WorldWideScience

Sample records for generation chirped pulse

  1. Next generation Chirped Pulse Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Nees, J.; Biswal, S.; Mourou, G. [Univ. Michigan, Center for Ultrafast Optical Science, Ann Arbor, MI (United States); Nishimura, Akihiko; Takuma, Hiroshi

    1998-03-01

    The limiting factors of Chirped Pulse Amplification (CPA) are discussed and experimental results of CPA in Yb:glass regenerative amplifier are given. Scaling of Yb:glass to the petawatt level is briefly discussed. (author)

  2. Generation of frequency-chirped optical pulses with felix

    Energy Technology Data Exchange (ETDEWEB)

    Knippels, G.M.H.; Meer, A.F.G. van der; Mols, R.F.X.A.M. [FOM-Institute for Plasma Physics, Nieuwegein (Netherlands)] [and others

    1995-12-31

    Frequency-chirped optical pulses have been produced in the picosecond regime by varying the energy of the electron beam on a microsecond time scale. These pulses were then compressed close to their bandwidth limit by an external pulse compressor. The amount of chirp can be controlled by varying the sweep rate on the electron beam energy and by cavity desynchronisation. To examine the generated chirp we used the following diagnostics: a pulse compressor, a crossed beam autocorrelator, a multichannel electron spectrometer and multichannel optical spectrometer. The compressor is build entirely using reflective optics to permit broad band operation. The autocorrelator is currently operating from 6 {mu}m to 30 {mu}m with one single crystal. It has been used to measure pulses as short as 500 fs. All diagnostics are evacuated to prevent pulse shape distortion or pulse lengthening caused by absorption in ambient water vapour. Pulse length measurements and optical spectra will be presented for different electron beam sweep rates, showing the presence of a frequency chirp. Results on the compression of the optical pulses to their bandwidth limit are given for different electron sweep rates. More experimental results showing the dependence of the amount of chirp on cavity desynchronisation will be presented.

  3. Effects of chirp of pump pulses on broadband terahertz pulse spectra generated by optical rectification

    Science.gov (United States)

    Hamazaki, Junichi; Furusawa, Kentaro; Sekine, Norihiko; Kasamatsu, Akifumi; Hosako, Iwao

    2016-11-01

    The effects of the chirp of the pump pulse in broadband terahertz (THz) pulse generation by optical rectification (OR) in GaP were systematically investigated. It was found that the pre-compensation for the dispersion of GaP is important for obtaining smooth and single-peaked THz spectra as well as high power-conversion efficiency. It was also found that an excessive amount of chirp leads to distortions in THz spectra, which can be quantitatively analyzed by using a simple model. Our results highlight the importance of accurate control over the chirp of the pump pulse for generating broadband THz pulses by OR.

  4. Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification

    NARCIS (Netherlands)

    Witte, S.; Zinkstok, R.T.; Hogervorst, W.; Eikema, K.S.E.

    2005-01-01

    We demonstrate the generation of 9.8 +/- 0.3 fs laser pulses with a peak power exceeding one terawatt at 30 Hz repetition rate, using optical parametric chirped pulse amplification. The amplifier is pumped by 140 mJ, 60 ps pulses at 532 nm, and amplifies seed pulses from a Ti: Sapphire oscillator to

  5. Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification.

    Science.gov (United States)

    Witte, S; Zinkstok, R; Hogervorst, W; Eikema, K

    2005-06-27

    We demonstrate the generation of 9.8+/-0.3 fs laser pulses with a peak power exceeding one terawatt at 30 Hz repetition rate, using optical parametric chirped pulse amplification. The amplifier is pumped by 140 mJ, 60 ps pulses at 532 nm, and amplifies seed pulses from a Ti:Sapphire oscillator to 23 mJ/pulse, resulting in 10.5 mJ/pulse after compression while amplified fluorescence is kept below 1%. We employ grating-based stretching and compression in combination with an LCD phase-shaper, allowing compression close to the Fourier limit of 9.3 fs.

  6. Generation of frequency-chirped optical pulses with FELIX

    Science.gov (United States)

    Knippels, G. M. H.; van der Meer, A. F. G.; Mols, R. F. X. A. M.; Oepts, D.; van Amersfoort, P. W.

    1996-02-01

    By ramping the energy of the electron beam on a microsecond timescale, a frequency chirp on a picosecond timescale has been induced. The results of such an experiment are discussed as well as the results of an external pulse chirping experiment. Furthermore, the output of FELIX under normal operating conditions is investigated. For the first time a detailed series of measurements of the evolution of the optical micropulse into a train of subpulses is made when FELIX operates in the limit-cycle mode.

  7. Influence of Initial Pulse Chirp on Rainbow-Like Supercontinuum Generation from Filamentation in Air

    Institute of Scientific and Technical Information of China (English)

    HAO Zuo-Qiang; ZHANG Jie; ZHANG Zhe; LU Xin; JIN Zhan; ZHONG Jia-Yong; LIU Yun-Quan; WANG Zhao-Hua

    2008-01-01

    @@ Supercontinuum (SC) generation from laser filamentation in air is found to depend strongly on the pulse duration.Rainbow-like SC generation is observed only for a pulse of appropriate negative chirp that agrees with the predictions put forward by Golubtsov et al. [Quantum Electron. 33 (2003) 525]. The conversion efficiency of an 800-nm laser light to rainbow-like SC is found to be the highest for 257fs pulses with an initial negative chirp.A larger chirp will lead to ffiamentation surviving at longer distance.

  8. Enhancing High-Order Harmonic Generation in Light Molecules by Using Chirped Pulses

    Science.gov (United States)

    Lara-Astiaso, M.; Silva, R. E. F.; Gubaydullin, A.; Rivière, P.; Meier, C.; Martín, F.

    2016-08-01

    One of the current challenges in high-harmonic generation is to extend the harmonic cutoff to increasingly high energies while maintaining or even increasing the efficiency of the high-harmonic emission. Here we show that the combined effect of down-chirped pulses and nuclear dynamics in light molecules allows one to achieve this goal, provided that long enough IR pulses are used to allow the nuclei to move well outside the Franck-Condon region. We also show that, by varying the duration of the chirped pulse or by performing isotopic substitution while keeping the pulse duration constant, one can control the extension of the harmonic plateau.

  9. Enhancing High-Order Harmonic Generation in Light Molecules by Using Chirped Pulses.

    Science.gov (United States)

    Lara-Astiaso, M; Silva, R E F; Gubaydullin, A; Rivière, P; Meier, C; Martín, F

    2016-08-26

    One of the current challenges in high-harmonic generation is to extend the harmonic cutoff to increasingly high energies while maintaining or even increasing the efficiency of the high-harmonic emission. Here we show that the combined effect of down-chirped pulses and nuclear dynamics in light molecules allows one to achieve this goal, provided that long enough IR pulses are used to allow the nuclei to move well outside the Franck-Condon region. We also show that, by varying the duration of the chirped pulse or by performing isotopic substitution while keeping the pulse duration constant, one can control the extension of the harmonic plateau.

  10. Nonlinear chirped-pulse propagation and supercontinuum generation in photonic crystal fibers.

    Science.gov (United States)

    Hu, Xiaohong; Wang, Yishan; Zhao, Wei; Yang, Zhi; Zhang, Wei; Li, Cheng; Wang, Hushan

    2010-09-10

    Based on the generalized nonlinear Schrödinger equation and waveguiding properties typical of the photonic crystal fiber structure, nonlinear chirped-pulse propagation and supercontinua generation in the femtosecond and picosecond regimes are investigated numerically. The simulation results indicate that an input chirp parameter mainly affects the initial stage of spectral broadening caused by the self-phase modulation (SPM) effect. In the femtosecond regime where the SPM effect plays an important role in the process of spectral broadening, an input positive chirp can enhance the supercontinuum bandwidth through a modified pulse compression phase and a decreased propagation distance required by soliton fission. In the picosecond regime, where the SPM effect contributes less to the continuum bandwidth and four-wave mixing process or modulational instability dominates the initial stage of spectral and temporal evolution, the output spectral shape and bandwidths are less sensitive to the input chirp parameters.

  11. Experimental photonic generation of chirped pulses using nonlinear dispersion-based incoherent processing.

    Science.gov (United States)

    Rius, Manuel; Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2015-05-18

    We experimentally demonstrate, for the first time, a chirped microwave pulses generator based on the processing of an incoherent optical signal by means of a nonlinear dispersive element. Different capabilities have been demonstrated such as the control of the time-bandwidth product and the frequency tuning increasing the flexibility of the generated waveform compared to coherent techniques. Moreover, the use of differential detection improves considerably the limitation over the signal-to-noise ratio related to incoherent processing.

  12. Generation of Frequency-Chirped Pulses in the Far-Infrared by Means of a Subpicosecond Free-Electron Laser and an External Pulse Shaper

    NARCIS (Netherlands)

    Knippels, G.M.H.; van der Meer, A. F. G.; Mols, Rfxam; van Amersfoort, P. W.; Vrijen, R. B.; Maas, D. J.; Noordam, L. D.

    1995-01-01

    The generation of frequency-chirped optical pulses in the far-infrared is reported. The pulses are produced by the free-electron laser FELIX. The chirp is induced by means of an external shaping device consisting of a grating and a telescope. The shaper is based on reflective optics to permit operat

  13. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.

    Science.gov (United States)

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi

    2015-11-01

    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.

  14. Generation of synchronized signal and pump pulses for an optical parametric chirped pulse amplification based multi-terawatt Nd:glass laser system

    Indian Academy of Sciences (India)

    M Raghuramaiah; R K Patidar; R A Joshi; P A Naik; P D Gupta

    2010-11-01

    Synchronized signal (650 ps) and pump (1.3 ns) pulses were generated using 4-pass geometry in a grating pair based pulse stretcher unit. The pump pulse has been further amplified in a high gain regenerative amplifier. This amplified pulse was used as the pump in an optical parametric chirped pulse amplification based Nd:glass laser system. As the chirped signal pulse and the pump pulse originated from the same oscillator, the time jitter between the pump pulse and the signal pulse can be <50 ps.

  15. Spectral Phase Modulation and chirped pulse amplification in High Gain Harmonic Generation

    CERN Document Server

    Wu, Zilu; Krinsky, Sam; Loos, Henrik; Murphy, James; Shaftan, Timur; Sheehy, Brian; Shen, Yuzhen; Wang, Xijie; Yu Li Hua

    2004-01-01

    High Gain Harmonic Generation (HGHG), because it produces longitudinally coherent pulses derived from a coherent seed, presents remarkable possibilities for manipulating FEL pulses. If spectral phase modulation imposed on the seed modulates the spectral phase of the HGHG in a deterministic fashion, then chirped pulse amplification, pulse shaping, and coherent control experiments at short wavelengths become possible. In addition, the details of the transfer function will likely depend on electron beam and radiator dynamics and so prove to be a useful tool for studying these. Using the DUVFEL at the National Synchrotron Light Source at Brookhaven National Laboratory, we present spectral phase analyses of both coherent HGHG and incoherent SASE ultraviolet FEL radiation, applying Spectral Interferometry for Direct Electric Field Reconstruction (SPIDER), and assess the potential for employing compression and shaping techniques.

  16. Ion Acceleration by Short Chirped Laser Pulses

    Directory of Open Access Journals (Sweden)

    Jian-Xing Li

    2015-02-01

    Full Text Available Direct laser acceleration of ions by short frequency chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1% can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies in the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e., higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

  17. Ion Acceleration by Short Chirped Laser Pulses

    CERN Document Server

    Li, Jian-Xing; Keitel, Christoph H; Harman, Zoltán

    2015-01-01

    Direct laser acceleration of ions by short frequency-chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1 % can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies of the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e. higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

  18. High-order harmonic generation driven by chirped laser pulses induced by linear and non linear phenomena

    CERN Document Server

    Neyra, E; Pérez-Hernández, J A; Ciappina, M F; Roso, L; Torchia, G A

    2016-01-01

    We present a theoretical study of high-order harmonic generation (HHG) driven by ultrashort optical pulses with different kind of chirps. The goal of the present work is perform a detailed study to clarify the relevant parameters in the chirped pulses to achieve a noticeable cut-off extensions in HHG. These chirped pulses are generated using both linear and nonlinear dispersive media.The description of the origin of the physical mechanisms responsible of this extension is, however, not usually reported with enough detail in the literature. The study of the behaviour of the harmonic cut-off with these kind of pulses is carried out in the classical context, by the integration of the Newton-Lorentz equation complemented with the quantum approach, based on the integration of the time dependent Schr\\"odinger equation in full dimensions (TDSE-3D), we are able to understand the underlying physics.

  19. Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Herrmann, Daniel; Veisz, Laszlo; Tautz, Raphael; Tavella, Franz; Schmid, Karl; Pervak, Vladimir; Krausz, Ferenc

    2009-08-15

    We present a two-stage noncollinear optical parametric chirped-pulse amplification system that generates 7.9 fs pulses containing 130 mJ of energy at an 805 nm central wavelength and 10 Hz repetition rate. These 16 TW light pulses are compressed to within 5% of their Fourier limit and are carefully characterized by the use of home-built pulse diagnostics. The contrast ratio before the main pulse has been measured as 10(-4), 10(-8), and 10(-11) at t=-3.3 ps, t=-5 ps, and t=-30 ps, respectively. This source allows for experiments in a regime of relativistic light-matter interactions and attosecond science.

  20. Generation of 7-fs laser pulse directly from a compact Ti:sapphire laser with chirped mirrors

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A compact femtosecond Ti:sapphire laser resonator consisting of three chirped mirrors and one output coupler was designed. By accurately balancing the intra- cavity dispersions between Ti:sapphire crystal, air and chirped mirrors, we directly generated the laser pulse shorter than 7 fs at the average power of 340 mW with 3.1 W pump. The repetition rate of the laser oscillator is 173 MHz at the centre wavelength of 791 nm, and the ultrabroaden spectrum covers from 600 nm to 1000 nm. To the best of our knowledge, this is the simplest laser resonator capable of generating sub-10 fs laser pulse.

  1. Generation of 7-fs laser pulse directly from a compact Ti:sapphire laser with chirped mirrors

    Institute of Scientific and Technical Information of China (English)

    ZHAO YanYing; WANG Peng; ZHANG Wei; TIAN JinRong; WEI ZhiYi

    2007-01-01

    A compact femtosecond Ti:sapphire laser resonator consisting of three chirped mirrors and one output coupler was designed. By accurately balancing the intracavity dispersions between Ti:sapphire crystal, air and chirped mirrors, we directly generated the laser pulse shorter than 7 fs at the average power of 340 mW with 3.1 W pump. The repetition rate of the laser oscillator is 173 MHz at the centre wavelength of 791 nm, and the ultrabroaden spectrum covers from 600 nm to 1000 nm. To the best of our knowledge, this is the simplest laser resonator capable of generating sub-10 fs laser pulse.

  2. Green and ultraviolet pulse generation with a compact, fiber laser, chirped-pulse amplification system for aerosol fluorescence measurements

    Science.gov (United States)

    Lou, Janet W.; Currie, Marc; Sivaprakasam, Vasanthi; Eversole, Jay D.

    2010-10-01

    We use a compact chirped-pulse amplified system to harmonically generate ultrashort pulses for aerosol fluorescence measurements. The seed laser is a compact, all-normal dispersion, mode-locked Yb-doped fiber laser with a 1050 nm center wavelength operating at 41 MHz. Average powers of more than 1.2 W at 525 nm and 350 mW at 262 nm are generated with biofluorescence measurements as it allows faster sampling rates as well as the higher peak powers as compared to previously demonstrated Q-switched systems while maintaining a pulse period that is longer than the typical fluorescence lifetimes. Thus, the fluorescence excitation can be considered to be quasicontinuous and requires no external synchronization and triggering.

  3. Hundred-picosecond narrowband chirped-pulse generation in an Yb:YAG regenerative amplifier using transmission gratings

    Science.gov (United States)

    Hwang, SungIn; Tokita, Shigeki; Kawashima, Toshiyuki; Nishioka, Hajime; Kawanaka, Junji

    2016-12-01

    We have demonstrated a seed source for an optical parametric chirped pulse amplification pumping source through a cryogenically cooled Yb:YAG regenerative amplifier, which can vary the pulse duration depending on the number of passes and generate a very high chirp rate. The Fourier-transform-limited pulse duration of 10 ps was extended to a few hundred picoseconds (109 to 165 ps) to prevent damage to the gain medium in the subsequent high-pulse-energy pumping source, which was seeded by the regenerative amplifier. This was achieved by inserting a transmission diffraction grating pair inside the cavity of the regenerative amplifier. The variable pulse duration could be set between 109 and 165 ps by electronically adjusting the pass number of pulses inside the cavity. The stretched pulse duration and the spectral width as functions of the pass number were characterized by considering the dispersion from the grating stretcher as well as the gain narrowing effect.

  4. Direct generation of intense extreme ultraviolet supercontinuum with chirped 11-mJ pulses from a femtosecond laser amplifier

    CERN Document Server

    Zeng, Bin; Li, Guihua; Yao, Jinping; Ni, Jielei; Zhang, Haisu; Cheng, Ya; Xu, Zhizhan

    2011-01-01

    We report on the generation of intense extreme ultraviolet (EUV) supercontinuum with photon energies spanning from 35 eV to 50 eV (i. e., supporting an isolated attosecond pulse with a duration of ~271 as) by loosely focusing 11-mJ chirped pulses from a femtosecond laser amplifier into a 10-mm long gas cell filled with krypton gas. We observe that when high-order harmonics are generated with transformed-limited ~35 fs pulses, only discrete harmonics can be produced; whereas for negatively chirped 188 fs pulses, EUV supercontinuum can be observed in single-shot harmonic spectrum. The dramatic change of spectral and temporal properties of the driver pulses after passing through the gas cell indicates that propagation effects play a significant role in promoting the generation of the EUV supercontinuum.

  5. Generation of frequency-chirped pulses in the far-infrared by means of a sub-picosecond free-electron laser and an external pulse shaper

    Science.gov (United States)

    Knippels, G. M. H.; van der Meer, A. F. G.; Mols, R. F. X. A. M.; van Amersfoort, P. W.; Vrijen, R. B.; Maas, D. J.; Noordam, L. D.

    1995-02-01

    The generation of frequency-chirped optical pulses in the far-infrared is reported. The pulses are produced by the free-electron laser FELIX. The chirp is induced by means of an external shaping device consisting of a grating and a telescope. The shaper is based on reflective optics to permit operation in a wide spectral range. The present experiments were made at 8.2 μm wavelength. The fwhm duration of the incident pulse was 0.50 ps, which corresponds to a bandwidth of 2.2%. It has been checked that a linear chirp is produced, for the case that the frequency increases from the leading edge of the pulse to the trailing edge, as well as for the reverse case. This is accompanied by an increase of the fwhm pulse duration which ranges up to 16.5 ps.

  6. Microjoule sub-10 fs VUV pulse generation by MW pump pulses using highly efficient chirped four-wave mixing in hollow-core photonic crystal fibers

    Science.gov (United States)

    Im, Song-Jin

    2015-03-01

    We theoretically study chirped four-wave mixing for VUV pulse generation in hollow-core photonic crystal fibers. We predict the generation of sub-10 fs VUV pulses with energy of up to hundreds of µJ by broad-band chirped idler pulses at 830 nm and MW pump pulses with narrow-band at 277 nm. The MW pump could be desirable to reduce the complexity of the laser system or use a high repetition rate laser system. The energy conversion efficiency from pump pulse to VUV pulse reaches to 30% . This generation can be realized in a kagome-lattice hollow-core PCF filled with noble gas of high pressure with core diameter less than 40 µm, which would enable technically simple or highly efficient coupling to the fundamental mode of the fiber.

  7. Micro-joule sub-10-fs VUV pulse generation by MW pump pulse using highly efficient chirped-four-wave mixing in hollow-core photonic crystal fibers

    CERN Document Server

    Im, Song-Jin

    2013-01-01

    We theoretically study chirped four-wave mixing for VUV pulse generation in hollow-core photonic crystal fibers. We predict the generation of sub-10-fs VUV pulses with energy of up to hundreds of microjoule by broad-band chirped idler pulses at 830 nm and MW pump pulses with narrow-band at 277 nm. MW pump could be desirable to reduce the complexity of the laser system or use a high repetition rate-laser system. The energy conversion efficiency from pump pulse to VUV pulse reaches to 30%. This generation can be realized in kagome-lattice hollow-core PCF filled with noble gas of high pressure with core-diameter less than 40 micrometers which would enable technically simple or highly efficient coupling to fundamental mode of the fiber.

  8. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten

    2012-01-01

    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation.......Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....

  9. Population inversion by chirped pulses

    Energy Technology Data Exchange (ETDEWEB)

    Lu Tianshi [Department of Mathematics and Statistics, Wichita State University, Wichita, Kansas 67260-0033 (United States)

    2011-09-15

    In this paper, we analyze the condition for complete population inversion by a chirped pulse over a finite duration. The nonadiabatic transition probability is mapped in the two-dimensional parameter space of coupling strength and detuning amplitude. Asymptotic forms of the probability are derived by the interference of nonadiabatic transitions for sinusoidal and triangular pulses. The qualitative difference between the maps for the two types of pulses is accounted for. The map is used for the design of stable inversion pulses under specific accuracy thresholds.

  10. The nonparaxial property of chirped pulsed beam

    Institute of Scientific and Technical Information of China (English)

    Daquan Lu(陆大全); Wei Hu(胡巍); Yizhou Zheng(郑一周); Zhenjun Yang(杨振军)

    2003-01-01

    The nonparaxial property of the chirped pulsed beam is analyzed both quantitatively and qualitatively.Through the qualitative investigation of the paraxial approximation condition, we show there are chirpinduced changes in the nonparaxial propagation of the chirped pulsed beam. A quantitative nonparaxial correction was developed by use of the perturbational technic and the Fourier transform for a few-cycle chirped pulsed beam with relative small chirp parameter. It was shown that the nonparaxial corrections were enhanced near the leading or trailing edge of pulse depending on weather the chirp parameter is positive or negative. An example for pulsed Gaussian beam driven by a chirped Gaussian pulse is shown in the numerical result to confirm our analysis.

  11. Ionization of atoms by chirped attosecond pulses

    Institute of Scientific and Technical Information of China (English)

    Tan Fang; Peng Liang-You; Gong Qi-Huang

    2009-01-01

    We investigate the ionization dynamics of atoms by chirped attosecond pulses using the strong field approximation method. The pulse parameters are carefully chosen in the regime where the strong field approximation method is valid. We analyse the effects of the chirp of attosecond pulses on the energy distributions and the corresponding left-right asymmetry of the ionized electrons. For a single chirped attosecond pulse, the ionized electrons can be redistributed and the left-right asymmetry shows oscillations because of the introduction of the chirp. For time-delayed double attosecond pulses at different intensities with the weaker one chirped, exchanging the order of the two pulses shows a relative shift of the energy spectra, which can be explained by the different effective time delays of different frequency components because of the chirp.

  12. Efficient terahertz wave generation from GaP crystals pumped by chirp-controlled pulses from femtosecond photonic crystal fiber amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiang; Shi, Junkai; Xu, Baozhong; Xing, Qirong; Wang, Chingyue [Ultrafast Laser Laboratory, College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072 (China); Chai, Lu, E-mail: lu-chai@tju.edu.cn, E-mail: yanfengli@tju.edu.cn; Liu, Bowen; Hu, Minglie; Li, Yanfeng, E-mail: lu-chai@tju.edu.cn, E-mail: yanfengli@tju.edu.cn [Ultrafast Laser Laboratory, College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072 (China); MOEMS Key Laboratory (Ministry of Education), Tianjin University, Tianjin 300072 (China); Fedotov, Andrey B. [Physics Department, Russian Quantum Center, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Zheltikov, Aleksei M. [Physics Department, Russian Quantum Center, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States)

    2014-01-20

    A chirp-tunable femtosecond 10 W, 42 MHz photonic-crystal-fiber oscillator-amplifier system that is capable of delivering sub-60 fs light pulses at 1040 nm is used to demonstrate high-efficiency terahertz radiation generation via optical rectification in GaP crystals only a few millimeters in length. The optimization of the chirp of the fiber-laser pulses is shown to radically enhance the terahertz output, indicating one possible way to more efficiently use these extended nonlinear crystals in compact fiber-pumped terahertz radiation sources.

  13. Optical parametric chirped pulse amplification and spectral shaping of a continuum generated in a photonic band gap fiber.

    Science.gov (United States)

    Hugonnot, E; Somekh, M; Villate, D; Salin, F; Freysz, E

    2004-05-31

    A chirped pulse, spectrally broadened in a photonic bandgap optical fiber by 120 fs Ti:Sapphire laser pulses, is parametrically amplified in a BBO crystal pumped by a frequency doubled nanosecond Nd:YAG laser pulse. Without changing the frequency of the Ti:Sapphire, a spectral tunability of the amplified pulses is demonstrated. The possibility to achieve broader spectral range amplification is confirmed for a non-collinear pump-signal interaction geometry. For optimal non-collinear interaction geometry, the pulse duration of the original and amplified pulse are similar. Finally, we demonstrate that the combination of two BBO crystals makes it possible to spectrally shape the amplified pulses.

  14. Extending the high-order harmonic generation cutoff by means of self-phase-modulated chirped pulses

    Science.gov (United States)

    Neyra, E.; Videla, F.; Pérez-Hernández, J. A.; Ciappina, M. F.; Roso, L.; Torchia, G. A.

    2016-11-01

    In this letter we propose a complementary approach to extend the cutoff in high-order harmonic generation (HHG) spectra beyond the well established limits. Inspired by techniques normally used in the compression of ultrashort pulses and supercontinuum generation, we show this extension can be achieved by means of a nonlinear phenomenon known as self-phase-modulation (SPM). We demonstrated that relatively long optical pulses, around 100 fs full-width half maximum (FWHM), non linearly chirped by SPM, are able to produce a considerable extension in the HHG cutoff. We have also shown it is possible control this extension by setting the length of the nonlinear medium. Our study was supported by the numerical integration of the time-dependent Schrödinger equation joint with a complete classical analysis of the electron dynamic. Our approach can be considered as an alternative to the utilization of optical parametric amplification (OPA) and it can be easily implemented in usual facilities with femtosecond laser systems. This technique also preserves the harmonic yield in the zone of the plateau delimited by I p   +  3.17Up law, even when the driven pulses contain larger wavelength components.

  15. Fiber transmission and generation of ultrawideband pulses by direct current modulation of semi-conductor lasers and chirp-to-intensity conversion

    DEFF Research Database (Denmark)

    Company Torres, Victor; Prince, Kamau; Tafur Monroy, Idelfonso

    2008-01-01

    Optical pulses generated by current modulation of semiconductor lasers are strongly frequency chirped. This effect has been considered pernicious for optical communications. We take advantage of this effect for the generation of ultrawideband microwave signals by using an optical filter to achieve...... chirp-to-intensity conversion. We also experimentally achieve propagation through a 20 km nonzero dispersion shifted fiber with no degradation of the signal at the receiver. Our method constitutes a prospective low-cost solution and offers integration capabilities with fiber...

  16. Generation of intense femtosecond optical vortex pulses with blazed-phase grating in chirped-pulse amplification system of Ti:sapphire laser

    Science.gov (United States)

    Lin, Yu-Chieh; Nabekawa, Yasuo; Midorikawa, Katsumi

    2016-11-01

    We demonstrate the generation of an intense femtosecond optical vortex (OV) pulse by employing an OV converter set between two laser amplifiers in a chirped-pulse amplification (CPA) system of a Ti:sapphire laser. The OV converter is composed of a liquid-crystal spatial light modulator (LC-SLM) exhibiting a blazed-phase computer-generated hologram, a concave mirror, and a flat mirror in the 4f setup. Owing to the intrinsic nature of the 4f setup, the OV converter is free from chromatic and topological-charge dispersions, which are always induced in a spiral phase plate conventionally used to convert an intense Gaussian laser pulse to an OV pulse, while we can avoid damage to the LC-SLM by the irradiation of a low-energy pulse before the second amplifier. We have increased the throughput of the OV converter to 42% by systematically investigating the diffraction efficiency of the blazed-phase hologram on the LC-SLM, which relaxes the gain condition required for the second amplifier. The combination of the high-throughput OV converter and the two-stage amplification enables us to generate OV pulses with an energy of 1.63 mJ and a pulse duration of 60 fs at a wavelength of 720 nm, at which the gain of the Ti:sapphire laser is only 60% of the peak gain around 800 nm.

  17. Generating quasi-single-cycle THz pulse from frequency-chirped electron bunch train and a tapered undulator

    Institute of Scientific and Technical Information of China (English)

    Zhuoran Ma; Zhe Wang; Feichao Fu; Rui Wang; Dao Xiang

    2016-01-01

    We propose a proof-of-principle experiment to test a new scheme to produce a single-cycle radiation pulse in free-electron lasers(FELs). Here, a few α-BBO crystals will be first used to produce an equally spaced laser pulse train.Then, the laser pulse train illuminates the cathode to produce a frequency-chirped electron bunch train in a photocathode rf gun. Finally, the frequency-chirped electron bunch train passes through a tapered undulator to produce a quasi-single-cycle THz pulse. This experiment should allow comparison and confirmation of predictive models and scaling laws, and the preliminary experimental results will also be discussed.

  18. Self-amplified spontaneous emission FEL with energy-chirped electron beam and its application for generation of attosecond x-ray pulses

    Directory of Open Access Journals (Sweden)

    E. L. Saldin

    2006-05-01

    Full Text Available Influence of a linear energy chirp in the electron beam on a self-amplified spontaneous emission (SASE Free Electron Laser (FEL operation is studied analytically and numerically using a 1D model. Analytical results are based on the theoretical background developed by Krinsky and Huang [Phys. Rev. ST Accel. Beams 6, 050702 (2003PRABFM1098-4402]. Explicit expressions for Green’s functions and for output power of a SASE FEL are obtained for the high-gain linear regime in the limits of small and large energy chirp parameters. Saturation length and power versus energy chirp parameter are calculated numerically. It is shown that the effect of linear energy chirp on FEL gain is equivalent to the linear undulator tapering (or linear energy variation along the undulator. A consequence of this fact is a possibility to perfectly compensate FEL gain degradation, caused by the energy chirp, by means of the undulator tapering independently of the value of the energy chirp parameter. An application of this effect for generation of attosecond pulses from a hard x-ray FEL is proposed. Strong energy modulation within a short slice of an electron bunch is produced by a few-cycle optical laser pulse in a short undulator, placed in front of the main undulator. Gain degradation within this slice is compensated by an appropriate undulator taper while the rest of the bunch suffers from this taper and does not lase. Three-dimensional simulations predict that short (200 attoseconds high-power (up to 100 GW pulses can be produced in Angstrom wavelength range with a high degree of contrast. A possibility to reduce pulse duration to sub-100 attosecond scale is discussed.

  19. Pulse chirp increasing pulse compression followed by positive resonant radiation in fibers

    CERN Document Server

    McLenaghan, Joanna

    2016-01-01

    Pulse self-compression followed by the generation of resonant radiation is a well known phenomenon in non-linear optics. Resonant radiation is important as it allows for efficient and tunable wavelength conversion. We vary the chirp of the initial pulse and find in simulations and experiments that a small positive chirp enhances the pulse compression and strongly increases the generation of resonant radiation. This result corroborates previously published simulation results indicating an improved degree of pulse compression for a small positive chirp [1]. It also demonstrates how pulse evolution can be studied without cutting back the fiber.

  20. Design of efficient single stage chirped pulse difference frequency generation at 7 {\\mu}m driven by a dual wavelength Ti:sapphire laser

    CERN Document Server

    Erny, Christian

    2013-01-01

    We present a design for a high-energy single stage mid-IR difference frequency generation adapted to a two-color Ti:sapphire amplifier system. The optimized mixing process is based on chirped pulse difference frequency generation (CP-DFG), allowing for a higher conversion efficiency, larger bandwidth and reduced two photon absorption losses. The numerical start-to-end simulations include stretching, chirped pulse difference frequency generation and pulse compression. Realistic design parameters for commercially available non linear crystals (GaSe, AgGaS2, LiInSe2, LiGaSe2) are considered. Compared to conventional un-chirped DFG directly pumped by Ti:sapphire technology we report a threefold increase of the quantum efficiency. Our CP-DFG scheme provides up to 340 {\\mu}J pulse energy directly at 7.2 {\\mu}m when pumped with 3 mJ and supports a bandwidth of up to 350 nm. The resulting 240 fs mid-IR pulses are inherently phase stable.

  1. Pulse distortion in single-mode fibers. 3: Chirped pulses.

    Science.gov (United States)

    Marcuse, D

    1981-10-15

    The theory of pulse distortion in single-mode fibers is extended to include laser sources that suffer a linear wavelength sweep (chirp) during the duration of the pulse. The transmitted pulse is expressed as a Fourier integral whose spectral function is given by an analytical expression in closed form. The rms width of the transmitted pulse is also expressed in closed form. Numerical examples illustrate the influence of the chirp on the shape and rms width of the pulse. A somewhat paradoxical situation exists. A given input pulse can be made arbitrarily short by a sufficiently large amount of chirping, and, after a given fiber length, this chirped pulse returns to its original width. But at this particular distance an unchirped pulse would be only [equiation] times longer. Thus chirping can improve the rate of data transmission by only 40%.

  2. Investigation of two-beam-pumped noncollinear optical parametric chirped-pulse amplification for the generation of few-cycle light pulses.

    Science.gov (United States)

    Herrmann, Daniel; Tautz, Raphael; Tavella, Franz; Krausz, Ferenc; Veisz, Laszlo

    2010-03-01

    We demonstrate a new and compact Phi-plane-pumped noncollinear optical parametric chirped-pulse amplification (NOPCPA) scheme for broadband pulse amplification, which is based on two-beam-pumping (TBP) at 532 nm. We employ type-I phase-matching in a 5 mm long BBO crystal with moderate pump intensities to preserve the temporal pulse contrast. Amplification and compression of the signal pulse from 675 nm - 970 nm is demonstrated, which results in the generation of 7.1-fs light pulses containing 0.35 mJ energy. In this context, we investigate the pump-to-signal energy conversion efficiency for TBP-NOPCPA and outline details for few-cycle pulse characterization. Furthermore, it is verified, that the interference at the intersection of the two pump beams does not degrade the signal beam spatial profile. It is theoretically shown that the accumulated OPA phase partially compensates for wave-vector mismatch and leads to extended broadband amplification. The experimental outcome is supported by numerical split-step simulations of the parametric signal gain, including pump depletion and parametric fluorescence.

  3. Efficient broadband 400  nm noncollinear second-harmonic generation of chirped femtosecond laser pulses in BBO and LBO.

    Science.gov (United States)

    Gobert, O; Mennerat, G; Maksimenka, R; Fedorov, N; Perdrix, M; Guillaumet, D; Ramond, C; Habib, J; Prigent, C; Vernhet, D; Oksenhendler, T; Comte, M

    2014-04-20

    We report on 400 nm broadband type I frequency doubling in a noncollinear geometry with pulse-front-tilted and chirped femtosecond pulses (λ =800  nm; Fourier transform limited pulse duration, 45 fs). With moderate power densities (2 to 10  GW/cm2) thus avoiding higher-order nonlinear phenomena, the energy conversion efficiency was up to 65%. Second-harmonic pulses of Fourier transform limited pulse duration shorter than the fundamental wave were generated, exhibiting good beam quality and no pulse-front tilt. High energy (20 mJ/pulse) was produced in a 40 mm diameter and 6 mm thick LBO crystal. To the best of our knowledge, this is the first demonstration of this optical configuration with sub-100-fs pulses. Good agreement between experimental results and simulations is obtained.

  4. Millijoule pulse energy picosecond fiber chirped-pulse amplification system

    Institute of Scientific and Technical Information of China (English)

    Zhi Yang; Xiaohong Hu; Yishan Wang; Wei Zhang; Wei Zhao

    2011-01-01

    @@ The efficient generation of a 1.17-mJ laser pul8e with 360 ps duration using an ytterbium (Yb)-doped fiber amplifier chain seeded by a homemade mode-locked fiber laser is demonstrated experimentally.A specially designed figure-of-eight fiber laser acts as the seed source of a chirped-pulse amplification (CPA) system and generates mode-locked pulse8 with hundreds of picosecond widths.Two kinds of large-mode-area (LMA) double-clad Yb-doped fibers are employed to construct the pre-amplifier and main amplifier, All of the adopted instruments help avoid severe nonlinearity in fibers to raise sub-nanosecond pulse energy with acceptable signal-to-noise ratio (SNR).The output spectrum of this fiber-based CPA system shows that amplified spontaneous emission (ASE) is suppressed to better than 30 dB, and the onset of stimulated Raman scattering is excluded.%The efficient generation of a 1.17-mJ laser pulse with 360 ps duration using an ytterbium (Yb)-doped fiber amplifier chain seeded by a homemade mode-locked fiber laser is demonstrated experimentally. A specially designed figure-of-eight fiber laser acts as the seed source of a chirped-pulse amplification (CPA) system and generates mode-locked pulses with hundreds of picosecond widths. Two kinds of large-mode-area (LMA) double-clad Yb-doped fibers are employed to construct the pre-amplifier and main amplifier. All of the adopted instruments help avoid severe nonlinearity in fibers to raise sub-nanosecond pulse energy with acceptable signal-to-noise ratio (SNR). The output spectrum of this fiber-based CPA system shows that amplified spontaneous emission (ASE) is suppressed to better than 30 dB, and the onset of stimulated Raman scattering is excluded.

  5. Generating Isolated Terawatt-Attosecond X-ray Pulses via a Chirped Laser Enhanced High-Gain Free-electron Laser

    CERN Document Server

    Wang, Zhen; Zhao, Zhentang

    2016-01-01

    A feasible method is proposed to generate isolated attosecond terawatt x-ray radiation pulses in high-gain free-electron lasers. In the proposed scheme, a frequency chirped laser pulse is employed to generate a gradually-varied spacing current enhancement of the electron beam and a series of spatiotemporal shifters are applied between the undulator sections to amplify a chosen ultra-short radiation pulse from self-amplified spontaneous emission. Three-dimensional start-to-end simulations have been carried out and the calculation results demonstrated that 0.15 nm x-ray pulses with peak power over 1TW and duration of several tens of attoseconds could be achieved by using the proposed technique.

  6. Generating isolated terawatt-attosecond x-ray pulses via a chirped-laser-enhanced high-gain free-electron laser

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2017-04-01

    Full Text Available A feasible method is proposed to generate isolated attosecond terawatt x-ray radiation pulses in high-gain free-electron lasers. In the proposed scheme, a frequency chirped laser pulse is employed to generate a gradually varied spacing current enhancement of the electron beam, and a series of spatiotemporal shifters are applied between the undulator sections to amplify a chosen ultrashort radiation pulse from self-amplified spontaneous emission. Three-dimensional start-to-end simulations have been carried out, and the calculation results demonstrated that 0.15 nm x-ray pulses with a peak power over 1 TW and a duration of several tens of attoseconds could be achieved by using the proposed technique.

  7. Chirped Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows

    Science.gov (United States)

    Abeysekera, Chamara; Oldham, James; Prozument, Kirill; Joalland, Baptiste; Park, Barratt; Field, Robert W.; Sims, Ian; Suits, Arthur; Zack, Lindsay

    2014-06-01

    We present preliminary results describing the development of a new instrument that combines two powerful techniques: Chirped Pulse-Fourier Transform MicroWave (CP-FTMW) spectroscopy and pulsed uniform supersonic flows. It promises a nearly universal detection method that can deliver quantitative isomer, conformer, and vibrational level specific detection, characterization of unstable reaction products and intermediates and perform unique spectroscopic, kinetics and dynamics measurements. We have constructed a new high-power K_a-band, 26-40 GHz, chirped pulse spectrometer with sub-MHz resolution, analogous to the revolutionary CP-FTMW spectroscopic technique developed in the Pate group at University of Virginia. In order to study smaller molecules, the E-band, 60-90 GHz, CP capability was added to our spectrometer. A novel strategy for generating uniform supersonic flow through a Laval nozzle is introduced. High throughput pulsed piezo-valve is used to produce cold (30 K) uniform flow with large volumes of 150 cm^3 and densities of 1014 molecules/cm3 with modest pumping facilities. The uniform flow conditions for a variety of noble gases extend as far as 20 cm from the Laval nozzle and a single compound turbo-molecular pump maintains the operating pressure. Two competing design considerations are critical to the performance of the system: a low temperature flow is needed to maximize the population difference between rotational levels, and high gas number densities are needed to ensure rapid cooling to achieve the uniform flow conditions. At the same time, collision times shorter than the chirp duration will give inaccurate intensities and reduced signal levels due to collisional dephasing of free induction decay. Details of the instrument and future directions and challenges will be discussed.

  8. A direct digital synthesis chirped pulse Fourier transform microwave spectrometer.

    Science.gov (United States)

    Finneran, Ian A; Holland, Daniel B; Carroll, P Brandon; Blake, Geoffrey A

    2013-08-01

    Chirped pulse Fourier transform microwave (CP-FTMW) spectrometers have become the instrument of choice for acquiring rotational spectra, due to their high sensitivity, fast acquisition rate, and large bandwidth. Here we present the design and capabilities of a recently constructed CP-FTMW spectrometer using direct digital synthesis (DDS) as a new method for chirped pulse generation, through both a suite of extensive microwave characterizations and deep averaging of the 10-14 GHz spectrum of jet-cooled acetone. The use of DDS is more suited for in situ applications of CP-FTMW spectroscopy, as it reduces the size, weight, and power consumption of the chirp generation segment of the spectrometer all by more than an order of magnitude, while matching the performance of traditional designs. The performance of the instrument was further improved by the use of a high speed digitizer with dedicated signal averaging electronics, which facilitates a data acquisition rate of 2.1 kHz.

  9. Zero-Chirp Return-to-Zero Pulses Generation with Two Single-Driver z-Cut Mach-Zehnder Modulators

    Institute of Scientific and Technical Information of China (English)

    QIN Xi; CAO Ji-Hong; ZHANG Feng; WANG Mu-Guang; ZHANG Jian-Yong; JIAN Shui-Sheng

    2007-01-01

    A novel method is proposed to suppress the frequency chirp of single-driver z-cut Mach-Zehnder modulators.Theoretical analysis shows that by multiplying the output pulses of a half clock frequency driving single-driver z-cut modulator with the one delayed odd multiple bit duration,the frequency chirp can be removed entirely,and return-to-zero(RZ)pulses with duty cycles of about 25% and 56% are obtained.An experimental scheme is proposed to validate the proposed method.The experimental results show that perfect 40 GHz zero-chirp RZ pulses can be obtained by using this scheme.

  10. Single quantum path control by a fundamental chirped pulse combined with a subharmonic control pulse

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Liqiang [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Chu, Tianshu, E-mail: tschu008@163.com [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Institute for Computational Sciences and Engineering, Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer HHG spectra and attosecond pulse generation from a model He atom. Black-Right-Pointing-Pointer Two-color laser field of a chirped fundamental pulse and a subharmonics control pulse. Black-Right-Pointing-Pointer Single quantum path selection by {beta} = 4.55 chirp pulse and the zero-phase 2000 nm control pulse. Black-Right-Pointing-Pointer Formation of 337 eV supercontinuum region and generation of 39 as pulse. -- Abstract: In this paper, we study the issue of single quantum path control and its role in attosecond pulse generation. By carrying out the time-dependent Schroedinger equation analysis for the harmonic emission from a single He atom irradiated by the two-color laser field, consisting of a short 800 fundamental chirped pulse and a subharmonic 800-2400 nm control pulse, we find that the most favorable condition for attosecond generation is at the fundamental chirp parameter {beta} = 4.55 together with the zero-phase 2000 nm control pulse, in which the single quantum path (short quantum path) is selected to contribute to the harmonic spectrum exhibiting an ultrabroad supercontinuum of a 337 eV bandwidth. Finally, an isolated attosecond pulse as short as 39 as is thus generated directly.

  11. Decoherence control in quantum computing with simple chirped pulses

    Indian Academy of Sciences (India)

    Debabrata Goswami

    2002-08-01

    We show how the use of optimally shaped pulses to guide the time evolution of a system (‘coherent control’) can be an effective approach towards quantum computation logic. We demonstrate this with selective control of decoherence for a multilevel system with a simple linearly chirped pulse. We use a multiphoton density-matrix approach to explore the effects of ultrafast shaped pulses for two-level systems that do not have a single photon resonance, and show that many multiphoton results are surprisingly similar to the single-photon results. Finally, we choose two specific chirped pulses: one that always generates inversion and the other that always generates self-induced transparency to demonstrate an ensemble CNOT gate.

  12. Dispersion compensation in chirped pulse amplification systems

    Science.gov (United States)

    Bayramian, Andrew James; Molander, William A.

    2014-07-15

    A chirped pulse amplification system includes a laser source providing an input laser pulse along an optical path. The input laser pulse is characterized by a first temporal duration. The system also includes a multi-pass pulse stretcher disposed along the optical path. The multi-pass pulse stretcher includes a first set of mirrors operable to receive input light in a first plane and output light in a second plane parallel to the first plane and a first diffraction grating. The pulse stretcher also includes a second set of mirrors operable to receive light diffracted from the first diffraction grating and a second diffraction grating. The pulse stretcher further includes a reflective element operable to reflect light diffracted from the second diffraction grating. The system further includes an amplifier, a pulse compressor, and a passive dispersion compensator disposed along the optical path.

  13. Characteristics of filamentation in ZK7 glass by negatively chirped femtosecond laser pulses

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The filamentation characteristics of femtosecond laser pulses in ZK7 glass are in- vestigated experimentally as a function of initial negative chirps. It is found that the filament threshold power grows rapidly and the filament length extends over a long distance with increasing initial temporal chirps. The measurement of supercon- tinuum reveals that the plasma generation process within filamentation becomes weaker as the initial negative chirp increases, leading to a self-guiding long light channel dominated by Kerr nonlinearity. The interference of transverse rings in multifilamentation of the chirped laser pulses is observed as well. Analyses and discussions give an interpretation of this chirp-induced ionization-free filamenta- tion. These results indicate that initial chirps will play a crucial role in the filament formation of ultrashort laser pulses in transparent media.

  14. Efficient Formation of Ultracold Molecules with Chirped Nanosecond Pulses

    CERN Document Server

    Carini, J L; Kosloff, R; Gould, P L

    2015-01-01

    We describe experiments and associated quantum simulations involving the production of ultracold $^{87}$Rb$_{2}$ molecules with nanosecond pulses of frequency-chirped light. With appropriate chirp parameters, the formation is dominated by coherent processes. For a positive chirp, excited molecules are produced by photoassociation early in the chirp, then transferred into high vibrational levels of the lowest triplet state by stimulated emission later in the chirp. Generally good agreement is seen between the data and the simulations. Shaping of the chirp can lead to a significant enhancement of the formation rate. Further improvements using higher intensities and different intermediate states are predicted.

  15. Time dependent Doppler shifts in high-order harmonic generation in intense laser interactions with solid density plasma and frequency chirped pulses

    Energy Technology Data Exchange (ETDEWEB)

    Welch, E. C.; Zhang, P.; He, Z.-H. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104 (United States); Dollar, F. [JILA, University of Colorado, Boulder, Colorado 80309 (United States); Krushelnick, K.; Thomas, A. G. R., E-mail: agrt@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104 (United States); Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2104 (United States)

    2015-05-15

    High order harmonic generation from solid targets is a compelling route to generating intense attosecond or even zeptosecond pulses. However, the effects of ion motion on the generation of harmonics have only recently started to be considered. Here, we study the effects of ion motion in harmonics production at ultrahigh laser intensities interacting with solid density plasma. Using particle-in-cell simulations, we find that there is an optimum density for harmonic production that depends on laser intensity, which scales linearly with a{sub 0} with no ion motion but with a reduced scaling if ion motion is included. We derive a scaling for this optimum density with ion motion and also find that the background ion motion induces Doppler red-shifts in the harmonic structures of the reflected pulse. The temporal structure of the Doppler shifts is correlated to the envelope of the incident laser pulse. We demonstrate that by introducing a frequency chirp in the incident pulse we are able to eliminate these Doppler shifts almost completely.

  16. Charged particle interaction with a chirped electromagnetic pulse

    NARCIS (Netherlands)

    Khachatryan, A.G.; Boller, K.-J.; Goor, van F.A.

    2003-01-01

    It is found that a charged particle can get a net energy gain from the interaction with an electromagnetic chirped pulse. Theoretically, the energy gain increases with the pulse amplitude and with the relative frequency variation in the pulse.

  17. Hyper dispersion pulse compressor for chirped pulse amplification systems

    Science.gov (United States)

    Barty, Christopher P. J.

    2011-11-29

    A grating pulse compressor configuration is introduced for increasing the optical dispersion for a given footprint and to make practical the application for chirped pulse amplification (CPA) to quasi-narrow bandwidth materials, such as Nd:YAG. The grating configurations often use cascaded pairs of gratings to increase angular dispersion an order of magnitude or more. Increased angular dispersion allows for decreased grating separation and a smaller compressor footprint.

  18. Plasma absorption evidence via chirped pulse spectral transmission measurements

    Energy Technology Data Exchange (ETDEWEB)

    Jedrkiewicz, Ottavia, E-mail: ottavia.jedrkiewicz@ifn.cnr.it [Istituto di Fotonica e Nanotecnologie, CNR and CNISM UdR Como, Via Valleggio 11, I-22100 Como (Italy); Minardi, Stefano [Institute of Applied Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Couairon, Arnaud; Jukna, Vytautas [Centre de Physique Theorique, CNRS, Ecole Polytechnique, F-91128 Palaiseau (France); Selva, Marco; Di Trapani, Paolo [Dipartimento di Scienza e Alta Tecnologia, University of Insubria and CNISM UdR Como, Via Valleggio 11, I-22100 Como (Italy)

    2015-06-08

    This work aims at highlighting the plasma generation dynamics and absorption when a Bessel beam propagates in glass. We developed a simple diagnostics allowing us to retrieve clear indications of the formation of the plasma in the material, thanks to transmission measurements in the angular and wavelength domains. This technique featured by the use of a single chirped pulse having the role of pump and probe simultaneously leads to results showing the plasma nonlinear absorption effect on the trailing part of the pulse, thanks to the spectral-temporal correspondence in the measured signal, which is also confirmed by numerical simulations.

  19. Cooling of relativistic electron beams in chirped laser pulses

    CERN Document Server

    Yoffe, Samuel R; Kravets, Yevgen; Jaroszynski, Dino A

    2015-01-01

    The next few years will see next-generation high-power laser facilities (such as the Extreme Light Infrastructure) become operational, for which it is important to understand how interaction with intense laser pulses affects the bulk properties of a relativistic electron beam. At such high field intensities, we expect both radiation reaction and quantum effects to play a significant role in the beam dynamics. The resulting reduction in relative energy spread (beam cooling) at the expense of mean beam energy predicted by classical theories of radiation reaction depends only on the energy of the laser pulse. Quantum effects suppress this cooling, with the dynamics additionally sensitive to the distribution of energy within the pulse. Since chirps occur in both the production of high-intensity pulses (CPA) and the propagation of pulses in media, the effect of using chirps to modify the pulse shape has been investigated using a semi-classical extension to the Landau--Lifshitz theory. Results indicate that even la...

  20. Chirp of monolithic colliding pulse mode-locked diode lasers

    DEFF Research Database (Denmark)

    Hofmann, M.; Bischoff, S.; Franck, Thorkild

    1997-01-01

    Spectrally resolved streak camera measurements of picosecond pulses emitted by hybridly colliding pulse mode-locked (CPM) laser diodes are presented in this letter. Depending on the modulation frequency both blue-chirped (upchirped) and red-chirped (downchirped) pulses can be observed. The two...... different regimes and the transition between them are characterized experimentally and the behavior is explained on the basis of our model for the CPM laser dynamics. (C) 1997 American Institute of Physics....

  1. Generation of Stable Picosecond Chirp-Free Pulses at 10 GHz from a Nonpolarization Maintaining Regeneratively Mode-Locked Fibre Laser

    Institute of Scientific and Technical Information of China (English)

    TAN Bin; LI Zhi-Yong; WANG Zhao-Ying; GE Chun-Feng; JIA Dong-Fang; NI Wen-Jun; LI Shi-Chen

    2004-01-01

    @@ A 10 GHz regeneratively mode-lockedfibre laser (RMLFL) at 1550nm constructed with commercially available radio frequency components is presented. Chirp-free hyperbolic secant pulses with duration from 4.4ps to 8ps and output reaching 3.6 mW are acquired. Without any cavity length or polarization maintaining mechanism,the error-free operation of this RMLFL can be carried out in room temperature.

  2. Broadening and Amplification of an Infrared Femtosecond Pulse for Optical Parametric Chirped-Pulse Amplification

    Institute of Scientific and Technical Information of China (English)

    WANG He-Lin; YANG Ai-Jun; LENG Yu-Xin

    2011-01-01

    A high-average-power diode-pumped narrowband regenerative chirped pulse amplifier is developed using the thin-rod Nd:YAG laser architecture for optical parametric chirped-pulse amplification (OPCPA).The effect of the etalons on the amplified pulse in the regenerative cavity is studied experimentally and theoretically.By inserting glass etalons of thickness 1 mm and 5 mm into the regenerative cavity,the pre-stretching pulse from an (O)ffner stretcher is further broadened to above 200ps,which matches the amplification windows of the signal pulses in OPCPA and is suitable for use as a pump source in the OPCPA system.The bandwidth of the amplified pulse is 1.5 nm,and an output energy of 2mJ is achieved at a repetition rate of 10 Hz.Optical parametric chirped pulse amplification (OPCPA)[1-4] has attracted a great deal of attention as the most promising technique for generating ultrashort ultrahigh-peak-power laser pulses because of its very broad gain bandwidth,negligible thermal load on the nonlinear crystal,and extremely high singlepass gain as compared to amplifiers based on laser gain media.For efficient amplification and high fidelity of dispersion compensation in OPCPA,a femtosecond seed pulse is first stretched to several tens of picoseconds with a bulk grating stretcher or a fiber stretcher.%A high-average-power diode-pumped narrowband regenerative chirped pulse amplifier is developed using the thin-rod Nd:YAG laser architecture for optical parametric chirped-pulse amplification (OPCPA). The effect of the etalons on the amplified pulse in the regenerative cavity is studied experimentally and theoretically. By inserting glass etalons of thickness 1 mm and 5 mm into the regenerative cavity, the pre-stretching pulse from an (O)finer stretcher is further broadened to above 200 ps, which matches the amplification windows of the signal pulses in OPCPA and is suitable for use as a pump source in the OPCPA system. The bandwidth of the amplified pulse is 1.5 nm, and an

  3. Raman forward scattering of high-intensity chirped laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, C.B.; Esarey, E.; Shadwick, B.A.; Leemans, W.P.

    2002-06-23

    Raman forward scattering of a high-intensity, short-duration, frequency-chirped laser pulse propagating in an underdense plasma is examined. The growth of the direct forward scattered light is calculated for a laser pulse with a linear frequency chirp in various spatio-temporal regimes. This includes a previously undescribed regime of strongly-coupled four-wave nonresonant interaction, which is important for relativistic laser intensities. In all regimes of forward scattering, it is shown that the growth rate increases (decreases) for positive (negative) frequency chirp. The effect of chirp on the growth rate is relatively minor, i.e., a few percent chirp yields few percent changes in the growth rates. Relation of these results to recent experiments is discussed.

  4. Effect of frequency chirp on supercontinuum generation in photonic crystal fibers with two zero-dispersion wavelengths.

    Science.gov (United States)

    Zhang, Hua; Yu, Song; Zhang, Jie; Gu, Wanyi

    2007-02-05

    The effect of initial frequency chirp is investigated numerically to obtain efficient supercontinuum radiation in photonic crystal fibers (PCFs) with two closely spaced zero-dispersion wavelengths. The positive chirps, instead of zero or negative chirps, are recommended because self phase modulation and four-wave mixing can be facilitated by employing positive chirps. In contrast with the complicated and irregular spectrum generated by negative-chirped pulse, the spectrums generated by positive-chirped pulses are wider and much more regular. Moreover, the saturated length of the PCF, corresponding to the maximal spectrum width, can be shortened greatly and the efficiency of frequency conversion is also improved because of initial positive chirps. Nearly all the energy between the zero-dispersion wavelengths can be transferred to the normal dispersion region from the region within the two zero-dispersion wavelengths provided that the initial positive chirp is large enough.

  5. Spectral Analysis using Linearly Chirped Gaussian Pulse Stacking

    Institute of Scientific and Technical Information of China (English)

    ZHENG Huan; WANG An-Ting; XU Li-Xin; MING Hai

    2009-01-01

    We analyze the spectrum of a stacked pulse with the technique of linearly chirped Gaussian pulse stacking.Our results show that there are modulation structures in the spectrum of the stacked pulse. The modulation frequencies are discussed in detail. By applying spectral analysis, we find that the intensity fluctuation cannot be smoothed by introducing an optical amplitude filter.

  6. Optical parametric chirped pulse amplifier at 1600 nm with all-optical synchronization

    Directory of Open Access Journals (Sweden)

    Leitenstorfer Alfred

    2013-03-01

    Full Text Available We demonstrate the amplification of 1.6 μm pulses by a KTA optical parametric chirped-pulse amplifier based on an all-optical synchronization scheme as a scalable approach to generation of high power tunable mid infrared.

  7. Dynamic Characterization of Fiber Optical Chirped Pulse Amplification for Sub-ps Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Rishøj, Lars Søgaard

    2013-01-01

    We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation.......We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation....

  8. Towards Terawatt Sub-Cycle Long-Wave Infrared Pulses via Chirped Optical Parametric Amplification and Indirect Pulse Shaping

    Science.gov (United States)

    Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Li, Jie; Wang, Yang; Wu, Yi; Chang, Zenghu

    2017-04-01

    We present an approach for both efficient generation and amplification of 4-12 μm pulses by tailoring the phase matching of the nonlinear crystal Zinc Germanium Phosphide (ZGP) in a narrowband-pumped optical parametric chirped pulse amplifier (OPCPA) and a broadband-pumped dual-chirped optical parametric amplifier (DC-OPA), respectively. Preliminary experimental results are obtained for generating 1.8-4.2 μm super broadband spectra, which can be used to seed both the signal of the OPCPA and the pump of the DC-OPA. The theoretical pump-to-idler conversion efficiency reaches 27% in the DC-OPA pumped by a chirped broadband Cr2+:ZnSe/ZnS laser, enabling the generation of  Terawatt-level 4-12 μm pulses with an available large-aperture ZGP. Furthermore, the 4-12 μm idler pulses can be compressed to sub-cycle pulses by compensating the tailored positive chirp of the idler pulses using the bulk compressor NaCl, and by indirectly controlling the higher-order idler phase through tuning the signal (2.4-4.0 μm) phase with a commercially available acousto-optic programmable dispersive filter (AOPDF). A similar approach is also described for generating high-energy 4-12 μm sub-cycle pulses via OPCPA pumped by a 2 μm Ho:YLF laser.

  9. Effect of pulse chirp parameter on the soliton high-speed transmission systems

    Science.gov (United States)

    Ladanyi, L.; Scholtz, L.; Solanska, M.; Mullerova, J.

    2016-12-01

    The word soliton refers to a special kind of wave packets that can propagate undistorted over long distances. As a source for generating soliton pulses in 1990 erbium doped lasers were used. Soliton transmission systems have been the subject of interest for years. It is known that interaction and the balance between the dispersion and nonlinear effects in optical fibers can lead to a special pulse behavior. Soliton pulses can propagate without any changes of the amplitude and the shape via long transmission systems. Due to this advantage they are of interest in long haul communication systems. Here we describe how the random change of input pulse chirp in optical fibers can affect the soliton propagation and interaction between two or more solitons. We have focused on describing some numerical approaches to solve the coupled nonlinear Schrödinger equations, which are useful by solving this kind of problem. Most of laser sources can be approximated by Gaussian distribution or in special cases the second hyperbolic pulses are generated to produce a soliton shaped pulse. The effect of pulse chirp can generate new frequencies due to the frequency chirp. In high bitratetransmission systems this chirp is very important to reduce, because of this new frequency can influence the neighbor channels and lead to BER increasing.

  10. Optimal control of quantum systems by chirped pulses

    DEFF Research Database (Denmark)

    Amstrup, Bjarne; Doll, J. D.; Sauerbrey, R. A.

    1993-01-01

    Research on optimal control of quantum systems has been severely restricted by the lack of experimentally feasible control pulses. Here, to overcome this obstacle, optimal control is considered with the help of chirped pulses. Simulated annealing is used as the optimizing procedure. The examples ...

  11. Interaction of free charged particles with a chirped electromagnetic pulse

    NARCIS (Netherlands)

    Khachatryan, A.G.; Goor, van F.A.; Boller, K.-J.

    2004-01-01

    We study the effect of chirp on electromagnetic (EM) pulse interaction with a charged particle. Both the one-dimensional (1D) and 3D cases are considered. It is found that, in contrast to the case of a nonchirped pulse, the charged particle energy can be changed after the interaction with a 1D EM ch

  12. Efficient spectral shift and compression of femtosecond pulses by parametric amplification of chirped light.

    Science.gov (United States)

    Nejbauer, Michał; Radzewicz, Czesław

    2012-01-30

    We present a method for an efficient spectral shift and compression of pulses from a femtosecond laser system. The method enables generation of broadly tunable (615-985 nm) narrow bandwidth (≈10 cm(-1)) pulses from the femtosecond pulses at 1030 nm. It employs a direct parametric amplification--without spectral filtering--of highly chirped white light by a narrow bandwidth (pulse. The system, when pumped with just 200 μJ of the fundamental femtosecond pulse energy, generates pulses with energies of 3-9 μJ and an excellent beam quality in the entire tuning range.

  13. Nonlinear images of scatterers in chirped pulsed laser beams

    Institute of Scientific and Technical Information of China (English)

    Hu Yong-Hua; Wang You-Wen; Wen Shuang-Chun; Fan Dian-Yuan

    2010-01-01

    The bandwidth and the duration of incident pulsed beam are proved to play important roles in modifying the nonlinear image of amplitude-type scatterer.It is found that the initially positive chirp-type bandwidth can suppress the nonlinear image,while the negative one can enhance it,and that both effects are inversely proportional to the incident pulse duration.Numerical simulations further demonstrate that the location of nonlinear image is at the conjugate plane of the scatterer and that,for negatively pre-chirped pulsed beam,the nonlinear image peak intensity can be higher than that in the corresponding monochromatic case under certain conditions.Moreover the effect of group velocity dispersion on nonlinear image is found to be similar to that of chirp-type bandwidth.

  14. Fiber Optical Parametric Chirped Pulse Amplification of Sub-Picosecond Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Da Ros, Francesco

    2013-01-01

    We demonstrate experimentally, for the first time to our knowledge, fiber optical parametric chirped pulse amplification of 400-fs pulses. The 400-fs signal is stretched, amplified by 26 dB and compressed back to 500 fs.......We demonstrate experimentally, for the first time to our knowledge, fiber optical parametric chirped pulse amplification of 400-fs pulses. The 400-fs signal is stretched, amplified by 26 dB and compressed back to 500 fs....

  15. Fourth-order-dispersion limitations of aberration-free chirped-pulse amplification systems

    Energy Technology Data Exchange (ETDEWEB)

    Kane, S. [Center for Ultrafast Optical Science, University of Michigan, 2200 Bonisteel Boulevard, Room 1006, Institute for Science and Technology Building, Ann Arbor, Michigan 48109-2099 (United States); Squier, J. [Institute for Nonlinear Science, University of California, San Diego, Urey Hall, Mail Code 0339, La Jolla, California 92093-0339 (United States)

    1997-05-01

    To obtain shorter pulses in chirped-pulse-amplification lasers, researchers have recently proposed several designs for aberration-free pulse stretchers. We examine the limitations of two aberration-free chirped-pulse-amplification systems and show that comparable results can be obtained with simpler, conventional pulse stretchers. In addition, we present a simple, quintic-phase-limited, aberration-free chirped-pulse-amplification system that can support ultrashort, high-contrast pulses. {copyright} 1997 Optical Society of America

  16. Chirped pulse inverse free-electron laser vacuum accelerator

    Science.gov (United States)

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  17. Thomson scattering in high-intensity chirped laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Holkundkar, Amol R., E-mail: amol.holkundkar@pilani.bits-pilani.ac.in [Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan 333031 (India); Harvey, Chris, E-mail: christopher.harvey@chalmers.se; Marklund, Mattias, E-mail: mattias.marklund@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-10-15

    We consider the Thomson scattering of an electron in an ultra-intense laser pulse. It is well known that at high laser intensities, the frequency and brilliance of the emitted radiation will be greatly reduced due to the electron losing energy before it reaches the peak field. In this work, we investigate the use of a small frequency chirp in the laser pulse in order to mitigate this effect of radiation reaction. It is found that the introduction of a negative chirp means the electron enters a high frequency region of the field while it still has a large proportion of its original energy. This results in a significant enhancement of the frequency and intensity of the emitted radiation as compared to the case without chirping.

  18. Electron heating enhancement by frequency-chirped laser pulses

    Science.gov (United States)

    Yazdani, E.; Sadighi-Bonabi, R.; Afarideh, H.; Riazi, Z.; Hora, H.

    2014-09-01

    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic field is improved by a factor of 2. Furthermore, it is noticed that for a chirped laser pulse with a0 = 5, because of increasing the plasma transparency length, the laser pulse can penetrate up to about ne ≈ 6nc, where nc is plasma critical density. It shows 63% increase in the effective critical density compared to the relativistic induced transparency regime for an unchirped condition.

  19. Electron heating enhancement by frequency-chirped laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, E.; Afarideh, H., E-mail: hafarideh@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sadighi-Bonabi, R., E-mail: Sadighi@sharif.ir [Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of); Riazi, Z. [Physics and Accelerator School, Tehran (Iran, Islamic Republic of); Hora, H. [Department of Theoretical Physics, University of New South Wales, Sydney 2052 (Australia)

    2014-09-14

    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic field is improved by a factor of 2. Furthermore, it is noticed that for a chirped laser pulse with a₀=5, because of increasing the plasma transparency length, the laser pulse can penetrate up to about n{sub e}≈6n{sub c}, where n{sub c} is plasma critical density. It shows 63% increase in the effective critical density compared to the relativistic induced transparency regime for an unchirped condition.

  20. On the trade-off between mainlobe width and peak sidelobe level of mismatched pulse compression filters for linear chirp waveforms

    CSIR Research Space (South Africa)

    Cilliers, Jacques E

    2009-09-01

    Full Text Available In previous paper the authors introduced a technique for generating mismatched pulse compression filters for linear frequency chirp signals. The technique minimizes the sum of the pulse compression sidelobes in an Lp norm sense. It was shown...

  1. Generation of near transform-limited ultrashort laser pulses in kilohertz chirped-pulse amplification system by compensating high order phase distortions

    Institute of Scientific and Technical Information of China (English)

    Yongliang Jiang; Bing Zhou; Yuxin Leng; Xiaowei Chen; Ruxin Li; Zhizhan Xu

    2006-01-01

    The effects of gain narrowing and high order dispersions on the pulse duration in our kilohertz chirpedpulse amplification system have been compensated experimentally. Using an acousto-optic programmable dispersive filter (AOPDF), the spectral full-width at half-maximum (FWHM) is expanded from 30 to50 nm. Stable laser pulses with the duration of 30 fs (FWHM), which is 1.07 times Fourier-transformlimitation, have been acquired by pre-compensating the high order phase distortions using the phase measured by spectral phase interferometry for direct electric-field reconstruction (SPIDER).

  2. Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression.

    Science.gov (United States)

    Moses, J; Huang, S-W; Hong, K-H; Mücke, O D; Falcão-Filho, E L; Benedick, A; Ilday, F O; Dergachev, A; Bolger, J A; Eggleton, B J; Kärtner, F X

    2009-06-01

    We present a 9 GW peak power, three-cycle, 2.2 microm optical parametric chirped-pulse amplification source with 1.5% rms energy and 150 mrad carrier envelope phase fluctuations. These characteristics, in addition to excellent beam, wavefront, and pulse quality, make the source suitable for long-wavelength-driven high-harmonic generation. High stability is achieved by careful optimization of superfluorescence suppression, enabling energy scaling.

  3. Ultrahigh contrast from a frequency-doubled chirped-pulse-amplification beamline.

    Science.gov (United States)

    Hillier, David; Danson, Colin; Duffield, Stuart; Egan, David; Elsmere, Stephen; Girling, Mark; Harvey, Ewan; Hopps, Nicholas; Norman, Michael; Parker, Stefan; Treadwell, Paul; Winter, David; Bett, Thomas

    2013-06-20

    This paper describes frequency-doubled operation of a high-energy chirped-pulse-amplification beamline. Efficient type-I second-harmonic generation was achieved using a 3 mm thick 320 mm aperture KDP crystal. Shots were fired at a range of energies achieving more than 100 J in a subpicosecond, 527 nm laser pulse with a power contrast of 10(14).

  4. Influence of Initial Chirp on Propagation of Super-Gaussian Pulse inside Fiber

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Under the condition of combined effects of group-velocity dispersion and self-phase modulation, the step Fourier method is used to simulate the propagation of initial chirped super-Gaussian pulses inside fiber. The initial chirp influences the shapes of super-Gaussian pulses in propagation process, and positive and negative chirps have different effects. For the existing of initial chirp, the splits of pulses and the spreading speed move ahead and increase. When the amplitude of super-Gaussian pulses increases by 1.4 times, in the range of |C|<1.5, pulses can keep good shapes along their propagation distance. Even if |C| increases to 3.5, their shapes are also good. Most energy of pulse is still at the middle parts. These results show that, for the initial chirped super-Gaussian pulses, the influence of initial chirp will be decreased by increasing the intensity of pulses. This will be of benefit to optical communication.

  5. Femtosecond X-ray Pulses From a frequency chirped SASE FEL

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z

    2003-01-14

    We discuss the temporal and spectral properties of self-amplified spontaneous emission (SASE) utilizing an energy-chirped electron beam. A short temporal pulse is generated by using a monochromator to select a narrow radiation bandwidth from the frequency chirped SASE. For the filtered radiation, the minimum pulse length is limited by the intrinsic SASE bandwidth, while the number of modes and the energy fluctuation can be controlled through the monochromator bandwidth. Two cases are considered: (1) placing the monochromator at the end of a single long undulator; (2) placing the monochromator after an initial undulator and amplifying the short-duration output in a second undulator. We analyze these cases and show that tens of femtosecond x-ray pulses may be generated for the linac coherent light source.

  6. Dynamic parabolic pulse generation using temporal shaping of wavelength to time mapped pulses.

    Science.gov (United States)

    Nguyen, Dat; Piracha, Mohammad Umar; Mandridis, Dimitrios; Delfyett, Peter J

    2011-06-20

    Self-phase modulation in fiber amplifiers can significantly degrade the quality of compressed pulses in chirped pulse amplification systems. Parabolic pulses with linear frequency chirp are suitable for suppressing nonlinearities, and to achieve high peak power pulses after compression. In this paper, we present an active time domain technique to generate parabolic pulses for chirped pulse amplification applications. Pulses from a mode-locked laser are temporally stretched and launched into an amplitude modulator, where the drive voltage is designed using the spectral shape of the input pulse and the transfer function of the modulator, resulting in the generation of parabolic pulses. Experimental results of pulse shaping with a pulse train from a mode-locked laser are presented, with a residual error of less than 5%. Moreover, an extinction ratio of 27 dB is achieved, which is ideal for chirped pulse amplification applications.

  7. Development of optical parametric chirped-pulse amplifiers and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Nobuhisa

    2006-11-21

    In this work, optical pulse amplification by parametric chirped-pulse amplification (OPCPA) has been applied to the generation of high-energy, few-cycle optical pulses in the near-infrared (NIR) and infrared (IR) spectral regions. Amplification of such pulses is ordinarily difficult to achieve by existing techniques of pulse amplification based on standard laser gain media followed by external compression. Potential applications of few-cycle pulses in the IR have also been demonstrated. The NIR OPCPA system produces 0.5-terawatt (10 fs,5 mJ) pulses by use of noncollinearly phase-matched optical parametric amplification and a down-chirping stretcher and up-chirping compressor pair. An IR OPCPA system was also developed which produces 20-gigawatt (20 fs,350 {mu}J) pulses at 2.1 {mu}m. The IR seed pulse is generated by optical rectification of a broadband pulse and therefore it exhibits a self-stabilized carrier-envelope phase (CEP). In the IR OPCPA a common laser source is used to generate the pump and seed resulting in an inherent sub-picosecond optical synchronization between the two pulses. This was achieved by use of a custom-built Nd:YLF picosecond pump pulse amplifier that is directly seeded with optical pulses from a custom-built ultrabroadband Ti:sapphire oscillator. Synchronization between the pump and seed pulses is critical for efficient and stable amplification. Two spectroscopic applications which utilize these unique sources have been demonstrated. First, the visible supercontinuum was generated in a solid-state media by the infrared optical pulses and through which the carrier-envelope phase (CEP) of the driving pulse was measured with an f-to-3f interferometer. This measurement confirms the self-stabilization mechanism of the CEP in a difference frequency generation process and the preservation of the CEP during optical parametric amplification. Second, high-order harmonics with energies extending beyond 200 eV were generated with the few

  8. Coherent chirped pulse laser network with Mickelson phase-conjugator

    CERN Document Server

    Okulov, A Yu

    2013-01-01

    The mechanisms of nonlinear phase-locking of a large fiber amplifier array are analyzed. The preference is given to configuration most suitable for a coherent coupling of a thousands of a fundamental spatial mode fiber beams into a single smooth beam ready for chirped pulse compression. It is shown that Michelson phase conjugating configuration with double passage through array of fiber amplifiers have the definite advantages compared to one-way fiber array coupled in a Mach-Zehnder configuration. Regardless to amount of synchronized fiber amplifiers Michelson phase-conjugating interferometer is expected to do a perfect compensation of the phase-piston errors and collimation of backwardly amplified fiber beams on entrance/output beamsplitter. In both configurations the nonlinear transformation of the stretched pulse envelope due to gain saturation is capable to randomize the position of chirp inside envelope thus it may reduce the visibility of interference pattern at output beamsplitter. A certain advantages...

  9. Coherent chirped pulse laser network with Mickelson phase conjugator.

    Science.gov (United States)

    Okulov, A Yu

    2014-04-10

    The mechanisms of nonlinear phase-locking of a large fiber amplifier array are analyzed. The preference is given to the most suitable configuration for a coherent coupling of thousands of fundamental spatial mode fiber beams into a single smooth beam ready for chirped pulse compression. It is shown that a Michelson phase-conjugating configuration with double passage through an array of fiber amplifiers has the definite advantage compared to a one-way fiber array coupled in a Mach-Zehnder configuration. Regardless of the amount of synchronized fiber amplifiers, the Michelson phase-conjugating interferometer is expected to do a perfect compensation of the phase-piston errors and collimation of backwardly amplified fiber beams on an entrance/output beam splitter. In both configurations, the nonlinear transformation of the stretched pulse envelope, due to gain saturation, is capable of randomizing the position of chirp inside an envelope; thus it may reduce the visibility of the interference pattern at an output beam splitter. Certain advantages are inherent to the sech-form temporal envelope because of the exponential precursor and self-similar propagation in gain medium. The Gaussian envelope is significantly compressed in a deep gain saturation regime, and the frequency chirp position inside pulse envelope is more deformed.

  10. Experimental research of pulsed chirp effect on the small-scale self-focusing

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The chirped optical pulses undergoing self-focusing and splitting into multiple filamentation passing through a Kerr medium-carbon disulfide (CS2) are studied experimentally and numerically. At the particular spatial position, modulation growth takes place from the experimental result. The process of modulation growth with different pulsed chirp is analyzed. It is found that with the pulsed chirp in-creasing (equal to the pulse width increasing), modulation growth of chirped opti-cal pulses is delayed and the average input power also increases. The simulation results are in agreement with the experimental results.

  11. Experimental and Theoretical Analysis of Nondegenerate Ultrabroadband Chirped Pulse Optical Parametric Amplification

    Institute of Scientific and Technical Information of China (English)

    刘红军; 赵卫; 陈国夫; 王屹山; 于连君; 阮驰; 卢克清

    2004-01-01

    Experimental investigations of nondegenerate ultrabroadband chirped pulse optical parametric amplification have been carried out. The general mathematical expressions for evaluating parametric bandwidth, gain and gain bandwidth for arbitrary three-wave mixing parametric amplifiers are presented. In our experiments, a type-I noncollinear phase-matched optical parametric amplifier based on lithium triborate, which was pumped by a 5-ns second harmonic pulses from a Q-switched Nd:YAG operating at 10 Hz, seeded by a 14-rs Ti:sapphire laser at 800nm, was presented. The 0.85nJ energy of input chirped signal pulse with 57-FWHM has been amplified to 3.1 μJ at pump intensity 3 G W/cm2, the corresponding parametric gain reached 3.6 × 103, the 53 nm-FWHM gain spectrum bandwidth of output signal has been obtained. The large gain and broad gain bandwidth, which have been confirmed experimentally, provide great potentials to amplify efficiently the broad bandwidth femtosecond light pulses to generate new extremes in power, intensity, and pulse duration using optical parametric chirped pulse amplifiers pumped by powerful nanosecond systems.

  12. Effects of initial frequency chirp on the linear propagation characteristics of the exponential optical pulse

    Institute of Scientific and Technical Information of China (English)

    Zheng Hong-Jun; Liu Shan-Liang

    2006-01-01

    In this paper, the linear propagation characteristics of the exponential optical pulse with initial linear and nonlinear frequency chirp are numerically studied in a single mode fibre for β2< 0. It can be found that the temporal full width at half maximum and time-bandwidth product of exponential pulse monotonically increase with the increase of propagation distance and decrease with the increase of linear chirp C for C < 0.5, go through an initial decreasing stage near ζ = 1, then increase with the increase of propagation distance and linear chirp C for C ≥ 0.5. The broadening of pulses with negative chirp is faster than that with positive chirp. The exponential pulse with linear chirp gradually evolves into a near-Gaussian pulse. The effect of nonlinear chirp on waveform of the pulse is much greater than that of linear chirp. The temporal waveform breaking of exponential pulse with nonlinear chirp is first observed in linear propagation. Furthermore, the expressions of the spectral width and time-bandwidth product of the exponential optical pulse with the frequency chirp are given by use of the numerical analysis method.

  13. Perspective: The first ten years of broadband chirped pulse Fourier transform microwave spectroscopy

    Science.gov (United States)

    Park, G. Barratt; Field, Robert W.

    2016-05-01

    Since its invention in 2006, the broadband chirped pulse Fourier transform spectrometer has transformed the field of microwave spectroscopy. The technique enables the collection of a ≥10 GHz bandwidth spectrum in a single shot of the spectrometer, which allows broadband, high-resolution microwave spectra to be acquired several orders of magnitude faster than what was previously possible. We discuss the advantages and challenges associated with the technique and look back on the first ten years of chirped pulse Fourier transform spectroscopy. In addition to enabling faster-than-ever structure determination of increasingly complex species, the technique has given rise to an assortment of entirely new classes of experiments, ranging from chiral sensing by three-wave mixing to microwave detection of multichannel reaction kinetics. However, this is only the beginning. Future generations of microwave experiments will make increasingly creative use of frequency-agile pulse sequences for the coherent manipulation and interrogation of molecular dynamics.

  14. Perspective: The first ten years of broadband chirped pulse Fourier transform microwave spectroscopy.

    Science.gov (United States)

    Park, G Barratt; Field, Robert W

    2016-05-28

    Since its invention in 2006, the broadband chirped pulse Fourier transform spectrometer has transformed the field of microwave spectroscopy. The technique enables the collection of a ≥10 GHz bandwidth spectrum in a single shot of the spectrometer, which allows broadband, high-resolution microwave spectra to be acquired several orders of magnitude faster than what was previously possible. We discuss the advantages and challenges associated with the technique and look back on the first ten years of chirped pulse Fourier transform spectroscopy. In addition to enabling faster-than-ever structure determination of increasingly complex species, the technique has given rise to an assortment of entirely new classes of experiments, ranging from chiral sensing by three-wave mixing to microwave detection of multichannel reaction kinetics. However, this is only the beginning. Future generations of microwave experiments will make increasingly creative use of frequency-agile pulse sequences for the coherent manipulation and interrogation of molecular dynamics.

  15. Clinical Comparison of Pulse and Chirp Excitation

    DEFF Research Database (Denmark)

    Pedersen, Morten Høgholm; Misaridis, T.; Jensen, Jørgen Arendt

    2002-01-01

    and short pulse excitation to simultaneously produce identical image sequences using both techniques. Nine healthy male volunteers were scanned in abdominal locations. All sequences were evaluated by 3 skilled medical doctors, blinded to each other and to the technique used. They assessed the depth (1...

  16. Anomalous spectral behaviour of diffracted chirped Gaussian pulses in the near field

    Institute of Scientific and Technical Information of China (English)

    Pan Liu-Zhan; L(u) Bai-Da

    2004-01-01

    By using the Fourier transform method, analytical expressions for the axial power spectrum and near-field intensity in the spacetime domain of chirped Gaussian pulses diffracted at an aperture are derived, which permit us to study changes in spectral and temporal profiles of the chirped Gaussian pulses both analytically and numerically. Detailed numerical results and physical analysis show that spectral anomalies take place in the neighbourhood of certain critical distances, and the shifting of maximum and splitting of temporal intensity profiles appear. In particular, for ultrashort chirped pulses, there exists also spectral switch. Besides the truncation parameter, the chirp parameter and pulse duration affect the behaviour of spectral switches.

  17. Chirped pulse amplification in an extreme-ultraviolet free-electron laser

    Science.gov (United States)

    Gauthier, David; Allaria, Enrico; Coreno, Marcello; Cudin, Ivan; Dacasa, Hugo; Danailov, Miltcho Boyanov; Demidovich, Alexander; di Mitri, Simone; Diviacco, Bruno; Ferrari, Eugenio; Finetti, Paola; Frassetto, Fabio; Garzella, David; Künzel, Swen; Leroux, Vincent; Mahieu, Benoît; Mahne, Nicola; Meyer, Michael; Mazza, Tommaso; Miotti, Paolo; Penco, Giuseppe; Raimondi, Lorenzo; Ribič, Primož Rebernik; Richter, Robert; Roussel, Eléonore; Schulz, Sebastian; Sturari, Luca; Svetina, Cristian; Trovò, Mauro; Walker, Paul Andreas; Zangrando, Marco; Callegari, Carlo; Fajardo, Marta; Poletto, Luca; Zeitoun, Philippe; Giannessi, Luca; de Ninno, Giovanni

    2016-12-01

    Chirped pulse amplification in optical lasers is a revolutionary technique, which allows the generation of extremely powerful femtosecond pulses in the infrared and visible spectral ranges. Such pulses are nowadays an indispensable tool for a myriad of applications, both in fundamental and applied research. In recent years, a strong need emerged for light sources producing ultra-short and intense laser-like X-ray pulses, to be used for experiments in a variety of disciplines, ranging from physics and chemistry to biology and material sciences. This demand was satisfied by the advent of short-wavelength free-electron lasers. However, for any given free-electron laser setup, a limit presently exists in the generation of ultra-short pulses carrying substantial energy. Here we present the experimental implementation of chirped pulse amplification on a seeded free-electron laser in the extreme-ultraviolet, paving the way to the generation of fully coherent sub-femtosecond gigawatt pulses in the water window (2.3-4.4 nm).

  18. Chirped pulse amplification in an extreme-ultraviolet free-electron laser.

    Science.gov (United States)

    Gauthier, David; Allaria, Enrico; Coreno, Marcello; Cudin, Ivan; Dacasa, Hugo; Danailov, Miltcho Boyanov; Demidovich, Alexander; Di Mitri, Simone; Diviacco, Bruno; Ferrari, Eugenio; Finetti, Paola; Frassetto, Fabio; Garzella, David; Künzel, Swen; Leroux, Vincent; Mahieu, Benoît; Mahne, Nicola; Meyer, Michael; Mazza, Tommaso; Miotti, Paolo; Penco, Giuseppe; Raimondi, Lorenzo; Ribič, Primož Rebernik; Richter, Robert; Roussel, Eléonore; Schulz, Sebastian; Sturari, Luca; Svetina, Cristian; Trovò, Mauro; Walker, Paul Andreas; Zangrando, Marco; Callegari, Carlo; Fajardo, Marta; Poletto, Luca; Zeitoun, Philippe; Giannessi, Luca; De Ninno, Giovanni

    2016-12-01

    Chirped pulse amplification in optical lasers is a revolutionary technique, which allows the generation of extremely powerful femtosecond pulses in the infrared and visible spectral ranges. Such pulses are nowadays an indispensable tool for a myriad of applications, both in fundamental and applied research. In recent years, a strong need emerged for light sources producing ultra-short and intense laser-like X-ray pulses, to be used for experiments in a variety of disciplines, ranging from physics and chemistry to biology and material sciences. This demand was satisfied by the advent of short-wavelength free-electron lasers. However, for any given free-electron laser setup, a limit presently exists in the generation of ultra-short pulses carrying substantial energy. Here we present the experimental implementation of chirped pulse amplification on a seeded free-electron laser in the extreme-ultraviolet, paving the way to the generation of fully coherent sub-femtosecond gigawatt pulses in the water window (2.3-4.4 nm).

  19. Spatially and spectrally resolved quantum path interference with chirped driving pulses

    CERN Document Server

    Preclíková, Jana; Lorek, Eleonora; Larsen, Esben Witting; Heyl, Christoph M; Paleček, David; Zigmantas, Donatas; Schafer, Kenneth J; Gaarde, Mette B; Mauritsson, Johan

    2016-01-01

    We measure spectrally and spatially resolved high-order harmonics generated in argon using chirped multi-cycle laser pulses. Using a very stable, high-repetition rate laser we are able to clearly observe the interference between light emitted from the two shortest trajectories and study this interference structure systematically. The interference structure is clearly observed over a large range of harmonic orders, ranging from harmonic 11, which is below the ionization threshold of argon, to harmonic 25. The interference pattern contains more information than just the relative phase of the light from the two trajectories, since it is both spatially and spectrally resolved. We can access this additional information by changing the chirp of the driving laser pulses which affects both the spatial and the spectral phases of the two trajectories differently, allowing us to reconstruct the dipole phase parameters for the short ($\\alpha_s$) and long ($\\alpha_l$) trajectories from the data. The reconstruction is done...

  20. CIDME: Short distances measured with long chirp pulses

    Science.gov (United States)

    Doll, Andrin; Qi, Mian; Godt, Adelheid; Jeschke, Gunnar

    2016-12-01

    Frequency-swept pulses have recently been introduced as pump pulses into double electron-electron resonance (DEER) experiments. A limitation of this approach is that the pump pulses need to be short in comparison to dipolar evolution periods. The "chirp-induced dipolar modulation enhancement" (CIDME) pulse sequence introduced in this work circumvents this limitation by means of longitudinal storage during the application of one single or two consecutive pump pulses. The resulting six-pulse sequence is closely related to the five-pulse "relaxation-induced dipolar modulation enhancement" (RIDME) pulse sequence: While dipolar modulation in RIDME is due to stochastic spin flips during longitudinal storage, modulation in CIDME is due to the pump pulse during longitudinal storage. Experimentally, CIDME is examined for Gd-Gd and nitroxide-nitroxide distance determination using a high-power Q-band spectrometer. Since longitudinal storage results in a 50% signal loss, comparisons between DEER using short chirp pump pulses of 64 ns duration and CIDME using longer pump pulses are in favor of DEER. While the lower sensitivity restrains the applicability of CIDME for routine distance determination on high-power spectrometers, this result is not to be generalized to spectrometers having lower power and to specialized "non-routine" applications or different types of spin labels. In particular, the advantage of prolonged CIDME pump pulses is demonstrated for experiments at large frequency offset between the pumped and observed spins. At a frequency separation of 1 GHz, where broadening due to dipolar pseudo-secular contributions becomes largely suppressed, a Gd-Gd modulation depth larger than 10% is achieved. Moreover, a CIDME experiment at deliberately reduced power underlines the potential of the new technique for spectrometers with lower power, as often encountered at higher microwave frequencies. With longitudinal storage times T below 10 μs, however, CIDME appears rather

  1. Photodissociation of Isoxazole and Pyridine Studied Using Chirped Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows

    Science.gov (United States)

    Ariyasingha, Nuwandi M.; Joalland, Baptiste; Mebel, Alexander M.; Suits, Arthur

    2016-06-01

    Chirped - Pulse Fourier-transform microwave spectroscopy in uniform supersonic flows (Chirped- Pulse/Uniform Flow: CPUF) has been applied to study the photodissociation of two atmospherically relevant N containing heterocyclic compounds; pyridine and isoxazole. Products were detected using rotational spectroscopy. HC3N, HCN were observed for pyridine and CH3CN, HCO and HCN were observed for isoxazole and we report the first detection of HNC for both of the systems. Key points in potential energy surface were explored and compared with the experimental observations. Branching ratios were calculated for all the possible channels and will be presented.

  2. 90 mJ parametric chirped pulse amplification of 10 fs pulses.

    Science.gov (United States)

    Tavella, Franz; Marcinkevicius, Andrius; Krausz, Ferenc

    2006-12-25

    We demonstrate the amplification of broadband pulses from a Ti:Sapphire oscillator by non-collinear optical parametric chirped-pulse amplification technique in a type-I BBO crystal to energies of 90 mJ. Partial compression of the amplified pulses is demonstrated down to a 10 fs duration. These parameters come in combination with good spatial quality and focusability of the amplified beam.

  3. Upconversion chirped pulse amplification of ultrashort pulses using a multimode Tm:ZBLAN fiber

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.M.; Sosnowski, T.; Stock, M.L.; Norris, T.B.; Squier, J.; Mourou, G. [Univ. of Michigan, Ann Arbor, MI (United States). Center for Ultrafast Optical Science; Dennis, M.L.; Duling, I.N. III [Naval Research Lab., Washington, DC (United States)

    1995-11-01

    Microjoule pulse energies are achieved from a single stage upconversion fiber amplifier for the first time in this demonstration of chirped pulse amplification using a multimode TM:ZBLAN fiber. A Ti:sapphire laser system provides the seed pulse for the upconversion fiber amplifier which produces subpicosecond pulse trains with energies as great as 16 {micro}J at repetition rate of 4.4 kHz. The compressed, pulse peak power is more than 1 MW, and the pulse is characterized both temporally and spatially.

  4. Combined Yb/Nd driver for optical parametric chirped pulse amplifiers.

    Science.gov (United States)

    Michailovas, Kirilas; Baltuska, Andrius; Pugzlys, Audrius; Smilgevicius, Valerijus; Michailovas, Andrejus; Zaukevicius, Audrius; Danilevicius, Rokas; Frankinas, Saulius; Rusteika, Nerijus

    2016-09-19

    We report on the developed front-end/pump system for optical parametric chirped pulse amplifiers. The system is based on a dual output fiber oscillator/power amplifier which seeds and assures all-optical synchronization of femtosecond Yb and picosecond Nd laser amplifiers operating at a central wavelength of 1030 nm and 1064 nm, respectively. At the central wavelength of 1030 nm, the fiber oscillator generates partially stretched 4 ps pulses with the spectrum supporting a scaling currently is prevented by limited dimensions of the diffraction gratings, which, because of the fast progress in MLD grating manufacturing technologies is only a temporary obstacle.

  5. The Effect of Chirped Intense Femtosecond Laser Pulses on the Argon Cluster

    Directory of Open Access Journals (Sweden)

    H. Ghaforyan

    2016-01-01

    Full Text Available The interaction of intense femtosecond laser pulses with atomic Argon clusters has been investigated by using nanoplasma model. Based on the dynamic simulations, ionization process, heating, and expansion of a cluster after irradiation by femtosecond laser pulses at intensities up to 2 × 1017 Wcm−2 are studied. The analytical calculation provides ionization rate for different mechanisms and time evolution of the density of electrons for different pulse shapes. In this approach, the strong dependence of laser intensity, pulse duration, and laser shape on the electron energy, the electron density, and the cluster size is presented using the intense chirped laser pulses. Based on the presented theoretical modifications, the effect of chirped laser pulse on the complex dynamical process of the interaction is studied. It is found that the energy of electrons and the radius of cluster for the negatively chirped pulses are improved up to 20% in comparison to the unchirped and positively chirped pulses.

  6. The effect of chirped intense femtosecond laser pulses on the Argon cluster

    CERN Document Server

    Ghaforyan, H; Irani, E

    2016-01-01

    The interaction of intense femtosecond laser pulses with atomic Argon clusters has been investigated by using nano-plasma model. Based on the dynamic simulations, ionization process, heating and expansion of a cluster after irradiation by femtosecond laser pulses at intensities up to 2*1017 Wcm-2 are studied. The analytical calculation provides ionization ratefor different mechanisms and time evolution of the density of electrons for different pulse shapes. In this approach the strong dependence of laser intensity, pulse duration and laser shape on the electron energy, the electron density and the cluster size are presented using the intense chirped laser pulses. Based on the presented theoretical modifications, the effect of chirped laser pulse on the complex dynamical process of the interaction is studied. It is found that the energy of electrons and the radius of cluster for the negatively chirped pulsesare improved up to 20% in comparison to the unchirped and positively chirped pulses.

  7. Enhancement of proton acceleration by frequency-chirped laser pulse in radiation pressure mechanism

    Science.gov (United States)

    Vosoughian, H.; Riazi, Z.; Afarideh, H.; Yazdani, E.

    2015-07-01

    The transition from hole-boring to light-sail regime of radiation pressure acceleration by frequency-chirped laser pulses is studied using particle-in-cell simulation. The penetration depth of laser into the plasma with ramped density profile increases when a negatively chirped laser pulse is applied. Because of this induced transparency, the laser reflection layer moves deeper into the target and the hole-boring stage would smoothly transit into the light-sail stage. An optimum chirp parameter which satisfies the laser transparency condition, a 0 ≈ π n e l / n c λ , is obtained for each ramp scale length. Moreover, the efficiency of conversion of laser energy into the kinetic energy of particles is maximized at the obtained optimum condition. A relatively narrow proton energy spectrum with peak enhancement by a factor of 2 is achieved using a negatively chirped pulse compared with the un-chirped pulse.

  8. Coherent population transfer in Rydberg potassium atom by a single frequency-chirped laser pulse

    Institute of Scientific and Technical Information of China (English)

    Zhang Xian-Zhou; Ma Qiao-Zhi; Li Xiao-Hong

    2006-01-01

    By using the time-dependent multilevel approach, we have calculated the coherent population transfer among the quantum states of potassium atom by a single frequency-chirped laser pulse. The results show that the population can be efficiently transferred to a target state and be trapped there by using an ‘intuitive’ or a ‘counter-intuitive’ frequency sweep laser pulse in the case of ‘narrowband’ frequency-chirped laser pulse. It is also found that a pair of sequential ‘broadband’ frequency-chirped laser pulses can efficiently transfer population from one ground state of the A atom to the other one.

  9. Tracking the photodissociation probability of D$_2^+$ induced by linearly chirped laser pulses

    CERN Document Server

    Csehi, András; Cederbaum, Lorenz S; Vibók, Ágnes

    2016-01-01

    In the presence of linearly varying frequency chirped laser pulses the photodissociation dynamics of D$_2^+$ is studied theoretically after ionization of D$_{2}$ . As a completion of our recent work (J. Chem. Phys. 143, 014305 (2015)) a comprehensive dependence on the pulse duration and delay time is presented in terms of total dissociation probabilities. Our numerical analysis carried out in the recently introduced light-induced conical intersection (LICI) framework clearly shows the effects of the changing position of the LICI which is induced by the frequency modulation of the chirped laser pulses. This impact is presented for positively, negatively and zero chirped short pulses.

  10. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  11. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    Science.gov (United States)

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.

  12. Chirp control of multi-photon resonance ionization and charge-resonance enhanced ionization on molecular harmonic generation

    Science.gov (United States)

    Liu, Hang; Li, Wenliang; Feng, Liqiang

    2017-05-01

    The effects of the multi-photon resonance ionization (MPRI) and the charge-resonance enhanced ionization (CREI) on the molecular high-order harmonic generation (MHHG) from H2+ have been investigated by using the chirped pulses. It is found that the MHHG only comes from the MPRI in the shorter pulse duration. As the pulse duration increases, both the MPRI and the CREI contribute to the MHHG. But the MPRI plays the main role in the generations of the above-threshold harmonics and the CREI mainly contributes to the below-threshold harmonics. With the introductions of the up-chirped and the down-chirped pulses, the contributions of the MHHG from the CREI and the MPRI can be enhanced, respectively. Finally, the isotopic investigation (e.g. T2+) shows that due to the slower nuclear motion of the heavy nuclei, the contributions of MHHG from the CERI can be suppressed in the heavy nuclei.

  13. a KA-BAND Chirped-Pulse Fourier Transform Microwave Spectrometer.

    Science.gov (United States)

    Zaleski, Daniel P.; Neill, Justin L.; Muckle, Matthew T.; Pate, Brooks H.; Carroll, P. Brandon; Weaver, Susanna L. Widicus

    2010-06-01

    The design and performance of a new chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer operating from 25-40 GHz will be discussed. A 10.5-3 GHz linear frequency sweep, generated by a 24 GS/s arbitrary waveform generator, is upconverted by a 23.00 GHz phase-locked oscillator, then fed into an active doubler to create a 25-40 GHz chirped pulse. After amplification with a 60-80 W pulsed traveling wave tube amplifier, the pulse is broadcast across a molecular beam chamber where it interacts with a molecular sample. The molecular FID signal is downconverted with the 23 GHz oscillator so that it can be digitized on a 50 GS/s oscilloscope with 16 GHz hardware bandwidth. The sensitivity and phase stability of this spectrometer is comparable to that of the previously reported 6.5-18.5 CP-FTMW spectrometer. On propyne (μ=0.78 D), a single-shot signal to noise ratio of approximately 200:1 is observed on the J=2-1 rotational transition at 34183 MHz when the full bandwidth is swept; optimal excitation is observed for this transition with a 250 MHz bandwidth sweep. The emission has a T_2 lifetime of 4 μs. Early results from this spectrometer, particularly in the study of species of astrochemical interest, will be presented. G.G. Brown et al., Rev. Sci. Instrum. 79 (2008) 053103.

  14. Spread spectrum compressed sensing MRI using chirp radio frequency pulses

    CERN Document Server

    Qu, Xiaobo; Zhuang, Xiaoxing; Yan, Zhiyu; Guo, Di; Chen, Zhong

    2013-01-01

    Compressed sensing has shown great potential in reducing data acquisition time in magnetic resonance imaging (MRI). Recently, a spread spectrum compressed sensing MRI method modulates an image with a quadratic phase. It performs better than the conventional compressed sensing MRI with variable density sampling, since the coherence between the sensing and sparsity bases are reduced. However, spread spectrum in that method is implemented via a shim coil which limits its modulation intensity and is not convenient to operate. In this letter, we propose to apply chirp (linear frequency-swept) radio frequency pulses to easily control the spread spectrum. To accelerate the image reconstruction, an alternating direction algorithm is modified by exploiting the complex orthogonality of the quadratic phase encoding. Reconstruction on the acquired data demonstrates that more image features are preserved using the proposed approach than those of conventional CS-MRI.

  15. Wakefield evolution and electron acceleration in interaction of frequency-chirped laser pulse with inhomogeneous plasma

    Science.gov (United States)

    Rezaei-Pandari, M.; Niknam, A. R.; Massudi, R.; Jahangiri, F.; Hassaninejad, H.; Khorashadizadeh, S. M.

    2017-02-01

    The nonlinear interaction of an ultra-short intense frequency-chirped laser pulse with an underdense plasma is studied. The effects of plasma inhomogeneity and laser parameters such as chirp, pulse duration, and intensity on plasma density and wakefield evolutions, and electron acceleration are examined. It is found that a properly chirped laser pulse could induce a stronger laser wakefield in an inhomogeneous plasma and result in higher electron acceleration energy. It is also shown that the wakefield amplitude is enhanced by increasing the slope of density in the inhomogeneous plasma.

  16. Experimental study on the chirped structure of the white-light continuum generation by femtosecond laser spectroscopy

    Institute of Scientific and Technical Information of China (English)

    全冬晖; 刘世林; 张蕾; 杨健; 汪力; 杨国桢; 翁羽翔

    2003-01-01

    The chirped structure of the white-light continuum generation(WLCG)pulse produced by focusing 800nm laser pulse with a pulse duration of 150fs(FWHM:full-width-at-half-maximum)onto a 2.4 mm thick sapphire plate was investigated by the optical Kerr gate technique with normal hexane as the optical Kerr gate medium.The observed WLCG was positively chirped,the measured anti-Stokes spectrum of WLCG ranges from 449 to 580nm with a temporal span of 2.56ps.When using metal reflecting mirrors to eliminate the group velocity dispersion(GVD)effect,we found that a span of 1.3ps still remained,indicating that the chirped pulse cannot be accounted for simply by GVD of the pulse propagation in the dispersive media.Our results suggest that the light-induced refractive index change due to the third-order nonlinear optical effect leads to an additional positive group velocity dispersion,which contributes to an important portion of the observed temporal broadening of the chirped WLCG.In addition to using reflective optical elements instead of dispersive optical elements,an effective way of reducing the chirp is to minimize the optical path length of the WLCG medium.

  17. High gain broadband amplification of ultraviolet pulses in optical parametric chirped pulse amplifier.

    Science.gov (United States)

    Wnuk, Paweł; Stepanenko, Yuriy; Radzewicz, Czesław

    2010-04-12

    We report on a high gain amplification of broadband ultraviolet femtosecond pulses in an optical parametric chirped pulse amplifier. Broadband ultraviolet seed pulses were obtained by an achromatic frequency doubling of the output from a femtosecond Ti:Sapphire oscillator. Stretched seed pulses were amplified in a multipass parametric amplifier with a single BBO crystal pumped by a ns frequency quadrupled Nd:YAG laser. A noncollinear configuration was used for a broadband amplification. The total (after compression) amplification of 2.510(5) was achieved, with compressed pulse energy of 30 microJ and pulse duration of 24 fs. We found that the measured gain was limited by thermal effects induced by the absorption of the pump laser by color centers created in the BBO crystal.

  18. Numerical simulation of extremely chirped pulse formation with an optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Tamitake; Nishimura, Akihiko; Tei, Kazuyoku; Matoba, Tohru; Takuma, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yamashita, Mikio; Morita, Ryuji

    1998-03-01

    A nonlinear propagation code which used a symmetric split-step Fourier method as an algorithm was improved to simulate a propagation behavior of extremely chirped pulse in a long fiber. The performances of pulse propagation in noble gases cored hollow fibers and a pulse stretcher using a nonlinear and normal silicate fibers have been simulated by the code. The calculation results in the case of the hollow fiber are consistent with their experimental results. We estimated that this pulse stretcher could give a extremely chirped pulse whose spectral width was 84.2 nm and temporal duration was 1.5 ns. (author)

  19. Cooling of relativistic electron beams in intense laser pulses: Chirps and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yoffe, S.R., E-mail: sam.yoffe@strath.ac.uk; Noble, A., E-mail: adam.noble@strath.ac.uk; Macleod, A.J., E-mail: alexander.macleod@strath.ac.uk; Jaroszynski, D.A., E-mail: d.a.jaroszynski@strath.ac.uk

    2016-09-01

    Next-generation high-power laser facilities (such as the Extreme Light Infrastructure) will provide unprecedented field intensities, and will allow us to probe qualitatively new physical regimes for the first time. One of the important fundamental questions which will be addressed is particle dynamics when radiation reaction and quantum effects play a significant role. Classical theories of radiation reaction predict beam cooling in the interaction of a relativistic electron bunch and a high-intensity laser pulse, with final-state properties only dependent on the laser fluence. The observed quantum suppression of this cooling instead exhibits a dependence on the laser intensity directly. This offers the potential for final-state properties to be modified or even controlled by tailoring the intensity profile of the laser pulse. In addition to beam properties, quantum effects will be manifest in the emitted radiation spectra, which could be manipulated for use as radiation sources. We compare predictions made by classical, quasi-classical and stochastic theories of radiation reaction, and investigate the influence of chirped laser pulses on the observed radiation spectra. - Highlights: • Classical theories of radiation reaction predict electron beam cooling in high fields. • Quantum effects lead to a reduction in electron beam cooling. • Quasi-classical model agrees with predictions from a single-emission stochastic model. • Negative frequency chirp found to increase photon emission, but not maximum energy.

  20. Unexpected Behavior on Nonlinear Tunneling of Chirped Ultrashort Soliton Pulse in Non-Kerr Media with Raman Effect

    Science.gov (United States)

    Rajan, M. S. Mani

    2016-08-01

    In this manuscript, the ultrashort soliton pulse propagation through nonlinear tunneling in cubic quintic media is investigated. The effect of chirping on propagation characteristics of the soliton pulse is analytically investigated using similarity transformation. In particular, we investigate the propagation dynamics of ultrashort soliton pulse through dispersion barrier for both chirp and chirp-free soliton. By investigating the obtained soliton solution, we found that chirping has strong influence on soliton dynamics such as pulse compression with amplification. These two important dynamics of chirped soliton in cubic quintic media open new possibilities to improve the solitonic communication system. Moreover, we surprisingly observe that a dispersion well is formed for the chirped case whereas a barrier is formed for the chirp-free case, which has certain applications in the construction of logic gate devices to achieve ultrafast switching.

  1. Flashlamp pumped Ti-sapphire laser for ytterbium glass chirped pulse amplification

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Akihiko; Ohzu, Akira; Sugiyama, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1998-03-01

    A flashlamp pumped Ti:sapphire laser is designed for ytterbium glass chirped pulse amplification. A high quality Ti:sapphire rod and a high energy long pulse discharging power supply are key components. The primary step is to produce the output power of 10 J per pulse at 920 nm. (author)

  2. Multiplexed Chirped Pulse Quantum Cascade Laser Measurements of Ammonia and Other Small Molecules

    Science.gov (United States)

    Picken, Craig; Langford, Nigel; Duxbury, Geoffrey

    2014-06-01

    Spectrometers based on Quantum Cascade (QC) lasers can be run in either continuous or pulsed operation. Although the instrumentation based upon the most recent versions of continuously operating QC lasers can have higher resolution than chirped lasers, using chirped pulse QC lasers can give an advantage when rapid changes in gas composition occur. For example, when jet engines are being tested, a variety of temperature dependent effects on the trace gas concentrations of the plume may be observed. Most pulsed QC lasers are operated in the down chirped mode, in which the chirp rate slows during the pulse. In our spectrometer the changes in frequency are recorded using two Ge etalons, one with a free spectral range of 0.0495 cm-1, and the other with a fringe spacing of 0.0195 cm-1.They can also be deployed in multiplex schemes in which two or more down-chirped lasers are used. In this paper we wish to show examples of the use of multiplexed chirped pulse lasers to allow overlapping spectra to be recorded. The examples of multiplex methods used are taken partly from measurements of 14NH3 and 15NH3 in the region from 1630 to 1622 cm-1, and partly from the use of other chirped pulse lasers operating in the 8 μm region. Among the effects seen are rapid passage effects caused by the rapid down-chirp, and the use of gases such as nitrogen to cause variation in the shape of the collisional broadened absorption lines.

  3. Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier.

    Science.gov (United States)

    Tavella, Franz; Nomura, Yutaka; Veisz, Laszlo; Pervak, Vladimir; Marcinkevicius, Andrius; Krausz, Ferenc

    2007-08-01

    We report the amplification of three-cycle, 8.5 fs optical pulses in a near-infrared noncollinear optical parametric chirped-pulse amplifier (OPCPA) up to energies of 80 mJ. Improved dispersion management in the amplifier by means of a combination of reflection grisms and a chirped-mirror stretcher allowed us to recompress the amplified pulses to within 6% of their Fourier limit. The novel ultrabroad, ultraprecise dispersion control technology presented in this work opens the way to scaling multiterawatt technology to even shorter pulses by optimizing the OPCPA bandwidth.

  4. Effect of Initial Chirping and Pulse Shape on 10 Gb/s Optical Pulse Transmission in Birefringent Nonlinear Fibers

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Numerical method to solve the problem related with theinteractive effect of dispersion (both chromatic dispersion and polarization mode dispersion) and nonlinearity on optical pulse transmission is present. Evolutions of pulses with various initial chirping and shape at bit-rate of 10 Gb/s are simulated and compared. Gaussian pulse with appropriate prechirping is propitious for high bit-rate transmission.

  5. Generation And Measurement Of High Contrast Ultrashort Intense Laser Pulses

    CERN Document Server

    Konoplev, O A

    2000-01-01

    In this thesis, the generation and measurement of high contrast, intense, ultrashort pulses have been studied. Various factors affecting the contrast and pulse shape of ultrashort light pulses from a chirped pulse amplification (CPA) laser system are identified. The level of contrast resulting from influence of these factors is estimated. Methods for improving and controlling the pulse shape and increasing the contrast are discussed. Ultrahigh contrast, 1-ps pulses were generated from a CPA system with no temporal structure up to eleven orders of magnitude. This is eight orders of magnitude higher contrast than the original pulse. This contrast boost was achieved using two techniques. One is the optical pulse cleaning based on the nonlinear birefringence of the chirping fiber and applied to the pulses before amplification. The other is the fast saturable absorber. The fast saturable absorber was placed after amplification and compression of the pulse. The measurements of high-contrast, ultrashort pulse with h...

  6. Generation of an extreme ultraviolet supercontinuum with a multicycle chirped laser and a static electric field

    Institute of Scientific and Technical Information of China (English)

    Zhang Gang-Tai; Bai Ting-Ting; Zhang Mei-Guang

    2012-01-01

    We theoretically present a method for generating an ultrabroad extreme ultraviolet (XUV) supercontinuum by using the combination of a multicycle chirped laser and a static electric field.At a low laser intensity,the spectral cutoff is extended to the 495th order harmonic,and the bandwidth of the supercontinuum spectrum is broadened to 535 eV.At a high laser intensity,the harmonic cutoff is enlarged to the 667th order,and a supercontinuum covering a bandwidth of 1035 eV is generated.In these two cases,the long quantum path is removed,and the short quantum path is selected.Especially for the relatively high laser intensity,an isolated 23-attosecond pulse with a bandwidth of about 170.6 eV is directly obtained.Finally,we also analyze the influences of the chirp parameter and the duration of the chirped pulse as well as the static field strength on the supercontinuum.

  7. Chirped pulse amplification in an all-normal-dispersion erbium-doped fiber amplifier

    Science.gov (United States)

    Wang, Yiqin; Li, Lei; Zhao, Luming

    2017-03-01

    Chirped pulse amplification in an all-normal-dispersion erbium-doped fiber amplifier is presented. Wavelength dependent amplification is examined. It is found that gain dispersion limits the spectral profile of the amplified pulse. If the central wavelength of the seed pulse is far away from that of the gain profile of the amplifier, the gain profile partially shapes the spectrum of the amplified pulse while maintaining the characteristic steep spectral edge at one side. If the optical spectrum of the seed pulse is most covered by the gain profile, the characteristic steep spectral edges will be both maintained. The amplified pulse becomes deformed ultimately with increasing pump power, no matter whether the seed pulse is a transform-limited pulse or a chirped pulse.

  8. Components for monolithic fiber chirped pulse amplification laser systems

    Science.gov (United States)

    Swan, Michael Craig

    The first portion of this work develops techniques for generating femtosecond-pulses from conventional fabry-perot laser diodes using nonlinear-spectral-broadening techniques in Yb-doped positive dispersion fiber ampliers. The approach employed an injection-locked fabry-perot laser diode followed by two stages of nonlinear-spectral-broadening to generate sub-200fs pulses. This thesis demonstrated that a 60ps gain-switched fabry-perot laser-diode can be injection-locked to generate a single-longitudinal-mode pulse and compressed by nonlinear spectral broadening to 4ps. Two problems have been identified that must be resolved before moving forward with this approach. First, gain-switched pulses from a standard diode-laser have a number of characteristics not well suited for producing clean self-phase-modulation-broadened pulses, such as an asymmetric temporal shape, which has a long pulse tail. Second, though parabolic pulse formation occurs for any arbitrary temporal input pulse profile, deviation from the optimum parabolic input results in extensively spectrally modulated self-phase-modulation-broadened pulses. In conclusion, the approach of generating self-phase-modulation-broadened pulses from pulsed laser diodes has to be modified from the initial approach explored in this thesis. The first Yb-doped chirally-coupled-core ber based systems are demonstrated and characterized in the second portion of this work. Robust single-mode performance independent of excitation or any other external mode management techniques have been demonstrated in Yb-doped chirally-coupled-core fibers. Gain and power efficiency characteristics are not compromised in any way in this novel fiber structure up to the 87W maximum power achieved. Both the small signal gain at 1064nm of 30.3dB, and the wavelength dependence of the small signal gain were comparable to currently deployed large-mode-area-fiber technology. The efficiencies of the laser and amplifier were measured to be 75% and 54

  9. Coherent population transfer in molecules coupled with a dissipative environment by an intense ultrashort chirped pulse

    Science.gov (United States)

    Fainberg, B. D.; Gorbunov, V. A.

    2002-10-01

    We have studied the intense chirped pulse excitation of a molecule coupled with a dissipative environment taking into account electronic coherence effects. We considered a two-state electronic system with relaxation treated as a diffusion on electronic potential energy surfaces. This relaxation model enables us to trace continuously the transition from a coherent population transfer to incoherent one. An inhomogeneously broadened system with frozen nuclear motion is invoked to model a purely coherent transfer. We show that the type of population transfer (coherent or incoherent) strongly depends on the pulse chirp, its sign, and the detunings of the exciting pulse carrier frequency with respect to the frequency of the Franck-Condon transition. For positive chirped pulses and moderate detunings, relaxation does not hinder a coherent population transfer. Moreover, under these conditions the relaxation favors more efficient population transfer with respect to the "coherent" system with frozen nuclear motion.

  10. Time Delay of a Chirped Light Pulse After Transmitting a Fabry-Pérot Interferometer

    Institute of Scientific and Technical Information of China (English)

    夏光琼; 吴正茂; 陈建国

    2002-01-01

    We have theoretically investigated the time delay of a chirped light pulse, defined as the temporal difference of for an interferometer of known parameters, the chirp of the light pulse makes the time delay become intensively smaller. The mismatch between the central frequency of the light pulse and the resonance frequency of the interferometer also has an influence on the time delay. Under some circumstances, this mismatch will induce a time delay smaller than t0 that is defined as the one-way traverse time of the light inside the interferometer.

  11. Shock-Accelerated Flying Foil Diagnostic with a Chirped Pulse Spectral Interferometry

    Institute of Scientific and Technical Information of China (English)

    陈建平; 李儒新; 曾志男; 王兴涛; 程传福; 徐至展

    2003-01-01

    A shock-accelerated flying foil is diagnosed with a chirped pulse spectral interferometry. The shock is pumped by a 1.2ps chirped laser pulse with a power of~1014 W/cm2 at 785nm irradiating on a 500nm aluminium film and detected by a probe pulse split from the pump based on a Michelson spectral interferometry. A flying foil of~5.595×10-6 g in~400 μm diameter was accelerated to~165 nm away from the initial target rear surface at~1.83 km/s before ablation.

  12. Cpuf: Chirped-Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows

    Science.gov (United States)

    Suits, Arthur; Abeysekera, Chamara; Zack, Lindsay N.; Joalland, Baptiste; Ariyasingha, Nuwandi M.; Park, Barratt; Field, Robert W.; Sims, Ian

    2015-06-01

    Chirped-pulse Fourier-transform microwave spectroscopy has stimulated a resurgence of interest in rotational spectroscopy owing to the dramatic reduction in spectral acquisition time it enjoys when compared to cavity-based instruments. This suggests that it might be possible to adapt the method to study chemical reaction dynamics and even chemical kinetics using rotational spectroscopy. The great advantage of this would be clear, quantifiable spectroscopic signatures for polyatomic products as well as the possibility to identify and characterize new radical reaction products and transient intermediates. To achieve this, however, several conditions must be met: 1) products must be thermalized at low temperature to maximize the population difference needed to achieve adequate signal levels and to permit product quantification based on the rotational line strength; 2) a large density and volume of reaction products is also needed to achieve adequate signal levels; and 3) for kinetics studies, a uniform density and temperature is needed throughout the course of the reaction. These conditions are all happily met by the uniform supersonic flow produced from a Laval nozzle expansion. In collaboration with the Field group at MIT we have developed a new instrument we term a CPUF (Chirped-pulse/Uniform Flow) spectrometer in which we can study reaction dynamics, photochemistry and kinetics using broadband microwave and millimeter wave spectroscopy as a product probe. We will illustrate the performance of the system with a few examples of photodissociation and reaction dynamics, and also discuss a number of challenges unique to the application of chirped-pulse microwave spectroscopy in the collisional environment of the flow. Future directions and opportunities for application of CPUF will also be explored.

  13. Coherent control of ultracold molecule dynamics in a magneto-optical trap using chirped femtosecond laser pulses

    CERN Document Server

    Brown, B L; Walmsley, I A; Brown, Benjamin L.; Dicks, Alexander J.; Walmsley, Ian A.

    2005-01-01

    We have studied the effects of chirped femtosecond laser pulses on the formation of ultracold molecules in a Rb magneto-optical trap. We have found that application of chirped femtosecond pulses suppressed the formation of 85Rb-2 and 87Rb-2 lowest triplet state molecules in contrast to comparable non-chirped pulses, cw illumination, and background formation rates. Variation of the amount of chirp indicated that this suppression is coherent in nature, suggesting that coherent control is likely to be useful for manipulating the dynamics of ultracold quantum molecular gases.

  14. Energy and average power scalable optical parametric chirped-pulse amplification in yttrium calcium oxyborate.

    Science.gov (United States)

    Liao, Zhi M; Jovanovic, Igor; Ebbers, Chris A; Fei, Yiting; Chai, Bruce

    2006-05-01

    Optical parametric chirped-pulse amplification (OPCPA) in nonlinear crystals has the potential to produce extremes of peak and average power but is limited either in energy by crystal growth issues or in average power by crystal thermo-optic characteristics. Recently, large (7.5 cm diameter x 25 cm length) crystals of yttrium calcium oxyborate (YCOB) have been grown and utilized for high-average-power second-harmonic generation. Further, YCOB has the necessary thermo-optic properties required for scaling OPCPA systems to high peak and average power operation for wavelengths near 1 microm. We report what is believed to be the first use of YCOB for OPCPA. Scalability to higher peak and average power is addressed.

  15. Combining Harmonic Generation and Laser Chirping to Achieve High Spectral Density in Compton Sources

    CERN Document Server

    Terzić, Balša; Krafft, Geoffrey A

    2015-01-01

    Recently various laser-chirping schemes have been investigated with the goal of reducing or eliminating ponderomotive line broadening in Compton or Thomson scattering occurring at high laser intensities. As a next level of detail in the spectrum calculations, we have calculated the line smoothing and broadening expected due to incident beam energy spread within a one-dimensional plane wave model for the incident laser pulse, both for compensated (chirped) and unchirped cases. The scattered compensated distributions are treatable analytically within three models for the envelope of the incident laser pulses: Gaussian, Lorentzian, or hyperbolic secant. We use the new results to demonstrate that the laser chirping in Compton sources at high laser intensities: (i) enables the use of higher order harmonics, thereby reducing the required electron beam energies; and (ii) increases the photon yield in a small frequency band beyond that possible with the fundamental without chirping. This combination of chirping and h...

  16. Programmable pulse generator

    CERN Document Server

    Xue Zhi Hua; Duan Xiao Hui

    2002-01-01

    The author introduces the design of programmable pulse generator that is based on a micro-controller and controlled by RS232 interface of personal computer. The whole system has good stability. The pulse generator can produce TTL pulse and analog pulse. The pulse frequency can be selected by EPLD. The voltage amplitude and pulse width of analog pulse can be adjusted by analog switches and digitally-controlled potentiometers. The software development tools of computer is National Instruments LabView5.1. The front panel of this virtual instrumentation is intuitive and easy-to-use. Parameters can be selected and changed conveniently by knob and slide

  17. High Resolution Pulse Compression Imaging Using Super Resolution FM-Chirp Correlation Method (SCM)

    Science.gov (United States)

    Fujiwara, M.; Okubo, K.; Tagawa, N.

    This study addresses the issue of the super-resolution pulse compression technique (PCT) for ultrasound imaging. Time resolution of multiple ultrasonic echoes using the FM-Chirp PCT is limited by the bandwidth of the sweep-frequency. That is, the resolution depends on the sharpness of auto-correlation function. We propose the Super resolution FM-Chirp correlation Method (SCM) and evaluate its performance. This method is based on the multiple signal classification (MUSIC) algorithm. Our simulations were made for the model assuming multiple signals reflected from some scatterers. We confirmed that SCM detects time delay of complicated reflected signals successfully with high resolution.

  18. Chirped Dissipative Solitons

    CERN Document Server

    Kalashnikov, Vladimir L

    2010-01-01

    The analytical theory of chirped dissipative soliton solutions of nonlinear complex Ginzburg-Landau equation is exposed. Obtained approximate solutions are easily traceable within an extremely broad range of the equation parameters and allow a clear physical interpretation as a representation of the strongly chirped pulses in mode-locked both solid-state and fiber oscillators. Scaling properties of such pulses demonstrate a feasibility of sub-mJ pulse generation in the continuous-wave mode-locking regime directly from an oscillator operating at the MHz repetition rate.

  19. Coherent control of ultracold molecule dynamics in a magneto-optical trap by use of chirped femtosecond laser pulses.

    Science.gov (United States)

    Brown, Benjamin L; Dicks, Alexander J; Walmsley, Ian A

    2006-05-05

    We have studied the effects of chirped femtosecond laser pulses on the formation of ultracold molecules in a Rb magneto-optical trap. We have found that application of chirped femtosecond pulses suppressed the formation of (85)Rb and (87)Rb(2) a(3)sigma(+)(u) molecules in contrast to comparable nonchirped pulses, cw illumination, and background formation rates. Variation of the amount of chirp indicated that this suppression is coherent in nature, suggesting that coherent control is likely to be useful for manipulating the dynamics of ultracold quantum molecular gases.

  20. Broadband sum frequency generation via chirped quasi-phase-matching

    CERN Document Server

    Rangelov, A A

    2011-01-01

    An efficient broadband sum frequency generation (SFG) technique using the two collinear optical parametric processes \\omega 3=\\omega 1+\\omega 2 and \\omega 4=\\omega 1+\\omega 3 is proposed. The technique uses chirped quasi-phase-matched gratings, which, in the undepleted pump approximation, make SFG analogous to adiabatic population transfer in three-state systems with crossing energies in quantum physics. If the local modulation period %for aperiodically poled quasi-phase-matching first makes the phase match occur for \\omega 3 and then for \\omega 4 SFG processes then the energy is converted adiabatically to the \\omega 4 field. Efficient SFG of the \\omega 4 field is also possible by the opposite direction of the local modulation sweep; then transient SFG of the \\omega 3 field is strongly reduced. Most of these features remain valid in the nonlinear regime of depleted pump.

  1. High contrast, 86  fs, 35  mJ pulses from a diode-pumped, Yb:glass, double-chirped-pulse amplification laser system.

    Science.gov (United States)

    Liebetrau, Hartmut; Hornung, Marco; Keppler, Sebastian; Hellwing, Marco; Kessler, Alexander; Schorcht, Frank; Hein, Joachim; Kaluza, Malte C

    2016-07-01

    We demonstrate the generation of 86 fs, 35 mJ, high-contrast laser pulses at 1030 nm with a repetition rate of 1 Hz from a diode-pumped double chirped-pulse amplification setup. The pulses exhibit a spectral bandwidth exceeding 27 nm full width at half-maximum. This could be achieved by using a laser architecture comprising two stages of chirped pulse amplification with a cross-polarized wave generation filter in between, by applying spectral shaping and by increasing the spectral hard-clip of the second stretcher. These are, to the best of our knowledge, the shortest pulses at the mJ level with ultra-high contrast generated with a diode-pumped front end at 1030 nm.

  2. FY07 LDRD Final Report Precision, Split Beam, Chirped-Pulse, Seed Laser Technology

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, J W; Messerly, M J; Phan, H H; Crane, J K; Beach, R J; Siders, C W; Barty, C J

    2009-11-12

    The goal of this LDRD ER was to develop a robust and reliable technology to seed high-energy laser systems with chirped pulses that can be amplified to kilo-Joule energies and recompressed to sub-picosecond pulse widths creating extremely high peak powers suitable for petawatt class physics experiments. This LDRD project focused on the development of optical fiber laser technologies compatible with the current long pulse National Ignition Facility (NIF) seed laser. New technologies developed under this project include, high stability mode-locked fiber lasers, fiber based techniques for reduction of compressed pulse pedestals and prepulses, new compact stretchers based on chirped fiber Bragg gratings (CFBGs), new techniques for manipulation of chirped pulses prior to amplification and new high-energy fiber amplifiers. This project was highly successful and met virtually all of its goals. The National Ignition Campaign has found the results of this work to be very helpful. The LDRD developed system is being employed in experiments to engineer the Advanced Radiographic Capability (ARC) front end and the fully engineered version of the ARC Front End will employ much of the technology and techniques developed here.

  3. Exawatt-Zettawatt Pulse Generation and Applications

    OpenAIRE

    Mourou, G. A.; Fisch, N. J.; Malkin, V. M.; Toroker, Z.; Khazanov, E. A.; Sergeev, A. M.; TAJIMA, T.

    2011-01-01

    A new amplification method, weaving the three basic compression techniques, Chirped Pulse Amplification (CPA), Optical Parametric Chirped Pulse Amplification (OPCPA) and Plasma Compression by Backward Raman Amplification (BRA) in plasma, is proposed. It is called C3 for Cascaded Conversion Compression. It has the capability to compress with good efficiency kilojoule to megajoule, nanosecond laser pulses into femtosecond pulses, to produce exawatt and beyond peak power. In the future, C3 could...

  4. Photonic generation of linearly chirped millimeter wave based on comb-spacing tunable optical frequency comb

    Science.gov (United States)

    Xia, Zongyang; Xie, Weilin; Sun, Dongning; Shi, Hongxiao; Dong, Yi; Hu, Weisheng

    2013-12-01

    We demonstrated a photonic approach to generate a phase-continuous frequency-linear-chirped millimeter-wave (mm-wave) signal with high linearity based on continuous-wave phase modulated optical frequency comb and cascaded interleavers. Through linearly sweeping the frequency of the radio frequency (RF) driving signal, high-order frequency-linear-chirped optical comb lines are generated and then extracted by the cascaded interleavers. By beating the filtered high-order comb lines, center frequency and chirp range multiplied linear-chirp microwave signals are generated. Frequency doubled and quadrupled linear-chirp mm-wave signals of range 48.6 to 52.6 GHz and 97.2 to 105.2 GHz at chirp rates of 133.33 and 266.67 GHz/s are demonstrated with the ±1st and ±2nd optical comb lines, respectively, while the RF driving signal is of chirp range 24.3 to 26.3 GHz and chirp time 30 ms.

  5. Analysis of PMD and PDL effect on Chirped Gaussian and SuperGaussain pulse shapes by controlling SOP in SMF

    Directory of Open Access Journals (Sweden)

    VINAYAGAPRIYA.S

    2014-05-01

    Full Text Available In this paper, a numerical analysis of impairments due to PMD and PDL on system performance is investigated in High Speed Optical Communication System. Optical Polarization has pronounced effect on signal quality. Thus there is a need to control the State of Polarization (SOP. Pulse Broadening can be controlled by launching the light signal in particular State of Polarization such as Linear and Circular. Two types of Pulses such as Chirped Gaussian and Supergaussian pulses are launched at different SOP into the optical fiber and it is found that maximum pulse width reduction is achieved when the pulse is at Circular SOP than that of Linear SOP. Also results clearly show that with PMD and PDL, pulse width ratio of Chirped Gaussian pulse is much reduced than that of Chirped Supergaussian Pulse.

  6. Optoelectronics Generation and Detection of Intense Terahertz Electromagnetic Pulses.

    Science.gov (United States)

    2007-11-02

    GaAs p-i-n diodes 19 C. Study of the physical mechanism of THz generation in bulk GaAs 19 D. Observation of Gunn Oscillation by triggering a vertical... Gunn diode with 25 femtosecond optical pulses IV. Tunable narrowband THz radiation 26 A. Chirped pulse beating 27 1. Optical cross-correlation...appropriately biased vertical transferred electron device ( Gunn diode ) with femtosecond optical pulses. " Investigation of the dynamics of photoinjected

  7. Effect of Initial Frequency Chirp on Supercontinuum Generation in Dispersion-flattened Fibers

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-zhu; LI Yong-yao; YU Zhi-qiang Yu; FENG Ming-neng

    2009-01-01

    . Supercontinuum generation in dispersion-flattened fibers is studied theoretically. It is found that the flat spectral width of the supercontinuum generation in normal dispersion-flattened fiber can be increased from 66 nm to over 100 nm when the absolute value of the initial frequency chirps is increased from zero to 10. It is further found that initial frequency chirps are adverse to flat and wideband supercontinuum generation in anomalous dispersion-flattened fiber, and when the absolute value of the frequency chirps is increased to a certain degree, supercontinuum spectrum even can not be achieved.

  8. Temporal transformation of periodic incoherent ultrashort light pulses by chirped fiber gratings.

    Science.gov (United States)

    Zalvidea, Dobryna; Duchowicz, Ricardo; Sicre, Enrique E

    2004-05-20

    The analogy between free-space propagation of optical beams and light-pulse reflection from linearly chirped fiber gratings is used to analyze the Lau effect in the temporal domain. The coherence conditions that are satisfied in the spatial domain for obtaining, at certain fixed locations, periodic fringes patterns are reformulated for guided light propagation. In this analogy, spatial periodic irradiance distributions are transformed in periodic sequences of light pulses. An optical setup is proposed to produce sharp pulse trains, with minimal distortion effects, that have repetition frequencies that are different from those associated with the input periodic optical signal. Some numerical results are given to illustrate this approach.

  9. Simulation of the relativistic electron dynamics and acceleration in a linearly-chirped laser pulse

    CERN Document Server

    Jisrawi, Najeh M; Salamin, Yousef I

    2014-01-01

    Theoretical investigations are presented, and their results are discussed, of the laser acceleration of a single electron by a chirped pulse. Fields of the pulse are modeled by simple plane-wave oscillations and a $\\cos^2$ envelope. The dynamics emerge from analytic and numerical solutions to the relativistic Lorentz-Newton equations of motion of the electron in the fields of the pulse. All simulations have been carried out by independent Mathematica and Python codes, with identical results. Configurations of acceleration from a position of rest as well as from injection, axially and sideways, at initial relativistic speeds are studied.

  10. Computationally efficient method for Fourier transform of highly chirped pulses for laser and parametric amplifier modeling.

    Science.gov (United States)

    Andrianov, Alexey; Szabo, Aron; Sergeev, Alexander; Kim, Arkady; Chvykov, Vladimir; Kalashnikov, Mikhail

    2016-11-14

    We developed an improved approach to calculate the Fourier transform of signals with arbitrary large quadratic phase which can be efficiently implemented in numerical simulations utilizing Fast Fourier transform. The proposed algorithm significantly reduces the computational cost of Fourier transform of a highly chirped and stretched pulse by splitting it into two separate transforms of almost transform limited pulses, thereby reducing the required grid size roughly by a factor of the pulse stretching. The application of our improved Fourier transform algorithm in the split-step method for numerical modeling of CPA and OPCPA shows excellent agreement with standard algorithms.

  11. Sub 100-fs, 5.2-$\\mu$m ZGP Parametric Amplifier Driven by a ps Ho:YAG Chirped Pulse Amplifier and its application to high harmonic generation

    CERN Document Server

    Kanai, Tsuneto; Kangaparambil, Sarayoo Sasidharan; Hoogland, Heinar; Holzwarth, Ronald; Pugžlys, Audrius; Baltuška, Andrius

    2016-01-01

    We report a 1 kHz repetition-rate mid-IR (MIR) optical parametric amplifier (OPA) system operating at a central wavelength of 5.2 $\\mu$m with the tail-to-tail spectrum extending over 1.5 $\\mu$m and delivering 40 $\\mu$J pulses that are compressed to 99 fs (5.6 optical cycles). Also we develop a novel pulse compression scheme for further pulse compression and wavelength tunability. As the first application of this laser system, we generated high harmonics in bulk ZnSe above the bandgap, dense exciton generation after 10-photon absorption, high order sum- and difference-frequency generation, ultrafast transition in the conduction band, which reflects the structure of conduction bands.

  12. 200 TW 45 fs laser based on optical parametric chirped pulse amplification.

    Science.gov (United States)

    Lozhkarev, V V; Freidman, G I; Ginzburg, V N; Katin, E V; Khazanov, E A; Kirsanov, A V; Luchinin, G A; Mal'shakov, A N; Martyanov, M A; Palashov, O V; Poteomkin, A K; Sergeev, A M; Shaykin, A A; Yakovlev, I V; Garanin, S G; Sukharev, S A; Rukavishnikov, N N; Charukhchev, A V; Gerke, R R; Yashin, V E

    2006-01-01

    200 TW peak power has been achieved experimentally using a Cr:forsterite master oscillator at 1250 nm, a stretcher, three optical parametrical amplifiers based on KD*P (DKDP) crystals providing 14.5 J energy in the chirped pulse at 910 nm central wavelength, and a vacuum compressor. The final parametrical amplifier and the compressor are described in detail. Scaling of such architecture to multipetawatt power is discussed.

  13. Characterization of electrons and x-rays produced using chirped laser pulses in a laser wakefield accelerator

    Science.gov (United States)

    Zhao, T. Z.; Behm, K.; He, Z.-H.; Maksimchuk, A.; Nees, J. A.; Yanovsky, V.; Thomas, A. G. R.; Krushelnick, K.

    2016-11-01

    The electron injection process into a plasma-based laser wakefield accelerator can be influenced by modifying the parameters of the driver pulse. We present an experimental study on the combined effect of the laser pulse duration, pulse shape, and frequency chirp on the electron injection and acceleration process and the associated radiation emission for two different gas types—a 97.5% He and 2.5% N2 mixture and pure He. In general, the shortest pulse duration with minimal frequency chirp produced the highest energy electrons and the most charge. Pulses on the positive chirp side sustained electron injection and produced higher charge, but lower peak energy electrons, compared with negatively chirped pulses. A similar trend was observed for the radiant energy. The relationship between the radiant energy and the electron charge remained linear over a threefold change in the electron density and was independent of the drive pulse characteristics. X-ray spectra showed that ionization injection of electrons into the wakefield generally produced more photons than self-injection for all pulse durations/frequency chirp and had less of a spread in the number of photons around the peak x-ray energy.

  14. Parametric amplification of 100 fs mid-infrared pulses in ZnGeP2 driven by a Ho:YAG chirped-pulse amplifier.

    Science.gov (United States)

    Kanai, Tsuneto; Malevich, Pavel; Kangaparambil, Sarayoo Sasidharan; Ishida, Kakuta; Mizui, Makoto; Yamanouchi, Kaoru; Hoogland, Heinar; Holzwarth, Ronald; Pugzlys, Audrius; Baltuska, Andrius

    2017-02-15

    We report on the parametric generation of 100 fs sub-6-cycle 40 μJ pulses with the center wavelength at 5.2 μm using a 1 ps 2.1 μm pump laser and a dispersion management scheme based on bulk material. Our optically synchronized amplifier chain consists of a Ho:YAG chirped-pulse amplifier and white-light-seeded optical parametric amplifiers providing simultaneous passive carrier-envelope phase locking of three ultrashort longwave pulses at the pump, signal, and idler wavelengths corresponding, respectively, to 2.1, 3.5, and 5.2 μm. We also demonstrate bandwidth enhancement and efficient control over nonlinear spectral phase in the regime of cascaded χ2 nonlinearity in ZnGeP2.

  15. Electron Acceleration by a Bichromatic Chirped Laser Pulse in Underdense Plasmas

    CERN Document Server

    Pocsai, Mihály András; Varró, Sándor

    2015-01-01

    A theoretical study of laser and plasma based electron acceleration is presented. An effective model has been used, in which the presence of an underdense plasma has been taken account via its index of refraction $n_{m}$. In the confines of this model, the basic phenomena can be studied by numerically solving the classical relativistic equations of motion. The key idea of this paper is the application of chirped, bichromatic laser fields. We investigated the advantages and disadvantages of mixing the second harmonic to the original $\\lambda = 800 \\, \\mathrm{nm}$ wavelength pulse. We performed calculations both for plane wave and Gaussian pulses.

  16. A Novel Femtosecond Laser System for Attosecond Pulse Generation

    Directory of Open Access Journals (Sweden)

    Jianqiang Zhu

    2012-01-01

    Full Text Available We report a novel ultrabroadband high-energy femtosecond laser to be built in our laboratory. A 7-femtosecond pulse is firstly stretched by an eight-pass offner stretcher with a chirp rate 15 ps/nm, and then energy-amplified by a two-stage optical parametric chirped pulse amplification (OPCPA. The first stage as preamplification with three pieces of BBO crystals provides the majority of the energy gain. At the second stage, a YCOB crystal with the aperture of ~50 mm is used instead of the KDP crystal as the gain medium to ensure the shortest pulse. After the completion, the laser will deliver about 8 J with pulse duration of about 10 femtoseconds, which should be beneficial to the attosecond pulse generation and other ultrafast experiments.

  17. Decelerating chirped soliton formation at femtosecond laser pulse propagation in a medium with one-photon absorption and gold nanorods

    Science.gov (United States)

    Trofimov, V. A.; Lysak, T. M.

    2017-01-01

    We demonstrate the possibility of decelerating chirped soliton formation at femtosecond pulse propagation in a medium with gold nanoparticles. We take into account the dependence of one-photon absorption on the nanorod aspect ratio and time-dependent nanorod aspect ratio changing due to nanorod reshaping because of laser energy absorption. The soliton formation occurs due to laser radiation trapping by the nanorod reshaping front. We show analytically that a chirp induced by the negative phase grating is crucial for this trapping.

  18. X-band photoinjector for a chirped-pulse FEL

    Energy Technology Data Exchange (ETDEWEB)

    Landahl, E.C.; Alvis, R.M.; Troha, A.L.; Hartemann, F.V.; Baldis, H.A.; Luhmann, N.C. Jr. [Applied Science Department, University of California, Davis , California 95616 (United States); Landahl, E.C.; Alvis, R.M.; Troha, A.L.; Hartemann, F.V.; Baldis, H.A. [Institute for Laser Science and Applications, LLNL, Livermore, California 94550 (United States); Le Sage, G.P.; White, W.E. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bennett, C.V. [Electrical Engineering Department, University of California, Los Angeles, California 90024 (United States); Li, K.; Heritage, J.P. [Electrical and Computer Engineering Department, University of California, Davis, California (United States); Ho, C.H. [Synchrotron Radiation Research Center (Taiwan)

    1999-05-01

    The phase noise and jitter characteristics of the laser and rf systems of a high gradient X-band photoinjector have been measured experimentally. The laser oscillator is a self-modelocked Titanium:Sapphire system operating at the 108th subharmonic of the rf gun. The X-band signal is produced from the laser by a phase-locked dielectric resonance oscillator, and amplified by a pulsed TWT and klystron. A comparison between the klystron and TWT amplifier phase noise and the fields excited in the rf gun demonstrates the filtering effect of the high Q structure, thus indicating that the rf gun can be used as a master oscillator, and could be energized by either a rf oscillator such as a magnetron or a compact source such as a cross-field amplifier. In particular, the rf gun can play the role of a pulsed rf clock to synchronize the photocathode laser system: direct drive of a synchronously modelocked AlGaAs quantum well laser has been achieved using the X-band gun rf fields. This novel, GHz repetition rate, laser system is being developed to replace the more conventional femtosecond Ti:Al{sub 2}O{sub 3} system. Some advantages include pumping this laser with a stabilized current source instead of a costly, low efficiency pump laser. Finally, dark current measurements and initial photoelectron measurements are reported. {copyright} {ital 1999 American Institute of Physics.}

  19. Photoelectron sidebands induced by a chirped laser field for shot-by-shot temporal characterization of FEL pulses

    Science.gov (United States)

    Liu, Chien-Nan; Morishita, Toru; Fushitani, Mizuho; Hishikawa, Akiyoshi

    2016-02-01

    We theoretically investigate the laser-assisted photoionization of He by an extreme ultra violet (XUV) pulse in the presence of a linearly chirped intense laser pulse by solving the time-dependent Schrödinger equation within the single-active-electron approximation. Analysis based on the time-dependent perturbation theory is also carried out to provide more physical insights. A new scheme is shown to be capable of extracting the arrival time of an XUV free-electron laser (FEL) pulse relative to an external laser pulse as well as the XUV pulse duration from the photoelectron sidebands resulting from XUV ionization in the presence of a chirped laser pulse. This scheme is independent of the energy fluctuation and the timing jittering of the FEL pulse. Therefore it can be implemented in a non-invasive way to characterize FEL pulses on a shot-by-shot basis in time-resolved spectroscopy.

  20. The Marriage of Spectroscopy and Dynamics: Chirped-Pulse Fourier-Transform Mm-Wave Cp-Ft Spectroscopy in Pulsed Uniform Supersonic Flows

    Science.gov (United States)

    Abeysekera, Chamara; Oldham, James M.; Suits, Arthur G.; Park, G. Barratt; Field, Robert W.

    2012-06-01

    A new experimental scheme is presented that combines two powerful emerging technologies: chirped-pulse Fourier-transform mm-Wave spectroscopy and pulsed uniform supersonic flows. It promises a nearly universal detection method that can deliver quantitative isomer, conformer, and vibrational level specific detection, characterization of unstable reaction products and intermediates, and perform unique spectroscopic, kinetics, and dynamics measurements. Chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy, pioneered by Pate and coworkers, allows rapid acquisition of broadband microwave spectrum through advancements in waveform generation and oscilloscope technology. This revolutionary approach has successfully been adapted to higher frequencies by the Field group at MIT. Our new apparatus will exploit amplified chirped pulses in the range of 26-40 GHz, in combination with a pulsed uniform supersonic flow from a Laval nozzle. This nozzle source, pioneered by Rowe, Sims, and Smith for low temperature kinetics studies, produces thermalized reactants at high densities and low temperatures perfectly suitable for reaction dynamics experiments studied using the CP-mmW approach. This combination of techniques shall enhance the thousand-fold improvement in data acquisition rate achieved in the CP method by a further 2-3 orders of magnitude. A pulsed flow alleviates the challenges of continuous uniform flow, e.g. large gas loads and reactant consumption rates. In contrast to other pulsed Laval systems currently in use, we will use a fast piezo valve and small chambers to achieve the desired pressures while minimizing the gas load, so that a 10 Hz repetition rate can be achieved with one turbomolecular pump. The proposed technique will be suitable for many diverse fields, including fundamental studies in spectroscopy and reaction dynamics, reaction kinetics, combustion, atmospheric chemistry, and astrochemistry. We expect a significant advancement in the ability to

  1. A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system.

    Science.gov (United States)

    Oldham, James M; Abeysekera, Chamara; Joalland, Baptiste; Zack, Lindsay N; Prozument, Kirill; Sims, Ian R; Park, G Barratt; Field, Robert W; Suits, Arthur G

    2014-10-21

    We report the development of a new instrument that combines chirped-pulse microwave spectroscopy with a pulsed uniform supersonic flow. This combination promises a nearly universal detection method that can deliver isomer and conformer specific, quantitative detection and spectroscopic characterization of unstable reaction products and intermediates, product vibrational distributions, and molecular excited states. This first paper in a series of two presents a new pulsed-flow design, at the heart of which is a fast, high-throughput pulsed valve driven by a piezoelectric stack actuator. Uniform flows at temperatures as low as 20 K were readily achieved with only modest pumping requirements, as demonstrated by impact pressure measurements and pure rotational spectroscopy. The proposed technique will be suitable for application in diverse fields including fundamental studies in spectroscopy, kinetics, and reaction dynamics.

  2. A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. II. Performance and applications for reaction dynamics.

    Science.gov (United States)

    Abeysekera, Chamara; Zack, Lindsay N; Park, G Barratt; Joalland, Baptiste; Oldham, James M; Prozument, Kirill; Ariyasingha, Nuwandi M; Sims, Ian R; Field, Robert W; Suits, Arthur G

    2014-12-01

    This second paper in a series of two reports on the performance of a new instrument for studying chemical reaction dynamics and kinetics at low temperatures. Our approach employs chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy to probe photolysis and bimolecular reaction products that are thermalized in pulsed uniform flows. Here we detail the development and testing of a new K(a)-band CP-FTMW spectrometer in combination with the pulsed flow system described in Paper I [J. M. Oldham, C. Abeysekera, B. Joalland, L. N. Zack, K. Prozument, I. R. Sims, G. B. Park, R. W. Field, and A. G. Suits, J. Chem. Phys. 141, 154202 (2014)]. This combination delivers broadband spectra with MHz resolution and allows monitoring, on the μs timescale, of the appearance of transient reaction products. Two benchmark reactive systems are used to illustrate and characterize the performance of this new apparatus: the photodissociation of SO2 at 193 nm, for which the vibrational populations of the SO product are monitored, and the reaction between CN and C2H2, for which the HCCCN product is detected in its vibrational ground state. The results show that the combination of these two well-matched techniques, which we refer to as chirped-pulse in uniform flow, also provides insight into the vibrational and rotational relaxation kinetics of the nascent reaction products. Future directions are discussed, with an emphasis on exploring the low temperature chemistry of complex polyatomic systems.

  3. a Chirped-Pulse Fourier Transform Microwave Spectrometer Combined with a Laser Ablation Source

    Science.gov (United States)

    Mata, S.; Pena, I.; Cabezas, C.; López, J. C.; Alonso, J. L.; Pate, B. H.

    2011-06-01

    The design of a chirped-pulse Fourier transform microwave spectrometer CP-FTMW combined with a laser ablation LA source is presented. The spectrometer is capable of measuring the 6.5-18 GHz region. Rotational spectra of solid samples of proline (m.p. 228° C) and alanine (m.p. 290° C) vaporized by laser ablation has been recorded. Four low-energy conformers of proline and two in alanine have been detected. 13C species of alanine in their natural abundance have been also observed. The performance of this spectrometer is compared to a LA-MB-FTMW spectrometer.

  4. The influence of oceanic turbulence on the spectral properties of chirped Gaussian pulsed beam

    Science.gov (United States)

    Liu, Dajun; Wang, Yaochuan; Wang, Guiqiu; Yin, Hongming; Wang, Jinren

    2016-08-01

    Based on the extended Huygens-Fresnel principle, the spectral behaviors of a chirped Gaussian pulsed beam propagating in oceanic turbulence are illustrated. The influence of the parameters of oceanic turbulence (the rate of dissipation of turbulent kinetic energy per unit mass of fluid, rate of dissipation of mean-square temperature, relative strength of temperature and salinity fluctuations), relative position parameter and propagation distance on the spectra shift is analysed and given by numerical examples. The research results have the potential application in underwater wireless laser communication and remote sensing.

  5. Spectroscopy of the hydrogen 1 S -3 S transition with chirped laser pulses

    Science.gov (United States)

    Yost, D. C.; Matveev, A.; Grinin, A.; Peters, E.; Maisenbacher, L.; Beyer, A.; Pohl, R.; Kolachevsky, N.; Khabarova, K.; Hänsch, T. W.; Udem, Th.

    2016-04-01

    We identify a systematic present in two-photon direct frequency comb spectroscopy (DFCS) which is a result of chirped laser pulses and is a manifestation of the first-order Doppler effect. We carefully analyze this systematic and propose methods for its mitigation within the context of our measurement of the hydrogen 1 S -3 S transition. We also report on our determination of the absolute frequency of this transition, which is comparable to a previous measurement using continuous-wave spectroscopy [O. Arnoult et al., Eur. Phys. J. D 60, 243 (2010), 10.1140/epjd/e2010-00249-6], but was obtained with a different experimental method.

  6. Pulsed single-photon spectrograph by frequency-to-time mapping using chirped fiber Bragg gratings

    CERN Document Server

    Davis, Alex O C; Karpinski, Michal; Smith, Brian J

    2016-01-01

    A fiber-integrated spectrograph for single-photon pulses based upon frequency-to-time mapping, implemented by chromatic group delay dispersion (GDD), and precise temporally-resolved single photon counting is presented. A chirped fiber Bragg grating provides low-loss GDD mapping the frequency distribution of an input pulse onto the temporal envelope of the output pulse. Time-resolved detection with fast single-photon-counting modules enables the monitoring of the 825 nm to 835 nm wavelength range with nearly uniform efficiency with 55 pm resolution (24 GHz at 830 nm). To demonstrate the versatility of this technique spectral interference of heralded single photons and the joint spectral intensity distribution of a photon-pair source are measured. This approach to single-photon-level spectral measurements provides a route to realize applications of time-frequency quantum optics at visible and near-infrared wavelengths, where multiple spectral channels must be simultaneously monitored.

  7. High voltage pulse generator

    Science.gov (United States)

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  8. External injection and acceleration of electron bunch in front of the plasma wakefield produced by a periodic chirped laser pulse

    Science.gov (United States)

    Eslami, Esmaeil; Afhami, Saeedeh

    2017-01-01

    Herein, we present the analytical results on the behavior of the electron bunch injected in front of the plasma wakefield produced by a chirped laser pulse. In particular, a periodic chirped pulse may produce an ultra-relativistic electron bunch with a relatively small energy spread. The electrons are trapped near the region of the first accelerating maximum of the wakefield and are compressed in both the longitudinal and transverse directions (betatron oscillation). Our results are in good agreement with the one-dimensional results recently published.

  9. Negative Kerr Nonlinearity of Graphene as seen via Chirped-Pulse-Pumped Self-Phase Modulation

    Science.gov (United States)

    Vermeulen, Nathalie; Castelló-Lurbe, David; Cheng, JinLuo; Pasternak, Iwona; Krajewska, Aleksandra; Ciuk, Tymoteusz; Strupinski, Wlodek; Thienpont, Hugo; Van Erps, Jürgen

    2016-10-01

    We experimentally demonstrate a negative Kerr nonlinearity for quasiundoped graphene. Hereto, we introduce the method of chirped-pulse-pumped self-phase modulation and apply it to graphene-covered silicon waveguides at telecom wavelengths. The extracted Kerr-nonlinear index for graphene equals n2 ,gr=-10-13 m2 /W . Whereas the sign of n2 ,gr turns out to be negative in contrast to what has been assumed so far, its magnitude is in correspondence with that observed in earlier experiments. Graphene's negative Kerr nonlinearity strongly impacts how graphene should be exploited for enhancing the nonlinear response of photonic (integrated) devices exhibiting a positive nonlinearity. It also opens up the possibility of using graphene to annihilate unwanted nonlinear effects in such devices, to develop unexplored approaches for establishing Kerr processes, and to extend the scope of the "periodic poling" method often used for second-order nonlinearities towards third-order Kerr processes. Because of the generic nature of the chirped-pulse-pumped self-phase modulation method, it will allow fully characterizing the Kerr nonlinearity of essentially any novel (2D) material.

  10. Optical Nyquist pulse generation using a time lens with spectral slicing.

    Science.gov (United States)

    Wang, Dong; Huo, Li; Xing, Yanfei; Jiang, Xiangyu; Lou, Caiyun

    2015-02-23

    Optical Nyquist pulse generation based on a time lens with subsequent optical filtering is proposed. A nearly chirp-free 10-GHz 8.1-ps Nyquist pulse generator is experimentally demonstrated. By inserting group velocity dispersion (GVD) between cascaded phase and amplitude modulators, 11 tones ultraflat optical frequency comb (OFC) of 10-GHz frequency spacing within 0.9 dB power variation is obtained. The quasi-rectangular shape spectrum is then filtered out with a tunable rectangular-shaped optical band-pass filter (OBPF) and the quasi-linear chirp is compensated by a segment of standard single mode fiber (SSMF). By changing the wavelength of the continuous wave (CW) light, nearly chirp-free Nyquist pulses over C band are obtained. Furthermore, simultaneous dual-wavelength pulse generation is also demonstrated.

  11. Pulsed Artificial Electrojet Generation

    Science.gov (United States)

    Papadopoulos, K.

    2008-12-01

    Traditional techniques for generating low frequency signals in the ULF/ELF range (.1-100 Hz) and rely on ground based Horizontal Electric Dipole (HED) antennas. It is, furthermore, well known that a Vertical Electric Dipole (VED) is by more than 50 dB more efficient than a HED with the same dipole current moment. However, the prohibitively long length of VED antennas in the ELF/ULF range coupled with voltage limitations due to corona discharge in the atmosphere make them totally impracticable. In this paper we discuss a novel concept, inspired by the physics of the equatorial electrojet, that allows for the conversion of a ground based HED to a VED in the E-region of the equatorial ionosphere with current moment comparable to the driving HED. The paper focuses in locations near the dip-equator, where the earth's magnetic is in predominantly in the horizontal direction. The horizontal electric field associated with a pulsed HED drives a large Hall current in the ionospheric E-region, resulting in a vertical current. It is shown that the pulsed vertical current in the altitude range 80-130 km, driven by a horizontal electric field of, approximately, .1 mV/m at 100 km altitude, is of the order of kA. This results in a pulsed VED larger than 106 A-m. Such a pulsed VED will drive ELF/ULF pulses with amplitude in excess of .1 nT at a lateral range larger than few hundred kilometers. This is by three orders of magnitude larger than the one expected by a HED with comparable current moment. The paper will conclude with the description of a sneak-through technique that allows for creating pulsed electric fields in the ionosphere much larger than expected from steady state oscillatory HED antennas.

  12. Highly Efficient Tabletop Optical Parametric Chirped Pulse Amplifier at 1 (micron)m

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, I.; Ebbers, C.A.; Comaskey, B.J.; Bonner, R.A.; Morse, E.C.

    2001-12-04

    Optical parametric chirped pulse amplification (OPCPA) is a scalable technology, for ultrashort pulse amplification. Its major advantages include design simplicity, broad bandwidth, tunability, low B-integral, high contrast, and high beam quality. OPCPA is suitable both for scaling to high peak power as well as high average power. We describe the amplification of stretched 100 fs oscillator pulses in a three-stage OPCPA system pumped by a commercial, single-longitudinal-mode, Q-switched Nd:YAG laser. The stretched pulses were centered around 1054 nm with a FWHM bandwidth of 16.5 nm and had an energy of 0.5 nJ. Using our OPCPA system, we obtained an amplified pulse energy of up to 31 mJ at a 10 Hz repetition rate. The overall conversion efficiency from pump to signal is 6%, which is the highest efficiency obtained With a commercial tabletop pump laser to date. The overall conversion efficiency is limited due to the finite temporal overlap of the seed (3 ns) with respect to the duration of the pump (8.5 ns). Within the temporal window of the seed pulse the pump to signal conversion efficiency exceeds 20%. Recompression of the amplified signal was demonstrated to 310 fs, limited by the aberrations initially present in the low energy seed imparted by the pulse stretcher. The maximum gain in our OPCPA system is 6 x 10{sup 7}, obtained through single passing of 40 mm of beta-barium borate. We present data on the beam quality obtained from our system (M{sup 2}=1.1). This relatively simple system replaces a significantly more complex Ti:sapphire regenerative amplifier based CPA system used in the front end of a high energy short pulse laser. Future improvement will include obtaining shorter amplified pulses and higher average power.

  13. Chirped-Pulse Broadband Microwave Spectra and Structures of the OCS Trimer and Tetramer

    Science.gov (United States)

    Evangelisti, Luca; Perez, Cristobal; Seifert, Nathan A.; Pate, Brooks; Dehghany, Mehdi; Moazzen-Ahmadi, Nasser; McKellar, Bob

    2014-06-01

    Structure determination of weakly bound OCS clusters is a challenging problem due to many low energy isomers on the potential energy surface. The premier tool for studying these clusters is high-resolution infrared spectroscopy, as it can be used to analyze non-polar clusters. Following the analysis of high-resolution IR spectra of clusters formed in a molecular beam expansion of OCS there were some outstanding questions about the structures of the observed clusters. The chirped-pulse Fourier transform microwave spectrum in the 3-9 GHz frequency range was measured for a pulsed molecular beam of OCS in neon (1%). All 13C, 18O and 34S isotopologues of the previously detected OCS trimer have been observed in natural abundance in the 3-9 GHz band using chirped-pulse Fourier transform microwave spectroscopy. The structure of this trimer features a barrel-shaped structure with two aligned and one anti-aligned OCS monomers. A new OCS trimer is also observed for the first time, and its structure is consistent with a barrel-shaped structure with 3 aligned monomers. Using the infrared spectrum for guidance, a spectrum corresponding to a polar OCS tetramer has been assigned. This cluster has a similar barrel-like structure but with an additional tilted OCS monomer added to the top of the barrel. All 13C and 34S isotopologues have been assigned for the tetramer. However, due to sign ambiguities in Kraitchman's equations, and small rotational constant differences between aligned and anti-aligned combinations of OCS molecules in the trimer barrel, absolute structural assignment is indeterminate without additional constraints. Therefore a combinatoric approach was used to compute the most reasonable tetramer structure using distance and sign constraints between pairs of carbon and sulfur coordinates, assuming the experimental OCS monomer structure. Results of this approach will be presented, as well as a comparison of the experimental results with the most recent ab initio

  14. The effect of vibrational molecular excitation on the chirping of the pulsed single-frequency CO2 laser radiation frequency

    Energy Technology Data Exchange (ETDEWEB)

    Kozolupenko, V.P.; Kuntsevich, B.F.; Maliuta, D.D.; Mezhevov, V.S.; Strel' tsov, A.P. (Institut Atomnoi Energii, Moscow (USSR))

    1989-03-01

    The dependence of the nonresonant part of the refractive index on vibrational molecular excitation is shown to be one of the possible mechanisms responsible for the chirping of the radiation frequency of pulsed single-frequency CO{sub 2} lasers. A heterodyning method was used to record the radiation frequency variation with two receivers utilizing HgCdTe. 12 refs.

  15. Analysis of ultra-broadband high-energy optical parametric chirped pulse amplifier based on YCOB crystal

    Institute of Scientific and Technical Information of China (English)

    Meizhi Sun; Lailin Ji; Qunyu Bi; Nannan Wang; Jun Kang; Xinglong Xie; Zunqi Lin

    2011-01-01

    A new type of optical parametric chirped pulse amplifier is designed and analyzed for the amplification of pulse centered at 808 nm.A novel crystal,yttrium calcium oxyborate YCa4O(BO3)3 (YCOB),is utilized in the power amplification stage of optical parametric amplification (OPA).Noncollinear phase matching parameters in the xoz principle plane of YCOB,compared with those in BBO and DKDP,are analyzed by numerical simulation.The results show that YCOB rather than DKDP can be used in the power amplification stage of OPA to realize the amplification of chirped pulse to several joules with a gain bandwidth exceeding 100 nm.This can be used to gain a high intensity pulse of ~10 fs after the compressor.The amplification of the femtosecond pulse is an important branch of ultra-intense laser technology,with Ti:sapphire as the medium for its large gain bandwidth.From the perspective of technical features and applications,such femtosecond pulses are used to study high field physics and other related areas in ultrashort time[1,2];however,the pursuit of higher energy femtosecond pulse should not be abandoned.Optical parametric chirped pulse amplification (OPCPA) has been successfully used in the front end of high intensity lasers[3-8],indicating the possibility of femtosecond pulse amplification.This has been verified by an increasing number of fine crystals being invented,such as YCa4O(BO3)3 (YCOB)[9-12].%A new type of optical parametric chirped pulse amplifier is designed and analyzed for the amplification of pulse centered at 808 nm. A novel crystal, yttrium calcium oxyborate YCa4O(BO3)3 (YCOB), is utilized in the power amplification stage of optical parametric amplification (OPA). Noncollinear phase matching parameters in the xoz principle plane of YCOB, compared with those in BBO and DKDP, are analyzed by numerical simulation. The results show that YCOB rather than DKDP can be used in the power amplification stage of OPA to realize the amplification of chirped pulse to

  16. Thermal properties of borate crystals for high power optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Riedel, R; Rothhardt, J; Beil, K; Gronloh, B; Klenke, A; Höppner, H; Schulz, M; Teubner, U; Kränkel, C; Limpert, J; Tünnermann, A; Prandolini, M J; Tavella, F

    2014-07-28

    The potential of borate crystals, BBO, LBO and BiBO, for high average power scaling of optical parametric chirped-pulse amplifiers is investigated. Up-to-date measurements of the absorption coefficients at 515 nm and the thermal conductivities are presented. The measured absorption coefficients are a factor of 10-100 lower than reported by the literature for BBO and LBO. For BBO, a large variation of the absorption coefficients was found between crystals from different manufacturers. The linear and nonlinear absorption coefficients at 515 nm as well as thermal conductivities were determined for the first time for BiBO. Further, different crystal cooling methods are presented. In addition, the limits to power scaling of OPCPAs are discussed.

  17. Robust and Efficient Population Transfer in Ultracold Rubidium Using A Single Linearly Chirped Laser Pulse With a Novel Pulse Envelope

    Science.gov (United States)

    Collins, Thomas; Malinovskaya, Svetlana

    2012-06-01

    The ability to manipulate the state of a quantum system is the at very heart of the field of quantum control. As quantum control is an essential aspect of the emerging field of quantum computing, it is necessary to find techniques for manipulating quantum systems that are both robust and efficient to implement industrially. In this work the population dynamics of the valence electron of Rubidium, interacting with a single linearly chirped laser pulse, are studied. The pulse envelope is constructed from overlapping Gaussian waveforms and is described analytically by the formula: E0∑β=-n^nExp-[t-(T-n*ɛ)]^22τ0^2 with the parameter ɛ being the separation in time between each peak with the oscillating electric field is phase locked to the central peak. The response of the quantum yield obtained at the end of the pulse to changes in the parameters of the oscillating electric field and pulse envelope are studied. For certain values of these parameters, achievement of a transfer of over 99% of the population to a desired quantum state within the hyperfine structure of the 5S shell via adiabatic passage using beam intensities which are on the order of 100W/cm^2 is demonstrated. Results are robust in the adiabatic regime.

  18. The effect of frequency chirping on electron-positron pair production in the one- and two-color laser pulse fields

    CERN Document Server

    Abdukerim, Nuriman; Xie, Bai-Song

    2016-01-01

    The effect of the frequency chirping on momentum spectrum and pair production rate in one- and two-color laser pulse fields is investigated by solving the quantum Vlasov equation. A small frequency chirp shifts the momentum spectrum along the momentum axis. The positive and negative frequency chirp parameters play the same role in increasing the pair number density. The sign change of frequency chirp parameter at the moment $t=0$ leads pulse shape and momentum spectrum to be symmetric, and the number density to be increased. The number density of produced pairs in the two-color pulse field is much higher than that in the one-color pulse field and the larger frequency chirp pulse field dominates more strongly. In the two-color pulse fields, the relation between the frequency ratio of two colors and the number density is not sensitive to the parameters of small frequency chirp added in either low frequency strong field or high frequency weak field but sensitive to the parameters of large frequency chirp added i...

  19. Efficient chirped-pulse amplification of sub-20 fs laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Shinichi; Yamakawa, Koichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    We have developed a model for ultrabroadband and ultrashort pulse amplification including the effects of a pulse shaper for regenerative pulse shaping, gain narrowing and gain saturation in the amplifiers. Thin solid etalons are used to control both gain narrowing and gain saturation during amplification. This model has been used to design an optimized Ti:sapphire amplifier system for producing efficiently pulses of < 20-fs duration with approaching peak and average powers of 100 TW and 20 W. (author)

  20. Chirped Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows: Observation of K-Dependent Rates in the CL + Propyne Reaction

    Science.gov (United States)

    Ariyasingha, Nuwandi M.; Broderick, Bernadette M.; Thompson, James O. F.; Suits, Arthur

    2016-06-01

    Chirped-Pulse Fourier-transform microwave spectroscopy in uniform supersonic flows (CPUF) has been applied to study the reaction of Cl atoms with propyne. The approach utilizes broad-band microwave spectroscopy to extract structural information with MHz resolution and near universal detection, in conjunction with a Laval flow system, which offers thermalized conditions at low temperatures and high number densities. Our previous studies have exploited this approach to obtain multichannel product branching fractions in a number of polyatomic systems, with isomer and often vibrational level specificity. This report highlights an additional capability of the CPUF technique: here, the state-specific reactant depletion is directly monitored on a microsecond timescale. In doing so, a clear dependence on the rotational quantum number K in the rate of the reaction between Cl atoms and propyne is revealed. Future prospects for the technique will be discussed.

  1. X-ray Chirped Pulse Amplification: towards GW Soft X-ray Lasers

    Directory of Open Access Journals (Sweden)

    Marta Fajardo

    2013-07-01

    Full Text Available Extensive modeling of the seeding of plasma-based soft X-ray lasers is reported in this article. Seminal experiments on amplification in plasmas created from solids have been studied in detail and explained. Using a transient collisional excitation scheme, we show that a 18 µJ, 80 fs fully coherent pulse is achievable by using plasmas pumped by a compact 10 Hz laser. We demonstrate that direct seeding of plasmas created by nanosecond lasers is not efficient. Therefore, we propose and fully study the transposition to soft X-rays of the Chirped Pulse Amplification (CPA technique. Soft X-ray pulses with energy of 6 mJ and 200 fs duration are reachable by seeding plasmas pumped by compact 100 J, sub-ns, 1 shot/min lasers. These soft X-ray lasers would reach GW power, corresponding to an increase of 100 times as compared to the highest peak power achievable nowadays in the soft X-ray region (30 eV–1 keV. X-ray CPA is opening new horizon for soft x-ray ultra-intense sources.

  2. Exawatt-Zettawatt Pulse Generation and Applications

    CERN Document Server

    Mourou, G A; Malkin, V M; Toroker, Z; Khazanov, E A; Sergeev, A M; Tajima, T

    2011-01-01

    A new amplification method, weaving the three basic compression techniques, Chirped Pulse Amplification (CPA), Optical Parametric Chirped Pulse Amplification (OPCPA) and Plasma Compression by Backward Raman Amplification (BRA) in plasma, is proposed. It is called C3 for Cascaded Conversion Compression. It has the capability to compress with good efficiency kilojoule to megajoule, nanosecond laser pulses into femtosecond pulses, to produce exawatt and beyond peak power. In the future, C3 could be used at large-scale facilities such as the National Ignition Facility (NIF) or the Laser Megajoule (LMJ) and open the way to zettawatt level pulses. The beam will be focused to a wavelength spot size with a f#1. The very small beam size, i.e. few centimeters, along with the low laser repetition rate laser system will make possible the use of inexpensive, precision, disposable optics. The resulting intensity will approach the Schwinger value, thus opening up new possibilities in fundamental physics.

  3. Isotopologue-Sensitive Detection Using Chirped-Pulse Ft-Mw Spectroscopy: Minor Species of Propofol

    Science.gov (United States)

    Lesarri, Alberto; Neill, Justin; Muckle, Matt; Shipman, Steven T.; Pate, Brooks H.; Suenram, Richard D.; Caminati, Walther

    2009-06-01

    The capabilities of chirped-pulse FT-microwave spectroscopy to achieve full-bandwidth (11 GHz) isotopologue-sensitive detection have been tested on the 13-heavy atoms molecule of propofol (2,6-diisopropylphenol). The analysis of the rotational spectrum using moderate signal averaging (10 k FIDs) had previously detected the presence of two conformers arising from the combined internal rotations of the hydroxyl and the two isopropyl groups. In the new experiment reported here 600 k FID's were coherently averaged, using three pulsed nozzle sources and reading multiple FIDs per sample injection cycle to reduce the total acquisition time and sample consumption. The new spectrum revealed a very large number of weak transitions, suggesting that full-band ^{13}C sensitivity had been surpassed. The new data have resulted in the assignment of a third conformer of propofol, followed by all twelve ^{13}C-monosubstituted species in natural abundance for the most stable conformer. The isotopic information confirmed the molecular structure for the preferred conformation of propofol, validating the ab initio predictions for this compound. The potential function for the OH internal rotation has been determined using a flexible model. A. Lesarri, S. T. Shipman, G. G. Brown, L. Alvarez-Valtierra, R. D. Suenram and B. H. Pate, 63^rd OSU Int. Symp. On Mol. Spectrosc., Columbus, OH, 2008, RH07 In the

  4. Dynamic characterization and amplification of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Rishøj, Lars Søgaard

    2013-01-01

    We show a first-time demonstration of amplification of 400 fs pulses in a fiber optical parametric amplifier. The 400 fs signal is stretched in time, amplified by 26 dB and compressed back to 500 fs. A significant broadening of the pulses is experimentally shown due to dispersion and limited gain...

  5. The effect of a negatively chirped laser pulse on the evolution of bubble structure in nonlinear bubble regime

    Science.gov (United States)

    Vosoughian, H.; Riazi, Z.; Afarideh, H.; Sarri, G.

    2016-12-01

    In the nonlinear bubble regime, due to localized depletion at the front of the pulse during its propagation through the plasma, the phase shift between carrier waves and pulse envelope plays an important role in plasma response. The Carrier-Envelope Phase (CEP) breaks down the symmetric transverse ponderomotive force of the laser pulse that makes the bubble structure unstable. Our studies using a series of two-dimensional particle-in-cell simulations show that the utilization of a negatively chirped laser pulse is more effective in controlling the pulse depletion rate, and consequently, the effect of the CEP in the bubble regime. The results indicate that the pulse depletion rate diminishes during the propagation of the pulse in plasma that leads to postponing the effect of Carrier-Envelope Phase (CEP) in plasma response, and therefore, maintaining the stability of the bubble shape for a longer time than the un-chirped laser pulse. As a result, a localized electron bunch with higher maximum energy is produced during the acceleration process.

  6. Theory of deep ultraviolet generation at maximum coherence assisted by Stark-chirped two-photon resonance

    CERN Document Server

    Myslivets, S A; Kimberg, V V; George, T F; George, Thomas F.

    2003-01-01

    A scheme is analyzed for effcient generation of vacuum ultraviolet radiation through four-wave mixing processes assisted by the technique of Stark-chirped rapid adiabatic passage. These opportunities are associated with pulse excitation of laddertype short-wavelength two-photon atomic or molecular transitions so that relaxation processes can be neglected. In this three-laser technique, a delayed-pulse of strong oR-resonant infrared radiation sweeps the laser-induced Stark-shift of a two-photon transition in a such way that facilitates robust maximum two-photon coherence induced by the first ultraviolet laser. A judiciously delayed third pulse scatters at this coherence and generates short-wavelength radiation. A theoretical analysis of these problems based on the density matrix is performed. A numerical model is developed to carry out simulations of a typical experiment. The results illustrate a behavior of populations, coherence and generated radiation along the medium as well as opportunities of effcient ge...

  7. Assembly delay line pulse generators

    CERN Document Server

    1971-01-01

    Assembly of six of the ten delay line pulse generators that will power the ten kicker magnet modules. One modulator part contains two pulse generators. Capacitors, inductances, and voltage dividers are in the oil tank on the left. Triggered high-pressure spark gap switches are on the platforms on the right. High voltage pulse cables to the kicker magnet emerge under the spark gaps. In the centre background are the assembled master gaps.

  8. SAR processing with stepped chirps and phased array antennas.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2006-09-01

    Wideband radar signals are problematic for phased array antennas. Wideband radar signals can be generated from series or groups of narrow-band signals centered at different frequencies. An equivalent wideband LFM chirp can be assembled from lesser-bandwidth chirp segments in the data processing. The chirp segments can be transmitted as separate narrow-band pulses, each with their own steering phase operation. This overcomes the problematic dilemma of steering wideband chirps with phase shifters alone, that is, without true time-delay elements.

  9. Negative Kerr nonlinearity of graphene as seen via chirped-pulse-pumped self-phase modulation

    CERN Document Server

    Vermeulen, Nathalie; Cheng, JinLuo; Pasternak, Iwona; Krajewska, Aleksandra; Ciuk, Tymoteusz; Strupinski, Wlodek; Thienpont, Hugo; Van Erps, Jurgen

    2016-01-01

    We experimentally demonstrate a negative Kerr nonlinearity for quasi-undoped graphene. Hereto, we introduce the method of chirped-pulse-pumped self-phase modulation and apply it to graphene-covered silicon waveguides at telecom wavelengths. The extracted Kerr-nonlinear index for graphene equals n2,gr = -10^(-13) m^2/W. Whereas the sign of n2,gr turns out to be negative in contrast to what has been assumed so far, its magnitude is in correspondence with that observed in earlier experiments. Graphene's negative Kerr nonlinearity strongly impacts how graphene should be exploited for enhancing the nonlinear response of photonic (integrated) devices exhibiting a positive nonlinearity. It also opens up the possibility of using graphene to annihilate unwanted nonlinear effects in such devices, to develop unexplored approaches for establishing Kerr processes, and to extend the scope of the "periodic poling" method often used for second-order nonlinearities towards third-order Kerr processes. Because of the generic na...

  10. Chirped Pulse-Fourier Transform Microwave Spectroscopy of Ethyl 3-METHYL-3-PHENYLGLYCIDATE (strawberry Aldehyde)

    Science.gov (United States)

    Shipman, Steven T.; Neill, Justin L.; Muckle, Matt T.; Suenram, Richard D.; Pate, Brooks H.

    2009-06-01

    Strawberry aldehyde (C_{12} O_3 H_{14}), a common artificial flavoring compound, has two non-interconvertible conformational families defined by the relative stereochemistry around its epoxide carbons. In one family, referred to as the trans because the two large substituents (a phenyl ring and an ethyl ester) are on opposite sides of the epoxide ring, these two substituents are unable to interact with each other. However, in the cis family, there is a long-range interaction that is difficult to accurately capture in electronic structure calculations. Three trans and two cis conformations have been assigned by broadband chirped pulse Fourier transform microwave spectroscopy, along with the C-13 isotopomers in natural abundance for one conformer from each of the families. The agreement of the rotational constants, relative dipole moments, and relative energies between theory and experiment is excellent, even at relatively crude levels of theory, for the trans family, but is quite poor for the cis conformers. In addition, due to the reactivity of strawberry aldehyde and the high temperature to which it must be heated to yield a suitable vapor pressure, several decomposition products have been assigned, and more, as of yet unassigned, are likely to be present. This project demonstrates some of the challenges in performing large-molecule rotational spectroscopy.

  11. Perfluorobutyric Acid and its Monohydrate: a Chirped Pulse and Cavity Based Fourier Transform Microwave Spectroscopic Study

    Science.gov (United States)

    Thomas, Javix; Serrato, Agapito, III; Lin, Wei; Jaeger, Wolfgang; Xu, Yunjie

    2014-06-01

    Perfluorobutyric acid (PFBA) is highly soluble in water and is a molecule of environmental importance. Rotational spectra of PFBA and its monohydrate were studied using a broadband chirped pulse and a narrow band cavity based Fourier transform microwave spectrometers and high level ab initio calculations. Extensive conformational search was performed for both the acid and its monohydrate at the MP2/6-311++G(2d,p) level of theory. Two and three conformers were predicted for PFBA and its monohydrate, respectively. One set of rotational transitions of PFBA and its mono-hydrate in each case was observed and assigned. Based on the broadband spectra obtained, one can confidently conclude that only one dominate conformer exists in each case. The orientation of the hydroxyl group in PFBA was determined using isotopic analysis. Comparison of the observed transition intensities and the calculated electric dipole moment components allowed one to identify the most stable monohydrate conformation which takes on the insertion hydrogen-bonding topology. Comparison to the shorter chain analogues, i.e. trifluoroacetic acid, perfluoropropionic acid, and their monohydrates, was made to elucidate the general trend in their conformational preference and binding topologies.

  12. Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based fourier transform microwave spectroscopic study.

    Science.gov (United States)

    Thomas, Javix; Serrato, Agapito; Lin, Wei; Jäger, Wolfgang; Xu, Yunjie

    2014-05-12

    Rotational spectra of perfluorobutyric acid (PFBA) and its monohydrate were studied with a broadband chirped pulse and a narrow-band cavity based Fourier transform microwave spectrometer, and high-level ab initio calculations. Extensive conformational searches were performed for both the acid and its monohydrate at the MP2/6-311++G(2d,p) level of theory. Two and three conformers were predicted to exist for PFBA and its monohydrate, respectively. One set of rotational transitions was observed and assigned for each, PFBA and its monohydrate. Based on the measured broadband spectra, we confidently conclude that only one dominant conformer exists in each case. The orientation of the hydroxyl group in PFBA was determined by using isotopic analysis. Comparison of the observed transition intensities and the calculated electric dipole moment components allowed us to identify the most stable monohydrate conformation, which takes on an insertion hydrogen-bonding topology. Comparisons to the shorter chain analogues, that is, trifluoroacetic acid, perfluoropropionic acid, and their monohydrates, are made to elucidate the general trend in their conformational preference and binding topologies.

  13. Coiled transmission line pulse generators

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Kenneth Fox (Columbia, MO)

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  14. Tunable narrowband THz pulse generation in scalable large area photoconductive antennas.

    Science.gov (United States)

    Krause, Johannes; Wagner, Martin; Winnerl, Stephan; Helm, Manfred; Stehr, Dominik

    2011-09-26

    The generation and characterization of narrowband THz pulses by means of chirped pulse difference frequency generation in Auston-switch type photoconductive antennas is reported. Using optical pulses with energies in the range from 1 nJ to 1 µJ, we generate THz pulses with up to 50 pJ in energy and electric field strengths on the order of 1 kV/cm. Two emitter concepts are investigated and circumvention of the fast saturation for small area excitation by scaling of the THz emitter is demonstrated.

  15. Generation of green frequency comb from chirped χ{sup (2)} nonlinear photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lai, C.-M. [Department of Electronic Engineering, Ming Chuan University, Taoyuan, Taiwan (China); Chang, K.-H.; Yang, Z.-Y.; Fu, S.-H.; Tsai, S.-T.; Hsu, C.-W.; Peng, L.-H. [Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan (China); Yu, N. E. [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Boudrioua, A. [LPL, CNRS - UMR 7538, Université Paris 13, Sorbone Paris Cité (France); Kung, A. H. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan (China); Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan (China)

    2014-12-01

    Spectrally broad frequency comb generation over 510–555 nm range was reported on chirped quasi-phase-matching (QPM) χ{sup (2)} nonlinear photonic crystals of 12 mm length with periodicity stepwise increased from 5.9 μm to 7.1 μm. When pumped with nanosecond infrared (IR) frequency comb derived from a QPM optical parametric oscillator (OPO) and spanned over 1040 nm to 1090 nm wavelength range, the 520 nm to 545 nm up-converted green spectra were shown to consist of contributions from (a) second-harmonic generation among the signal or the idler modes, and (b) sum-frequency generation (SFG) from the neighboring pairs of the signal or the idler modes. These mechanisms led the up-converted green frequency comb to have the same mode spacing of 450 GHz as that in the IR-OPO pump comb. As the pump was further detuned from the aforementioned near-degeneracy point and moved toward the signal (1020–1040 nm) and the idler (1090–1110 nm) spectral range, the above QPM parametric processes were preserved in the chirped QPM devices to support up-converted green generation in the 510–520 nm and the 545–555 nm spectral regime. Additional 530–535 nm green spectral generation was also observed due to concurrence of multi-wavelength SFG processes between the (signal, idler) mode pairs. These mechanisms facilitate the chirped QPM device to support a single-pass up-conversion efficiency ∼10% when subject to an IR-OPO pump comb with 200 mW average power operated near- or off- the degeneracy point.

  16. Investigation of all-in-fiber Yb doped femtosecond fiber oscillator for generation of parabolic pulses in normal dispersion fiber amplifier

    Science.gov (United States)

    Frankinas, S.; Bartulevicius, T.; Michailovas, A.; Rusteika, N.

    2017-07-01

    In this work femtosecond passively mode-locked environmentally stable Ytterbium fiber oscillator generating pulses with duration of 380 fs is presented. Short pulse duration and smooth spectrum were obtained from the oscillator using chirped fiber Bragg grating with very low anomalous chromatic dispersion (0.15 ps2) and semiconductor saturable absorber mirror. Linearly chirped parabolic pulses were produced after amplification of the oscillator pulses in low concentration ytterbium doped fiber amplifier. Transform limited duration of the generated parabolic pulses was 110 fs.

  17. 16.6 J chirped femtosecond laser pulses from a diode-pumped Yb:CaF2 amplifier.

    Science.gov (United States)

    Kessler, Alexander; Hornung, Marco; Keppler, Sebastian; Schorcht, Frank; Hellwing, Marco; Liebetrau, Hartmut; Körner, Jörg; Sävert, Alexander; Siebold, Mathias; Schnepp, Matthias; Hein, Joachim; Kaluza, Malte C

    2014-03-15

    We report the amplification of laser pulses at a center wavelength of 1034 nm to an energy of 16.6 J from a fully diode-pumped amplifier using Yb:CaF2 as the active medium. Pumped by a total optical power of 300 kW from high-power laser diodes, a gain factor of g=6.1 was achieved in a nine-pass amplifier configuration agreeing with numerical simulations. A measured spectral bandwidth of 10 nm full width at half-maximum promises a bandwidth-limited compression of the pulses down to a duration of 150 fs. These are, to our knowledge, the most energetic laser pulses achieved from a diode-pumped chirped-pulse amplifier so far.

  18. Single chirped pulse control of hyperfine states population in Rb atom in the framework of the four-level system

    Science.gov (United States)

    Zakharov, Vladislav; Malinovskaya, Svetlana

    2012-06-01

    Electron population dynamics within the hyperfine structure in the Rb atom induced by a single ns pulse is theoretically investigated. The aim is to develop a methodology of the implementation of linearly chirped laser pulses for the desired excitations in the Rb atoms resulting in the creation of predetermined non-equilibrium states. A semi-classical model of laser pulse interaction with a four-level system representing the hyperfine energy levels of the Rb atom involved into dynamics has been developed. The equations for the probability amplitudes were obtained from the Schrodinger equation with the Hamiltonian that described the time evolution of the population of the four states in the field interaction representation. A code was written in Fortran for a numerical analysis of the time evolution of probability amplitudes as a function of the field parameters. The dependence of the quantum yield on the pulse duration, the linear chirp parameter and the Rabi frequency was studied to reveal the conditions for the entire population transfer to the upper hyperfine state of the 5S1/2 electronic level. The results may provide a robust tool for quantum operations in the alkali atoms.

  19. Chirped Pulse Rotational Spectroscopy of a Single THUJONE+WATER Sample

    Science.gov (United States)

    Kisiel, Zbigniew; Perez, Cristobal; Schnell, Melanie

    2016-06-01

    Rotational spectroscopy of natural products dates over 35 years when six different species including thujone were investigated. Nevertheless, the technique of low-resolution microwave spectroscopy employed therein allowed determination of only a single conformational parameter. Advances in sensitivity and resolution possible with supersonic expansion techniques of rotational spectroscopy made possible much more detailed studies such that, for example, the structures of first camphor, and then of multiple clusters of camphor with water were determined. We revisited the rotational spectrum of the well known thujone molecule by using the chirped pulse spectrometer in Hamburg. The spectrum of a single thujone sample was recorded with an admixture of 18O enriched water and was successively analysed using an array of techniques, including the AUTOFIT program, the AABS package and the STRFIT program. We have, so far, been able to assign rotational transitions of α-thujone, β-thujone, another thujone isomer, fenchone, and several thujone-water clusters in the spectrum of this single sample. Natural abundance molecular populations were sufficient to determine precise heavy atom backbones of thujone and fenchone, and H_218O enrichment delivered water molecule orientations in the hydrated clusters. An overview of these results will be presented. Z.Kisiel, A.C.Legon, JACS 100, 8166 (1978) Z.Kisiel, O.Desyatnyk, E.Białkowska-Jaworska, L.Pszczółkowski, PCCP 5 820 (2003) C.Pérez, A.Krin, A.L.Steber, J.C.López, Z.Kisiel, M.Schnell, J.Phys.Chem.Lett. 7 154 (2016) N.A.Seifert, I.A.Finneran, C.Perez, et al. J.Mol.Spectrosc. 312, 12 (2015) Z.Kisiel, L.Pszczółkowski, B.J.Drouin, et al. J.Mol.Spectrosc. 280, 134 (2012). Z.Kisiel, J.Mol.Spectrosc. 218, 58 (2003)

  20. Calculation of Multiphoton Transition in Li Atoms via Chirped Microwave Pulse

    Institute of Scientific and Technical Information of China (English)

    JIA Guang-Rui; ZHANG Xian-Zhou; LIU Yu-Fang; YU Kun; ZHAO Yue-Jin

    2011-01-01

    The position and width of avoided crossings of Li atom energy levels in a static electric field is presented by using the B-spline basis set method combined with the model potential.Using the time-dependent multilevel approach,the population of Li atoms is transferred to the target state completely by one-photon,two-photon or a single multiphoton adiabatic rapid passage,which requires only a small frequency sweep.The calculation results agree well with the experiment and novel explanations are given to understand the experimental results.It is well known that adiabatic rapid passage (ARP) works perfectly in the population transfer of an atomic system.[1-3] Coherent population transfer via ARP in atoms through one-photon[2] or twophoton[4] transitions using chirped pulses has been demonstrated.If the frequency of an external field is swept through the resonance at a rate lower than the square of the Rabi frequency,the population can be transferred through many levels by sequential ARPs with approximately 100% efficiency.%The position and width of avoided crossings of Li atom energy levels in a static electric field is presented by using the B-spline basis set method combined with the model potential Using the time-dependent multilevel approach, the population of Li atoms is transferred to the target state completely by one-photon, two-photon or a single multiphoton adiabatic rapid passage, which requires only a small frequency sweep. The calculation results agree well with the experiment and novel explanations are given to understand the experimental results.

  1. Short optical pulse generation at 40 GHz with a bulk electro-absorption modulator packaged device

    Science.gov (United States)

    Langlois, Patrick; Moore, Ronald; Prosyk, Kelvin; O'Keefe, Sean; Oosterom, Jill A.; Betty, Ian; Foster, Robert; Greenspan, Jonathan; Singh, Priti

    2003-12-01

    Short optical pulse generation at 40GHz and 1540nm wavelength is achieved using fully packaged bulk quaternary electro-absorption modulator modules. Experimental results obtained with broadband and narrowband optimized packaged modules are presented and compared against empirical model predictions. Pulse duty cycle, extinction ratio and chirp are studied as a function of sinusoidal drive voltage and detuning between operating wavelength and modulator absorption band edge. Design rules and performance trade-offs are discussed. Low-chirp pulses with a FWHM of ~12ps and sub-4ps at a rate of 40GHz are demonstrated. Optical time-domain demultiplexing of a 40GHz to a 10GHz pulse train is also demonstrated with better than 20dB extinction ratio.

  2. Generation of a few femtoseconds pulses in seeded FELs using a seed laser with small transverse size

    Science.gov (United States)

    Li, Heting; Jia, Qika

    2016-09-01

    We propose a simple method to generate a few femtosecond pulses in seeded FELs. We use a longitudinal energy-chirped electron beam passing through a dogleg where transverse dispersion will generate a horizontal energy chirp, then in the modulator, a seed laser with narrow beam radius will only modulate the center portion of the electron beam and then short pulses at high harmonics will be generated in the radiator. Using a representative realistic set of parameters, we show that 30 nm XUV pulse based on the HGHG scheme and 9 nm soft x-ray pulse based on the EEHG scheme with duration of about 8 fs (FWHM) and peak power of GW level can be generated from a 180 nm UV seed laser with beam waist of 75 μm. This new scheme can provide an optional operation mode for the existing seeded FEL facilities to meet the requirement of short-pulse FEL.

  3. Generation of 9.5 fs pulse by use of chirped mirrors in Ti: sapphire laser cavity%钛宝石激光器9.5fs脉冲输出中的啁啾镜色散补偿

    Institute of Scientific and Technical Information of China (English)

    王胭脂; 柴路; 王清月; 邵建达; 董洪成; 晋云霞; 贺洪波; 易葵; 范正修; 宋有建; 胡明列

    2011-01-01

    根据钛宝石激光器的要求,实验设计了中心波长800 nm带宽200 nm的啁啾镜,在700-900 nm波长范围内提供约-60 fs2群延迟色散(group delay dispersion,GDD).采用双射频离子束溅射方法进行制备,用实验室搭建的白光干涉仪进行色散性能测试,从测试结果可以看出,制备的啁啾镜的性能和设计值符合得比较好.制备得到的非成对啁啾镜在钛宝石激光谐振腔中进行色散补偿,锁模后分别获得了12fs和9.5 fs的激光脉冲输出.这是目前报道的使用国产啁啾镜获得的最短的飞秒激光脉冲输出.%According to the requirement of Ti: sapphire laser, the optimized chirped mirrors (CM) are designed to provide group delay dispersion (GDD) of around - 60 fs2 with bandwidth 200 nm at a center wavelength of 800 nm. The CMs are manufactured by time controlled ion beam sputtering. The GDD is determined by using a home-built white light interferometer. The measurement results show that the manufactured CM can meat our requirement. By balancing the intra-cavity dispersion with our manufactured chirped mirrors, 12 fs and 9.5 fs pulses have been obtained respecitively.

  4. Control of selective population transfer and creation of two orthogonal maximally superposition states via a pair of pump and chirped Stokes pulses

    Science.gov (United States)

    Zhang, Zhenhua; Tian, Jin; Du, Juan

    2017-02-01

    We demonstrate a simple way to realize control of population transfer and creation of two orthogonal maximally superposition states in a Λ-type four-level system with closely spaced doublet target states via a pair of pump and chirped Stokes pulses. It is illustrated that the population in the initial state can be selectively, completely and robustly transferred to either of the doublet target states via chirped adiabatic passage with the suitable chirp rate and frequency detuning of the Stokes pulse. Besides, creation of two orthogonal maximally superposition states between the initial state and intermediate state with equal amplitude but inverse relative phases is also shown, which may have potential applications in the preparations of quantum bits.

  5. Sub-picosecond chirped return-to-zero nonlinear optical pulse propagating in dense dispersion-managed fibre

    Science.gov (United States)

    Guo, Shuqin; Le, Zichun; Quan, Bisheng

    2006-01-01

    By numerical simulation, we show that the fourth-order dispersion (FOD) makes sub-picosecond optical pulse broaden as second-order dispersion (SOD), makes optical pulse oscillate simultaneously as third-order dispersion (TOD). Based on above two reasons, sub-picosecond optical pulse will be widely broaden and lead to emission of continuum radiation during propagation. Here, resemble to two- and third-order dispersion compensation, fourth-order dispersion compensation is also suggested in a dispersion-managed optical fiber link, which is realized by arranging two kinds of fiber with opposite dispersion sign in each compensation cell. For sake of avoiding excessively broadening, ultra short scale dispersion compensation cell is required in ultra high speed optical communication system. In a full dispersion compensation optical fiber system which path average dispersion is zero about SOD, TOD, and FOD, even suffering from affection of high order nonlinear like self-steep effect and self-frequency shift, 200 fs gauss optical pulse can stable propagate over 1000 km with an optimal initial chirp. When space between neighboring optical pulse is only 2 picoseconds corresponding to 500 Gbit/s transmitting capacity, eye diagram is very clarity after 1000 km. The results demonstrate that ultra short scale dispersion compensation including FOD is need and effective in ultra-high speed optical communication.

  6. Efficient broadband sum and difference frequency generation with a single chirped quasi-phase-matching crystal

    CERN Document Server

    Rangelov, Andon A

    2012-01-01

    We propose an efficient broadband frequency generation technique for two collinear optical parametric processes $\\omega_3=\\omega_1+\\omega_2$ and $\\omega_4=\\omega_1-\\omega_2$. It exploits chirped quasi-phase-matched gratings, which in the undepleted pump approximation regime perform population transfer that is analogous to adiabatic population transfer in a three-state ``vee'' quantum system. The energy of the input fields is transferred adiabatically either into $\\omega_3$ or $\\omega_4$ field, depending on which of the two phase matchings occurs first by the local modulation period in the crystal. One can switch the output between $\\omega_3$ and $\\omega_4$ by inverting the direction of the local modulation sweep, which corresponds to a rotation of the crystal by angle $\\pi$

  7. Generation of pulsed ion beams by an inductive storage pulsed power generator

    Science.gov (United States)

    Katsuki, Sunao; Akiyama, Hidenori; Maeda, Sadao

    1990-10-01

    A pulsed power generator by an inductive energy storage system is extremely compact and light in comparison with a conventional pulsed power generator, which consists of a Marx bank and a water pulse forming line. A compact and light pulse power generator is applied to the generation of pulsed ion beams. A thin copper fuse is used an an opening switch, which is necessary in the inductive storage pulsed power generator. A magnetically insulated diode is used for the generation of ion beams. The pulsed ion beams are successfully generated by the inductive storage pulsed power generator for the first time.

  8. High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate.

    Science.gov (United States)

    Shamir, Yariv; Rothhardt, Jan; Hädrich, Steffen; Demmler, Stefan; Tschernajew, Maxim; Limpert, Jens; Tünnermann, Andreas

    2015-12-01

    Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics. Here, we report on the realization of a tunable optical parametric chirped pulse amplifier at 100 kHz repetition rate. At a central wavelength of 2 μm, the system delivered 33 fs pulses and a 6 W average power corresponding to 60 μJ pulse energy with gigawatt-level peak powers. Idler absorption and its crystal heating is experimentally investigated for a BBO. Strategies for further power scaling to several tens of watts of average power are discussed.

  9. High-Precision Pulse Generator

    Science.gov (United States)

    Katz, Richard; Kleyner, Igor

    2011-01-01

    A document discusses a pulse generator with subnanosecond resolution implemented with a low-cost field-programmable gate array (FPGA) at low power levels. The method used exploits the fast carry chains of certain FPGAs. Prototypes have been built and tested in both Actel AX and Xilinx Virtex 4 technologies. In-flight calibration or control can be performed by using a similar and related technique as a time interval measurement circuit by measuring a period of the stable oscillator, as the delays through the fast carry chains will vary as a result of manufacturing variances as well as the result of environmental conditions (voltage, aging, temperature, and radiation).

  10. a Portable Pulsed Neutron Generator

    Science.gov (United States)

    Skoulakis, A.; Androulakis, G. C.; Clark, E. L.; Hassan, S. M.; Lee, P.; Chatzakis, J.; Bakarezos, M.; Dimitriou, V.; Petridis, C.; Papadogiannis, N. A.; Tatarakis, M.

    2014-02-01

    The design and construction of a pulsed plasma focus device to be used as a portable neutron source for material analysis such as explosive detection using gamma spectroscopy is presented. The device is capable of operating at a repetitive rate of a few Hz. When deuterium gas is used, up to 105 neutrons per shot are expected to be produced with a temporal pulse width of a few tens of nanoseconds. The pulsed operation of the device and its portable size are its main advantage in comparison with the existing continuous neutron sources. Parts of the device include the electrical charging unit, the capacitor bank, the spark switch (spark gap), the trigger unit and the vacuum-fuel chamber / anode-cathode. Numerical simulations are used for the simulation of the electrical characteristics of the device including the scaling of the capacitor bank energies with total current, the pinch current, and the scaling of neutron yields with energies and currents. The MCNPX code is used to simulate the moderation of the produced neutrons in a simplified geometry and subsequently, the interaction of thermal neutrons with a test target and the corresponding prompt γ-ray generation.

  11. Comparison of short pulse generation schemes for a soft x-ray free electron laser

    Science.gov (United States)

    Martin, I. P. S.; Bartolini, R.

    2011-03-01

    In this paper we study the performance of two complementary short pulse generation schemes as applied to a soft x-ray free electron laser. The first scheme, recently proposed by Saldin et al., makes use of a laser pulse consisting of only a few optical cycles to give an energy chirp to a short section of an electron bunch and tapers the main radiator undulator in order to compensate the chirped region. The second scheme investigated takes a low-charge, high brightness electron bunch and compresses it to ˜1fs in order to operate in the so-called “single-spike” regime. We perform start-to-end simulations of both these schemes, assess the sensitivity of each scheme to realistic jitter sources, and provide a direct comparison of the respective strengths and drawbacks.

  12. Comparison of short pulse generation schemes for a soft x-ray free electron laser

    Directory of Open Access Journals (Sweden)

    I. P. S. Martin

    2011-03-01

    Full Text Available In this paper we study the performance of two complementary short pulse generation schemes as applied to a soft x-ray free electron laser. The first scheme, recently proposed by Saldin et al., makes use of a laser pulse consisting of only a few optical cycles to give an energy chirp to a short section of an electron bunch and tapers the main radiator undulator in order to compensate the chirped region. The second scheme investigated takes a low-charge, high brightness electron bunch and compresses it to ∼1  fs in order to operate in the so-called “single-spike” regime. We perform start-to-end simulations of both these schemes, assess the sensitivity of each scheme to realistic jitter sources, and provide a direct comparison of the respective strengths and drawbacks.

  13. Difference frequency generation of femtosecond mid infrared pulses employing intense Stokes pulses excitation in a photonic crystal fiber.

    Science.gov (United States)

    Yao, Yuhong; Knox, Wayne H

    2012-11-05

    We demonstrate a novel method of generating milli-watt level mid-IR (MIR) pulses based on difference frequency mixing of the output from a 40 MHz Yb fiber Chirped Pulse Amplifier (CPA) and the intense Stokes pulses generated in a photonic crystal fiber (PCF) with two closely spaced zero dispersion wavelengths (ZDW). By taking advantage of the unique dispersion profile of the fiber, high power narrowband Stokes pulses are selectively generated in the normal dispersion region of the PCF with up to 1.45 nJ of pulse energy. Mixing with 12 nJ of pump pulses at 1035 nm in a type-II AgGaS(2) crystal yields MIR pulses around 5.5 µm wavelength with up to 3 mW of average power and 75 pJ of pulse energy. The reported method can be extended to generation of other MIR wavelengths by selecting PCFs with different second ZDWs or engineering the fiber dispersion profile via longitudinal tapering.

  14. Pulse inversion chirp coded tissue harmonic imaging (PI-CTHI) of Zebrafish heart using high frame rate ultrasound biomicroscopy.

    Science.gov (United States)

    Park, Jinhyoung; Huang, Ying; Chen, Ruimin; Lee, Jungwoo; Cummins, Thomas M; Zhou, Qifa; Lien, Ching-Ling; Shung, K K

    2013-01-01

    This paper reports a pulse inversion chirp coded tissue harmonic imaging (PI-CTHI) method for visualizing small animal hearts that provides fine spatial resolution at a high frame rate without sacrificing the echo signal to noise ratio (eSNR). A 40 MHz lithium niobate (LiNbO(3)) single element transducer is employed to evaluate the performance of PI-CTHI by scanning tungsten wire targets, spherical anechoic voids, and zebrafish hearts. The wire phantom results show that PI-CTHI improves the eSNR by 4 dB from that of conventional pulse inversion tissue harmonic imaging (PI-THI), while still maintaining a spatial resolution of 88 and 110 μm in the axial and lateral directions, respectively. The range side lobe level of PI-CTHI is 11 dB lower than that of band-pass filtered CTHI (or F-CTHI). In the anechoic sphere phantom study, the contrast-to-noise ratio of PI-CTHI is found to be 2.7, indicating a 34% enhancement over conventional PI-THI. Due to such improved eSNR and contrast resolution, blood clots in zebrafish hearts can be readily visualized throughout heart regeneration after 20% of the ventricle is removed. Disappearance of the clots in the early stages of the regeneration has been observed for 7 days without sacrificing the fish.

  15. Two-colour generation in a chirped seeded Free-Electron Laser

    CERN Document Server

    Mahieu, B; Castronovo, D; Danailov, M B; Demidovich, A; De Ninno, G; Di Mitri, S; Fawley, W M; Ferrari, E; Fröhlich, L; Gauthier, D; Giannessi, L; Mahne, N; Penco, G; Raimondi, L; Spampinati, S; Spezzani, C; Svetina, C; Trovò, M; Zangrando, M

    2013-01-01

    We present the experimental demonstration of a method for generating two spectrally and temporally separated pulses by an externally seeded, single-pass free-electron laser operating in the extreme-ultraviolet spectral range. Our results, collected on the FERMI@Elettra facility and confirmed by numerical simulations, demonstrate the possibility of controlling both the spectral and temporal features of the generated pulses. A free-electron laser operated in this mode becomes a suitable light source for jitter-free, two-colour pump-probe experiments.

  16. Two-colour generation in a chirped seeded free-electron laser: a close look.

    Science.gov (United States)

    Mahieu, Benoît; Allaria, Enrico; Castronovo, Davide; Danailov, Miltcho B; Demidovich, Alexander; De Ninno, Giovanni; Di Mitri, Simone; Fawley, William M; Ferrari, Eugenio; Fröhlich, Lars; Gauthier, David; Giannessi, Luca; Mahne, Nicola; Penco, Giuseppe; Raimondi, Lorenzo; Spampinati, Simone; Spezzani, Carlo; Svetina, Cristian; Trovò, Mauro; Zangrando, Marco

    2013-09-23

    We present the experimental demonstration of a method for generating two spectrally and temporally separated pulses by an externally seeded, single-pass free-electron laser operating in the extreme-ultraviolet spectral range. Our results, collected on the FERMI@Elettra facility and confirmed by numerical simulations, demonstrate the possibility of controlling both the spectral and temporal features of the generated pulses. A free-electron laser operated in this mode becomes a suitable light source for jitter-free, two-colour pump-probe experiments.

  17. Thulium-doped fiber chirped-pulse amplification system with 2 GW of peak power.

    Science.gov (United States)

    Gaida, C; Gebhardt, M; Stutzki, F; Jauregui, C; Limpert, J; Tünnermann, A

    2016-09-01

    Thulium-doped fibers with ultra large mode-field areas offer new opportunities for the power scaling of mid-IR ultrashort-pulse laser sources. Here, we present a laser system delivering a pulse-peak power of 2 GW and a nearly transform-limited pulse duration of 200 fs in combination with 28.7 W of average power. This performance level has been achieved by optimizing the pulse shape, reducing the overlap with atmospheric absorption lines, and incorporating a climate chamber to reduce the humidity of the atmospheric environment.

  18. Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics

    Energy Technology Data Exchange (ETDEWEB)

    Schultze, M [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermannstrasse 1, D-85748 Garching (Germany); Goulielmakis, E [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermannstrasse 1, D-85748 Garching (Germany); Uiberacker, M [Department fuer Physik, Ludwig-Maximilians-Universitaet, Am Coulombwall 1, D-85748 Garching (Germany); Hofstetter, M [Department fuer Physik, Ludwig-Maximilians-Universitaet, Am Coulombwall 1, D-85748 Garching (Germany); Kim, J [Laser Science Laboratory, Department of Physics, POSTECH, Pohang, Kyungbuk 790-784 (Korea, Republic of); Kim, D [Laser Science Laboratory, Department of Physics, POSTECH, Pohang, Kyungbuk 790-784 (Korea, Republic of); Krausz, F [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermannstrasse 1, D-85748 Garching (Germany); Kleineberg, U [Department fuer Physik, Ludwig-Maximilians-Universitaet, Am Coulombwall 1, D-85748 Garching (Germany)

    2007-07-15

    Single 170-as extreme ultraviolet (XUV) pulses delivering more than 10{sup 6} photons/pulse at {approx}100 eV at a repetition rate of 3 kHz are produced by ionizing neon with waveform-controlled sub-5 fs near-infrared (NIR) laser pulses and spectrally filtering the emerging near-cutoff high-harmonic continuum with a broadband, chirped multilayer molybdenum-silicon (Mo/Si) mirror.

  19. Intense ultrashort terahertz pulses: generation and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Matthias C [Max Planck Research Department for Structural Dynamics, University of Hamburg, CFEL, 22607 Hamburg (Germany); Fueloep, Jozsef Andras, E-mail: matthias.c.hoffmann@mpsd.cfel.de, E-mail: fulop@fizika.ttk.pte.hu [Department of Experimental Physics, University of Pecs, Ifjusag u. 6, 7624 Pecs (Hungary)

    2011-03-02

    Ultrashort terahertz pulses derived from femtosecond table-top sources have become a valuable tool for time-resolved spectroscopy during the last two decades. Until recently, the pulse energies and field strengths of these pulses have been generally too low to allow for the use as pump pulses or the study of nonlinear effects in the terahertz range. In this review article we will describe methods of generation of intense single cycle terahertz pulses with emphasis on optical rectification using the tilted-pulse-front pumping technique. We will also discuss some applications of these intense pulses in the emerging field of nonlinear terahertz spectroscopy. (topical review)

  20. Pulse phase thermography chirp Z transform%脉冲红外相位线性调频Z变换

    Institute of Scientific and Technical Information of China (English)

    马说邯; 马齐爽

    2011-01-01

    In order to solve the problem of insufficient frequency resolution,occurring at the infrared detection data processing by the pulse phase thermography(PPT),a new frequency domain transform method was proposed.The fast Fourier transform(FFT) was utilized to choose the narrow frequency band included within the characteristic frequency,this band was processed by the chirp Z transform(CZT),the refined frequency structure was obtained.The clear amplitude and phase image sequences were reconstructed from the pixel-by-point analysis results.Without increasing the sampling time,a higher frequency resolution was achieve than the one of the PPT.Through the comparison of the detection signal from an aluminum material specimen,the results show that the algorithm can effectively refine the selected frequency band,get more precise characteristic frequency and effectively reduce the spectral leakage errors.%为了解决脉冲相位法(PPT,Pulse Phase Thermography)在处理红外检测数据时频率分辨率不够的问题,提出了一种新型的频域变换方法。利用快速傅里叶变换(FFT,Fast Fourier Transform)选择出包含特征频率的窄频带,对其进行线性调频Z变换(CZT,Chirp Z Transform),得到细化的频率结构。并将逐点像素分析后的结果重构出清晰的幅值和相位图像序列。在不增加采样时间的前提下获得了比PPT更高的频率分辨率。通过对铝制材料试件检测信号的对比分析,结果表明该算法可以对选频带进行有效细化,得到更精确的特征频率,有效降低了频谱泄露造成的误差。

  1. Finite-Difference Time-Domain Modeling of Free Induction Decay Signal in Chirped Pulse Millimeter Wave Spectroscopy

    Science.gov (United States)

    Heifetz, Alexander; Bakhtiari, Sasan; Chien, Hual-Teh; Prozument, Kirill; Gray, Stephen K.; Williams, Richard M.

    2016-06-01

    We have developed computational electrodynamics model of free induction decay (FID) signal in chirped pulse millimeter wave (CPMMW) spectroscopy. The computational model is based on finite-difference time-domain (FDTD) solution of Maxwell's equations in 1-D. Molecular medium is represented by two-level system derived using density matrix (DM) formulation. Each cell in the grid is assigned an independent set of DM equations, and thus acts as an independent source of induced polarization. Computer simulations with our 1-D model have shown that FID signal is propagating entirely in the forward direction. Intensity of FID radiation increases linearly along the cell length. These results can be explained analytically by considering phases of electromagnetic field radiated by each independent region of induced polarization. We show that there is constructive interference in the forward in forward direction, and destructive interference in backscattering direction. Results in this study are consistent with experimental observations that FID has been measured in the forward scattering direction, but not in backscattering direction.

  2. Microwave spectral taxonomy: A semi-automated combination of chirped-pulse and cavity Fourier-transform microwave spectroscopy

    Science.gov (United States)

    Crabtree, Kyle N.; Martin-Drumel, Marie-Aline; Brown, Gordon G.; Gaster, Sydney A.; Hall, Taylor M.; McCarthy, Michael C.

    2016-03-01

    Because of its structural specificity, rotational spectroscopy has great potential as an analytical tool for characterizing the chemical composition of complex gas mixtures. However, disentangling the individual molecular constituents of a rotational spectrum, especially if many of the lines are entirely new or unknown, remains challenging. In this paper, we describe an empirical approach that combines the complementary strengths of two techniques, broadband chirped-pulse Fourier transform microwave spectroscopy and narrowband cavity Fourier transform microwave spectroscopy, to characterize and assign lines. This procedure, called microwave spectral taxonomy, involves acquiring a broadband rotational spectrum of a rich mixture, categorizing individual lines based on their relative intensities under series of assays, and finally, linking rotational transitions of individual chemical compounds within each category using double resonance techniques. The power of this procedure is demonstrated for two test cases: a stable molecule with a rich spectrum, 3,4-difluorobenzaldehyde, and products formed in an electrical discharge through a dilute mixture of C2H2 and CS2, in which spectral taxonomy has enabled the identification of propynethial, HC(S)CCH.

  3. Dynamic Time-Resolved Chirped-Pulse Rotational Spectroscopy of Vinyl Cyanide Photoproducts in a Room Temperature Flow Reactor

    Science.gov (United States)

    Zaleski, Daniel P.; Prozument, Kirill

    2017-06-01

    Chirped-pulsed (CP) Fourier transform rotational spectroscopy invented by Brooks Pate and coworkers a decade ago is an attractive tool for gas phase chemical dynamics and kinetics studies. A good reactor for such a purpose would have well-defined (and variable) temperature and pressure conditions to be amenable to accurate kinetic modeling. Furthermore, in low pressure samples with large enough number of molecular emitters, reaction dynamics can be observable directly, rather than mediated by supersonic expansion. In the present work, we are evaluating feasibility of in situ time-resolved CP spectroscopy in a room temperature flow tube reactor. Vinyl cyanide (CH_2CHCN), neat or mixed with inert gasses, flows through the reactor at pressures 1-50 μbar (0.76-38 mTorr) where it is photodissociated by a 193 nm laser. Millimeter-wave beam of the CP spectrometer co-propagates with the laser beam along the reactor tube and interacts with nascent photoproducts. Rotational transitions of HCN, HNC, and HCCCN are detected, with ≥10 μs time-steps for 500 ms following photolysis of CH_2CHCN. The post-photolysis evolution of the photoproducts' rotational line intensities is investigated for the effects of rotational and vibrational thermalization of energized photoproducts. Possible contributions from bimolecular and wall-mediated chemistry are evaluated as well.

  4. Method for Generating a Compressed Optical Pulse

    DEFF Research Database (Denmark)

    2015-01-01

    There is presented a method of for generating a compressed optical pulse (112) comprising emitting from a wavelength tunable microcavity laser system (102), comprising an optical cavity (104) with a mechanically adjustable cavity length (L), a primary optical pulse (111) having a primary temporal...... width (Tl) while adjusting the optical cavity length (L) so that said primary optical pulse comprises temporally separated photons of different wavelengths, and transmitting said pulse through a dispersive medium (114), so as to generate a compressed optical pulse (112) with a secondary temporal width...

  5. High-speed pulse-shape generator, pulse multiplexer

    Science.gov (United States)

    Burkhart, Scott C.

    2002-01-01

    The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.

  6. Tunable high-harmonic generation by chromatic focusing of few-cycle laser pulses

    Science.gov (United States)

    Holgado, W.; Hernández-García, C.; Alonso, B.; Miranda, M.; Silva, F.; Varela, O.; Hernández-Toro, J.; Plaja, L.; Crespo, H.; Sola, I. J.

    2017-06-01

    In this work we study the impact of chromatic focusing of few-cycle laser pulses on high-order-harmonic generation (HHG) through analysis of the emitted extreme ultraviolet (XUV) radiation. Chromatic focusing is usually avoided in the few-cycle regime, as the pulse spatiotemporal structure may be highly distorted by the spatiotemporal aberrations. Here, however, we demonstrate it as an additional control parameter to modify the generated XUV radiation. We present experiments where few-cycle pulses are focused by a singlet lens in a Kr gas jet. The chromatic distribution of focal lengths allows us to tune HHG spectra by changing the relative singlet-target distance. Interestingly, we also show that the degree of chromatic aberration needed for this control does not degrade substantially the harmonic conversion efficiency, still allowing for the generation of supercontinua with the chirped-pulse scheme, demonstrated previously for achromatic focusing. We back up our experiments with theoretical simulations reproducing the experimental HHG results depending on diverse parameters (input pulse spectral phase, pulse duration, and focus position) and proving that, under the considered parameters, the attosecond pulse train remains very similar to the achromatic case, even showing cases of isolated attosecond pulse generation for near-single-cycle driving pulses.

  7. Measurement and compensation of frequency chirping in pulsed dye laser amplifiers

    NARCIS (Netherlands)

    Reinhard, I.; Gabrysch, M.; Von Weikersthal, B. Fischer; Jungmann, K.; Zu Putlitz, G.

    1996-01-01

    Rapid changes of the refractive index in the active medium of a pulsed, excimer laser pumped dye laser amplifier were investigated with an optical heterodyne technique. Time-dependent shifts in the phase of optical light waves could be observed which for Coumarin 102, 153 and 307 dyes at wavelengths

  8. High reliability low jitter pulse generator

    Science.gov (United States)

    Savage, Mark E.; Stoltzfus, Brian S.

    2013-01-01

    A method and concomitant apparatus for generating pulses comprising providing a laser light source, disposing a voltage electrode between ground electrodes, generating laser sparks using the laser light source via laser spark gaps between the voltage electrode and the ground electrodes, and outputting pulses via one or more insulated ground connectors connected to the voltage electrode.

  9. Multi-channel, fiber-based seed pulse distribution system for femtosecond-level synchronized chirped pulse amplifiers

    Science.gov (United States)

    Horáček, Martin; Indra, Lukáš; Green, Jonathan T.; Naylon, Jack A.; Tykalewicz, Boguslaw; Novák, Jakub; Batysta, František; Mazanec, Tomáš; Horáček, Jakub; Antipenkov, Roman; Hubka, Zbyněk; Boge, Robert; Bakule, Pavel; Rus, Bedřich

    2017-01-01

    We report on the design and performance of a fiber-based, multi-channel laser amplifier seed pulse distribution system. The device is designed to condition and distribute low energy laser pulses from a mode-locked oscillator to multiple, highly synchronized, high energy amplifiers integrated into a laser beamline. Critical functions such as temporal pulse stretching well beyond 100 ps/nm, pulse picking, and fine control over the pulse delay up to 300 ps are all performed in fiber eliminating the need for bulky and expensive grating stretchers, Pockels cells, and delay lines. These functions are characterized and the system as a whole is demonstrated by seeding two high energy amplifiers in the laser beamline. The design of this system allows for complete computer control of all functions, including tuning of dispersion, and is entirely hands-free. The performance of this device and its subsystems will be relevant to those developing lasers where reliability, size, and cost are key concerns in addition to performance; this includes those developing large-scale laser systems similar to ours and also those developing table-top experiments and commercial systems.

  10. Digital Communication Using Chaotic Pulse Generators

    CERN Document Server

    Rulkov, N F; Tsimring, L S; Volkovskii, A R; Abarbanel, Henry D I; Larson, L; Yao, K

    1999-01-01

    Utilization of chaotic signals for covert communications remains a very promising practical application. Multiple studies indicated that the major shortcoming of recently proposed chaos-based communication schemes is their susceptibility to noise and distortions in communication channels. In this talk we discuss a new approach to communication with chaotic signals, which demonstrates good performance in the presence of channel distortions. This communication scheme is based upon chaotic signals in the form of pulse trains where intervals between the pulses are determined by chaotic dynamics of a pulse generator. The pulse train with chaotic interpulse intervals is used as a carrier. Binary information is modulated onto this carrier by the pulse position modulation method, such that each pulse is either left unchanged or delayed by a certain time, depending on whether ``0'' or ``1'' is transmitted. By synchronizing the receiver to the chaotic pulse train we can anticipate the timing of pulses corresponding to ...

  11. Optimized Optical Rectification and Electro-optic Sampling in ZnTe Crystals with Chirped Femtosecond Laser Pulses

    DEFF Research Database (Denmark)

    Erschens, Dines Nøddegaard; Turchinovich, Dmitry; Jepsen, Peter Uhd

    2011-01-01

    We report on optimization of the intensity of THz signals generated and detected by optical rectification and electro-optic sampling in dispersive, nonlinear media. Addition of a negative prechirp to the femtosecond laser pulses used in the THz generation and detection processes in 1-mm thick ZnT...

  12. Wide-bandgap nonlinear crystal LiGaSsub>2sub> for femtosecond mid-infrared spectroscopy with chirped-pulse upconversion.

    Science.gov (United States)

    Nakamura, Ryosuke; Inagaki, Yoshizumi; Hata, Hidefumi; Hamada, Norio; Umemura, Nobuhiro; Kamimura, Tomosumi

    2016-11-20

    Femtosecond time-resolved mid-infrared (MIR) spectroscopy based on chirped-pulse upconversion is a promising method for observing molecular vibrational dynamics. A quantitative study on nonlinear media for upconversion is still essential for wide applications, particularly at the frequencies below 2000  cm-1. We evaluate wide-bandgap nonlinear crystals of Li-containing ternary chalcogenides based on their performance as the upconversion medium for femtosecond MIR spectroscopy. The upconversion efficiency is measured as a function of the MIR pulse frequency and the chirped pulse energy. LiGaSsub>2sub> is found to be an efficient crystal for the upconversion of MIR pulses in a wide frequency range of 1100-2700  cm-1, especially below 2000  cm-1. By using LiGaSsub>2sub> as an efficient upconversion crystal, we develop a MIR pump-probe spectroscopy system with a spectral resolution of 2.5  cm-1, a time resolution of 0.2 ps, and a probe window of 120  cm-1. Vibrational relaxation dynamics of CO stretching modes of Mnsub>2sub>(CO)sub>10sub> in cyclohexane and bovine serum albumin in Dsub>2sub>O are demonstrated with a high signal-to-noise ratio.

  13. Generator of ultrashort megavolt voltage pulses

    CERN Document Server

    Zheltov, K A; Shalimanov, V F

    2002-01-01

    Paper describes approx 3 ns duration and > 1 MW amplitude voltage pulse generator under high-ohmic (approx 450 Ohm) load. Generator comprises pulse transformer with magnetized core, as well as, resonance tuned circuit of high-voltage solenoid and accumulating spaces of a shaping line containing, moreover, spark gap to switch charge in transmitting line. Paper contains the results of voltage measuring in generator basic units

  14. Generation of a Sub-10 fs Laser Pulse by a Ring Oscillator with a High Repetition Rate

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qing; ZHAO Yan-Ying; WEI Zhi-Yi

    2009-01-01

    @@ A compact femtoescond Ti:sapphire ring oscillator composed of chirped mirrors is designed. By accurately optimizing the intra-cavity dispersion and the mode locking range of the ring configuration, we generate laser pulses as short as 7.7 fs with a repetition rate as high as 745 MHz. The spectrum spans from 660nm to 940nm and the average output power is 480row under the cw pump laser of 7.5 W.

  15. Post-compression of high energy terawatt-level femtosecond pulses and application to high order harmonic generation

    CERN Document Server

    Hort, Ondřej; Cabasse, Amélie; Petit, Stéphane; Mével, Eric; Descamps, Dominique; Constant, Eric

    2015-01-01

    We perform a post-compression of high energy pulses by using optical-field ionization of low pressure helium gas in a guided geometry. We apply this approach to a TW chirped-pulse-amplification based Ti:Sapphire laser chain and show that spectral broadening can be controlled both with the input pulse energy and gas pressure. Under optimized conditions, we generate 10 fs pulses at TW level directly under vacuum and demonstrate a high stability of the post compressed pulse duration. These high energy post-compressed pulses are thereafter used to perform high harmonic generation in a loose focusing geometry. The XUV beam is characterized both spatially and spectrally on a single shot basis and structured continuous XUV spectra are observed.

  16. Generation of Single-Cycle Light Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, B C; Jovanovic, I; Armstrong, J P; Pyke, B; Crane, J K; Shuttlesworth, R

    2004-02-13

    Most optical pulses, even at the 10-femtosecond timescale, consist of several oscillations of the electric field. By producing and amplifying an ultra-broadband continuum, single cycle (e 3 fs) or shorter optical pulses may be generated. This requires a very challenging pulse-compression with sub-femtosecond accuracy. Production of these single-cycle pulses will lead to new generations of experiments in the areas of coherent control of chemical excitations and reactions, 0.1-fs high-order harmonic (XUV) generation for probing of materials and fast processes, and selective 3-D micron-scale material removal and modification. We activated the first stage of a planned three-stage optical parametric amplifier (OPA) that would ultimately produce sub-3 fs pulses. Active control with a learning algorithm was implemented to optimize the continuum generated in an argon-filled capillary and to control and optimize the final compressed pulse temporal shape. A collaboration was initiated to coherently control the population of different states upon dissociation of Rb{sub 2}. Except for one final optic, a pulse compressor and diagnostics were constructed to produce and characterize pulses in the 5-fs range from the first OPA stage.

  17. Distortion of high-power chirped Gaussian pulse in single-mode fiber%高功率啁啾高斯脉冲在光纤中传输的形变研究

    Institute of Scientific and Technical Information of China (English)

    浮怀铎; 许立新; 王安廷

    2011-01-01

    Based on nonlinear Schrǒdinger equation in optical fiber, the factor of distortion of pulse (DIS) is defined to evaluate the distortion of the pulse. The relation amongthe DIS, critical length of propagation,critical power and initial chirp of the pulse are numerically simulated and analyzed when only dispersion and self-phase modulation are considered. The results show that the distortion of positive chirped pulse is less than that of negative chirped pulse for given peak power. For given initial chirp, the critical length of pulse decreases with increasing of peak power of input pulse, and critical length of different initial chirp pulses coincides along with increasing of peak power of input pulse. When the length of propagation is fixed, critical power is linear with initial chirp, meanwhile the fluctuation of chirp have more effect on the positive chirped pulse.%从光纤广义非线性薛定谔方程出发,定义了用于衡量脉冲形变大小的脉冲形变因子,定量地分析了在传输过程中脉冲形变因子、临界长度、临界功率及初始啁啾之间的关系.结果表明:在传输过程中,当入射脉冲的峰值功率一定时,正啁啾脉冲的形变比负啁啾脉冲和无啁啾脉冲的形变小;当脉冲的初始啁啾一定时,脉冲传输的临界长度随着传输功率的增加而降低,且随着功率的增大,不同初始啁啾脉冲的临界长度趋于一致;在传输距离一定时,临界功率与初始啁啾呈线性变化,且啁啾的漂移对正啁啾脉冲的临界功率影响较大.

  18. Grism-pair stretcher{endash}compressor system for simultaneous second- and third-order dispersion compensation in chirped-pulse amplification

    Energy Technology Data Exchange (ETDEWEB)

    Kane, S. [Center for Ultrafast Optical Science, University of Michigan, Room 1006, Institute for Science and Technology Building, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099 (United States); Squier, J. [Department of Electrical and Computer Engineering, University of California, San Diego, Urey Hall, Mail Code 0339, La Jolla, California 92093-0339 (United States)

    1997-03-01

    We present a grating pair based on Carpenter prisms whose third-order dispersion is opposite that of a traditional grating pair. A properly designed stretcher{endash}compressor system with these gratings has the unique characteristic that it simultaneously compensates for second- and third-order dispersion as a function of grating separation, as opposed to traditional systems, which require an additional grating angle mismatch. The applicability of this design to 30-fs, millijoule-level chirped-pulse amplification is discussed. {copyright} 1997 Optical Society of America

  19. Time of Arrival Based on Chirp Pulses as a means to Perform Localization in IEEE 802.15.4a Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    NAUWELAERS, B.

    2010-05-01

    Full Text Available This paper introduces the technology Time of Arrival (TOA based on chirp pulses (according to IEEE 802.15.4a as a means to perform localization in Wireless Sensor Networks (WSN's active at 2.4 GHz. Advantages and disadvantages of the technology are discussed and act as a guideline for improving localization accuracy. Tests concerning TOA are performed by means of the location engine of Nanotron. Adapting this engine leads to improved localization results. It is shown that TOA measurements are susceptible to reflections and dynamic environments.

  20. Generation of <7 fs pulses at 800 nm from a blue-pumped optical parametric amplifier at degeneracy.

    Science.gov (United States)

    Siddiqui, A M; Cirmi, G; Brida, D; Kärtner, F X; Cerullo, G

    2009-11-15

    We generate ultrabroadband pulses at 800 nm from an optical parametric amplifier (OPA) pumped by the second harmonic of a Ti:sapphire system and working at degeneracy. The OPA is seeded by a white-light continuum generated from a near-IR OPA pumped by the same laser. Nearly transform-limited <7 fs pulses, fully characterized in amplitude and phase, are obtained with a chirped mirror compressor. The system fills the gap around 800 nm for broadband continuum seeded OPAs pumped by Ti:sapphire-based sources.

  1. Widely Tunable Femtosecond Soliton Pulse Generation by Using Soliton-Frequency Shift in a Photonic Crystal Fibre

    Institute of Scientific and Technical Information of China (English)

    CHENG Chun-Fu; WANG Xiao-Fang; SHEN Bai-Fei

    2004-01-01

    Femtosecond Raman solitoh generation, tunable from 800 to 1044nm, has been theoretically investigated for a photonic crystal fibre pumped by a 200-rs pulse. A highly nonlinear photonic crystal fibre with a length of only 57.7cm and a nonlinear coefficient of 0.075 (Wm)-1 is used to achieved such a broadband. It is found that the spectral bandwidth increases with the input peak power. In particular, it is also found that the output wavelengths of the resulting sub-40 fs Raman solitons can also be tuned effectively by varying the initial pulse chirp. There exists an optimal positive chirp which maximizes the bandwidth, corresponding to the formation of only one long-wavelength Raman soliton.

  2. One laser pulse generates two photoacoustic signals

    CERN Document Server

    Gao, Fei; Zheng, Yuanjin

    2016-01-01

    Photoacoustic sensing and imaging techniques have been studied widely to explore optical absorption contrast based on nanosecond laser illumination. In this paper, we report a long laser pulse induced dual photoacoustic (LDPA) nonlinear effect, which originates from unsatisfied stress and thermal confinements. Being different from conventional short laser pulse illumination, the proposed method utilizes a long square-profile laser pulse to induce dual photoacoustic signals. Without satisfying the stress confinement, the dual photoacoustic signals are generated following the positive and negative edges of the long laser pulse. More interestingly, the first expansion-induced photoacoustic signal exhibits positive waveform due to the initial sharp rising of temperature. On the contrary, the second contraction-induced photoacoustic signal exhibits exactly negative waveform due to the falling of temperature, as well as pulse-width-dependent, signal amplitude which is caused by the concurrent heat accumulation and ...

  3. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  4. Ultrafast pulse generation with black phosphorus

    CERN Document Server

    Li, Diao; Karvonen, Lasse; Ye, Guojun; Lipsanen, Harri; Chen, Xianhui; Sun, Zhipei

    2015-01-01

    Black phosphorus has been recently rediscovered as a new and interesting two-dimensional material due to its unique electronic and optical properties. Here, we study the linear and nonlinear optical properties of black phosphorus thin films, indicating that both linear and nonlinear optical properties are anisotropic and can be tuned by the film thickness. Then we employ the nonlinear optical property of black phosphorus for ultrafast (pulse duration down to ~786 fs in mode-locking) and large-energy (pulse energy up to >18 nJ in Q-switching) pulse generation in fiber lasers at the near-infrared telecommunication band ~1.5 {\\mu}m. Our results underscore relatively large optical nonlinearity in black phosphorus and its prospective for ultrafast pulse generation, paving the way to black phosphorus based nonlinear and ultrafast photonics applications (e.g., ultrafast all-optical switches/modulators, frequency converters etc.).

  5. Demonstration of a diode pumped Nd,Y co-doped SrF2 crystal based, high energy chirped pulse amplification laser system

    Science.gov (United States)

    Chen, Junchi; Peng, Yujie; Zhang, Zongxin; Su, Hongpeng; Leng, Yuxin; Jiang, Dapeng; Ma, Fengkai; Qian, Xiaobo; Tang, Fei; Su, Liangbi

    2017-01-01

    We report, to the best of our knowledge, a chirped pulse amplification laser system based on the Nd,Y:SrF2 crystal for the first time. The incorporation of Y3+ nonactive ions can significantly improve laser properties of Nd:SrF2 crystal, including broader emission linewidth, larger cross-section as well as longer fluorescence lifetime. Pulse laser with 5.1 mJ (uncompressed), 3.7 mJ (compressed) energy, 1.6 ps duration at 5 Hz repetition rate is demonstrated. The results indicate that the Nd,Y:SrF2 crystal is a potential candidate with excellent laser and thermal performance for developing ultra-intense laser with high repetition rate.

  6. Nanoplasmonic generation of ultrashort EUV pulses

    Science.gov (United States)

    Choi, Joonhee; Lee, Dong-Hyub; Han, Seunghwoi; Park, In-Yong; Kim, Seungchul; Kim, Seung-Woo

    2012-10-01

    Ultrashort extreme-ultraviolet (EUV) light pulses are an important tool for time-resolved pump-probe spectroscopy to investigate the ultrafast dynamics of electrons in atoms and molecules. Among several methods available to generate ultrashort EUV light pulses, the nonlinear frequency upconversion process of high-harmonic generation (HHG) draws attention as it is capable of producing coherent EUV pulses with precise control of burst timing with respect to the driving near-infrared (NIR) femtosecond laser. In this report, we present and discuss our recent experimental data obtained by the plasmon-driven HHG method that generate EUV radiation by means of plasmonic nano-focusing of NIR femtosecond pulses. For experiment, metallic waveguides having a tapered hole of funnel shape inside were fabricated by adopting the focused-ion-beam process on a micro-cantilever substrate. The plasmonic field formed within the funnelwaveguides being coupled with the incident femtosecond pulse permitted intensity enhancement by a factor of ~350, which creates a hot spot of sub-wavelength size with intensities strong enough for HHG. Experimental results showed that with injection of noble gases into the funnel-waveguides, EUV radiation is generated up to wavelengths of 32 nm and 29.6 nm from Ar and Ne gas atoms, respectively. Further, it was observed that lower-order EUV harmonics are cut off in the HHG spectra by the tiny exit aperture of the funnel-waveguide.

  7. High-voltage, short-risetime pulse generator based on a ferrite pulse sharpener

    Energy Technology Data Exchange (ETDEWEB)

    Seddon, N.; Thornton, E.

    1988-11-01

    A high-voltage, short-risetime pulse generator is described. The generator consists of a Marx bank, which produces an initial high-voltage pulse, and a ferrite pulse sharpener that reduces the risetime of the pulse. The generator delivers 70-kV, 350-ps risetime pulses into a 50-..cap omega.. load.

  8. Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers.

    Science.gov (United States)

    Chen, Ming-Chang; Mancuso, Christopher; Hernández-García, Carlos; Dollar, Franklin; Galloway, Ben; Popmintchev, Dimitar; Huang, Pei-Chi; Walker, Barry; Plaja, Luis; Jaroń-Becker, Agnieszka A; Becker, Andreas; Murnane, Margaret M; Kapteyn, Henry C; Popmintchev, Tenio

    2014-06-10

    High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10(-18) s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum.

  9. Thyristor stack for pulsed inductive plasma generation.

    Science.gov (United States)

    Teske, C; Jacoby, J; Schweizer, W; Wiechula, J

    2009-03-01

    A thyristor stack for pulsed inductive plasma generation has been developed and tested. The stack design includes a free wheeling diode assembly for current reversal. Triggering of the device is achieved by a high side biased, self supplied gate driver unit using gating energy derived from a local snubber network. The structure guarantees a hard firing gate pulse for the required high dI/dt application. A single fiber optic command is needed to achieve a simultaneous turn on of the thyristors. The stack assembly is used for switching a series resonant circuit with a ringing frequency of 30 kHz. In the prototype pulsed power system described here an inductive discharge has been generated with a pulse duration of 120 micros and a pulse energy of 50 J. A maximum power transfer efficiency of 84% and a peak power of 480 kW inside the discharge were achieved. System tests were performed with a purely inductive load and an inductively generated plasma acting as a load through transformer action at a voltage level of 4.1 kV, a peak current of 5 kA, and a current switching rate of 1 kA/micros.

  10. Generation, temporal characterization and applications of femtosecond-/ attosecond extreme ultraviolet pulses

    Science.gov (United States)

    Thomann, Isabell

    The work of this thesis is arranged into three parts: (A) Generation and temporal characterization of extreme ultraviolet (EUV) attosecond pulses. In this work I present the generation and first temporal characterization of sub-optical cycle EUV radiation generated in a noble-gas filled hollow-core waveguide. Two regimes of EUV radiation were characterized, ranging from 200 attoseconds to ˜ 1 femtosecond in duration. The first regime that was characterized distinguishes itself from EUV radiation generated by other methods by its narrow (˜ 1 eV) spectral width, its simple energy tunability and its temporal confinement to ˜ 1 femtosecond. In the second regime, single isolated pulses of 200 attoseconds duration (and accordingly larger bandwidth) were generated. In both regimes dynamic phase-matching effects create an extremely short time window within which efficient nonlinear conversion is possible, while it is suppressed outside this window. Temporal characterization of the generated EUV pulses was approached by two-color pump-probe photoelectron spectroscopy. Therefore an efficient photoelectron spectrometer was set up, detecting electrons in a 2pi collection angle. For the interpretation of the experimental data, an analytical model as well as an iterative algorithm were developed, to allow extraction of complex EUV waveforms. The demonstrated radiation will allow for time-resolved studies of the fastest processes in molecules and condensed matter, while at the same time ensuring adequate energy resolution for addressing individual electronic states. (B) Application of a COLTRIMS reaction microscope in combination with femtosecond EUV pulses to questions in molecular physics. The combination of the sensitive detection capabilities of a COLTRIMS reaction microscope with the high time resolution of pump-probe experiments using femtosecond extreme-ultraviolet pulses makes it possible to answer very fundamental open questions in molecular physics such as the

  11. Design Study for Pulsed Proton Beam Generation

    Directory of Open Access Journals (Sweden)

    Han-Sung Kim

    2016-02-01

    Full Text Available Fast neutrons with a broad energy spectrum, with which it is possible to evaluate nuclear data for various research fields such as medical applications and the development of fusion reactors, can be generated by irradiating proton beams on target materials such as beryllium. To generate short-pulse proton beam, we adopted a deflector and slit system. In a simple deflector with slit system, most of the proton beam is blocked by the slit, especially when the beam pulse width is short. Therefore, the available beam current is very low, which results in low neutron flux. In this study, we proposed beam modulation using a buncher cavity to increase the available beam current. The ideal field pattern for the buncher cavity is sawtooth. To make the field pattern similar to a sawtooth waveform, a multiharmonic buncher was adopted. The design process for the multiharmonic buncher includes a beam dynamics calculation and three-dimensional electromagnetic simulation. In addition to the system design for pulsed proton generation, a test bench with a microwave ion source is under preparation to test the performance of the system. The design study results concerning the pulsed proton beam generation and the test bench preparation with some preliminary test results are presented in this paper.

  12. Generation of picosecond pulsed coherent state superpositions

    DEFF Research Database (Denmark)

    Dong, Ruifang; Tipsmark, Anders; Laghaout, Amine

    2014-01-01

    We present the generation of approximated coherent state superpositions-referred to as Schrodinger cat states-by the process of subtracting single photons from picosecond pulsed squeezed states of light. The squeezed vacuum states are produced by spontaneous parametric down-conversion (SPDC...

  13. High-energy femtosecond Yb-doped all-fiber monolithic chirped-pulse amplifier at repetition rate of 1 MHz

    Science.gov (United States)

    Lv, Zhi-Guo; Teng, Hao; Wang, Li-Na; Wang, Jun-Li; Wei, Zhi-Yi

    2016-09-01

    A high-energy femtosecond all ytterbium fiber amplifier based on a chirped-pulse amplification (CPA) technique at a repetition rate of 1 MHz seeded by a dispersion-management mode-locked picosecond broadband oscillator is studied. We find that the compressed pulse duration is dependent on the amplified energy, the pulse duration of 804 fs corresponds to the maximum amplified energy of 10.5 μJ, while the shortest pulse duration of 424 fs corresponds to the amplified energy of 6.75 μJ. The measured energy fluctuation is approximately 0.46% root mean square (RMS) over 2 h. The low-cost femtosecond fiber laser source with super-stability will be widely used in industrial micromachines, medical therapy, and scientific studies. Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2012BAC23B03), the National Key Basic Research Program of China (Grant No. 2013CB922401), and the National Natural Science Foundation of China (Grant No. 11474002).

  14. 21 CFR 870.1750 - External programmable pacemaker pulse generator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External programmable pacemaker pulse generator... External programmable pacemaker pulse generator. (a) Identification. An external programmable pacemaker pulse generators is a device that can be programmed to produce one or more pulses at...

  15. 21 CFR 870.3610 - Implantable pacemaker pulse generator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implantable pacemaker pulse generator. 870.3610... pacemaker pulse generator. (a) Identification. An implantable pacemaker pulse generator is a device that has a power supply and electronic circuits that produce a periodic electrical pulse to stimulate...

  16. 21 CFR 870.3600 - External pacemaker pulse generator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External pacemaker pulse generator. 870.3600... pacemaker pulse generator. (a) Identification. An external pacemaker pulse generator is a device that has a power supply and electronic circuits that produce a periodic electrical pulse to stimulate the...

  17. A pulse generator for xenon lamps

    CERN Document Server

    Janata, E

    2002-01-01

    A pulse generator is described, which enhances the analyzing light emitted from a xenon lamp as used in kinetic photospectrometry experiments. The lamp current is increased to 600 A for a duration of 3 ms; the current is constant within +-0.2% during a time interval of 2 ms. Because of instabilities of the lamp arc during pulsing, the use of the enhanced light source is limited to measuring times up to 500 mu s. The enhancement in light intensity depends on the wavelength and amounts to more than 400-fold in the UV-region.

  18. A pulse generator for xenon lamps

    Science.gov (United States)

    Janata, E.

    2002-10-01

    A pulse generator is described, which enhances the analyzing light emitted from a xenon lamp as used in kinetic photospectrometry experiments. The lamp current is increased to 600 A for a duration of 3 ms; the current is constant within ±0.2% during a time interval of 2 ms. Because of instabilities of the lamp arc during pulsing, the use of the enhanced light source is limited to measuring times up to 500 μs. The enhancement in light intensity depends on the wavelength and amounts to more than 400-fold in the UV-region.

  19. Device for generation of pulsed corona discharge

    Science.gov (United States)

    Gutsol, Alexander F [San Ramon, CA; Fridman, Alexander [Marlton, NJ; Blank, Kenneth [Philadelphia, PA; Korobtsev, Sergey [Moscow, RU; Shiryaevsky, Valery [Moscow, RU; Medvedev, Dmitry [Moscow, RU

    2012-05-08

    The invention is a method and system for the generation of high voltage, pulsed, periodic corona discharges capable of being used in the presence of conductive liquid droplets. The method and system can be used, for example, in different devices for cleaning of gaseous or liquid media using pulsed corona discharge. Specially designed electrodes and an inductor increase the efficiency of the system, permit the plasma chemical oxidation of detrimental impurities, and increase the range of stable discharge operations in the presence of droplets of water or other conductive liquids in the discharge chamber.

  20. Generation of Ultra-high Intensity Laser Pulses

    Energy Technology Data Exchange (ETDEWEB)

    N.J. Fisch; V.M. Malkin

    2003-06-10

    Mainly due to the method of chirped pulse amplification, laser intensities have grown remarkably during recent years. However, the attaining of very much higher powers is limited by the material properties of gratings. These limitations might be overcome through the use of plasma, which is an ideal medium for processing very high power and very high total energy. A plasma can be irradiated by a long pump laser pulse, carrying significant energy, which is then quickly depleted in the plasma by a short counterpropagating pulse. This counterpropagating wave effect has already been employed in Raman amplifiers using gases or plasmas at low laser power. Of particular interest here are the new effects which enter in high power regimes. These new effects can be employed so that one high-energy optical system can be used like a flashlamp in what amounts to pumping the plasma, and a second low-power optical system can be used to extract quickly the energy from the plasma and focus it precisely. The combined system can be very compact. Thus, focused intensities more than 10{sup 25} W/cm{sup 2} can be contemplated using existing optical elements. These intensities are several orders of magnitude higher than what is currently available through chirped pump amplifiers.

  1. Laser pulse spectral shaping based on electro-optic modulation

    Institute of Scientific and Technical Information of China (English)

    Yanhai Wang; Jiangfeng Wang; You'en Jiang; Yan Bao; Xuechun Li; Zunqi Lin

    2008-01-01

    A new spectrum shaping method, based on electro-optic modulation, to alleviate gain narrowing in chirped pulse amplification (CPA) system, is described and numerically simulated. Near-Fourier transform-limited seed laser pulse is chirped linearly through optical stretcher. Then the chirped laser pulse is coupled into integrated waveguide electro-optic modulator driven by an aperture-coupled-stripline (ACSL) electricalwaveform generator, and the pulse shape and amplitude are shaped in time domain. Because of the directrelationship between frequency interval and time interval of the linearly chirped pulse, the laser pulse spectrum is shaped correspondingly. Spectrum-shaping examples are modeled numerically to determine the spectral resolution of this technique. The phase error introduced in this method is also discussed.

  2. Enhancement of subharmonic emission from encapsulated microbubbles by using a chirp excitation technique.

    Science.gov (United States)

    Zhang, Dong; Gong, Yanjun; Gong, Xiufen; Liu, Zheng; Tan, Kaibin; Zheng, Hairong

    2007-09-21

    Subharmonic contrast imaging promises to improve ultrasound-imaging quality by taking advantage of an increased contrast to tissue signal. However, acoustic pressures beyond the subharmonic generation threshold using common ultrasound pulses may induce significant contrast microbubble destruction. In this work, a chirp excitation technique is presented to enhance the subharmonic emission from encapsulated microbubbles. Chirp signals with a center frequency of 5 MHz, variable frequency range and duration time are employed to drive microbubbles in numerical simulation and experimental studies. We provide a theoretical evaluation of the chirp excitation pressure threshold and the acoustic pressure dependence of subharmonic based on Church's model and demonstrate that the amplitude and axial resolution of the subharmonic can be optimized by proper selection of the frequency range and time duration of the chirp signal. Measurements are qualitatively in agreement with the simulation. Moreover, we demonstrate that chirp excitation may be able to improve the amplitude of the subharmonic component up to 22 dB over the pulse excitation. The chirp excitation technique could potentially be used for improving the subharmonic contrast imaging quality.

  3. Ultrafast pulse generation in photoconductive switches

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Dykaar, D. R.

    1996-01-01

    Carrier and field dynamics in photoconductive switches are investigated by electrooptic sampling and voltage-dependent reflectivity measurements. We show that the nonuniform field distribution due to the two-dimensional nature of coplanar photoconductive switches, in combination with the large...... difference in the mobilities of holes and electrons, determine the pronounced polarity dependence. Our measurements indicate that the pulse generation mechanism is a rapid voltage breakdown across the photoconductive switch and not a local field breakdown...

  4. Generation and Amplification of Tunable Multicolored Femtosecond Laser Pulses by Using Cascaded Four-Wave Mixing in Transparent Bulk Media

    Science.gov (United States)

    Liu, Jun; Kobayashi, Takayoshi

    2010-01-01

    We have reviewed the generation and amplification of wavelength-tunable multicolored femtosecond laser pulses using cascaded four-wave mixing (CFWM) in transparent bulk media, mainly concentrating on our recent work. Theoretical analysis and calculations based on the phase-matching condition could explain well the process semi-quantitatively. The experimental studies showed: (1) as many as fifteen spectral up-shifted and two spectral down-shifted sidebands were obtained simultaneously with spectral bandwidth broader than 1.8 octaves from near ultraviolet (360 nm) to near infrared (1.2 μm); (2) the obtained sidebands were spatially separated well and had extremely high beam quality with M2 factor better than 1.1; (3) the wavelengths of the generated multicolor sidebands could be conveniently tuned by changing the crossing angle or simply replacing with different media; (4) as short as 15-fs negatively chirped or nearly transform limited 20-fs multicolored femtosecond pulses were obtained when one of the two input beams was negatively chirped and the other was positively chirped; (5) the pulse energy of the sideband can reach a μJ level with power stability better than 1% RMS; (6) broadband two-dimensional (2-D) multicolored arrays with more than ten periodic columns and more than ten rows were generated in a sapphire plate; (7) the obtained sidebands could be simultaneously spectra broadened and power amplified in another bulk medium by using cross-phase modulation (XPM) in conjunction with four-wave optical parametric amplification (FOPA). The characterization showed that this is interesting and the CFWM sidebands generated by this novel method have good enough qualities in terms of power stability, beam quality, and temporal features suited to various experiments such as ultrafast multicolor time-resolved spectroscopy and multicolor-excitation nonlinear microscopy. PMID:22399882

  5. Generation and Amplification of Tunable Multicolored Femtosecond Laser Pulses by Using Cascaded Four-Wave Mixing in Transparent Bulk Media

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2010-04-01

    Full Text Available We have reviewed the generation and amplification of wavelength-tunable multicolored femtosecond laser pulses using cascaded four-wave mixing (CFWM in transparent bulk media, mainly concentrating on our recent work. Theoretical analysis and calculations based on the phase-matching condition could explain well the process semi-quantitatively. The experimental studies showed: (1 as many as fifteen spectral up-shifted and two spectral down-shifted sidebands were obtained simultaneously with spectral bandwidth broader than 1.8 octaves from near ultraviolet (360 nm to near infrared (1.2 μm; (2 the obtained sidebands were spatially separated well and had extremely high beam quality with M2 factor better than 1.1; (3 the wavelengths of the generated multicolor sidebands could be conveniently tuned by changing the crossing angle or simply replacing with different media; (4 as short as 15-fs negatively chirped or nearly transform limited 20-fs multicolored femtosecond pulses were obtained when one of the two input beams was negatively chirped and the other was positively chirped; (5 the pulse energy of the sideband can reach a μJ level with power stability better than 1% RMS; (6 broadband two-dimensional (2-D multicolored arrays with more than ten periodic columns and more than ten rows were generated in a sapphire plate; (7 the obtained sidebands could be simultaneously spectra broadened and power amplified in another bulk medium by using cross-phase modulation (XPM in conjunction with four-wave optical parametric amplification (FOPA. The characterization showed that this is interesting and the CFWM sidebands generated by this novel method have good enough qualities in terms of power stability, beam quality, and temporal features suited to various experiments such as ultrafast multicolor time-resolved spectroscopy and multicolor-excitation nonlinear microscopy.

  6. 35 Volt, 180 Ampere Pulse Generator with Droop Control for Pulsing Xenon Arcs

    DEFF Research Database (Denmark)

    Hviid, T.; Nielsen, S. O.

    1972-01-01

    The pulse generator described works as a combined switch and series current regulator and allows the shape of the current pulse to be adjusted at each optical wavelength to produce a flat pulse of monochromatic light.......The pulse generator described works as a combined switch and series current regulator and allows the shape of the current pulse to be adjusted at each optical wavelength to produce a flat pulse of monochromatic light....

  7. Violation of the transit-time limit toward generation of ultrashort electron bunches with controlled velocity chirp

    Science.gov (United States)

    Jeon, Seok-Gy; Shin, Dongwon; Hur, Min Sup

    2016-09-01

    Various methods to generate ultrashort electron bunches for the ultrafast science evolved from the simple configuration of two-plate vacuum diodes to advanced technologies such as nanotips or photocathodes excited by femtosecond lasers. In a diode either in vacuum or of solid-state, the transit-time limit originating from finite electron mobility has caused spatiotemporal bunch-collapse in ultrafast regime. Here, we show for the first time that abrupt exclusion of transit-phase is a more fundamental origin of the bunch-collapse than the transit-time limit. We found that by significantly extending the cathode-anode gap distance, thereby violating the transit-time limit, the conventional transit-time-related upper frequency barrier in diodes can be removed. Furthermore, we reveal how to control the velocity chirp of bunches leading to ballistic bunch-compression. Demonstration of 0.707 THz-, 46.4 femtosecond-bunches from a 50 μm-wide diode in three-dimensional particle-in-cell simulations shows a way toward simple and compact sources of ultrafast electron bunches for diverse ultrafast sciences.

  8. Generation of intense attosecond x-ray pulses using ultraviolet laser induced microbunching in electron beams

    Directory of Open Access Journals (Sweden)

    D. Xiang

    2009-06-01

    Full Text Available We propose a scheme that combines the echo-enabled harmonic generation technique with the bunch compression and allows one to generate harmonic numbers of a few hundred in a microbunched beam through up-conversion of the frequency of an ultraviolet seed laser. A few-cycle intense laser is used to generate the required energy chirp in the beam for bunch compression and for selection of an attosecond x-ray pulse. Sending this beam through a short undulator results in an intense isolated attosecond x-ray pulse. Using a representative realistic set of parameters, we show that 1 nm x-ray pulse with peak power of a few hundred MW and duration as short as 20 attoseconds (FWHM can be generated from a 200 nm ultraviolet seed laser. The proposed scheme may enable the study of electronic dynamics with a resolution beyond the atomic unit of time (∼24 attoseconds and may open a new regime of ultrafast sciences.

  9. Bandwidth of Gaussian weighted Chirp

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.

    1993-01-01

    Four major time duration and bandwidth expressions are calculated for a linearly frequency modulated sinusoid with Gaussian shaped envelope. This includes a Gaussian tone pulse. The bandwidth is found to be a nonlinear function of nominal time duration and nominal frequency excursion of the chirp...

  10. Coal analysis using the pulsed neutron generator

    Institute of Scientific and Technical Information of China (English)

    JING Shi-Wei; CHI Yan-Tao; ZHAO Xin-Hui; LIU Lin-Mao; GU De-Shan; QIAO Shuang; SANG Hai-Feng; ZHANG Yong-Xiang; ZHANG Zhong-Hua; CAO Xi-Zheng; TIAN Yu-Bing

    2003-01-01

    A prototype of elemental analyzer for coal has been developed by using a PFTNA (pulse fast thermalneutron analysis) system. The PFTNA technology is based on the reactions such as (n, γ), (n, n'γ), (n, Pγ), etc. byexamining the characteristic gamma rays emitted. In our prototype a pulsed neutron generator provides 14 MeV pulseneutrons, which contribute to the separation of spectrum Ⅱ (the sum of capture and activation spectrum) fiom spec-trum Ⅰ (the sum of inelastic, capture and activation spectrum), and thus to the measurement of C and O contents incoal. Data management is completed by computer program using the least-square regression method. The experimentin Changshan Power Plant for 3 months showed that the precision of calorific value, whole water, volatile content andash content is 0.5 k J/kg, 1.0 wt%, 2.0 wt% and 1.5 wt%, respectively.

  11. Effect of the frequency chirp on laser wakefield acceleration

    CERN Document Server

    Pathak, V B; Fonseca, R A; Silva, L O

    2011-01-01

    The role of laser frequency chirps in the laser wakefield accelerator is examined. We show that in the linear regime, the evolution of the laser pulse length is affected by the frequency chirp, and that positive (negative) chirp compresses (stretches) the laser pulse, thereby increasing (decreasing) the peak vector potential and wakefield amplitude. In the blowout regime, the frequency chirp can be used to fine tune the localized etching rates at the front of the laser. In our simulations, chirped laser pulses can lead to 15% higher self-trapped electrons, and 10% higher peak energies as compare to the transform-limited pulse. Chirps may be used to control the phase velocity of the wake, and to relax the self-guiding conditions at the front of the laser. Our predictions are confirmed by multi-dimensional particle-in-cell simulations with OSIRIS.

  12. Dense monoenergetic proton beams from chirped laser-plasma interaction

    CERN Document Server

    Galow, Benjamin J; Liseykina, Tatyana V; Harman, Zoltan; Keitel, Christoph H

    2011-01-01

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen plasma cell is studied analytically and by means of particle-in-cell simulations, respectively. Feasibility of generating ultra-intense (10^7 particles per bunch) and phase-space collimated beams of protons (energy spread of about 1 %) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10^21 W/cm^2.

  13. Dense monoenergetic proton beams from chirped laser-plasma interaction.

    Science.gov (United States)

    Galow, Benjamin J; Salamin, Yousef I; Liseykina, Tatyana V; Harman, Zoltán; Keitel, Christoph H

    2011-10-28

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultraintense (10(7) particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10(21) W/cm(2).

  14. Dense monoenergetic proton beams from chirped laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Galow, Benjamin J.; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Salamin, Yousef I. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Department of Physics, American University of Sharjah, POB 26666, Sharjah (United Arab Emirates); Liseykina, Tatyana V. [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany); Harman, Zoltan [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); ExtreMe Matter Institute EMMI, Planckstrasse 1, 64291 Darmstadt (Germany)

    2012-07-01

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. Feasibility of generating ultra-intense (10{sup 7} particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10{sup 21} W/cm{sup 2}.

  15. Dense monoenergetic proton beams from chirped laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianxing; Galow, Benjamin J.; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Salamin, Yousef I. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Department of Physics, American University of Sharjah, POB 26666, Sharjah (United Arab Emirates); Harman, Zoltan [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); ExtreMe Matter Institute EMMI, Planckstrasse 1, 64291 Darmstadt (Germany)

    2013-07-01

    Interactions of linearly and radially polarized frequency-chirped laser pulses with single protons and hydrogen gas targets are studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultra-intense (10{sup 7} particles per bunch) and phase-space collimated beams of protons is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10{sup 21} W/cm{sup 2}.

  16. High voltage pulse generator. [Patent application

    Science.gov (United States)

    Fasching, G.E.

    1975-06-12

    An improved high-voltage pulse generator is described which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of the first rectifier connected between the first and second capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. The output voltage can be readily increased by adding additional charging networks. The circuit allows the peak level of the output to be easily varied over a wide range by using a variable autotransformer in the charging circuit.

  17. Efficient High-Energy Pulse-Train Generation Using a 2 n-Pulse Michelson Interferometer.

    Science.gov (United States)

    Siders, C W; Siders, J L; Taylor, A J; Park, S G; Weiner, A M

    1998-08-01

    We demonstrate a novel, Michelson-based, ultrafast multiplexer with a throughput approaching 100% for a polarization-multiplexed train and 50% for a linearly polarized train, which is compatible with a high-energy pulse train and shaped-pulse generation. The interpulse spacings in the resultant 2(n)-pulse train can be adjusted continuously from multinanoseconds through zero. Using this interferometer, we also demonstrate generation of a 16-pulse train of terahertz pulses.

  18. Evolution of sum-chirp in polarization multiplexed communication system

    Institute of Scientific and Technical Information of China (English)

    Wang Jing; Wang Zhen-Li

    2004-01-01

    The evolution of sum-chirp for an initially chirped Gaussian pulse is studied in the polarization multiplexed communication system, with fibre attenuation considered. The sum-chirp is found to have the character of saturation.Its value appears different along the two different polarization axes, determined by the incidence polarization angle. We also find that sum-chirp is dominated by the initial chirp at a short distance, and by the cross-phase modulation effect at long distance. And it is influenced apparently by a wavevector mismatch parameter below 10 ps/km. Further, its saturation results from the effective distance determined by fibre attenuation.

  19. 50-GHz repetition-rate, 280-fs pulse generation at 100-mW average power from a mode-locked laser diode externally compressed in a pedestal-free pulse compressor

    Science.gov (United States)

    Tamura, Kohichi R.; Sato, Kenji

    2002-07-01

    280-fs pedestal-free pulses are generated at average output powers exceeding 100 mW at a repetition rate of 50 GHz by compression of the output of a mode-locked laser diode (MLLD) by use of a pedestal-free pulse compressor (PFPC). The MLLD consists of a monolithically integrated chirped distributed Bragg reflector, a gain section, and an electroabsorption modulator. The PFPC is composed of a dispersion-flattened dispersion-decreasing fiber and a dispersion-flattened dispersion-imbalanced nonlinear optical loop mirror. Frequency modulation for linewidth broadening is used to overcome the power limitation imposed by stimulated Brillouin scattering.

  20. Hybrid mid-infrared optical parametric chirped-pulse amplification system with a broadband non-collinear quasi-phase-matched power amplifier

    CERN Document Server

    Mayer, Benedikt W; Gallmann, Lukas; Keller, Ursula

    2014-01-01

    We report a hybrid OPCPA system with the capability of generating broadband mid-infrared idler pulses from a non-collinear quasi-phase-matched power amplifier on the basis of periodically poled MgO:LiNbO3. It is seeded by the idler generated from a two-stage collinear pre-amplifier based on aperiodically poled MgO:LiNbO3. The amplification and pulse compression scheme we use does not require any angular dispersion to be introduced or compensated for on either the seed or the generated idler pulses. The mid-IR idler output has a bandwidth of 800 nm centered at 3.4 $\\mu$m. After compression, we obtain a pulse duration of 43.1 fs (FWHM; 41.4-fs transform limit) and a pulse energy of 17.2 $\\mu$J at a repetition rate of 50 kHz.

  1. Harmonic Generation with Single-Cycle Light Pulses

    Directory of Open Access Journals (Sweden)

    Sukhorukov A.A.

    2013-03-01

    Full Text Available We study theoretically spatiotemporal pulse dynamics in cubic nonlinear media with instant response, nonresonant absorption and normal group velocity dispersion and reveal new features of harmonic generation when the pulse duration is reduced, including the suppression of third-harmonic generation for single-cycle light pulses.

  2. Chirped mirrors with low dispersion ripple.

    Science.gov (United States)

    Pervak, V; Naumov, S; Krausz, F; Apolonski, A

    2007-10-17

    We demonstrate a chirped dielectric multilayer mirror (CM) with controlled reflectivity and dispersion in the wavelength range 760-840 nm. It exhibits a reflectivity of >99.9% and a mean group delay dispersion (GDD) of about -30 fs(2) with a theoretical GDD ripple of less than 0.5 fs(2) in the working spectral range. Deviations of the measured GDD from the calculated one are restricted to less than +/- 3 fs(2), limited by our measurement system. Simulations reveal that a dispersive delay line composed of 120 bounces off these mirrors introduces negligible distortion to a femtosecond pulse and largely preserves its contrast. The mirrors constitute an ideal tool for precision intracavity or extracavity dispersion control in the range of several thousand fs(2), particularly if pulses with high contrast are to be generated.

  3. Double nanosecond pulses generation in ytterbium fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Veiko, V. P.; Samokhvalov, A. A., E-mail: samokhvalov.itmo@gmail.com; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N. [Saint-Petersburg State University of Information Technologies, Mechanics and Optics, Kronverksky Pr. 49, Saint Petersburg (Russian Federation); Lednev, V. N. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation); National University of Science and Technology MISiS, Leninskyave., 4, Moscow (Russian Federation); Pershin, S. M. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation)

    2016-06-15

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential “opening” radio pulses with a delay of 0.2–1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  4. A Study of the Monohydrate and Dihydrate Complexes of Perfluoropropionic Acid Using Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectroscopy.

    Science.gov (United States)

    Grubbs, G S; Obenchain, Daniel A; Frank, Derek S; Novick, Stewart E; Cooke, S A; Serrato, Agapito; Lin, Wei

    2015-10-22

    This work reports the first known spectroscopic observation of the monohydrate and dihydrate complexes of perfluoropropionic acid (PFPA). The spectra have been observed using a chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer in the 7750 to 14,250 MHz region. The structures of the species have been confirmed with the aid of ab initio quantum chemical calculations. Rotational constants A, B, and C have been determined and reported for both species along with centrifugal distortion constants ΔJ, ΔJK, ΔK, δJ, δK for H2O-PFPA and ΔJ, ΔJK, and δJ for (H2O)2-PFPA. Effects due to large amplitude motions were not observable in these experiments. Structures of the complexes have been determined using a combination of experimental second moment values and ab initio results. The complexation of the -OH of one or two water molecules has been found to occur in the plane of the carboxylic acid group forming a six- or eight-member ring.

  5. An Ultra Low Noise Self-Starting Pulse Generator

    DEFF Research Database (Denmark)

    Lasri, J.; Bilenca, A.; Dahan, D.;

    2002-01-01

    We describe a self-starting optical pulse source generating 10 GHz, 15 ps pulses with an average jitter of 43 fs and a o.15% amplitude noise over a frequency range of 500 Hz - 1 MHz.......We describe a self-starting optical pulse source generating 10 GHz, 15 ps pulses with an average jitter of 43 fs and a o.15% amplitude noise over a frequency range of 500 Hz - 1 MHz....

  6. White-light generation with sub-ps pulses.

    Science.gov (United States)

    Calendron, Anne-Laure; Çankaya, Hüseyin; Cirmi, Giovanni; Kärtner, Franz X

    2015-06-01

    We generate white light supercontinuum from slightly sub-picosecond pulses at 1.03 µm and 515 nm. We compare the spectra and stability for various crystals, focusing conditions and pulse durations, and determine the best parameters for sub-picosecond driver pulse duration. Comparing the experimental observations with the theory of white-light generation from Brodeur and Chin, it appears that in this particular range of pump pulse duration, two mechanisms interact and prevent a catastrophic collapse of the beam: multi-photon excitation (typical for ~100-fs-long pulses) and avalanche ionization (typical for >1-ps pulses). The two processes both manifest themselves in different experimental observations.

  7. Self-amplified spontaneous emission free-electron laser with an energy-chirped electron beam and undulator tapering.

    Science.gov (United States)

    Giannessi, L; Bacci, A; Bellaveglia, M; Briquez, F; Castellano, M; Chiadroni, E; Cianchi, A; Ciocci, F; Couprie, M E; Cultrera, L; Dattoli, G; Filippetto, D; Del Franco, M; Di Pirro, G; Ferrario, M; Ficcadenti, L; Frassetto, F; Gallo, A; Gatti, G; Labat, M; Marcus, G; Moreno, M; Mostacci, A; Pace, E; Petralia, A; Petrillo, V; Poletto, L; Quattromini, M; Rau, J V; Ronsivalle, C; Rosenzweig, J; Rossi, A R; Rossi Albertini, V; Sabia, E; Serluca, M; Spampinati, S; Spassovsky, I; Spataro, B; Surrenti, V; Vaccarezza, C; Vicario, C

    2011-04-08

    We report the first experimental implementation of a method based on simultaneous use of an energy chirp in the electron beam and a tapered undulator, for the generation of ultrashort pulses in a self-amplified spontaneous emission mode free-electron laser (SASE FEL). The experiment, performed at the SPARC FEL test facility, demonstrates the possibility of compensating the nominally detrimental effect of the chirp by a proper taper of the undulator gaps. An increase of more than 1 order of magnitude in the pulse energy is observed in comparison to the untapered case, accompanied by FEL spectra where the typical SASE spiking is suppressed.

  8. 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system.

    Science.gov (United States)

    Klenke, Arno; Breitkopf, Sven; Kienel, Marco; Gottschall, Thomas; Eidam, Tino; Hädrich, Steffen; Rothhardt, Jan; Limpert, Jens; Tünnermann, Andreas

    2013-07-01

    We report on a femtosecond fiber laser system comprising four coherently combined large-pitch fibers as the main amplifier. With this system, a pulse energy of 1.3 mJ and a peak power of 1.8 GW are achieved at 400 kHz repetition rate. The corresponding average output power is as high as 530 W. Additionally, an excellent beam quality and efficiency of the combination have been obtained. To the best of our knowledge, such a parameter combination, i.e., gigawatt pulses with half a kilowatt average power, has not been demonstrated so far with any other laser architecture.

  9. A Mutual Pulse Injection-Seeding Scheme for Optical Short Pulse Generation

    Institute of Scientific and Technical Information of China (English)

    D.; N.; Wang

    2003-01-01

    A mutual pulse injection-seeding scheme is developed to produce wavelength tunable optical short pulse generation. The sidemode suppression ratio obtained is more than 31 dB over the wavelength-tuning rang of 18 nm.

  10. Linear transformer driver for pulse generation

    Science.gov (United States)

    Kim, Alexander A; Mazarakis, Michael G; Sinebryukhov, Vadim A; Volkov, Sergey N; Kondratiev, Sergey S; Alexeenko, Vitaly M; Bayol, Frederic; Demol, Gauthier; Stygar, William A

    2015-04-07

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first power delivery module that includes a first charge storage devices and a first switch. The first power delivery module sends a first energy in the form of a first pulse to the load. The linear transformer driver also includes a second power delivery module including a second charge storage device and a second switch. The second power delivery module sends a second energy in the form of a second pulse to the load. The second pulse has a frequency that is approximately three times the frequency of the first pulse. The at least one ferrite ring is positioned to force the first pulse and the second pulse to the load by temporarily isolating the first pulse and the second pulse from an electrical ground.

  11. Linear transformer driver for pulse generation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Alexander A; Mazarakis, Michael G; Sinebryukhov, Vadim A; Volkov, Sergey N; Kondratiev, Sergey S; Alexeenko, Vitaly M; Bayol, Frederic; Demol, Gauthier; Stygar, William A

    2015-04-07

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first power delivery module that includes a first charge storage devices and a first switch. The first power delivery module sends a first energy in the form of a first pulse to the load. The linear transformer driver also includes a second power delivery module including a second charge storage device and a second switch. The second power delivery module sends a second energy in the form of a second pulse to the load. The second pulse has a frequency that is approximately three times the frequency of the first pulse. The at least one ferrite ring is positioned to force the first pulse and the second pulse to the load by temporarily isolating the first pulse and the second pulse from an electrical ground.

  12. High average power picosecond pulse generation from a thulium-doped all-fiber MOPA system.

    Science.gov (United States)

    Liu, Jiang; Wang, Qian; Wang, Pu

    2012-09-24

    We report a stable highly-integrated high power picosecond thulium-doped all-fiber MOPA system without using conventional chirped pulse amplification technique. The master oscillator was passively mode-locked by a SESAM to generate average power of 15 mW at a fundamental repetition rate of 103 MHz in a short linear cavity, and a uniform narrow bandwidth FBG is employed to stabilize the passively mode-locked laser operation. Two-stage double-clad thulium-doped all-fiber amplifiers were used directly to boost average power to 20.7 W. The laser center wavelength was 1962.8 nm and the pulse width was 18 ps. The single pulse energy and peak-power after the amplication were 200 nJ and 11.2 kW respectively. To the best of our knowledge, this is the highest average power ever reported for a picosecond thulium-doped all-fiber MOPA system.

  13. Twenty-watt average output power, picosecond thin-rod Yb:YAG regenerative chirped pulse amplifier with 200 mJ pulse energy

    OpenAIRE

    MATSUBARA, Shinichi; TANAKA, Motoharu; TAKAMA, Masaki; KAWATO, Sakae; Kobayashi, Takao

    2008-01-01

    A high-average power, laser-diode-pumped, picosecond-pulse regenerative chirpedpulse amplifier was developed by using the thin-rod Yb:YAG laser architecture. An averageoutput power of 20 W was achieved at a repetition rate of 100 kHz with an output pulse width of 2ps.

  14. Coherent addition of gratings for chirped-pulse-amplified lasers based on near-field and far-field measurements

    Institute of Scientific and Technical Information of China (English)

    Yuchuan Yang; Hui Luo; Xiao Wang; Fuquan Li; Xiaojun Huang; Bin Feng; Feng Jing

    2011-01-01

    @@ The development of phased-array grating compressor is a crucial issue for high-energy, ultra-short pulse petawatt-class lasers.Almost all systems have adopted a tiled-grating approach to meet the size require-ments for the compression gratings.We present a computer-control test system utilizing near-field interfer-ence and far-field focusing capable of monitoring and fast correcting tiled errors of the grating compressor.In this system, the tilt/tip errors between the two gratings are determined by the Fourier transform (FT)of the individual inteiference fringe, and the piston errors are determined by the ratio of the two primary peaks formed in the far-field pattern as a function of the piston difference.Monochromatic grating phasing is achieved experimentally and pulse compression is demonstrated with a tiled grating system.%The development of phased-array grating compressor is a crucial issue for high-energy, ultra-short pulse petawatt-class lasers. Almost all systems have adopted a tiled-grating approach to meet the size requirements for the compression gratings. We present a computer-control test system utilizing near-field interference and far-field focusing capable of monitoring and fast correcting tiled errors of the grating compressor.In this system, the tilt/tip errors between the two gratings are determined by the Fourier transform (FT)of the individual inter ference fringe, and the piston errors are determined by the ratio of the two primary peaks formed in the far-field pattern as a function of the piston difference. Monochromatic grating phasing is achieved experimentally and pulse compression is demonstrated with a tiled grating system.

  15. Modeling of high power pulse generator based on the non-linear elements of pulsed facilities

    Science.gov (United States)

    Averyanov, G. P.; Dmitrieva, V. V.; Kobylyatskiy, A. V.

    2017-01-01

    The article considered the software implementation mathematical model of the voltage pulse generator with a hard switch. The interactive object-oriented software interface provides the choice of generator parameters and the type of its load, as well as pulses parameters analysis on the load at the generator switching.

  16. Generation of high-photon flux-coherent soft x-ray radiation with few-cycle pulses.

    Science.gov (United States)

    Demmler, Stefan; Rothhardt, Jan; Hädrich, Steffen; Krebs, Manuel; Hage, Arvid; Limpert, Jens; Tünnermann, Andreas

    2013-12-01

    We present a tabletop source of coherent soft x-ray radiation with high-photon flux. Two-cycle pulses delivered by a fiber-laser-pumped optical parametric chirped-pulse amplifier operating at 180 kHz repetition rate are upconverted via high harmonic generation in neon to photon energies beyond 200 eV. A maximum photon flux of 1.3·10(8) photons/s is achieved within a 1% bandwidth at 125 eV photon energy. This corresponds to a conversion efficiency of ~10(-9), which can be reached due to a gas jet simultaneously providing a high target density and phase matching. Further scaling potential toward higher photon flux as well as higher photon energies are discussed.

  17. Single photon generation by pulsed excitation of a single dipole

    CERN Document Server

    Brouri, R; Poizat, J P; Grangier, P; Brouri, Rosa; Beveratos, Alexios; Poizat, Jean-Philippe; Grangier, Philippe

    2000-01-01

    The fluorescence of a single dipole excited by an intense light pulse can lead to the generation of another light pulse containing a single photon. The influence of the duration and energy of the excitation pulse on the number of photons in the fluorescence pulse is studied. The case of a two-level dipole with strongly damped coherences is considered. The presence of a metastable state leading to shelving is also investigated.

  18. One laser pulse generates two photoacoustic signals

    OpenAIRE

    Gao, Fei; Feng, Xiaohua; Bai, Linyi; Zhang, Ruochong; Liu, Siyu; Ding, Ran; Kishor, Rahul; Zhao, Yanli; Zheng, Yuanjin

    2016-01-01

    Photoacoustic sensing and imaging techniques have been studied widely to explore optical absorption contrast based on nanosecond laser illumination. In this paper, we report a long laser pulse induced dual photoacoustic (LDPA) nonlinear effect, which originates from unsatisfied stress and thermal confinements. Being different from conventional short laser pulse illumination, the proposed method utilizes a long square-profile laser pulse to induce dual photoacoustic signals. Without satisfying...

  19. MEDEA II two-pulse generator development

    Science.gov (United States)

    Bieniosek, F. M.; Honig, J.; Theby, E. A.

    1990-06-01

    This article discusses improvements in the efficiency, output power, and operational flexibility of MEDEA II, a double-pulse electron beam accelerator at McDonnell Douglas Research Laboratories. A modified charging circuit, based on the triple-resonance pulse transformer concept, was implemented on both of MEDEA II's two stages. The output switches were modified to increase maximum output voltages, and a new, second output switch with asymmetric breakdown characteristics was developed. To avoid degradation of the second-pulse output waveform at the diode, a keep-alive circuit was installed. The effects of diode closure on double-pulse operation are also discussed.

  20. An analysis of As2S3 chirped fiber grating formed by two-photon absorption effect

    Institute of Scientific and Technical Information of China (English)

    Huaisheng Wang(王淮生); Zhigang Zhang(张志刚); Lu Chai(柴路); Qingyue Wang(王清月)

    2003-01-01

    When femtosecond laser pulses interfere with chirped femtosecond laser pulses in As2S3 fiber, a chirped fiber grating is formed. An analytical expression is given to describe the chirped grating, and its Bragg reflectivity is calculated. Because of the high photosensitive effect of As2S3 material, the chirped fiber grating has a wide Bragg reflective spectrum and high reflectivity by choosing proper parameters. This indicates that the chirped fiber grating can be used as a stretcher in the femtosecond chirped pulse amplification (CPA) system.

  1. A Novel Subnanosecond Monocycle Pulse Generator for UWB Radar Applications

    Directory of Open Access Journals (Sweden)

    Xinfan Xia

    2014-01-01

    Full Text Available A novel ultra-wideband (UWB monocycle pulse generator with good performance is designed and demonstrated in this paper. It contains a power supply circuit, a pulse drive circuit, a unique pulse forming circuit, and a novel monopolar-to-monocycle pulse transition circuit. The drive circuit employs wideband bipolar junction transistors (BJTs and linear power amplifier transistor to produce a high amplitude drive pulse, and the pulse forming circuit uses the transition characteristics of step recovery diode (SRD effectively to produce a negative narrow pulse. At last, the monocycle pulse forming circuit utilizes a novel inductance L short-circuited stub to generate the monocycle pulse directly. Measurement results show that the waveform of the generated monocycle pulses is over 76 V in peak-to-peak amplitude and 3.2 ns in pulse full-width. These characteristics of the monocycle pulse are advantageous for obtaining long detection range and high resolution, when it is applied to ultra-wideband radar applications.

  2. High-Average-Power Diffraction Pulse-Compression Gratings Enabling Next-Generation Ultrafast Laser Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-01

    Pulse compressors for ultrafast lasers have been identified as a technology gap in the push towards high peak power systems with high average powers for industrial and scientific applications. Gratings for ultrashort (sub-150fs) pulse compressors are metallic and can absorb a significant percentage of laser energy resulting in up to 40% loss as well as thermal issues which degrade on-target performance. We have developed a next generation gold grating technology which we have scaled to the petawatt-size. This resulted in improvements in efficiency, uniformity and processing as compared to previous substrate etched gratings for high average power. This new design has a deposited dielectric material for the grating ridge rather than etching directly into the glass substrate. It has been observed that average powers as low as 1W in a compressor can cause distortions in the on-target beam. We have developed and tested a method of actively cooling diffraction gratings which, in the case of gold gratings, can support a petawatt peak power laser with up to 600W average power. We demonstrated thermo-mechanical modeling of a grating in its use environment and benchmarked with experimental measurement. Multilayer dielectric (MLD) gratings are not yet used for these high peak power, ultrashort pulse durations due to their design challenges. We have designed and fabricated broad bandwidth, low dispersion MLD gratings suitable for delivering 30 fs pulses at high average power. This new grating design requires the use of a novel Out Of Plane (OOP) compressor, which we have modeled, designed, built and tested. This prototype compressor yielded a transmission of 90% for a pulse with 45 nm bandwidth, and free of spatial and angular chirp. In order to evaluate gratings and compressors built in this project we have commissioned a joule-class ultrafast Ti:Sapphire laser system. Combining the grating cooling and MLD technologies developed here could enable petawatt laser systems to

  3. 10 GHz pulse source for 640 Gbit/s OTDM based on phase modulator and self-phase modulation

    DEFF Research Database (Denmark)

    Hu, Hao; Mulvad, Hans Christian Hansen; Peucheret, Christophe

    2011-01-01

    to compensate the chirp. The non-linear pulse compression stages are based on self-phase modulation (SPM) in dispersion-flattened highly non-linear fibers (DF-HNLF). The pulse source is tunable over the C-band with negligible pedestal. © 2011 Optical Society of America....... the high pulse quality. The pulse source is based on a linear pulse compression stage followed by two polarization-independent non-linear pulse compression stages. The linear pulse compression stage relies on a phase modulator, which is used to generate linear chirp and followed by a dispersive element...

  4. Characterization of Intermolecular Interactions at Play in the 2,2,2-TRIFLUOROETHANOL Trimers Using Cavity and Chirped-Pulse Microwave Spectroscopy

    Science.gov (United States)

    Seifert, Nathan A.; Thomas, Javix; Jäger, Wolfgang; Xu, Yunjie

    2017-06-01

    2,2,2-trifluoroethanol (TFE) is a common aqueous co-solvent in biological chemistry which may induce or destabilize secondary structures of proteins and polypeptides, thanks to its diverse intermolecular linkages originating from the hydrogen bonding potential of both the hydroxyl and perfluoro groups. Theoretically, the TFE monomer is predicted to have two stable gauche (gauche^{+}/gauche^{-}) conformations whereas the trans form is unstable or is supported only by a very shallow potential. Only the gauche conformers have been identified in the gas phase, whereas liquid phase studies suggest a trans:gauche ratio of 2:3. The question at which sample (cluster) size the trans form of TFE would appear was one major motivation for our study. Here, we report the detection of three trimers of TFE using Balle-Flygare cavity and chirped-pulse Fourier transform microwave spectroscopy (CP-FTMW) techniques. The most stable observed trimer features one trans- and two gauche-TFE subunits. The other two trimers, observed using a newly constructed 2-6 GHz CP-FTMW spectrometer, consist of only the two gauche conformers of TFE. Quantum Theory of Atoms in Molecules (QTAIM) and non-covalent interactions (NCI) analyses give detailed insights into which intermolecular interactions are at play to stabilize the trans form of TFE in the most stable trimer. M. Buck, Q. Rev. Biophys. 1998, 31, 297-335. I. Bakó, T. Radnai, M. Claire, B. Funel, J. Chem. Phys. 2004, 121, 12472-12480. R. F. W. Bader, Chem. Rev. 1991, 91, 893-928. E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-Garcia, A. J. Cohen, W. Yang, J. Am. Chem. Soc., 2010, 132, 6498-6506.

  5. Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

    Science.gov (United States)

    Shalloo, R. J.; Corner, L.; Arran, C.; Cowley, J.; Cheung, G.; Thornton, C.; Walczak, R.; Hooker, S. M.

    2016-09-01

    In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150-170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

  6. Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Shalloo, R.J., E-mail: robert.shalloo@physics.ox.ac.uk; Corner, L.; Arran, C.; Cowley, J.; Cheung, G.; Thornton, C.; Walczak, R.; Hooker, S.M.

    2016-09-01

    In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150–170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

  7. Simple Arduino based pulse generator design for electroporation

    Science.gov (United States)

    Sulaeman, Muhammad Yangki; Widita, Rena

    2015-09-01

    This research will discuss the design of electroporation generator using Arduino as the pulse controller. The pulse parameters are the most important thing in electroporation method, therefore many researches aimed to produce generator to control its parameters easily. Arduino will be used as the microcontroller to create low amplitude signal trigger to get the high voltage pulse for electroporation. 124.4 VDC will be used and tested in cuvette contained NaCl solution with various concentration between 0% - 1%.

  8. Circuit Simulation of Light Ⅱ-A Pulsed Power Generator

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The Light Ⅱ-A pulsed power generator could be divided into the following parts, a Marx generator consisting of 12 spark gap switches and 24 low inductance capacitors (Maxwell Corporation products)

  9. Generation of high harmonics and attosecond pulses with ultrashort laser pulse filaments and conical waves

    Indian Academy of Sciences (India)

    A Couairon; A Lotti; D Faccio; P Di Trapani; D S Steingrube; E Schulz; T Binhammer; U Morgner; M Kovacev; M B Gaarde

    2014-08-01

    Results illustrating the nonlinear dynamics of ultrashort laser pulse filamentation in gases are presented, with particular emphasis on the filament properties useful for developing attosecond light sources. Two aspects of ultrashort pulse filaments are specifically discussed: (i) numerical simulation results on pulse self-compression by filamentation in a gas cell filled with noble gas. Measurements of high harmonics generated by the pulse extracted from the filament allows for the detection of intensity spikes and subcycle pulses generated within the filament. (ii) Simulation results on the spontaneous formation of conical wavepackets during filamentation in gases, which in turn can be used as efficient driving pulses for the generation of high harmonics and isolated attosecond pulses.

  10. Refurbishment Status of Light Ⅱ-A Pulsed Power Generator

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The Light Ⅱ-A pulsed power generator, formerly used to pump KrF laser, was updated around the year 2000 from the original Light Ⅱ, a pulsed power generator built in 1980s at CIAE. This machine was

  11. Optical pulse generator using liquid crystal light valve

    Science.gov (United States)

    Collins, S. A., Jr.

    1984-01-01

    Numerical optical computing is discussed. A design for an optical pulse generator using a Hughes Liquid crystal light valve and intended for application as an optical clock in a numerical optical computer is considered. The pulse generator is similar in concept to the familiar electronic multivibrator, having a flip-flop and delay units.

  12. Optical Pulse Generation with Self-Cascaded Electroabsorption Modulator

    Institute of Scientific and Technical Information of China (English)

    WU Jian; QiU Ji-Fang; ZHOU Guang-Tao; XU Kun; LIN Jin-Tong

    2007-01-01

    A novel scheme for pulse generation with a self-cascaded electroabsorption modulator is presented and experi mentally demonstrated at 10 GHz.In the case of optimal tuning of time delay in the fibre loop,the improvement of 50% on pulsewidth with improved extinction ratio is obtained and the narrowest pulse generated with this method is about 11 ps.

  13. Synchronous pulse generation in a multicavity fiber laser system

    Science.gov (United States)

    Gómez-Pavón, L. C.; Martí-Panameño, E.; Gómez-de la Fuente, O.; Luis-Ramos, A.

    2006-09-01

    We report the experimental synchronous pulse generation in a multicavity fiber laser system with two Erbium-doped fiber laser cavities. We have demonstrated that through the evanescent fields interaction between one cavity with active modulation and other one in continuous wave it is possible to generate more intense pulses in both cavities. Moreover, the synchronous pulse generation between cavities is achieved with an appropriate selection of pump intensity, modulation frequency and coupling ratio. We found that the pulse intensity is 2.5 times greater and the pulse duration lowers than a single Erbium-doper fiber laser. Furthermore, by means of the synchronous diagram we determined the synchronization strength in temporal pulse emission between cavities.

  14. Optical pulse generation system for the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Penko, F; Braucht,; Browning, D; Crane, J K; Dane, B; Deadrick, F; Dreifuerst, G; Henesian, M; Jones, B A; Kot, L; Laumann, C; Martinez, M; Moran, B; Rothenberg, J E; Skulina, K; Wilcox, R B

    1998-06-18

    We describe the Optical Pulse Generation (OPG) system for the National Ignition Facility ( NIF ). The OPG system begins with the Master Oscillator Room ( MOR ) where the initial, seed pulse for the entire laser system is produced and properly formatted to enhance ignition in the target. The formatting consists of temporally shaping the pulse and adding additional bandwidth to increase the coupling of the laser generated x-rays to the high density target plasma. The pulse produced in the MOR fans out to 48 identical preamplifier modules where it is amplified by a factor of ten billion and spatially shaped for injection into the 192 main amplifier chai

  15. Chirped Optical Solitons in Single-mode Birefringent Fibers.

    Science.gov (United States)

    Mahmood, M F

    1996-12-01

    The trapping behavior of two chirped solitons forming a bound state in a single-mode birefringent fiber is investigated on the basis of a model of coupled nonlinear Schroedinger equations. The positive initial chirp plays an important role in controlling the threshold amplitude for soliton trapping without causing excessive pulse broadening.

  16. Generation regimes of bidirectional hybridly mode-locked ultrashort pulse erbium-doped all-fiber ring laser with a distributed polarizer.

    Science.gov (United States)

    Krylov, Alexander A; Chernykh, Dmitriy S; Arutyunyan, Natalia R; Grebenyukov, Vyacheslav V; Pozharov, Anatoly S; Obraztsova, Elena D

    2016-05-20

    We report on the stable picosecond and femtosecond pulse generation from the bidirectional erbium-doped all-fiber ring laser hybridly mode-locked with a coaction of a single-walled carbon nanotube-based saturable absorber and nonlinear polarization evolution that was introduced through the insertion of the short-segment polarizing fiber. Depending on the total intracavity dispersion value, the laser emits conservative solitons, transform-limited Gaussian pulses, or highly chirped stretched pulses with almost 20 nm wide parabolic spectrum in both clockwise (CW) and counterclockwise (CCW) directions of the ring. Owing to the polarizing action in the cavity, we have demonstrated for the first time, to the best of our knowledge, an efficient tuning of soliton pulse characteristics for both CW and CCW channels via an appropriate polarization control. We believe that the bidirectional laser presented may be highly promising for gyroscopic and other dual-channel applications.

  17. Spectral compression of single-photon-level laser pulse

    Science.gov (United States)

    Li, Yuanhua; Xiang, Tong; Nie, Yiyou; Sang, Minghuang; Chen, Xianfeng

    2017-01-01

    We experimentally demonstrate that the bandwidth of single photons laser pulse is compressed by a factor of 58 in a periodically poled lithium niobate (PPLN) waveguide chip. A positively chirped single photons laser pulse and a negatively chirped classical laser pulse are employed to produce a narrowband single photon pulse with new frequency through sum-frequency generation. In our experiment, the frequency and bandwidth of single photons at 1550 nm are simultaneously converted. Our results mark a critical step towards the realization of coherent photonic interface between quantum communication at 1550 nm and quantum memory in the near-visible window. PMID:28240245

  18. a New 2.0-6.0 GHz Chirped Pulse Fourier Transform Microwave Spectrometer: Instrumental Analysis and Initial Molecular Results

    Science.gov (United States)

    Seifert, Nathan A.; Thomas, Javix; Jäger, Wolfgang; Xu, Yunjie

    2017-06-01

    Low frequency microwave spectroscopy (generation 7.5-18.0 GHz spectrometer at the University of Alberta will be presented using the microwave spectrum of methyl lactate as a benchmark. Finally, initial results for several novel molecular systems studied using this new spectrometer, including the tetramer of 2-fluoroethanol, will be presented. C. Perez, S. Lobsiger, N. A. Seifert, D. P. Zaleski, B. Temelso, G. C. Shields, Z. Kisiel, B. H. Pate, Chem. Phys. Lett., 2013, 571, 1-15.

  19. Isolated sub-10 attosecond pulse generation by a 6-fs driving pulse and a 5-fs subharmonic controlling pulse

    Directory of Open Access Journals (Sweden)

    Yunhui Wang

    2012-06-01

    Full Text Available We theoretically study high-order harmonic generation by quantum path control in a special two-color laser field, which is synthesized by a 6 fs/800 nm fundamental pulse and a weaker 5 fs/1600 nm subharmonic controlling pulse. Single quantum path is selected without optimizing any carrier phase, which not only broadens the harmonic bandwidth to 400 eV, but also enhances the harmonic conversion efficiency in comparison with the short-plus-long scheme, which is based on 5 fs/800 nm driving pulse and 6 fs/1600 nm control pulse. An isolated 8-attosecond pulse is produced with currently available ultrafast laser sources.

  20. Cavity Optical Pulse Extraction: ultra-short pulse generation as seeded Hawking radiation.

    Science.gov (United States)

    Eilenberger, Falk; Kabakova, Irina V; de Sterke, C Martijn; Eggleton, Benjamin J; Pertsch, Thomas

    2013-01-01

    We show that light trapped in an optical cavity can be extracted from that cavity in an ultrashort burst by means of a trigger pulse. We find a simple analytic description of this process and show that while the extracted pulse inherits its pulse length from that of the trigger pulse, its wavelength can be completely different. Cavity Optical Pulse Extraction is thus well suited for the development of ultrashort laser sources in new wavelength ranges. We discuss similarities between this process and the generation of Hawking radiation at the optical analogue of an event horizon with extremely high Hawking temperature. Our analytic predictions are confirmed by thorough numerical simulations.

  1. Coherent ultrashort pulse generation from incoherent light by pulse trapping in birefringent fibers.

    Science.gov (United States)

    Shiraki, Eiji; Nishizawa, Norihiko

    2012-05-07

    We investigated the nonlinear fiber phenomena of pulse trapping and amplification between incoherent light and an ultrashort soliton pulse in birefringent fibers both experimentally and numerically. Using the phenomena in a 1.4 km-long low-birefringence fiber, a coherent, nearly transform-limited, sech2-shaped, ultrashort pulse was generated from incoherent light from a super-luminescent diode. The average pulse energy and pulse width were 121 pJ and 640 fs, respectively. The estimated gain of this system was as large as 62 dB.

  2. Sub-nanosecond strong pulse generated by backward Raman scattering

    Institute of Scientific and Technical Information of China (English)

    Zhenhuan Ye(叶震寰); Qihong Lou(楼祺洪); Jingxing Dong(董景星); Yunrong Wei(魏运荣); Lei Ling(凌磊)

    2003-01-01

    Hundreds picosecond strong short-wavelength pulses have been generated by a backward Raman oscillatoramplifier pumped with a 10-J KrF laser from Heaven-1 MOPA system. Not only high power but also highenergy laser pulses have been obtained with an energy conversion efficiency up to 17%. 640-picosecondpulse duration was observed in our experiments by a 1.5-GHz-bandwidth oscilloscope corresponding to 34times of pulse compression rate.

  3. A Theoretical Strategy to Generate an Isolated 80-Attosecond Pulse

    Institute of Scientific and Technical Information of China (English)

    GUO Fu-Ming; YANG Yu-Jun; JIN Ming-Xing; DING Da-Jun; ZHU Qi-Ren

    2009-01-01

    Using a linearly polarized, phase-stabilized 2.66-femtcsecond driving pulse of 400 nm central wavelength orthogonally combined with another linearly polarized long pulse of 800nm central wavelength irradiating jointly on the helium atom, we demonstrate theoretically the generation of a clean isolated 80-attosecond pulse in the spectral region of 93-155 electron volts in a two-dimensional model.

  4. Incoherent broadband optical pulse generation using an optical gate

    Institute of Scientific and Technical Information of China (English)

    Biao Chen; Qiong Jiang

    2008-01-01

    In two-dimensional (2D) time-spreading/wavelength-hopping optical code division multiple access (OCDMA) systems, employing less coherent broadband optical pulse sources allows lower electrical operating rate and better system performance. An optical gate based scheme for generating weakly coherent(approximately incoherent) broadband optical pulses was proposed and experimentally demonstrated. Inthis scheme, the terahertz optical asymmetric demultiplexer, together with a coherent narrowband controlpulse source, turns an incoherent broadband continuous-wave (CW) light source into the required pulse source.

  5. Design of Pulsed Strong Magnetic Fields Generator and Preliminary Application

    Institute of Scientific and Technical Information of China (English)

    WEN Jun; QU Xue-min; WANG Xi-gang; LONG Kai-ping

    2015-01-01

    Objective: This paper aims to designing a pulsed strong magnetic fields generator. Methods: A large value capacitor was used to store electric energy, coil was used for producing magnetic fields, main control, circuit control charge, sampling, discharge, etc. Results: The generator provided a pulsed magnetic field with the ampli-tude of intensity from 0.1-2 T and variable time interval of pulse from 4 s-1 min. It was not only to be operated easily but also performed reliably. Conclusion:The generator will be applied in special clinical diagnosis, therapy and other fields.

  6. Vector similariton erbium-doped all-fiber laser generating sub-100-fs nJ pulses at 100 MHz.

    Science.gov (United States)

    Olivier, Michel; Piché, Michel

    2016-02-08

    Erbium-doped mode-locked fiber lasers with repetition rates comparable to those of solid-state lasers and generating nJ pulses are required for many applications. Our goal was to design a fiber laser that would meet such requirements, that could be built at relatively low cost and that would be reliable and robust. We thus developed a high-fundamental-repetition-rate erbium-doped all-fiber laser operating in the amplifier similariton regime. Experimental characterization shows that this laser, which is mode-locked by nonlinear polarization evolution, emits 76-fs pulses with an energy of 1.17 nJ at a repetition rate of 100 MHz. Numerical simulations support the interpretation of self-similar evolution of the pulse in the gain fiber. More specifically we introduce the concept of vector similariton in fiber lasers. The coupled x- and y- polarization components of such a pulse have a pulse profile with a linear chirp and their combined power profile evolves self-similarly when the nonlinear asymptotic regime is reached in the gain fiber.

  7. Stochastic modeling of the hypothalamic pulse generator activity.

    Science.gov (United States)

    Camproux, A C; Thalabard, J C; Thomas, G

    1994-11-01

    Luteinizing hormone (LH) is released by the pituitary in discrete pulses. In the monkey, the appearance of LH pulses in the plasma is invariably associated with sharp increases (i.e, volleys) in the frequency of the hypothalamic pulse generator electrical activity, so that continuous monitoring of this activity by telemetry provides a unique means to study the temporal structure of the mechanism generating the pulses. To assess whether the times of occurrence and durations of previous volleys exert significant influence on the timing of the next volley, we used a class of periodic counting process models that specify the stochastic intensity of the process as the product of two factors: 1) a periodic baseline intensity and 2) a stochastic regression function with covariates representing the influence of the past. This approach allows the characterization of circadian modulation and memory range of the process underlying hypothalamic pulse generator activity, as illustrated by fitting the model to experimental data from two ovariectomized rhesus monkeys.

  8. Near infrared few-cycle pulses for high harmonic generation

    CERN Document Server

    Driever, Steffen; Delagnes, Jean-Christophe; Fedorov, Nikita; Arnold, Martin; Bigourd, Damien; Cormier, Eric; Guichard, Roland; Constant, Eric; Zair, Amelle

    2014-01-01

    We report on the development of tunable few-cycle pulses with central wavelengths from 1.6 um to 2 um. Theses pulses were used as a proof of principle for high harmonic generation in atomic and molecular targets. In order to generate such pulses we produced a filament in a 4 bar krypton cell. Spectral broadening by a factor of 2 to 3 of a 40 fs near infrared input pulse was achieved. The spectrally broadened output pulses were then compressed by fused silica plates down to the few-cycle regime close to the Fourier limit. The auto-correlation of these pulses revealed durations of about 3 cycles for all investigated central wavelengths. Pulses with a central wavelength of 1.7 um and up to 430 uJ energy per pulse were employed to generate high order harmonics in Xe, Ar and N2. Moving to near infrared few-cycle pulses opens the possibility to operate deeply in the non-perturbative regime with a Keldysh parameter smaller than 1. Hence, this source is suitable for the study of the non-adiabatic tunneling regime in ...

  9. Resonant dispersive waves generated with multi-input femtosecond pulses

    Science.gov (United States)

    Wang, Kai; Peng, Jiahui; Sokolov, Alex

    2010-10-01

    We investigated the resonant dispersive waves generated by high-order dispersion theoretically. We considered different femtosecond pulses propagating in the kagome-lattice hollow-core photonics crystal fibers. The two third order and fourth order resonant dispersive waves would be produced in the visible range to produce the ultrashort pulse.

  10. Experimental study on generation of high energy few cycle pulses with hollow fiber filled with neon

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    25 fs pulses with energy up to 0.8 mJ from a multi-pass amplifier system have been spectrally broadened from 460 nm to 950 nm due to strong self-phase modulation(SPM) effect in a gas filled hollow fiber.Using a set of chirped mirrors,the ul-tra-broadband dispersion compensation was achieved,and the compressed pulses reached their transform limit.Under optimized conditions we achieved pulses with duration of 5.1 fs and with energy of 400 μJ,corresponding to the peak power up to 80 GW.

  11. Experimental study on generation of high energy few cycle pulses with hollow fiber filled with neon

    Institute of Scientific and Technical Information of China (English)

    ZHU JiangFeng; WANG Peng; HAN HaiNian; TENG Hao; WEI ZhiYi

    2008-01-01

    25 fs pulses with energy up to 0.8 mJ from a multi-pass amplifier system have been spectrally broadened from 460 nm to 950 nm due to strong self-phase modulation (SPM) effect in a gas filled hollow fiber. Using a set of chirped mirrors, the ul-tra-broadband dispersion compensation was achieved, and the compressed pulses reached their transform limit. Under optimized conditions we achieved pulses with duration of 5.1 fs and with energy of 400 μJ, corresponding to the peak power up to 80 GW.

  12. Influence of generalized focusing of few-cycle Gaussian pulses in attosecond pulse generation

    CERN Document Server

    Karimi, Ebrahim; Tosa, Valer; Velotta, Raffaele; Marrucci, Lorenzo

    2013-01-01

    In contrast to the case of quasi-monochromatic waves, a focused optical pulse in the few-cycle limit may exhibit two independent curved wavefronts, associated with phase and group retardations, respectively. Focusing optical elements will generally affect these two wavefronts differently, thus leading to very different behavior of the pulse near focus. As limiting cases, we consider an ideal diffractive lens introducing only phase retardations and a perfect non-dispersive refractive lens (or a curved mirror) introducing equal phase and group retardations. We study the resulting diffraction effects on the pulse, finding both strong deformations of the pulse shape and shifts in the spectrum. We then show how important these effects can be in highly nonlinear optics, by studying their role in attosecond pulse generation. In particular, the focusing effects are found to affect substantially the generation of isolated attosecond pulses in gases from few-cycle fundamental optical fields.

  13. Coupled Optoelectronic Oscillators:. Application to Low-Jitter Pulse Generation

    Science.gov (United States)

    Yu, N.; Tu, M.; Maleki, L.

    2002-04-01

    Actively mode-locked Erbium-doped fiber lasers (EDFL) have been studied for generating stable ultra-fast pulses ( 5 GHz) [1,2]. These devices can be compact and environmentally stable, quite suitable for fiber-based high-data-rate communications and optical ultra-fast analog-to-digital conversions (ADC) [3]. The pulse-to-pulse jitter of an EDFL-based pulse generator will be ultimately limited by the phase noise of the mode-locking microwave source (typically electronic frequency synthesizers). On the other hand, opto-electronic oscillators (OEO) using fibers have been demonstrated to generate ultra-low phase noise microwaves at 10 GHz and higher [4]. The overall phase noise of an OEO can be much lower than commercially available synthesizers at the offset-frequency range above 100 Hz. Clearly, ultra-low jitter pulses can be generated by taking advantage of the low phase noise of OEOs. In this paper, we report the progress in developing a new low-jitter pulse generator by combing the two technologies. In our approach, the optical oscillator (mode-locked EDFL) and the microwave oscillator (OEO) are coupled through a common Mach-Zehnder (MZ) modulator, thus named coupled opto-electronic oscillator (COEO) [5]. Based on the results of previous OEO study, we can expect a 10 GHz pulse train with jitters less than 10 fs.

  14. Plasma generated during underwater pulsed laser processing

    Science.gov (United States)

    Hoffman, Jacek; Chrzanowska, Justyna; Moscicki, Tomasz; Radziejewska, Joanna; Stobinski, Leszek; Szymanski, Zygmunt

    2017-09-01

    The plasma induced during underwater pulsed laser ablation of graphite is studied both experimentally and theoretically. The results of the experiment show that the maximum plasma temperature of 25000 K is reached 20 ns from the beginning of the laser pulse and decreases to 6500 K after 1000 ns. The observed OH absorption band shows that the plasma plume is surrounded by the thin layer of dissociated water vapour at a temperature around 5500 K. The hydrodynamic model applied shows similar maximum plasma temperature at delay times between 14 ns and 30 ns. The calculations show also that already at 14th ns, the plasma electron density reaches 0.97·1027 m-3, which is the critical density for 1064 nm radiation. At the same time the plasma pressure is 2 GPa, which is consisted with earlier measurements of the peak pressure exerted on a target in similar conditions.

  15. Diffraction of Ultrashort Pulse on a Nanoscale Conductive Cone

    CERN Document Server

    Golovinski, P A; Manuylovich, E S

    2015-01-01

    Surface plasmon polariton is collective oscillation of the free electrons at metal dielectric interface. As a wave phenomenon, surface plasmon polaritons can be focused using appropriate excitation geometry of metallic structures. We theoretically demonstrate the possibility of controlling nanoscale short pulse superfocusing based on the generation of radially polarized surface plasmon polariton mode of conical metallic tip. Numerical simulation for femtosecond pulse propagation along a silver nano-needle is discussed. The spatial distribution for a near field strongly depends on a linear chirp of the laser pulse which can partially compensate the wave dispersion. Field distribution is calculated for different chirp values, opening angles and distances. For a pulse with a negative chirp, pulse duration becomes shorter with amplification ~40.

  16. Nonlinear Pulse Shaping in Fibres for Pulse Generation and Optical Processing

    Directory of Open Access Journals (Sweden)

    Sonia Boscolo

    2012-01-01

    Full Text Available The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion.

  17. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network.

    Science.gov (United States)

    Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang; Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin

    2014-06-01

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.

  18. A PC-controlled voltage pulse generator for electroanalytical applications

    Science.gov (United States)

    Heredia-López, Francisco J.; Góngora-Alfaro, José L.; Alvarez-Cervera, Fernando J.; Bata-García, José Luis

    1997-04-01

    We present the design of a voltage pulse generator controlled by an IBM or compatible AT Personal Computer (PC) capable of synthesizing some of the voltage pulse wave forms commonly used in electrochemical studies. The included signals are: differential pulse voltametry, differential normal pulse voltametry, and differential pulse amperometry. Additionally, a triangular wave form and a constant-voltage signal, used in the pretreatment of carbon fiber microelectrodes for neurochemical analysis, are also available. Operating the generator imposes a minimum of restrictions on the specification of the duration, amplitude, and type of wave shapes. Low-cost PC-based design allows for compatibility, portability, and versatility. The operating ranges of the wave form parameters for the three voltametric signals are: initial voltage, -0.9-+0.9 V; step amplitude, 0.1-900 mV; period, 6 ms-60 s; measuring pulse amplitude, 0.1-900 mV; measuring pulse duration, 2 ms-20 s; prepulse duration, 2 ms-20 s. In the electrode pretreatment mode, the operating ranges are: amplitude, 0-±5 V; duration, unlimited; frequency, 15-240 Hz. The generator uses its own time base for the generation of all signals, thereby rendering it independent of processor clock speed or power-line frequency. The results of the experimental evaluation indicate that the system is accurate within ±10% of the expected values, taking into account the errors associated with the signal synthesis and the digitizing process. The maximum achievable scan rate is 500 V/s, and the highest frequency for the triangular wave form is 240 Hz. Therefore, the pulse generator could be used for fast cyclic voltametry (FCV). FCV and other wave forms could be added through software modules, without any hardware changes. We conclude that the PC-based electrochemistry pulse generator represents an economical and flexible alternative for electroanalytical applications.

  19. Electron dynamics from low-order harmonics generated by short laser pulses

    Science.gov (United States)

    Xiong, Wei-Hao; Gong, Qihuang; Peng, Liang-You

    2017-08-01

    Recently, low-order harmonics have gained much attention due to their applications as coherent light sources with a high repetition rate. In addition, the generation process is highly related to the bound electrons and can thus be applied to detect the dynamics of these electrons. In this work, we theoretically investigate the low-order harmonics below the first excited state, produced by a single-cycle optical pulse. We numerically solve the three-dimensional time-dependent Schrödinger equation (TDSE) to calculate the harmonic spectrum. With the help of a perturbation model, we can transparently understand the generation process of the spectrum. The results indicate that the harmonic spectrum can be sensitively influenced by the frequency component of the driving field. We find that the carrier envelope phase (CEP) dependence of low-order-harmonic generation originates from the interference of different harmonic orders. For these harmonics, the CEP effects can only be observed when the spectrum of the driving laser is extremely wide, which corresponds to the very short driving pulse. From the CEP-dependent interference structure, the phase relation of the third and the fifth harmonic can be extracted. The extracted information indicates that the atomic response induces a positive chirp for the emitted low-order harmonics. In addition, we investigated the harmonic phase calculated from the TDSE results. The harmonic phase is different from the phase predicted by the adiabatic model, and this phase difference can be related to the time delay of the electronic response. We extract the time delay from the harmonic phase and explore the CEP and intensity dependence of this time delay.

  20. Recent progress in picosecond pulse generation from semiconductor lasers

    Science.gov (United States)

    Auyeung, J. C.; Johnston, A. R.

    1982-01-01

    This paper reviews the recent progress in producing picosecond optical pulses from semiconductor laser diodes. The discussion concentrates on the mode-locking of a semiconductor laser diode in an external resonator. Transform-limited optical pulses ranging from several picoseconds to subpicosecond durations have been observed with active and passive mode-locking. Even though continuing research on the influence of impurities and defects on the mode-locking process is still needed, this technique has good promise for being utilized in fiber-optic communication systems. Alternative methods of direct electrical and optical excitation to produce ultrashort laser pulses are also described. They can generate pulses of similar widths to those obtained by mode-locking. The pulses generated will find applications in laser ranging and detector response measurement.

  1. Effects of temperature on chirp rates of tree crickets (Orthoptera ...

    African Journals Online (AJOL)

    1991-10-02

    Oct 2, 1991 ... with temperature, pulse rates and chirp rates of the calling songs of crickets ..... ty for confusion may increase at low temperatures in certain species. In Drosophila ... Songs and the physics of sound production. In: Cricket ...

  2. Phosphate Nd:glass materials for femtosecond pulse generation

    Science.gov (United States)

    Agnesi, Antonio; Carrà, Luca; Reali, Giancarlo

    2008-08-01

    Two different phosphate Nd-doped glasses have been investigated in a diode-pumped femtosecond laser. To our knowledge, only Schott's phosphate glasses were previously used in femtosecond oscillators. A slightly different behaviour was observed in our experiments, with respect to earlier reports: clean sech 2-pulses with duration <400 fs were routinely generated with wavelength corresponding to the fluorescence peak ≈1054 nm, whereas shorter pulses occurred at red-shifted wavelengths near 1067 nm. With a single 1-W pump diode (broad area emitter), cw slope efficiency as high as 32% and 139-fs pulse generation were demonstrated.

  3. Nanosecond Pulse Shaping with Fiber-Based Electro-Optical Modulators and a Double-Pass Tapered Amplifier

    CERN Document Server

    Rogers, Charles E

    2015-01-01

    We describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.

  4. Femtosecond pulse generation and amplification in Yb-doped fibre oscillator–amplifier system

    Indian Academy of Sciences (India)

    P K Mukhopadhyay

    2010-11-01

    In recent times ytterbium (Yb) doped fibre-based mode-locked master oscillator and power amplifier have attracted a great deal of interest because of their inherent advantages like flexibility, reliability, compactness, high power handling capability and diffraction limited output beam quality as compared to the solid-state counterpart. But, to successfully develope of high-power femtosecond oscillator–amplifier system based on Yb- doped fibre, an appropriate choice of the mode-locking regime and the amplifier geometry are required. Development of an all-fibre integrated high-power Yb-doped fibre oscillator–amplifier system in which the advantages of a fibre-based system can be fully exploited remained a challenge as it requires the careful optimization of dispersion, nonlinearity, gain and ASE contribution. In this article, femto-second pulse generation in Yb-doped fibre oscillator in different mode-locking regimes are reviewed and the details of development and characterization of an all-fibre, high-power, low-noise amplifier system seeded by an all-normal-dispersion mode-locked Yb-doped fibre laser oscillator is described. More than 10 W of average power is obtained from the fibre oscillator–amplifier system at a repetition rate of 43 MHz with diffraction-limited beam quality. Amplified pulses are de-chirped to sub-160 fs duration in a grating compressor. This is the first 10 W-level source of femtosecond pulses with completely fibre-integrated amplification comprised of commercially available components.

  5. Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification.

    Science.gov (United States)

    Wenger, Jérôme; Tualle-Brouri, Rosa; Grangier, Philippe

    2004-06-01

    A new scheme is described for the generation of pulsed squeezed light by use of femtosecond pulses that have been parametrically deamplified through a single pass in a thin (100-microm) potassium niobate crystal with a significant deamplification of approximately -3 dB. The quantum noise of each pulse is registered in the time domain by single-shot homodyne detection operated with femtosecond pulses; the best squeezed quadrature variance was 1.87 dB below the shot-noise level. Such a scheme provides a basic resource for time-resolved quantum communication protocols.

  6. Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification

    CERN Document Server

    Wenger, J; Grangier, P

    2004-01-01

    A new scheme is described for pulsed squeezed light generation using femtosecond pulses parametrically deamplified through a single pass in a thin (0.1mm) potassium niobate KNbO3 crystal, with a significant deamplification of about -3dB. The quantum noise of each individual pulse is registered in the time domain using a single-shot homodyne detection operated with femtosecond pulses and the best squeezed quadrature variance was measured to be 1.87 dB below the shot noise level. Such a scheme provides the basic ressource for time-resolved quantum communication protocols.

  7. Generation of Low Jitter Laser Diode Pulse With External Pulse Injection

    Institute of Scientific and Technical Information of China (English)

    Wang Yuncai; Olaf Reimann; Dieter Huhse; Dieter Bimberg

    2003-01-01

    One gain-switched laser diode(LD) was used as external injection seeding source, to reduce the timing jitter of another gain-switched LD, This technique can generate low jitter, frequency-free and wavelength tunable laser pulse.

  8. Pulse generation and preamplification for long pulse beamlines of Orion laser facility.

    Science.gov (United States)

    Hillier, David I; Winter, David N; Hopps, Nicholas W

    2010-06-01

    We describe the pulse generation, shaping, and preamplification system for the nanosecond beamlines of the Orion laser facility. The system generates shaped laser pulses of up to approximately 1 J of 100 ps-5 ns duration with a programmable temporal profile. The laser has a 30th-power supergaussian spatial profile and is diffraction limited. The system is capable of imposing 2D smoothing by spectral dispersion upon the beam, which will produce a nonuniformity of 10% rms at the target.

  9. Soft x-ray generation in gases with an ultrashort pulse laser

    Energy Technology Data Exchange (ETDEWEB)

    Ditmire, Todd Raymond [Univ. of California, Davis, CA (United States)

    1996-01-08

    An experimental investigation of soft x-ray production resulting from the interaction of intense near infra-red laser radiation with gases is presented in this thesis. Specifically, soft x-ray generation through high order harmonic generation or exploiting intense inverse bremsstrahlung heating is examined. Most of these studies are conducted with femtosecond, terawatt class Cr:LiSrAlF6 (LiSAF) laser, though results derived from studies with other laser systems are presented as well. The majority of this work is devoted to experimental investigations, however, theoretical and computational models are developed to interpret the data. These studies are motivated by the possibility of utilizing the physics of intense laser/matter interactions as a potential compact source of bright x-rays. Consequently, the thrust of many of the experiments conducted is aimed at characterizing the x-rays produced for possible use in applications. In general, the studies of this manuscript fall into three categories. First, a unique 130 fs, 8 TW laser that is based on chirped pulse amplification, is described, and its performance is evaluated. The generation of x-rays through high order harmonics is then discussed with emphasis on characterizing and optimizing harmonic generation. Finally, the generation of strong, incoherent x-ray radiation by the intense irradiation of large (>1,000 atom) clusters in gas jets, is explored. The physics of laser energy absorption by clusters illuminated with intensities of 1015 to 1017 W/cm2 is considered in detail. X-ray spectroscopy of the hot plasmas that result from the irradiation of the clusters is conducted, and energy transport and kinetics issues in these plasmas are discussed.

  10. 40 Gb/s Pulse Generation Using Gain Switching of a Commercially Available Laser Module

    DEFF Research Database (Denmark)

    Nørregaard, Jesper; Hanberg, Jesper; Franck, Thorkild

    1999-01-01

    between the microwave substrate and the RF feed-through in the wall of the module. The module is build as a 14 pin butterfly package with the RF feed-through designed as a coplanar 50 ohm impedance port. Included in the module are a built-in optical isolator, a thermistor, a thermo-electric cooler...... to ease RF connection. The laser die is connected to a gold plated AlN microwave substrate that also acts as a heat spreader. The microwave substrate contains an impedance matching resistor for the RF signal as well as a bias-T for the DC bias. 50 ohm Flexguide technology is used for the interconnection......, and a photodiode for optical power monitoring.The RF input port was connected to the driver circuit using a coplanar microwave probe. A DC bias and a large signal modulation at 10 GHz was applied to the module to generate chirped pulses. A linear as well as a non-linear soliton compression was used with optical...

  11. Generation of short electrical pulses based on bipolar transistorsny

    Directory of Open Access Journals (Sweden)

    M. Gerding

    2004-01-01

    Full Text Available A system for the generation of short electrical pulses based on the minority carrier charge storage and the step recovery effect of bipolar transistors is presented. Electrical pulses of about 90 ps up to 800 ps duration are generated with a maximum amplitude of approximately 7V at 50Ω. The bipolar transistor is driven into saturation and the base-collector and base-emitter junctions become forward biased. The resulting fast switch-off edge of the transistor’s output signal is the basis for the pulse generation. The fast switching of the transistor occurs as a result of the minority carriers that have been injected and stored across the base-collector junction under forward bias conditions. If the saturated transistor is suddenly reverse biased the pn-junction will appear as a low impedance until the stored charge is depleted. Then the impedance will suddenly increase to its normal high value and the flow of current through the junction will turn to zero, abruptly. A differentiation of the output signal of the transistor results in two short pulses with opposite polarities. The differentiating circuit is implemented by a transmission line network, which mainly acts as a high pass filter. Both the transistor technology (pnp or npn and the phase of the transfer function of the differentating circuit influence the polarity of the output pulses. The pulse duration depends on the transistor parameters as well as on the transfer function of the pulse shaping network. This way of generating short electrical pulses is a new alternative for conventional comb generators based on steprecovery diodes (SRD. Due to the three-terminal structure of the transistor the isolation problem between the input and the output signal of the transistor network is drastically simplified. Furthermore the transistor is an active element in contrast to a SRD, so that its current gain can be used to minimize the power of the driving signal.

  12. Subpicosecond pulse generation from an all solid-state laser

    Science.gov (United States)

    Keen, S. J.; Ferguson, A. I.

    1989-11-01

    An all-solid-state (holosteric) laser source which produces subpicosecond pulses at 1.4 microns is described. The system consists of a diode laser pumped Nd:YAG laser which is frequency-modulated (FM) mode-locked and Q-switched at 1.32 microns. In continuous wave operation the laser produces pulses of 19 ps while simultaneous Q-switching and mode-locking result in 30 ps pulses being contained in a Q-switched envelope of energy 2.1 microJ. The output of the laser, when passed through a 1 km single-mode optical fiber, produces a spectrally broad Raman signal with its peak at 1.4 microns and the overall conversion efficiency at 12 percent. The pulse duration at 1.4 microns has been measured to be 280 fs. This is the first time that subpicosecond light pulses have been generated by an all-solid-state laser system.

  13. Methods of Attosecond X-Ray Pulse Generation

    CERN Document Server

    Zholents, Alexander

    2005-01-01

    Our attitude towards attosecond x-ray pulses has changed dramatically over the past several years. Not long ago x-ray pulses with a duration of a few hundred attoseconds were just science fiction for most of us, but they are already a tool for some researchers in present days. Breakthrough progress in the generation of solitary soft x-ray pulses of attosecond duration has been made by the laser community. Following this lead, people in the free electron laser community have begun to develop new ideas on how to generate attosecond x-ray pulses in the hard x-ray energy range. In this report I will review some of these ideas.

  14. High voltage magnetic pulse generation using capacitor discharge technique

    Directory of Open Access Journals (Sweden)

    M. Rezal

    2014-12-01

    Full Text Available A high voltage magnetic pulse is designed by applying an electrical pulse to the coil. Capacitor banks are developed to generate the pulse current. Switching circuit consisting of Double Pole Double Throw (DPDT switches, thyristor, and triggering circuit is developed and tested. The coil current is measured using a Hall-effect current sensor. The magnetic pulse generated is measured and tabulated in a graph. Simulation using Finite Element Method Magnetics (FEMM is done to compare the results obtained between experiment and simulation. Results show that increasing the capacitance of the capacitor bank will increase the output voltage. This technology can be applied to areas such as medical equipment, measurement instrument, and military equipment.

  15. Pulse generator with intermediate inductive storage as a lightning simulator

    Science.gov (United States)

    Kovalchuk, B. M.; Kharlov, A. V.; Zherlytsyn, A. A.; Kumpyak, E. V.; Tsoy, N. V.

    2016-06-01

    Compact transportable generators are required for simulating a lightning current pulse for electrical apparatus testing. A bi-exponential current pulse has to be formed by such a generator (with a current rise time of about two orders of magnitude faster than the damping time). The objective of this study was to develop and investigate a compact pulse generator with intermediate inductive storage and a fuse opening switch as a simulator of lightning discharge. A Marx generator (six stages) with a capacitance of 1 μF and an output voltage of 240 kV was employed as primary storage. In each of the stages, two IK-50/3 (50 kV, 3 μF) capacitors are connected in parallel. The generator inductance is 2 μH. A test bed for the investigations was assembled with this generator. The generator operates without SF6 and without oil in atmospheric air, which is very important in practice. Straight copper wires with adjustable lengths and diameters were used for the electro-explosive opening switch. Tests were made with active-inductive loads (up to 0.1 Ω and up to 6.3 μH). The current rise time is lower than 1200 ns, and the damping time can be varied from 35 to 125 μs, following the definition of standard lightning current pulse in the IEC standard. Moreover, 1D MHD calculations of the fuse explosion were carried out self-consistently with the electric circuit equations, in order to calculate more accurately the load pulse parameters. The calculations agree fairly well with the tests. On the basis of the obtained results, the design of a transportable generator was developed for a lightning simulator with current of 50 kA and a pulse shape corresponding to the IEEE standard.

  16. Pulse generator with intermediate inductive storage as a lightning simulator.

    Science.gov (United States)

    Kovalchuk, B M; Kharlov, A V; Zherlytsyn, A A; Kumpyak, E V; Tsoy, N V

    2016-06-01

    Compact transportable generators are required for simulating a lightning current pulse for electrical apparatus testing. A bi-exponential current pulse has to be formed by such a generator (with a current rise time of about two orders of magnitude faster than the damping time). The objective of this study was to develop and investigate a compact pulse generator with intermediate inductive storage and a fuse opening switch as a simulator of lightning discharge. A Marx generator (six stages) with a capacitance of 1 μF and an output voltage of 240 kV was employed as primary storage. In each of the stages, two IK-50/3 (50 kV, 3 μF) capacitors are connected in parallel. The generator inductance is 2 μH. A test bed for the investigations was assembled with this generator. The generator operates without SF6 and without oil in atmospheric air, which is very important in practice. Straight copper wires with adjustable lengths and diameters were used for the electro-explosive opening switch. Tests were made with active-inductive loads (up to 0.1 Ω and up to 6.3 μH). The current rise time is lower than 1200 ns, and the damping time can be varied from 35 to 125 μs, following the definition of standard lightning current pulse in the IEC standard. Moreover, 1D MHD calculations of the fuse explosion were carried out self-consistently with the electric circuit equations, in order to calculate more accurately the load pulse parameters. The calculations agree fairly well with the tests. On the basis of the obtained results, the design of a transportable generator was developed for a lightning simulator with current of 50 kA and a pulse shape corresponding to the IEEE standard.

  17. A compact bipolar pulse-forming network-Marx generator based on pulse transformers

    Science.gov (United States)

    Zhang, Huibo; Yang, Jianhua; Lin, Jiajin; Yang, Xiao

    2013-11-01

    A compact bipolar pulse-forming network (PFN)-Marx generator based on pulse transformers is presented in this paper. The high-voltage generator consisted of two sets of pulse transformers, 6 stages of PFNs with ceramic capacitors, a switch unit, and a matched load. The design is characterized by the bipolar pulse charging scheme and the compact structure of the PFN-Marx. The scheme of bipolar charging by pulse transformers increased the withstand voltage of the ceramic capacitors in the PFNs and decreased the number of the gas gap switches. The compact structure of the PFN-Marx was aimed at reducing the parasitic inductance in the generator. When the charging voltage on the PFNs was 35 kV, the matched resistive load of 48 Ω could deliver a high-voltage pulse with an amplitude of 100 kV. The full width at half maximum of the load pulse was 173 ns, and its rise time was less than 15 ns.

  18. A compact high-voltage pulse generator based on pulse transformer with closed magnetic core.

    Science.gov (United States)

    Zhang, Yu; Liu, Jinliang; Cheng, Xinbing; Bai, Guoqiang; Zhang, Hongbo; Feng, Jiahuai; Liang, Bo

    2010-03-01

    A compact high-voltage nanosecond pulse generator, based on a pulse transformer with a closed magnetic core, is presented in this paper. The pulse generator consists of a miniaturized pulse transformer, a curled parallel strip pulse forming line (PFL), a spark gap, and a matched load. The innovative design is characterized by the compact structure of the transformer and the curled strip PFL. A new structure of transformer windings was designed to keep good insulation and decrease distributed capacitance between turns of windings. A three-copper-strip structure was adopted to avoid asymmetric coupling of the curled strip PFL. When the 31 microF primary capacitor is charged to 2 kV, the pulse transformer can charge the PFL to 165 kV, and the 3.5 ohm matched load can deliver a high-voltage pulse with a duration of 9 ns, amplitude of 84 kV, and rise time of 5.1 ns. When the load is changed to 50 ohms, the output peak voltage of the generator can be 165 kV, the full width at half maximum is 68 ns, and the rise time is 6.5 ns.

  19. Synthesizing genetic sequential logic circuit with clock pulse generator.

    Science.gov (United States)

    Chuang, Chia-Hua; Lin, Chun-Liang

    2014-05-28

    Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal.

  20. A Vector Network Analyzer Based on Pulse Generators

    Directory of Open Access Journals (Sweden)

    B. Schulte

    2005-01-01

    Full Text Available A fast four channel network analyzer is introduced to measure S-parameters in a frequency range from 10MHz to 3GHz. The signal generation for this kind of analyzer is based on pulse generators, which are realized with bipolar transistors. The output signal of the transistor is differentiated and two short pulses, a slow and a fast one, with opposite polarities are generated. The slow pulse is suppressed with a clipping network. Thus the generation of very short electrical pulses with a duration of about 100ps is possible. The structure of the following network analyzer is similar to the structure of a conventional four channel network analyzer. All four pulses, which contain the high frequency information of the device under test, are evaluated after the digitalization of intermediate frequencies. These intermediate frequencies are generated with sampling mixers. The recorded data is evaluated with a special analysis technique, which is based on a Fourier transformation. The calibration techniques used are the same as for conventional four channel network analyzers, no new calibration techniques need to be developed.

  1. Dark pulse generation in fiber lasers incorporating carbon nanotubes.

    Science.gov (United States)

    Liu, H H; Chow, K K

    2014-12-01

    We demonstrate the generation of dark pulses from carbon nanotube (CNT) incorporated erbium-doped fiber ring lasers with net anomalous dispersion. A side-polished fiber coated with CNT layer by optically-driven deposition method is embedded into the laser in order to enhance the birefringence and nonlinearity of the laser cavity. The dual-wavelength domain-wall dark pulses are obtained from the developed CNT-incorporated fiber laser at a relatively low pump threshold of 50.6 mW. Dark pulses repeated at the fifth-order harmonic of the fundamental cavity frequency are observed by adjusting the intra-cavity polarization state.

  2. Generation of nanosecond S band microwave pulses based on superradiance

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, N.S.; Zotova, I.V.; Rozental, R.M. [Russian Academy of Science, Institute of Applied Physics, Nizhny Novgorod (RU)] [and others

    2002-06-01

    Modeling carried out demonstrates possibility of generation of gigawatt power level S band microwave pulse with duration of several nanoseconds using superradiation of short electron beam moving along slow-wave periodical structure. A 10 ns / 500 keV / 5 kA accelerator of Kanazawa University can be used in such experiments. It is shown that significant increasing peak power can be obtained by optimization of voltage and current pulses waveforms. Required increasing of electron energy and current by the end of electron pulse can be achieved by using self-acceleration of a short beam passing through a system of passive cavities. (author)

  3. Short pulse generation and high speed communication system

    Science.gov (United States)

    Fan, Honglei

    Ultrahigh-speed optical time-division-multiplexing (TDM) transmission technologies are essential to construct ultrahigh-speed all-optical networks needed in the multimedia era. In order to realize high-speed optical TDM systems, ultra-short pulses should be generated. In this dissertation, the gain switching and mode locking techniques have been analyzed and used to produce ultra- short pulses. Gain-switched pulses with a width of ~18ps have been obtained. The theoretical analysis on gain-switching phenomena has been carried out. A new approach for the simulation of the spectrum of a gain- switched laser has been developed. The principle of mode locking has been discussed. ~6.5ps, pulses have been obtained from a monolithic mode-locked distributed Bragg reflector (DBR) laser, which are the shortest pulses from the actively mode- locked DBR lasers as we know. ~1.1ps pulses have been achieved from a colliding-pulse mode-locked (CPM) laser. The operation principle of CPM lasers has been discussed. Pulse compression using dispersion-compensating fiber has been applied in order to get shorter pulses. The semiconductor optical amplifier (SOA) plays a very important role in TDM systems. The cross gain modulation (XGM) measurements on a 2-section SOA, using both cw and pulsed pump and probe beams, have been performed. A theoretical analysis has been carried out. Wavelength conversion and fiber transmission experiments have been achieved at different bit rates. The basic idea of TDM system has been discussed. Multiplexing has been achieved using fibers. Demulitplexing has been demonstrated using XGM in SOA, four-wave mixing (FWM) in SOA, and cascaded modulators. The operation principles have been discussed in detail. The FWM experiments between two optical pulses have been performed.

  4. Neonate Auditory Brainstem Responses to CE-Chirp and CE-Chirp Octave Band Stimuli I: Versus Click and Tone Burst Stimuli.

    Science.gov (United States)

    Cobb, Kensi M; Stuart, Andrew

    The purpose of the study was to generate normative auditory brainstem response (ABR) wave component peak latency and amplitude values for neonates with air- and bone-conducted CE-Chirps and air-conducted CE-Chirp octave band stimuli (i.e., 500, 1000, 2000, and 4000 Hz). A second objective was to compare neonate ABRs to CE-Chirp stimuli with ABR responses to traditional click and tone burst stimuli with the same stimulus parameters. Participants were 168 healthy neonates. ABRs were obtained to air- and bone-conducted CE-Chirp and click stimuli and air-conducted CE-Chirp octave band and tone burst stimuli. The effects of stimulus level, rate, and polarity were examined with air-conducted CE-Chirps and clicks. The effect of stimulus level was also examined with bone-conducted CE-Chirps and clicks and air-conducted CE-Chirp octave band stimuli. In general, ABR wave V amplitudes to air- and bone-conducted CE-Chirp stimuli were significantly larger (p CE-Chirp and CE-Chirp octave band stimuli relative to traditional click and tone burst stimuli. ABRs to air- and bone-conducted CE-Chirps and CE-Chirp octave band stimuli may be valuable in the assessment of newborn infants. However, the prognostic value of such stimuli needs to be validated.

  5. Nonlinear temporal pulse cleaning techniques and application

    Institute of Scientific and Technical Information of China (English)

    Yi; Xu; Jianzhou; Wang; Yansui; Huang; Yanyan; Li; Xiaomin; Lu; Yuxin; Leng

    2013-01-01

    Two different pulse cleaning techniques for ultra-high contrast laser systems are comparably analysed in this work.The first pulse cleaning technique is based on noncollinear femtosecond optical-parametric amplification(NOPA)and second-harmonic generation(SHG)processes.The other is based on cross-polarized wave(XPW)generation.With a double chirped pulse amplifier(double-CPA)scheme,although temporal contrast enhancement in a high-intensity femtosecond Ti:sapphire chirped pulse amplification(CPA)laser system can be achieved based on both of the techniques,the two different pulse cleaning techniques still have their own advantages and are suitable for different contrast enhancement requirements of different laser systems.

  6. A Tesla-pulse forming line-plasma opening switch pulsed power generator

    Science.gov (United States)

    Novac, B. M.; Kumar, R.; Smith, I. R.

    2010-10-01

    A pulsed power generator based on a high-voltage Tesla transformer which charges a 3.85 Ω/55 ns water-filled pulse forming line to 300 kV has been developed at Loughborough University as a training tool for pulsed power students. The generator uses all forms of insulation specific to pulsed power technology, liquid (oil and water), gas (SF6), and magnetic insulation in vacuum, and a number of fast voltage and current sensors are implemented for diagnostic purposes. A miniature (centimeter-size) plasma opening switch has recently been coupled to the output of the pulse forming line, with the overall system comprising the first phase of a program aimed at the development of a novel repetitive, table-top generator capable of producing 15 GW pulses for high power microwave loads. Technical details of all the generator components and the main experimental results obtained during the program and demonstrations of their performance are presented in the paper, together with a description of the various diagnostic tools involved. In particular, it is shown that the miniature plasma opening switch is capable of reducing the rise time of the input current while significantly increasing the load power. Future plans are outlined in the conclusions.

  7. Enhancement of Ultracold Molecule Formation Using Shaped Nanosecond Frequency Chirps

    CERN Document Server

    Carini, J L; Kosloff, R; Gould, P L

    2016-01-01

    We demonstrate that judicious shaping of a nanosecond-time-scale frequency chirp can dramatically enhance the formation rate of ultracold $^{87}$Rb$_{2}$ molecules. Starting with ultracold $^{87}$Rb atoms, we apply pulses of frequency-chirped light to first photoassociate the atoms into excited molecules and then, later in the chirp, de-excite these molecules into a high vibrational level of the lowest triplet state, $a \\, ^{3}\\Sigma_{u}^{+}$. The enhancing chirp shape passes through the absorption and stimulated emission transitions relatively slowly, thus increasing their adiabaticity, but jumps quickly between them to minimize the effects of spontaneous emission. Comparisons with quantum simulations for various chirp shapes support this enhancement mechanism.

  8. Controllable generation of partially coherent light pulses with direct space-to-time pulse shaper.

    Science.gov (United States)

    Torres-Company, Víctor; Mínguez-Vega, Gladys; Lancis, Jesús; Friberg, Ari T

    2007-06-15

    We demonstrate the possibility of creating user-defined partially coherent light pulses by means of a slight modification of the direct space-to-time pulse shaper. Specifically, we generate a mutual coherence function that corresponds to the independent-elementary-pulse representation model. The theoretical limits in the parameter of global coherence and the efficiency of the system are studied. Our result opens the door to a new way of quantum control in laser-assisted chemical reactions, namely, control by partial coherence.

  9. Songbirds use pulse tone register in two voices to generate low-frequency sound

    DEFF Research Database (Denmark)

    Jensen, Kenneth Kragh; Cooper, Brenton G.; Larsen, Ole Næsbye

    2007-01-01

    generation alternates between the left and right sound sources. Spontaneously calling crows can also generate similar pulse characteristics with only one sound generator. Airflow recordings in zebra finches and starlings show that pulse tone sounds can be generated unilaterally, synchronously...

  10. Short pulse generation by laser slicing at NSLSII

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.; Blednykh, A.; Guo, W.; Krinsky, S.; Li, Y.; Shaftan, T.; Tchoubar, O.; Wang, G.; Willeke, F.; Yang, L.

    2011-03-28

    We discuss an upgrade R&D project for NSLSII to generate sub-pico-second short x-ray pulses using laser slicing. We discuss its basic parameters and present a specific example for a viable design and its performance. Since the installation of the laser slicing system into the storage ring will break the symmetry of the lattice, we demonstrate it is possible to recover the dynamical aperture to the original design goal of the ring. There is a rapid growth of ultrafast user community interested in science using sub-pico-second x-ray pulses. In BNL's Short Pulse Workshop, the discussion from users shows clearly the need for a sub-pico-second pulse source using laser slicing method. In the proposal submitted following this workshop, NSLS team proposed both hard x-ray and soft x-ray beamlines using laser slicing pulses. Hence there is clearly a need to consider the R&D efforts of laser slicing short pulse generation at NSLSII to meet these goals.

  11. High-voltage pulsed generator for dynamic fragmentation of rocks.

    Science.gov (United States)

    Kovalchuk, B M; Kharlov, A V; Vizir, V A; Kumpyak, V V; Zorin, V B; Kiselev, V N

    2010-10-01

    A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ∼50 ns, current amplitude of ∼6 kA with the 40 Ω active load, and ∼20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.

  12. A single-shot spatial chirp method for measuring initial AC conductivity evolution of femtosecond laser pulse excited warm dense matter

    Science.gov (United States)

    Chen, Z.; Hering, P.; Brown, S. B.; Curry, C.; Tsui, Y. Y.; Glenzer, S. H.

    2016-11-01

    To study the rapid evolution of AC conductivity from ultrafast laser excited warm dense matter (WDM), a spatial chirp single-shot method is developed utilizing a crossing angle pump-probe configuration. The pump beam is shaped individually in two spatial dimensions so that it can provide both sufficient laser intensity to excite the material to warm dense matter state and a uniform time window of up to 1 ps with sub-100 fs FWHM temporal resolution. Temporal evolution of AC conductivity in laser excited warm dense gold was also measured.

  13. Software emulator of nuclear pulse generation with different pulse shapes and pile-up

    Science.gov (United States)

    Pechousek, Jiri; Konecny, Daniel; Novak, Petr; Kouril, Lukas; Kohout, Pavel; Celiktas, Cuneyt; Vujtek, Milan

    2016-08-01

    The optimal detection of output signals from nuclear counting devices represents one of the key physical factors that govern accuracy and experimental reproducibility. In this context, the fine calibration of the detector under diverse experimental scenarios, although time costly, is necessary. However this process can be rendered easier with the use of systems that work in lieu of emulators. In this report we describe an innovative programmable pulse generator device capable to emulate the scintillation detector signals, in a way to mimic the detector performances under a variety of experimental conditions. The emulator generates a defined number of pulses, with a given shape and amplitude in the form of a sampled detector signal. The emulator output is then used off-line by a spectrometric system in order to set up its optimal performance. Three types of pulse shapes are produced by our device, with the possibility to add noise and pulse pile-up effects into the signal. The efficiency of the pulse detection, pile-up rejection and/or correction, together with the dead-time of the system, are therein analyzed through the use of some specific algorithms for pulse processing, and the results obtained validate the beneficial use of emulators for the accurate calibration process of spectrometric systems.

  14. Software emulator of nuclear pulse generation with different pulse shapes and pile-up

    Energy Technology Data Exchange (ETDEWEB)

    Pechousek, Jiri, E-mail: jiri.pechousek@upol.cz [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Konecny, Daniel [Department of Optics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 77 146 Olomouc (Czech Republic); Novak, Petr; Kouril, Lukas; Kohout, Pavel [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Celiktas, Cuneyt [Department of Physics, Faculty of Science, Ege University, Bornova, Izmir (Turkey); Vujtek, Milan [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic)

    2016-08-21

    The optimal detection of output signals from nuclear counting devices represents one of the key physical factors that govern accuracy and experimental reproducibility. In this context, the fine calibration of the detector under diverse experimental scenarios, although time costly, is necessary. However this process can be rendered easier with the use of systems that work in lieu of emulators. In this report we describe an innovative programmable pulse generator device capable to emulate the scintillation detector signals, in a way to mimic the detector performances under a variety of experimental conditions. The emulator generates a defined number of pulses, with a given shape and amplitude in the form of a sampled detector signal. The emulator output is then used off-line by a spectrometric system in order to set up its optimal performance. Three types of pulse shapes are produced by our device, with the possibility to add noise and pulse pile-up effects into the signal. The efficiency of the pulse detection, pile-up rejection and/or correction, together with the dead-time of the system, are therein analyzed through the use of some specific algorithms for pulse processing, and the results obtained validate the beneficial use of emulators for the accurate calibration process of spectrometric systems.

  15. High-intensity, high-contrast laser pulses generated from the fully diode-pumped Yb:glass laser system POLARIS.

    Science.gov (United States)

    Hornung, Marco; Keppler, Sebastian; Bödefeld, Ragnar; Kessler, Alexander; Liebetrau, Hartmut; Körner, Jörg; Hellwing, Marco; Schorcht, Frank; Jäckel, Oliver; Sävert, Alexander; Polz, Jens; Arunachalam, Ajay Kawshik; Hein, Joachim; Kaluza, Malte C

    2013-03-01

    We report on the first generation of high-contrast, 164 fs duration pulses from the laser system POLARIS reaching focused peak intensities in excess of 2×10(20) W/cm2. To our knowledge, this is the highest peak intensity reported so far that has been achieved with a diode-pumped, solid-state laser. Several passive contrast enhancement techniques have been specially developed and implemented, achieving a relative prepulse intensity smaller than 10(-8) at t=-30 ps before the main pulse. Furthermore a closed-loop adaptive-optics system has been installed. Together with angular chirp compensation, this method has led to a significant reduction of the focal spot size and an increase of the peak intensity.

  16. Autonomous Magnetoexplosive Generator of Megavolt, 100 NS Pulses

    Science.gov (United States)

    Gurin, V. Ye.; Kataev, V. N.; Korolev, P. V.; Kargin, V. I.; Makartsev, G. F.; Nudikov, V. N.; Pikar, A. S.; Popkov, N. F.; Saratov, A. F.

    2004-11-01

    Here we present the results of the work carried out at different stages aimed at the development of autonomous magnetocumulative generators having 100 ns megavolt pulses. This generator is meant to replace the PIRIT-01 stationary facility by a magnetocumulative energy source. Using a generator with permanent magnets as a source of initial energy and multiplying this energy by a cascade of magnetoexplosive generators allows 100 kJ of energy accumulation in a contour. The generator that has a permanent magnet does not need an additional energy source for its operation. It is convenient to operate and is always available for service. Shortening the MC generator current pulse up to 1 μs is implemented using a high-voltage explosive driven opening switch. In the first sharpening cascade, the voltage increases up to 500 kV. Further shortening of the current pulse duration up to 100 ns and the voltage rise up to 1 MV are performed using plasma opening switches according to the two-stage formation scheme. Such a scheme allows the decrease of electric field strength on the insulator surface and the use of magnetic insulation in the high-voltage section of the facility.

  17. Variable Power, Short Microwave Pulses Generation using a CW Magnetron

    Directory of Open Access Journals (Sweden)

    CIUPA, R.

    2011-05-01

    Full Text Available Fine control of microwave power radiation in medical and scientific applications is a challenging task. Since a commercial Continuous Wave (CW magnetron is the most inexpensive microwave device available today on the market, it becomes the best candidate for a microwave power generator used in medical diathermy and hyperthermia treatments or high efficiency chemical reactions using microwave reactors as well. This article presents a new method for driving a CW magnetron with short pulses, using a modified commercial Zero Voltage Switching (ZVS inverter, software driven by a custom embedded system. The microwave power generator designed with this method can be programmed for output microwave pulses down to 1% of the magnetron's power and allows microwave low frequency pulse modulation in the range of human brain electrical activity, intended for medical applications. Microwave output power continuous control is also possible with the magnetron running in the oscillating area, using a dual frequency Pulse Width Modulation (PWM, where the low frequency PWM pulse is modulating a higher resonant frequency required by the ZVS inverter's transformer. The method presented allows a continuous control of both power and energy (duty-cycle at the inverter's output.

  18. Subfemtosecond X-ray Pulses Produced Directly by High Harmonic Generation

    Institute of Scientific and Technical Information of China (English)

    WANG Ying-Song; XU Zhi-Zhan

    2000-01-01

    The generation of subfemtosecond pulses in hydrogen-like atoms through high-harmonic generation by using superintense multicycle driver pulses is numerically investigated. It is shown that a single subfemtosecond pulse can be directly generated when the driver pulse is strong enough to deplete the neutral atoms within several optical cycles. The propagation effect is neglected during the numerical examinations.

  19. Supercontinuum generation in standard telecom fiber using picoseconds pulses

    Science.gov (United States)

    Estudillo-Ayala, J. M.; Rojas-Laguna, R.; Hernandez-Garcia, J. C.; Pottiez, O.; Mata-Chavez, R. I.; Trejo-Duran, M.; Jauregui-Vazquez, D.; Sierra-Hernandez, J. M.; Andrade-Lucio, J. A.

    2012-02-01

    We reported Supercontinuum (SC) generation in standard telecom fiber using picosecond pulses of microchip laser. The pulses width is 700 ps at 1064 nm, using 57 m long of standard fiber, and the spectra extend from 700 to above 1700 nm, some 100 nm further into the visible. The physical processes leading to the formation of the continuum spectrum were studied by monitoring the growth of the SC while increasing the input power. The coupling efficiency of ours experimental setup between the microchip laser and the telecom fiber helped us to obtain this wide spectrum.

  20. Tailoring of XUV supercontinua through coherent control of high-order harmonic generation

    CERN Document Server

    Holgado, W; Alonso, B; Miranda, M; Silva, F; Plaja, L; Crespo, H; Sola, I J

    2016-01-01

    We present observations of the emission of XUV supercontinua in the 20-37 eV region by high harmonic generation (HHG) with 4-7 fs pulses focused onto a Kr gas jet. The underlying mechanism relies on coherent control of the relative delays and phases between individually generated attosecond pulses, achievable by adjusting the chirp of the driving pulses and the interaction geometry. Under adequate chirp and phase matching conditions the resulting interference will yield a supercontinuum XUV spectrum. This technique opens the route for modifying the phase of individual attosecond pulses and for the coherent synthesis of XUV supercontinua without the need of an isolated attosecond burst.

  1. Beamlet pulse-generation and wavefront-control system

    Energy Technology Data Exchange (ETDEWEB)

    Van Wonterghem, B.M.; Salmon, J.T.; Wilcox, R.W.

    1996-06-01

    The Beamlet pulse-generation system (or {open_quotes}front end{close_quotes}) refers to the laser hardware that generates the spatially and temporally shaped pulse that is injected into the main laser cavity. All large ICF lasers have pulse-generation systems that typically consist of a narrow-band oscillator, elector-optic modulators for temporal and bandwidth shaping, and one or more preamplifiers. Temporal shaping is used to provide the desired laser output pulse shape and also to compensate for gain saturation effects in the large-aperture amplifiers. Bandwidth is applied to fulfill specific target irradiation requirements and to avoid stimulated Brillouin scattering (SBS) in large-aperture laser components. Usually the sharp edge of the beam`s spatial intensity profile is apodized before injection in the main amplifier beam line. This prevents large-amplitude ripples on the intensity profile. Here the authors briefly review the front-end design and discuss improvements to the oscillator and modulator systems. Their main focus, however, is to describe Beamlet`s novel beam-shaping and wavefront-control systems that have recently been fully activated and tested.

  2. Repetition rate tunable ultra-short optical pulse generation based on electrical pattern generator

    Institute of Scientific and Technical Information of China (English)

    Xin Fu; Hongming Zhang; Meng Yan; Minyu Yao

    2009-01-01

    @@ An actively mode-locked laser with tunable repetition rate is proposed and experimentally demonstrated based on a programmable electrical pattern generator.By changing the repetition rate of the electrical patterns applied on the in-cavity modulator, the repetition rate of the output optical pulse sequences changes accordingly while the pulse width of the optical pulse train remains almost constant.In other words, the output ultra-short pulse train has a tunable duty cycle.In a proof-of-principle experiment, optical pulses with repetition rates of 10, 5, 2.5 and 1.25 GHz are obtained by adjusting the electrical pattern applied on the in-cavity modulator while their pulse widths remain almost unchanged.

  3. A 70 kV solid-state high voltage pulse generator based on saturable pulse transformer.

    Science.gov (United States)

    Fan, Xuliang; Liu, Jinliang

    2014-02-01

    High voltage pulse generators are widely applied in many fields. In recent years, solid-state and operating at repetitive mode are the most important developing trends of high voltage pulse generators. A solid-state high voltage pulse generator based on saturable pulse transformer is proposed in this paper. The proposed generator is consisted of three parts. They are charging system, triggering system, and the major loop. Saturable pulse transformer is the key component of the whole generator, which acts as a step-up transformer and main switch during working process of this generator. The circuit and working principles of the proposed pulse generator are introduced first in this paper, and the saturable pulse transformer used in this generator is introduced in detail. Circuit of the major loop is simulated to verify the design of the system. Demonstration experiments are carried out, and the results show that when the primary energy storage capacitor is charged to a high voltage, such as 2.5 kV, a voltage with amplitude of 86 kV can be achieved on the secondary winding. The magnetic core of saturable pulse transformer is saturated deeply and the saturable inductance of the secondary windings is very small. The switch function of the saturable pulse transformer can be realized ideally. Therefore, a 71 kV output voltage pulse is formed on the load. Moreover, the magnetic core of the saturable pulse transformer can be reset automatically.

  4. CIAE 600 kV ns pulse neutron generator

    CERN Document Server

    Shen Guan Ren; Guan Xia Ling

    2001-01-01

    The overall composition of CIAE 600 kV ns Pulse Neutron Generator (CPNG) are introduced, and its characteristic, main technological performance and application were also given. CPNG consists of high voltage power supply with highest output voltage 600 kV, direct current 15 mA, stability and ripple <=0.1%, 2214 mm x 1604 mm x 1504 mm stainless steel high voltage electrode, built in head equipment uniform field accelerating tube, ns pulsed installation, turbomolecular vacuum pump system and drift pipes at 0 degree and 45 degree. Its characteristics are: (1) high current beam; (2) high current beam ns pulsed installation made use of low energy for chopper and high energy for buncher; (3) compactly laid out and simple in structure

  5. Multiple THz pulse generation with variable energy ratio and delay

    Science.gov (United States)

    Ungureanu, R. G.; Grigore, O. V.; Dinca, M. P.; Cojocaru, G. V.; Ursescu, D.; Dascalu, T.

    2015-04-01

    Two methods for multiple high energetic THz pulse generation by two-color filamentation in air with controllable energy ratio and delay ranging from one to hundreds of ps were investigated. In the first method the laser pulse is split into two inside the optical stretcher of a CPA laser system, the resulting consecutive filaments occur in the same region and allows the study of the influence of the first plasma filament on the THz emission of the delayed filament. Based on a polarization sensitive thin film beam splitter placed in front of a 45° mirror, the second method produces multiple parallel consecutive filaments. Above a certain total pump level the THz energy delivered by multiple pulses exceeds the value given by a single filament for the same pump energy, thereby overcoming the THz emission saturation of the single filament.

  6. Generation of powerful ultrashort electromagnetic pulses based on superradiance

    CERN Document Server

    Ginzburg, N S; Novozhilova, Y V; Sergeev, A S; Phelps, A D R; Cross, A W; Wiggins, S M; Ronald, K; Shpak, V G; Yalandin, M I; Shunailov, S A; Ulmaskulov, M R

    2001-01-01

    Experimental results of the observation of superradiation from intense, subnanosecond electron bunches moving through a periodic waveguide and interacting with a backward propagating TM sub 0 sub 1 wave are presented. The ultra-short microwave pulses in Ka, W, and G band were generated with repetition frequencies of up to 25 Hz. Observation of RF breakdown of ambient air, as well as direct measurements by hot-carrier germanium detectors, leads to an estimate of the peak power as high as 60-120 MW for the 300-400 ps pulses at 38 GHz. The initial observation of 75 GHz 10-15 MW radiation pulses with duration less than 150 ps, and of 150 GHz microwave spikes with a risetime of 75ps are also reported. Comparison with simulations is discussed as well.

  7. The VELOCE pulsed power generator for isentropic compression experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ao, Tommy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Asay, James Russell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Chantrenne, Sophie J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Hickman, Randall John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Willis, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Shay, Andrew W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Grine-Jones, Suzi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Hall, Clint Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Baer, Melvin R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center

    2007-12-01

    Veloce is a medium-voltage, high-current, compact pulsed power generator developed for isentropic and shock compression experiments. Because of its increased availability and ease of operation, Veloce is well suited for studying isentropic compression experiments (ICE) in much greater detail than previously allowed with larger pulsed power machines such as the Z accelerator. Since the compact pulsed power technology used for dynamic material experiments has not been previously used, it is necessary to examine several key issues to ensure that accurate results are obtained. In the present experiments, issues such as panel and sample preparation, uniformity of loading, and edge effects were extensively examined. In addition, magnetohydrodynamic (MHD) simulations using the ALEGRA code were performed to interpret the experimental results and to design improved sample/panel configurations. Examples of recent ICE studies on aluminum are presented.

  8. Applications of chirped Raman adiabatic rapid passage to atom interferometry

    Science.gov (United States)

    Kotru, Krish; Butts, David L.; Kinast, Joseph M.; Johnson, David M. S.; Radojevic, Antonije M.; Timmons, Brian P.; Stoner, Richard E.

    2012-02-01

    We present robust atom optics, based on chirped Raman adiabatic rapid passage (ARP), in the context of atom interferometry. Such ARP light pulses drive coherent population transfer between two hyperfine ground states by sweeping the frequency difference of two fixed-intensity optical fields with large single photon detunings. Since adiabatic transfer is less sensitive to atom temperature and non-uniform Raman beam intensity than standard Raman pulses, this approach should improve the stability of atom interferometers operating in dynamic environments. In such applications, chirped Raman ARP may also provide advantages over the previously demonstrated stimulated Raman adiabatic passage (STIRAP) technique, which requires precise modulation of beam intensity and zeroing of the single photon detuning. We demonstrate a clock interferometer with chirped Raman ARP pulses, and compare its stability to that of a conventional Raman pulse interferometer. We also discuss potential improvements to inertially sensitive atom interferometers. Copyright 2011 by The Charles Stark Draper Laboratory, Inc. All rights reserved.

  9. Few-cycle pulse generation from noncollinear optical parametric amplifier with static dispersion compensation

    Science.gov (United States)

    Adachi, Shunsuke; Watanabe, Yuya; Sudo, Yuki; Suzuki, Toshinori

    2017-09-01

    We present a novel design of a few-cycle noncollinear optical parametric amplifier (NOPA) pumped by the second harmonic of a Ti:sapphire laser. A quasi-transform-limited sub-6 fs pulse width was realized by static dispersion compensation with commercially available chirped mirrors. The performance of the NOPA was tested by performing transient absorption spectroscopy on sensory rhodopsin II, and we observe short-lived oscillatory components that are associated with the vibrational coherence from the isomerizing molecule in the excited electronic state.

  10. Influence of laser frequency chirp on deuteron energy from laser-driven deuterated methane cluster expansion

    Science.gov (United States)

    Li, H. Y.; Liu, J. S.

    2010-06-01

    The simulations of three-dimensional particle dynamics are carried out to investigate the Coulomb explosion dynamics of deuterated methane clusters under the irradiation of an ultrashort intense laser pulse. The final kinetic energy of deuterons produced from the cluster explosion is calculated as a function of the pulse width, the laser intensity and the pulse chirp. It is found that the deuteron energy obtained in an intense laser pulse with negative chirp is higher than that with positive chirp, which agrees qualitatively with the experimental results reported by Fukuda et al. [Y. Fukuda et al., Phys. Rev. A 67, 061201 (2003)].

  11. Generation of large-bandwidth x-ray free-electron-laser pulses

    Directory of Open Access Journals (Sweden)

    Angela Saa Hernandez

    2016-09-01

    Full Text Available X-ray free-electron lasers (XFELs are modern research tools in disciplines such as biology, material science, chemistry, and physics. Besides the standard operation that aims at minimizing the bandwidth of the produced XFEL radiation, there is a strong scientific demand to produce large-bandwidth XFEL pulses for several applications such as nanocrystallography, stimulated Raman spectroscopy, and multiwavelength anomalous diffraction. We present a self-consistent method that maximizes the XFEL pulse bandwidth by systematically maximizing the energy chirp of the electron beam at the undulator entrance. This is achieved by optimizing the compression scheme and the electron distribution at the source in an iterative back-and-forward tracking. Start-to-end numerical simulations show that a relative bandwidth of 3.25% full-width can be achieved for the hard x-ray pulses in the SwissFEL case.

  12. Generation of high energy, 30 fs pulses at 527 nm by hollow-fiber compression technique.

    Science.gov (United States)

    Xia, J; Altucci, C; Amoruso, S; Bruzzese, R; Velotta, R; Wang, X

    2008-03-17

    The compression of 300-fs-long, chirp-free laser pulses at 527 nm down to 30 fs is reported. The laser pulses, originated from a frequency-doubled, mode-locked Nd:glass laser, were compressed by a 0.7-m-long, 150-microm-bore-diameter, argon-filled hollow fiber, and a pair of SF10 prisms with a final energy of 160 microJ. These are the shortest, high energy pulses ever produced by direct pulse compression at the central wavelength of 527 nm. The spectral broadening of the pulses propagating inside the hollow fiber was experimentally examined for various filling-gas pressures and input pulse energies. The spectral width of the pulses was broadened up to 25 nm, and 27 nm for argon- and krypton-filled hollow fiber, respectively, at a gas pressure lower than 2 bar. The physical limitations of the hollow-fiber pulse compression technique applied in the visible range are also studied.

  13. Nanosecond pulsed laser generation of holographic structures on metals

    Science.gov (United States)

    Wlodarczyk, Krystian L.; Ardron, Marcus; Weston, Nick J.; Hand, Duncan P.

    2016-03-01

    A laser-based process for the generation of phase holographic structures directly onto the surface of metals is presented. This process uses 35ns long laser pulses of wavelength 355nm to generate optically-smooth surface deformations on a metal. The laser-induced surface deformations (LISDs) are produced by either localized laser melting or the combination of melting and evaporation. The geometry (shape and dimension) of the LISDs depends on the laser processing parameters, in particular the pulse energy, as well as on the chemical composition of a metal. In this paper, we explain the mechanism of the LISDs formation on various metals, such as stainless steel, pure nickel and nickel-chromium Inconel® alloys. In addition, we provide information about the design and fabrication process of the phase holographic structures and demonstrate their use as robust markings for the identification and traceability of high value metal goods.

  14. Learning robust pulses for generating universal quantum gates

    Science.gov (United States)

    Dong, Daoyi; Wu, Chengzhi; Chen, Chunlin; Qi, Bo; Petersen, Ian R.; Nori, Franco

    2016-01-01

    Constructing a set of universal quantum gates is a fundamental task for quantum computation. The existence of noises, disturbances and fluctuations is unavoidable during the process of implementing quantum gates for most practical quantum systems. This paper employs a sampling-based learning method to find robust control pulses for generating a set of universal quantum gates. Numerical results show that the learned robust control fields are insensitive to disturbances, uncertainties and fluctuations during the process of realizing universal quantum gates. PMID:27782219

  15. Propagation of Plasma Generated by Intense Pulsed Ion Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    WU Di; GONG Ye; LIU Jin-Yuan; WANG Xiao-Gang; LIU Yue; MA Teng-Cai

    2006-01-01

    @@ Taking the calculation results based on the established two-dimensional ablation model of the intense-pulsed-ion-beam (IPIB) irradiation process as initial conditions, we build a two-dimensional hydrodynamic ejection model of plasma produced by an IPIB-irradiated metal titanium target into ambient gas. We obtain the conclusions that shock waves generate when the background pressure is around 133 mTorr and also obtain the plume splitting phenomenon that has been observed in the experiments.

  16. Stretching of Picosecond Laser Pulses with Uniform Reflecting Volume Bragg Gratings

    Science.gov (United States)

    Mokhov, Sergiy

    It is shown that a uniform reflecting volume Bragg grating (VBG) can be used as a compact monolithic stretcher of high-power picosecond laser pulses in cases when chirped Bragg gratings with an appropriate chirp rate are difficult to fabricate. A chirp-free reflected stretched pulse is generated of almost rectangular shape when incident short pulse propagates along a grating and experiences local Bragg diffraction. The increase in duration of the reflected pulse is approximately equal to twice the propagation times along the grating. We derived the analytic expression for diffraction efficiency, which incorporates incident pulse duration, grating thickness, and amplitude of refractive index modulation, enabling an optimum selection of the grating for pulse stretching. The typical expected theoretical value of diffraction efficiency is about 10% after taking into account the spectral narrowing of the reflected emission. We believe that the relatively low energy efficiency of the proposed method is more than offset by a number of advantages, which are chirp-free spectrum of a stretched pulse, compactness, robustness, preservation of setup alignment and beam quality, and tolerance to high power. Obtained pulses of several tens of picoseconds can be amplified by standard methods which are not requiring special measures to avoid undesirable non-linear effects. We propose a simple and reliable method to control the temporal parameters of the high-power picosecond pulses using the same laser source and the VGB of variable thickness that can significantly simplify the experiments requiring different pulse durations.

  17. Black phosphorus saturable absorber for ultrashort pulse generation

    Energy Technology Data Exchange (ETDEWEB)

    Sotor, J., E-mail: jaroslaw.sotor@pwr.edu.pl; Sobon, G.; Abramski, K. M. [Laser and Fiber Electronics Group, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, Wroclaw 50-370 (Poland); Macherzynski, W.; Paletko, P. [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, Wroclaw 50-372 (Poland)

    2015-08-03

    Low-dimensional materials, due to their unique and versatile properties, are very interesting for numerous applications in electronics and optoelectronics. Recently rediscovered black phosphorus, with a graphite-like layered structure, can be effectively exfoliated up to the single atomic layer called phosphorene. Contrary to graphene, it possesses a direct band gap controllable by the number of stacked atomic layers. For those reasons, black phosphorus is now intensively investigated and can complement or replace graphene in various photonics and electronics applications. Here, we demonstrate that black phosphorus can serve as a broadband saturable absorber and can be used for ultrashort optical pulse generation. The mechanically exfoliated ∼300 nm thick layers of black phosphorus were transferred onto the fiber core, and under pulsed excitation at 1560 nm wavelength, its transmission increases by 4.6%. We have demonstrated that the saturable absorption of black phosphorus is polarization sensitive. The fabricated device was used to mode-lock an Er-doped fiber laser. The generated optical solitons with the 10.2 nm bandwidth and 272 fs duration were centered at 1550 nm. The obtained results unambiguously show that black phosphorus can be effectively used for ultrashort pulse generation with performances similar or even better than currently used graphene or carbon nanotubes. This application of black phosphorus proves its great potential to future practical use in photonics.

  18. A Simple Picosecond Pulse Generator Based on a Pair of Step Recovery Diodes

    CERN Document Server

    Zou, Lianfeng; Caloz, Christophe

    2016-01-01

    A picosecond pulse generator based on a pair of step recovery diodes (SRD), leveraging the transient response of the SRD PN junction and controlling the pulse width by a resistor, is proposed. We first explain the operation principle of the device, decomposing the pulse generation into different phases, and then demonstrate an experimental prototype with two different resistance, and hence pulse width, values.

  19. Analysis of circular wave packets generated by pulsed electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S., E-mail: shuhei@concord.itp.tuwien.ac.at [Institute for Theoretical Physics, Vienna University of Technology, Vienna (Austria); Reinhold, C.O. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6372 (United States); Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Burgdoerfer, J. [Institute for Theoretical Physics, Vienna University of Technology, Vienna (Austria); Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Wyker, B.; Ye, S.; Dunning, F.B. [Department of Physics and Astronomy and the Rice Quantum Institute, Rice University, Houston, TX 77005-1892 (United States)

    2012-05-15

    We demonstrate that circular wave packets in high Rydberg states generated by a pulsed electric field applied to extreme Stark states are characterized by a position-dependent energy gradient that leads to a correlation between the principal quantum number n and the spatial coordinate. This correlation is rather insensitive to the initial state and can be seen even in an incoherent mix of states such as is generated experimentally allowing information to be placed into, and extracted from, such wave packets. We show that detailed information on the spatial distribution of a circular wave packet can be extracted by analyzing the complex phase of its expansion coefficients.

  20. Analysis of Circular Wave Packets Generated by Pulsed Electric Fields

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S. [Vienna University of Technology, Austria; Reinhold, Carlos O [ORNL; Burgdorfer, J. [Vienna University of Technology, Austria; Wyker, B. [Rice University; Ye, S. [Rice University; Dunning, F. B. [Rice University

    2011-01-01

    We demonstrate that circular wave packets in high Rydberg states generated using a pulsed electric field applied to extreme Stark states are characterized by a position-dependent energy gradient that leads to a correlation between the principal quantum number n and the spatial coordinate. This correlation is rather insensitive to the initial state and can be seen even in an incoherent mix of states such as is generated experimentally allowing information to be placed into, and extracted from, such wavepackets. We show that detailed information on the spatial distribution of a circular wave packet can be extracted by analyzing the complex phase of its expansion coefficient.

  1. Touch stimulated pulse generation in biomimetic single-layer graphene

    Science.gov (United States)

    Sul, Onejae; Chun, Hyunsuk; Choi, Eunseok; Choi, Jungbong; Cho, Kyeongwon; Jang, Dongpyo; Chun, Sungwoo; Park, Wanjun; Lee, Seung-Beck

    2016-02-01

    Detecting variation in contact pressure is a separate sensing mode in the human somatosensory system that differs from the detection of pressure magnitude. If pressure magnitude and variation sensing can be achieved simultaneously, an advanced biomimetic tactile system that better emulates human senses may be developed. We report on a novel single-layer graphene based artificial mechanoreceptor that generates a resistance pulse as the contact stimulus passes a specific threshold pressure, mimicking the generation of action potentials in a biological fast-adapting mechanoreceptor. The electric field from a flexible membrane gate electrode placed above a graphene channel raises the Fermi level from the valence band as pressure deflects the membrane. The threshold pressure is reached when the Fermi level crosses the Dirac point in the graphene energy band, which generates a sharp peak in the measured resistance. We found that by changing the gate potential it was possible to modulate the threshold pressure and using a series of graphene channels, a train of pulses were generated during a transient pressurizing stimulus demonstrating biomimetic behaviour.Detecting variation in contact pressure is a separate sensing mode in the human somatosensory system that differs from the detection of pressure magnitude. If pressure magnitude and variation sensing can be achieved simultaneously, an advanced biomimetic tactile system that better emulates human senses may be developed. We report on a novel single-layer graphene based artificial mechanoreceptor that generates a resistance pulse as the contact stimulus passes a specific threshold pressure, mimicking the generation of action potentials in a biological fast-adapting mechanoreceptor. The electric field from a flexible membrane gate electrode placed above a graphene channel raises the Fermi level from the valence band as pressure deflects the membrane. The threshold pressure is reached when the Fermi level crosses the Dirac

  2. Numerical simulation of compact intracloud discharge and generated electromagnetic pulse

    Science.gov (United States)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.

    2015-06-01

    Using the concept of the relativistic runaway electron avalanche, numerical simulation of compact intracloud discharge as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-UHF range was conducted. We evaluated the numbers of electrons initiating the avalanche, with which the calculated EMP characteristics are consistent with measured ones. The discharge capable of generating EMPs produces runaway electrons in numbers close to those in the source of terrestrial γ-flashes (TGF) registered in the nearest space, which may be an argument for a joint EMP and TGF source.

  3. Pulse width tunable subpicosecond pulse generation from an actively modelocked monolithic MQW laser/MQW electroabsorption modulator

    Science.gov (United States)

    Takada, A.; Sato, K.; Saruwatari, M.; Yamamoto, M.

    1994-05-01

    Actively modelocked pulses are generated from a 1.59 micron MQW laser integrated with an MQW electroabsorption modulator driven at the monolithic cavity frequency. The pulse width is controlled from 39 ps to 0.55 ps by changing the inverse bias voltage applied to the electroabsorption modulator and by linear pulse compression using a fiber.

  4. Adaptive Light Modulation for Improved Resolution and Efficiency in All-Optical Pulse-Echo Ultrasound.

    Science.gov (United States)

    Alles, Erwin J; Colchester, Richard J; Desjardins, Adrien E

    2016-01-01

    In biomedical all-optical pulse-echo ultrasound systems, ultrasound is generated with the photoacoustic effect by illuminating an optically absorbing structure with a temporally modulated light source. Nanosecond range laser pulses are typically used, which can yield bandwidths exceeding 100 MHz. However, acoustical attenuation within tissue or nonuniformities in the detector or source power spectra result in energy loss at the affected frequencies and in a reduced overall system efficiency. In this work, a laser diode is used to generate linear and nonlinear chirp optical modulations that are extended to microsecond time scales, with bandwidths constrained to the system sensitivity. Compared to those obtained using a 2-ns pulsed laser, pulse-echo images of a phantom obtained using linear chirp excitation exhibit similar axial resolution (99 versus 92 μm, respectively) and signal-to-noise ratios (SNRs) (10.3 versus 9.6 dB). In addition, the axial point spread function (PSF) exhibits lower sidelobe levels in the case of chirp modulation. Using nonlinear (time-stretched) chirp excitations, where the nonlinearity is computed from measurements of the spectral sensitivity of the system, the power spectrum of the imaging system was flattened and its bandwidth broadened. Consequently, the PSF has a narrower axial extent and still lower sidelobe levels. Pulse-echo images acquired with time-stretched chirps as optical modulation have higher axial resolution (64 μm) than those obtained with linear chirps, at the expense of a lower SNR (6.8 dB). Using a linear or time-stretched chirp, the conversion efficiency from optical power to acoustical pressure improved by a factor of 70 or 61, respectively, compared to that obtained with pulsed excitation.

  5. Femtosecond-Laser-Pulse Characterization and Optimization for CARS Microscopy.

    Directory of Open Access Journals (Sweden)

    Vincenzo Piazza

    Full Text Available We present a simple method and its experimental implementation to determine the pulse durations and linear chirps of the pump-and-probe pulse and the Stokes pulse in a coherent anti-Stokes Raman scattering microscope at sample level without additional autocorrelators. Our approach exploits the delay line, ubiquitous in such microscopes, to perform a convolution of the pump-and-probe and Stokes pulses as a function of their relative delay and it is based on the detection of the photons emitted from an appropriate non-linear sample. The analysis of the non-resonant four-wave-mixing and sum-frequency-generation signals allows for the direct retrieval of the pulse duration on the sample and the linear chirp of each pulse. This knowledge is crucial in maximizing the spectral-resolution and contrast in CARS imaging.

  6. Efficient high-energy pulse-train generation using a 2{sup n}-pulse Michelson interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Siders, C.W.; Siders, J.L.; Taylor, A.J. [Materials Science and Technology Division, Los Alamos National Laboratory, MS D429, Los Alamos, New Mexico 87545 (United States); Park, S.; Weiner, A.M. [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    1998-08-01

    We demonstrate a novel, Michelson-based, ultrafast multiplexer with a throughput approaching 100{percent} for a polarization-multiplexed train and 50{percent} for a linearly polarized train, which is compatible with a high-energy pulse train and shaped-pulse generation. The interpulse spacings in the resultant 2{sup n}-pulse train can be adjusted continuously from multinanoseconds through zero. Using this interferometer, we also demonstrate generation of a 16-pulse train of terahertz pulses. {copyright} 1998 Optical Society of America

  7. Doping management for high-power fiber lasers: 100 W, few-picosecond pulse generation from an all-fiber-integrated amplifier.

    Science.gov (United States)

    Elahi, P; Yılmaz, S; Akçaalan, O; Kalaycıoğlu, H; Oktem, B; Senel, C; Ilday, F Ö; Eken, K

    2012-08-01

    Thermal effects, which limit the average power, can be minimized by using low-doped, longer gain fibers, whereas the presence of nonlinear effects requires use of high-doped, shorter fibers to maximize the peak power. We propose the use of varying doping levels along the gain fiber to circumvent these opposing requirements. By analogy to dispersion management and nonlinearity management, we refer to this scheme as doping management. As a practical first implementation, we report on the development of a fiber laser-amplifier system, the last stage of which has a hybrid gain fiber composed of high-doped and low-doped Yb fibers. The amplifier generates 100 W at 100 MHz with pulse energy of 1 μJ. The seed source is a passively mode-locked fiber oscillator operating in the all-normal-dispersion regime. The amplifier comprises three stages, which are all-fiber-integrated, delivering 13 ps pulses at full power. By optionally placing a grating compressor after the first stage amplifier, chirp of the seed pulses can be controlled, which allows an extra degree of freedom in the interplay between dispersion and self-phase modulation. This way, the laser delivers 4.5 ps pulses with ~200 kW peak power directly from fiber, without using external pulse compression.

  8. On the effects of quantization on mismatched pulse compression filters designed using L-p norm minimization techniques

    CSIR Research Space (South Africa)

    Cilliers, Jacques E

    2007-10-01

    Full Text Available In [1] the authors introduced a technique for generating mismatched pulse compression filters for linear frequency chirp signals. The technique minimizes the sum of the pulse compression sidelobes in a p L –norm sense. It was shown that extremely...

  9. Intense neutron pulse generation in dense Z-pinch

    Science.gov (United States)

    Bystritskii, V. M.; Glusko, Yu. A.; Mesyats, G. A.; Ratakhin, N. A.

    1989-12-01

    The problem of intense neutron pulse generation with fast dense Z-pinches (ZP) is analyzed for a modified approach. The analysis pertains to the interaction of a High Power Deuterium Beam (HPDB) with hot (Te≂1 keV) deuterium target formed by a ZP. The considerable decrease of the Coulomb ion-electron scattering cross-sections gives a corresponding increase of the deuterium range and neutron yield in the hot target. The generation of HPDB and ZP formation takes place at the same terawatt accelerator, by using in series with the ZP a plasma opening switch (POS), which is at the same time the Ion Plasma Filled Diode (IPFD). During the front of the current pulse the stable z-pinch implosion heats the ZP up to the keV temperature range with several kJ of energy input. Near the end of the current front the energy flow is being switched to HPDB generation due to the opening of the POS. The HPDB is focused ballistically at the axis of the ZP and transported along it in the azimutal magnetic field, producing a neutron burst. The analysis of ZP formation and heating, HPDB generation, its transport and neutron production is given.

  10. Photoconductive switch enhancements for use in Blumlein pulse generators

    Science.gov (United States)

    Davanloo, F.; Park, H.; Collins, C. B.; Agee, F. J.

    1999-06-01

    Stacked Blumlein pulse generators developed at the University of Texas at Dallas have produced high-power waveforms with risetimes and repetition rates in the range of 0.2-50 ns and 1-300 Hz, respectively, using a conventional thyratron, spark gap or photoconductive switch. Adaptation of the design has enabled the stacked Blumleins to produce 80 MW, nanosecond pulses with risetimes better than 200 ps into nominally matched loads. The device has a compact line geometry and is commutated by a single GaAs photoconductive switch triggered by a low power laser diode array. Our current investigations involve the switch characteristics that affect the broadening of the current channels in the avalanche, pre-avalanche seedings, the switch lifetime and the durability. This report presents the progress toward improving the GaAs switch operation and lifetime in stacked Blumlein pulsers. Advanced switch treatments including diamond film overcoating are implemented and discussed.

  11. Production and characterisation of periodic and chirped La/B{sub 4}C-multilayer-mirrors for the reflection of ultra short XUV-pulses

    Energy Technology Data Exchange (ETDEWEB)

    Lass, Maike; Hendel, Stefan; Bienert, Florian; Sacher, Marc D.; Hachmann, Wiebke; Heinzmann, Ulrich [Molecular and Surface Physics, Bielefeld University (Germany); Schaefers, Franz [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Elektronenspeicherring BESSY II (Germany)

    2009-07-01

    The applicability of reflective optical components for the soft X-ray region depends upon the existence of multilayer-optics. For the photon energy range of 100-190eV Lanthanum (La) is favoured as the absorber material and boroncarbide (B{sub 4}C) as the spacer material. Thin periodic and aperiodic (chirped) layer systems of those materials with double layer periods of 3.5 nm have been produced by UHV electron beam evaporation combined with ion polishing to decrease the interface roughness and thus to increase the reflectivity. In-situ layer thickness control is done by X-ray reflectometry and single-wavelength ellipsometry. The characterisation of the layer purity is done by ex-situ sputter Auger spectroscopy, whilst structural analysis is performed by X-ray diffraction, transmission electron microscopy and at-wavelength reflectivity measurements with synchrotron radiation at the BESSY II facility. We report on reflectivities of periodic and aperiodic multilayer-mirrors.

  12. 77 FR 37573 - Effective Date of Requirement for Premarket Approval for an Implantable Pacemaker Pulse Generator

    Science.gov (United States)

    2012-06-22

    ... Approval for an Implantable Pacemaker Pulse Generator AGENCY: Food and Drug Administration, HHS. ACTION... protocol (PDP) for implantable pacemaker pulse generators. The Agency has summarized its findings regarding... PMA or notice of completion of a PDP for the implantable pacemaker pulse generator. In accordance...

  13. Generation of stable subfemtosecond hard x-ray pulses with optimized nonlinear bunch compression

    Directory of Open Access Journals (Sweden)

    Senlin Huang

    2014-12-01

    Full Text Available In this paper, we propose a simple scheme that leverages existing x-ray free-electron laser hardware to produce stable single-spike, subfemtosecond x-ray pulses. By optimizing a high-harmonic radio-frequency linearizer to achieve nonlinear compression of a low-charge (20 pC electron beam, we obtain a sharp current profile possessing a few-femtosecond full width at half maximum temporal duration. A reverse undulator taper is applied to enable lasing only within the current spike, where longitudinal space charge forces induce an electron beam time-energy chirp. Simulations based on the Linac Coherent Light Source parameters show that stable single-spike x-ray pulses with a duration less than 200 attoseconds can be obtained.

  14. Generation of sub-50 fs pulses from a high-power Yb-doped fiber amplifier.

    Science.gov (United States)

    Deng, Yujun; Chien, Ching-Yuan; Fidric, Bernard G; Kafka, James D

    2009-11-15

    We demonstrate the generation of 48 fs pulses with 18 W average power and 226 nJ of pulse energy from a Yb-doped fiber amplifier. The system uses a simple stretcher-free single-stage amplifier configuration operating in the parabolic pulse regime. The gain fiber length and pump wavelength are chosen in order to reduce the gain per unit length and generate both shorter pulses and higher pulse energy.

  15. Synchronously pumped femtosecond optical parametric oscillator with broadband chirped mirrors

    Science.gov (United States)

    Stankevičiūte, Karolina; Melnikas, Simas; Kičas, Simonas; Trišauskas, Lukas; Vengelis, Julius; Grigonis, Rimantas; Vengris, Mikas; Sirutkaitis, Valdas

    2015-05-01

    We present results obtained during investigation of synchronously pumped optical parametric oscillator (SPOPO) with broadband complementary chirped mirror pairs (CMP). The SPOPO based on β-BBO nonlinear crystal is pumped by second harmonic of femtosecond Yb:KGW laser and provides signal pulses tunable over spectral range from 625 to 980 nm. More than 500 mW are generated in the signal beam, giving up to 27 % pump power to signal power conversion efficiency. The plane SPOPO cavity mirror pairs were specially designed to provide 99 % reflection in broad spectral range corresponding to signal wavelength tuning (630-1030 nm) and to suppress group delay dispersion (GDD) oscillations down to +/-10 fs2. Dispersion properties of designed mirrors were tested with white light interferometer (WLI) and attributed to the SPOPO tuning behaviour.

  16. Propagation of Partial Discharge and Noise Pulses in Turbine Generators

    DEFF Research Database (Denmark)

    Henriksen, Mogens; Stone, G. C.; Kurtz, M.

    1986-01-01

    Changes with time in the partial discharge (PD) activity originating in a generator stator's insulation system provide information about the electrical integrity of the stator winding. It is desirable to measure PD during normal service to minimize costs. To do this successfully, the influence...... of electrical interference must be reduced. Tests are reported which characterize the nature of discharge and noise pulses when using capacitive couplers mounted on each of the phase leads and an RF current transformer mounted on the neutral lead for signal detection. Significant differences between PD...

  17. Pulsed squeezed-light generation in a waveguide with second-subharmonic generation and periodic corrugation

    CERN Document Server

    Perina, Jan

    2013-01-01

    Quantum pulsed second-subharmonic generation in a planar waveguide with a small periodic corrugation at the surface is studied. Back-scattering of the interacting fields on the corrugation enhances the nonlinear interaction giving larger values of squeezing. The problem of back-scattering is treated by perturbation theory, using the Fourier transform for non-dispersion propagation, and by numerical approach in the general case. Optimum spectral modes for squeezed-light generation are found using the Bloch-Messiah reduction. Improvement in squeezing and increase of numbers of generated photons are quantified for the corrugation resonating with the fundamental and second-subharmonic field. Splitting of the generated pulse by the corrugation is predicted.

  18. Analysis of tunable picosecond pulse generation from a distributed feedback Ti:sapphire laser

    Institute of Scientific and Technical Information of China (English)

    Hong Zhi; Yao Xiao-Ke

    2004-01-01

    A distributed feedback Ti:sapphire laser (DFTL) pumped by a 532nm Q-switched pulse is proposed for the generation of tunable picosecond pulses. With coupled rate equation model, the temporal characteristics of DFTL are obtained. The numerical solutions show that the DFTL pulse with a 50-ps pulse duration and as much as 3.SmJ pulse energy can be obtained under 40-m J, 5-ns pulse pumping. The dependence of output pulse width on the laser crystal's length, pumping pulse duration, and pumping rate is also discussed in detail.

  19. High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier.

    Science.gov (United States)

    Ding, Y; Aviles-Espinosa, R; Cataluna, M A; Nikitichev, D; Ruiz, M; Tran, M; Robert, Y; Kapsalis, A; Simos, H; Mesaritakis, C; Xu, T; Bardella, P; Rossetti, M; Krestnikov, I; Livshits, D; Montrosset, Ivo; Syvridis, D; Krakowski, M; Loza-Alvarez, P; Rafailov, E

    2012-06-18

    In this paper, we present the generation of high peak-power picosecond optical pulses in the 1.26 μm spectral band from a repetition-rate-tunable quantum-dot external-cavity passively mode-locked laser (QD-ECMLL), amplified by a tapered quantum-dot semiconductor optical amplifier (QD-SOA). The laser emission wavelength was controlled through a chirped volume Bragg grating which was used as an external cavity output coupler. An average power of 208.2 mW, pulse energy of 321 pJ, and peak power of 30.3 W were achieved. Preliminary nonlinear imaging investigations indicate that this system is promising as a high peak-power pulsed light source for nonlinear bio-imaging applications across the 1.0 μm - 1.3 μm spectral range.

  20. Near-Nyquist optical pulse generation with fiber optical parametric amplification.

    Science.gov (United States)

    Vedadi, Armand; Shoaie, Mohammad Amin; Brès, Camille-Sophie

    2012-12-10

    A novel method using optical fiber parametric amplification and phase modulation is proposed in order to generate Nyquist pulses. Using parabolic pulses as a pump, we show theoretically that it is possible to generate Nyquist pulses. Furthermore, we show that by using a sinusoidal pump (pump intensity modulated by an RF tone), it is possible to obtain pulses with characteristics that are close to Nyquist limited pulses. We demonstrate experimentally the generation of bandwidth limited pulses with full width half maximum of 14 ps at 10 GHz repetition rate. We also discuss limitations of this method and means to overcome these limitations.

  1. The all-diode-pumped laser system POLARIS——an experimentalist’s tool generating ultra-high contrast pulses with high energy

    Institute of Scientific and Technical Information of China (English)

    Marco; Hornung; Hartmut; Liebetrau; Andreas; Seidel; Sebastian; Keppler; Alexander; Kessler; Jrg; Krner; Marco; Hellwing; Frank; Schorcht; Diethard; Klpfel; Ajay; K.Arunachalam; Georg; A.Becker; Alexander; Svert; Jens; Polz; Joachim; Hein; Malte; C.Kaluza

    2014-01-01

    The development,the underlying technology and the current status of the fully diode-pumped solid-state laser system POLARIS is reviewed.Currently,the POLARIS system delivers 4 J energy,144 fs long laser pulses with an ultra-high temporal contrast of 5 × 1012 for the ASE,which is achieved using a so-called double chirped-pulse amplification scheme and cross-polarized wave generation pulse cleaning.By tightly focusing,the peak intensity exceeds 3.5 × 1020 W cm-2.These parameters predestine POLARIS as a scientific tool well suited for sophisticated experiments,as exemplified by presenting measurements of accelerated proton energies.Recently,an additional amplifier has been added to the laser chain.In the ramp-up phase,pulses from this amplifier are not yet compressed and have not yet reached the anticipated energy.Nevertheless,an output energy of 16.6 J has been achieved so far.

  2. Tunable THz Generation by the Interaction of a Super-luminous Laser Pulse with Biased Semiconductor Plasma

    Science.gov (United States)

    Papadopoulos, K.; Zigler, A.

    2006-01-01

    Terahertz (THz) radiation is electromagnetic radiation in the range between several hundred and a few thousand GHz. It covers the gap between fast-wave electronics (millimeter waves) and optics (infrared). This spectral region offers enormous potential for detection of explosives and chemical/biological agents, non-destructive testing of non-metallic structural materials and coatings of aircraft structures, medical imaging, bio-sensing of DNA stretching modes and high-altitude secure communications. The development of these applications has been hindered by the lack of powerful, tunable THz sources with controlled waveform. The need for such sources is accentuated by the strong, but selective absorption of THz radiation during transmission through air with high vapor content. The majority of the current experimental work relies on time-domain spectroscopy using fast electrically biased photoconductive sources in conjunction with femto-second mode-locked Ti:Sapphire lasers. These sources known as Large Aperture Photoconductive Antennas (LAPA) have very limited tunability, relatively low upper bound of power and no bandwidth control. The paper presents a novel source of THz radiation known as Miniature Photoconductive Capacitor Array (MPCA). Experiments demonstrated tunability between .1 - 2 THz, control of the relative bandwidth Δf/f between .5-.01, and controlled pulse length and pulse waveform (temporal shape, chirp, pulse-to-pulse modulation etc.). Direct scaling from the current device indicates efficiency in excess of 30% at 1 THz with 1/f2 scaling at higher frequencies, peak power of 100 kW and average power between .1-1 W. The physics underlying the MPCA is the interaction of a super-luminous ionization front generated by the oblique incidence of a Ti:Sapphire laser pulse on a semiconductor crystal (ZnSe) biased with an alternating electrostatic field, similar to that of a frozen wave generator. It is shown theoretically and experimentally that the

  3. Few-cycle fiber pulse compression and evolution of negative resonant radiation

    CERN Document Server

    McLenaghan, Joanna

    2013-01-01

    We present numerical simulations and experimental observations of the spectral expansion of fs-pulses compressing in optical fibers. Using the input pulse frequency chirp we are able to scan through the pulse compression spectra and observe in detail the emergence of negative-frequency resonant radiation (NRR), a recently discovered pulse instability coupling to negative frequencies [Rubino et al., PRL 108, 253901 (2012)]. We observe how the compressing pulse is exciting NRR as long as it overlaps spectrally with the resonant frequency. Furthermore, we observe that optimal pulse compression can be achieved at an optimal input chirp and for an optimal fiber length. The results are important for Kerr-effect pulse compressors, to generate novel light sources, as well as for the observation of quantum vacuum radiation.

  4. Chirp dependence of wave packet motion in oxazine 1.

    Science.gov (United States)

    Malkmus, Stephan; Dürr, Regina; Sobotta, Constanze; Pulvermacher, Horst; Zinth, Wolfgang; Braun, Markus

    2005-11-24

    The motion of vibrational wave packets in the system oxazine 1 in methanol is investigated by spectrally resolved transient absorption spectroscopy. The spectral properties of the probe pulse from 600 to 700 nm were chosen to cover the overlap region where ground-state bleach and stimulated emission signals are detected. The spectral phase of the pump pulse was manipulated by a liquid crystal display based pulse-shaping setup. Chirped excitation pulses of negative and positive chirp can be used to excite vibrational modes predominantly in the ground or excited state, respectively. To distinguish the observed wave packets in oxazine 1 moving in the ground or excited state, spectrally resolved transient absorption experiments are performed for various values of the linear chirp of the pump pulses. The amplitudes of the wave packet motion show an asymmetric behavior with an optimum signal for a negative chirp of -0.75 +/- 0.2 fs/nm, which indicates that predominantly ground-state wave packets are observed.

  5. A narrow-band injection-seeded pulsed titanium : sapphire oscillator-amplifier system with on-line chirp analysis for high-resolution spectroscopy

    NARCIS (Netherlands)

    Hannemann, S.; Duijn, van E.J.; Ubachs, W.M.G.

    2007-01-01

    A narrow-band tunable injection-seeded pulsed titanium:sapphire laser system has been developed for application in high-resolution spectroscopic studies at the fundamental wavelengths in the near infrared as well as in the ultraviolet, deep ultraviolet, and extreme ultraviolet after upconversion.

  6. A narrow-band injection-seeded pulsed titanium : sapphire oscillator-amplifier system with on-line chirp analysis for high-resolution spectroscopy

    NARCIS (Netherlands)

    Hannemann, S.; Duijn, van E.J.; Ubachs, W.M.G.

    2007-01-01

    A narrow-band tunable injection-seeded pulsed titanium:sapphire laser system has been developed for application in high-resolution spectroscopic studies at the fundamental wavelengths in the near infrared as well as in the ultraviolet, deep ultraviolet, and extreme ultraviolet after upconversion. Sp

  7. High Harmonic Radiation Generation and Attosecond pulse generation from Intense Laser-Solid Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Alexander Roy [Univ. of Michigan, Ann Arbor, MI (United States); Krushelnick, Karl [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-09-08

    We have studied ion motion effects in high harmonic generation, including shifts to the harmonics which result in degradation of the attosecond pulse train, and how to mitigate them. We have examined the scaling with intensity of harmonic emission. We have also switched the geometry of the interaction to measure, for the first time, harmonics from a normal incidence interaction. This was performed by using a special parabolic reflector with an on axis hole and is to allow measurements of the attosecond pulses using standard techniques. Here is a summary of the findings: First high harmonic generation in laser-solid interactions at 1021 Wcm-2, demonstration of harmonic focusing, study of ion motion effects in high harmonic generation in laser-solid interactions, and demonstration of harmonic amplification.

  8. Generation of unipolar pulses in a circular Raman-active medium excited by few-cycle optical pulses

    CERN Document Server

    Arkhipov, R M; Babushkin, I; Pakhomov, A V; Tolmachev, Yu A; Rosanov, N N

    2016-01-01

    We study theoretically a new possibility of unipolar pulses generation in Raman-active medium excited by a series of few-cycle optical pulses. We consider the case when the Raman-active particles are uniformly distributed along the circle, and demonstrate a possibility to obtain a unipolar rectangular video pulses with an arbitrarily long duration, ranging from a minimum value equal to the natural period of the low frequency vibrations in the Raman-active medium.

  9. Dispersion measurement on chirped mirrors at arbitrary incidence angle and polarization state (Conference Presentation)

    Science.gov (United States)

    Kovacs, Mate; Somoskoi, Tamas; Seres, Imre; Borzsonyi, Adam; Sipos, Aron; Osvay, Károly

    2017-05-01

    The optical elements of femtosecond high peak power lasers have to fulfill more and more strict requirements in order to support pulses with high intensity and broad spectrum. In most cases chirped pulse amplification scheme is used to generate high peak power ultrashort laser pulses, where a very precise control of spectral intensity and spectral phase is required in reaching transform-limited temporal shape at the output. In the case of few cycle regime, the conventional bulk glass, prism-, grating- and their combination based compressors are not sufficient anymore, due to undesirable nonlinear effects in their material and proneness to optical damages. The chirped mirrors are also commonly used to complete the compression after a beam transport system just before the target. Moreover, the manufacturing technology requires quality checks right after production and over the lifetime of the mirror as well, since undesired deposition on the surface can lead alteration from the designed value over a large part of the aperture. For the high harmonic generation, polarization gating technology is used to generate single attosecond pulses [1]. In this case the pulse to be compressed has various polarization state falling to the chirped mirrors. For this reason, it is crucial to measure the dispersion of the mirrors for the different polarization states. In this presentation we demonstrate a simple technique to measure the dispersion of arbitrary mirror at angles of incidence from 0 to 55 degree, even for a 12" optics. A large aperture 4" mirror has been scanned over with micrometer accuracy and the dispersion property through the surface has been investigated with a stable interference fringes in that robust geometry. We used Spectrally Resolved Interferometry, which is based on a Michaelson interferometer and a combined visible and infrared spectrometer. Tungsten halogen lamp with 10 mW coupled optical power was used as a white-light source so with the selected

  10. 五阶非线性光纤中连续谱相位扰动下的光传输与脉冲串产生%Propagation of Optical Wave with Phase Perturbed by Continuous Spectrum and Generation of Pulse Trains in Optical Fibers with Quintic Nonlinearity

    Institute of Scientific and Technical Information of China (English)

    钟先琼; 向安平; 程科

    2011-01-01

    According to the extended nonlinear Schr(o)dinger equation including quintic nonlinearity in optical fibers,modulation instability (MI) based generation of high-repetition-rate optical pulse trains is numerically demonstrated by using the optical wave with its phase perturbed by Gaussian-typed continuous spectrum instead of conventional monochromatic one. The results show that,the pulse trains can also be generated due to MI effect like the conventional case.However,being different from the conventional case,the generated pulse trains here consist of limited number of pulses which are generally not equal in width,intensity,and interval.And the pulse number increases with the propagation distance.Moreover,when the other parameters are the same,the positive quintic nonlinearity can make the pulse width and interval shorten,which means that the positive quintic nonlinearity is beneficial to generate higher repetition rate pulse trains.While the negative one takes the opposite.The numerically calculated chirps developed during the generation process of pulse trains indicate that,both the chirps and their variations with the distance are highly nonmonotonic,and the quintic nonlinearity will change both the chirp range and the chirp amount.%根据包含五阶非线性的扩展非线性薛定谔方程,数值研究了高斯型连续谱相位扰动而不是传统单色扰动下基于调制不稳定性的高重复率脉冲串产生.结果表明:脉冲串也能像传统情形那样形成,但却呈现出不同的特性.如脉冲数目有限,且各脉冲的高度、强度及间距不等.脉冲数目随传输距离增加而增加.而五阶非线性能使脉冲宽度和间距变小因而有利于高重复率脉冲串产生,负五阶非线性则相反.对脉冲串形成过程中演变啁啾的数值计算表明,啁啾及其随距离的变化都是高度非单调的,五阶非线性将改变啁啾的范围和量值.

  11. Stimulated generation of superluminal light pulses via four-wave mixing.

    Science.gov (United States)

    Glasser, Ryan T; Vogl, Ulrich; Lett, Paul D

    2012-04-27

    We report on the four-wave mixing of superluminal pulses, in which both the injected and generated pulses involved in the process propagate with negative group velocities. Generated pulses with negative group velocities of up to v(g)=-1/880c are demonstrated, corresponding to the generated pulse's peak exiting the 1.7 cm long medium ≈50 ns earlier than if it had propagated at the speed of light in vacuum, c. We also show that in some cases the seeded pulse may propagate with a group velocity larger than c, and that the generated conjugate pulse peak may exit the medium even earlier than the amplified seed pulse peak. We can control the group velocities of the two pulses by changing the seed detuning and the input seed power.

  12. Computer controlled MHD power consolidation and pulse-generation system

    Science.gov (United States)

    Johnson, R.

    The major goal of this project is to establish the feasibility of a power conversion technology which will permit the direct synthesis of computer programmable pulse power. Feasibility will be established in this project by demonstration of direct synthesis of commercial frequency power by means of computer control. The power input to the conversion system is assumed to be a magnetohydrodynamic (MHD) Faraday connected generator which may be viewed as a multi-terminal d.c. source. This consolidation/inversion process is referred to subsequently as Pulse-Amplitude-Synthesis-and-Control (PASC). A secondary goal is to deliver a controller subsystem consisting of a computer, software, and computer interface board which can serve as one of the building blocks for a possible Phase 2 prototype system. This report covers the initial six months portion of the project and includes discussions on the following areas: (1) selection of a control computer with software tool kit for development of the PASC controller contract requirement; (2) problem formulation considerations for simulation of the PASC technique on digital computers; (3) initial simulation results for the PASC transformer, including simulation results obtained using SPICE and the INTEG program; (4) a survey of available gate-turn-off (GTO's), power semiconductors, power field effect transistors (PFET's), and fiber optics signal cabling and transducers.

  13. Pseudospark Switch Development for the LHC Extraction Kicker Pulse Generator

    CERN Document Server

    Ducimetière, L; Jansson, U; Riege, H; Schlaug, M; Schröder, G; Vossenberg, Eugène B

    1996-01-01

    CERN, the European Laboratory for Particle Physics, has started construction of the Large Hadron Collider (LHC), a superconducting accelerator that will collide protons at a center of mass energy of 14 TeV from the year 2005 onwards. The kicker magnet pulse generators of the LHC beam extraction system require fast high power switches. One possible type is the pseudospark switch (PSS) which has several advantages for this application. A PSS fulfilling most of the requirements has been developed in the past years. Two outstanding problems, prefiring at high operating voltages and sudden current interruptions (quenching) at low voltage could be solved recently. Prefiring can be avoided for this special application by conditioning the switch at two times the nominal voltage after each power pulse. Quenching can be suppressed by choosing an appropriate electrode geometry and by mixing Krypton to the D2 gas atmosphere. One remaining problem, related to the required large dynamic voltage range (1.7 kV to 30 kV) is u...

  14. Computer controlled MHD power consolidation and pulse generation system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; Marcotte, K.; Donnelly, M.

    1990-01-01

    The major goal of this research project is to establish the feasibility of a power conversion technology which will permit the direct synthesis of computer programmable pulse power. Feasibility has been established in this project by demonstration of direct synthesis of commercial frequency power by means of computer control. The power input to the conversion system is assumed to be a Faraday connected MHD generator which may be viewed as a multi-terminal dc source and is simulated for the purpose of this demonstration by a set of dc power supplies. This consolidation/inversion (CI), process will be referred to subsequently as Pulse Amplitude Synthesis and Control (PASC). A secondary goal is to deliver a controller subsystem consisting of a computer, software, and computer interface board which can serve as one of the building blocks for a possible phase II prototype system. This report period work summarizes the accomplishments and covers the high points of the two year project. 6 refs., 41 figs.

  15. Generating ultra-short energetic pulses with cascaded soliton compression in lithium niobate crystals

    DEFF Research Database (Denmark)

    Zhou, Binbin; Bache, Morten; Chong, A.;

    2010-01-01

    By launching energetic femtosecond pulses in a lithium niobate crystal, the phase mismatched second-harmonic generation process compresses the 50 fs input pulse at 1250 nm to 30 fs through a soliton effect.......By launching energetic femtosecond pulses in a lithium niobate crystal, the phase mismatched second-harmonic generation process compresses the 50 fs input pulse at 1250 nm to 30 fs through a soliton effect....

  16. High-Quality Ultrashort Pulse Generation Utilizing a Self-Phase Modulation-Based Reshaper

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An ultrashort 10-GHz pulse generation scheme was successfully demonstrated using a bulk material InGaAsP electroabsorption modulator to generate the seed pulse. A self-phase modulation-based reshaper was used after the adiabatic soliton compression in a comb-like dispersion profiled fiber. Experiments and simulations confirm that the reshaper effectively removes the pulse pedestal and improves the pulse extinction ratio. As a result, the 10-GHz pulse had no pedestal, a high extinction ratio, and a pulse width of only 1.4 ps.

  17. Generating long sequences of high-intensity femtosecond pulses

    CERN Document Server

    Bitter, Martin

    2015-01-01

    We present an approach to create pulse sequences extending beyond 150~picoseconds in duration, comprised of $100~\\mu$J femtosecond pulses. A quarter of the pulse train is produced by a high-resolution pulse shaper, which allows full controllability over the timing of each pulse. Two nested Michelson interferometers follow to quadruple the pulse number and the sequence duration. To boost the pulse energy, the long train is sent through a multi-pass Ti:Sapphire amplifier, followed by an external compressor. A periodic sequence of 84~pulses of 120~fs width and an average pulse energy of 107~$\\mu$J, separated by 2~ps, is demonstrated as a proof of principle.

  18. Neonatal testosterone suppresses a neuroendocrine pulse generator required for reproduction

    Science.gov (United States)

    Israel, Jean-Marc; Cabelguen, Jean-Marie; Le Masson, Gwendal; Oliet, Stéphane H.; Ciofi, Philippe

    2014-02-01

    The pituitary gland releases hormones in a pulsatile fashion guaranteeing signalling efficiency. The determinants of pulsatility are poorly circumscribed. Here we show in magnocellular hypothalamo-neurohypophyseal oxytocin (OT) neurons that the bursting activity underlying the neurohormonal pulses necessary for parturition and the milk-ejection reflex is entirely driven by a female-specific central pattern generator (CPG). Surprisingly, this CPG is active in both male and female neonates, but is inactivated in males after the first week of life. CPG activity can be restored in males by orchidectomy or silenced in females by exogenous testosterone. This steroid effect is aromatase and caspase dependent, and is mediated via oestrogen receptor-α. This indicates the apoptosis of the CPG network during hypothalamic sexual differentiation, explaining why OT neurons do not burst in adult males. This supports the view that stereotypic neuroendocrine pulsatility is governed by CPGs, some of which are subjected to gender-specific perinatal programming.

  19. Anapole nanolasers for mode-locking and ultrafast pulse generation

    KAUST Repository

    Gongora, Juan S. Totero

    2017-05-31

    Nanophotonics is a rapidly developing field of research with many suggestions for a design of nanoantennas, sensors and miniature metadevices. Despite many proposals for passive nanophotonic devices, the efficient coupling of light to nanoscale optical structures remains a major challenge. In this article, we propose a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, we show how to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties. Leveraging on the near-field character of anapole modes, we demonstrate a spontaneously polarized nanolaser able to couple light into waveguide channels with four orders of magnitude intensity than classical nanolasers, as well as the generation of ultrafast (of 100 fs) pulses via spontaneous mode locking of several anapoles. Anapole nanolasers offer an attractive platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry.

  20. Generation and measurement of pulsed high magnetic field

    CERN Document Server

    Jana, S

    2000-01-01

    Pulsed magnetic field has been generated by discharging a capacitor bank through a 5-layer air-core solenoid. The strength of the magnetic field at its peak has been measured using the voltage induced in various pick-up coils, and also from the Zeeman splitting of an ion having a known g value. Synchronizing a xenon flash at the peak of the magnetic field, this lab-made instrument has been made well suited to study the Zeeman effect, etc. at a temperature of 25 K. As an application of this setup, we have investigated the Zeeman splitting of the sup 4 I sub 9 sub / sub 2-> sup 4 G sub 5 sub / sub 2 transition of the Nd sup 3 sup + -doped CsCdCl sub 3 crystal at 7.8 T, and determined the splitting factors.

  1. OFI argon excimer amplifier for intense subpicosecond VUV pulse generation

    Science.gov (United States)

    Kaku, M.; Kubodera, S.; Oda, K.; Katto, M.; Yokotani, A.; Miyanaga, N.; Mima, K.

    2008-10-01

    We have demonstrated an OFI Ar2* excimer VUV amplifier at 126 nm pumped by a high-intensity laser in the table top size. We observed the Ar2 * excimer emission centered at 126 nm with the spectral bandwidth of 10 nm (FWHM), which was produced in the OFI plasma. Significant amplification was observed inside the OFI Ar2 * excimer as a result of the optical feedback provided by a VUV reflector. The gain-length product of 5.6 was observed at the Ar pressure of 11 atm. The population inversion density on the order of 1017 cm-3 was evaluated inside the OFI plasma, which would be sufficient for the amplification of a subpicosecond VUV pulse at 126 nm produced by the harmonic generation.

  2. Complicated Laser Pulse Generation With Pulse Stacking for D-D ICF

    Institute of Scientific and Technical Information of China (English)

    GAO; Zhi-xing; WANG; Lei-jian; LU; Ze; ZHANG; Hai-feng

    2012-01-01

    <正>For direct drive fusion, a pre-distorted pulse with the complicated temporal shape is necessary. It is generally accepted that the pulse for shock ignition should begin with a low energy pre-pulse spike (picket) followed by a long (about 10 ns) low intensity foot pulse, which ramps up to an intermediate pedestal (compression pulse) and ends with a short high intensity spike.

  3. Quasi-phase-matched high-order harmonic generation using tunable pulse trains.

    Science.gov (United States)

    O'Keeffe, Kevin; Lloyd, David T; Hooker, Simon M

    2014-04-07

    A simple technique for generating trains of ultrafast pulses is demonstrated in which the linear separation between pulses can be varied continuously over a wide range. These pulse trains are used to achieve tunable quasi-phase-matching of high harmonic generation over a range of harmonic orders up to the harmonic cut-off, resulting in enhancements of the harmonic intensity in excess of an order of magnitude. The peak enhancement of the harmonics is clearly shown to depend on the separation between pulses, as well as the number of pulses in the train, representing an easily tunable source of quasi-phase-matched high harmonic generation.

  4. Kinetic view of chirped optical lattice gas heating

    Science.gov (United States)

    Graul, J. S.; Gimelshein, S. F.; Lilly, T. C.

    2014-12-01

    With a focus on optical lattice gas heating, direct simulation Monte Carlo was used to investigate the interaction between molecular nitrogen, argon and methane, initially at 300 K and 0.8 atm, with pulsed, chirped optical lattices. Created from two 700 mJ, 532 nm, flattop laser pulses, the optical lattice parameters simulated are based on published optical lattice-based experiments, to ensure that pulse energies and durations do not exceed published optical breakdown (ionization) thresholds. Resultant translational gas temperatures, as well as induced bulk velocities, were used quantify energy and momentum deposition. To maximize available gas temperature changes achieved using the technique, laser pulses were linearly chirped to produce lattice velocities able to more effectively facilitate energy deposition throughout the pulse duration. From the initial conditions, the maximum, end pulse axial translational temperature obtained in nitrogen was approximately 755 K, at a lattice velocity of 400 m/s linearly chirped at 25 Gm/s2 over the 40 ns pulse duration. To date, this stands as the single largest, numerically-predicted temperature change from optical lattice gas heating under the numerical integration of real world energy and laser-based limitations.

  5. Sub-THz-range linearly chirped signals characterized using linear optical sampling technique to enable sub-millimeter resolution for optical sensing applications.

    Science.gov (United States)

    Wang, Shuai; Fan, Xinyu; Wang, Bin; Yang, Guangyao; He, Zuyuan

    2017-05-01

    Pulse compression technique is a particularly competitive method that enables both high spatial resolution and dynamic range in coherent radar and distributed fiber sensing systems. Up to now, the frequency bandwidths of most pulse compression techniques are restricted to tens of GHz. In this paper, we propose an all-optic sub-THz-range linearly chirped optical source and a large-bandwidth detection system to characterize it. Taking advantage of the chromatic dispersion effect, ultrashort optical pulses are stretched to be ~10 ns linearly chirped pulses with sub-THz range, which yields a large time-bandwidth product of 4500, a high compression ratio of 4167 and a chirp rate of 45 GHz/ns. The generated waveform is characterized with high precision thanks to the large detection bandwidth of linear optical sampling technique. A spatial resolution of 120 μm and an extinction ratio of 20.4 dB is demonstrated by using this technique, which paves the way for ultra-high spatial resolution and long range sensing applications such as LIDAR and optical reflectometry.

  6. Generation of sub-nanosecond pulses using peaking capacitor

    Directory of Open Access Journals (Sweden)

    Madhu Palati

    2017-05-01

    Full Text Available This paper discusses the analysis, simulation and design of a peaking circuit comprising of a peaking capacitor, spark gap and load circuit. The peaking circuit is used along with a 200 kV, 20 J Marx generator for generation of sub-nanosecond pulses. A high pressure chamber to accommodate the peaking circuit was designed and fabricated and tested upto a pressure of 70 kg/cm2. Total estimated values of the capacitance and inductance of the peaking circuit are 10 pF and 72 nH respectively. At full charging voltage, the peaking capacitor gets charged to a peak voltage of 394.6 kV in 15 ns. The output switch is closed at this instant. From Analysis & Simulation, the output current & rise time (with a matched load of 85 Ω are 2.53 kA and 0.62 ns.

  7. Application of a single-board computer as a low cost pulse generator

    CERN Document Server

    Fedrizzi, Marcus

    2015-01-01

    A BeagleBone Black (BBB) single-board open-source computer was implemented as a low-cost fully programmable pulse generator. The pulse generator makes use of the BBB Programmable Real-Time Unit (PRU) subsystem to achieve a deterministic temporal resolution of 5 ns, an RMS jitter of 290 ps and a timebase stability on the order of 10 ppm. A python based software framework has also been developed to simplify the usage of the pulse generator.

  8. High energy protons generation by two sequential laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaofeng; Shen, Baifei, E-mail: bfshen@mail.shcnc.ac.cn, E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei, E-mail: bfshen@mail.shcnc.ac.cn, E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Xu, Jiancai; Yi, Longqing; Shi, Yin [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-04-15

    The sequential proton acceleration by two laser pulses of relativistic intensity is proposed to produce high energy protons. In the scheme, a relativistic super-Gaussian (SG) laser pulse followed by a Laguerre-Gaussian (LG) pulse irradiates dense plasma attached by underdense plasma. A proton beam is produced from the target and accelerated in the radiation pressure regime by the short SG pulse and then trapped and re-accelerated in a special bubble driven by the LG pulse in the underdense plasma. The advantages of radiation pressure acceleration and LG transverse structure are combined to achieve the effective trapping and acceleration of protons. In a two-dimensional particle-in-cell simulation, protons of 6.7 GeV are obtained from a 2 × 10{sup 22 }W/cm{sup 2} SG laser pulse and a LG pulse at a lower peak intensity.

  9. Efficient femtosecond mid-infrared pulse generation by dispersivewave radiation in bulk lithium niobate crystal

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Bache, Morten

    2014-01-01

    We experimentally demonstrate efficient mid-infrared pulse generation by dispersive wave radiation in bulk lithium niobate crystal. Femtosecond mid-IR pulses centering from 2.8–2.92 µm are generated using the single pump wavelengths from 1.25–1.45 µm.......We experimentally demonstrate efficient mid-infrared pulse generation by dispersive wave radiation in bulk lithium niobate crystal. Femtosecond mid-IR pulses centering from 2.8–2.92 µm are generated using the single pump wavelengths from 1.25–1.45 µm....

  10. Supercontinuum generation from dispersion-flattened photonic crystal fiber using picosecond pulses

    Institute of Scientific and Technical Information of China (English)

    Li He; Bojun Yang; Xiaoguang Zhang; Li Yu

    2006-01-01

    We present the all-fiber system for supercontiuum (SC) generation with picosecond pulses. By launching1.6-ps pulses from pulsed erbium-doped fiber laser (EDFL) into a section of photonic crystal fiber (PCF),the spectral broadening is observed. The bandwidth of 237 nm (at 20 dB level) is achieved.

  11. Picosecond optical pulse generation at gigahertz rates by direct modulation of a semiconductor laser

    Science.gov (United States)

    Auyeung, J.

    1981-01-01

    We report the generation of picosecond pulses by the direct modulation of a buried heterostructure GaAlAs diode laser. Pulse width of 28 ps is achieved at a repetition frequency of 2.5 GHz. Pulse width dependence on the experimental parameters is described.

  12. Generation of 25-TW Femtosecond Laser Pulses at 515 nm with Extremely High Temporal Contrast

    Directory of Open Access Journals (Sweden)

    Marco Hornung

    2015-12-01

    Full Text Available We report on the frequency doubling of femtosecond laser pulses at 1030 nm center wavelength generated from the fully diode-pumped laser system POLARIS. The newly generated pulses at a center wavelength of 515 nm have a pulse energy of 3 J with a pulse duration of 120 fs. On the basis of initially ultra-high contrast seed pulses we expect a temporal intensity contrast better 10 17 200 ps before the peak of the main pulse. We analyzed the temporal intensity contrast from milliseconds to femtoseconds with a dynamic range covering more than 20 orders of magnitude. The pulses were focussed with a f/2-focussing parabola resulting in a peak intensity exceeding 10 20 W / cm 2 . The peak power and intensity are to the best of our knowledge the highest values for 515 nm-laser-pulses achieved so far.

  13. Pulse excitation experiment of a superconducting generator; chodendo hatsudenki no parusu reiki shiken

    Energy Technology Data Exchange (ETDEWEB)

    Miyaike, K.; Iimura, T.; Nishimura, M.; Arata, M.; Takabatake, M. [Toshiba Ltd., Tokyo (Japan); Yamada, M.; Kanamori, Y.; Hasegawa, K. [Kansai Electric Power Co., Inc., Osaka (Japan)

    1999-11-10

    Efficiency improvement, improvement in the stability of electric power system it is miniaturization and weight reduction can be expected in comparison with the traditional-model generator superconducting generator. We produce the small superconducting generator for the experiment experimentally, and performance characteristics verification of the generator is carried out experimentally. This time, pulse excitation test of the superconducting generator was carried out, and the ac loss of the conductor by the pulse excitation investigated the effect on the quenching current. (NEDO)

  14. Linear transformer driver for pulse generation with fifth harmonic

    Science.gov (United States)

    Mazarakis, Michael G.; Kim, Alexander A.; Sinebryukhov, Vadim A.; Volkov, Sergey N.; Kondratiev, Sergey S.; Alexeenko, Vitaly M.; Bayol, Frederic; Demol, Gauthier; Stygar, William A.; Leckbee, Joshua; Oliver, Bryan V.; Kiefer, Mark L.

    2017-03-21

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first, second, and third power delivery module. The first power delivery module sends a first energy in the form of a first pulse to the load. The second power delivery module sends a second energy in the form of a second pulse to the load. The third power delivery module sends a third energy in the form of a third pulse to the load. The linear transformer driver is configured to form a flat-top pulse by the superposition of the first, second, and third pulses. The first, second, and third pulses have different frequencies.

  15. Linear transformer driver for pulse generation with fifth harmonic

    Energy Technology Data Exchange (ETDEWEB)

    Mazarakis, Michael G.; Kim, Alexander A.; Sinebryukhov, Vadim A.; Volkov, Sergey N.; Kondratiev, Sergey S.; Alexeenko, Vitaly M.; Bayol, Frederic; Demol, Gauthier; Stygar, William A.; Leckbee, Joshua; Oliver, Bryan V.; Kiefer, Mark L.

    2017-03-21

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first, second, and third power delivery module. The first power delivery module sends a first energy in the form of a first pulse to the load. The second power delivery module sends a second energy in the form of a second pulse to the load. The third power delivery module sends a third energy in the form of a third pulse to the load. The linear transformer driver is configured to form a flat-top pulse by the superposition of the first, second, and third pulses. The first, second, and third pulses have different frequencies.

  16. Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers

    CERN Document Server

    Yao, B C; Wang, Z N; Wu, Y; Zhou, J H; Wu, H; Fan, M Q; Cao, X L; Zhang, W L; Chen, Y F; Li, Y R; Churkin, D; Turitsyn, S; Wong, C W

    2015-01-01

    Pulse generation often requires a stabilized cavity and its corresponding mode structure for initial phase-locking. Contrastingly, modeless cavity-free random lasers provide new possibilities for high quantum efficiency lasing that could potentially be widely tunable spectrally and temporally. Pulse generation in random lasers, however, has remained elusive since the discovery of modeless gain lasing. Here we report coherent pulse generation with modeless random lasers based on the unique polarization selectivity and broadband saturable absorption of monolayer graphene. Simultaneous temporal compression of cavity-free pulses are observed with such a polarization modulation, along with a broadly-tunable pulsewidth across two orders of magnitude down to 900 ps, a broadly-tunable repetition rate across three orders of magnitude up to 3 MHz, and a singly-polarized pulse train at 41 dB extinction ratio, about an order of magnitude larger than conventional pulsed fiber lasers. Moreover, our graphene-based pulse for...

  17. Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides.

    Science.gov (United States)

    Tan, Yang; Luan, Qingfang; Liu, Fengqin; Chen, Feng; Vázquez de Aldana, Javier Rodríguez

    2013-08-12

    This work reports on the Q-switched pulsed laser generation from double-cladding Nd:YAG ceramic waveguides. Double-cladding waveguides with different combination of diameters were inscribed into a sample of Nd:YAG ceramic. With an additional semiconductor saturable absorber, stable pulsed laser emission at the wavelength of 1064 nm was achieved with pulses of 21 ns temporal duration and ~14 μJ pulse energy at a repetition rate of 3.65 MHz.

  18. DESIGN NOTE: A fast high-voltage pulse generator with variable amplitude and duration

    Science.gov (United States)

    Upadhyay, Jankee; Navathe, C. P.

    2006-07-01

    A high-voltage pulse generator based on a self-matched transmission line with variable pulse amplitude and duration is developed. Two avalanche transistor stacks are used as switches. The pulse width is varied by adjusting the delay in triggering two switches whereas amplitude is adjusted by adjusting load resistance. A pulse with amplitude of 800 V to 3.8 kV and width of 5 ns to 38 ns can be obtained using this circuit.

  19. Pulse power for lasers II; Proceedings of the Meeting, Los Angeles, CA, Jan. 19, 20, 1989

    Science.gov (United States)

    Burkes, Tom R.; McDuff, Glen

    Various papers on pulse power for lasers are presented. Individual topics addressed include: preionization techniques for discharge lasers, X-ray preionization technology for high-pressure gas-discharge lasers, weight and volume scaling of pulse power for laser systems, method for rapidly terminating the current pulses applied to recombination lasers, high dV/dt spiker pulse generation using magnetic pulse sharpening techniques, multigap thyratrons for future laser applications, high-power thyratron-type switch for laser applications, model for the optically triggered pseudospark thyratron using local field and beam-bulk methods, capacitors for repetitively pulsed laser, fast pulse transformers in laser pulse power circuits, pulsed power topologies for laser applications, pulse power for the CHIRP XeCl laser, line type pulser for gas laser pumping, engineering aspects of long-pulse CO2 lasers using plasma discharge electrodes, high-pressure pulsed radial glow discharge CO2 laser.

  20. Temperature measurement on neurological pulse generators during MR scans

    Directory of Open Access Journals (Sweden)

    Alesch François

    2002-09-01

    Full Text Available Abstract According to manufacturers of both magnetic resonance imaging (MRI machines, and implantable neurological pulse generators (IPGs, MRI is contraindicated for patients with IPGs. A major argument for this restriction is the risk to induce heat in the leads due to the electromagnetic field, which could be dangerous for the surrounding brain parenchyma. The temperature change on the surface of the case of an ITREL-III (Medtronic Inc., Minneapolis, MN and the lead tip during MRI was determined. An anatomical realistic and a cubic phantom, filled with phantom material mimicking human tissue, and a typical lead configuration were used to imitate a patient who carries an IPG for deep brain stimulation. The measurements were performed in a 1.5 T and a 3.0 T MRI. 2.1°C temperature increases at the lead tip uncovered the lead tip as the most critical part concerning heating problems in IPGs. Temperature increases in other locations were low compared to the one at the lead tip. The measured temperature increase of 2.1°C can not be considered as harmful to the patient. Comparison with the results of other studies revealed the avoidance of loops as a practical method to reduce heating during MRI procedures.

  1. Optical second harmonic generation induced by picosecond terahertz pulses in centrosymmetric antiferromagnet NiO

    Science.gov (United States)

    Ovchinnikov, A. V.; Chefonov, O. V.; Agranat, M. B.; Grishunin, K. A.; Il'in, N. A.; Pisarev, R. V.; Kimel, A. V.; Kalashnikova, A. M.

    2016-10-01

    Optical second harmonic generation at the photon energy of 2ℏω = 2eV in the model centrosymmetric antiferromagnet NiO irradiated with picosecond terahertz pulses (0.4-2.5 THz) at room temperature is detected. The analysis of experimental results shows that induced optical second harmonic generation at the moment of the impact of a terahertz pulse arises through the electric dipole mechanism of the interaction of the electric field of a pump pulse with the electron subsystem of NiO. Temporal changes in optical second harmonic generation during 7 ps after the action of the pulse are also of an electric dipole origin and are determined by the effects of propagation of the terahertz pulse in a NiO platelet. Coherent oscillations of spins at the antiferromagnetic resonance frequency induced by the magnetic component of the terahertz pulse induce a relatively weak modulation of magnetic dipole optical second harmonic generation.

  2. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Balogh, Emeric [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); Kovacs, Katalin [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Dombi, Peter; Farkas, Gyozo [Research Institute for Solid State Physics and Optics, H-1525 Budapest (Hungary); Fulop, Jozsef A.; Hebling, Janos [Department of Experimental Physics, University of Pecs, H-7624 Pecs (Hungary); Tosa, Valer [National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Varju, Katalin [HAS Research Group on Laser Physics, University of Szeged, H-6701 Szeged (Hungary)

    2011-08-15

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  3. Trigger Pulse Generator Using Proposed Buffered Delay Model and Its Application

    Directory of Open Access Journals (Sweden)

    Amit Krishna Dwivedi

    2015-01-01

    Full Text Available This paper proposes a circuit capable of incorporating buffered delays in the order of picoseconds. To study our proposed circuit in the profound way, we have also explored our proposed circuit using emerging technologies such as FinFET and CNFET. Comparisons between these technologies have been made in terms of different parameters such as duration of incorporated delays (pulse width and its variability with supply voltages. Further, this paper also proposes a trigger pulse generator by utilizing proposed buffered delay circuit as its basic element. Parametric results obtained for the proposed trigger pulse generator match different application specific requirements. These applications are also mentioned in this paper. The proposed trigger pulse generator requires very low supply voltage (700 mV and also proves its effectiveness in terms of tunability of pulse width of the generated pulses. The modeling of the circuit has been done using Verilog and the simulation results are extensively verified using SPICE.

  4. Effects of cavity-dispersion noncoaxiality on the generation of ultrabroadband femtosecond pulses

    Institute of Scientific and Technical Information of China (English)

    JIAO ZhongXing; LEI Liang; HUANG ZhiLing; WEN JinHui; LAI Tianshu; LIN WeiZhu

    2008-01-01

    The effects of cavity-dispersion noncoaxiality (CDN) on the generation of ultrabroadband femtosecond pulses in KLM Ti:sapphire laser were investigated theoretically and experimentally. It was predicted that when the laser sub-cavity works near the coaxial operation point, the limitation of CDN on the bandwidth broadening is minimum, which is favorable for ultrabroadband pulse generation. On the basis of this prediction, femtosecond pulses with bandwidth of 650 to 1000 nm were directly generated from a home built KLM Ti:sapphire laser. To our knowledge, they are the broadest bandwidth pulses produced from KLM Ti:sapphire laser with similar oscillator configuration and gain crystal length of 3 mm.

  5. Calculation of degenerate four-wave-mixing noise for chirped Gaussian pulse in dense-wavelength-division-multiplexed system%DWDM系统啁啾高斯脉冲简并四波混频噪声标准差的计算

    Institute of Scientific and Technical Information of China (English)

    杜建新

    2009-01-01

    假定入射脉冲为啁啾高斯脉冲,考虑到各信道内的比特模式及比特序列初始相位的随机性,得到此种情况下的强度调制直接检测(IM/DD)密集波分复用系统(DWDM)简并四波混频噪声标准差的半解析理论计算模型,这个理论模型同时考虑到各信道间的脉冲走离效应的影响,计算结果表明:除了群速度色散、信道间隔等是影响此种标准差的重要因素外,当高斯脉冲有较小的初始脉宽时,各信道比特序列的相对初始时延、初始啁啾参量都是重要的影响因素;初始脉宽较小时,色散效应导致的脉宽随距离的变化对这种标准差值的影响不能忽略.%The launched pulses for dense wavelength-division-multiplexing (DWDM) system with intensity modulated and direct-detection (IM/DD) scheme are assumed to be chirped Gaussian pulses. The pattern and initial phase of bit sequence in each channel are random. A statistical method is used to analyze these random quantities and a semi-analytic calculation model applied to evaluate the variance of degenerate four-wave-mixing (FWM) noise is obtained. The model also accounts for walk-off effect between channels. The results of calculation show that, to the value of deviation of degenerate FWM noise of chirped Gaussian pulse, not only the group velocity and channel separation are important, but also the initial delay of bit sequence of each channel and initial chirp of pulse are important in the case of small values of launched pulse width. It is also shown that, when the width of launched pulse is small, the change of pulse width with distance due to dispersion effect must be considered to avoid relative large error.

  6. Generation of broadband mid-infrared pulses from an optical parametric amplifier.

    Science.gov (United States)

    Brida, D; Manzoni, C; Cirmi, G; Marangoni, M; De Silvestri, S; Cerullo, G

    2007-11-12

    We report on the direct generation of broadband mid-IR pulses from an optical parametric amplifier. Several crystals with extended IR transparency, when pumped at 800 nm, display a broad phase-matching bandwidth around 1 mum, allowing for the generation of idler pulses spanning the 3-5 mum wavelength range. Using LiIO(3), we produce 2muJ pulses tunable in the 3-4 mum range with bandwidth supporting 30-fs transform-limited duration.

  7. Optimized Second Harmonic Generation of Femtosecond Pulse by Phase-Blanking Effect in Aperiodically Optical Superlattice

    Institute of Scientific and Technical Information of China (English)

    KONG Yan; CHEN Xian-Feng; XIA Yu-Xing

    2008-01-01

    @@ In order to minimize the effect of the unconsidered frequency components on the generated compression pulse,the phasing-blanking effect is taken into account of designing the one-dimensional aperiodic domain reversal structure. Hierarchic genetic algorithm for the design of a domain reversal grating to modulate the spectrum and phase of the generated SH pulse simultaneously are presented. Our simulation shows that the quality of an output pulse is fairly improved.

  8. Application of High Intensity THz Pulses for Gas High Harmonic Generation

    CERN Document Server

    Balogh, Emeric; Hebling, János; Dombi, Péter; Farkas, Győző; Varjú, Katalin

    2013-01-01

    The main effects of an intense THz pulse on gas high harmonic generation are studied via trajectory analysis on the single atom level. Spectral and temporal modifications to the generated radiation are highlighted.

  9. Intra-pulse Raman frequency shift versus conventional Stokes generation of diode laser pulses in optical fibers.

    Science.gov (United States)

    Kuzin, Evgeny; Mendoza-Vazquez, Sergio; Gutierrez-Gutierrez, Jaime; Ibarra-Escamilla, Baldemar; Haus, Joseph; Rojas-Laguna, Roberto

    2005-05-02

    We report experimental observations of stimulated Raman scattering in a standard fiber using a directly modulated DFB semiconductor laser amplified by two erbium-doped fibers. The laser pulse width was variably controlled on a nanosecond-scale; the laser emission was separated into two distinct regimes: an initial transient peak regime, followed by a quasi steady-state plateau regime. The transient leading part of the pump pulse containing fast amplitude modulation generated a broadband Raman-induced spectral shift through the modulation instability and subsequent intra-pulse Raman frequency shift. The plateau regime amplified the conventional Stokes shifted emission expected from the peaks of the gain distribution. The output signal spectrum at the end of a 9.13 km length of fiber for the transient part extends from 1550 nm to 1700 nm for a pump pulse peak power of 65 W. We found that the Raman-induced spectral shift is measurable about 8 W for every fiber length examined, 0.6 km, 4.46 km, and 9.13 km. All spectral components of the broadband scattering appear to be generated in the initial kilometer of the fiber span. The Stokes shifted light generation threshold was higher than the threshold for the intra-pulse Raman-induced broadened spectra. This fact enables the nonlinear spectral filtering of pulses from directly modulated semiconductor lasers.

  10. Intra-pulse Raman frequency shift versus conventional Stokes generation of diode laser pulses in optical fibers

    Science.gov (United States)

    Kuzin, Evgeny A.; Mendoza-Vazquez, Sergio; Gutierrez-Gutierrez, Jaime; Ibarra-Escamilla, Baldemar; Haus, Joseph W.; Rojas-Laguna, Roberto

    2005-05-01

    We report experimental observations of stimulated Raman scattering in a standard fiber using a directly modulated DFB semiconductor laser amplified by two erbium-doped fibers. The laser pulse width was variably controlled on a nanosecond-scale; the laser emission was separated into two distinct regimes: an initial transient peak regime, followed by a quasi steady-state plateau regime. The transient leading part of the pump pulse containing fast amplitude modulation generated a broadband Raman-induced spectral shift through the modulation instability and subsequent intra-pulse Raman frequency shift. The plateau regime amplified the conventional Stokes shifted emission expected from the peaks of the gain distribution. The output signal spectrum at the end of a 9.13 km length of fiber for the transient part extends from 1550 nm to 1700 nm for a pump pulse peak power of 65 W. We found that the Raman-induced spectral shift is measurable about 8 W for every fiber length examined, 0.6 km, 4.46 km, and 9.13 km. All spectral components of the broadband scattering appear to be generated in the initial kilometer of the fiber span. The Stokes shifted light generation threshold was higher than the threshold for the intra-pulse Raman-induced broadened spectra. This fact enables the nonlinear spectral filtering of pulses from directly modulated semiconductor lasers.

  11. Generation of high-energy self-phase-stabilized pulses by difference-frequency generation followed by optical parametric amplification.

    Science.gov (United States)

    Manzoni, C; Vozzi, C; Benedetti, E; Sansone, G; Stagira, S; Svelto, O; De Silvestri, S; Nisoli, M; Cerullo, G

    2006-04-01

    We produce ultrabroadband self-phase-stabilized near-IR pulses by a novel approach where a seed pulse, obtained by difference-frequency generation of a hollow-fiber broadened supercontinuum, is amplified by a two-stage optical parametric amplifier. Energies up to 20 microJ with a pulse spectrum extending from 1.2 to 1.6 microm are demonstrated, and a route for substantial energy scaling is indicated.

  12. Generation of pulsed light in the visible spectral region based on non-linear cavity dumping

    DEFF Research Database (Denmark)

    Johansson, Sandra; Andersen, Martin; Tidemand-Lichtenberg, Peter

    We propose a novel generic approach for generation of pulsed light in the visible spectrum based on sum-frequency generation between the high circulating intra-cavity power of a high finesse CW laser and a single-passed pulsed laser. For demonstration, we used a CW 1342 nm laser mixed with a pass...

  13. Tuning characteristics of femtosecond optical parametric oscillator with broadband chirped mirrors

    Science.gov (United States)

    Stankevičiūtė, Karolina; Vengris, Mikas; Melnikas, Simas; Kičas, Simonas; Grigonis, Rimantas; Sirutkaitis, Valdas

    2015-12-01

    We present the investigation of a synchronously pumped optical parametric oscillator (SPOPO) based on beta barium borate (BBO) nonlinear crystal with broadband complementary chirped mirror pairs (CMPs). Three SPOPO cavity configurations with slightly different intracavity dispersion were explored. Dispersion properties of cavity mirrors were characterized using a white light interferometer and found to be the key factor determining the gap-free tuning range as well as simultaneous multiwavelength generation. The SPOPO is pumped by the second harmonic of a Yb:KGW oscillator and provides signal pulses tunable over a spectral range from 625 to 980 nm. Signal pulse duration ranges from 102 to 268 fs in various intracavity dispersion regimes. In addition, signal beam power in excess of 500 mW is demonstrated, corresponding to 27% conversion efficiency from pump to signal wave.

  14. Generation of a single attosecond pulse from an overdense plasma surface driven by a laser pulse with time-dependent polarization

    Institute of Scientific and Technical Information of China (English)

    Luo Mu-Hua; Zhang Qiu-Ju

    2011-01-01

    The influence of time-dependent polarization on attosecond pulse generation from an overdense plasma surface driven by laser pulse is discussed analytically and numerically.The results show that the frequency of controlling pulse controls the number and interval of the generated attosecond pulse,that the generation moment of the attosecond pulse is dominated by the phase difference between the controlling and driving pulses,and that the amplitude of the controlling pulse affects the intensity of the attosecond pulse.Using the method of time-dependent polarization,a "single" ultra-strong attosecond pulse with duration τ≈8.6 as and intensity I≈3.08×1020 W·cm-2 can be generated.

  15. Input energy measurement toward warm dense matter generation using intense pulsed power generator

    Science.gov (United States)

    Hayashi, R.; Ito, T.; Ishitani, T.; Tamura, F.; Kudo, T.; Takakura, N.; Kashine, K.; Takahashi, K.; Sasaki, T.; Kikuchi, T.; Harada, Nob.; Jiang, W.; Tokuchi, A.

    2016-05-01

    In order to investigate properties of warm dense matter (WDM) in inertial confinement fusion (ICF), evaluation method for the WDM with isochoric heating on the implosion time-scale using an intense pulsed power generator ETIGO-II (∼1 TW, ∼50 ns) has been considered. In this study, the history of input energy into the sample is measured from the voltage and the current waveforms. To achieve isochoric heating, a foamed aluminum with pore sizes 600 μm and with 90% porosity was packed into a hollow glass capillary (ø 5 mm × 10 mm). The temperature of the sample is calculated from the numerical calculation using the measured input power. According to the above measurements, the input energy into a sample and the achievable temperature are estimated to be 300 J and 6000 K. It indicates that the WDM state is generated using the proposed method with ICF implosion time-scale.

  16. Giant elves: Lightning-generated electromagnetic pulses in giant planets.

    Science.gov (United States)

    Luque Estepa, Alejandro; Dubrovin, Daria; José Gordillo-Vázquez, Francisco; Ebert, Ute; Parra-Rojas, Francisco Carlos; Yair, Yoav; Price, Colin

    2015-04-01

    We currently have direct optical observations of atmospheric electricity in the two giant gaseous planets of our Solar System [1-5] as well as radio signatures that are possibly generated by lightning from the two icy planets Uranus and Neptune [6,7]. On Earth, the electrical activity of the troposphere is associated with secondary electrical phenomena called Transient Luminous Events (TLEs) that occur in the mesosphere and lower ionosphere. This led some researchers to ask if similar processes may also exist in other planets, focusing first on the quasi-static coupling mechanism [8], which on Earth is responsible for halos and sprites and then including also the induction field, which is negligible in our planet but dominant in Saturn [9]. However, one can show that, according to the best available estimation for lightning parameters, in giant planets such as Saturn and Jupiter the effect of the electromagnetic pulse (EMP) dominates the effect that a lightning discharge has on the lower ionosphere above it. Using a Finite-Differences, Time-Domain (FDTD) solver for the EMP we found [10] that electrically active storms may create a localized but long-lasting layer of enhanced ionization of up to 103 cm-3 free electrons below the ionosphere, thus extending the ionosphere downward. We also estimate that the electromagnetic pulse transports 107 J to 1010 J toward the ionosphere. There emissions of light of up to 108 J would create a transient luminous event analogous to a terrestrial elve. Although these emissions are about 10 times fainter than the emissions coming from the lightning itself, it may be possible to target them for detection by filtering the appropiate wavelengths. [1] Cook, A. F., II, T. C. Duxbury, and G. E. Hunt (1979), First results on Jovian lightning, Nature, 280, 794, doi:10.1038/280794a0. [2] Little, B., C. D. Anger, A. P. Ingersoll, A. R. Vasavada, D. A. Senske, H. H. Breneman, W. J. Borucki, and The Galileo SSI Team (1999), Galileo images of

  17. Generating Coherent Phonons and Spin Excitations with Ultrafast Light Pulses

    Science.gov (United States)

    Merlin, Roberto

    2006-03-01

    Recent work on the generation of coherent low-lying excitations by ultrafast laser pulses will be reviewed, emphasizing the microscopic mechanisms of light-matter interaction. The topics covered include long-lived phonons in ZnO [C. Aku-Leh, J. Zhao, R. Merlin, J. Men'endez and M. Cardona, Phys. Rev.B 71, 205211 (2005)], squeezed magnons [J. Zhao, A. V. Bragas, D. J. Lockwood and R. Merlin, Phys. Rev. Lett. 93, 107203 (2004)], spin- and charge-density fluctuations [J. M. Bao et al., Phys. Rev. Lett. 92, 236601 (2004)] and cyclotron resonance [J. K. Wahlstrand, D. M. Wang, P. Jacobs, J. M. Bao, R. Merlin, K. W. West and L. N. Pfeiffer, AIP Conference Proceedings 772 (2005), p. 1313] in GaAs quantum wells. In addition, unpublished results on surface -avoiding phonons in GaAs-AlAs superlattices [M. Trigo et al., unpublished] and magnons in ferromagnetic Ga1-xMnxAs [D. M. Wang et al., unpublished] will be discussed. It will also be shown that frequencies can be measured using pump-probe techniques with a precision comparable to that of Brillouin scattering. It is now widely accepted that stimulated Raman scattering (SRS) is (often but not always) the mechanism responsible for the coherent coupling. Results will be presented showing that SRS is described by two separate tensors, one of which accounts for the excitation-induced modulation of the susceptibility, and the other one for the dependence of the amplitude of the oscillation on the light intensity [T. E. Stevens, J. Kuhl and R. Merlin, Phys. Rev. B 65, 144304 (2002)]. These tensors have the same real component, associated with impulsive coherent generation, but different imaginary parts. If the imaginary term dominates, that is, for strongly absorbing substances, the mechanism for two-band processes becomes displacive in nature, as in the DECP (displacive excitation of coherent phonons) model. It will be argued that DECP is not a separate mechanism, but a particular case of SRS. In the final part of the talk, an

  18. Implementation of a SVWP-based laser beam shaping technique for generation of 100-mJ-level picosecond pulses.

    Science.gov (United States)

    Adamonis, J; Aleknavičius, A; Michailovas, K; Balickas, S; Petrauskienė, V; Gertus, T; Michailovas, A

    2016-10-01

    We present implementation of the energy-efficient and flexible laser beam shaping technique in a high-power and high-energy laser amplifier system. The beam shaping is based on a spatially variable wave plate (SVWP) fabricated by femtosecond laser nanostructuring of glass. We reshaped the initially Gaussian beam into a super-Gaussian (SG) of the 12th order with efficiency of about 50%. The 12th order of the SG beam provided the best compromise between large fill factor, low diffraction on the edges of the active media, and moderate intensity distribution modification during free-space propagation. We obtained 150 mJ pulses of 532 nm radiation. High-energy, pulse duration of 85 ps and the nearly flat-top spatial profile of the beam make it ideal for pumping optical parametric chirped pulse amplification systems.

  19. Reaching white-light radiation source of ultrafast laser pulses with tunable peak power using nonlinear self-phase modulation in neon gas

    Science.gov (United States)

    Tawfik, Walid

    2016-08-01

    A source of white-light radiation that generates few-cycle pulses with controlled peak power values has been developed. These ultrafast pulses have been observed by spectral broadening of 32 fs pulses through nonlinear self-phase modulation in a neon-filled hollow-fiber then compressed with a pair of chirped mirrors for dispersion compensation. The observed pulses reached transform-limited duration of 5.77 fs and their peak power values varied from 57 GW up to 104 GW at repetition rate of 1 kHz. Moreover, the applied method is used for a direct tuning of the peak power of the output pulses through varying the chirping of the input pulses at different neon pressures. The observed results may give an opportunity to control the ultrafast interaction dynamics on the femtosecond time scale and facilitate the regeneration of attosecond pulses.

  20. Next generation ultrashort pulse lasers: Terawatts to Petawatts

    Energy Technology Data Exchange (ETDEWEB)

    Barty, C.P.; Gordon, C.L. III; Korn, G.; Lemoff, B.E.; Raksi, F.; Rose-Petruck, C.; Squier, J.; Wilson, K.R.; Yakovlev, V.V.; Yamakawa, K. [University of California, San Diego, Urey Hall, Mail Code 0339, La Jolla, California 92093-0339 (United States)

    1996-05-01

    Techniques for the control of femtosecond resolution phase and amplitude distortions during the amplification of 10-fs optical pulses to joule-level energies are discussed. {copyright} {ital 1996 American Institute of Physics.}

  1. Generating few-cycle pulses for nanoscale photoemission easily with an erbium-doped fiber laser.

    Science.gov (United States)

    Thomas, Sebastian; Holzwarth, Ronald; Hommelhoff, Peter

    2012-06-18

    We demonstrate a simple setup capable of generating four-cycle pulses at a center wavelength of 1700 nm for nanoscale photoemission. Pulses from an amplified erbium-doped fiber laser are spectrally broadened by propagation through a highly non-linear fiber. Subsequently, we exploit dispersion in two different types of glass to compress the pulses. The pulse length is estimated by measuring an interferometric autocorrelation trace and comparing it to a numerical simulation. We demonstrate highly non-linear photoemission of electrons from a nanometric tungsten tip in a hitherto unexplored pulse parameter range.

  2. Pulse generation and compression using an asymmetrical porous silicon-based Mach–Zehnder interferometer configuration

    Indian Academy of Sciences (India)

    SHU-WEN GUO; JIAN-WEI WU

    2016-12-01

    We propose an asymmetrical Mach–Zehnder interferometer (MZI) for efficient pulse generation and compression using porous silicon (PS) waveguide, fibre delay line and couplers. We show a pulse compression of about 0.4 ns at the output port with third-order super-Gaussian input pulse in ∼2 ns time duration and ∼40.3 W peak power level. Also, we show the possibility of obtaining compressed single- or double-pulse with judicious choice of various parameters like input peak power, delay time and input pulse width.

  3. Generation and storage of double slow light pulses in a solid

    Institute of Scientific and Technical Information of China (English)

    Fan Yun-Fei; Wang Hai-Hua; Wang Rong; Zhang Xiao-Jun; Kang Zhi-Hui; Wu Jin-Hui; Zhang Han-Zhuang; Gao Jin-Yue

    2012-01-01

    We experimentally study the generation and storage of double slow light pulses in a Pr3+:Y2SiO5 crystal.Under electromagnetically induced transparency,a single signal pulse is stored in the spin coherence of the crystal. By simultaneously switching on two control fields to recall the stored information,the spin coherence is converted into two slow light pulses with distinct frequencies.Furthermore,the storage and controlled retrieval of double slow light pulses are obtained by manipulating the control fields.This study of double slow light pulses may have practical applications in information processing and all-optical networks.

  4. VUV SOURCE FROM PULSED-LASER GENERATED PLASMA

    OpenAIRE

    Laporte, P.; Damany, N.; Damany, H.

    1987-01-01

    We describe a pulsed vacuum ultraviolet (VUV) source consisting of a plasma created by focusing a NdYAG laser beam into rare gases under moderate pressure, and we report on spectral and time properties of that source. Main features are : continuum emission in a large spectral range, with only few lines superimposed, good time characteristics of the pulses, stability, cleanliness, and relatively high repetition rate (20 Hz).

  5. Radar Range Sidelobe Reduction Using Adaptive Pulse Compression Technique

    Science.gov (United States)

    Li, Lihua; Coon, Michael; McLinden, Matthew

    2013-01-01

    technique could bring significant impact on future radar development. The novel feature of this innovation is the non-linear FM (NLFM) waveform design. The traditional linear FM has the limit (-20 log BT -3 dB) for achieving ultra-low-range sidelobe in pulse compression. For this study, a different combination of 20- or 40-microsecond chirp pulse width and 2- or 4-MHz chirp bandwidth was used. These are typical operational parameters for airborne or spaceborne weather radars. The NLFM waveform design was then implemented on a FPGA board to generate a real chirp signal, which was then sent to the radar transceiver simulator. The final results have shown significant improvement on sidelobe performance compared to that obtained using a traditional linear FM chirp.

  6. Research and development of RHIC injection kicker upgrade with nano second FID pulse generator

    Energy Technology Data Exchange (ETDEWEB)

    Zhang W.; Sandberg, J.; Hahn, H.; Fischer, W.; Liaw, C.J.; Pai, C.; Tuozzolo, J.

    2012-05-20

    Our recent effort to test a 50 kV, 1 kA, 50 ns pulse width, 10 ns pulse rise time FID pulse generator with a 250 ft transmission cable, resistive load, and existing RHIC injection kicker magnet has produced unparalleled results. This is the very first attempt to drive a high strength fast kicker magnet with a nano second high pulsed power (50 MVA) generator for large accelerator and colliders. The technology is impressive. We report here the result and future plan of RHIC Injection kicker upgrade.

  7. Tunable Multicolored Femtosecond Pulse Generation Using Cascaded Four-Wave Mixing in Bulk Materials

    Directory of Open Access Journals (Sweden)

    Jinping He

    2014-09-01

    Full Text Available This paper introduces and discusses the main aspects of multicolored femtosecond pulse generation using cascaded four-wave mixing (CFWM in transparent bulk materials. Theoretical analysis and semi-quantitative calculations, based on the phase-matching condition of the four-wave mixing process, explain the phenomena well. Experimental studies, based on our experiments, have shown the main characteristics of the multicolored pulses, namely, broadband spectra with wide tunability, high stability, short pulse duration and relatively high pulse energy. Two-dimensional multicolored array generation in various materials are also introduced and discussed.

  8. Generation of energetic, picosecond seed pulses for CO2 laser using Raman shifter

    Science.gov (United States)

    Welch, Eric; Tochitsky, Sergei; Joshi, Chan

    2017-03-01

    We present a new concept for generating 3 ps seed pulses for a high-power CO2 laser amplifier that are multiple orders more energetic than seed pulses generated by slicing from a nanosecond CO2 laser pulse. We propose to send a 1 µm picosecond laser through a C6D6 Raman shifter and mix both the pump and shifted components in a DFG crystal to produce pulses at 10.6 µm. Preliminary results of a proof-of-principle experiment are presented.

  9. The pacemaker-twiddler's syndrome: another disadvantage of abdominal implantation of pulse generators.

    Science.gov (United States)

    Guharay, B N; Ghose, J C; Majumdar, H; Basu, A K

    1977-09-01

    Breakage of a pacer lead due to the pacemaker-twiddler's syndrome (PTS) occurred in 4 of 62 survivors following epicardial-intramural pacer lead implantation with the pulse generator placed in each case in a subcostal left upper quadrant subcutaneous pocket. The abdominal pulse generator pocket appears to invite spontaneously occurring PTS, more so in a pregnant woman. The important predisposing factor to the development of PTS is an excessively spacious pulse generator pocket containing a pool of fluid. Addition of a few simple modifications to the technique of cardiac pacing would prevent the complication; these include implantation of the pulse generator in a plane deeper to the pectoral muscles, suspending the pulse generator from the clavicle and application of vacuum-suction drainage to the generator pocket in the initial phase of wound healing. In the presence of an optimally fitting pulse generator pocket, PTS should be rare with subclavicular subpectoral pulse generator implantation without active patient participation. The syndrome may not be as rare a cause of pacer lead malfunction as may appear from the relative paucity of reports in the literature.

  10. High-pressure dielectric barrier discharge Xenon lamps generating short pulses of high-peak-power VUV radiation (172nm) with high pulse-to-pulse reproducibility.

    Science.gov (United States)

    Carman, Robert; Ward, Barry; Mildren, Richard; Kane, Deborah

    2003-10-01

    Dielectric barrier discharges (DBDs) are used to efficiently generate radiation in the ultraviolet and vacuum-ultraviolet spectral regions (88nm-350nm) by forming rare-gas and rare-gas halide excimers in a transient plasma. Usually, DBD lamps generate the light output quasi-continuously or in bursts with a high degree of stochastic or random variability in the instantaneous UV/VUV intensity. However, regular pulses of high-peak-power UV/VUV, with high pulse-to-pulse reproducibility, are of interest for applications in biology, surface treatment and cleaning, and time-resolved fluorescence spectroscopy. Such pulses can be generated from spatially homogeneous plasmas in a Xe DBD when the discharge is driven by uni-polar voltage pulses of short duration ( 100ns)^1. In the present study, we will report Xe DBD lamp performance and VUV output pulse characteristics for gas pressures up to 2.5bar and excitation conditions tailored for high-peak-power output. The experimental results will be compared to theoretical results from a detailed 1-D computer model of the spatio-temporal evolution of the plasma kinetics and Xe species population densities. ^1R.P.Mildren and R.J.Carman, J.Phys.D, 34, L1-L6, (2001)

  11. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    Science.gov (United States)

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  12. Flattop pulse generation based on the combined action of active mode locking and nonlinear polarization rotation.

    Science.gov (United States)

    Fang, Xiaohui; Wai, P K A; Lu, Chao; Chen, Jinhua

    2014-02-10

    A pulse-width-tunable 10 GHz flattop pulse (FTP) train is generated based on the combined action of active mode locking and nonlinear polarization rotation pulse shaping. Although the setup was previously used for other applications, the mechanism of FTP generation based on it is first analyzed and confirmed in the experiment. An FTP with pulse width tunable from 12 to 20 ps by changing polarization controllers is generated within the wavelength tuning range of 20 nm. The generated pulse reveals good stability, with the side mode suppression ratio of 65 dB, timing jitter of 92 fs, and amplitude fluctuation of 0.36%.

  13. Design and Simulation of Sub Nanosecond Pulse Generator for Uitra-Wideband Communication

    Institute of Scientific and Technical Information of China (English)

    XU Ping-ping; OUYANG Yong-yan; FAN Xiang-ning

    2003-01-01

    A new sub-nanosecond pulse generator scheme is proposed in the opinion of frequency field in this paper.The filtering techniques used in the UWB (ultra-wideband) generator make the circuit simple and suitable for integration. The theoretical analysis and simulation results show that monocycle form generated in the scheme have a good balance between positive and negative shape and small traipse by circuit parameter control and has improved the quality of UWB pulse form.

  14. Parabolic similariton Yb-fiber laser with triangular pulse evolution

    Science.gov (United States)

    Wang, Sijia; Wang, Lei

    2016-04-01

    We propose a novel mode-locked fiber laser design which features a passive nonlinear triangular pulse formation and self-similar parabolic pulse amplification intra cavity. Attribute to the nonlinear reshaping progress in the passive fiber, a triangular-profiled pulse with negative-chirp is generated and paved the way for rapid and efficient self-similar parabolic evolution in a following short-length high-gain fiber. In the meanwhile, the accompanied significantly compressed narrow spectrum from this passive nonlinear reshaping also gives the promise of pulse stabilization and gain-shaping robustness without strong filtering. The resulting short average intra-cavity pulse duration, low amplified spontaneous emission (ASE) and low intra-cavity power loss are essential for the low-noise operation. Simulations predict this modelocked fiber laser allows for high-energy ultra-short transform-limited pulse generation exceeding the gain bandwidth. The output pulse has a de-chirped duration (full-width at half maximum, FWHM) of 27 fs. In addition to the ultrafast laser applications, the proposed fiber laser scheme can support low-noise parabolic and triangular pulse trains at the same time, which are also attractive in optical pulse shaping, all-optical signal processing and high-speed communication applications.

  15. Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation.

    Science.gov (United States)

    Zeek, E; Bartels, R; Murnane, M M; Kapteyn, H C; Backus, S; Vdovin, G

    2000-04-15

    We demonstrate the use of a deformable-mirror pulse shaper, combined with an evolutionary optimization algorithm, to correct high-order residual phase aberrations in a 1-mJ, 1-kHz, 15-fs laser amplifier. Frequency-resolved optical gating measurements reveal that the output pulse duration of 15.2 fs is within our measurement error of the theoretical transform limit. This technique significantly reduces the pulse duration and the temporal prepulse energy of the pulse while increasing the peak intensity by 26%. It is demonstrated, for what is believed to be the first time, that the problem of pedestals in laser amplifiers can be addressed by spectral-domain correction.

  16. Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation

    Energy Technology Data Exchange (ETDEWEB)

    Zeek, E.; Bartels, R.; Murnane, M. M.; Kapteyn, H. C.; Backus, S.; Vdovin, G.

    2000-04-15

    We demonstrate the use of a deformable-mirror pulse shaper, combined with an evolutionary optimization algorithm, to correct high-order residual phase aberrations in a 1-mJ, 1-kHz, 15-fs laser amplifier. Frequency-resolved optical gating measurements reveal that the output pulse duration of 15.2 fs is within our measurement error of the theoretical transform limit. This technique significantly reduces the pulse duration and the temporal prepulse energy of the pulse while increasing the peak intensity by 26%. It is demonstrated, for what is believed to be the first time, that the problem of pedestals in laser amplifiers can be addressed by spectral-domain correction. (c) 2000 Optical Society of America.

  17. MOSFET-based high voltage double square-wave pulse generator with an inductive adder configuration

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Qiaogen, E-mail: hvzhang@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Long, Jinghua [College of Physics, Shenzhen University, Shenzhen 518060 (China); Lei, Yunfei; Liu, Jinyuan [Institute of Optoelectronics, Shenzhen University, Shenzhen 518060 (China)

    2015-09-01

    This paper presents a fast MOSFET-based solid-state pulse generator for high voltage double square-wave pulses. The generator consists mainly of an inductive adder system stacked of 20 solid-state modules. Each of the modules has 18 power MOSFETs in parallel, which are triggered by individual drive circuits; these drive circuits themselves are synchronously triggered by a signal from avalanche transistors. Our experiments demonstrate that the output pulses with amplitude of 8.1 kV and peak current of about 405 A are available at a load impedance of 20 Ω. The pulse has a double square-wave form with a rise and fall time of 40 ns and 26 ns, respectively and bottom flatness better than 12%. The interval time of the double square-wave pulses can be adjustable by varying the interval time of the trigger pulses.

  18. An All Solid-State Pulsed Power Generator for Plasma Immersion Ion Implantation (PⅢ)

    Institute of Scientific and Technical Information of China (English)

    LIU Kefu; QIU Jian; WU Yifan

    2009-01-01

    An all solid-state pulsed power generator for plasma immersion ion implantation (PⅢ) is described. The pulsed power system is based on a Marx circuit configuration and semi-conductor switches, which have many advantages in adjustable repetition frequency, pulse width modulation and long serving life compared with the conventional circuit category, tube-based technologies such as gridded vacuum tubes, thyratrons, pulse forming networks and transformers.The operation of PⅢ with pulse repetition frequencies up to 500 Hz has been achieved at a pulse voltage amplitude from 2 kV to 60 kV, with an adjustable pulse duration from 1 μs to 100 μs.The proposed system and its performance, as used to drive a plasma ion implantation chamber,axe described in detail on the basis of the experimental results.

  19. Generation of High Range Resolution in MIMO SAR via Stepped Frequency Up-and-Down Chirp Signal%步进正负调频信号实现MIMO SAR距离高分辨

    Institute of Scientific and Technical Information of China (English)

    马喜乐; 董臻; 孙造宇

    2011-01-01

    带宽合成技术通过多子带步进调频信号的数据融合实现距离向超高分辨.单相位中心顺序收发的模式对系统PRF要求较高,在星载条件下不利于实现高分大测绘带成像.文章对基于多发多收(MIMO)SAR系统的子带并发体制进行研究,详细阐述该体制下子带信号合成的方法,指出带宽合成前必须对相位中心的位置差异进行校正,针对子带串扰带来的虚像问题,首先对其出现机理进行详细分析,最后提出应用步进正负调频信号的方法,在距离压缩后进行子带合成,在实现距离高分辨的同时进一步抑制虚像峰值,仿真结果验证了方法的有效性.%Synthetic bandwidth technology realizes super range resolution by fusing multi-band stepped chirp signal. The mode that transmitting and receiving sub-band signal in consequence with single phase center imposes strict request on pulse repetition frequency (PRF) , which means that this mode is not suit for high resolution wide swath imaging of space-born SAR. This thesis focuses on muluple-input multiple-output ( MIMO) SAR based concurrent-sub-band system, interprets the principal of signal processing,pointes out the indispensability of correction of azimuth positions. Because of the overlap between neighboring sub-band, unwanted virtual image is unavoidable. the mechanism of the virtual image is interpreted in detail, stepped frequency up-and-down chirp signal based approach is put forward to suppress the peak level of the unwanted profile, the validity of the approach is demonstrated by simulation results.

  20. Quantum state engineering with flux-biased Josephson phase qubits by Stark-chirped rapid adiabatic passages

    CERN Document Server

    Nie, W; Shi, X; Wei, L F

    2010-01-01

    In this paper, the scheme of quantum computing based on Stark chirped rapid adiabatic passage (SCRAP) technique [L. F. Wei et al., Phys. Rev. Lett. 100, 113601 (2008)] is extensively applied to implement the quantum-state manipulations in the flux-biased Josephson phase qubits. The broken-parity symmetries of bound states in flux-biased Josephson junctions are utilized to conveniently generate the desirable Stark-shifts. Then, assisted by various transition pulses universal quantum logic gates as well as arbitrary quantum-state preparations could be implemented. Compared with the usual PI-pulses operations widely used in the experiments, the adiabatic population passage proposed here is insensitive the details of the applied pulses and thus the desirable population transfers could be satisfyingly implemented. The experimental feasibility of the proposal is also discussed.