were owned by a private company. Licensing of a Candu reactor in the U.S.A. was also suggested. The author of this article agrees with these points, but disagrees with the suggestion that safeguards should be relaxed. He suggests that contracts should stipulate that instrumentation should be supplied as much as possible from Canadian sources

  17. Application of fuel management calculation codes for CANDU reactor

    International Nuclear Information System (INIS)

    Ju Haitao; Wu Hongchun

    2003-01-01

    Qinshan Phase III Nuclear Power Plant adopts CANDU-6 reactors. It is the first time for China to introduce this heavy water pressure tube reactor. In order to meet the demands of the fuel management calculation, DRAGON/DONJON code is developed in this paper. Some initial fuel management calculations about CANDU-6 reactor of Qinshan Phase III are carried out using DRAGON/DONJON code. The results indicate that DRAGON/DONJON can be used for the fuel management calculation for Qinshan Phase III

  18. CANDU reactors. Experience and innovation

    International Nuclear Information System (INIS)

    Hart, R.S.; Brooks, G.L.

    1989-02-01

    The title of this paper highlights two key considerations which must be properly balanced through good management in the evolution of any engineering product. Excessive reliance on experience will lead to product stagnation; excessive reliance on innovation will often lead to an unsatisfactory product, at least in the first generation of this product. To illustrate this balancing process, the paper reviews CANDU evolution and experience and the balance between proveness and innovation achieved through management of the evolution process from early prototypes to today's large-scale commercial units. A forecast of continuing evolutionary directions is included

  19. Candu reactors - experience and innovation

    International Nuclear Information System (INIS)

    Hart, R.S.; Brooks, G.L.

    1989-01-01

    The title of this paper highlights two key considerations which must be properly balanced through good management in the evolution of any engineering product. Excessive reliance on experience will lead to product stagnation; excessive reliance on innovation will often lead to an unsatisfactory product, at least in the first generation of this product. To illustrate this balancing process, the paper reviews CANDU evolution and experience and the balance between proveness and innovation achieved through management of the evolution process from early prototypes to today's large-scale commercial units. A forecast of continuing evolutionary directions is included

  20. Trends in CANDU licensing

    International Nuclear Information System (INIS)

    Snell, V.G.; Grant, S.D.

    1997-01-01

    Modern utilities view nuclear power more and more as a commodity - it must compete 'today' with current alternatives to attract their investment. With its long construction times and large capital investment, nuclear plants are vulnerable to delays once they have been committed. There are two related issues. Where the purchaser and the regulator are experienced in CANDU, the thrust is a very practical one: to identify and resolve major licensing risks at a very early stage in the project. Thus for a Canadian project, the designer (AECL) and the prospective purchaser would deal directly with the AECB. However CANDU has also been successfully licensed in other countries, including Korea, Romania, Argentina, India and Pakistan. Each of these countries has its own regulatory agency responsible for licensing the plant. In addition, however, the foreign customer and regulator may seek input from the AECB, up to and including a statement of licensability in Canada; this is not normally needed for a ''repeat'' plant and/or if the customer is experienced in CANDU, but can be requested if the plant configuration has been modified significantly from an already-operating CANDU. It is thus the responsibility of the designer to initiate early discussions with the AECB so the foreign CANDU meets the expectations of its customers

  1. Mechanisms involved in stannane generation by aqueous tetrahydroborate(III)

    International Nuclear Information System (INIS)

    Pitzalis, Emanuela; Mascherpa, Marco Carlo; Onor, Massimo; D'Ulivo, Alessandro

    2009-01-01

    The role played by acidity (0.01-5 mol L -1 HNO 3 ) and L-cysteine (0.1-0.2 mol L -1 ) in the formation of stannane by reaction of Sn(IV) solution with aqueous tetrahydroborate(III) (0.05-0.2 mol L -1 ), has been investigated by continuous flow hydride generation coupled with atomic absorption spectrometry using a miniature argon-hydrogen diffusion flame as the atomizer. Different mixing sequences and reaction times of the reagents were useful in the identification of those processes which contribute to the generation of stannane in different reaction conditions, both in the absence and in the presence of L-cysteine. The lack of stannane generation at high acidities is due to the formation of Sn substrates and hydridoboron species which are unreactive. The capture of the stannane in solution, following its ionization to SnH 3 + from already formed stannane, does not play any role. While the presence of L-cysteine, does not affect the generation efficiency at lower acidities, it expands the optimum range of acidities for stannane generation to higher values. This effect can be addressed to both the buffering capacity of L-cysteine and to the formation of Sn-(L-cysteine) complexes, while the formation of (L-cysteine)-borane complexes do not play a significant role. Formation of Sn-(L-cysteine) complexes also appears to be useful for stabilization of tin solution at low acidities values.

  2. Advancing CANDU Technology Through R and D

    International Nuclear Information System (INIS)

    Torgerson, David F.

    1993-01-01

    CANDU reactors are evolving to meet future requirements using incremental changes as opposed to revolutionary design changes. The main elements for advancing the technology reducing capital and operating, increasing capacity factors, increasing passive safety, and enhancing fuel/fuel cycle flexibility. These elements are being addressed by carrying out research and development in the areas of safety, plant systems and components, heavy water production, information technology, fuel channels, and fuel/fuel cycle technology. In safety, the focus is on using the inherent features of CANDU to enhance passive or natural safety concepts, such as the use of the moderator as an effective heat sink, and the development of advanced fuels to improve critical heat flux and to reduce source terms. Plant systems and components work includes improvements to plant systems such as steam generators, heat exchangers, pump seals, and advanced control room technology. Heavy water processes are being developed that can be used with existing hydrogen production plants, or that can be used in a stand-alone mode. Information technology is being developed to cover all aspects of CANDU design, construction, and operation. Fuel channel improvements include elucidation and application of basic materials science for life extension, and the development of advanced non-destructive examination methods. Fuel and fuel cycle work is focusing on LWR/CANDU synergy, such as the use of recovered uranium and the direct use of spent PWR fuel in CANDU reactor, advanced fuels to improve burnup and economics (e. g., the joint AECB/KAERI Conflux program), and low void reactivity fuel to enhance passive safety. This paper gives an overview of some of the R and D supporting these activities, with particular emphasis on Alice's vision for advancing CANDU technology over the next 10 years

  3. An integrated CANDU system

    International Nuclear Information System (INIS)

    Donnelly, J.

    1982-09-01

    Twenty years of experience have shown that the early choices of heavy water as moderator and natural uranium as fuel imposed a discipline on CANDU design that has led to outstanding performance. The integrated structure of the industry in Canada, incorporating development, design, supply, manufacturing, and operation functions, has reinforced this performance and has provided a basis on which to continue development in the future. These same fundamental characteristics of the CANDU program open up propsects for further improvements in economy and resource utilization through increased reactor size and the development of the thorium fuel cycle

  4. The CANTEACH project: preserving CANDU technical knowledge

    International Nuclear Information System (INIS)

    Garland, B.; Kosarenko, Y.; Meneley, D.

    2003-01-01

    Almost sixty years have passed since the nuclear energy venture began in Canada. Fifty years have passed since the founding of AECL. Tens of thousands of dedicated people have forged a new and successful primary energy supply. CANDU technology is well into its second century. This specialty within the world's fission technology community is quite unique, first because it was established as a separate effort very early in the history of world fission energy, and second because it grew in an isolated environment, with tight security requirements, in its early years. Commercial security rules later sustained a considerable degree of isolation. The pioneers of CANDU development have finished their work. Most of the second generation also has moved on. As yet, we cannot point to a consistent and complete record of this remarkable achievement. We, as a nuclear enterprise, have not captured the design legacy in a form that is readily accessible to the current and future generation of professionals involved with CANDU reactors, be they students, designers, operations staff, regulators, consultants or clients. This is a serious failure. Young people entering our field of study must make do with one or two textbooks and a huge collection of diverse technical papers augmented by limited-scope education and training materials. Those employed in the various parts of the nuclear industry rely mostly on a smaller set of CANDU- related documents available within their own organization; documents that sometimes are rather limited in scope. University professors often have even more limited access to in-depth and up to date information. In fact, they often depend on literature published in other countries when preparing lectures, enhanced by guest lecturers from various parts of the industry. Because CANDU was developed mostly inside Canada, few of these text materials contain useful data describing processes important to the CANDU system. For many years it has been recognized that

  5. CANDU reg-sign -- A Canadian energy system

    International Nuclear Information System (INIS)

    Sejnoha, R.

    1994-01-01

    Uranium is one of Canada's important natural resources. It is perhaps not surprising that a country with such an abundance of uranium developed its own inexpensive, safe, and environmentally friendly system of energy generation, based on uranium: CANDU reg-sign (CANada-Deuterium-Uranium, a registered trademark of AECL). The objective of this paper is to describe briefly the main features of the CANDU system and explain methods used to assure the compatibility with the requirements for a clean and safe environment. The paper describes the CANDU reactor, and discusses storage of spent fuel, reactor performance, normal operating conditions, safety under accident conditions, and quality assurance in design, manufacturing, and operation

  6. Distributed control system for CANDU 9 nuclear power plant

    International Nuclear Information System (INIS)

    Harber, J.E.; Kattan, M.K.; Macbeth, M.J.

    1996-01-01

    Canadian designed CANDU pressurized heavy water nuclear reactors have been world leaders in electrical power generation. The CANDU 9 project is AECL's next reactor design. The CANDU 9 plant monitoring, annunciation, and control functions are implemented in two evolutionary systems; the distributed control system (DCS) and the plant display system (PDS). The CDS implements most of the plant control functions in a single hardware platform. The DCS communicates with the PDS to provide the main operator interface and annunciation capabilities of the previous control computer designs along with human interface enhancements required in a modern control system. (author)

  7. Economic case for CANDU life extension projects

    International Nuclear Information System (INIS)

    Qureshi, S.; Tenev, T.; Lewi, M.

    2014-01-01

    As CANDU reactors approach their original end of design life utilities are faced with two options: to extend the operating life of the reactor by undergoing a life extension project (LEP), or to commence decommissioning activities. Recent project experience has shown that there is economic merit in extending the life of the operating reactor. There are many benefits to such a decision, the most obvious being the revenue that will be generated from the additional years of electricity production by the utility. Delays in decommissioning are also advantageous since the large costs associated with such a long-term activity are pushed into the future, thereby decreasing the net present value (NPV) of the investment. In addition, relatively few power reactors have been fully decommissioned to date and deferring this activity transfers the associated risks to others that are currently obligated to undertake decommissioning activities sooner. Candu Energy has been involved with the life extension projects of the following CANDU reactors: Point Lepreau (New Brunswick, Canada), Bruce Unit 1 and Unit 2 (Ontario, Canada), and Wolsong Unit 1 (South Korea). These reactors underwent fuel channel replacement programs in addition to replacement of major reactor components. Most recently, both Ontario Power Generation (OPG) and Nucleoelectrica Argentina Sociedad Anonima (NA-SA) have commenced work on life extension projects at the Darlington (Canada) and Embalse (Argentina) sites respectively. The experience gained from previous LEP projects allows Candu Energy to deliver future projects in a timely, efficient, and cost effective manner. (author)

  8. Design and verification of computer-based reactor control system modification at Bruce-A candu nuclear generating station

    International Nuclear Information System (INIS)

    Basu, S.; Webb, N.

    1995-01-01

    The Reactor Control System at Bruce-A Nuclear Generating Station is going through some design modifications, which involve a rigorous design process including independent verification and validation. The design modification includes changes to the control logic, alarms and annunciation, hardware and software. The design (and verification) process includes design plan, design requirements, hardware and software specifications, hardware and software design, testing, technical review, safety evaluation, reliability analysis, failure mode and effect analysis, environmental qualification, seismic qualification, software quality assurance, system validation, documentation update, configuration management, and final acceptance. (7 figs.)

  9. Mechanisms involved in stannane generation by aqueous tetrahydroborate(III)

    Energy Technology Data Exchange (ETDEWEB)

    Pitzalis, Emanuela; Mascherpa, Marco Carlo; Onor, Massimo [C.N.R., Institute of Chemical and Physical Processes, Laboratory of Instrumental Analytical Chemistry, Via G. Moruzzi 1, 56124, Pisa (Italy); D' Ulivo, Alessandro [C.N.R., Institute of Chemical and Physical Processes, Laboratory of Instrumental Analytical Chemistry, Via G. Moruzzi 1, 56124, Pisa (Italy)], E-mail: dulivo@ipcf.cnr.it

    2009-04-15

    The role played by acidity (0.01-5 mol L{sup -1} HNO{sub 3}) and L-cysteine (0.1-0.2 mol L{sup -1}) in the formation of stannane by reaction of Sn(IV) solution with aqueous tetrahydroborate(III) (0.05-0.2 mol L{sup -1}), has been investigated by continuous flow hydride generation coupled with atomic absorption spectrometry using a miniature argon-hydrogen diffusion flame as the atomizer. Different mixing sequences and reaction times of the reagents were useful in the identification of those processes which contribute to the generation of stannane in different reaction conditions, both in the absence and in the presence of L-cysteine. The lack of stannane generation at high acidities is due to the formation of Sn substrates and hydridoboron species which are unreactive. The capture of the stannane in solution, following its ionization to SnH{sub 3}{sup +} from already formed stannane, does not play any role. While the presence of L-cysteine, does not affect the generation efficiency at lower acidities, it expands the optimum range of acidities for stannane generation to higher values. This effect can be addressed to both the buffering capacity of L-cysteine and to the formation of Sn-(L-cysteine) complexes, while the formation of (L-cysteine)-borane complexes do not play a significant role. Formation of Sn-(L-cysteine) complexes also appears to be useful for stabilization of tin solution at low acidities values.

  10. AECL's advanced CANDU reactor - the ACR

    International Nuclear Information System (INIS)

    Alizadeh, Ala; Allsop, Peter; Hedges, Ken; Hopwood, Jerry; Yu, Stephen

    2003-01-01

    The ACR, the next generation CANDU design, represents the next step in development of the CANDU family of designs. AECL has achieved significant incremental improvements to the mid-size CANDU 6 nuclear power plant through successive projects, both in design and in project delivery. Building on this knowledge base, AECL is continuing to adapt the CANDU design to develop the ACR. This paper summarizes the ACR design features, which include major improvements in economics, inherent safety characteristics, performance and construction methods. Aimed at producing electrical power at a capital cost significantly less than that of the current reactor designs, the ACR is an evolutionary design based on the very successful CANDU 6 reactor. The new ACR product is specifically designed to produce power at a cost competitive with other forms of power generation while achieving short construction times, improved safety, international licensability, high investor returns, and low investor risk. It achieves these targets by taking advantage of the latest advances in both pressure-tube and pressure-vessel reactor technologies and experience. The flexibility and development potential of the fuel channel approach also enables designs to be developed that address priorities identified in international long-term specification programs such as the US Department of Energy (DOE) sponsored Generation IV program and IAEA hosted INPRO program. ACR-700 can be built in 36 months with a 48 month project duration, and deliver a lifetime capacity factor in excess of 90%. Overall, the ACR design represents a balance of proven design basis and innovations to give step improvements in safety, reliability and economics. The ACR development program, now well into the detail design stage, includes parallel formal licensing in the USA and Canada. Based on the status of the ACR design and AECL's on-going experience delivering reactor projects on-time and on-budget, the first ACR could be in service by

  11. CANDU, building the future

    International Nuclear Information System (INIS)

    Stern, F.

    1997-01-01

    The CEO of Stern Laboratories delivered a speech on the problems and challenges facing the nuclear industry. The CANDU system is looked at as the practical choice for the future of our energy source. The people of the industry must be utilized and respected to deliver to the best of their ability

  12. CANDU market prospects

    International Nuclear Information System (INIS)

    Kakaria, B.K.

    1994-01-01

    This 1994 survey of prospective markets for CANDU reactors discusses prospects in Turkey, Thailand, the Philippines, Korea, Indonesia, China and Egypt, and other opportunities, such as in fuel cycles and nuclear safety. It was concluded that foreign partners would be needed to help with financing

  13. CANDU, building the future

    Energy Technology Data Exchange (ETDEWEB)

    Stern, F. [Stern Laboratories (Canada)

    1997-07-01

    The CEO of Stern Laboratories delivered a speech on the problems and challenges facing the nuclear industry. The CANDU system is looked at as the practical choice for the future of our energy source. The people of the industry must be utilized and respected to deliver to the best of their ability.

  14. Thermal-hydraulic interfacing code modules for CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.S.; Gold, M.; Sills, H. [Ontario Hydro Nuclear, Toronto (Canada)] [and others

    1997-07-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  15. Thermal-hydraulic interfacing code modules for CANDU reactors

    International Nuclear Information System (INIS)

    Liu, W.S.; Gold, M.; Sills, H.

    1997-01-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis

  16. Highlights of the metallurgical behaviour of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Price, E.G.

    1984-10-01

    This paper is an overview of the service induced metallurgical changes that take place in Zircaloy-2 and Zr-2.5 wt. percent Nb pressure tubes in CANDU reactors. It incorporates the findings of an evaluation program, that followed a significant pressure tube failure at Ontario Hydro's Pickering Nuclear Generating Station, and also provides valid reasons for continued confidence in the current CANDU design

  17. CANDU-6 fuel optimization for advanced cycles

    Energy Technology Data Exchange (ETDEWEB)

    St-Aubin, Emmanuel, E-mail: emmanuel.st-aubin@polymtl.ca; Marleau, Guy, E-mail: guy.marleau@polymtl.ca

    2015-11-15

    Highlights: • New fuel selection process proposed for advanced CANDU cycles. • Full core time-average CANDU modeling with independent refueling and burnup zones. • New time-average fuel optimization method used for discrete on-power refueling. • Performance metrics evaluated for thorium-uranium and thorium-DUPIC cycles. - Abstract: We implement a selection process based on DRAGON and DONJON simulations to identify interesting thorium fuel cycles driven by low-enriched uranium or DUPIC dioxide fuels for CANDU-6 reactors. We also develop a fuel management optimization method based on the physics of discrete on-power refueling and the time-average approach to maximize the economical advantages of the candidates that have been pre-selected using a corrected infinite lattice model. Credible instantaneous states are also defined using a channel age model and simulated to quantify the hot spots amplitude and the departure from criticality with fixed reactivity devices. For the most promising fuels identified using coarse models, optimized 2D cell and 3D reactivity device supercell DRAGON models are then used to generate accurate reactor databases at low computational cost. The application of the selection process to different cycles demonstrates the efficiency of our procedure in identifying the most interesting fuel compositions and refueling options for a CANDU reactor. The results show that using our optimization method one can obtain fuels that achieve a high average exit burnup while respecting the reference cycle safety limits.

  18. Enhanced CANDU6: Reactor and fuel cycle options - Natural uranium and beyond

    International Nuclear Information System (INIS)

    Ovanes, M.; Chan, P. S. W.; Mao, J.; Alderson, N.; Hopwood, J. M.

    2012-01-01

    The Enhanced CANDU 6 R (ECo R ) is the updated version of the well established CANDU 6 family of units incorporating improved safety characteristics designed to meet or exceed Generation III nuclear power plant expectations. The EC6 retains the excellent neutron economy and fuel cycle flexibility that are inherent in the CANDU reactor design. The reference design is based on natural uranium fuel, but the EC6 is also able to utilize additional fuel options, including the use of Recovered Uranium (RU) and Thorium based fuels, without requiring major hardware upgrades to the existing control and safety systems. This paper outlines the major changes in the EC6 core design from the existing C6 design that significantly enhance the safety characteristics and operating efficiency of the reactor. The use of RU fuel as a transparent replacement fuel for the standard 37-el NU fuel, and several RU based advanced fuel designs that give significant improvements in fuel burnup and inherent safety characteristics are also discussed in the paper. In addition, the suitability of the EC6 to use MOX and related Pu-based fuels will also be discussed. (authors)

  19. Maintenance, rehabilitation, long life-the CANDU potential

    International Nuclear Information System (INIS)

    Torgerson, D.F.; Charlebois, P.; Hopkins, J.

    1998-01-01

    Plant life extension beyond the original design life is becoming an attractive economic consideration in the nuclear industry. Plant Life Management and life extension considerations have been built into the complete life cycle of the CANDU plant. The plant life management studies demonstrate that life extension for operating plants beyond 30 years is economically viable. The new CANDU designs benefit from this experience feedback and as a result, the plant design basis is now 40 years or better with potential for economical life extension. AECL is therefore confident that the new CANDU designs will exceed the performance record of the first generation CANDU 6 units and is committed to providing continued support and services during the operating life of the plant

  20. CANDU 9 nuclear power plant simulator

    International Nuclear Information System (INIS)

    Kattan, M.; MacBeth, M.J.; Lam, K.

    1995-01-01

    Simulators are playing, an important role in the design and operations of CANDU reactors. They are used to analyze operating procedures under standard and upset conditions. The CANDU 9 nuclear power plant simulator is a low fidelity, near full scope capability simulator. It is designed to play an integral part in the design and verification of the control centre mock-up located in the AECL design office. It will also provide CANDU plant process dynamic data to the plant display system (PDS), distributed control system (DCS) and to the mock-up panel devices. The simulator model employs dynamic mathematical models of the various process and control components that make up a nuclear power plant. It provides the flexibility to add, remove or update user supplied component models. A block oriented process input is provided with the simulator. Individual blocks which represent independent algorithms of the model are linked together to generate the required overall plant model. As a design tool the simulator will be used for control strategy development, human factors studies (information access, readability, graphical display design, operability), analysis of overall plant control performance, tuning estimates for major control loops and commissioning strategy development. As a design evaluation tool, the simulator will be used to perform routine and non-routine procedures, practice 'what if' scenarios for operational strategy development, practice malfunction recovery procedures and verify human factors activities. This paper will describe the CANDU 9 plant simulator and demonstrate its implementation and proposed utility as a tool in the control system and control centre design of a CANDU 9 nuclear power plant. (author). 2 figs

  1. CANDU in the next century

    International Nuclear Information System (INIS)

    Meneley, D.A.; Torgerson, D.F.

    1997-01-01

    AECL's main product line is available today in two designs, designated as CANDU 6 and CANDU 9. Each of these is based on successfully operating pressurized-heavy-water nuclear plants. Several new CANDU stations are under construction or planned around the world. The author presents plant concepts which may evolve from today's products during the 21st century, indicating the particular development directions which might be followed by AECL product development depending on the future competitive environment, economics, and market circumstances. This study shows that the CANDU energy supply system is sufficiently flexible to be adapted into widely varying circumstances over the next century and beyond

  2. The CANDU 3 containment structure

    International Nuclear Information System (INIS)

    1994-01-01

    The design of the CANDU 3 nuclear power plant is being developed by AECL CANDU's Saskatchewan office. There are 24 CANDU nuclear power units operating in Canada and abroad and eight units are under construction is Romania and South Korea. The design of the CANDU 3 plant has evolved on the basis of the proven CANDU design. The experiences gained during construction, commissioning and operation of the existing CANDU plants are considered in the design. Many technological enhancements have been implemented in the design processes in all areas. The object has been to develop an improved reactor design that is suitable for the current and the future markets worldwide. Throughout the design phase of CANDU 3, emphasis has been placed in reducing the cost and construction schedule of the plant. This has been achieved by implementing design improvements and using new construction techniques. Appropriate changes and improvements to the design to suit new requirements are also adopted. In CANDU plants, the containment structure acts as an ultimate barrier against the leakage of radioactive substances during normal operations and postulated accident conditions. The concept of the structural design of the containment structure has been examined in considerable detail. This has resulted in development of a new conceptual design for the containment structure for CANDU 3. This paper deals with this new design of the containment structure

  3. CANDU fuel performance

    International Nuclear Information System (INIS)

    Ivanoff, N.V.; Bazeley, E.G.; Hastings, I.J.

    1982-01-01

    CANDU fuel has operated successfully in Ontario Hydro's power reactors since 1962. In the 19 years of experience, about 99.9% of all fuel bundles have performed as designed. Most defects occurred before 1979 and subsequent changes in fuel design, fuel management, reactor control, and manufacturing quality control have reduced the current defect rate to near zero. Loss of power production due to defective fuel has been negligible. The outstanding performance continues while maintaining a low unit energy cost for fuel

  4. Thermally-induced bowing of CANDU fuel elements

    International Nuclear Information System (INIS)

    Suk, H.C.; Sim, K.S.; Park, J.H.; Park, G.S.

    1995-01-01

    Considering only the thermally-induced bending moments which are generated both within the sheath and between the fuel and sheath by an asymmetric temperature distribution with respect to the axis of an element, a generalized and explicit analytical formula for the thermally-induced bending is developed in this paper, based on the cases of 1) the bending of an empty tube treated by neglecting of the fuel/sheath mechanical interaction and 2) the fuel/sheath interaction due to the pellet and sheath temperature variations. In each of the cases, the temperature asymmetries in sheath are modelled to be caused by the combined effects of (i) non-uniform coolant temperature due to imperfect coolant mixing, (ii) variable sheath/coolant heat transfer coefficient, (iii) asymmetric heat generation due to neutron flux gradients across an element and so as to inclusively cover the uniform temperature distributions within the fuel and sheath with respect to the axial centerline. Investigating the relative importance of the various parameters affecting fuel element bowing, the element bowing is found to be greatly affected with the variations of element length, sheath diameter, pellet/sheath mechanical interaction and neutron flux depression factors, pellet thermal expansion coefficient, pellet/sheath heat transfer coefficient in comparison with those of other parameters such as sheath thickness, film heat transfer coefficient, sheath thermal expansion coefficient, and sheath and pellet thermal conductivities. Also, the element bowing of the standard 37-element bundle and CANFLEX 43-element bundle for the use in CANDU-6 reactors was analyzed with the formula, which could help to demonstrate the integrity of the fuel. All the required input data for the analyses were generated in terms of the reactor operation conditions on the reactor physics, thermal hydraulics and fuel performance by using various CANDU computer codes. The analysis results indicate that the CANFLEX 43-element

  5. Status of advanced technologies for CANDU reactors

    International Nuclear Information System (INIS)

    Lipsett, J.J.

    1989-01-01

    The future development of the CANDU reactor is a continuation of a successful series of reactors, the most recent of which are nine CANDU 6 Mk 1* units and four Darlington units. There are three projects underway that continue the development of the CANDU reactor. These new design projects flow from the original reactor designs and are a natural progression of the CANDU 6 Mk 1, two units of which are operating successfully in Canada, one each in Argentina and Korea, with five more being built in Rumania. These new design projects are known as: CANDU 6 Mk 2, an improved version of CANDU 6 Mk 1; CANDU 3, a small, advanced version of the CANDU 6 Mk 1; CANDU 6 Mk 3, a series of advanced CANDU reactors. A short description of modified versions of CANDU reactors is given in this paper. 5 figs

  6. Economics of CANDU-PHW

    International Nuclear Information System (INIS)

    McConnell, L.G.; Woodhead, L.W.

    1981-01-01

    Nuclear and coal stations are the primary options in Ontario for new power generation over the period 1980-2000. The former are the best for base-load requirements, and the latter for peaking. In 1980 the total unit energy cost for Pickering A was 12.77 mill/kWh, compared with 21.18 mill/kWh for power from the Lambton coal-fired station. With on-power fuelling, CANDU-PHW units have achieved a 77 percent capacity factor since first electricity production and 79 percent since their in-service dates. Assuming a 67 percent capacity factor for PWR performance, the power costs with PWR units would be 26 percent higher. (D.N.)

  7. Technologies in support of CANDU development

    International Nuclear Information System (INIS)

    Turner, C.; Tapping, B.

    2005-01-01

    Atomic Energy of Canada, Ltd. (AECL) has significant research and development (R and D) programs designed to meet the needs of both existing CANDU reactors and new and evolving CANDU plant designs. These R and D programs cover a wide range of technology, from chemistry and materials support through to inspection and life management tools. Emphasis is placed on effective technology development programs for fuel channels, feeders and steam generators to ensure their operation through design life, and beyond. This paper specifically addresses how the R and D has been applied in the production of longer-lived pressure tubes for the most recent CANDU 6 reactors, and how this technology forms the basis for the pressure tubes of the Advanced CANDU Reactor (ACR). Similarly, AECL has developed solutions for other critical components such as calandria tubes, feeder pipe and steam generators. The paper also discusses how the R and D knowledge has been integrated into aging management databases and health monitoring tools. Since 1997, AECL has been working with CANDU utilities on comprehensive and integrated CANDU Plant Life Management (PLiM) programs for successful and reliable plant operation through design life and beyond. AECL has developed and implemented an advanced chemistry monitoring and diagnostic system, called ChemAND which allows on-line access by the operators to current and past chemistry conditions enabling appropriate responses and facilitating planning of shutdown maintenance actions. An equivalent tool for monitoring, trending and diagnosing thermal and mechanical data has also been developed; this tool is called ThermAND. AECL is developing the Maintenance Information, Monitoring, and Control (MIMC) system, which provide information to the user for condition-based decision-making in maintenance. To enable more effective inspections, surveillance and data collection, AECL has developed unique one-off tooling to carry out unanticipated inspection and repair

  8. The future role of thorium in assuring CANDU fuel supplies

    International Nuclear Information System (INIS)

    Slater, J.B.

    1985-01-01

    Atomic Energy of Canada Limited (AECL), in partnership with Canadian industry and power utilities, has developed the CANDU reactor as a safe, reliable and economic means of transforming nuclear fuel into useable power. The use of thorium/uranium-233 recycle gives the possibility of a many-fold increase in energy yield over that which can be obtained from the use of uranium in once-through cycles. The neutronic properties of uranium-233 combine with the inherent neutron economy of the CANDU reactor to offer the possibility of near-breeder cycles in which there is no net consumption of fissile material under equilibrium fuelling conditions. Use of thorium cycles in CANDU will limit the impact of higher uranium prices. When combined with the potential for significant reductions in CANDU capital costs, then the long-term prospect is for generating costs near to current levels. Development of thorium cycles in CANDU will safeguard against possible uranium shortages in the next century, and will maintain and continue the commercial viability of CANDU as a long-term energy technology. (author)

  9. Reactors based on CANDU technology

    International Nuclear Information System (INIS)

    Bjegun, S.V.; Shirokov, S.V.

    2012-01-01

    The paper analyzes the use CANDU technology in world nuclear energy. Advantages and disadvantages in implementation of this technology are considered in terms of economic and technical aspects. Technological issues related to the use of CANDU reactors and nuclear safety issues are outlined. Risks from implementation of this reactor technology in nuclear energy of Ukraine are determined

  10. Round robin tests of the PISC III programme on defective steam generators tubes

    International Nuclear Information System (INIS)

    Birac, C.; Herkenrath, H.; Crutzen, S.; Miyake, Y.; Maciga, G.

    1991-11-01

    The PISC III actions are intended to extend the results and methodologies of the previous PISC exercises, i.e. the assessment of the capabilities of the various examination techniques when used on real or realistic flaws in real components under real conditions of inspection. Being aware of the industrial problems that the degradation of steam generator tubes can create, the PISC III management board decided to include in the PISC III programme a special action on steam generator tubes testing (SGT). (author)

  11. CANDU reactors and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Andseta, S.; Thompson, M.J.; Jarrell, J.P.; Pendergast, D.R.

    1998-01-01

    This paper was originally presented at the 11th Pacific Basin Nuclear Conference, Banff, Alberta, Canada, May 3-7, 1998. It has been updated to include additional lifecycle data on chemical releases from ore treatment and CANDU fuel fabrication. It is sometimes stated that nuclear power plants can supply electricity with zero emissions of greenhouse gases. In fact, consideration of the entire fuel cycle indicates that some greenhouse gases are generated during their construction and decommissioning and by the preparation of fuel and other materials required for their operation. This follows from the use of fossil fuels in the preparation of materials and during the construction and decommissioning of the plants. This paper reviews life cycle studies of several different kinds of power plants. Greenhouse gases generated by fossil fuels during the preparation of fuel and heavy water used by operating CANDU power plants are estimated. The total greenhouse gas emissions from CANDU nuclear plants, per unit of electricity ultimately produced, are very small in comparison with emissions from most other types of power plants. (author)

  12. CANDU reactors and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Andseta, S.; Thompson, M.J.; Jarrell, J.P.; Pendergast, D.R.

    1999-01-01

    This paper was originally presented at the 11th Pacific Basin Nuclear Conference, Banff, Alberta, Canada, May 3-7, 1998. It has been updated to include additional lifecycle data on chemical releases from ore treatment and CANDU fuel fabrication. It is sometimes stated that nuclear power plants can supply electricity with zero emissions of greenhouse gases. In fact, consideration of the entire fuel cycle indicates that some greenhouse gases are generated during their construction and decommissioning and by the preparation of fuel and other materials required for their operation. This follows from the use of fossil fuels in the preparation of materials and during the construction and decommissioning of the plants. This paper reviews life cycle studies of several different kinds of power plants. Greenhouse gases generated by fossil fuels during the preparation of fuel and heavy water used by operating CANDU power plants are estimated. The total greenhouse gas emissions from CANDU nuclear plants, per unit of electricity ultimately produced, are very small in comparison with emissions from most other types of power plants. (author)

  13. CANDU-PHW fuel channel replacement experience

    International Nuclear Information System (INIS)

    Dunn, J.T.; Kakaria, B.K.

    1982-09-01

    One of the main characteristics of the CANDU pressurized heavy water reactor is the use of pressure tubes rather than one large pressure vessel to contain the fuel and coolant. This provides an inherent design capability to permit their replacement in an expeditious manner, without seriously affecting the high capacity factors of the reactor units. Of th eight Ontario Hydro commercial nuclear generating units, the lifetime performance places seven of them (including two that have had some of their fuel channels replaced), in the top ten positions in the world's large nuclear-electric unit performance ranking. Pressure tube cracks in the rolled joint region have resulted in 70 fuel channels being replaced in three reactor units, the latest being at the Bruce Nuclear Generating Station 'A', Unit 2 in February 1982. The rolled joint design and rolling procedures have been modified to eliminate this problem on CANDU units subsequent to Bruce 'A'. This paper describes the CANDU pressure tube performance history and expectations, and the tooling and procedures used to carry out the fuel channel replacement

  14. The CANDU 6

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Hum, J.

    1999-01-01

    The CANDU 6 is a modem nuclear power plant designed and developed under the aegis of Atomic Energy of Canada, Limited (AECL) for domestic use and for export to other countries. This design has successfully met criteria for operation and redundant safety features required by Canada and by the International Atomic Energy Agency (IAEA) and has an estimable record of performance in all applications to date. Key to this success is a defined program of design enhancement in which changes are made while retaining fundamental features proven by operating experience. Basic design features and progress toward improvements are presented here. (author)

  15. Safety research for CANDU reactors

    International Nuclear Information System (INIS)

    Hancox, W.T.

    1982-10-01

    Continuing research to develop and verify computer models of CANDU-PHW reactor process and safety systems is described. It is focussed on loss-of-coolant accidents (LOCAs) because they are the precursors of more serious accidents. Research topics include: (i) fluid-dynamic and heat-transfer processes in the heat transport system during the blowdown and refilling phases of LOCAs; (ii) thermal and mechanical behaviour of fuel elements; (iii) thermal and mechanical behaviour of the fuel and the fuel-channel assembly in situations where the heavy-water moderator is the sink for decay heat produced in the fuel; (iv) chemical behaviour of fission gases that might be released into the reactor coolant and transported to the containment system; and (v) combustion of hydrogen-air-steam mixtures that would be produced if fuel temperatures were sufficiently high to initiate the zirconium-water reaction. The current status of the research on each of these topics is highlighted with particular emphasis on the conclusions reached to date and their impact on the continuing program

  16. The evolution of the CANDU energy system - ready for Europe's energy future

    International Nuclear Information System (INIS)

    Hedges, K. R.; Hopwood, J. M.

    2001-01-01

    As air quality and climate change issues receive increasing attention, the opportunity for nuclear to play a larger role in the coming decades also increases. The good performance of the current fleet of nuclear plants is crucial evidence of nuclear's potential. The excellent record of Cernavoda-1 is an important part of this, and demonstrates the maturity of the Romanian program and of the CANDU design approach. However, the emerging energy market also presents a stringent economic challenge. Current NPP designs, while established as reliable electricity producers, are seen as limited by high capital costs. In some cases, the response to the economic challenge is to consider radical changes to new design concepts, with attendant development risks from lack of provenness. Because of the flexibility of the CANDU system, it is possible to significantly extend the mid-size CANDU design, creating a Next Generation product, without sacrificing the extensive design, delivery and operations information base for CANDU. This enables a design with superior safety characteristics while at the same time meeting the economic challenge of emerging markets. The Romanian nuclear program has progressed successfully forward, leading to the successful operation of Cernavoda-1, and the project to bring Cernavoda-2 to commercial operation. The Romanian nuclear industry has become a full-fledged member of the CANDU community, with all areas of nuclear technology well established and benefiting from international cooperation with other CANDU organizations. AECL is an active partner with Romanian nuclear organizations, both through cooperative development programs, commercial contracts, and also through the activities of the CANDU owners' Group (COG). The Cernavoda project is part of the CANDU 6 family of nuclear power plants developed by AECL. The modular fuel channel reactor concept can be modified extensively, through a series of incremental changes, to improve economics, safety

  17. CANDU channel flow verification

    International Nuclear Information System (INIS)

    Mazalu, N.; Negut, Gh.

    1997-01-01

    The purpose of this evaluation was to obtain accurate information on each channel flow that enables us to assess precisely the level of reactor thermal power and, for reasons of safety, to establish which channel is boiling. In order to assess the channel flow parameters, computer simulations were done with the NUCIRC code and the results were checked by measurements. The complete channel flow measurements were made in the zero power cold condition. In hot conditions there were made flow measurements using the Shut Down System 1 (SDS 1) flow devices from 0.1 % F.P. up to 100 % F.P. The NUCIRC prediction for CANDU channel flows and the measurements by Ultrasonic Flow Meter at zero power cold conditions and SDS 1 flow channel measurements at different reactor power levels showed an acceptable agreement. The 100 % F.P. average errors for channel flow of R, shows that suitable NUCIRC flow assessment can be made. So, it can be done a fair prediction of the reactor power distribution. NUCIRC can predict accurately the onset of boiling and helps to warn at the possible power instabilities at high powers or it can detect the flow blockages. The thermal hydraulic analyst has in NUCIRC a suitable tool to do accurate predictions for the thermal hydraulic parameters for different steady state power levels which subsequently leads to an optimal CANDU reactor operation. (authors)

  18. Luncheon address: Development of the CANDU reactor

    International Nuclear Information System (INIS)

    Bain, A.S.

    1997-01-01

    The paper is a highlight of the some of the achievements in the development of the CANDU Reactor, taken from the book C anada Enters the Nuclear Age . The CANDU reactor is one of Canada's greatest scientific/engineering achievements, that started in the 1940's and bore fruit with the reactors of the 60's, 70's, and 80's. The Government decided in the 1950's to proceed with a demonstration nuclear power reactor (NPD), AECL invited 7 Canadian corporations to bid on a contract to design and construct the NPD plant. General Electric was selected. A utility was also essential for participation and Ontario Hydro was chosen. In May 1957 it was concluded that the minimum commercial size would be about 200MWe and it should use horizontal pressure tubes to contain the fuel and pressurized heavy water coolant. The book also talks of standard out-reactor components such as pumps, valves, steam generators and piping. A major in-reactor component of interest was the fuel, fuel channels and pressure tubes. A very high level of cooperation was required for the success of the CANDU program

  19. Proceedings of the fourth international conference on CANDU maintenance

    International Nuclear Information System (INIS)

    1997-01-01

    These proceedings record the information presented at the 4th International Conference on CANDU Maintenance held November 16-18,1997 in Toronto, Canada. The papers for these proceedings were prepared on component maintenance, human performance, steam generator leak detection, fuel channel inspections, rotating equipment maintenance, surveillance programs, inspection techniques, valve maintenance, steam generator repairs and performance, reactor aging management and preventative maintenance

  20. Proceedings of the fourth international conference on CANDU maintenance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    These proceedings record the information presented at the 4th International Conference on CANDU Maintenance held November 16-18,1997 in Toronto, Canada. The papers for these proceedings were prepared on component maintenance, human performance, steam generator leak detection, fuel channel inspections, rotating equipment maintenance, surveillance programs, inspection techniques, valve maintenance, steam generator repairs and performance, reactor aging management and preventative maintenance.

  1. Radioactive effluents from CANDU 6 reactors during normal operation

    International Nuclear Information System (INIS)

    Boss, C.R.; Allsop, P.J.

    1995-12-01

    During routine operation of a CANDU 6 reactor, various gaseous, liquid, and solid radioactive wastes are generated. The layout of the CANDU 6 reactor and the design of its systems ensure that these are minimized, but small quantities of gaseous and liquid wastes are continually discharged at very low concentrations. This report discusses the make-up of these chronically generated gaseous and liquid effluents. From a safety perspective, the doses to individual members of the public resulting from radioactive wastes chronically discharged from CANDU 6 reactors have been negligible. Similarly, doses to the regional and global populations have been negligible, generally less than 0.001% of background. While far below regulatory limits, releases of tritium, noble gases and gross β - -γ have been the most radiologically significant emissions, while radioiodine and particulates have had the greatest potential to deliver public dose. (author). 8 refs., 16 tabs., 3 figs

  2. Hyperfine 3D neutronic calculations in CANDU supercells

    International Nuclear Information System (INIS)

    Balaceanu, V.; Aioanei, L.; Pavelescu, M.

    2010-01-01

    For an accurate evaluation of the fuel performances, it is very important to have capability to calculate the three dimensional spatial flux distributions in the fuel bundle. According this issue, in our Institute, a multigroup calculation methodology named WIMS-PIJXYZ was especially developed for estimating the local neutronic parameters in CANDU cell/supercells. The objective of this paper is to present this calculation methodology and to use it in performing some hyperfine neutronic calculations in CANDU type supercells. More exactly, after a short description for the WIMS-PIJXYZ methodology, the end effect for some CANDU fuel bundles is estimated. The WIMS-PIJXYZ methodology is based on WIMS and PIJXYZ transport codes. WIMS is a standard lattice-cell code and it is used for generating the multigroup macroscopic cross sections for the materials in the fuel cells. For obtaining the flux and power distributions in CANDU fuel bundles the PIJXYZ code is used. This code is consistent with WIMS lattice-cell calculations and allows a good geometrical representation of the CANDU bundle in three dimensions. The end effect consists in the increasing of the thermal neutron flux in the end region and the increasing of power in the end of the fuel rod. The region separating the CANDU fuel in two adjoining bundles in a channel is called the 'end region' and the end of the last pellet in the fuel stack adjacent to the end region is called the 'fuel end'. The end effect appears because the end region of the bundle is made up of coolant and Zircaloy-4, a very low neutron absorption material. To estimate the end effect, the flux peaking factors and the power peaking factors are calculated. It was taken in consideration CANDU Standard (Natural Uranium, with 37 elements) fuel bundles. In the end of the paper, the results obtained by WIMS-PIJXYZ methodology with the similar LEGENTR results are compared. The comparative analysis shows a good agreement. (authors)

  3. Cernavoda CANDU severe accident evaluation

    International Nuclear Information System (INIS)

    Negut, G.; Marin, A.

    1997-01-01

    The papers present the activities dedicated to Romania Cernavoda Nuclear Power Plant first CANDU Unit severe accident evaluation. This activity is part of more general PSA assessment activities. CANDU specific safety features are calandria moderator and calandria vault water capabilities to remove the residual heat in the case of severe accidents, when the conventional heat sinks are no more available. Severe accidents evaluation, that is a deterministic thermal hydraulic analysis, assesses the accidents progression and gives the milestones when important events take place. This kind of assessment is important to evaluate to recovery time for the reactor operators that can lead to the accident mitigation. The Cernavoda CANDU unit is modeled for the of all heat sinks accident and results compared with the AECL CANDU 600 assessment. (orig.)

  4. Achieving CANDU excellence through collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Dermarkar, F. [CANDU Owners Group Inc., Toronto, Ontario (Canada)

    2015-07-01

    All Operators of CANDU/PHWR Worldwide, and AECL, are members of Candu Owners Group (COG). COG has evolved to become primarily an Operators Owners Group with annual turnover of $75M. It is all about value to the members providing a diverse offering of services to meet a broad spectrum of member needs, linking our members together prioritizing and organizing to enable members to access what they need, when they need it. Collaboration benefits both COG and EPRI.

  5. Achieving CANDU excellence through collaboration

    International Nuclear Information System (INIS)

    Dermarkar, F.

    2015-01-01

    All Operators of CANDU/PHWR Worldwide, and AECL, are members of Candu Owners Group (COG). COG has evolved to become primarily an Operators Owners Group with annual turnover of $75M. It is all about value to the members providing a diverse offering of services to meet a broad spectrum of member needs, linking our members together prioritizing and organizing to enable members to access what they need, when they need it. Collaboration benefits both COG and EPRI.

  6. Technology transfer in CANDU marketing

    International Nuclear Information System (INIS)

    Pon, G.A.

    1982-06-01

    The author discusses how the CANDU system lends itself to technology transfer, the scope of CANDU technology transfer, and the benefits and problems associated with technology transfer. The establishment of joint ventures between supplier and client nations offers benefits to both parties. Canada can offer varying technology transfer packages, each tailored to a client nation's needs and capabilities. Such a package could include all the hardware and software necessary to develop a self-sufficient nuclear infrastructure in the client nation

  7. The CANDU 9 fuel transfer system

    International Nuclear Information System (INIS)

    Keszthelyi, Z.G.; Morikawa, D.T.

    1996-01-01

    The CANDU 9 fuel transfer system is based on the CANDU 6 and the Ontario Hydro Darlington NGD designs, modified to suit the CANDU 9 requirements. The CANDU 9 new fuel transfer system is very similar to the CANDU 6, with modifications to allow new fuel loading from outside containment, similar to Darlington. The CANDU 9 irradiated fuel transfer system is based on the Darlington irradiated fuel transfer system, with modifications to meet the more stringent containment requirements, improve performance, and match station layout. (author). 2 refs., 6 figs

  8. The CANDU 9 fuel transfer system

    Energy Technology Data Exchange (ETDEWEB)

    Keszthelyi, Z G [Canadian General Electric Co. Ltd., Peterborough, ON (Canada); Morikawa, D T [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1997-12-31

    The CANDU 9 fuel transfer system is based on the CANDU 6 and the Ontario Hydro Darlington NGD designs, modified to suit the CANDU 9 requirements. The CANDU 9 new fuel transfer system is very similar to the CANDU 6, with modifications to allow new fuel loading from outside containment, similar to Darlington. The CANDU 9 irradiated fuel transfer system is based on the Darlington irradiated fuel transfer system, with modifications to meet the more stringent containment requirements, improve performance, and match station layout. (author). 2 refs., 6 figs.

  9. CANDU safety under severe accidents

    International Nuclear Information System (INIS)

    Snell, V.G.; Howieson, J.Q.; Frescura, G.M.; King, F.; Rogers, J.T.; Tamm, H.

    1988-01-01

    The characteristics of the CANDU reactor relevant to severe accidents are set first by the inherent properties of the design, and second by the Canadian safety/licensing approach. Probabilistic safety assessment studies have been performed on operating CANDU plants, and on the 4 x 880 MW(e) Darlington station now under construction; furthermore a scoping risk assessment has been done for a CANDU 600 plant. They indicate that the summed severe core damage frequency is of the order of 5 x 10 -6 /year. CANDU nuclear plant designers and owner/operators share information and operational experience nationally and internationally through the CANDU Owners' Group (COG). The research program generally emphasizes the unique aspects of the CANDU concept, such as heat removal through the moderator, but it has also contributed significantly to areas generic to most power reactors such as hydrogen combustion, containment failure modes, fission product chemistry, and high temperature fuel behaviour. Abnormal plant operating procedures are aimed at first using event-specific emergency operating procedures, in cases where the event can be diagnosed. If this is not possible, generic procedures are followed to control Critical Safety Parameters and manage the accident. Similarly, the on-site contingency plans include a generic plan covering overall plant response strategy, and a specific plan covering each category of contingency

  10. The CANDU experience in Romania

    International Nuclear Information System (INIS)

    Smith, A.I.

    1984-01-01

    The CANDU program in Romania is now well established. The Cernavoda Nuclear Station presently under construction will consist of 5-CANDU 600 MWE Units and another similar size station is planned to be in operation in the next decade. Progress on the multi-unit station at Cernavoda was stalled for 18 months in 1982/83 as the Canadian Export Development Corporation had suspended their loan disbursements while the Romanian National debt was being rescheduled. Since resumption of the financing in August 1983 contracts worth almost 200M dollars have been placed with Canadian Companies for the supply of major equipment for the first two units. The Canadian design is that which was used in the latest 600 MWE CANDU station at Wolsong, Korea. The vast construction site is now well developed with the cooling water systems/channels and service buildings at an advanced stage of completion. The perimeter walls of the first two reactor buildings are already complete and slip-forming for the 3rd Unit is imminent. Many Romanian organizations are involved in the infrastructure which has been established to handle the design, manufacture, construction and operation of the CANDU stations. The Romanian manufacturing industry has made extensive preparations for the supply of CANDU equipment and components, and although a major portion of the first two units will come from Canada their intentions are to become largely self-supporting for the ensuing CANDU program. Quality assurance programs have been prepared already for many of the facilities

  11. CANDU severe accident analysis

    International Nuclear Information System (INIS)

    Negut, Gheorghe; Catana, Alexandru; Prisecaru, Ilie; Dupleac, Daniel

    2007-01-01

    Romania is a EU member since January first 2007. This country faces now new challenges which imply also the nuclear power reactors now in operation. Romania operates since 1996 a CANDU nuclear power reactor and soon will start up a second unit. In EU PWR reactors are mostly operated, so that the Romania's reactors have to meet EU standards. Safety analysis guidelines require to model severe accidents for reactors of this type. Starting from previous studies a thermal-hydraulic model for a degraded CANDU core was developed. The initiating event is assumed to be a LOCA with simultaneous loss of moderator and coolant and the failure of emergency core cooling system (ECCS). This type of accident is likely to modify the reactor geometry and will lead to a severe accident development. When the coolant temperatures inside a pressure tube reaches 1000 deg. C, a contact between pressure tube and calandria tube occurs and the decay heat is transferred to the moderator. Due to the lack of cooling, the moderator eventually begins to boil and is expelled, through the calandria vessel relief ducts, into the containment. Therefore the calandria tubes (fuel channels) uncover, then disintegrate and fall down to the calandria vessel bottom. All the quantity of calandria moderator is vaporized and expelled, the debris will heat up and eventually boil. The heat accumulated in the molten debris will be transferred through the calandria vessel wall to the shield water tank surrounding the calandria vessel. The thermal hydraulics phenomena described above are modeled, analyzed and compared with the existing data. (authors)

  12. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    Malkoske, G.R.; Norton, J.L.; Slack, J.

    2002-01-01

    MDS Nordion has been supplying cobalt-60 sources to industry for industrial and medical purposes since 1946. These cobalt-60 sources are used in many market and product segments, but are primarily used to sterilize single-use medical products including; surgical kits, gloves, gowns, drapes, and cotton swabs. Other applications include sanitization of cosmetics, microbial reduction of pharmaceutical raw materials, and food irradiation. The technology for producing the cobalt-60 isotope was developed by MDS Nordion and Atomic Energy of Canada Limited (AECL) almost 55 years ago using research reactors at the AECL Chalk River Laboratories in Ontario, Canada. The first cobalt-60 source produced for medical applications was manufactured by MDS Nordion and used in cancer therapy. The benefits of cobalt-60 as applied to medical product manufacturing, were quickly realized and the demand for this radioisotope quickly grew. The same technology for producing cobalt-60 in research reactors was then designed and packaged such that it could be conveniently transferred to a utility/power reactor. In the early 1970's, in co-operation with Ontario Power Generation (formerly Ontario Hydro), bulk cobalt-60 production for industrial irradiation applications was initiated in the four Pickering A CANDU reactors. As the demand and acceptance of sterilization of medical products grew, MDS Nordion expanded its bulk supply by installing the proprietary Canadian technology for producing cobalt-60 in additional CANDU reactors. CANDU is unique among the power reactors of the world, being heavy water moderated and fuelled with natural uranium. They are also designed and supplied with stainless steel adjusters, the primary function of which is to shape the neutron flux to optimize reactor power and fuel bum-up, and to provide excess reactivity needed to overcome xenon-135 poisoning following a reduction of power. The reactor is designed to develop full power output with all of the adjuster

  13. The Canadian R and D program targeted at CANDU reactors

    International Nuclear Information System (INIS)

    Moeck, E.O.

    1988-01-01

    CANDU reactors produce electricity cheaply and reliably, with miniscule risk to the population and minimal impact on the environment. About half of Ontario's electricity and a third of New Brunswick's are generated by CANDU power plants. Hydro Quebec and utilities in Argentina, India, Pakistan, and the Republic of Korea also successfully operate CANDU reactors. Romania will soon join their ranks. The proven record of excellent performance of CANDUs is due in part to the first objective of the vigorous R and D program: namely, to sustain and improve existing CANDU power-plant technology. The second objective is to develop improved nuclear power plants that will remain competitive compared with alternative energy supplies. The third objective is to continue to improve our understanding of the processes underlying reactor safety and develop improved technology to mitigate the consequences of upset conditions. These three objectives are addressed by individual R and D programs in the areas of CANDU fuel channels, reduced operating costs, reduced capital costs, reactor safety research, and IAEA safeguards. The work is carried out mainly at three centres of Atomic Energy of Canada Limited--the Chalk River Nuclear Laboratories, the Whiteshell Nuclear Research Establishment, and the Sheridan Park Engineering Laboratories--and at Ontario Hydro's Research Laboratories. Canadian universities, consultants, manufacturers, and suppliers also provide expertise in their areas of specialization

  14. Survey of considerations involved in introducing CANDU reactors into the United States

    International Nuclear Information System (INIS)

    Till, C.E.; Bohn, E.M.; Chang, Y.I.; van Erp, J.B.

    1977-01-01

    The important issues that must be considered in a decision to utilize CANDU reactors in the U.S. are identified in this report. Economic considerations, including both power costs and fuel utilization, are discussed for the near and longer term. Safety and licensing considerations are reviewed for CANDU-PHW reactors in general. The important issues, now and in the future, associated with power generation costs are the capital costs of CANDUs and the factors that impact capital cost comparisons. Fuel utilization advantages for the CANDU depend upon assumptions regarding fuel recycle at present, but the primary issue in the longer term is the utilization of the thorium cycle in the CANDU. Certain safety features of the CANDU are identified as intrinsic to the concept and these features must be examined more fully regarding licensability in the U.S

  15. The status of safeguarding 600 MW(e) CANDU reactors

    International Nuclear Information System (INIS)

    Von Baeckmann, A.; Rundquist, D.E.; Pushkarjov, V.; Smith, R.M.; Zarecki, C.W.

    1982-09-01

    There has been extensive work in the development of CANDU safeguards since the last International Conference on Nuclear Power, and this has resulted in the development of improved equipment for the safeguards system now being installed in the 600 MW(e) CANDU generating stations. The overall system is designed to improve on the existing IAEA safeguards and to provide adequate coverage for each plausible nuclear material diversion route. There is sufficient sensitivity and redundancy to enable the timely detection of the possible diversion of significant quantities of nuclear material

  16. Basic research and industrialization of CANDU advanced fuel

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Suk Ho; Park, Joo Hwan; Jun, Ji Su [and others

    2000-04-01

    Wolsong Unit 1 as the first heavy water reactor in Korea has been in service for 17 years since 1983. It would be about the time to prepare a plan for the solution of problems due to aging of the reactor. The aging of CANDU reactor could lead especially to the steam generator cruding and pressure tube sagging and creep and then decreases the operation margin to make some problems on reactor operations and safety. The counterplan could be made in two ways. One is to repair or modify reactor itself. The other is to develop new advanced fuel to increase of CANDU operation margin effectively, so as to compensate the reduced operation margin. Therefore, the first objectives in the present R and D is to develop the CANFLEX-NU (CANDU Flexible fuelling-Natural Uranium) fuel as a CANDU advanced fuel. The second objectives is to develop CANDU advanced fuel bundle to utilize advanced fuel cycles such as recovered uranium, slightly enriched uranium, etc. and so to raise adaptability for change in situation of uranium market. Also, it is to develop CANDU advanced fuel technology which improve uranium utilization to cope with a world-wide imbalance between uranium supply and demand, without significant modification of nuclear reactor design and refuelling strategies. As the implementations to achieve the above R and D goal, the work contents and scope of technology development of CANDU advanced fuel using natural uranium (CANFLEX-NU) are the fuel element/bundle designs, the nuclear design and fuel management analysis, the thermalhydraulic analysis, the safety analysis, fuel fabrication technologies, the out-pile thermalhydraulic test and in-pile irradiation tests performed. At the next, the work scopes and contents of feasibility study of CANDU advanced fuel using recycled uranium (CANFLEX-RU) are the fuel element/bundle designs, the reactor physics analysis, the thermalhydraulic analysis, the basic safety analysis of a CANDU-6 reactor with CANFLEX-RU fuel, the fabrication and

  17. Basic research and industrialization of CANDU advanced fuel

    International Nuclear Information System (INIS)

    Chun, Suk Ho; Park, Joo Hwan; Jun, Ji Su

    2000-04-01

    Wolsong Unit 1 as the first heavy water reactor in Korea has been in service for 17 years since 1983. It would be about the time to prepare a plan for the solution of problems due to aging of the reactor. The aging of CANDU reactor could lead especially to the steam generator cruding and pressure tube sagging and creep and then decreases the operation margin to make some problems on reactor operations and safety. The counterplan could be made in two ways. One is to repair or modify reactor itself. The other is to develop new advanced fuel to increase of CANDU operation margin effectively, so as to compensate the reduced operation margin. Therefore, the first objectives in the present R and D is to develop the CANFLEX-NU (CANDU Flexible fuelling-Natural Uranium) fuel as a CANDU advanced fuel. The second objectives is to develop CANDU advanced fuel bundle to utilize advanced fuel cycles such as recovered uranium, slightly enriched uranium, etc. and so to raise adaptability for change in situation of uranium market. Also, it is to develop CANDU advanced fuel technology which improve uranium utilization to cope with a world-wide imbalance between uranium supply and demand, without significant modification of nuclear reactor design and refuelling strategies. As the implementations to achieve the above R and D goal, the work contents and scope of technology development of CANDU advanced fuel using natural uranium (CANFLEX-NU) are the fuel element/bundle designs, the nuclear design and fuel management analysis, the thermalhydraulic analysis, the safety analysis, fuel fabrication technologies, the out-pile thermalhydraulic test and in-pile irradiation tests performed. At the next, the work scopes and contents of feasibility study of CANDU advanced fuel using recycled uranium (CANFLEX-RU) are the fuel element/bundle designs, the reactor physics analysis, the thermalhydraulic analysis, the basic safety analysis of a CANDU-6 reactor with CANFLEX-RU fuel, the fabrication and

  18. PLN's experience with the WASP-III model in generation expansion planning for the Java system

    International Nuclear Information System (INIS)

    Sudja, N.; Afiff, A.; Simarmata, B.

    1988-01-01

    The State Electric Power Corporation of Indonesia (PLN) was one of the first recipients of the WASP computer model, and since 1976 has been using the model (first the version WASP-II, and later the WASP-III version) for carrying out generation expansion planning studies for the country, and particularly, for the Java power system. This paper discusses PLN's experience with WASP-III and comments on some problems and constraints encountered, particularly: the time-fixed forced outage rate (FOR) assumed for generating units, simulation of the hydro system and computation time. The paper concludes with some suggestions about future enhancements to WASP-III. (author). 3 figs, 11 tabs

  19. Some aspects of primary and secondary water chemistry in CANDU reactors

    International Nuclear Information System (INIS)

    LeSurf, J.E.

    1978-09-01

    A brief review of the water chemistry in various circuits of CANDU reactors is given. Then, five particular aspects of recent work are highlighted: (i) Radiation Field Growth: in-reactor and out-reactor studies have related water chemistry to corrosion product deposition on fuel sheaths and subsequent contamination of out-core surfaces. (ii) Metal Oxide Solubility: novel techniques are being used to measure the solubilities of metal oxides at primary circuit conditions. (iii) Decontamination: the use of heavy water as coolant in CANDU reactors led to the development of a unique decontamination strategy and technique, called CAN-DECON, which has attracted the attention of operators of light-water reactors. (iv) Steam Generator Corrosion: mathematical modelling of the water chemistry in the bulk and crevice regions of nuclear steam generators, supported by chemical experiments, has shown why sea water ingress from leaking condensers can be damaging, and has provided a rapid way to evaluate alternative boiler water chemistries. (v) Automatic Control of Feedwater Chemistry: on-line automatic chemical analysis and computer control of feedwater chemistry provides All Volatile Treatment for normal operation with pure feedwater, and carefully controlled sodium phosphate addition when there is detectable sea-water ingress from leaking condensers. (author)

  20. Design and analysis of CANDU advanced fuel -Development of the advanced CANDU technology-

    International Nuclear Information System (INIS)

    Seok, Ho Cheon; Shim, Ki Seop; Byeon, Taek Sang; Park, Kwang Seok; Kim, Bong Ki; Lee, Yeong Uk; Jeong, Chang Joon; Oh, Deok Joo; Lee, Ui Joo; Park, Joo Hwan; Lee, Sang Yong; Jeong, Beop Dong; Choi, Han Rim; Lee, Yeong Jin; Choi, Cheol Jin; Choi, Jong Ho; Lee, Kwang Won; Cho, Cheon Hyi; On, Myeong Ryong; Kim, Taek Mo; Lim, Hong Sik; Lee, Kang Moon; Lee, Nam Ho; Lee, Kyu Hyeong

    1994-07-01

    It has been projected that a total of 5 pressurized heavy water reactors (PHWR) including Wolsong 1 under operation and Wolsong 2, 3 and 4 under construction will be operated by 2006, and so about 500 ton of natural uranium will be consumed every year and a lot of spent fuels will be generated. Therefore, the ultimate goal of this R and D project is to develop the CANDU advanced fuel having the following capabilities compared with existing standard fuel: (1) To reduce linear heat generation rating by more than 15% (i.e., less than 50 kW/m), (2) To extend fuel burnup by more than 3 times (i.e., higher than 21,000 MWD/MTU), and (3) To increase critical channel power by more than 5%. In accordance, the followings are performed in this fiscal year: (1) Undertake CANFLEX-NU design and thermalmechanical performance analysis, and prepare design documents, (2) Establish reactor physics analysis code system, and investigate the compativility of the CANFLEX-NU fuel with the standard 37-element fuel in the CANDU-6 reactor. (3) Establish safety analysis methodology with the assumption of the CANFLEX-NU loaded CANDU-6 reactor, and perform the preliminary thermalhydraulic and fuel behavior for the selected DBA accidents, (4) Investigate reactor physics analysis code system as pre-study for CANFLEX-SEU loaded reactors

  1. Remote handling equipment for CANDU retubing

    International Nuclear Information System (INIS)

    Crawford, G.S.; Lowe, H.

    1993-01-01

    Numet Engineering Ltd. has designed and supplied remote handling equipment for Ontario Hydro's retubing operation of its CANDU reactors at the Bruce Nuclear Generating Station. This equipment consists of ''Retubing Tool Carriers'' an'' Worktables'' which operate remotely or manually at the reactor face. Together they function to transport tooling to and from the reactor face, to position and support tooling during retubing operations, and to deliver and retrieve fuel channels and channel components. This paper presents the fundamentals of the process and discusses the equipment supplied in terms of its design, manufacturing, components and controls, to meet the functional and quality requirements of Ontario Hydro's retubing process. (author)

  2. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    Slack, J.; Norton, J.L.; Malkoske, G.R.

    2003-01-01

    therapy machines. Today the majority of the cancer therapy cobalt-60 sources used in the world are manufactured using material from the NRU reactor in Chalk River. The same technology that was used for producing cobalt-60 in a research reactor was then adapted and transferred for use in a CANDU power reactor. In the early 1970s, in co-operation with Ontario Power Generation (formerly Ontario Hydro), bulk cobalt-60 production was initiated in the four Pickering A CANDU reactors located east of Toronto. This was the first full scale production of millions of curies of cobalt-60 per year. As the demand and acceptance of sterilization of medical products grew, MDS Nordion expanded its bulk supply by installing the proprietary Canadian technology in additional CANDUs. Over the years MDS Nordion has partnered with CANDU reactor owners to produce cobalt-60 at various sites. CANDU reactors that have, or are still producing cobalt-60, include Pickering A, Pickering B, Gentilly 2, Embalse in Argentina, and Bruce B. In conclusion, the technology for cobalt-60 production in CANDU reactors, designed and developed by MDS Nordion and Atomic Energy of Canada, has been safely, economically and successfully employed in CANDU reactors with over 195 reactor years of production. Today over forty percent of the world's disposable medical supplies are made safer through sterilization using cobalt-60 sources from MDS Nordion. Over the past 40 years, MDS Nordion with its CANDU reactor owner partners, has safely and reliably shipped more than 500 million curies of cobalt-60 sources to customers around the world. MDS Nordion is presently adding three more CANDU power reactors to its supply chain. These three additional cobalt producing CANDU's will help supplement the ability of the health care industry to provide safe, sterile, medical disposable products to people around the world. As new applications for cobalt-60 are identified, and the demand for bulk cobalt-60 increases, MDS Nordion and AECL

  3. Feasibility Study for Cobalt Bundle Loading to CANDU Reactor Core

    International Nuclear Information System (INIS)

    Park, Donghwan; Kim, Youngae; Kim, Sungmin

    2016-01-01

    CANDU units are generally used to produce cobalt-60 at Bruce and Point Lepreau in Canada and Embalse in Argentina. China has started production of cobalt-60 using its CANDU 6 Qinshan Phase III nuclear power plant in 2009. For cobalt-60 production, the reactor’s full complement of stainless steel adjusters is replaced with neutronically equivalent cobalt-59 adjusters, which are essentially invisible to reactor operation. With its very high neutron flux and optimized fuel burn-up, the CANDU has a very high cobalt-60 production rate in a relatively short time. This makes CANDU an excellent vehicle for bulk cobalt-60 production. Several studies have been performed to produce cobalt-60 using adjuster rod at Wolsong nuclear power plant. This study proposed new concept for producing cobalt-60 and performed the feasibility study. Bundle typed cobalt loading concept is proposed and evaluated the feasibility to fuel management without physics and system design change. The requirement to load cobalt bundle to the core was considered and several channels are nominated. The production of cobalt-60 source is very depend on the flux level and burnup directly. But the neutron absorption characteristic of cobalt bundle is too high, so optimizing design study is needed in the future

  4. Feasibility Study for Cobalt Bundle Loading to CANDU Reactor Core

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghwan; Kim, Youngae; Kim, Sungmin [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    CANDU units are generally used to produce cobalt-60 at Bruce and Point Lepreau in Canada and Embalse in Argentina. China has started production of cobalt-60 using its CANDU 6 Qinshan Phase III nuclear power plant in 2009. For cobalt-60 production, the reactor’s full complement of stainless steel adjusters is replaced with neutronically equivalent cobalt-59 adjusters, which are essentially invisible to reactor operation. With its very high neutron flux and optimized fuel burn-up, the CANDU has a very high cobalt-60 production rate in a relatively short time. This makes CANDU an excellent vehicle for bulk cobalt-60 production. Several studies have been performed to produce cobalt-60 using adjuster rod at Wolsong nuclear power plant. This study proposed new concept for producing cobalt-60 and performed the feasibility study. Bundle typed cobalt loading concept is proposed and evaluated the feasibility to fuel management without physics and system design change. The requirement to load cobalt bundle to the core was considered and several channels are nominated. The production of cobalt-60 source is very depend on the flux level and burnup directly. But the neutron absorption characteristic of cobalt bundle is too high, so optimizing design study is needed in the future.

  5. Evolutionary CANDU 9 plant improvements

    International Nuclear Information System (INIS)

    Yu, S.K.W.

    1999-01-01

    The CANDU 9 is a 935 MW(e) nuclear power plant (NPP) based on the multi-unit Darlington and Bruce B designs with additional enhancements from our ongoing engineering and research programs. Added to the advantages of using proven systems and components, CANDU 9 offers improvement features with enhanced safety, improved operability and maintenance including a control centre with advanced man-machine interface, and improved project delivery in both engineering and construction. The CANDU 9 NPP design incorporated safety enhancements through careful attention to emerging licensing and safety issues. The designers assessed, revised and evolved such systems as the moderator, end shield, containment and emergency core cooling (ECC) systems while providing an integrated final design that is more passive and severe-accident-immune. AECL uses a feedback process to incorporate lessons learned from operating plants, from current projects experiences and from the implementation or construction phase of previous projects. Most of the requirements for design improvements are based on a systematic review of current operating CANDU stations in the areas of design and reliability, operability, and maintainability. The CANDU 9 Control Centre provides plant staff with improved operability and maintainability capabilities due to the combination of systematic design with human factors engineering and enhanced operating and diagnostics features. The use of advanced engineering tools and modem construction methods will reduce project implementation risk on project costs and schedules. (author)

  6. Thermosyphoning in the CANDU reactor

    International Nuclear Information System (INIS)

    Spinks, N.J.; Wright, A.C.D.; Caplan, M.Z.; Prawirosoehardjo, S.; Gulshani, P.

    1984-01-01

    Thermosyphoning is defined as the natural convective flow of primary coolant over the boilers. It is the predicted mode of heat transport from core to boilers in many postulated scenarios for CANDU reactor safety analysis. The scenarios encompass a wide range of boundary conditions in reactor power, secondary temperature and primary coolant inventory. Loss of pumping of the primary coolant is a common feature. Thermosyphoning is single or two-phase depending on the boundary conditions. The paper describes the important thermohydraulic characteristics of thermosyphoning in CANDU reactors with emphasis on two-phase thermosyphoning. It utilizes predictions of a transient thermohydraulics computer code and describes experiments done for the purpose of verifying these predictions. Predictions are compared with single-phase thermosyphoning tests done during commissioning of the Gentilly-2 and Point Lepreau CANDU 600 reactors. (orig.)

  7. Delivery improvements for CANDU projects

    International Nuclear Information System (INIS)

    Stephen Yu; Ken Hedges

    1998-01-01

    Future CANDU design will continue to meet emerging design and performance requirements as expected by the operating utilities, and will integrate new technologies into both the product features and work processes. Elements of this risk reduction strategy include feedback of lessons learned from operating plants, project experiences from previous projects, and replication of successful systems and equipment. Project implementation risk is minimized by up-front engineering and licensing prior to contract start. Enhanced competitiveness of the CANDU products is ensured by incorporating improvements based on updated technology. This paper summarizes the strategy used to enhance competitiveness of the CANDU products and the measures introduced to minimize risk during project implementation. This strategy provides a balance between innovation and proven designs; and between the desire for safety and operational improvements and the cost to achieve the improvements

  8. Proceedings of the third international conference on CANDU maintenance

    International Nuclear Information System (INIS)

    1995-01-01

    The third international conference on Candu maintenance included sessions on the following topics: predictive maintenance, reliability improvements, steam generator monitoring, tools and instrumentation, valve performance, fuel channel inspection and maintenance, steam generator maintenance, environmental qualification, predictive maintenance, instrumentation and control, steam generator cleaning, decontamination and radiation protection, inspection techniques, maintenance program strategies and valve packing experience, remote tooling/ robotics and fuel handling. The individual papers have been abstracted separately

  9. Proceedings of the third international conference on CANDU maintenance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The third international conference on Candu maintenance included sessions on the following topics: predictive maintenance, reliability improvements, steam generator monitoring, tools and instrumentation, valve performance, fuel channel inspection and maintenance, steam generator maintenance, environmental qualification, predictive maintenance, instrumentation and control, steam generator cleaning, decontamination and radiation protection, inspection techniques, maintenance program strategies and valve packing experience, remote tooling/ robotics and fuel handling. The individual papers have been abstracted separately.

  10. Build your own Candu reactor

    International Nuclear Information System (INIS)

    Carruthers, J.

    1979-01-01

    The author discusses the marketing of Candu reactors, particularly the export trade. Future sales will probably be of the nuclear side of a station only, thus striking a compromise between licensing and 'turnkey' sales. It is suggested that AECL might have made more money in the past had it not given the right to manufacture Candu fuel away to Canadian industry. Future sales to certain potential customers may be limited by the requirement of strict safeguards, which will almost certainly never be relaxed. (N.D.H.)

  11. A study of inter linkage effects on Candu feeder piping

    International Nuclear Information System (INIS)

    Li, M.; Aggarwal, M.L.; Meysner, A.

    2005-01-01

    A CANDU (Canadian Deuterium Uranium) reactor core consists of a large number of fuel channels where heat is generated. Two feeder pipes are connected to each fuel channel to transport D 2 O coolant into and out of the reactor core. The feeder piping is designed to the requirements of Class 1 piping of Section III NB of the ASME Boiler and Pressure Vessel and CSA Codes. Feeder piping stress analysis is being performed to demonstrate the code compliance check and the fitness for service of feeders. In the past, stress analyses were conducted for each individual feeder without including interaction effects among connected feeders. Interaction effects occur as a result of linkages that exist between feeders to prevent fretting and impacting damage during normal, abnormal and accident conditions. In this paper, a 'combined' approach is adopted to include all feeders connected by inter linkages into one feeder piping model. MSC/NASTRAN finite element software was used in the stress simulation, which contains up to 127 feeder pipes. The ASME Class 1 piping analysis was conducted to investigate the effects of the linkages between feeders. Both seismic time history and broadened response spectra methods were used in the seismic stress calculation. The results show that the effect of linkages is significant in dynamic stresses for all feeder configurations, as well as in static stresses for certain feeder configurations. The single feeder analysis could either underestimate or overestimate feeder stresses depending on the pipe geometry and bend wall thickness. (authors)

  12. Laser plasma generation of hydrogen-free diamond-like carbon thin films on Zr-2.5Nb CANDU pressure tube materials and silicon wafers with a pulsed high-power CO2 laser

    International Nuclear Information System (INIS)

    Ebrahim, N.A.; Mouris, J.F.; Hoffmann, C.R.J.; Davis, R.W.

    1995-06-01

    We report the first experiments on the laser plasma deposition of hydrogen-free, diamond-like carbon (DLC) films on Zr-2.5Nb CANDU pressure-tube materials and silicon substrates, using the short-pulse, high-power, CO 2 laser in the High-Power Laser Laboratory at Chalk River Laboratories. The films were (AFM). The thin films show the characteristic signature of DLC films in the Raman spectra obtained using a krypton-ion (Kr + ) laser. The Vickers ultra-low-load microhardness tests show hardness of the coated surface of approximately 7000 Kg force mm -2 , which is consistent with the hardness associated with DLC films. AFM examination of the film morphology shows diamond-like crystals distributed throughout the film, with film thicknesses of up to 0.5 μm generated with 50 laser pulses. With significantly more laser pulses, it is expected that very uniform diamond-like films would be produced. These experiments suggest that it should be possible to deposit hydrogen-free, diamond-like films of relevance to nuclear reactor components with a high-power and high-repetition-rate laser facility. (author). 7 refs., 2 tabs., 15 figs

  13. Validation of the sterile manufacture of the AAEC MARK III molybdenum-99/techtnetium-99m generator

    International Nuclear Information System (INIS)

    Saunders, M.T.; Drummond, C.M.; Harrison, M.A.

    1982-07-01

    The Mark II molybdenum-99/technetium-99m generator now supplied to hospitals by the Australian Atomic Energy Commission is a non-sterile elution system. The Mark III version will be supplied as a sterile elution system. A validation study has been undertaken to assess the capability of the new production facility, to evaluate up-to-date procedures for manufacturing sterile generators and to demonstrate that a sterile radionuclide generator can be made. Generator manufacturing procedures and a time study of the validation are described. Microbiological methods for monitoring in-process aspects of manufacture, disinfectant efficacy and generator sterility are defined

  14. Conceptual designs for advanced, high-temperature CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bushby, S.J. [Atomic Energy of Canada Ltd., Corrosion and Surface Science Branch, Chalk River Laboratories, Chalk River, ON (Canada); Dimmick, G.R. [Atomic Energy of Canada Ltd., Fuel Channel Thermmalhydraulics Branch, Chalk River, ON (Canada); Duffey, R.B. [Atomic Energy of Canada Ltd., Principal Scientist, Chalk River Laboratories, Chalk River, On (Canada); Spinks, N.J. [Atomic Energy of Canada Ltd., Researcher Emeritus, Chalk River Laboratories, Chalk River, ON (Canada); Burrill, K.A. [Atomic Energy of Canada Ltd., Chalk River Laboratories, Chalk River, ON (Canada); Chan, P.S.W. [Atomic Energy of Canada Ltd., Reactor Core Physics Branch, Mississauga, ON (Canada)

    2000-07-01

    AECL is studying advanced reactor concepts with the aim of significant cost reduction through improved thermodynamic efficiency and plant simplification. The program, generically called CANDU-X, also incorporates enhanced safety features, and flexible, proliferation-resistant fuel cycles, whilst retaining the fundamental design characteristics of CANDU: neutron economy, horizontal fuel channels, and a separate D{sub 2}O moderator that provides a passive heat sink. Where possible, proven, existing components and materials would be adopted, so that 'first-of-a-kind' costs and uncertainties are avoided. Three reactor concepts ranging in output from {approx}375 MW(e) to 1150 MW(e) are described. The modular design of a pressure tube reactor allows the plant size for each concept to be tailored to a given market through the addition or removal of fuel channels. Each concept uses supercritical water as the coolant at a nominal pressure of 25 MPa. Core outlet temperatures range from {approx}400degC to 625degC, resulting in substantial improvements in thermodynamic efficiencies compared to current nuclear stations. The CANDU-X Mark 1 concept is an extension of the present CANDU design. An indirect cycle is employed, but efficiency is increased due to higher coolant temperature, and changes to the secondary side; as well, the size and number of pumps and steam generators are reduced. Safety is enhanced through facilitation of thermo-siphoning of decay heat by increasing the temperature of the moderator. The CANDU-X NC concept is also based on an indirect cycle, but natural convection is used to circulate the primary coolant. This approach enhances cycle efficiency and safety, and is viable for reactors operating near the pseudo-critical temperature of water because of large changes in heat capacity and thermal expansion in that region. In the third concept (CANDUal-X), a dual cycle is employed. Supercritical water exits the core and feeds directly into a very high

  15. Development of the CANDU 66-group SN transport library

    International Nuclear Information System (INIS)

    Tsang, K.T.

    2001-01-01

    The design of the shield configuration around a nuclear reactor is strongly dependent on the neutron and photon spatial and energy distributions. The nuclear heat deposition and material damage in and surrounding the reactor core are also a function of the neutron and photon distributions. Therefore, to ensure a suitable configuration of materials for shielding or heat transfer, an accurate calculation of the particle fluxes in the reactor systems is essential. The CANDU 66-group library was developed to update the cross sections that are needed to assess the performance of CANDU bulk shields. Since about 1980, shielding analysts at Atomic Energy of Canada Limited (AECL) and Ontario Power Generation Inc. (OPGI) have been using a 38-group CANDU-specific library to perform S N transport calculations. In 1994, a new CANDU 67-group cross-section library was developed. The 67-group cross-section library was developed to provide radiation-physics analysts with up-to-date nuclear data to correct deficiencies with documentation of the old library. Although there were improvements over the 38-group library, initial use showed there were some deficiencies in the 67-group library. To correct these deficiencies, the CANDU 66-group S N transport cross-section library was developed. The 66-group library is based on the 241-group cross-section library VITAMIN-B6. Collapsing and weighting of the 241-group cross sections into 66 groups were performed using the modular code system SCALE 4.4. This paper describes how the modules in the SCALE system were applied to generate the 66-group library. The CANDU 66-group library includes both core-weighted and lattice-weighted cross sections of 235 U, 238 U, and 239 Pu with, and without, delayed fission-product photons. In addition, the 66-group library contains more response functions than did the 67-group library. Finally, the CANDU 66-group library has been validated against one-dimensional benchmark problems. The results generated with

  16. CANDU 9 Control Centre Mockup

    International Nuclear Information System (INIS)

    Webster, A.; Macbeth, M.J.

    1996-01-01

    This paper provides a summary of the design process being followed, the benefits of applying a systematic design using human factors engineering, presents an overview of the CANDU 9 control centre mockup facility, illustrates the control centre mockup with photographs of the 3D CADD model and the full scale mockup, and provides an update on the current status of the project. (author)

  17. Advanced CANDU reactor design for operability

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Lalonde, R.; Soulard, M.

    2003-01-01

    This paper outlines design features and engineering processes in the ACR TM development program which contribute to excellence in performance and low operating cost. AECL recognizes that future plant owners will place a high priority in these operational characteristics. A successful next generation plant will have a best-in-class capability, both in its design characteristics, in the engineering philosophy and program adopted during the product development, and in the vendor's approach to operating station support. The ACR program addresses each of these drivers. Operability considerations are built-in to the design at an overall, plant wide level. For example, based on the strong CANDU 6 operating record, targets for standard outage duration, time between outages and component durability are set, while the design engineering is managed to achieve these targets. The ultimate maintenance target for the ACR, once initial operating experience has been gained, is to operate with a 21-day standard maintenance outage at an interval of once every three years. At the detailed design level, close attention is paid to space allocation, to enable good maintenance access. Selection of components also places emphasis on maintainability based on the extensive and current experience with CANDU projects. (author)

  18. Conceptual designs for very high-temperature CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bushby, S.J.; Dimmick, G.R.; Duffey, R.B. [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada)

    2000-07-01

    power plants ({approx}300 - 500 MWe). The steam cycle and coolant conditions are proposed to be the same as CANDU-X Mark I. The major difference between the reactors is that natural convection would be used to circulate the primary coolant around the heat transport system. This approach enhances cycle efficiency and safety, and is viable for reactors operating near the critical point of water because of the large increases in heat capacity and thermal expansion coefficient across the core. The third concept, CANDUal-X, is a dual cycle concept, with core conditions similar to the Mark 1 and NC. In this concept, coolant leaving the core is first expanded through a VHP turbine in a direct cycle. Employing a dual steam cycle avoids a high-pressure steam generator. The conditions of the core and the VHP expansion can be designed such that the exhaust from the turbine is used as the heat source for an indirect cycle; that is, the secondary side can be equivalent to that presently employed in conventional CANDU plants. An advantage of this concept over conventional direct cycle nuclear plants is that only one relatively small turbine is exposed to radioactive coolant, and it is located within containment. In summary, the reactors described above represent concepts that evolve logically from the current CANDU designs to higher efficiency, with only modest extensions of current technology. This paper presents a technical overview of the different conceptual designs, as well as a brief discussion of the enabling technologies that are common to each, which is the focus of current R and D. (author)

  19. Conceptual designs for very high-temperature CANDU reactors

    International Nuclear Information System (INIS)

    Bushby, S.J.; Dimmick, G.R.; Duffey, R.B.

    2000-01-01

    (∼300 - 500 MWe). The steam cycle and coolant conditions are proposed to be the same as CANDU-X Mark I. The major difference between the reactors is that natural convection would be used to circulate the primary coolant around the heat transport system. This approach enhances cycle efficiency and safety, and is viable for reactors operating near the critical point of water because of the large increases in heat capacity and thermal expansion coefficient across the core. The third concept, CANDUal-X, is a dual cycle concept, with core conditions similar to the Mark 1 and NC. In this concept, coolant leaving the core is first expanded through a VHP turbine in a direct cycle. Employing a dual steam cycle avoids a high-pressure steam generator. The conditions of the core and the VHP expansion can be designed such that the exhaust from the turbine is used as the heat source for an indirect cycle; that is, the secondary side can be equivalent to that presently employed in conventional CANDU plants. An advantage of this concept over conventional direct cycle nuclear plants is that only one relatively small turbine is exposed to radioactive coolant, and it is located within containment. In summary, the reactors described above represent concepts that evolve logically from the current CANDU designs to higher efficiency, with only modest extensions of current technology. This paper presents a technical overview of the different conceptual designs, as well as a brief discussion of the enabling technologies that are common to each, which is the focus of current R and D. (author)

  20. The use of digital computers in CANDU shutdown systems

    International Nuclear Information System (INIS)

    Gilbert, R.S.; Komorowski, C.W.

    1986-01-01

    This paper summarizes the application of computers in CANDU shutdown systems. A general description of systems that are already in service is presented along with a description of a fully computerized shutdown system which is scheduled to enter service in 1987. In reviewing the use of computers in the shutdown systems there are three functional areas where computers have been or are being applied. These are (i) shutdown system monitoring, (ii) parameter display and testing and (iii) shutdown initiation. In recent years various factors (References 1 and 2) have influenced the development and deployment of systems which have addressed two of these functions. At the present time a system is also being designed which addresses all of these areas in a comprehensive manner. This fully computerized shutdown system reflects the previous design, and licensing experience which was gained in earlier applications. Prior to describing the specific systems which have been designed a short summary of CANDU shutdown system characteristics is presented

  1. Development of an automated system for CANDU secondary coolant circuit chemistry control

    International Nuclear Information System (INIS)

    Dean, J.R.; Stewart, R.B.

    1978-04-01

    This report is a summary of work done to develop a means for automated control of the secondary coolant chemistry of CANDU 600 MW(e) power reactors using on-line analyzers and a minicomputer. The development work was carried out in cooperation with Saskatchewan Power Corporation at Estevan. Results and conclusions of the program are included, as are recommendations for a prototype installation in a domestic CANDU 600 MW steam generator. (author)

  2. Characteristics of used CANDU fuel relevant to the Canadian nuclear fuel waste management program

    Energy Technology Data Exchange (ETDEWEB)

    Wasywich, K M

    1993-05-01

    Literature data on the characteristics of used CANDU power reactor fuel that are relevant to its performance as a waste form have been compiled in a convenient handbook. Information about the quantities of used fuel generated, burnup, radionuclide inventories, fission gas release, void volume and surface area, fuel microstructure, fuel cladding properties, changes in fuel bundle properties due to immobilization processes, radiation fields, decay heat and future trends is presented for various CANDU fuel designs. (author). 199 refs., 39 tabs., 100 figs.

  3. Characteristics of used CANDU fuel relevant to the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Wasywich, K.M.

    1993-05-01

    Literature data on the characteristics of used CANDU power reactor fuel that are relevant to its performance as a waste form have been compiled in a convenient handbook. Information about the quantities of used fuel generated, burnup, radionuclide inventories, fission gas release, void volume and surface area, fuel microstructure, fuel cladding properties, changes in fuel bundle properties due to immobilization processes, radiation fields, decay heat and future trends is presented for various CANDU fuel designs. (author). 199 refs., 39 tabs., 100 figs

  4. Construction of dynamic model of CANDU-SCWR using moving boundary method

    International Nuclear Information System (INIS)

    Sun Peiwei; Jiang Jin; Shan Jianqiang

    2011-01-01

    Highlights: → A dynamic model of a CANDU-SCWR is developed. → The advantages of the moving boundary method are demonstrated. → The dynamic behaviours of the CANDU-SCWR are obtained by simulation. → The model can predict the dynamic behaviours of the CANDU-SCWR. → Linear dynamic models for CANDU-SCWR are derived by system identification techniques. - Abstract: CANDU-SCWR (Supercritical Water-Cooled Reactor) is one type of Generation IV reactors being developed in Canada. Its dynamic characteristics are different from existing CANDU reactors due to the supercritical conditions of the coolant. To study the behaviours of such reactors under disturbances and to design adequate control systems, it is essential to have an accurate dynamic model to describe such a reactor. One dynamic model is developed for CANDU-SCWR in this paper. In the model construction process, three regions have been considered: Liquid Region I, Liquid Region II and Vapour Region, depending on bulk and wall temperatures being higher or lower the pseudo-critical temperature. A moving boundary method is used to describe the movement of boundaries across these regions. Some benefits of adopting moving boundary method are illustrated by comparing with the fixed boundary method. The results of the steady-state simulation based on the developed model agree well with the design parameters. The transient simulations demonstrate that the model can predict the dynamic behaviours of CANDU-SCWR. Furthermore, to investigate the responses of the reactor to small amplitude perturbations and to facilitate control system designs, a least-square based system identification technique is used to obtain a set of linear dynamic models around the design point. The responses based on the linear dynamic models are validated with simulation results from nonlinear CANDU-SCWR dynamic model.

  5. Nonlinear generation of the fundamental radiation of interplanetary type III radio bursts

    International Nuclear Information System (INIS)

    Chian, A.C.L.; Alves, M.V.

    1988-01-01

    A new generation mechanism of interplanetary type III radio bursts at the fundamental electron plasma frequency is discussed. It is shown that the electromagnetic oscillating two-stream instability, driven by two oppositely propagating Langmuir waves, can account for the experimental observations. In particular, the major difficulties encountered by the previously considered electromagnetic decay instability are removed. 19 references

  6. An Axiomatic Design Approach of Nanofluid-Engineered Nuclear Safety Features for Generation III+ React

    International Nuclear Information System (INIS)

    Bang, In Cheol; Heo, Gyun Young; Jeong, Yong Hoon; Heo, Sun

    2009-01-01

    A variety of Generation III/III+ reactor designs featuring enhanced safety and improved economics are being proposed by nuclear power industries around the world to solve the future energy supply shortfall. Nanofluid coolants showing an improved thermal performance are being considered as a new key technology to secure nuclear safety and economics. However, it should be noted that there is a lack of comprehensible design works to apply nanofluids to Generation III+ reactor designs. In this work, the review of accident scenarios that consider expected nanofluid mechanisms is carried out to seek detailed application spots. The Axiomatic Design (AD) theory is then applied to systemize the design of nanofluid-engineered nuclear safety systems such as Emergency Core Cooling System (ECCS) and External Reactor Vessel Cooling System (ERVCS). The various couplings between Gen-III/III+ nuclear safety features and nanofluids are investigated and they try to be reduced from the perspective of the AD in terms of prevention/mitigation of severe accidents. This study contributes to the establishment of a standard communication protocol in the design of nanofluid-engineered nuclear safety systems

  7. CANDU reactor - supporting the nuclear renaissance

    International Nuclear Information System (INIS)

    Oberth, R.

    2010-01-01

    'Full text:' The CANDU reactor has proven to be a strong performer in both the Canada, with 22 units constructed in Ontario, New Brunswick and Quebec, as well as in Argentina, Korea, Romania and China where a further nine units are operating and two in the planning stage. The average lifetime capacity factor of the CANDU reactor fleet is 89%. The last seven CANDU projects in Korea, China, and Romania have been completed on budget and on schedule. CANDU reactors have the highest uranium utilization efficiency measures as electricity output per ton of uranium mined. The CANDU fuel channel design using on-power fuelling and a heavy water moderator enables flexible fueling options - from the current natural uranium option to burning uranium recovered from used LWR reactor fuel and even a thorium-based fuel. AECL and the CANDU reactor are poised to participate in the worldwide construction at least 250 new reactors over the next 20 years. (author)

  8. CANDU plant life management - An integrated approach

    International Nuclear Information System (INIS)

    Hopkins, J.R.

    1998-01-01

    An integrated approach to plant life management has been developed for CANDU reactors. Strategies, methods, and procedures have been developed for assessment of critical systems structures and components and for implementing a reliability centred maintenance program. A Technology Watch program is being implemented to eliminate 'surprises'. Specific work has been identified for 1998. AECL is working on the integrated program with CANDU owners and seeks participation from other CANDU owners

  9. Current status of generation III nuclear power and assessment of AP1000 developed by Westinghouse

    International Nuclear Information System (INIS)

    Zhang Mingchang

    2005-01-01

    In order to make greater contributions to the environment, new nuclear power systems will be needed to meet the increase of electricity demand and to replace plants to be decommissioned. A series of new designs, so called Generation III and Generation III +, are being developed to ensure their deployment in a Near-Term Deployment Road-map in US by 2010 and in Europe by 2015. The AP1000, developed by Westinghouse, is a two-loop 1000 MWe PWR with passive safety features and extensive simplifications to enhance its competitiveness in cost and tariff. It is the first Generation III + plant receiving the Final Design Approval by the US NRC. This paper briefly describes AP1000 design features and technical specifications, and presents a more detailed design evaluation with reference to relevant literatures. Both the opportunity and challenges for nuclear power development in China during the first decade of the 21 st century in a historic transition from Gen II to Gen III are analyzed. The key is to balance risks and benefits if the first AP1000 to be settled down in China. (author)

  10. Impact of aging and material structure on CANDU plant performance

    International Nuclear Information System (INIS)

    Nadeau, E.; Ballyk, J.; Ghalavand, N.

    2011-01-01

    In-service behaviour of pressure tubes is a key factor in the assessment of safety margins during plant operation. Pressure tube deformation (diametral expansion) affects fuel bundle dry out characteristics resulting in reduced margin to trip for some events. Pressure tube aging mechanisms also erode design margins on fuel channels or interfacing reactor components. The degradation mechanisms of interest are primarily deformation, loss of fracture resistance and hydrogen ingress. CANDU (CANada Deuterium Uranium, a registered trademark of the Atomic Energy of Canada Limited used under exclusive licence by Candu Energy Inc.) owners and operators need to maximize plant capacity factor and meet or exceed the reactor design life targets while maintaining safety margins. The degradation of pressure tube material and geometry are characterized through a program of inspection, material surveillance and assessment and need to be managed to optimize plant performance. Candu is improving pressure tubes installed in new build and life extension projects. Improvements include changes designed to reduce or mitigate the impact of pressure tube elongation and diametral expansion rates, improvement of pressure tube fracture properties, and reduction of the implications of hydrogen ingress. In addition, Candu provides an extensive array of engineering services designed to assess the condition of pressure tubes and address the impact of pressure tube degradation on safety margins and plant performance. These services include periodic and in-service inspection and material surveillance of pressure tubes and deterministic and probabilistic assessment of pressure tube fitness for service to applicable standards. Activities designed to mitigate the impact of pressure tube deformation on safety margins include steam generator cleaning, which improves trip margins, and trip design assessment to optimize reactor trip set points restoring safety and operating margins. This paper provides an

  11. Impact of aging and material structure on CANDU plant performance

    Energy Technology Data Exchange (ETDEWEB)

    Nadeau, E.; Ballyk, J.; Ghalavand, N. [Candu Energy Inc., Mississauga, Ontario (Canada)

    2011-07-01

    In-service behaviour of pressure tubes is a key factor in the assessment of safety margins during plant operation. Pressure tube deformation (diametral expansion) affects fuel bundle dry out characteristics resulting in reduced margin to trip for some events. Pressure tube aging mechanisms also erode design margins on fuel channels or interfacing reactor components. The degradation mechanisms of interest are primarily deformation, loss of fracture resistance and hydrogen ingress. CANDU (CANada Deuterium Uranium, a registered trademark of the Atomic Energy of Canada Limited used under exclusive licence by Candu Energy Inc.) owners and operators need to maximize plant capacity factor and meet or exceed the reactor design life targets while maintaining safety margins. The degradation of pressure tube material and geometry are characterized through a program of inspection, material surveillance and assessment and need to be managed to optimize plant performance. Candu is improving pressure tubes installed in new build and life extension projects. Improvements include changes designed to reduce or mitigate the impact of pressure tube elongation and diametral expansion rates, improvement of pressure tube fracture properties, and reduction of the implications of hydrogen ingress. In addition, Candu provides an extensive array of engineering services designed to assess the condition of pressure tubes and address the impact of pressure tube degradation on safety margins and plant performance. These services include periodic and in-service inspection and material surveillance of pressure tubes and deterministic and probabilistic assessment of pressure tube fitness for service to applicable standards. Activities designed to mitigate the impact of pressure tube deformation on safety margins include steam generator cleaning, which improves trip margins, and trip design assessment to optimize reactor trip set points restoring safety and operating margins. This paper provides an

  12. CANDU fuel - fifteen years of power reactor experience

    International Nuclear Information System (INIS)

    Fanjoy, G.R.; Bain, A.S.

    1977-01-01

    CANDU (Canada Deuterium Uranium) fuel has operated in power reactors since 1962. Analyses of performance statistics, supplemented by examinations of fuel from power reactors and experimental loops have yielded: (a) A thorough understanding of the fundamental behaviour of CANDU fuel. (b) Data showing that the predicted high utilization of uranium has been achieved. Actual fuelling costs in 1976 at the Pickering Generating Station are 1.2 m$/kWh (1976 Canadian dollars) with the simple oncethrough natural-UO 2 fuel cycle. (c) Criteria for operation, which have led to the current very low defect rate of 0.03% of all assemblies and to ''CANLUB'' fuel, which has a graphite interlayer between the fuel and sheath to reduce defects on power increases. (d) Proof that the short length (500 mm), collapsible cladding features of the CANDU bundle are successful and that the fuel can operate at high-power output (current peak outer-element linear power is 58 +- 15% kW/m). Involvement by the utility in all stages of fuel development has resulted in efficient application of this fundamental knowledge to ensure proper fuel specifications, procurement, scheduling into the reactor and feedback to developers, designers and manufacturers. As of mid-1976 over 3 x 10 6 individual elements have been built in a well-estabilished commercially competitive fuel fabrication industry and over 2 x 10 6 elements have been irradiated. Only six defects have been attributed to faulty materials or fabrication, and the use of high-density UO 2 with low-moisture content precluded defects from hydrogen contamination and densification. Development work on UO 2 and other fuel cycles (plutonium and thorium) is continuing, and, because CANDU reactors use on-power fuelling, bundles can be inserted into power reactors for testing. Thus new fuel designs can be quickly adopted to ensure that the CANDU system continues to provide low-cost energy with high reliability

  13. Systems analysis of the CANDU 3 Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wolfgong, J.R.; Linn, M.A.; Wright, A.L.; Olszewski, M.; Fontana, M.H. [Oak Ridge National Lab., TN (United States)

    1993-07-01

    This report presents the results of a systems failure analysis study of the CANDU 3 reactor design; the study was performed for the US Nuclear Regulatory Commission. As part of the study a review of the CANDU 3 design documentation was performed, a plant assessment methodology was developed, representative plant initiating events were identified for detailed analysis, and a plant assessment was performed. The results of the plant assessment included classification of the CANDU 3 event sequences that were analyzed, determination of CANDU 3 systems that are ``significant to safety,`` and identification of key operator actions for the analyzed events.

  14. Advancing CANDU technology AECL's Development program

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    1997-01-01

    AECL has a comprehensive product development program that is advancing all aspects of CANDU technology including fuel and fuel cycles, fuel channels, heavy water and tritium technology, safety technology, components and systems, constructability, health and environment, and control and instrumentation. The technology arising from these programs is being incorporated into the CANDU design through an evolutionary process. This evolutionary process is focused on improving economics, enhancing safety and ensuring fuel cycle flexibility to secure fuel supply for the foreseeable future. This strategic thrusts are being used by CANDU designers and researchers to set priorities and goals for AECL's development activities. The goals are part of a 25-year development program that culminates in the 'CANDU X'. The 'CANDU X' is not a specific design - it is a concept that articulates our best extrapolation of what is achievable with the CANDU design over the next 25 years, and includes the advanced features arising from the R and D and engineering to be done over that time. AECL's current product, the 700 MWe class CANDU 6 and the 900 MWe class CANDU 9, both incorporate output from the development programs as the technology become available. A brief description of each development areas is given below. The paper ends with the conclusion that AECL has a clear vision of how CANDU technology and products will evolve over the next several years, and has structured a comprehensive development program to take full advantage of the inherent characteristics of heavy water reactors. (author)

  15. Thermo-Economic Assessment of Advanced,High-Temperature CANDU Reactors

    International Nuclear Information System (INIS)

    Spinks, Norman J.; Pontikakis, Nikos; Duffey, Romney B.

    2002-01-01

    Research underway on the advanced CANDU examines new, innovative, reactor concepts with the aim of significant cost reduction and resource sustainability through improved thermodynamic efficiency and plant simplification. The so-called CANDU-X concept retains the key elements of the current CANDU designs, including heavy-water moderator that provides a passive heat sink and horizontal pressure tubes. Improvement in thermodynamic efficiency is sought via substantial increases in both pressure and temperature of the reactor coolant. Following on from the new Next Generation (NG) CANDU, which is ready for markets in 2005 and beyond, the reactor coolant is chosen to be light water but at supercritical operating conditions. Two different temperature regimes are being studied, Mark 1 and Mark 2, based respectively on continued use of zirconium or on stainless-steel-based fuel cladding. Three distinct cycle options have been proposed for Mark 1: the High-Pressure Steam Generator (HPSG) cycle, the Dual cycle, and the Direct cycle. For Mark 2, the focus is on simplification via a Direct cycle. This paper presents comparative thermo-economic assessments of the CANDU-X cycle options, with the ultimate goal of ascertaining which particular cycle option is the best overall in terms of thermodynamics and economics. A similar assessment was already performed for the NG CANDU. The economic analyses entail obtaining cost estimates of major plant components, such as heat exchangers, turbines and pumps. (authors)

  16. Technology transfer: The CANDU approach

    International Nuclear Information System (INIS)

    Hart, R.S.

    1998-01-01

    The many and diverse technologies necessary for the design, construction licensing and operation of a nuclear power plant can be efficiently assimilated by a recipient country through an effective technology transfer program supported by the firm long term commitment of both the recipient country organizations and the supplier. AECL's experience with nuclear related technology transfer spans four decades and includes the construction and operation of CANDU plants in five countries and four continents. A sixth country will be added to this list with the start of construction of two CANDU 6 plants in China in early 1997. This background provides the basis for addressing the key factors in the successful transfer of nuclear technology, providing insights into the lessons learned and introducing a framework for success. This paper provides an overview of AECL experience relative to the important factors influencing technology transfer, and reviews specific country experiences. (author)

  17. Nuclear generation cost management and economic benefits

    International Nuclear Information System (INIS)

    Horton, E.P.; Sepa, T.R.

    1989-01-01

    The CANDU-Pressurized Heavy Water (CANDU-PHW) type of nuclear generating station has been developed jointly by Atomic Energy of Canada Limited and Ontario Hydro. This report discusses the cost management principles used for Ontario Hydro's CANDU-PHW program, current cost management initiatives, and the economic benefits of nuclear power to the provinces of Ontario and New Brunswick, in Canada

  18. CANDU plant maintenance: Recent developments

    International Nuclear Information System (INIS)

    Charlebois, P.

    2000-01-01

    CANDU units have long been recognized for their exceptional safety and reliability. Continuing development in the maintenance area has played a key role in achieving this performance level. For over two decades, safety system availability has been monitored closely and system maintenance programs adjusted accordingly to maintain high levels of performance. But as the plants approach mid life in a more competitive environment and component aging becomes a concern, new methods and techniques are necessary. As a result, recent developments are moving the maintenance program largely from a corrective and preventive approach to predictive and condition based maintenance. The application of these techniques is also being extended to safety related systems. These recent developments include use of reliability centred methods to define system maintenance requirements and strategies. This approach has been implemented on a number of systems at Canadian CANDU plants with positive results. The pilot projects demonstrated that the overall maintenance effort remained relatively constant while the system performance improved. It was also possible to schedule some of the redundant component maintenance during plant operation without adverse impact on system availability. The probabilistic safety assessment was found to be useful in determining the safety implications of component outages. These new maintenance strategies are now making use of predictive and condition based maintenance techniques to anticipate equipment breakdown and schedule preventive maintenance as the need arises rather than time based. Some of these techniques include valve diagnostics, vibration monitoring, oil analysis, thermography. Of course, these tools and techniques must form part of an overall maintenance management system to ensure that maintenance becomes a living program. To facilitate this process and contain costs, new information technology tools are being introduced to provide system engineers

  19. CANDU-PHW fuel management

    International Nuclear Information System (INIS)

    Frescura, G.M.; Wight, A.L.

    1982-01-01

    This report covers the material presented in a series of six lectures at the Winter College on Nuclear Physics and Reactors held at the International Centre for Theoretical Physics in Trieste, Italy, Jan 22 - March 28, 1980. The report deals with fuel management in natural uranium fuelled CANDU-PHW reactors. Assuming that the reader has a basic knowledge of CANDU core physics, some of the reactor systems which are more closely related to fuelling are described. This is followed by a discussion of the methods used to calculate the power distribution and perform fuel management analyses for the equilibrium core. A brief description of some computer codes used in fuel management is given, together with an overview of the calculations required to provide parameters for core design and support the accident analysis. Fuel scheduling during approach to equilibrium and equilibrium is discussed. Fuel management during actual reactor operation is discussed with a review of the operating experience for some of the Ontario Hydro CANDU reactors. (author)

  20. CANDU safety under severe accidents

    International Nuclear Information System (INIS)

    Snell, V.G.; Howieson, J.Q.; Alikhan, S.; Frescura, G.M.; King, F.; Rogers, J.T.; Tamm, H.

    1996-01-01

    The characteristics of the CANDU reactor relevant to severe accidents are set first by the inherent properties of the design, and second by the Canadian safety/licensing approach. The pressure-tube concept allows the separate, low-pressure, heavy-water moderator to act as a backup heat sink even if there is no water in the fuel channels. Should this also fail, the calandria shell itself can contain the debris, with heat being transferred to the water-filled shield tank around the core. Should the severe core damage sequence progress further, the shield tank and the concrete reactor vault significantly delay the challenge to containment. Furthermore, should core melt lead to containment overpressure, the containment behaviour is such that leaks through the concrete containment wall reduce the possibility of catastrophic structural failure. The Canadian licensing philosophy requires that each accident, together with failure of each safety system in turn, be assessed (and specified dose limits met) as part of the design and licensing basis. In response, designers have provided CANDUs with two independent dedicated shutdown systems, and the likelihood of Anticipated Transients Without Scram is negligible. Probabilistic safety assessment studies have been performed on operating CANDU plants, and on the 4 x 880 MW(e) Darlington station now under construction; furthermore a scoping risk assessment has been done for a CANDU 600 plant. They indicate that the summed severe core damage frequency is of the order of 5 x 10 -6 /year. 95 refs, 3 tabs

  1. CANDU safety under severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Snell, V G; Howieson, J Q [Atomic Energy of Canada Ltd. (Canada); Alikhan, S [New Brunswick Electric Power Commission (Canada); Frescura, G M; King, F [Ontario Hydro (Canada); Rogers, J T [Carleton Univ., Ottawa, ON (Canada); Tamm, H [Atomic Energy of Canada Ltd. (Canada). Whiteshell Research Lab.

    1996-12-01

    The characteristics of the CANDU reactor relevant to severe accidents are set first by the inherent properties of the design, and second by the Canadian safety/licensing approach. The pressure-tube concept allows the separate, low-pressure, heavy-water moderator to act as a backup heat sink even if there is no water in the fuel channels. Should this also fail, the calandria shell itself can contain the debris, with heat being transferred to the water-filled shield tank around the core. Should the severe core damage sequence progress further, the shield tank and the concrete reactor vault significantly delay the challenge to containment. Furthermore, should core melt lead to containment overpressure, the containment behaviour is such that leaks through the concrete containment wall reduce the possibility of catastrophic structural failure. The Canadian licensing philosophy requires that each accident, together with failure of each safety system in turn, be assessed (and specified dose limits met) as part of the design and licensing basis. In response, designers have provided CANDUs with two independent dedicated shutdown systems, and the likelihood of Anticipated Transients Without Scram is negligible. Probabilistic safety assessment studies have been performed on operating CANDU plants, and on the 4 x 880 MW(e) Darlington station now under construction; furthermore a scoping risk assessment has been done for a CANDU 600 plant. They indicate that the summed severe core damage frequency is of the order of 5 x 10{sup -6}/year. 95 refs, 3 tabs.

  2. Major faults and troubleshooting for the power generator of Qinshan III

    International Nuclear Information System (INIS)

    Liu Guangming; Lu Yongfang; Wang Jun

    2010-01-01

    Generator faults can be sorted into 20 categories, mainly including water leakage, oil leakage, high temperature and short circuit, etc. The paper comprises two sections, the first section emphasizes on typical fault troubleshooting for power generator cooling water leakage, temperature rise and short circuit of Qinshan III, and the second section is conclusion. By expounding the troubleshooting for power generator cooling pipe leakage, -iron-core high temperature and rotor layer short circuit, the repair process and experience in the troubleshooting of typical fault including water leakage, temperature rise and short circuit are described in detail, so as to obtain the overall performance and parameters of the power generator, and provide useful means and plan for future troubleshooting. The paper can make reference to future troubleshooting for power generators. (authors)

  3. CANDU fuel-cycle vision

    International Nuclear Information System (INIS)

    Boczar, P.G.

    1999-01-01

    The fuel-cycle path chosen by a particular country will depend on a range of local and global factors. The CANDU reactor provides the fuel-cycle flexibility to enable any country to optimize its fuel-cycle strategy to suit its own needs. AECL has developed the CANFLEX fuel bundle as the near-term carrier of advanced fuel cycles. A demonstration irradiation of 24 CANFLEX bundles in the Point Lepreau power station, and a full-scale critical heat flux (CHF) test in water are planned in 1998, before commercial implementation of CANFLEX fuelling. CANFLEX fuel provides a reduction in peak linear element ratings, and a significant enhancement in thermalhydraulic performance. Whereas natural uranium fuel provides many advantages, the use of slightly enriched uranium (SEU) in CANDU reactors offers even lower fuel-cycle costs and other benefits, such as uprating capability through flattening the channel power distribution across the core. Recycled uranium (RU) from reprocessing spent PWR fuel is a subset of SEU that has significant economic promise. AECL views the use of SEU/RU in the CANFLEX bundle as the first logical step from natural uranium. High neutron economy enables the use of low-fissile fuel in CANDU reactors, which opens up a spectrum of unique fuel-cycle opportunities that exploit the synergism between CANDU reactors and LWRs. At one end of this spectrum is the use of materials from conventional reprocessing: CANDU reactors can utilize the RU directly without re-enrichment, the plutonium as conventional Mixed-oxide (MOX) fuel, and the actinide waste mixed with plutonium in an inert-matrix carrier. At the other end of the spectrum is the DUPIC cycle, employing only thermal-mechanical processes to convert spent LWR fuel into CANDU fuel, with no purposeful separation of isotopes from the fuel, and possessing a high degree of proliferation resistance. Between these two extremes are other advanced recycling options that offer particular advantages in exploiting the

  4. CANDU fuel-cycle vision

    International Nuclear Information System (INIS)

    Boczar, P.G

    1998-05-01

    The fuel-cycle path chosen by a particular country will depend on a range of local and global factors. The CANDU reactor provides the fuel-cycle flexibility to enable any country to optimize its fuel-cycle strategy to suit its own needs. AECL has developed the CANFLEX fuel bundle as the near-term carrier of advanced fuel cycles. A demonstration irradiation of 24 CANFLEX bundles in the Point Lepreau power station, and a full-scale critical heat flux (CHF) test in water are planned in 1998, before commercial implementation of CANFLEX fuelling. CANFLEX fuel provides a reduction in peak linear element ratings, and a significant enhancement in thermalhydraulic performance. Whereas natural uranium fuel provides many advantages, the use of slightly enriched uranium (SEU) in CANDU reactors offers even lower fuel-cycle costs and other benefits, such as uprating capability through flattening the channel power distribution across the core. Recycled uranium (RU) from reprocessing spent PWR fuel is a subset of SEU that has significant economic promise. AECL views the use of SEU/RU in the CANFLEX bundle as the first logical step from natural uranium. High neutron economy enables the use of low-fissile fuel in CANDU reactors, which opens up a spectrum of unique fuel-cycle opportunities that exploit the synergism between CANDU reactors and LWRs. At one end of this spectrum is the use of materials from conventional reprocessing: CANDU reactors can utilize the RU directly without reenrichment, the plutonium as conventional mixed-oxide (MOX) fuel, and the actinide waste mixed with plutonium in an inert-matrix carrier. At the other end of the spectrum is the DUPIC cycle, employing only thermal-mechanical processes to convert spent LWR fuel into CANDU fuel, with no purposeful separation of isotopes from the fuel, and possessing a high degree of proliferation resistance. Between these two extremes are other advanced recycling options that offer particular advantages in exploiting the

  5. Fission products distributions in Candu primary heat transport and Candu containment systems during a severe accident

    International Nuclear Information System (INIS)

    Constantin, Marin; Rizoiu, Andrei

    2005-01-01

    The paper is intended to analyse the distribution of the fission products (FPs) in CANDU Primary Heat Transport (PHT) and CANDU Containment Systems by using the ASTEC code (Accident Source Term Evaluation Code). The complexity of the data required by ASTEC and the complexity both of CANDU PHT and Containment System were strong motivations to begin with a simplified geometry in order to avoid the introducing of unmanageable errors at the level of input deck. Thus only 1/4 of the PHT circuit was simulated and a simplified FPs inventory, some simplifications in the feeders geometry and containment were used. The circuit consists of 95 horizontal fuel channels connected to 95 horizontal out-feeders, then through vertical feeders to the outlet-header (a big pipe that collects the water from feeders); the circuit continues from the outlet-header with a riser and then with the steam generator and a pump. After this pump, the circuit was broken; in this point the FPs are transferred to the containment. The containment model consists of 4 rooms connected between by 6 links. The data related to the nodes' definitions, temperatures and pressure conditions were chosen as possible as real data from CANDU NPP loss of coolant accident sequence. Temperature and pressure conditions in the time of the accident were calculated by the CATHENA code and the source term of FPs introduced into the PHT was estimated by the ORIGEN code. The FPs distribution in the nodes of the circuit and the FPs mass transfer per isotope and chemical species are obtained by using SOPHAEROS module of ASTEC code. The distributions into the containment are obtained by the CPA module of ASTEC code (thermalhydraulics calculations in the containment and FPs aerosol transport). The results consist of mass distributions in the nodes of the circuit and the transferred mass to the containment through the break for different species (FPs and chemical species) and mass distributions in the different parts and

  6. Modeling flow-accelerated corrosion in CANDU

    International Nuclear Information System (INIS)

    Burrill, K.A.

    1995-11-01

    Flow-accelerated corrosion (FAC) of large areas of carbon steel in various circuits of CANDU plants generates significant quantities of corrosion products. As well, the relatively rapid corrosion rate can lead to operating difficulties with some components. Three areas in the plant are identified and a simple model of mass-transfer controlled corrosion of the carbon steel is derived and applied to these areas. The areas and the significant finding for each are given below: A number of lines in the feedwater system generate sludge by FAC, which causes steam generator fouling. Prediction of the steady-state iron concentration at the feedtrain outlet compares well with measured values. Carbon steel outlet feeders connect the reactor core with the steam generators. The feeder surface provides the dissolved iron through FAC, which fouls the primary side of the steam generator tubes, and can lead to derating of the plant and difficulty in tube inspection. Segmented carbon steel divider plates in the steam generator primary head leak at an increasing rate with time. The leakage rate is strongly dependent on the tightness of the overlapping joints. which undergo FAC at an increasing rate with time. (author) 7 refs., 5 tabs., 6 figs

  7. Improving CANDU plant operation and maintenance through retrofit information technology systems

    International Nuclear Information System (INIS)

    Lupton, L.R.; Judd, R.A.; MacBeth, M.J.

    1998-01-01

    CANDU plant owners are facing an increasingly competitive environment for the generation of electricity. To meet this challenge, all owners have identified that information technology offers opportunities for significant improvements in CANDU operation, maintenance and administration (OM and A) costs. Targeted information technology application areas include instrumentation and control, engineering, construction, operations and plant information management. These opportunities also pose challenges and issues that must be addressed if the full benefits of the advances in information technology are to be achieved. Key among these are system hardware and software maintenance, and obsolescence protection; AECL has been supporting CANDU stations with the initial development and evaluation of systems to improve plant performance and cost. Key initiatives that have been implemented or are in the process of being implemented in some CANDU plants to achieve operational benefits include: critical safety parameter monitor system; advanced computerized annunciation system; plant historical data system; and plant display system. Each system will be described in terms of its role in enhancing current CANDU plant performance and how they will contribute to future CANDU plant performance

  8. Improving CANDU plant operation and maintenance through retrofit information technology systems

    International Nuclear Information System (INIS)

    Lupton, L. R.; Judd, R. A.

    1998-01-01

    CANDU plant owners are facing an increasingly competitive environment for the generation of electricity. To meet this challenge, all owners have identified that information technology offers opportunities for significant improvements in CANDU operation, maintenance and administration (OM and A) costs. Targeted information technology application areas include instrumentation and control, engineering, construction, operations and plant information management. These opportunities also pose challenges and issues that must be addressed if the full benefits of the advances in information technology are to be achieved. Key among these are system hardware and software maintenance, and obsolescence protection. AECL has been supporting CANDU stations with the initial development and evaluation of systems to improve plant performance and cost. Five key initiatives that have been implemented or are in the process of being implemented in some CANDU plants to achieve cooperational benefits include: critical safety parameter monitor system; advanced computerized annunciation system; plant historical data system; plant display system; and digital protection system. Each system will be described in terms of its role in enhancing current CANDU plant performance and how they will contribute to future CANDU plant performance. (author). 8 refs., 3 figs

  9. Next generation of human resources for GEN (Generation) III+ new build projects

    International Nuclear Information System (INIS)

    Baltin, Goerge; Glaubrecht, Stefan; Schoenfelder, Christian

    2014-01-01

    requires a wide spread approach, involving important stakeholders in this field, such as nuclear operators, nuclear suppliers, academic institutions and political institutions. The specific approach will vary from one country to another and will depend on various factors, e.g. the objectives of the national nuclear program, the existing nuclear infrastructure (if any, e.g. legal framework, educational institutions), the existence (and possibly maturity) of a nuclear industry, the selected GEN III+ technology and the related local supply chain, as well as the integration of national institutions into international networks. The paper provides a systematic overview of the dimensions to be considered as well as the various options and development paths available, and the factors determining the selection process for a specific national approach fusing the efforts of authorities, utilities, education providers and industry. The commitment of industry is illustrated by presenting some examples from recent activities in which AREVA is involved, such as partnerships with academic institutions in Germany, Poland, or Slovakia. Furthermore, as international networks will play an increasingly important role for human resources development, AREVA's participation in international educational associations like ENEN (European Nuclear Education Network), or in international projects, e.g. those funded by the European Commission, is covered. This is assisted by AREVA's involvement in implementing a new methodology for training and job taxonomy (ECVET), supporting life-long learning and international mobility. Finally the paper draws some conclusions on different approaches, and provides some recommendations for future human resources development activities. (authors)

  10. Learning from experience: feedback to CANDU design

    International Nuclear Information System (INIS)

    Allen, P.J.; Hopwood, J.M.; Rousseau, G.P.

    1998-01-01

    AECL's main product line is based on two single unit CANDU nuclear power plant designs; CANDU 6 and CANDU 9, each of which is based on successfully operating CANDU plants. AECL's CANDU development program is based upon evolutionary improvement. The evolutionary design approach ensures the maximum degree of operational provenness. It also allows successful features of today's plants to be retained while incorporating improvements as they develop to the appropriate level of design maturity. A key component of this evolutionary development is a formal process of gathering and responding to feedback from: NPP operation, construction and commissioning; regulatory input; equipment supplier input; R and D results; market input. The progresses for gathering and implementing the experience feedback and a number of recent examples of design improvements from this feedback process are described in the paper. (author)

  11. Development of CANDU advanced fuel bundle

    International Nuclear Information System (INIS)

    Suk, H. C.; Hwang, W.; Rhee, B. W.; Jung, S. H.; Chung, C. H.

    1992-05-01

    This research project is underway in cooperation with AECL to develop the CANDU advanced fuel bundle (so-called, CANFLEX) which can enhance reactor safety and fuel economy in comparison with the current CANDU fuel and which can be used with natural uranium, slightly enriched uranium and other advanced fuel cycle. As the final schedule, the advanced fuel will be verified by carrying out a large scale demonstration of the bundle irradiation in a commercial CANDU reactor for 1996 and 1997, and consequently will be used in the existing and future CANDU reactors in Korea. The research activities during this year include the detail design of CANFLEX fuel with natural enriched uranium (CANFLEX-NU). Based on this design, CANFLEX fuel was mocked up. Out-of-pile hydraulic scoping tests were conducted with the fuel in the CANDU Cold Test Loop to investigate the condition under which maximum pressure drop occurs and the maximum value of the bundle pressure drop. (Author)

  12. Cobalt-60 production in CANDU reactors

    International Nuclear Information System (INIS)

    Ross, Michel; Lemire, Christian

    2002-01-01

    CANDU reactors can produce cobalt-60 very efficiently and with an interesting return on investment. This paper discusses what is needed to convert a CANDU reactor into a cobalt-60 producer: what are the different phases, the safety studies required, the physical modifications needed, and what is the minimum involvement of the utility owning the plant. The past ten years of experience of Hydro-Quebec as a cobalt-60 producer will be reviewed, including the management of the risk of both incident and electricity generation loss, and including the benefits for the utility and its personnel. Originally a simple metal used for centuries as a pigment, cobalt-59 today is transformed into cobalt-60, a radioactive element of unprecedented value. Well known in medicine for cancer treatment, cobalt-60 is also used to sterilize a wide range of disposable medical products used in hospitals and to sanitize pharmaceutical and cosmetic products. Cobalt-60 is proving to be a new and effective solution, in the food sector, for preserving harvests and controlling food-borne diseases, or to advantageously replace certain gases and chemical products which are suspected of being harmful or carcinogenic. There are also other applications, such as: hardening of some plastics, treatment of sewage sludge and elimination of harmful insect populations. With a half-life of 5,3 years, cobalt-60 is a metal not found in nature. It is a radioactive isotope produced by exposing stable nuclei of cobalt-59 to neutrons. One of the best places to find such an important neutron source is a nuclear reactor. High energy gamma rays are then emitted during the process of radioactive decay, where cobalt-60 seeks again its stable state

  13. Thermal hydraulic simulation of the CANDU nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Athos M.S.S. de; Ramos, Mario C.; Costa, Antonella L.; Fernandes, Gustavo H.N., E-mail: athos1495@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Instituto Nacional de Ciência e Tecnologia de Reatores Nucleares Inovadores (INCT/CNPq), Rio de janeiro, RJ (Brazil)

    2017-07-01

    The CANDU (Canada Deuterium Uranium) is a Canadian-designed power reactor of PHWR type (Pressurized Heavy Water Reactor) that uses heavy water (deuterium oxide) for moderator and coolant, and natural uranium for fuel. There are about 47 reactors of this type in operation around the world generating more than 23 GWe, highlighting the importance of this kind of device. In this way, the main purpose of this study is to develop a thermal hydraulic model for a CANDU reactor to aggregate knowledge in this line of research. In this way, a core modeling was performed using RELAP5-3D code. Results were compared with reference data to verify the model behavior in steady state operation. Thermal hydraulic parameters as temperature, pressure and mass flow rate were verified and the results are in good agreement with reference data, as it is being presented in this work. (author)

  14. Assessment of reactivity devices for CANDU-6 with DUPIC fuel

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Choi, Hang Bok

    1998-01-01

    Reactivity device characteristics for a CANDU-6 reactor loaded with DUPIC fuel have been assessed. A transport code WIMS-AECL and a three-dimensional diffusion code RFSP were used for the lattice parameter generation and the core calculation, respectively. Three major reactivity devices have been assessed for their inherent functions. For the zone controller system, damping capability for spatial oscillation was investigated. The restart capability of the adjuster system was investigated. The shim operation and power stepback calculation were also performed to confirm the compatibility of the current adjuster rod system. The mechanical control absorber was assessed for the capability to compensate the temperature reactivity feedback following a power reduction. This study has shown that the current reactivity device systems retain their functions when used in a DUPIC fuel CANDU reactor

  15. Electrical, control and information systems in the Enhanced CANDU 6

    International Nuclear Information System (INIS)

    De Grosbois, J.; Raiskums, G.; Soulard, M.

    2011-01-01

    This paper describes the electrical, control, and information system (EC and I) design feature improvements of the Enhanced CANDU 6 (EC6). These additional features are carefully integrated into the EC6 design platform, and are engineered with consideration of operational feedback, human factors, and leveraging the advantages of digital instrumentation and control (I and C) technology to create a coherent I and C architecture in support of safe and high performance operation. The design drivers for the selection of advanced features are also discussed. The EC6 nuclear power plant is a mid-sized Pressurized Heavy Water Reactor design, based on the highly successful CANDU 6 family of power plants, and upgraded to meet today's Canadian and international safety requirements and to satisfy Generation 3 design expectations. (author)

  16. Improved operability of the CANDU 9 control centre

    International Nuclear Information System (INIS)

    Macbeth, M. J.; Webster, A.

    1996-01-01

    The next generation CANDU nuclear power plant being designed by AECL is the 900 MWe class CANDU 9 station. It is based upon the Darlington CANDU station design which is among the world leaders in capacity factor with low Operation, Maintenance and Administration (OM and A) costs. This Control Centre design includes the proven functionality of existing CANDU control centres (including the Wolsong 2,3, and 4 control centre improvements, such as the Emergency Core Cooling panels), the characteristics identified by systematic design with human factors analysis of operations requirements and the advanced features needed to improve station operability which is made possible by the application of new technology. The CANDU 9 Control Centre provides plant staff with an improved operability capability due to the combination of proveness, systematic design with human factors engineering and enhanced operating features. Significant features which contribute to this improved operability include: · Standard NSP, BOP and F/H panels with controls and indicators integrated by a standard display/presentation philosophy. · Common plant parameter signal database for extensive monitoring, checking, display and annunciation. · Powerful annunciation system allowing alarm filtering, prioritizing and interrogation to enhance staff recognition of events, plant state and required corrective procedural actions. · The use of an overview display to present immediate and uncomplicated plant status information to facilitate operator awareness of unit status in a highly readable and recognizable format. · Extensive cross checking of similar process parameters amongst themselves, with the counterpart safety system parameters and as well as with 'signature' values obtained from known steady state conditions. · Powerful calculation capabilities, using the plant wide database, providing immediate recognizable and readable and readable output data on plant state information and plant state change

  17. Role of water lubricated bearings in Candu reactors

    International Nuclear Information System (INIS)

    Kumar, Ashok N.

    1999-01-01

    During the twentieth century a great emphasis was placed in understanding and defining the operating regime of oil and grease lubricated components. Major advances have been made through elastohydrodynamic lubrication theory in the quantifying the design life of heavily loaded components such as rolling element bearings and gears. Detailed guidelines for the design of oil and grease lubricated components are widely available and are being applied to the successful design of these components. However similar guidelines for water lubricated components are either not available or not well documented. It is often forgotten that the water was used as a lubricant in several components as far back as 1884 B.C. During the twentieth century the water lubricated components continued to play a major role in some high technology industries such as in the power generation plants. In CANDU nuclear reactors water lubrication of several critical components always occupied a pride place and in most cases the only practical mode of lubrication of several critical components always occupied a pride place and in most cases the only practical mode of lubrication. This paper presents some examples of the major water lubricated components in a CANDU reactors. Major part of the paper is focused on presenting an example of successful operating history of water lubricated bearings used in the HT pumps are presented. Both types of bearings have been qualified by tests for operation under normal as well as under more severe postulated condition of loss-of-coolant-accident (LOCA). These bearings have been designed to operate for the 30 years in the existing CANDU 6 (600 MW) reactors. However for the next generation of CANDU 6 reactors which go into service in the year 2003, the HT pump bearing life has been extended to 40 years. (author)

  18. CANDU design options with detritiation

    International Nuclear Information System (INIS)

    Wren, D.J.; Hart, R.S.

    1997-01-01

    CANDU reactors include a number of auxiliary systems to manage the inventory, purification, clean-up and isotopic purity of the heavy water used in the moderator and heat transport system. These systems are designed and installed to treat the moderator and heat transport water in separate parallel systems. One of the reasons for this parallel approach to heavy water management is the tritium inventory in the heavy water. Different levels of tritium accumulate in the moderator and heat transport system during reactor operation, with the moderator water having a much higher tritium concentration. Strict separation of the high- tritium-concentration moderator water from the low-tritium-concentration heat transport system water is an integral component of the CANDU design and operating strategy to limit potential releases of tritium to the containment building atmosphere. AECL is developing a new cost-effective technology for the detritiation of heavy water based on the Combined Electrolysis and Catalytic Exchange (CECE) process. This detritiation technology has the potential to be integrated into the heavy water management systems of a CANDU reactor. On-line detritiation could be used to limit the concentration of tritium in the moderator and also to detritiate any water collected within the containment building from other sources. The availability of economic detritiation technology would provide a flexibility to redesign some of the auxiliary heavy water management systems. In particular, there is potential to eliminate some of the duplication in the current management systems and also reduce costs by reclassifying some reactor systems that would have lower maximum tritium concentrations. This paper discusses some of the advantages of detritiation and some of the conceptual design options that detritiation would provide. The goal would be to lower the overall reactor cost with detritiation, but it is premature to assess whether this goal can be achieved. (author)

  19. Hydrogen in CANDU fuel elements

    International Nuclear Information System (INIS)

    Sejnoha, R.; Manzer, A.M.; Surette, B.A.

    1995-01-01

    Unirradiated and irradiated CANDU fuel cladding was tested to compare the role of stress-corrosion cracking and of hydrogen in the development of fuel defects. The results of the tests are compared with information on fuel performance in-reactor. The role of hydriding (deuteriding) from the coolant and from the fuel element inside is discussed, and the control of 'hydrogen gas' content in the element is confirmed as essential for defect-free fuel performance. Finally, implications for fuel element design are discussed. (author)

  20. Mobile robotics for CANDU maintenance

    International Nuclear Information System (INIS)

    Lipsett, M.G.; Rody, K.H.

    1996-01-01

    Although robotics researchers have been promising that robotics would soon be performing tasks in hazardous environments, the reality has yet to live up to the hype. The presently available crop of robots suitable for deployment in industrial situations are remotely operated, requiring skilled users. This talk describes cases where mobile robots have been used successfully in CANDU stations, discusses the difficulties in using mobile robots for reactor maintenance, and provides near-term goals for achievable improvements in performance and usefulness. (author) 5 refs., 2 ills

  1. CANDU reactor experience: fuel performance

    International Nuclear Information System (INIS)

    Truant, P.T.; Hastings, I.J.

    1985-07-01

    Ontario Hydro has more than 126 reactor-years experience in operating CANDU reactors. Fuel performance has been excellent with 47 000 channel fuelling operations successfully completed and 99.9 percent of the more than 380 000 bundles irradiated operating as designed. Fuel performance limits and fuel defects have had a negligible effect on station safety, reliability, the environment and cost. The actual incapability charged to fuel is less than 0.1 percent over the stations' lifetimes, and more recently has been zero

  2. CANDU fuel cycle options in Korea

    International Nuclear Information System (INIS)

    Boczar, P. G.; Fehrenbach, P. J.; Meneley, D. A.

    1996-01-01

    There are many reasons for countries embarking on a CANDU R program to start with the natural uranium fuel cycle. Simplicity of fuel design, ease of fabrication, and ready availability of natural uranium all help to localize the technology and to reduce reliance on foreign technology. Nonetheless, at some point, the incentives for using natural uranium fuel may be outweighed by the advantages of alternate fuel cycles. The excellent neutron economy, on-line refuelling, and simple fuel-bundle design provide an unsurpassed degree of fuel-cycle flexibility in CANDU reactors. The easiest first step in CANDU fuel-cycle evolution may be the use of slightly enriched uranium (SEU), including recovered uranium from reprocessed LWR spent fuel. Relatively low enrichment (up to 1.2%) will result in a two- to three-fold reduction in the quantity of spent fuel per unit energy production, reductions in fuel-cycle costs, and greater flexibility in the design of new reactors. The CANFLEX (CANDU FLEXible) fuel bundle would be the optimal fuel carrier. A country that has both CANDU and PWR reactors can exploit the natural synergism between these two reactor types to minimize overall waste production, and maximize energy derived from the fuel. This synergism can be exploited through several different fuel cycles. A high burnup CANDU MOX fuel design could be used to utilize plutonium from conventional reprocessing or more advanced reprocessing options (such as co-processing). DUPIC (Direct Use of Spent PWR Fuel In CANDU) represents a recycle option that has a higher degree of proliferation resistance than dose conventional reprocessing, since it uses only dry processes for converting spent PWR fuel into CANDU fuel, without separating the plutonium. Good progress is being made in the current KAERI, AECL, and U. S. Department of State program in demonstrating the technical feasibility of DUPIC. In the longer term, CANDU reactors offer even more dramatic synergistic fuel cycles with PWR or

  3. Assessment of CANDU physics codes using experimental data - II: CANDU core physics measurements

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Jeong, Chang Joon; Choi, Hang Bok

    2001-11-01

    Benchmark calculations of the advanced CANDU reactor analysis tools (WIMS-AECL, SHETAN and RFSP) and the Monte Carlo code MCNP-4B have been performed using Wolsong Units 2 and 3 Phase-B measurement data. In this study, the benchmark calculations have been done for the criticality, boron worth, reactivity device worth, reactivity coefficient, and flux scan. For the validation of the WIMS-AECL/SHETANRFSP code system, the lattice parameters of the fuel channel were generated by the WIMS-AECL code, and incremental cross sections of reactivity devices and structural material were generated by the SHETAN code. The results have shown that the criticality is under-predicted by -4 mk. The reactivity device worths are generally consistent with the measured data except for the strong absorbers such as shutoff rod and mechanical control absorber. The heat transport system temperature coefficient and flux distributions are in good agreement with the measured data. However, the moderator temperature coefficient has shown a relatively large error, which could be caused by the incremental cross-section generation methodology for the reactivity device. For the MCNP-4B benchmark calculation, cross section libraries were newly generated from ENDF/B-VI release 3 through the NJOY97.114 data processing system and a three-dimensional full core model was developed. The simulation results have shown that the criticality is estimated within 4 mk and the estimated reactivity worth of the control devices are generally consistent with the measurement data, which implies that the MCNP code is valid for CANDU core analysis. In the future, therefore, the MCNP code could be used as a reference tool to benchmark design and analysis codes for the advanced fuels for which experimental data are not available

  4. Verification tests for CANDU advanced fuel -Development of the advanced CANDU technology-

    International Nuclear Information System (INIS)

    Chung, Jang Hwan; Suk, Ho Cheon; Jeong, Moon Ki; Park, Joo Hwan; Jeong, Heung Joon; Jeon, Ji Soo; Kim, Bok Deuk

    1994-07-01

    This project is underway in cooperation with AECL to develop the CANDU advanced fuel bundle (so-called, CANFLEX) which can enhance reactor safety and fuel economy in comparison with the current CANDU fuel and which can be used with natural uranium, slightly enriched uranium and other advanced fuel cycle. As the final schedule, the advanced fuel will be verified by carrying out a large scale demonstration of the bundle irradiation in a commercial CANDU reactor, and consequently will be used in the existing and future CANDU reactors in Korea. The research activities during this year Out-of-pile hydraulic tests for the prototype of CANFLEX bundle was conducted in the CANDU-hot test loop at KAERI. Thermalhydraulic analysis with the assumption of CANFLEX-NU fuel loaded in Wolsong-1 was performed by using thermalhydraulic code, and the thermal margin and T/H compatibility of CANFLEX bundle with existing fuel for CANDU-6 reactor have been evaluated. (Author)

  5. Technological status of reactor coolant pumps in generation III+ pressurized nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, Bernhard; Bross, Stephan [KSB Aktiengesellschaft, Frankenthal (Germany)

    2016-05-15

    KSB has been developing and producing pumps for thermal power plants for nearly 90 years. Consequently, KSB also started to develop and manufacture pumps for all kinds of nuclear power plants from the very beginning of the civil use of nuclear energy. This is especially true for reactor coolant pumps for pressurized water reactors. For the generation of advanced evolutionary reactors (Generation III+ reactors), KSB developed an advanced shaft seal system which is also able to fulfill the requirements of station blackout conditions. The tests in the KSB test rigs, which were successfully completed in December 2015, proved the full functionality of the new design. For generation III+ passive plant reactors KSB developed a new reactor coolant pump type called RUV, which is based on the experience of classic reactor coolant pumps and reactor internal pumps. It is a very compact, hermetically sealed vertical pump-motor unit with a wet winding motor. A full scale prototype successfully passed the 1st stage qualification test program in October 2015.

  6. A CANDU Severe Accident Analysis

    International Nuclear Information System (INIS)

    Negut, Gheorghe; Catana, Alexandru; Prisecaru, Ilie

    2006-01-01

    As interest in severe accident studies has increased in the last years, we have developed a set of simple models to analyze severe accidents for CANDU reactors that should be integrated in the EU codes. The CANDU600 reactor uses natural uranium fuel and heavy water (D2O) as both moderator and coolant, with the moderator and coolant in separate systems. We chose to analyze accident development for a LOCA with simultaneous loss of moderator cooling and the loss of emergency core cooling system (ECCS). This type of accident is likely to modify the reactor geometry and will lead to a severe accident development. When the coolant temperatures inside a pressure tube reaches 10000 deg C, a contact between pressure tube and calandria tube occurs and the residual heat is transferred to the moderator. Due to the lack of cooling, the moderator eventually begins to boil and is expelled, through the calandria vessel relief ducts, into the containment. Therefore the calandria tubes (fuel channels) will be uncovered, then will disintegrate and fall down to the calandria vessel bottom. After all the quantity of moderator is vaporized and expelled, the debris will heat up and eventually boil. The heat accumulated in the molten debris will be transferred through the calandria vessel wall to the shield tank water, which normally surrounds the calandria vessel. The phenomena described above are modelled, analyzed and compared with the existing data. The results are encouraging. (authors)

  7. Evolution of CANDU reactor design

    International Nuclear Information System (INIS)

    Pon, G.A.

    1978-08-01

    The CANDU (CANada Deuterium Uranium) design had its begin-ings in the early 1950's with the preliminary engineering studies that led to the 20 MW(e) NPD (Nuclear Power Demonstration) and the 200 MW(e) Douglas Point station . The next decade saw the first operation of both these stations and the commitment of the 2000 MW(e) Pickering and 3000 MW(e) Bruce plants. The present decade has witnessed the excellent performance of Pickering and Bruce and commitments to construct Gentilly-2, Cordoba, Pt. Lepreau, Wolsung, Pickering B, Bruce B and Darlington. In most cases, successive CANDU designs have meant an increase in plant output. Evolutionary developments have been made to fit the requirements of higher ratings and sizes, new regulations, better reliability and maintainability and lower costs. These changes, which are described system by system, have been introduced in the course of engineering parallel reactor projects with overlapping construction schedules -circumstances which ensure close contact with the practical realities of economics, manufacturing functions, construction activities and performance in commissioning. Features for one project furnished alternative concepts for others still on the drawing board and the experience gained in the first application yielded a sound basis for its re-use in succeeding projects. Thus the experiences gained in NPD, Douglas Point, Gentilly-1 and KANUPP have contributed to Pickering and Bruce, which in turn have contributed to the design of Gentilly-2. (author)

  8. The effect of initial conditions on the electromagnetic radiation generation in type III solar radio bursts

    International Nuclear Information System (INIS)

    Schmitz, H.; Tsiklauri, D.

    2013-01-01

    Extensive particle-in-cell simulations of fast electron beams injected in a background magnetised plasma with a decreasing density profile were carried out. These simulations were intended to further shed light on a newly proposed mechanism for the generation of electromagnetic waves in type III solar radio bursts [D. Tsiklauri, Phys. Plasmas, 18, 052903 (2011)]. The numerical simulations were carried out using different density profiles and fast electron distribution functions. It is shown that electromagnetic L and R modes are excited by the transverse current, initially imposed on the system. In the course of the simulations, no further interaction of the electron beam with the background plasma could be observed

  9. 75 FR 11530 - Crystal Lake Wind III, LLC, et al.; Notice of Effectiveness of Exempt Wholesale Generator Status

    Science.gov (United States)

    2010-03-11

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Crystal Lake Wind III, LLC, et al.; Notice of Effectiveness of Exempt Wholesale Generator Status March 4, 2010. Docket Nos. Crystal Lake Wind III, LLC EG10-6-000 GardenGarden Wind, LLC EG10-7-000 Star Point Wind Project LLC EG10-8-000...

  10. Nuclear power - replacement of pressure tubes in CANDU reactors

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The CANDU pressure tube reactor is an effective electricity generator. While most units have been built in Canada, units are successfully operated in Argentina and Korea as well as India and Pakistan, which have early versions of the same concept. Units are also under construction in Korea and Romania. The main constructional components of a CANDU core are the calandria vessel, the fuel channels and the reactivity control mechanisms. The fuel channel, in particular the pressure tubes, see an environment comprising high flux, high temperature water at high pressures, which induces changes in the properties and dimensions of the channel components. From the first, fuel channels were designed to be replaced because of the difficulty in predicting the behaviour of zirconium alloys in such service over a long period of time. In fact some phenomena, that were not known at the time of the earliest designs, have led to unacceptable changes in the properties of the channels and these early reactors have had to be retubed at half their intended life. These deficiencies have been corrected in the latest designs and fuel channels in reactors that have commenced operation over the last 10 years, are predicted to reach the intended 30 years life before replacement is necessary. The changing of fuel channels, the details and experience of which are explained, has been shown to be an effective way of refurbishing the CANDU reactor, extending its lifetime a further 25-30 years. (author)

  11. CFD thermal-hydraulic analysis of a CANDU fuel channel

    International Nuclear Information System (INIS)

    Catana, A.; Prisecaru, I.; Dupleac, D.; Danila, N.

    2009-01-01

    This paper presents the numerical investigation of a CANDU fuel channel using CFD (Computational fluid dynamics) methodology approach. Limited computer power available at Bucharest University POLITEHNICA forced the authors to analyse only segments of fuel channel namely the significant ones: fuel bundle junctions with adjacent segments, fuel bundle spacer planes with adjacent segments, regular segments of fuel bundles. The computer code used is FLUENT. Fuel bundles contained in pressure tubes forms a complex flow domain. The flow is characterized by high turbulence and in some parts of fuel channel also by multi-phase flow. The flow in the fuel channel has been simulated by solving the equations for conservation of mass and momentum. For turbulence modelling the standard k-e model is employed although other turbulence models can be used as well. In this paper we do not consider heat generation and heat transfer capabilities of CFD methods. Since we consider only some relatively short segments of a CANDU fuel channel we can assume, for this starting stage, that heat transfer is not very important for these short segments of fuel channel. The boundary conditions for CFD analysis are provided by system and sub-channel analysis. In this paper the discussion is focused on some flow parameters behaviour at the bundle junction, spacer's plane configuration, etc. In this paper we present results for Standard CANDU 6 Fuel Bundles as a basis for CFD thermal-hydraulic analysis of INR proposed SEU43 and other new nuclear fuels. (authors)

  12. CANDU plant life management - An integrated approach

    International Nuclear Information System (INIS)

    Charlebois, P.; Hart, R.S.; Hopkins, J.R.

    1998-01-01

    Commercial versions of CANDU reactors were put into service starting more than 25 years ago. The first unit of Ontario Hydro's Pickering A station was put into service in 1971, and Bruce A in 1977. Most CANDU reactors, however, are only now approaching their mid-life of 15 to 20 years of operation. In particular, the first series of CANDU 6 plants which entered service in the early 1980's were designed for a 30 year life and are now approaching mid life. The current CANDU 6 design is based on a 40 year life as a result of advancement in design and materials through research and development. In order to assure safe and economic operation of these reactors, a comprehensive CANDU Plant Life Management (PLIM) program is being developed from the knowledge gained during the operation of Ontario Hydro's Pickering, Bruce, and Darlington stations, worldwide information from CANDU 6 stations, CANDU research and development programs, and other national and international sources. This integration began its first phase in 1994, with the identification of most of the critical systems structures and components in these stations, and a preliminary assessment of degradation and mechanisms that could affect their fitness for service for their planned life. Most of these preliminary assessments are now complete, together with the production of the first iteration of Life Management Plans for several of the systems and components. The Generic CANDU 6 PLIM program is now reaching its maturity, with formal processes to systematically identify and evaluate the major CSSCs in the station, and a plan to ensure that the plant surveillance, operation, and maintenance programs monitor and control component degradation well within the original design specifications essential for the plant life attainment. A Technology Watch program is being established to ensure that degradation mechanisms which could impact on plant life are promptly investigated and mitigating programs established. The

  13. Passive heat transport in advanced CANDU containment

    International Nuclear Information System (INIS)

    Krause, M.; Mathew, P.M.

    1994-01-01

    A passive CANDU containment design has been proposed to provide the necessary heat removal following a postulated accident to maintain containment integrity. To study its feasibility and to optimize the design, multi-dimensional containment modelling may be required. This paper presents a comparison of two CFD codes, GOTHIC and PHOENICS, for multi-dimensional containment analysis and gives pressure transient predictions from a lumped-parameter and a three-dimensional GOTHIC model for a modified CANDU-3 containment. GOTHIC proved suitable for multidimensional post-accident containment analysis, as shown by the good agreement with pressure transient predictions from PHOENICS. GOTHIC is, therefore, recommended for passive CANDU containment modelling. (author)

  14. Stochastic maintenance optimization at Candu power plants

    International Nuclear Information System (INIS)

    Doyle, E.K.; Duchesne, T.; Lee, C.G.; Cho, D.I.

    2004-01-01

    The use of various innovative maintenance optimization techniques at Bruce has lead to cost effective preventive maintenance applications for complex systems as previously reported at ICONE 6 in New Orleans (1996). Further refinement of the station maintenance strategy was evaluated via the applicability of statistical analysis of historical failure data. The viability of stochastic methods in Candu maintenance was illustrated at ICONE 10 in Washington DC (2002). The next phase consists of investigating the validity of using subjective elicitation techniques to obtain component lifetime distributions. This technique provides access to the elusive failure statistics, the lack of which is often referred to in the literature as the principal impediment preventing the use of stochastic methods in large industry. At the same time the technique allows very valuable information to be captured from the fast retiring 'baby boom generation'. Initial indications have been quite positive. The current reality of global competition necessitates the pursuit of all financial optimizers. The next construction phase in the power generation industry will soon begin on a worldwide basis. With the relatively high initial capital cost of new nuclear generation all possible avenues of financial optimization must be evaluated and implemented. (authors)

  15. Simulation of LOCA power transients of CANDU6 by SCAN/RELAP-CANDU coupled code system

    International Nuclear Information System (INIS)

    Hong, In Seob; Kim, Chang Hyo; Hwang, Su Hyun; Kim, Man Woong; Chung, Bub Dong

    2004-01-01

    As can be seen in the standalone application of RELAP-CANDU for LOCA analysis of CANDU-PHWR, the system thermal-hydraulic code alone cannot predict the transient behavior accurately. Therefore, best estimate neutronics and system thermal-hydraulic coupled code system is necessary to describe the transient behavior with higher accuracy and reliability. The purpose of this research is to develop and test a coupled neutronics and thermal-hydraulics analysis code, SCAN (SNU CANDU-PHWR Neutronics) and RELAP-CANDU, for transient analysis of CANDU-PHWR's. For this purpose, a spatial kinetics calculation module of SCAN, a 3-D CANDU-PHWR neutronics design and analysis code, is dynamically coupled with RELAP-CANDU, the system thermal-hydraulic code for CANDU-PHWR. The performance of the coupled code system is examined by simulation of reactor power transients caused by a hypothetical Loss Of Coolant Accident (LOCA) in Wolsong units, which involves the insertion of positive void reactivity into the core in the course of transients. Specifically, a 40% Reactor Inlet Header (RIH) break LOCA was assumed for the test of the SCAN/RELAP-CANDU coupled code system analysis

  16. LBB in Candu plants

    Energy Technology Data Exchange (ETDEWEB)

    Kozluk, M.J.; Vijay, D.K. [Ontario Hydro Nuclear, Toronto, Ontario (Canada)

    1997-04-01

    Postulated catastrophic rupture of high-energy piping systems is the fundamental criterion used for the safety design basis of both light and heavy water nuclear generating stations. Historically, the criterion has been applied by assuming a nonmechanistic instantaneous double-ended guillotine rupture of the largest diameter pipes inside of containment. Nonmechanistic, meaning that the assumption of an instantaneous guillotine rupture has not been based on stresses in the pipe, failure mechanisms, toughness of the piping material, nor the dynamics of the ruptured pipe ends as they separate. This postulated instantaneous double-ended guillotine rupture of a pipe was a convenient simplifying assumption that resulted in a conservative accident scenario. This conservative accident scenario has now become entrenched as the design basis accident for: containment design, shutdown system design, emergency fuel cooling systems design, and to establish environmental qualification temperature and pressure conditions. The requirement to address dynamic effects associated with the postulated pipe rupture subsequently evolved. The dynamic effects include: potential missiles, pipe whipping, blowdown jets, and thermal-hydraulic transients. Recent advances in fracture mechanics research have demonstrated that certain pipes under specific conditions cannot crack in ways that result in an instantaneous guillotine rupture. Canadian utilities are now using mechanistic fracture mechanics and leak-before-break assessments on a case-by-case basis, in limited applications, to support licensing cases which seek exemption from the need to consider the various dynamic effects associated with postulated instantaneous catastrophic rupture of high-energy piping systems inside and outside of containment.

  17. Agent-based Decision Support System for the Third Generation Distributed Dynamic Decision-making (DDD-III) Simulator

    National Research Council Canada - National Science Library

    Meirina, Candra; Ruan, Sui; Yu, Feili; Zhu, Liang; Pattipati, Krishna R; Kleinman, David L

    2004-01-01

    ...) based on the third-generation distributed dynamic decision-making (DDD-III) simulator and contingency theory to increase the organizational cognitive capacity and to facilitate the processes of adaptation...

  18. GENOVA: a generalized perturbation theory program for various applications to CANDU core physics analysis (I)-theory and application

    International Nuclear Information System (INIS)

    Kim, Do Heon; Choi, Hang Bok

    2001-01-01

    A generalized perturbation theory (GPT) program, GENOVA, has been developed for the purpose of various applications to Canadian deuterium uranium (CANDU) reactor physics analyses. GENOVA was written under the framework of CANDU physics design and analysis code, RFSP. A sensitivity method based on the GPT was implemented in GENOVA to estimate various sensitivity coefficients related to the movement of zone controller units (ZCUs) existing in the CANDU reactor. The numerical algorithm for the sensitivity method was verified by a simple 2 x 2 node problem. The capability of predicting ZCU levels upon a refueling perturbation was validated for a CANDU-6 reactor problem. The applicability of GENOVA to the CANDU-6 core physics analysis has been demonstrated with the optimum refueling simulation and the uncertainty analysis problems. For the optimum refueling simulation, an optimum channel selection strategy has been proposed, using the ZCU level predicted by GENOVA. The refueling simulation of a CANDU-6 natural uranium core has shown that the ZCU levels are successfully controlled within the operating range while the channel and bundle powers are satisfying the license limits. An uncertainty analysis has been performed for the fuel composition heterogeneity of a CANDU DUPIC core, using the sensitivity coefficients generated by GENOVA. The results have shown that the uncertainty of the core performance parameter can be reduced appreciably when the contents of the major fissile isotopes are tightly controlled. GENOVA code has been successfully explored to supplement the weak points of the current design and analysis code, such as the incapacity of performing an optimum refueling simulation and uncertainty analysis. The sample calculations have shown that GENOVA has strong potential to be used for CANDU core analysis combined with the current design and analysis code, RFSP, especially for the development of advanced CANDU fuels

  19. Value added services to CANDU plants

    International Nuclear Information System (INIS)

    Kakaria, B.K.

    2003-01-01

    Over the last decade or so, nuclear power plants, just like other types of electricity generating plants, have been facing a number of challenges. Depending on the operating environment of the utility, these challenges are forcing plant owners to examine all facets of the operating costs. Privatization, deregulation and economics of alternative electricity generation methods are exerting enormous pressure on nuclear power plants to streamline costs and improve their operational performance. CANDU reactors are no exception to these forces and face similar pressures. In particular, operating plants that are contemplating plant life extensions are being required to clearly demonstrate the economics of continued operation over other forms of power generation available to the utility. Improvement of capacity factors has the effect of increasing the revenues from the plant and as these revenues increase, the fixed portion of the plant costs including OM and A costs become a smaller percentage of the total revenues. Similar results can be achieved by aiming to reduce the plant OM and A costs. In reality, most well-planned intervention schemes directed at reducing OM and A costs tend to also increase the plant availability. Following plant turnover after commissioning, AECL has been supporting the CANDU owners and utilities with an assortment of products and services dealing with plant operations and outage management issues. AECL has taken the lead in arranging specialized resources, products and services by teaming with other complementary organizations to provide a complete suite of services. Recent examples of such support to operating CANDU plants will be described in the paper. AECL is responding to this changing business environment in two important ways. First, AECL is changing from simply providing a service to its clients towards providing value, something much more important. To this end, AECL is looking to other organizations to form alliances, partnerships and

  20. Some novel on-power refuelling features of CANDU stations

    International Nuclear Information System (INIS)

    Erwin, D.; Pendlebury, B.; Watson, J.F.; Welch, A.C.

    1976-01-01

    Part A of the paper describes the reasons for, and advantages resulting from, the use of flow assisted refuelling in the CANDU type nuclear reactors at the Pickering Generating Station. A separate fuel handling system is used for each reactor unit, as distinct from the system employed at the Bruce Generating station, where the fuel handling system is shared among several units. Part B of the paper describes some of the advantages of the shared concept with particular emphasis on the availability of the fuel handling system. (author)

  1. Computed tomography on a defective CANDU fuel pencil end cap

    International Nuclear Information System (INIS)

    Lupton, L.R.

    1985-09-01

    Five tomographic slices through a defective end cap from a CANDU fuel pencil have been generated using a Co-60 source and a first generation translate-rotate tomography scanner. An anomaly in the density distribution that is believed to have resulted from the defect has been observed. However, with the 0.30 mm spatial resolution used, it has not been possible to state unequivocally whether the change in density is caused by a defect in the weld or a statistical anomaly in the data. It is concluded that a microtomography system, with a spatial resolution in the range of 0.1 mm, could detect the flaw

  2. Cross section homogenization analysis for a simplified Candu reactor

    International Nuclear Information System (INIS)

    Pounders, Justin; Rahnema, Farzad; Mosher, Scott; Serghiuta, Dumitru; Turinsky, Paul; Sarsour, Hisham

    2008-01-01

    The effect of using zero current (infinite medium) boundary conditions to generate bundle homogenized cross sections for a stylized half-core Candu reactor problem is examined. Homogenized cross section from infinite medium lattice calculations are compared with cross sections homogenized using the exact flux from the reference core environment. The impact of these cross section differences is quantified by generating nodal diffusion theory solutions with both sets of cross sections. It is shown that the infinite medium spatial approximation is not negligible, and that ignoring the impact of the heterogeneous core environment on cross section homogenization leads to increased errors, particularly near control elements and the core periphery. (authors)

  3. An optimum fuel management method based on CANDU in-core detector readings

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Choi, Hang Bok

    2001-01-01

    In this study, a new optimal fuel management method is developed for a CANDU 600 MWe (CANDU-6) reactor. At first, an efficient power mapping method has been developed, which provides an accurate core status of an operating CANDU reactor. Secondly, an optimum refueling channel selection method has been developed by an optimization theory. For the power mapping method, the measured detector readings are used as boundary conditions of the diffusion theory calculation with the Kalman filtering (DIKAL) method. The performance of the DIKAL method was assessed for various core states and applied to the calculation of power and flux distribution in the CANDU 6 reactor. Sensitivity studies have shown that DIKAL method is insensitive to the detector random and systematic errors. An optimal refueling simulation method (OPTIMA), practically applicable to a CANDU 6 reactor, has also been developed. The objective of the optimization is to reproduce the reference core performance during refueling simulation, while satisfying the operation limits of channel and bundle powers. The optimization process consists of two stages: i) elimination of candidate refueling channels by several constraints and ii) selection of refueling channels by a direct search method that uses sensitivity coefficients of channel power generated for the reference core. The elimination process sorts out an appropriate number of fuel channels suitable for refueling, considering the channel power, bundle power and fuel burnup. The optimum refueling channels are then selected such that the difference of power distribution from the reference is minimized. In order to demonstrate the applicability of the overall fuel management methodology developed in this study, the DIKAL-OPTIMA method was applied to Wolsong-3 reactor refueling simulation, which is a typical CANDU-6 reactor. The results of refueling simulation have shown that the method can be efficiently used for the performance analysis of the operating

  4. An optimum fuel management method based on CANDU in-core detector readings

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Choi, Hang Bok

    2001-01-01

    In this study, a new optimal fuel management method is developed for a CANDU 600 MWe (CANDU-6) reactor. At first, an efficient power mapping method has been developed, which provides an accurate core status of an operating CANDU reactor. Secondly, an optimum refueling channel selection method has been developed by an optimization theory. For the power mapping method, the measured detector readings are used as boundary conditions of the diffusion theory calculation with the Kalman filtering (DIKAL) method. The performance of the DIKAL method was assessed for various core states and applied to the calculation of power and flux distribution in the CANDU 6 reactor. Sensitivity studies have shown that DIKAL method is insensitive to the detector random and systematic errors. An optimal refueling simulation method (OPTIMA), practically applicable to a CANDU 6 reactor, has also been developed. The objective of the optimization is to reproduce the reference core performance during refueling simulation, while satisfying the operation limits of channel and bundle powers. The optimization process consists of two stages: i) elimination of candidate refueling channels by several constraints and ii) selection of refueling channels by a direct search method that uses sensitivity coefficients of channel power generated for the reference core. The elimination process sorts out an appropriate number of fuel channels suitable for refueling, considering the channel power, bundle power and fuel burnup. The optimum refueling channels are then selected such that the difference of power distribution from the reference is minimized. In order to demonstrate the applicability of the overall fuel management methodology developed in this study, the DIKAL-OPTIMA method was applied to Wolsong-3 reactor refueling simulation, which is a typical CANDU-6 reactor. The results of refueling simulation have shown that the method can be efficiently used for the performance analysis of the operating

  5. Future fuel cycle development for CANDU reactors

    International Nuclear Information System (INIS)

    Hatcher, S.R.; McDonnell, F.N.; Griffiths, J.; Boczar, P.G.

    1987-01-01

    The CANDU reactor has proven to be safe and economical and has demonstrated outstanding performance with natural uranium fuel. The use of on-power fuelling, coupled with excellent neutron economy, leads to a very flexible reactor system with can utilize a wide variety of fuels. The spectrum of fuel cycles ranges from natural uranium, through slightly enriched uranium, to plutonium and ultimately thorium fuels which offer many of the advantages of the fast breeder reactor system. CANDU can also burn the recycled uranium and/or the plutonium from fuel discharged from light water reactors. This synergistic relationship could obviate the need to re-enrich the reprocessed uranium and allow a simpler reprocessing scheme. Fule management strategies that will permit future fuel cycles to be used in existing CANDU reactors have been identified. Evolutionary design changes will lead to an even greater flexibility, which will guarantee the continued success of the CANDU system. (author)

  6. Mathematical modeling of CANDU-PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, F.A.; Aly, R.A.; El-Shal, A.O. [Atomic Energy Authority, Cairo (Egypt)

    2003-07-01

    The paper deals with the transient studies of CANDU 600 pressurized Heavy Water Reactor (PHWR). This study involved mathematical modeling of CANDU-PHWR to study its thermodynamic performances. Modeling of CANDU-PHWR was based on lumped parameter technique. The reactor model includes the neutronic, reactivity, and fuel channel heat transfer. The nuclear reactor power was modelled using the point kinetics equations with six groups of delayed neutrons and the reactivity feed back due to the changes in the fuel temperature and coolant temperature. The CANDU-PHWR model was coded in FORTRAN language and solved by using a standard numerical technique. The adequacy of the model was tested by assessing the physical plausibility of the obtained results. (author)

  7. Reactor physics aspects of CANDU reactors

    International Nuclear Information System (INIS)

    Critoph, E.

    1980-01-01

    These four lectures are being given at the Winter Course on Nuclear Physics at Trieste during 1978 February. They constitute part of the third week's lectures in Part II: Reactor Theory and Power Reactors. A physical description of CANDU reactors is given, followed by an overview of CANDU characteristics and some of the design options. Basic lattice physics is discussed in terms of zero energy lattice experiments, irradiation effects and analytical methods. Start-up and commissioning experiments in CANDU reactors are reviewed, and some of the more interesting aspects of operation discussed - fuel management, flux mapping and control of the power distribution. Finally, some of the characteristics of advanced fuel cycles that have been proposed for CANDU reactors are summarized. (author)

  8. CANDU fuel cycle options in Korea

    International Nuclear Information System (INIS)

    Boczar, P.G.; Fehrenbach, P.J.; Meneley, D.A.

    1996-04-01

    The easiest first step in CANDU fuel-cycle evolution may be the use of slightly enriched uranium (SEU), including recovered uranium from reprocessed LWR spent fuel. Relatively low enrichment (up to 1.2%) will result in a twoto three-fold reduction in the quantity of spent fuel per unit energy production, reductions in fuel-cycle costs, and greater flexibility in the design of new reactors. The CANFLEX (CANDU FLEXible) fuel bundle would be the optimal fuel carrier. A country that has both CANDU and PWR reactors can exploit the natural synergism between these two reactor types to minimize overall waste production, and maximize energy derived from the fuel. This synergism can be exploited through several different fuel cycles. A high burnup CANDU MOX fuel design could be used to utilize plutonium from conventional reprocessing or more advanced reprocessing options (such as co-processing). DUPIC (Direct Use of Spent PWR Fuel In CANDU) represents a recycle option that has a higher degree of proliferation resistance than does conventional reprocessing, since it uses only dry processes for converting spent PWR fuel into CANDU fuel, without separating the plutonium. Good progress is being made in the current KAERI, AECL, and U.S. Department of State program in demonstrating the technical feasibility of DUPIC. In the longer term, CANDU reactors offer even more dramatic synergistic fuel cycles with PWR or FBR reactors. If the objective of a national fuel-cycle program is the minimization of actinide waste or destruction of long-lived fission products, then studies have shown the superiority of CANDU reactors in meeting this objective. Long-term energy security can be assured either through the thorium cycle or through a CANDU 1 FBR system, in which the FBR would be operated as a 'fuel factory,' providing the fissile material to power a number of lower-cost, high efficiency CANDU reactors. In summary, the CANDU reactor's simple fuel design, high neutron economy, and on

  9. III-Nitride Membranes for Thermal Bio-Sensing and Solar Hydrogen Generation

    KAUST Repository

    Elafandy, Rami Tarek Mahmoud

    2017-09-01

    III-nitride nanostructures have generated tremendous scientific and technological interests in studying and engineering their low dimensional physics phenomena. Among these, 2D planar, free standing III-nitride nanomembranes are unrivalled in their scalability for high yield manufacture and can be mechanically manipulated. Due to the increase in their surface to volume ratio and the manifestation of quantum phenomena, these nanomembranes acquire unique physical properties. Furthermore, III-nitride membranes are chemically stable and biocompatible. Finally, nanomembranes are highly flexible and can follow curvilinear surfaces present in biological systems. However, being free-standing, requires especially new techniques for handling nanometers or micrometers thick membrane devices. Furthermore, effectively transferring these membrane devices to other substrates is not a direct process which requires the use of photoresists, solvents and/or elastomers. Finally, as the membranes are transferred, they need to be properly attached for subsequent device fabrications, which often includes spin coating and rinsing steps. These engineering complications have impeded the development of novel devices based on III-nitride membranes. In this thesis, we demonstrate the versatility of III-nitride membranes where we develop a thermal bio-sensor nanomembrane and solar energy photo-anode membrane. First, we present a novel preparation technique of nanomembranes with new characteristics; having no threading dislocation cores. We then perform optical characterization to reveal changes in their defect densities compared to the bulk crystal. We also study their mechanical properties where we successfully modulate their bandgap emission by 55 meV through various external compressive and tensile strain fields. Furthermore, we characterize the effect of phonon-boundary scattering on their thermal properties where we report a reduction of thermal conductivity from 130 to 9 W/mK. We employ

  10. Verification tests for CANDU advanced fuel

    International Nuclear Information System (INIS)

    Chung, Chang Hwan; Chang, S.K.; Hong, S.D.

    1997-07-01

    For the development of a CANDU advanced fuel, the CANFLEX-NU fuel bundles were tested under reactor operating conditions at the CANDU-Hot test loop. This report describes test results and test methods in the performance verification tests for the CANFLEX-NU bundle design. The main items described in the report are as follows. - Fuel bundle cross-flow test - Endurance fretting/vibration test - Freon CHF test - Production of technical document. (author). 25 refs., 45 tabs., 46 figs

  11. Passive heat removal in CANDU

    International Nuclear Information System (INIS)

    Hart, R.S.; Snell, V.G.

    1996-01-01

    The Three Mile Island accident spurred a world-wide interest in severe accidents. The initial reaction was to increase the preventative measures in existing designs, followed by development of predictive capabilities to improve the management of severe accidents. Recently, emphasis has been placed in new designs on mitigative measures which slow down or contain the progression of a severe accidents. U.S. requirements for Advanced Light Water Reactor designs must now: provide reactor cavity floor space to enhance debris spreading; provide a means to flood the reactor cavity to assist in the cooling process. The paper describes how CANDU Pressurized Heavy Water Reactors (PHWRs) have severe accident prevention and mitigation inherent in the design; in particular, the U.S. severe accident requirements can be met without significant change to the design of current CANDUs. (author). 32 refs, 7 figs, 1 tab

  12. Passive heat removal in CANDU

    Energy Technology Data Exchange (ETDEWEB)

    Hart, R S; Snell, V G [AECL CANDU, Sheridan Park Research Community, Mississauga, ON (Canada)

    1996-12-01

    The Three Mile Island accident spurred a world-wide interest in severe accidents. The initial reaction was to increase the preventative measures in existing designs, followed by development of predictive capabilities to improve the management of severe accidents. Recently, emphasis has been placed in new designs on mitigative measures which slow down or contain the progression of a severe accidents. U.S. requirements for Advanced Light Water Reactor designs must now: provide reactor cavity floor space to enhance debris spreading; provide a means to flood the reactor cavity to assist in the cooling process. The paper describes how CANDU Pressurized Heavy Water Reactors (PHWRs) have severe accident prevention and mitigation inherent in the design; in particular, the U.S. severe accident requirements can be met without significant change to the design of current CANDUs. (author). 32 refs, 7 figs, 1 tab.

  13. Drift effects in CANDU reactors

    International Nuclear Information System (INIS)

    Koclas, J.; Roy, R.; Marleau, G.

    1993-01-01

    The diffusion equation is an approximation to the transport equation which relies on the validity of Fick's law. Since this law is not explicitly integrated in the transport equation it can only be derived approximately using homogenization theories. However, such homogenization theories state that when the cell is not symmetric Fick's law breaks down due to the presence of an additional term to the neutron current, called the drift term. In fact, this term can be interpreted as a transport correction to Fick's law which tends to increase the neutron current in a direction opposite to that specified by the flux gradient. In this paper, we investigate how the presence of asymmetric liquid zone controllers will modify the flux distribution inside a CANDU core. 5 refs., 2 figs., 1 tab

  14. Absorber materials in CANDU PHWR's

    International Nuclear Information System (INIS)

    Price, E.G.; Boss, C.R.; Novak, W.Z.; Fong, R.W.L.

    1995-03-01

    In a CANDU reactor the fuel channels are arranged on a square lattice in a calandria filled with heavy water moderator. This arrangement allows five types of tubular neutron absorber devices to be located in a relatively benign environment of low pressure, low temperature heavy water between neighbouring rows of columns of fuel channels. This paper will describe the roles of the devices and outline the design requirements of the absorber component from a reactor physics viewpoint. Nuclear heating and activation problems associated with the different absorbers will be briefly discussed. The design and manufacture of the devices will be also discussed. The control rod absorbers and shut off materials are cadmium and stainless steel. In the tubular arrangement, the cadmium is sandwiched between stainless steel tubes. This type of device has functioned well, but there is now concern over the availability and expense of cadmium which is used in two types of CANDU control devices. There are also concerns about the toxicity of cadmium during the fabrication of the absorbers. These concerns are prompting AECL to study alternatives. To minimize design changes, pure boron-10 alloyed in stainless steel is a favoured option. Work is underway to confirm the suitability of the boron-loaded steel and identify other encapsulated absorber materials for practical application. Because the reactivity devices or their guide tubes span the calandria vessel, the long slender components must be sufficiently rigid to resist operational vibration and also be seismically stable. Some of these components are made of Zircaloy to minimize neutron absorption. Slow irradiation growth and creep can reduce the spring tension, and periodic adjustments to the springs are required. Experience with the control absorber devices has generally been good. In one instance liquid zone controllers had a problem of vibration induced fretting but a designed back-fit resolved the problem. (author). 3 refs., 1

  15. MAAP4 CANDU analysis of a generic CANDU-6 plant: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Petoukhov, S.M.; Mathew, P.M

    2001-10-01

    To support the generic probabilistic safety analysis (PSA) program at AECL, in particular to conduct Level 2 PSA analysis of a CANDU 6 plant undergoing a postulated severe accident, the capability to conduct severe accident consequence analysis for a CANDU plant is required. For this purpose, AECL selected MAAP4 CANDU from a number of other severe accident codes. The necessary models for a generic CANDU 6 station have been implemented in the code, and the code version 0.2 beta was tested using station data, which were assembled for a generic CANDU 6 station. This paper describes the preliminary results of the consequence analysis using MAAP4 CANDU for a generic CANDU 6 station, when it undergoes a station blackout and a large loss-of-coolant accident scenario. The analysis results show that the plant response is consistent with the physical phenomena modeled and the failure criteria used. The results also confirm that the CANDU design is robust with respect to severe accidents, which is reflected in the calculated long times that are available for administering accident management measures to arrest the accident progression before the calandria vessel or containment become at risk. (author)

  16. Candu

    International Nuclear Information System (INIS)

    Melvin, J.G.

    1983-01-01

    Electricity consumption in Canada over the past twenty years correlates well with the real gross national product (GNP). No effect of electricity conservation measures has yet been discernible because, unlike oil, electricity has never been used very wastefully. A 4% annual expansion of real GNP implies a 5% extrapolated annual growth in electricity demand. To sell reactors, the nuclear industry must promote the use of electricity. Canadian industry generally, even the nuclear industry, has been slow to use electricity for process heating. The advantages include stability of price, good control, and absence of pollution

  17. Physics characteristics of CANDU cores with advanced fuel cycles

    International Nuclear Information System (INIS)

    Garvey, P.M.

    1985-01-01

    The current generation of CANDU reactors, of which some 20 GWE are either in operations or under construction worldwide, have been designed specifically for the natural uranium fuel cycle. The CANDU concept, due to its D 2 O coolant and moderator, on-power refuelling and low absorption structural materials, makes the most effective utilization of mined uranium of all currently commercialized reactors. An economic fuel cycle cost is also achieved through the use of natural uranium and a simple fuel bundle design. Total unit energy costs are achieved that allow this reactor concept to effectively compete with other reactor types and other forms of energy production. There are, however, other fuel cycles that could be introduced into this reactor type. These include the slightly enriched uranium fuel cycle, fuel cycles in which plutonium is recycled with uranium, and the thorium cycle in which U-233 is recycled. There is also a special range of fuel cycles that could utilize the spent fuel from LWR's. Two specific variants are a fuel cycle that only utilizes the spent uranium, and a fuel cycle in which both the uranium and plutonium are recycled into a CANDU. For the main part these fuel cycles are characterized by a higher initial enrichment, and hence discharge burnup, than the natural uranium cycle. For these fuel cycles the main design features of both the reactor and fuel bundle would be retained. Recently a detailed study of the use in a CANDU of mixed plutonium and uranium oxide fuel from an LWR has been undertaken by AECL. This study illustrates many of the generic technical issues associated with the use of Advanced Fuel Cycles. This paper will report the main findings of this evaluation, including the power distribution in the reactor and fuel bundle, the choice of fuel management scheme, and the impact on the control and safety characteristics of the reactor. These studies have not identified any aspects that significantly impact upon the introduction of

  18. CANDU fuel cycle economic efficiency assessments using the IAEA-MESSAGE-V code

    International Nuclear Information System (INIS)

    Prodea, Iosif; Margeanu, Cristina Alice; Aioanei, Corina; Prisecaru, Ilie; Danila, Nicolae

    2007-01-01

    The main goal of the paper is to evaluate different electricity generation costs in a CANDU Nuclear Power Plant (NPP) using different nuclear fuel cycles. The IAEA-MESSAGE code (Model for Energy Supply Strategy Alternatives and their General Environmental Impacts) will be used to accomplish these assessments. This complex tool was supplied by International Atomic Energy Agency (IAEA) in 2002 at 'IAEA-Regional Training Course on Development and Evaluation of Alternative Energy Strategies in Support of Sustainable Development' held in Institute for Nuclear Research Pitesti. It is worthy to remind that the sustainable development requires satisfying the energy demand of present generations without compromising the possibility of future generations to meet their own needs. Based on the latest public information in the next 10-15 years four CANDU-6 based NPP could be in operation in Romania. Two of them will have some enhancements not clearly specified, yet. Therefore we consider being necessary to investigate possibility to enhance the economic efficiency of existing in-service CANDU-6 power reactors. The MESSAGE program can satisfy these requirements if appropriate input models will be built. As it is mentioned in the dedicated issues, a major inherent feature of CANDU is its fuel cycle flexibility. Keeping this in mind, some proposed CANDU fuel cycles will be analyzed in the paper: Natural Uranium (NU), Slightly Enriched Uranium (SEU), Recovered Uranium (RU) with and without reprocessing. Finally, based on optimization of the MESSAGE objective function an economic hierarchy of CANDU fuel cycles will be proposed. The authors used mainly public information on different costs required by analysis. (authors)

  19. 3D heterogeneous transport calculations of CANDU fuel with EVENT/HELIOS

    International Nuclear Information System (INIS)

    Rahnema, F.; Mosher, S.; Ilas, D.; De Oliveira, C.; Eaton, M.; Stamm'ler, R.

    2002-01-01

    The applicability of the EVENT/HELIOS package to CANDU lattice cell analysis is studied in this paper. A 45-group cross section library is generated using the lattice depletion transport code HELIOS. This library is then used with the 3-D transport code EVENT to compute the pin fission densities and the multiplication constants for six configurations typical of a CANDU cell. The results are compared to those from MCNP with the same multigroup library. Differences of 70-150 pcm in multiplication constant and 0.08-0.95% in pin fission density are found for these cases. It is expected that refining the EVENT calculations can reduce these differences. This gives confidence in applying EVENT to transient analyses at the fuel pin level in a selected part of a CANDU core such as the limiting bundle during a loss of coolant accident (LOCA). (author)

  20. Toxicity regulation of radioactive liquid waste effluent from CANDU stations - lessons from Ontario's MISA program

    International Nuclear Information System (INIS)

    Rodgers, D.W.

    2009-01-01

    Toxicity testing became an issue for Ontario's CANDU stations, when it was required under Ontario's MISA regulations for the Electricity Generation Sector. In initial tests, radioactive liquid waste (RLW) effluent was intermittently toxic to both rainbow trout and Daphnia. Significant differences in RLW toxicity were apparent among stations and contributing streams. Specific treatment systems were designed for three stations, with the fourth electing to use existing treatment systems. Stations now use a combination of chemical analysis and treatment to regulate RLW toxicity. Studies of Ontario CANDU stations provide a basis for minimizing costs and environmental effects of new nuclear stations. (author)

  1. Korean experience in CANDU-PHWR operation

    International Nuclear Information System (INIS)

    Sang-kee Park

    1987-01-01

    Among KEPCO's 9 nuclear power units, Korea Nuclear Unit No. 3, the Wolsung Nuclear Power Plant is the only CANDU-PHWR Unit, while the rest of 8 others are PWR units. The unit was designed by Atomic Energy of Canada, Ltd(AECL) of Canada, who also perfomed overall project management for the plant construction under the provisions and arrangement of the relevant contracts. The gross electrical output of the plant is 678.7 MWe and thermal output of the reactor is 2061 MWth. While these figures lead to lower plant eficiency than LWR counterparts, unit energy cost for fuel is more favorable than LWRs because natural uranium is utilized for the fuel bundles, some of which are already being fabricated domestically. Annual capacity factors for 1983 and 1984 could have been improved, if two major planned outages for the modification works on steam generator internals and one major forced outage form the heavy water spill incident could be eliminated. The heavy water spill incident in November, 1984 brought plant staffs many lessons to learn and many things to contemplate. Unique design concepts and features such as on-power refuelling, poison prevent mode, versatile plant control system built around digital computers and power step back/set back logics may be credited for these relatively good plant performances. Human related factors such as staff's technical capabilities and strong will toward good performance were other elements which could not be overlooked

  2. Korean experience in CANDU-PHWR operation

    International Nuclear Information System (INIS)

    Park, S.K.

    1988-01-01

    Among KEPCO's 9 nuclear power units, Korea Nuclear Unit No. 3, the Wolsung Nuclear Power Plant is the only CANDU-PHWR Unit, while the rest of 8 others are PWR units. The unit was designed by Atomic Energy of Canada, Ltd. of Canada, who also performed overall project management for the plant construction under the provisions and arrangement of the relevant contracts. The gross electrical output of the plant is 678.7 MWe and thermal output of the reactor is 2061 MWth. While these figures lead to lower plant efficiency than LWR counterparts, unit energy cost for fuel is more favorable than LWRs because natural uranium is utilized for the fuel bundles, some of which are already being fabricated domestically. Annual capacity factors for 1983 and 1984 could have been improved, if two major planned outages for the modification works on steam generator internals and one major forced outage from the heavy water spill incident could be eliminated. The heavy water spill incident in November, 1984 brought plant staffs many lessons to learn and many things to contemplate. Unique design concepts and features such as on-power refuelling, poison prevent mode, versatile plant control system built around digital computers and power step back/set back logics may be credited for these relatively good plant performances. Human related factors such as staff's technical capabilities and strong will toward good performance were other elements which could not be overlooked

  3. Feasibility study of CANDU-9 fuel handling system

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jeong Ki; Jo, C. H.; Kim, H. M.

    1996-12-01

    CANDU`s combination of natural uranium, heavy water and on-power refuelling is unique in its design and remarkable for reliable power production. In order to offer more output, better site utilization, shorter construction time, improved station layout, safety enhancements and better control panel layout, CANDU-9 is now under development with design improvement added to all proven CANDU advantages or applicable technologies. One of its major improvement has been applied to fuel handling system. This system is very similar to that of CANDU-3, and some parts of the system are applied to those of the existing CANDU-6 or CANDU-9. Design concepts and design requirements of fuel handling system for CANDU-9 have been identified to compare with those of the existing CANDU and the design feasibilities have been evaluated. (author). 4 tabs., 13 figs., 9 refs.

  4. Heat transport inventory monitoring for CANDU-PHW reactors

    International Nuclear Information System (INIS)

    Hussein, E.; Luxat, J.C.

    1984-01-01

    A computer-based D 2 O coolant inventory monitoring system proposed for implementation on the digital computer controllers at Ontario Hydro's CANDU generating units is discussed. By monitoring process parameters and utilizing probabilistically-based decision algorithms, timely indication of any significant loss of D 2 O inventory will be provided to the operator. The monitoring is performed in a co-ordinated manner such that D 2 O losses from either the heat transport system or the inventory control system can be detected. (orig.)

  5. Economic potential of advanced fuel cycles in CANDU

    International Nuclear Information System (INIS)

    Slater, J.B.

    1982-07-01

    Advanced fuel cycles in CANDU offer the potential of a many-fold increase in energy yield over that which can be obtained from uranium resources using the current once-through natural uranium cycle. This paper examines the associated economics of alternative once-through and recycle fuelling. Results indicate that these cycles will limit the impact of higher uranium prices and offer the potential of a period of stable constant-dollar generating costs that are only approximately 20% higher than current levels

  6. FSN-based fault modelling for fault detection and troubleshooting in CANDU stations

    Energy Technology Data Exchange (ETDEWEB)

    Nasimi, E., E-mail: elnara.nasimi@brucepower.com [Bruce Power LLP., Tiverton, Ontario(Canada); Gabbar, H.A. [Univ. of Ontario Inst. of Tech., Oshawa, Ontario (Canada)

    2013-07-01

    An accurate fault modeling and troubleshooting methodology is required to aid in making risk-informed decisions related to design and operational activities of current and future generation of CANDU designs. This paper presents fault modeling approach using Fault Semantic Network (FSN) methodology with risk estimation. Its application is demonstrated using a case study of Bruce B zone-control level oscillations. (author)

  7. Approach for seismic risk analysis for CANDU plants in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B-S; Kim, T; Kang, S-K [Korea Power Engineering Co., Seoul (Korea, Republic of); Hong, S-Y; Roh, S-R [Korea Electric Power Corp., Taejon (Korea, Republic of). Research Centre

    1996-12-31

    A seismic risk analysis for CANDU type plants has never been performed. The study presented here suggested that the approach generally applied to LWR type plants could lead to unacceptable result, if directly applied to CANDU plants. This paper presents a modified approach for the seismic risk analysis of CANDU plants. (author). 5 refs., 2 tabs., 2 figs.

  8. WAIS-III IQs, Horn's Theory, and Generational Changes from Young Adulthood to Old Age.

    Science.gov (United States)

    Kaufman, Alan S.

    2001-01-01

    Examined age changes in intellectual ability in the range from 16 to 89 years through 2 studies that involved IQs on the Wechsler Adult Intelligence Scale III (WAIS-III). Results are interpreted in the context of the fluid-crystallized intelligence theory of J. Horn. Studies used WAIS-III standardization data for 2,450 adults and longitudinal data…

  9. Candu 6: versatile and practical fuel technology

    International Nuclear Information System (INIS)

    Hopwood, J. M.; Saroudis, J.

    2013-01-01

    CANDU reactor technology was originally developed in Canada as part of the original introduction of peaceful nuclear power in the 1960s and has been continuously evolving and improving ever since. The CANDU reactor system was defined with a requirement to be able to efficiently use natural uranium (NU) without the need for enrichment. This led to the adaptation of the pressure tube approach with heavy water coolant and moderator together with on-power fuelling, all of which contribute to excellent neutron efficiency. Since the beginning, CANDU reactors have used [NU] fuel as the fundamental basis of the design. The standard [NU] fuel bundle for CANDU is a very simple design and the simplicity of the fuel design adds to the cost effectiveness of CANDU fuelling because the fuel is relatively straightforward to manufacture and use. These characteristics -- excellent neutron efficiency and simple, readily-manufactured fuel -- together lead to the unique adaptability of CANDU to alternate fuel types, and advancements in fuel cycles. Europe has been an early pioneer in nuclear power; and over the years has accumulated various waste products from reactor fuelling and fuel reprocessing, all being stored safely but which with passing time and ever increasing stockpiles will become issues for both governments and utilities. Several European countries have also pioneered in fuel reprocessing and recycling (UK, France, Russia) in what can be viewed as a good neighbor policy to make most efficient use of fuel. The fact remains that CANDU is the most fuel efficient thermal reactor available today [NU] more efficient in MW per ton of U compared to LWR's and these same features of CANDU (on-power fuelling, D 2 O, etc) also enable flexibility to adapt to other fuel cycles, particularly recycling. Many years of research (including at ICN Pitesti) have shown CANDU capability: best at Thorium utilization; can use RU without re-enrichment; can readily use MOX. Our premise is that

  10. Explaining the absence of Co-58 radiation fields around CANDU reactor primary circuit

    International Nuclear Information System (INIS)

    Burrill, K.A.; Guzonas, D.A.

    2002-01-01

    Radiation fields from Co-58 are rarely detected in CANDU plants. For example, Ge(Li) surveys of the Inconel 600 steam generators at some CANDU plants may show radiation attributed to Co-58 only early in plant life, and most artefacts removed from the primary circuit later in plant operation show no Co-58 present. However, Pressurized Water Reactor plants experience relatively large fields from Co-58 on their isothermal piping, e.g., steam generator channel head, and steam generators tube sampling programs do show deposits in the tubes with significant Co-58 compared to other radionuclides such as Co-60. CANDU reactors have high concentrations of dissolved iron due to the extensive use of carbon steel for the isothermal piping, e.g., feeders, headers, and steam generator channel heads. A dissolved iron transport diagram that was proposed recently for the primary circuit of CANDU plants has been validated by comparison of predicted deposit weights with plant deposit data from various components. One feature of the diagram is dissolved iron precipitation inside the steam generators tubes. An hypothesis is advanced here in which precipitating dissolved iron is proposed to occlude dissolved nickel. This removal mechanism may prevent the solubility of dissolved nickel from being exceeded anywhere around the primary circuit. In particular, this mechanism could avoid NiO precipitation in the core and the generation of large quantities of Co-58. Using this mechanism along with the known solubility behaviour of NiO with temperature, a dissolved nickel transport diagram has been proposed for CANDU plants. (authors)

  11. CANDU severe accident management guidance update

    International Nuclear Information System (INIS)

    Jones, L.; Popov, N.; Gilbert, L.; Weed, J.

    2014-01-01

    The CANDU Owners Group (COG) developed a set of generic and initial station-specific Severe Accident Management Guidance (SAMG) documents to mitigate the consequences to the public in the event of a severe accident. The generic portion of the COG SAMG was completed in 2006; the overall project including the station-specific phase was completed in April 2007. Over the years, the CANDU industry and utilities have continuously increased the knowledge base for SAMG and have incorporated various engineered features based on the knowledge obtained. As a result of the event that occurred at the Fukushima Daiiachi nuclear power plant (NPP) in Japan, the Canadian Nuclear Safety Commission (CNSC) established the CNSC Fukushima Task Force. The results of the task force were documented in INFO-0828, CNSC Staff Action Plan on the CNSC Fukushima Task Force Recommendations. Among the recommendation documented in INFO-828 were Fukushima Action Items (FAIs) directed towards the CANDU utilities in Canada; a portion of which are related to SAMG documentation updates and directed at enhancing SAM response. A COG joint project was established to support the closure of the CNSC FAIs and to revise the current CANDU documentation accordingly. This paper provides a high level summary of the COG project scope and results. It also demonstrates that the CANDU SAMG programs in Canada provide robust protection and mitigation of severe accidents. (author)

  12. CANDU severe accident management guidance update

    Energy Technology Data Exchange (ETDEWEB)

    Jones, L., E-mail: lisa.m.jones@opg.com [Ontario Power Generation, Pickering, ON (Canada); Popov, N., E-mail: nik.popov@rogers.com [Candu Owners Group, Toronto, ON (Canada); Gilbert, L., E-mail: lovell.gilbert@brucepower.com [Bruce Power, Tiverton, ON (Canada); Weed, J., E-mail: jeff.weed@candu.gov [Candu Owners Group, Toronto, ON (Canada)

    2014-07-01

    The CANDU Owners Group (COG) developed a set of generic and initial station-specific Severe Accident Management Guidance (SAMG) documents to mitigate the consequences to the public in the event of a severe accident. The generic portion of the COG SAMG was completed in 2006; the overall project including the station-specific phase was completed in April 2007. Over the years, the CANDU industry and utilities have continuously increased the knowledge base for SAMG and have incorporated various engineered features based on the knowledge obtained. As a result of the event that occurred at the Fukushima Daiiachi nuclear power plant (NPP) in Japan, the Canadian Nuclear Safety Commission (CNSC) established the CNSC Fukushima Task Force. The results of the task force were documented in INFO-0828, CNSC Staff Action Plan on the CNSC Fukushima Task Force Recommendations. Among the recommendation documented in INFO-828 were Fukushima Action Items (FAIs) directed towards the CANDU utilities in Canada; a portion of which are related to SAMG documentation updates and directed at enhancing SAM response. A COG joint project was established to support the closure of the CNSC FAIs and to revise the current CANDU documentation accordingly. This paper provides a high level summary of the COG project scope and results. It also demonstrates that the CANDU SAMG programs in Canada provide robust protection and mitigation of severe accidents. (author)

  13. ITER SAFETY TASK NID-10A:CANDU occupational exposure experience: ORE for ITER fuel cycle and cooling systems

    International Nuclear Information System (INIS)

    Lee, D.

    1995-02-01

    This report contains information on TRITIUM Occupational Exposure (Internal Dose) from typical CANDU Nuclear Generating Stations. In addition to dose, airborne tritium levels are provided, as these strongly influence operational exposure. The exposure dose data presented in this report cover a period of five years of operation and maintenance experience from four CANDU Reactors and are considered representative of other CANDU reactors. The data are broken down according to occupational function ( Operators, Maintenance and Support Service etc.). The referenced systems are mainly centered on CANDU Hear Transport System, Moderator System, Tritium Removal Facility and Heavy Water (D20) Upgrading System. These systems contain the bulk part of tritium contamination in the CANDU Reactor. Because of certain similarities between ITER and CANDU systems, this data can be used as the most relevant TRITIUM OCCUPATIONAL DOSE information for ITER COOLING and FUEL CYCLE systems dose assessment purpose, if similar design and operation principles as described in the report are adopted. (author). 16 refs., 8 tabs., 13 figs

  14. Moderator circulation in CANDU reactors

    International Nuclear Information System (INIS)

    Fath, H.E.S.; Hussein, M.A.

    1989-01-01

    A two-dimensional computer code that is capable of predicting the moderator flow and temperature distribution inside CANDU calandria is presented. The code uses a new approach to simulate the calandria tube matrix by blocking the cells containing the tubes in the finite difference mesh. A jet momentum-dominant flow pattern is predicted in the nonisothermal case, and the effect of the buoyancy force, resulting from nuclear heating, is found to enhance the speed of circulation. Hot spots are located in low-velocity areas at the top of the calandria and below the inlet jet level between the fuel channels. A parametric study is carried out to investigate the effect of moderator inlet velocity,moderator inlet nozzle location, and geometric scaling. The results indicate that decreasing the moderator inlet velocity has no significant influence on the general features of the flow pattern (i.e., momentum dominant); however, too many high-temperature hot spots appear within the fuel channels

  15. CANDU fuel performance and development

    International Nuclear Information System (INIS)

    Hardy, D.G.; Wood, J.C.; Bain, A.S.

    1978-12-01

    The fuel defect rate in CANDU (Canada Deuterium Uranium) reactors continues to be very low, 0.06% since 1972. The power ramp defects, which constituted the majority of the early defects, have been virtually eliminated by changed fuelling schemes and through the introduction of graphite CANLUB coatings on the inside of the sheath. Laboratory and loop irradiations have demonstrated that the graphite CANLUB layers increase the tolerance to power ramps, but to obtain the maximum benefit, coating parameters such as thickness, adhesion and wear resistance must be optimized. Siloxane CANLUB coated fuel offers greater tolerance to power ramps than most graphite coatings; quality control appears simpler and no instance of localized sheath hydriding has been seen with cured and irradiated coatings. Limited testing has shown that fuel with graphite discs between fuel pellets also has high tolerance to power ramps, but it is more costly and has lower burnup. The number of defects due to faulty components has been extremely small (0.00014%), but improved quality control and welding procedures can lower this number even further. Defects from causes external to the bundle have also been very few. (author)

  16. Fuel deposits, chemistry and CANDU reactor operation

    International Nuclear Information System (INIS)

    Roberts, J.G.

    2013-01-01

    'Hot conditioning' is a process which occurs as part of commissioning and initial start-up of each CANDU reactor, the first being the Nuclear Power Demonstration-2 reactor (NPD). Later, understanding of the cause of the failure of the Pickering Unit 1 G16 fuel channel led to a revised approach to 'hot conditioning', initially demonstrated on Bruce Unit 5, and subsequently utilized for each CANDU unit since. The difference being that during 'hot conditioning' of CANDU heat transport systems fuel was not in-core until Bruce Unit 5. The 'hot conditioning' processes will be briefly described along with the consequences to fuel. (author)

  17. 6. CNS international conference on CANDU maintenance. Proceedings

    International Nuclear Information System (INIS)

    2003-01-01

    The 6th CNS International Conference on CANDU Maintenance took place in Toronto, Ontario on November 16-18, 2003. The theme for the conference was 'Maintenance for Life'. About 270 delegates attended the conference held by the Canadian Nuclear Society. The conference consisted of four parallel sessions, a pattern that continued throughout the conference. Papers were grouped under the following headings: Fuel Channels and End Fittings - Assessments; Fuel Channels and End Fittings - Inspections; Fuel Channels and End Fittings - Maintenance; Fuel Channels and End Fittings - Universal Delivery Machine; Water Upgrading; Performance and Plant Life Improvement; Steam Generator Life Management; Steam Generator Modifications; Steam Generators - Inspections; Steam Generators - Assessments; Maintenance Programs; Feeder Inspections; Feeder Assessment and Mitigation; Valve Maintenance; Instrumentation and Control; Inspection Technology; and Fuel Handling

  18. Transmutation of minor actinides in a Candu thorium borner

    International Nuclear Information System (INIS)

    Sahin, S.; Sahin, H. M.; Acir, A.; Yalcin, S.; Yildiz, K.; Sahin, N.; Altinok, T.; Alkan, M.

    2007-01-01

    The paper investigates the prospects of exploitation of rich world thorium reserves in CANDU reactors. Large quantities of plutonium have been accumulated in the nuclear waste of civilian LWRs and CANDU reactors. Reactor grade plutonium can be used as a booster fissile fuel material in form of mixed ThO 2 /PuO 2 fuel in a CANDU fuel bundle in order to assure reactor criticality. Two different fuel compositions have been selected for investigations: 1) 96% thoria (ThO 2 ) + 4% PuO 2 and 2) 91% ThO 2 + 5% UO 2 + 4 PuO 2 . The latter is used for the purpose of denaturing the new 2 33U fuel with 2 38U. The behavior of the criticality k ∞ and the burn-up values of the reactor have been pursued by full power operation for > ∼ 8 years. The reactor starts with k ∞ = ∼ 1.39 and the criticality drops down asymptotically to values k ∞ > 1.06, still tolerable and usable in a CANDU reactor. Reactor criticality k ∞ remains nearly constant between the 4th year and 7th year of plant operation and then a slight increase is observed thereafter, along with a continuous depletion of thorium fuel. After the 2nd year, the CANDU reactor begins to operate practically as a thorium burner. Very high burn up can be achieved with the same fuel (> 160 000 MW.D/MT). The reactor criticality would be sufficient until a great fraction of the thorium fuel is burnt up, provided that the fuel rods could be fabricated to withstand such high burn up levels. Fuel fabrication costs and nuclear waste mass for final disposal per unit energy could be reduced drastically. There is a great quantity of weapon grade plutonium accumulated in nuclear stockpiles. In the second phase of investigations, weapon grade plutonium is used as a booster fissile fuel material in form of mixed ThO 2 /PuO 2 fuel in a CANDU fuel bundle in order to assure the initial criticality at startup. Two different fuel compositions have been used: 1) 97% thoria (ThO 2 ) + 3% PuO 2 and 2) 92% ThO 2 + 5% UO 2 + 3% PuO 2 . The

  19. Neutronic parameters calculations of a CANDU reactor

    International Nuclear Information System (INIS)

    Zamonsky, G.

    1991-01-01

    Neutronic calculations that reproduce in a simplified way some aspects of a CANDU reactor design were performed. Starting from some prefixed reactor parameters, cylindrical and uniform iron adjuster rods were designed. An appropriate refueling scheme was established, defininig in a 2 zones model their dimensions and exit burnups. The calculations have been done using the codes WIMS-D4 (cell), SNOD (reactivity device simulations) and PUMA (reactor). Comparing with similar calculations done with codes and models usually employed for CANDU design, it is concluded that the models and methods used are appropriate. (Author) [es

  20. Used fuel packing plant for CANDU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Menzies, I.; Thayer, B.; Bains, N., E-mail: imenzies@atsautomation.com [ATS Automation, Cambridge, ON (Canada); Murchison, A., E-mail: amurchison@nwmo.ca [NWMO, Toronto, ON (Canada)

    2015-07-01

    Large forgings have been selected to containerize Light Water Reactor used nuclear fuel. CANDU fuel, which is significantly smaller in size, allows novel approaches for containerization. For example, by utilizing commercially available extruded ASME pipe a conceptual design of a Used Fuel Packing Plant for containerization of used CANDU fuel in a long lived metallic container has been developed. The design adopts a modular approach with multiple independent work cells to transfer and containerize the used fuel. Based on current technologies and concepts from proven industrial systems, the Used Fuel Packing Plant can assemble twelve used fuel containers per day considering conservative levels of process availability. (author)

  1. Homogeneous Thorium Fuel Cycles in Candu Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, B.; Dyck, G.R.; Edwards, G.W.R.; Magill, M. [Chalk River Laboratories, Atomic Energy of Canada Limited (Canada)

    2009-06-15

    The CANDU{sup R} reactor has an unsurpassed degree of fuel-cycle flexibility, as a consequence of its fuel-channel design, excellent neutron economy, on-power refueling, and simple fuel bundle [1]. These features facilitate the introduction and full exploitation of thorium fuel cycles in Candu reactors in an evolutionary fashion. Because thorium itself does not contain a fissile isotope, neutrons must be provided by adding a fissile material, either within or outside of the thorium-based fuel. Those same Candu features that provide fuel-cycle flexibility also make possible many thorium fuel-cycle options. Various thorium fuel cycles can be categorized by the type and geometry of the added fissile material. The simplest of these fuel cycles are based on homogeneous thorium fuel designs, where the fissile material is mixed uniformly with the fertile thorium. These fuel cycles can be competitive in resource utilization with the best uranium-based fuel cycles, while building up a 'mine' of U-233 in the spent fuel, for possible recycle in thermal reactors. When U-233 is recycled from the spent fuel, thorium-based fuel cycles in Candu reactors can provide substantial improvements in the efficiency of energy production from existing fissile resources. The fissile component driving the initial fuel could be enriched uranium, plutonium, or uranium-233. Many different thorium fuel cycle options have been studied at AECL [2,3]. This paper presents the results of recent homogeneous thorium fuel cycle calculations using plutonium and enriched uranium as driver fuels, with and without U-233 recycle. High and low burnup cases have been investigated for both the once-through and U-233 recycle cases. CANDU{sup R} is a registered trademark of Atomic Energy of Canada Limited (AECL). 1. Boczar, P.G. 'Candu Fuel-Cycle Vision', Presented at IAEA Technical Committee Meeting on 'Fuel Cycle Options for LWRs and HWRs', 1998 April 28 - May 01, also Atomic Energy

  2. Second harmonic generation microscopy differentiates collagen type I and type III in COPD

    Science.gov (United States)

    Suzuki, Masaru; Kayra, Damian; Elliott, W. Mark; Hogg, James C.; Abraham, Thomas

    2012-03-01

    The structural remodeling of extracellular matrix proteins in peripheral lung region is an important feature in chronic obstructive pulmonary disease (COPD). Multiphoton microscopy is capable of inducing specific second harmonic generation (SHG) signal from non-centrosymmetric structural proteins such as fibrillar collagens. In this study, SHG microscopy was used to examine structural remodeling of the fibrillar collagens in human lungs undergoing emphysematous destruction (n=2). The SHG signals originating from these diseased lung thin sections from base to apex (n=16) were captured simultaneously in both forward and backward directions. We found that the SHG images detected in the forward direction showed well-developed and well-structured thick collagen fibers while the SHG images detected in the backward direction showed striking different morphological features which included the diffused pattern of forward detected structures plus other forms of collagen structures. Comparison of these images with the wellestablished immunohistochemical staining indicated that the structures detected in the forward direction are primarily the thick collagen type I fibers and the structures identified in the backward direction are diffusive structures of forward detected collagen type I plus collagen type III. In conclusion, we here demonstrate the feasibility of SHG microscopy in differentiating fibrillar collagen subtypes and understanding their remodeling in diseased lung tissues.

  3. Establishment of Safety Analysis System and Technology for CANDU Reactors

    International Nuclear Information System (INIS)

    Park, Joo Hwan; Rhee, B. W.; Min, B. J.; Kim, H. T.; Kim, W. Y.; Yoon, C.; Chun, J. S.; Cho, M. S.; Jeong, J. Y.; Kang, H. S.

    2007-06-01

    The following 4 research items have been studied to establish a CANDU safety analysis system and to develop the relevant elementary technology for CANDU reactors. First, to improve and validate the CANDU design and operational safety analysis codes, the CANDU physics cell code WIMS-CANDU was improved, and validated, and an analysis of the moderator subcooling and pressure tube integrity has been performed for the large break LOCAs without ECCS. Also a CATHENA model and a CFD model for a post-blowdown fuel channel analysis have been developed and validated against two high temperature thermal-chemical experiments, CS28-1 and 2. Second, to improve the integrated operating system of the CANDU safety analysis codes, an extension has been made to them to include the core and fuel accident analyses, and a web-based CANDU database, CANTHIS version 2.0 was completed. Third, to assess the applicability of the ACR-7 safety analysis methodology to CANDU-6 the ACR-7 safety analysis methods were reviewed and the safety analysis methods of ACR-7 applicable to CANDU-6 were recommended. Last, to supplement and improve the existing CANDU safety analysis procedures, detailed analysis procedures have been prepared for individual accident scenarios. The results of this study can be used to resolve the CANDU safety issues, to improve the current design and operational safety analysis codes, and to technically support the Wolsong site to resolve their problems

  4. CANDU 6 - the highly successful medium sized reactor

    International Nuclear Information System (INIS)

    Hedges, K. R.; Allen, P. J.; Hopwood, J. M.

    2000-01-01

    The CANDU 6 Pressurized Heavy Water Reactor system, featuring horizontal fuel channels and heavy water moderator continues to evolve, supported by AECL's strong commitment to comprehensive R and D programs. The initial CANDU 6 design started in the 1970's. The first plants went into service in 1983, and the latest version of the plant is under construction in China. With each plant the technology has evolved giving the dual advantages of proveness and modern technology. CANDU 6 delivers important advantages of the CANDU system with benefit to small and medium-sized grids. This technology has been successfully adopted by, and localized to varying extents in, each of the CANDU 6 markets. For example, all CANDU owners obtain their fuel from domestic suppliers. Progressive CANDU development continues at AECL to enhance this medium size product CANDU 6. There are three key CANDU development strategic thrusts: improved economics, fuel cycle flexibility, and enhanced safety. The CANDU 6 product is also enhanced by incorporating improvements and advanced features that will be arising from our CANDU Technology R and D programs in areas such as heavy water and tritium, control and instrumentation, fuel and fuel cycles, systems and equipment and safety and constructability. (author)

  5. CANDU flexible and economical fuel technology in China

    Energy Technology Data Exchange (ETDEWEB)

    Mingjun, C. [CNNC Nuclear Power Operation Management Co., Zhejiang (China); Zhenhua, Z.; Zhiliang, M. [CNNC Third Qinshan Nuclear Power Co., Zhejiang (China); Cottrell, C.M.; Kuran, S. [Candu Energy Inc., Mississauga, ON (Canada)

    2014-07-01

    Use in CANDU reactor is one good option of recycled uranium (RU) and thorium (Th) resource. It is also good economy to CANDU fuel. Since 2008 Qinshan CANDU Plant and our partners (Candu Energy and CNNC and NPIC) have made great efforts to develop the engineering technologies of Flexible and Economical Fuel (RU and Th) in CANDU type reactor and finding the CANDU's position in Chinese closed fuel cycle (CFC) system. This paper presents a proposal of developing strategy and implementation plan. Qinshan CANDU reactors will be converted to use recycled and depleted uranium based fuels, a first-of-its-kind. The fuel is composed of both recycled and depleted uranium and simulating natural uranium behavior. This paper discusses its development, design, manufacture and verification tested with success and the full core implementation plan by the end of 2014. (author)

  6. CANDU-9/480-SEU fuel handling system assessment document

    International Nuclear Information System (INIS)

    Hwang, Jeong Ki; Jo, C. H.; Kim, H. M.; Morikawa, D. T.

    1996-11-01

    This report summarize the rationale for the CANDU 9 fuel handling system, and the design choices recommended for components of the system. Some of the design requirements applicable to the CANDU 9 480-SEU fuel handling design choices are described. These requirements imposed by the CANDU 9 project. And the design features for the key components of fuel handling system, such as the fuelling machine, the carriage, the new fuel transfer system and the irradiated fuel transfer system, are described. The carriage seismic load evaluations relevant to the design are contained in the appendices. The majority of the carriage components are acceptable, or will likely be acceptable with some redesign. The concept for the CANDU 9 fuel handling system is based on proven CANDU designs, or on improved CANDU technology. Although some development work must be done, the fuel handling concept is judged to be feasible for the CANDU 9 480-SEU reactor. (author). 2 refs

  7. Development of modern CANDU PHWR cross-section libraries for SCALE

    International Nuclear Information System (INIS)

    Shoman, Nathan T.; Skutnik, Steven E.

    2016-01-01

    Highlights: • New ORIGEN libraries for CANDU 28 and 37-element fuel assemblies have been created. • These new reactor data libraries are based on modern ENDF/B-VII.0 cross-section data. • The updated CANDU data libraries show good agreement with radiochemical assay data. • Eu-154 overestimated when using ENDF-VII.0 due to a lower thermal capture cross-section. - Abstract: A new set of SCALE fuel lattice models have been developed for the 28-element and 37-element CANDU fuel assembly designs using modern cross-section data from ENDF-B/VII.0 in order to produce new reactor data libraries for SCALE/ORIGEN depletion analyses. These new libraries are intended to provide users with a convenient means of evaluating depletion of CANDU fuel assemblies using ORIGEN through pre-generated cross sections based on SCALE lattice physics calculations. The performance of the new CANDU ORIGEN libraries in depletion analysis benchmarks to radiochemical assay data were compared to the previous version of the CANDU libraries provided with SCALE (based on WIMS-AECL models). Benchmark comparisons with available radiochemical assay data indicate that the new cross-section libraries perform well at matching major actinide species (U/Pu), which are generally within 1–4% of experimental values. The library also showed similar or better results over the WIMS-AECL library regarding fission product species and minor actinoids (Np, Am, and Cm). However, a notable exception was in calculated inventories of "1"5"4Eu and "1"5"5Eu, where the new library employing modern nuclear data (ENDF/B-VII.0) performed substantially poorer than the previous WIMS-AECL library (which used ENDF-B/VI.8 cross-sections for these species). The cause for this discrepancy appears to be due to differences in the "1"5"4Eu thermal capture cross-section between ENDF/B-VI.8 and ENDF/B-VII.0, an effect which is exacerbated by the highly thermalized flux of a CANDU heavy water reactor compared to that of a typical

  8. Enhancement of safety analysis reliability for a CANDU-6 reactor using RELAP-CANDU/SCAN coupled code system

    International Nuclear Information System (INIS)

    Kim, Man Woong; Choi, Yong Seog; Sin, Chul; Kim, Hyun Koon; Kim, Hho Jung; Hwang, Su Hyun; Hong, In Seob; Kim, Chang Hyo

    2005-01-01

    In LOCA analysis of the CANDU reactor, the system thermal-hydraulic code, RELAP-CANDU, alone cannot predict the transient behavior accurately. Therefore, the best estimate neutronics and system thermal-hydraulic coupled code system is necessary to describe the transient behavior with higher accuracy and reliability. To perform on-line calculation of safety analysis for CANDU reactor, a coupled thermal hydraulics-neutronics code system was developed in such a way that the best-estimate thermal-hydraulic system code for CANDU reactor, RELAP-CANDU, is coupled with the full three-dimensional reactor core kinetic code

  9. Modernization of the NESTLE-CANDU reactor simulator and coupling to scale-processed cross sections

    International Nuclear Information System (INIS)

    Hart, S.; Maldonado, G.I.

    2012-01-01

    The original version of the NESTLE computer code for CANDU applications, herein referred as the NESTLE-CANDU or NESTLE-C program, was developed under sponsorship by the CNSC as a “stand-alone” program. In fact, NESTLE-C emerged from the original version of NESTLE, applicable to light water reactors, which was written in FORTRAN 77 to solve the few-group neutron diffusion equation utilizing the Nodal Expansion Method (NEM). Accordingly, NESTLE-C can solve the eigenvalue (criticality); eigenvalue adjoint; external fixed-source or eigenvalue initiated transient problems for CANDU reactor fuel arrangements and geometries. This article reports a recent conversion of the NESTLE-C code to the Fortran 90 standard, in addition, we highlight other code updates carried out to modularize and modernize NESTLE-C in a manner consistent with the latest updates performed with the parent NESTLE code for light water reactor (LWR) applications. Also reported herein, is a simulation of a CANDU reactor employing 37-element fuel bundles, which was carried out to highlight the SCALE to NESTLE-C coupling developed for two-group collapsed and bundle homogenized cross-section generation. The results presented are consistent with corresponding simulations that employed HELIOS generated cross-sections. (author)

  10. Modernization of the NESTLE-CANDU reactor simulator and coupling to scale-processed cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Hart, S.; Maldonado, G.I. [Univ. of Tennessee, Knoxville, Tennessee (United States)

    2012-07-01

    The original version of the NESTLE computer code for CANDU applications, herein referred as the NESTLE-CANDU or NESTLE-C program, was developed under sponsorship by the CNSC as a “stand-alone” program. In fact, NESTLE-C emerged from the original version of NESTLE, applicable to light water reactors, which was written in FORTRAN 77 to solve the few-group neutron diffusion equation utilizing the Nodal Expansion Method (NEM). Accordingly, NESTLE-C can solve the eigenvalue (criticality); eigenvalue adjoint; external fixed-source or eigenvalue initiated transient problems for CANDU reactor fuel arrangements and geometries. This article reports a recent conversion of the NESTLE-C code to the Fortran 90 standard, in addition, we highlight other code updates carried out to modularize and modernize NESTLE-C in a manner consistent with the latest updates performed with the parent NESTLE code for light water reactor (LWR) applications. Also reported herein, is a simulation of a CANDU reactor employing 37-element fuel bundles, which was carried out to highlight the SCALE to NESTLE-C coupling developed for two-group collapsed and bundle homogenized cross-section generation. The results presented are consistent with corresponding simulations that employed HELIOS generated cross-sections. (author)

  11. Generation of type III solar radio bursts: the role of induced scattering of plasma waves by ions

    International Nuclear Information System (INIS)

    Levin, B.N.; Lerner, A.M.; Rapoport, V.O.

    1984-01-01

    The plasma waves in type III solar radio-burst sources might have a spectrum which can explain why, in the quasilinear burst generation model, nonlinear scattering of the waves by ions is so weak. The agent exciting a burst would travel through the corona at velocities limited to a definite range

  12. Gas Generation from K East Basin Sludges and Irradiated Metallic Uranium Fuel Particles Series III Testing

    International Nuclear Information System (INIS)

    Schmidt, Andrew J.; Delegard, Calvin H.; Bryan, Samuel A.; Elmore, Monte R.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

    2003-01-01

    The path forward for managing of Hanford K Basin sludge calls for it to be packaged, shipped, and stored at T Plant until final processing at a future date. An important consideration for the design and cost of retrieval, transportation, and storage systems is the potential for heat and gas generation through oxidation reactions between uranium metal and water. This report, the third in a series (Series III), describes work performed at the Pacific Northwest National Laboratory (PNNL) to assess corrosion and gas generation from irradiated metallic uranium particles (fuel particles) with and without K Basin sludge addition. The testing described in this report consisted of 12 tests. In 10 of the tests, 4.3 to 26.4 g of fuel particles of selected size distribution were placed into 60- or 800-ml reaction vessels with 0 to 100 g settled sludge. In another test, a single 3.72-g fuel fragment (i.e., 7150-mm particle) was placed in a 60 ml reaction vessel with no added sludge. The twelfth test contained only sludge. The fuel particles were prepared by crushing archived coupons (samples) from an irradiated metallic uranium fuel element. After loading the sludge materials (whether fuel particles, mixtures of fuel particles and sludge, or sludge-only) into reaction vessels, the solids were covered with an excess of K Basin water, the vessels closed and connected to a gas measurement manifold, and the vessels back-flushed with inert neon cover gas. The vessels were then heated to a constant temperature. The gas pressures and temperatures were monitored continuously from the times the vessels were purged. Gas samples were collected at various times during the tests, and the samples analyzed by mass spectrometry. Data on the reaction rates of uranium metal fuel particles with water as a function of temperature and particle size were generated. The data were compared with published studies on metallic uranium corrosion kinetics. The effects of an intimate overlying sludge layer

  13. CANDU 9 operator plant display system

    International Nuclear Information System (INIS)

    Trueman, R.; Webster, A.; MacBeth, M.J.

    1997-01-01

    To meet evolving client and regulatory needs, AECL has adopted an evolutionary approach to the design of the CANDU 9 control centre. That is, the design incorporates feedback from existing stations, reflects the growing diversity in the roles and responsibilities of the operating staff, and reduces costs associated with plant capital and operations, maintenance and administration (OM and A), through the appropriate introduction of new technologies. Underlying this approach is a refined engineering design process that cost-effectively integrates operational feedback and human factors engineering to define the operating staff information and information presentation requirements. Based on this approach, the CANDU 9 control centre will provide utility operating staff with the means to achieve improved operations and reduced OM and A costs. One of the design features that will contribute to the improved operational capabilities of the control centre is a new Plant Display System (PDS) that is separate from the digital control system. The PDS will be used to implement non-safety panel, and console video display systems within the CANDU 9 main control room (MCR). This paper presents a detailed description of the CANDU 9 Plant Display System and features that provide increased operational capabilities. (author)

  14. CANDU 6 probabilistic safety study summary

    International Nuclear Information System (INIS)

    1988-07-01

    This report summarizes the methodology, phenomenology and results relevent to the assessment of severe events in a CANDU 6 (formerly designated CANDU 600) station. The station design being analysed is based on a CANDU 6 Mark I currently operating in Canada. This evaluation includes event frequency and fission product release assessments but does not include assessment of radiation dose to the public, so that the information is equivalent to a level 2 Probabilistic Risk Assessment (PRA). The study has shown that the predicted overall average frequency for core melt in a CANDU 6 Mark I is 4.4 x 10 -6 events/year. This low frequency is, in large part due to the heavy water moderator which acts as a heat sink, prevents UO 2 melting and maintains core geometry for many events which could otherwise result in a core melt. The consequences for most core melts will be limited to the release of a fraction of noble gases and organic iodides. Other isotopes will be condensed or dissolved in the containment atmosphere and are ultimately retained in the pool of water in the basement where they are unavailable for release. Most core melts (∼ 90%) can be mitigated by operator action so that there is no danger of consequential damage to the containment structure and leak tightness. The frequency and consequences of less likely, more severe core melt sequences are also discussed in this report and shown to be small contributors to public risk

  15. 3D CAD ON Qinshan CANDU project

    International Nuclear Information System (INIS)

    Goland, D.

    2000-01-01

    This paper briefly describe AECL's work in applying computer-aided engineering tools to the Qinshan CANDU project. The main thrust of this paper is to introduce the major CAD software tools and their use in civil design, process design and EI and C design. Other special software tools and non-CAD tools and their applications are also briefly introduced. (author)

  16. CANDU fuel : design/manufacturing interaction

    International Nuclear Information System (INIS)

    Graham, N.A.

    1999-01-01

    The design of CANDU fuel has been the product of intense cooperation among fuel designers and fuel manufacturers. The developments of some of the novel processes in fuel manufacture are outlined. These include the brazed-split-spacer design, the resistance welded endcap and CANLUB coatings. (author)

  17. Exporting apocalypse: CANDU reactors and nuclear proliferation

    International Nuclear Information System (INIS)

    McKay, Paul.

    The author believes that the peaceful use of nuclear technology leads inevitably to the production of nuclear weapons, and that CANDU reactors are being bought by countries that are likely to build bombs. He states that exports of reactors and nuclear materials cannot be defended and must be stopped

  18. Wet steam turbines for CANDU-Reactors

    International Nuclear Information System (INIS)

    Westmacott, C.H.L.

    1977-01-01

    The technical characteristics of 4 wet steam turbine aggregates used in the Pickering nuclear power station are reported on along with operational experience. So far, the general experience was positive. Furthermore, plans are mentioned to use this type of turbines in other CANDU reactors. (UA) [de

  19. Boiling water reactor with innovative safety concept: The Generation III+ SWR-1000

    Energy Technology Data Exchange (ETDEWEB)

    Stosic, Zoran V. [AREVA NP GmbH, Koldestr. 16, 91052 Erlangen (Germany)], E-mail: Zoran.Stosic@areva.com; Brettschuh, Werner; Stoll, Uwe [AREVA NP GmbH, Koldestr. 16, 91052 Erlangen (Germany)

    2008-08-15

    AREVA NP has developed an innovative boiling water reactor (BWR) SWR-1000 in close cooperation with German nuclear utilities and with support from various European partners. This Generation III+ reactor design marks a new era in the successful tradition of BWR and, with a net electrical output of approximately 1250 MWe, is aimed at ensuring competitive power generating costs compared to gas and coal fired stations. It is particularly suitable for countries whose power networks cannot facilitate large power plants. At the same time, the SWR-1000 meets the highest safety standards, including control of core melt accidents. These objectives are met by supplementing active safety systems with passive safety equipment of various designs for accident detection and control and by simplifying systems needed for normal plant operation on the basis of past operating experience. The plant is also protected against airplane crash loads. The functional capabilities and capacities of all new systems and components were successfully tested under realistic and conservative boundary conditions in large-scale test facilities in Finland, Switzerland and Germany. In general, the SWR-1000 design is based on well-proven analytical codes and design tools validated for BWR applications through recalculation of relevant experiments and independent licensing activities performed by authorities or their experts. The overview of used analytical codes and design tools as well as performed experimental validation programs is presented. Effective implementation of passive safety systems is demonstrated through the numerical simulation of transients and loss of coolant accidents (LOCAs) as well as through analytical simulation of a severe accident associated with the core melt. In the LOCA simulation presented the existing active core flooding systems were not used for emergency control: only passive systems were relevant for the analyses. Despite this - no core heat-up occurred. In the case of

  20. Future CANDU nuclear power plant design requirements document executive summary

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; S. A. Usmani

    1996-03-01

    The future CANDU Requirements Document (FCRED) describes a clear and complete statement of utility requirements for the next generation of CANDU nuclear power plants including those in Korea. The requirements are based on proven technology of PHWR experience and are intended to be consistent with those specified in the current international requirement documents. Furthermore, these integrated set of design requirements, incorporate utility input to the extent currently available and assure a simple, robust and more forgiving design that enhances the performance and safety. The FCRED addresses the entire plant, including the nuclear steam supply system and the balance of the plant, up to the interface with the utility grid at the distribution side of the circuit breakers which connect the switchyard to the transmission lines. Requirements for processing of low level radioactive waste at the plant site and spent fuel storage requirements are included in the FCRED. Off-site waste disposal is beyond the scope of the FCRED. 2 tabs., 1 fig. (Author) .new

  1. Improving CANDU annunciation - Current R and D and future directions

    International Nuclear Information System (INIS)

    Lupton, L.R.; Feher, M.P.; Davey, E.C.; Guo, K.Q.; Bhuiyan, S.H.

    1994-01-01

    Annunciation is used to ensure that control room staff are promptly alerted to important changes in plant conditions that may impact on safety and production goals. We are carrying out research and development to improve CANDU annunciation, in partnership with Canadian CANDU utility and design organizations. The main goal is to solve the ''information overload'' problem that occurs during major plant upsets, while providing operators with annunciation information needed to prevent, mitigate, and accommodate plant disturbances. To data, a set of annunciation concepts has been developed based on operational needs in a complex supervisory control environment. A prototype annunciation system has been developed and demonstrated with Point Lepreau Generating Station operations staff. Preliminary evaluations show that the system has the potential to solve many of the current problems associated with upset management. Further evaluation of this system is planned for 1994/95. This paper summarizes the project, including the current status, lessons learned to data, future directions of the research, and implementation by plants. (author). 9 refs, 3 figs, 1 tab

  2. Assessment of CANDU-6 reactivity devices for DUPIC fuel

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Choi, Hang Bok

    1998-11-01

    Reactivity device characteristics for a CANDU 6 reactor loaded with DUPIC fuel have been assessed. The lattice parameters were generated by WIMS-AECL code and the core calculations were performed by RFSP code with a 3-dimensional full core model. The reactivity devices studied are the zone controller, adjusters, mechanical control absorber and shutoff rods. For the zone controller system, damping capability for spatial oscillation was investigated. For the adjusters, the restart capability was investigated. For the adjusters, the restart capability was investigated. The shin operation and power stepback calculation were also performed to confirm the compatibility of the current adjuster system. The mechanical control absorber was assessed for the function of compensating temperature reactivity feedback following a power reduction. And shutoff rods were also assessed to investigate the following a power reduction. And shutoff rods were also assessed to investigate the static reactivity worth. This study has shown that the current reactivity device system of CANDU-6 core with the DUPIC fuel. (author). 9 refs., 17 tabs., 7 figs

  3. Severe Accident R and D for Enhanced CANDU-6 Reactors

    International Nuclear Information System (INIS)

    Nitheanandan, Thambiayah

    2012-01-01

    CANDU reactors possess a number of inherent of inherent and designed safety features that make them resistant to core damage accidents. The unique feature is the low temperature moderator surrounding the fuel channels, which can serve as an alternate heat sink. The fuel is surrounded by three water systems: heavy water primary coolant, heavy water moderator, and light water calandria vault and shield water. In addition, the liquid inventory in the steam generators is a fourth indirect heat sink, able to cool the primary coolant. The water inventories in the emergency core cooling system and the reserve water tank at the dome of the containment can also provide fuel cooling and water makeup to prevent severe core damage or mitigate the consequences of a severe core damage accident. An assessment of the adequacy of the existing severe accident knowledge base, to confidently perform consequence analyses for the Enhanced CANDU-6 reactor in compliance with regulatory requirements, was recently completed. The assessment relied on systematic Phenomena Identification and Ranking Tables (PIRT) studies completed domestically and internationally. The assessment recommends cost-effective R and D to mitigate the consequences of severe accidents and associated risk vulnerabilities

  4. CANDU: Meeting the demand for energy self-sufficiency

    International Nuclear Information System (INIS)

    Lawson, D.S.

    1985-01-01

    The success of the CANDU program can been seen quickly by examining the comparison of typical electricity bills in various provinces of Canada. The provinces of Quebec and Manitoba benefit b extensive hydro electric schemes, many of which were constructed years ago at low capital cost. In Ontario, the economic growth has outstripped these low cost sources of hydro power and hence the province has to rely on thermal sources of electricity generation. The success of the CANDU program is shown by the fact that it can contribute over a third of electricity in Ontario while keeping the total electricity rate comparable with that of those provinces that can rely on low cost hydro sources. Energy self-sufficiency encompasses a spectrum of requirements. One consideration would be the reliable supply and control of fuel during the operating life of a power plant: A greater degree of self-sufficiency would be obtained by having an involvement in the building and engineering of the power plant prior to its operation

  5. Emergency core cooling strainers-the Candu experience

    International Nuclear Information System (INIS)

    Eyvindson, A.; Rhodes, D.; Carson, P.; Makdessi, G.

    2004-01-01

    The Canadian nuclear industry, including Atomic Energy of Canada Limited (AECL) and the four nuclear utilities (New Brunswick Power, Hydro-Quebec, Ontario Power Generation and Bruce Power) have been heavily involved in strainer clogging issues since the late 1990's. A substantial knowledge base has been obtained with support from various organisations, including the CANDU Owners Group (COG), AECL and the CANDU utilities. Work has included debris assessments at specific stations, debris characterisation, transport, head loss measurements across strainers, head loss models and investigations into paints and coatings. Much of this work was performed at AECL's Chalk River Laboratories and has been used to customize strainer solutions for several CANDU (PWR-type) stations. This paper summarises the CANDU experience, describing problems encountered and lessons learned from strainer implementation at stations. Between 1999 and 2003, AECL supplied strainers to six different CANDU stations, representing 12 units with a total power output of approximately 8.2 GWe. Each station had unique needs with respect to layout, effective area, allowable head loss and installation schedule. Challenges at various sites included installation in a covered trench with single-point access, allowing for field adjustments to accommodate large variations in floor level and pump suction location, on-power installation, very high levels of particulate relative to fibrous debris, and relatively low allowable head loss. The following are key points to consider during any station assessment or strainer implementation: - a realistic testing model and method is essential for accurate predictions of head loss, and the limits of the model must be understood; - assessment of station debris must be sufficiently conservative to overcome uncertainties in debris generation and transport models; - appropriate and reliable data (e.g. flow rate, layout, size of test model, method of debris generation and

  6. CANDU fuel behaviour under LOCA conditions

    International Nuclear Information System (INIS)

    Kohn, E.

    1989-07-01

    This report summarizes the current understanding of CANDU fuel-element behaviour under loss-of-coolant (LOCA) accidents. It focuses on a key in-reactor verification experiment conducted at Idaho National Engineering Laboratory (INEL) and on three Canadian in-reactor tests. The in-reactor data, and the considerable body of supporting information developed from out-reactor tests, support the general conclusion that CANDU fuel behaviour during LOCA transients is well understood. Four elements of 37-element CANDU fuel-bundle design were tested under conditions typical of a large-break LOCA blowdown in a CANDU reactor. The purpose of the test was to confirm our current understanding of fuel behaviour under loss-of-coolant accident blowdown conditions. The test also provided data for comparison with predictions made with the steady-state and transient fuel-element performance codes ELESIM and ELOCA. Key components of typical LOCA transients were incorporated in the test: namely, a rapid depressurization rate of the hot coolant, a simultaneous power increase before decreasing to decay values (a power pulse), and prototype fuel element under pre-transient power and burnup conditions. The test was successfully completed in the Power Burst Facility (PBF) reactor at INEL under contract to Ontario Hydro and AECL. The three CANDU Owners Group LOCA tests performed at Chalk River Nuclear Laboratories measured both the thermal-mechanical response and fission-gas release resulting from exposure to a LOCA transient. Results from these three tests provided further confirmation that the behaviour of the fuel under LOCA conditions is understood

  7. Candu reactors with thorium fuel cycles

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Fehrenbach, P.; Duffey, R.; Kuran, S.; Ivanco, M.; Dyck, G.R.; Chan, P.S.W.; Tyagi, A.K.; Mancuso, C.

    2006-01-01

    Over the last decade and a half AECL has established a strong record of delivering CANDU 6 nuclear power plants on time and at budget. Inherently flexible features of the CANDU type reactors, such as on-power fuelling, high neutron economy, fuel channel based heat transport system, simple fuel bundle configuration, two independent shut down systems, a cool moderator and a defence-in-depth based safety philosophy provides an evolutionary path to further improvements in design. The immediate milestone on this path is the Advanced CANDU ReactorTM** (ACRTM**), in the form of the ACR-1000TM**. This effort is being followed by the Super Critical Water Reactor (SCWR) design that will allow water-cooled reactors to attain high efficiencies by increasing the coolant temperature above 550 0 C. Adaptability of the CANDU design to different fuel cycles is another technology advantage that offers an additional avenue for design evolution. Thorium is one of the potential fuels for future reactors due to relative abundance, neutronics advantage as a fertile material in thermal reactors and proliferation resistance. The Thorium fuel cycle is also of interest to China, India, and Turkey due to local abundance that can ensure sustainable energy independence over the long term. AECL has performed an assessment of both CANDU 6 and ACR-1000 designs to identify systems, components, safety features and operational processes that may need to be modified to replace the NU or SEU fuel cycles with one based on Thorium. The paper reviews some of these requirements and the associated practical design solutions. These modifications can either be incorporated into the design prior to construction or, for currently operational reactors, during a refurbishment outage. In parallel with reactor modifications, various Thorium fuel cycles, either based on mixed bundles (homogeneous) or mixed channels (heterogeneous) have been assessed for technical and economic viability. Potential applications of a

  8. III-Nitride Membranes for Thermal Bio-Sensing and Solar Hydrogen Generation

    KAUST Repository

    Elafandy, Rami T.

    2017-01-01

    demonstrate the versatility of III-nitride membranes where we develop a thermal bio-sensor nanomembrane and solar energy photo-anode membrane. First, we present a novel preparation technique of nanomembranes with new characteristics; having no threading

  9. CYP-450 isoenzymes catalyze the generation of hazardous aromatic amines after reaction with the azo dye Sudan III.

    Science.gov (United States)

    Zanoni, Thalita Boldrin; Lizier, Thiago M; Assis, Marilda das Dores; Zanoni, Maria Valnice B; de Oliveira, Danielle Palma

    2013-07-01

    This work describes the mutagenic response of Sudan III, an adulterant food dye, using Salmonella typhimurium assay and the generation of hazardous aromatic amines after different oxidation methods of this azo dye. For that, we used metabolic activation by S9, catalytic oxidation by ironporphyrin and electrochemistry oxidation in order to simulate endogenous oxidation conditions. The oxidation reactions promoted discoloration from 65% to 95% of Sudan III at 1 × 10(-4)molL(-1) and generation of 7.6 × 10(-7)molL(-1) to 0.31 × 10(-4)molL(-1) of aniline, o-anisidine, 2-methoxi-5-methylaniline, 4-aminobiphenyl, 4,4'-oxydianiline; 4,4'-diaminodiphenylmethane and 2,6-dimethylaniline. The results were confirmed by LC-MS-MS experiments. We also correlate the mutagenic effects of Sudan III using S. typhimurium with the strain TA1535 in the presence of exogenous metabolic activation (S9) with the metabolization products of this compound. Our findings clearly indicate that aromatic amines are formed due to oxidative reactions that can be promoted by hepatic cells, after the ingestion of Sudan III. Considering that, the use of azo compounds as food dyestuffs should be carefully controlled. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. ABWR1. A Generation III.7 reactor after the Fukushima Daiichi accident

    International Nuclear Information System (INIS)

    Sato, Takashi; Matsumoto, Keiji; Kurosaki, Toshikazu; Taguchi, Keisuke

    2015-01-01

    iB1350 stands for an innovative, intelligent and inexpensive BWR 1350. It is the first Generation III.7 reactor after the Fukushima Daiichi accident. It has incorporated lessons learned from the Fukushima Daiichi accident and WENRA safety objectives. It has innovative safety to cope with devastating natural disasters including a giant earthquake, a large tsunami and a monster hurricane. The iB1350 can survive passively such devastation and a very prolonged SBO without any support from the outside of a site up to 7 days even preventing core melt. It, however, is based on the well-established proven ABWR design. The NSSS is exactly the same as that of the current ABWR. As for safety design it has a double cylinder RCCV (Mark W containment) and an in-depth hybrid safety system (IDHS). The Mark W containment has double FP confinement barriers and the in-containment filtered venting system (IFVS) that enable passively no emergency evacuation outside the immediate vicinity of the plant for a SA. It has a large volume to hold hydrogen, a core catcher, a passive flooding system and an innovative passive containment cooling system (iPCCS) establishing passively practical elimination of containment failure even in a long term. The IDHS consists of 4 division active safety systems for a DBA, 2 division active safety systems for a SA and built-in passive safety systems (BiPSS) consisting of an isolation condenser (IC) and the iPCCS for a SA. The IC/PCCS pools have enough capacity for 7 day grace period. The IC/PCCS heat exchangers, core and spent fuel pool are enclosed inside the CV building and protected against a large airplane crash. The iB1350 can survive a large airplane crash only by the CV building and the built-in passive safety systems therein. The dome of the CV building consists of a single wall made of steel and concrete composite. This single dome structure facilitates a short-term construction period and cost saving. The CV diameter is smaller than that of most

  11. Subchannel analysis code development for CANDU fuel channel

    International Nuclear Information System (INIS)

    Park, J. H.; Suk, H. C.; Jun, J. S.; Oh, D. J.; Hwang, D. H.; Yoo, Y. J.

    1998-07-01

    Since there are several subchannel codes such as COBRA and TORC codes for a PWR fuel channel but not for a CANDU fuel channel in our country, the subchannel analysis code for a CANDU fuel channel was developed for the prediction of flow conditions on the subchannels, for the accurate assessment of the thermal margin, the effect of appendages, and radial/axial power profile of fuel bundles on flow conditions and CHF and so on. In order to develop the subchannel analysis code for a CANDU fuel channel, subchannel analysis methodology and its applicability/pertinence for a fuel channel were reviewed from the CANDU fuel channel point of view. Several thermalhydraulic and numerical models for the subchannel analysis on a CANDU fuel channel were developed. The experimental data of the CANDU fuel channel were collected, analyzed and used for validation of a subchannel analysis code developed in this work. (author). 11 refs., 3 tabs., 50 figs

  12. Analysis of Reasons for fluctuation in seal oil system on generator and countermeasures in Qinshan phase III project

    International Nuclear Information System (INIS)

    Jin Xiaodong

    2012-01-01

    Reasons for hydraulic differential fluctuations seal hydrogen oil on generator in Qinshan phase III project were analyzed, provide a basis for modifying Run method is to determine the causes and effects of seal oil flow changes and in the relationship between flow changes and hydraulic differential hydrogen oil changes according to reason Results were analyzed to adjust the running test, to verify the feasibility of running adjustment programs

  13. Assessment of neutron transport codes for application to CANDU fuel lattices analysis

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Choi, Hang Bok

    1999-08-01

    In order to assess the applicability of WIMS-AECL and HELIOS code to the CANDU fuel lattice analysis, the physics calculations has been carried out for the standard CANDU fuel and DUPIC fuel lattices, and the results were compared with those of Monte Carlo code MCNP-4B. In this study, in order to consider the full isotopic composition and the temperature effect, new MCNP libraries have been generated from ENDF/B-VI release 3 and validated for typical benchmark problems. The TRX-1,2,BAPL-1,2,3 pin -cell lattices and KENO criticality safety benchmark calculations have been performed for the new MCNP libraries, and the results have shown that the new MCNP library has sufficient accuracy to be used for physics calculation. Then, the lattice codes have been benchmarked by the MCNP code for the major physics parameters such as the burnup reactivity, void reactivity, relative pin power and Doppler coefficient, etc. for the standard CANDU fuel and DUPIC fuel lattices. For the standard CANDU fuel lattice, it was found that the results of WIMS-AECL calculations are consistent with those of MCNP. For the DUPIC fuel lattice, however, the results of WIMS-AECL calculations with ENDF/B-V library have shown that the discrepancy from the results of MCNP calculations increases when the fuel burnup is relatively high. The burnup reactivities of WIMS-ACEL calculations with ENDF/B-VI library have shown excellent agreements with those of MCNP calculation for both the standard CANDU and DUPIC fuel lattices. However, the Doppler coefficient have relatively large discrepancies compared with MCNP calculations, and the difference increases as the fuel burns. On the other hand, the results of HELIOS calculation are consistent with those of MCNP even though the discrepancy is slightly larger compared with the case of the standard CANDU fuel lattice. this study has shown that the WIMS-AECL products reliable results for the natural uranium fuel. However, it is recommended that the WIMS

  14. Operator-generated command language for computer control of Doublet III

    International Nuclear Information System (INIS)

    Drobnis, D.; Petersen, P.

    1982-02-01

    The Control System for Doublet III consists of a medium-sized minicomputer system, with several keyboards and color alphanumeric CRTs for interactive operator interface to a large distributed CAMAC I/O system. Under normal operating conditions, however, all of the sequential and decision-making operations necessary to prepare each tokamak shot are performed directly by the computer, executing a set of Procedures coded in a convenient command language. Most of these Procedures have been developed by the Doublet III operators themselves, and are maintained, altered, and augmented as required without programmer attention. In effect, the Procedures have become a high-level tokamak Command Language

  15. Candu 600 fuelling machine testing, the romanian experience

    International Nuclear Information System (INIS)

    Valeca, S.; Doca, C.; Iorga, C.

    2013-01-01

    The Candu 600 Fuelling Machine is a complex mechanism which must run in safety conditions and with high reliability in the Candu Reactor. The testing and commissioning process of this nuclear equipment meets the high standards of NPPs requirements using special technological facilities, modern measurement instruments as well the appropriate IT resources for data acquisition and processing. The paper presents the experience of the Institute for Nuclear Research Pitesti, Romania, in testing Candu 600 Fuelling Machines, inclusive the implied facilities, and in development of four simulators: two dedicated for the training of the Candu 600 Fuelling Machine Operators, and another two to simulate some process signals and actions. (authors)

  16. Validation of WIMS-CANDU using Pin-Cell Lattices

    International Nuclear Information System (INIS)

    Kim, Won Young; Min, Byung Joo; Park, Joo Hwan

    2006-01-01

    The WIMS-CANDU is a lattice code which has a depletion capability for the analysis of reactor physics problems related to a design and safety. The WIMS-CANDU code has been developed from the WIMSD5B, a version of the WIMS code released from the OECD/NEA data bank in 1998. The lattice code POWDERPUFS-V (PPV) has been used for the physics design and analysis of a natural uranium fuel for the CANDU reactor. However since the application of PPV is limited to a fresh fuel due to its empirical correlations, the WIMS-AECL code has been developed by AECL to substitute the PPV. Also, the WIMS-CANDU code is being developed to perform the physics analysis of the present operating CANDU reactors as a replacement of PPV. As one of the developing work of WIMS-CANDU, the U 238 absorption cross-section in the nuclear data library of WIMS-CANDU was updated and WIMS-CANDU was validated using the benchmark problems for pin-cell lattices such as TRX-1, TRX-2, Bapl-1, Bapl-2 and Bapl-3. The results by the WIMS-CANDU and the WIMS-AECL were compared with the experimental data

  17. Heavy water cycle in the CANDU reactor

    International Nuclear Information System (INIS)

    Nanis, R.

    2000-01-01

    Hydrogen atom has two isotopes: deuterium 1 H 2 and tritium 1 H 3 . The deuterium oxide D 2 O is called heavy water due to its density of 1105.2 Kg/m 3 . Another important physical property of the heavy water is the low neutron capture section, suitable to moderate the neutrons into natural uranium fission reactor as CANDU. Due to the fact that into this reactor the fuel is cooled into the pressure tubes surrounded by a moderator, the usage of D 2 O as primary heat transport (PHT) agent is mandatory. Therefore a large amount of heavy water (approx. 500 tons) is used in a CANDU reactor. Being a costly resource - it represents 20% of the initial plant capital cost, D 2 O management is required to preserve it. (author)

  18. CANDU fuel cycles - present and future

    International Nuclear Information System (INIS)

    Mooradian, A.J.

    1976-05-01

    The present commercially proven Canadian nuclear power system is based on a once-through natural uranium fuel cycle characterized by high uranium utilization and a high conversion efficiency. The cycle closes with secure retrievable storage of spent fuel. This cycle is based on a CANDU reactor concept which is now well understood. Both active and passive fuel storage options have been investigated and will be described in this paper. Future development of the CANDU system is focussed on conservation of uranium by plutonium and thorium recycle. The full exploitation of these options requires continued emphasis on neutron conservation, efficiency of extraction and fuel refabrication processes. The results of recent studies are discussed in this paper. (author)

  19. Moderator heat recovery of CANDU reactors

    International Nuclear Information System (INIS)

    Fath, H.E.S.; Ahmed, S.T.

    1986-01-01

    A moderator heat recovery scheme is proposed for CANDU reactors. The proposed circuit utilizes all the moderator heat to the first stages of the plant feedwater heating system. CANDU-600 reactors are considered with moderator heat load varying from 120 to 160 MWsub(th), and moderator outlet temperature (from calandria) varying from 80 to 100 0 C. The steam saved from the turbine extraction system was found to produce an additional electric power ranging from 5 to 11 MW. This additional power represents a 0.7-1.7% increase in the plant electric output power and a 0.2-0.7% increase in the plant thermal efficiency. The outstanding features and advantages of the proposed scheme are presented. (author)

  20. Technical specifications and performance of CANDU fuel

    International Nuclear Information System (INIS)

    Sejnoha, R.

    1997-01-01

    The relations between Technical Specifications and fuel performance are discussed in terms of design limits and margins. The excellent performance record of CANDU reactor fuel demonstrates that the fuel design defined in the Technical Specifications (and with it other components of the procurement cycle, such as fuel manufacturing), satisfy the requirements. New requirements, changing conditions of fuel application and accumulating experience make periodic updates of the Technical Specifications necessary. Under the CANDU Owners Group (COG) Working Party 9, a Work Package has been conducted to support the review of the Specifications and the documentation of the rationales for their requirements. So far, the review has been completed for 4 Specifications: 1 for Zircaloy tubing, and 3 for uranium dioxide powder. It is planned to complete the review of all 11 currently used specifications by 1999. The paper summarizes the results achieved to mid 1997. (author)

  1. Operating performance of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Cheadle, B.A.; Price, E.G.

    1989-04-01

    The performance of Zircaloy-2 and Zr-2.5 Nb pressure tubes in CANDU reactors is reviewed. The accelerated hydriding of Zircaloy-2 in reducing water chemistries can lower the toughness of this material and it is essential that defect-initiating phenomena, such as hydride blister formation from pressure tube to calandria tube contact, be prevented. Zr-2.5 Nb pressure tubes are performing well with low rates of hydrogen pick-up and good retention of material properties

  2. iB1350 no.1. A generation III.7 reactor after the Fukushima Daiichi accident

    International Nuclear Information System (INIS)

    Sato, Takashi; Matsumoto, Keiji; Hosomi, Kenji; Kojima, Yoshihiro; Taguchi, Keisuke

    2017-01-01

    iB1350 stands for an innovative, intelligent and inexpensive BWR 1350. It is the first generation III.7 reactor after the Fukushima Daiichi accident. It has incorporated lessons learned from the Fukushima Daiichi accident and WENRA safety objectives. It has innovative safety to cope with devastating natural disasters including a giant earthquake, a large tsunami and a monster hurricane. The iB1350 can survive passively such devastation and a very prolonged SBO without any support from the outside of a site up to 7 days even preventing core melt. It, however, is based on the well-established proven ABWR design. The NSSS is exactly the same as that of the current ABWR. As for safety design, it has a double cylinder RCCV (Mark W containment) and in-depth hybrid safety systems (IDHS). The Mark W containment has double FP confinement barriers and the in-containment filtered venting system (IFVS) that enable passively no emergency evacuation outside the immediate vicinity of the plant for a SA. It has a large volume to hold hydrogen, an innovative core catcher (iCC), a passive flooding system and an innovative passive containment cooling system (iPCCS) establishing passively practical elimination of containment failure even in a long term. The IDHS consists of 4 division active safety systems for a DBA, 2 division active safety systems for a SA and built-in passive safety systems (BiPSS) consisting of an isolation condenser (IC) and the iPCCS for a SA. While the conventional PCCS can never cool the S/P, the iPCCS can automatically cool the S/P directly even in a DBA LOCA. That makes it possible for the iB1350 to optimize the active safety systems for a DBA. Sato came up with several optimized configurations of the IDHS that are expected to achieve further cost reduction and enhance its reliability resulting from passive feature of the iPCCS. The IC/iPCCS pool has enough capacity for 7 day grace period. The IC/iPCCS heat exchangers, the core and the spent fuel pool are

  3. CANDU reactor core simulations using fully coupled DRAGON and DONJON calculations

    International Nuclear Information System (INIS)

    Varin, E.; Marleau, G.

    2006-01-01

    The operating CANDU-6 reactors are refueled on-power to compensate for the reactivity loss due to fuel burnup. In order to predict the core behavior, fuel bundle burnups and local parameter information need to be tracked. The history-based approach has been developed to follow local parameter as well as history effect in CANDU reactors. The finite reactor diffusion code DONJON and the lattice code DRAGON have been coupled to perform reactor follow-up calculations using a history-based approach. A coupled methodology that manages the transfer of information between standard DONJON and DRAGON data structures has been developed. Push-through refueling can be taken into account directly in cell calculations. Using actual on-site information, an isotopic core content database has been generated with coupled DONJON and DRAGON calculations. Moreover calculations have been performed for different local parameters. Results are compared with those obtained using standard cross section generation approaches

  4. The water chemistry of CANDU PHW reactors

    International Nuclear Information System (INIS)

    LeSurf, J.E.

    1978-01-01

    This review will discuss the chemistry of the three major water circuits in a CANDU-PHW reactor, viz., the Primary Heat Transport (PHT) water, the moderator and the boiler water. An important consideration for the PHT chemistry is the control of corrosion and of the transport of corrosion products to minimize the growth of radiation fields. In new reactors the PHT will be allowed to boil, requiring reconsideration of the methods used to radiolytic oxygen and elevate the pH. Separation of the moderator from the PHT in the pressure-tubed CANDU design permits better optimization of the chemistry of each system, avoiding the compromises necessary when the same water serves both functions. Major objectives in moderator chemistry are to control (a) the radiolytic decomposition of D 2 0; (b) the concentration of soluble neutron poisons added to adjust reactivity; and (c) the chemistry of shutdown systems. The boiler water and its feed water are treated to avoid boiler tube corrosion, both during normal operation and when perturbations are caused to the feed by, for example, leaks in the condenser tubes which permit ingress of untreated condenser cooling water. Development of a system for automatic analysis and control of feed water to give rapid, reliable response to abnormal conditions is a novel feature which has been developed for incorporation in future CANDU-PHW reactors. (author)

  5. Tritium inventory prediction in a CANDU plant

    International Nuclear Information System (INIS)

    Song, M.J.; Son, S.H.; Jang, C.H.

    1995-01-01

    The flow of tritium in a CANDU nuclear power plant was modeled to predict tritium activity build-up. Predictions were generally in good agreement with field measurements for the period 1983--1994. Fractional contributions of coolant and moderator systems to the environmental tritium release were calculated by least square analysis using field data from the Wolsong plant. From the analysis, it was found that: (1) about 94% of tritiated heavy water loss came from the coolant system; (2) however, about 64% of environmental tritium release came from the moderator system. Predictions of environmental tritium release were also in good agreement with field data from a few other CANDU plants. The model was used to calculate future tritium build-up and environmental tritium release at Wolsong site, Korea, where one unit is operating and three more units are under construction. The model predicts the tritium inventory at Wolsong site to increase steadily until it reaches the maximum of 66.3 MCi in the year 2026. The model also predicts the tritium release rate to reach a maximum of 79 KCi/yr in the year 2012. To reduce the tritium inventory at Wolsong site, construction of a tritium removal facility (TRF) is under consideration. The maximum needed TRF capacity of 8.7 MCi/yr was calculated to maintain tritium concentration effectively in CANDU reactors

  6. Coolability of severely degraded CANDU cores

    International Nuclear Information System (INIS)

    Meneley, D.A.; Blahnik, C.; Rogers, J.T.; Snell, V.G.; Mijhawan, S.

    1995-07-01

    Analytical and experimental studies have shown that the separately cooled moderator in a CANDU reactor provides an effective heat sink in the event of a loss-of-coolant accident (LOCA) accompanied by total failure of the emergency core cooling system (ECCS). The moderator heat sink prevents fuel melting and maintains the integrity of the fuel channels, therefore terminating this severe accident short of severe core damage. Nevertheless, there is a probability, however low, that the moderator heat sink could fail in such an accident. The pioneering work of Rogers (1984) for such a severe accident using simplified models showed that the fuel channels would fail and a bed of dry, solid debris would be formed at the bottom of the calandria which would heat up and eventually melt. However, the molten pool of core material would be retained in the calandria vessel, cooled by the independently cooled shield-tank water, and would eventually re solidify. Thus, the calandria vessel would act inherently as a core-catcher as long as the shield tank integrity is maintained. The present paper reviews subsequent work on the damage to a CANDU core under severe accident conditions and describes an empirically based mechanistic model of this process. It is shown that, for such severe accident sequences in a CANDU reactor, the end state following core disassembly consists of a porous bed of dry solid, coarse debris, irrespective of the initiating event and the core disassembly process. (author). 48 refs., 3 tabs., 18 figs

  7. Coolability of severely degraded CANDU cores. Revised

    International Nuclear Information System (INIS)

    Meneley, D.A.; Blahnik, C.; Rogers, J.T.; Snell, V.G.; Nijhawan, S.

    1996-01-01

    Analytical and experimental studies have shown that the separately cooled moderator in a CANDU reactor provides an effective heat sink in the event of a loss-of-coolant accident (LOCA) accompanied by total failure of the emergency core cooling system (ECCS). The moderator heat sink prevents fuel melting and maintains the integrity of the fuel channels, therefore terminating this severe accident short of severe core damage. Nevertheless, there is a probability, however low, that the moderator heat sink could fail in such an accident. The pioneering work of Rogers (1984) for such a severe accident using simplified models showed that the fuel channels would fail and a bed of dry, solid debris would be formed at the bottom of the calandria which would heat up and eventually melt. However, the molten pool of core material would be retained in the calandria vessel, cooled by the independently cooled shield-tank water, and would eventually resolidify. Thus, the calandria vessel would act inherently as a 'core-catcher' as long as the shield tank integrity is maintained. The present paper reviews subsequent work on the damage to a CANDU core under severe accident conditions and describes an empirically based mechanistic model of this process. It is shown that, for such severe accident sequences in a CANDU reactor, the end state following core disassembly consists of a porous bed of dry solid, coarse debris, irrespective of the initiating event and the core disassembly process. (author)

  8. New flux detectors for CANDU 6 reactors

    International Nuclear Information System (INIS)

    Cuttler, J.M.; Medak, N.

    1992-06-01

    CANDU reactors utilize large numbers of in-core self-powered detectors for control and protection. In the original design, the detectors (coaxial cables) were wound on carrier tubes and immersed in the heavy water moderator. Failures occurred due to corrosion and other factors, and replacement was very costly because the assemblies were not designed with maintenance in mind. A new design was conceived based on straight detectors, of larger diameter, in a sealed package of individual 'well' tubes. This protected the detectors from hostile environments and enabled individual failed sensors to be replaced by inserting spares in vacant neighbouring tubes. The new design was made retrofittable to older CANDU reactors. Provision was made for on-line scanning of the core with a miniature fission chamber. The modified detectors were tested in a lengthy development program and found to exhibit superior performance to that of the original detectors. Most of the CANDU reactors have now adopted the new design. In the case of the Gentilly-2 and Point Lepreau reactors, advantage was taken of the opportunity to redesign the detector layout (using better codes and the increased flexibility in positioning detectors) to achieve better coverage of abnormal events, leading to higher trip setpoints and wider operating margins

  9. Firebird-III program description

    International Nuclear Information System (INIS)

    Lin, M.R.; Prawirosochardjo, S.; Rennick, D.F.; Wessman, E.; Blain, R.J.D.; Wilson, J.M.

    1979-09-01

    The FIREBIRD-III digital computer program is a general network code developed primarily for predicting the thermalhydraulic behaviour of CANDU power reactors during a postulated loss-of-coolant accident and the subsequent emergency coolant injection. Because of its flexibility, the code can also be used to solve a large variety of general two-phase flow problems. This report describes the thermalhydraulic models and the computation methods used in the program

  10. The 2nd international conference on CANDU maintenance. Proceedings

    International Nuclear Information System (INIS)

    1992-01-01

    The conference mainly dealt with all aspects of the maintenance of CANDU power plants, but also included some papers on PWR plants, one on a coal-burning station, and one on robotics for fusion. Volume 1 includes sessions on the following topics: Plenary, Human performance, Maintenance planning and resourcing, Life cycle management, Maintenance cost evaluation and control, Use of special teams, Innovative maintenance techniques, Remote tooling, Reactivity maintenance, Reactor maintenance, Steam generator experience. Out of 34 papers listed under these sessions, one was published as an appendix to Vol. 2, two were published only as loose papers in a virtual supplement, and nine were not published in the proceedings at all. The individual papers have been abstracted separately

  11. Thermal gradients caused by the CANDU moderator circulation

    International Nuclear Information System (INIS)

    Mohindra, V.K.; Vartolomei, M.A.; Scharfenberg, R.

    2008-01-01

    The heavy water moderator circulation system of a CANDU reactor, maintains calandria moderator temperature at power-dependent design values. The temperature differentials between the moderator and the cooler heavy water entering the calandria generate thermal gradients in the reflector and moderator. The resultant small changes in thermal neutron population are detected by the out-of-core ion chambers as small, continuous fluctuations of the Log Rate signals. The impact of the thermal gradients on the frequency of the High Log Rate fluctuations and their amplitude is relatively more pronounced for Bruce A as compared to Bruce B reactors. The root cause of the Log Rate fluctuations was investigated using Bruce Power operating plant information data and the results of the investigation support the interpretation based on the thermal gradient phenomenon. (author)

  12. In-situ optical profilometry of CANDU fuel channels

    International Nuclear Information System (INIS)

    Jarvis, G.N.; Cornblum, E.O.; Grabish, M.G.

    1996-01-01

    Detailed knowledge of flaw geometry is crucial in the stress analysis of flaws found in the thin-walled Zirconium alloy pressure tubes of CANDU reactors. While ultrasonic inspection can provide much of the required data, the measurement of the sharpness, or root-radius, at the bottom of a flaw has not so far been possible in-situ. This paper will describe the application of optical profilometry techniques, to measure directly the depth and root-radius of open inside-surface flaws, within a flooded reactor pressure tube. The tool uses a rad-tolerant television camera, custom optics and light stripe generators to collect digitized image data from three different views of a flaw. Software has been developed to manage the collection of the image data and provide a full range of display and automated analysis options. The tool has recently been used successfully to measure fretting flaws in the 100--250 micron deep range

  13. Weapons grade plutonium disposition in PWR, CANDU and FR

    International Nuclear Information System (INIS)

    Deplech, M.; Tommasi, J.; Zaetta, A.

    2000-01-01

    In the frame work of the AIDA/MOX phase I/I/ program (1994-1997) between France and Russia, the disposition of plutonium in reactors was studied. The LWR (Light Water Reactor), FR (Fast reactors), CANDU (Heavy Water Reactors), HTR (High Temperature Reactors) options for using excess dismantled weapons plutonium for peaceful commercial nuclear power generating purposes offer some advantages over the remaining options (storage). The AIDA/MOX phase 1 program covers different topics, among which are the neutronic aspects of loading reactors with weapons-grade plutonium. The conclusions are that the weapon plutonium consumption is similar in the different type of reactors. However, the use of inert matrices allows to increase the mass balance for a same denaturing level. The use of Thorium as a matrix or special isotopes to increase the proliferation resistance prove to be insufficient. (author)

  14. Development of fabrication technology for CANDU advanced fuel -Development of the advanced CANDU technology-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Beom; Kim, Hyeong Soo; Kim, Sang Won; Seok, Ho Cheon; Shim, Ki Seop; Byeon, Taek Sang; Jang, Ho Il; Kim, Sang Sik; Choi, Il Kwon; Cho, Dae Sik; Sheo, Seung Won; Lee, Soo Cheol; Kim, Yoon Hoi; Park, Choon Ho; Jeong, Seong Hoon; Kang, Myeong Soo; Park, Kwang Seok; Oh, Hee Kwan; Jang, Hong Seop; Kim, Yang Kon; Shin, Won Cheol; Lee, Do Yeon; Beon, Yeong Cheol; Lee, Sang Uh; Sho, Dal Yeong; Han, Eun Deok; Kim, Bong Soon; Park, Cheol Joo; Lee, Kyu Am; Yeon, Jin Yeong; Choi, Seok Mo; Shon, Jae Moon [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1994-07-01

    The present study is to develop the advanced CANDU fuel fabrication technologies by means of applying the R and D results and experiences gained from localization of mass production technologies of CANDU fuels. The annual portion of this year study includes following: 1. manufacturing of demo-fuel bundles for out-of-pile testing 2. development of technologies for the fabrication and inspection of advanced fuels 3. design and munufacturing of fuel fabrication facilities 4. performance of fundamental studies related to the development of advanced fuel fabrication technology.

  15. Assessment of CANDU feeders subject to flow accelerated corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, S. [Atomic Energy of Canada Ltd., Mississauga, Ontario (Canada); Slade, J.P. [New Brunswick Power, Point Lepreau Generating Station, Lepreau, New Brunswick (Canada)

    2003-07-01

    'Full Text:' Inspections of CANDU feeders have indicated greater than expected wall thinning of outlet feeders. This wall thinning is attributed to Flow-Accelerated Corrosion (FAC). The rate of wall loss due to FAC is highest in the close radius bends near the end fitting. The minimum allowed thickness for a feeder pipes is based on design pressure during the design stage. Extended operation of the thinned feeders beyond their design basis, i.e., operation of feeders with thickness below design pressure based minimum thickness has economic benefits for the utilities. In such cases, it is important to establish the remaining life and evaluate the adequacy of the components for safe operation. ASME Code Case N-597 provides the guidelines for acceptance for continued service of Classes 2 and 3 piping components experiencing wall thinning during operation. However, for Class 1 systems, the Code Case recommends that the owner develop the methodology and criteria for the assessment of wall thinning. Therefore, under the CANDU Owner's Group's (COG) Feeder Integrity Joint Program (FIJP), the 'Fitness for Service Guidelines (FFSG) for Feeders Affected by Wall Thinning in Operating CANDU Reactors' was developed and subsequently conditionally approved by CNSC. This paper illustrates the underlying concepts in the FFSG methodology and its benefits to utilities. Specific examples of the application and benefits of the FFSG at Point Lepreau G.S. are described in this paper. The assessment of feeders is based on the requirements of the construction Code (Section III of the ASME Boiler and Pressure Vessel Code): The following points briefly describe the assessment methodology. Satisfying the requirements of NB-3650 for design and service loadings are sufficient for continued service and extended life if the predicted minimum wall thickness of the component is greater than or equal to 90% of the pressure based thickness calculated as per NB-3641. The B

  16. Development of the Advanced CANDU Reactor control centre

    International Nuclear Information System (INIS)

    Malcolm, S.; Leger, R.

    2004-01-01

    The next generation CANDU control centre is being designed for the Advanced CANDU Reactor (ACR) station. The design is based upon the recent Qinshan control room with further upgrades to meet customer needs with respect to high capacity factor with low Operation, Maintenance and Administration (OM and A) costs. This evolutionary design includes the long proven functionality at several existing CANDU control centres such as the 4-unit station at Darlington, with advanced features made possible by new control and display technology. Additionally, ACR control centres address characteristics resulting from Human Factors Engineering (HFE) analysis of control centre operations in order to further enhance personnel awareness of system and plant status. Statistics show that up to 70% of plant significant events, which have caused plant outages, have a root cause attributable to the human from such sources as complex interfaces, procedures, maintenance and management practices. Consequently, special attention is made for the application of HFE throughout the ACR design process. The design process follows a systematic analytical approach to define operations staff information and information presentation requirements. The resultant human-system interfaces (HSI) such as those for monitoring, annunciation and control information are then verified and validated against the system design requirements to provide a high confidence level that adequate and correct information is being provided in a timely manner to support the necessary operational tasks. The ACR control centre provides plant staff with an improved operability capability due to the combination of systematic design and enhanced operating features. Significant design processes (i.e. development) or design features which contribute to this improved operability, include: Design Process: Project HFE Program Plan - intent, scope, timeliness and interfacing; HFE aspects of design process - procedures and instructions

  17. Development of the advanced CANDU reactor control centre

    International Nuclear Information System (INIS)

    Malcolm, S.; Leger, R.

    2004-01-01

    The next generation CANDU control centre is being designed for the Advanced CANDU Reactor (ACR) station. The design is based upon the recent Qinshan control room with further upgrades to meet customer needs with respect to high capacity factor with low Operation, Maintenance and Administration (OM and A) costs. This evolutionary design includes the long proven functionality at several existing CANDU control centres such as the 4-unit station at Darlington, with advanced features made possible by new control and display technology. Additionally, ACR control centres address characteristics resulting from Human Factors Engineering (HFE) analysis of control centre operations in order to further enhance personnel awareness of system and plant status. Statistics show that up to 70% of plant significant events, which have caused plant outages, have a root cause attributable to the human from such sources as complex interfaces, procedures, maintenance and management practices. Consequently, special attention is made for the application of HFE throughout the ACR design process. The design process follows a systematic analytical approach to define operations staff information and information presentation requirements. The resultant human-system interfaces (HSI) such as those for monitoring, annunciation and control information are then verified and validated against the system design requirements to provide a high confidence level that adequate and correct information is being provided in a timely manner to support the necessary operational tasks. The ACR control centre provides plant staff with an improved operability capability due to the combination of systematic design and enhanced operating features. Significant design processes (i.e. development) or design features which contribute to this improved operability, include: Design Process: Project HFE Program Plan - intent, scope, timeliness and interfacing; HFE aspects of design process - procedures and instructions

  18. Determination of lead by hydride generation inductively coupled plasma mass spectrometry (HG-ICP-MS): On-line generation of plumbane using potassium hexacyanomanganate(III)

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Vedat [Jackson State University, Department of Chemistry and Biochemistry, Jackson, MS 39217 (United States); Erciyes University, Faculty of Pharmacy, Department of Analytical Chemistry, 38039 Kayseri (Turkey); Arslan, Zikri, E-mail: zikri.arslan@jsums.edu [Jackson State University, Department of Chemistry and Biochemistry, Jackson, MS 39217 (United States); Rose, LaKeysha [Jackson State University, Department of Chemistry and Biochemistry, Jackson, MS 39217 (United States)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer Potassium hexacyanomanganate(III), (K{sub 3}Mn(CN){sub 6}, was utilized first time for hydride generation (HG). Black-Right-Pointing-Pointer Hexacyanomanganate(III) promoted generation of lead hydride (PbH{sub 4}) remarkably. Black-Right-Pointing-Pointer The HG method using K{sub 3}Mn(CN){sub 6} enhanced sensitivity by at least 40-fold. Black-Right-Pointing-Pointer The method detection limits for Pb were as low as 8 ng L{sup -1} by ICP-MS. Black-Right-Pointing-Pointer The method is highly suitable for quantitative determination of Pb in various samples and salt matrices by ICP-MS. - Abstract: A hydride generation (HG) procedure has been described for determination of Pb by ICP-MS using potassium hexacyanomanganate(III), K{sub 3}Mn(CN){sub 6}, as an additive to facilitate the generation of plumbane (PbH{sub 4}). Potassium hexacyanomanganate(III) was prepared in acidic medium as it was unstable in water. The stability of hexacyanomanganate(III) was examined in dilute solutions of HCl, HNO{sub 3} and H{sub 2}SO{sub 4}. The solutions prepared in 1% v/v H{sub 2}SO{sub 4} were found to be stable for over a period of 24 h. The least suitable medium was 1% v/v HNO{sub 3}. For generation of plumbane, acidic hexacyanomanganate(III) and sample solutions were mixed on-line along a 5-cm long tygon tubing (1.14 mm i.d.) and then reacted with 2% m/v sodium borohydride (NaBH{sub 4}). A concentration of 0.5% m/v K{sub 3}Mn(CN){sub 6} facilitated the generation of PbH{sub 4} remarkably. In comparison to H{sub 2}SO{sub 4}, HCl provided broader working range for which optimum concentration was 1% v/v. No significant interferences were noted from transition metals and hydride forming elements, up to 0.5 {mu}g mL{sup -1} levels, except Cu which depressed the signals severely. The depressive effects in the presence of 0.1 {mu}g mL{sup -1} Cu were alleviated by increasing the concentration of K{sub 3}Mn(CN){sub 6} to 2% m/v. Under these conditions

  19. On the feasibility of a CANDU PHWR actinide burner

    International Nuclear Information System (INIS)

    Anton, V.

    1995-01-01

    In this work a review of the current solutions to burn the actinide i.e. the spallation method, LWR, FBR, Siemens proposal and inert matrix is presented. Finally, a proposal is made to use the CANDU PHWR for this purpose, taking into account the techniques envisaged for LWR and the prospect of the advanced fuel cycle in CANDU system. (Author) 5 Refs

  20. Modularized construction, structural design and analysis of CANDU 3 plant

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, J K; Wollin, S; Selvadurai, S; Saudy, A M [Atomic Energy of Canada Ltd., Saskatoon, SK (Canada)

    1996-12-31

    CANDU 3 is rated at 450 MW electric, and is a smaller and advanced version of CANDU reactors successfully operating in Canada and abroad. The design uses modularization to minimize the construction schedule and thereby reduce cost. The paper (which is published only as a long summary), deals with the concept of modularization, and with stress analysis of the various civil structures.

  1. An approach to neutronics analysis of candu reactors

    International Nuclear Information System (INIS)

    Gul, S.; Arshad, M.

    1982-12-01

    An attempt is made to tackle the problem of neutronics analysis of CANDU reactors. Until now CANDU reactors have been analysed by the methods developed at AECL and CGE using mainly receipe methods. Relying on multigroup transport codes GAM-GATHER in combination with diffusion code CITATION a package of codes is established to use it for survey as well as production purposes. (authors)

  2. Advanced instrumentation and control systems for CANDU refurbishment

    International Nuclear Information System (INIS)

    Sklyar, V.; Bakhmach, I.; Kharchenko, V.; Andrashov, A.; Baranova, O.

    2011-01-01

    The purpose of the work is to discuss opportunities to modernize I and C systems of CANDU reactors on the base of Radiy's digital safety platform. This paper discusses the following topics: a business model for CANDU, I and C systems refurbishment, FPGA technology issues, comparison of different approaches to refurbish obsolete I and C systems. (author)

  3. Modularized construction, structural design and analysis of CANDU 3 plant

    International Nuclear Information System (INIS)

    Biswas, J.K.; Wollin, S.; Selvadurai, S.; Saudy, A.M.

    1995-01-01

    CANDU 3 is rated at 450 MW electric, and is a smaller and advanced version of CANDU reactors successfully operating in Canada and abroad. The design uses modularization to minimize the construction schedule and thereby reduce cost. The paper (which is published only as a long summary), deals with the concept of modularization, and with stress analysis of the various civil structures

  4. Numerical simulator of the CANDU fueling machine driving desk

    International Nuclear Information System (INIS)

    Doca, Cezar

    2008-01-01

    As a national and European premiere, in the 2003 - 2005 period, at the Institute for Nuclear Research Pitesti two CANDU fueling machine heads, no.4 and no.5, for the Nuclear Power Plant Cernavoda - Unit 2 were successfully tested. To perform the tests of these machines, a special CANDU fueling machine testing rig was built and was (and is) available for this goal. The design of the CANDU fueling machine test rig from the Institute for Nuclear Research Pitesti is a replica of the similar equipment operating in CANDU 6 type nuclear power plants. High technical level of the CANDU fueling machine tests required the using of an efficient data acquisition and processing Computer Control System. The challenging goal was to build a computer system (hardware and software) designed and engineered to control the test and calibration process of these fuel handling machines. The design takes care both of the functionality required to correctly control the CANDU fueling machine and of the additional functionality required to assist the testing process. Both the fueling machine testing rig and staff had successfully assessed by the AECL representatives during two missions. At same the time, at the Institute for Nuclear Research Pitesti was/is developed a numerical simulator for the CANDU fueling machine operators training. The paper presents the numerical simulator - a special PC program (software) which simulates the graphics and the functions and the operations at the main desk of the computer control system. The simulator permits 'to drive' a CANDU fueling machine in two manners: manual or automatic. The numerical simulator is dedicated to the training of operators who operate the CANDU fueling machine in a nuclear power plant with CANDU reactor. (author)

  5. Thermosyphon Phenomenon as an alternate heat sink of Shutdown Cooling System for the CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonghyun [GNEST, Seoul (Korea, Republic of); Lee, Kwangho; Oh, Haechol; Jun, Hwangyong [KEPRI, Taejon (Korea, Republic of)

    2006-07-01

    During the outage(overhaul) of the CANDU plant, there is a period when the coolant is partially drained to the reactor header level and the coolant is cooled and depressurized by Shutdown Cooling System(SDCS) other than PHTS pump. In the postulated accident of the loss of SDCS-the PHTS pump failure, the primary coolant system should be cooled by the alternate heat sink using the thermosyphon pheonomenon(TS) through the steam generator(SG) This study was aimed at verification and analyzing the core cooling ability of the TS. And the sensitivity analysis was done for the number of SGs used in the TS. As an analysis tool, RELAP5/CANDU was used.

  6. Modernization of tritium in air monitoring system for CANDU type NPP

    International Nuclear Information System (INIS)

    Purghel, L.; Iancu, R.; Popescu, M.

    2009-01-01

    Nuclear energy provides at present one third of Europe's electricity with nearly no greenhouse-gas emissions. Sustained efforts are now being conducted to harmonize regulations all over Europe through WENRA and to converge on technical nuclear safety practices within the TSO network ETSON (European Technical Safety Organizations Network). In order to achieve this goals of safety function, IFIN-HH together with CITON developed a new solution to improve the Tritium Monitoring System (TMS) of Cernavoda NPP and the new generation of CANDU type reactors, using Tritium in air Intelligent Monitors (TIM) developed and patented by IFIN-HH. The paper presents a comparative analysis between the technical characteristics of traditional solutions implemented in CANDU type NPP, particularly in Cernavoda NPP Unit 2 and the newly proposed solution. (authors)

  7. Business Case Analysis of the Walter Reed Army Medical Center Medical/Surgical Prime Vendor Generation III Service Level Electron Program

    National Research Council Canada - National Science Library

    Markot, Peter B

    2007-01-01

    ...) staffing and medical/surgical services offered under the Prime Vendor (PV) Generation III contract would provide the best supply chain management solution for Walter Reed Army Medical Center (WRAMC...

  8. Phase II and III the next generation of CLS beamline control and data acquisition systems

    International Nuclear Information System (INIS)

    Matias, E.; Beauregard, D.; Berg, R.; Black, G.; Boots, M.J.; Dolton, W.; Hunter, D.; Igarashi, R.; Liu, D.; Maxwell, D.; Miller, C.D.; Wilson, T.; Wright, G.

    2012-01-01

    The Canadian Light Source (CLS) is nearing the completion of its suite of Phase II Beamlines and in detailed design of its Phase III Beamlines. The paper presents an overview of the overall approach adopted by CLS in the development of beamline control and data acquisition systems. Building on the experience of our first phase of beamlines the CLS has continued to make extensive use of EPICS with EDM and QT based user interfaces. Increasing interpretive languages such as Python are finding a place in the beamline control systems. Web based environment such as ScienceStudio have also found a prominent place in the control system architecture as we move to tighter integration between data acquisition, visualization and data analysis. (authors)

  9. Coolant Void Reactivity Analysis of CANDU Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Su; Lee, Hyun Suk; Tak, Tae Woo; Lee, Deok Jung [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    Models of CANDU-6 and ACR-700 fuel lattices were constructed for a single bundle and 2 by 2 checkerboard to understand the physics related to CVR. Also, a familiar four factor formula was used to predict the specific contributions to reactivity change in order to achieve an understanding of the physics issues related to the CVR. At the same time, because the situation of coolant voiding should bring about a change of neutron behavior, the spectral changes and neutron current were also analyzed. The models of the CANDU- 6 and ACR-700 fuel lattices were constructed using the Monte Carlo code MCNP6 using the ENDF/B-VII.0 continuous energy cross section library based on the specification from AECL. The CANDU fuel lattice was searched through sensitivity studies of each design parameter such as fuel enrichment, fuel pitch, and types of burnable absorber for obtaining better behavior in terms of CVR. Unlike the single channel coolant voiding, the ACR-700 bundle has a positive reactivity change upon 2x2 checkerboard coolant voiding. Because of the new path for neutron moderation, the neutrons from the voided channel move to the no-void channel where they lose energy and come back to the voided channel as thermal neutrons. This phenomenon causes the positive CVR when checkerboard voiding occurs. The sensitivity study revealed the effects of the moderator to fuel volume ratio, fuel enrichment, and burnable absorber on the CVR. A fuel bundle with low moderator to fuel volume ratio and high fuel enrichment can help achieve negative CVR.

  10. Qinshan CANDU commissioning - a successful partnership

    International Nuclear Information System (INIS)

    Alikhan, S.; Thomson, J.; Jun, G.; Guoyuan, J.

    2004-01-01

    The Qinshan CANDU Nuclear Power Plant consists of 2 x 728 MWe CANDU 6 units, built in Zhejiang Province, China, by the Third Qinshan Nuclear Power Company (TQNPC) as the owner and Atomic Energy of Canada Limited (AECL) as the main contractor. The Contract between China National Nuclear Corporation (CNNC) and AECL was signed in November 1996 and became effective on February 12, 1997 with scheduled completion dates of February 12, 2003 for Unit 1 and November 12, 2003 for Unit 2. Unit 1 was declared in-service on December 31, 2002, 43 days ahead of schedule and Unit 2 was declared in service on July 20, 2003, 115 days ahead of schedule. The successful partnership between AECL, Bechtel, Hitachi and TQNPC working as a team is the key to this success. Total commissioning period from first energization of the system service transformer to in-service for both units was 20.7 months, which is significantly better than the experience at other comparable CANDU 6 units. It has clearly demonstrated the benefits of building two units together, about 6 months apart, to achieve optimum utilization of resources already mobilized for the first unit; the second unit is commissioned with less than 40% of the effort required for the first unit. Since in-service to the end of March 2004, Unit 1 has operated at a gross capacity factor of 93% and Unit 2 at 82.5%, including loss of production for one month in August 2003 to repair the failure of turbine LP blades tie-wire. (author)

  11. Structural integrity evaluations of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Radu, Vasile

    2003-01-01

    The core of a CANDU-6 pressurized heavy water reactor consists of some hundred horizontal pressure tubes that are manufactured from a Zr-2.5%Nb alloy and which contain the fuel bundles. These tubes are susceptible to a damaging phenomenon known as Delayed Hydride Cracking (DHC). The Zr-2.5%Nb alloy is susceptible to DHC phenomenon when there is diffusion of hydrogen atoms to a service-induced flaws, followed by the hydride platelets formation on the certain crystallographic planes in the matrix material. Finally, the development of hydride regions at the flaw-tip will happened. These hydride regions are able to fracture under stress-temperature conditions (DHC initiation) and the cracks can extend and grow by DHC mechanism. Some studies have been focused on the potential to initiate DHC at the blunt flaws in a CANDU reactor pressure tube and a methodology for structural integrity evaluation was developed. The methodology based on the Failure Assessment Diagrams (FAD's) consists in an integrated graphical plot, where the fracture failure and plastic collapse are simultaneously evaluated by means of two non-dimensional variables (K r and L r ). These two variables represent the ratio of the applied value of either stress or stress intensity factor and the resistance parameter of corresponding magnitude (yield stress or fracture toughness, respectively). Once the plotting plane is determined by the variables K r and L r , the procedure defines a critical failure line that establishes the safe area. The paper will demonstrate the possibility to perform structural integrity evaluations by means of Failure Assessment Diagrams for flaws occurring in CANDU pressure tubes. (author)

  12. Proof testing of CANDU concrete containment structures

    International Nuclear Information System (INIS)

    Pandey, M.D.

    1996-05-01

    Prior to commissioning of a CANDU reactor, a proof pressure test is required to demonstrate the structural integrity of the containment envelope. The test pressure specified by AECB Regulatory Document R-7 (1991) was selected without a rigorous consideration of uncertainties associated with estimates of accident pressure and conatinment resistance. This study was undertaken to develop a reliability-based philosophy for defining proof testing requirements that are consistent with the current limit states design code for concrete containments (CSA N287.3).It was shown that the upodated probability of failure after a successful test is always less than the original estimate

  13. Leak before break experience in CANDU reactors

    International Nuclear Information System (INIS)

    Price, E.G.; Moan, G.D.; Coleman, C.E.

    1988-04-01

    The paper describes how the requirements for Leak-Before-Break are met in CANDU reactors. The requirements are based on operational and laboratory experience. After the onset of leakage in a fuel channel from a delayed hydride crack, time is available to the operator to take action before the crack grows to an unstable length. The time available is calculated using different models which use crack growth data from small specimen tests. When the results from crack growth behaviour experiments, carried out on components removed from reactor are used in the model, the time available for operator response is about 100 hours

  14. A generalized perturbation program for CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heon; Kim, Jong Kyung [Hanyang University, Seoul (Korea, Republic of); Choi, Hang Bok; Roh, Gyu Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Yang, Won Sik [Chosun University, Kwangju (Korea, Republic of)

    1999-12-31

    A generalized perturbation program has been developed for the purpose of estimating zonal power variation of a CANDU reactor upon refueling operation. The forward and adjoint calculation modules of RFSP code were used to construct the generalized perturbation program. The numerical algorithm for the generalized adjoint flux calculation was verified by comparing the zone power estimates upon refueling with those of forward calculation. It was, however, noticed that the truncation error from the iteration process of the generalized adjoint flux is not negligible. 2 refs., 1 figs., 1 tab. (Author)

  15. Improved containment isolation for CANDU plants

    Energy Technology Data Exchange (ETDEWEB)

    Stretch, A H [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1996-12-31

    The publication of Regulatory Policy Statement R- 7 in February 1991 by the Atomic Energy Control Board imposes new requirement for the isolation of fluid piping penetrating the containment boundary. The Appendix of R-7 describes the detailed requirements for metal extensions of the containment envelope, including the code classification qf the pressure retaining portions and isolation requirements for fluid piping and tubing.The application of these new requirements to the existing CANDU 6 design resulted in a number of design changes, including the addition of manual and automatic isolation valves, changes in code classification, and leakage monitoring considerations. (author). 3 refs., 3 figs.

  16. A generalized perturbation program for CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heon; Kim, Jong Kyung [Hanyang University, Seoul (Korea, Republic of); Choi, Hang Bok; Roh, Gyu Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Yang, Won Sik [Chosun University, Kwangju (Korea, Republic of)

    1998-12-31

    A generalized perturbation program has been developed for the purpose of estimating zonal power variation of a CANDU reactor upon refueling operation. The forward and adjoint calculation modules of RFSP code were used to construct the generalized perturbation program. The numerical algorithm for the generalized adjoint flux calculation was verified by comparing the zone power estimates upon refueling with those of forward calculation. It was, however, noticed that the truncation error from the iteration process of the generalized adjoint flux is not negligible. 2 refs., 1 figs., 1 tab. (Author)

  17. Development of the advanced CANDU technology

    International Nuclear Information System (INIS)

    Suk, Soo Dong; Min, Byung Joo; Na, Y. H.; Lee, S. Y.; Choi, J. H.; Lee, B. C.; Kim, S. N.; Jo, C. H.; Paik, J. S.; On, M. R.; Park, H. S.; Kim, S. R.

    1997-07-01

    The purpose of this study is to develop the advanced design technology to improve safety, operability and economy and to develop and advanced safety evaluation system. More realistic and reasonable methodology and modeling was employed to improve safety margin in containment analysis. Various efforts have been made to verify the CATHENA code which is the major safety analysis code for CANDU PHWR system. Fully computerized prototype ECCS was developed. The feasibility study and conceptual design of the distributed digital control system have been performed as well. The core characteristics of advanced fuel cycle, fuel management and power upgrade have been studied to determine the advanced core. (author). 77 refs., 51 tabs., 108 figs

  18. Decommissioning of the CANDU-PHW reactor

    International Nuclear Information System (INIS)

    Unsworth, G.N.

    1977-04-01

    This report contains the results of a study of various aspects of decommissioning of reactors. The study places in perspective the size of the job, the hazards involved, the cost and the environmental impact. The three internationally agreed ''stages'' of decommissioning, namely, mothballing, entombment, and dismantling are defined and discussed. The single unit 600 MW(e) CANDU is chosen as the type of reactor on which the discussion is focussed but the conclusions reached will provide a basis for judgement of the costs and problems associated with decommissioning reactors of other sizes and types. (author)

  19. Development of the advanced CANDU technology

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Soo Dong; Min, Byung Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Na, Y H; Lee, S Y; Choi, J H; Lee, B C; Kim, S N; Jo, C H; Paik, J S; On, M R; Park, H S; Kim, S R [Korea Electric Power Co., Taejon (Korea, Republic of)

    1997-07-01

    The purpose of this study is to develop the advanced design technology to improve safety, operability and economy and to develop and advanced safety evaluation system. More realistic and reasonable methodology and modeling was employed to improve safety margin in containment analysis. Various efforts have been made to verify the CATHENA code which is the major safety analysis code for CANDU PHWR system. Fully computerized prototype ECCS was developed. The feasibility study and conceptual design of the distributed digital control system have been performed as well. The core characteristics of advanced fuel cycle, fuel management and power upgrade have been studied to determine the advanced core. (author). 77 refs., 51 tabs., 108 figs.

  20. Decontamination of CANDU primary coolant system

    International Nuclear Information System (INIS)

    Pettit, P.J.

    1975-01-01

    Decontamination of radioactive systems is necessary to reduce personnel radiation exposures and also to reduce exposure during special work. Mechanical decontamination methods are sometimes useful, but most contaminated surfaces are inaccessible, so chemical decontamination often is preferred. The A-P Citrox method will remove most contaminants from CANDU systems, but is costly and long, damages components, and produces large quantities of radioactive liquid waste. The Redox cycling process is fast and inexpensive, produces only solid wastes, but removes small quantities of deposit from Monel only. The CAN-DECON process removes deposits from most materials including fuel cladding and has many other advantages. (author)

  1. Dynamic behaviour of CANDU reactor

    International Nuclear Information System (INIS)

    Subramanian, M.G.; Srikantiah, G.; Pai, M.A.

    1976-01-01

    Understanding of the dynamic behaviour of a reactor system in a power station is essential for evolving control stragies as well as design modifications. The dynamic behaviour of Rajasthan Atomic Power Station is studied. Mathematical models for the reactor, the steam generator and the steam drum with the natural circulation loop are developed from physical principles like conservation of mass, momentum and energy. Each of these models is then simulated on a digital computer to obtain the characteristics during transients. The models are then combined to yield a dynamic mathematical model of the system comprising the reactor, the steam generator and the steam drum and this results in a nonlinear model. Using this model, responses of the system for various disturbances like step change in the area of the steam valve, step change in the temperature of feed water are obtained and are discussed. These models could be used to devise new control laws using optimal control theory or to evaluate the performance of existing control schemes. (author)

  2. Development of thermal hydraulic evaluation code for CANDU reactors

    International Nuclear Information System (INIS)

    Kim, Man Woong; Yu, Seon Oh; Choi, Yong Seog; Shin, Chull; Hwang, Soo Hyun

    2004-02-01

    To enhance the safety of operating CANDU reactors, the establishment of the safety analysis codes system for CANDU reactors is in progress. As for the development of thermal-hydraulic analysis code for CANDU system, the studies for improvement of evaluation model inside RELAP/CANDU code and the development of safety assessment methodology for GSI (Generic Safety Issues) are in progress as a part of establishment of CANDU safety assessment system. To develop the 3-D thermal-hydraulic analysis code for moderator system, the CFD models for analyzing the CANDU-6 moderator circulation are developed. One model uses a structured grid system with the porous media approach for the 380 Calandria tubes in the core region. The other uses a unstructured grid system on the real geometry of 380 Calandria tubes, so that the detailed fluid flow between the Calandria tubes can be observed. As to the development of thermal-hydraulic analysis code for containment, the study on the applicability of CONTAIN 2.0 code to a CANDU containment was conducted and a simulation of the thermal-hydraulic phenomena during the accident was performed. Besides, the model comparison of ESFs (Engineered Safety Features) inside CONTAIN 2.0 code and PRESCON code has also conducted

  3. R and D in support of CANDU plant life management

    International Nuclear Information System (INIS)

    Tapping, R.L.; Holt, R.A.

    1999-01-01

    One of the keys to the long-term success of CANDUs is a high capacity factor over the station design life. Considerable R and D in underway at AECL to develop technologies for assessing, monitoring and mitigating the effect of plant ageing and for improving plant performance and extending plant life. To achieve longer service life and to realize high capacity factor from CANDU stations, AECL is developing new technologies to enhance fuel channel and steam generator inspection capabilities, to monitor system health, and to allow preventive maintenance and cleaning (e.g., on-line chemical cleaning processes that produce small volumes of wastes). The life management strategy for fuel channels and steam generators requires a program to inspect components on a routine basis to identify mechanisms that could potentially affect fitness-for-service. In the case of fuel channels, the strategy includes inspections for dimensional changes, flaw detection, and deuterium concentration. New techniques are been developed to enhance these inspection capabilities; examples include accurate measurement of the gap between a pressure tube and its calandria tube and rapid full-length inspections of steam generator tubes for all known flaw types. Central to life management of components are Fitness-for-Service Guidelines (FFSG) that have been developed with the CANDU Owners Group (COG) that provide a standardized method to assess the potential for propagation of flaws detected during in-service inspections, and assessment of any change in fracture characteristics of the material. FFSG continue to be improved with the development of new technologies such as the capability to credit relaxation of stresses due to creep and non-rejectable flaws in pressure tubes. Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that system health is continually monitored and managed. AECL has developed a system Health Monitor

  4. Capability evaluation of Eddy current and ultrasonic in-service inspections of steam generator tubes. A status report of PISC III Action 5

    International Nuclear Information System (INIS)

    Bieth, M.; Birac, C.; Comby, R.

    1998-01-01

    Document summarizes the PISC III (Programme for the Inspection of Steel Components) report No. 41, full description of the PISC III Action 5 on Steam Generator Tubes Inspection, containing all details and final conclusions which are still to be approved by the PISC III Management Board. The report was prepared by the reference laboratory of PISC under guidance and with continuous contribution of the members of the Data Analysis Group (DAG) of this PISC III. There were several procedures which demonstrated good detection capability of major flaws in typical locations of the steam generator. Conclusions of the exercise indicate that capability demonstration is necessary to qualify in service inspection procedures for steam generator tubes

  5. 9th International conference on CANDU maintenance

    International Nuclear Information System (INIS)

    2011-01-01

    The 9th International Conference on CANDU Maintenance was held in Toronto, Ontario, Canada on December 4-6, 2011. The conference focused on Nuclear plant reliability and maintenance. Equipment reliability is a critical factor in achieving safe and reliable Nuclear Power Plant operations for many reasons. For one it reduces the challenges upon the operating staff and allows station personnel to 'go on the offence' instead of having to play defense in a reactive mode. Plant reliability ensures that there is time to study the issues in detail and develop solutions for long-term success. Let us not forget that the owner carries the burden of demonstrating the return on investment, and plant reliability goes a long way in helping to make the case for plant life extension. A good reputation for plant reliability provides the public capital necessary to build confidence and facilitate the licensing process. The proceedings papers and presentations given at the 9th International Conference on Candu Maintenance covered topics that include: Managing Worker; Radiation Dose; Full Life Cycle Management; Managing Maintenance Refurbishment; Designing for Maintainability; Inspection Techniques; and, Mitigating Degradation.

  6. Thermal hydraulics of CANDU severe accident analysis

    International Nuclear Information System (INIS)

    Negut, Gheorghe; Catana, Alexandru; Prisecaru, Ilie; Dupleac, Daniel

    2007-01-01

    As interest in severe accident studies has increased in the last years, we have developed a set of simple models to analyze severe accidents in CANDU reactors that should be integrated in the EU codes. The CANDU600 reactor uses natural uranium fuel and heavy water (D 2 O) as both moderator and coolant, with the moderator and coolant in separate systems. We chose to analyze accident development for a LOCA with simultaneous loss of moderator cooling and the loss of emergency core cooling system (ECCS). This type of accident is likely to modify the reactor geometry and will lead to a severe accident development. When the coolant temperatures inside a pressure tube reaches 1000 deg. C, a contact between pressure tube and calandria tube occurs and the residual heat is transferred to the moderator. Due to the lack of cooling, the moderator eventually begins to boil and is expelled, through the calandria vessel relief ducts, into the containment. Therefore the calandria tubes (fuel channels) will be uncovered, then will disintegrate and fall down to the calandria vessel bottom. After all the quantity of moderator is vaporized and expelled, the debris will heat up and eventually boil. The heat accumulated in the molten debris will be transferred through the calandria vessel wall to the shield tank water, which normally surrounds the calandria vessel. The phenomena described above are modelled, analyzed and compared with the available data. The results are encouraging. (authors)

  7. CANDU fuel behaviour under transient conditions

    International Nuclear Information System (INIS)

    Segel, A.W.L.

    1979-04-01

    The Canadian R and D program to understand CANDU fuel behaviour under transient conditions is described. Fuel sheath behaviour studies have led to the development of a model of transient plastic strain in inert gas, which integrates the deformation due to several mechanisms. Verification tests demonstrated that on average the model overpredicts strain by 20%. From oxidation kinetics studies a sheath failure embrittlement criterion based on oxygen distribution has been developed. We have also established a rate equation for high-temperature stress-dependent crack formation due to embrittlement of the sheath by beryllium. An electric, simulated fuel element is being used in laboratory tests to characterize the behaviour of fuel in the horizontal. In-reactor, post-dryout tests have been done for several years. There is an axially-segmented, axisymmetric fuel element model in place and a fully two-dimensional code is under development. Laboratory testing of bundles, in its early stages, deals with the effects of geometric distortion and sheath-to-sheath interaction. In-reactor, post-dryout tests of CANDU fuel bundles with extensive central UO 2 melting did not result in fuel fragmentation nor damage to the pressure tube. (author)

  8. The travesty of discarding used CANDU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ottensmeyer, P. [Univ. of Toronto, Toronto, Ontario (Canada)

    2016-09-15

    The current plan worldwide for virtually all used nuclear fuels is costly deep burial to attempt to isolate their long-term radiotoxicity permanently. Alternatively Canada's 50,000 tons spent CANDU fuel, of which only 0.74% of the heavy atoms have been fissioned to extract their energy, could supply 130 times more non-carbon energy using proven economical recycling and fast-neutron technologies. The result in this country alone would currently be the creation of $74 trillion of reliable electricity on demand without greenhouse gas emissions. It would avoid adding 475 billion tons CO{sub 2} to the atmosphere compared to the use of coal, to mitigate climate change. Worldwide recycling of stored spent nuclear fuel and replenishing with depleted uranium in fast-neutron reactors could avoid emitting over 20 trillion tons CO{sub 2}, or over six times the current total atmospheric CO{sub 2} content. As added bonus the long-term radiotoxicity of the used CANDU fuel is effectively eliminated, making a long-term deep geological repository unnecessary. Even the shorter-lived radioisotope fission products become valuable stable atoms and minerals that would fetch $3 million per ton. Such an alternative is certainly worth pursuing. (author)

  9. Prediction of hydrogen distribution in the reactor building in CANDU6 plant

    International Nuclear Information System (INIS)

    Jin, Y.; Song, Y.

    2008-01-01

    The CANDU plants have a lot of zircaloy. The fuel cladding, calandria tubes and pressure tubes are made of zircaloy. The zircaloy can be oxidized and hydrogen is generated during severe accident progression. The detonation or deflagration to detonation transition (DDT) due to hydrogen combustion may occur if the local hydrogen concentration or global hydrogen concentration exceeds certain value. The detonation may result in the rupture of the reactor building. The inside of the reactor building of CANDU plants is complex. So prediction of hydrogen distribution in the reactor building is important. This prediction is made using ISAAC code and GOTHIC code. ISAAC code partitioned the reactor building in to 7 compartments. GOTHIC code modeled the CANDU6 reactor building using 12 nodes. The hydrogen concentrations in the various compartments in the reactor building are compared. GOTHIC code slightly underpredicts hydrogen concentration in the F/M rooms than ISAAC code, but trend is same. The hydrogen concentration in the boiler room and the moderator room shows almost same as for both codes. (author)

  10. LOCA assessment experiments in a full-elevation, CANDU-typical test facility

    International Nuclear Information System (INIS)

    Ingham, P.J.; McGee, G.R.; Krishnan, V.S.

    1990-01-01

    The RD-14 thermal-hydraulics test facility, located at the Whiteshell Nuclear Research Establishment, is a full-elevation model representative of a CANDU primary heat transport system. The facility is scaled to accommodate a single, full-scale (5.0 MW, 21 kg/s), electrically heated channel per pass. The steam generators, pumps, headers, feeders and heated channels are arranged in a typical CANDU figure-of-eight geometry. The loop has an emergency coolant injection system (ECI) that may be operated in several modes, including typical features of the various ECI systems found in CANDU reactors. A series of experiments has been performed in RD-14 to investigate the thermal-hydraulic behaviour during the blowdown and injection phases of a loss-of-coolant accident (LOCA). The tests were designed to cover a full range of break sizes from feeder-sized breaks to guillotine breaks in either an inlet or an outlet header. Breaks resulting in channel flow stagnation were also investigated. This paper reviews the results of some of the LOCA tests carried out in RD-14, and discusses some of the behaviour observed. Plans for future experiments in a multiple-channel RD-14 facility, modified to contain multiple flow channels, are outlined. (orig.)

  11. Standard compliance - NDE performance demonstration/inspection in the CANDU industry

    International Nuclear Information System (INIS)

    Choi, E.

    2011-01-01

    CANDU nuclear power plants are operated in 3 provinces in Canada for electric power generation. A table in the paper will show the built and operating plants in Ontario, Quebec, New Brunswick and overseas. The regulator for nuclear power in Canada is the Canadian Nuclear Safety Commission (CNSC). The CNSC holds the plant licensees accountable for compliance to CSA N285.4 for periodic inspections. The Standard basically specifies the 'what, when, where, how, how much and how frequently' NDE is to be done on pressure retaining systems and components in CANDU nuclear power plants. In inspection methods, the Standard specifies they must be non-destructive. The NDE methods were grouped into visual, dimensional, surface, volumetric and integrative. The Standard also specifies that the licensees are responsible for the performance demonstration (PD) of the adequacy of the procedures and the proficiency of the personnel. This paper describes the Standard's requirement in NDE qualification and presents a joint project participated by Canadian and overseas CANDU owners. The sub-project for NDE included providing evidence and technical justification on the adequacy of the procedures and the proficiency of the personnel. The paper describes the qualification methodology followed by the participants. This will be followed by how the participants produced Inspection Specification, tools and procedures, personnel training and qualification programs, test and qualification samples, independent peer reviews and Technical Justification. (author)

  12. Some notes on the Timing of Geological Disposal of CANDU Spent Fuels

    International Nuclear Information System (INIS)

    Choi, Heui Joo; Kook, Dong Hak; Choi, Jong Won

    2010-01-01

    CANDU spent fuel is to be disposed of at repository finally rather than recycled because of its low fissile nuclide concentration. But the difficult situation of finding a repository site can not help introducing a interim storage in the short term. It is required to find an optimum timing of geological disposal of CANDU spent fuels related to the interim storage operation period. The major factors for determining the disposal starting time are considered as safety, economics, and public acceptance. Safety factor is compared in terms of the decay heat and non-proliferation. Economics factor is compared from the point of the operation cost, and public acceptance factor is reviewed from the point of retrievability and inter-generation ethics. This paper recommended the best solution for the disposal starting time by analyzing the above factors. It is concluded that the optimum timing for the CANDU spent fuel disposal is around 2041 and that the sooner disposal time, the better from the point of technical and safety aspects.

  13. Optimization and implementation study of plutonium disposition using existing CANDU Reactors. Final report

    International Nuclear Information System (INIS)

    1996-09-01

    Since early 1994, the Department of Energy has been sponsoring studies aimed at evaluating the merits of disposing of surplus US weapons plutonium as Mixed Oxide (MOX) fuel in existing commercial Canadian Pressurized Heavy Water reactors, known as CANDU's. The first report, submitted to DOE in July, 1994 (the 1994 Executive Summary is attached), identified practical and safe options for the consumption of 50 to 100 tons of plutonium in 25 years in some of the existing CANDU reactors operating the Bruce A generating station, on Lake Huron, about 300 km north east of Detroit. By designing the fuel and nuclear performance to operate within existing experience and operating/performance envelope, and by utilizing existing fuel fabrication and transportation facilities and methods, a low cost, low risk method for long term plutonium disposition was developed. In December, 1995, in response to evolving Mission Requirements, the DOE requested a further study of the CANDU option with emphasis on more rapid disposition of the plutonium, and retaining the early start and low risk features of the earlier work. This report is the result of that additional work

  14. Seismic analysis during development stage of CANDU Model 2 fueling machine design

    International Nuclear Information System (INIS)

    Lee, L.S.S.; Mansfield, R.A.

    1989-01-01

    The CANDU Model 3 is a new small reactor presently being designed. This reactor is 450 MWe, and as with current operating CANDU's, is based on a heavy water moderated and cooled system using on-power fuelling for the once-through natural uranium fuel cycle. The CANDU 3 Standard plant is designed to be adaptable to a range of world-wide site conditions, i.e. for a peak ground acceleration of 0.3 g and a wide range of soft, medium and hard foundation medium properties. Consequently, a conservatism in the design of structure and equipment is accounted by using enveloped floor response spectra generated by the soil-structure interaction analysis. Seismic qualification of the fuelling machine (F/M) and its support structure are an essential design requirement for maintaining the integrity of the reactor coolant heat transport system (HTS) pressure boundary and the service ports penetrating the containment structure during on-power fueling. This paper deals with the initial conceptual phase of design where the details of the design are in fundamental outline form only and basic mass distribution plus layout geometry is defined

  15. Experiments in ZED-2 to study the physics of low-void reactivity fuel in CANDU

    International Nuclear Information System (INIS)

    Zeller, M.B.; Celli, A.; McPhee, G.P.

    1994-01-01

    Prospective CANDU clients have indicated a desire for a zero or negative coolant void reactivity. In response to this market requirement AECL Research and AECL CANDU are jointly developing and testing a Low-Void Reactivity Fuel (LVRF) bundle, which will be retrofitable to the current generation of CANDU reactors. An important component of the LVRF program is the undertaking of reactor-physics experiments in the zero-energy ZED-2 lattice test facility at Chalk River Laboratories. Preliminary void-reactivity measurements have already been performed in ZED-2 using a limited amount of the prototype fuel. These experiments were to provide a proof-of-principle for the LVRF concept. A more comprehensive set of experiments are planned for later this year. Experiments to be performed include: measuring the critical buckling of CANDU-type lattices containing LVRF, with and without coolant in the channels; measuring the reactivity effect of heating the LVRF fuel and coolant in ZED-2 hot channels; and measuring detailed reaction rates and neutron density distributions across a LVRF bundle, in voided and D 2 O-cooled channels, by the foil activation method. This paper describes the experimental approach to be used for the study and presents calculations employing transport and diffusion theory to predict the results. The codes used for the simulations are the lattice code WIMS-AECL and the core code CONIFERS. Included in the paper are results from the preliminary measurement of void coefficient for LVRF in a ZED-2 lattice and a comparison of those results to predictions based on WIMS-AECL calculations. (author). 3 refs., 1 tab., 10 figs

  16. Speciation of iodine (I-127) in the natural environment around Canadian CANDU sites

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, S.J.; Kotzer, T.G.; Chant, L.A

    2001-06-01

    In Canada, very little data is available regarding the concentrations and chemical speciation of iodine in the environment proximal and distal to CANDU Nuclear Power Generating Stations (NPGS). In the immediate vicinity of CANDU reactors, the short-lived iodine isotope {sup 131}I (t{sub 1/2} = 8.04 d), which is produced from fission reactions, is generally below detection and yields little information about the environmental cycling of iodine. Conversely, the fission product {sup 129}I has a long half-life (t{sub 1/2} = 1.57x10{sup 7} y) and has had other anthropogenic inputs (weapons testing, nuclear fuel reprocessing) other than CANDU over the past 50 years. As a result, the concentrations of stable iodine ({sup 127}I) have been used as a proxy. In this study, a sampling system was developed and tested at AECL's Chalk River Laboratories (CRL) to collect and measure the particulate and gaseous inorganic and organic fractions of stable iodine ({sup 127}I) in air and associated organic and inorganic reservoirs. Air, vegetation and soil samples were collected at CRL, and at Canadian CANDU Nuclear Power Generating Stations (NPGS) at OPG's (Ontario Power Generation) Pickering (PNGS) and Darlington NPGS (DNGS) in Ontario, as well as at NB Power's Pt. Lepreau NPGS in New Brunswick. The concentrations of particulate and inorganic iodine in air at CRL were extremely low, and were often found to be below detection. The concentrations are believed to be at this level because the sediments in the CRL area are glacial fluvial and devoid of marine ionic species, and the local atmospheric conditions at the sampling site are very humid. Concentrations of a gaseous organic species were comparable to worldwide levels. The concentrations of particulate and inorganic iodine in air were also found to be low at PNGS and DNGS, which may be attributed to reservoir effects of the large freshwater lakes in southern Ontario, which might serve to dilute the atmospheric iodine

  17. Speciation of iodine (I-127) in the natural environment around Canadian CANDU sites

    International Nuclear Information System (INIS)

    Kramer, S.J.; Kotzer, T.G.; Chant, L.A.

    2001-06-01

    In Canada, very little data is available regarding the concentrations and chemical speciation of iodine in the environment proximal and distal to CANDU Nuclear Power Generating Stations (NPGS). In the immediate vicinity of CANDU reactors, the short-lived iodine isotope 131 I (t 1/2 = 8.04 d), which is produced from fission reactions, is generally below detection and yields little information about the environmental cycling of iodine. Conversely, the fission product 129 I has a long half-life (t 1/2 = 1.57x10 7 y) and has had other anthropogenic inputs (weapons testing, nuclear fuel reprocessing) other than CANDU over the past 50 years. As a result, the concentrations of stable iodine ( 127 I) have been used as a proxy. In this study, a sampling system was developed and tested at AECL's Chalk River Laboratories (CRL) to collect and measure the particulate and gaseous inorganic and organic fractions of stable iodine ( 127 I) in air and associated organic and inorganic reservoirs. Air, vegetation and soil samples were collected at CRL, and at Canadian CANDU Nuclear Power Generating Stations (NPGS) at OPG's (Ontario Power Generation) Pickering (PNGS) and Darlington NPGS (DNGS) in Ontario, as well as at NB Power's Pt. Lepreau NPGS in New Brunswick. The concentrations of particulate and inorganic iodine in air at CRL were extremely low, and were often found to be below detection. The concentrations are believed to be at this level because the sediments in the CRL area are glacial fluvial and devoid of marine ionic species, and the local atmospheric conditions at the sampling site are very humid. Concentrations of a gaseous organic species were comparable to worldwide levels. The concentrations of particulate and inorganic iodine in air were also found to be low at PNGS and DNGS, which may be attributed to reservoir effects of the large freshwater lakes in southern Ontario, which might serve to dilute the atmospheric iodine concentrations. The concentrations of

  18. Metal interferences and their removal prior to the determination of As(T) and As(III) in acid mine waters by hydride generation atomic absorption spectrometry

    Science.gov (United States)

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ball, James W.

    2003-01-01

    Hydride generation atomic absorption spectrometry (HGAAS) is a sensitive and selective method for the determination of total arsenic (arsenic(III) plus arsenic(V)) and arsenic(III); however, it is subject to metal interferences for acid mine waters. Sodium borohydride is used to produce arsine gas, but high metal concentrations can suppress arsine production. This report investigates interferences of sixteen metal species including aluminum, antimony(III), antimony(V), cadmium, chromium(III), chromium(IV), cobalt, copper(II), iron(III), iron(II), lead, manganese, nickel, selenium(IV), selenium(VI), and zinc ranging in concentration from 0 to 1,000 milligrams per liter and offers a method for removing interfering metal cations with cation exchange resin. The degree of interference for each metal without cation-exchange on the determination of total arsenic and arsenic(III) was evaluated by spiking synthetic samples containing arsenic(III) and arsenic(V) with the potential interfering metal. Total arsenic recoveries ranged from 92 to 102 percent for all metals tested except antimony(III) and antimony(V) which suppressed arsine formation when the antimony(III)/total arsenic molar ratio exceeded 4 or the antimony(V)/total arsenic molar ratio exceeded 2. Arsenic(III) recoveries for samples spiked with aluminum, chromium(III), cobalt, iron(II), lead, manganese, nickel, selenium(VI), and zinc ranged from 84 to 107 percent over the entire concentration range tested. Low arsenic(III) recoveries occurred when the molar ratios of metals to arsenic(III) were copper greater than 120, iron(III) greater than 70, chromium(VI) greater than 2, cadmium greater than 800, antimony(III) greater than 3, antimony(V) greater than 12, or selenium(IV) greater than 1. Low recoveries result when interfering metals compete for available sodium borohydride, causing incomplete arsine production, or when the interfering metal oxidizes arsenic(III). Separation of interfering metal cations using

  19. The supernova-regulated ISM. III. Generation of vorticity, helicity, and mean flows

    Science.gov (United States)

    Käpylä, M. J.; Gent, F. A.; Väisälä, M. S.; Sarson, G. R.

    2018-03-01

    Context. The forcing of interstellar turbulence, driven mainly by supernova (SN) explosions, is irrotational in nature, but the development of significant amounts of vorticity and helicity, accompanied by large-scale dynamo action, has been reported. Aim. Several earlier investigations examined vorticity production in simpler systems; here all the relevant processes can be considered simultaneously. We also investigate the mechanisms for the generation of net helicity and large-scale flow in the system. Methods: We use a three-dimensional, stratified, rotating and shearing local simulation domain of the size 1 × 1 × 2 kpc3, forced with SN explosions occurring at a rate typical of the solar neighbourhood in the Milky Way. In addition to the nominal simulation run with realistic Milky Way parameters, we vary the rotation and shear rates, but keep the absolute value of their ratio fixed. Reversing the sign of shear vs. rotation allows us to separate the rotation- and shear-generated contributions. Results: As in earlier studies, we find the generation of significant amounts of vorticity, the rotational flow comprising on average 65% of the total flow. The vorticity production can be related to the baroclinicity of the flow, especially in the regions of hot, dilute clustered supernova bubbles. In these regions, the vortex stretching acts as a sink of vorticity. In denser, compressed regions, the vortex stretching amplifies vorticity, but remains sub-dominant to baroclinicity. The net helicities produced by rotation and shear are of opposite signs for physically motivated rotation laws, with the solar neighbourhood parameters resulting in the near cancellation of the total net helicity. We also find the excitation of oscillatory mean flows, the strength and oscillation period of which depend on the Coriolis and shear parameters; we interpret these as signatures of the anisotropic-kinetic-α (AKA) effect. We use the method of moments to fit for the turbulent transport

  20. Management of irradiated CANDU fuel

    International Nuclear Information System (INIS)

    Lupien, Mario

    1985-01-01

    The nuclear industry, like any other industrial activity, generates waste and, since these radioactive products are known to be hazardous both to man and his natural environment, they are subject to stringent controls. The irradiated fuel is also highly radioactive and remains so for thousands of years. It is estimated that by the year 2000, nuclear reactors in Canada alone will have produced some 50 Gg of radioactive fuel which is stored at the nuclear plant site itself. The nuclear industry plays a leading role in the research and development effort to find suitable waste-management methods. Its R and D programs cover many scientific fields, including chemistry, and therefore demand a considerable amount of coordination. The knowledge acquired in this multidisciplinary context should form a basis for solving many of today's industrial-waste problems. This paper describes the various stages in the long management process. In the medium term, the irradiated fuel will be stored in surface installations but the long-term solution proposed is to emplace the used fuel or the fuel recycle waste deep underground in a stable geologic formation

  1. TERA-MIR radiation: materials, generation, detection and applications III (Conference Presentation)

    Science.gov (United States)

    Pereira, Mauro F.

    2016-10-01

    This talk summarizes the achievements of COST ACTION MP1204 during the last four years. [M.F. Pereira, Opt Quant Electron 47, 815-820 (2015).]. TERA-MIR main objectives are to advance novel materials, concepts and device designs for generating and detecting THz and Mid Infrared radiation using semiconductor, superconductor, metamaterials and lasers and to beneficially exploit their common aspects within a synergetic approach. We used the unique networking and capacity-building capabilities provided by the COST framework to unify these two spectral domains from their common aspects of sources, detectors, materials and applications. We created a platform to investigate interdisciplinary topics in Physics, Electrical Engineering and Technology, Applied Chemistry, Materials Sciences and Biology and Radio Astronomy. The main emphasis has been on new fundamental material properties, concepts and device designs that are likely to open the way to new products or to the exploitation of new technologies in the fields of sensing, healthcare, biology, and industrial applications. End users are: research centres, academic, well-established and start-up Companies and hospitals. Results are presented along our main lines of research: Intersubband materials and devices with applications to fingerprint spectroscopy; Metamaterials, photonic crystals and new functionalities; Nonlinearities and interaction of radiation with matter including biomaterials; Generation and Detection based on Nitrides and Bismides. The talk is closed by indicating the future direction of the network that will remain active beyond the funding period and our expectations for future joint research.

  2. Application of Shuttle Remote Manipulator System technology to the replacement of fuel channels in the Pickering CANDU reactor

    International Nuclear Information System (INIS)

    Stratton, D.; Butt, C.

    1982-04-01

    Spar Aerospace Limited of Toronto was the prime contractor to the National Research Council of Canada for the design and development of the Shuttle Remote Manipulator (SRMS). Spar is presently under contract to Ontario Hydro to design and build a Remote Manipulation Control System to replace the fuel channels in the Pickering A Nuclear Generating Station. The equipment may be used to replace the fuel channels in six other early generation CANDU reactors

  3. Development of advanced CANDU PHWR -Development of the advanced CANDU technology-

    International Nuclear Information System (INIS)

    Seok, Ho Cheon; Na, Yeong Hwan; Seok, Soo Dong; Lee, Bo Uk; Kwak, Ho Sang; Kim, Bong Ki; Kim, Seok Nam; Min, Byeong Joo; Park, Jong Ryunl; Shin, Jeong Cheol; Lee, Kyeong Ho; Lee, Dae Hee; Lee, Deuk Soo; Lee, Yeong Uk; Lee, Jeong Yang; Jwon, Jong Seon; Jwon, Chang Joon; Ji, Yong Kwan; Han, Ki Nam; Kim, Kang Soo; Kim, Dae Jin; Kim, Seon Cheol; Kim, Seong Hak; Kim, Yeon Seung; Kim, Yun Jae; Kim, Jeong Kyu; Kim, Jeong Taek; Kim, Hang Bae; Na, Bok Kyun; Namgung, In; Moon, Ki Hwan; Park, Keun Ok; Shon, Ki Chang; Song, In Ho; Shin, Ji Tae; Yeo, Ji Won; Oh, In Seok; Jang, Ik Ho; Jeong, Dae Won; Jeong, Yong Hwan; Ha, Jae Hong; Ha, Jeong Koo; Hong, Hyeong Pyo; Hwang, Jeong Ki

    1994-07-01

    The target of this project is to assess the feasibility of improving PHWR and to establish the parameter of the improved concept and requirements for developing it. To set up the requirements for the Improved Pressurized Heavy Water Reactor: (1) Design requirements of PHWR main systems and Safety Design Regulatory Requirements for Safety Related System i.e. Reactor Shutdown System, Emergency Core Cooling System and Containment System were prepared. (2) Licensing Basis Documents were summarized and Safety Analysis Regulatory. Requirements were reviewed and analyzed. To estimate the feasibility of improving PHWR and to establish the main parameters of the concept of new PHWR in future: (1) technical level/developing trend of PHWR in Korea through Wolsong 2, 3 and 4 design experience and Technical Transfer Program was investigated to analyze the state of basic technology and PHWR improvement potential. (2) CANDU 6 design improvement tendency, CANDU 3 design concept and CANDU 9 development state in other country was analyzed. (3) design improvement items to apply to the reactors after Wolsong 2, 3 and 4 were selected and Plant Design Requirements and Conceptual Design Description were prepared and the viability of improved HWR was estimated by analyzing economics, performance and safety. (4) PHWR technology improving research and development plan was established and international joint study initiated for main design improvement items

  4. Computed tomographic analysis of temporal maxillary stability and pterygomaxillary generate formation following pediatric Le Fort III distraction advancement.

    Science.gov (United States)

    Hopper, Richard A; Sandercoe, Gavin; Woo, Albert; Watts, Robyn; Kelley, Patrick; Ettinger, Russell E; Saltzman, Babette

    2010-11-01

    Le Fort III distraction requires generation of bone in the pterygomaxillary region. The authors performed retrospective digital analysis on temporal fine-cut computed tomographic images to quantify both radiographic evidence of pterygomaxillary region bone formation and relative maxillary stability. Fifteen patients with syndromic midface hypoplasia were included in the study. The average age of the patients was 8.7 years; 11 had either Crouzon or Apert syndrome. The average displacement of the maxilla during distraction was 16.2 mm (range, 7 to 31 mm). Digital analysis was performed on fine-cut computed tomographic scans before surgery, at device removal, and at annual follow-up. Seven patients also had mid-consolidation computed tomographic scans. Relative maxillary stability and density of radiographic bone in the pterygomaxillary region were calculated between each scan. There was no evidence of clinically significant maxillary relapse, rotation, or growth between the end of consolidation and 1-year follow-up, other than a relatively small 2-mm subnasal maxillary vertical growth. There was an average radiographic ossification of 0.5 mm/mm advancement at the time of device removal, with a 25th percentile value of 0.3 mm/mm. The time during consolidation that each patient reached the 25th percentile of pterygomaxillary region bone density observed in this series of clinically stable advancements ranged from 1.3 to 9.8 weeks (average, 3.7 weeks). There was high variability in the amount of bone formed in the pterygomaxillary region associated with clinical stability of the advanced Le Fort III segment. These data suggest that a subsection of patients generate the minimal amount of pterygomaxillary region bone formation associated with advancement stability as early as 4 weeks into consolidation.

  5. Electron transfer capacity dependence of quinone-mediated Fe(III) reduction and current generation by Klebsiella pneumoniae L17.

    Science.gov (United States)

    Li, Xiaomin; Liu, Liang; Liu, Tongxu; Yuan, Tian; Zhang, Wei; Li, Fangbai; Zhou, Shungui; Li, Yongtao

    2013-06-01

    Quinone groups in exogenous electron shuttles can accelerate extracellular electron transfer (EET) from bacteria to insoluble terminal electron acceptors, such as Fe(III) oxides and electrodes, which are important in biogeochemical redox processes and microbial electricity generation. However, the relationship between quinone-mediated EET performance and electron-shuttling properties of the quinones remains incompletely characterized. This study investigates the effects of a series of synthetic quinones (SQs) on goethite reduction and current generation by a fermenting bacterium Klebsiella pneumoniae L17. In addition, the voltammetric behavior and electron transfer capacities (ETCs) of SQ, including electron accepting (EAC) and donating (EDC) capacities, is also examined using electrochemical methods. The results showed that SQ can significantly increase both the Fe(III) reduction rates and current outputs of L17. Each tested SQ reversibly accepted and donated electrons as indicated by the cyclic voltammograms. The EAC and EDC results showed that Carmine and Alizarin had low relative capacities of electron transfer, whereas 9,10-anthraquinone-2,6-disulfonic acid (AQDS), 2-hydroxy-1,4-naphthoquinone (2-HNQ), and 5-hydroxy-1,4-naphthoquinone (5-HNQ) showed stronger relative ETC, and 9,10-anthraquinone-2-carboxylic acid (AQC) and 9,10-anthraquinone-2-sulfonic acid (AQS) had high relative ETC. Enhancement of microbial goethite reduction kinetics and current outputs by SQ had a good linear relationship with their ETC, indicating that the effectiveness of quinone-mediated EET may be strongly dependent on the ETC of the quinones. Therefore, the presence of quinone compounds and fermenting microorganisms may increase the diversity of microbial populations that contribute to element transformation in natural environments. Moreover, ETC determination of different SQ would help to evaluate their performance for microbial EET under anoxic conditions. Copyright © 2013 Elsevier

  6. Advanced CANDU reactor pre-licensing progress

    International Nuclear Information System (INIS)

    Popov, N.K.; West, J.; Snell, V.G.; Ion, R.; Archinoff, G.; Xu, C.

    2005-01-01

    The Advanced CANDU Reactor (ACR) is an evolutionary advancement of the current CANDU 6 reactor, aimed at producing electrical power for a capital cost and at a unit-energy cost significantly less than that of the current reactor designs. The Canadian Nuclear Safety Commission (CNSC) staff are currently reviewing the ACR design to determine whether, in their opinion, there are any fundamental barriers that would prevent the licensing of the design in Canada. This CNSC licensability review will not constitute a licence, but is expected to reduce regulatory risk. The CNSC pre-licensing review started in September 2003, and was focused on identifying topics and issues for ACR-700 that will require a more detailed review. CNSC staff reviewed about 120 reports, and issued to AECL 65 packages of questions and comments. Currently CNSC staff is reviewing AECL responses to all packages of comments. AECL has recently refocused the design efforts to the ACR-1000, which is a larger version of the ACR design. During the remainder of the pre-licensing review, the CNSC review will be focused on the ACR-1000. AECL Technologies Inc. (AECLT), a wholly-owned US subsidiary of AECL, is engaged in a pre-application process for the ACR-700 with the US Nuclear Regulatory Commission (USNRC) to identify and resolve major issues prior to entering a formal process to obtain standard design certification. To date, the USNRC has produced a Pre-Application Safety Assessment Report (PASAR), which contains their reviews of key focus topics. During the remainder of the pre-application phase, AECLT will address the issues identified in the PASAR. Pursuant to the bilateral agreement between AECL and the Chinese nuclear regulator, the National Nuclear Safety Administration (NNSA) and its Nuclear Safety Center (NSC), NNSA/NSC are reviewing the ACR in seven focus areas. The review started in September 2004, and will take three years. The main objective of the review is to determine how the ACR complies

  7. Development of a new bundle welding technology for CANDU fuels

    International Nuclear Information System (INIS)

    Kim, Soo Sung; Lee, D. Y.; Goo, D. S.

    2010-01-01

    The new technology of welding process for fuel bundle of CANDU nuclear fuels is considered important in respect to the soundness of weldments and the improvement of the performance of nuclear fuels during the operation in reactor. The probability of leakage of the fission products is mostly apt to occur at the weldments of fuel bundles, and it is connected directly with the safety and life prediction of the nuclear reactor in operation. The fuel bundles of CANDU nuclear fuels are welded by the electrical resistance method, connecting the endplates and endcaps with fuel rods. Therefore, the purpose of this study of the 2nd year is to select the proper welding parameters and to investigate the characteristics of the full-sized samples using the projection endplates and make some prototype samples for the endplate welding of CANDU nuclear fuels. This study will be also provide the fundamental data for the new design and fabrications of CANDU nuclear fuel bundles

  8. Periodic inspection of CANDU nuclear power plant containment components

    International Nuclear Information System (INIS)

    1989-09-01

    This Standard is one in a series intended to provide uniform requirements for CANDU nuclear power plants. It provides requirements for the periodic inspection of containment components including the containment pressure suppression systems

  9. Manufacturing opportunities in the Canadian CANDU and heavy water programs

    International Nuclear Information System (INIS)

    Reny, J.P.

    The volume of business available to Canadian manufacturers of CANDU power plant and heavy water plant components is analyzed over about the next 10 years. Implications of exported nuclear technology and plants are explored. (E.C.B.)

  10. MATLAB/SIMULINK model of CANDU reactor for control studies

    International Nuclear Information System (INIS)

    Javidnia, H.; Jiang, J.

    2006-01-01

    In this paper a MATLAB/SIMULINK model is developed for a CANDU type reactor. The data for the reactor are taken from an Indian PHWR, which is very similar to CANDU in its design. Among the different feedback mechanisms in the core of the reactor, only xenon has been considered which plays an important role in spatial oscillations. The model is verified under closed loop scenarios with simple PI controller. The results of the simulation show that this model can be used for controller design and simulation of the reactor systems. Adding models of the other components of a CANDU reactor would ultimately result in a complete model of CANDU plant in MATLAB/SIMULINK. (author)

  11. Diagnostic Technology Development for Core Internal Structure in CANDU reactor

    International Nuclear Information System (INIS)

    Jung, Hyun Kyu; Cheong, Y. M.; Lee, Y. S. and others

    2005-04-01

    Degradation of critical components of nuclear power plants has become important as the operating years of plants increase. The necessity of degradation study including measurement and monitoring technology has increased continuously. Because the fuel channels and the neighboring sensing tubes and control rods are particularly one of the critical components in CANDU nuclear plant, they are treated as a major research target in order to counteract the possible problems and establish the counterplan for the CANDU reactor safety improvement. To ensure the core structure integrity in CANDU nuclear plant, the following 2 research tasks were performed: Development of NDE technologies for the gap measurement between the fuel channels and LIN tubes. Development of vibration monitoring technology of the fuel channels and sensing tubes. The technologies developed in this study could contribute to the nuclear safety and estimation of the remaining life of operating CANDU nuclear power plants

  12. Estimation of Aging Effects on LOHS for CANDU-6

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yong Ki; Moon, Bok Ja; Kim, Seoung Rae [Nuclear Engineering Service and Solution Co. Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    To evaluate the Wolsong Unit 1's capacity to respond to large-scale natural disaster exceeding design, the loss of heat sink(LOHS) accident accompanied by loss of all electric power is simulated as a beyond design basis accident. This analysis is considered the aging effects of plant as the consequences of LOHS accident. Various components of primary heat transport system(PHTS) get aged and some of the important aging effects of CANDU reactor are pressure tube(PT) diametral creep, steam generator(SG) U-tube fouling, increased feeder roughness, and feeder orifice degradation. These effects result in higher inlet header temperatures, reduced flows in some fuel channels, and higher void fraction in fuel channel outlets. Fresh and aged models are established for the analysis where fresh model is the circuit model simulating the conditions at retubing and aged model corresponds to the model reflecting the aged condition at 11 EFPY after retubing. CATHENA computer code[1] is used for the analysis of the system behavior under LOHS condition. The LOHS accident is analyzed for fresh and aged models using CATHENA thermal hydraulic computer code. The decay heat removal is one of the most important factors for mitigation of this accident. The major aging effect on decay heat removal is the reduction of heat transfer efficiency by steam generator. Thus, the channel failure time cannot be conservatively estimated if aged model is applied for the analysis of this accident.

  13. Design, construction and operation of Ontario Hydro's CANDU plants

    International Nuclear Information System (INIS)

    Campbell, P.G.

    1981-06-01

    Ontario Hydro has been producing electricity commercially from nuclear power since 1968, using CANDU reactors which have proved enormously successful. The 206-MW Douglas Point station, nearly 10 times larger than the first Canadian power reactor, NPD-2, resulted from a cooperative effort between Atomic Energy of Canada Ltd., the provincial government of Ontario, and Ontario Hydro. This approach led to a basic working relationship between the parties, with Ontario Hydro acting as project manager and builder, and AECL acting as consultant with respect to the nuclear components. Before Douglas Point was fully commissioned Ontario Hydro was ready to commit itself to more nuclear stations, and work was started on the four-unit Pickering nuclear generating station. Multi-unit stations were adopted to achieve economies of scale, and the concept has been retained for all subsequent nuclear power plants constructed in the province. The organization of Ontario Hydro's project management, construction, and operation of nuclear generating stations is described. Performance of the existing stations and cost of the power they produce have been entirely acceptable

  14. Controllability studies for an advanced CANDU boiling light water reactor

    International Nuclear Information System (INIS)

    Lepp, R.M.; Hinds, H.W.

    1976-12-01

    Bulk controllability studies carried out as part of a conceptual design study of a 1200 MWe CANDU boiling-light-water reactor fuelled with U 235 - or Pu-enriched uranium oxide are outlined. The concept, the various models developed for its simulation on a hybrid computer and the perturbations used to test system controllability, are described. The results show that this concept will have better bulk controllability than similar CANDU-BLW reactors fuelled with natural uranium. (author)

  15. Results of the CANDU 3 probabilistic safety assessment

    International Nuclear Information System (INIS)

    Jaitly, R.K.

    1995-01-01

    The purpose of the Conceptual Probabilistic Safety Assessment (PSA) of the CANDU 3 reactor was to provide safety assistance in the early stages of design to ensure that the design included adequate redundancy and functional separation of the mitigating systems; the final design should therefore give better results, particularly after modifications involving control, electrical power, instrument air, and service water. The initial PSA gave a total CANDU 3 core damage frequency of 7.8 x 10 -6 /year. 4 refs., 1 fig

  16. NULIFE - Implementing Strategic Research of LTO and Facing Generation II and III Challenges Through Cooperative Research

    International Nuclear Information System (INIS)

    Rintamaa, R.; Aho-Mantila, I.; Prunier, V.

    2011-01-01

    The European network of excellence NULIFE (Nuclear plant life prediction) has been launched under the Euratom Framework Programme with a clear focus on integrating safety-oriented research on materials, structures and systems and exploiting the results of this integration through the production of harmonised lifetime assessment methods. NULIFE will help provide a better common understanding of the factors affecting the lifetime of nuclear power plants which, together with associated management methods, will help facilitate safe and economic long term operation of existing nuclear power plants. In addition, NULIFE will help in the development of design criteria for future generations of nuclear power plant. NULIFE was kicked-off in October 2006 and will work over a 5-year period to create a single organization structure, capable of providing harmonised research and development (R and D) at European level to the nuclear power industry and the related safety authorities. Led by VTT (Technical Research Centre of Finland), the project has a total budget in excess of 8 million euros, with over 40 partners drawn from leading research institutions, technical support organisations, power companies and manufacturers throughout Europe. NULIFE also involves many industrial organizations and, in addition to their R and D contributions, these take part in a dedicated End User Group. The importance of the long term operation of the plants has been recognized at European level, in the strategic research agenda of SNE TP (Sustainable Nuclear Energy Technology Platform). In NULIFE, the joint EU-wide coordinated research strategy for plant life integrity management and long term operation has been defined. Based on NULIFE business plan, the discussion of long-term business plan, operational model and statutes of the future NULIFE institute has been started. NULIFE maintains the sustainability of nuclear power by focusing on the continued, 60+ years of safe operation of nuclear power

  17. Leak detection capability in CANDU reactors

    International Nuclear Information System (INIS)

    Azer, N.; Barber, D.H.; Boucher, P.J.

    1997-01-01

    This paper addresses the moisture leak detection capability of Ontario Hydro CANDU reactors which has been demonstrated by performing tests on the reactor. The tests confirmed the response of the annulus gas system (AGS) to the presence of moisture injected to simulate a pressure tube leak and also confirmed the dew point response assumed in leak before break assessments. The tests were performed on Bruce A Unit 4 by injecting known and controlled rates of heavy water vapor. To avoid condensation during test conditions, the amount of moisture which could be injected was small (2-3.5 g/hr). The test response demonstrated that the AGS is capable of detecting and annunciating small leaks. Thus confidence is provided that it would alarm for a growing pressure tube leak where the leak rate is expected to increase to kg/hr rapidly. The measured dew point response was close to that predicted by analysis

  18. CANDU Digital Control Computer upgrade options

    International Nuclear Information System (INIS)

    De Jong, M.S.; De Grosbois, J.; Qian, T.

    1997-01-01

    This paper reviews the evolution of Digital Control Computers (DCC) in CANDU power plants to the present day. Much of this evolution has been to meeting changing control or display requirements as well as the replacement of obsolete, or old and less reliable technology with better equipment that is now available. The current work at AECL and Canadian utilities to investigate DCC upgrade options, alternatives, and strategies are examined. The dependence of a particular upgrade strategy on the overall plant refurbishment plans are also discussed. Presently, the upgrade options range from replacement of individual obsolete system components, to replacement of the entire DCC hardware without changing the software, to complete replacement of the DCCs with a functionally equivalent system using new control computer equipment and software. Key issues, constraints and objectives associated with these DCC upgrade options are highlighted. (author)

  19. Tests on CANDU fuel elements sheath samples

    International Nuclear Information System (INIS)

    Ionescu, S.; Uta, O.; Mincu, M.; Prisecaru, I.

    2016-01-01

    This work is a study of the behavior of CANDU fuel elements after irradiation. The tests are made on ring samples taken from fuel cladding in INR Pitesti. This paper presents the results of examinations performed in the Post Irradiation Examination Laboratory. By metallographic and ceramographic examination we determinate that the hydride precipitates are orientated parallel to the cladding surface. A content of hydrogen of about 120 ppm was estimated. After the preliminary tests, ring samples were cut from the fuel rod, and were subject of tensile test on an INSTRON 5569 model machine in order to evaluate the changes of their mechanical properties as consequence of irradiation. Scanning electron microscopy was performed on a microscope model TESCAN MIRA II LMU CS with Schottky FE emitter and variable pressure. The analysis shows that the central zone has deeper dimples, whereas on the outer zone, the dimples are tilted and smaller. (authors)

  20. Hydrogen distribution studies relevant to CANDU containments

    International Nuclear Information System (INIS)

    Krause, M.; Whitehouse, D.R.; Chan, C.K.; Jones, S.C.A.

    1995-01-01

    Following a loss of coolant accident with coincident loss of emergency core cooling, hydrogen may be produced in a CANDU reactor from the in-core Zircaloy-steam reaction, and released into containment. To meet the requirements for predicting containment hydrogen distribution, and to support measures for mitigation, a computer code GOTHIC is used. Simulations of gas mixing were performed using simple well defined experiments in a small-scale compartment, helium being substituted for hydrogen. At the time of the conference, results indicated that GOTHIC could quantitatively predict the stratified gas distribution resulting from buoyant gas injection near the bottom of an unobstructed compartment. When gas was injected near the top, GOTHIC underpredicted maximum gas concentration at the top, and overpredicted mixing. These errors arise from the finite-volume approximation. 2 refs., 11 figs

  1. Leak detection capability in CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Azer, N.; Barber, D.H.; Boucher, P.J. [and others

    1997-04-01

    This paper addresses the moisture leak detection capability of Ontario Hydro CANDU reactors which has been demonstrated by performing tests on the reactor. The tests confirmed the response of the annulus gas system (AGS) to the presence of moisture injected to simulate a pressure tube leak and also confirmed the dew point response assumed in leak before break assessments. The tests were performed on Bruce A Unit 4 by injecting known and controlled rates of heavy water vapor. To avoid condensation during test conditions, the amount of moisture which could be injected was small (2-3.5 g/hr). The test response demonstrated that the AGS is capable of detecting and annunciating small leaks. Thus confidence is provided that it would alarm for a growing pressure tube leak where the leak rate is expected to increase to kg/hr rapidly. The measured dew point response was close to that predicted by analysis.

  2. Nondestructive examination techniques on Candu fuel elements

    International Nuclear Information System (INIS)

    Gheorghe, G.; Man, I.

    2013-01-01

    During irradiation in nuclear reactor, fuel elements undergo dimensional and structural changes, and changes of surface conditions sheath as well, which can lead to damages and even loss of integrity. Visual examination and photography of Candu fuel elements are among the non-destructive examination techniques, next to dimensional measurements that include profiling (diameter, bending, camber) and length, sheath integrity control with eddy currents, measurement of the oxide layer thickness by eddy current techniques. Unirradiated Zircaloy-4 tubes were used for calibration purposes, whereas irradiated Zircaloy-4 tubes were actually subjected to visual inspection and dimensional measurements. We present results of measurements done by eddy current techniques on Zircaloy- 4 tubes, unirradiated, but oxidized in an autoclave prior to examinations. The purpose of these nondestructive examination techniques is to determine those parameters that characterize the behavior and performance of nuclear fuel operation. (authors)

  3. Inspection of Candu Nuclear Reactor Fuel Channels

    International Nuclear Information System (INIS)

    Baron, J.; Jarvis, G.N.; Dolbey, M.P.; Hayter, D.M.

    1986-01-01

    The Channel Inspection and Gauging Apparatus of Reactors (CIGAR) is a fully atomated, remotely operated inspection system designed to perform multi-channel, multi-task inspection of CANDU reactor fuel channels. Ultrasonic techniques are used for flaw detection, (with a sensitivity capable of detecting a 0.075 mm deep notch with a signal to noise ratio of 10 dB) and pressure tube wall thickness and diameter measurements. Eddy currrent systems are used to detect the presence of spacers between the coaxial pressure tube and calandria tube, as well as to measure their relative spacing. A servo-accelerometer is used to estimate the sag of the fuel channels. This advanced inspection system was commissioned and declared in service in September 1985. The paper describes the inspection systems themselves and discussed the results achieved to-date. (author) [pt

  4. Qinshan CANDU NPP outage performance improvement through benchmarking

    International Nuclear Information System (INIS)

    Jiang Fuming

    2005-01-01

    With the increasingly fierce competition in the deregulated Energy Market, the optimization of outage duration has become one of the focal points for the Nuclear Power Plant owners around the world. People are seeking various ways to shorten the outage duration of NPP. Great efforts have been made in the Light Water Reactor (LWR) family with the concept of benchmarking and evaluation, which great reduced the outage duration and improved outage performance. The average capacity factor of LWRs has been greatly improved over the last three decades, which now is close to 90%. CANDU (Pressurized Heavy Water Reactor) stations, with its unique feature of on power refueling, of nuclear fuel remaining in the reactor all through the planned outage, have given raise to more stringent safety requirements during planned outage. In addition, the above feature gives more variations to the critical path of planned outage in different station. In order to benchmarking again the best practices in the CANDU stations, Third Qinshan Nuclear Power Company (TQNPC) have initiated the benchmarking program among the CANDU stations aiming to standardize the outage maintenance windows and optimize the outage duration. The initial benchmarking has resulted the optimization of outage duration in Qinshan CANDU NPP and the formulation of its first long-term outage plan. This paper describes the benchmarking works that have been proven to be useful for optimizing outage duration in Qinshan CANDU NPP, and the vision of further optimize the duration with joint effort from the CANDU community. (authors)

  5. Proceedings of the international conference on CANDU fuel

    International Nuclear Information System (INIS)

    Hastings, I.J.

    1986-01-01

    These proceedings contain full texts of all paper presented at the first International Conference on CANDU Fuel. The Conference was organized and hosted by the Chalk River Branch of the Canadian Nuclear Society and utilized Atomic Energy of Canada Limited's facilities at Chalk River Nuclear Laboratories. Previously, informal Fuel Information Meetings were used in Canada to allow the exchange of information and technology associated with CANDU. The Chalk River conference was the first open international forum devoted solely to CANDU and included representatives of overseas countries with current or potential CANDU programs, as well as Canadian participants. The keynote presentation was given by Dr. J.B. Slater, who noted the correlation between past successes in CANDU fuel cycle technology and the co-operation between researchers, fabricators and reactor owner/operators in all phases of the fuel cycle, and outlined the challenges facing the industry today. In the banquet address, Dr. R.E. Green described the newly restructured AECL Research Company and its mission which blends traditional R and D with commercial initiatives. Since this forum for fuel technology has proven to be valuable, a second International CANDU Fuel Conference is planned for the fall of 1989, again sponsored by the Canadian Nuclear Society

  6. Fuel cycles - a key to future CANDU success

    International Nuclear Information System (INIS)

    Kuran, S.; Hopwood, J.; Hastings, I.J.

    2011-01-01

    Globally, fuel cycles are being evaluated as ways of extending nuclear fuel resources, addressing security of supply and reducing back-end spent-fuel management. Current-technology thermal reactors and future fast reactors are the preferred platform for such fuel cycle applications and as an established thermal reactor with unique fuel-cycle capability, CANDU will play a key role in fulfilling such a vision. The next step in the evolution of CANDU fuel cycles will be the introduction of Recovered Uranium (RU), derived from conventional reprocessing. A low-risk RU option applicable in the short term comprises a combination of RU and Depleted Uranium (DU), both former waste streams, giving a Natural Uranium Equivalent (NUE) fuel. This option has been demonstrated in China, and all test bundles have been removed from the Qinshan 1 reactor. Additionally, work is being done on an NUE full core, a Thorium demonstration irradiation and an Advanced Fuel CANDU Reactor(AFCR). AECL is developing other fuel options for CANDU, including actinide waste burning. AECL has developed the Enhanced CANDU 6 (EC6) reactor, upgraded from its best-performing CANDU 6 design. High neutron economy, on-power refueling and a simple fuel bundle provide the EC6 with the flexibility to accommodate a range of advanced fuels, in addition to its standard natural uranium. (author)

  7. An update on CANDU fuel channel performance

    International Nuclear Information System (INIS)

    Price, E.G.; Holt, R.A; Wong, H.; Gautheir, P.; Ellis, P.J.; Slade, J.

    1998-01-01

    Fuel channel components, particularly pressure tubes, are monitored to establish changes in their condition expected from their service environment. Such monitoring takes the form of the in-service NDE, in-service sampling and periodic tube removal for destructive examination. The pressure tubes in early CANDU 6 stations have now reached mid-life. The expected trends in behaviour of the various properties of the pressure tubes are being confirmed. Diametral deformation potentially limits the life of some pressure tubes, and fuel developments, such as the CANFLEX fuel bundle, will provide additional CHF margins. Corrosion and the associated deuterium pick-up are monitored to assess if any change in rates have occurred. Both have historically continued on an essentially linear trend with time. Recent data indicate that the rates of pick-up could be gradually increasing. Changes in mechanical properties, particularly toughness, have reached saturation levels. In the early reactors, the toughness is acceptable, assuring leak-before-break. The pressure tubes in later reactors have very low concentrations of chlorine and phosphorous and the level of hydrogen are also low, and these tubes are predicted to retain relativity high fracture toughness in-service. Debris fretting wear has occurred in CANDU reactors. Laboratory testing and experience show that no cracks have initiated from debris frets to date. Further debris fretting will have to be avoided by care in maintenance procedures, and existing defects must be monitored in the future as hydrogen concentration levels increase. Spacer location and repositioning (SLAR) has been necessary in earlier reactors with loose spacers. Procedures and equipment for SLAR have been developed and successfully applied. The efficiency of spacer relocation operations has improved with experience. (authors)

  8. TEPC performance in the CANDU workplace

    International Nuclear Information System (INIS)

    Waker, A.J.; Szornel, K.; Nunes, J.

    1997-01-01

    Tissue-equivalent proportional counters (TEPCs) have a number of features that make them an attractive option for neutron monitoring around power reactors. These features are principally the ability of the TEPC to operate in a mixed field environment, the direct determination of the dose equivalent from first principles and a reasonably well-understood response to the wide range of neutron energy encountered. A spherical TEPC from Far West Technology (5'' in diameter) and a commercial, TEPC-based, neutron monitor (REM 500) have been used to map the neutron fields at different locations in a CANDU 6 (Canadian Deuterium Uranium) power reactor operated by New Brunswick Power. Neutron ambient dose equivalent rates ranged between 8 μSv.h -1 and 500 μSv.h -1 as measured with a multisphere spectrometer and photon dose equivalent rates from 40 μSv.h -1 to 1.2 mSv.H -1 as determined with a TEPC. It is shown that, for the CANDU workplace, the energy response of TEPCs is still not known accurately enough to enable field correction factors to be derived from neutron fluence measurements or to avoid the the need for more appropriate calibration procedures based on simulated 'workplace' neutron fields. The sensitivity of TEPCs is sufficient for workplace monitoring, but needs consideration when counters of 2'' diameter or smaller are proposed for use. For mixed-field work, the use of a TEPC for photon dosimetry as opposed to photon discrimination requires attention to count rates and instrument dead time. (author)

  9. Life extension of CANDU reactor cores

    International Nuclear Information System (INIS)

    Millard, J.; Kerker, J.; Albert, M.

    2011-01-01

    Candu Energy (formerly AECL), in partnership with station operators, has developed a robust methodology for demonstrating the fitness of reactor core structures, and associated reactivity control devices, as an essential element in conducting a station life extension project. The ageing of reactors is affected by ageing mechanisms impacted by operational history and design related factors such as materials, chemistries and stress distributions. The methodology of this life extension work is based on the IAEA TECDOC 1197; which documents practices for ageing management in CANDU reactors. This paper uses the work in Bruce Units 1 and 2, conducted from 2007 through to 2011, to explain the methodology. The work started with analysis of historical operational conditions and identification of the forms of degradation that could have occurred. The assessment and related inspections considered the safety and pressure boundary significance of each item, as well as its failure modes and margins. It then moved through both general and local inspection, focused mainly inside the calandria vessel once the calandria tubes were removed. The inspection found the bulk of the hardware to be in good condition, with a small number of remediation opportunities. In the course of that remediation some foreign material was sampled and removed. The minor remediation was successful and the work was completed through formal documentation of the fitness for extended life. It has been demonstrated through these analyses and visual inspections that the reactor structures and components inspected are free of indications and active degradation mechanisms that would prevent the safe and reliable operation of Bruce A Units 1 and 2 through its next 25 years of life. (author)

  10. Applying operating experience to design the CANDU 3 process

    International Nuclear Information System (INIS)

    Harris, D.S.; Hinchley, E.M.; Pauksens, J.; Snell, V.; Yu, S.K.W.

    1991-01-01

    The CANDU 3 is an advanced, smaller (450 MWe), standardized version of the CANDU now being designed for service later in the decade and beyond. The design of this evolutionary nuclear power plant has been carefully planned and organized to gain maximum benefits from new technologies and from world experience to date in designing, building, commissioning and operating nuclear power stations. The good performance record of existing CANDU reactors makes consideration of operating experience from these plants a particularly vital component of the design process. Since the completion of the first four CANDU 6 stations in the early 1980s, and with the continuing evolution of the multi-unit CANDU station designs since then, AECL CANDU has devised several processes to ensure that such feedback is made available to designers. An important step was made in 1986 when a task force was set up to review and process ideas arising from the commissioning and early operation of the CANDU 6 reactors which were, by that time, operating successfully in Argentina and Korea, as well as the Canadian provinces of Quebec and New Brunswick. The task force issued a comprehensive report which, although aimed at the design of an improved CANDU 6 station, was made available to the CANDU 3 team. By that time also, the Institute of Power Operations (INPO) in the U.S., of which AECL is a Supplier Participant member, was starting to publish Good Practices and Guidelines related to the review and the use of operating experiences. In addition, details of significant events were being made available via the INPO SEE-IN (Significant Event Evaluation and Information Network) Program, and subsequently the CANNET network of the CANDU Owners' Group (COG). Systematic review was thus possible by designers of operations reports, significant event reports, and related documents in a continuing program of design improvement. Another method of incorporating operations feedback is to involve experienced utility

  11. Applying operating experience to design the CANDU 3 process

    Energy Technology Data Exchange (ETDEWEB)

    Harris, D S; Hinchley, E M; Pauksens, J; Snell, V; Yu, S K.W. [AECL-CANDU, Ontario (Canada)

    1991-04-01

    The CANDU 3 is an advanced, smaller (450 MWe), standardized version of the CANDU now being designed for service later in the decade and beyond. The design of this evolutionary nuclear power plant has been carefully planned and organized to gain maximum benefits from new technologies and from world experience to date in designing, building, commissioning and operating nuclear power stations. The good performance record of existing CANDU reactors makes consideration of operating experience from these plants a particularly vital component of the design process. Since the completion of the first four CANDU 6 stations in the early 1980s, and with the continuing evolution of the multi-unit CANDU station designs since then, AECL CANDU has devised several processes to ensure that such feedback is made available to designers. An important step was made in 1986 when a task force was set up to review and process ideas arising from the commissioning and early operation of the CANDU 6 reactors which were, by that time, operating successfully in Argentina and Korea, as well as the Canadian provinces of Quebec and New Brunswick. The task force issued a comprehensive report which, although aimed at the design of an improved CANDU 6 station, was made available to the CANDU 3 team. By that time also, the Institute of Power Operations (INPO) in the U.S., of which AECL is a Supplier Participant member, was starting to publish Good Practices and Guidelines related to the review and the use of operating experiences. In addition, details of significant events were being made available via the INPO SEE-IN (Significant Event Evaluation and Information Network) Program, and subsequently the CANNET network of the CANDU Owners' Group (COG). Systematic review was thus possible by designers of operations reports, significant event reports, and related documents in a continuing program of design improvement. Another method of incorporating operations feedback is to involve experienced utility

  12. Fouling issues within CANDU fuel bay purification systems

    International Nuclear Information System (INIS)

    Angell, P.; Murray, J.

    2003-01-01

    Similar to all nuclear power stations, CANDU stations store their spent fuel in large open fuel bays to allow the fuel bundles to cool down. Over the years there have been a number of minor issues relating to the operation of the fuel bays, and the annual operational and maintenance costs to the stations are in the order of $1-2M. Ontario Power Generation (OPG) stations have been treating the fuel bays of their CANDU stations with hydrogen peroxide. While this treatment has been effective for the control of microbial corrosion and algal problems, an ongoing problem with the rapid plugging of the purification system filters and the presence of a thin translucent film on the surface of the water has been reported. Analysis suggested that the translucent film was of biological origin and initially it was suspected as being responsible for the plugging of the filters. Samples of the bay water, translucent film and filters were collected for microbial analysis. From all samples a number of bacterial species was isolated, all of which had the enzyme catalase that is responsible for the microbial breakdown of hydrogen peroxide, and many of the isolates were found to be capable of producing extracellular polymeric substance (slime). Observation of the filter revealed that no slime layer was present on the outer surface of the filter. This suggested that the plugging was not the result of removal of slime from the bay. Rather it suggested that the plugging was the result of microbial colonization and growth within the matrix of the filter. The large surface area of the filter matrix provides ideal conditions for biofilm growth and the flow of water provides a ready supply of nutrients. Based on a careful review of the chemistry specifications and requirements for the fuel bay water it was suggested that the filters, as currently used, were unnecessary and could be either removed or valved out, thereby eliminating the high costs associated with their operation and

  13. Opportunities for CANDU for the Alberta oil sands

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Bock, D.; Miller, A.; Kuran, S.; Keil, H.; Fiorino, L.; Hau, K.; Zhou, X.; Dunbar, R.B.

    2003-01-01

    The Alberta oil sands bitumen deposits comprise of one of the largest sources hydrocarbon in the world, and have emerged as the fastest growing, soon to be dominant, source of crude oil in Canada. The oil industry has made great strides in improving the effectiveness of gathering this resource. In particular, alternatives to open-pit mining have been developed which enable in-site recovery of underground deposits with a minimum of environmental disruption. The main challenge that remains is the large quantity of energy needed in the process of extracting the oil and upgrading it to commercial levels. For a typical in-situ extraction project, about 18% of the energy content of the oil produced is used up in the extraction process, while a further 5% is used in generating hydrogen to upgrade the bitumen to synthetic crude oil. Looking ahead, even as improvements in energy use efficiency, (and hydrocarbon use efficiency) counterbalance the increases in hydrocarbon demand from economic growth (particularly in the developing world), Canada and Alberta recognize that the oil sands resource will be needed, and both support the development of this resource in an environmentally responsible way. The large energy requirement for the oil sands extraction process represents a challenge with regard to both environmental impact and security of supply. The use of natural gas, the current energy supply, has impacts in terms of air quality (via NOX and other emissions) and also represents a large greenhouse gas emissions component. As the oil sands industry expands, the availability of natural gas also becomes a concern, as does price and price stability. With this background, the opportunity for nuclear reactors to provide an economical, reliable, virtually zero-emission source of energy for the oil sands becomes very important. Over the last few years, developments in oil sands extraction technology, and developments in CANDU technology through the Advanced CANDU Reactor, (ACR

  14. Initiating stochastic maintenance optimization at Candu Power Plants

    International Nuclear Information System (INIS)

    Doyle, E.K.

    2003-01-01

    As previously reported at ICONE 6 in New Orleans (1996), the use of various innovative maintenance optimization techniques at Bruce has lead to cost effective preventive maintenance applications for complex systems. Further cost refinement of the station maintenance strategy is being evaluated via the applicability of statistical analysis of historical failure data. Since the statistical evaluation was initiated in 1999 significant progress has been made in demonstrating the viability of stochastic methods in Candu maintenance. Some of the relevant results were presented at ICONE 10 in Washington DC (2002). Success with the graphical displays and the relatively easy to implement stochastic computer programs was sufficient to move the program along to the next significant phase. This next phase consists of investigating the validity of using subjective elicitation techniques to obtain component lifetime distributions. This technique provides access to the elusive failure statistics, the lack of which is often referred to in the literature as the principle impediment preventing the use of stochastic methods in large industry. At the same time the technique allows very valuable information to be captured from the fast retiring 'baby boom generation'. Initial indications have been quite positive. (author)

  15. Occupational radiation exposures at Canadian CANDU nuclear power stations

    International Nuclear Information System (INIS)

    LeSurf, J.E.; Taylor, G.F.

    1982-09-01

    In Canada, methods to reduce the radiation exposure to workers at nuclear power reactors have been studied and implemented since the early days of the CANDU reactor program. Close collaboration between the designers, the operators, and the manufacturers has reduced the total exposure at each station, the dose requirement to operate and maintain each successive station compared with earlier stations, and the average annual exposure per worker. Specific methods developed to achieve dose reduction include water chemistry; corrosion resistant materials; low cobalt materials; decontamination; hot filtration, improved equipment reliability, maintainability, and accessibility; improved shielding design and location; planning of work for low exposure; improved operating and maintenance procedures; removal of tritium from D 2 O systems and work environments; improved protective clothing; on-power refuelling; worker awareness and training; and many other small improvements. The 1981 occupational dose productivity factors for Pickering A and Bruce A nuclear generating stations were respectively 0.43 and 0.2 rem/MW(e).a

  16. Application of Sub-cooled Boiling Model to Thermal-hydraulic Analysis Inside a CANDU-6 Fuel Channel

    International Nuclear Information System (INIS)

    Kim, Man Woong; Lee, Sang Kyu; Kim, Hyun Koon; Yoo, Kun Joong; Kang, Hyoung Chul; Yoo, Seong Yeon

    2007-01-01

    Forced convection nucleate boiling is encountered in heat exchangers during normal and non-nominal modes of operation in pressurized water or boiling water reactors (PWRs or BWRs). If the wall temperature of the piping is higher than the saturation temperature of the nearby liquid, nucleate boiling occurs. In this regime, bubbles are formed at the wall. Their growth is promoted by the wall superheat (the difference between the wall and saturation temperatures), and they depart from the wall as a result of gravitational and liquid inertia forces. If the bulk liquid is subcooled, condensation at the bubble-liquid interface takes place and the bubble may collapse. This convection nucleate boiling is called as a sub-cooled nucleate boiling. As for the fuel channel of a CANDU 6 reactor, forced convection nucleate boiling models for flows along fuel elements enclosed inside typical CANDU-6 fuel channel has encountered difficulties due to the modeling of local effects along the horizontal channel. Therefore, the subcooled nucleate boiling has been modeled through temperature driven boiling heat and mass transfer, using a model developed at Rensselaer Polytechnic Institute. The objectives of this study are: (i) to investigate a proposed sub-cooled boiling model developed at Rensselaer Polytechnic Institute and (ii) to apply against a experiment and (iii) to predict local distributions of flow fields for the actual fuel channel geometries of CANDU-6 reactors. The numerical implementation is conducted using by the FLUENT 6.2 CFD computer code

  17. Mitigation of end flux peaking in CANDU fuel bundles using neutron absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, D.; Chan, P.K., E-mail: dylan.pierce@rmc.ca [Royal Military College of Canada, Kingston ON, (Canada); Shen, W. [Canadian Nuclear Safety Commission, Ottawa ON, (Canada)

    2015-07-01

    End flux peaking (EFP) is a phenomenon where a region of elevated neutron flux occurs between two adjoining fuel bundles. These peaks lead to an increase in fission rate and therefore greater heat generation. It is known that addition of neutron absorbers into fuel bundles can help mitigate EFP, yet implementation in Canada Deuterium Uranium (CANDU) type reactors using natural uranium fuel has not been pursued. Monte Carlo N-Particle code (MCNP) 6.1 was used to simulate the addition of a small amount of neutron absorbers strategically within the fuel pellets. This paper will present some preliminary results collected thus far. (author)

  18. The CANDU irradiated fuel safeguards sealing system at the threshold of implementation

    International Nuclear Information System (INIS)

    Stirling, A.J.; Kupca, S.; Martin, R.E.; West, R.J.; Aikens, A.E.; Cox, C.A.; White, B.F.; Smith, M.T.; Payne, W.E.

    1985-07-01

    The development of a safeguards containment and surveillance system for the irradiated fuel discharged from CANDU nuclear generating stations has inspired the development of three different sealing technologies. Each seal type utilizes a random seal identity of different design. The AECL Random Coil (ARC) Seal combines the identity and integrity elements in the ultrasonic signature of a wire coil. Two variants of an optical seal have been developed which features identity elements of crystalline zirconium and aluminum. The sealed cap-seal uses a conventional IAEA 'Type X Seal' (wire seal). The essential features and relative merits of each seal design are described

  19. A strategy for the phased replacement of CANDU digital control computers

    International Nuclear Information System (INIS)

    Hepburn, G.A.

    2001-01-01

    Significant developments have occurred with respect to the replacement of the Plant Digital Control Computers (DCCs) on CANDU plants in the past six months. This paper summarises the conclusions of the condition assessment carried out on these machines at Point Lepreau Generating Station, and describes a strategy for a phased transition to a replacement system based on today's technology. Most elements of the strategy are already in place, and sufficient technical work has been done to allow those components which have been assessed as requiring prompt attention to be replaced in a matter of months. (author)

  20. Ca2+ and Mg2+-enhanced reduction of arsenazo III to its anion free radical metabolite and generation of superoxide anion by an outer mitochondrial membrane azoreductase.

    Science.gov (United States)

    Moreno, S N; Mason, R P; Docampo, R

    1984-12-10

    At the concentrations usually employed as a Ca2+ indicator, arsenazo III underwent a one-electron reduction by rat liver mitochondria to produce an azo anion radical as demonstrated by electron-spin resonance spectroscopy. Either NADH or NADPH could serve as a source of reducing equivalents for the production of this free radical by intact rat liver mitochondria. Under aerobic conditions, addition of arsenazo III to rat liver mitochondria produced an increase in electron flow from NAD(P)H to molecular oxygen, generating superoxide anion. NAD(P)H generated from endogenous mitochondrial NAD(P)+ by intramitochondrial reactions could not be used for the NAD(P)H azoreductase reaction unless the mitochondria were solubilized by detergent or anaerobiosis. In addition, NAD(P)H azoreductase activity was higher in the crude outer mitochondrial membrane fraction than in mitoplasts and intact mitochondria. The steady-state concentration of the azo anion radical and the arsenazo III-stimulated cyanide-insensitive oxygen consumption were enhanced by calcium and magnesium, suggesting that, in addition to an enhanced azo anion radical-stabilization by complexation with the metal ions, enhanced reduction of arsenazo III also occurred. Accordingly, addition of cations to crude outer mitochondrial membrane preparations increased arsenazo III-stimulated cyanide-insensitive O2 consumption, H2O2 formation, and NAD(P)H oxidation. Antipyrylazo III was much less effective than arsenazo III in increasing superoxide anion formation by rat liver mitochondria and gave a much weaker electron spin resonance spectrum of an azo anion radical. These results provide direct evidence of an azoreductase activity associated with the outer mitochondrial membrane and of a stimulation of arsenazo III reduction by cations.

  1. Three dimensional numerical simulation of a full scale CANDU reactor moderator to study temperature fluctuations

    International Nuclear Information System (INIS)

    Sarchami, Araz; Ashgriz, Nasser; Kwee, Marc

    2014-01-01

    Highlights: • 3D model of a Candu reactor is modeled to investigate flow distribution. • The results show the temperature distribution is not symmetrical. • Temperature contours show the hot regions at the top left-hand side of the tank. • Interactions of momentum flows and buoyancy flows create circulation zones. • The results indicate that the moderator tank operates in the buoyancy driven mode. -- Abstract: Three dimensional numerical simulations are conducted on a full scale CANDU Moderator and transient variations of the temperature and velocity distributions inside the tank are determined. The results show that the flow and temperature distributions inside the moderator tank are three dimensional and no symmetry plane can be identified. Competition between the upward moving buoyancy driven flows and the downward moving momentum driven flows in the center region of the tank, results in the formation of circulation zones. The moderator tank operates in the buoyancy driven mode and any small disturbances in the flow or temperature makes the system unstable and asymmetric. Different types of temperature fluctuations are noted inside the tank: (i) large amplitude are at the boundaries between the hot and cold; (ii) low amplitude are in the core of the tank; (iii) high frequency fluctuations are in the regions with high velocities and (iv) low frequency fluctuations are in the regions with lower velocities

  2. EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss.

    Science.gov (United States)

    Sampson, John H; Choi, Bryan D; Sanchez-Perez, Luis; Suryadevara, Carter M; Snyder, David J; Flores, Catherine T; Schmittling, Robert J; Nair, Smita K; Reap, Elizabeth A; Norberg, Pamela K; Herndon, James E; Kuan, Chien-Tsun; Morgan, Richard A; Rosenberg, Steven A; Johnson, Laura A

    2014-02-15

    Chimeric antigen receptor (CAR) transduced T cells represent a promising immune therapy that has been shown to successfully treat cancers in mice and humans. However, CARs targeting antigens expressed in both tumors and normal tissues have led to significant toxicity. Preclinical studies have been limited by the use of xenograft models that do not adequately recapitulate the immune system of a clinically relevant host. A constitutively activated mutant of the naturally occurring epidermal growth factor receptor (EGFRvIII) is antigenically identical in both human and mouse glioma, but is also completely absent from any normal tissues. We developed a third-generation, EGFRvIII-specific murine CAR (mCAR), and performed tests to determine its efficacy in a fully immunocompetent mouse model of malignant glioma. At elevated doses, infusion with EGFRvIII mCAR T cells led to cures in all mice with brain tumors. In addition, antitumor efficacy was found to be dependent on lymphodepletive host conditioning. Selective blockade with EGFRvIII soluble peptide significantly abrogated the activity of EGFRvIII mCAR T cells in vitro and in vivo, and may offer a novel strategy to enhance the safety profile for CAR-based therapy. Finally, mCAR-treated, cured mice were resistant to rechallenge with EGFRvIII(NEG) tumors, suggesting generation of host immunity against additional tumor antigens. All together, these data support that third-generation, EGFRvIII-specific mCARs are effective against gliomas in the brain and highlight the importance of syngeneic, immunocompetent models in the preclinical evaluation of tumor immunotherapies. ©2013 AACR

  3. Steam generator life management

    International Nuclear Information System (INIS)

    Tapping, R.L.; Nickerson, J.; Spekkens, P.; Maruska, C.

    1998-01-01

    Steam generators are a critical component of a nuclear power reactor, and can contribute significantly to station unavailability, as has been amply demonstrated in Pressurized Water Reactors (PWRs). CANDU steam generators are not immune to steam generator degradation, and the variety of CANDU steam generator designs and tube materials has led to some unexpected challenges. However, aggressive remedial actions, and careful proactive maintenance activities, have led to a decrease in steam generator-related station unavailability of Canadian CANDUs. AECL and the CANDU utilities have defined programs that will enable existing or new steam generators to operate effectively for 40 years. Research and development work covers corrosion and mechanical degradation of tube bundles and internals, chemistry, thermal hydraulics, fouling, inspection and cleaning, as well as provision for specially tool development for specific problem solving. A major driving force is development of CANDU-specific fitness-for-service guidelines, including appropriate inspection and monitoring technology to measure steam generator condition. Longer-range work focuses on development of intelligent on-line monitoring for the feedwater system and steam generator. New designs have reduced risk of corrosion and fouling, are more easily inspected and cleaned, and are less susceptible to mechanical damage. The Canadian CANDU utilities have developed programs for remedial actions to combat degradation of performance (Gentilly-2, Point Lepreau, Bruce A/B, Pickering A/B), and have developed strategic plans to ensure that good future operation is ensured. This report shows how recent advances in cleaning technology are integrated into a life management strategy, discusses downcomer flow measurement as a means of monitoring steam generator condition, and describes recent advances in hideout return as a life management tool. The research and development program, as well as operating experience, has identified

  4. CANDU 9 Design improvements based on experience feedback

    International Nuclear Information System (INIS)

    Yu, S. K. W.; Bonechi, M.; Snell, V. G.

    2000-01-01

    An evolutionary approach utilizing advance technologies has been implenented for the enhancement introduced in the CANDU 9 Nuclear Power Plant (NPP) design. The design of these systems and associated equipment has also benfited from experience feedback from operating CANDU stations and from including advanced products from CANDU engineering and research programs. This paper highlights the design features that contribute to the safety improvements of the CANDU 9 design, summarizes the analysis results which demonstrate the improved performance and also emphasizes design features which reduce operation and maintenance (Q and M) costs. The safety design features highlighted include the increased use of passive devices and heat sinks to achieve extensive system simplification; this also improves reliability and reduces maintenance workloads. System features that contribute to improved operability are also described. The CANDU 9 Control Center provides plant staff with enhanced operating, maintenance and diagnostics features which significantly improve operability, testing and maintainability due to the integration of human factors engineering with a systematic design process. (author)

  5. Canadian CANDU fuel development program and recent fuel operating experience

    International Nuclear Information System (INIS)

    Lau, J.H.K.; Inch, W.W.R.; Cox, D.S.; Steed, R.G.; Kohn, E.; Macici, N.N.

    1999-01-01

    This paper reviews the performance of the CANDU fuel in the Canadian CANDU reactors in 1997 and 1998. The operating experience demonstrates that the CANDU fuel has performed very well. Over the 2-year period, the fuel-bundle defect rate for all bundles irradiated in the Canadian CANDU reactors has remained very low, at between 0.006% to 0.016%. On a fuel element basis, this represents an element defect rate of less than about 0.0005%. One of the reasons for the good fuel performance is the support provided by the Canadian fuel research and development programs. These programs address operational issues and provide evolutionary improvements to the fuel products. The programs consist of the Fuel Technology Program, funded by the CANDU Owners Group, and the Advanced Fuel and Fuel Cycles Technology Program, funded by Atomic Energy of Canada Ltd. These 2 programs, which have been in place for many years, complement each other by sharing expert resources and experimental facilities. This paper describes the programs in 1999/2000, to provide an overview of the scope of the programs and the issues that these programs address. (author)

  6. Dimensional measurement of fresh fuel bundle for CANDU reactor

    International Nuclear Information System (INIS)

    Jo, Chang Keun; Cho, Moon Sung; Suk, Ho Chun; Koo, Dae Seo; Jun, Ji Su; Jung, Jong Yeob

    2005-01-01

    This report describes the results of the dimensional measurement of fresh fuel bundles for the CANDU reactor in order to estimate the integrity of fuel bundle in two-phase flow in the CANDU-6 fuel channel. The dimensional measurements of fuel bundles are performed by using the 'CANDU Fuel In-Bay Inspection and Dimensional Measurement System', which was developed by this project. The dimensional measurements are done from February 2004 to March 2004 in the CANDU fuel storage of KNFC for the 36 fresh fuel bundles, which are produced by KNFC and are waiting for the delivery to the Wolsong-3 plant. The detail items of dimensional measurements are included fuel rod and bearing pad profiles of the outer ring in fuel bundle, diameter of fuel bundle, bowing of fuel bundle, fuel rod length, and surface profile of end plate profile. The measurement data will be compared with those of the post-irradiated bundles cooled in Wolsong-3 NPP spent fuel pool by using the same bundles and In-Bay Measurement System. So, this analysis of data will be applied for the evaluation of fuel bundle integrity in two-phase flow of the CANDU-6 fuel channel

  7. Efficient generation of volatile cadmium species using Ti(III) and Ti(IV) and application to determination of cadmium by cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS)†

    Science.gov (United States)

    Arslan, Zikri; Yilmaz, Vedat; Rose, LaKeysha

    2015-01-01

    In this study, a highly efficient chemical vapor generation (CVG) approach is reported for determination of cadmium (Cd). Titanium (III) and titanium (IV) were investigated for the first time as catalytic additives along with thiourea, L-cysteine and potassium cyanide (KCN) for generation of volatile Cd species. Both Ti(III) and Ti(IV) provided the highest enhancement with KCN. The improvement with thiourea was marginal (ca. 2-fold), while L-cysteine enhanced signal slightly only with Ti(III) in H2SO4. Optimum CVG conditions were 4% (v/v) HCl + 0.03 M Ti(III) + 0.16 M KCN and 2% (v/v) HNO3 + 0.03 M Ti(IV) + 0.16 M KCN with a 3% (m/v) NaBH4 solution. The sensitivity was improved about 40-fold with Ti(III) and 35-fold with Ti(IV). A limit of detection (LOD) of 3.2 ng L−1 was achieved with Ti(III) by CVG-ICP-MS. The LOD with Ti(IV) was 6.4 ng L−1 which was limited by the blank signals in Ti(IV) solution. Experimental evidence indicated that Ti(III) and Ti(IV) enhanced Cd vapor generation catalytically; for best efficiency mixing prior to reaction with NaBH4 was critical. The method was highly robust against the effects of transition metal ions. No significant suppression was observed in the presence of Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Ni(II) and Zn(II) up to 1.0 μg mL−1. Among the hydride forming elements, no interference was observed from As(III) and Se(IV) at 0.5 μg mL−1 level. The depressive effects from Pb(II) and Sb(III) were not significant at 0.1 μg mL−1 while those from Bi(III) and Sn(II) were marginal. The procedures were validated with determination of Cd by CVG-ICP-MS in a number certified reference materials, including Nearshore seawater (CASS-4), Bone ash (SRM 1400), Dogfish liver (DOLT-4), Mussel tissue (SRM 2976) and Domestic Sludge (SRM 2781). PMID:26251554

  8. Cited2 Regulates Neocortical Layer II/III Generation and Somatosensory Callosal Projection Neuron Development and Connectivity.

    Science.gov (United States)

    Fame, Ryann M; MacDonald, Jessica L; Dunwoodie, Sally L; Takahashi, Emi; Macklis, Jeffrey D

    2016-06-15

    The neocortex contains hundreds to thousands of distinct subtypes of precisely connected neurons, allowing it to perform remarkably complex tasks of high-level cognition. Callosal projection neurons (CPN) connect the cerebral hemispheres via the corpus callosum, integrating cortical information and playing key roles in associative cognition. CPN are a strikingly diverse set of neuronal subpopulations, and development of this diversity requires precise control by a complex, interactive set of molecular effectors. We have found that the transcriptional coregulator Cited2 regulates and refines two stages of CPN development. Cited2 is expressed broadly by progenitors in the embryonic day 15.5 subventricular zone, during the peak of superficial layer CPN birth, with a progressive postmitotic refinement in expression, becoming restricted to CPN of the somatosensory cortex postnatally. We generated progenitor-stage and postmitotic forebrain-specific Cited2 conditional knock-out mice, using the Emx1-Cre and NEX-Cre mouse lines, respectively. We demonstrate that Cited2 functions in progenitors, but is not necessary postmitotically, to regulate both (1) broad generation of layer II/III CPN and (2) acquisition of precise area-specific molecular identity and axonal/dendritic connectivity of somatosensory CPN. This novel CPN subtype-specific and area-specific control from progenitor action of Cited2 adds yet another layer of complexity to the multistage developmental regulation of neocortical development. This study identifies Cited2 as a novel subtype-specific and area-specific control over development of distinct subpopulations within the broad population of callosal projection neurons (CPN), whose axons connect the two cerebral hemispheres via the corpus callosum (CC). Currently, how the remarkable diversity of CPN subtypes is specified, and how they differentiate to form highly precise and specific circuits, are largely unknown. We found that Cited2 functions within

  9. Development of CANDU core monitoring system

    International Nuclear Information System (INIS)

    Yoon, M. Y.; Yeam, C. S.; Kwon, O. H.; Kim, K. H.

    2003-01-01

    The research was performed to develop a CANDU Core Monitoring System(CCMS) that enables operators to have efficient core management by monitoring core power distribution, burnup distribution, and the other important core variables and managing the past core history for Wolsong Nuclear Power Plant(NPP) No. 1. CCMS uses RFSP(Reactor Fueling Simulation Program) for continuous core calculation by integrating the algorithm and assumptions validated and uses the information taken from DCC(Digital Control Computer) for the purpose of producing basic input data. CCMS could be largely divided into two modules; CCMS server program and CCMS client program. CCMS server program plays the role in automatic and continuous RFSP run and management of the past output data resulting from the run using Data Base Management System(DBMS). CCMS client program enables users to monitor current and past core status with GUI(Graphic-User Interface) environment predefined. The effectiveness of CCMS was verified by comparing the data resulted from field-test of the system for about 43 hours with the data used in the field of Wolsong NPP No. 1

  10. Development of CANDU core monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, M. Y.; Yeam, C. S.; Kwon, O. H.; Kim, K. H. [Institute for Advanced Engineering, Yongin (Korea, Republic of)

    2003-07-01

    The research was performed to develop a CANDU Core Monitoring System(CCMS) that enables operators to have efficient core management by monitoring core power distribution, burnup distribution, and the other important core variables and managing the past core history for Wolsong Nuclear Power Plant(NPP) No. 1. CCMS uses RFSP(Reactor Fueling Simulation Program) for continuous core calculation by integrating the algorithm and assumptions validated and uses the information taken from DCC(Digital Control Computer) for the purpose of producing basic input data. CCMS could be largely divided into two modules; CCMS server program and CCMS client program. CCMS server program plays the role in automatic and continuous RFSP run and management of the past output data resulting from the run using Data Base Management System(DBMS). CCMS client program enables users to monitor current and past core status with GUI(Graphic-User Interface) environment predefined. The effectiveness of CCMS was verified by comparing the data resulted from field-test of the system for about 43 hours with the data used in the field of Wolsong NPP No. 1.

  11. The CANDU alarm analysis tool (CAAT)

    Energy Technology Data Exchange (ETDEWEB)

    Davey, E C; Feher, M P; Lupton, L R [Control Centre Technology Branch, ON (Canada)

    1997-09-01

    AECL undertook the development of a software tool to assist alarm system designers and maintainers based on feedback from several utilities and design groups. The software application is called the CANDU Alarm Analysis Tool (CAAT) and is being developed to: Reduce by one half the effort required to initially implement and commission alarm system improvements; improve the operational relevance, consistency and accuracy of station alarm information; record the basis for alarm-related decisions; provide printed reports of the current alarm configuration; and, make day-to-day maintenance of the alarm database less tedious and more cost-effective. The CAAT assists users in accessing, sorting and recording relevant information, design rules, decisions, and provides reports in support of alarm system maintenance, analysis of design changes, or regulatory inquiry. The paper discusses the need for such a tool, outlines the application objectives and principles used to guide tool development, describes the how specific tool features support user design and maintenance tasks, and relates the lessons learned from early application experience. (author). 4 refs, 2 figs.

  12. Industrial process heat from CANDU reactors

    International Nuclear Information System (INIS)

    Hilborn, J.S.; Seddon, W.A.; Barnstaple, A.G.

    1980-08-01

    It has been demonstrated on a large scale that CANDU reactors can produce industrial process steam as well as electricity, reliably and economically. The advantages of cogeneration have led to the concept of an Industrial Energy Park adjacent to the Bruce Nuclear Power Development in the province of Ontario. For steam demands between 300,000 and 500,00 lb/h (38-63 kg/s) and an annual load factor of 80%, the estimated cost of nuclear steam at the Bruce site boundary is $3.21/MBtu ($3.04GJ), which is at least 30% cheaper than oil-fired steam at the same site. The most promising near term application of nuclear heat is likely to be found within the energy-intensive chemical industry. Nuclear energy can substitute for imported oil and coal in the eastern provinces if the price remains competitive, but low cost coal and gas in the western provinces may induce energy-intensive industries to locate near those sources of energy. In the long term it may be feasible to use nuclear heat for the mining and extraction of oil from the Alberta tar sands. (auth)

  13. Advanced CANDU Design With Negative Power Feedback

    International Nuclear Information System (INIS)

    Andang-Widi-Harto; Muslim

    2004-01-01

    The problem of positive power feedback in the recent PHWR-CANDU design, especially related to coolant void increase, will be overcame by the use of dual moderator concept, in which two moderator systems are used, i.e. a main moderator outside the calandria tube and an annular moderator inside the annular space. Annular moderator is allowed to boil in the case of overheating. The numerical calculations have been performed for two core design namely HWR-DM-ST and HWR-DM-XI which can reach burn up of 16,000 and 17,500 MWd/ ton U respectively. The results for the two designs is that the values of k at fully annular moderator filling condition are 1.0054 (HWR-DM-ST) and 1.0019 (HWR-DM-XI), while at completely empty annular moderator condition are 0.9634 (HWR-DM-ST) and 0.9143 (HWR-DM-XI). The decrease of coolant flow rate from 3,043 kg/s to 853 kg/s decrease k values of 0.0109 (HWR-DM-ST) and 0.0232 (HWR-DM-XI). While increasing inlet coolant enthalpy from 2,950 kJ/kg to 3,175 kJ/kg decreases of k values of 0.0074 (HWR-DM-ST) and 0.0239 (HWR-DM-XI). Thus, it can be summarized that the HWR-DM design has negative power reactivity feedback.(author)

  14. Development Directions For CANDU and Slowpoke Reactors

    International Nuclear Information System (INIS)

    Brooks, Gordon L.

    1990-01-01

    This paper provides a broader-based discussion of overall development directions foreseen for CANDU reactors, particularly those which have further evolved sine the earlier paper. The paper then discusses development directions for the Slowpokes Energy System which is a small nuclear heat source intended to meet local heating needs for building complexes and municipal heating systems. In evolving a sound development direction, it is necessary, firstly, to address the question of requirements, viz., what are the requirements which future nuclear power plants must satisfy if they are to be successful? Today, some in the nuclear industry believe that the most important of such requirements relates to the need for 'safer' reactors. Indeed, some proponents of this view would seem to suggest that if only we could develop such 'safer' reactors, suddenly all of our problem s with public acceptance would disappear and utilities would form long lines waiting to purchase such marvellous machines. I do not share such a simplistic view nor, indeed, do many of my colleagues in the international nuclear power industry

  15. The CANDU alarm analysis tool (CAAT)

    International Nuclear Information System (INIS)

    Davey, E.C.; Feher, M.P.; Lupton, L.R.

    1997-01-01

    AECL undertook the development of a software tool to assist alarm system designers and maintainers based on feedback from several utilities and design groups. The software application is called the CANDU Alarm Analysis Tool (CAAT) and is being developed to: Reduce by one half the effort required to initially implement and commission alarm system improvements; improve the operational relevance, consistency and accuracy of station alarm information; record the basis for alarm-related decisions; provide printed reports of the current alarm configuration; and, make day-to-day maintenance of the alarm database less tedious and more cost-effective. The CAAT assists users in accessing, sorting and recording relevant information, design rules, decisions, and provides reports in support of alarm system maintenance, analysis of design changes, or regulatory inquiry. The paper discusses the need for such a tool, outlines the application objectives and principles used to guide tool development, describes the how specific tool features support user design and maintenance tasks, and relates the lessons learned from early application experience. (author). 4 refs, 2 figs

  16. The evolution of CANDU containment design

    International Nuclear Information System (INIS)

    Pendergast, Duane R.; Meneley, Daniel A.

    1995-01-01

    This paper reviews Canadian containment design, reflects on forces which have shaped the evolving designs and contemplates future containment design subject to existing constraints of Canadian and International nuclear power regulations. The discussion mentions modifications which could play a role in easing customary restrictions on siting while meeting the intent and literal definition of Canadian licensing requirements. Many different containment concepts have been considered and deployed over the years. Professor Birkhofer points out that the earliest systems installed were 'dry containment'. These rely on large containment buildings designed to contain all the the steam from a loss of coolant. It was soon realized the large water inventory of boiling water reactors would require very large and expensive containment buildings. This led to the development of pressure suppression concepts. Various pressure suppression schemes have been devised to condense steam and thus reduce design pressure and volume requirements. Examples include the forcing of steam into condensing water pools of BWR's steam condensation by passage into arrays of ice, dousing spray systems in CANDU reactors, and the spray condenser systems of late model Soviet designed VVER - 440 reactors. The fundamental concept of energy removal by steam condensation can result in a small containment volume requiring low design pressure capability

  17. Station black out analysis for CANDU 6 plant

    International Nuclear Information System (INIS)

    Baburajan, P.K.; Rao, R.S.; Gupta, S.K.

    2011-01-01

    As part of International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP), 'Benchmarking severe accident computer codes for pressurised heavy water reactor applications', thermal hydraulic analysis of severe accident station black out (SBO) is carried out for a generic CANDU 6 plant. The CRP is conducted in order to improve severe accident analysis capability for heavy water reactors (HWRs) through the benchmarking exercise. The plant simulation is carried out using RELAP5/Mod3.4 best estimate system thermal hydraulic code. The total thermal power of the plant is 2064 MW. There are 380 fuel channels in the core, 12 fuel bundles per channel and each bundle assembly has 37 fuel elements. The primary heat transport system (HTS) consists of two loops. Each loop consist of inlet and exit headers, feeder lines, fuel channels, hot leg and cold leg of steam generator, pumps, pump suction and discharge lines. Ninety five fuel channels in each pass of the loop are simulated as a single channel. The steam generator as the secondary side heat sink consists of annulus down-comer, riser, steam separator, steam drum, steam header and steam lines. Fuel channels (pressure tube) and calandria tube are simulated using SCDAPSIM to study the severe accident code behaviour. The SBO transient is initiated after obtaining the steady state conditions. Present analysis is carried out till the pressure tube failure. Analysis results show that the secondary inventory is lost in about 6500 seconds of the transient. The primary inventory is lost in 10370 seconds of the transient and subsequently the pressure tube failure is predicted as the tube wall temperature exceeded 900 K. Further analysis is to be carried out by incorporating changes in the calandria model and including the modeling of calandria vault and containment. (author)

  18. Evolution of the CANDU control centre retrofit and new stations

    International Nuclear Information System (INIS)

    Olmstead, R.A.; Mitchell, W.

    1991-01-01

    Significant event data from operating nuclear plants in many countries consistently indicates human errors are the root cause for 40-60% of operating station significant events. Because so much information is already in digital form, opportunities exist to improve the CANDU control centre with retrofits that exploit this information. These opportunities are enhanced because of rapid technological development in computers and electronics, coupled with significant progress in the behavioural sciences that greatly increases our knowledge of the cognitive strengths and weaknesses of human beings. CANDU control rooms are undergoing retrofits and for future CANDU stations, a new concept of the control centre is emerging. The objective is to significantly reduce the incidence of human error, reduce operations and maintenance costs and improve both reliability and safety

  19. Evolution of the CANDU control centre retrofit and new stations

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, R A [AECL-CANDU, ON (Canada); Mitchell, W [Ontario Hydro, Darlington Nuclear Generating Station, Bowmanville, ON (Canada)

    1991-04-01

    Significant event data from operating nuclear plants in many countries consistently indicates human errors are the root cause for 40-60% of operating station significant events. Because so much information is already in digital form, opportunities exist to improve the CANDU control centre with retrofits that exploit this information. These opportunities are enhanced because of rapid technological development in computers and electronics, coupled with significant progress in the behavioural sciences that greatly increases our knowledge of the cognitive strengths and weaknesses of human beings. CANDU control rooms are undergoing retrofits and for future CANDU stations, a new concept of the control centre is emerging. The objective is to significantly reduce the incidence of human error, reduce operations and maintenance costs and improve both reliability and safety.

  20. Ninth international conference on CANDU fuel, 'fuelling a clean future'

    International Nuclear Information System (INIS)

    2005-01-01

    The Canadian Nuclear Society's 9th International Conference on CANDU fuel took place in Belleville, Ontario on September 18-21, 2005. The theme for this year's conference was 'Fuelling a Clean Future' bringing together over 80 delegates ranging from: designers, engineers, manufacturers, researchers, modellers, safety specialists and managers to share the wealth of their knowledge and experience. This international event took place at an important turning point of the CANDU technology when new fuel design is being developed for commercial application, the Advanced CANDU Reactor is being considered for projects and nuclear power is enjoying a renaissance as the source energy for our future. Most of the conference was devoted to the presentation of technical papers in four parallel sessions. The topics of these sessions were: Design and Development; Fuel Safety; Fuel Modelling; Fuel Performance; Fuel Manufacturing; Fuel Management; Thermalhydraulics; and, Spent Fuel Management and Criticalty

  1. Distinctive safety aspects of the CANDU-PHW reactor design

    International Nuclear Information System (INIS)

    Kugler, G.

    1980-01-01

    Two lectures are presented in this report. They were prepared in response to a request from IAEA to provide information on the 'Special characteristics of the safety analysis of heavy water reactors' to delegates from member states attending the Interregional Training Course on Safety Analysis Review, held at Karlsruhe, November 19 to December 20, 1979. The CANDU-PHW reactor is used as a model for discussion. The first lecture describes the distinctive features of the CANDU reactor and how they impact on reactor safety. In the second lecture the Canadian safety philosophy, the safety design objective, and other selected topics on reactor safety analysis are discussed. The material in this report was selected with a view to assisting those not familiar with the CANDU heavy water reactor design in evaluating the distinctive safety aspects of these reactors. (auth)

  2. Micro-focus x-ray inspection of the bearing pad welded by laser for CANDU fuel element

    International Nuclear Information System (INIS)

    Kim, W. K.; Kim, S. S.; Lee, J. W.; Yang, M. S.

    2001-01-01

    To attach the bearing pads on the surface of CANDU fuel element, laser welding technique has been reviewed to replace brazing technology which is complicate process and makes use of the toxic beryllium. In this study, to evaluate the soundness of the weld of the bearing pad of CANDU fuel element, a precise X-ray inspection system was developed using a micro-focus X-ray generator with an image intensifier and a real time camera system. The weld of the bearing pad welded by Nd:YAG laser has been inspected by the developed inspection system. Image processing technique has been applied to reduce random noise and to enhance the contrast of the X-ray image. A few defects on the weld of the bearing pads have been detected by the X-ray inspection process

  3. Conference proceedings of the 4. international conference on CANDU fuel. V. 1,2

    International Nuclear Information System (INIS)

    1995-01-01

    These proceedings contain the full texts of all 65 papers presented at the 4th International Conference on CANDU fuel. As such, they represent an update on the state-of-the-art in such important CANDU fuel topics as International Development Programs and Operating Experience with CANDU fuel, Performance Assessments and Fuel Behavior Modeling, Fuel Properties, Licensing and Accident Analyses for CANDU fuel, Design, Testing and Manufacturing, and Advanced Fuel Designs. The large number of papers required the use of parallel sessions for the first time at a CANDU Fuel Conference

  4. Analysis of ASTEC code adaptability to severe accident simulation for CANDU type reactors

    International Nuclear Information System (INIS)

    Constantin, Marin; Rizoiu, Andrei

    2008-01-01

    In order to prepare the adaptation of the ASTEC code to CANDU NPP severe accident analysis two kinds of activities were performed: - analyses of the ASTEC modules from the point of view of models and options, followed by CANDU exploratory calculation for the appropriate modules/models; - preparing the specifications for ASTEC adaptation for CANDU NPP. The paper is structured in three parts: - a comparison of PWR and CANDU concepts (from the point of view of severe accident phenomena); - exploratory calculations with some ASTEC modules- SOPHAEROS, CPA, IODE, CESAR, DIVA - for CANDU type reactors specific problems; - development needs analysis - algorithms, methods, modules. (authors)

  5. Conference proceedings of the 4. international conference on CANDU fuel. V. 1,2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    These proceedings contain the full texts of all 65 papers presented at the 4th International Conference on CANDU fuel. As such, they represent an update on the state-of-the-art in such important CANDU fuel topics as International Development Programs and Operating Experience with CANDU fuel, Performance Assessments and Fuel Behavior Modeling, Fuel Properties, Licensing and Accident Analyses for CANDU fuel, Design, Testing and Manufacturing, and Advanced Fuel Designs. The large number of papers required the use of parallel sessions for the first time at a CANDU Fuel Conference.

  6. The back end of the fuel cycle and CANDU

    International Nuclear Information System (INIS)

    Allan, C.J.; Dormuth, K.W.

    2001-01-01

    CANDU reactor operators have benefited from several advantages of the CANDU system and from AECL's experience, with regard to spent fuel handling, storage and disposal. AECL has over 20 years experience in development and application of medium-term storage and research and development on the disposal of used fuel. As a result of AECL's experience, short-term and medium-term storage and the associated handling of spent CANDU fuel are well proven and economic, with an extremely high degree of public and environmental protection. In fact, both short-term (water-pool) and medium-term (dry canister) storage of CANDU fuel are comparable or lower in cost per unit of energy than for PWRs. Both pool storage and dry spent fuel storage are fully proven, with many years of successful, safe operating experience. AECL's extensive R and D on the permanent disposal of spent-fuel has resulted in a defined concept for Canadian fuel disposal in crystalline rock. This concept was recently confirmed as ''technically acceptable'' by an independent environmental review panel. Thus, the Canadian program represents an international demonstration of the feasibility and safety of geological disposal of nuclear fuel waste. Much of the technology behind the Canadian concept can be adapted to permanent land-based disposal strategies chosen by other countries. In addition, the Canadian development has established a baseline for CANDU fuel permanent disposal costs. Canadian and international work has shown that the cost of permanent CANDU fuel disposal is similar to the cost of LWR fuel disposal per unit of electricity produced. (author)

  7. Signal de-noising methods for fault diagnosis and troubleshooting at CANDU{sup ®} stations

    Energy Technology Data Exchange (ETDEWEB)

    Nasimi, Elnara; Gabbar, Hossam A., E-mail: hossam.gabbar@uoit.ca

    2014-12-15

    Highlights: • Fault modelling using a Fault Semantic Network (FSN). • Intelligent filtering techniques for signal de-noise in NPP. • Signal feature extraction is applied as integrated with FSN. • Increase signal-to-noise ratio (SNR). - Abstract: Over the past several years a number of domestic CANDU{sup ®} stations have experienced issues with neutron detection systems that challenged safety and operation. Intelligent troubleshooting methodology is required to aid in making risk-informed decisions related to design and operational activities, which can aid current stations and be used for the future generation of CANDU{sup ®} designs. Fault modelling approach using Fault Semantic Network (FSN) with risk estimation is proposed for this purpose. One major challenge in troubleshooting is the determination of accurate data. It is typical to have missing, incomplete or corrupted data points in large process data sets from dynamically changing systems. Therefore, it is expected that quality of obtained data will have a direct impact on the system's ability to recognize developing trends in the process upset situations. In order to enable fault detection process, intelligent filtering techniques are required to de-noise process data and extract valuable signal features in the presence of background noise. In this study, the impact of applying an optimized and intelligent filtering of process signals prior to data analysis is discussed. This is particularly important for neutronic signals in order to increase signal-to-noise ratio (SNR) which suffers the most during start-ups and low power operation. This work is complimentary to the previously published studies on FSN-based fault modelling in CANDU stations. The main objective of this work is to explore the potential research methods using a specific case study and, based on the results and outcomes from this work, to note the possible future improvements and innovation areas.

  8. Fission products transport in CANDU Primary Heat Transport System in a severe accident

    International Nuclear Information System (INIS)

    Constantin, M.; Rizoiu, A.; Turcu, I.; Negut, Gh.

    2005-01-01

    Full text: The paper is intended to analyse the distribution of the fission products (FPs) in CANDU Primary Heat Transport (PHT) System by using the ASTEC code (Accident Source Term Evaluation Code). The complexity of the data required by ASTEC and the complexity of CANDU PHT were strong motivation to begin with a simplified geometry in order to avoid the introducing of unmanageable errors at the level of input deck. Thus only 1/4 of the PHT circuit was simulated, an simplified FPs inventory and some simplifications in the feeders geometry were also used. The circuit consists of 95 horizontal fuel channels connected to 95 horizontal out-feeders, then through vertical feeders to the outlet-header (a big pipe that collects the water from feeders); the circuit continues from the outlet-header with a riser and then with the steam generator and a pump. After this pump, the circuit was broken; in this point the FPs are transferred to the containment. The data related to the nodes' definitions, temperatures and pressure conditions were chosen as possible as real data from CANDU NPP loss of coolant accident sequence. Temperature and pressure conditions in the time of the accident were calculated by CATHENA code and the source term of FPs introduced into the PHT was estimated by ORIGEN code. The results consist of mass distributions in the nodes of the circuit and the mass transfer to the containment through the break for different species (FPs and chemical species). The study is completed by sensitivity analysis for the parameters with important uncertainties. (authors)

  9. CANDU fuel quality and how it is achieved

    International Nuclear Information System (INIS)

    Gacesa, M.; Quarrington, G.R.; Tarasuk, W.R.; Carrick, I.R.; Pawliw, J.; McGregor, G.; Debnam, H.R.; Proos, L.

    1980-07-01

    In this three part presentation CANDU fuel quality is reviewed from the point of view of a designer/operator and a fabricator. In Part 'A' fuel performance and quality considerations are discussed from the point of view of a designer-operator. In Parts 'B' and 'C' fuel quality is reviewed from the point of view of a fabricator. The presentation was divided in this way to convey the 'team effort' attitude which exists in the Canadian program; the team effort which is an essential part of the CANDU story. (auth)

  10. Nuclear safety risk control in the outage of CANDU unit

    International Nuclear Information System (INIS)

    Wu Mingliang; Zheng Jianhua

    2014-01-01

    Nuclear fuel remains in the core during the outage of CANDU unit, but there are still nuclear safety risks such as reactor accidental criticality, fuel element failure due to inability to properly remove residual heat. Furthermore, these risks are aggravated by the weakening plant system configuration and multiple cross operations during the outage. This paper analyzes the phases where there are potential nuclear safety risks on the basis of the typical critical path arrangement of the outage of Qinshan NPP 3 and introduces a series of CANDU-specific risk control measures taken during the past plant outages to ensure nuclear safety during the unit outage. (authors)

  11. A JAVA applet to simulate a CANDU reactor

    International Nuclear Information System (INIS)

    Varin, E.; Desarmenien, J.

    2004-01-01

    Here we present a CANDU nuclear power plant simulator, directly available on a web page. The developed applet has two mains objectives: to expose the CANDU technology to a large public on the internet; and to construct a realistic simulator to be used as a pedagogical tool for nuclear introduction to high school or under-graduate students. The neutronic behavior and control algorithms of the reactor are simulated. Java programming language enables a very flexible environment for public information and user interaction with the plant. Examples of shutdown and power maneuver are explained. (author)

  12. Effects contributing to positive coolant void reactivity in CANDU

    International Nuclear Information System (INIS)

    Whitlock, J.J.; Garland, W.J.; Milgram, M.S.

    1995-01-01

    The lattice cell code WIMS-AECL (Ref. 3) is used to model a typical CANDU lattice cell, using nominal geometric bucklings, the PIJ option, and 69-group Winfrith library. The effect of cell voiding is modeled as a 100% instantaneous removal of coolant from the lattice. This is conservative because of the neglect of time dependence and partial core voiding, considered more plausible in CANDU. Results are grouped into three spectral groups: fast neutrons (0.821 to 10 MeV), epithermal neutrons (0.625 eV to 0.821 MeV), and thermal neutrons (<0.625 eV)

  13. Fuel management simulation for CANFLEX-RU in CANDU 6

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Fuel management simulations have been performed for CANFLEX-09% RU fuel in the CANDU 6 reactor. In this study, the bi-directional 4-bundle shift fuelling scheme was assumed. The lattice cell and time-average calculation were carried out. The refuelling simulation calculations were performed for 600 full power days. Time-averaged results show good axial power profile with the CANFLEX-RU fuel. During the simulation period, the maximum channel and bundle power were maintained below the licensing limit of CANDU 6 reactor. 7 refs., 4 figs. (Author)

  14. Improving the service life and performance of CANDU fuel channels

    International Nuclear Information System (INIS)

    Causey, A.R.; Cheadle, B.A.; Coleman, C.E.; Price, E.G.

    1996-02-01

    The development objective for CANDU fuel channels is to produce a design that can operate for 40 years at 90% capacity. Steady progress toward this objective is being made. The factors that determine the life of a CANDU fuel channel are reviewed and the processes necessary to achieve the objectives identified. Performance of future fuel channels will be enhanced by reduced operating costs, increased safety margins to postulated accident conditions, and reduced retubing costs compared with those for current channels. The approaches to these issues are discussed briefly in this report. (author). 14 refs., 1 tab., 8 figs

  15. Results of the CANDU 3 probabilistic safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jaitly, R K [Atomic Energy of Canada Ltd., Saskatoon, SK (Canada)

    1996-12-31

    The purpose of the Conceptual Probabilistic Safety Assessment (PSA) of the CANDU 3 reactor was to provide safety assistance in the early stages of design to ensure that the design included adequate redundancy and functional separation of the mitigating systems; the final design should therefore give better results, particularly after modifications involving control, electrical power, instrument air, and service water. The initial PSA gave a total CANDU 3 core damage frequency of 7.8 x 10{sup -6}/year. 4 refs., 1 fig.

  16. Fuel management simulation for CANFLEX-RU in CANDU 6

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Fuel management simulations have been performed for CANFLEX-09% RU fuel in the CANDU 6 reactor. In this study, the bi-directional 4-bundle shift fuelling scheme was assumed. The lattice cell and time-average calculation were carried out. The refuelling simulation calculations were performed for 600 full power days. Time-averaged results show good axial power profile with the CANFLEX-RU fuel. During the simulation period, the maximum channel and bundle power were maintained below the licensing limit of CANDU 6 reactor. 7 refs., 4 figs. (Author)

  17. Improving the service life and performance of CANDU fuel channels

    International Nuclear Information System (INIS)

    Coleman, C.E.; Cheadle, B.A.; Causey, A.R.; Doubt, G.L.; Fong, R.W.L.; Venkatapathi, S.

    1996-03-01

    The development objective for CANDU fuel channels is to produce a design that can operate for 40 years at 90% capacity. Steady progress toward this objective is being made. The factors that determine the life of a CANDU fuel channel are reviewed and the processes necessary to achieve the objectives are identified. Performance of future fuel channels will be enhanced by reduced operating costs and increased safety margins to postulated accident conditions compared with those for current channels. The approaches to these issues are discussed briefly in this report. (author)

  18. Risk Importance Determination Process of CANDU Maintenance Rule Function

    International Nuclear Information System (INIS)

    Seo, Mi Ro; Jo, Ha Yan; Hwang, Mi Jeong

    2009-01-01

    In Korea, Maintenance Rule (MR) programs development for all PWR were completed. However, in case of PHWR (CANDU type, Wolsong Unit 1,2,3,4), the study of MR program was delayed, since the design concepts and operating experiences are different from those of PWR. This paper describes the process and results for the risk importance determination process of functions in scope. The risk importance was determined by PSA Basic Event Mapping and Delphi method. For Delphi evaluation, Delphi evaluation item for CANDU need to be developed because the design and normal operation functions are different from PWR

  19. Determination of representative CANDU feeder dimensions for engineering simulator

    International Nuclear Information System (INIS)

    Cho, S.; Muzumdar, A.

    1996-01-01

    This paper describes a logic for selection of representative channel groups and a methodology for determination of representative CANDU feeder dimensions and the pressure drops between inlet/outlet header and fuel channel in the primary loop. A code, MEDOC, was developed based on this logic and methodology and helps perform a calculation of representative feeder dimensions for a selected channel group on the basis of feeder geometry data (fluid volume, mass flow rate, loss factor) and given property data (pressure, quality, density) at inlet/outlet header. The representative feeder dimensions calculated based on this methodology will be useful for the engineering simulator for the CANDU type reactor. (author)

  20. Assessment studies on plutonium recycle in CANDU reactors

    International Nuclear Information System (INIS)

    1978-11-01

    This paper describes the CANDU reactor system in detail and goes on to explore the potential for using the system with plutonium recycle fuelling to improve fuel utilisation and to meet the long-term challenge of economic supplies of nuclear fuel. The paper includes comments on costs and non-proliferation aspects. It concludes that: recycle fuelling is feasible with little modification to the reactor design and no degradation of safety, and could offer over 50% savings in uranium requirements. However, recycle fuelling costs do not appear competitive with natural uranium in the CANDU system under current economic conditions

  1. Design of a transportation cask for irradiated CANDU fuel

    International Nuclear Information System (INIS)

    Nash, K.E.; Gavin, M.E.

    1983-01-01

    A major step in the development of a large-scale transportation system for irradiated CANDU fuel is being made by Ontario Hydro in the design and construction of a demonstration cask by 1988/89. The system being designed is based on dry transportation with the eventual fully developed system providing for dry fuel loading and unloading. Research carried out to date has demonstrated that it is possible to transport irradiated CANDU fuel in a operationally efficient and simple manner without any damage which would prejudice subsequent automated fuel handling

  2. Load-following performance and assessment of CANDU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, M.; Floyd, M.; Rattan, D.; Xu, Z.; Manzer, A.; Lau, J. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Kohn, E. [Ontario Power Generation, Fuel and Fuel Channel Analysis Dept., Toronto, Ontario (Canada)

    1999-09-01

    Load following of nuclear reactors is now becoming an economic necessity in some countries. When nuclear power stations are operated in a load-following mode, the reactor and the fuel may be subjected to step changes in power on a weekly, daily, or even hourly basis, depending on the grid's needs. This paper updates the previous surveys of load-following capability of CANDU fuel, focusing mainly on the successful experience at the Bruce B station. As well, initial analytical assessments are provided that illustrate the capability of CANDU fuel to survive conditions other than those for which direct in-reactor evidence is available. (author)

  3. CANDU - a versatile reactor for plutonium disposition or actinide burning

    International Nuclear Information System (INIS)

    Chan, P.S.W.; Gagnon, M.J.N.; Boczar, P.G.; Ellis, R.J.; Verrall, R.A.

    1997-10-01

    High neutron economy, on-line refuelling, and a simple fuel-bundle design result in a high degree of versatility in the use of the CANDU reactor for the disposition of weapons-derived plutonium and for the annihilation of long-lived radioactive actinides, such as plutonium, neptunium, and americium isotopes, created in civilian nuclear power reactors. Inherent safety features are incorporated into the design of the bundles carrying the plutonium and actinide fuels. This approach enables existing CANDU reactors to operate with various plutonium-based fuel cycles without requiring major changes to the current reactor design. (author)

  4. A study for good regulatin of the CANDU's in Korea. Development of safety regulatory requirement for CANDU nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se Ki; Shin, Y. K.; Kim, J. S.; Yu, Y. J.; Lee, Y. J. [Ajou Univ., Suwon (Korea, Republic of)

    2001-03-15

    The objective of project is to derive the policy recommendations to improve the efficiency of CANDU plants regulation. These policy recommendations will eventually contribute to the upgrading of Korean nuclear regulatory system and safety enhancement. During the first phase of this 2 years study, following research activities were done. On-site survey and analysis on CANDU plants regulation. Review on CANDU plants regulating experiences and current constraints. Review and analysis on the new Canadian regulatory approach.

  5. A leak-before-break strategy for CANDU primary piping systems

    International Nuclear Information System (INIS)

    Aggarwal, M.L.; Kozluk, M.J.; Lin, T.C.; Manning, B.W.; Vijay, D.K.

    1986-01-01

    Recent advances in elastic-plastic fracture mechanics have made it possible to assess the stability of cracks in ductile piping systems. These technological developments have been used by Ontario Hydro as the nucleus of an approach for demonstrating that CANDU primary heat transport piping systems will not break catastrophically; at worst they would leak at a detectable rate. This leak-before-break approach has been taken on the Darlington nuclear generating station as a design stage alternative to the provision of pipe whip restraints on large diameter, primary heat transport system piping. Positive conclusions reached via this approach are considered sufficient to exclude the requirement to provide protective devices, such as pipe whip restraints. In arriving at the proposed leak-before-break approach a review of current and proposed leak-before-break licensing positions of other jurisdictions (particularly those in the United States and the Federal Republic of Germany) was carried out. The approach presented makes use of recent American developments in the area of elastic-plastic fracture mechanics. It also gives consideration to aspects which are unique to the pressurized heavy water (CANDU) reactors used by Ontario Hydro. The proposed leak-before-break approach is described and its use is illustrated by applying it to the Darlington generating station primary heat transport system pump suction piping. (author)

  6. Lithium Hideout and Return in the CANDU Heat Transport System during Shutdown and Start-up

    International Nuclear Information System (INIS)

    Qiu, L.; Snaglewski, A.P.

    2012-09-01

    Lithium hydroxide is used to control the pH a (pH apparent) of the Heat Transport System (HTS) coolant in CANDU R reactors. The recommended range of the lithium concentration in the coolant is between 0.38 ppm (5.5x10 -5 m) and 0.60 ppm (8.7x10 -5 m) to minimize carbon steel corrosion in the HTS and magnetite deposition in the core during normal operation; this corresponds to pH a values between 10.2 and 10.4. Similar pH a and lithium concentrations should be maintained during shutdown and start-up. However, maintaining the pH a of the HTS coolant within specification during shutdown and start-up has been difficult for some CANDU stations, especially when the HTS is taken to a Low Level Drain State (LLDS), because of lithium hideout and return. This paper presents the results from lithium adsorption and desorption studies on iron oxides under relevant shutdown and start-up chemistry conditions performed to elucidate the mechanisms of the observed lithium hideout and return. The results show that lithium hideout and return are driven largely by changes in the solubility of magnetite as the HTS coolant chemistry changes during shutdown; changes in lithium concentration were inversely correlated with the solubility of magnetite. When the HTS system is de-pressurized and drained to a low coolant level, the ingress of air rapidly oxidizes the dissolved Fe (II) in the coolant, 2Fe +2 + 1 / 2 O 2 + 3 H 2 = 2FEOOH + 4 H + , resulting in the formation of lepidocrocite or maghemite, which have much lower solubilities but larger surface areas than does magnetite. The large surface area of the Fe (III) oxides can adsorb significant quantities of lithium from the coolant, leading to lithium hideout and a pH a decrease. During start-up, the chemistry of the coolant changes from oxidizing to reducing, and lepidocrocite and other Fe (III) oxides are reduced to Fe (II), gradually dissolving as their solubility increases with increasing temperature. The adsorbed lithium is released

  7. Improving the calandria tubes for CANDU reactors

    International Nuclear Information System (INIS)

    Coleman, C.E.; Fong, R.W.L.; Doubt, G.L.

    1997-01-01

    CANDU calandria tubes are made from annealed Zircaloy-2 sheet formed into a cylinder and welded along its length to make the tube. The current calandria tubes have given exemplary service for many years. With more stringent regulations and the need to accommodate warm cooling water in tropical countries, we started a development program to increase the margins for failure during postulated accidents. These improvements involve increasing the tube strength and optimising the heat-transfer from an excessively hot fuel channel to the cool moderator. If the postulated accident involves a pressure tube break, it would be desirable if the calandria tube withstood the full pressure of the heat-transport system. The weakest link in current calandria tubes is the weld. Thickening the weld can increase the strength by 20% while seamless tubes can be 45% stronger than current tubes. The latter tubes can hold full system pressure for many hours without failure. If during the postulated accident the fuel and pressure tube become excessively hot but do not touch the calandria tube, the radiant heat loss must be maximised. Current calandria tubes have an absorptivity (emissivity) of about 0.2. To protect the fuel and the fuel channel we have devised a finish to the inside surface of the calandria tube that increases the emissivity to 0.7. If during the postulated accident the hot pressure tube touches the cool calandria tube, the contact conductance and the critical heat flux must be optimised to ensure nucleate boiling of the moderator at the outside surface of the calandria tube and therefore efficient exploitation of the moderator as a heat sink. In laboratory tests small ridges on the inside surface and roughening of the outside surface have been shown to increase the margins against failure and increase the possible moderator temperatures thus providing the opportunity to decrease the cost of the moderator heat-exchange system and remove restrictions on reactor operation in

  8. Advanced fuel cycles in CANDU reactors

    International Nuclear Information System (INIS)

    Green, R.E.; Boczar, P.G.

    1990-04-01

    This paper re-examines the rationale for advanced nuclear fuel cycles in general, and for CANDU advanced fuel cycles in particular. The traditional resource-related arguments for more uranium nuclear fuel cycles are currently clouded by record-low prices for uranium. However, the total known conventional uranium resources can support projected uranium requirements for only another 50 years or so, less if a major revival of the nuclear option occurs as part of the solution to the world's environmental problems. While the extent of the uranium resource in the earth's crust and oceans is very large, uncertainty in the availability and price of uranium is the prime resource-related motivation for advanced fuel cycles. There are other important reasons for pursuing advanced fuel cycles. The three R's of the environmental movement, reduce, recycle, reuse, can be achieved in nuclear energy production through the employment of advanced fuel cycles. The adoption of more uranium-conserving fuel cycles would reduce the amount of uranium which needs to be mined, and the environmental impact of that mining. Environmental concerns over the back end of the fuel cycle can be mitigated as well. Higher fuel burnup reduces the volume of spent fuels which needs to be disposed of. The transmutation of actinides and long-lived fission products into short-lived fission products would reduce the radiological hazard of the waste from thousands to hundreds of years. Recycling of uranium and/or plutonium in spent fuel reuses valuable fissile material, leaving only true waste to be disposed of. Advanced fuel cycles have an economical benefit as well, enabling a ceiling to be put on fuel cycle costs, which are

  9. A new CANDU-600 containment structure

    International Nuclear Information System (INIS)

    Serban, V.; Bobei, M.; Gheorghiu, M.; Popescu, M.; Stanciu, M.; Dinica, D.; Alexandru, C.

    1994-01-01

    This paper is presenting a structure made of reinforced concrete with rectangular cross-section, box-divided, prefabricated and modulled on a bay 6.5 m wide and 4.5 m high, and provided with a steel liner. The building has an overall basement in which the steel liner is embedded and which is supporting the building walls. The inner structure is common to the containment as well and it is carried out for each room (generally 6.5 m by 6.5 m) having intermediar floors at the necessary elevations. The containment dimensions, on horizontal plane are 6 x 6.5 m by 5 x 6.5 m and the total height of the side walls is 30.5 m. The containment is closed in A-C direction by a prefabricated semi-cylinder which is supported by the side walls and 5 intermediate arches. The fuel transfer deck structure is common to the inner structure and the containment structure. The Calandria vault is a separate individual structure located above E1. 100. For CANDU-600 main equipment the same arrangement was maintained, some unsignificant modifications being made, for example, the access areas located in the four corners of the building as well as the location of some auxiliary systems. The paper is also including a set of 1:200 scale drawings, comments on the construction manner and the results of the building structural analysis. The suggested solution is evidencing economical benefits facilities in the operation and construction of the plant and it is specially recommended for areas with high seismic events. (author)

  10. On the speed of response of an FPGA-based shutdown system in CANDU nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    She Jingke, E-mail: jshe2@uwo.ca [Department of Electrical and Computer Engineering, The University of Western Ontario, London, Ontario, N6A 5B9 (Canada); Jiang Jin, E-mail: jjiang@eng.uwo.ca [Department of Electrical and Computer Engineering, The University of Western Ontario, London, Ontario, N6A 5B9 (Canada)

    2011-06-15

    Highlights: > Design and implementation of an FPGA-based CANDU SDS1. > Hardware-in-the-loop simulation for performance evaluation involved with an NPP simulator. > Comparison of the response time between FPGA-based trip channel and software-based PLC. - Abstract: Several issues in an FPGA based implementation of shutdown systems in CANDU nuclear power plants have been investigated in this paper. A particular attention is on the response time of an FPGA implementation of safety shutdown systems in comparison with operating system based software solutions as in existing CANDU plants. The trip decision logic under 'steam generator (SG) level low' condition has been examined in detail. The design and implementation of this logic on an FPGA platform have been carried out. The functionality tests are performed in a hardware-in-the-loop (HIL) environment by connecting the FPGA based system to an NPP simulator, and replacing one channel of Shutdown System Number 1 (SDS1) in the simulator by the FPGA implementation. The response time of the designed system is also measured through multiple tests under different conditions, and statistical data analysis has been performed. The results of the response time tests are compared against those of a software-based implementation of the same trip logic.

  11. Modelling nuclear fuel vibrations in horizontal CANDU reactors

    International Nuclear Information System (INIS)

    Jagannath, D.V.; Oldaker, I.E.

    1976-01-01

    Flow-induced fuel vibrations in the pressure tubes of CANDU reactors are of vital interest to designers because fretting damage may result. Computer simulation is being used to study how bundles vibrate and to identify bundle design features which will reduce vibration and hence fretting. (author)

  12. Addressing severe accidents in the CANDU 9 design

    International Nuclear Information System (INIS)

    Nijhawan, S.M.; Wight, A.L.; Snell, V.G.

    1998-01-01

    CANDU 9 is a single-unit evolutionary heavy-water reactor based on the Bruce/Darlington plants. Severe accident issues are being systematically addressed in CANDU 9, which includes a number of unique features for prevention and mitigation of severe accidents. A comprehensive severe accident program has been formulated with feedback from potential clients and the Canadian regulatory agency. Preliminary Probabilistic Safety Analyses have identified the sequences and frequency of system and human failures that may potentially lead to initial conditions indicating onset of severe core damage. Severe accident consequence analyses have used these sequences as a guide to assess passive heat sinks for the core, and containment performance. Estimates of the containment response to mass and energy injections typical of postulated severe accidents have been made and the results are presented. We find that inherent CANDU severe accident mitigation features, such as the presence of large water volumes near the fuel (moderator and shield tank), permit a relatively slow severe accident progression under most plant damage states, facilitate debris coolability and allow ample time for the operator to arrest the progression within, progressively, the fuel channels, calandria vessel or shield tank. The large-volume CANDU 9 containment design complements these features because of the long times to reach failure

  13. Emergency core cooling systems in CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1981-12-01

    This report contains the responses by the Advisory Committee on Nuclear Safety to three questions posed by the Atomic Energy Control Board concerning the need for Emergency Core Cooling Systems (ECCS) in CANDU nuclear power plants, the effectiveness requirement for such systems, and the extent to which experimental evidence should be available to demonstrate compliance with effectiveness standards

  14. The Candu system - The way for nuclear autonomy

    International Nuclear Information System (INIS)

    Martinez, H.

    1987-01-01

    The experience acquired by Canada during the development of Candu System is presented. Some basic foundations of technology transfer are defined and, the conditions of canadian nuclear industry to provide developing countries, technical assistence for acquisition of nuclear energy autonomy, are analysed. (M.C.K.) [pt

  15. Plutonium Consumption Program, CANDU Reactor Project final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-31

    DOE is investigating methods for long term dispositioning of weapons grade plutonium. One such method would be to utilize the plutonium in Mixed OXide (MOX) fuel assemblies in existing CANDU reactors. CANDU (Canadian Deuterium Uranium) reactors are designed, licensed, built, and supported by Atomic Energy of Canada Limited (AECL), and currently use natural uranium oxide as fuel. The MOX spent fuel assemblies removed from the reactor would be similar to the spent fuel currently produced using natural uranium fuel, thus rendering the plutonium as unattractive as that in the stockpiles of commercial spent fuel. This report presents the results of a study sponsored by the DOE for dispositioning the plutonium using CANDU technology. Ontario Hydro`s Bruce A was used as reference. The fuel design study defined the optimum parameters to disposition 50 tons of Pu in 25 years (or 100 tons). Two alternate fuel designs were studied. Safeguards, security, environment, safety, health, economics, etc. were considered. Options for complete destruction of the Pu were also studied briefly; CANDU has a superior ability for this. Alternative deployment options were explored and the potential impact on Pu dispositioning in the former Soviet Union was studied. An integrated system can be ready to begin Pu consumption in 4 years, with no changes required to the reactors other than for safe, secure storage of new fuel.

  16. Effect of DUPIC cycle on CANDU reactor safety parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Nader M. A. [Atomic Energy Authority, ETRR-2, Cairo (Egypt); Badawi, Alya [Dept. of Nuclear and Radiation Engineering, Alexandria University, Alexandria (Egypt)

    2016-10-15

    Although, the direct use of spent pressurized water reactor (PWR) fuel in CANda Deuterium Uranium (CANDU) reactors (DUPIC) cycle is still under investigation, DUPIC cycle is a promising method for uranium utilization improvement, for reduction of high level nuclear waste, and for high degree of proliferation resistance. This paper focuses on the effect of DUPIC cycle on CANDU reactor safety parameters. MCNP6 was used for lattice cell simulation of a typical 3,411 MWth PWR fueled by UO{sub 2} enriched to 4.5w/o U-235 to calculate the spent fuel inventories after a burnup of 51.7 MWd/kgU. The code was also used to simulate the lattice cell of CANDU-6 reactor fueled with spent fuel after its fabrication into the standard 37-element fuel bundle. It is assumed a 5-year cooling time between the spent fuel discharges from the PWR to the loading into the CANDU-6. The simulation was carried out to calculate the burnup and the effect of DUPIC fuel on: (1) the power distribution amongst the fuel elements of the bundle; (2) the coolant void reactivity; and (3) the reactor point-kinetics parameters.

  17. A short history of the CANDU nuclear power system

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, G L

    1993-04-01

    This paper provides a short historical summary of the evolution of the CANDU nuclear power system with emphasis on the roles played by Ontario Hydro and private sector companies in Ontario in collaboration with Atomic Energy of Canada Limited (AECL). (author). 1 fig., 61 refs.

  18. Computer-aided engineering for Qinshan CANDU projects

    International Nuclear Information System (INIS)

    Huang Zhizhang; Goland, D.

    1999-01-01

    The author briefly describes AECL's work in applying computer-aided engineering tools to the Qinshan CANDU Project. The main emphases will be to introduce the major CADD software tools and their use in civil design, process design and EI and C design. Other special software tools and non-CADD tools and their applications are also briefly introduced

  19. Plutonium Consumption Program, CANDU Reactor Project final report

    International Nuclear Information System (INIS)

    1994-01-01

    DOE is investigating methods for long term dispositioning of weapons grade plutonium. One such method would be to utilize the plutonium in Mixed OXide (MOX) fuel assemblies in existing CANDU reactors. CANDU (Canadian Deuterium Uranium) reactors are designed, licensed, built, and supported by Atomic Energy of Canada Limited (AECL), and currently use natural uranium oxide as fuel. The MOX spent fuel assemblies removed from the reactor would be similar to the spent fuel currently produced using natural uranium fuel, thus rendering the plutonium as unattractive as that in the stockpiles of commercial spent fuel. This report presents the results of a study sponsored by the DOE for dispositioning the plutonium using CANDU technology. Ontario Hydro's Bruce A was used as reference. The fuel design study defined the optimum parameters to disposition 50 tons of Pu in 25 years (or 100 tons). Two alternate fuel designs were studied. Safeguards, security, environment, safety, health, economics, etc. were considered. Options for complete destruction of the Pu were also studied briefly; CANDU has a superior ability for this. Alternative deployment options were explored and the potential impact on Pu dispositioning in the former Soviet Union was studied. An integrated system can be ready to begin Pu consumption in 4 years, with no changes required to the reactors other than for safe, secure storage of new fuel

  20. CANDU 9 - reducing capital costs through advanced construction

    International Nuclear Information System (INIS)

    Hedges, K.; Yu, S.; Hopwood, J.

    1996-01-01

    Reducing costs is a clear priority in nuclear markets where capital reaches billions and financing is hard-won. To address that priority, AECL introduced the use of advanced construction techniques. This has been one of the key thrusts behind its development of CANDU 9. (author)