WorldWideScience

Sample records for generation calcium phosphate-based

  1. Controlled formation of calcium-phosphate-based hybrid mesocrystals by organic-inorganic co-assembly.

    Science.gov (United States)

    Zhai, Halei; Chu, Xiaobin; Li, Li; Xu, Xurong; Tang, Ruikang

    2010-11-01

    An understanding of controlled formation of biomimetic mesocrystals is of great importance in materials chemistry and engineering. Here we report that organic-inorganic hybrid plates and even mesocrystals can be conveniently synthesized using a one-pot reaction in a mixed system of protein (bovine serum albumin (BSA)), surfactant (sodium bis(2-ethylhexyl) sulfosuccinate (AOT)) and supersaturated calcium phosphate solution. The morphologies of calcium-phosphate-based products are analogous to the general inorganic crystals but they have abnormal and interesting substructures. The hybrids are constructed by the alternate stacking of organic layer (thickness of 1.31 nm) and well-crystallized inorganic mineral layer (thickness of 2.13 nm) at the nanoscale. Their morphologies (spindle, rhomboid and round) and sizes (200 nm-2 μm) can be tuned gradually by changing BSA, AOT and calcium phosphate concentrations. This modulation effect can be explained by a competition between the anisotropic and isotropic assembly of the ultrathin plate-like units. The anisotropic assembly confers mesocrystal characteristics on the hybrids while the round ones are the results of isotropic assembly. However, the basic lamellar organic-inorganic substructure remains unchanged during the hybrid formation, which is a key factor to ensure the self-assembly from molecule to micrometre scale. A morphological ternary diagram of BSA-AOT-calcium phosphate is used to describe this controlled formation process, providing a feasible strategy to prepare the required materials. This study highlights the cooperative effect of macromolecule (frame structure), small biomolecule (binding sites) and mineral phase (main component) on the generation and regulation of biomimetic hybrid mesocrystals.

  2. Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration.

    Science.gov (United States)

    Khan, Ather Farooq; Saleem, Muhammad; Afzal, Adeel; Ali, Asghar; Khan, Afsar; Khan, Abdur Rahman

    2014-02-01

    Bone graft substitutes are widely used for bone regeneration and repair in defect sites resulting from aging, disease, trauma, or accident. With invariably increasing clinical demands, there is an urgent need to produce artificial materials, which are readily available and are capable of fast and guided skeletal repair. Calcium phosphate based bioactive ceramics are extensively utilized in bone regeneration and repair applications. Silicon is often utilized as a substituent or a dopant in these bioceramics, since it significantly enhances the ultimate properties of conventional biomaterials such as surface chemical structure, mechanical strength, bioactivity, biocompatibility, etc. This article presents an overview of the silicon substituted bioceramics, which have emerged as efficient bone replacement and bone regeneration materials. Thus, the role of silicon in enhancing the biological performance and bone forming capabilities of conventional calcium phosphate based bioceramics is identified and reviewed.

  3. Bioactivity evaluation of commercial calcium phosphate-based bioceramics for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Borrós, S.; Mas, A.

    2016-11-01

    Calcium phosphate-based bioceramics constitute a great promise for bone tissue engineering as they chemically resemble to mammalian bone and teeth. Their use is a viable alternative for bone regeneration as it avoids the use of autografts and allografts, which usually involves immunogenic reactions and patient’s discomfort. This work evolves around the study of the bioactivity potential of different commercially available bone substitutes based in calcium phosphate through the characterization of their ionic exchangeability when immersed in simulated body fluid (SBF). (Author)

  4. Cell response of calcium phosphate based ceramics, a bone substitute material

    Directory of Open Access Journals (Sweden)

    Juliana Marchi

    2013-01-01

    Full Text Available The aim of this study was to characterize calcium phosphate ceramics with different Ca/P ratios and evaluate cell response of these materials for use as a bone substitute. Bioceramics consisting of mixtures of hydroxyapatite (HAp and β-tricalcium phosphate (β-TCP powders in different proportions were pressed and sintered. The physical and chemical properties of these bioceramics were then characterized. Characterization of the biological properties of these materials was based on analysis of cell response using cultured fibroblasts. The number of cells attached to the samples was counted from SEM images of samples exposed to cell culture solution for different periods. These data were compared by analysis of variance (ANOVA complemented by the Tukey's test. The TCP sample had higher surface roughness and lower density. The adherence and growth of FMM1 cells on samples from all groups was studied. Even though the different calcium based ceramics exhibited properties which made them suitable as bone substitutes, those with higher levels of β-TCP revealed improved cell growth on their surfaces. These observations indicated two-phase calcium phosphate based materials with a β-TCP surface layer to be a promising bone substitute.

  5. Mechanisms of in Vivo Degradation and Resorption of Calcium Phosphate Based Biomaterials

    Directory of Open Access Journals (Sweden)

    Zeeshan Sheikh

    2015-11-01

    Full Text Available Calcium phosphate ceramic materials are extensively used for bone replacement and regeneration in orthopedic, dental, and maxillofacial surgical applications. In order for these biomaterials to work effectively it is imperative that they undergo the process of degradation and resorption in vivo. This allows for the space to be created for the new bone tissue to form and infiltrate within the implanted graft material. Several factors affect the biodegradation and resorption of calcium phosphate materials after implantation. Various cell types are involved in the degradation process by phagocytic mechanisms (monocytes/macrophages, fibroblasts, osteoblasts or via an acidic mechanism to reduce the micro-environmental pH which results in demineralization of the cement matrix and resorption via osteoclasts. These cells exert their degradation effects directly or indirectly through the cytokine growth factor secretion and their sensitivity and response to these biomolecules. This article discusses the mechanisms of calcium phosphate material degradation in vivo.

  6. The use of calcium phosphate-based biomaterials in implant dentistry.

    Science.gov (United States)

    Xie, Cheng; Lu, Hong; Li, Wei; Chen, Fa-Ming; Zhao, Yi-Min

    2012-03-01

    Since calcium phosphates (CaPs) were first proposed, a wide variety of formulations have been developed and continuously optimized, some of which (e.g. calcium phosphate cements, CPCs) have been successfully commercialized for clinical applications. These CaP-based biomaterials have been shown to be very attractive bone substitutes and efficient drug delivery vehicles across diverse biomedical applications. In this article, CaP biomaterials, principally CPCs, are addressed as alternatives/complements to autogenous bone for grafting in implant dentistry and as coating materials for enhancing the osteoinductivity of titanium implants, highlighting their performance benefits simultaneously as carriers for growth factors and as scaffolds for cell proliferation, differentiation and penetration. Different strategies for employing CaP biomaterials in dental implantology aim to ultimately reach the same goal, namely to enhance the osseointegration process for dental implants in the context of immediate loading and to augment the formation of surrounding bone to guarantee long-term success.

  7. Structural characterization of anion-calcium-humate complexes in phosphate-based fertilizers.

    Science.gov (United States)

    Baigorri, Roberto; Urrutia, Oscar; Erro, Javier; Mandado, Marcos; Pérez-Juste, Ignacio; Garcia-Mina, José María

    2013-07-01

    Fertilizers based on phosphate-metal-humate complexes are a new family of compounds that represents a more sustainable and bioavailable phosphorus source. The characterization of this type of complex by using solid (31)P NMR in several fertilizers, based on single superphosphate (SSP) and triple superphosphate (TSP) matrices, yielded surprising and unexpected trends in the intensity and fine structure of the (31)P NMR peaks. Computational chemistry methods allowed the characterization of phosphate-calcium-humate complexes in both SSP and TSP matrices, but also predicted the formation of a stable sulfate-calcium-humate complex in the SSP fertilizers, which has not been described previously. The stability of this complex has been confirmed by using ultrafiltration techniques. Preference towards the humic substance for the sulfate-metal phase in SSP allowed the explanation of the opposing trends that were observed in the experimental (31)P NMR spectra of SSP and TSP samples. Additionally, computational chemistry has provided an assignment of the (31)P NMR signals to different phosphate ligands as well as valuable information about the relative strength of the phosphate-calcium interactions within the crystals.

  8. Designing calcium phosphate-based bifunctional nanocapsules with bone-targeting properties

    Energy Technology Data Exchange (ETDEWEB)

    Khung, Yit-Lung; Bastari, Kelsen; Cho, Xing Ling; Yee, Wu Aik; Loo, Say Chye Joachim, E-mail: joachimloo@ntu.edu.sg [Nanyang Technological University, School of Materials Science and Engineering (Singapore)

    2012-06-15

    Using sodium dodecyl sulphate micelles as template, hollow-cored calcium phosphate nanocapsules were produced. The surfaces of the nanocapsule were subsequently silanised by a polyethylene glycol (PEG)-based silane with an N-hydroxysuccinimide ester end groups which permits for further attachment with bisphosphonates (BP). Characterisations of these nanocapsules were investigated using Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy, Fourier Transform Infra-Red Spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Dynamic Light Scattering. To further validate the bone-targeting potential, dentine discs were incubated with these functionalised nanocapsules. FESEM analysis showed that these surface-modified nanocapsules would bind strongly to dentine surfaces compared to non-functionalised nanocapsules. We envisage that respective components would give this construct a bifunctional attribute, whereby (1) the shell of the calcium phosphate nanocapsule would serve as biocompatible coating aiding in gradual osteoconduction, while (2) surface BP moieties, acting as targeting ligands, would provide the bone-targeting potential of these calcium phosphate nanocapsules.

  9. Development of calcium phosphate based apatite from hen’s eggshell

    Indian Academy of Sciences (India)

    K Prabakaran; A Balamurugan; S Rajeswari

    2005-04-01

    Stoichiometric hydroxyapatite with Ca/P molar ratio, 1.67, was synthesized using hen’s eggshell as calcium source and phosphoric acid by precipitation method. Conventional EDTA titration and gravimetric methods were adopted to estimate the amount of calcium and phosphorous, respectively. Fourier-transform infrared (FT–IR) and X-ray diffraction (XRD) techniques were employed to investigate the formation of the HAP phase. Thermal analysis (TG–DTA) was carried out to investigate the thermal stability of HAP powder. FT–IR spectra show the characteristic peaks for phosphate and hydroxyl groups. XRD results reveal that the major characteristic peaks of HAP appear in the region of approximately 26°, 28°, 29°, 30–35°, 39°, 46°, 49° and 50° (2) and also indicate that there are no occurrences of secondary phases during HAP formation. TG–DTA result depicts that the synthesized HAP was stable up to 1300°C.

  10. Structure-Composition-Property Relationships in Polymeric Amorphous Calcium Phosphate-Based Dental Composites

    Directory of Open Access Journals (Sweden)

    Drago Skrtic

    2009-11-01

    Full Text Available Our studies of amorphous calcium phosphate (ACP-based materials over the last decade have yielded bioactive polymeric composites capable of protecting teeth from demineralization or even regenerating lost tooth mineral. The anti-cariogenic/remineralizing potential of these ACP composites originates from their propensity, when exposed to the oral environment, to release in a sustained manner sufficient levels of mineral-forming calcium and phosphate ions to promote formation of stable apatitic tooth mineral. However, the less than optimal ACP filler/resin matrix cohesion, excessive polymerization shrinkage and water sorption of these experimental materials can adversely affect their physicochemical and mechanical properties, and, ultimately, limit their lifespan. This study demonstrates the effects of chemical structure and composition of the methacrylate monomers used to form the matrix phase of composites on degree of vinyl conversion (DVC and water sorption of both copolymers and composites and the release of mineral ions from the composites. Modification of ACP surface via introducing cations and/or polymers ab initio during filler synthesis failed to yield mechanically improved composites. However, moderate improvement in composite’s mechanical stability without compromising its remineralization potential was achieved by silanization and/or milling of ACP filler. Using ethoxylated bisphenol A dimethacrylate or urethane dimethacrylate as base monomers and adding moderate amounts of hydrophilic 2-hydroxyethyl methacrylate or its isomer ethyl-α-hydroxymethacrylate appears to be a promising route to maximize the remineralizing ability of the filler while maintaining high DVC. Exploration of the structure/composition/property relationships of ACP fillers and polymer matrices is complex but essential for achieving a better understanding of the fundamental mechanisms that govern dissolution/re-precipitation of bioactive ACP fillers, and

  11. Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: A review paper.

    Science.gov (United States)

    Rafieerad, A R; Ashra, M R; Mahmoodian, R; Bushroa, A R

    2015-12-01

    In recent years, calcium phosphate-base composites, such as hydroxyapatite (HA) and carbonate apatite (CA) have been considered desirable and biocompatible coating layers in clinical and biomedical applications such as implants because of the high resistance of the composites. This review focuses on the effects of voltage, time and electrolytes on a calcium phosphate-base composite layer in case of pure titanium and other biomedical grade titanium alloys via the plasma electrolytic oxidation (PEO) method. Remarkably, these parameters changed the structure, morphology, pH, thickness and crystallinity of the obtained coating for various engineering and biomedical applications. Hence, the structured layer caused improvement of the biocompatibility, corrosion resistance and assignment of extra benefits for Osseo integration. The fabricated layer with a thickness range of 10 to 20 μm was evaluated for physical, chemical, mechanical and tribological characteristics via XRD, FESEM, EDS, EIS and corrosion analysis respectively, to determine the effects of the applied parameters and various electrolytes on morphology and phase transition. Moreover, it was observed that during PEO, the concentration of calcium, phosphor and titanium shifts upward, which leads to an enhanced bioactivity by altering the thickness. The results confirm that the crystallinity, thickness and contents of composite layer can be changed by applying thermal treatments. The corrosion behavior was investigated via the potentiodynamic polarization test in a body-simulated environment. Here, the optimum corrosion resistance was obtained for the coating process condition at 500 V for 15 min in Ringer solution. This review has been summarized, aiming at the further development of PEO by producing more adequate titanium-base implants along with desired mechanical and biomedical features.

  12. Comparison and preparation of multilayered polylactic acid fabric strengthen calcium phosphate-based bone substitutes for orthopedic applications.

    Science.gov (United States)

    Chen, Wen-Cheng; Ko, Chia-Ling; Yang, Jia-Kai; Wu, Hui-Yu; Lin, Jia-Horng

    2016-03-01

    An attempt to maintain the three-dimensional space into restorative sites through the conveniently pack porous fillers are general used strategy. Advancement in the manufacturing protective shells in the scaffolds, which would be filled with brittle ceramic grafts for the development of highly connective pores provides the approach to solve crack problem for generating the tissues. Therefore, multilayered braided and alkalized poly(lactic acid) (PLA) composites with calcium phosphate bone cement (CPC) were synthesized and compared. The PLA/CPC composites were divided into various groups according to a series of heat-treatment temperatures (100-190 °C) and periods (1-3 h) and then characterized. The effects of 24-h immersion on the strength decay resistance of the samples were compared. Results showed that the residual oil capped on the surfaces of alkalized PLA braid was removed, and the structure was unaltered. However, the reduced tensile stress of alkalized PLA braids was due to ester-group formation by hydrolysis. Mechanical test results of PLA/CPC composites showed that the strength significantly increased after heat treatment, except when the heating temperature was higher than the PLA melting point at approximately 160-170 °C. The degree of PLA after recrystallization became higher than that of unheated composites, thereby leading to reduced strength and toughness of the specimen. Braiding fibers of biodegradable PLA reinforced and toughened the structure particularly of the extra-brittle material of thin-sheet CPC after implantation.

  13. Structural and dynamical studies of acid-mediated conversion in amorphous-calcium-phosphate based dental composites.

    Science.gov (United States)

    Zhang, Fan; Allen, Andrew J; Levine, Lyle E; Vaudin, Mark D; Skrtic, Drago; Antonucci, Joseph M; Hoffman, Kathleen M; Giuseppetti, Anthony A; Ilavsky, Jan

    2014-10-01

    To investigate the complex structural and dynamical conversion process of the amorphous-calcium-phosphate (ACP)-to-apatite transition in ACP based dental composite materials. Composite disks were prepared using zirconia hybridized ACP fillers (0.4 mass fraction) and photo-activated Bis-GMA/TEGDMA resin (0.6 mass fraction). We performed an investigation of the solution-mediated ACP-to-apatite conversion mechanism in controlled acidic aqueous environment with in situ ultra-small angle X-ray scattering based coherent X-ray photon correlation spectroscopy and ex situ X-ray diffraction, as well as other complementary techniques. We established that the ACP-to-apatite conversion in ACP composites is a two-step process, owing to the sensitivity to local structural changes provided by coherent X-rays. Initially, ACP undergoes a local microstructural rearrangement without losing its amorphous character. We established the catalytic role of the acid and found the time scale of this rearrangement strongly depends on the pH of the solution, which agrees with previous findings about ACP without the polymer matrix being present. In the second step, ACP is converted to an apatitic form with the crystallinity of the formed crystallites being poor. Separately, we also confirmed that in the regular Zr-modified ACP the rate of ACP conversion to hydroxyapatite is slowed significantly compared to unmodified ACP, which is beneficial for targeted slow release of functional calcium and phosphate ions from dental composite materials. For the first time, we were able to follow the complete solution-mediated transition process from ACP to apatite in this class of dental composites in a controlled aqueous environment. A two-step process, suggested previously, was conclusively identified. Copyright © 2014 Academy of Dental Materials. All rights reserved.

  14. Effect of particle size of calcium phosphate based bioceramic drug delivery carrier on the release kinetics of ciprofloxacin hydrochloride: an in vitro study

    Science.gov (United States)

    Sasikumar, Swamiappan

    2013-09-01

    Hydroxyapatite (HAP) is the constituent of calcium phosphate based bone cement and it is extensively used as a bone substitute and drug delivery vehicle in various biomedical applications. In the present study we investigated the release kinetics of ciprofloxacin loaded HAP and analyzed its ability to function as a targeted and sustained release drug carrier. Synthesis of HAP was carried out by combustion method using tartaric acid as a fuel and nitric acid as an oxidizer. Powder XRD and FTIR techniques were employed to characterize the phase purity of the drug carrier and to verify the chemical interaction between the drug and carrier. The synthesized powders were sieve separated to make two different drug carriers with different particle sizes and the surface topography of the pellets of the drug carrier was imaged by AFM. Surface area and porosity of the drug carrier was carried out using surface area analyzer. The in-vitro drug release kinetics was performed in simulated body fluid, at 37.3°C. The amount of ciprofloxacin released is measured using UV-visible spectroscopy following the characteristic λ max of 278 nm. The release saturates around 450 h which indicates that it can be used as a targeted and sustained release carrier for bone infections.

  15. Evaluation and comparison of the efficacy of low fluoridated and calcium phosphate-based dentifrice formulations when used with powered and manual toothbrush in children with autism

    Directory of Open Access Journals (Sweden)

    Prateek Awasthi

    2015-01-01

    Full Text Available Background: Autism is a neurobiological disorder characterized by impaired social interaction, communication difficulties, and lacking manual dexterity. These limitations make the oral hygiene maintenance very difficult. Aim: The aim of this present study is to evaluate and compare the efficacy of low fluoridated and calcium phosphate-based dentifrice formulations when used with powered and manual toothbrush in children with autism. Setting and Design: Sample comprised 22 children with autism who daily visited a day care and education center named ARUSHI - a center for children with special health care needs in Bhopal. Methods: Children were divided into two groups (Group A and B according to toothbrush used and further divided into subgroups (A1 and B1 [low fluoridated − Pediflor toothpaste] and A2 and B2 [calcium sucrose phosphate − Enafix toothpaste]. Oral hygiene instructions and brushing technique demonstration were given every day for a period of 1-month. Oral health status was evaluated before and after the study using simplified oral hygiene index (OHI-S and its Miglani's modification for primary dentition, plaque index (PI, gingival index (GI, and decayed, missing, and filled teeth (DMFT/deft index. The perception of parents regarding oral hygiene practices for their kids was also evaluated by an awareness and attitude questionnaire. Statistical Analysis: OHI-S, GI, PI, and DMFT/deft were statistically evaluated using Mann–Whitney U- test. Results and Conclusion: Mean value of OHI-S decreased significantly with powered toothbrush (0.035 [P < 0.05] in both groups. However, PI decreased significantly for Enafix when used with powered toothbrush (0.042 [P < 0.05]. Perception of parents was seen to improve significantly after 1-month study (0.000 [P < 0.05].

  16. Remineralizing amorphous calcium phosphate based composite resins: the influence of inert fillers on monomer conversion, polymerization shrinkage, and microhardness

    Science.gov (United States)

    Marović, Danijela; Šariri, Kristina; Demoli, Nazif; Ristić, Mira; Hiller, Karl-Anton; Škrtić, Drago; Rosentritt, Martin; Schmalz, Gottfried; Tarle, Zrinka

    2016-01-01

    Aim To determine if the addition of inert fillers to a bioactive dental restorative composite material affects its degree of conversion (DC), polymerization shrinkage (PS), and microhardness (HV). Methods Three amorphous calcium phosphate (ACP)-based composite resins: without added fillers (0-ACP), with 10% of barium-glass fillers (Ba-ACP), and with 10% of silica fillers (Si-ACP), as well as commercial control (Ceram•X, Dentsply DeTrey) were tested in laboratory conditions. The amount of ACP (40%) and the composition of the resin mixture (based on ethoxylated bisphenol A dimethacrylate) was the same for all ACP materials. Fourier transform infrared spectroscopy was used to determine the DC (n = 40), 20 min and 72 h after polymerization. Linear PS and Vickers microhardness (n = 40) were also evaluated. The results were analyzed by paired samples t test, ANOVA, and one-way repeated measures ANOVA with Student-Newman-Keuls or Tukey’s post-hoc test (P = 0.05). Results The addition of barium fillers significantly increased the DC (20 min) (75.84 ± 0.62%) in comparison to 0-ACP (73.92 ± 3.08%), but the addition of silica fillers lowered the DC (71.00 ± 0.57%). Ceram•X had the lowest DC (54.93 ± 1.00%) and linear PS (1.01 ± 0.24%) but the highest HV (20.73 ± 2.09). PS was significantly reduced (P < 0.010) in both Ba-ACP (1.13 ± 0.25%) and Si-ACP (1.17 ± 0.19%) compared to 0-ACP (1.43 ± 0.21%). HV was significantly higher in Si-ACP (12.82 ± 1.30) than in 0-ACP (10.54 ± 0.86) and Ba-ACP (10.75 ± 0.62) (P < 0.010). Conclusion Incorporation of inert fillers to bioactive remineralizing composites enhanced their physical-mechanical performance in laboratory conditions. Both added fillers reduced the PS while maintaining high levels of the DC. Silica fillers additionally moderately improved the HV of ACP composites. PMID:27815937

  17. Biocalcite, a multifunctional inorganic polymer: Building block for calcareous sponge spicules and bioseed for the synthesis of calcium phosphate-based bone

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    2014-05-01

    Full Text Available Calcium carbonate is the material that builds up the spicules of the calcareous sponges. Recent results revealed that the calcium carbonate/biocalcite-based spicular skeleton of these animals is formed through an enzymatic mechanism, such as the skeleton of the siliceous sponges, evolutionarily the oldest animals that consist of biosilica. The enzyme that mediates the calcium carbonate deposition has been identified as a carbonic anhydrase (CA and has been cloned from the calcareous sponge species Sycon raphanus. Calcium carbonate deposits are also found in vertebrate bones besides the main constituent, calcium phosphate/hydroxyapatite (HA. Evidence has been presented that during the initial phase of HA synthesis poorly crystalline carbonated apatite is deposited. Recent data summarized here indicate that during early bone formation calcium carbonate deposits enzymatically formed by CA, act as potential bioseeds for the precipitation of calcium phosphate mineral onto bone-forming osteoblasts. Two different calcium carbonate phases have been found during CA-driven enzymatic calcium carbonate deposition in in vitro assays: calcite crystals and round-shaped vaterite deposits. The CA provides a new target of potential anabolic agents for treatment of bone diseases; a first CA activator stimulating the CA-driven calcium carbonate deposition has been identified. In addition, the CA-driven calcium carbonate crystal formation can be frozen at the vaterite state in the presence of silintaphin-2, an aspartic acid/glutamic acid-rich sponge-specific protein. The discovery that calcium carbonate crystals act as bioseeds in human bone formation may allow the development of novel biomimetic scaffolds for bone tissue engineering. Na-alginate hydrogels, enriched with biosilica, have recently been demonstrated as a suitable matrix to embed bone forming cells for rapid prototyping bioprinting/3D cell printing applications.

  18. Laser-assisted one-pot fabrication of calcium phosphate-based submicrospheres with internally crystallized magnetite nanoparticles through chemical precipitation.

    Science.gov (United States)

    Nakamura, Maki; Oyane, Ayako; Sakamaki, Ikuko; Ishikawa, Yoshie; Shimizu, Yoshiki; Kawaguchi, Kenji

    2015-04-14

    In this paper, we have further developed our simple (one-pot) and rapid (short irradiation time) laser fabrication process of submicrometer spheres composed of amorphous calcium iron phosphate. In our previous process, laser irradiation was applied to a calcium phosphate (CaP) reaction mixture supplemented with ferric ions (Fe(3+)) as a light-absorbing agent. Because the intention of the present study was to fabricate magnetite-encapsulated CaP-based submicrometer spheres, ferrous ions (Fe(2+)) were used as a light-absorbing agent rather than ferric ions. The ferrous ions served as a light-absorbing agent and facilitated the fabrication of submicrometer and micrometer spheres of amorphous calcium iron phosphate. The sphere formation and growth were better promoted by the use of ferrous ions as compared with the use of ferric ions. The chemical composition of the spheres was controllable through adjustment of the experimental conditions. By the addition of sodium hydroxide to the CaP reaction mixture supplemented with ferrous ions, fabrication of CaP-based magnetic submicrometer spheres was successfully achieved. Numerous magnetite and wüstite nanoparticles were coprecipitated or segregated into the CaP-based spherical amorphous matrix via light-material interaction during the CaP precipitation process. The magnetic properties of the magnetite and wüstite formed in the CaP-based spheres were investigated by magnetization measurements. The present process and the resulting CaP-based spheres are expected to have great potential for biomedical applications.

  19. Comparative evaluation of enamel remineralization potential of processed cheese, calcium phosphate-based synthetic agent, and a fluoride-containing toothpaste: An in situ study

    Directory of Open Access Journals (Sweden)

    Navneet Grewal

    2017-01-01

    Full Text Available Background: Enamel remineralization potential of variety of products has been established, but there is a lack of evidence of comparison of remineralization potential of natural versus synthetic products. Aim: The aim of this study was to compare the enamel remineralization potential of saliva, cheese, casein phosphopeptide-amorphous calcium phosphate (CPP-ACP-based synthetic agent, and fluoride toothpaste. Design: In situ study was carried out on sixty individuals who wore an intraoral appliance containing demineralized enamel slabs for each agent. One out of six slabs was kept as a control so as to record the baseline values (neither subjected to demineralization nor remineralization. Experimental agents were applied on the designated enamel slabs on day 1, 4, 7, and 10 with a crossover wash out period of 7 days. Quantitative values of mineral content of slab were measured using energy dispersive X-ray and qualitative changes in surface topography of slab were seen under scanning electron microscope at ×20K magnification. Results: Highly significant changes from baseline values were seen in calcium and phosphorus content of slabs treated with cheese and CPP-ACP-based agent whereas levels of fluoride were significantly higher in enamel slabs treated with fluoride-containing toothpaste. Conclusion: Cheese is an organic, economical, and user-friendly option over prescribed synthetic agents. A synergistic effect of fluoride-containing toothpaste with intake of cheese could be a good enamel remineralization protocol.

  20. Ethanolysis conversion of spent frying oils over aluminium, calcium-phosphate based bi-functional formulated catalysts. Catalytic activity assessment study

    Energy Technology Data Exchange (ETDEWEB)

    Al-Zaini, Essam O.; Chesterfield, Dean; Adesina, Adesoji A. [The Univ. of New South Wales, Sydney (Australia). Reactor Engineering and Technology Group; Olsen, John [The Univ. of New South Wales, Sydney (Australia). School of Mechanical and Manufacturing Engineering

    2013-06-01

    The current study compares the catalytic performance of two bi-functional solid catalysts for the transesterification of waste cooking vegetable oil in presence of bio-ethanol acyl-acceptor. The two catalysts were aluminum oxide and seashell-derived calcium oxide supported K{sub 3}PO{sub 4}. The catalytic activity of the produced catalyst samples were assessed and evaluated in terms of their textural and surface chemical properties. Evaluative runs showed that increased amounts of K{sub 3}PO{sub 4} have differently controlled the textural and surface chemical property of the finally synthesised catalyst samples. The behaviour revealed a strong correlation between the percentage yield of ethyl esters EEY% and acid-base site density and strength between the two types of catalysts. Possible leaching test of the catalysts was also used as a measure of performance and as a result, the optimum catalyst, on the basis of both ester yield and resistance to leaching was identified as the sample containing between 10 and 15wt% of K{sub 3}PO{sub 4} on AlO{sub 3} and CaO respectively. (orig.)

  1. Phosphate based oil well cements

    Science.gov (United States)

    Natarajan, Ramkumar

    The main application of the cement in an oil well is to stabilize the steel casing in the borehole and protect it from corrosion. The cement is pumped through the borehole and is pushed upwards through the annulus between the casing and the formation. The cement will be exposed to temperature and pressure gradients of the borehole. Modified Portland cement that is being used presently has several shortcomings for borehole sealant. The setting of the Portland cement in permafrost regions is poor because the water in it will freeze even before the cement sets and because of high porosity and calcium oxide, a major ingredient it gets easily affected by the down hole gases such as carbon dioxide. The concept of phosphate bonded cements was born out of considerable work at Argonne National Laboratory (ANL) on their use in stabilization of radioactive and hazardous wastes. Novel cements were synthesized by an acid base reaction between a metal oxide and acid phosphate solution. The major objective of this research is to develop phosphate based oil well cements. We have used thermodynamics along with solution chemistry principles to select calcined magnesium oxide as candidate metal oxide for temperatures up to 200°F (93.3°C) and alumina for temperatures greater than 200°F (93.3°C). Solution chemistry helped us in selecting mono potassium phosphate as the acid component for temperatures less than 200°F (93.3°C) and phosphoric acid solution greater than 200°F (93.3°C). These phosphate cements have performance superior to common Portland well cements in providing suitable thickening time, better mechanical and physical properties.

  2. Drosophila mushroom body Kenyon cells generate spontaneous calcium transients mediated by PLTX-sensitive calcium channels.

    Science.gov (United States)

    Jiang, Shaojuan Amy; Campusano, Jorge M; Su, Hailing; O'Dowd, Diane K

    2005-07-01

    Spontaneous calcium oscillations in mushroom bodies of late stage pupal and adult Drosophila brains have been implicated in memory consolidation during olfactory associative learning. This study explores the cellular mechanisms regulating calcium dynamics in Kenyon cells, principal neurons in mushroom bodies. Fura-2 imaging shows that Kenyon cells cultured from late stage Drosophila pupae generate spontaneous calcium transients in a cell autonomous fashion, at a frequency similar to calcium oscillations in vivo (10-20/h). The expression of calcium transients is up regulated during pupal development. Although the ability to generate transients is a property intrinsic to Kenyon cells, transients can be modulated by bath application of nicotine and GABA. Calcium transients are blocked, and baseline calcium levels reduced, by removal of external calcium, addition of cobalt, or addition of Plectreurys toxin (PLTX), an insect-specific calcium channel antagonist. Transients do not require calcium release from intracellular stores. Whole cell recordings reveal that the majority of voltage-gated calcium channels in Kenyon cells are PLTX-sensitive. Together these data show that influx of calcium through PLTX-sensitive voltage-gated calcium channels mediates spontaneous calcium transients and regulates basal calcium levels in cultured Kenyon cells. The data also suggest that these calcium transients represent cellular events underlying calcium oscillations in the intact mushroom bodies. However, spontaneous calcium transients are not unique to Kenyon cells as they are present in approximately 60% of all cultured central brain neurons. This suggests the calcium transients play a more general role in maturation or function of adult brain neurons.

  3. Development of calcium phosphate based bioceramics

    Indian Academy of Sciences (India)

    Amit Sinha; A Ingle; K R Munim; S N Vaidya; B P Sharma; A N Bhisey

    2001-12-01

    Two bioceramics (Ca–P–O glass and A–W glass ceramic) were produced using conventional methods of ceramic technology. X-ray powder diffraction patterns were used for identifying the phases and 3-point bend test was carried out for the determination of fracture strength of the bioceramics. Biocompatibility of both ceramics was evaluated using animal model experiments. Histological studies showed that A–W glass ceramic implanted in the tibia of rat formed an intimate contact with newly grown bone and provided enough strength to the bone to bear the animal weight. Implants made of Ca–P–O glass was almost fully resorbed and was replaced by new bone. The implants made of both the bioceramics were biocompatible and did not exhibit any kind of adverse effect to the surrounding tissues.

  4. Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    Directory of Open Access Journals (Sweden)

    Bading Hilmar

    2007-07-01

    Full Text Available Abstract Background In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nucleus from activity-induced cytoplasmic calcium transients in some cell types. Results Using laser-assisted uncaging of caged calcium compounds in defined sub-cellular domains, we show here that the nuclear compartment border does not represent a barrier for calcium signals in hippocampal neurons. Although passive diffusion of molecules between the cytosol and the nucleoplasm may be modulated through changes in conformational state of the nuclear pore complex, we found no evidence for a gating mechanism for calcium movement across the nuclear border. Conclusion Thus, the nuclear envelope does not spatially restrict calcium transients to the somatic cytosol but allows calcium signals to freely enter the cell nucleus to trigger genomic events.

  5. Ryanodine receptor gating controls generation of diastolic calcium waves in cardiac myocytes

    Science.gov (United States)

    Petrovič, Pavol; Valent, Ivan; Cocherová, Elena; Pavelková, Jana

    2015-01-01

    The role of cardiac ryanodine receptor (RyR) gating in the initiation and propagation of calcium waves was investigated using a mathematical model comprising a stochastic description of RyR gating and a deterministic description of calcium diffusion and sequestration. We used a one-dimensional array of equidistantly spaced RyR clusters, representing the confocal scanning line, to simulate the formation of calcium sparks. Our model provided an excellent description of the calcium dependence of the frequency of diastolic calcium sparks and of the increased tendency for the production of calcium waves after a decrease in cytosolic calcium buffering. We developed a hypothesis relating changes in the propensity to form calcium waves to changes of RyR gating and tested it by simulation. With a realistic RyR gating model, increased ability of RyR to be activated by Ca2+ strongly increased the propensity for generation of calcium waves at low (0.05–0.1-µM) calcium concentrations but only slightly at high (0.2–0.4-µM) calcium concentrations. Changes in RyR gating altered calcium wave formation by changing the calcium sensitivity of spontaneous calcium spark activation and/or the average number of open RyRs in spontaneous calcium sparks. Gating changes that did not affect RyR activation by Ca2+ had only a weak effect on the propensity to form calcium waves, even if they strongly increased calcium spark frequency. Calcium waves induced by modulating the properties of the RyR activation site could be suppressed by inhibiting the spontaneous opening of the RyR. These data can explain the increased tendency for production of calcium waves under conditions when RyR gating is altered in cardiac diseases. PMID:26009544

  6. LERCANIDIPINE, CALCIUM CHANNEL BLOCKER OF THE THIRD GENERATION: NEW POSSIBILITIES IN THE TREATMENT OF ARTERIAL HYPERTENSION

    Directory of Open Access Journals (Sweden)

    O. D. Ostroumova

    2013-01-01

    Full Text Available Classification, modes of action and clinical effects of calcium channel blockers are presented. Advantages of the third generation of dihydropyridine calcium channel blockers are considered. Clinical pharmacology, studies on the efficacy, safety and prevention of hypertensive complications with lercanidipine are detailed.

  7. Calcium

    Science.gov (United States)

    ... in luck if you like sardines and canned salmon with bones. Almond milk. previous continue Working Calcium ... drinks, and cereals. Other Considerations for Building Bones Vitamin D is essential for calcium absorption, so it's ...

  8. Characterization of calcium oxalates generated as biominerals in cacti.

    Science.gov (United States)

    Monje, Paula V; Baran, Enrique J

    2002-02-01

    The chemical composition and morphology of solid material isolated from various Cactaceae species have been analyzed. All of the tested specimens deposited high-purity calcium oxalate crystals in their succulent modified stems. These deposits occurred most frequently as round-shaped druses that sometimes coexist with abundant crystal sand in the tissue. The biominerals were identified either as CaC(2)O(4).2H(2)O (weddellite) or as CaC(2)O(4).H(2)O (whewellite). Seven different species from the Opuntioideae subfamily showed the presence of whewellite, and an equal number of species from the Cereoideae subfamily showed the deposition of weddellite. The chemical nature of these deposits was assessed by infrared spectroscopy. The crystal morphology of the crystals was visualized by both conventional light and scanning electron microscopy. Weddellite druses were made up of tetragonal crystallites, whereas those from whewellite were most often recognized by their acute points and general star-like shape. These studies clearly demonstrated that members from the main traditional subfamilies of the Cactaceae family could synthesize different chemical forms of calcium oxalate, suggesting a definite but different genetic control. The direct relationship established between a given Cactaceae species and a definite calcium oxalate biomineral seems to be a useful tool for plant identification and chemotaxonomy.

  9. Characterization of Calcium Oxalates Generated as Biominerals in Cacti1

    Science.gov (United States)

    Monje, Paula V.; Baran, Enrique J.

    2002-01-01

    The chemical composition and morphology of solid material isolated from various Cactaceae species have been analyzed. All of the tested specimens deposited high-purity calcium oxalate crystals in their succulent modified stems. These deposits occurred most frequently as round-shaped druses that sometimes coexist with abundant crystal sand in the tissue. The biominerals were identified either as CaC2O4.2H2O (weddellite) or as CaC2O4.H2O (whewellite). Seven different species from the Opuntioideae subfamily showed the presence of whewellite, and an equal number of species from the Cereoideae subfamily showed the deposition of weddellite. The chemical nature of these deposits was assessed by infrared spectroscopy. The crystal morphology of the crystals was visualized by both conventional light and scanning electron microscopy. Weddellite druses were made up of tetragonal crystallites, whereas those from whewellite were most often recognized by their acute points and general star-like shape. These studies clearly demonstrated that members from the main traditional subfamilies of the Cactaceae family could synthesize different chemical forms of calcium oxalate, suggesting a definite but different genetic control. The direct relationship established between a given Cactaceae species and a definite calcium oxalate biomineral seems to be a useful tool for plant identification and chemotaxonomy. PMID:11842173

  10. Effects of a Dicalcium and Tetracalcium Phosphate-Based Desensitizer on In Vitro Dentin Permeability.

    Science.gov (United States)

    Zhou, Jianfeng; Chiba, Ayaka; Scheffel, Debora L S; Hebling, Josimeri; Agee, Kelli; Niu, Li-Na; Tay, Franklin R; Pashley, David H

    2016-01-01

    The present study evaluated the effectiveness of a dicalcium and tetracalcium phosphate-based desensitizer in reducing dentin permeability in vitro. Dentin fluid flow was measured before and after treatment of dentin with patent dentinal tubules using 1 or 3 applications of the dicalcium and tetracalcium phosphate containing agent TeethmateTM (TM) and comparing the results with two sodium fluoride varnishes VellaTM (VLA) and VanishTM (VAN), after storage in artificial saliva for 24 h, 48 h and 7 days. Significant differences were observed among the 4 methods employed for reducing dentin permeability (p < 0.001) and the 3 post-treatment times (p < 0.001). VLA and VAN never achieved 50% permeability reductions consistently in any of the 3 time periods. Only the calcium phosphate-based desensitizer applied for 3 times consistently reduced dentin permeability by 50% after 24 h. When applied once, the permeability reduction of TM increased progressively over the 3 time periods. After 7 days, only one and three applications of the calcium phosphate-based desensitizer consistently reduced dentin permeability by more than 50%. Permeability reductions corresponded well with scanning electron microscopy examination of dentinal tubule orifice occlusion in dentin specimens treated with the agents. Overall, the dicalcium and tetracalcium phosphate-based desensitizer is effective in reducing dentin permeability via a tubule occlusion mechanism. The ability of the agent to reduce dentin permeability renders it to be potentially useful as a clinical dentin desensitizing agent, which has to be confirmed in future clinical studies. By contrast, the two sodium fluoride varnishes are not effective in dentin permeability reduction and should be considered as topical fluoride delivering agents rather than tubular orifice-blocking agents.

  11. Effects of a Dicalcium and Tetracalcium Phosphate-Based Desensitizer on In Vitro Dentin Permeability.

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhou

    Full Text Available The present study evaluated the effectiveness of a dicalcium and tetracalcium phosphate-based desensitizer in reducing dentin permeability in vitro. Dentin fluid flow was measured before and after treatment of dentin with patent dentinal tubules using 1 or 3 applications of the dicalcium and tetracalcium phosphate containing agent TeethmateTM (TM and comparing the results with two sodium fluoride varnishes VellaTM (VLA and VanishTM (VAN, after storage in artificial saliva for 24 h, 48 h and 7 days. Significant differences were observed among the 4 methods employed for reducing dentin permeability (p < 0.001 and the 3 post-treatment times (p < 0.001. VLA and VAN never achieved 50% permeability reductions consistently in any of the 3 time periods. Only the calcium phosphate-based desensitizer applied for 3 times consistently reduced dentin permeability by 50% after 24 h. When applied once, the permeability reduction of TM increased progressively over the 3 time periods. After 7 days, only one and three applications of the calcium phosphate-based desensitizer consistently reduced dentin permeability by more than 50%. Permeability reductions corresponded well with scanning electron microscopy examination of dentinal tubule orifice occlusion in dentin specimens treated with the agents. Overall, the dicalcium and tetracalcium phosphate-based desensitizer is effective in reducing dentin permeability via a tubule occlusion mechanism. The ability of the agent to reduce dentin permeability renders it to be potentially useful as a clinical dentin desensitizing agent, which has to be confirmed in future clinical studies. By contrast, the two sodium fluoride varnishes are not effective in dentin permeability reduction and should be considered as topical fluoride delivering agents rather than tubular orifice-blocking agents.

  12. Calcium and stretch activation modulate power generation in Drosophila flight muscle.

    Science.gov (United States)

    Wang, Qian; Zhao, Cuiping; Swank, Douglas M

    2011-11-02

    Many animals regulate power generation for locomotion by varying the number of muscle fibers used for movement. However, insects with asynchronous flight muscles may regulate the power required for flight by varying the calcium concentration ([Ca(2+)]). In vivo myoplasmic calcium levels in Drosophila flight muscle have been found to vary twofold during flight and to correlate with aerodynamic power generation and wing beat frequency. This mechanism can only be possible if [Ca(2+)] also modulates the flight muscle power output and muscle kinetics to match the aerodynamic requirements. We found that the in vitro power produced by skinned Drosophila asynchronous flight muscle fibers increased with increasing [Ca(2+)]. Positive muscle power generation started at pCa = 5.8 and reached its maximum at pCa = 5.25. A twofold variation in [Ca(2+)] over the steepest portion of this curve resulted in a two- to threefold variation in power generation and a 1.2-fold variation in speed, matching the aerodynamic requirements. To determine the mechanism behind the variation in power, we analyzed the tension response to muscle fiber-lengthening steps at varying levels of [Ca(2+)]. Both calcium-activated and stretch-activated tensions increased with increasing [Ca(2+)]. However, calcium tension saturated at slightly lower [Ca(2+)] than stretch-activated tension, such that as [Ca(2+)] increased from pCa = 5.7 to pCa = 5.4 (the range likely used during flight), stretch- and calcium-activated tension contributed 80% and 20%, respectively, to the total tension increase. This suggests that the response of stretch activation to [Ca(2+)] is the main mechanism by which power is varied during flight. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Cross-talk between signaling pathways can generate robust oscillations in calcium and cAMP.

    Directory of Open Access Journals (Sweden)

    Fernando Siso-Nadal

    Full Text Available BACKGROUND: To control and manipulate cellular signaling, we need to understand cellular strategies for information transfer, integration, and decision-making. A key feature of signal transduction is the generation of only a few intracellular messengers by many extracellular stimuli. METHODOLOGY/PRINCIPAL FINDINGS: Here we model molecular cross-talk between two classic second messengers, cyclic AMP (cAMP and calcium, and show that the dynamical complexity of the response of both messengers increases substantially through their interaction. In our model of a non-excitable cell, both cAMP and calcium concentrations can oscillate. If mutually inhibitory, cross-talk between the two second messengers can increase the range of agonist concentrations for which oscillations occur. If mutually activating, cross-talk decreases the oscillation range, but can generate 'bursting' oscillations of calcium and may enable better filtering of noise. CONCLUSION: We postulate that this increased dynamical complexity allows the cell to encode more information, particularly if both second messengers encode signals. In their native environments, it is unlikely that cells are exposed to one stimulus at a time, and cross-talk may help generate sufficiently complex responses to allow the cell to discriminate between different combinations and concentrations of extracellular agonists.

  14. Generation of calcium waves in living cells induced by 1 kHz femtosecond laser protuberance microsurgery

    Science.gov (United States)

    Zhou, M.; Zhao, E. L.; Yang, H. F.; Gong, A. H.; di, J. K.; Zhang, Z. J.

    2009-07-01

    We have demonstrated that intracellular calcium waves in a living olfactory ensheathing cell (OEC) can be induced by femtosecond laser surgery on cellular protuberance. In this paper, calcium wave generation mechanisms are further investigated using different culture mediums and protuberance diameters. The protuberances of living OECs are cut by home-made 1 kHz femtosecond laser surgery system with 130 fs pulsewidth and 800 nm wavelength, and the average power of 200 μW is chosen for stable and effective cell surgery. Whether the cells are cultured in mediums with Ca2+ or not, intracellular calcium waves can be induced after cell surgery. The generation of calcium waves is independent on the dimension of protuberance diameter. Based on these results, we analyze generation mechanisms of calcium wave and conclude that shockwave-induced mechanical force and laser-induced cytoskeleton depolymerization are two key factors.

  15. Electric pulses: a flexible tool to manipulate cytosolic calcium concentrations and generate spontaneous-like calcium oscillations in mesenchymal stem cells

    Science.gov (United States)

    de Menorval, Marie-Amelie; Andre, Franck M.; Silve, Aude; Dalmay, Claire; Français, Olivier; Le Pioufle, Bruno; Mir, Lluis M.

    2016-01-01

    Human adipose mesenchymal stem cells (haMSCs) are multipotent adult stem cells of great interest in regenerative medicine or oncology. They present spontaneous calcium oscillations related to cell cycle progression or differentiation but the correlation between these events is still unclear. Indeed, it is difficult to mimic haMSCs spontaneous calcium oscillations with chemical means. Pulsed electric fields (PEFs) can permeabilise plasma and/or organelles membranes depending on the applied pulses and therefore generate cytosolic calcium peaks by recruiting calcium from the external medium or from internal stores. We show that it is possible to mimic haMSCs spontaneous calcium oscillations (same amplitude, duration and shape) using 100 μs PEFs or 10 ns PEFs. We propose a model that explains the experimental situations reported. PEFs can therefore be a flexible tool to manipulate cytosolic calcium concentrations. This tool, that can be switched on and off instantaneously, contrary to chemicals agents, can be very useful to investigate the role of calcium oscillations in cell physiology and/or to manipulate cell fate. PMID:27561994

  16. Calcium alginate microcapsule generation on a microfluidic system fabricated using the optical disk process

    Science.gov (United States)

    Huang, Keng-Shiang; Liu, Ming-Kai; Wu, Chun-Han; Yen, Yu-Tang; Lin, Yu-Cheng

    2007-08-01

    This paper describes the generation of monodisperse calcium alginate (Ca-alginate) microcapsules on a microfluidic platform using the commercial optical disk process. Our strategy is based on combining the rapid injection molding process for a cross-junction microchannel with the sheath focusing effect to form uniform water-in-oil (w/o) emulsions. These emulsions, consisting of 1.5% (w/v) sodium alginate (Na-alginate), are then dripped into a solution containing 20% (w/v) calcium chloride (CaCl2) creating Ca-alginate microparticles in an efficient manner. This paper demonstrates that the size of Ca-alginate microparticles can be controlled from 20 µm to 50 µm in diameter with a variation of less than 10%, simply by altering the relative sheath/sample flow rate ratio. Experimental data show that for a given fixed dispersed phase flow (sample flow), the emulsion size decreases as the average flow rate of the continuous phase flow (sheath flow) increases. The proposed microfluidic platform is capable of generating relatively uniform emulsions and has the advantages of active control of the emulsion diameter, a simple and low cost process and a high throughput.

  17. An On-line Galvanic Cell Generated Electrochemiluminescence and Flow Injection Determination of Calcium in Milk and Vegetable

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    An on-line Ag/Al galvanic cell is investigated and employed to generateelectrochemiluminescence (ECL). The potential of the galvanic cell could be adjusted by varyingthe components of flow reagent. The cell performed perfect capability of supplying a stablepotential for ECL generation. Based on the weak ECL ofcalcein blue could be greatly sensitizedby the presence of calcium in alkaline solution, calcium contents in milk samples and in cabbagewere assayed and the results were compared with those from ICP-AES method.

  18. Midbrain dopaminergic neurons generate calcium and sodium currents and release dopamine in the striatum of pups

    Directory of Open Access Journals (Sweden)

    Diana Carolina Ferrari

    2012-03-01

    Full Text Available Midbrain dopaminergic neurons (mDA neurons are essential for the control of diverse motor and cognitive behaviors. However, our understanding of the activity of immature mDA neurons is rudimentary. Rodent mDA neurons migrate and differentiate early in embryonic life and dopaminergic axons enter the striatum and contact striatal neurons a few days before birth, but when these are functional is not known. Here, we recorded Ca2+ transients and Na+ spikes from embryonic (E16-E18 and early postnatal (P0-P7 mDA neurons with dynamic two photon imaging and patch clamp techniques in slices from tyrosine hydroxylase-GFP mice, and measured evoked dopamine release in the striatum with amperometry. We show that half of identified E16-P0 mDA neurons spontaneously generate non-synaptic, intrinsically-driven Ca2+ spikes and Ca2+ plateaus mediated by N- and L-type voltage-gated Ca2+ channels. Starting from E18-P0, half of the mDA neurons also reliably generate overshooting Na+ spikes with an abrupt maturation at birth (P0 = E19. At that stage (E18-P0, dopaminergic terminals release dopamine in a calcium-dependent manner in the striatum in response to local stimulation. We propose that the intrinsic spontaneous activity of mouse mDA neurons may impact the development/activity of the striatal network from birth.

  19. Efficacy and safety of calcium channel blockers in heart failure : Focus on recent trials with second-generation dihydropyridines

    NARCIS (Netherlands)

    de Vries, RJM; van Veldhuisen, DJ; Dunselman, PHJM

    2000-01-01

    Background Chronic heart failure (CHF) has high morbidity and mortality rates despite treatment with angiotensin-converting-enzyme inhibitors, diuretics, and digoxin. Adjunctive-vasodilation through calcium channel blockade has been suggested as potentially useful, However, the first-generation calc

  20. Multimodal second harmonic generation and two photon fluorescence imaging of microdomain calcium contraction coupling in single cardiomyocytes

    Science.gov (United States)

    Chan, James; Awasthi, Samir; Izu, Leighton; Mao, Ziliang; Jian, Zhong; Landas, Trevor; Lerner, Aaron; Shimkunas, Rafael; Woldeyesus, Rahwa; Bossuyt, Julie; Wood, Brittani; Chen, Yi-Je; Matthews, Dennis; Lieu, Deborah; Chiamvimonvat, Nipavan; Lam, Kit; Chen-Izu, Ye

    2016-11-01

    The objective of this study was to develop a method for simultaneously measuring the calcium and contraction dynamics of single, live cardiomyocytes at high spatial resolutions. Such measurements are important to investigate local calcium release and the mechanical response at the sarcomere level (i.e. the basic unit of contraction), which have important implications in cardiac dysfunction and arrhythmias in conditions such as hypertension, atrial fibrillation, and myocardial infarction. Here, we describe a multimodal second harmonic generation (SHG) and two photon fluorescence (2PF) microscopy technique that is used to simultaneously measure subsarcomere calcium and contraction events at high spatial and temporal resolutions. The method takes advantage of the label-free nature of SHG for imaging the sarcomeres and the high spatial colocalization of the SHG signal and the fluorescence signal excited from calcium indicators. This microscope was used to measure calcium sparks and waves and associated contractions in subcellular microdomains, leading to the generation of subcellular strain. We anticipate this new imaging tool will play an important role in studying mechanical stress-induced heart disease.

  1. Spatial separation of two different pathways accounting for the generation of calcium signals in astrocytes

    Science.gov (United States)

    Oschmann, Franziska; Mergenthaler, Konstantin; Obermayer, Klaus

    2017-01-01

    Astrocytes integrate and process synaptic information and exhibit calcium (Ca2+) signals in response to incoming information from neighboring synapses. The generation of Ca2+ signals is mostly attributed to Ca2+ release from internal Ca2+ stores evoked by an elevated metabotropic glutamate receptor (mGluR) activity. Different experimental results associated the generation of Ca2+ signals to the activity of the glutamate transporter (GluT). The GluT itself does not influence the intracellular Ca2+ concentration, but it indirectly activates Ca2+ entry over the membrane. A closer look into Ca2+ signaling in different astrocytic compartments revealed a spatial separation of those two pathways. Ca2+ signals in the soma are mainly generated by Ca2+ release from internal Ca2+ stores (mGluR-dependent pathway). In astrocytic compartments close to the synapse most Ca2+ signals are evoked by Ca2+ entry over the plasma membrane (GluT-dependent pathway). This assumption is supported by the finding, that the volume ratio between the internal Ca2+ store and the intracellular space decreases from the soma towards the synapse. We extended a model for mGluR-dependent Ca2+ signals in astrocytes with the GluT-dependent pathway. Additionally, we included the volume ratio between the internal Ca2+ store and the intracellular compartment into the model in order to analyze Ca2+ signals either in the soma or close to the synapse. Our model results confirm the spatial separation of the mGluR- and GluT-dependent pathways along the astrocytic process. The model allows to study the binary Ca2+ response during a block of either of both pathways. Moreover, the model contributes to a better understanding of the impact of channel densities on the interaction of both pathways and on the Ca2+ signal. PMID:28192424

  2. Spatial separation of two different pathways accounting for the generation of calcium signals in astrocytes.

    Science.gov (United States)

    Oschmann, Franziska; Mergenthaler, Konstantin; Jungnickel, Evelyn; Obermayer, Klaus

    2017-02-01

    Astrocytes integrate and process synaptic information and exhibit calcium (Ca2+) signals in response to incoming information from neighboring synapses. The generation of Ca2+ signals is mostly attributed to Ca2+ release from internal Ca2+ stores evoked by an elevated metabotropic glutamate receptor (mGluR) activity. Different experimental results associated the generation of Ca2+ signals to the activity of the glutamate transporter (GluT). The GluT itself does not influence the intracellular Ca2+ concentration, but it indirectly activates Ca2+ entry over the membrane. A closer look into Ca2+ signaling in different astrocytic compartments revealed a spatial separation of those two pathways. Ca2+ signals in the soma are mainly generated by Ca2+ release from internal Ca2+ stores (mGluR-dependent pathway). In astrocytic compartments close to the synapse most Ca2+ signals are evoked by Ca2+ entry over the plasma membrane (GluT-dependent pathway). This assumption is supported by the finding, that the volume ratio between the internal Ca2+ store and the intracellular space decreases from the soma towards the synapse. We extended a model for mGluR-dependent Ca2+ signals in astrocytes with the GluT-dependent pathway. Additionally, we included the volume ratio between the internal Ca2+ store and the intracellular compartment into the model in order to analyze Ca2+ signals either in the soma or close to the synapse. Our model results confirm the spatial separation of the mGluR- and GluT-dependent pathways along the astrocytic process. The model allows to study the binary Ca2+ response during a block of either of both pathways. Moreover, the model contributes to a better understanding of the impact of channel densities on the interaction of both pathways and on the Ca2+ signal.

  3. Calcium and chemical looping technology for power generation and carbon dioxide (CO2) capture solid oxygen- and CO2-carriers

    CERN Document Server

    Fennell, Paul

    2015-01-01

    Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to chemical looping and combustion. Chapters review the market development, economics, and deployment of these systems, also providing detailed information on the variety of materials and processes that will help to shape the future of CO2 capture ready power plants. Reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to calcium and chemical loopingProvi

  4. Extraction and characterisation of apatite- and tricalcium phosphate-based materials from cod fish bones

    Energy Technology Data Exchange (ETDEWEB)

    Piccirillo, C.; Silva, M.F. [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Porto (Portugal); Pullar, R.C. [Dept. Engenharia de Materiais e Ceramica/CICECO, Universidade de Aveiro, Aveiro (Portugal); Braga da Cruz, I. [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Porto (Portugal); WeDoTech, CiDEB/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Porto (Portugal); Jorge, R. [WeDoTech, CiDEB/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Porto (Portugal); Pintado, M.M.E. [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Porto (Portugal); Castro, P.M.L., E-mail: plcastro@porto.ucp.pt [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Porto (Portugal)

    2013-01-01

    Apatite- and tricalcium phosphate-based materials were produced from codfish bones, thus converting a waste by-product from the food industry into high added-valued compounds. The bones were annealed at temperatures between 900 and 1200 Degree-Sign C, giving a biphasic material of hydroxyapatite and tricalcium phosphate (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} and {beta}-Ca(PO{sub 4}){sub 3}) with a molar proportion of 75:25, a material widely used in biomedical implants. The treatment of the bones in solution prior to their annealing changed the composition of the material. Single phase hydroxyapatite, chlorapatite (Ca{sub 10}(PO{sub 4}){sub 6}Cl{sub 2}) and fluorapatite (Ca{sub 10}(PO{sub 4}){sub 6}F{sub 2}) were obtained using CaCl{sub 2} and NaF solutions, respectively. The samples were analysed by several techniques (X-ray diffraction, infrared spectroscopy, scanning electron microscopy and differential thermal/thermogravimetric analysis) and by elemental analyses, to have a more complete understanding of the conversion process. Such compositional modifications have never been performed before for these materials of natural origin to tailor the relative concentrations of elements. This paper shows the great potential for the conversion of this by-product into highly valuable compounds for biomedical applications, using a simple and effective valorisation process. - Highlights: Black-Right-Pointing-Pointer Apatite and calcium phosphate compounds extraction from cod fish bones Black-Right-Pointing-Pointer Bone calcination: biphasic material hydroxyapatite-calcium phosphate production Black-Right-Pointing-Pointer Bone pre-treatments in solution change the material composition. Black-Right-Pointing-Pointer Single phase materials (hydroxy-, chloro- or fluoroapatite) are obtained. Black-Right-Pointing-Pointer Concentration of other elements (Na, F, Cl) suitable for biomedical applications.

  5. Antibacterial effect of gallium and silver on Pseudomonas aeruginosa treated with gallium-silver-phosphate-based glasses.

    Science.gov (United States)

    Valappil, Sabeel P; Higham, Susan M

    2014-01-01

    Gallium and silver incorporated phosphate-based glasses were evaluated for antibacterial effect on the growth of Pseudomonas aeruginosa, which is a leading cause of opportunistic infections. The glasses were produced by conventional melt quenching methods at 1100°C for 1 h. Glass degradation studies were conducted by weight loss method. Disc diffusion assay and cell viability assay displayed statistically significant (p ≤ 0.0005) effect on P. aeruginosa growth which increased with decreasing calcium content in the glasses. The gallium ion release rates (1.83, 0.69 and 0.48 ppm·h(-1)) and silver ion release rates (2.97, 2.84 and 2.47 ppm·h(-1)) were found to account for this variation. Constant depth film fermentor was used to evaluate the anti-biofilm properties of the glasses. Both gallium and silver in the glass contributed to biofilm growth inhibitory effect on P. aeruginosa (up to 2.68 reduction in log 10 values of the viable counts compared with controls). The glasses were found to deliver gallium and silver in a controlled way and exerted cumulative antibacterial action on planktonic and biofilm growth of P. aeruginosa. The antibacterial, especially anti-biofilm, properties of the gallium and silver incorporated phosphate-based glasses make them a potential candidate to combat infections caused by P. aeruginosa.

  6. Shear Forces during Blast, Not Abrupt Changes in Pressure Alone, Generate Calcium Activity in Human Brain Cells

    Science.gov (United States)

    2012-06-29

    Shear Forces during Blast, Not Abrupt Changes in Pressure Alone, Generate Calcium Activity in Human Brain Cells Rea Ravin1, Paul S. Blank1,2, Alex...Brain Cells’’ by Rea Ravin, Paul S. Blank, Alex Steinkamp, Shay Rappaport, Nitay Ravin, Ludmila Bezrukov, Hugo Guerrero-Cazares, Alfredo Quinones...the local strain field. Journal of Neurotrauma 23: 1304–1319. 25. Shin HS, Kim HJ, Sim SJ, Jeon NL (2009) Shear stress effect on transfection of

  7. Phosphate-based glasses: Prediction of acoustical properties

    Energy Technology Data Exchange (ETDEWEB)

    El-Moneim, Amin Abd, E-mail: aminabdelmoneim@hotmail.com

    2016-04-15

    In this work, a comprehensive study has been carried out to predict the composition dependence of bulk modulus and ultrasonic attenuation coefficient in the phosphate-based glass systems PbO-P{sub 2}O{sub 5}, Li{sub 2}O-TeO{sub 2}-B{sub 2}O{sub 3}-P{sub 2}O{sub 5}, TiO{sub 2}-Na{sub 2}O-CaO-P{sub 2}O{sub 5} and Cr{sub 2}O{sub 3}-doped Na{sub 2}O-ZnO-P{sub 2}O{sub 5} at room temperature. The prediction is based on (i) Makishima-Mackenzie theory, which correlates the bulk modulus with packing density and dissociation energy per unit volume, and (ii) Our recently presented semi-empirical formulas, which correlate the ultrasonic attenuation coefficient with the oxygen density, mean atomic ring size, first-order stretching force constant and experimental bulk modulus. Results revealed that our recently presented semi-empirical formulas can be applied successfully to predict changes of ultrasonic attenuation coefficient in binary PbO-P{sub 2}O{sub 5} glasses at 10 MHz frequency and in quaternary Li{sub 2}O-TeO{sub 2}-B{sub 2}O{sub 3}-P{sub 2}O{sub 5}, TiO{sub 2}-Na{sub 2}O-CaO-P{sub 2}O{sub 5} and Cr{sub 2}O{sub 3}-Na{sub 2}O-ZnO-P{sub 2}O{sub 5} glasses at 5 MHz frequency. Also, Makishima-Mackenzie theory appears to be valid for the studied glasses if the effect of the basic structural units that present in the glass network is taken into account.

  8. Novel phosphate-based cements for clinical applications

    OpenAIRE

    2012-01-01

    This Thesis aims at the development of two novel families of inorganic phosphate cements with suitable characteristics for clinical applications in hard tissue regeneration or replacement. It is organized in two distinct parts. The first part focuses at the development of silicon-doped a-tricalcium phosphate and the subsequent preparation of a silicon-doped calcium phosphate cement for bone regeneration applications. For this purpose, silicon-doped a-tricalcium phosphate was synthesized b...

  9. An on-line galvanic cell-generated electrochemiluminescence and flow injection determination of calcium in milk and vegetables.

    Science.gov (United States)

    Lv, Jiagen; Zhang, Zhujun; Luo, Lirong

    2003-06-01

    An on-line Ag/Al galvanic cell was studied and employed to generate electrochemiluminescence (ECL) of calcein blue. The potential of the galvanic cell could be adjusted by varying the components of flow reagent or by using different metals to substitute for Ag or Al. The reported cell exhibited perfect capability of supplying a stable potential for ECL generation. Because the weak ECL of calcein blue could be greatly sensitized in the presence of calcium in alkaline solution, calcium contents in milk and vegetable samples were assayed; the results were validated with ICP-AES method. The method gave linear results in 1.0 x 10(-4) mol L(-1) to 8.0 x 10(-6) mol L(-1) calcium concentration range and the 3(sigma)limit of detection was to be 2.0 x 10(-6) mol L(-1). Experiment results imply that this model of ECL detection could be applied for instrument miniaturization with easy fabrication.

  10. Second harmonic 423-nm laser generated by BIBO crystal for calcium optical frequency standard

    Institute of Scientific and Technical Information of China (English)

    Zhenhui Chen; Bo Lu; Zhixue Xu; Wei Zhuang; Chuang Yu; Deshui Yu; Kaikai Huang; Xuzong Chen; Jinbiao Chen

    2008-01-01

    Calcium is one prospective element for the modern optical frequency standard.The 423-nm transition line of calcium atoms has been widely used in laser slowing and laser cooling, the precise spectrum measurement, and the magnetic optical trapping (MOT).However, there is no any available commercial diode laser working at this wavelength.We built a 423-nm laser based on extra bow-tie cavity and by using a Brewster cut uncoated BIBO (BiB3O6) crystal, which worked at room temperature, with conversion efficiency of 3.75%, and a potential up to 20%.

  11. Phosphate-Based Mineralization of Arsenic in Contaminated Soil: A Potential Remediation Method for Soil and Groundwater

    Science.gov (United States)

    Neupane, G.; Donahoe, R. J.

    2009-12-01

    Soil arsenic contamination resulting from the use of arsenical compounds is a widespread environmental problem. A phosphate-based remediation method which has the potential to immobilize arsenic in both oxidizing and reducing subsurface systems is under laboratory investigation. Although phosphate treatments have been reported to be effective in removal of arsenic from contaminated water, its use in contaminated soils has not been tested. This study aims to (1) determine the competitive adsorption/desorption of arsenate and phosphate at surfaces of ferric hydroxide coated sand in the absence or presence of calcium ions, and (2) develop a method of arsenic fixation which involves phosphoric acid flushing of arsenic from contaminated soil and precipitation of arsenic as apatite-like phases. Ferric hydroxide is a significant arsenic sequestering constituent in soil. Phosphate competes with arsenate for adsorption sites on the ferric hydroxide surface. Batch adsorption experiments conducted using ferric hydroxide coated sand have indicated similar pH-controlled adsorption mechanisms for both arsenate and phosphate. The data obtained from the adsorption experiments is being used to guide the development of a phosphate-based method for soil and groundwater arsenic remediation. Batch experiments were performed using 3g of contaminated soil in contact with 45 ml of treatment fluid (a dilute phosphoric acid and calcium hydroxide solution). Solution samples were collected at 24, 72, 144, 312, and 384 hours, with continuous agitation at 200 rpm. Solution concentrations of phosphorus and calcium generally decreased with time and were primarily controlled by pH. It has been experimentally demonstrated that solution arsenic concentrations can be lowered by maintaining high pH with adequate calcium supply. A batch experiment conducted at pH > 11, using 1 kg of soil in contact with 1 liter of 0.25% H3PO4, precipitated a white material giving an XRD signature indicative of brushite

  12. Tricalcium phosphate based resorbable ceramics: Influence of NaF and CaO addition

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, Zachary; Bandyopadhyay, Amit [W. M. Keck Biomedical Materials Research Lab, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 (United States); Bose, Susmita [W. M. Keck Biomedical Materials Research Lab, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 (United States)], E-mail: sbose@wsu.edu

    2008-01-10

    Resorbable bioceramics have gained much attention due to their time-varying mechanical properties in-vivo. Implanted ceramics degrade allowing bone in-growth and eventual replacement of the artificial material with natural tissue. Calcium phosphate based materials have caught the most significant attention because of their excellent biocompatibility and compositional similarities to natural bone. Doping these ceramics with various metal ions has significantly influenced their properties. In this study, tricalcium phosphate (TCP) compacts were fabricated via uniaxial compression with five compositions: (i) pure TCP, (ii) TCP with 2.0 wt.% NaF, (iii) TCP with 3.0 wt.% CaO, (iv) TCP with a binary of 2.0 wt.% NaF and 0.5 wt.% Ag{sub 2}O, and (v) TCP with a quaternary of 1.0 wt.% TiO{sub 2}, 0.5 wt.% Ag{sub 2}O, 2.0 wt.% NaF, and 3.0 wt.% CaO. These compacts were sintered at 1250 deg. C for 4 h to obtain dense ceramic structures. Phase analyses were carried out using X-ray diffraction. The presence of NaF in TCP improved densification and increased compression strength from 70 ({+-} 25) to 130 ({+-} 40) MPa. Addition of CaO had no influence on density or strength. Human osteoblast cell growth behavior was studied using an osteoprecursor cell line (OPC 1) to assure that the biocompatibility of these ceramics was not altered due to the dopants. For long-term biodegradation studies, density, weight change, surface microstructure, and uniaxial compression strength were measured as a function of time in a simulated body fluid (SBF). Weight gain in SBF correlated strongly with precipitation viewed in the inter-connected pores of the samples. After 3 months in SBF, all samples displayed a reduction in strength. NaF, CaO and the quaternary compositions maintained the most steady strength loss under SBF.

  13. [Clinical efficacy of calcium channel blockers slow the third generation of lercanidipine in the treatment of patients with arterial hypertension and metabolic disorders (review)].

    Science.gov (United States)

    Tabidze, G A; Gezeli, T D; Tsibadze, T A; Dolidze, N M

    2015-02-01

    Arterial hypertension is the most common risk factor in patients with metabolic disorders. In the selection of antihypertensive therapy it is necessary to consider not only the anti-hypertensive and organoprotective effects of drugs and their metabolic effects, which has prognostic value. Calcium antaginists, along. Lercanidipine related to the third generation dihydripyridine calcium antagonist, has been much more selective for the so-called slow calcium channels of vascular smooth muscle cells, which is associated with a good hypertensive, organo and metabolic action. Combination therapy with an ACE inhibitor and a calcium channel blocker is also a justified tactic for the management of patients with high-risk cardiovascular and metabolic disorders. Attention is paid new fixed combinations, including angiotensin converting enzyme inhibitors and calcium antagonists.

  14. Development of calcium titanium oxide coated silicon solar cells for enhanced voltage generation capacity

    Directory of Open Access Journals (Sweden)

    Kathirvel K.

    2017-02-01

    Full Text Available Depletion of fossil fuel based energy sources drive the present scenario towards development of solar based alternative energy. Polycrystalline silicon solar cells are preferred due to low cost and abundant availability. However, the power conversion efficiency of polycrystalline silicon is lesser compared to monocrystalline one. The present study aims at analyzing the effect of calcium titanium oxide (CaTiO3 antireflection (AR coating on the power conversion of polycrystalline solar cells. CaTiO3 offers unique characteristics, such as non-radioactive and non-magnetic orthorhombic biaxial structure with bulk density of 3.91 g/cm3. CaTiO3 film deposition on the solar cell substrate has been carried out using Radio Frequency (RF magnetron sputter coating technique under varying time durations (10 min to 45 min. Morphological studies proved the formation of CaTiO3 layer and respective elemental percentages on the coated substrate. Open circuit voltage studies were conducted on bare and coated silicon solar substrates under open and controlled atmospheric conditions. CaTiO3 coated on a solar cell substrate in a deposition time of 30 min showed 8.76 % improvement in the cell voltage compared to the bare solar cell.

  15. Alterations in intracellular ionic calcium levels in isolated adult rat cardiac myocytes due to the generation of free radicals

    Energy Technology Data Exchange (ETDEWEB)

    Burton, K.P.; Nazeran, H.; Hagler, H.K. (Univ. of Texas, Dallas, TX (United States))

    1991-03-15

    Oxygen-derived free radical production has been documented to occur on reperfusion of the ischemic myocardium. Intracellular ionic calcium ((Ca{sup ++}){sub i}) levels in isolated adult rat cardiac myocytes (M) exposed to free radicals were evaluated using the fluorescent calcium indicator, fura-2. The effect of different time periods of free radical exposure and the level of extracellular Ca{sup ++} concentration on altering (Ca{sup ++}){sub i} was examined. The free radical generating system (FRGS) utilized consisted of a HEPES buffered physiological salt solution containing 2.3 mM purine, 2.4. {mu}M iron-loaded transferrin and 0.01 U/ml xanthine oxidase. M maintained in HEPES buffer or the HEPES buffer containing purine and iron-loaded transferrin continued to stimulate, exhibited relatively uniform 340/380 ratios and maintained a rod shape for extended time periods. M continuously exposed to the FRGS showed a significant increase in (Ca{sup ++}){sub i}, became unresponsive to stimulation at 31 {plus minus} 7 (SE) min and eventually exhibited contracture. Exposure to the FRGS for 10 min resulted in a response similar to continuous exposure. M exposed to the FRGS for 5 min exhibited regular Ca{sup ++} transients for 55{plus minus}5 min. M exposed to the FRGS for 10 min and maintained in 2.5 mM Ca{sup ++} versus 1.25 mM Ca{sup ++}, accumulated significantly higher (CA{sup ++}){sub i}. Quiescent myocytes continuously exposed to the FRGS also exhibited a significant increase in (Ca{sup ++}){sub i} over time. Thus, a brief period of free radical exposure may induce subsequent damage. Alterations in Ca{sup ++} flux resulting from the generation of free radicals may possibly contribute to the development of Ca{sup ++} overload and myocardial arrhythmias.

  16. Reaction mechanism and influence factors analysis for calcium sulfide generation in the process of phosphogypsum decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Liping, E-mail: lpma2522@hotmail.com [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Niu, Xuekui; Hou, Juan; Zheng, Shaocong; Xu, Wenjuan [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2011-11-10

    Highlights: Black-Right-Pointing-Pointer Reusing phosphogypsum is to decompose and recycle Ca and sulfur. Black-Right-Pointing-Pointer FactSage6.1 software was used to simulate the decomposition reactions. Black-Right-Pointing-Pointer Experiments had been taken with high sulfur concentration coal as reducing agent. Black-Right-Pointing-Pointer The reaction mechanism of CaS generation had been analysis, 1100 Degree-Sign C could be the best temperature for PG decomposition. - Abstract: FactSage6.1 software simulation and experiments had been used to analysis the reaction mechanism and influence factors for CaS generation during the process of phosphogypsum decomposition. Thermodynamic calculation showed that the reaction for CaS generation was very complex and CaS was generated mainly through solid-solid reaction and gas-solid reaction. The proper CO and CO{sub 2} have benefit for improving the decomposition effects of phosphogypsum and reducing the generation of CaS at 1100 Degree-Sign C. Using high sulfur concentration coal as reducer, the proper reaction conditions to control the generation of CaS were: the coal particle size was between 60 mesh and 100 mesh, reaction temperature was above 1100 Degree-Sign C and the heating rate was 5 Degree-Sign C/min. Experimental and theoretical calculation indicated that the concentration of CaS was only ten percents in the solid product at 1100 Degree-Sign C, which is favorable for the further cement producing using solid production.

  17. Imaging calcium in neurons.

    Science.gov (United States)

    Grienberger, Christine; Konnerth, Arthur

    2012-03-08

    Calcium ions generate versatile intracellular signals that control key functions in all types of neurons. Imaging calcium in neurons is particularly important because calcium signals exert their highly specific functions in well-defined cellular subcompartments. In this Primer, we briefly review the general mechanisms of neuronal calcium signaling. We then introduce the calcium imaging devices, including confocal and two-photon microscopy as well as miniaturized devices that are used in freely moving animals. We provide an overview of the classical chemical fluorescent calcium indicators and of the protein-based genetically encoded calcium indicators. Using application examples, we introduce new developments in the field, such as calcium imaging in awake, behaving animals and the use of calcium imaging for mapping single spine sensory inputs in cortical neurons in vivo. We conclude by providing an outlook on the prospects of calcium imaging for the analysis of neuronal signaling and plasticity in various animal models.

  18. Synthesis of calcium hydroxyapatite from calcium carbonate and different orthophosphate sources: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Pham Minh, Doan, E-mail: doan.phamminh@mines-albi.fr [Universite de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, F-81013 Albi cedex 09 (France); Lyczko, Nathalie; Sebei, Haroun; Nzihou, Ange [Universite de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, F-81013 Albi cedex 09 (France); Sharrock, Patrick [Universite de Toulouse, SIMAD, IUT Paul Sabatier, Avenue Georges Pompidou, 81104 Castres (France)

    2012-08-01

    Highlights: Black-Right-Pointing-Pointer Calcium hydroxyapatite was synthesized from CaCO{sub 3} and four orthophosphates. Black-Right-Pointing-Pointer Only H{sub 3}PO{sub 4} led to the complete precipitation of orthophosphate species. Black-Right-Pointing-Pointer H{sub 3}PO{sub 4} was also the most efficient for calcium dissolution. Black-Right-Pointing-Pointer Reaction pathway was dissolution-precipitation accompanied by agglomeration step. - Abstract: The synthesis of calcium hydroxyapatite (Ca-HA) starting from calcium carbonate and different orthophosphate sources, including orthophosphoric acid, potassium, sodium and ammonium dihydrogen orthophosphates, was investigated under ambient conditions. The reaction started with calcium carbonate dissolution in an acid medium, followed by rapid precipitation of calcium cations with orthophosphate species to form calcium phosphate based particles which were in the size range of 0.4-1 {mu}m. These particles then agglomerated into much larger ones, up to 350 {mu}m in diameter (aggregates). These aggregates possessed an unstable porous structure which was responsible for the porosity of the final products. The highest specific surface area and pore volume were obtained with potassium dihydrogen orthophosphate. On the other hand, orthophosphoric acid led to the highest dissolution of calcium carbonate and the complete precipitation of orthophosphate species. Under ambient conditions, calcium phosphate based solid products of low crystallinity were formed. Different intermediates were identified and a reaction pathway proposed.

  19. Synthesis and Enhanced Phosphate Recovery Property of Porous Calcium Silicate Hydrate Using Polyethyleneglycol as Pore-Generation Agent

    Directory of Open Access Journals (Sweden)

    Ling Pei

    2013-07-01

    Full Text Available The primary objective of this paper was to synthesize a porous calcium silicate hydrate (CSH with enhanced phosphate recovery property using polyethyleneglycol (PEG as pore-generation agent. The formation mechanism of porous CSH was proposed. PEG molecules were inserted into the void region of oxygen–silicon tetrahedron chains and the layers of CSH. A steric hindrance layer was generated to prevent the aggregation of solid particles. A porous structure was formed due to the residual space caused by the removal of PEG through incineration. This porous CSH exhibited highly enhanced solubility of Ca2+ and OH− due to the decreased particle size, declined crystalline, and increased specific surface area (SBET and pore volume. Supersaturation was increased in the wastewater with the enhanced solubility, which was beneficial to the formation of hydroxyapatite (HAP crystallization. Thus, phosphate can be recovered from wastewater by producing HAP using porous CSH as crystal seed. In addition, the regenerated phosphate-containing products (HAP can be reused to achieve sustainable utilization of phosphate. The present research could provide an effective approach for the synthesis of porous CSH and the enhancement of phosphate recovery properties for environmental applications.

  20. Calcium-dependent generation of N-acylethanolamines and lysophosphatidic acids by glycerophosphodiesterase GDE7.

    Science.gov (United States)

    Rahman, Iffat Ara Sonia; Tsuboi, Kazuhito; Hussain, Zahir; Yamashita, Ryouhei; Okamoto, Yoko; Uyama, Toru; Yamazaki, Naoshi; Tanaka, Tamotsu; Tokumura, Akira; Ueda, Natsuo

    2016-12-01

    N-Acylethanolamines form a class of lipid mediators and include an endocannabinoid arachidonoylethanolamide (anandamide), analgesic and anti-inflammatory palmitoylethanolamide, and appetite-suppressing oleoylethanolamide. In animal tissues, N-acylethanolamines are synthesized from N-acylated ethanolamine phospholipids directly by N-acylphosphatidylethanolamine-hydrolyzing phospholipase D or through multi-step pathways via N-acylethanolamine lysophospholipids. We previously reported that glycerophosphodiesterase (GDE) 4, a member of the GDE family, has lysophospholipase D (lysoPLD) activity hydrolyzing N-acylethanolamine lysophospholipids to N-acylethanolamines. Recently, GDE7 was shown to have lysoPLD activity toward lysophosphatidylcholine to produce lysophosphatidic acid (LPA). Here, we examined the reactivity of GDE7 with N-acylethanolamine lysophospholipids as well as the requirement of divalent cations for its catalytic activity. When overexpressed in HEK293 cells, recombinant GDE7 proteins of human and mouse showed lysoPLD activity toward N-palmitoyl, N-oleoyl, and N-arachidonoyl-lysophosphatidylethanolamines and N-palmitoyl-lysoplasmenylethanolamine to generate their corresponding N-acylethanolamines and LPAs. However, GDE7 hardly hydrolyzed glycerophospho-N-palmitoylethanolamine. Overexpression of GDE7 in HEK293 cells increased endogenous levels of N-acylethanolamines and LPAs. Interestingly, GDE7 was stimulated by micromolar concentrations of Ca(2+) but not by millimolar concentrations of Mg(2+), while GDE4 was stimulated by Mg(2+) but was insensitive to Ca(2+). GDE7 was widely distributed in various tissues of humans and mice with the highest levels in their kidney tissues. These results suggested that GDE7 is a novel Ca(2+)-dependent lysoPLD, which is involved in the generation of both N-acylethanolamines and LPAs.

  1. Generation of an allergy vaccine by disruption of the three-dimensional structure of the cross-reactive calcium-binding allergen, Phl p 7.

    Science.gov (United States)

    Westritschnig, Kerstin; Focke, Margarete; Verdino, Petra; Goessler, Walter; Keller, Walter; Twardosz, Anna; Mari, Adriano; Horak, Friedrich; Wiedermann, Ursula; Hartl, Arnulf; Thalhamer, Josef; Sperr, Wolfgang R; Valent, Peter; Valenta, Rudolf

    2004-05-01

    The grass pollen allergen, Phl p 7, belongs to a family of highly cross-reactive calcium-binding pollen allergens. Because Phl p 7 contains most of the disease-eliciting epitopes of pollen-derived calcium-binding allergens, hypoallergenic variants were engineered according to the x-ray crystal structure of Phl p 7 for allergy vaccination. In three recombinant variants, amino acids essential for calcium binding were mutated, and two peptides comprising the N- and C-terminal half were obtained by synthetic peptide chemistry. As determined by circular dichroism analysis and size exclusion chromatography coupled to mass spectrometry, recombinant mutants showed altered structural fold and lacked calcium-binding capacity, whereas the two synthetic peptides had completely lost their structural fold. Allergic patients' IgE Ab binding was strongest reduced to the variant containing two mutations in each of the two calcium-binding sites and to the peptides. Basophil histamine release and skin test experiments in allergic patients identified the peptides as the vaccine candidates with lowest allergenic activity. Immunization of rabbits with the peptides induced IgG Abs that blocked allergic patients' IgE binding to Phl p 7 and inhibited allergen-induced basophil degranulation. Our results indicate that disruption of an allergen's three-dimensional structure represents a general strategy for the generation of hypoallergenic allergy vaccines, and demonstrate the importance of allergen-specific IgG Abs for the inhibition of immediate allergic symptoms.

  2. Effects of a Dicalcium and Tetracalcium Phosphate-Based Desensitizer on In Vitro Dentin Permeability

    OpenAIRE

    Jianfeng Zhou; Ayaka Chiba; Debora L S Scheffel; Josimeri Hebling; Kelli Agee; Li-Na Niu; Franklin R. Tay; David H Pashley

    2016-01-01

    The present study evaluated the effectiveness of a dicalcium and tetracalcium phosphate-based desensitizer in reducing dentin permeability in vitro. Dentin fluid flow was measured before and after treatment of dentin with patent dentinal tubules using 1 or 3 applications of the dicalcium and tetracalcium phosphate containing agent TeethmateTM (TM) and comparing the results with two sodium fluoride varnishes VellaTM (VLA) and VanishTM (VAN), after storage in artificial saliva for 24 h, 48 h an...

  3. The use of size-defined DNA-functionalized calcium phosphate nanoparticles to minimise intracellular calcium disturbance during transfection.

    Science.gov (United States)

    Neumann, Sebastian; Kovtun, Anna; Dietzel, Irmgard D; Epple, Matthias; Heumann, Rolf

    2009-12-01

    Calcium phosphate-based transfection methods are frequently used to transfer DNA into living cells. However, it has so far not been studied in detail to what extend the different transfection methods lead to a net calcium uptake. Upon subsequent resolution of the calcium phosphate, intracellular free ionic calcium-surges could result, inducing as side effect various physiological responses that may finally result in cell death. Here we investigated the overall calcium uptake by the human bladder carcinoma cell line T24 during the standard calcium phosphate transfection method and also during transfection with custom-made calcium phosphate/DNA nanoparticles by isotope labelling with (45)calcium. (45)Calcium uptake was strongly increased after 7h of standard calcium phosphate transfection but not if the transfection was performed with calcium phosphate nanoparticles. Time lapse imaging microscopy using the calcium-sensitive dye Fura-2 revealed large transient increases of the intracellular free calcium level during the standard calcium phosphate transfection but not if calcium phosphate nanoparticles were used. Consistently, the viability of cells transfected by calcium phosphate/DNA nanoparticles was not changed, in remarkable contrast to the standard method where considerable cell death occurred.

  4. The effect of phosphate based glasses on the formation and viability of oral bacterial biofilms

    Science.gov (United States)

    Mulligan, April Miranda

    This study considered the antibacterial activity of a series of soluble phosphate-based glasses (based on the Na2O-CaO-P2O5 glass system) doped with increasing amounts of copper or silver against oral bacterial biofilms. Initially, a variety of phosphate-based glass compositions were produced. The dissolution rate of these glasses was determined, and the information obtained was used to decide which glass compositions would be investigated in future experiments for their antibacterial properties. Selected glass compositions were investigated for their antibacterial activity against Streptococcus sanguis biofilms and oral microcosm biofilms. These biofilms were produced on phosphate-based glass discs using a Constant Depth Film Fermenter (CDFF), which allows the conditions found in the oral cavity to be closely mimicked. Following disc removal from the CDFF, various analytical procedures were carried out. Under conditions designed to mimic the supragingival environment of the oral cavity, fewer viable cells of Streptococcus sanguis were detected on both copper and silver-containing glass discs than on control discs, during the initial stages of the experiments, the greatest reduction occurring on the silver-containing glasses. An increase in viable cell number was observed as the experiments continued. Under the same conditions, copper-containing glasses failed to reduce the viability of microcosm biofilms. Viable cell number was initially reduced on the silver-containing glasses, but by the end of the experiments the viability of microcosm biofilms was significantly similar to those observed on the controls. Attempts to determine the efficacy of silver-containing glasses at reducing the viability of microcosm biofilms, under conditions designed to mimic the subgingival environment of the oral cavity, were subsequently made. Viable cells were not detected on any type of disc, including the control discs. Various reasons for this were postulated. In conclusion, the

  5. Phosphate-based glass fiber vs. bulk glass: Change in fiber optical response to probe in vitro glass reactivity.

    Science.gov (United States)

    Massera, J; Ahmed, I; Petit, L; Aallos, V; Hupa, L

    2014-04-01

    This paper investigates the effect of fiber drawing on the thermal and structural properties as well as on the glass reactivity of a phosphate glass in tris(hydroxymethyl)aminomethane-buffered (TRIS) solution and simulated body fluid (SBF). The changes induced in the thermal properties suggest that the fiber drawing process leads to a weakening and probable re-orientation of the POP bonds. Whereas the fiber drawing did not significantly impact the release of P and Ca, an increase in the release of Na into the solution was noticed. This was probably due to small structural reorientations occurring during the fiber drawing process and to a slight diffusion of Na to the fiber surface. Both the powders from the bulk and the glass fibers formed a Ca-P surface layer when immersed in SBF and TRIS. The layer thickness was higher in the calcium and phosphate supersaturated SBF than in TRIS. This paper for the first time presents the in vitro reactivity and optical response of a phosphate-based bioactive glass (PBG) fiber when immersed in SBF. The light intensity remained constant for the first 48h after which a decrease with three distinct slopes was observed: the first decrease between 48 and 200h of immersion could be correlated to the formation of the Ca-P layer at the fiber surface. After this a faster decrease in light transmission was observed from 200 to ~425h in SBF. SEM analysis suggested that after 200h, the surface of the fiber was fully covered by a thin Ca-P layer which is likely to scatter light. For immersion times longer than ~425h, the thickness of the Ca-P layer increased and thus acted as a barrier to the dissolution process limiting further reduction in light transmission. The tracking of light transmission through the PBG fiber allowed monitoring of the fiber dissolution in vitro. These results are essential in developing new bioactive fiber sensors that can be used to monitor bioresponse in situ.

  6. A review on phosphate based, solid state, protonic conductors for intermediate temperature fuel cells.

    Science.gov (United States)

    Paschos, O; Kunze, J; Stimming, U; Maglia, F

    2011-06-15

    The electrolytes currently used for proton exchange membrane fuel cells are mainly based on polymers such as Nafion which limits the operation regime of the cell to ∼80 °C. Solid oxide fuel cells operate at much elevated temperatures compared to proton exchange membrane fuel cells (∼1000 °C) and employ oxide electrolytes such as yttrium stabilized zirconia and gadolinium doped ceria. So far an intermediate temperature operation regime (300 °C) has not been widely explored which would open new pathways for novel fuel cell systems. In this review we summarize the potential use of phosphate compounds as electrolytes for intermediate temperature fuel cells. Various examples on ammonium polyphosphate, pyrophosphate, cesium phosphate and other phosphate based electrolytes are presented and their preparation methods, conduction mechanism and conductivity values are demonstrated.

  7. A review on phosphate based, solid state, protonic conductors for intermediate temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Paschos, O; Kunze, J; Stimming, U [Department of Physics E19, Technische Universitaet Muenchen, James-Franck-Strasse 1, D-85748, Garching (Germany); Maglia, F, E-mail: odysseas.paschos@ph.tum.de [Dipartimento di Chimica Fisica ' M Rolla' , Universita di Pavia, Viale Taramelli 16, 27100 Pavia (Italy)

    2011-06-15

    The electrolytes currently used for proton exchange membrane fuel cells are mainly based on polymers such as Nafion which limits the operation regime of the cell to {approx} 80 {sup 0}C. Solid oxide fuel cells operate at much elevated temperatures compared to proton exchange membrane fuel cells ({approx}1000 {sup 0}C) and employ oxide electrolytes such as yttrium stabilized zirconia and gadolinium doped ceria. So far an intermediate temperature operation regime (300 {sup 0}C) has not been widely explored which would open new pathways for novel fuel cell systems. In this review we summarize the potential use of phosphate compounds as electrolytes for intermediate temperature fuel cells. Various examples on ammonium polyphosphate, pyrophosphate, cesium phosphate and other phosphate based electrolytes are presented and their preparation methods, conduction mechanism and conductivity values are demonstrated.

  8. Inositol trisphosphate and calcium signalling

    Science.gov (United States)

    Berridge, Michael J.

    1993-01-01

    Inositol trisphosphate is a second messenger that controls many cellular processes by generating internal calcium signals. It operates through receptors whose molecular and physiological properties closely resemble the calcium-mobilizing ryanodine receptors of muscle. This family of intracellular calcium channels displays the regenerative process of calcium-induced calcium release responsible for the complex spatiotemporal patterns of calcium waves and oscillations. Such a dynamic signalling pathway controls many cellular processes, including fertilization, cell growth, transformation, secretion, smooth muscle contraction, sensory perception and neuronal signalling.

  9. 3-methylaminopropylamine as a templating agent in the synthesis of phosphate-based inorganic polymers

    Directory of Open Access Journals (Sweden)

    Jevtić Sanja O.

    2013-01-01

    Full Text Available 3-methylaminopropylamine (MPA has been studied as a structure-directing agent (template in the synthesis of open-framework phosphate-based materials. The influence of temperature, molar ratio of reactants, crystallization time and presence of fluoride ions on the crystallization of aluminophosphate, transition metal-substituted aluminophosphate [transition metal - Mn(II, Cr(III and Co(II] and zincophosphate has also been investigated. MPA exhibits the templating role and in all as-synthesized crystalline products and it is entrapped in an inorganic lattice interacting with the framework via hydrogen or/and electrostatic interactions. According to detailed thermal analysis the type of interactions seems to be crucial for thermal behaviour of MPA and also for the thermal stability of the organic-inorganic crystal system. Structural analysis suggested that the formed crystalline structures have no mutual structural analogy. This indicates that precise role of the organic (guest component in nucleation process for the open-framework phosphates (host is very complex as well as the nucleation process itself. [Projekat Ministarstva nauke Republike Srbije, br. 172018

  10. Sol-Gel Synthesis of Phosphate-Based Glasses for Hydrophilic Enamel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Sung; Ryu, Bong-ki [Pusan National University, Busan (Korea, Republic of)

    2017-04-15

    In this study, quaternary phosphate-based sol-gel derived glasses were synthesized from a P{sub 2}O{sub 5}-CaO-Na{sub 2}O-TiO{sub 2} system with a high TiO{sub 2} content of up to 50 mol%. The sol-gel method was chosen because incorporating a high percentage of titanium into a phosphate network via traditional melt-quench methods is non-trivial. The structure and thermal properties of the obtained stabilized sol-gel glasses were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC). The XRD results confirmed the amorphous nature of all of the stabilized sol–gel derived glasses. The FTIR results revealed that added TiO{sub 2} enters the network as (TiO{sub 6}), which likely acts as a modifier oxide. Consequently, the number of terminal oxygen atoms increases, leading to an increase in the number of P-OH bonds. In addition, DSC results confirmed a decrease in glass transition and crystallization temperatures with increasing TiO{sub 2} content. This is the first report of a sol-gel synthesis strategy combined with enameling to prepare glass at low processing temperatures and the first use of such a system for both hydrophilic and chemical resistance purposes.

  11. Properties of concretes and wood composites using a phosphate-based binder

    Science.gov (United States)

    Hong, Luong Thanh

    Magnesium potassium phosphate ceramics are from the family of phosphate-based cements which can be used as alternatives to Portland cements. In this study, concretes and wood composites were produced using magnesium potassium phosphate ceramic binders and supplementary materials including fly ash, sand, silica fume and sawdust. Bentonite, Delvo Stabilizer and baking soda were used as additives to increase the workability and the setting time of the fresh mixutres and decrease the density of the hardened products. The materials were then reinforced with chopped glass-fibers or textile glass-fabrics to increase their hardened properties. At 50% fly ash by total mass of the binder, the concretes had compressive strength and density of 33 MPa and 2170 kg/m3, respectively, after 90 days of simple curing. At 20% fly ash by total mass of the binder, the wood composites had compressive strength and density of 13 MPa and 1320 kg/m3, respectively, after 90 days. The flexural strengths were about 10% to 47% of the corresponding cylinder compressive strengths for these mixes. Increases in both compressive and flexural strengths for these mixes were observed with the addition of chopped glass-fibers or textile glass-fabrics.

  12. Effect of Boron Addition on the Thermal, Degradation, and Cytocompatibility Properties of Phosphate-Based Glasses

    Directory of Open Access Journals (Sweden)

    Nusrat Sharmin

    2013-01-01

    Full Text Available In this study eight different phosphate-based glass compositions were prepared by melt-quenching: four in the (P2O545-(CaO16--(MgO24- system and four in the system (P2O550-(CaO16--(MgO24-, where and 10 mol%. The effect of B2O3 addition on the thermal properties, density, molar volume, dissolution rates, and cytocompatibility were studied for both glass systems. Addition of B2O3 increased the glass transition (, crystallisation (, melting (, Liquidus ( and dilatometric softening ( temperature and molar volume (. The thermal expansion coefficient (α and density ( were seen to decrease. An assessment of the thermal stability of the glasses was made in terms of their processing window (crystallisation onset, minus glass transition temperature, , and an increase in the processing window was observed with increasing B2O3 content. Degradation studies of the glasses revealed that the rates decreased with increasing B2O3 content and a decrease in degradation rates was also observed as the P2O5 content reduced from 50 to 45 mol%. MG63 osteoblast-like cells cultured in direct contact with the glass samples for 14 days revealed comparative data to the positive control for the cell metabolic activity, proliferation, ALP activity, and morphology for glasses containing up to 5 mol% of B2O3.

  13. Biological performance of titania containing phosphate-based glasses for bone tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Abou Neel, Ensanya Ali, E-mail: eabouneel@kau.edu.sa [Division of Biomaterials, Conservative Dental Sciences Department, King Abdulaziz University, Jeddah (Saudi Arabia); Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta (Egypt); Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray' s Inn Road, London WC1X 8LD (United Kingdom); Chrzanowski, Wojciech [The University of Sydney, Faculty of Pharmacy, Pharmacy and Bank Building, NSW2006 (Australia); Department of Nanobiomedical Science and BK21 Plus NBM Global Reserch Center for Regenerative Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of); Knowles, Jonathan Campbell, E-mail: j.knowles@ucl.ac.uk [Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Gray' s Inn Road, London WC1X 8LD (United Kingdom); Department of Nanobiomedical Science and BK21 Plus NBM Global Reserch Center for Regenerative Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of)

    2014-02-01

    The interplay between glass chemistry, structure, degradation kinetics, and biological activity provides flexibility for the development of scaffolds with highly specific cellular response. The aim of this study was therefore to investigate the role of titania inclusion into the phosphate-based glass on its ability to stimulate osteoblast-like human osteosarcoma (HOS) cells to adhere, proliferate and differentiate. In depth morphological and biochemical characterisation was performed on HOS cells cultured on the surface of glass discs. Cell proliferation was also studied in the presence of the glass extract. Cell differentiation, through osteoblast phenotype genes, alkaline phosphatase (ALP) activity and osteocalcin production, was carried out using normal or osteogenic media. Both Thermanox® and titania free glass were used as controls. The data demonstrated that titania inclusion provides desired cytocompatible surface that supported initial cell attachment, sustained viability, and increased cell proliferation similar or significantly higher than Thermanox®. The modified glasses regulated osteoblastic cell differentiation as detected by osteoblast phenotype gene transcription and upregulated ALP and osteocalcin expression. Using osteogenic media had no significant effect on ALP activity and osteocalcin expression. Therefore, titania modified phosphate glasses may have future use as bone tissue engineering scaffolds. - Highlights: • This study investigated the role of titania on the biological response of phosphate glasses. • Incorporation of titania improved HOS cell attachment, viability and proliferation. • Titania modified glasses regulated osteoblastic cell differentiation. • Using osteogenic media had no significant effect on cell differentiation. • Titania modified glasses may have future use as bone tissue engineering scaffolds.

  14. Calcium signaling in taste cells.

    Science.gov (United States)

    Medler, Kathryn F

    2015-09-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.

  15. Luminescence in the fluoride-containing phosphate-based glasses: a possible origin of their high resistance to nanosecond pulse laser-induced damage.

    Science.gov (United States)

    Wang, Pengfei; Lu, Min; Gao, Fei; Guo, Haitao; Xu, Yantao; Hou, Chaoqi; Zhou, Zhiwei; Peng, Bo

    2015-02-26

    Fusion power offers the prospect of an almost inexhaustible source of energy for future generations. It was reported that fusion fuel gains exceeding unity on the National Ignition Facility (NIF) were achieved, but so far great deal of scientific and engineering challenges have to be overcome for realizing fusion power generation. There is a bottleneck for color-separation gratings in NIF and other similar inertial confinement fusion (ICF) lasers. Here we show a series of high performance phosphate-based glasses that can transmit the third harmonic frequency (3ω) laser light with high efficiency meanwhile filter the fundamental (1ω) and the second harmonic frequency (2ω) laser lights through direct absorption, and especially they exhibit excellent damage threshold induced by nanosecond pulse laser compared with that of the fused silica used in NIF. Yellowish-orange fluorescence emits during the laser-material interaction process, and it can be tailored through regulating the glass structure. Study on its structural origin suggests that the fluorescence emission is a key factor that conduces to the high laser-induced damage resistance of these glasses. The results also indicated the feasibility of utilizing these high performance glasses in novel color separation optics, allowing novel design for the final optics assembly in ICF lasers.

  16. Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage

    Science.gov (United States)

    Wang, Pengfei; Lu, Min; Gao, Fei; Guo, Haitao; Xu, Yantao; Hou, Chaoqi; Zhou, Zhiwei; Peng, Bo

    2015-02-01

    Fusion power offers the prospect of an almost inexhaustible source of energy for future generations. It was reported that fusion fuel gains exceeding unity on the National Ignition Facility (NIF) were achieved, but so far great deal of scientific and engineering challenges have to be overcome for realizing fusion power generation. There is a bottleneck for color-separation gratings in NIF and other similar inertial confinement fusion (ICF) lasers. Here we show a series of high performance phosphate-based glasses that can transmit the third harmonic frequency (3ω) laser light with high efficiency meanwhile filter the fundamental (1ω) and the second harmonic frequency (2ω) laser lights through direct absorption, and especially they exhibit excellent damage threshold induced by nanosecond pulse laser compared with that of the fused silica used in NIF. Yellowish-orange fluorescence emits during the laser-material interaction process, and it can be tailored through regulating the glass structure. Study on its structural origin suggests that the fluorescence emission is a key factor that conduces to the high laser-induced damage resistance of these glasses. The results also indicated the feasibility of utilizing these high performance glasses in novel color separation optics, allowing novel design for the final optics assembly in ICF lasers.

  17. Effects of first and second generation calcium channel blockers on diastolic function of the failing hamster heart: relationship with coronary flow changes.

    Science.gov (United States)

    Beaucage, Pierre; Massicotte, Julie; Boileau, Jean-François; Dumont, Louis

    2003-07-01

    Calcium channel blockers (CCBs) have variable efficacy in the treatment of heart failure. We hypothesized that modulation of left ventricular diastolic pressure (LVDP) may play a role in the variable efficacy of CCBs in this condition. Isolated perfused hearts from 200- to 250-day-old UM-X7.1 cardiomyopathic hamsters (failing hearts) and age-matched Syrian hamsters (normal hearts) were studied. After recording of heart rate, coronary flow (CF), LVDP and left ventricular systolic pressure (LVSP), hearts were exposed either to verapamil or diltiazem (1 nM-10 microM), mibefradil (1 nM-1 microM) or clentiazem (1 nM-10 microM). Mechanical increase in CF (+2 to +10 ml/min) was carried out using a roller pump. Mechanically-augmented flow led to an increase in coronary perfusion pressure (+40 to +90 mm Hg), LVSP (+5 to +40 mm Hg) and LVDP (+5 to +25 mm Hg). CCBs-induced increment of coronary flow led to a difference in their cardiac response. In normal hearts, the negative inotropic response was more important with diltiazem and verapamil. Failing hearts did not demonstrate increased inotropic sensitivity to first-generation CCBs. On the contrary, at clinically relevant concentrations, verapamil resulted in the most pronounced impairment of LVDP followed by diltiazem while mibefradil and clentiazem, at clinically relevant concentrations, preserved LVDP. Such findings provide an additional explanation for the variable efficacy of CCBs in heart failure.

  18. Contribution of acoustic emission to monitor the effect of phosphate based inhibitor on the corrosion behavior of steel reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Nahali, Haifa [Laboratoire MATEIS CNRS UMR5511 (Equipe CorrIS), INSA-Lyon, Villeurbanne (France); Univ. de Tunis El Manar, Belvedere (Tunisia). Unite de Recherche ' ' Mecanique-Energetique' ' ; Dhouibi, Leila [Univ. de Tunis El Manar, Belvedere (Tunisia). Unite de Recherche ' ' Mecanique-Energetique' ' ; Idrissi, Hassane [Laboratoire MATEIS CNRS UMR5511 (Equipe CorrIS), INSA-Lyon, Villeurbanne (France)

    2014-11-01

    One of the most important causes of reinforced concrete structures deterioration is the corrosion of the reinforcement steel. This corrosion depends on the presence of aggressive agents such as chlorides in the surrounding medium. Numerous protection techniques have been employed to mitigate this corrosion. Among them, the use of corrosion inhibitors has been considered as one of the most effective solutions. In the present work, the influence of phosphate based inhibitor on the corrosion of reinforcing steels embedded in mortar, and immersed in sodium chloride solution, was investigated by acoustic emission technique. The monitoring of specimens shows that the phosphate based inhibitor addition in the mortar increase the threshold of chloride concentrations, causing the breakdown of steel passivation layer. Thus, the acoustic signatures of concrete fracture and of structure degradation during the corrosion of these specimens have been highlighted. Similarly, the mechanism of phosphate action in terms of preventing steel from corrosion in mortar specimens was analysed by characterization methods (SEM, XRD) of the steel-mortar interface.

  19. Calcium in diet

    Science.gov (United States)

    ... D is needed to help your body use calcium. Milk is fortified with vitamin D for this reason. ... of calcium dietary supplements include calcium citrate and calcium carbonate. Calcium citrate is the more expensive form of ...

  20. Calcium supplements

    Science.gov (United States)

    ... Related Bone Diseases National Resource Center. Calcium and vitamin D: Important at every age. NIAMS.NIH.gov website. www.niams.nih.gov/Health_Info/Bone/Bone_Health/Nutrition . Updated May 2015. Accessed March ...

  1. Calcium Electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gibot, Laure; Madi, Moinecha;

    2015-01-01

    BACKGROUND: Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill...... efficacy-and normal cell sensitivity. METHODS: Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780......), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). RESULTS: The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p

  2. Zn- and Mg- Containing Tricalcium Phosphates-Based Adjuvants for Cancer Immunotherapy

    Science.gov (United States)

    Wang, Xiupeng; Li, Xia; Onuma, Kazuo; Sogo, Yu; Ohno, Tadao; Ito, Atsuo

    2013-07-01

    Zn-, and Mg-containing tricalcium phosphates (TCPs) loaded with a hydrothermal extract of a human tubercle bacillus (HTB) were prepared by immersing Zn-TCP and Mg-TCP in HTB-containing supersaturated calcium phosphate solutions. The in vitro and in vivo immunogenic activities of the HTB-loaded Zn-, and Mg-TCPs (Zn-Ap-HTB and Mg-Ap-HTB, respectively) were evaluated as potential immunopotentiating adjuvants for cancer immunotherapy. The Zn-Ap-HTB and Mg-Ap-HTB adjuvants showed no obvious cytotoxicity and more effectively stimulated granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion by macrophage-like cells than unprocessed HTB or HTB-loaded TCP (T-Ap-HTB) in vitro. Zn-Ap-HTB and Mg-Ap-HTB mixed with liquid-nitrogen-treated tumor tissue markedly inhibited the in vivo development of rechallenged Lewis lung carcinoma (LLC) cells compared with T-Ap-HTB and the unprocessed HTB mixed liquid-nitrogen-treated tumor tissue. Zn-Ap-HTB and Mg-Ap-HTB contributed to eliciting potent systemic antitumor immunity in vivo.

  3. Generations.

    Science.gov (United States)

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession.

  4. Calcium and bones

    Science.gov (United States)

    Bone strength and calcium ... calcium (as well as phosphorus) to make healthy bones. Bones are the main storage site of calcium in ... your body does not absorb enough calcium, your bones can get weak or will not grow properly. ...

  5. Synthesis of calcium superoxide

    Science.gov (United States)

    Rewick, R. T.; Blucher, W. G.; Estacio, P. L.

    1972-01-01

    Efforts to prepare Ca(O2) sub 2 from reactions of calcium compounds with 100% O3 and with O(D-1) atoms generated by photolysis of O3 at 2537 A are described. Samples of Ca(OH) sub 2, CaO, CaO2, Ca metal, and mixtures containing suspected impurities to promote reaction have been treated with excess O3 under static and flow conditions in the presence and absence of UV irradiation. Studies with KO2 suggest that the superoxide anion is stable to radiation at 2537 A but reacts with oxygen atoms generated by the photolysis of O3 to form KO3. Calcium superoxide is expected to behave in an analogous.

  6. Calcium Carbonate

    Science.gov (United States)

    ... doctor if you have or have ever had kidney disease or stomach conditions.tell your doctor if you are pregnant, plan to become pregnant, or are breast-feeding. If you become pregnant while taking calcium carbonate, call your doctor.

  7. Calcium Test

    Science.gov (United States)

    ... if a person has symptoms of a parathyroid disorder , malabsorption , or an overactive thyroid. A total calcium level is often measured as part of a routine health screening. It is included in the comprehensive metabolic panel (CMP) and the basic metabolic panel (BMP) , ...

  8. Calcium paradox and calcium entry blockers

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Slade, A.M.; Nayler, W.G.; Meijler, F.L.

    1984-01-01

    Reperfusion of isolated hearts with calcium-containing solution after a short period of calcium-free perfusion results in irreversible cell damage (calcium paradox). This phenomenon is characterized by an excessive influx of calcium into the cells, the rapid onset of myocardial contracture, exhausti

  9. Formation of calcium phosphate mineral materialcontrolled by microemulsion

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to prepare calcium phosphate-based material with nano-structure and bioactivity, natural lecithin and n-tetradecane were used as the amphipile and the oil phase respectively, along with the water phase, to form a microemulsion template. Phosphate mineralization was induced and controlled by the microemulsion. The products, characterized by scanning electronic microscopy, infrared spectroscopy and X-ray diffraction analysis, are composed of lecithin and hydroxyapatite, and possess the nano-structure of sticks, balls and three-dimensional nets connected by tubes. These results show that the microemulsion can be used to control calcium phosphate mineralization for the preparation of biomimetic mineral materials with various nano-structures.

  10. Spectroscopic properties of Er3+-doped phosphate based glasses for broadband 1.54 μm emission

    Science.gov (United States)

    Rasool, Sk. Nayab; Jamalaiah, B. C.; Suresh, K.; Moorthy, L. Rama; Jayasankar, C. K.

    2017-02-01

    Er3+-doped phosphate based glasses were prepared by the conventional melt-quenching technique with the chemical composition of 44 P2O5 - 17 K2O - 9 Al2O3 - (30-x) CaF2 - x Er2O3, (where x = 0.1, 0.5, 1.0, 2.0and 3.0 mol %) and their spectral properties have been investigated from absorption, emission and decay measurements. The phenomenological Judd - Ofelt intensity parameters Ωλ(λ = 2, 4, 6) were determined from the intensities of absorption bands in order to calculate the radiative transition probability (AR), radiative lifetime (τR), branching ratios (βR) of various excited states. The McCumber's theory has been adopted to predict, the emission cross-section (σeM) of 4I13/2 → 4I15/2 transition from the absorption cross-section (σa) of the 4I15/2 ? 4I13/2 transition of Er3+ ions. From near infrared emission spectra, full width at half maxima (FWHM), stimulated emission cross-section (σe) and gain bandwidth (ΔG) for the 4I13/2 → 4I15/2 emission transition at 1.536 μm were evaluated and discussed their utility for optical communication networks.

  11. Adsorption-desorption study of benzotriazole in a phosphate-based electrolyte for Cu electrochemical mechanical planarization

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J.-Y., E-mail: jylin@ttu.edu.t [Department of Chemical Engineering, Tatung University, 40 ChungShan North Road, 3rd Section, Taipei 104, Taiwan (China); West, Alan C. [Department of Chemical Engineering, Columbia University, New York 10027 (United States)

    2010-02-28

    In this article, the adsorption-desorption behavior of benzotriazole (BTA) in a phosphate-based electrolyte developed for Cu electrochemical mechanical planarization (ECMP) is studied. The formation of a continuous BTA passive film adsorbed on the Cu surface has been characterized by atomic force microscopy (AFM). Additionally, the adsorption behavior of BTA was found to be mass-transfer-controlled at lower operating potentials (<=0.7 V vs. Ag/AgCl). Using a microfluidic electrochemical device and electrochemical impedance spectrum (EIS), it was also observed that at low BTA concentrations (<=0.002 M), more time was necessary to form an effective passive film on the Cu surface. Furthermore, the desorption time obtained from a potentiometric response to the removal of BTA from the electrolyte increases with increasing BTA concentration or decreasing applied potential. It is critical to expand the operating potential window and to reduce the usage of inhibitors in the proposed ECMP process to enhance the removal rate and the reduction of organic residues. Therefore, the combined microfluidic and electrochemical methodology is proven useful in finding suitable BTA concentrations and a wider potential window.

  12. Environmental benefits of using magnesium carbonate minerals as new wildfire retardants instead of commercially available, phosphate-based compounds.

    Science.gov (United States)

    Liodakis, S; Tsoukala, M

    2010-10-01

    A serial batch leaching experiment has been carried out to evaluate the release of elements from the ash of Pinus halepensis needles burned under two test conditions-with and without treatment of the forest species with the carbonate minerals (huntite and hydromagnesite) in aqueous solution (pH 6). The ash (before and after leaching) and leachates were analyzed using atomic absorption spectroscopy and X-ray diffraction. Compared with data from samples treated with the commercially available, phosphate-based fire retardant diammonium phosphate (DAP), we found that use of huntite or hydromagnesite was much more successful in obstructing the release of the toxic elements present in the ash, probably because of the alkaline conditions resulting from decomposition of the minerals during burning. In contrast, DAP tended to be more able to facilitate the extraction of some toxic metals (e.g., Zn, Cu, Mn), probably because of the acidic conditions resulting from its decomposition to phosphoric acid. Data from this study thus lend strong support to the use of magnesium carbonate minerals as new wildfire retardants, because they were shown to be more friendly to the environment (e.g., soil, ground, and underground water streams) than those currently in use (e.g., phosphate or sulfate salt type).

  13. Calcium phosphates for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Canillas, M.; Pena, P.; Aza, A.H. de; Rodriguez, M.A.

    2017-07-01

    The history of calcium phosphates in the medicine field starts in 1769 when the first evidence of its existence in the bone tissue is discovered. Since then, the interest for calcium phosphates has increased among the scientific community. Their study has been developed in parallel with new advances in materials sciences, medicine or tissue engineering areas. Bone tissue engineering is the field where calcium phosphates have had a great importance. While the first bioceramics are selected according to bioinert, biocompatibility and mechanical properties with the aim to replace bone tissue damaged, calcium phosphates open the way to the bone tissue regeneration challenge. Nowadays, they are present in the majority of commercial products directed to repair or regenerate damaged bone tissue. Finally, in the last few decades, they have been suggested and studied as drug delivering devices and as vehicles of DNA and RNA for the future generation therapies. (Author)

  14. Degradation and Characterization of Resorbable Phosphate-Based Glass Thin-Film Coatings Applied by Radio-Frequency Magnetron Sputtering.

    Science.gov (United States)

    Stuart, Bryan W; Gimeno-Fabra, Miquel; Segal, Joel; Ahmed, Ifty; Grant, David M

    2015-12-16

    Quinternary phosphate-based glasses of up to 2.67 μm, deposited by radio-frequency magnetron sputtering, were degraded in distilled water and phosphate-buffered saline (PBS) to investigate their degradation characteristics. Magnetron-sputtered coatings have been structurally compared to their compositionally equivalent melt-quenched bulk glass counterparts. The coatings were found to have structurally variable surfaces to melt-quenched glass such that the respective bridging oxygen to nonbridging oxygen bonds were 34.2% to 65.8% versus 20.5% to 79.5%, forming metaphosphate (PO3)(-) (Q(2)) versus less soluble (P2O7)(4-) (Q(1)) and (PO4)(3-) (Q(0)), respectively. This factor led to highly soluble coatings, exhibiting a t(1/2) degradation dependence in the first 2 h in distilled water, followed by a more characteristic linear profile because the subsequent layers were less soluble. Degradation was observed to preferentially occur, forming voids characteristic of pitting corrosion, which was confirmed by the use of a focused ion beam. Coating degradation in PBS precipitated a (PO3)(-) metaphosphate, an X-ray amorphous layer, which remained adherent to the substrate and seemingly formed a protective diffusion barrier, which inhibited further coating degradation. The implications are that while compositionally similar, sputter-deposited coatings and melt-quenched glasses are structurally dissimilar, most notably, with regard to the surface layer. This factor has been attributed to surface etching of the as-deposited coating layer during deposition and variation in the thermal history between the processes of magnetron sputtering and melt quenching.

  15. Analysis of brominated and phosphate-based flame retardants in polymer samples by HPLC-UV/MS and online-GPC-HPLC-UV

    Energy Technology Data Exchange (ETDEWEB)

    Schlummer, M.; Brandl, F. [Fraunhofer-Institut fuer Verfahrenstechnik und Verpackung (IVV), Freising (Germany); Maeurer, A.

    2004-09-15

    Here we present two analytical approaches for the identification and quantification of brominated and phosphate-based flame retardants. The first is an HPLC-UV/MS approach, which allows the separation and unequivocal identification and quantification of at least 15 different technical flame retardants. The second approach was set-up as a screening tool, consisting of a GPC separation coupled to an HPLC-UV device.

  16. Analysis of brominated and phosphate-based flame retardants in polymer samples by HPLC-UV/MS and online-GPC-HPLC-UV

    Energy Technology Data Exchange (ETDEWEB)

    Schlummer, M.; Brandl, F. [Fraunhofer-Institut fuer Verfahrenstechnik und Verpackung (IVV), Freising (Germany); Maeurer, A.

    2004-09-15

    Here we present two analytical approaches for the identification and quantification of brominated and phosphate-based flame retardants. The first is an HPLC-UV/MS approach, which allows the separation and unequivocal identification and quantification of at least 15 different technical flame retardants. The second approach was set-up as a screening tool, consisting of a GPC separation coupled to an HPLC-UV device.

  17. Calcium Orthophosphate Cements and Concretes

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2009-03-01

    Full Text Available In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone, calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.

  18. Calcium affects on vascular endpoints

    Directory of Open Access Journals (Sweden)

    Patel Vaishali B

    2012-03-01

    Full Text Available Abstract Calcium is one of the most abundant minerals in the body and its metabolism is one of the basic biologic processes in humans. Although historically linked primarily to bone structural development and maintenance, calcium is now recognized as a key component of many physiologic pathways necessary for optimum health including cardiovascular, neurological, endocrine, renal, and gastrointestinal systems. A recent meta-analysis published in August 2011 showed a potential increase in cardiovascular events related to calcium supplementation. The possible mechanism of action of this correlation has not been well elucidated. This topic has generated intense interest due to the widespread use of calcium supplements, particularly among the middle aged and elderly who are at the most risk from cardiac events. Prior studies did not control for potential confounding factors such as the use of statins, aspirin or other medications. These controversial results warrant additional well-designed studies to investigate the relationship between calcium supplementation and cardiovascular outcomes. The purpose of this review is to highlight the current literature in regards to calcium supplementation and cardiovascular health; and to identify areas of future research.

  19. Calcium D-saccharate

    DEFF Research Database (Denmark)

    Garcia, André Castilho; Hedegaard, Martina Vavrusova; Skibsted, Leif Horsfelt

    2016-01-01

    K-1. Equilibria in supersaturated solutions of calcium d-saccharate seem only to adjust slowly, as seen from calcium activity measurements in calcium d-saccharate solutions made supersaturated by cooling. Solutions formed by isothermal dissolution of calcium d-gluconate in aqueous potassium d......-saccharate becomes spontaneously supersaturated with both d-gluconate and d-saccharate calcium salts, from which only calcium d-saccharate slowly precipitates. Calcium d-saccharate is suggested to act as a stabilizer of supersaturated solutions of other calcium hydroxycarboxylates with endothermic complex formation...

  20. Synthesis and Characterization of Nanoparticles of Calcium Pyrophosphate

    Science.gov (United States)

    Vasant, Sonal R.; Joshi, M. J.

    Calcium phosphate based biomaterials play important roles in clinical applications. Calcium pyrophosphate (CPP), a kind of calcium phosphate, can be used as a bone substitution material as well as a bone graft. Because of its similarity to inorganic component of bone and teeth it can be used for surface coating of metallic dental and orthopedic implants. In the present study, calcium pyrophosphate dihydrate (CPPD) nanoparticles were synthesized using surfactant mediated approach. Crystalline nature and average crystallite size was studied using Powder XRD. The CPPD nanocrystallites were found to be triclinic from powder XRD. The TEM study indicated that CPPD nanoparticles were in the range of 13 nm to 20 nm. The presence of various bonds was confirmed by FTIR spectroscopy. The amount of water of hydration and the thermal stability was studied by thermogravimetry. The variations of various dielectric parameters with the frequency of applied field in 3.2 kHz to 32 MHz range and within a temperature range from 60°C to 120°C were studied. The formation of other phases such as β-CPP and α-CPP on heating of CPPD at 900°C and 1250°C, respectively, were studied by the Powder XRD. The results are discussed.

  1. Platelet-activating factor induces phospholipid turnover, calcium flux, arachidonic acid liberation, eicosanoid generation, and oncogene expression in a human B cell line

    Energy Technology Data Exchange (ETDEWEB)

    Schulam, P.G.; Kuruvilla, A.; Putcha, G.; Mangus, L.; Franklin-Johnson, J.; Shearer, W.T. (Baylor College of Medicine, Houston, TX (USA))

    1991-03-01

    Platelet-activating factor is a potent mediator of the inflammatory response. Studies of the actions of platelet-activating factor have centered mainly around neutrophils, monocytes, and platelets. In this report we begin to uncover the influence of platelet-activating factor on B lymphocytes. Employing the EBV-transformed human B cell line SKW6.4, we demonstrate that platelet-activating factor significantly alters membrane phospholipid metabolism indicated by the incorporation of 32P into phosphatidylcholine, phosphatidylinositol, and phosphatidic acid but not significantly into phosphatidylethanolamine at concentrations ranging from 10(-9) to 10(-6) M. The inactive precursor, lyso-platelet-activating factor, at a concentration as high as 10(-7) M had no effect on any of the membrane phospholipids. We also show that platelet-activating factor from 10(-12) to 10(-6) M induced rapid and significant elevation in intracellular calcium levels, whereas lyso-platelet-activating factor was again ineffective. We further demonstrate the impact of platelet-activating factor binding to B cells by measuring platelet-activating factor induced arachidonic acid release and 5-hydroxyeicosatetraenoic acid production. Moreover, platelet-activating factor was capable of inducing transcription of the nuclear proto-oncogenes c-fos and c-jun. Finally we explored the possible role of 5-hydroxyeicosatetraenoic acid as a regulator of arachidonic acid liberation demonstrating that endogenous 5-lipoxygenase activity modulates platelet-activating factor induced arachidonic acid release perhaps acting at the level of phospholipase A2. In summary, platelet-activating factor is shown here to have a direct and profound effect on a pure B cell line.

  2. Folate Deficiency Triggered Apoptosis of Synoviocytes: Role of Overproduction of Reactive Oxygen Species Generated via NADPH Oxidase/Mitochondrial Complex II and Calcium Perturbation.

    Science.gov (United States)

    Hsu, Hung-Chih; Chang, Wen-Ming; Wu, Jin-Yi; Huang, Chin-Chin; Lu, Fung-Jou; Chuang, Yi-Wen; Chang, Pey-Jium; Chen, Kai-Hua; Hong, Chang-Zern; Yeh, Rang-Hui; Liu, Tsan-Zon; Chen, Ching-Hsein

    2016-01-01

    Despite a plethora of literature has documented that osteoarthritis (OA) is veritably associated with oxidative stress-mediated chondrocyte death and matrix degradation, yet the possible involvement of synoviocyte abnormality as causative factor of OA has not been thoroughly investigated. For this reason, we conduct the current studies to insight into how synoviocytes could respond to an episode of folate-deprived (FD) condition. First, when HIG-82 synoviocytes were cultivated under FD condition, a time-dependent growth impediment was observed and the demise of these cells was demonstrated to be apoptotic in nature mediated through FD-evoked overproduction of reactive oxygen species (ROS) and drastically released of cytosolic calcium (Ca2+) concentrations. Next, we uncovered that FD-evoked ROS overproduction could only be strongly suppressed by either mitochondrial complex II inhibitors (TTFA and carboxin) or NADPH oxidase (NOX) inhibitors (AEBSF and apocynin), but not by mitochondrial complex I inhibitor (rotenone) and mitochondrial complex III inhibitor (antimycin A). Interestingly, this selective inhibition of FD-evoked ROS by mitochondrial complex II and NOX inhibitors was found to correlate excellently with the suppression of cytosolic Ca2+ release and reduced the magnitude of the apoptotic TUNEL-positive cells. Taken together, we present the first evidence here that FD-triggered ROS overproduction in synoviocytes is originated from mitochondrial complex II and NOX. Both elevated ROS in tandem with cytosolic Ca2+ overload serve as final arbitrators for apoptotic lethality of synoviocytes cultivated under FD condition. Thus, folate supplementation may be beneficial to patients with OA.

  3. Calcium sensing in exocytosis

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Wu, Bingbing; Han, Weiping

    2012-01-01

    an increase in intracellular calcium levels. Besides the triggering role, calcium signaling modulates the precise amount and kinetics of vesicle release. Thus, it is a central question to understand the molecular machineries responsible for calcium sensing in exocytosis. Here we provide an overview of our...... current understanding of calcium sensing in neurotransmitter release and hormone secretion....

  4. Dopaminergic regulation of dendritic calcium: fast multisite calcium imaging.

    Science.gov (United States)

    Zhou, Wen-Liang; Oikonomou, Katerina D; Short, Shaina M; Antic, Srdjan D

    2013-01-01

    Optimal dopamine tone is required for the normal cortical function; however it is still unclear how cortical-dopamine-release affects information processing in individual cortical neurons. Thousands of glutamatergic inputs impinge onto elaborate dendritic trees of neocortical pyramidal neurons. In the process of ensuing synaptic integration (information processing), a variety of calcium transients are generated in remote dendritic compartments. In order to understand the cellular mechanisms of dopaminergic modulation it is important to know whether and how dopaminergic signals affect dendritic calcium transients. In this chapter, we describe a relatively inexpensive method for monitoring dendritic calcium fluctuations at multiple loci across the pyramidal dendritic tree, at the same moment of time (simultaneously). The experiments have been designed to measure the amplitude, time course and spatial extent of action potential-associated dendritic calcium transients before and after application of dopaminergic drugs. In the examples provided here the dendritic calcium transients were evoked by triggering the somatic action potentials (backpropagation-evoked), and puffs of exogenous dopamine were applied locally onto selected dendritic branches.

  5. Disease causing mutations of calcium channels.

    Science.gov (United States)

    Lorenzon, Nancy M; Beam, Kurt G

    2008-01-01

    Calcium ions play an important role in the electrical excitability of nerve and muscle, as well as serving as a critical second messenger for diverse cellular functions. As a result, mutations of genes encoding calcium channels may have subtle affects on channel function yet strongly perturb cellular behavior. This review discusses the effects of calcium channel mutations on channel function, the pathological consequences for cellular physiology, and possible links between altered channel function and disease. Many cellular functions are directly or indirectly regulated by the free cytosolic calcium concentration. Thus, calcium levels must be very tightly regulated in time and space. Intracellular calcium ions are essential second messengers and play a role in many functions including, action potential generation, neurotransmitter and hormone release, muscle contraction, neurite outgrowth, synaptogenesis, calcium-dependent gene expression, synaptic plasticity and cell death. Calcium ions that control cell activity can be supplied to the cell cytosol from two major sources: the extracellular space or intracellular stores. Voltage-gated and ligand-gated channels are the primary way in which Ca(2+) ions enter from the extracellular space. The sarcoplasm reticulum (SR) in muscle and the endoplasmic reticulum in non-muscle cells are the main intracellular Ca(2+) stores: the ryanodine receptor (RyR) and inositol-triphosphate receptor channels are the major contributors of calcium release from internal stores.

  6. Stochastic models of intracellular calcium signals

    Energy Technology Data Exchange (ETDEWEB)

    Rüdiger, Sten, E-mail: sten.ruediger@physik.hu-berlin.de

    2014-01-10

    Cellular signaling operates in a noisy environment shaped by low molecular concentrations and cellular heterogeneity. For calcium release through intracellular channels–one of the most important cellular signaling mechanisms–feedback by liberated calcium endows fluctuations with critical functions in signal generation and formation. In this review it is first described, under which general conditions the environment makes stochasticity relevant, and which conditions allow approximating or deterministic equations. This analysis provides a framework, in which one can deduce an efficient hybrid description combining stochastic and deterministic evolution laws. Within the hybrid approach, Markov chains model gating of channels, while the concentrations of calcium and calcium binding molecules (buffers) are described by reaction–diffusion equations. The article further focuses on the spatial representation of subcellular calcium domains related to intracellular calcium channels. It presents analysis for single channels and clusters of channels and reviews the effects of buffers on the calcium release. For clustered channels, we discuss the application and validity of coarse-graining as well as approaches based on continuous gating variables (Fokker–Planck and chemical Langevin equations). Comparison with recent experiments substantiates the stochastic and spatial approach, identifies minimal requirements for a realistic modeling, and facilitates an understanding of collective channel behavior. At the end of the review, implications of stochastic and local modeling for the generation and properties of cell-wide release and the integration of calcium dynamics into cellular signaling models are discussed.

  7. Injectable biphasic calcium phosphate bioceramic: The HYDROS concept.

    Science.gov (United States)

    Baroth, Serge; Bourges, Xavier; Goyenvalle, Eric; Aguado, Eric; Daculsi, Guy

    2009-01-01

    A new biphasic calcium phosphate ceramic material has been developed in our laboratory. It is composed of 60% of hydroxyapatite and 40% of beta-tricalcium phosphate, based on three granulometries (submicron, round microporous 80-200 mum and macro microporous 0.5-1 mm particles) and hydrated with water leading the formation of a putty filler for bone repair. Biocompatibility and osteogenicity were tested by filling femoral epiphyses critical size bone defect and lumbar muscles in rabbit. After 3, 6 and 12 weeks of implantation, explants were treated for histology. Results revealed the biocompatibility of the material and intensive resorption of the submicron particle fraction followed by important bone ingrowth whereas osteoconduction was provided by the larger particles.

  8. Extrusion-based, three-dimensional printing of calcium-phosphate scaffolds

    Science.gov (United States)

    Witek, Lukasz

    Small or large bone defects, can occur due to a variety of reasons: congenital disorders, infections, tumors, or traumas which can lead to significant disabilities. There is an assortment of bone grafting procedures, each having their own respective advantages and disadvantages and exhibiting certain essential characteristics. Among the available grafts, autogenous (autograft), allograft, xenograft, and alloplasts, all exhibit a minimum of two-thirds of the essential characteristics and have been proven useful in fully or partially repairing skeletal defects. However, different host-to-grafting material responses have been reported and should be taken into consideration when determining treatment options. A large range of physical and chemical properties can be achieved with calcium phosphate based materials, which possess two of the ideal characteristics for grafting procedures: osteoconduction and osseointegration. Calcium phosphate based scaffolds composed of hydroxyapatite (HA), beta-tri-calcium phosphate (beta-TCP), or a combination of both (HA/beta-TCP) were investigated as materials for three-dimensional printing process to create layer-by-layer structures for use as bone regeneration scaffolds. Different calcium-phosphate phases will result in different degrees of in vivo dissolution and/or cell-mediated resorption. There has been a growing interest in BCP because it has been shown that this material improves the formation of new bone inside the implanted scaffold. The literature indicates that the faster dissolution rate of ?-TCP would be greatly responsible of this enhancement. However, in vitro tests indicate that fast dissolution can decrease the mechanical strength of BCP scaffolds. Furthermore, studies reported that HA has higher mechanical strength and lower degradation rate than beta-TCP. Therefore, the HA/beta-TCP ratio is a key parameter controlling the performance of the scaffold for bone repair applications, since it determines degradation rate

  9. Integumentary loss of calcium.

    Science.gov (United States)

    Chu, J Y; Margen, S; Calloway, D H; Costa, F M

    1979-08-01

    Integumentary calcium loss was studied in 16 healthy young men. The daily loss by the 16 ambulatory but relatively sedentary young men in 52 determinations of 6-day periods each was 8.7 +/- 1.9 mg/m2 per day (average 15.8 mg/man per day). The amount lost was not influenced by calcium intake (0.1 to 2.3 g/day). In contrast to urinary calcium excretion, which is directly related to protein intake, there was no significant change in integumentary calcium loss with varying protein intakes (1 to 96 g nitrogen per day). No compensatory relationship between urinary and integumentary calcium excretion was noted. During strenuous exercise calcium loss increased to an average of 25 mg in 40 min. There was no compensatory decrease in urinary excretion on the day of strenuous exercise. It was also noted that integumentary calcium loss was not affected by general calcium balance.

  10. Role of calcium stores and membrane voltage in the generation of slow wave action potentials in guinea-pig gastric pylorus.

    Science.gov (United States)

    van Helden, D F; Imtiaz, M S; Nurgaliyeva, K; von der Weid, P; Dosen, P J

    2000-04-01

    1. Intracellular recordings made in single bundle strips of a visceral smooth muscle revealed rhythmic spontaneous membrane depolarizations termed slow waves (SWs). These exhibited 'pacemaker' and 'regenerative' components composed of summations of more elementary events termed spontaneous transient depolarizations (STDs). 2. STDs and SWs persisted in the presence of tetrodotoxin, nifedipine and ryanodine, and upon brief exposure to Ca2+-free Cd2+-containing solutions; they were enhanced by ACh and blocked by BAPTA AM, cyclopiazonic acid and caffeine. 3. SWs were also inhibited in heparin-loaded strips. SWs were observed over a wide range of membrane potentials (e.g. -80 to -45 mV) with increased frequencies at more depolarized potentials. 4. Regular spontaneous SW activity in this preparation began after 1-3 h superfusion of the tissue with physiological saline following the dissection procedure. Membrane depolarization applied before the onset of this activity induced bursts of STD-like events (termed the 'initial' response) which, when larger than threshold levels initiated regenerative responses. The combined initial-regenerative waveform was termed the SW-like action potential. 5. Voltage-induced responses exhibited large variable latencies (typical range 0.3-4 s), refractory periods of approximately 11 s and a pharmacology that was indistinguishable from those of STDs and spontaneous SWs. 6. The data indicate that SWs arise through more elementary inositol 1,4,5-trisphosphate (IP3) receptor-induced Ca2+ release events which rhythmically synchronize to trigger regenerative Ca2+ release and induce inward current across the plasmalemma. The finding that action potentials, which were indistinguishable from SWs, could be evoked by depolarization suggests that membrane potential modulates IP3 production. Voltage feedback on intracellular IP3-sensitive Ca2+ release is likely to have a major influence on the generation and propagation of SWs.

  11. Calcium and Mitosis

    Science.gov (United States)

    Hepler, P.

    1983-01-01

    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  12. Calcium and Mitosis

    Science.gov (United States)

    Hepler, P.

    1983-01-01

    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  13. Calcium signaling in physiology and pathophysiology

    Institute of Scientific and Technical Information of China (English)

    He-ping CHENG; Sheng WEI; Li-ping WEI; Alexei VERKHRATSKY

    2006-01-01

    Calcium ions are the most ubiquitous and pluripotent cellular signaling molecules that control a wide variety of cellular processes.The calcium signaling system is represented by a relatively limited number of highly conserved transporters and channels,which execute Ca2+ movements across biological membranes and by many thousands of Ca2+-sensitive effectors.Molecular cascades,responsible for the generation of calcium signals,are tightly controlled by Ca2+ ions themselves and by genetic factors,which tune the expression of different Ca2+-handling molecules according to adaptational requirements.Ca2+ ions determine normal physiological reactions and the development of many pathological processes.

  14. Calcium - Function and effects

    NARCIS (Netherlands)

    Liang, Jianfen; He, Yifan; Gao, Qian; Wang, Xuan; Nout, M.J.R.

    2016-01-01

    Rice is the primary food source for more than half of the world population. Levels of calcium contents and inhibitor - phytic acid are summarized in this chapter. Phytic acid has a very strong chelating ability and it is the main inhibit factor for calcium in rice products. Calcium contents in br

  15. Calcium en cardioplegie

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Meijler, F.L.

    1985-01-01

    Coronary perfusion with a calcium-free solution, followed by reperfusion with a calcium containing solution, may result in acute myocardial cell death and in irreversible loss of the e1ectrical and mechanical activity of the heart. This phenomenon is known as the calcium paradox. A number of cardiop

  16. Calcium signaling and epilepsy.

    Science.gov (United States)

    Steinlein, Ortrud K

    2014-08-01

    Calcium signaling is involved in a multitude of physiological and pathophysiological mechanisms. Over the last decade, it has been increasingly recognized as an important factor in epileptogenesis, and it is becoming obvious that the excess synchronization of neurons that is characteristic for seizures can be linked to various calcium signaling pathways. These include immediate effects on membrane excitability by calcium influx through ion channels as well as delayed mechanisms that act through G-protein coupled pathways. Calcium signaling is able to cause hyperexcitability either by direct modulation of neuronal activity or indirectly through calcium-dependent gliotransmission. Furthermore, feedback mechanisms between mitochondrial calcium signaling and reactive oxygen species are able to cause neuronal cell death and seizures. Unravelling the complexity of calcium signaling in epileptogenesis is a daunting task, but it includes the promise to uncover formerly unknown targets for the development of new antiepileptic drugs.

  17. A brief review of calcium phosphate conversion coating on magnesium and its alloys

    Science.gov (United States)

    Zaludin, Mohd Amin Farhan; Jamal, Zul Azhar Zahid; Jamaludin, Shamsul Baharin; Derman, Mohd Nazree

    2016-07-01

    Recent developments have shown that magnesium is a promising candidate to be used as a biomaterial. Owing to its light weight, biocompatibility and compressive strength comparable with natural bones makes magnesium as an excellent choice for biomaterial. However, high reactivity and low corrosion resistance properties have restricted the application of magnesium as biomaterials. At the moment, several strategies have been developed to solve this problem. Surface modification of magnesium is one of the popular solutions to solve the problem. Among many techniques developed in the surface modification, conversion coating method is one of the simple and effective techniques. From various types of conversion coating, calcium phosphate-based conversion coating is the most suitable for biomedical fields. This paper reviews some studies on calcium phosphate coating on Mg and its alloys via chemical conversion method and discusses some factors determining the coating performance.

  18. Calcium phosphate nanocoatings and nanocomposites, part I: recent developments and advancements in tissue engineering and bioimaging.

    Science.gov (United States)

    Choi, Andy H; Ben-Nissan, Besim

    2015-07-01

    A number of materials have been applied as implant coatings and as tissue regeneration materials. Calcium phosphate holds a special consideration, due to its chemical similarity to human bone and, most importantly, its dissolution characteristics, which allow for bone growth and regeneration. The applications of molecular and nanoscale-based biological materials have been and will continue to play an ever increasing role in enhancing and improving the osseointegration of dental and orthopedic implants. More recently, extensive research efforts have been focused on the development and applications of fluorescent nanoparticles and nanocoatings for in vivo imaging and diagnostics as well as devising methods of adding luminescent or fluorescent capabilities to enhance the in vivo functionality of calcium phosphate-based biomedical materials.

  19. 磷酸银系复合光催化剂研究进展∗%Research Progress on Silver Phosphate Based Composite Photocatalysts

    Institute of Scientific and Technical Information of China (English)

    裴红玉; 李云青; 祁凡; 刘利

    2016-01-01

    With high quantum yield under visible light, Ag3 PO4 has a strong photooxidation property and its band gap is about 2. 36 eV. Due to the photocorrosion, the structure of Ag3 PO4 can be easily destroyed, leading to the decrease of photocatalytic performance. The silver phosphate based composite photocatalysts can effectively promote the conduction of electrons, enhance the photon absorption and accelerate the separation of photogenerated carriers. The synthesis and catalytic mechanism of silver phosphate based composite photocatalysts have been reviewed, including Ag3 PO4/Ag, Ag3 PO4/g-C3 N4 , Ag3 PO4/TiO2 , Ag3 PO4/Graphene. Finally, the development direction and prospect were discussed.%Ag3 PO4禁带宽度约为2.36 eV,在可见光激发下量子产率高,具有强大的光氧化性能。但由于光腐蚀严重, Ag3 PO4单体的结构易受破坏,导致光催化能力大幅下降。以磷酸银为基础的复合型光催化剂能有效加速电子传导,增强光子吸收以及提高光生载流子分离效率等。本文从Ag3 PO4与单质Ag、 g-C3 N4、 TiO2、石墨烯等复合光催化剂的制备、光催化机理等方面进行了综述,并对其发展方向及前景进行了讨论。

  20. Astrocyte calcium signaling: the third wave.

    Science.gov (United States)

    Bazargani, Narges; Attwell, David

    2016-02-01

    The discovery that transient elevations of calcium concentration occur in astrocytes, and release 'gliotransmitters' which act on neurons and vascular smooth muscle, led to the idea that astrocytes are powerful regulators of neuronal spiking, synaptic plasticity and brain blood flow. These findings were challenged by a second wave of reports that astrocyte calcium transients did not mediate functions attributed to gliotransmitters and were too slow to generate blood flow increases. Remarkably, the tide has now turned again: the most important calcium transients occur in fine astrocyte processes not resolved in earlier studies, and new mechanisms have been discovered by which astrocyte [Ca(2+)]i is raised and exerts its effects. Here we review how this third wave of discoveries has changed our understanding of astrocyte calcium signaling and its consequences for neuronal function.

  1. Calcium channel blocker poisoning

    Directory of Open Access Journals (Sweden)

    Miran Brvar

    2005-04-01

    Full Text Available Background: Calcium channel blockers act at L-type calcium channels in cardiac and vascular smooth muscles by preventing calcium influx into cells with resultant decrease in vascular tone and cardiac inotropy, chronotropy and dromotropy. Poisoning with calcium channel blockers results in reduced cardiac output, bradycardia, atrioventricular block, hypotension and shock. The findings of hypotension and bradycardia should suggest poisoning with calcium channel blockers.Conclusions: Treatment includes immediate gastric lavage and whole-bowel irrigation in case of ingestion of sustainedrelease products. All patients should receive an activated charcoal orally. Specific treatment includes calcium, glucagone and insulin, which proved especially useful in shocked patients. Supportive care including the use of catecholamines is not always effective. In the setting of failure of pharmacological therapy transvenous pacing, balloon pump and cardiopulmonary by-pass may be necessary.

  2. Calcium is important forus.

    Institute of Scientific and Technical Information of China (English)

    高利平

    2005-01-01

    Calcium is important for our health.We must have it in our diet to stay well.A good place to get it is from dairy products like milk, cheese and ice cream.One pound of cheese has fifty times the calcium we should have every day.Other foods have less.For example,a pound of beans also has calcium.But it has only three times the amount we ought to have daily.

  3. Calcium-dependent mitochondrial function and dysfunction in neurons.

    Science.gov (United States)

    Pivovarova, Natalia B; Andrews, S Brian

    2010-09-01

    Calcium is an extraordinarily versatile signaling ion, encoding cellular responses to a wide variety of external stimuli. In neurons, mitochondria can accumulate enormous amounts of calcium, with the consequence that mitochondrial calcium uptake, sequestration and release play pivotal roles in orchestrating calcium-dependent responses as diverse as gene transcription and cell death. In this review, we consider the basic chemistry of calcium as a 'sticky' cation, which leads to extremely high bound/free ratios, and discuss areas of current interest or controversy. Topics addressed include methodologies for measuring local intracellular calcium, mitochondrial calcium buffering and loading capacity, mitochondrially directed spatial calcium gradients, and the role of calcium overload-dependent mitochondrial dysfunction in glutamate-evoked excitotoxic injury and neurodegeneration. Finally, we consider the relationship between delayed calcium de-regulation, the mitochondrial permeability transition and the generation of reactive oxygen species, and propose a unified view of the 'source specificity' and 'calcium overload' models of N-methyl-d-aspartate (NMDA) receptor-dependent excitotoxicity. Non-NMDA receptor mechanisms of excitotoxicity are discussed briefly. Journal compilation © 2010 FEBS. No claim to original US government works.

  4. Acidosis and Urinary Calcium Excretion

    DEFF Research Database (Denmark)

    Alexander, R Todd; Cordat, Emmanuelle; Chambrey, Régine

    2016-01-01

    Metabolic acidosis is associated with increased urinary calcium excretion and related sequelae, including nephrocalcinosis and nephrolithiasis. The increased urinary calcium excretion induced by metabolic acidosis predominantly results from increased mobilization of calcium out of bone and inhibi...

  5. Extracellular calcium sensing and extracellular calcium signaling

    Science.gov (United States)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    The cloning of a G protein-coupled extracellular Ca(2+) (Ca(o)(2+))-sensing receptor (CaR) has elucidated the molecular basis for many of the previously recognized effects of Ca(o)(2+) on tissues that maintain systemic Ca(o)(2+) homeostasis, especially parathyroid chief cells and several cells in the kidney. The availability of the cloned CaR enabled the development of DNA and antibody probes for identifying the CaR's mRNA and protein, respectively, within these and other tissues. It also permitted the identification of human diseases resulting from inactivating or activating mutations of the CaR gene and the subsequent generation of mice with targeted disruption of the CaR gene. The characteristic alterations in parathyroid and renal function in these patients and in the mice with "knockout" of the CaR gene have provided valuable information on the CaR's physiological roles in these tissues participating in mineral ion homeostasis. Nevertheless, relatively little is known about how the CaR regulates other tissues involved in systemic Ca(o)(2+) homeostasis, particularly bone and intestine. Moreover, there is evidence that additional Ca(o)(2+) sensors may exist in bone cells that mediate some or even all of the known effects of Ca(o)(2+) on these cells. Even more remains to be learned about the CaR's function in the rapidly growing list of cells that express it but are uninvolved in systemic Ca(o)(2+) metabolism. Available data suggest that the receptor serves numerous roles outside of systemic mineral ion homeostasis, ranging from the regulation of hormonal secretion and the activities of various ion channels to the longer term control of gene expression, programmed cell death (apoptosis), and cellular proliferation. In some cases, the CaR on these "nonhomeostatic" cells responds to local changes in Ca(o)(2+) taking place within compartments of the extracellular fluid (ECF) that communicate with the outside environment (e.g., the gastrointestinal tract). In others

  6. Calcium signaling in neurodegeneration

    Directory of Open Access Journals (Sweden)

    Dreses-Werringloer Ute

    2009-05-01

    Full Text Available Abstract Calcium is a key signaling ion involved in many different intracellular and extracellular processes ranging from synaptic activity to cell-cell communication and adhesion. The exact definition at the molecular level of the versatility of this ion has made overwhelming progress in the past several years and has been extensively reviewed. In the brain, calcium is fundamental in the control of synaptic activity and memory formation, a process that leads to the activation of specific calcium-dependent signal transduction pathways and implicates key protein effectors, such as CaMKs, MAPK/ERKs, and CREB. Properly controlled homeostasis of calcium signaling not only supports normal brain physiology but also maintains neuronal integrity and long-term cell survival. Emerging knowledge indicates that calcium homeostasis is not only critical for cell physiology and health, but also, when deregulated, can lead to neurodegeneration via complex and diverse mechanisms involved in selective neuronal impairments and death. The identification of several modulators of calcium homeostasis, such as presenilins and CALHM1, as potential factors involved in the pathogenesis of Alzheimer's disease, provides strong support for a role of calcium in neurodegeneration. These observations represent an important step towards understanding the molecular mechanisms of calcium signaling disturbances observed in different brain diseases such as Alzheimer's, Parkinson's, and Huntington's diseases.

  7. Protein kinase C interaction with calcium: a phospholipid-dependent process.

    LENUS (Irish Health Repository)

    Bazzi, M D

    1990-08-21

    The calcium-binding properties of calcium- and phospholipid-dependent protein kinase C (PKC) were investigated by equilibrium dialysis in the presence and the absence of phospholipids. Calcium binding to PKC displayed striking and unexpected behavior; the free proteins bound virtually no calcium at intracellular calcium concentrations and bound limited calcium (about 1 mol\\/mol of PKC) at 200 microM calcium. However, in the presence of membranes containing acidic phospholipids, PKC bound at least eight calcium ions per protein. The presence of 1 microM phorbol dibutyrate (PDBu) in the dialysis buffer had little effect on these calcium-binding properties. Analysis of PKC-calcium binding by gel filtration under equilibrium conditions gave similar results; only membrane-associated PKC bound significant amounts of calcium. Consequently, PKC is a member of what may be a large group of proteins that bind calcium in a phospholipid-dependent manner. The calcium concentrations needed to induce PKC-membrane binding were similar to those needed for calcium binding (about 40 microM calcium at the midpoint). However, the calcium concentration required for PKC-membrane binding was strongly influenced by the phosphatidylserine composition of the membranes. Membranes with higher percentages of phosphatidylserine required lower concentrations of calcium. These properties suggested that the calcium sites may be generated at the interface between PKC and the membrane. Calcium may function as a bridge between PKC and phospholipids. These studies also suggested that calcium-dependent PKC-membrane binding and PKC function could be regulated by a number of factors in addition to calcium levels and diacylglycerol content of the membrane.

  8. Calcium, synaptic plasticity and intrinsic homeostasis in Purkinje neuron models

    Directory of Open Access Journals (Sweden)

    Pablo Achard

    2008-12-01

    Full Text Available We recently reproduced the complex electrical activity of a Purkinje cell (PC with very different combinations of ionic channel maximum conductances, suggesting that a large parameter space is available to homeostatic mechanisms. It has been hypothesized that cytoplasmic calcium concentrations control the homeostatic activity sensors. This raises many questions for PCs since in these neurons calcium plays an important role in the induction of synaptic plasticity. To address this question, we generated 148 new PC models. In these models the somatic membrane voltages are stable, but the somatic calcium dynamics are very variable, in agreement with experimental results. Conversely, the calcium signal in spiny dendrites shows only small variability. We demonstrate that this localized control of calcium conductances preserves the induction of long-term depression for all models. We conclude that calcium is unlikely to be the sole activity-sensor in this cell but that there is a strong relationship between activity homeostasis and synaptic plasticity.

  9. Calcium and bone disorders in pregnancy

    Directory of Open Access Journals (Sweden)

    Shriraam Mahadevan

    2012-01-01

    Full Text Available Significant transplacental calcium transfer occurs during pregnancy, especially during the last trimester, to meet the demands of the rapidly mineralizing fetal skeleton. Similarly, there is an obligate loss of calcium in the breast milk during lactation. Both these result in considerable stress on the bone mineral homeostasis in the mother. The maternal adaptive mechanisms to conserve calcium are different in pregnancy and lactation. During pregnancy, increased intestinal absorption of calcium from the gut mainly due to higher generation of calcitriol (1,25 dihydroxy vitamin D helps in maintaining maternal calcium levels. On the other hand, during lactation, the main compensatory mechanism is skeletal resorption due to increased generation of parathormone related peptide (PTHrP from the breast. Previous studies suggest that in spite of considerable changes in bone mineral metabolism during pregnancy, parity and lactation are not significantly associated with future risk for osteoporosis. However, in India, the situation may not be the same as a significant proportion of pregnancies occur in the early twenties when peak bone mass is not yet achieved. Further, malnutrition, anemia and vitamin D deficiency are commonly encountered in this age group. This may have an impact on future bone health of the mother. It may also probably provide an opportunity for health care providers for prevention. Other metabolic bone diseases like hypoparathyroidism, hyperparathyroidism and pseudohypoparathyroidism are rarely encountered in pregnancy. Their clinical implications and management are also discussed.

  10. New chemical approach to obtain dense layer phosphate-based ionic conductor coating on negative electrode material surface: Synthesis way, outgassing and improvement of C-rate capability

    Science.gov (United States)

    Fleutot, Benoit; Davoisne, Carine; Gachot, Grégory; Cavalaglio, Sébastien; Grugeon, Sylvie; Viallet, Virginie

    2017-04-01

    Li4Ti5O12 (LTO) based batteries have severe gassing behavior during charge/discharge and storage process, due to interfacial reactions between active material and electrolyte solution. In the same time, the electronic and ionic conductivity of pristine LTO is very poor and induces the use of nanoparticles which increase the outgassing phenomena. The coating of LTO particles could be a solution. For this the LTO spinel particles are modified with ionic conductor Li3PO4 coating using a spray-drying method. For the first time a homogeneous thin dense layer phosphate based conductor is obtained without nanoparticles, as a thin film material. It is so possible to study the influence of ionic conductor deposited on the negative electrode material on performances by the controlled layer thickness. This coating was characterized by XRD, SEM, XPS and TEM. The electrochemical performance of Li3PO4 coated Li4Ti5O12 is improved at high C-rate by the surface modification (improvement of 30 mAh g-1 at 5 C-rate compared to pristine LTO for 5 nm of coating), inducing by a modification of surface energy. An optimum coating thickness was studied. This type of coating allows a significant decrease of outgassing phenomena due the conformal coating and opens the way to a great number of studies and new technologies.

  11. Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute.

    Science.gov (United States)

    Li, Ronghua; Wang, Jim J; Zhou, Baoyue; Awasthi, Mukesh Kumar; Ali, Amjad; Zhang, Zengqiang; Lahori, Altaf Hussain; Mahar, Amanullah

    2016-09-01

    The present study deals with the preparation of a novel MgO-impregnated magnetic biochar (MMSB) for phosphate recovery from aqueous solution. The MMSB was evaluated against sugarcane harvest residue biochar (SB) and magnetic biochar without Mg (MSB). The results showed that increasing Mg content in MMSB greatly improved the phosphate adsorption compared to SB and MSB, with 20% Mg-impregnated MMSB (20MMSB) recovering more than 99.5% phosphate from aqueous solution. Phosphate adsorption capacity of 20MMSB was 121.25mgP/g at pH 4 and only 37.53% of recovered phosphate was desorbed by 0.01mol/L HCl solutions. XRD and FTIR analysis showed that phosphate sorption mechanisms involved predominately with surface electrostatic attraction and precipitation with impregnated MgO and surface inner-sphere complexation with Fe oxide. The 20MMSB exhibited both maximum phosphate sorption and strong magnetic separation ability. Overall, phosphate-loaded 20MMSB significantly enhanced plant growth and could be used as a potential substitute for phosphate-based fertilizer.

  12. Calcium and Vitamin D

    Science.gov (United States)

    ... Pizza, cheese, frozen 1 serving 115 mg Pudding, chocolate, prepared with 2% milk 4 oz 160 mg ... Treatment Medication and Treatment Adherence Calcium/Vitamin D Nutrition Overall Health Fractures/Fall Prevention Exercise/Safe Movement ...

  13. Stoichiometry of Calcium Medicines

    Science.gov (United States)

    Pinto, Gabriel

    2005-01-01

    The topic of calcium supplement and its effects on human lives is presented in the way of questions to the students. It enables the students to realize the relevance of chemistry outside the classroom surrounding.

  14. Get Enough Calcium

    Science.gov (United States)

    ... Resources You may also be interested in: Calcium: Shopping list Menopause: Questions for ... A Federal Government website managed by the U.S. Department of Health and Human Services healthfinder.gov is ...

  15. Stoichiometry of Calcium Medicines

    Science.gov (United States)

    Pinto, Gabriel

    2005-01-01

    The topic of calcium supplement and its effects on human lives is presented in the way of questions to the students. It enables the students to realize the relevance of chemistry outside the classroom surrounding.

  16. Calcium and Your Child

    Science.gov (United States)

    ... for dinner. Create mini-pizzas by topping whole-wheat English muffins or bagels with pizza sauce, low- ... Minerals Do I Need to Drink Milk? Lactose Intolerance Becoming a Vegetarian Soy Foods and Health Calcium ...

  17. Microstructural characterization of laser sintered synthetic calcium phosphate-natural dentine interface for the restoration of enamel surface

    Directory of Open Access Journals (Sweden)

    Animesh Jha

    2014-07-01

    Full Text Available Tooth sensitivity is a common occurrence and it is caused by acid induced erosion of enamel surface. In this investigation we report the results of calcium phosphate based minerals which are irradiated with lasers ex vivo for the analysis of photo activated densification of minerals. The photo-activation in these minerals may primarily arise from the absorption centres, namely OH- and rare-earth (RE3+ ion dopants (e.g. Er3+ ions incorporated during synthesis. The loss of hydroxyl group from mineral is characterized using the thermogravimetric technique. The microstructural changes under the conditions of continuous wave (CW and pulsed laser irradiation are reported together with the measured temperature rise. The preliminary data on surface hardness of occluded dentine with photo-activated calcium phosphate minerals are also reported, for aiming an eventual hardness value of 3300 MPa which is known for natural enamels.

  18. Calcium and Calcium-Base Alloys

    Science.gov (United States)

    1949-01-01

    should be satisfactory, because the electrolytic process for •(!>: A. H. Everts and G. D. Baglev’, " Physical «nrt m<„.+„4 i «_ of Calcium«, Electrochem...Rev. Metalurgie , 3j2, (1), 129 (1935). 10 ^sm^mssss^ma^^ extension between two known loads, is preferable to the value of 3,700,000 p.B.i. obtained

  19. [Calcium suppletion for patients who use gastric acid inhibitors: calcium citrate or calcium carbonate?].

    NARCIS (Netherlands)

    Jonge, H.J. de; Gans, R.O.; Huls, G.A.

    2012-01-01

    Various calcium supplements are available for patients who have an indication for calcium suppletion. American guidelines and UpToDate recommend prescribing calcium citrate to patients who use antacids The rationale for this advice is that water-insoluble calcium carbonate needs acid for adequate ab

  20. [Calcium suppletion for patients who use gastric acid inhibitors: calcium citrate or calcium carbonate?].

    NARCIS (Netherlands)

    Jonge, H.J. de; Gans, R.O.; Huls, G.A.

    2012-01-01

    Various calcium supplements are available for patients who have an indication for calcium suppletion. American guidelines and UpToDate recommend prescribing calcium citrate to patients who use antacids The rationale for this advice is that water-insoluble calcium carbonate needs acid for adequate ab

  1. [Calcium suppletion for patients who use gastric acid inhibitors: calcium citrate or calcium carbonate?].

    NARCIS (Netherlands)

    Jonge, H.J. de; Gans, R.O.; Huls, G.A.

    2012-01-01

    Various calcium supplements are available for patients who have an indication for calcium suppletion. American guidelines and UpToDate recommend prescribing calcium citrate to patients who use antacids The rationale for this advice is that water-insoluble calcium carbonate needs acid for adequate

  2. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.

    Science.gov (United States)

    Vitale-Brovarone, Chiara; Ciapetti, Gabriela; Leonardi, Elisa; Baldini, Nicola; Bretcanu, Oana; Verné, Enrica; Baino, Francesco

    2011-11-01

    Highly porous bioresorbable glass-ceramic scaffolds were prepared via sponge replication method by using an open-cell polyurethane foam as a template and phosphate-based glass powders. The glass, belonging to the P2O5-SiO2-CaO-MgO-Na2O-K2O system, was synthesized by a melting-quenching route, ground, and sieved to obtain powders with a grain size of less than 30 μm. A slurry containing glass powders, polyvinyl alcohol, and water was prepared to coat the polymeric template. The removal of the polymer and the sintering of the glass powders were performed by a thermal treatment, in order to obtain an inorganic replica of the template structure. The structure and properties of the scaffold were investigated from structural, morphological, and mechanical viewpoints by means of X-ray diffraction, scanning electron microscopy, density measurements, image analysis, and compressive tests. The scaffolds exhibited a trabecular architecture that closely mimics the structure of a natural spongy bone. The solubility of the porous structures was assessed by soaking the samples in acellular simulated body fluid (SBF) and Tris-HCl for different time frames and then by assessing the scaffold weight loss. As far as the test in SBF is concerned, the nucleation of hydroxyapatite on the scaffold trabeculae demonstrates the bioactivity of the material. Biological tests were carried out using human bone marrow stromal cells to test the osteoconductivity of the material. The cells adhered to the scaffold struts and were metabolically active; it was found that cell differentiation over proliferation occurred. Therefore, the produced scaffolds, being biocompatible, bioactive, resorbable, and structurally similar to a spongy bone, can be proposed as interesting candidates for bone grafting.

  3. L-calcium channel involving the generation and maintenance of bursting firing in rat substantia nigra pars compacta dopaminergic neurons%L-钙离子通道参与大鼠黑质致密部多巴胺能神经元暴发式放电模式产生和维持的机制

    Institute of Scientific and Technical Information of China (English)

    薛伟宁; 王元; 李志方; 孙彬彬; 刘力学; 张乐石; 樊双义

    2015-01-01

    Objective To evaluate the role of calcium channel in the mechanism of the generation and maintenance of bursting firing of substantia nigra pars compacta (SNc) dopaminergic neurons in rats.Methods Using the patch clamp technique,we observed the firing pattern switching features after adding 10 μmol/L N-methyl-D-aspartic acid (NMDA),compared the changes of whole-calcium current and L-type calcium current with or without NMDA,and analyzed the correlation between the generation of burst firing and L-type calcium channel activation.Results After NMDA treatment,the firing pattern of SNc dopaminergic neurons changed to burst firing,which was compromised by a charastistic high plateau potential and series of action potential on it.The current density of L-type calcium current increased significantly after adding NMDA,which,from (2.86 ±0.26) pA/pF (n =28),significantly increased to (3.75 ± 0.18) pA/pF (n =34 ; t =7.52,P =0.002 8).The high plateau potential was almost abolished with the application of verapamil,a specific antagonist of L-type calcium channel.Consiusion NMDA could induce the firing pattern changed to burst firing in SNc dopaminergic neurons,while L-type calcium channel contributes to the process of generation and maintenance of burst firing.%目的 研究钙离子通道对大鼠黑质致密部(SNc)多巴胺能神经元暴发式放电模式产生和维持的机制.方法 应用全细胞膜片钳的方法,施加N-甲基-D-天冬氨酸(NMDA)诱导神经元放电模式转变,观察并记录其相应放电模式的特点,记录并比较加入10 μmol/L NMDA前后全钙离子流和L-钙电流的变化情况,通过外液加入河豚毒素、维拉帕米、氯化镍后,分析暴发式放电产生和维持与L-钙通道激活之间的联系.结果 加入NMDA后神经元放电模式转变为暴发式放电,该暴发式放电为平台电位及其上的动作电位构成;L-钙通道电流密度峰值在加入NMDA后明显增加,从(2.86±0.26) pA/pF(n =28)增加到(3

  4. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau

    2014-04-01

    Full Text Available The paper gives the review on the role of calcium in many physiological processes of plant organisms, including growth and development, protection from pathogenic influences, response to changing environmental factors, and many other aspects of plant physiology. Initial intake of calcium ions is carried out by Ca2+-channels of plasma membrane and they are further transported by the xylem owing to auxins’ attractive ability. The level of intake and selectivity of calcium transport to ove-ground parts of the plant is controlled by a symplast. Ca2+enters to the cytoplasm of endoderm cells through calcium channels on the cortical side of Kaspary bands, and is redistributed inside the stele by the symplast, with the use of Ca2+-АТPases and Ca2+/Н+-antiports. Owing to regulated expression and activity of these calcium transporters, calclum can be selectively delivered to the xylem. Important role in supporting calcium homeostasis is given to the vacuole which is the largest depo of calcium. Regulated quantity of calcium movement through the tonoplast is provided by a number of potential-, ligand-gated active transporters and channels, like Ca2+-ATPase and Ca2+/H+ exchanger. They are actively involved in the inactivation of the calcium signal by pumping Ca2+ to the depo of cells. Calcium ATPases are high affinity pumps that efficiently transfer calcium ions against the concentration gradient in their presence in the solution in nanomolar concentrations. Calcium exchangers are low affinity, high capacity Ca2+ transporters that are effectively transporting calcium after raising its concentration in the cell cytosol through the use of protons gradients. Maintaining constant concentration and participation in the response to stimuli of different types also involves EPR, plastids, mitochondria, and cell wall. Calcium binding proteins contain several conserved sequences that provide sensitivity to changes in the concentration of Ca2+ and when you

  5. Portable fluorescence photometer for monitoring free calcium

    Science.gov (United States)

    Struckmeier, Jens; Klopp, Erk; Born, Matthias; Hofmann, Martin; Tenbosch, Jochen; Jones, David B.

    2000-12-01

    We introduce a compact and portable photometric system for measurements of the calcium dynamics in cells. The photometer is designed for applications in centrifuges or in zero gravity environment and thus extremely compact and reliable. It operates with the calcium-sensitive dye Indo-1. The excitation wavelength of 345 nm is generated by frequency doubling of a laser diode. Two compact photomultiplier tubes detect the fluorescent emission. The electronics provide the sensitivity of photon counting combined with simultaneous measurement of the temperature, of air pressure, and of gravitational force. Internal data storage during the experiment is possible. A newly developed cell chamber stabilizes the cell temperature to 37.0±0.1 °C and includes a perfusion system to supply the cells with medium. The system has a modular setup providing the possibility of changing the light source and detectors for investigation of ions other than calcium. Measurements of the intracellular calcium concentration are based on a comprehensive calibration of our system. First experiments show that the calcium dynamics of osteosarcoma cells stimulated by parathyroid hormone is observable.

  6. Elemental calcium intake associated with calcium acetate/calcium carbonate in the treatment of hyperphosphatemia

    OpenAIRE

    Wilson, Rosamund J; Copley, J Brian

    2017-01-01

    Background Calcium-based and non-calcium-based phosphate binders have similar efficacy in the treatment of hyperphosphatemia; however, calcium-based binders may be associated with hypercalcemia, vascular calcification, and adynamic bone disease. Scope A post hoc analysis was carried out of data from a 16-week, Phase IV study of patients with end-stage renal disease (ESRD) who switched to lanthanum carbonate monotherapy from baseline calcium acetate/calcium carbonate monotherapy. Of the intent...

  7. [Microbial geochemical calcium cycle].

    Science.gov (United States)

    Zavarzin, G A

    2002-01-01

    The participation of microorganisms in the geochemical calcium cycle is the most important factor maintaining neutral conditions on the Earth. This cycle has profound influence on the fate of inorganic carbon, and, thereby, on the removal of CO2 from the atmosphere. The major part of calcium deposits was formed in the Precambrian, when prokaryotic biosphere predominated. After that, calcium recycling based on biogenic deposition by skeletal organisms became the main process. Among prokaryotes, only a few representatives, e.g., cyanobacteria, exhibit a special calcium function. The geochemical calcium cycle is made possible by the universal features of bacteria involved in biologically mediated reactions and is determined by the activities of microbial communities. In the prokaryotic system, the calcium cycle begins with the leaching of igneous rock predominantly through the action of the community of organotrophic organisms. The release of carbon dioxide to the soil air by organotrophic aerobes leads to leaching with carbonic acid and soda salinization. Under anoxic conditions, of major importance is the organic acid production by primary anaerobes (fermentative microorganisms). Calcium carbonate is precipitated by secondary anaerobes (sulfate reducers) and to a smaller degree by methanogens. The role of the cyanobacterial community in carbonate deposition is exposed by stromatolites, which are the most common organo-sedimentary Precambrian structures. Deposition of carbonates in cyanobacterial mats as a consequence of photoassimilation of CO2 does not appear to be a significant process. It is argued that carbonates were deposited at the boundary between the "soda continent", which emerged as a result of subaerial leaching with carbonic acid, and the ocean containing Ca2+. Such ecotones provided favorable conditions for the development of the benthic cyanobacterial community, which was a precursor of stromatolites.

  8. Calcium Signaling and Meiotic Exit at Fertilization in Xenopus Egg

    Directory of Open Access Journals (Sweden)

    Alexander A. Tokmakov

    2014-10-01

    Full Text Available Calcium is a universal messenger that mediates egg activation at fertilization in all sexually reproducing species studied. However, signaling pathways leading to calcium generation and the mechanisms of calcium-induced exit from meiotic arrest vary substantially among species. Here, we review the pathways of calcium signaling and the mechanisms of meiotic exit at fertilization in the eggs of the established developmental model, African clawed frog, Xenopus laevis. We also discuss calcium involvement in the early fertilization-induced events in Xenopus egg, such as membrane depolarization, the increase in intracellular pH, cortical granule exocytosis, cortical contraction, contraction wave, cortical rotation, reformation of the nuclear envelope, sperm chromatin decondensation and sister chromatid segregation.

  9. Calcium Signaling and Meiotic Exit at Fertilization in Xenopus Egg

    Science.gov (United States)

    Tokmakov, Alexander A.; Stefanov, Vasily E.; Iwasaki, Tetsushi; Sato, Ken-Ichi; Fukami, Yasuo

    2014-01-01

    Calcium is a universal messenger that mediates egg activation at fertilization in all sexually reproducing species studied. However, signaling pathways leading to calcium generation and the mechanisms of calcium-induced exit from meiotic arrest vary substantially among species. Here, we review the pathways of calcium signaling and the mechanisms of meiotic exit at fertilization in the eggs of the established developmental model, African clawed frog, Xenopus laevis. We also discuss calcium involvement in the early fertilization-induced events in Xenopus egg, such as membrane depolarization, the increase in intracellular pH, cortical granule exocytosis, cortical contraction, contraction wave, cortical rotation, reformation of the nuclear envelope, sperm chromatin decondensation and sister chromatid segregation. PMID:25322156

  10. Calcium and Calcium Supplements: Achieving the Right Balance

    Science.gov (United States)

    ... bone mass, which is a risk factor for osteoporosis. Many Americans don't get enough calcium in their diets. Children and adolescent girls are at particular risk, but so are adults age 50 and older. How much calcium you ...

  11. Gravimetric Determination of Calcium as Calcium Carbonate Hydrate.

    Science.gov (United States)

    Henrickson, Charles H.; Robinson, Paul R.

    1979-01-01

    The gravimetric determination of calcium as calcium carbonate is described. This experiment is suitable for undergraduate quantitative analysis laboratories. It is less expensive than determination of chloride as silver chloride. (BB)

  12. Nonequilibrium calcium dynamics regulate the autonomous firing pattern of rat striatal cholinergic interneurons.

    Science.gov (United States)

    Goldberg, Joshua A; Teagarden, Mark A; Foehring, Robert C; Wilson, Charles J

    2009-07-01

    Striatal cholinergic interneurons discharge rhythmically in two patterns associated with different afterhyperpolarization timescales, each dictated by a different calcium-dependent potassium current. Single spiking depends on a medium-duration afterhyperpolarization (mAHP) generated by rapid SK currents that are associated with N-type calcium channels. Periodic bursting is driven by a delayed and slowly decaying afterhyperpolarization (sAHP) current associated with L-type channels. Using calcium imaging we show that the calcium transients underlying these currents exhibit two corresponding timescales throughout the somatodendritic tree. This result is not consistent with spatial compartmentalization of calcium entering through the two calcium channels and acting on the two potassium currents, or with differences in channel gating kinetics of the calcium dependent potassium currents. Instead, we show that nonequilibrium dynamics of calcium redistribution among cytoplasmic binding sites with different calcium binding kinetics can give rise to multiple timescales within the same cytoplasmic volume. The resulting independence of mAHP and sAHP currents allows cytoplasmic calcium to control two different and incompatible firing patterns (single spiking or bursting and pausing), depending on whether calcium influx is pulsatile or sustained. During irregular firing, calcium entry at both timescales can be detected, suggesting that an interaction between the medium and slow calcium-dependent afterhyperpolarizations may underlie this firing pattern.

  13. Cinacalcet Reduces the Set Point of the PTH-Calcium Curve

    Science.gov (United States)

    Valle, Casimiro; Rodriguez, Mariano; Santamaría, Rafael; Almaden, Yolanda; Rodriguez, Maria E.; Cañadillas, Sagrario; Martin-Malo, Alejandro; Aljama, Pedro

    2008-01-01

    The calcimimetic cinacalcet increases the sensitivity of the parathyroid calcium-sensing receptor to calcium and therefore should produce a decrease in the set point of the parathyroid hormone (PTH)-calcium curve. For investigation of this hypothesis, nine long-term hemodialysis patients with secondary hyperparathyroidism were given cinacalcet for 2 mo, the dosage was titrated per a protocol based on intact PTH and plasma calcium concentrations. Dialysis against low- and high-calcium (0.75 and 1.75 mM) dialysate was used to generate curves describing the relationship between PTH and calcium. Compared with precinacalcet levels, cinacalcet significantly reduced mean serum calcium, intact PTH and whole PTH (wPTH; all P < 0.001). The set points for PTH-calcium curves were significantly reduced, and both maximum and minimum levels of PTH (intact and whole) were significantly decreased. The calcium-mediated inhibition of PTH secretion was more marked after cinacalcet treatment. In addition, cinacalcet shifted the inverse sigmoidal curve of wPTH/non-wPTH ratio versus calcium to the left (i.e., less calcium was required to reduce the wPTH/non-wPTH ratio). In conclusion, cinacalcet increases the sensitivity of the parathyroids to calcium, causing a marked reduction in the set point of the PTH-calcium curve, in hemodialysis patients with secondary hyperparathyroidism. PMID:18632847

  14. Development, characterisation and biocompatibility testing of a cobalt-containing titanium phosphate-based glass for engineering of vascularized hard tissues

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In-Ho [Department of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, Dankook University, Chungnam 330-714 (Korea, Republic of); Yu, Hye-sun [Department of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, Dankook University, Chungnam 330-714 (Korea, Republic of); Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom); Lakhkar, Nilay J. [Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, 256 Gray' s Inn Road, London WC1X 8LD (United Kingdom); Kim, Hae-Won [Department of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, Dankook University, Chungnam 330-714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714 (Korea, Republic of); Gong, Myoung-Seon [Department of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, Dankook University, Chungnam 330-714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Knowles, Jonathan C. [Department of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, Dankook University, Chungnam 330-714 (Korea, Republic of); Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, 256 Gray' s Inn Road, London WC1X 8LD (United Kingdom); Wall, Ivan B., E-mail: i.wall@ucl.ac.uk [Department of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, Dankook University, Chungnam 330-714 (Korea, Republic of); Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom)

    2013-05-01

    There is a continuing need to develop scaffold materials that can promote vascularisation throughout the tissue engineered construct. This study investigated the effect of cobalt oxide (CoO) doped into titanium phosphate glasses on material properties, biocompatibility and vascular endothelial growth factor (VEGF) secretion by osteoblastic MG63 cells. Glasses composed of (P{sub 2}O{sub 5}){sub 45}(Na{sub 2}O){sub 20}(TiO{sub 2}){sub 05}(CaO){sub 30−x}(CoO){sub x}(x = 0, 5, 10, and 15 mol%) were fabricated and the effect of Co on physicochemical properties including density, glass transition temperature (T{sub g}), degradation rate, ion release, and pH changes was assessed. The results showed that incorporation of CoO into the glass system produced an increase in density with little change in T{sub g}. It was then confirmed that the pH did not change significantly when CoO was incorporated in the glass, and stayed constant at around 6.5–7.0 throughout the dissolution study period of 336 h. Ion release results followed a specific pattern with increasing amounts of CoO. In general, although incorporation of CoO into a titanium phosphate glass increased its density, other bulk and surface properties of the glass did not show any significant changes. Cell culture studies performed using MG63 cells over a 7-day period indicated that the glasses provide a stable surface for cell attachment and are biocompatible. Furthermore, VEGF secretion was significantly enhanced on all glasses compared with standard tissue culture plastic and Co doping enhanced this effect further. In conclusion, the developed Co-doped glasses are stable and biocompatible and thus offer enhanced potential for engineering vascularized tissue. - Highlights: ► Phosphate-based glasses can be successfully doped with cobalt oxide. ► The resulting glass is highly stable with low degradation rate. ► Co-doped glasses are biocompatible but do not favour cell proliferation. ► Osteoblastic MG63 cells

  15. Calcium, vitamin D and bone

    OpenAIRE

    Borg, Andrew A.

    2012-01-01

    Calcium, protein and vitamin D are the main nutrients relevant to bone health. This short article discusses the importance of vitamin D and its relation to calcium homeostasis. The various causes, clinical manifestations and treatment are outlined.

  16. Calcium ion channel and epilepsy

    Institute of Scientific and Technical Information of China (English)

    Yudan Lü; Weihong Lin; Dihui Ma

    2006-01-01

    OBJECTIVE: To review the relationship between calcium ion channel and epilepsy for well investigating the pathogenesis of epilepsy and probing into the new therapeutic pathway of epilepsy.DATA SOURCES: A computer-based online research Calcium ion channel and epilepsy related articles published between January 1994 and December 2006 in the CKNI and Wanfang database with the key words of "calcium influxion, epilepsy, calcium-channel blocker". The language was limited to Chinese. At the same time,related articles published between January 1993 and December 2006 in Pubmed were searched for on online with the key words of "calcium influxion, epilepsy" in English.STUDY SELECTION: The materials were selected firstly. Inclusive criteria: ① Studies related to calcium ion channel and the pat1hogenesis of epilepsy. ② Studies on the application of calcium ion channel blocker in the treatment of epilepsy. Exclusive criteria: repetitive or irrelated studies.DATA EXTRACTION: According to the criteria, 123 articles were retrieved and 93 were excluded due to repetitive or irrelated studies. Altogether 30 articles met the inclusive criteria, 11 of them were about the structure and characters of calcium ion channel, 10 about calcium ion channel and the pathogenesis of epilepsy and 9 about calcium blocker and the treatment of epilepsy.DATA SYNTHESIS: Calcium ion channels mainly consist of voltage dependent calcium channel and receptor operated calcium channel. Depolarization caused by voltage gating channel-induced influxion is the pathological basis of epileptic attack, and it is found in many studies that many anti-epileptic drugs have potential and direct effect to rivalizing voltage-dependent calcium ion channel.CONCLUSION: Calcium influxion plays an important role in the seizure of epilepsy. Some calcium antagonists seen commonly are being tried in the clinical therapy of epilepsy that is being explored, not applied in clinical practice. If there are enough evidences to

  17. High Blood Calcium (Hypercalcemia)

    Science.gov (United States)

    ... as well as kidney function and levels of calcium in your urine. Your provider may do other tests to further assess your condition, such as checking your blood levels of phosphorus (a mineral). Imaging studies also may be helpful, such as bone ...

  18. Calcium carbonate overdose

    Science.gov (United States)

    Calcium carbonate is not very poisonous. Recovery is quite likely. But, long-term overuse is more serious than a single overdose, because it can cause kidney damage. Few people die from an antacid overdose. Keep all medicines in child-proof bottles and out ...

  19. Solar Imagery - Chromosphere - Calcium

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of full-disk images of the sun in Calcium (Ca) II K wavelength (393.4 nm). Ca II K imagery reveal magnetic structures of the sun from about 500...

  20. Extracellular Calcium and Magnesium

    African Journals Online (AJOL)

    i cellular and neuronal metabolism and functions. The objective of ... as having preeclampsia or eclampsia, in the same age range. ... Booking status Number (n) ("/o) Number (n) (%). Booked 7 ... is influx of calcium ions into the cell leacling to.

  1. Calcium aluminate in alumina

    Science.gov (United States)

    Altay, Arzu

    The properties of ceramic materials are determined not only by the composition and structure of the phases present, but also by the distribution of impurities, intergranular films and second phases. The phase distribution and microstructure both depend on the fabrication techniques, the raw materials used, the phase-equilibrium relations, grain growth and sintering processes. In this dissertation research, various approaches have been employed to understand fundamental phenomena such as grain growth, impurity segregation, second-phase formation and crystallization. The materials system chosen was alumina intentionally doped with calcium. Atomic-scale structural analyses of grain boundaries in alumina were carried on the processed samples. It was found that above certain calcium concentrations, CA6 precipitated as a second phase at all sintering temperatures. The results also showed that abnormal grain growth can occur after precipitation and it is not only related to the calcium level, but it is also temperature dependent. In order to understand the formation mechanism of CA6 precipitates in calcium doped alumina samples, several studies have been carried out using either bulk materials or thin films The crystallization of CA2 and CA6 powders has been studied. Chemical processing techniques were used to synthesize the powders. It was observed that CA2 powders crystallized directly, however CA6 powders crystallized through gamma-Al 2O3 solid solution. The results of energy-loss near-edge spectrometry confirmed that gamma-Al2O3 can dissolve calcium. Calcium aluminate/alumina reaction couples have also been investigated. All reaction couples were heat treated following deposition. It was found that gamma-Al2O3 was formed at the interface as a result of the interfacial reaction between the film and the substrate. gamma-Al 2O3 at the interface was stable at much higher temperatures compared to the bulk gamma-Al2O3 formed prior to the CA6 crystallization. In order to

  2. Antenatal calcium intake in Malaysia.

    Science.gov (United States)

    Mahdy, Zaleha Abdullah; Basri, Hashimah; Md Isa, Zaleha; Ahmad, Shuhaila; Shamsuddin, Khadijah; Mohd Amin, Rahmah

    2014-04-01

    To determine the adequacy of antenatal calcium intake in Malaysia, and the influencing factors. A cross-sectional study was conducted among postnatal women who delivered in two tertiary hospitals. Data were collected from antenatal cards, hospital documents and diet recall on daily milk and calcium intake during pregnancy. SPSS version 19.0 was used for statistical analyses. A total of 150 women were studied. The total daily calcium intake was 834 ± 43 mg (mean ± standard error of the mean), but the calcium intake distribution curve was skewed to the right with a median intake of 725 mg daily. When calcium intake from milk and calcium supplements was excluded, the daily dietary calcium intake was only 478 ± 25 mg. Even with inclusion of milk and calcium supplements, more than a third (n=55 or 36.7%) of the women consumed less than 600 mg calcium in their daily diet. The adequacy of daily calcium intake was not influenced by maternal age, ethnicity, income or maternal job or educational status as well as parity. The daily dietary calcium intake of the Malaysian antenatal population is far from adequate without the addition of calcium supplements and milk. © 2013 The Authors. Journal of Obstetrics and Gynaecology Research © 2013 Japan Society of Obstetrics and Gynecology.

  3. Calcium addition in straw gasification

    DEFF Research Database (Denmark)

    Risnes, H.; Fjellerup, Jan Søren; Henriksen, Ulrik Birk

    2003-01-01

    The present work focuses on the influence of calcium addition in gasification. The inorganic¿organic element interaction as well as the detailed inorganic¿inorganic elements interaction has been studied. The effect of calcium addition as calcium sugar/molasses solutions to straw significantly...

  4. Bioceramics of calcium orthophosphates.

    Science.gov (United States)

    Dorozhkin, Sergey V

    2010-03-01

    A strong interest in use of ceramics for biomedical applications appeared in the late 1960's. Used initially as alternatives to metals in order to increase a biocompatibility of implants, bioceramics have become a diverse class of biomaterials, presently including three basic types: relatively bioinert ceramics, bioactive (or surface reactive) and bioresorbable ones. Furthermore, any type of bioceramics could be porous to provide tissue ingrowth. This review is devoted to bioceramics prepared from calcium orthophosphates, which belong to the categories of bioresorbable and bioactive compounds. During the past 30-40 years, there have been a number of major advances in this field. Namely, after the initial work on development of bioceramics that was tolerated in the physiological environment, emphasis was shifted towards the use of bioceramics that interacted with bones by forming a direct chemical bond. By the structural and compositional control, it became possible to choose whether the bioceramics of calcium orthophosphates was biologically stable once incorporated within the skeletal structure or whether it was resorbed over time. At the turn of the millennium, a new concept of calcium orthophosphate bioceramics, which is able to regenerate bone tissues, has been developed. Current biomedical applications of calcium orthophosphate bioceramics include replacements for hips, knees, teeth, tendons and ligaments, as well as repair for periodontal disease, maxillofacial reconstruction, augmentation and stabilization of the jawbone, spinal fusion and bone fillers after tumor surgery. Potential future applications of calcium orthophosphate bioceramics will include drug-delivery systems, as well as they will become effective carriers of growth factors, bioactive peptides and/or various types of cells for tissue engineering purposes.

  5. Characterization of calcium phosphate powders originating from Phyllacanthus imperialis and Trochidae Infundibulum concavus marine shells.

    Science.gov (United States)

    Tămăşan, M; Ozyegin, L S; Oktar, F N; Simon, V

    2013-07-01

    The study reports the preparation and characterization of powders consisting of the different phases of calcium phosphates that were obtained from the naturally derived raw materials of sea-shell origins reacted with H3PO4. Species of sea origin, such as corals and nacres, attracted a special interest in bone tissue engineering area. Nacre shells are built up of calcium carbonate in aragonite form crystallized in an organic matrix. In this work two natural marine origin materials (shells of echinoderm Sputnik sea urchin - Phyllacanthus imperialis and Trochidae Infundibulum concavus mollusk) were involved in the developing powders of calcium phosphate based biomaterials (as raw materials for bone-scaffolds) by hotplate and ultrasound methods. Thermal analyses of the as-prepared materials were made for an assessment of the thermal behavior and heat treatment temperatures. Samples from both sea shells each of them prepared by the above mentioned methods were subjected to thermal treatments at 450 °C and 850 °C in order to evaluate the crystalline transformations of the calcium phosphate structures in the heating process. By X-ray diffraction analyses various calcium phosphate phases were identified. In Sputnik sea urchins originated samples were found predominantly brushite and calcite as a small secondary phase, while in Trochidae I. concavus samples mainly monetite and HA phases were identified. Thermal treatment at 850 °C resulted flat-plate whitlockite crystals - β-MgTCP [(Ca, Mg)3 (PO4)2] for both samples regardless the preparation method (ultrasound or hotplate) or the targeted Ca/P molar ratio according with XRD patterns. Scanning electron microscopy and Fourier transformed infrared spectroscopy were involved more in the characterization of these materials and the good correlations of the results of these methods were made.

  6. CREB modulates calcium signaling in cAMP-induced bone marrow stromal cells (BMSCs).

    Science.gov (United States)

    Zhang, Linxia; Liu, Li; Thompson, Ryan; Chan, Christina

    2014-10-01

    Calcium signaling has a versatile role in many important cellular functions. Despite its importance, regulation of calcium signaling in bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) has not been explored extensively. Our previous study revealed that cyclic adenosine monophosphate (cAMP) enabled BMSCs to generate calcium signal upon stimulation by dopamine, KCl and glutamate. Concurrently, cAMP transiently activated the transcription factor cAMP response element binding protein (CREB) in BMSCs. Activity of CREB can be modulated by the calcium/calmodulin-dependent kinase signaling pathway, however, whether the calcium signaling observed in cAMP-induced BMSCs requires CREB has not been investigated. In an effort to uncover the role of CREB in the generation of calcium signaling in response to modulators such as dopamine and KCl, we knocked down CREB activity in BMSCs. Our study indicated that BMSCs, but not its close relative fibroblasts, are responsive to dopamine and KCl after cAMP treatment. Calcium signal elicited by dopamine depends, in part, on calcium influx whereas that elicited by KCl depends completely on calcium influx. Knock-down of CREB activity significantly reduced or abolished the cAMP-induced calcium response, and reintroducing a constitutively active CREB partially restored the calcium response.

  7. Fruit Calcium: Transport and Physiology

    Directory of Open Access Journals (Sweden)

    Bradleigh eHocking

    2016-04-01

    Full Text Available Calcium has well-documented roles in plant signaling, water relations and cell wall interactions. Significant research into how calcium impacts these individual processes in various tissues has been carried out; however, the influence of calcium on fruit ripening has not been thoroughly explored. Here, we review the current state of knowledge on how calcium may impact fruit development, physical traits and disease susceptibility through facilitating developmental and stress response signaling, stabilizing membranes, influencing water relations and modifying cell wall properties through cross-linking of de-esterified pectins. We explore the involvement of calcium in hormone signaling integral to ripening and the physiological mechanisms behind common disorders that have been associated with fruit calcium deficiency (e.g. blossom end rot in tomatoes or bitter pit in apples. This review works towards an improved understanding of how the many roles of calcium interact to influence fruit ripening, and proposes future research directions to fill knowledge gaps. Specifically, we focus mostly on grapes and present a model that integrates existing knowledge around these various functions of calcium in fruit, which provides a basis for understanding the physiological impacts of sub-optimal calcium nutrition in grapes. Calcium accumulation and distribution in fruit is shown to be highly dependent on water delivery and cell wall interactions in the apoplasm. Localized calcium deficiencies observed in particular species or varieties can result from differences in xylem morphology, fruit water relations and pectin composition, and can cause leaky membranes, irregular cell wall softening, impaired hormonal signaling and aberrant fruit development. We propose that the role of apoplasmic calcium-pectin crosslinking, particularly in the xylem, is an understudied area that may have a key influence on fruit water relations. Furthermore, we believe that improved

  8. Calcium Phosphates as Bone Substitute for Dental Implant Surgery%口腔种植中磷酸钙类骨替代材料的应用

    Institute of Scientific and Technical Information of China (English)

    陈卓凡; 刘泉; Matinlinna JP

    2016-01-01

    在口腔种植手术中,磷酸钙类的骨替代材料已经被广泛应用于骨修复、骨增量和重建.了解此类材料的基础性能,对于一个种植医生来说是非常重要的,但初学者可能无法完全掌握.因此,本文对异种来源和人工合成的两类骨移植材料的特点,进行了全面总结评述.尽管部分材料显示了优良的生物效应,但目前磷酸钙类的骨替代材料仍有巨大的改进提升空间.%Calcium phosphate-based bone substitutes have been widely used for bone repair, augmentation and recon-struction in dental implant surgery. The basic properties of such materials are undoubtedly of importance, but may not be comprehensively understood by practitioners. Hence, the properties of two major groups, xenogenic and alloplastic grafting materials, have been reviewed and discussed in this article. It appears that more work is needed to improve the perfor-mance of the current calcium phosphate-based bone substitutes, although some of them have been showing outstanding bi-ological response.

  9. DISTILLATION OF CALCIUM

    Science.gov (United States)

    Barton, J.

    1954-07-27

    This invention relates to an improvement in the process for the purification of caicium or magnesium containing an alkali metal as impurity, which comprises distiiling a batch of the mixture in two stages, the first stage distillation being carried out in the presence of an inert gas at an absolute pressure substantially greater than the vapor pressure of calcium or maguesium at the temperature of distillation, but less than the vaper pressure at that temperature of the alkali metal impurity so that only the alkali metal is vaporized and condensed on a condensing surface. A second stage distilso that substantially only the calcium or magnesium distills under its own vapor pressure only and condenses in solid form on a lower condensing surface.

  10. Calcium, essential for health

    Science.gov (United States)

    Martínez de Victoria, Emilio

    2016-07-12

    Calcium (Ca) is the most abundant mineral element in our body. It accounts for about 2% of body weight. The functions of calcium are: a) functions skeletal and b) regulatory functions. Bone consists of a protein matrix that mineralizes mainly with calcium (the most abundant), phosphate and magnesium, for it is essential an adequate dietary intake of Ca, phosphorus and vitamin D. The ionic Ca (Ca2+) is essential to maintain and / or perform different specialized functions of, virtually, all body cells cellular. Because of its important functions Ca2+ must be closely regulated, keeping plasma concentrations within narrow ranges. For this reason there is an accurate response against hypocalcemia or hypercalcemia in which the parathormone, calcitriol, calcitonin and vitamin K are involved. Ca intakes in the Spanish population are low in a significant percentage of the older adult’s population, especially in women. The main source of Ca in the diet is milk and milk derivatives. Green leafy vegetables, fruits and legumes can be important sources of Ca in a Mediterranean dietary pattern. The bioavailability of dietary Ca depends on physiological and dietary factors. Physiological include age, physiological status (gestation and lactation) Ca and vitamin D status and disease. Several studies relate Ca intake in the diet and various diseases, such as osteoporosis, cancer, cardiovascular disease and obesity.

  11. Models of calcium signalling

    CERN Document Server

    Dupont, Geneviève; Kirk, Vivien; Sneyd, James

    2016-01-01

    This book discusses the ways in which mathematical, computational, and modelling methods can be used to help understand the dynamics of intracellular calcium. The concentration of free intracellular calcium is vital for controlling a wide range of cellular processes, and is thus of great physiological importance. However, because of the complex ways in which the calcium concentration varies, it is also of great mathematical interest.This book presents the general modelling theory as well as a large number of specific case examples, to show how mathematical modelling can interact with experimental approaches, in an interdisciplinary and multifaceted approach to the study of an important physiological control mechanism. Geneviève Dupont is FNRS Research Director at the Unit of Theoretical Chronobiology of the Université Libre de Bruxelles;Martin Falcke is head of the Mathematical Cell Physiology group at the Max Delbrück Center for Molecular Medicine, Berlin;Vivien Kirk is an Associate Professor in the Depar...

  12. Calcium antagonists and vasospasm.

    Science.gov (United States)

    Meyer, F B

    1990-04-01

    A critical review of the clinical data supports the conclusion that nimodipine decreases the severity of neurologic deficits and improves outcome after subarachnoid hemorrhage. The mechanisms by which mortality and morbidity are reduced are still controversial. First, the frequency of vasospasm is not altered (Figs. 5 and 6). Second, the consistent reversal of vasospasm once present has not been demonstrated either angiographically or by noninvasive cerebral blood flow studies. These observations suggest that there is either modification of microcirculatory flow (i.e., dilation of pial conducting vessels or decreased platelet aggregation) or a direct neuronal protective effect. As suggested previously, support for either mechanism is not resolute, and further investigation is necessary. Currently, nimodipine has been the most thoroughly investigated calcium antagonist both from an experimental and clinical perspective. Oral administration has had few reported complications. Therefore, the benefit/risk ratio clearly supports the prophylactic use of this calcium antagonist in patients of all clinical grades after subarachnoid hemorrhage. Evidence also indicates that starting nimodipine after the onset of delayed ischemic deficits is of benefit. Finally, it can be predicted that in the future additional calcium antagonists with more selective vascular or neuronal effects will be developed for use in neurologic disorders.

  13. Characterization of calcium phosphate powders originating from Phyllacanthus imperialis and Trochidae Infundibulum concavus marine shells

    Energy Technology Data Exchange (ETDEWEB)

    Tămăşan, M., E-mail: monica.tamasan@phys.ubbcluj.ro [Babeş-Bolyai University, Faculty of Physics and Interdisciplinary Research Institute on Bio-Nano-Sciences, Cluj-Napoca (Romania); Ozyegin, L.S. [Marmara University, Istanbul (Turkey); Oktar, F.N. [Marmara University, Faculty of Engineering, Department of Bioengineering, Göztepe Campus, Kadıköy 34722, Istanbul (Turkey); Marmara University, School of Health Related Professions, Department of Medical Imaging Technics, Haydarpaşa Campus, Tıbbiye Street, 49, Üsküdar 34668, Istanbul (Turkey); Marmara University, Nanotechnology and Biomaterials Application and Research Centre, Göztepe Campus, Kadıköy 34722, Istanbul (Turkey); Simon, V. [Babeş-Bolyai University, Faculty of Physics and Interdisciplinary Research Institute on Bio-Nano-Sciences, Cluj-Napoca (Romania)

    2013-07-01

    The study reports the preparation and characterization of powders consisting of the different phases of calcium phosphates that were obtained from the naturally derived raw materials of sea-shell origins reacted with H{sub 3}PO{sub 4}. Species of sea origin, such as corals and nacres, attracted a special interest in bone tissue engineering area. Nacre shells are built up of calcium carbonate in aragonite form crystallized in an organic matrix. In this work two natural marine origin materials (shells of echinoderm Sputnik sea urchin — Phyllacanthus imperialis and Trochidae Infundibulum concavus mollusk) were involved in the developing powders of calcium phosphate based biomaterials (as raw materials for bone-scaffolds) by hotplate and ultrasound methods. Thermal analyses of the as-prepared materials were made for an assessment of the thermal behavior and heat treatment temperatures. Samples from both sea shells each of them prepared by the above mentioned methods were subjected to thermal treatments at 450 °C and 850 °C in order to evaluate the crystalline transformations of the calcium phosphate structures in the heating process. By X-ray diffraction analyses various calcium phosphate phases were identified. In Sputnik sea urchins originated samples were found predominantly brushite and calcite as a small secondary phase, while in Trochidae I. concavus samples mainly monetite and HA phases were identified. Thermal treatment at 850 °C resulted flat-plate whitlockite crystals — β-MgTCP [(Ca, Mg){sub 3} (PO{sub 4}){sub 2}] for both samples regardless the preparation method (ultrasound or hotplate) or the targeted Ca/P molar ratio according with XRD patterns. Scanning electron microscopy and Fourier transformed infrared spectroscopy were involved more in the characterization of these materials and the good correlations of the results of these methods were made. - Highlights: ► Calcium phosphate powders are obtained from the crushed shells of 2

  14. Calcium signalling and calcium channels: evolution and general principles.

    Science.gov (United States)

    Verkhratsky, Alexei; Parpura, Vladimir

    2014-09-15

    Calcium as a divalent cation was selected early in evolution as a signaling molecule to be used by both prokaryotes and eukaryotes. Its low cytosolic concentration likely reflects the initial concentration of this ion in the primordial soup/ocean as unicellular organisms were formed. As the concentration of calcium in the ocean subsequently increased, so did the diversity of homeostatic molecules handling calcium. This includes the plasma membrane channels that allowed the calcium entry, as well as extrusion mechanisms, i.e., exchangers and pumps. Further diversification occurred with the evolution of intracellular organelles, in particular the endoplasmic reticulum and mitochondria, which also contain channels, exchanger(s) and pumps to handle the homeostasis of calcium ions. Calcium signalling system, based around coordinated interactions of the above molecular entities, can be activated by the opening of voltage-gated channels, neurotransmitters, second messengers and/or mechanical stimulation, and as such is all-pervading pathway in physiology and pathophysiology of organisms.

  15. Elemental calcium intake associated with calcium acetate/calcium carbonate in the treatment of hyperphosphatemia

    Science.gov (United States)

    Wilson, Rosamund J; Copley, J Brian

    2017-01-01

    Background Calcium-based and non-calcium-based phosphate binders have similar efficacy in the treatment of hyperphosphatemia; however, calcium-based binders may be associated with hypercalcemia, vascular calcification, and adynamic bone disease. Scope A post hoc analysis was carried out of data from a 16-week, Phase IV study of patients with end-stage renal disease (ESRD) who switched to lanthanum carbonate monotherapy from baseline calcium acetate/calcium carbonate monotherapy. Of the intent-to-treat population (N=2520), 752 patients with recorded dose data for calcium acetate (n=551)/calcium carbonate (n=201) at baseline and lanthanum carbonate at week 16 were studied. Elemental calcium intake, serum phosphate, corrected serum calcium, and serum intact parathyroid hormone levels were analyzed. Findings Of the 551 patients with calcium acetate dose data, 271 (49.2%) had an elemental calcium intake of at least 1.5 g/day at baseline, and 142 (25.8%) had an intake of at least 2.0 g/day. Mean (95% confidence interval [CI]) serum phosphate levels were 6.1 (5.89, 6.21) mg/dL at baseline and 6.2 (6.04, 6.38) mg/dL at 16 weeks; mean (95% CI) corrected serum calcium levels were 9.3 (9.16, 9.44) mg/dL and 9.2 (9.06, 9.34) mg/dL, respectively. Of the 201 patients with calcium carbonate dose data, 117 (58.2%) had an elemental calcium intake of at least 1.5 g/day, and 76 (37.8%) had an intake of at least 2.0 g/day. Mean (95% CI) serum phosphate levels were 5.8 (5.52, 6.06) mg/dL at baseline and 5.8 (5.53, 6.05) mg/dL at week 16; mean (95% CI) corrected serum calcium levels were 9.7 (9.15, 10.25) mg/dL and 9.2 (9.06, 9.34) mg/dL, respectively. Conclusion Calcium acetate/calcium carbonate phosphate binders, taken to control serum phosphate levels, may result in high levels of elemental calcium intake. This may lead to complications related to calcium balance. PMID:28182142

  16. Collective Calcium Signaling of Defective Multicellular Networks

    Science.gov (United States)

    Potter, Garrett; Sun, Bo

    2015-03-01

    A communicating multicellular network processes environmental cues into collective cellular dynamics. We have previously demonstrated that, when excited by extracellular ATP, fibroblast monolayers generate correlated calcium dynamics modulated by both the stimuli and gap junction communication between the cells. However, just as a well-connected neural network may be compromised by abnormal neurons, a tissue monolayer can also be defective with cancer cells, which typically have down regulated gap junctions. To understand the collective cellular dynamics in a defective multicellular network we have studied the calcium signaling of co-cultured breast cancer cells and fibroblast cells in various concentrations of ATP delivered through microfluidic devices. Our results demonstrate that cancer cells respond faster, generate singular spikes, and are more synchronous across all stimuli concentrations. Additionally, fibroblast cells exhibit persistent calcium oscillations that increase in regularity with greater stimuli. To interpret these results we quantitatively analyzed the immunostaining of purigenic receptors and gap junction channels. The results confirm our hypothesis that collective dynamics are mainly determined by the availability of gap junction communications.

  17. Khz (fusion of Ganoderma lucidum and Polyporus umbellatus mycelia induces apoptosis by increasing intracellular calcium levels and activating JNK and NADPH oxidase-dependent generation of reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Tae Hwan Kim

    Full Text Available Khz is a compound derived from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia that inhibits the growth of cancer cells. The results of the present study show that Khz induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz induced apoptosis by increasing the intracellular Ca(2+ concentration ([Ca(2+](i and activating JNK to generate reactive oxygen species (ROS via NADPH oxidase and the mitochondria. Khz-induced apoptosis was caspase-dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was demonstrated by the translocation of regulatory subunits p47(phox and p67(phox to the cell membrane and was necessary for ROS generation by Khz. Khz triggered a rapid and sustained increase in [Ca(2+](i, which activated JNK. JNK plays a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47(phox and p67(phox subunits and ROS generation. In summary, these data indicate that Khz preferentially induces apoptosis in cancer cells, and the signaling mechanisms involve an increase in [Ca(2+](i, JNK activation, and ROS generation via NADPH oxidase and mitochondria.

  18. Evaluation of Reagent Emplacement Techniques for Phosphate-based Treatment of the Uranium Contamination Source in the 300 Area White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Nimmons, Michael J.

    2010-06-04

    Persistent uranium contamination of groundwater under the 300 Area of the Hanford Site has been observed. The source of the uranium contamination resides in uranium deposits on sediments at the groundwater interface, and the contamination is mobilized when periodically wetted by fluctuations of Columbia River levels. Treatability work is ongoing to develop and apply phosphate-containing reagents to promote the formation of stable and insoluble uranium phosphate minerals (i.e., autunite) and other phosphate precipitates (di-calcium phosphate, apatite) to stabilize the uranium source. Technologies for applying phosphate-containing reagents by vertical percolation and lateral injection into sediments of the periodically wetted groundwater interface are being investigated. This report is a preliminary evaluation of technologies for lateral injection.

  19. Role of NAADP in Coordinating Spatiotemporal Aspects of Calcium Signalling

    Science.gov (United States)

    Churchill, Grant C.; Galione, Antony

    We outline the roles of two low molecular weight phosphorylated compounds as intracellular messengers in calcium signaling. These new intracellular messengers (cyclic ADP-ribose-cADPR and nicotinic acid adenine dinucleotide phosphate-NAADP) have been shown to regulate calcium signalling across the plant and animal kingdoms. A central question in cell biology is what are the mechanisms by which calcium ions, arguably most important and universal regulator of cell activation, can encode specificity. The hypothesis that we have been testing is that exist in cells multiple signalling molecules and pathways which give rise to different patterns of calcium signals leading to highly specific cellular responses. We discuss new information about the molecular components of these new Ca 2+ signalling pathways and their role in generating Ca 2+ signals.

  20. Preliminary Study on Chemical Components and Uranium Content of Calcium Fluoride Waste

    Institute of Scientific and Technical Information of China (English)

    LIANG; Xiao-hu; YANG; Lei; YANG; Jin-ling; SONG; Zhi-jun

    2013-01-01

    In the uranium conversion process,UF4 reduction is needed using calcium as reduction regent,so a great deal of calcium fluoride are generated,in which a no negligible amount of uranium(about 5%alleged)can be left in the calcium fluoride wastes by the entrainment effect.It is meaningful to extract and purify the uranium from these wastes,but chemical components of these waste is needed primarily.

  1. A Genome-wide Functional Characterization of Arabidopsis Regulatory Calcium Sensors in Pollen Tubes

    Institute of Scientific and Technical Information of China (English)

    Liming Zhou; Ying FU; Zhenbiao Yang

    2009-01-01

    Calcium, an ubiquitous second messenger, plays an essential and versatile role in cellular signaling. The diverse function of calcium signals is achieved by an excess of calcium sensors. Plants possess large numbers of calcium sensors, most of which have not been functionally characterized. To identify physiologically relevant calcium sensors in a specific cell type, we conducted a genome-wide functional survey in pollen tubes, for which spatiotemporal calcium signals are well-characterized and required for polarized tip growth. Pollen-specific members of calmodulin (CAM), CaM-like (CML), calcium-dependent protein kinase (CDPK) and calcineurin B-like protein (CBL) families were tagged with green fluorescence protein (GFP) and their localization patterns and overexpression phenotypes were characterized in tobacco pollen tubes. We found that several fusion proteins showed distinct overexpression phenotypes and subcellular localization patterns. CDPK24.GFP was localized to the vegetative nucleus and the generative cell/sperms. CDPK32-GFP caused severe growth depolarization. CBL2-GFP and CBL3-GFP exhibited dynamic patterns of subcellular localization, including several endomembrane compartments, the apical plasma membrane (PM), and cytoskeleton-like structures in pollen tubes. Their overexpression also inhibited pollen tube elongation and induced growth depolarization. These putative calcium sensors are excellent candidates for the calcium sensors responsible for the regulation of calcium homeostasis and calcium-dependent tip growth and growth oscillation in pollen tubes,

  2. Calcium – how and why?

    Indian Academy of Sciences (India)

    J K Jaiswal

    2001-09-01

    Calcium is among the most commonly used ions, in a multitude of biological functions, so much so that it is impossible to imagine life without calcium. In this article I have attempted to address the question as to how calcium has achieved this status with a brief mention of the history of calcium research in biology. It appears that during the origin and early evolution of life the Ca2+ ion was given a unique opportunity to be used in several biological processes because of its unusual physical and chemical properties.

  3. Calcium Phosphate Biomaterials: An Update

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Current calcium phosphate (CaP) biomaterials for bone repair, substitution, augmentation and regeneration include hydroxyapatite ( HA ) from synthetic or biologic origin, beta-tricalcium phosphate ( β-TCP ) , biphasic calcium phosphate (BCP), and are available as granules, porous blocks, components of composites (CaP/polymer) cements, and as coatings on orthopedic and dental implants. Experimental calcium phosphate biomaterials include CO3- and F-substituted apatites, Mg-and Zn-substituted β-TCP, calcium phosphate glasses. This paper is a brief review of the different types of CaP biomaterials and their properties such as bioactivity, osteoconductivity, osteoinductivity.

  4. Cardiovascular Effects of Calcium Supplements

    Directory of Open Access Journals (Sweden)

    Ian R. Reid

    2013-07-01

    Full Text Available Calcium supplements reduce bone turnover and slow the rate of bone loss. However, few studies have demonstrated reduced fracture incidence with calcium supplements, and meta-analyses show only a 10% decrease in fractures, which is of borderline statistical and clinical significance. Trials in normal older women and in patients with renal impairment suggest that calcium supplements increase the risk of cardiovascular disease. To further assess their safety, we recently conducted a meta-analysis of trials of calcium supplements, and found a 27%–31% increase in risk of myocardial infarction, and a 12%–20% increase in risk of stroke. These findings are robust because they are based on pre-specified analyses of randomized, placebo-controlled trials and are consistent across the trials. Co-administration of vitamin D with calcium does not lessen these adverse effects. The increased cardiovascular risk with calcium supplements is consistent with epidemiological data relating higher circulating calcium concentrations to cardiovascular disease in normal populations. There are several possible pathophysiological mechanisms for these effects, including effects on vascular calcification, vascular cells, blood coagulation and calcium-sensing receptors. Thus, the non-skeletal risks of calcium supplements appear to outweigh any skeletal benefits, and are they appear to be unnecessary for the efficacy of other osteoporosis treatments.

  5. Calcium measurement methods

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2010-09-01

    Full Text Available Rightly stressed by prof. Wolfgang Walz in the Preface to the series Neuromethods series, the “careful application of methods is probably the most important step in the process of scientific inquiry”. Thus, I strongly suggest to all those interested in calcium signaling and especially to the new-comers in the hot topic of neuroscience (which has so much space even in science-society debate for its implications in legal issues and in the judge-decision process to take profit from this so well edited book. I am saying this since prof. Verkhratsky and prof. Petersen......

  6. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium pantothenate, calcium chloride double salt..., calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may... information required by the Act, the following: (1) The name of the additive “calcium chloride double salt of...

  7. Calcium channels and migraine.

    Science.gov (United States)

    Pietrobon, Daniela

    2013-07-01

    Missense mutations in CACNA1A, the gene that encodes the pore-forming α1 subunit of human voltage-gated Ca(V)2.1 (P/Q-type) calcium channels, cause a rare form of migraine with aura (familial hemiplegic migraine type 1: FHM1). Migraine is a common disabling brain disorder whose key manifestations are recurrent attacks of unilateral headache that may be preceded by transient neurological aura symptoms. This review, first, briefly summarizes current understanding of the pathophysiological mechanisms that are believed to underlie migraine headache, migraine aura and the onset of a migraine attack, and briefly describes the localization and function of neuronal Ca(V)2.1 channels in the brain regions that have been implicated in migraine pathogenesis. Then, the review describes and discusses i) the functional consequences of FHM1 mutations on the biophysical properties of recombinant human Ca(V)2.1 channels and native Ca(V)2.1 channels in neurons of knockin mouse models carrying the mild R192Q or severe S218L mutations in the orthologous gene, and ii) the functional consequences of these mutations on neurophysiological processes in the cerebral cortex and trigeminovascular system thought to be involved in the pathophysiology of migraine, and the insights into migraine mechanisms obtained from the functional analysis of these processes in FHM1 knockin mice. This article is part of a Special Issue entitled: Calcium channels. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Calcium electroporation in three cell lines; a comparison of bleomycin and calcium, calcium compounds, and pulsing conditions

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gissel, Hanne; Hojman, Pernille

    2013-01-01

    BACKGROUND: Electroporation with calcium (calcium electroporation) can induce ATP depletion-associated cellular death. In the clinical setting, the cytotoxic drug bleomycin is currently used with electroporation (electrochemotherapy) for palliative treatment of tumors. Calcium electroporation...... offers several advantages over standard treatment options: calcium is inexpensive and may readily be applied without special precautions, as is the case with cytostatic drugs. Therefore, details on the use of calcium electroporation are essential for carrying out clinical trials comparing calcium...

  9. Vitamin D, Calcium, and Bone Health

    Science.gov (United States)

    ... in Balance › Vitamin D, Calcium, and Bone Health Vitamin D, Calcium, and Bone Health March 2012 Download ... also helps keep your bones strong. Why are vitamin D and calcium important to bone health? Vitamin ...

  10. Calcium, vitamin D, and your bones

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000490.htm Calcium, vitamin D, and your bones To use the sharing ... and maintain strong bones. How Much Calcium and Vitamin D do I Need? Amounts of calcium are ...

  11. Hydrothermal Formation of Calcium Copper Tetrasilicate.

    Science.gov (United States)

    Johnson-McDaniel, Darrah; Comer, Sara; Kolis, Joseph W; Salguero, Tina T

    2015-12-01

    We describe the first hydrothermal synthesis of CaCuSi4 O10 as micron-scale clusters of thin platelets, distinct from morphologies generated under salt-flux or solid-state conditions. The hydrothermal reaction conditions are surprisingly specific: too cold, and instead of CaCuSi4 O10 , a porous calcium copper silicate forms; too hot, and calcium silicate (CaSiO3 ) forms. The precursors also strongly impact the course of the reaction, with the most common side product being sodium copper silicate (Na2 CuSi4 O10 ). Optimized conditions for hydrothermal CaCuSi4 O10 formation from calcium chloride, copper(II) nitrate, sodium silicate, and ammonium hydroxide are 350 °C at 3000 psi for 72 h; at longer reaction times, competitive delamination and exfoliation causes crystal fragmentation. These results illustrate that CaCuSi4 O10 is an even more unique material than previously appreciated.

  12. The potential role of calcium antagonists in the management of congestive heart failure : Initial experience with lacidipine

    NARCIS (Netherlands)

    deVries, RJM; Dunselman, PHJM

    1995-01-01

    First-generation calcium antagonists have been used in patients with congestive heart failure with rather disappointing results. Therefore, second-generation dihydropyridine calcium-channel blockers, such as felodipine and lacidipine, have been developed that may be beneficial in congestive heart fa

  13. Mammary-Specific Ablation of the Calcium-Sensing Receptor During Lactation Alters Maternal Calcium Metabolism, Milk Calcium Transport, and Neonatal Calcium Accrual

    OpenAIRE

    Mamillapalli, Ramanaiah; VanHouten, Joshua; Dann, Pamela; Bikle, Daniel; Chang, Wenhan; Brown, Edward; Wysolmerski, John

    2013-01-01

    To meet the demands for milk calcium, the lactating mother adjusts systemic calcium and bone metabolism by increasing dietary calcium intake, increasing bone resorption, and reducing renal calcium excretion. As part of this adaptation, the lactating mammary gland secretes PTHrP into the maternal circulation to increase bone turnover and mobilize skeletal calcium stores. Previous data have suggested that, during lactation, the breast relies on the calcium-sensing receptor (CaSR) to coordinate ...

  14. Vitamin D and Intestinal Calcium Absorption

    OpenAIRE

    Christakos, Sylvia; Dhawan, Puneet; Porta, Angela; Mady, Leila J.; Seth, Tanya

    2011-01-01

    The principal function of vitamin D in calcium homeostasis is to increase calcium absorption from the intestine. Calcium is absorbed by both an active transcellular pathway, which is energy dependent, and by a passive paracellular pathway through tight junctions. 1,25Dihydroxyvitamin D3 (1,25(OH)2D3) the hormonally active form of vitamin D, through its genomic actions, is the major stimulator of active intestinal calcium absorption which involves calcium influx, translocation of calcium throu...

  15. Calcium pretreatment increases thermotolerance of Laminaria japonica sporophytes

    Institute of Scientific and Technical Information of China (English)

    You Wang; Qingyun Yu; Xuexi Tang; Lili Wang

    2009-01-01

    Calcium is a secondary messenger in plant signaling,and its concentration changes spatially and temporally during the course of heat stress.In the present study,potassium antimonate was used to visualize calcium localization in blades of a marine macroalga,the juvenile Laminariajaponica sporophytes under heat stress (25 ℃).Result showed that loosely bound calcium was mainly distributed on the cell wall under normal conditions (10 ℃),and flowed into the cytoplasm when exposed to heat.The simutaneous assay on the antioxidant system changes was performed.Oxidative damage,as measured by generation of reactive oxygen species (ROS) malondialdehyde (MDA) content,increased significantly during heat stress,and calcium pretreatment alleviated oxidative damage.The assay on the activities of six antioxidant enzymes demonstrated that their enzymatic activities were inhibited when exposed to heat stress,but Ca2+ pretreatment effectively attenuated the inhibition.Results in the present study inferred that calcium homeostasis plays an essential role in L.japonica sporophyte when exposed to heat,and calcium pretreatment could improve its thermo-tolerance.

  16. INFLUENCE OF POLYMERIC ADDITIVES ON CRYSTALLIZATION OF CALCIUM SULPHATE DIHYDRATE

    Directory of Open Access Journals (Sweden)

    Ustinova Yulia Valer’evna

    2013-04-01

    Full Text Available Currently, functional additives are widely spread in the production of inorganic dry mixtures. However, their impact on the microstructure of products, generated in the process of hardening of inorganic binders, is understudied. In this context, the goal of the work is the study of calcium sulfate dihydrate (CaSO •2H O crystallization. Super plasticizer based on sulfonated melamine-formaldehyde resin, methylcellulose and vinyl acetate, ethylene and vinyl chloride copolymer powder were selected for studies. First, pure calcium sulfate dihydrate crystals were synthesized. Then, synthesized calcium sulfate dihydrate crystals were exposed to the X-ray analysis to determine the nature of influence of polymer additives on the shape and dimensions of crystals. Possible combinations of simple forms of CaSO •2H O were identified by the X-ray analysis and the special software. Electronic microscopy analysis was performed to validate models of calcium sulfate dihydrate crystals. All plasticizers influence the crystallization of calcium sulfate dihydrate. The influence of additives on the shape and dimensions of crystals of calcium sulfate dihydrate can be explained by the fact that molecules of sulfonated melamine-formaldehyde resins, methylcellulose, and copolymers of vinyl acetate, ethylene and vinyl chloride are absorbed by crystal faces. It is proven that the method of X-ray analysis can be used to predict the shape and habitus of crystals.

  17. Calcium Signaling in Interstitial Cells: Focus on Telocytes.

    Science.gov (United States)

    Radu, Beatrice Mihaela; Banciu, Adela; Banciu, Daniel Dumitru; Radu, Mihai; Cretoiu, Dragos; Cretoiu, Sanda Maria

    2017-02-13

    In this review, we describe the current knowledge on calcium signaling pathways in interstitial cells with a special focus on interstitial cells of Cajal (ICCs), interstitial Cajal-like cells (ICLCs), and telocytes. In detail, we present the generation of Ca(2+) oscillations, the inositol triphosphate (IP₃)/Ca(2+) signaling pathway and modulation exerted by cytokines and vasoactive agents on calcium signaling in interstitial cells. We discuss the physiology and alterations of calcium signaling in interstitial cells, and in particular in telocytes. We describe the physiological contribution of calcium signaling in interstitial cells to the pacemaking activity (e.g., intestinal, urinary, uterine or vascular pacemaking activity) and to the reproductive function. We also present the pathological contribution of calcium signaling in interstitial cells to the aortic valve calcification or intestinal inflammation. Moreover, we summarize the current knowledge of the role played by calcium signaling in telocytes in the uterine, cardiac and urinary physiology, and also in various pathologies, including immune response, uterine and cardiac pathologies.

  18. 21 CFR 184.1191 - Calcium carbonate.

    Science.gov (United States)

    2010-04-01

    ... HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of... soda process”; (2) By precipitation of calcium carbonate from calcium hydroxide in the...

  19. Calcium signaling and endoplasmic reticulum dynamics during fertilization in marine protostome worms belonging to the phylum Nemertea.

    Science.gov (United States)

    Stricker, Stephen A

    2014-08-01

    Metaphase-I-arrested eggs of marine protostome worms in the phylum Nemertea generate a series of point-source calcium waves during fertilization. Such calcium oscillations depend on inositol-1,4,5-trisphosphate-mediated calcium release from endoplasmic reticulum (ER) stores that undergo structural reorganizations prior to and after fertilization. This article reviews fertilization-induced calcium transients and ER dynamics in nemertean eggs and compares these topics to what has been reported for other animals in order to identify unifying characteristics and distinguishing features of calcium responses during fertilization across the animal kingdom. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Evolution of the Calcium Paradigm: The Relation between Vitamin D, Serum Calcium and Calcium Absorption

    Directory of Open Access Journals (Sweden)

    Borje E. Christopher Nordin

    2010-09-01

    Full Text Available Osteoporosis is the index disease for calcium deficiency, just as rickets/osteomalacia is the index disease for vitamin D deficiency, but there is considerable overlap between them. The common explanation for this overlap is that hypovitaminosis D causes malabsorption of calcium which then causes secondary hyperparathyroidism and is effectively the same thing as calcium deficiency. This paradigm is incorrect. Hypovitaminosis D causes secondary hyperparathyroidism at serum calcidiol levels lower than 60 nmol/L long before it causes malabsorption of calcium because serum calcitriol (which controls calcium absorption is maintained until serum calcidiol falls below 20 nmol/L. This secondary hyperparathyroidism, probably due to loss of a “calcaemic” action of vitamin D on bone first described in 1957, destroys bone and explains why vitamin D insufficiency is a risk factor for osteoporosis. Vitamin D thus plays a central role in the maintenance of the serum (ionised calcium, which is more important to the organism than the preservation of the skeleton. Bone is sacrificed when absorbed dietary calcium does not match excretion through the skin, kidneys and bowel which is why calcium deficiency causes osteoporosis in experimental animals and, by implication, in humans.

  1. Calcium sensing receptors and calcium oscillations: calcium as a first messenger.

    Science.gov (United States)

    Breitwieser, Gerda E

    2006-01-01

    Calcium sensing receptors (CaR) are unique among G-protein-coupled receptors (GPCRs) since both the first (extracellular) and second (intracellular) messengers are Ca(2+). CaR serves to translate small fluctuations in extracellular Ca(2+) into intracellular Ca(2+) oscillations. In many cells and tissues, CaR also acts as a coincidence detector, sensing both changes in extracellular Ca(2+) plus the presence of various allosteric activators including amino acids, polyamines, and/or peptides. CaR oscillations are uniquely shaped by the activating agonist, that is, Ca(2+) triggers sinusoidal oscillations while Ca(2+) plus phenylalanine trigger transient oscillations of lower frequency. The distinct oscillation patterns generated by Ca(2+)versus Ca(2+) plus phenylalanine are the results of activation of distinct signal transduction pathways. CaR is a member of Family C GPCRs, having a large extracellular agonist binding domain, and functioning as a disulfide-linked dimer. The CaR dimer likely can be driven to distinct active conformations by various Ca(2+) plus modulator combinations, which can drive preferential coupling to divergent signaling pathways. Such plasticity with respect to both agonist and signaling outcomes allows CaR to uniquely contribute to the physiology of organs and tissues where it is expressed. This chapter will examine the structural features of CaR, which contribute to its unique properties, the nature of CaR-induced intracellular Ca(2+) signals and the potential role(s) for CaR in development and differentiation.

  2. Limestone reaction in calcium aluminate cement–calcium sulfate systems

    Energy Technology Data Exchange (ETDEWEB)

    Bizzozero, Julien, E-mail: julien.bizzozero@gmail.com; Scrivener, Karen L.

    2015-10-15

    This paper reports a study of ternary blends composed of calcium aluminate cement, calcium sulfate hemihydrate and limestone. Compressive strength tests and hydration kinetics were studied as a function of limestone and calcium sulfate content. The phase evolution and the total porosity were followed and compared to thermodynamic simulation to understand the reactions involved and the effect of limestone on these binders. The reaction of limestone leads to the formation of hemicarboaluminate and monocarboaluminate. Increasing the ratio between sulfate and aluminate decreases the extent of limestone reaction.

  3. Calcium binding protein-mediated regulation of voltage-gated calcium channels linked to human diseases

    Institute of Scientific and Technical Information of China (English)

    Nasrin NFJATBAKHSH; Zhong-ping FENG

    2011-01-01

    Calcium ion entry through voltage-gated calcium channels is essential for cellular signalling in a wide variety of cells and multiple physiological processes. Perturbations of voltage-gated calcium channel function can lead to pathophysiological consequences. Calcium binding proteins serve as calcium sensors and regulate the calcium channel properties via feedback mechanisms. This review highlights the current evidences of calcium binding protein-mediated channel regulation in human diseases.

  4. The Effect of Calcium Phosphate Particle Shape and Size on their Antibacterial and Osteogenic Activity in the Delivery of Antibiotics in vitro

    Science.gov (United States)

    Uskoković, Vuk; Batarni, Samir Shariff; Schweicher, Julien; King, Andrew; Desai, Tejal A.

    2013-01-01

    cell attachment points may present a favorable starting point for the development of calcium-phosphate-based osteogenic drug delivery devices. PMID:23484624

  5. Lead interferes with calcium entry through membrane pores

    Energy Technology Data Exchange (ETDEWEB)

    Buesselberg, D.; Schirrmacher, K.; Domann, R.; Wiemann, M. [Universitaet-GH Essen, Inst. fuer Physiologie, Essen (Germany)

    1998-06-01

    Calcium is an important intracellular messenger in all cells, represented here by nerve cells and osteoblast-like (OBL) cells. In neurons the intracellular calcium signal is related, e.g., to bioelectric phenomena. In OBL cells the intracellular calcium concentration ([Ca{sup 2+}]{sub i}) plays a role in the intercellular communication via gap junction channels. [Ca{sup 2+}]{sub i} might be affected by lead (Pb{sup 2+}). In the nervous system even low Pb{sup 2+} concentrations impair learning and memory functions. Considering long-term potentiation (LTP) as a model for learning and memory it has been proven that the generation and maintenance of LTP is reduced by Pb{sup 2+} (1-10 {mu}M). As the induction of LTP depends on a rise of [Ca{sup 2+}]{sub i}, we examined the effects of Pb{sup 2+} on [Ca{sup 2+}]{sub i} and on currents through calcium permeable membrane pores in dorsal-root ganglion (DRG) neurons, using calcium measurements (Fura-2/ AM) and whole cell patch clamp techniques. To study the effects of Pb{sup 2+} on intercellular communication via gap junctions we used rat OBL cells investigating interactions of Pb{sup 2+} with electric cell coupling. Furthermore, we examined calcium release activated channel currents (CRACCs) of these cells.Lead (1-10 {mu}M) reduced the stimulated increase of [Ca{sup 2+}]{sub i} in a concentration dependent manner, by reducing both voltage-activated calcium channels (VACCs) and N-methyl-D-aspartate activated calcium channels (NACCs) in neurons. Voltage-activated calcium channel currents (VACCCs) were reduced by Pb{sup 2+} with an IC{sub 50} of 0.46 {mu}M. The effect was quite specific as voltage activated sodium and potassium channel currents were not significantly altered in the same concentration and voltage range. Furthermore, this effect was not voltage dependent and only partly reversible. A 100-fold higher concentration of Pb{sup 2+} (IC{sub 50} of 46 {mu}M) was found for the reduction of NACC currents. A small portion

  6. Connections between connexins, calcium, and cataracts in the lens.

    Science.gov (United States)

    Gao, Junyuan; Sun, Xiurong; Martinez-Wittinghan, Francisco J; Gong, Xiaohua; White, Thomas W; Mathias, Richard T

    2004-10-01

    There is a good deal of evidence that the lens generates an internal micro circulatory system, which brings metabolites, like glucose, and antioxidants, like ascorbate, into the lens along the extracellular spaces between cells. Calcium also ought to be carried into the lens by this system. If so, the only path for Ca2+ to get out of the lens is to move down its electrochemical gradient into fiber cells, and then move by electrodiffusion from cell to cell through gap junctions to surface cells, where Ca-ATPase activity and Na/Ca exchange can transport it back into the aqueous or vitreous humors. The purpose of the present study was to test this calcium circulation hypothesis by studying calcium homeostasis in connexin (Cx46) knockout and (Cx46 for Cx50) knockin mouse lenses, which have different degrees of gap junction coupling. To measure intracellular calcium, FURA2 was injected into fiber cells, and the gradient in calcium concentration from center to surface was mapped in each type of lens. In wild-type lenses the coupling conductance of the mature fibers was approximately 0.5 S/cm2 of cell to cell contact, and the best fit to the calcium concentration data varied from 700 nM in the center to 300 nM at the surface. In the knockin lenses, the coupling conductance was approximately 1.0 S/cm2 and calcium varied from approximately 500 nM at the center to 300 nM at the surface. Thus, when the coupling conductance doubled, the concentration gradient halved, as predicted by the model. In knockout lenses, the coupling conductance was zero, hence the efflux path was knocked out and calcium accumulated to approximately 2 microM in central fibers. Knockout lenses also had a dense central cataract that extended from the center to about half the radius. Others have previously shown that this cataract involves activation of a calcium-dependent protease, Lp82. We can now expand on this finding to provide a hypothesis on each step that leads to cataract formation: knockout of

  7. Calcium signals in olfactory neurons.

    Science.gov (United States)

    Tareilus, E; Noé, J; Breer, H

    1995-11-09

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  8. Calcium spikes and calcium plateaux evoked by differential polarization in dendrites of turtle motoneurones in vitro

    DEFF Research Database (Denmark)

    Hounsgaard, J; Kiehn, O

    1993-01-01

    -evoked regenerative responses was relatively insensitive to somatic bias current. 6. TTX-resistant Ca(2+)-mediated plateau potentials promoted by apamin were evoked by differential polarization in both the soma-depolarizing and soma-hyperpolarizing direction. 7. It is concluded that Ca2+ channels responsible for Ca2......The ability of dendrites in turtle motoneurones to support calcium spikes and calcium plateaux was investigated using differential polarization by applied electric fields. 2. Electric fields were generated by passing current through transverse slices of the turtle spinal cord between two plate......-hyperpolarizing and soma-depolarizing direction of the field. The different components of Ca2+ spikes were discrete and additive. High amplitude components had higher threshold and faster time course and were followed by larger after-hyperpolarizations, than low amplitude components. The frequency of field...

  9. Microscopic imaging of intracellular calcium in live cells using lifetime-based ratiometric measurements of Oregon Green BAPTA-1.

    Science.gov (United States)

    Lattarulo, Carli; Thyssen, Diana; Kuchibholta, Kishore V; Hyman, Bradley T; Bacskaiq, Brian J

    2011-01-01

    Calcium is a ubiquitous intracellular messenger that has important functions in normal neuronal function. The pathology of Alzheimer's disease has been shown to alter calcium homeostasis in neurons and astrocytes. Several calcium dye indicators are available to measure intracellular calcium within cells, including Oregon Green BAPTA-1 (OGB-1). Using fluorescence lifetime imaging microscopy, we adapted this single wavelength calcium dye into a ratiometric dye to allow quantitative imaging of cellular calcium. We used this approach for in vitro calibrations, single-cell microscopy, high-throughput imaging in automated plate readers, and in single cells in the intact living brain. While OGB is a commonly used fluorescent dye for imaging calcium qualitatively, there are distinct advantages to using a ratiometric approach, which allows quantitative determinations of calcium that are independent of dye concentration. Taking advantage of the distinct lifetime contrast of the calcium-free and calcium-bound forms of OGB, we used time-domain lifetime measurements to generate calibration curves for OGB lifetime ratios as a function of calcium concentration. In summary, we demonstrate approaches using commercially available tools to measure calcium concentrations in live cells at multiple scales using lifetime contrast. These approaches are broadly applicable to other fluorescent readouts that exhibit lifetime contrast and serve as powerful alternatives to spectral or intensity readouts in multiplexing experiments.

  10. 21 CFR 184.1187 - Calcium alginate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium alginate. 184.1187 Section 184.1187 Food... Specific Substances Affirmed as GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005.... Calcium alginate is prepared by the neutralization of purified alginic acid with appropriate pH...

  11. Short-range intercellular calcium signaling in bone

    DEFF Research Database (Denmark)

    Jørgensen, Niklas R

    2005-01-01

    to osteoclasts as well. We demonstrated that paracrine action of ATP was responsible for the wave propagation, but now the purinergic P2X7 receptor was involved. Thus, the studies demonstrate that calcium signals can be propagated not only among osteoblasts, but also between osteoblasts and osteoclasts...... different mechanisms for this propagation. One mechanism involves the secretion of a nucleotide, possibly ATP, acting in an autocrine action to purinergic P2Y2 receptors on the neighboring cells, leading to intracellular IP3 generation and subsequent release of calcium from intracellular stores. The other...

  12. Calcium-sensing beyond neurotransmitters

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Han, Weiping

    2009-01-01

    synaptotagmins are located in brain and endocrine cells, and some of these synaptotagmins bind to phospholipids and calcium at levels that trigger regulated exocytosis of SVs and LDCVs. This led to the proposed synaptotagmin-calcium-sensor paradigm, that is, members of the synaptotagmin family function...... as calcium sensors for the regulated exocytosis of neurotransmitters, neuropeptides and hormones. Here, we provide an overview of the synaptotagmin family, and review the recent mouse genetic studies aimed at understanding the functions of synaptotagmins in neurotransmission and endocrine-hormone secretion......Neurotransmitters, neuropeptides and hormones are released through the regulated exocytosis of SVs (synaptic vesicles) and LDCVs (large dense-core vesicles), a process that is controlled by calcium. Synaptotagmins are a family of type 1 membrane proteins that share a common domain structure. Most...

  13. Factors affecting calcium balance in Chinese adolescents.

    Science.gov (United States)

    Yin, Jing; Zhang, Qian; Liu, Ailing; Du, Weijing; Wang, Xiaoyan; Hu, Xiaoqi; Ma, Guansheng

    2010-01-01

    Chinese dietary reference intakes (DRIs) for calcium were developed mainly from studies conducted amongst Caucasians, yet a recent review showed that reference calcium intakes for Asians are likely to be different from those of Caucasians (Lee and Jiang, 2008). In order to develop calcium DRIs for Chinese adolescents, it is necessary to explore the characteristics and potential influencing factors of calcium metabolic balance in Chinese adolescents. A total of 80 students (15.1+/-0.8 years) were recruited stratified by gender from a 1-year calcium supplementation study. Subjects were randomly designed to four groups and supplemented with calcium carbonate tablets providing elemental calcium at 63, 354, 660, and 966 mg/day, respectively. Subjects consumed food from a 3-day cycle menu prepared by staff for 10 days. Elemental calcium in samples of foods, feces, and urine was determined in duplicates by inductively coupled plasma atomic emission spectrometry. The total calcium intake ranged from 352 to 1323 mg/day. The calcium apparent absorption efficiency and retention in boys were significantly higher than that in girls (68.7% vs. 46.4%, 480 mg/day vs. 204 mg/day, PCalcium retention increased with calcium intakes, but did not reach a plateau. Calcium absorption efficiency in boys increased with calcium intake up to 665 mg/day, and decreased after that. In girls, calcium absorption efficiency decreased with calcium intake. Calcium absorption efficiency increased within 1 year after first spermatorrhea in boys, but decreased with pubertal development in girls. Sex, calcium intake, age, and pubertal development were the most important determinants of calcium absorption (R(2)=0.508, Pcalcium intake, age, and pubertal development are important factors for calcium retention and absorption during growth, which should be considered for the development of calcium DRIs for Chinese adolescents.

  14. Direct transformation of calcium sulfite to {alpha}-calcium sulfate hemihydrate in a concentrated Ca-Mg-Mn chloride solution under atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Baohong Guan; Hailu Fu; Jie Yu; Guangming Jiang; Bao Kong; Zhongbiao Wu [Zhejiang University, Hangzhou (China). Department of Environmental Engineering

    2011-01-15

    Massive quantities of sulfite-rich flue gas desulfurization (FGD) scrubber sludge have been generated by coal burning power plants. Utilization of the sulfite-rich sludge for preparing {alpha}-calcium sulfate hemihydrate ({alpha}-HH), an important kind of cementitious material, is of particular interest to electric utilities and environmental preservation. In the experiment, calcium sulfite hemihydrate was directly transformed to {alpha}-HH without the occurrence of calcium sulfate dihydrate (DH). The transformation was performed in a concentrated CaCl{sub 2} solution containing Mg{sup 2+} and Mn{sup 2+} at 95{sup o}C, atmospheric pressure and low pH. The oxidation of calcium sulfite and the subsequent crystallization of {alpha}-HH constitute the whole conversion, during which the oxidation turns out to be the rate controlling step. Solid solution comprised of calcium sulfite hemihydrate and calcium sulfate was found to coexist with {alpha}-HH in the suspension. Calcium sulfate increases and calcium sulfite decreases spontaneously until the solid solution disappears. Thus, it is a potential alternative to utilize sulfite-rich FGD scrubber sludge for the direct preparation of {alpha}-HH. 36 refs., 10 figs., 1 tab.

  15. The antiatherogenic potential of calcium antagonists.

    Science.gov (United States)

    Weinstein, D B

    1988-01-01

    Atherosclerosis is an arterial disease characterized by focal accumulation of collagen, elastin, lipids, and calcium at sites associated with macrophage infiltration and altered smooth muscle metabolic function. Studies in several types of animal models, especially cholesterol-fed rabbits, have shown that calcium competitors, calcium chelators, anticalcifying agents, and calcium channel blockers can reduce the accumulation of atherogenic lesion components and thus apparently decrease the progression of lesions. Although there are some conflicting data in the animal model studies using calcium channel antagonists, as a result of differences in experimental designs, it is now apparent that several classes of calcium channel blockers inhibit the progression of early arterial lesions induced by cholesterol feeding. The dihydropyridine calcium channel blockers appear to be more potent antiatherosclerotic agents than other classes of calcium channel antagonists. Several mechanisms involving regulation of endothelial cell, smooth muscle cell, and macrophage metabolic functions may be responsible for the calcium channel blocker effects on early lesion progression. For example, recent studies in cell culture model systems suggest that calcium channel blockers may significantly alter activities that regulate lipoprotein-derived cholesterol accumulation by cells. Some of these activities are independent of calcium flux across voltage-operated calcium channels. Thus, calcium channel blockers may reduce the progression of atherogenic lesions by a combination of decreasing calcium accumulation within arterial wall cells and by altering calcium-independent metabolic activities.

  16. Spatial wavelet analysis of calcium oscillations in developing neurons.

    Directory of Open Access Journals (Sweden)

    Federico Alessandro Ruffinatti

    Full Text Available Calcium signals play a major role in the control of all key stages of neuronal development, and in particular in the growth and orientation of neuritic processes. These signals are characterized by high spatial compartmentalization, a property which has a strong relevance in the different roles of specific neuronal regions in information coding. In this context it is therefore important to understand the structural and functional basis of this spatial compartmentalization, and in particular whether the behavior at each compartment is merely a consequence of its specific geometry or the result of the spatial segregation of specific calcium influx/efflux mechanisms. Here we have developed a novel approach to separate geometrical from functional differences, regardless on the assumptions on the actual mechanisms involved in the generation of calcium signals. First, spatial indices are derived with a wavelet-theoretic approach which define a measure of the oscillations of cytosolic calcium concentration in specific regions of interests (ROIs along a cell, in our case developing chick ciliary ganglion neurons. The resulting spatial profile demonstrates clearly that different ROIs along the neuron are characterized by specific patterns of calcium oscillations. Next we have investigated whether this inhomogeneity is due just to geometrical factors, namely the surface to volume ratio in the different subcompartments (e.g. soma vs. growth cone or it depends on their specific biophysical properties. To this aim correlation functions are computed between the activity indices and the surface/volume ratio along the cell: the data thus obtained are validated by a statistical analysis on a dataset of [Formula: see text] different cells. This analysis shows that whereas in the soma calcium dynamics is highly correlated to the surface/volume ratio, correlations drop in the growth cone-neurite region, suggesting that in this latter case the key factor is the

  17. Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast.

    Science.gov (United States)

    Busti, Stefano; Mapelli, Valeria; Tripodi, Farida; Sanvito, Rossella; Magni, Fulvio; Coccetti, Paola; Rocchetti, Marcella; Nielsen, Jens; Alberghina, Lilia; Vanoni, Marco

    2016-06-16

    Calcium homeostasis is crucial to eukaryotic cell survival. By acting as an enzyme cofactor and a second messenger in several signal transduction pathways, the calcium ion controls many essential biological processes. Inside the endoplasmic reticulum (ER) calcium concentration is carefully regulated to safeguard the correct folding and processing of secretory proteins. By using the model organism Saccharomyces cerevisiae we show that calcium shortage leads to a slowdown of cell growth and metabolism. Accumulation of unfolded proteins within the calcium-depleted lumen of the endoplasmic reticulum (ER stress) triggers the unfolded protein response (UPR) and generates a state of oxidative stress that decreases cell viability. These effects are severe during growth on rapidly fermentable carbon sources and can be mitigated by decreasing the protein synthesis rate or by inducing cellular respiration. Calcium homeostasis, protein biosynthesis and the unfolded protein response are tightly intertwined and the consequences of facing calcium starvation are determined by whether cellular energy production is balanced with demands for anabolic functions. Our findings confirm that the connections linking disturbance of ER calcium equilibrium to ER stress and UPR signaling are evolutionary conserved and highlight the crucial role of metabolism in modulating the effects induced by calcium shortage.

  18. Mitochondrial calcium uptake.

    Science.gov (United States)

    Williams, George S B; Boyman, Liron; Chikando, Aristide C; Khairallah, Ramzi J; Lederer, W J

    2013-06-25

    Calcium (Ca(2+)) uptake into the mitochondrial matrix is critically important to cellular function. As a regulator of matrix Ca(2+) levels, this flux influences energy production and can initiate cell death. If large, this flux could potentially alter intracellular Ca(2+) ([Ca(2+)]i) signals. Despite years of study, fundamental disagreements on the extent and speed of mitochondrial Ca(2+) uptake still exist. Here, we review and quantitatively analyze mitochondrial Ca(2+) uptake fluxes from different tissues and interpret the results with respect to the recently proposed mitochondrial Ca(2+) uniporter (MCU) candidate. This quantitative analysis yields four clear results: (i) under physiological conditions, Ca(2+) influx into the mitochondria via the MCU is small relative to other cytosolic Ca(2+) extrusion pathways; (ii) single MCU conductance is ∼6-7 pS (105 mM [Ca(2+)]), and MCU flux appears to be modulated by [Ca(2+)]i, suggesting Ca(2+) regulation of MCU open probability (P(O)); (iii) in the heart, two features are clear: the number of MCU channels per mitochondrion can be calculated, and MCU probability is low under normal conditions; and (iv) in skeletal muscle and liver cells, uptake per mitochondrion varies in magnitude but total uptake per cell still appears to be modest. Based on our analysis of available quantitative data, we conclude that although Ca(2+) critically regulates mitochondrial function, the mitochondria do not act as a significant dynamic buffer of cytosolic Ca(2+) under physiological conditions. Nevertheless, with prolonged (superphysiological) elevations of [Ca(2+)]i, mitochondrial Ca(2+) uptake can increase 10- to 1,000-fold and begin to shape [Ca(2+)]i dynamics.

  19. Formation of calcium complexes by borogluconate in vitro and during calcium borogluconate infusion in sheep.

    Science.gov (United States)

    Farningham, D A

    1985-07-01

    The effect of borogluconate on plasma calcium fractions was studied in vitro and in vivo in sheep. In vitro calcium chloride was more effective in raising ionised plasma calcium than calcium borogluconate. Sodium borate or gluconate added to blood caused only small decreases in blood ionised calcium. However, together, a synergistic reduction in ionised calcium was observed. Following calcium borogluconate infusions into sheep, total plasma calcium rose primarily because of an increase in the unionised ultrafiltrable fraction. Other changes observed following the infusion were hypercalciuria, decreased glomerular filtration rate and acidosis. Sodium borogluconate administered subcutaneously lowered total plasma calcium. This probably resulted from enhanced calcium excretion. It is suggested that since the anionic component of calcium solutions alters the availability and retention of calcium, it is likely to affect clinical efficacy significantly.

  20. Conversion of calcium sulphide to calcium carbonate during the process of recovery of elemental sulphur from gypsum waste.

    Science.gov (United States)

    de Beer, M; Maree, J P; Liebenberg, L; Doucet, F J

    2014-11-01

    The production of elemental sulphur and calcium carbonate (CaCO3) from gypsum waste can be achieved by thermally reducing the waste into calcium sulphide (CaS), which is then subjected to a direct aqueous carbonation step for the generation of hydrogen sulphide (H2S) and CaCO3. H2S can subsequently be converted to elemental sulphur via the commercially available chemical catalytic Claus process. This study investigated the carbonation of CaS by examining both the solution chemistry of the process and the properties of the formed carbonated product. CaS was successfully converted into CaCO3; however, the reaction yielded low-grade carbonate products (i.e. 99 mass% as CaCO3) or precipitated calcium carbonate (PCC).

  1. Calcium wave of tubuloglomerular feedback.

    Science.gov (United States)

    Peti-Peterdi, János

    2006-08-01

    ATP release from macula densa (MD) cells into the interstitium of the juxtaglomerular (JG) apparatus (JGA) is an integral component of the tubuloglomerular feedback (TGF) mechanism that controls the glomerular filtration rate. Because the cells of the JGA express a number of calcium-coupled purinergic receptors, these studies tested the hypothesis that TGF activation triggers a calcium wave that spreads from the MD toward distant cells of the JGA and glomerulus. Ratiometric calcium imaging of in vitro microperfused isolated JGA-glomerulus complex dissected from rabbits was performed with fluo-4/fura red and confocal fluorescence microscopy. Activation of TGF by increasing tubular flow rate at the MD rapidly produced a significant elevation in intracellular Ca(2+) concentration ([Ca(2+)](i)) in extraglomerular mesangial cells (by 187.6 +/- 45.1 nM) and JG renin granular cells (by 281.4 +/- 66.6 nM). Subsequently, cell-to-cell propagation of the calcium signal at a rate of 12.6 +/- 1.1 microm/s was observed upstream toward proximal segments of the afferent arteriole and adjacent glomeruli, as well as toward intraglomerular elements including the most distant podocytes (5.9 +/- 0.4 microm/s). The same calcium wave was observed in nonperfusing glomeruli, causing vasoconstriction and contractions of the glomerular tuft. Gap junction uncoupling, an ATP scavenger enzyme cocktail, and pharmacological inhibition of P(2) purinergic receptors, but not adenosine A(1) receptor blockade, abolished the changes in [Ca(2+)](i) and propagation of the calcium wave. These studies provided evidence that both gap junctional communication and extracellular ATP are integral components of the TGF calcium wave.

  2. [Calcium metabolism characteristics in microgravity].

    Science.gov (United States)

    Grigor'ev, A I; Larina, I M; Morukov, B V

    1999-06-01

    The results of research of calcium exchange parameters at cosmonauts taken part in long space flights (SF) onboard of orbital stations "SALUT" and "MIR" within 1978-1998 were generalized. The analysis of data received during observation of 44 cosmonauts (18 of them have taken part in long SF twice) was done. The observation was carried out before and after SF by duration 30-438 days. The content of a total calcium in blood serum was increased basically by the increase of its ionized fraction after flights of moderate (3-6 months) and large duration (6-14 months) along with the significant increase of PTH and decrease of calcitonin levels. The content of osteocalcin after SF was increased. Three cosmonauts participated in research of calcium kinetics using stable isotopes before, in time and after a 115-day SF. Reduction of intestinal absorption, excretion through a gastrointestinal tract, and increase of calcium excretion with urine were marked in time of SF. In early postflight period a level of intestinal absorption, on the average, was much lower than in SF, and the calcium removal through intestine was increased. Both renal and intestinal excretion of calcium were not normalized in 3.5-4.5 months after end of SF. Increase of resorbtive processes in bone tissues which induced negative bone balance during flight was observed in all test subjects, proceeding from estimations of speed of the basic calcium flows made on the basis of mathematical modeling. The conclusion about decrease in speed of bone tissue remodeling and strengthening of its resorption proves to be true by data of research of biochemical and endocrine markers.

  3. Effect of lead ion on the hydration of compound phosphate based magnesium phosphate cement%铅离子对复合磷酸盐磷酸镁水泥水化硬化特性的影响∗

    Institute of Scientific and Technical Information of China (English)

    石军兵; 赖振宇; 卢忠远; 黄陈程; 廖其龙

    2015-01-01

    In this paper,the effect of lead ion on the hydration of compound phosphate based magnesium phos-phate cement and its leaching properties was studied.The results show that the compressive strength of com-pound phosphate based magnesium phosphate cement decrease with the increase of lead ion content.High con-tent of lead ion has no significant effect on the setting time of magnesium phosphate cement.During the hydra-tion of compound phosphate based magnesium phosphate cement,lead ion has no significant effect on the pH of the system,but the hydration exothermic peak is delayed by lead ion adding.The lead ion also reduced the amount of hydration heat and affected the degree of crystallization of the main hydration products.In the late hydration reaction of composite magnesium phosphate cement,when the content of lead nitrate is 10% or more the obvious Pb2 P2 O7 diffraction peak can be found.The leaching toxicity of lead ion is 43μg/L and it is lower than the national standard.%研究了铅离子对复合磷酸盐磷酸镁水泥水化硬化特性的影响及其在复合磷酸盐磷酸镁水泥中的稳定性。实验结果表明,复合磷酸盐磷酸镁水泥抗压强度随着铅离子掺量的增加而降低,其中硝酸铅掺量达到10%时,复合磷酸盐磷酸镁水泥的各个龄期的抗压强度发生明显下降。铅离子对复合磷酸盐磷酸镁水泥凝结时间没有明显影响。在复合磷酸盐磷酸镁水泥水化过程中,铅离子对水泥体系的 pH 值影响不大,但能够造成水泥水化放热峰出现的时间延迟,水化放热的总量减少并影响主要水化产物的结晶程度。在复合磷酸盐磷酸镁水泥水化反应后期,当硝酸铅掺量达到10%以上时,在水化产物中出现了较为明显的 Pb2 P2 O7的衍射峰。复合磷酸盐磷酸镁水泥固化铅离子的浸出毒性试验结果(43μg/L)远低于国家标准要求(5 mg/L)。

  4. Calcium supplement: humanity's double-edged sword.

    Science.gov (United States)

    Bunyaratavej, Narong; Buranasinsup, Shutipen

    2011-10-01

    The principle aim of the present study is to investigate the dark side of calcium, pollutions in calcium preparation especially lead (Pb), mercury (Hg) and cadmium (Cd). The collected samples were the different calcium salts in the market and 18 preparations which were classified into 3 groups: Calcium carbonate salts, Chelated calcium and natural-raw calcium. All samples were analyzed for lead, cadmium and mercury by inductively Coupled Plasma Mass Spectrometry (ICP-MS) technique, in house method based on AOAC (2005) 999.10 by ICP-MS. The calcium carbonate and the natural-raw calcium in every sample contained lead at 0.023-0.407 mg/kg of calcium powder. Meanwhile, the natural-raw calcium such as oyster, coral and animal bone showed amount of lead at 0.106-0.384 mg/kg with small amounts of mercury and cadmium. The chelated calcium such as calcium gluconate, calcium lactate and calcium citrate are free of lead.

  5. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials

    Energy Technology Data Exchange (ETDEWEB)

    He, Fupo [Department of Biomedical Engineering, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182 (China); Zhang, Jing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Yang, Fanwen; Zhu, Jixiang; Tian, Xiumei [Department of Biomedical Engineering, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182 (China); Chen, Xiaoming, E-mail: xmchenw@126.com [Department of Biomedical Engineering, School of Basic Sciences, Guangzhou Medical University, Guangzhou 510182 (China)

    2015-05-01

    The robust calcium carbonate composite ceramics (CC/PG) can be acquired by fast sintering calcium carbonate at a low temperature (650 °C) using a biocompatible, degradable phosphate-based glass (PG) as sintering agent. In the present study, the in vitro degradation and cell response of CC/PG were assessed and compared with 4 synthetic bone substitute materials, calcium carbonate ceramic (CC), PG, hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics. The degradation rates in decreasing order were as follows: PG, CC, CC/PG, β-TCP, and HA. The proliferation of rat bone mesenchymal stem cells (rMSCs) cultured on the CC/PG was comparable with that on CC and PG, but inferior to HA and β-TCP. The alkaline phosphatase (ALP) activity of rMSCs on CC/PG was lower than PG, comparable with β-TCP, but higher than HA. The rMSCs on CC/PG and PG had enhanced gene expression in specific osteogenic markers, respectively. Compared to HA and β-TCP, the rMSCs on the CC/PG expressed relatively lower level of collagen I and runt-related transcription factor 2, but showed more considerable expression of osteopontin. Although CC, PG, HA, and β-TCP possessed impressive performances in some specific aspects, they faced extant intrinsic drawbacks in either degradation rate or mechanical strength. Based on considerable compressive strength, moderate degradation rate, good cell response, and being free of obvious shortcoming, the CC/PG is promising as another choice for bone substitute materials. - Highlights: • A calcium carbonate composite ceramic (CC/PG) was acquired. • The in vitro degradation and cell response of CC/PG were compared to 4 materials. • The CC/PG showed moderate degradation rate. • The CC/PG exhibited good cell response. • The CC/PG was free of obvious drawback compared to other materials.

  6. Effect of boron oxide addition on fibre drawing, mechanical properties and dissolution behaviour of phosphate-based glass fibres with fixed 40, 45 and 50 mol% P2O5.

    Science.gov (United States)

    Sharmin, Nusrat; Parsons, Andrew J; Rudd, Chris D; Ahmed, Ifty

    2014-11-01

    Previous studies investigating manufacture of phosphate-based glass fibres from glasses fixed with P2O5 content less than 50 mol% showed that continuous manufacture without breakage was very difficult. In this study, nine phosphate-based glass formulations from the system P2O5-CaO-Na2O-MgO-B2O3 were prepared with P2O5 contents fixed at 40, 45 and 50 mol%, where Na2O was replaced by 5 and 10 mol% B2O3 and MgO and CaO were fixed to 24 and 16 mol%, respectively. The effect of B2O3 addition on the fibre drawing, fibre mechanical properties and dissolution behaviour was investigated. It was found that addition of 5 and 10 mol% B2O3 enabled successful drawing of continuous fibres from glasses with phosphate (P2O5) contents fixed at 40, 45 and 50 mol%. The mechanical properties of the fibres were found to significantly increase with increasing B2O3 content. The highest tensile strength (1200 ± 130 MPa) was recorded for 45P2O5-16CaO-5Na2O-24MgO-10B2O3 glass fibres. The fibres were annealed, and a comparison of the mechanical properties and mode of degradation of annealed and non-annealed fibres were investigated. A decrease in tensile strength and an increase in tensile modulus were observed for the annealed fibres. An assessment of the change in mechanical properties of both the annealed and non-annealed fibres was performed in phosphate-buffered saline (PBS) at 37℃ for 28 and 60 days, respectively. Initial loss of mechanical properties due to annealing was found to be recovered with degradation. The B2O3-containing glass fibres were found to degrade at a much slower rate as compared to the non-B2O3-containing fibres. Both annealed and non-annealed fibres exhibited a peeling effect of the fibre's outer layer during degradation.

  7. An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration.

    Science.gov (United States)

    Liu, Huinan; Yazici, Hilal; Ergun, Celaletdin; Webster, Thomas J; Bermek, Hakan

    2008-09-01

    Calcium phosphate based bioceramics have been widely used for orthopedic applications due to their chemical similarity to natural bone. The Ca/P stoichiometry of calcium phosphates strongly influences their performance under biological conditions, which have not yet been fully elucidated to date. For this reason, the objective of this in vitro study was to understand the relationship between the Ca/P ratio of nano-to-micron particulate calcium phosphate substrates and their biological properties, such as osteoblast (bone-forming cell) viability, collagen production, alkaline phosphatase activity and nitric oxide (NO) production. A group of calcium phosphates with Ca/P ratios between 0.5 and 2.5 were obtained by intentionally adjusting the Ca/P stoichiometry of the initial reactants necessary for calcium phosphate precipitation. For samples with 0.5 and 0.75 Ca/P ratios, tricalcium phosphate (TCP) and Ca(2)P(2)O(7) phases were observed. In contrast, for samples with 1.0 and 1.33 Ca/P ratios, the only stable phase was TCP. For samples with a 1.5 Ca/P ratio, the TCP phase was dominant; however, small amounts of the hydroxyapatite (HA) phase started to appear. For samples with a 1.6 Ca/P ratio, the HA phase was dominant. Lastly, for samples with 2.0 and 2.5 Ca/P ratios, the CaO phase started to appear in the HA phase which was the dominant phase. Moreover, the average grain size and the average pore size decreased from micron-scale (e.g. 1370nm for a 0.5 Ca/P ratio) to nano-scale (e.g. 262nm for a 2.5 Ca/P ratio) with increasing Ca/P ratios. The porosity (%) of calcium phosphate substrates also decreased with increasing Ca/P ratios. Previous in vitro results demonstrated increased osteoblast adhesion on calcium phosphates with higher Ca/P ratios (up to 2.5). The present study showed that the collagen production by osteoblasts was similar between all the calcium phosphates but slightly lower with a 1.6 Ca/P ratio. Greater alkaline phosphatase activity by osteoblasts was

  8. The effect of variable calcium and very low calcium diets on human calcium metabolism. Ph.D. Thesis. Final Report

    Science.gov (United States)

    Chu, J.

    1971-01-01

    The effects of a very low calcium diet, with variable high and low protein intake, on the dynamics of calcium metabolism and the mechanism of calciuretics, are examined. The experiment, using male subjects, was designed to study the role of intestinal calcium absorption on urinary calcium excretion, and the rate of production of endogeneously secreted calcium in the gastrointestinal tract. The study showed an average of 70% fractional absorption rate during very low calcium intake, and that a decrease in renal tubular reabsorption of calcium is responsible for calciuretic effects of high protein intake. The study also indicates that there is a tendency to develop osteoporosis after long periods of low calcium intake, especially with a concurrent high protein intake.

  9. Porous calcium phosphate-poly (lactic-co-glycolic) acid composite bone cement: A viable tunable drug delivery system.

    Science.gov (United States)

    Roy, Abhijit; Jhunjhunwala, Siddharth; Bayer, Emily; Fedorchak, Morgan; Little, Steve R; Kumta, Prashant N

    2016-02-01

    Calcium phosphate based cements (CPCs) are frequently used as bone void fillers for non-load bearing segmental bone defects due to their clinically relevant handling characteristics and ability to promote natural bone growth. Macroporous CPC scaffolds with interconnected pores are preferred for their ability to degrade faster and enable accelerated bone regeneration. Herein, a composite CPC scaffold is developed using newly developed resorbable calcium phosphate cement (ReCaPP) formulation containing degradable microspheres of bio-compatible poly (lactic-co-glycolic acid) (PLGA) serving as porogen. The present study is aimed at characterizing the effect of in-vitro degradation of PLGA microspheres on the physical, chemical and structural characteristics of the composite cements. The porosity measurements results reveal the formation of highly interconnected macroporous scaffolds after degradation of PLGA microspheres. The in-vitro characterizations also suggest that the degradation by products of PLGA reduces the pH of the local environment thereby increasing the dissolution rate of the cement. In addition, the in-vitro vancomycin release from the composite CPC scaffold suggests that the drug association with the composite scaffolds can be tuned to achieve control release kinetics. Further, the study demonstrates control release lasting for longer than 10weeks from the composite cements in which vancomycin is encapsulated in PLGA microspheres.

  10. Vitamin D and intestinal calcium absorption.

    Science.gov (United States)

    Christakos, Sylvia; Dhawan, Puneet; Porta, Angela; Mady, Leila J; Seth, Tanya

    2011-12-05

    The principal function of vitamin D in calcium homeostasis is to increase calcium absorption from the intestine. Calcium is absorbed by both an active transcellular pathway, which is energy dependent, and by a passive paracellular pathway through tight junctions. 1,25Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) the hormonally active form of vitamin D, through its genomic actions, is the major stimulator of active intestinal calcium absorption which involves calcium influx, translocation of calcium through the interior of the enterocyte and basolateral extrusion of calcium by the intestinal plasma membrane pump. This article reviews recent studies that have challenged the traditional model of vitamin D mediated transcellular calcium absorption and the crucial role of specific calcium transport proteins in intestinal calcium absorption. There is also increasing evidence that 1,25(OH)(2)D(3) can enhance paracellular calcium diffusion. The influence of estrogen, prolactin, glucocorticoids and aging on intestinal calcium absorption and the role of the distal intestine in vitamin D mediated intestinal calcium absorption are also discussed.

  11. FIXED COMBINATION OF THE CALCIUM CHANNEL BLOCKER LERCANIDIPINE AND ANGIOTENSIN CONVERTING ENZYME INHIBITOR ENALAPRIL: POSSIBILITY OF USAGE

    Directory of Open Access Journals (Sweden)

    O. D. Ostroumova

    2013-01-01

    Full Text Available Data on the updated approach to the choice of two-component antihypertensive combinations for different clinical situations are presented. Advantages and indications for combination of an angiotensin converting enzyme (ACE inhibitor and dihydropyridine calcium antagonist are considered. Data on the efficacy and safety of the combination of calcium antagonist of the third generation, lercanidipine, and ACE inhibitor, enalapril, are presented.

  12. The effect of calcium gluconate and other calcium supplements as a dietary calcium source on magnesium absorption in rats.

    Science.gov (United States)

    Chonan, O; Takahashi, R; Yasui, H; Watanuki, M

    1997-01-01

    The effects of commercially available calcium supplements (calcium carbonate, calcium gluconate, oyster shell preparation and bovine bone preparation) and gluconic acid on the absorption of calcium and magnesium were evaluated for 30 days in male Wistar rats. There were no differences in the apparent absorption ratio of calcium among rats fed each calcium supplement; however, the rats fed the calcium gluconate diet had a higher apparent absorption ratio of magnesium than the rats fed the other calcium supplements. Dietary gluconic acid also more markedly stimulated magnesium absorption than the calcium carbonate diet, and the bone (femur and tibia) magnesium contents of rats fed the gluconic acid diet were significantly higher than those of the rats fed the calcium carbonate diet. Furthermore, the weight of cecal tissue and the concentrations of acetic acid and butyric acid in cecal digesta of rats fed the calcium gluconate diet or the gluconic acid diet were significantly increased. We speculate that the stimulation of magnesium absorption in rats fed the calcium gluconate diet is a result of the gluconic acid component and the effect of gluconic acid on magnesium absorption probably results from cecal hypertrophy, magnesium solubility in the large intestine and the effects of volatile fatty acids on magnesium absorption.

  13. Estimation of presynaptic calcium currents and endogenous calcium buffers at the frog neuromuscular junction with two different calcium fluorescent dyes

    Directory of Open Access Journals (Sweden)

    Dmitry eSamigullin

    2015-01-01

    Full Text Available At the frog neuromuscular junction, under physiological conditions, the direct measurement of calcium currents and of the concentration of intracellular calcium buffers—which determine the kinetics of calcium concentration and neurotransmitter release from the nerve terminal—has hitherto been technically impossible. With the aim of quantifying both Ca2+ currents and the intracellular calcium buffers, we measured fluorescence signals from nerve terminals loaded with the low-affinity calcium dye Magnesium Green or the high-affinity dye Oregon Green BAPTA-1, simultaneously with microelectrode recordings of nerve-action potentials and end-plate currents. The action-potential-induced fluorescence signals in the nerve terminals developed much more slowly than the postsynaptic response. To clarify the reasons for this observation and to define a spatiotemporal profile of intracellular calcium and of the concentration of mobile and fixed calcium buffers, mathematical modeling was employed. The best approximations of the experimental calcium transients for both calcium dyes were obtained when the calcium current had an amplitude of 1.6 ± 0.08 рА and a half-decay time of 1.2 ± 0.06 ms, and when the concentrations of mobile and fixed calcium buffers were 250 ± 13 µM and 8 ± 0.4 mM, respectively. High concentrations of endogenous buffers define the time course of calcium transients after an action potential in the axoplasm, and may modify synaptic plasticity.

  14. Calcium fertilization increases the concentration of calcium in sapwood and calcium oxalate in foliage of red spruce

    Science.gov (United States)

    Kevin T. Smith; Walter C. Shortle; Jon H. Connolly; Rakesh Minocha; Jody Jellison

    2009-01-01

    Calcium cycling plays a key role in the health and productivity of red spruce forests in the northeastern US. A portion of the flowpath of calcium within forests includes translocation as Ca2+ in sapwood and accumulation as crystals of calcium oxalate in foliage. Concentrations of Ca in these tree tissues have been used as markers of...

  15. Calcium phosphate/microgel composites for 3D powderbed printing of ceramic materials.

    Science.gov (United States)

    Birkholz, Mandy-Nicole; Agrawal, Garima; Bergmann, Christian; Schröder, Ricarda; Lechner, Sebastian J; Pich, Andrij; Fischer, Horst

    2016-06-01

    Composites of microgels and calcium phosphates are promising as drug delivery systems and basic components for bone substitute implants. In this study, we synthesized novel composite materials consisting of pure β-tricalcium phosphate and stimuli-responsive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate-co-vinylimidazole) microgels. The chemical composition, thermal properties and morphology for obtained composites were extensively characterized by Fourier transform infrared, X-ray photoelectron spectroscopy, IGAsorp moisture sorption analyzer, thermogravimetric analysis, granulometric analysis, ESEM, energy dispersive X-ray spectroscopy and TEM. Mechanical properties of the composites were evaluated by ball-on-three-balls test to determine the biaxial strength. Furthermore, initial 3D powderbed-based printing tests were conducted with spray-dried composites and diluted 2-propanol as a binder to evaluate a new binding concept for β-tricalcium phosphate-based granulates. The printed ceramic bodies were characterized before and after a sintering step by ESEM. The hypothesis that the microgels act as polymer adhesive agents by efficient chemical interactions with the β-tricalcium phosphate particles was confirmed. The obtained composites can be used for the development of new scaffolds.

  16. Long-term evaluation of the degradation behavior of three apatite-forming calcium phosphate cements.

    Science.gov (United States)

    An, Jie; Liao, Hongbing; Kucko, Nathan W; Herber, Ralf-Peter; Wolke, Joop G C; van den Beucken, Jeroen J J P; Jansen, John A; Leeuwenburgh, Sander C G

    2016-05-01

    Calcium phosphate cements (CPCs) are injectable bone substitutes with a long clinical history because of their biocompatibility and osteoconductivity. Nevertheless, their cohesion upon injection into perfused bone defects as well as their long-term degradation behavior remain major clinical challenges. Therefore, the long-term degradation behavior of two types of α-tricalcium phosphate-based, apatite-forming CPCs was compared to a commercially available apatite-forming cement, that is HydroSet™ . Carboxyl methylcellulose (CMC) was used as cohesion promotor to improve handling properties of the two experimental cements, whereas poly (d, l-lactic-co-glycolic) acid (PLGA) microparticles were added to introduce macroporosity and stimulate CPC degradation. All three CPCs were injected into defects drilled into rabbit femoral condyles and explanted after 4, 12, or 26 weeks, after which the bone response was assessed both qualitatively and quantitatively. CPCs without PLGA microparticles degraded only at the periphery of the implants, while the residual CPC volume was close to 90%. On the contrary, bone ingrowth was observed not only at the periphery of the CPC, but also throughout the center of the implants after 26 weeks of implantation for the PLGA-containing CPCs with a residual CPC volume of approximately 55%. In conclusion, it was shown that CPC containing CMC and PLGA was able to induce partial degradation of apatite-forming CPCs and concomitant replacement by bone tissue.

  17. Calcium release from experimental dental materials.

    Science.gov (United States)

    Okulus, Zuzanna; Buchwald, Tomasz; Voelkel, Adam

    2016-11-01

    The calcium release from calcium phosphate-containing experimental dental restorative materials was examined. The possible correlation of ion release with initial calcium content, solubility and degree of curing (degree of conversion) of examined materials was also investigated. Calcium release was measured with the use of an ion-selective electrode in an aqueous solution. Solubility was established by the weighing method. Raman spectroscopy was applied for the determination of the degree of conversion, while initial calcium content was examined with the use of energy-dispersive spectroscopy. For examined materials, the amount of calcium released was found to be positively correlated with solubility and initial calcium content. It was also found that the degree of conversion does not affect the ability of these experimental composites to release calcium ions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Mechanism of store-operated calcium entry

    Indian Academy of Sciences (India)

    Devkanya Dutta

    2000-12-01

    Activation of receptors coupled to the phospholipase C/IP3 signalling pathway results in a rapid release of calcium from its intracellular stores, eventually leading to depletion of these stores. Calcium store depletion triggers an influx of extracellular calcium across the plasma membrane, a mechanism known as the store-operated calcium entry or capacitative calcium entry. Capacitative calcium current plays a key role in replenishing calcium stores and activating various physiological processes. Despite considerable efforts, very little is known about the molecular nature of the capacitative channel and the signalling pathway that activates it. This review summarizes our current knowledge about store operated calcium entry and suggests possible hypotheses for its mode of activation.

  19. The ins and outs of mitochondrial calcium.

    Science.gov (United States)

    Finkel, Toren; Menazza, Sara; Holmström, Kira M; Parks, Randi J; Liu, Julia; Sun, Junhui; Liu, Jie; Pan, Xin; Murphy, Elizabeth

    2015-05-22

    Calcium is thought to play an important role in regulating mitochondrial function. Evidence suggests that an increase in mitochondrial calcium can augment ATP production by altering the activity of calcium-sensitive mitochondrial matrix enzymes. In contrast, the entry of large amounts of mitochondrial calcium in the setting of ischemia-reperfusion injury is thought to be a critical event in triggering cellular necrosis. For many decades, the details of how calcium entered the mitochondria remained a biological mystery. In the past few years, significant progress has been made in identifying the molecular components of the mitochondrial calcium uniporter complex. Here, we review how calcium enters and leaves the mitochondria, the growing insight into the topology, stoichiometry and function of the uniporter complex, and the early lessons learned from some initial mouse models that genetically perturb mitochondrial calcium homeostasis.

  20. Familial hypocalciuric hypercalcemia and calcium sensing receptor

    DEFF Research Database (Denmark)

    Mrgan, Monija; Nielsen, Sanne; Brixen, Kim

    2014-01-01

    Familial hypocalciuric hypercalcemia (FHH) is a lifelong, benign autosomal dominant disease characterized by hypercalcemia, normal to increased parathyroid hormone level, and a relatively low renal calcium excretion. Inactivation of the calcium-sensing receptor in heterozygous patients results in...

  1. Vitamin D, Calcium, and Bone Health

    Science.gov (United States)

    ... Bone Health Featured Resource Find an Endocrinologist Search Vitamin D, Calcium, and Bone Health March 2012 Download ... also helps keep your bones strong. Why are vitamin D and calcium important to bone health? Vitamin ...

  2. Decalcification of calcium polycarbophil in rats.

    Science.gov (United States)

    Yamada, T; Saito, T; Takahara, E; Nagata, O; Tamai, I; Tsuji, A

    1997-03-01

    The in vivo decalcification of calcium polycarbophil was examined. The decalcification ratio of [45Ca]calcium polycarbophil in the stomach after oral dosing to rats was more than 70% at each designated time and quite closely followed in the in vitro decalcification curve, indicating that the greater part of the calcium ion is released from calcium polycarbophil under normal gastric acidic conditions. The residual radioactivity in rat gastrointestine was nearly equal to that after oral administration of either [45Ca]calcium chloride + polycarbophil. The serum level of radioactivity was nearly equal to that after oral dosing of [45Ca]calcium lactate. These results indicate that the greater part of orally administered calcium polycarbophil released calcium ions to produce polycarbophil in vivo.

  3. The interactive roles of zinc and calcium in mitochondrial dysfunction and neurodegeneration.

    Science.gov (United States)

    Pivovarova, Natalia B; Stanika, Ruslan I; Kazanina, Galina; Villanueva, Idalis; Andrews, S Brian

    2014-02-01

    Zinc has been implicated in neurodegeneration following ischemia. In analogy with calcium, zinc has been proposed to induce toxicity via mitochondrial dysfunction, but the relative role of each cation in mitochondrial damage remains unclear. Here, we report that under conditions mimicking ischemia in hippocampal neurons - normal (2 mM) calcium plus elevated (> 100 μM) exogenous zinc - mitochondrial dysfunction evoked by glutamate, kainate or direct depolarization is, despite significant zinc uptake, primarily governed by calcium. Thus, robust mitochondrial ion accumulation, swelling, depolarization, and reactive oxygen species generation were only observed after toxic stimulation in calcium-containing media. This contrasts with the lack of any mitochondrial response in zinc-containing but calcium-free medium, even though zinc uptake and toxicity were strong under these conditions. Indeed, abnormally high, ionophore-induced zinc uptake was necessary to elicit any mitochondrial depolarization. In calcium- and zinc-containing media, depolarization-induced zinc uptake facilitated cell death and enhanced accumulation of mitochondrial calcium, which localized to characteristic matrix precipitates. Some of these contained detectable amounts of zinc. Together these data indicate that zinc uptake is generally insufficient to trigger mitochondrial dysfunction, so that mechanism(s) of zinc toxicity must be different from that of calcium. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  4. Calcium regulation in endosymbiotic organelles of plants

    OpenAIRE

    Bussemer, Johanna; Vothknecht, Ute C.; Chigri, Fatima

    2009-01-01

    In plant cells calcium-dependent signaling pathways are involved in a large array of biological processes in response to hormones, biotic/abiotic stress signals and a variety of developmental cues. This is generally achieved through binding of calcium to diverse calcium-sensing proteins, which subsequently control downstream events by activating or inhibiting biochemical reactions. Regulation by calcium is considered as a eukaryotic trait and has not been described for prokaryotes. Neverthele...

  5. Variable efficacy of calcium carbonate tablets.

    Science.gov (United States)

    Kobrin, S M; Goldstein, S J; Shangraw, R F; Raja, R M

    1989-12-01

    Orally administered calcium carbonate tablets are commonly prescribed as a calcium supplement and for their phosphate-binding effects in renal failure patients. Two cases are reported in which a commercially available brand of calcium carbonate tablets appeared to be ineffective. Formal investigation of the bioavailability of this product revealed it to have impaired disintegration and dissolution and a lack of clinical efficacy. Recommendations that will enable physicians to avoid prescribing and pharmacists to avoid dispensing ineffective calcium carbonate tablets are proposed.

  6. Calcium channel blockers and Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Yi Tan; Yulin Deng; Hong Qing

    2012-01-01

    Alzheimer's disease is characterized by two pathological hallmarks: amyloid plaques and neurofi-brillary tangles. In addition, calcium homeostasis is disrupted in the course of human aging. Recent research shows that dense plaques can cause functional alteration of calcium signals in mice with Alzheimer's disease. Calcium channel blockers are effective therapeutics for treating Alzheimer's disease. This review provides an overview of the current research of calcium channel blockers in-volved in Alzheimer's disease therapy.

  7. Teaching Calcium-Induced Calcium Release in Cardiomyocytes Using a Classic Paper by Fabiato

    Science.gov (United States)

    Liang, Willmann

    2008-01-01

    This teaching paper utilizes the materials presented by Dr. Fabiato in his review article entitled "Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum." In the review, supporting evidence of calcium-induced calcium release (CICR) is presented. Data concerning potential objections to the CICR theory are discussed as well. In…

  8. 21 CFR 582.3189 - Calcium ascorbate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium ascorbate. 582.3189 Section 582.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3189 Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance...

  9. 21 CFR 182.3189 - Calcium ascorbate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium ascorbate. 182.3189 Section 182.3189 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium ascorbate. (a) Product. Calcium ascorbate. (b) Conditions of use. This substance is...

  10. 21 CFR 582.7187 - Calcium alginate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium alginate. 582.7187 Section 582.7187 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium alginate. (a) Product. Calcium alginate. (b) Conditions of use. This substance is...

  11. Lactulose stimulates calcium absorption in postmenopausal women

    NARCIS (Netherlands)

    Heuvel, E.G.H.M. van den; Muijs, T.; Dokkum, W. van; Schaafsma, G.

    1999-01-01

    Animal studies have indicated that calcium absorption is increased by lactulose, a synthetic disaccharide. Therefore, the influence of lactulose on calcium absorption was measured in postmenopausal women who may benefit from the possible enhancing effect of lactulose on calcium absorption. Twelve

  12. 21 CFR 582.5217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.5217 Section 582.5217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  13. 21 CFR 582.1217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  14. 21 CFR 182.1217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  15. Abnormalities of serum calcium and magnesium

    Science.gov (United States)

    Neonatal hypocalcemia is defined as a total serum calcium concentration of <7 mg/dL or an ionized calcium concentration of <4 mg/dL (1mmol/L). In very low birth weight (VLBW) infants, ionized calcium values of 0.8 to 1 mmol/L are common and not usually associated with clinical symptoms. In larger in...

  16. Acute calcium homeostasis in MHS swine.

    Science.gov (United States)

    Harrison, G G; Morrell, D F; Brain, V; Jaros, G G

    1987-07-01

    To elucidate a pathogenesis for the reduction in bone calcium content observed in MHS individuals, we studied the acute calcium homeostasis of MHS swine. This was achieved by the serial measurement, with a calcium selective electrode, of calcium transients in Landrace MHS (five) and control Landrace/large white cross MH negative (five) swine following IV bolus injection of calcium gluconate 0.1 mmol X kg-1--a dose which induced an acute 45 per cent increase in plasma ionised calcium. Experimental animals were anaesthetised with ketamine 10 mg X kg-1 IM, thiopentone (intermittent divided doses) 15-25 mg X kg-1 (total) IV and N2O/O2 (FIO2 0.3) by IPPV to maintain a normal blood gas, acid/base state. The plasma ionised calcium decay curve observed in MHS swine did not differ from that of control normal swine. Further it was noted that the induced acute rise in plasma ionised calcium failed to trigger the MH syndrome in any MHS swine. It is concluded that the mechanisms of acute calcium homeostasis in MHS swine are normal. An explanation for the reduction in bone calcium content observed in MHS individuals must be sought, therefore, through study of the slow long-term component of the calcium regulatory process. In addition, the conventional strictures placed on the use, in MHS patients, of calcium gluconate are called in question.

  17. 21 CFR 582.6219 - Calcium phytate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phytate. 582.6219 Section 582.6219 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium phytate. (a) Product. Calcium phytate. (b) Conditions of use. This substance is...

  18. Multifaceted Role of Calcium in Cancer.

    Science.gov (United States)

    Sarode, Gargi S; Sarode, Sachin C; Patil, Shankargouda

    2017-01-01

    Role of calcium in bone remodeling and tooth remineral-ization is well known. However, calcium also plays a very imperative role in many biochemical reactions, which are essential for normal functioning of cells. The calcium associated tissue homeostasis encompasses activities like proliferation, cell death, cell motility, oxygen, and nutrient supply.

  19. Lactulose stimulates calcium absorption in postmenopausal women

    NARCIS (Netherlands)

    Heuvel, E.G.H.M. van den; Muijs, T.; Dokkum, W. van; Schaafsma, G.

    1999-01-01

    Animal studies have indicated that calcium absorption is increased by lactulose, a synthetic disaccharide. Therefore, the influence of lactulose on calcium absorption was measured in postmenopausal women who may benefit from the possible enhancing effect of lactulose on calcium absorption. Twelve po

  20. Dentin-cement Interfacial Interaction: Calcium Silicates and Polyalkenoates

    OpenAIRE

    Atmeh, A.R.; Chong, E.Z.; Richard, G; Festy, F.; Watson, T.F.

    2012-01-01

    The interfacial properties of a new calcium-silicate-based coronal restorative material (Biodentine™) and a glass-ionomer cement (GIC) with dentin have been studied by confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), micro-Raman spectroscopy, and two-photon auto-fluorescence and second-harmonic-generation (SHG) imaging. Results indicate the formation of tag-like structures alongside an interfacial layer called the “mineral infiltration zone”, where the alkaline c...

  1. INFLUENCE OF POLYMERIC ADDITIVES ON CRYSTALLIZATION OF CALCIUM SULPHATE DIHYDRATE

    OpenAIRE

    Ustinova Yulia Valer’evna

    2013-01-01

    Currently, functional additives are widely spread in the production of inorganic dry mixtures. However, their impact on the microstructure of products, generated in the process of hardening of inorganic binders, is understudied. In this context, the goal of the work is the study of calcium sulfate dihydrate (CaSO •2H O) crystallization. Super plasticizer based on sulfonated melamine-formaldehyde resin, methylcellulose and vinyl acetate, ethylene and vinyl chloride copolymer powder were select...

  2. Predictive value of derived calcium figures based on the measurement of ionised calcium.

    Science.gov (United States)

    Gardner, M D; Dryburgh, F J; Fyffe, J A; Jenkins, A S

    1981-03-01

    The algorithms used in this hospital to assess calcium status are calculated ionised serum calcium and the serum calcium concentration adjusted for albumin. In order to establish their clinical usefulness, they were compared with the ionised calcium concentration measured on the Nova 2 instrument in patients with various calcium and protein abnormalities. Good correlation was found between the measured and calculated values. The predictive values for the calculated results and for total serum calcium concentrations are presented. In this series, the derived values were useful in predicting the serum ionised calcium concentration of the patients studied.

  3. Ion reactivity of calcium-deficient hydroxyapatite in standard cell culture media.

    Science.gov (United States)

    Gustavsson, J; Ginebra, M P; Engel, E; Planell, J

    2011-12-01

    Solution-mediated surface reactions occur for most calcium phosphate-based biomaterials and may influence cellular response. A reasonable extrapolation of such processes observed in vitro to in vivo performance requires a deep understanding of the underlying mechanisms. We therefore systematically investigated the nature of ion reactivity of calcium-deficient hydroxyapatite (CDHA) by exposing it for different periods of time to standard cell culture media of different chemical composition (DMEM and McCoy medium, with and without osteogenic supplements and serum proteins). Kinetic ion interaction studies of principal extracellular ions revealed non-linear sorption of Ca²⁺ (∼50% sorption) and K⁺ (∼8%) as well as acidification of all media during initial contact with CDHA (48h). Interestingly, inorganic phosphorus (P(i)) was sorbed from McCoy medium (∼50%) or when using osteogenic media containing β-glycerophosphate, but not from DMEM medium. Non-linear sorption data could be perfectly described by pseudo-first-order and pseudo-second-order sorption models. At longer contact time (21 days), and with frequent renewal of culture medium, sorption of Ca²⁺ remained constant throughout the experiment, while sorption of P(i) gradually decreased in McCoy medium. In great contrast, CDHA began to release P(i) slowly with time when using DMEM medium. Infrared spectra showed that CDHA exposed to culture media had a carbonated surface chemistry, suggesting that carbonate plays a key role in the ion reactivity of CDHA. Our data show that different compositions of the aqueous environment may provoke opposite ion reactivity of CDHA, and this must be carefully considered when evaluating the osteoinductive potential of the material.

  4. Calcium Orthophosphate-Based Bioceramics

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2013-09-01

    Full Text Available Various types of grafts have been traditionally used to restore damaged bones. In the late 1960s, a strong interest was raised in studying ceramics as potential bone grafts due to their biomechanical properties. A bit later, such synthetic biomaterials were called bioceramics. In principle, bioceramics can be prepared from diverse materials but this review is limited to calcium orthophosphate-based formulations only, which possess the specific advantages due to the chemical similarity to mammalian bones and teeth. During the past 40 years, there have been a number of important achievements in this field. Namely, after the initial development of bioceramics that was just tolerated in the physiological environment, an emphasis was shifted towards the formulations able to form direct chemical bonds with the adjacent bones. Afterwards, by the structural and compositional controls, it became possible to choose whether the calcium orthophosphate-based implants remain biologically stable once incorporated into the skeletal structure or whether they were resorbed over time. At the turn of the millennium, a new concept of regenerative bioceramics was developed and such formulations became an integrated part of the tissue engineering approach. Now calcium orthophosphate scaffolds are designed to induce bone formation and vascularization. These scaffolds are often porous and harbor different biomolecules and/or cells. Therefore, current biomedical applications of calcium orthophosphate bioceramics include bone augmentations, artificial bone grafts, maxillofacial reconstruction, spinal fusion, periodontal disease repairs and bone fillers after tumor surgery. Perspective future applications comprise drug delivery and tissue engineering purposes because calcium orthophosphates appear to be promising carriers of growth factors, bioactive peptides and various types of cells.

  5. Nonequilibrium Calcium Dynamics Regulate the Autonomous Firing Pattern of Rat Striatal Cholinergic Interneurons

    OpenAIRE

    Goldberg, Joshua A.; Teagarden, Mark A.; Foehring, Robert C.; Wilson, Charles J.

    2009-01-01

    Striatal cholinergic interneurons discharge rhythmically in two patterns associated with different afterhyperpolarization timescales, each dictated by a different calcium-dependent potassium current. Single spiking depends on a medium-duration afterhyperpolarization (mAHP) generated by rapid SK currents that are associated with N-type calcium channels. Periodic bursting is driven by a delayed and slowly decaying afterhyperpolarization (sAHP) current associated with L-type channels. Using calc...

  6. Apical entry channels in calcium-transporting epithelia.

    Science.gov (United States)

    Peng, Ji-Bin; Brown, Edward M; Hediger, Matthias A

    2003-08-01

    The identification of the apical calcium channels CaT1 and ECaC revealed the key molecular mechanisms underlying apical calcium entry in calcium-transporting epithelia. These channels are regulated directly or indirectly by vitamin D and dietary calcium and undergo feedback control by intracellular calcium, suggesting their rate-limiting roles in transcellular calcium transport.

  7. Effect of dietary calcium and 1,25-(OH)2D3 on the expression of calcium transport genes in calbindin-D9k and -D28k double knockout mice.

    Science.gov (United States)

    Ko, Sang-Hwan; Choi, Kyung-Chul; Oh, Goo Taeg; Jeung, Eui-Bae

    2009-02-01

    The phenotypes of calbindin-D9k (CaBP-9k) and -28k (CaBP-28k) single knockout (KO) mice are similar to wild-type (WT) mice due to the compensatory action of other calcium transport proteins. In this study, we generated CaBP-9k/CaBP-28k double knockout (DKO) mice in order to investigate the importance of CaBP-9k and CaBP-28k in active calcium processing. Under normal dietary conditions, DKO mice did not exhibit any changes in phenotype or the expression of active calcium transport genes as compared to WT or CaBP-28k KO mice. Under calcium-deficient dietary conditions, the phenotype and expression of calcium transport genes in CaBP-28k KO mice were similar to WT, whereas in DKO mice, serum calcium levels and bone length were decreased. The intestinal and renal expression of transient receptor potential vanilloid member 6 (TRPV6) mRNA was significantly decreased in DKO mice fed a calcium-deficient diet as compared to CaBP-28k KO or WT mice, and DKO mice died after 4 weeks on a calcium-deficient diet. Body weight, bone mineral density (BMD) and bone length were significantly reduced in all mice fed a calcium and 1,25-(OH)(2)D(3)-deficient diet, as compared to a normal diet, and none of the mice survived more than 4 weeks. These results indicate that deletion of CaBP-28k alone does not affect body calcium homeostasis, but that deletion of CaBP-9k and CaBP-28k has a significant effect on calcium processing under calcium-deficient conditions, confirming the importance of dietary calcium and 1,25-(OH)(2)D(3) during growth and development.

  8. Apatite Formation from Amorphous Calcium Phosphate and Mixed Amorphous Calcium Phosphate/Amorphous Calcium Carbonate.

    Science.gov (United States)

    Ibsen, Casper J S; Chernyshov, Dmitry; Birkedal, Henrik

    2016-08-22

    Crystallization from amorphous phases is an emerging pathway for making advanced materials. Biology has made use of amorphous precursor phases for eons and used them to produce structures with remarkable properties. Herein, we show how the design of the amorphous phase greatly influences the nanocrystals formed therefrom. We investigate the transformation of mixed amorphous calcium phosphate/amorphous calcium carbonate phases into bone-like nanocrystalline apatite using in situ synchrotron X-ray diffraction and IR spectroscopy. The speciation of phosphate was controlled by pH to favor HPO4 (2-) . In a carbonate free system, the reaction produces anisotropic apatite crystallites with large aspect ratios. The first formed crystallites are highly calcium deficient and hydrogen phosphate rich, consistent with thin octacalcium phosphate (OCP)-like needles. During growth, the crystallites become increasingly stoichiometric, which indicates that the crystallites grow through addition of near-stoichiometric apatite to the OCP-like initial crystals through a process that involves either crystallite fusion/aggregation or Ostwald ripening. The mixed amorphous phases were found to be more stable against phase transformations, hence, the crystallization was inhibited. The resulting crystallites were smaller and less anisotropic. This is rationalized by the idea that a local phosphate-depletion zone formed around the growing crystal until it was surrounded by amorphous calcium carbonate, which stopped the crystallization.

  9. Control of spontaneous firing patterns by the selective coupling of calcium currents to calcium-activated potassium currents in striatal cholinergic interneurons.

    Science.gov (United States)

    Goldberg, Joshua A; Wilson, Charles J

    2005-11-02

    The spontaneous firing patterns of striatal cholinergic interneurons are sculpted by potassium currents that give rise to prominent afterhyperpolarizations (AHPs). Large-conductance calcium-activated potassium (BK) channel currents contribute to action potential (AP) repolarization; small-conductance calcium-activated potassium channel currents generate an apamin-sensitive medium AHP (mAHP) after each AP; and bursts of APs generate long-lasting slow AHPs (sAHPs) attributable to apamin-insensitive currents. Because all these currents are calcium dependent, we conducted voltage- and current-clamp whole-cell recordings while pharmacologically manipulating calcium channels of the plasma membrane and intracellular stores to determine what sources of calcium activate the currents underlying AP repolarization and the AHPs. The Cav2.2 (N-type) blocker omega-conotoxin GVIA (1 microM) was the only blocker that significantly reduced the mAHP, and it induced a transition to rhythmic bursting in one-third of the cells tested. Cav1 (L-type) blockers (10 microM dihydropyridines) were the only ones that significantly reduced the sAHP. When applied to cells induced to burst with apamin, dihydropyridines reduced the sAHPs and abolished bursting. Depletion of intracellular stores with 10 mM caffeine also significantly reduced the sAHP current and reversibly regularized firing. Application of 1 microM omega-conotoxin MVIIC (a Cav2.1/2.2 blocker) broadened APs but had a negligible effect on APs in cells in which BK channels were already blocked by submillimolar tetraethylammonium chloride, indicating that Cav2.1 (Q-type) channels provide the calcium to activate BK channels that repolarize the AP. Thus, calcium currents are selectively coupled to the calcium-dependent potassium currents underlying the AHPs, thereby creating mechanisms for control of the spontaneous firing patterns of these neurons.

  10. Exporting calcium from cells.

    Science.gov (United States)

    Guerini, Danilo; Coletto, Luisa; Carafoli, Ernesto

    2005-01-01

    All eukaryotic cells import Ca2+ through a number of variously gated plasma membrane channels. Once inside cells, Ca2+ transmits information to a large number of (enzyme) targets. Eventually, it must be exported again, to prevent the overloading of the cytosol with Ca2+. Two systems export Ca2+ from cells: a high affinity, low capacity Ca2+-ATPase, and a lower affinity, but much larger capacity, Na+/Ca2+ exchanger. The ATPase (commonly called the Ca2+ pump) is the fine-tuner of cell Ca2+, as it functions well even if the concentration of the ion drops below the microM level. It is a large enzyme, with 10 transmembrane domains and a C-terminal cytosolic tail that contains regulatory sites, including a calmodulin-binding domain. Four distinct gene products plus a large number of splice variants have been described. Some are tissue specific, the isoform 2 being specifically expressed in the sensorial cells of the Corti organ in the inner-ear. Its genetic absence causes deafness in mice. Two different families of the Na+/Ca2+ exchanger exist, one of which, originally described in photoreceptors, transports K+ and Ca2+ in exchange for Na+. The exchanger is particularly active in excitable cells, e.g., heart, where the necessity cyclically arises to rapidly eject large amounts of Ca2+. In addition to heart, the exchanger is particularly important to neurons: the cleavage of the most important neuronal isoform (NCX3) by calpains activated by excitotoxic treatments generates Ca2+ overload and eventually cell death.

  11. Calcium regulation in endosymbiotic organelles of plants.

    Science.gov (United States)

    Bussemer, Johanna; Vothknecht, Ute C; Chigri, Fatima

    2009-09-01

    In plant cells calcium-dependent signaling pathways are involved in a large array of biological processes in response to hormones, biotic/abiotic stress signals and a variety of developmental cues. This is generally achieved through binding of calcium to diverse calcium-sensing proteins, which subsequently control downstream events by activating or inhibiting biochemical reactions. Regulation by calcium is considered as a eukaryotic trait and has not been described for prokaryotes. Nevertheless, there is increasing evidence indicating that organelles of prokaryotic origin, such as chloroplasts and mitochondria, are integrated into the calcium-signaling network of the cell. An important transducer of calcium in these organelles appears to be calmodulin. In this review we want to give an overview over present data showing that endosymbiotic organelles harbour calcium-dependent biological processes with a focus on calmodulin-regulation.

  12. Presynaptic calcium signalling in cerebellar mossy fibres

    DEFF Research Database (Denmark)

    Thomsen, Louiza Bohn; Jörntell, Henrik; Midtgaard, Jens

    2010-01-01

    Whole-cell recordings were obtained from mossy fibre terminals in adult turtles in order to characterize the basic membrane properties. Calcium imaging of presynaptic calcium signals was carried out in order to analyse calcium dynamics and presynaptic GABA B inhibition. A tetrodotoxin (TTX....... Calcium imaging using Calcium-Green dextran revealed a stimulus-evoked all-or-none TTX-sensitive calcium signal in simple and complex rosettes. All compartments of a complex rosette were activated during electrical activation of the mossy fibre, while individual simple and complex rosettes along an axon......)-sensitive fast Na(+) spike faithfully followed repetitive depolarizing pulses with little change in spike duration or amplitude, while a strong outward rectification dominated responses to long-lasting depolarizations. High-threshold calcium spikes were uncovered following addition of potassium channel blockers...

  13. Store-operated calcium signaling in neutrophils.

    Science.gov (United States)

    Clemens, Regina A; Lowell, Clifford A

    2015-10-01

    Calcium signals in neutrophils are initiated by a variety of cell-surface receptors, including formyl peptide and other GPCRs, FcRs, and integrins. The predominant pathway by which calcium enters immune cells is termed SOCE, whereby plasma membrane CRAC channels allow influx of extracellular calcium into the cytoplasm when intracellular ER stores are depleted. The identification of 2 key families of SOCE regulators, STIM calcium "sensors" and ORAI calcium channels, has allowed for genetic manipulation of SOCE pathways and provided valuable insight into the molecular mechanism of calcium signaling in immune cells, including neutrophils. This review focuses on our current knowledge of the molecules involved in neutrophil SOCE and how study of these molecules has further informed our understanding of the role of calcium signaling in neutrophil activation.

  14. Study on Treatment of acidic and highly concentrated fluoride waste water using calcium oxide-calcium chloride

    Science.gov (United States)

    Ren, T.; Gao, X. R.; Zheng, T.; Wang, P.

    2016-08-01

    There are problems with treating acidic waste water containing high concentration fluorine by chemical precipitation, including the low sludge setting velocity and the high difficulty of reaching the criterion. In Heilongjiang province, a graphite factory producing high-purity graphite generates acidic waste water with a high concentration of fluorine. In this paper, the effect of removals on the concentration of fluoride with the combined treatment of calcium oxide and calcium chloride were discussed with regard to acid waste water. The study improved the sludge characteristics by using polyacrylamide (PAM) and polymeric aluminum chloride (PAC). The effect of different coagulants on sludge was evaluated by the sludge settlement ratio (SV), sludge volume index (SVI) and sludge moisture content. The results showed that the optimal combination for 100 ml waste water was calcium oxide addition amount of 14 g, a calcium chloride addition amount of 2.5 g, a PAM addition amount of 350 mg/L, and the effluent fluoride concentration was below 6 mg/L. PAM significantly improved the sludge settling velocity. The sludge settlement ratio reduced from 87.6% to 60%. The process for wastewater treatment was easily operated and involved low expenditure.

  15. Calcium channel antagonists in hypertension.

    Science.gov (United States)

    Ambrosioni, E; Borghi, C

    1989-02-01

    The clinical usefulness of calcium entry-blockers for the treatment of high blood pressure is related to their capacity to act upon the primary hemodynamic derangement in hypertension: the increased peripheral vascular resistance. They can be used alone or in combination with other antihypertensive agents for the treatment of various forms of hypertensive disease. The calcium entry-blockers appear to be the most useful agents for the treatment of hypertension in the elderly and for the treatment of hypertension associated with ischemic heart disease, pulmonary obstructive disease, peripheral vascular disease, and supraventricular arrhythmias. They are effective in reducing blood pressure in pregnancy-associated hypertension and must be considered as first-line therapy for the treatment of hypertensive crisis.

  16. The calcium-alkali syndrome

    OpenAIRE

    Arroyo, Mariangeli; Fenves, Andrew Z.; Emmett, Michael

    2013-01-01

    The milk-alkali syndrome was a common cause of hypercalcemia, metabolic alkalosis, and renal failure in the early 20th century. It was caused by the ingestion of large quantities of milk and absorbable alkali to treat peptic ulcer disease. The syndrome virtually vanished after introduction of histamine-2 blockers and proton pump inhibitors. More recently, a similar condition called the calcium-alkali syndrome has emerged as a common cause of hypercalcemia and alkalosis. It is usually caused b...

  17. Calcium phosphate polymer hybrid materials

    OpenAIRE

    2011-01-01

    Calcium phosphate (CaP) is of strong interest to the medical field because of its potential for bone repair, gene transfection, etc.1-3 Nowadays, the majority of the commercially available materials are fabricated via “classical” materials science approaches, i.e. via high temperature or high pressure approaches, from rather poorly defined slurries, or from organic solvents.3,4 Precipitation of inorganics with (polymeric) additives from aqueous solution on the other hand enables the synthesis...

  18. Utilization of industrial solid wastes able to generate calcium trisulphoaluminate and silicate hydrates in stabilization processes and for the manufacture of building materials; Utilizzazione di residui solidi industriali in grado di generare trisolfoalluminato e silicato di calcio idrati nei processi di stabilizzazione e nella produzione di materiali da costruzione

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, L. [Naples, Univ. `Federico II` (Italy). Dipt. di Chimica; Cioffi, R. [Naples, Univ. `Federico II` (Italy). Ditp. di Ingegneria dei Materiali e della Produzione

    1998-01-01

    In this work the stabilization of hazardous solid wastes containing heavy metals has been studied by means of novel matrices able to generate calcium trisulphoaluminate and silicate hydrates. The process is based on the hydration of two different mixtures containing blast furnace slag, coal ashes, chemical gypsum and Portland cement. The stabilization capacity of the two mixtures has been checked with regard to both a residue from an incinerator of municipal solid wastes and model systems obtained by adding 5 and 10% of soluble nitrates of Cd, Cr, Cu, Ni, Pb and Zn. The stabilized products have been validated from the point of view of mechanical properties by determining the unconfined compressive strength, and from the environmental point of view by means of static and dynamic leaching tests. Both matrices have proved to have great potentiality for the stabilization of hazardous solid wastes, the one based on blast furnace slag being better. Finally, evidence is given that different leaching tests are necessary to fully understand the immobilization mechanism responsible for stabilization. [Italiano] In questo lavoro e` stata studiata la atbilizzazione di residui tossici e nocivi contenenti metalli pesanti per mezzo di matrici leganti innovative capaci di generare trisolfoalluminato e silicato di calcio idrati. Il processo e` basato sull`idratazione di due diverse miscele contenenti scoria d`alto forno, ceneri di carbone, gessi chimici e cemento Portland. Le capacita` stabilizzanti delle due miscele sono state verificate sia nei confronti di un residuo solido generato a seguito dell`incenerimento di RSU, che nei confronti di sistemi modello ottenuti aggiungendo singolarmente il 5 e 10% dei nitrati solubili di Cd, Cr, Cu, Ni, Pb e Zn. I prodotti solidi stabilizzati sono stati validati dal punto di vista delle prestazioni meccaniche mediante prove di resistenza a compressione, e dal punto di vista ambientale mediante test di rilascio sia statici che dinamici

  19. CCN3 and calcium signaling

    Directory of Open Access Journals (Sweden)

    Li Chang Long

    2003-08-01

    Full Text Available Abstract The CCN family of genes consists presently of six members in human (CCN1-6 also known as Cyr61 (Cystein rich 61, CTGF (Connective Tissue Growth Factor, NOV (Nephroblastoma Overexpressed gene, WISP-1, 2 and 3 (Wnt-1 Induced Secreted Proteins. Results obtained over the past decade have indicated that CCN proteins are matricellular proteins, which are involved in the regulation of various cellular functions, such as proliferation, differentiation, survival, adhesion and migration. The CCN proteins have recently emerged as regulatory factors involved in both internal and external cell signaling. CCN3 was reported to physically interact with fibulin-1C, integrins, Notch and S100A4. Considering that, the conformation and biological activity of these proteins are dependent upon calcium binding, we hypothesized that CCN3 might be involved in signaling pathways mediated by calcium ions. In this article, we review the data showing that CCN3 regulates the levels of intracellular calcium and discuss potential models that may account for the biological effects of CCN3.

  20. Store-Operated Calcium Channels.

    Science.gov (United States)

    Prakriya, Murali; Lewis, Richard S

    2015-10-01

    Store-operated calcium channels (SOCs) are a major pathway for calcium signaling in virtually all metozoan cells and serve a wide variety of functions ranging from gene expression, motility, and secretion to tissue and organ development and the immune response. SOCs are activated by the depletion of Ca(2+) from the endoplasmic reticulum (ER), triggered physiologically through stimulation of a diverse set of surface receptors. Over 15 years after the first characterization of SOCs through electrophysiology, the identification of the STIM proteins as ER Ca(2+) sensors and the Orai proteins as store-operated channels has enabled rapid progress in understanding the unique mechanism of store-operate calcium entry (SOCE). Depletion of Ca(2+) from the ER causes STIM to accumulate at ER-plasma membrane (PM) junctions where it traps and activates Orai channels diffusing in the closely apposed PM. Mutagenesis studies combined with recent structural insights about STIM and Orai proteins are now beginning to reveal the molecular underpinnings of these choreographic events. This review describes the major experimental advances underlying our current understanding of how ER Ca(2+) depletion is coupled to the activation of SOCs. Particular emphasis is placed on the molecular mechanisms of STIM and Orai activation, Orai channel properties, modulation of STIM and Orai function, pharmacological inhibitors of SOCE, and the functions of STIM and Orai in physiology and disease.

  1. Kinetics of calcium sulfoaluminate formation from tricalcium aluminate, calcium sulfate and calcium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuerun, E-mail: xuerunli@163.com; Zhang, Yu; Shen, Xiaodong, E-mail: xdshen@njut.edu.cn; Wang, Qianqian; Pan, Zhigang

    2014-01-15

    The formation kinetics of tricalcium aluminate (C{sub 3}A) and calcium sulfate yielding calcium sulfoaluminate (C{sub 4}A{sub 3}$) and the decomposition kinetics of calcium sulfoaluminate were investigated by sintering a mixture of synthetic C{sub 3}A and gypsum. The quantitative analysis of the phase composition was performed by X-ray powder diffraction analysis using the Rietveld method. The results showed that the formation reaction 3Ca{sub 3}Al{sub 2}O{sub 6} + CaSO{sub 4} → Ca{sub 4}Al{sub 6}O{sub 12}(SO{sub 4}) + 6CaO was the primary reaction < 1350 °C with and activation energy of 231 ± 42 kJ/mol; while the decomposition reaction 2Ca{sub 4}Al{sub 6}O{sub 12}(SO{sub 4}) + 10CaO → 6Ca{sub 3}Al{sub 2}O{sub 6} + 2SO{sub 2} ↑ + O{sub 2} ↑ primarily occurred beyond 1350 °C with an activation energy of 792 ± 64 kJ/mol. The optimal formation region for C{sub 4}A{sub 3}$ was from 1150 °C to 1350 °C and from 6 h to 1 h, which could provide useful information on the formation of C{sub 4}A{sub 3}$ containing clinkers. The Jander diffusion model was feasible for the formation and decomposition of calcium sulfoaluminate. Ca{sup 2+} and SO{sub 4}{sup 2−} were the diffusive species in both the formation and decomposition reactions. -- Highlights: •Formation and decomposition of calcium sulphoaluminate were studied. •Decomposition of calcium sulphoaluminate combined CaO and yielded C{sub 3}A. •Activation energy for formation was 231 ± 42 kJ/mol. •Activation energy for decomposition was 792 ± 64 kJ/mol. •Both the formation and decomposition were controlled by diffusion.

  2. —Part I. Interaction of Calcium and Copper-Calcium Alloy with Electrolyte

    Science.gov (United States)

    Zaikov, Yurii P.; Batukhtin, Victor P.; Shurov, Nikolay I.; Ivanovskii, Leonid E.; Suzdaltsev, Andrey V.

    2014-06-01

    This paper describes the interaction between calcium and molten CaCl2 and the solubility of calcium in this melt, depending on the calcium content in the copper-calcium alloy that comes in contact with the molten CaCl2. The negative influence of the dissolved calcium on the current efficiency was verified. The negative effects of moisture and CaO impurities on the calcium current efficiency were demonstrated. The dependence of the current efficiency and the purity of the metal obtained by the electrolysis conditions were studied in a laboratory electrolyzer (20 to 80 A).

  3. Autogenous vein graft thrombosis following exposure to calcium-free solutions (calcium paradox).

    Science.gov (United States)

    Nozick, J H; Farnsworth, P; Montefusco, C M; Parsonnet, V; Ruigrok, T J; Zimmerman, A N

    1981-01-01

    The morphological and functional effects of calcium-free and calcium-containing solutions on canine jugular vein intima were examined under conditions which closely resemble those techniques currently employed in peripheral vascular and aortocoronary bypass surgery. Veins that had been exposed only to calcium-containing solutions remained patent for the duration of the experimental period. Vein perfusion with a calcium-free solution, however, resulted in disruption of the jugular vein intima once calcium ions were reintroduced. Autogenous as a femoral arterial graft became thrombosed within 60 minutes. It is therefore suggested that vein grafts of autogenous origin be irrigated with calcium-containing solutions to prevent intimal damage and thrombosis.

  4. Calcium channel as a potential anticancer agent.

    Science.gov (United States)

    Kriazhev, L

    2009-11-01

    Anticancer treatment in modern clinical practices includes chemotherapy and radiation therapy with or without surgical interventions. Efficiency of both methods varies greatly depending on cancer types and stages. Besides, chemo- and radiotherapy are toxic and damaging that causes serious side effects. This fact prompts the search for alternative methods of antitumor therapy. It is well known that prolonged or high increase of intracellular calcium concentration inevitably leads to the cell death via apoptosis or necrosis. However, stimulation of cell calcium level by chemical agents is hardly achievable because cells have very sophisticated machinery for maintaining intracellular calcium in physiological ranges. This obstacle can be overridden, nevertheless. It was found that calcium channels in so called calcium cells in land snails are directly regulated by extracellular calcium concentration. The higher the concentration the higher the calcium intake is through the channels. Bearing in mind that extracellular/intracellular calcium concentration ratio in human beings is 10,000-12,000 fold the insertion of the channel into cancer cells would lead to fast and uncontrollable by the cells calcium intake and cell death. Proteins composing the channel may be extracted from plasma membrane of calcium cells and sequenced by mass-spectrometry or N-terminal sequencing. Either proteins or corresponding genes could be used for targeted delivery into cancer cells.

  5. The Role of Calcium in Osteoporosis

    Science.gov (United States)

    Arnaud, C. D.; Sanchez, S. D.

    1991-01-01

    Calcium requirements may vary throughout the lifespan. During the growth years and up to age 25 to 30, it is important to maximize dietary intake of calcium to maintain positive calcium balance and achieve peak bone mass, thereby possibly decreasing the risk of fracture when bone is subsequently lost. Calcium intake need not be greater than 800 mg/day during the relatively short period of time between the end of bone building and the onset of bone loss (30 to 40 years). Starting at age 40 to 50, both men and women lose bone slowly, but women lose bone more rapidly around the menopause and for about 10 years after. Intestinal calcium absorption and the ability to adapt to low calcium diets are impaired in many postmenopausal women and elderly persons owing to a suspected functional or absolute decrease in the ability of the kidney to produce 1,25(OH)2D2. The bones then become more and more a source of calcium to maintain critical extracellular fluid calcium levels. Excessive dietary intake of protein and fiber may induce significant negative calcium balance and thus increase dietary calcium requirements. Generally, the strongest risk factors for osteoporosis are uncontrollable (e.g., sex, age, and race) or less controllable (e.g., disease and medications). However, several factors such as diet, physical activity, cigarette smoking, and alcohol use are lifestyle related and can be modified to help reduce the risk of osteoporosis.

  6. Vitamin D-enhanced duodenal calcium transport.

    Science.gov (United States)

    Wongdee, Kannikar; Charoenphandhu, Narattaphol

    2015-01-01

    For humans and rodents, duodenum is a very important site of calcium absorption since it is exposed to ionized calcium released from dietary complexes by gastric acid. Calcium traverses the duodenal epithelium via both transcellular and paracellular pathways in a vitamin D-dependent manner. After binding to the nuclear vitamin D receptor, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] upregulates the expression of several calcium transporter genes, e.g., TRPV5/6, calbindin-D9k, plasma membrane Ca(2+)-ATPase1b, and NCX1, thereby enhancing the transcellular calcium transport. This action has been reported to be under the regulation of parathyroid-kidney-intestinal and bone-kidney-intestinal axes, in which the plasma calcium and fibroblast growth factor-23 act as negative feedback regulators, respectively. 1,25(OH)2D3 also modulates the expression of tight junction-related genes and convective water flow, presumably to increase the paracellular calcium permeability and solvent drag-induced calcium transport. However, vitamin D-independent calcium absorption does exist and plays an important role in calcium homeostasis under certain conditions, particularly in neonatal period, pregnancy, and lactation as well as in naturally vitamin D-impoverished subterranean mammals.

  7. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2002-01-01

    Environmental stimuli such as UV, pathogen attack, and gravity can induce rapid changes in hydrogen peroxide (H(2)O(2)) levels, leading to a variety of physiological responses in plants. Catalase, which is involved in the degradation of H(2)O(2) into water and oxygen, is the major H(2)O(2)-scavenging enzyme in all aerobic organisms. A close interaction exists between intracellular H(2)O(2) and cytosolic calcium in response to biotic and abiotic stresses. Studies indicate that an increase in cytosolic calcium boosts the generation of H(2)O(2). Here we report that calmodulin (CaM), a ubiquitous calcium-binding protein, binds to and activates some plant catalases in the presence of calcium, but calcium/CaM does not have any effect on bacterial, fungal, bovine, or human catalase. These results document that calcium/CaM can down-regulate H(2)O(2) levels in plants by stimulating the catalytic activity of plant catalase. Furthermore, these results provide evidence indicating that calcium has dual functions in regulating H(2)O(2) homeostasis, which in turn influences redox signaling in response to environmental signals in plants.

  8. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2002-01-01

    Environmental stimuli such as UV, pathogen attack, and gravity can induce rapid changes in hydrogen peroxide (H(2)O(2)) levels, leading to a variety of physiological responses in plants. Catalase, which is involved in the degradation of H(2)O(2) into water and oxygen, is the major H(2)O(2)-scavenging enzyme in all aerobic organisms. A close interaction exists between intracellular H(2)O(2) and cytosolic calcium in response to biotic and abiotic stresses. Studies indicate that an increase in cytosolic calcium boosts the generation of H(2)O(2). Here we report that calmodulin (CaM), a ubiquitous calcium-binding protein, binds to and activates some plant catalases in the presence of calcium, but calcium/CaM does not have any effect on bacterial, fungal, bovine, or human catalase. These results document that calcium/CaM can down-regulate H(2)O(2) levels in plants by stimulating the catalytic activity of plant catalase. Furthermore, these results provide evidence indicating that calcium has dual functions in regulating H(2)O(2) homeostasis, which in turn influences redox signaling in response to environmental signals in plants.

  9. Calcium signalling indicates bilateral power balancing in the Drosophila flight muscle during manoeuvring flight.

    Science.gov (United States)

    Lehmann, Fritz-Olaf; Skandalis, Dimitri A; Berthé, Ruben

    2013-05-06

    Manoeuvring flight in animals requires precise adjustments of mechanical power output produced by the flight musculature. In many insects such as fruit flies, power generation is most likely varied by altering stretch-activated tension, that is set by sarcoplasmic calcium levels. The muscles reside in a thoracic shell that simultaneously drives both wings during wing flapping. Using a genetically expressed muscle calcium indicator, we here demonstrate in vivo the ability of this animal to bilaterally adjust its calcium activation to the mechanical power output required to sustain aerodynamic costs during flight. Motoneuron-specific comparisons of calcium activation during lift modulation and yaw turning behaviour suggest slightly higher calcium activation for dorso-longitudinal than for dorsoventral muscle fibres, which corroborates the elevated need for muscle mechanical power during the wings' downstroke. During turning flight, calcium activation explains only up to 54 per cent of the required changes in mechanical power, suggesting substantial power transmission between both sides of the thoracic shell. The bilateral control of muscle calcium runs counter to the hypothesis that the thorax of flies acts as a single, equally proportional source for mechanical power production for both flapping wings. Collectively, power balancing highlights the precision with which insects adjust their flight motor to changing energetic requirements during aerial steering. This potentially enhances flight efficiency and is thus of interest for the development of technical vehicles that employ bioinspired strategies of power delivery to flapping wings.

  10. Caffeine-Induced Suppression of GABAergic Inhibition and Calcium-Independent Metaplasticity

    Directory of Open Access Journals (Sweden)

    Masako Isokawa

    2016-01-01

    Full Text Available GABAergic inhibition plays a critical role in the regulation of neuron excitability; thus, it is subject to modulations by many factors. Recent evidence suggests the elevation of intracellular calcium ([Ca2+]i and calcium-dependent signaling molecules underlie the modulations. Caffeine induces a release of calcium from intracellular stores. We tested whether caffeine modulated GABAergic transmission by increasing [Ca2+]i. A brief local puff-application of caffeine to hippocampal CA1 pyramidal cells transiently suppressed GABAergic inhibitory postsynaptic currents (IPSCs by 73.2 ± 6.98%. Time course of suppression and the subsequent recovery of IPSCs resembled DSI (depolarization-induced suppression of inhibition, mediated by endogenous cannabinoids that require a [Ca2+]i rise. However, unlike DSI, caffeine-induced suppression of IPSCs (CSI persisted in the absence of a [Ca2+]i rise. Intracellular applications of BAPTA and ryanodine (which blocks caffeine-induced calcium release from intracellular stores failed to prevent the generation of CSI. Surprisingly, ruthenium red, an inhibitor of multiple calcium permeable/release channels including those of stores, induced metaplasticity by amplifying the magnitude of CSI independently of calcium. This metaplasticity was accompanied with the generation of a large inward current. Although ionic basis of this inward current is undetermined, the present result demonstrates that caffeine has a robust Ca2+-independent inhibitory action on GABAergic inhibition and causes metaplasticity by opening plasma membrane channels.

  11. Fortification of all-purpose wheat-flour tortillas with calcium lactate, calcium carbonate, or calcium citrate is acceptable.

    Science.gov (United States)

    Romanchik-Cerpovicz, Joelle E; McKemie, Rebecca J

    2007-03-01

    Fortification helps provide adequate nutrients for individuals not meeting daily needs. Foods may be fortified with calcium to assist individuals with lactose intolerance and others preferring not to consume traditional forms of dairy. This study examined the quality of all-purpose wheat-flour tortillas fortified with calcium lactate, calcium carbonate, or calcium citrate. These tortillas were compared to similarly prepared nonfortified flour tortillas (control) and commercial nonfortified flour tortillas. Calcium-fortified tortillas contained 114 mg elemental calcium per standard serving (48 g tortilla), an 8.6-fold increase compared to nonfortified tortillas. Moisture contents and rollabilities of all tortillas were similar. Consumers (N=87) evaluated each tortilla in duplicate using a hedonic scale and reported liking the appearance, texture, flavor, aftertaste, and overall acceptability of all tortillas. However, the appearance of control tortillas was preferred over commercial tortillas (P<0.01), whereas the aftertaste of commercial tortillas or those fortified with calcium carbonate was preferred over the control (P<0.05). Despite these differences, consumers were equally willing to purchase both fortified and nonfortified tortillas, suggesting that appearance and aftertaste may not influence willingness to purchase. Overall, this study shows that fortification of flour tortillas with various forms of calcium is a feasible alternative calcium source.

  12. Synthesis, structure, and frequency-doubling effect of calcium cyanurate.

    Science.gov (United States)

    Kalmutzki, Markus; Ströbele, Markus; Wackenhut, Frank; Meixner, Alfred J; Meyer, H-Jürgen

    2014-12-15

    Calcium cyanurate is synthesized by reacting calcium chloride with potassium cyanate following a solid-state reaction. The formation of the new compound Ca3(O3C3N3)2 (CCY), which occurs by the cyclotrimerization of cyanate ions, was examined thermoanalytically and the crystal structure was determined by single-crystal structure analysis. The structure of CCY is closely related to the structure of the well-known oxoborate β-BaB2O4 (BBO). Second harmonic generation (SHG) measurements on crystal powders show a higher SHG efficiency for CCY than for BBO by about one order of magnitude. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. CALCIUM CARBIDE: AN EFFICIENT ALTERNATIVE TO THE USE OF ALUMINUM

    Directory of Open Access Journals (Sweden)

    Amilton Carlos Pinheiro Cardoso Filho

    2013-03-01

    Full Text Available The steel demand for fine applications have increased considerably in the last years, and the criteria for its production are even stricter, mainly in relation to the residual elements content and cleanness required. In relation to the steel cleanness, the main problem faced is the control of the amount and morphology of alumina inclusions, generated in the steel deoxidation with aluminum. Besides harming the products quality, the presence of non metallic inclusions can originate nozzle clogging, and consequently interruptions in the process flux. Aiming to improve the steel cleanness and to minimize nozzle clogging, this study is developed to evaluate the partial substitution of aluminum by calcium carbide in the steel deoxidation. Along the operational procedures, the calcium carbide was applied to 397 heats, through what the improvement in steel cleanness is confirmed, with consequent reduction in the nozzle clogging occurrence.

  14. Altered calcium signaling in cancer cells.

    Science.gov (United States)

    Stewart, Teneale A; Yapa, Kunsala T D S; Monteith, Gregory R

    2015-10-01

    It is the nature of the calcium signal, as determined by the coordinated activity of a suite of calcium channels, pumps, exchangers and binding proteins that ultimately guides a cell's fate. Deregulation of the calcium signal is often deleterious and has been linked to each of the 'cancer hallmarks'. Despite this, we do not yet have a full understanding of the remodeling of the calcium signal associated with cancer. Such an understanding could aid in guiding the development of therapies specifically targeting altered calcium signaling in cancer cells during tumorigenic progression. Findings from some of the studies that have assessed the remodeling of the calcium signal associated with tumorigenesis and/or processes important in invasion and metastasis are presented in this review. The potential of new methodologies is also discussed. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  15. Calcium levels during the initiation of labor.

    Science.gov (United States)

    Papandreou, Lampros; Chasiotis, Georgios; Seferiadis, Konstantinos; Thanasoulias, Nikos C; Dousias, Vasilis; Tsanadis, Georgios; Stefos, Theodor

    2004-07-15

    To investigate the physiological role of calcium in the labor process. Eighty-eight term healthy pregnant women who gave birth to normal healthy neonates participated in our study. We compared calcium levels between pregnant women who had normal delivery and those who underwent scheduled cesarean section. The control group consisted of pregnant women with gestation > or =37 weeks without contractions. The groups were compared with respect to calcium levels: (a) in maternal blood serum; (b) in blood serum of the neonates and mothers; and (c) in blood serum between neonates. Significantly higher calcium levels were found in the group of pregnant women who delivered vaginally compared to those who delivered by scheduled cesarean section and those of the control group. We assume that the increased calcium levels during the first stage of labor are involved with a possible role of calcium in the mechanism of initiation of labor.

  16. Induced calcium carbonate precipitation using Bacillus species.

    Science.gov (United States)

    Seifan, Mostafa; Samani, Ali Khajeh; Berenjian, Aydin

    2016-12-01

    Microbially induced calcium carbonate precipitation is an emerging process for the production of self-healing concrete. This study was aimed to investigate the effects and optimum conditions on calcium carbonate biosynthesis. Bacillus licheniformis, Bacillus sphaericus, yeast extract, urea, calcium chloride and aeration were found to be the most significant factors affecting the biomineralization of calcium carbonate. It was noticed that the morphology of microbial calcium carbonate was mainly affected by the genera of bacteria (cell surface properties), the viscosity of the media and the type of electron acceptors (Ca(2+)). The maximum calcium carbonate concentration of 33.78 g/L was achieved at the optimum conditions This value is the highest concentration reported in the literature.

  17. Generating Units

    Data.gov (United States)

    Department of Homeland Security — Generating Units are any combination of physically connected generators, reactors, boilers, combustion turbines, and other prime movers operated together to produce...

  18. Overbased Calcium sulfonate Detergent Technology Overview

    Institute of Scientific and Technical Information of China (English)

    MA Qing-gao; MUIR Ronald J.

    2009-01-01

    Overbased calcium sulfonate is used widely as detergent in automotive and marine lubricants, as well as various industrial oil applications. In this paper, the process to produce overbased calcium sulfonate is overviewed. The sulfonate structure and molecular weight and its molecular weight distribution, the enclosed calcium carbonate nanoparticle size and crystalline structure, properties of the carrier oil, all influence its properties, such as stability, viscosity, and detergency of the system.

  19. Synthesis of Calcium Silicate (Casio3) Using Calcium Fluoride, Quartz and Microbes

    National Research Council Canada - National Science Library

    B. Gopal Krishna; M. Jagannadha Rao

    2015-01-01

    .... In this paper, synthesis of calcium silicate (CaSiO3) using calcium fluoride (CaF2) and quartz (SiO2) under microbial environment in a laboratory is being adopted to produce the required material...

  20. [Calcium carbide of different crystal formation synthesized by calcium carbide residue].

    Science.gov (United States)

    Lu, Zhong-yuan; Kang, Ming; Jiang, Cai-rong; Tu, Ming-jing

    2006-04-01

    To recycle calcium carbide residue effectively, calcium carbide of different crystal form, including global aragonite, calcite and acicular calcium carbide was synthesized. Both the influence of pretreatment in the purity of calcium carbide, and the influence of temperatures of carbonization reaction, release velocity of carbon dioxide in the apparition of calcium carbide of different crystal form were studied with DTA-TG and SEM. The result shows that calcium carbide residue can take place chemistry reaction with ammonia chlorinate straight. Under the condition that pH was above 7, the purity of calcium carbide was above 97%, and the whiteness was above 98. Once provided the different temperatures of carbonization reaction and the proper release velocity of carbon dioxide, global aragonite, calcite and acicular calcium carbide were obtained.

  1. Finding of Optimal Calcium Ion Probes for Fluorescence Lifetime Measurement

    Science.gov (United States)

    Yoshiki, Keisuke; Azuma, Hiroki; Yoshioka, Kazuhiko; Hashimoto, Mamoru; Araki, Tsutomu

    We have investigated the fluorescence lifetime properties of 8 calcium ion probes, calcium-green-1, calcium green-2, calcium green-5N, calcium orange, oregon green 488 BAPTA-6F, fluo-3, fluo-4, and fluo-5N. We found that the decay time of calcium green-5N varied more sensitively with calcium concentration than calcium green-1 which was known to be a highly sensitive probe. We have also found that the center of observable range of calcium concentration by fluorescence lifetime measurement is lower than that by fluorescence intensity measurement.

  2. Osteoblasts detect pericellular calcium concentration increase via neomycin-sensitive voltage gated calcium channels.

    Science.gov (United States)

    Sun, Xuanhao; Kishore, Vipuil; Fites, Kateri; Akkus, Ozan

    2012-11-01

    The mechanisms underlying the detection of critically loaded or micro-damaged regions of bone by bone cells are still a matter of debate. Our previous studies showed that calcium efflux originates from pre-failure regions of bone matrix and MC3T3-E1 osteoblasts respond to such efflux by an increase in the intracellular calcium concentration. The mechanisms by which the intracellular calcium concentration increases in response to an increase in the pericellular calcium concentration are unknown. Elevation of the intracellular calcium may occur via release from the internal calcium stores of the cell and/or via the membrane bound channels. The current study applied a wide range of pharmaceutical inhibitors to identify the calcium entry pathways involved in the process: internal calcium release from endoplasmic reticulum (ER, inhibited by thapsigargin and TMB-8), calcium receptor (CaSR, inhibited by calhex), stretch-activated calcium channel (SACC, inhibited by gadolinium), voltage-gated calcium channels (VGCC, inhibited by nifedipine, verapamil, neomycin, and ω-conotoxin), and calcium-induced-calcium-release channel (CICRC, inhibited by ryanodine and dantrolene). These inhibitors were screened for their effectiveness to block intracellular calcium increase by using a concentration gradient induced calcium efflux model which mimics calcium diffusion from the basal aspect of cells. The inhibitor(s) which reduced the intracellular calcium response was further tested on osteoblasts seeded on mechanically loaded notched cortical bone wafers undergoing damage. The results showed that only neomycin reduced the intracellular calcium response in osteoblasts, by 27%, upon extracellular calcium stimulus induced by concentration gradient. The inhibitory effect of neomycin was more pronounced (75% reduction in maximum fluorescence) for osteoblasts seeded on notched cortical bone wafers loaded mechanically to damaging load levels. These results imply that the increase in

  3. Filamin and phospholipase C-ε are required for calcium signaling in the Caenorhabditis elegans spermatheca.

    Directory of Open Access Journals (Sweden)

    Ismar Kovacevic

    2013-05-01

    Full Text Available The Caenorhabditis elegans spermatheca is a myoepithelial tube that stores sperm and undergoes cycles of stretching and constriction as oocytes enter, are fertilized, and exit into the uterus. FLN-1/filamin, a stretch-sensitive structural and signaling scaffold, and PLC-1/phospholipase C-ε, an enzyme that generates the second messenger IP3, are required for embryos to exit normally after fertilization. Using GCaMP, a genetically encoded calcium indicator, we show that entry of an oocyte into the spermatheca initiates a distinctive series of IP3-dependent calcium oscillations that propagate across the tissue via gap junctions and lead to constriction of the spermatheca. PLC-1 is required for the calcium release mechanism triggered by oocyte entry, and FLN-1 is required for timely initiation of the calcium oscillations. INX-12, a gap junction subunit, coordinates propagation of the calcium transients across the spermatheca. Gain-of-function mutations in ITR-1/IP3R, an IP3-dependent calcium channel, and loss-of-function mutations in LFE-2, a negative regulator of IP3 signaling, increase calcium release and suppress the exit defect in filamin-deficient animals. We further demonstrate that a regulatory cassette consisting of MEL-11/myosin phosphatase and NMY-1/non-muscle myosin is required for coordinated contraction of the spermatheca. In summary, this study answers long-standing questions concerning calcium signaling dynamics in the C. elegans spermatheca and suggests FLN-1 is needed in response to oocyte entry to trigger calcium release and coordinated contraction of the spermathecal tissue.

  4. PKA controls calcium influx into motor neurons during a rhythmic behavior.

    Directory of Open Access Journals (Sweden)

    Han Wang

    Full Text Available Cyclic adenosine monophosphate (cAMP has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels.

  5. PKA controls calcium influx into motor neurons during a rhythmic behavior.

    Directory of Open Access Journals (Sweden)

    Han Wang

    Full Text Available Cyclic adenosine monophosphate (cAMP has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels.

  6. Calcium binding proteins and calcium signaling in prokaryotes.

    Science.gov (United States)

    Domínguez, Delfina C; Guragain, Manita; Patrauchan, Marianna

    2015-03-01

    With the continued increase of genomic information and computational analyses during the recent years, the number of newly discovered calcium binding proteins (CaBPs) in prokaryotic organisms has increased dramatically. These proteins contain sequences that closely resemble a variety of eukaryotic calcium (Ca(2+)) binding motifs including the canonical and pseudo EF-hand motifs, Ca(2+)-binding β-roll, Greek key motif and a novel putative Ca(2+)-binding domain, called the Big domain. Prokaryotic CaBPs have been implicated in diverse cellular activities such as division, development, motility, homeostasis, stress response, secretion, transport, signaling and host-pathogen interactions. However, the majority of these proteins are hypothetical, and only few of them have been studied functionally. The finding of many diverse CaBPs in prokaryotic genomes opens an exciting area of research to explore and define the role of Ca(2+) in organisms other than eukaryotes. This review presents the most recent developments in the field of CaBPs and novel advancements in the role of Ca(2+) in prokaryotes.

  7. Mechanical Properties of a Calcium Dietary Supplement, Calcium Fumarate Trihydrate.

    Science.gov (United States)

    Sun, Shijing; Henke, Sebastian; Wharmby, Michael T; Yeung, Hamish H-M; Li, Wei; Cheetham, Anthony K

    2015-12-07

    The mechanical properties of calcium fumarate trihydrate, a 1D coordination polymer considered for use as a calcium source for food and beverage enrichment, have been determined via nanoindentation and high-pressure X-ray diffraction with single crystals. The nanoindentation studies reveal that the elastic modulus (16.7-33.4 GPa, depending on crystallographic orientation), hardness (1.05-1.36 GPa), yield stress (0.70-0.90 GPa), and creep behavior (0.8-5.8 nm/s) can be rationalized in view of the anisotropic crystal structure; factors include the directionality of the inorganic Ca-O-Ca chain and hydrogen bonding, as well as the orientation of the fumarate ligands. High-pressure single-crystal X-ray diffraction studies show a bulk modulus of ∼ 20 GPa, which is indicative of elastic recovery intermediate between small molecule drug crystals and inorganic pharmaceutical ingredients. The combined use of nanoindentation and high-pressure X-ray diffraction techniques provides a complementary experimental approach for probing the critical mechanical properties related to tableting of these dietary supplements.

  8. Altered calcium signaling following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    John Thomas Weber

    2012-04-01

    Full Text Available Cell death and dysfunction after traumatic brain injury (TBI is caused by a primary phase, related to direct mechanical disruption of the brain, and a secondary phase which consists of delayed events initiated at the time of the physical insult. Arguably, the calcium ion contributes greatly to the delayed cell damage and death after TBI. A large, sustained influx of calcium into cells can initiate cell death signaling cascades, through activation of several degradative enzymes, such as proteases and endonucleases. However, a sustained level of intracellular free calcium is not necessarily lethal, but the specific route of calcium entry may couple calcium directly to cell death pathways. Other sources of calcium, such as intracellular calcium stores, can also contribute to cell damage. In addition, calcium-mediated signal transduction pathways in neurons may be perturbed following injury. These latter types of alterations may contribute to abnormal physiology in neurons that do not necessarily die after a traumatic episode. This review provides an overview of experimental evidence that has led to our current understanding of the role of calcium signaling in death and dysfunction following TBI.

  9. Regulation of cardiomyocyte autophagy by calcium.

    Science.gov (United States)

    Shaikh, Soni; Troncoso, Rodrigo; Criollo, Alfredo; Bravo-Sagua, Roberto; García, Lorena; Morselli, Eugenia; Cifuentes, Mariana; Quest, Andrew F G; Hill, Joseph A; Lavandero, Sergio

    2016-04-15

    Calcium signaling plays a crucial role in a multitude of events within the cardiomyocyte, including cell cycle control, growth, apoptosis, and autophagy. With respect to calcium-dependent regulation of autophagy, ion channels and exchangers, receptors, and intracellular mediators play fundamental roles. In this review, we discuss calcium-dependent regulation of cardiomyocyte autophagy, a lysosomal mechanism that is often cytoprotective, serving to defend against disease-related stress and nutrient insufficiency. We also highlight the importance of the subcellular distribution of calcium and related proteins, interorganelle communication, and other key signaling events that govern cardiomyocyte autophagy. Copyright © 2016 the American Physiological Society.

  10. The remodeling transient and the calcium economy.

    Science.gov (United States)

    Aloia, J F; Arunabh-Talwar, S; Pollack, S; Yeh, J K

    2008-07-01

    The remodeling transient describes a change in bone mass that lasts one remodeling cycle following an intervention that disturbs the calcium economy. We demonstrated the transient in a study of the response of bone density to calcium/vitamin D3 supplementation and show the hazards of misinterpretation if the transient is not considered. The remodeling transient describes a change in bone mass that lasts for one remodeling cycle following an intervention that disturbs the calcium economy. We report an intervention with calcium and vitamin D supplementation in 208 postmenopausal African-American women where the remodeling transient was considered a priori in the study design. Both groups (calcium alone vs. calcium + 20 microg (800 IU) vitamin D3) were ensured a calcium intake in excess of 1200 mg/day. There were no differences between the two groups in changes in BMD over time. These BMD changes were therefore interpreted to reflect increased calcium intake in both groups but not any influence of vitamin D. A transient increase in bone mineral density was observed during the first year of study, followed by a decline. The remodeling period was estimated at about 9 months, which is similar to histomorphometric estimates. It is problematic to draw conclusions concerning interventions that influence the calcium economy without considering the remodeling transient in study design. Studies of agents that effect bone remodeling must be carried out for at least two remodeling cycles and appropriate techniques must be used in data analysis.

  11. Sintering of calcium phosphate bioceramics.

    Science.gov (United States)

    Champion, E

    2013-04-01

    Calcium phosphate ceramics have become of prime importance for biological applications in the field of bone tissue engineering. This paper reviews the sintering behaviour of these bioceramics. Conventional pressureless sintering of hydroxyapatite, Ca10(PO4)6(OH)2, a reference compound, has been extensively studied. Its physico-chemistry is detailed. It can be seen as a competition between two thermally activated phenomena that proceed by solid-state diffusion of matter: densification and grain growth. Usually, the objective is to promote the first and prevent the second. Literature data are analysed from sintering maps (i.e. grain growth vs. densification). Sintering trajectories of hydroxyapatite produced by conventional pressureless sintering and non-conventional techniques, including two-step sintering, liquid phase sintering, hot pressing, hot isostatic pressing, ultrahigh pressure, microwave and spark plasma sintering, are presented. Whatever the sintering technique may be, grain growth occurs mainly during the last step of sintering, when the relative bulk density reaches 95% of the maximum value. Though often considered very advantageous, most assisted sintering techniques do not appear very superior to conventional pressureless sintering. Sintering of tricalcium phosphate or biphasic calcium phosphates is also discussed. The chemical composition of calcium phosphate influences the behaviour. Similarly, ionic substitutions in hydroxyapatite or in tricalcium phosphate create lattice defects that modify the sintering rate. Depending on their nature, they can either accelerate or slow down the sintering rate. The thermal stability of compounds at the sintering temperature must also be taken into account. Controlled atmospheres may be required to prevent thermal decomposition, and flash sintering techniques, which allow consolidation at low temperature, can be helpful.

  12. Study on Dissolution of Cellulose in Two Phosphate-based Ionic Liquids%磷酸酯类离子液体对纤维素溶解性能的研究

    Institute of Scientific and Technical Information of China (English)

    李贺; 赵地顺; 付林林; 张娟; 任培兵

    2012-01-01

    采用一步法合成了两种磷酸酯类离子液体:1,3-二甲基咪唑磷酸二甲酯盐([MMIM]DMP)和1-乙基-3-甲基咪唑磷酸二乙酯盐([EMIM]DEP),并比较了它们对纤维素的溶解性能.结果表明,两种离子液体均能在一定条件下溶解纤维素,而[EMIM]DEP表现出较优的溶解能力,再生得到纤维素膜;随着溶解温度的升高,溶解时间缩短.采用红外光谱(FT-IR)、热重失重(TGA)分析、X射线衍射(XRD)、扫描电镜(SEM)等对再生前后的纤维素进行了表征.结果表明,未经活化的纤维素可直接溶于离子液体中而不发生其它衍生化反应;溶解再生后的纤维素晶型发生变化;经[EMIM]DEP溶解再生后纤维素热稳定性和聚合度下降较小,再生纤维素膜结构致密均一.%Two phosphate-based ionic liquids, [MMIM]DMP and [EMIM)DEP ionic liquids were synthesized by one step method. Dissolution of cellulose in ionic liquid [MMIM]DMP and [EMIMT]DEP was compared. It showed that both of them can dissolve cellulose under certain conditions and [EMIM]DEP displayed the better solubility. With the dissolution temperature increased, the dissolution time was greatly reduced. The both original cellulose and rege- ■ nerated cellulose were characterized by Fourier transform infrared spectroscopy(FT-IR), thermogravimetry(TG) , X-ray diffraction(XRD) measurernents and scanning electron microscopy(SEM). Results showed that the novel system was a good non-derivatizing cellulose.solution. The crystal of regenerated cellulose changed, the thermostability and the degree of the polymerization of regenerated cellulose from [EMIM]DEP decreased slightlyl The surfaces, of regenerated films displayed uniformity, indicating a dense texture.

  13. Heart failure drug digitoxin induces calcium uptake into cells by forming transmembrane calcium channels

    OpenAIRE

    2008-01-01

    Digitoxin and other cardiac glycosides are important, centuries-old drugs for treating congestive heart failure. However, the mechanism of action of these compounds is still being elucidated. Calcium is known to potentiate the toxicity of these drugs, and we have hypothesized that digitoxin might mediate calcium entry into cells. We report here that digitoxin molecules mediate calcium entry into intact cells. Multimers of digitoxin molecules also are able to form calcium channels in pure plan...

  14. The Role of Calcium in Prevention and Treatment of Osteoporosis.

    Science.gov (United States)

    Heaney, Robert P.

    1987-01-01

    Osteoporosis results from several factors. Calcium deficiency is only one, and high calcium intake will prevent only those cases in which calcium is the limiting factor. Calcium cannot reverse, but only arrest, bone loss. A high calcium intake for every member of the population is advocated. (Author/MT)

  15. Calcium imaging perspectives in plants.

    Science.gov (United States)

    Kanchiswamy, Chidananda Nagamangala; Malnoy, Mickael; Occhipinti, Andrea; Maffei, Massimo E

    2014-03-04

    The calcium ion (Ca2+) is a versatile intracellular messenger. It provides dynamic regulation of a vast array of gene transcriptions, protein kinases, transcription factors and other complex downstream signaling cascades. For the past six decades, intracellular Ca2+ concentration has been significantly studied and still many studies are under way. Our understanding of Ca2+ signaling and the corresponding physiological phenomenon is growing exponentially. Here we focus on the improvements made in the development of probes used for Ca2+ imaging and expanding the application of Ca2+ imaging in plant science research.

  16. The Electronic Structure of Calcium

    DEFF Research Database (Denmark)

    Jan, J.-P.; Skriver, Hans Lomholt

    1981-01-01

    The electronic structure of calcium under pressure is re-examined by means of self-consistent energy band calculations based on the local density approximation and using the linear muffin-tin orbitals (LMTO) method with corrections to the atomic sphere approximation included. At zero pressure.......149 Ryd, respectively, relative to the s band, give the best possible agreement. Under increasing pressure the s and p electrons are found to transfer into the d band, and Ca undergoes metal-semimetal-metal electronic transitions. Calculations of the bandstructure and the electronic pressure, including...

  17. Calcium

    Science.gov (United States)

    ... tingling in the fingers, convulsions, and abnormal heart rhythms that can lead to death if not corrected. ... that includes weight-bearing physical activity (such as walking and running). Osteoporosis is a disease of the ...

  18. Calcium

    Science.gov (United States)

    ... for dinner. Create mini-pizzas by topping whole-wheat English muffins or bagels with pizza sauce and ... Fitness Center Vitamin D Smart Supermarket Shopping Lactose Intolerance Vitamins and Minerals Vitamin Chart Mineral Chart Food ...

  19. Testosterone increases urinary calcium excretion and inhibits expression of renal calcium transport proteins.

    NARCIS (Netherlands)

    Hsu, Y.J.; Dimke, H.; Schoeber, J.P.H.; Hsu, S.C.; Lin, S.H.; Chu, P.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2010-01-01

    Although gender differences in the renal handling of calcium have been reported, the overall contribution of androgens to these differences remains uncertain. We determined here whether testosterone affects active renal calcium reabsorption by regulating calcium transport proteins. Male mice had hig

  20. 76 FR 51991 - Determination That PENTETATE CALCIUM TRISODIUM (Trisodium Calcium Diethylenetriaminepentaacetate...

    Science.gov (United States)

    2011-08-19

    ... new drug applications (ANDAs) for PENTETATE CALCIUM TRISODIUM (Ca-DTPA) solution for intravenous or... ANDA that does not refer to a listed drug. PENTETATE CALCIUM TRISODIUM (Ca-DTPA) solution for... HUMAN SERVICES Food and Drug Administration Determination That PENTETATE CALCIUM TRISODIUM...

  1. Effect of lowering dietary calcium intake on fractional whole body calcium retention

    Energy Technology Data Exchange (ETDEWEB)

    Dawson-Hughes, B.; Stern, D.T.; Shipp, C.C.; Rasmussen, H.M.

    1988-07-01

    Although fractional calcium absorption is known to vary inversely with calcium intake, the extent and timing of individual hormonal and calcium absorption responses to altered calcium intake have not been defined. We measured fractional whole body retention of orally ingested /sup 47/Ca, an index of calcium absorption, in nine normal women after they had eaten a 2000-mg calcium diet for 8 weeks and a 300-mg calcium diet for 1, 2, 4, and 8 weeks. After the diet change, serum intact PTH (32.2% increase; P = 0.005), serum 1,25-dihydroxyvitamin D (1,25-(OH)2D; 43.8% increase; P = 0.003), and fractional whole body calcium retention (42.8% increase; P = 0.004) increased within 1 week. Although the PTH and calcium retention responses remained fairly constant throughout the low calcium intake period, serum 1,25-(OH)2D concentrations declined toward baseline after week 1. Thus, the late increase in calcium retention may have resulted from calcium absorption that was independent of 1,25-(OH)2D stimulation.

  2. Protein intake and calcium absorption – Potential role of the calcium sensor receptor

    Science.gov (United States)

    Dietary protein induces calcium excretion but the source of this calcium is unclear. Evidence from short-term studies indicates that protein promotes bone resorption, but many epidemiologic studies do not corroborate this. Evidence is also mixed on weather protein promotes calcium absorption. Stud...

  3. Short communication: Urinary oxalate and calcium excretion by dogs and cats diagnosed with calcium oxalate urolithiasis

    NARCIS (Netherlands)

    Dijcker, J.C.; Kummeling, A.; Hagen-Plantinga, E.A.; Hendriks, W.H.

    2012-01-01

    Introduction Urine concentrations of oxalate and calcium play an important role in calcium oxalate (CaOx) urolith formation in dogs and cats, with high excretions of both substances increasing the chance of CaOx urolithiasis. In 17 CaOx-forming dogs, urine calcium:creatinine ratio (Ca:Cr) was found

  4. Generational diversity.

    Science.gov (United States)

    Kramer, Linda W

    2010-01-01

    Generational diversity has proven challenges for nurse leaders, and generational values may influence ideas about work and career planning. This article discusses generational gaps, influencing factors and support, and the various generational groups present in today's workplace as well as the consequences of need addressing these issues. The article ends with a discussion of possible solutions.

  5. Control of Spontaneous Firing Patterns by the Selective Coupling of Calcium Currents to Calcium Activated Potassium Currents in Striatal Cholinergic Interneurons

    OpenAIRE

    Goldberg, Joshua A.; Wilson, Charles J.

    2005-01-01

    The spontaneous firing patterns of striatal cholinergic interneurons are sculpted by potassium currents that give rise to prominent afterhyperpolarizations (AHPs): BK currents contribute to action potential (AP) repolarization; SK currents generate an apamin-sensitive medium AHP (mAHP) following each AP; and bursts of APs generate long-lasting slow AHPs (sAHPs) due to apamin-insensitive currents. As all these currents are calcium-dependent, we conducted voltage- and current-clamp whole-cell r...

  6. Calcium signaling in pluripotent stem cells.

    Science.gov (United States)

    Apáti, Ágota; Pászty, Katalin; Erdei, Zsuzsa; Szebényi, Kornélia; Homolya, László; Sarkadi, Balázs

    2012-04-28

    Pluripotent stem cells represent a new source of biological material allowing the exploration of signaling phenomena during normal cell development and differentiation. Still, the calcium signaling pathways and intracellular calcium responses to various ligands or stress conditions have not been sufficiently explored as yet in embryonic or induced pluripotent stem cells and in their differentiated offspring. This is partly due to the special culturing conditions of these cell types, the rapid morphological and functional changes in heterogeneous cell populations during early differentiation, and methodological problems in cellular calcium measurements. In this paper, we review the currently available data in the literature on calcium signaling in pluripotent stem cells and discuss the potential shortcomings of these studies. Various assay methods are surveyed for obtaining reliable data both in undifferentiated embryonic stem cells and in specific, stem cell-derived human tissues. In this paper, we present the modulation of calcium signaling in human embryonic stem cells (hESC) and in their derivates; mesenchymal stem cell like (MSCl) cells and cardiac tissues using the fluorescent calcium indicator Fluo-4 and confocal microscopy. LPA, trypsin and angiotensin II were effective in inducing calcium signals both in HUES9 and MSCl cells. Histamine and thrombin induced calcium signal exclusively in the MSCl cells, while ATP was effective only in HUES9 cells. There was no calcium signal evoked by GABA, even at relatively high concentrations. In stem cell-derived cardiomyocytes a rapid increase in the beating rate and an increase of the calcium signal peaks could be observed after the addition of adrenaline, while verapamil led to a strong decrease in cellular calcium and stopped spontaneous contractions in a relaxed state.

  7. Presynaptic calcium signalling in cerebellar mossy fibres

    Directory of Open Access Journals (Sweden)

    Louiza B Thomsen

    2010-02-01

    Full Text Available Whole-cell recordings were obtained from mossy fibre terminals in adult turtles in order to characterize the basic membrane properties. Calcium imaging of presynaptic calcium signals was carried out in order to analyse calcium dynamics and presynaptic GABA B inhibition. A TTX-sensitive fast Na+ spike faithfully followed repetitive depolarizing pulses with little change in spike duration or amplitude, while a strong outward rectification dominated responses to long-lasting depolarizations. High-threshold calcium spikes were uncovered following addition of potassium channel blockers. Calcium imaging using Calcium-Green dextran revealed a stimulus-evoked all-or-none tetrodotoxin (TTX -sensitive calcium signal in simple and complex rosettes. All compartments of a complex rosette were activated during electrical activation of the mossy fibre, while individual simple and complex rosettes along an axon appeared to be isolated from one another in terms of calcium signalling. CGP55845 application showed that GABA B receptors mediated presynaptic inhibition of the calcium signal over the entire firing frequency range of mossy fibres. A paired-pulse depression of the calcium signal lasting more than one second affected burst firing in mossy fibres; this paired-pulse depression was reduced by GABA B antagonists. While our results indicated that a presynaptic rosette electrophysiologically functioned as a unit, topical GABA application showed that calcium signals in the branches of complex rosettes could be modulated locally, suggesting that cerebellar glomeruli may be dynamically sub-compartmentalized due to ongoing inhibition mediated by Golgi cells. This could provide a fine-grained control of mossy fibre-granule cell information transfer and synaptic plasticity within a mossy fibre rosette.

  8. Optical control of calcium-regulated exocytosis.

    Science.gov (United States)

    Izquierdo-Serra, Mercè; Trauner, Dirk; Llobet, Artur; Gorostiza, Pau

    2013-03-01

    Neurons signal to each other and to non-neuronal cells as those in muscle or glands, by means of the secretion of neurotransmitters at chemical synapses. In order to dissect the molecular mechanisms of neurotransmission, new methods for directly and reversibly triggering neurosecretion at the presynaptic terminal are necessary. Here we exploit the calcium permeability of the light-gated channel LiGluR in order to reversibly manipulate cytosolic calcium concentration, thus controlling calcium-regulated exocytosis. Bovine chromaffin cells expressing LiGluR were stimulated with light. Exocytic events were detected by amperometry or by whole-cell patch-clamp to quantify membrane capacitance and calcium influx. Amperometry reveals that optical stimulation consistently triggers exocytosis in chromaffin cells. Secretion of catecholamines can be adjusted between zero and several Hz by changing the wavelength of illumination. Differences in secretion efficacy are found between the activation of LiGluR and native voltage-gated calcium channels (VGCCs). Our results show that the distance between sites of calcium influx and vesicles ready to be released is longer when calcium influx is triggered by LiGluR instead of native VGCCs. LiGluR activation directly and reversibly increases the intracellular calcium concentration. Light-gated calcium influx allows for the first time to control calcium-regulated exocytosis without the need of applying depolarizing solutions or voltage clamping in chromaffin cells. LiGluR is a useful tool to study the secretory mechanisms and their spatiotemporal patterns in neurotransmission, and opens a window to study other calcium-dependent processes such as muscular contraction or cell migration.

  9. Thermoelectric Generator Emulator for MPPT Testing

    DEFF Research Database (Denmark)

    Man, Elena Anamaria; Sera, Dezso; Máthé, Lászlo

    2015-01-01

    This paper presents a novel approach to use a DC power supply as a thermoelectric generator (TEG) emulator to perform static and dynamic maximum power point tracking (MPPT). First, the electrical characterization of a calcium-manganese-oxide module is performed on a TEG test rig. Afterwards...

  10. An Intracellular Calcium Oscillations Model Including Mitochondrial Calcium Cycling

    Institute of Scientific and Technical Information of China (English)

    SHI Xiao-Min; LIU Zeng-Rong

    2005-01-01

    @@ Calcium is a ubiquitous second messenger. Mitochondria contributes significantly to intracellular Ca2+ dynamics.The experiment of Kaftan et al. [J. Biol. Chem. 275(2000) 25465] demonstrated that inhibiting mitochondrial Ca2+ uptake can reduce the frequency of cytosolic Ca2+ concentration oscillations of gonadotropes. By considering the mitochondrial Ca2+ cycling we develop a three-variable model of intracellular Ca2+ oscillations based on the models of Atri et al. [Biophys. J. 65 (1993) 1727] and Falcke et al. [Biophys. J. 77 (1999) 37]. The model reproduces the fact that mitochondrial Ca2+ cycling increases the frequency of cytosolic Ca2+ oscillations, which accords with Kaftan's results. Moreover the model predicts that when the mitochondria overload with Ca2+, the cytosolic Ca2+ oscillations vanish, which may trigger apoptosis.

  11. ALG-2, a multifunctional calcium binding protein?

    DEFF Research Database (Denmark)

    Tarabykina, Svetlana; Mollerup, Jens; Winding Gojkovic, P.;

    2004-01-01

    ALG-2 was originally discovered as a pro-apoptotic protein in a genetic screen. Due to its ability to bind calcium with high affinity it was postulated to provide a link between the known effect of calcium in programmed cell death and the molecular death execution machinery. This review article...

  12. Elements from chlorine to calcium nuclear reactions

    CERN Document Server

    Kunz, Wunibald

    1968-01-01

    Nuclear Tables: Part II Nuclear Reactions, Volume 3: The Elements from Chlorine to Calcium contains tabulations of the nuclear reaction values of elements chlorine, argon, potassium, and calcium. These tabulations provide the calculated Q-values of the elements and their isotopes. This book will be of value to general chemistry researchers.

  13. Calcium, snails, and birds: a case study

    Directory of Open Access Journals (Sweden)

    R. Mänd

    2000-10-01

    Full Text Available Recent studies have shown that wild birds breeding in acidified areas have difficulties with obtaining sufficient calcium for their eggshells, and that the cause of it is the shortage of land snails. Many birds have to search for Ca-rich snail shells on a daily basis during egg production. Molluscs depend on litter calcium, which has decreased due to acidification of the environment. Calcium limitation may be a widespread phenomenon also in non-acidified, naturally Ca-poor areas. The problem is that while in the latter areas the time for development of specific adaptations may have been sufficient, then in acidified areas, on the contrary, calcium shortage is a recent phenomenon. Therefore, since the extent of calcium limitation in non-acidified areas is hard to derive from observational data, experimental approach is needed. We provide experimental evidence that specific calcium deficit does affect reproductive traits also in the birds breeding in naturally base-poor habitats. Our study was conducted in a heterogeneous woodland area in Estonia containing deciduous forest patches as well as base-poor pine forest with low snail abundance. Ca supplementation, using snail shell and chicken eggshell fragments, was carried out for pied flycatchers and great tits. Extra calcium affected positively several reproductive traits like egg volume and eggshell thickness, start of breeding, and fledglings’ parameters. The negative relationship between calcium availability and lay-date suggests that birds adjust their breeding tactics to conditions of Ca deficiency, for example, by postponing laying.

  14. Calcium Impact on Milk Gels Formation

    DEFF Research Database (Denmark)

    Koutina, Glykeria

    to be formed. In addition the low amount of micellar calcium caused a more compact gel structure with many protein aggregates. The results of this study highlighted the importance of calcium for the formation of acid, calcium and rennet gels. The content and the interactions of calcium with proteins during...... salts. The perturbation of calcium equilibria by these factors will affect the final properties of acid, calcium and rennet milk gels. By decreasing the pH from 6.0 to 5.2 (acid gels), the calcium equilibrium was significantly affected by temperature (4, 20, 30, 40 oC), and different combinations...... of temperature and pH may result in different final structure properties in dairy products such as cheese. A significant amount of calcium remained in the micelles between pH 4.8 and 4.6, this can contribute to the final strength of acid milk gels, such as in yogurt or in cream cheeses. After the gelation point...

  15. Adding calcium improves lithium ferrite core

    Science.gov (United States)

    Lessoff, H.

    1969-01-01

    Adding calcium increases uniformity of grain growth over a wide range of sintering temperatures and reduces porosity within the grain. Ferrite cores containing calcium have square hysteresis loops and high curie temperatures, making them useful in coincident current memories of digital electronic computers.

  16. Oligofructose stimulates calcium absorption in adolescents

    NARCIS (Netherlands)

    Heuvel, E.G.H.M. van den; Muys, T.; Dokkum, W. van; Schaafsma, G.

    1999-01-01

    Background: In rats, nondigestible oligosaccharides stimulate calcium absorption. Recently, this effect was also found in human subjects. Objective: The objective of the study was to investigate whether consumption of 15 g oligofructose/d stimulates calcium absorption in male adolescents. Design: Tw

  17. 21 CFR 182.8217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  18. Simulating complex calcium-calcineurin signaling network

    NARCIS (Netherlands)

    Cui, J.; Kaandorp, J.A.

    2008-01-01

    Understanding of processes in which calcium signaling is involved is of fundamental importance in systems biology and has many applications in medicine. In this paper we have studied the particular case of the complex calcium-calcineurin-MCIP-NFAT signaling network in cardiac myocytes, the understan

  19. Bespuiten met calcium kan neusrot voorkomen

    NARCIS (Netherlands)

    Zandstra, G.B.; Marcelis, L.F.M.

    2000-01-01

    Oorzaak van neusrot bij paprika is een calciumtekort in de vrucht. Een bespuiting met calcium vlak na de bloei heeft een zeer gunstig effect. In bijgaande tabel gegevens over het effect van spuiten met calcium op het optreden van neusrot bij paprika

  20. Calcium Impact on Milk Gels Formation

    DEFF Research Database (Denmark)

    Koutina, Glykeria

    , a sudden solubilization of micellar calcium was observed at 50 oC and 60 oC, which revealed an interesting role of calcium during acidification at elevated temperatures. After enrichment of milk with calcium D-lactobionate, the added calcium was distributed between the micellar and serum milk phase at pH 6.......6-6.0, but at pH 5.7-5.4 the added calcium remained mainly in the serum milk phase. The importance of pH for the distribution of the added calcium between the micellar and serum milk phase may affect bioavailability from enriched products and the distribution should be taken into consideration when designing new......Calcium is one of the several elements that can be found in milk distributed between the micellar and the serum milk phase. Calcium is important from a nutritional point of view, but its contribution to the functional and structural properties of dairy products has only recently been...

  1. Rates of calcium carbonate removal from soils.

    NARCIS (Netherlands)

    Breemen, van N.; Protz, R.

    1988-01-01

    Mean annual rates of calcium carbonate removal from soils in a subarctic climate estimated from data on two chronosequences of calcareous storm ridges, appeared to be relatively constant through time. Concentrations of dissolved calcium carbonate in the soil solution in the study sites calculated

  2. Calcium Orthophosphates in Nature, Biology and Medicine

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2009-04-01

    Full Text Available The present overview is intended to point the readers’ attention to the important subject of calcium orthophosphates. These materials are of the special significance because they represent the inorganic part of major normal (bones, teeth and dear antlers and pathological (i.e. those appearing due to various diseases calcified tissues of mammals. Due to a great chemical similarity with the biological calcified tissues, many calcium orthophosphates possess remarkable biocompatibility and bioactivity. Materials scientists use this property extensively to construct artificial bone grafts that are either entirely made of or only surface-coated with the biologically relevant calcium orthophosphates. For example, self-setting hydraulic cements made of calcium orthophosphates are helpful in bone repair, while titanium substitutes covered by a surface layer of calcium orthophosphates are used for hip joint endoprostheses and as tooth substitutes. Porous scaffolds made of calcium orthophosphates are very promising tools for tissue engineering applications. In addition, technical grade calcium orthophosphates are very popular mineral fertilizers. Thus ere calcium orthophosphates are of great significance for humankind and, in this paper, an overview on the current knowledge on this subject is provided.

  3. Precipitation and Solubility of Calcium Hydrogenurate Hexahydrate.

    Science.gov (United States)

    Babić-Ivančić, V; Füredi-Milhofer, H; Brničević, N; Marković, M

    1992-01-01

    Solid phases formed in the quaternary system: uric acid-calcium hydroxide -hydrochloric acid-water aged for 2 months at 310 K were studied to determine conditions for calcium hydrogenurate hexahydrate, Ca(C5H3N4O)2 · 6H2O precipitation. The precipitates were identified by chemical and thermogravimetric analyses, x-ray powder diffraction, infrared spectroscopy, light microscopy, and scanning electron microscopy. In the precipitation diagram the concentration region in which calcium hydrogenurate hexahydrate precipitated as a single solid phase was established. The solubility of calcium hydrogenurate hexahydrate was investigated in the pH range from 6.2 to 10.1 at different temperatures. The total soluble and ionic concentration of calcium (atomic absorption spectroscopy and Ca-selective electrode), total urate concentration (spectrophotometry), and pH were determined in equilibrated solutions. The data are presented in the form of tables and chemical potential diagrams. By using these data the thermodynamic solubility products of calcium hydrogenurate hexahydrate, Ks = a(Ca(2+)) · a(2)(C5H3N4O3(-)), were determined: [Formula: see text]The formation of calcium hydrogenurate hexahydrate crystals in urinary tract of patients with pathologically high concentrations of calcium and urates (hypercalciuria and hyperuricosiuria) is possible.

  4. Calcification and photosynthesis of the coral acropora cervicornis under calcium limited conditions

    Science.gov (United States)

    Rathfon, Megan; Brewer, Debbie

    1997-01-01

    Differing hypothesis about the function of calcification are based on an interesting dilemma. Is the purpose of calcification mainly a structural and protective one or does calcification serve other functions? Does photosynthesis increase carbonate ion activity and cause calcification or does calcification increase CO2 levels and stimulate photsynthesis? It is proposed that calcification in corals is not dependent upon photosynthesis but upon calcium levels in the water. Under normal ocean conditions, corals convert a certain percentage of energy to photosynthesis and respiration and another percentage to calcification. As corals become nutrient stressed, particularly calcium limited, the ratio of photosynthesis to calcification shifts towards calcification in order to generate protons. The protons generated during calcification may stimulate photosynthesis and aid in the uptake of nutrients and biocarbonates. The results of the calcification experiment show a trend towards increased calcification and decreased photosynthesis when the coral Acropora cervicornis is calcium limited, but the data are inconclusive and further research is needed.

  5. A honeycomb composite of mollusca shell matrix and calcium alginate.

    Science.gov (United States)

    You, Hua-jian; Li, Jin; Zhou, Chan; Liu, Bin; Zhang, Yao-guang

    2016-03-01

    A honeycomb composite is useful to carry cells for application in bone, cartilage, skin, and soft tissue regenerative therapies. To fabricate a composite, and expand the application of mollusca shells as well as improve preparing methods of calcium alginate in tissue engineering research, Anodonta woodiana shell powder was mixed with sodium alginate at varying mass ratios to obtain a gel mixture. The mixture was frozen and treated with dilute hydrochloric acid to generate a shell matrix/calcium alginate composite. Calcium carbonate served as the control. The composite was transplanted subcutaneously into rats. At 7, 14, 42, and 70 days after transplantation, frozen sections were stained with hematoxylin and eosin, followed by DAPI, β-actin, and collagen type-I immunofluorescence staining, and observed using laser confocal microscopy. The composite featured a honeycomb structure. The control and composite samples displayed significantly different mechanical properties. The water absorption rate of the composite and control group were respectively 205-496% and 417-586%. The composite (mass ratio of 5:5) showed good biological safety over a 70-day period; the subcutaneous structure of the samples was maintained and the degradation rate was lower than that of the control samples. Freezing the gel mixture afforded control over chemical reaction rates. Given these results, the composite is a promising honeycomb scaffold for tissue engineering.

  6. Calcium and caffeine interaction in increased calcium balance in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Sandra Tavares da Silva

    2013-06-01

    Full Text Available OBJECTIVE: This study investigated the effects of caffeine intake associated with inadequate or adequate calcium intake in laparotomized or ovariectomized rats by means of the calcium balance. Forty adults Wistar rats were ovariectomized or laparotomized. METHODS: The animals (n=40 were randomly placed in eight groups receiving the AIN-93 diet with 100% or 50% of the recommended calcium intake with or without added caffeine (6mg/kg/day. The animals were kept in individuals metabolic cages at a temperature of 24°±2ºC, light/dark cycles of 12/12 hours, and deionized water available ad libitum. On the 8th week of the experiment, food consumption was measured and 24-hour urine and 4-day feces were collected to determine calcium balance [Balance=Ca intake-(Urinary Ca+Fecal Ca]. RESULTS: Animals with adequate calcium intake presented higher balances and rates of calcium absorption and retention (p<0.05 than those with inadequate calcium intake, regardless of caffeine intake (p<0.05. Caffeine intake did not affect urinary calcium excretion but increased balance (p<0.05 in the groups with adequate calcium intake. CONCLUSION: Adequate calcium intake attenuated the negative effects of estrogen deficiency and improved calcium balance even in the presence of caffeine.

  7. Calcium Forms,Subcelluar Distribution and Ultrastructure of Pulp Cells as Influenced by Calcium Deficiency in Apple (Malus pumila) Fruits

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-hui; ZHOU Wei

    2004-01-01

    Calcium in Red Fuji and Starkrimson apples during storage were fractionated by sequent extracting. Localization and distribution of calcium and influence of calcium nutrition on cell ultrastructure were observed by transmission electron microscopy combined with in situ precipitation of calcium with an improved method of potassium pyroantimonate technique. Results indicated that spraying calcium solution on surface of young fruits increased contents of calcium in all forms. During storage, contents of soluble calcium and pectic calcium declined and thosein calcium phosphate, calcium oxalate and calcium silicate increased. Calcium contents of Red Fuji in all forms were higher than those of Starkrimson, indicating that calcium accumulating capability of Red Fuji fruits preceded that of Starkrimson. Under transmission electron microscopy, calcium antimonite precipitates (CaAP) was mainly distributed in cell wall, tonoplast, nuclear membrane and nucleoplasm,much more CaAP deposited in vacuole. Calcium deficiency during storage leads to decrease of CaAP in locations mentioned above, disappearance of compartmentation, and entrance of CaAP to cytoplasm. Transformation from soluble calcium and pectic calcium to calcium phosphate,oxalate and damages of biomembranes structuraly and functionally resulted from calcium deficiency during storage were the crucial causation of physiological disorder.

  8. Calcium-sensing receptor: a key target for extracellular calcium signaling in neurons

    Directory of Open Access Journals (Sweden)

    Brian L Jones

    2016-03-01

    Full Text Available Though both clinicians and scientists have long recognized the influence of extracellular calcium on the function of muscle and nervous tissue, recent insights reveal that the mechanisms allowing changes in extracellular calcium to alter cellular excitability have been incompletely understood. For many years the effects of calcium on neuronal signaling were explained only in terms of calcium entry through voltage-gated calcium channels and biophysical charge screening. More recently however, it has been recognized that the calcium-sensing receptor is prevalent in the nervous system and regulates synaptic transmission and neuronal activity via multiple signaling pathways. Here we review the multiplicity of mechanisms by which changes in extracellular calcium alter neuronal signaling and propose that multiple mechanisms are required to describe the full range of experimental observations.

  9. Process for the preparation of calcium superoxide

    Science.gov (United States)

    Ballou, E. V.; Wood, P. C.; Wydeven, T. J.; Spitze, L. A. (Inventor)

    1978-01-01

    Calcium superoxide is prepared in high yields by spreading a quantity of calcium peroxide diperoxyhydrate on the surface of a container, positioning said container in a vacuum chamber on a support structure through which a coolant fluid can be circulated, partially evacuating said vacuum chamber, allowing the temperature of the diperoxyhydrate to reach the range of about 0 to about 40 C; maintaining the temperature selected for a period of time sufficient to complete the disproproriation of the diperoxyhydrate to calcium superoxide, calcium hydroxide, oxygen, and water; constantly and systematically removing the water as it is formed by sweeping the reacting material with a current of dry inert gas and/or by condensation of said water on a cold surface; backfilling the chamber with a dry inert gas; and finally, recovering the calcium superoxide produced.

  10. The calcium and vitamin D controversy

    DEFF Research Database (Denmark)

    Abrahamsen, Bo

    2017-01-01

    Areas of the world where vitamin D levels are low for months of the year and intakes of calcium are high have a high prevalence of osteoporosis and cardiovascular disease. This suggests a public health message of avoiding calcium supplements and increasing vitamin D intake. No message could be more...... welcome as vitamin D can be given as a bolus while calcium must be taken daily and may be poorly tolerated. This approach is based on no evidence from intervention studies. Randomized controlled trials (RCTs) suggest that vitamin D given with calcium elicits a small reduction in fracture risk and deaths....... This has not been demonstrated for D given alone. The cardiovascular safety of calcium and vitamin D (CaD) supplements is difficult to ascertain due to weaknesses in RCT designs and adjudication that cannot be remedied by subanalysis. Moreover, no major new RCTs are in process to provide better evidence...

  11. [Calcium and vitamin D in osteology].

    Science.gov (United States)

    Amling, M; Barvencik, F

    2015-06-01

    Calcium homeostasis is of paramount physiological and pathophysiological importance in health and disease. This article focuses on the skeletal relevance of calcium and vitamin D in daily clinical practice. Against the background of an endemic vitamin D deficiency in Germany and the increasing number of patients with drug-induced (proton pump inhibitor) enteral calcium uptake problems, it is of critical importance to understand that a vitamin D level of > 30 µg/l (> 75 nmol/l) is required for intact skeletal mineralization and that furthermore, a physiological gastric acid production is essential for a normal enteral uptake of calcium from foodstuffs. Therefore, a guideline-conform handling of vitamin D and calcium substitution is required not only for patients with rheumatoid diseases but also for any osteological therapy.

  12. Calcium ion currents mediating oocyte maturation events

    Directory of Open Access Journals (Sweden)

    Tosti Elisabetta

    2006-05-01

    Full Text Available Abstract During maturation, the last phase of oogenesis, the oocyte undergoes several changes which prepare it to be ovulated and fertilized. Immature oocytes are arrested in the first meiotic process prophase, that is morphologically identified by a germinal vesicle. The removal of the first meiotic block marks the initiation of maturation. Although a large number of molecules are involved in complex sequences of events, there is evidence that a calcium increase plays a pivotal role in meiosis re-initiation. It is well established that, during this process, calcium is released from the intracellular stores, whereas less is known on the role of external calcium entering the cell through the plasma membrane ion channels. This review is focused on the functional role of calcium currents during oocyte maturation in all the species, from invertebrates to mammals. The emerging role of specific L-type calcium channels will be discussed.

  13. Application of Calcium Phosphate Materials in Dentistry

    Directory of Open Access Journals (Sweden)

    Jabr S. Al-Sanabani

    2013-01-01

    Full Text Available Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1 application of calcium phosphate into various fields in dentistry; (2 improving mechanical properties of calcium phosphate; (3 biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields.

  14. Hydration characteristics and environmental friendly performance of a cementitious material composed of calcium silicate slag.

    Science.gov (United States)

    Zhang, Na; Li, Hongxu; Zhao, Yazhao; Liu, Xiaoming

    2016-04-05

    Calcium silicate slag is an alkali leaching waste generated during the process of extracting Al2O3 from high-alumina fly ash. In this research, a cementitious material composed of calcium silicate slag was developed, and its mechanical and physical properties, hydration characteristics and environmental friendly performance were investigated. The results show that an optimal design for the cementitious material composed of calcium silicate slag was determined by the specimen CFSC7 containing 30% calcium silicate slag, 5% high-alumina fly ash, 24% blast furnace slag, 35% clinker and 6% FGD gypsum. This blended system yields excellent physical and mechanical properties, confirming the usefulness of CFSC7. The hydration products of CFSC7 are mostly amorphous C-A-S-H gel, rod-like ettringite and hexagonal-sheet Ca(OH)2 with small amount of zeolite-like minerals such as CaAl2Si2O8·4H2O and Na2Al2Si2O8·H2O. As the predominant hydration products, rod-like ettringite and amorphous C-A-S-H gel play a positive role in promoting densification of the paste structure, resulting in strength development of CFSC7 in the early hydration process. The leaching toxicity and radioactivity tests results indicate that the developed cementitious material composed of calcium silicate slag is environmentally acceptable. This study points out a promising direction for the proper utilization of calcium silicate slag in large quantities.

  15. Sulfite triggers sustained calcium overload in cultured cortical neurons via a redox-dependent mechanism.

    Science.gov (United States)

    Wang, Xiao; Cao, Hui; Guan, Xin-Lei; Long, Li-Hong; Hu, Zhuang-Li; Ni, Lan; Wang, Fang; Chen, Jian-Guo; Wu, Peng-Fei

    2016-09-06

    Sulfite is a compound commonly used as preservative in foods and pharmaceuticals. Many studies have examined the neurotoxicity of sulfite, but its effect on neuronal calcium homeostasis has not yet been reported. Here, we observed the effect of sulfite on the cytosolic free calcium concentration ([Ca(2+)]i) in cultured cortical neurons using Fura-2/AM based calcium imaging technique. Sulfite (250-1000μM) caused a sustained increase in [Ca(2+)]i in the neurons via a dose-dependent manner. In Ca(2+)-free solution, sulfite failed to increase [Ca(2+)]i. After the depletion of the intracellular calcium store, the effect of sulfite on the [Ca(2+)]i was largely abolished. Pharmacological inhibition of phospholipase C (PLC)-inositol 1,4,5-triphosphate (IP3) signaling pathway blocked sulfite-induced increase of [Ca(2+)]i. Interestingly, antioxidants such as trolox and dithiothreitol, abolished the increase of [Ca(2+)]i induced by sulfite. Exposure to sulfite triggered generation of sulfur- and oxygen-centered free radicals in neurons and increased oxidative stress both in the cultured cortical neurons and the prefrontal cortex of rats. Furthemore, sulfite decreased cell viability in cultured cortical neurons via a calcium-dependent manner. Thus, our current study suggests that the redox-dependent calcium overload triggered by sulfite in cortical neuronsmay be involved in its neurotoxicity. Copyright © 2016. Published by Elsevier Ireland Ltd.

  16. Calcium-imaging with Fura-2 in isolated cerebral microvessels

    DEFF Research Database (Denmark)

    Hess, Jörg; Jensen, Claus V.; Diemer, Nils Henrik

    1991-01-01

    Neuropathology, cytoplasmic free calcium, Fura-2 fluorescence, image analysis, blood-brain barrier......Neuropathology, cytoplasmic free calcium, Fura-2 fluorescence, image analysis, blood-brain barrier...

  17. Diagnosis and assessment of skeletal related disease using calcium 41

    Science.gov (United States)

    Hillegonds, Darren J [Oakland, CA; Vogel, John S [San Jose, CA; Fitzgerald, Robert L [Encinitas, CA; Deftos, Leonard J [Del Mar, CA; Herold, David [Del Mar, CA; Burton, Douglas W [San Diego, CA

    2012-05-15

    A method of determining calcium metabolism in a patient comprises the steps of administering radioactive calcium isotope .sup.41Ca to the patient, allowing a period of time to elapse sufficient for dissemination and reaction of the radioactive calcium isotope .sup.41Ca by the patient, obtaining a sample of the radioactive calcium isotope .sup.41Ca from the patient, isolating the calcium content of the sample in a form suitable for precise measurement of isotopic calcium concentrations, and measuring the calcium content to determine parameters of calcium metabolism in the patient.

  18. Calcium-sensitive immunoaffinity chromatography

    DEFF Research Database (Denmark)

    Henriksen, Maiken L; Lindhardt Madsen, Kirstine; Skjoedt, Karsten

    2014-01-01

    Immunoaffinity chromatography is a powerful fractionation technique that has become indispensable for protein purification and characterization. However, it is difficult to retrieve bound proteins without using harsh or denaturing elution conditions, and the purification of scarce antigens...... to homogeneity may be impossible due to contamination with abundant antigens. In this study, we purified the scarce, complement-associated plasma protein complex, collectin LK (CL-LK, complex of collectin liver 1 and kidney 1), by immunoaffinity chromatography using a calcium-sensitive anti-collectin-kidney-1 m...... chromatography was superior to the traditional immunoaffinity chromatographies and resulted in a nine-fold improvement of the purification factor. The technique is applicable for the purification of proteins in complex mixtures by single-step fractionation without the denaturation of eluted antigens...

  19. Fluoride-assisted activation of calcium carbide: a simple method for the ethynylation of aldehydes and ketones.

    Science.gov (United States)

    Hosseini, Abolfazl; Seidel, Daniel; Miska, Andreas; Schreiner, Peter R

    2015-06-01

    The fluoride-assisted ethynylation of ketones and aldehydes is described using commercially available calcium carbide with typically 5 mol % of TBAF·3H2O as the catalyst in DMSO. Activation of calcium carbide by fluoride is thought to generate an acetylide "ate"-complex that readily adds to carbonyl groups. Aliphatic aldehydes and ketones generally provide high yields, whereas aromatic carbonyls afford propargylic alcohols with moderate to good yields. The use of calcium carbide as a safe acetylide ion source along with economic amounts of TBAF·3H2O make this procedure a cheap and operationally simple method for the preparation of propargylic alcohols.

  20. Instant Generation

    Science.gov (United States)

    Loveland, Elaina

    2017-01-01

    Generation Z students (born between 1995-2010) have replaced millennials on college campuses. Generation Z students are entrepreneurial, desire practical skills with their education, and are concerned about the cost of college. This article presents what need to be known about this new generation of students.

  1. Osteogenic Differentiation of MSC through Calcium Signaling Activation: Transcriptomics and Functional Analysis.

    Science.gov (United States)

    Viti, Federica; Landini, Martina; Mezzelani, Alessandra; Petecchia, Loredana; Milanesi, Luciano; Scaglione, Silvia

    2016-01-01

    The culture of progenitor mesenchymal stem cells (MSC) onto osteoconductive materials to induce a proper osteogenic differentiation and mineralized matrix regeneration represents a promising and widely diffused experimental approach for tissue-engineering (TE) applications in orthopaedics. Among modern biomaterials, calcium phosphates represent the best bone substitutes, due to their chemical features emulating the mineral phase of bone tissue. Although many studies on stem cells differentiation mechanisms have been performed involving calcium-based scaffolds, results often focus on highlighting production of in vitro bone matrix markers and in vivo tissue ingrowth, while information related to the biomolecular mechanisms involved in the early cellular calcium-mediated differentiation is not well elucidated yet. Genetic programs for osteogenesis have been just partially deciphered, and the description of the different molecules and pathways operative in these differentiations is far from complete, as well as the activity of calcium in this process. The present work aims to shed light on the involvement of extracellular calcium in MSC differentiation: a better understanding of the early stage osteogenic differentiation program of MSC seeded on calcium-based biomaterials is required in order to develop optimal strategies to promote osteogenesis through the use of new generation osteoconductive scaffolds. A wide spectrum of analysis has been performed on time-dependent series: gene expression profiles are obtained from samples (MSC seeded on calcium-based scaffolds), together with related microRNAs expression and in vivo functional validation. On this basis, and relying on literature knowledge, hypotheses are made on the biomolecular players activated by the biomaterial calcium-phosphate component. Interestingly, a key role of miR-138 was highlighted, whose inhibition markedly increases osteogenic differentiation in vitro and enhance ectopic bone formation in vivo

  2. Osteogenic Differentiation of MSC through Calcium Signaling Activation: Transcriptomics and Functional Analysis.

    Directory of Open Access Journals (Sweden)

    Federica Viti

    Full Text Available The culture of progenitor mesenchymal stem cells (MSC onto osteoconductive materials to induce a proper osteogenic differentiation and mineralized matrix regeneration represents a promising and widely diffused experimental approach for tissue-engineering (TE applications in orthopaedics. Among modern biomaterials, calcium phosphates represent the best bone substitutes, due to their chemical features emulating the mineral phase of bone tissue. Although many studies on stem cells differentiation mechanisms have been performed involving calcium-based scaffolds, results often focus on highlighting production of in vitro bone matrix markers and in vivo tissue ingrowth, while information related to the biomolecular mechanisms involved in the early cellular calcium-mediated differentiation is not well elucidated yet. Genetic programs for osteogenesis have been just partially deciphered, and the description of the different molecules and pathways operative in these differentiations is far from complete, as well as the activity of calcium in this process. The present work aims to shed light on the involvement of extracellular calcium in MSC differentiation: a better understanding of the early stage osteogenic differentiation program of MSC seeded on calcium-based biomaterials is required in order to develop optimal strategies to promote osteogenesis through the use of new generation osteoconductive scaffolds. A wide spectrum of analysis has been performed on time-dependent series: gene expression profiles are obtained from samples (MSC seeded on calcium-based scaffolds, together with related microRNAs expression and in vivo functional validation. On this basis, and relying on literature knowledge, hypotheses are made on the biomolecular players activated by the biomaterial calcium-phosphate component. Interestingly, a key role of miR-138 was highlighted, whose inhibition markedly increases osteogenic differentiation in vitro and enhance ectopic bone

  3. A new iron calcium phosphate material to improve the osteoconductive properties of a biodegradable ceramic: a study in rabbit calvaria.

    Science.gov (United States)

    Manchón, Angel; Hamdan Alkhraisat, Mohammad; Rueda-Rodriguez, Carmen; Prados-Frutos, Juan Carlos; Torres, Jesús; Lucas-Aparicio, Julia; Ewald, Andrea; Gbureck, Uwe; López-Cabarcos, Enrique

    2015-10-20

    β-tricalcium phosphate (β-TCP) is an osteoconductive and biodegradable material used in bone regeneration procedures, while iron has been suggested as a tool to improve the biological performance of calcium phosphate-based materials. However, the mechanisms of interaction between these materials and human cells are not fully understood. In order to clarify this relationship, we have studied the iron role in β-TCP ceramics. Iron-containing β-TCPs were prepared by replacing CaCO3 with C6H5FeO7 at different molar ratios. X-ray diffraction analysis indicated the occurrence of β-TCP as the sole phase in the pure β-TCP and iron-containing ceramics. The incorporation of iron ions in the β-TCP lattice decreased the specific surface area as the pore size was shifted toward meso- and/or macropores. Furthermore, the human osteoblastlike cell line MG-63 was cultured onto the ceramics to determine cell proliferation and viability, and it was observed that the iron-β-TCP ceramics have better cytocompatibility than pure β-TCP. Finally, in vivo assays were performed using rabbit calvaria as a bone model. The scaffolds were implanted for 8 and 12 weeks in the defects created in the skullcap with pure β-TCP as the control. The in vivo behavior, in terms of new bone formed, degradation, and residual graft material were investigated using sequential histological evaluations and histomorphometric analysis. The in vivo implantation of the ceramics showed enhanced bone tissue formation and scaffold degradation for iron-β-TCPs. Thus, iron appears to be a useful tool to enhance the osteoconductive properties of calcium phosphate ceramics.

  4. The α2δ subunit and absence epilepsy: Beyond calcium channels?

    NARCIS (Netherlands)

    Celli, R.; Santolini, I.; Guiducci, M.; Luijtelaar, E.L.J.M. van; Parisi, P.; Striano, P.; Gradini, R.; Battaglia, G.; Ngomba, R.T.; Nicoletti, F.

    2017-01-01

    Spike-wave discharges, underlying absence seizures, are generated within a cortico-thalamo-cortical network that involves the somatosensory cortex, the reticular thalamic nucleus, and the ventrobasal thalamic nuclei. Activation of T-type voltage-sensitive calcium channels (VSCCs) contributes to the

  5. Computer-assisted live cell analysis of mitochondrial membrane potential, morphology and calcium handling.

    NARCIS (Netherlands)

    Koopman, W.J.H.; Distelmaier, F.; Esseling, J.J.; Smeitink, J.A.M.; Willems, P.H.G.M.

    2008-01-01

    Mitochondria are crucial for many aspects of cellular homeostasis and a sufficiently negative membrane potential (Deltapsi) across the mitochondrial inner membrane (MIM) is required to sustain most mitochondrial functions including ATP generation, MIM fusion, and calcium uptake and release. Here, we

  6. Coronary calcium scores are systematically underestimated at a large chest size : A multivendor phantom study

    NARCIS (Netherlands)

    Willemink, Martin J.; Abramiuc, Bronislaw; den Harder, Annemarie M.; van der Werf, Niels R.; de Jong, Pim A.; Budde, Ricardo P. J.; Wildberger, Joachim E.; Vliegenthart, Rozemarijn; Willems, Tineke P.; Greuter, Marcel J. W.; Leiner, Tim

    2015-01-01

    Objective: To evaluate the effect of chest size on coronary calcium score (CCS) as assessed with new-generation CT systems from 4 major vendors. Methods: An anthropomorphic, small-sized (300 x 200 mm) chest phantom containing 100 small calcifications (diameters, 0.5-2.0 mm) was evaluated with and wi

  7. Calcium homeostasis and cone signaling are regulated by interactions between calcium stores and plasma membrane ion channels.

    Directory of Open Access Journals (Sweden)

    Tamas Szikra

    Full Text Available Calcium is a messenger ion that controls all aspects of cone photoreceptor function, including synaptic release. The dynamic range of the cone output extends beyond the activation threshold for voltage-operated calcium entry, suggesting another calcium influx mechanism operates in cones hyperpolarized by light. We have used optical imaging and whole-cell voltage clamp to measure the contribution of store-operated Ca(2+ entry (SOCE to Ca(2+ homeostasis and its role in regulation of neurotransmission at cone synapses. Mn(2+ quenching of Fura-2 revealed sustained divalent cation entry in hyperpolarized cones. Ca(2+ influx into cone inner segments was potentiated by hyperpolarization, facilitated by depletion of intracellular Ca(2+ stores, unaffected by pharmacological manipulation of voltage-operated or cyclic nucleotide-gated Ca(2+ channels and suppressed by lanthanides, 2-APB, MRS 1845 and SKF 96365. However, cation influx through store-operated channels crossed the threshold for activation of voltage-operated Ca(2+ entry in a subset of cones, indicating that the operating range of inner segment signals is set by interactions between store- and voltage-operated Ca(2+ channels. Exposure to MRS 1845 resulted in approximately 40% reduction of light-evoked postsynaptic currents in photopic horizontal cells without affecting the light responses or voltage-operated Ca(2+ currents in simultaneously recorded cones. The spatial pattern of store-operated calcium entry in cones matched immunolocalization of the store-operated sensor STIM1. These findings show that store-operated channels regulate spatial and temporal properties of Ca(2+ homeostasis in vertebrate cones and demonstrate their role in generation of sustained excitatory signals across the first retinal synapse.

  8. Fast kinetics of calcium signaling and sensor design.

    Science.gov (United States)

    Tang, Shen; Reddish, Florence; Zhuo, You; Yang, Jenny J

    2015-08-01

    Fast calcium signaling is regulated by numerous calcium channels exhibiting high spatiotemporal profiles which are currently measured by fluorescent calcium sensors. There is still a strong need to improve the kinetics of genetically encoded calcium indicators (sensors) to capture calcium dynamics in the millisecond time frame. In this review, we summarize several major fast calcium signaling pathways and discuss the recent developments and application of genetically encoded calcium indicators to detect these pathways. A new class of genetically encoded calcium indicators designed with site-directed mutagenesis on the surface of beta-barrel fluorescent proteins to form a pentagonal bipyramidal-like calcium binding domain dramatically accelerates calcium binding kinetics. Furthermore, novel genetically encoded calcium indicators with significantly increased fluorescent lifetime change are advantageous in deep-field imaging with high light-scattering and notable morphology change.

  9. Hierarchical clustering of ryanodine receptors enables emergence of a calcium clock in sinoatrial node cells.

    Science.gov (United States)

    Stern, Michael D; Maltseva, Larissa A; Juhaszova, Magdalena; Sollott, Steven J; Lakatta, Edward G; Maltsev, Victor A

    2014-05-01

    The sinoatrial node, whose cells (sinoatrial node cells [SANCs]) generate rhythmic action potentials, is the primary pacemaker of the heart. During diastole, calcium released from the sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs) interacts with membrane currents to control the rate of the heartbeat. This "calcium clock" takes the form of stochastic, partially periodic, localized calcium release (LCR) events that propagate, wave-like, for limited distances. The detailed mechanisms controlling the calcium clock are not understood. We constructed a computational model of SANCs, including three-dimensional diffusion and buffering of calcium in the cytosol and SR; explicit, stochastic gating of individual RyRs and L-type calcium channels; and a full complement of voltage- and calcium-dependent membrane currents. We did not include an anatomical submembrane space or inactivation of RyRs, the two heuristic components that have been used in prior models but are not observed experimentally. When RyRs were distributed in discrete clusters separated by >1 µm, only isolated sparks were produced in this model and LCR events did not form. However, immunofluorescent staining of SANCs for RyR revealed the presence of bridging RyR groups between large clusters, forming an irregular network. Incorporation of this architecture into the model led to the generation of propagating LCR events. Partial periodicity emerged from the interaction of LCR events, as observed experimentally. This calcium clock becomes entrained with membrane currents to accelerate the beating rate, which therefore was controlled by the activity of the SERCA pump, RyR sensitivity, and L-type current amplitude, all of which are targets of β-adrenergic-mediated phosphorylation. Unexpectedly, simulations revealed the existence of a pathological mode at high RyR sensitivity to calcium, in which the calcium clock loses synchronization with the membrane, resulting in a paradoxical decrease in beating

  10. Relationship of calcium absorption with 25(OH)D and calcium intake in children with rickets.

    Science.gov (United States)

    Thacher, Tom D; Abrams, Steven A

    2010-11-01

    Nutritional rickets has long been considered a disease caused by vitamin D deficiency, but recent data indicate that inadequate dietary calcium intake is an important cause of rickets, particularly in tropical countries. Children with rickets due to calcium deficiency do not have very low 25(OH)D concentrations, and serum 1,25(OH)(2) D values are markedly elevated. Studies of Nigerian children with rickets demonstrated they have high fractional calcium absorption. A high-phytate diet was demonstrated to increase calcium absorption compared with the fasting state, and enzymatic dephytinization did not significantly improve calcium absorption. When given vitamin D, children with rickets have a marked increase in 1,25(OH)(2) D concentrations without any change in fractional calcium absorption. No positive relationship was found between fractional calcium absorption and serum 25(OH)D concentrations in children on low-calcium diets. More research is needed to understand the interaction between calcium and vitamin D and the role of vitamin D in calcium absorption.

  11. Elasticity of calcium and calcium-sodium amphiboles

    Science.gov (United States)

    Brown, J. Michael; Abramson, Evan H.

    2016-12-01

    Measurements of single-crystal elastic moduli under ambient conditions are reported for nine calcium to calcium-sodium amphiboles that lie in the composition range of common crustal constituents. Velocities of body and surface acoustic waves measured by Impulsive Stimulated Light Scattering (ISLS) were inverted to determine the 13 moduli characterizing these monoclinic samples. Moduli show a consistent pattern: C33 > C22 > C11 and C23 > C12 > C13 and C44 > C55 ∼ C66 and for the uniquely monoclinic moduli, |C35| ≫ C46 ∼ |C25| > |C15| ∼ 0. Most of the compositionally-induced variance of moduli is associated with aluminum and iron content. Seven moduli (C11C12C13C22C44C55C66) increase with increasing aluminum while all diagonal moduli decrease with increasing iron. Three moduli (C11, C13 and C44) increase with increasing sodium and potassium occupancy in A-sites. The uniquely monoclinic moduli (C15C25 and C35) have no significant compositional dependence. Moduli associated with the a∗ direction (C11C12C13C55 and C66) are substantially smaller than values associated with structurally and chemically related clinopyroxenes. Other moduli are more similar for both inosilicates. The isotropically averaged adiabatic bulk modulus does not vary with iron content but increases with aluminum content from 85 GPa for tremolite to 99 GPa for pargasite. Increasing iron reduces while increasing aluminum increases the isotropic shear modulus which ranges from 47 GPa for ferro-actinolite to 64 GPa for pargasite. These results exhibit far greater anisotropy and higher velocities than apparent in earlier work. Quasi-longitudinal velocities are as fast as ∼9 km/s and (intermediate between the a∗- and c-axes) are as slow as ∼6 km/s. Voigt-Reuss-Hill averaging based on prior single crystal moduli resulted in calculated rock velocities lower than laboratory measurements, leading to adoption of the (higher velocity) Voigt bound. Thus, former uses of the upper Voigt bound can

  12. Calcium intake and calcium deficiency in toddlers in a slum population of Bhubaneswar

    Directory of Open Access Journals (Sweden)

    Sonali Kar

    2014-12-01

    Full Text Available Introduction: When considering their children's nutrition, parents often think more about fat grams, carbs, and calories, and forget about calcium, a mineral that is important to help build strong and healthy bones and collagen structures like teeth. The RDI recommendation for 1-3 years is minimum 400mg/day. Calcium is selectively present in milk and milk products besides vegetables like spinach and fruits like orange. The current study was undertaken in the urban field practice area of KIMS that caters to a slum population of nearly 20,000. Aims & Objectives: To assess the knowledge of mothers regarding calcium rich foods and its deficiency and their sociodemographic conditions; to assess the average intake of Calcium using the 7 day recall method; to find the prevalence of possible calcium deficiency in the study population ie 1-3 years of age. Methods: All the mothers with children in the age group 1-3 years were recruited in the study after due informed consent, the final sample being nearly 284. The male female child ratio was 56:44. Mostly women i.e. 83% had some formal education and out of the total nearly 65% had heard never heard of calcium and of those who had heard only 30% could say that milk was the best source of calcium. Result: Average daily Calcium intake was poor i.e. 288mg/d which was worse for the female child 233mg/d. Teeth eruption defects or infections and bone deformities were taken as a proxy for calcium deficiency and were detected in 69.2% and 32% respectively. Diarrhea and skin infections were more in those whose calcium intake was less than 220mg/d which was mildly significant. Conclusion: The study suggests more emphasis on dietary calcium intake and probably recommend calcium supplements for the socioeconomically compromised class who probably cannot afford dietary sources of calcium

  13. Effect of calcium intake on urinary oxalate excretion in calcium stone-forming patients

    Directory of Open Access Journals (Sweden)

    Nishiura J.L.

    2002-01-01

    Full Text Available Dietary calcium lowers the risk of nephrolithiasis due to a decreased absorption of dietary oxalate that is bound by intestinal calcium. The aim of the present study was to evaluate oxaluria in normocalciuric and hypercalciuric lithiasic patients under different calcium intake. Fifty patients (26 females and 24 males, 41 ± 10 years old, whose 4-day dietary records revealed a regular low calcium intake (<=500 mg/day, received an oral calcium load (1 g/day for 7 days. A 24-h urine was obtained before and after load and according to the calciuria under both diets, patients were considered as normocalciuric (NC, N = 15, diet-dependent hypercalciuric (DDHC, N = 9 or diet-independent hypercalciuric (DIHC, N = 26. On regular diet, mean oxaluria was 30 ± 14 mg/24 h for all patients. The 7-day calcium load induced a significant decrease in mean oxaluria compared to the regular diet in NC and DIHC (20 ± 12 vs 26 ± 7 and 27 ± 18 vs 32 ± 15 mg/24 h, respectively, P<0.05 but not in DDHC patients (22 ± 10 vs 23 ± 5 mg/24 h. The lack of an oxalate decrease among DDHC patients after the calcium load might have been due to higher calcium absorption under higher calcium supply, with a consequent lower amount of calcium left in the intestine to bind with oxalate. These data suggest that a long-lasting regular calcium consumption <500 mg was not associated with high oxaluria and that a subpopulation of hypercalciuric patients who presented a higher intestinal calcium absorption (DDHC tended to hyperabsorb oxalate as well, so that oxaluria did not change under different calcium intake.

  14. Vitamin D, calcium homeostasis and aging

    Science.gov (United States)

    Veldurthy, Vaishali; Wei, Ran; Oz, Leyla; Dhawan, Puneet; Jeon, Yong Heui; Christakos, Sylvia

    2016-01-01

    Osteoporosis is characterized by low bone mass and microarchitecture deterioration of bone tissue, leading to enhanced bone fragility and consequent increase in fracture risk. Evidence is accumulating for an important role of calcium deficiency as the process of aging is associated with disturbed calcium balance. Vitamin D is the principal factor that maintains calcium homeostasis. Increasing evidence indicates that the reason for disturbed calcium balance with age is inadequate vitamin D levels in the elderly. In this article, an overview of our current understanding of vitamin D, its metabolism, and mechanisms involved in vitamin D-mediated maintenance of calcium homeostasis is presented. In addition, mechanisms involved in age-related dysregulation of 1,25(OH)2D3 action, recommended daily doses of vitamin D and calcium, and the use of vitamin D analogs for the treatment of osteoporosis (which remains controversial) are reviewed. Elucidation of the molecular pathways of vitamin D action and modifications that occur with aging will be an active area of future research that has the potential to reveal new therapeutic strategies to maintain calcium balance. PMID:27790378

  15. Lead removal in rats using calcium alginate.

    Science.gov (United States)

    Savchenko, Olga V; Sgrebneva, Marina N; Kiselev, Vladimir I; Khotimchenko, Yuri S

    2015-01-01

    Lead (Pb) exposure, even at low levels, causes a variety of health problems. The aims of this study were to investigate the tissue distribution of lead in the bodies of rats, to evaluate lead removal from the internal organs and bones using calcium alginate in doses of 500, 200 and 100 mg/kg per day for 28 days and to assess the impact of calcium alginate on the level of essential elements. Lead (Pb), calcium (Ca), manganese (Mn), iron (Fe), copper (Cu) and zinc (Zn) levels in the blood, hearts, kidneys, livers and femurs of the experimental animals were measured using mass spectrometry with inductively coupled plasma. The results revealed that lead acetate exposure increased the levels of Pb in the blood and organs of the animals and significantly reduced contents of Ca, Mn, Fe, Cu and Zn. Treatment with calcium alginate in dose 500 mg/kg contributed to significant decreases in the amount of lead in the kidney, heart and bones of animals and a slight increase in the content of essential elements in the liver, kidneys and heart, although these changes were not significant. Decreasing of lead was not significant in the internal organs, bones and blood of animals treated with calcium alginate 200 and 100 mg/kg. Consequently, calcium alginate dose of 500 mg/kg more efficiently removes lead accumulated in the body. Calcium alginate does not have negative effect on level of essential elements quite the contrary; reducing the levels of lead, calcium alginate helps normalize imbalances of Ca, Mn, Fe, Cu and Zn. The results of this study suggest that calcium alginate may potentially be useful for the treatment and prevention of heavy metal intoxications.

  16. Calcium Signaling Is Required for Erythroid Enucleation.

    Science.gov (United States)

    Wölwer, Christina B; Pase, Luke B; Russell, Sarah M; Humbert, Patrick O

    2016-01-01

    Although erythroid enucleation, the property of erythroblasts to expel their nucleus, has been known for 7ore than a century, surprisingly little is known regarding the molecular mechanisms governing this unique developmental process. Here we show that similar to cytokinesis, nuclear extrusion requires intracellular calcium signaling and signal transduction through the calmodulin (CaM) pathway. However, in contrast to cytokinesis we found that orthochromatic erythroblasts require uptake of extracellular calcium to enucleate. Together these functional studies highlight a critical role for calcium signaling in the regulation of erythroid enucleation.

  17. Calcium Signaling Is Required for Erythroid Enucleation.

    Directory of Open Access Journals (Sweden)

    Christina B Wölwer

    Full Text Available Although erythroid enucleation, the property of erythroblasts to expel their nucleus, has been known for 7ore than a century, surprisingly little is known regarding the molecular mechanisms governing this unique developmental process. Here we show that similar to cytokinesis, nuclear extrusion requires intracellular calcium signaling and signal transduction through the calmodulin (CaM pathway. However, in contrast to cytokinesis we found that orthochromatic erythroblasts require uptake of extracellular calcium to enucleate. Together these functional studies highlight a critical role for calcium signaling in the regulation of erythroid enucleation.

  18. Coronary artery calcium score: current status

    Science.gov (United States)

    Neves, Priscilla Ornellas; Andrade, Joalbo; Monção, Henry

    2017-01-01

    The coronary artery calcium score plays an Important role In cardiovascular risk stratification, showing a significant association with the medium- or long-term occurrence of major cardiovascular events. Here, we discuss the following: protocols for the acquisition and quantification of the coronary artery calcium score by multidetector computed tomography; the role of the coronary artery calcium score in coronary risk stratification and its comparison with other clinical scores; its indications, interpretation, and prognosis in asymptomatic patients; and its use in patients who are symptomatic or have diabetes. PMID:28670030

  19. Dysbalance of astrocyte calcium under hyperammonemic conditions.

    Directory of Open Access Journals (Sweden)

    Nicole Haack

    Full Text Available Increased brain ammonium (NH4(+/NH3 plays a central role in the manifestation of hepatic encephalopathy (HE, a complex syndrome associated with neurological and psychiatric alterations, which is primarily a disorder of astrocytes. Here, we analysed the influence of NH4(+/NH3 on the calcium concentration of astrocytes in situ and studied the underlying mechanisms of NH4(+/NH3-evoked calcium changes, employing fluorescence imaging with Fura-2 in acute tissue slices derived from different regions of the mouse brain. In the hippocampal stratum radiatum, perfusion with 5 mM NH4(+/NH3 for 30 minutes caused a transient calcium increase in about 40% of astrocytes lasting about 10 minutes. Furthermore, the vast majority of astrocytes (∼ 90% experienced a persistent calcium increase by ∼ 50 nM. This persistent increase was already evoked at concentrations of 1-2 mM NH4(+/NH3, developed within 10-20 minutes and was maintained as long as the NH4(+/NH3 was present. Qualitatively similar changes were observed in astrocytes of different neocortical regions as well as in cerebellar Bergmann glia. Inhibition of glutamine synthetase resulted in significantly larger calcium increases in response to NH4(+/NH3, indicating that glutamine accumulation was not a primary cause. Calcium increases were not mimicked by changes in intracellular pH. Pharmacological inhibition of voltage-gated sodium channels, sodium-potassium-chloride-cotransporters (NKCC, the reverse mode of sodium/calcium exchange (NCX, AMPA- or mGluR5-receptors did not dampen NH4(+/NH3-induced calcium increases. They were, however, significantly reduced by inhibition of NMDA receptors and depletion of intracellular calcium stores. Taken together, our measurements show that sustained exposure to NH4(+/NH3 causes a sustained increase in intracellular calcium in astrocytes in situ, which is partly dependent on NMDA receptor activation and on release of calcium from intracellular stores. Our study

  20. Calcium: A Nutrient Deserving a Special Issue

    Directory of Open Access Journals (Sweden)

    Susan J. Whiting

    2010-10-01

    Full Text Available Interest in calcium has continued since the 1980s when its role in promoting bone growth and retention was established in clinical trials of children and postmenopausal women. The human nutrition functions now attributed to calcium have expanded beyond bone health to include other conditions such as body weight maintenance. While most efforts have been focused on the findings that dietary intakes are low, there are emerging data on safety concerns of excess amounts. This Special Issue on calcium nutrition, spanning the lifecycle from critically ill neonates through to older adults, has been written by some of the leading researchers in this field.

  1. Thermochemistry of calcium oxide and calcium hydroxide in fluoride slags

    Science.gov (United States)

    Chattopadhyay, S.; Mitchell, A.

    1990-08-01

    Calcium oxide activity in binary CaF2-CaO and ternary CaF2-CaO-Al2O3 and CaF2-CaO-SiO2 slags has been determined by CO2-slag equilibrium experiments at 1400 °C. The carbonate ca-pacity of these slags has also been computed and compared with sulfide capacity data available in the literature. The similarity in trends suggests the possibility of characterizing carbonate capacity as an alternative basicity index for fluoride-base slags. Slag-D2O equilibrium experi-ments are performed at 1400°C with different fluoride-base slags to determine water solubility at two different partial pressures of D2O, employing a new slag sampling technique. A novel isotope tracer detection technique is employed to analyze water in the slags. The water solubility data found show higher values than the previous literature data by an order of magnitude but show a linear relationship with the square root of water vapor partial pressure. The activity of hydroxide computed from the data is shown to be helpful in estimating water solubility in in-dustrial electroslag remelting (ESR) slags.

  2. Powder X-ray diffraction can differentiate between enantiomeric variants of calcium lactate pentahydrate crystal in cheese.

    Science.gov (United States)

    Tansman, G F; Kindstedt, P S; Hughes, J M

    2014-12-01

    Powder X-ray diffraction has been used for decades to identify crystals of calcium lactate pentahydrate in Cheddar cheese. According to this method, diffraction patterns are generated from a powdered sample of the crystals and compared with reference cards within a database that contains the diffraction patterns of known crystals. During a preliminary study of crystals harvested from various Cheddar cheese samples, we observed 2 slightly different but distinct diffraction patterns that suggested that calcium lactate pentahydrate may be present in 2 different crystalline forms. We hypothesized that the 2 diffraction patterns corresponded to 2 enantiomeric forms of calcium lactate pentahydrate (L- and DL-) that are believed to occur in Cheddar cheese, based on previous studies involving enzymatic analyses of the lactate enantiomers in crystals obtained from Cheddar cheeses. However, the powder X-ray diffraction database currently contains only one reference diffraction card under the title “calcium lactate pentahydrate.” To resolve this apparent gap in the powder X-ray diffraction database, we generated diffraction patterns from reagent-grade calcium l-lactate pentahydrate and laboratory-synthesized calcium dl-lactate pentahydrate. From the resulting diffraction patterns we determined that the existing reference diffraction card corresponds to calcium dl-lactate pentahydrate and that the other form of calcium lactate pentahydrate observed in cheese crystals corresponds to calcium l-lactate pentahydrate. Therefore, this report presents detailed data from the 2 diffraction patterns, which may be used to prepare 2 reference diffraction cards that differentiate calcium l-lactate pentahydrate from calcium dl-lactate pentahydrate. Furthermore, we collected crystals from the exteriors and interiors of Cheddar cheeses to demonstrate the ability of powder X-ray diffraction to differentiate between the 2 forms of calcium lactate pentahydrate crystals in Cheddar cheeses

  3. Wind Generators

    Science.gov (United States)

    1989-01-01

    When Enerpro, Inc. president, Frank J. Bourbeau, attempted to file a patent on a system for synchronizing a wind generator to the electric utility grid, he discovered Marshall Space Flight Center's Frank Nola's power factor controller. Bourbeau advanced the technology and received a NASA license and a patent for his Auto Synchronous Controller (ASC). The ASC reduces generator "inrush current," which occurs when large generators are abruptly brought on line. It controls voltage so the generator is smoothly connected to the utility grid when it reaches its synchronous speed, protecting the components from inrush current damage. Generator efficiency is also increased in light winds by applying lower than rated voltage. Wind energy is utilized to drive turbines to generate electricity for utility companies.

  4. Calcium acetate versus calcium carbonate as phosphorus binders in patients on chronic haemodialysis: a controlled study.

    Science.gov (United States)

    Ring, T; Nielsen, C; Andersen, S P; Behrens, J K; Sodemann, B; Kornerup, H J

    1993-01-01

    The first reported double-blind cross-over comparison between the phosphorus binders calcium carbonate and calcium acetate was undertaken in 15 stable patients on chronic maintenance haemodialysis. Detailed registration of diet and analysis of the protein catabolic rate suggested an unchanged phosphorus intake during the study. It was found that predialytic serum phosphate concentration was significantly decreased by 0.11 mmol/l (0.34 mg/dl) (P = 0.021, 95% confidence limits 0.02-0.21 mmol/l; 0.06-0.65 mg/dl) during calcium acetate treatment. The calcium phosphate product was insignificantly decreased during treatment with calcium acetate whereas we could not exclude the possibility that calcium concentration had increased.

  5. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    Energy Technology Data Exchange (ETDEWEB)

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond (Toronto); (WU-MED)

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  6. Hydrolytic conversion of amorphous calcium phosphate into apatite accompanied by sustained calcium and orthophosphate ions release.

    Science.gov (United States)

    Niu, Xufeng; Chen, Siqian; Tian, Feng; Wang, Lizhen; Feng, Qingling; Fan, Yubo

    2017-01-01

    The aim of this study is to investigate the calcium and orthophosphate ions release during the transformation of amorphous calcium phosphate (ACP) to hydroxyapatite (HA) in aqueous solution. The ACP is prepared by a wet chemical method and further immersed in the distilled water for various time points till 14d. The release of calcium and orthophosphate ions is measured with calcium and phosphate colorimetric assay kits, respectively. The transition of ACP towards HA is detected by x-ray diffraction (XRD), transmission electron microscopy (TEM), and fourier transform infrared spectroscopy (FTIR). The results indicate that the morphological conversion of ACP to HA occurs within the first 9h, whereas the calcium and orthophosphate ions releases last for over 7d. Such sustained calcium and orthophosphate ions release is very useful for ACP as a candidate material for hard tissue regeneration.

  7. Variations in onset of action potential broadening: effects on calcium current studied in chick ciliary ganglion neurones.

    Science.gov (United States)

    Pattillo, J M; Artim, D E; Simples, J E; Meriney, S D

    1999-02-01

    1. The voltage dependence and kinetic properties of stage 40 ciliary ganglion calcium currents were determined using short (10 ms) voltage steps. These properties aided the interpretation of the action potential-evoked calcium current described below, and the comparison of our data with those observed in other preparations. 2. Three different natural action potential waveforms were modelled by a series of ramps to generate voltage clamp commands. Calcium currents evoked by these model action potentials were compared before and after alterations in the repolarization phase of each action potential. 3. Abrupt step repolarizations from various time points were used to estimate the time course of calcium current activation during each action potential. Calcium current evoked by fast action potentials (duration at half-amplitude, 0.5 or 1.0 ms) did not reach maximal activation until the action potential had repolarized by 40-50 %. In contrast, calcium current evoked by a slow action potential (duration at half-amplitude, 2.2 ms) was maximally activated near the peak of the action potential. 4. Slowing the rate of repolarization of the action potential (broadening) from different times was used to examine effects on peak and total calcium influx. With all three waveforms tested, broadening consistently increased total calcium influx (integral). However, peak calcium current was either increased or decreased depending on the duration of the control action potential tested and the specific timing of the initiation of broadening the repolarization phase. 5. The opposite effects on peak calcium current observed with action potential broadening beginning at different time points in repolarization may provide a mechanism for the variable effects of potassium channel blockers on transmitter release magnitude.

  8. Inhibitors of arachidonate-regulated calcium channel signaling suppress triggered activity induced by the late sodium current.

    Science.gov (United States)

    Wolkowicz, Paul; Umeda, Patrick K; Sharifov, Oleg F; White, C Roger; Huang, Jian; Mahtani, Harry; Urthaler, Ferdinand

    2014-02-05

    Disturbances in myocyte calcium homeostasis are hypothesized to be one cause for cardiac arrhythmia. The full development of this hypothesis requires (i) the identification of all sources of arrhythmogenic calcium and (ii) an understanding of the mechanism(s) through which calcium initiates arrhythmia. To these ends we superfused rat left atria with the late sodium current activator type II Anemonia sulcata toxin (ATXII). This toxin prolonged atrial action potentials, induced early afterdepolarization, and provoked triggered activity. The calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93 (N-[2-[[[3-(4-chlorophenyl)-2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulphon-amide) suppressed ATXII triggered activity but its inactive congener KN-92 (2-[N-(4-methoxy benzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine) did not. Neither drug affected normal atrial contractility. Calcium entry via L-type channels or calcium leakage from sarcoplasmic reticulum stores are not critical for this type of ectopy as neither verapamil ((RS)-2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl]-(methyl)amino}-2-prop-2-ylpentanenitrile) nor ryanodine affected ATXII triggered activity. By contrast, inhibitors of the voltage independent arachidonate-regulated calcium (ARC) channel and the store-operated calcium channel specifically suppressed ATXII triggered activity without normalizing action potentials or affecting atrial contractility. Inhibitors of cytosolic calcium-dependent phospholipase A2 also suppressed triggered activity suggesting that this lipase, which generates free arachidonate, plays a key role in ATXII ectopy. Thus, increased left atrial late sodium current appears to activate atrial Orai-linked ARC and store operated calcium channels, and these voltage-independent channels may be unexpected sources for the arrhythmogenic calcium that underlies triggered activity.

  9. Rainfall generation

    Science.gov (United States)

    Sharma, Ashish; Mehrotra, Raj

    This chapter presents an overview of methods for stochastic generation of rainfall at annual to subdaily time scales, at single- to multiple-point locations, and in a changing climatic regime. Stochastic rainfall generators are used to provide inputs for risk assessment of natural or engineering systems that can undergo failure under sustained (high or low) extremes. As a result, generation of rainfall has evolved to provide options that adequately represent such conditions, leading to sequences that exhibit low-frequency variability of a nature similar to the observed rainfall. The chapter consists of three key sections: the first two outlining approaches for rainfall generation using endogenous predictor variables and the third highlighting approaches for generation using exogenous predictors often simulated to represent future climatic conditions. The first section presents approaches for generation of annual and seasonal rainfall and daily rainfall, both at single-point locations and multiple sites, with an emphasis on alternatives that ensure appropriate representation of low-frequency variability in the generated rainfall sequences. The second section highlights advancements in the subdaily rainfall generation procedures including commonly used approaches for daily to subdaily rainfall generation. The final section (generation using exogenous predictors) presents a range of alternatives for stochastic downscaling of rainfall for climate change impact assessments of natural and engineering systems. We conclude the chapter by outlining some of the key challenges that remain to be addressed, especially in generation under climate change conditions, with an emphasis on the importance of incorporating uncertainty present in both measurements and models, in the rainfall sequences that are generated.

  10. Calcium absorption from fortified ice cream formulations compared with calcium absorption from milk.

    Science.gov (United States)

    van der Hee, Regine M; Miret, Silvia; Slettenaar, Marieke; Duchateau, Guus S M J E; Rietveld, Anton G; Wilkinson, Joy E; Quail, Patricia J; Berry, Mark J; Dainty, Jack R; Teucher, Birgit; Fairweather-Tait, Susan J

    2009-05-01

    Optimal bone mass in early adulthood is achieved through appropriate diet and lifestyle, thereby protecting against osteoporosis and risk of bone fracture in later life. Calcium and vitamin D are essential to build adequate bones, but calcium intakes of many population groups do not meet dietary reference values. In addition, changes in dietary patterns are exacerbating the problem, thereby emphasizing the important role of calcium-rich food products. We have designed a calcium-fortified ice cream formulation that is lower in fat than regular ice cream and could provide a useful source of additional dietary calcium. Calcium absorption from two different ice cream formulations was determined in young adults and compared with milk. Sixteen healthy volunteers (25 to 45 years of age), recruited from the general public of The Netherlands, participated in a randomized, reference-controlled, double-blind cross-over study in which two test products and milk were consumed with a light standard breakfast on three separate occasions: a standard portion of ice cream (60 g) fortified with milk minerals and containing a low level (3%) of butter fat, ice cream (60 g) fortified with milk minerals and containing a typical level (9%) of coconut oil, and reduced-fat milk (1.7% milk fat) (200 mL). Calcium absorption was measured by the dual-label stable isotope technique. Effects on calcium absorption were evaluated by analysis of variance. Fractional absorption of calcium from the 3% butterfat ice cream, 9% coconut oil ice cream, and milk was 26%+/-8%, 28%+/-5%, and 31%+/-9%, respectively, and did not differ significantly (P=0.159). Results indicate that calcium bioavailability in the two calcium-fortified ice cream formulations used in this study is as high as milk, indicating that ice cream may be a good vehicle for delivery of calcium.

  11. Characterization of calcium oxalate biominerals in some (non-Cactaceae) succulent plant species.

    Science.gov (United States)

    Monje, Paula V; Baran, Enrique J

    2010-01-01

    The water-accumulating leaves of crassulacean acid metabolism plants belonging to five different families were investigated for the presence of biominerals by infrared spectroscopic and microscopic analyses. Spectroscopic results revealed that the mineral present in succulent species of Agavaceae, Aizoaceae, and Asphodelaceae was calcium oxalate monohydrate (whewellite, CaC2O4 x H2O). Crystals were predominantly found as raphides or solitary crystals of various morphologies. However, representative Crassulaceae members and a succulent species of Asteraceae did not show the presence of biominerals. Overall, these results suggest no correlation between calcium oxalate generation and crassulacean acid metabolism in succulent plants.

  12. Relating a calcium indicator signal to the unperturbed calcium concentration time-course

    Directory of Open Access Journals (Sweden)

    Abarbanel Henry DI

    2007-02-01

    Full Text Available Abstract Background Optical indicators of cytosolic calcium levels have become important experimental tools in systems and cellular neuroscience. Indicators are known to interfere with intracellular calcium levels by acting as additional buffers, and this may strongly alter the time-course of various dynamical variables to be measured. Results By investigating the underlying reaction kinetics, we show that in some ranges of kinetic parameters one can explicitly link the time dependent indicator signal to the time-course of the calcium influx, and thus, to the unperturbed calcium level had there been no indicator in the cell.

  13. Morphological Investigation of Calcium Carbonate during Ammonification-Carbonization Process of Low Concentration Calcium Solution

    Directory of Open Access Journals (Sweden)

    Huaigang Cheng

    2014-01-01

    Full Text Available Ultrafine calcium carbonate is a widely used cheap additive. The research is conducted in low degree supersaturation solution in order to study the polymorphic phases’ change and its factors of the calcium carbonate precipitate in the ammonification-carbonization process of the solution with calcium. Fine particles of calcium carbonate are made in the solution containing 0.015 mol/L of Ca2+. Over 98% of the calcium carbonate precipitate without ammonification resembles the morphology of calcite, while the introduction of ammonia can benefit the formation of vaterite. It was inferred that the main cause should be serious partial oversaturation or steric effects. Ammonia also helps to form the twin spherical calcium carbonate. However, particles formed in the process of ammonification-carbonization in solution with low concentration degree of calcium are not even with a scale of the particle diameter from 5 to 12 μm. Inorganic salts, alcohol, or organic acid salts have significant controlling effect on the particle diameter of calcium carbonate and can help to decrease the particle diameter to about 3 μm. Anionic surfactants can prevent the conglobation of calcium carbonate particles and shrink its diameter to 500 nm–1 μm.

  14. Diagnosis and clinical manifestations of calcium pyrophosphate and basic calcium phosphate crystal deposition diseases.

    Science.gov (United States)

    Ea, Hang-Korng; Lioté, Frédéric

    2014-05-01

    Basic calcium phosphate and pyrophosphate calcium crystals are the 2 main calcium-containing crystals that can deposit in all skeletal tissues. These calcium crystals give rise to numerous manifestations, including acute inflammatory attacks that can mimic alarming and threatening differential diagnoses, osteoarthritis-like lesions, destructive arthropathies, and calcific tendinitis. Awareness of uncommon localizations and manifestations such as intraspinal deposition (eg, crowned dens syndrome, tendinitis of longus colli muscle, massive cervical myelopathy compression) prevents inappropriate procedures and cares. Coupling plain radiography, ultrasonography, computed tomography, and synovial fluid analysis allow accurate diagnosis by directly or indirectly identifying the GRAAL of microcrystal-related symptoms.

  15. Transport of calcium in seedlings and cuttings of mung bean

    Energy Technology Data Exchange (ETDEWEB)

    Broadbent, W.

    1984-01-01

    At germination, a very small proportion of stored calcium is mobilized to the axis in the absence of exogenous supplies of calcium. There is no evidence for transport in phloem since exported calcium does not enter the seedling root. /sup 45/Calcium is not redistributed when applied to cotyledons at germination of leaves of seedlings. A subsequent large addition of unlabelled calcium promotes a small redistribution from leaves. Triiodobenzoic acid (TIBA), applied to leaves, leads to a small reduction in calcium accumulation but does not effect redistribution. Auxin is without effect and auxin plus TIBA promotes accumulation. These results are discussed in relation to possible extracellular binding sites for calcium.

  16. ERp57 modulates mitochondrial calcium uptake through the MCU.

    Science.gov (United States)

    He, Jingquan; Shi, Weikang; Guo, Yu; Chai, Zhen

    2014-06-01

    ERp57 participates in the regulation of calcium homeostasis. Although ERp57 modulates calcium flux across the plasma membrane and the endoplasmic reticulum membrane, its functions on mitochondria are largely unknown. Here, we found that ERp57 can regulate the expression of the mitochondrial calcium uniporter (MCU) and modulate mitochondrial calcium uptake. In ERp57-silenced HeLa cells, MCU was downregulated, and the mitochondrial calcium uptake was inhibited, consistent with the effect of MCU knockdown. When MCU was re-expressed in the ERp57 knockdown cells, mitochondrial calcium uptake was restored. Thus, ERp57 is a potent regulator of mitochondrial calcium homeostasis.

  17. Calcium signaling in neocortical development.

    Science.gov (United States)

    Uhlén, Per; Fritz, Nicolas; Smedler, Erik; Malmersjö, Seth; Kanatani, Shigeaki

    2015-04-01

    The calcium ion (Ca(2+) ) is an essential second messenger that plays a pivotal role in neurogenesis. In the ventricular zone (VZ) of the neocortex, neural stem cells linger to produce progenitor cells and subsequently neurons and glial cells, which together build up the entire adult brain. The radial glial cells, with their characteristic radial fibers that stretch from the inner ventricular wall to the outer cortex, are known to be the neural stem cells of the neocortex. Migrating neurons use these radial fibers to climb from the proliferative VZ in the inner part of the brain to the outer layers of the cortex, where differentiation processes continue. To establish the complex structures that constitute the adult cerebral cortex, proliferation, migration, and differentiation must be tightly controlled by various signaling events, including cytosolic Ca(2+) signaling. During development, cells regularly exhibit spontaneous Ca(2+) activity that stimulates downstream effectors, which can elicit these fundamental cell processes. Spontaneous Ca(2+) activity during early neocortical development depends heavily on gap junctions and voltage dependent Ca(2+) channels, whereas later in development neurotransmitters and synapses exert an influence. Here, we provide an overview of the literature on Ca(2+) signaling and its impact on cell proliferation, migration, and differentiation in the neocortex. We point out important historical studies and review recent progress in determining the role of Ca(2+) signaling in neocortical development.

  18. Calcium Imaging of Sonoporation of Mammalian Cells

    Science.gov (United States)

    Sabens, David; Aehle, Matthew; Steyer, Grant; Kourennyi, Dmitri; Deng, Cheri X.

    2006-05-01

    Ultrasound mediated delivery of compounds is a relatively recent development in drug delivery and gene transfection techniques. Due to the lack of methods for real-time monitoring of sonoporation at the cellular level, the efficiency of drug/gene delivery and sonoporation associated side effects, such as the loss of cell viability and enhanced apoptosis, have been studied only through post US exposure analyses, requiring days for cell incubation. Furthermore, because microporation appears to be transient in nature, it was not possible to correlate transfection with microporation on an individual cellular basis. By studying the role of calcium in the cell and using fluorescent calcium imaging to study sonoporation it is possible to quantify both cell porosity and sonoporation side effects. Since both post sonoporation cell survival and delivery efficiency are related to the dynamic process of the cell membrane poration, calcium imaging of sonoporation will provide important knowledge to obtain improved understanding of sonoporation mechanism. Our experimental results demonstrated the feasibility of calcium imaging of sonoporation in Chinese Hamster Ovary (CHO) cells. We have measured the changes in the intracellular calcium concentration using Fura-2, a fluorescent probe, which indicate influx or flow of Calcium across the cell membrane. Analysis of data identified key aspects in the dynamic sonoporation process including the formation of pores in the cell membrane, and the relative temporal duration of the pores and their resealing. These observations are obtained through the analysis of the rate the calcium concentration changes within the cells, making it possible to visualize membrane opening and repair in real-time through such changes in the intracellular calcium concentration.

  19. Gel time of calcium acrylate grouting material

    Institute of Scientific and Technical Information of China (English)

    韩同春

    2004-01-01

    Calcium acrylate is a polymerized grout, and can polymerize in an aqueous solution. The polymerization reaction utilizes ammonium persulfate as a catalyst and sodium thiosulfate as the activator. Based on the theory of reaction kinetics, this study on the relation between gel time and concentration of activator and catalyst showed that gel time of calcium acrylate is inversely proportional to activator and catalyst concentration. A formula of gel time is proposed, and an example is provided to verify the proposed formula.

  20. Is Excess Calcium Harmful to Health?

    OpenAIRE

    Daly, Robin M.; Ebeling, Peter R.

    2010-01-01

    Most current guidelines recommend that older adults and the elderly strive for a total calcium intake (diet and supplements) of 1,000 to 1,300 mg/day to prevent osteoporosis and fractures. Traditionally, calcium supplements have been considered safe, effective and well tolerated, but their safety has recently been questioned due to potential adverse effects on vascular disease which may increase mortality. For example, the findings from a meta-analysis of randomized controlled trials (current...

  1. Physical Properties of Acidic Calcium Phosphate Cements

    OpenAIRE

    2014-01-01

    The gold standard for bone replacement today, autologous bone, suffers from several disadvantages, such as the increased risk of infection due to the need for two surgeries. Degradable synthetic materials with properties similar to bone, such as calcium phosphate cements, are a promising alternative. Calcium phosphate cements are suited for a limited amount of applications and improving their physical properties could extend their use into areas previously not considered possible. For example...

  2. Evaluation of quick disintegrating calcium carbonate tablets

    OpenAIRE

    Fausett, Hector; Gayser, Charles; Dash, Alekha K.

    2000-01-01

    The purpose of this investigation was to develop a rapidly disintegrating calcium carbonate (CC) tablet by direct compression and compare it with commercially available calcium tablets. CC tablets were formulated on a Carver press using 3 different forms of CC direct compressed granules (Cal-Carb 4450®, Cal-Carb 4457®, and Cal-Carb 4462®). The breaking strength was measured using a Stokes-Monsanto hardness tester. The disintegration and dissolution properties of the tablets were studied using...

  3. Rickets induced by calcium or phosphate depletion.

    OpenAIRE

    Abugassa, S.; Svensson, O.

    1990-01-01

    We studied the effects of calciopenia and phosphopenia on longitudinal growth, skeletal mineralization, and development of rickets in young Sprague-Dawley rats. At an age of 21 days, two experimental groups were given diets containing 0.02% calcium or 0.02% phosphorus; otherwise the diets were nutritionally adequate. After 7, 14, and 21 days, five animals from each group were randomly chosen. The animals were anaesthetized and blood samples were drawn for analysis of calcium, phosphorus, and ...

  4. Fractal aspects of calcium binding protein structures

    Energy Technology Data Exchange (ETDEWEB)

    Isvoran, Adriana [West University of Timisoara, Department of Chemistry, Pestalozzi 16, 300115 Timisoara (Romania)], E-mail: aisvoran@cbg.uvt.ro; Pitulice, Laura [West University of Timisoara, Department of Chemistry, Pestalozzi 16, 300115 Timisoara (Romania); Craescu, Constantin T. [INSERM U759/Institute Curie-Recherche, Centre Universitaire Paris-Sud, Batiment 112, 91405 Orsay (France); Chiriac, Adrian [West University of Timisoara, Department of Chemistry, Pestalozzi 16, 300115 Timisoara (Romania)

    2008-03-15

    The structures of EF-hand calcium binding proteins may be classified into two distinct groups: extended and compact structures. In this paper we studied 20 different structures of calcium binding proteins using the fractal analysis. Nine structures show extended shapes, one is semi-compact and the other 10 have compact shapes. Our study reveals different fractal characteristics for protein backbones belonging to different structural classes and these observations may be correlated to the physicochemical forces governing the protein folding.

  5. Understanding calcium dynamics experiments and theory

    CERN Document Server

    Malchow, Dieter

    2003-01-01

    Intracellular Calcium is an important messenger in living cells. Calcium dynamics display complex temporal and spatial structures created by the concentration patterns which are characteristic for a nonlinear system operating far from thermodynamic equilibrium. Written as a set of tutorial reviews on both experimental facts and theoretical modelling, this volume is intended as an introduction and modern reference in the field for graduate students and researchers in biophysics, biochemistry and applied mathematics.

  6. Characterization of nanoscopic calcium fluoride films

    Science.gov (United States)

    Rehmer, A.; Kemnitz, E.

    2016-09-01

    Nano metal fluorides are appropriate materials for different applications e.g. heterogeneous catalysis, ceramic materials for laser applications and antireflective layers on glass, respectively. An easy way to synthesize such nano metal fluorides is the fluorolytic sol-gel synthesis which was developed some few years ago for HS-AlF3 [1] and MgF2.[2] CaF2 exhibits similar optical properties as MgF2, and thus, is a promising candidate for antireflective (AR) coatings. That means, CaF2 exhibits a lower refractive index (n500 = 1.44) as compared to common soda lime glass (n500 = 1.53). Hence, we present an easy synthesis approach toward nanoscaled CaF2 sols to fabricate finally AR-CaF2 films by dip coating. Irrespective of the choice of the calcium precursor, the CaF2 films are porous in comparison to thin dense CaF2 films which are generated by physical vapor deposition. The characterization of CaF2 films was performed by different analytical methods like HR-SEM, XPS, EDX, EP (ellipsometric porosimetry), DLS (dynamic light scattering) and CA (contact angle measurement). Beside the good optical and mechanical properties, we have investigated the surface properties of CaF2 films on glass and silicon wafer e.g. surface morphology with elemental composition, open porosity, zeta potentials at the surfaces as well as the free energy of interaction between water and the CaF2 film.

  7. [Bone and Nutrition. Vitamin D independent calcium absorption].

    Science.gov (United States)

    Masuyama, Ritsuko

    2015-07-01

    Vitamin D endocrine system is required for normal calcium and bone homeostasis. Trans-epithelial calcium absorption is initiated with calcium entry into the intestinal epithelial cells from luminal fluid through calcium permeable channels, and those expressions are strongly supported by vitamin D action. On the other hands, dietary treatment, mineral supplementation or restriction, successfully improves intestinal calcium absorption in global vitamin D receptor knock-out (VDR KO) mice, though vitamin D dependent active transport pathway is lacking. Dietary rescue of intestinal calcium absorption provided a positive calcium balance in this mouse model, and suggested that the major role of vitamin D function on calcium homeostasis was considered to be intestinal active absorption. To elucidate the entire process of intestinal calcium absorption, vitamin D independent calcium transport system was characterized into either trans-cellular or para-cellular process.

  8. Analytical models of calcium binding in a calcium channel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinn-Liang [Department of Applied Mathematics, National Hsinchu University of Education, Hsinchu 300, Taiwan (China); Eisenberg, Bob [Department of Molecular Biophysics and Physiology, Rush University, Chicago, Illinois 60612 (United States)

    2014-08-21

    The anomalous mole fraction effect of L-type calcium channels is analyzed using a Fermi like distribution with the experimental data of Almers and McCleskey [J. Physiol. 353, 585 (1984)] and the atomic resolution model of Lipkind and Fozzard [Biochemistry 40, 6786 (2001)] of the selectivity filter of the channel. Much of the analysis is algebraic, independent of differential equations. The Fermi distribution is derived from the configuration entropy of ions and water molecules with different sizes, different valences, and interstitial voids between particles. It allows us to calculate potentials and distances (between the binding ion and the oxygen ions of the glutamate side chains) directly from the experimental data using algebraic formulas. The spatial resolution of these results is comparable with those of molecular models, but of course the accuracy is no better than that implied by the experimental data. The glutamate side chains in our model are flexible enough to accommodate different types of binding ions in different bath conditions. The binding curves of Na{sup +} and Ca{sup 2+} for [CaCl{sub 2}] ranging from 10{sup −8} to 10{sup −2} M with a fixed 32 mM background [NaCl] are shown to agree with published Monte Carlo simulations. The Poisson-Fermi differential equation—that includes both steric and correlation effects—is then used to obtain the spatial profiles of energy, concentration, and dielectric coefficient from the solvent region to the filter. The energy profiles of ions are shown to depend sensitively on the steric energy that is not taken into account in the classical rate theory. We improve the rate theory by introducing a steric energy that lumps the effects of excluded volumes of all ions and water molecules and empty spaces between particles created by Lennard-Jones type and electrostatic forces. We show that the energy landscape varies significantly with bath concentrations. The energy landscape is not constant.

  9. Generative Semantics

    Science.gov (United States)

    Bagha, Karim Nazari

    2011-01-01

    Generative semantics is (or perhaps was) a research program within linguistics, initiated by the work of George Lakoff, John R. Ross, Paul Postal and later McCawley. The approach developed out of transformational generative grammar in the mid 1960s, but stood largely in opposition to work by Noam Chomsky and his students. The nature and genesis of…

  10. Is Excess Calcium Harmful to Health?

    Directory of Open Access Journals (Sweden)

    Robin M. Daly

    2010-05-01

    Full Text Available Most current guidelines recommend that older adults and the elderly strive for a total calcium intake (diet and supplements of 1,000 to 1,300 mg/day to prevent osteoporosis and fractures. Traditionally, calcium supplements have been considered safe, effective and well tolerated, but their safety has recently been questioned due to potential adverse effects on vascular disease which may increase mortality. For example, the findings from a meta-analysis of randomized controlled trials (currently published in abstract form only revealed that the use of calcium supplements was associated with an ~30% increased risk of myocardial infarction. If high levels of calcium are harmful to health, this may alter current public health recommendations with regard to the use of calcium supplements for preventing osteoporosis. In this review, we provide an overview of the latest information from human observational and prospective studies, randomized controlled trials and meta-analyses related to the effects of calcium supplementation on vascular disease and related risk factors, including blood pressure, lipid and lipoprotein levels and vascular calcification.

  11. Self-Setting Calcium Orthophosphate Formulations

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2013-11-01

    Full Text Available In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are bioactive and biodegradable grafting bioceramics in the form of a powder and a liquid. After mixing, both phases form pastes, which set and harden forming either a non-stoichiometric calcium deficient hydroxyapatite or brushite. Since both of them are remarkably biocompartible, bioresorbable and osteoconductive, self-setting calcium orthophosphate formulations appear to be promising bioceramics for bone grafting. Furthermore, such formulations possess excellent molding capabilities, easy manipulation and nearly perfect adaptation to the complex shapes of bone defects, followed by gradual bioresorption and new bone formation. In addition, reinforced formulations have been introduced, which might be described as calcium orthophosphate concretes. The discovery of self-setting properties opened up a new era in the medical application of calcium orthophosphates and many commercial trademarks have been introduced as a result. Currently such formulations are widely used as synthetic bone grafts, with several advantages, such as pourability and injectability. Moreover, their low-temperature setting reactions and intrinsic porosity allow loading by drugs, biomolecules and even cells for tissue engineering purposes. In this review, an insight into the self-setting calcium orthophosphate formulations, as excellent bioceramics suitable for both dental and bone grafting applications, has been provided.

  12. Oyster shell calcium induced parotid swelling

    Directory of Open Access Journals (Sweden)

    Muthiah Palaniappan

    2014-01-01

    Full Text Available A 59 year old female consumer was started on therapy with oyster shell calcium in combination with vitamin D3 and she presented with swelling below the ear, after two doses. She stopped the drug by herself and the swelling disappeared in one day. She started the drug one day after recovery and again she developed the swelling. She was advised to stop the drug with a suggestion to take lemon to enhance parotid secretion and the swelling subsided. Calcium plays major role in salivary secretion and studies have shown reduced parotid secretion in rats, deficient of vitamin D. But in humans involvement of calcium and vitamin D3 in parotid secretion is unknown. However, the patient had no history of reaction though she had previously taken vitamin D3 with calcium carbonate which was not from oyster shell. Hence, we ruled out vitamin D3 in this reaction and suspecting oyster shell calcium as a culprit. This adverse drug reaction (ADR was assessed using World Health Organization (WHO causality assessment, Naranjo′s and Hartwig severity scales. As per WHO causality assessment scale, the ADR was classified as "certain". This reaction was analyzed as per Naranjo′s algorithm and was classified as probable. According to Hartwig′s severity scale the reaction was rated as mild. Our case is an example of a mild but rare adverse effect of oyster shell calcium carbonate which is widely used.

  13. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3-4 chronic kidney disease.

    Science.gov (United States)

    Hill, Kathleen M; Martin, Berdine R; Wastney, Meryl E; McCabe, George P; Moe, Sharon M; Weaver, Connie M; Peacock, Munro

    2013-05-01

    Patients with chronic kidney disease (CKD) are given calcium carbonate to bind dietary phosphorus, reduce phosphorus retention, and prevent negative calcium balance; however, data are limited on calcium and phosphorus balance during CKD to support this. Here, we studied eight patients with stage 3 or 4 CKD (mean estimated glomerular filtration rate 36 ml/min) who received a controlled diet with or without a calcium carbonate supplement (1500 mg/day calcium) during two 3-week balance periods in a randomized placebo-controlled cross-over design. All feces and urine were collected during weeks 2 and 3 of each balance period and fasting blood, and urine was collected at baseline and at the end of each week. Calcium kinetics were determined using oral and intravenous (45)calcium. Patients were found to be in neutral calcium and phosphorus balance while on the placebo. Calcium carbonate supplementation produced positive calcium balance, did not affect phosphorus balance, and produced only a modest reduction in urine phosphorus excretion compared with placebo. Calcium kinetics demonstrated positive net bone balance but less than overall calcium balance, suggesting soft-tissue deposition. Fasting blood and urine biochemistries of calcium and phosphate homeostasis were unaffected by calcium carbonate. Thus, the positive calcium balance produced by calcium carbonate treatment within 3 weeks cautions against its use as a phosphate binder in patients with stage 3 or 4 CKD, if these findings can be extrapolated to long-term therapy.

  14. Molecular mechanisms of crystallization impacting calcium phosphate cements

    OpenAIRE

    2010-01-01

    The biomineral calcium hydrogen phosphate dihydrate (CaHPO4·2H2O), known as brushite, is a malleable material that both grows and dissolves faster than most other calcium minerals, including other calcium phosphate phases, calcium carbonates and calcium oxalates. Within the body, this ready formation and dissolution can play a role in certain diseases, such as kidney stone and plaque formation. However, these same properties, along with brushite’s excellent biocompatibility, can be used to gr...

  15. Factors to consider in the selection of a calcium supplement.

    OpenAIRE

    Shangraw, R F

    1989-01-01

    Calcium supplements are widely used, yet many questions remain as to the absorption of various calcium salts. Because the solubility of many calcium salts is dependent upon pH, the type of salt used, the condition of the patient, and the time of administration should be considered. Studies show that many calcium supplements on the market today do not meet standards of quality established in the "U.S. Pharmacopeia" (USP). Consumers must be discerning about the products they purchase. Calcium s...

  16. Effect of K201, a novel antiarrhythmic drug on calcium handling and arrhythmogenic activity of pulmonary vein cardiomyocytes

    Science.gov (United States)

    Chen, Y-J; Chen, Y-C; Wongcharoen, W; Lin, C-I; Chen, S-A

    2007-01-01

    Background and purpose: Pulmonary veins are the most important focus for the generation of atrial fibrillation. Abnormal calcium homeostasis with ryanodine receptor dysfunction may underlie the arrhythmogenic activity in pulmonary veins. The preferential ryanodine receptor stabilizer (K201) possesses antiarrhythmic effects through calcium regulation. The purpose of this study was to investigate the effects of K201 on the arrhythmogenic activity and calcium regulation of pulmonary vein cardiomyocytes. Experimental approach: The ionic currents and intracellular calcium were studied in isolated single cardiomyocytes from rabbit pulmonary vein before and after the administration of K201, by the whole-cell patch clamp and indo-1 fluorimetric ratio techniques. Key results: K201 (0.1, 0.3, 1 μM) reduced the firing rates in pulmonary vein cardiomyocytes, decreased the amplitudes of the delayed afterdepolarizations and prolonged the action potential duration. K201 decreased the L-type calcium currents, Na+/Ca2+ exchanger currents, transient inward currents and calcium transients. K201 (1 μM, but not 0.1 μM or 0.3 μM) also reduced the sarcoplasmic reticulum calcium content. Moreover, both the pretreatment and administration of K201 (0.3 μM) decreased the isoprenaline (10 nM)-induced arrhythmogenesis in pulmonary veins. Conclusions and implications: K201 reduced the arrhythmogenic activity of pulmonary vein cardiomyocytes and attenuated the arrhythmogenicity induced by isoprenaline. These findings may reveal the anti-arrhythmic potential of K201. PMID:17994112

  17. Mice deficient in GEM GTPase show abnormal glucose homeostasis due to defects in beta-cell calcium handling.

    Directory of Open Access Journals (Sweden)

    Jenny E Gunton

    Full Text Available AIMS AND HYPOTHESIS: Glucose-stimulated insulin secretion from beta-cells is a tightly regulated process that requires calcium flux to trigger exocytosis of insulin-containing vesicles. Regulation of calcium handling in beta-cells remains incompletely understood. Gem, a member of the RGK (Rad/Gem/Kir family regulates calcium channel handling in other cell types, and Gem over-expression inhibits insulin release in insulin-secreting Min6 cells. The aim of this study was to explore the role of Gem in insulin secretion. We hypothesised that Gem may regulate insulin secretion and thus affect glucose tolerance in vivo. METHODS: Gem-deficient mice were generated and their metabolic phenotype characterised by in vivo testing of glucose tolerance, insulin tolerance and insulin secretion. Calcium flux was measured in isolated islets. RESULTS: Gem-deficient mice were glucose intolerant and had impaired glucose stimulated insulin secretion. Furthermore, the islets of Gem-deficient mice exhibited decreased free calcium responses to glucose and the calcium oscillations seen upon glucose stimulation were smaller in amplitude and had a reduced frequency. CONCLUSIONS: These results suggest that Gem plays an important role in normal beta-cell function by regulation of calcium signalling.

  18. L-type calcium channels and calcium/calmodulin-dependent kinase II differentially mediate behaviors associated with nicotine withdrawal in mice.

    Science.gov (United States)

    Jackson, K J; Damaj, M I

    2009-07-01

    Smoking is a widespread health problem. Because the nicotine withdrawal syndrome is a major contributor to continued smoking and relapse, it is important to understand the molecular and behavioral mechanisms of nicotine withdrawal to generate more effective smoking cessation therapies. Studies suggest a role for calcium-dependent mechanisms, such as L-type calcium channels and calcium/calmodulin-dependent protein kinase II (CaMKII), in the effects of nicotine dependence; however, the role of these mechanisms in nicotine-mediated behaviors is unclear. Thus, the goal of this study was to elucidate the role of L-type calcium channels and CaMKII in nicotine withdrawal behaviors. Using both pharmacological and genetic methods, our results show that L-type calcium channels are involved in physical, but not affective, nicotine withdrawal behaviors. Although our data do provide evidence of a role for CaMKII in nicotine withdrawal behaviors, our pharmacological and genetic assessments yielded different results concerning the specific role of the kinase. Pharmacological data suggest that CaMKII is involved in somatic signs and affective nicotine withdrawal, and activity level is decreased after nicotine withdrawal, whereas the genetic assessments yielded results suggesting that CaMKII is involved only in the anxiety-related response, yet the kinase activity may be increased after nicotine withdrawal; thus, future studies are necessary to clarify the precise behavioral specifics of the relevance of CaMKII in nicotine withdrawal behaviors. Overall, our data show that L-type calcium channels and CaMKII are relevant in nicotine withdrawal and differentially mediate nicotine withdrawal behaviors.

  19. Early redox, Src family kinase, and calcium signaling integrate wound responses and tissue regeneration in zebrafish.

    Science.gov (United States)

    Yoo, Sa Kan; Freisinger, Christina M; LeBert, Danny C; Huttenlocher, Anna

    2012-10-15

    Tissue injury can lead to scar formation or tissue regeneration. How regenerative animals sense initial tissue injury and transform wound signals into regenerative growth is an unresolved question. Previously, we found that the Src family kinase (SFK) Lyn functions as a redox sensor in leukocytes that detects H(2)O(2) at wounds in zebrafish larvae. In this paper, using zebrafish larval tail fins as a model, we find that wounding rapidly activated SFK and calcium signaling in epithelia. The immediate SFK and calcium signaling in epithelia was important for late epimorphic regeneration of amputated fins. Wound-induced activation of SFKs in epithelia was dependent on injury-generated H(2)O(2). A SFK member, Fynb, was responsible for fin regeneration. This work provides a new link between early wound responses and late regeneration and suggests that redox, SFK, and calcium signaling are immediate "wound signals" that integrate early wound responses and late epimorphic regeneration.

  20. Effect of combining different calcium concentration dialysate on calcium balance in peritoneal dialysis patients

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hui-ping; WU Bei; LU Li-xia; QIAO Jie; WU Xiang-lan; WANG Mei

    2012-01-01

    Background Calcium and phosphorus metabolic disturbance are common in dialysis patients and associated with increased morbidity and mortality.Therefore,maintaining the balance of calcium and phosphate metabolism and suitable intact parathyroid hormone(iPTH)level has become the focus of attention.We investigated the effects of different peritoneal dialysate calcium concentrations on calcium phosphate metabolism and iPTH in continuous ambulatory peritoneal dialysis(CAPD)patients.Methods Forty stable CAPD patients with normal serum calcium were followed for six months of treatment with 1.25 mmol/L calcium dialysate(DCa1.25,PD4,22 patients)or a combination of 1.75 mmol/L calcium dialysate(DCa1.75,PD2)and PD4(18 patients)twice a day respectively.Total serum calcium(after albumin correction),serum phosphorus,iPTH,alkaline phosphatase(ALP)and blood pressure were recorded before and 1,3 and 6 months after treatment commenced.Results No significant difference was found in baseline serum calcium,phosphorus between the two patient groups,but the levels of iPTH were significantly different.No significant changes were found in the dosage of calcium carbonate and active vitamin D during 6 months.In the PD4 group,serum calcium level at the 1st,3rd,6th months were significantly lower than the baseline(P<0.05).There was no significant difference in serum phosphorus after 6 months treatment.iPTH was significantly higher(P<0.001)at the 1st,3rd,and 6th months compared with the baseline.No differences were seen in ALP and blood pressure.In the PD4+PD2 group,no significant changes in serum calcium,phosphorus,iPTH,ALP and BP during the 6-month follow-up period.Conclusions Treatment with 1.25 mmol/L calcium dialysate for six months can decrease serum calcium,increase iPTH,without change in serum phosphorus,ALP,and BP.The combining of PD4 and PD2 can stabilize the serum calcium and avoid fluctuations in iPTH levels.

  1. Expanding the neuron's calcium signaling repertoire: intracellular calcium release via voltage-induced PLC and IP3R activation.

    Directory of Open Access Journals (Sweden)

    Stefanie Ryglewski

    2007-04-01

    Full Text Available Neuronal calcium acts as a charge carrier during information processing and as a ubiquitous intracellular messenger. Calcium signals are fundamental to numerous aspects of neuronal development and plasticity. Specific and independent regulation of these vital cellular processes is achieved by a rich bouquet of different calcium signaling mechanisms within the neuron, which either can operate independently or may act in concert. This study demonstrates the existence of a novel calcium signaling mechanism by simultaneous patch clamping and calcium imaging from acutely isolated central neurons. These neurons possess a membrane voltage sensor that, independent of calcium influx, causes G-protein activation, which subsequently leads to calcium release from intracellular stores via phospholipase C and inositol 1,4,5-trisphosphate receptor activation. This allows neurons to monitor activity by intracellular calcium release without relying on calcium as the input signal and opens up new insights into intracellular signaling, developmental regulation, and information processing in neuronal compartments lacking calcium channels.

  2. Increased calcium absorption from synthetic stable amorphous calcium carbonate: Double-blind randomized crossover clinical trial in post-menopausal women

    Science.gov (United States)

    Calcium supplementation is a widely recognized strategy for achieving adequate calcium intake. We designed this blinded, randomized, crossover interventional trial to compare the bioavailability of a new stable synthetic amorphous calcium carbonate (ACC) with that of crystalline calcium carbonate (C...

  3. Preparation, Properties and Mechanism of Inhomogeneous Calcium Alginate Ion Cross-linking Gel Microspheres

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Inhomogeneous calcium alginate ion cross-linking gel microspheres, a novel ion absorbent, were prepared by dropping a sodium alginate solution to a calcium chloride solution via an electronic droplet generator. Calcium alginate microspheres have uniform particle sizes, a smooth surface and a microporous structure. The electrode probe reveals the inhomogeneous distribution of calcium ions with the highest concentration on the surface, and the lowest concentration in the cores of the spheres. As a novel ion adsorbent, calcium alginate gel microspheres have a lower limiting adsorption mass concentration, a higher enrichment capacity and a higher adsorption capacity for Pb2+ than usual ion exchange resins. The highest percentage of the adsorption is 99.79%. The limiting adsorption mass concentration is 0.0426 mg/L. The adsorption capacity for Pb2+ is 644 mg/g. Calcium alginate gel microspheres have a much faster ion exchange velocity than D418 chelating resin and D113 polyacrylate resin. The moving boundary model was employed to interpret the ion exchange kinetics process, which indicates that the ion exchange process is controlled by intraparticle diffusion of adsorbable ions. So the formation of inhomogeneous gel microspheres reduces the diffusion distance of adsorbable ions within the spheres and enhances the ion exchange velocity. Alginate has a higher selectivity for Pb2+ than for Ca2+ and the selectivity coefficient KPbCa is 316. As an ion cross-linking gel, calcium alginate inhomogeneous microspheres can effectively adsorb heavy metal Pb2+ at a higher selectivity and a higher adsorption velocity. It is a novel and good ion adsorbent.

  4. The role of calcium in human sperm in relation to the antioxidant system

    Directory of Open Access Journals (Sweden)

    Aleksandra Kasperczyk

    2014-03-01

    Full Text Available Background. The human ejaculate consists of sperm and seminal plasma consisting of organic and inorganic compounds including micronutrients. Calcium is essential in the process of cell hyperactivation and sperm capacitation. Both these processes result in the generation of reactive oxygen species resulting in the induction of antioxidant system. Material and Methods. Semen samples were collected from 61 men of an average age of 33 years with no sperm pathology. The study population was divided into two groups with low and high concentrations of calcium in the seminal plasma. Analysis of the collected samples included: sperm morphology, superoxide dismutase, catalase, glutathione reductase, sulphydryl groups, malonaldialdehyde, lipofuscin, vitamin A and E, bilirubin, uric acid, albumin, and total oxidant status. Results. In individuals with high level of calcium in the seminal plasma (mean 38.3 mg/dl were found significant increased nonlinear motility, higher activity of mangane isoenzyme superoxide dismutase, glutathione reductase, concentration of vitamin A and E, bilirubin and albumin in comparison with individuals with lower level of calcium (mean 22.0 mg/dl. Nonlinear motility, the activity of enzymes, and concentration of antioxidants, as mentioned above, positively correlated (p*0,05 with calcium level (R40.26–0.64. Lower concentration of lipofuscin was observed in group with high level of calcium and negative correlation between Ca2& and lipofuscin (R410.36, p*0.05. Conclusions. The present study showed calcium beneficial effect on motility of spermatozoa in physiological semen and stimulation of antioxidant systems by high concentrations of this element in sperm plasma in men with normal spermiogram.

  5. Report Generator

    OpenAIRE

    2016-01-01

    Download data from HP Quality Center using of OTA Client. Implementation must be scalable to all projects under test. That is, it will be possible to generate automatically test reports at least for 2010, Modulaser and Gen2 (FW or SW). Report Generator is a software implemented in VBA that allows get data from HP Quality Center for export it (either tables, charts or text) to a document in Word format. Report Generator es un Software implementado en VBA que permite extraer datos de HP Q...

  6. Calcium homeostasis in barley aleurone

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.L.

    1990-02-21

    Under the auspices of the Department of Energy we investigated calcium homeostasis in aleurone cells of barley. This investigation was initiated to explore the role played by extracellular Ca{sup 2+} in gibberellic acid (GA)-induced synthesis and secretion of hydrolases in the aleurone layer. We have focused our attention on four topics that relate to the role of Ca{sup 2+} in regulating the synthesis of {alpha}-amylase. First, we determined the stoichiometry of Ca{sup 2+} binding to the two principal classes of barley {alpha}-amylase and examined some of the biochemical and physical properties of the native and Ca{sup 2+}-depleted forms of the enzyme. Second, since {alpha}-amylase is a Ca{sup 2+} containing metalloenzyme that binds one atom of Ca{sup 2+} per molecule, we developed methods to determine the concentration of Ca{sup 2+} in the cytosol of the aleurone cell. We developed a technique for introducing Ca{sup 2+}-sensitive dyes into aleurone protoplasts that allows the measurement of Ca{sup 2+} in both cytosol and endoplasmic reticulum (ER). Third, because the results of our Ca{sup 2+} measurements showed higher levels of Ca{sup 2+} in the ER than in the cytosol, we examined Ca{sup 2+} transport into the ER of control and GA-treated aleurone tissue. And fourth, we applied the technique of patch-clamping to the barley aleurone protoplast to examine ion transport at the plasma membrane. Our results with the patch-clamp technique established the presence of K{sup +} channels in the plasma membrane of the aleurone protoplast, and they showed that this cell is ideally suited for the application of this methodology for studying ion transport. 34 refs.

  7. The calcium-sensing receptor regulates mammary gland parathyroid hormone–related protein production and calcium transport

    OpenAIRE

    VanHouten, Joshua; Dann, Pamela; McGeoch, Grace; Brown, Edward M.; Krapcho, Karen; Neville, Margaret; Wysolmerski, John J

    2004-01-01

    The transfer of calcium from mother to milk during lactation is poorly understood. In this report, we demonstrate that parathyroid hormone–related protein (PTHrP) production and calcium transport in mammary epithelial cells are regulated by extracellular calcium acting through the calcium-sensing receptor (CaR). The CaR becomes expressed on mammary epithelial cells at the transition from pregnancy to lactation. Increasing concentrations of calcium, neomycin, and a calcimimetic compound suppre...

  8. Mechanism for defoaming by oils and calcium soap in aqueous systems.

    Science.gov (United States)

    Zhang, Hui; Miller, Clarence A; Garrett, Peter R; Raney, Kirk H

    2003-07-15

    The effect of oils, hardness, and calcium soap on foam stability of aqueous solutions of commercial surfactants was investigated. For conditions where negligible calcium soap was formed, stability of foams made with 0.1 wt% solutions of a seven-EO alcohol ethoxylate containing dispersed drops of n-hexadecane, triolein, or mixtures of these oils with small amounts of oleic acid could be understood in terms of entry, spreading, and bridging coefficients, i.e., ESB analysis. However, foams made from solutions containing 0.01 wt% of three-EO alcohol ethoxysulfate sodium salt and the same dispersed oils were frequently more stable than expected based on ESB analysis, reflecting that repulsion due to overlap of electrical double layers in the asymmetric oil-water-air film made oil entry into the air-water interface more difficult than the theory predicts. When calcium soap was formed in situ by the reaction of fatty acids in the oil with calcium, solid soap particles were observed at the surfaces of the oil drops. The combination of oil and calcium soap produced a synergistic effect facilitating the well-known bridging instability of foam films or Plateau borders and producing a substantial defoaming effect. A possible mechanism of instability involving increases in disjoining pressure at locations where small soap particles approach the air-water interface is discussed. For both surfactants with the triolein-oleic acid mixtures, calculated entry and bridging coefficients for conditions when calcium soap formed were positive shortly after foam generation but negative at equilibrium. These results are consistent with the experimental observation that most defoaming action occurred shortly after foam generation rather than at later times.

  9. Co-generation of acetylene and hydrogen for a carbide-based fuel system

    Energy Technology Data Exchange (ETDEWEB)

    Carreiro, Louis G.; Burke, A. Alan [Naval Undersea Warfare Center Division Newport, Code 8231, 1176 Howell Street, Newport, RI 02841 (United States); Dubois, Lily [Stonehill College, Department of Chemistry, 320 Washington Street, Easton, MA 02357 (United States)

    2010-09-15

    The co-generation of acetylene and hydrogen from the hydrolysis of calcium carbide and calcium hydride was investigated as part of a unique carbide-based fuel system intended for high-temperature fuel cells. To gain better control of this highly energetic reaction, glycerin was used to coat the reactant particles to form slurry prior to their reaction with water. This process was shown to moderate the rate of gas production, as well as to provide a means for preparing slurry that could be pumped into the reactor vessel. It was also observed that the presence of calcium hydroxide, a by-product of hydrolysis, lowered the solubility of acetylene resulting in a higher initial flow rate due to less acetylene being dissolved in solution. However, the buildup of calcium hydroxide with time inhibited the hydrolysis of both calcium carbide and calcium hydride causing the acetylene and hydrogen flow rates to decrease. (author)

  10. Synthesis, QSAR and calcium channel modulator activity of new hexahydroquinoline derivatives containing nitroimidazole.

    Science.gov (United States)

    Miri, Ramin; Javidnia, Katayoun; Mirkhani, Hossein; Hemmateenejad, Bahram; Sepeher, Zahra; Zalpour, Masomeh; Behzad, Taherh; Khoshneviszadeh, Mehdi; Edraki, Najmeh; Mehdipour, Ahmad R

    2007-10-01

    The discovery that 1,4-dihydropyridine class of calcium channel antagonists inhibit Ca2+ influx represented a major therapeutic advance in the treatment of cardiovascular disease. In contrast to the effects of known calcium channel blockers of the Nifedipine-type, the so-called calcium channel agonists, such as Bay K8644 and CGP 28392, increase calcium influx by binding at the same receptor regions. Our goal was to discover a dual cardioselective Ca2+-channel agonist/vascular selective smooth muscle Ca2+ channel antagonist third-generation 1,4-dihydropyridine drug which would have a suitable therapeutic profile for treating congestive heart failure (CHF) patients. A series of unsymmetrical alkyl, cycloalkyl and aryl ester analogues of 2-methyl-4-(1-methyl)-5-nitro-2-imidazolyl-5-oxo-1,4,5,6,7, 8-hexahydroquinolin-3-arboxylate were synthesized using modified Hantzsch reaction. All compounds show calcium antagonist activity on guinea-pig ileum longitudinal smooth muscle and some of them show agonist effect activity on guinea-pig auricle. Effect of structural parameters on the Ca2+ channel agonist/antagonist was evaluated by quantitative structure-activity relationship analysis. These compounds could be considered as a synthon for developing a suitable drug for treating CHF patients.

  11. Effect of calcium, given before or after a fluoride insult, on hamster secretory amelogenesis in vitro.

    Science.gov (United States)

    Bronckers, Antonius L J J; Bervoets, Theodorus J M; Wöltgens, Joseph H M; Lyaruu, Donacian M

    2006-05-01

    We tested the hypothesis that high-calcium medium given prior to or immediately after exposure to fluoride (F) reduces the negative effects of F on secretory amelogenesis. Hamster molar tooth germs were grown in organ culture in media with different calcium levels. Deposition of enamel matrix and matrix mineralization were monitored by incorporation of [3H]proline and uptake of 45Ca and acid-soluble 32PO4. Ameloblast structure and the occurrence of a fluorotic enamel matrix were examined by light and electron microscopy. A preculture of explants in high-calcium medium partially prevented the formation of fluorotic (non-mineralizing) enamel matrix, increased matrix secretion but could not prevent F-induced hypermineralization of the pre-exposure enamel. High-calcium medium, applied after F insult, accelerated the recovery of fluorotic matrix, improved ameloblast structure, enhanced amelogenin secretion, and increased enamel thickness. The data indicate that it might be the balance between the amount of mineral deposition and that of matrix secretion which is critical for the mineralization of newly secreted enamel. Exposure to F disturbs this balance by enhancing mineralization of the pre-exposure enamel, probably generating an excess of protons. High calcium may protect against F exposure by enhancing amelogenin secretion into the enamel space, thereby increasing the local buffering capacity at the mineralization front.

  12. In vivo analysis of the calcium signature in the plant Golgi apparatus reveals unique dynamics.

    Science.gov (United States)

    Ordenes, Viviana R; Moreno, Ignacio; Maturana, Daniel; Norambuena, Lorena; Trewavas, Anthony J; Orellana, Ariel

    2012-11-01

    The Golgi apparatus is thought to play a role in calcium homeostasis in plant cells. However, the calcium dynamics in this organelle is unknown in plants. To monitor the [Ca2+]Golgiin vivo, we obtained and analyzed Arabidopsis thaliana plants that express aequorin in the Golgi. Our results show that free [Ca2+] levels in the Golgi are higher than in the cytosol (0.70 μM vs. 0.05 μM, respectively). Stimuli such as cold shock, mechanical stimulation and hyperosmotic stress, led to a transient increase in cytosolic calcium; however, no instant change in the [Ca2+]Golgi concentration was detected. Nevertheless, a delayed increase in the [Ca2+]Golgi up to 2-3 μM was observed. Cyclopiazonic acid and thapsigargin inhibited the stimuli-induced [Ca2+]Golgi increase, suggesting that [Ca2+]Golgi levels are dependent upon the activity of Ca2+-ATPases. Treatment of these plants with the synthetic auxin analog, 2,4-dichlorophenoxy acetic acid (2,4-D), produced a slow decrease of free calcium in the organelle. Our results indicate that the plant Golgi apparatus is not involved in the generation of cytosolic calcium transients and exhibits its own dynamics modulated in part by the activity of Ca2+ pumps and hormones.

  13. Emerging roles of L-type voltage gated and other calcium channels in T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Abdallah eBadou

    2013-08-01

    Full Text Available In T lymphocytes, calcium ion controls a variety of biological processes including development, survival, proliferation, and effector functions. These distinct and specific roles are regulated by different calcium signals, which are generated by various plasma membrane calcium channels. The repertoire of calcium-conducting proteins in T lymphocytes includes store-operated CRAC channels, transient receptor potential (TRP channels, P2X channels, and L-type voltage-gated calcium (Cav1 channels. In this paper, we will focus mainly on the role of the Cav1 channels found expressed by T lymphocytes, where these channels appear to operate in a TCR stimulation-dependent and voltage-sensor independent manner. We will review their expression profile at various differentiation stages of CD4 and CD8 T lymphocytes. Then, we will present crucial genetic evidence in favor of a role of these Cav1 channels and related regulatory proteins in both CD4 and CD8 T cell functions such as proliferation, survival, cytokine production and cytolysis. Finally, we will provide evidence and speculate on how these voltage-gated channels might function in the T lymphocyte, a non-excitable cell.

  14. Myofilament calcium sensitivity: Role in regulation of in vivo cardiac contraction and relaxation

    Directory of Open Access Journals (Sweden)

    Jae-Hoon Chung

    2016-12-01

    Full Text Available Myofilament calcium sensitivity is an often-used indicator of cardiac muscle function, often assessed in disease states such as hypertrophic cardiomyopathy (HCM and dilated cardiomyopathy (DCM. While calcium sensitivity measurement provides important insights into the mechanical force-generating capability of a muscle at steady-state, the dynamic behavior of the muscle cannot be sufficiently assessed with a force-pCa curve alone. The dissociation constant (Kd of the force-pCa curve depends on the ratio of the apparent on-rate (kon and apparent off-rate (koff of calcium on TnC and as a stand-alone parameter cannot provide an accurate depiction of the dynamic contraction and relaxation behavior without the additional quantification of kon or koff, or actually measuring dynamic twitch kinetics in an intact muscle. In this review, we examine the effect of length, frequency, and beta-adrenergic stimulation on myofilament calcium sensitivity and dynamic contraction, the effect of membrane permeabilization on calcium sensitivity, and the dynamic consequences of various myofilament protein mutations with potential implications in contractile and relaxation behavior.

  15. Calcium channelopathies and Alzheimer's disease: insight into therapeutic success and failures.

    Science.gov (United States)

    Chakroborty, Shreaya; Stutzmann, Grace E

    2014-09-15

    Calcium ions are versatile and universal biological signaling factors that regulate numerous cellular processes ranging from cell fertilization, to neuronal plasticity that underlies learning and memory, to cell death. For these functions to be properly executed, calcium signaling requires precise regulation, and failure of this regulation may tip the scales from a signal for life to a signal for death. Disruptions in calcium channel function can generate complex multi-system disorders collectively referred to as "calciumopathies" that can target essentially any cell type or organ. In this review, we focus on the multifaceted involvement of calcium signaling in the pathophysiology of Alzheimer's disease (AD), and summarize the various therapeutic options currently available to combat this disease. Detailing the series of disappointing AD clinical trial results on cognitive outcomes, we emphasize the urgency to design alternative therapeutic strategies if synaptic and memory functions are to be preserved. One such approach is to target early calcium channelopathies centrally linked to AD pathogenesis. © 2013 Published by Elsevier B.V.

  16. Obtainment of calcium carbonate from mussels shell; Obtencao de carbonato de calcio a partir de conchas de mariscos

    Energy Technology Data Exchange (ETDEWEB)

    Hamester, M.R.R.; Becker, D., E-mail: michele.rosa@sociesc.org.b [Sociedade Educacional de Santa Catarina (SOCIESC), Joinville, SC (Brazil). Mestrado Profissional em Engenharia Mecanica

    2010-07-01

    The mussels and oyster shell are discarded at environment, and this accumulation is causing negative consequences to ecosystem. Calcium carbonate is main constituent of the shell chemical composition. Aiming to reduce environmental aggression and generate income to shellfish producer, there was the possibility of using these shells as an alternative to commercial calcium carbonate. For this physics, chemicals and thermal properties were evaluated, using X-ray fluorescence, thermogravimetric analysis, size distribution, abrasiveness and scanning electronic microscopy. The results indicate that mussels shells have an initial degradation temperature higher than commercial calcium carbonate e same lost weight behavior and 95% of shell chemical composition is calcium carbonate. The sample size distribution was influenced by grinding condition and time as well as its abrasiveness. (author)

  17. PTHrP regulation and calcium balance in sea bream (Sparus auratus L.) under calcium constraint

    NARCIS (Netherlands)

    Abbink, W.; Bevelander, G.S.; Hang, X.; Lu, W.; Guerreiro, P.M.; Spanings, T.; Canario, A.V.; Flik, G.

    2006-01-01

    Juvenile gilthead sea bream were exposed to diluted seawater (2.5 per thousand salinity; DSW) for 3 h or, in a second experiment, acclimated to DSW and fed a control or calcium-deficient diet for 30 days. Branchial Ca(2+) influx, drinking rate and plasma calcium levels were assessed. Sea bream

  18. Eggshell powder, a comparable or better source of calcium than purified calcium carbonate: Piglet studies

    NARCIS (Netherlands)

    Schaafsma, A.; Beelen, G.M.

    1999-01-01

    Powdered chicken eggshells might be an interesting and widely available source of calcium. In two studies using piglets we determined the digestibility of calcium from different diets. The first study compared casein-based diets with CaCO3 (CasCC) or eggshell powder (CasES). The second study compare

  19. Eggshell powder, a comparable or better source of calcium than purified calcium carbonate: Piglet studies

    NARCIS (Netherlands)

    Schaafsma, A.; Beelen, G.M.

    1999-01-01

    Powdered chicken eggshells might be an interesting and widely available source of calcium. In two studies using piglets we determined the digestibility of calcium from different diets. The first study compared casein-based diets with CaCO3 (CasCC) or eggshell powder (CasES). The second study

  20. SECONDARY HYPERPARATHYROIDISM AFTER BARIATRIC SURGERY: TREATMENT IS WITH CALCIUM CARBONATE OR CALCIUM CITRATE?

    Science.gov (United States)

    BARETTA, Giorgio Alfredo Pedroso; CAMBI, Maria Paula Carlini; RODRIGUES, Arieli Luz; MENDES, Silvana Aparecida

    2015-01-01

    Background : Bariatric surgery, especially Roux-en-Y gastric bypass, can cause serious nutritional complications arising from poor absorption of essential nutrients. Secondary hyperparathyroidism is one such complications that leads to increased parathyroid hormone levels due to a decrease in calcium and vitamin D, which may compromise bone health. Aim : To compare calcium carbonate and calcium citrate in the treatment of secondary hyperparathyroidism. Method : Patients were selected on the basis of their abnormal biochemical test and treatment was randomly done with citrate or calcium carbonate. Results : After 60 days of supplementation, biochemical tests were repeated, showing improvement in both groups. Conclusion : Supplementation with calcium (citrate or carbonate) and vitamin D is recommended after surgery for prevention of secondary hyperparathyroidism. PMID:26537273

  1. The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter.

    Science.gov (United States)

    Pan, Xin; Liu, Jie; Nguyen, Tiffany; Liu, Chengyu; Sun, Junhui; Teng, Yanjie; Fergusson, Maria M; Rovira, Ilsa I; Allen, Michele; Springer, Danielle A; Aponte, Angel M; Gucek, Marjan; Balaban, Robert S; Murphy, Elizabeth; Finkel, Toren

    2013-12-01

    Mitochondrial calcium has been postulated to regulate a wide range of processes from bioenergetics to cell death. Here, we characterize a mouse model that lacks expression of the recently discovered mitochondrial calcium uniporter (MCU). Mitochondria derived from MCU(-/-) mice have no apparent capacity to rapidly uptake calcium. Whereas basal metabolism seems unaffected, the skeletal muscle of MCU(-/-) mice exhibited alterations in the phosphorylation and activity of pyruvate dehydrogenase. In addition, MCU(-/-) mice exhibited marked impairment in their ability to perform strenuous work. We further show that mitochondria from MCU(-/-) mice lacked evidence for calcium-induced permeability transition pore (PTP) opening. The lack of PTP opening does not seem to protect MCU(-/-) cells and tissues from cell death, although MCU(-/-) hearts fail to respond to the PTP inhibitor cyclosporin A. Taken together, these results clarify how acute alterations in mitochondrial matrix calcium can regulate mammalian physiology.

  2. Calcium ferrite formation from the thermolysis of calcium tris (maleato) ferrate(III)

    Indian Academy of Sciences (India)

    B S Randhawa; Kamaljeet Sweety

    2000-08-01

    For preparing calcium ferrite, calcium tris (maleato) ferrate(III) precursor was prepared by mixing aqueous solutions of iron(III) maleate, calcium maleate and maleic acid. Various physico-chemical techniques i.e. TG, DTG, DTA, Mössbauer, XRD, IR etc have been used to study the decomposition behaviour from ambient to 900°C and ferrite formation. Three consecutive decomposition steps leading to the formation of -Fe2O3 and calcium carbonate have been observed at various stages of thermolysis. In the final stage the ferrite, Ca2Fe2O5, is obtained as a result of solid state reaction between -Fe2O3 and calcium carbonate at 788°C, a temperature much lower than for ceramic method. The results have been compared with those of the oxalate precursor.

  3. THERMAL DEGRADATION AND FLAME RETARDANCY OF CALCIUM ALGINATE FIBERS

    Institute of Scientific and Technical Information of China (English)

    Qing-shan Kong; Bing-bing Wang; Quan Ji; Yan-zhi Xia; Zhao-xia Guo; Jian Yu

    2009-01-01

    Calcium alginate fibers were prepared by wet spinning of sodium alginate into a coagulating bath containing calcium chloride. The thermal degradation and flame retardancy of calcium alginate fibers were investigated with thermal gravimetry (TG), X-ray diffraction (XRD), limiting oxygen index (LOI) and cone calorimeter (CONE). The results show that calcium alginate fibers are inherently flame retardant with a LOI value of 34, and the heat release rate (HRR), total heat release (THR), CO and CO_2 concentrations during combustion are much lower compared with those of viscose fibers. Calcium carbonate and calcium oxide were formed during thermal degradation of calcium alginate fibers at different temperatures. The shape of calcium alginate fibers is well kept after LOI test. The rigid combustion residue char acts as an effective barrier to the outward diffusion of flame and heat. The combustion process and flame retardant mechanism of calcium alginate fibers are also discussed.

  4. Role of mitochondria and network connectivity in intercellular calcium oscillations

    CERN Document Server

    Dokukina, I V; Grachev, E A; Gunton, J D; Dokukina, Irina V.; Gracheva, Maria E.; Grachev, Eugene A.; Gunton, James D.

    2005-01-01

    Mitochondria are large-scale regulators of cytosolic calcium under normal cellular conditions. In this paper we model the complex behavior of mitochondrial calcium during the action of inositol 1,4,5-trisphosphate on a single cell and find results that are in good agreement with recent experimental studies. We also study the influence of the cellular network connectivity on intercellular signalling via gap junction diffusion. We include in our model the dependence of the junctional conductivity on the cytosolic calcium concentrations in adjacent cells. We consider three different mechanisms of calcium wave propagation through gap junctions: via calcium diffusion, inositol 1,4,5-trisphosphate diffusion, and both calcium and inositol 1,4,5-trisphosphate diffusion. We show that inositol 1,4,5-trisphosphate diffusion is the mechanism of calcium wave propagation and that calcium diffusion is the mechanism of synchronization of cytosolic calcium oscillations in adjacent cells. We also study the role of different to...

  5. Role of calcium in gravity perception of plant roots

    Science.gov (United States)

    Evans, Michael L.

    1986-01-01

    Calcium ions may play a key role in linking graviperception by the root cap to the asymmetric growth which occurs in the elongation zone of gravistimulated roots. Application of calcium-chelating agents to the root cap inhibits gravitropic curvature without affecting growth. Asymmetric application of calcium to one side of the root cap induces curvature toward the calcium source, and gravistimulation induces polar movement of applied (Ca-45)(2+) across the root cap toward the lower side. The action of calcium may be linked to auxin movement in roots since: (1) auxin transport inhibitors interfere both with gravitropic curvature and graviinduced polar calcium movement and (2) asymmetric application of calcium enhances auxin movement across the elongation zone of gravistimulated roots. Indirect evidence indicates that the calcium-modulated regulator protein, calmodulin, may be involved in either the transport or action of calcium in the gravitropic response mechanism of roots.

  6. Blue light-dependent changes in loosely bound calcium in Arabidopsis mesophyll cells: an X-ray microanalysis study.

    Science.gov (United States)

    Łabuz, Justyna; Samardakiewicz, Sławomir; Hermanowicz, Paweł; Wyroba, Elżbieta; Pilarska, Maria; Gabryś, Halina

    2016-06-01

    Calcium is involved in the signal transduction pathway from phototropins, the blue light photoreceptor kinases which mediate chloroplast movements. The chloroplast accumulation response in low light is controlled by both phot1 and phot2, while only phot2 is involved in avoidance movement induced by strong light. Phototropins elevate cytosolic Ca(2+) after activation by blue light. In higher plants, both types of chloroplast responses depend on Ca(2+), and internal calcium stores seem to be crucial for these processes. Yet, the calcium signatures generated after the perception of blue light by phototropins are not well understood. To characterize the localization of calcium in Arabidopsis mesophyll cells, loosely bound (exchangeable) Ca(2+) was precipitated with potassium pyroantimonate and analyzed by transmission electron microscopy followed by energy-dispersive X-ray microanalysis. In dark-adapted wild-type Arabidopsis leaves, calcium precipitates were observed at the cell wall, where they formed spherical structures. After strong blue light irradiation, calcium at the apoplast prevailed, and bigger, multilayer precipitates were found. Spherical calcium precipitates were also detected at the tonoplast. After red light treatment as a control, the precipitates at the cell wall were smaller and less numerous. In the phot2 and phot1phot2 mutants, calcium patterns were different from those of wild-type plants. In both mutants, no elevation of calcium after blue light treatment was observed at the cell periphery (including the cell wall and a fragment of cytoplasm). This result confirms the involvement of phototropin2 in the regulation of Ca(2+) homeostasis in mesophyll cells.

  7. Contracture of Slow Striated Muscle during Calcium Deprivation

    Science.gov (United States)

    Irwin, Richard L.; Hein, Manfred M.

    1963-01-01

    When deprived of calcium the slow striated muscle fibers of the frog develop reversible contractures in either hypertonic or isotonic solutions. While calcium deprivation continues because of a flowing calcium-free solution the muscles relax slowly and completely. Restoration of calcium during contracture relaxes the muscle promptly to initial tension. When relaxed during calcium lack the return of calcium does not change tension and the muscle stays relaxed. When contractures are induced by solutions containing small amounts of calcium relaxation does not occur or requires several hours. The rate of tension development depends upon the rate at which calcium moves outward since the contractures develop slower in low concentrations of calcium and are absent or greatly slowed in a stagnant calcium-free solution. Withdrawal of calcium prevents the contractile responses to ACh, KCl, or electrical stimulation through the nerve. Muscles return to their original excitability after calcium is restored. Origin of the contractures is unrelated to nerve activity since they are maximal during transmission failure from calcium lack, occur in denervated muscles, and are not blocked by high concentrations of d-tubocurarine, procaine, or atropine. The experiments also indicate that the contractures do not originate from repetitive activity of muscle membranes. The findings are most simply explained by relating the outward movement of calcium as a link for initiating contraction in slow type striated muscle. PMID:14065284

  8. Codissolution of calcium hydrogenphosphate and sodium hydrogencitrate in water. Spontaneous supersaturation of calcium citrate increasing calcium bioavailability

    DEFF Research Database (Denmark)

    Hedegaard, Martina Vavrusova; Danielsen, Bente Pia; Garcia, André Castilho

    2017-01-01

    The sparingly soluble calcium hydrogenphosphate dihydrate, co-dissolving in water during dissolution of freely soluble sodium hydrogencitrate sesquihydrate as caused by proton transfer from hydrogencitrate to hydrogenphosphate, was found to form homogenous solutions supersaturated by a factor up......, as identified from FT-IR spectra, from these spontaneously formed supersaturated solutions was several hours, and the time to reach solubility equilibrium was several days. Initial calcium ion activity was found to be almost independent of the degree of supersaturation as determined electrochemically....... The supersaturated solutions had a pH around 4.7, and calcium binding to hydrogencitrate as the dominant citrate species during precipitation was found to be exothermic with a determined association constant of 357 L mol-1 at 25 °C for unit ionic strength, and δH° = -22 ± 2 kJ mol-1, δS° = -26 ± 8 J K-1 mol-1...

  9. Effects of calcium gluconate on the utilization of magnesium and the nephrocalcinosis in rats fed excess dietary phosphorus and calcium.

    Science.gov (United States)

    Chonan, O; Takahashi, R; Kado, S; Nagata, Y; Kimura, H; Uchida, K; Watanuki, M

    1996-08-01

    The effects of calcium gluconate on the utilization of magnesium and nephrocalcinosis in male Wistar rats made magnesium-deficient by adding excess dietary phosphorus (1.195 g of phosphorus/100 g of diet) and calcium (1.04 g of calcium/100 g of diet) were compared with the effects of calcium carbonate. The effects of dietary magnesium concentration on the magnesium status and nephrocalcinosis were also examined. Adding excess dietary phosphorus and calcium decreased the apparent magnesium absorption ratios and the concentrations of magnesium in the serum and femur and increased the deposition of calcium in the kidney, and the low magnesium condition (0.024 g of magnesium/100 g of diet) aggravated the deposition of calcium and the low magnesium status. The apparent magnesium absorption ratios and femur magnesium concentration in the rats fed a calcium gluconate diet (an equimolar mixture of calcium gluconate and calcium carbonate was used as a source of calcium) were significantly higher than in the rats fed a calcium carbonate diet (only calcium carbonate was used as a source of calcium), irrespective of dietary magnesium concentration. Dietary calcium gluconate lessened the accumulation of calcium in the kidney and increased the serum magnesium concentration compared with dietary calcium carbonate, when the rats were fed the normal magnesium diet (0.049 g of magnesium/100 g of diet) but not the low magnesium diet. We speculate that the increased utilization of magnesium by feeding the calcium gluconate diet to a limited extent prevented the low magnesium status and the severity of nephrocalcinosis caused by adding excess dietary phosphorus and calcium.

  10. Discovery and Development of Calcium Channel Blockers

    Directory of Open Access Journals (Sweden)

    Théophile Godfraind

    2017-05-01

    Full Text Available In the mid 1960s, experimental work on molecules under screening as coronary dilators allowed the discovery of the mechanism of calcium entry blockade by drugs later named calcium channel blockers. This paper summarizes scientific research on these small molecules interacting directly with L-type voltage-operated calcium channels. It also reports on experimental approaches translated into understanding of their therapeutic actions. The importance of calcium in muscle contraction was discovered by Sidney Ringer who reported this fact in 1883. Interest in the intracellular role of calcium arose 60 years later out of Kamada (Japan and Heibrunn (USA experiments in the early 1940s. Studies on pharmacology of calcium function were initiated in the mid 1960s and their therapeutic applications globally occurred in the the 1980s. The first part of this report deals with basic pharmacology in the cardiovascular system particularly in isolated arteries. In the section entitled from calcium antagonists to calcium channel blockers, it is recalled that drugs of a series of diphenylpiperazines screened in vivo on coronary bed precontracted by angiotensin were initially named calcium antagonists on the basis of their effect in depolarized arteries contracted by calcium. Studies on arteries contracted by catecholamines showed that the vasorelaxation resulted from blockade of calcium entry. Radiochemical and electrophysiological studies performed with dihydropyridines allowed their cellular targets to be identified with L-type voltage-operated calcium channels. The modulated receptor theory helped the understanding of their variation in affinity dependent on arterial cell membrane potential and promoted the terminology calcium channel blocker (CCB of which the various chemical families are introduced in the paper. In the section entitled tissue selectivity of CCBs, it is shown that characteristics of the drug, properties of the tissue, and of the stimuli are

  11. Calcium And Zinc Deficiency In Preeclamptic Women

    Directory of Open Access Journals (Sweden)

    Sultana Ferdousi

    2011-12-01

    Full Text Available Background: Pre-eclampsia is the most common medical complication of pregnancy associated withincreased maternal and infant mortality and morbidity. Reduced serum calcium and zinc levels arefound associated with elevated blood pressure in preeclampsia. Objective: To observe serum calciumand zinc levels in preeclamptic women. Methods: This cross sectional study was carried out in theDepartment of Physiology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka betweenJuly 2009 to June 2010. In this study, 60 pregnant women of preeclampsia, aged 18-39 years withgestational period more than 20th weeks were included as the study (group B. For comparison ageand gestational period matched 30 normotensive pregnant women control (group A were also studied.All the subjects were selected from Obstetric and Gynae In and Out patient Department of BSMMUand Dhaka Medical College Hospital. Serum calcium was measured by Colorimetric method and serumzinc was measured by Spectrophotometric method. Data were analysed by independent sample t testand Pearson’s correlation coefficient test. Results: Mean serum calcium and zinc levels weresignificantly (p<0.001 lower in study group than those of control group. Again, serum calcium andzinc showed significant negative correlation with SBP and DBP in preeclamptic women. Conclusion:This study concludes that serum calcium and zinc deficiency may be one of the risk factor ofpreeclampsia. Therefore, early detection and supplementation to treat this deficiency may reduce theincidence of preeclampsia.

  12. Information flow through calcium binding proteins

    Science.gov (United States)

    Bak, Ji Hyun; Bialek, William

    2013-03-01

    Calcium signaling is a ubiquitous mode of biological communication, which regulates a great variety of vital processes in living systems. Such a signal typically begins with an elementary event, in which calcium ions bind to a protein, inducing a change in the protein's structure. Information can only be lost, from what was conveyed through this initial event, as the signal is further transduced through the downstream networks. In the present work we analyze and optimize the information flow in the calcium binding process. We explicitly calculate the mutual information between the calcium concentration and the states of the protein, using a simple model for allosteric regulation in a dimeric protein. The optimal solution depends on the dynamic range of the input as well as on the timescale of signal integration. According to our result, the optimizing strategy involves allowing the calcium-binding protein to be ``activated'' by a partial occupation of its sites, and tuning independently the strengths of cooperative interactions in the binding and unbinding processes.

  13. Calcium sulphate in ammonium sulphate solution

    Science.gov (United States)

    Sullivan, E.C.

    1905-01-01

    Calcium sulphate, at 25?? C., is two-thirds as soluble in dilute (o.i mol per liter) and twice as soluble in concentrated (3 mois per liter) ammonium sulphate solution as in water. The specific electric conductivity of concentrated ammonium sulphate solutions is lessened by saturating with calcium sulphate. Assuming that dissociation of ammonium sulphate takes place into 2NH4?? and SO4" and of calcium sulphate into Ca and SO4" only, and that the conductivity is a measure of such dissociation, the solubility of calcium sulphate in dilute ammonium sulphate solutions is greater than required by the mass-law. The conductivity of the dilute mixtures may be accurately calculated by means of Arrhenius' principle of isohydric solutions. In the data obtained in these calculations, the concentration of non-dissociated calcium sulphate decreases with increasing ammonium sulphate. The work as a whole is additional evidence of the fact that we are not yet in possession of all the factors necessary for reconciling the mass-law to the behavior of electrolytes. The measurements above described were made in the chemical laboratory of the University of Michigan.

  14. Primary osteoporosis prophylaxis with different calcium preparations

    Directory of Open Access Journals (Sweden)

    N. V. Toroptsova

    2005-01-01

    Full Text Available Objective. To assess efficacy of different modes of management in women with osteopenia. Material and methods. 190 women with osteopenia of spine and/or femoral neck aged 50 to 70 years (mean 60,6±5 years were followed up during a year. Different modes of prophylaxis were applied. 59 pts of group 1 received Calcium D3 Nicomed 2 tablets a day, 25 pts of group 2 - Vitrum Osteomag 2 tablets a day, 46 pts of group 3 - calcium carbonate 2500 mg/day, 60 pts of control group received recommendations about diet and physical activity. Results. 3,5% from 114 pts examined had normal 25(OHD blood level while 23% showed deficiency of vitamin D. Mean calcium consumption with milk products was 350 mg/day. Bone mineral density (BMD significantly increased on 1,6-1% in pts older than 60 years receiving Vitrum Osteomag and Calcium D3 Nicomed respectively while younger pts did not show such changes. BMD in pts olderthan 60 years receiving calcium carbonate increased on 0,5% but this difference was not significant. Tolerability of all 3 drugs was comparable.

  15. Evaluation of quick disintegrating calcium carbonate tablets.

    Science.gov (United States)

    Fausett, H; Gayser, C; Dash, A K

    2000-07-02

    The purpose of this investigation was to develop a rapidly disintegrating calcium carbonate (CC) tablet by direct compression and compare it with commercially available calcium tablets. CC tablets were formulated on a Carver press using 3 different forms of CC direct compressed granules (Cal-Carb 4450, Cal-Carb 4457, and Cal-Carb 4462). The breaking strength was measured using a Stokes-Monsanto hardness tester. The disintegration and dissolution properties of the tablets were studied using USP methodology. The calcium concentration was determined by an atomic absorption spectrophotometer. Scanning electron microscopy was used to evaluate the surface topography of the granules and tablets. Breaking strength of Cal-Carb 4450, Cal-Carb 4457, and Cal-Carb 4462 tablets was in the range of 7.2 to 7.7 kg, as compared with a hardness of 6.2 kg and 10 kg for the commercially available calcium tablets Citracal and Tums, respectively. The disintegration time for the tablets presented in the order earlier was 4.1, 2.1, 1.9, 2.9, and 9.7 minutes, respectively. The dissolution studies showed that all formulations released 100% of the elemental calcium in simulated gastric fluid in less than 20 minutes. In summary, this study clearly demonstrated that quick disintegrating CC tablets can be formulated without expensive effervescence technology.

  16. Voltage-Gated Calcium Channels in Nociception

    Science.gov (United States)

    Yasuda, Takahiro; Adams, David J.

    Voltage-gated calcium channels (VGCCs) are a large and functionally diverse group of membrane ion channels ubiquitously expressed throughout the central and peripheral nervous systems. VGCCs contribute to various physiological processes and transduce electrical activity into other cellular functions. This chapter provides an overview of biophysical properties of VGCCs, including regulation by auxiliary subunits, and their physiological role in neuronal functions. Subsequently, then we focus on N-type calcium (Cav2.2) channels, in particular their diversity and specific antagonists. We also discuss the role of N-type calcium channels in nociception and pain transmission through primary sensory dorsal root ganglion neurons (nociceptors). It has been shown that these channels are expressed predominantly in nerve terminals of the nociceptors and that they control neurotransmitter release. To date, important roles of N-type calcium channels in pain sensation have been elucidated genetically and pharmacologically, indicating that specific N-type calcium channel antagonists or modulators are particularly useful as therapeutic drugs targeting chronic and neuropathic pain.

  17. Role of claudins in renal calcium handling

    Directory of Open Access Journals (Sweden)

    Armando Luis Negri

    2015-07-01

    Full Text Available Paracellular channels occurring in tight junctions play a major role in transepithelial ionic flows. This pathway includes a high number of proteins, such as claudins. Within renal epithelium, claudins result in an ionic selectivity in tight junctions. Ascending thick limb of loop of Henle (ATLH is the most important segment for calcium reabsorption in renal tubules. Its cells create a water-proof barrier, actively transport sodium and chlorine through a transcellular pathway, and provide a paracellular pathway for selective calcium reabsorption. Several studies have led to a model of paracellular channel consisting of various claudins, particularly claudin-16 and 19. Claudin-16 mediates cationic paracellular permeability in ATLH, whereas claudin-19 increases cationic selectivity of claudin-16 by blocking anionic permeability. Recent studies have shown that claudin-14 promoting activity is only located in ATLH. When co-expressed with claudin-16, claudin-14 inhibits the permeability of claudin-16 and reduces paracellular permeability to calcium. Calcium reabsorption process in ATLH is closely regulated by calcium sensor receptor (CaSR, which monitors circulating Ca levels and adjusts renal excretion rate accordingly. Two microRNA, miR-9 and miR-374, are directly regulated by CaSR. Thus, miR-9 and miR-374 suppress mRNA translation for claudin-14 and induce claudin-14 decline.

  18. Calcium's Role in Mechanotransduction during Muscle Development

    Directory of Open Access Journals (Sweden)

    Tatiana Benavides Damm

    2014-01-01

    Full Text Available Mechanotransduction is a process where cells sense their surroundings and convert the physical forces in their environment into an appropriate response. Calcium plays a crucial role in the translation of such forces to biochemical signals that control various biological processes fundamental in muscle development. The mechanical stimulation of muscle cells may for example result from stretch, electric and magnetic stimulation, shear stress, and altered gravity exposure. The response, mainly involving changes in intracellular calcium concentration then leads to a cascade of events by the activation of downstream signaling pathways. The key calcium-dependent pathways described here include the nuclear factor of activated T cells (NFAT and mitogen-activated protein kinase (MAPK activation. The subsequent effects in cellular homeostasis consist of cytoskeletal remodeling, cell cycle progression, growth, differentiation, and apoptosis, all necessary for healthy muscle development, repair, and regeneration. A deregulation from the normal process due to disuse, trauma, or disease can result in a clinical condition such as muscle atrophy, which entails a significant loss of muscle mass. In order to develop therapies against such diseased states, we need to better understand the relevance of calcium signaling and the downstream responses to mechanical forces in skeletal muscle. The purpose of this review is to discuss in detail how diverse mechanical stimuli cause changes in calcium homeostasis by affecting membrane channels and the intracellular stores, which in turn regulate multiple pathways that impart these effects and control the fate of muscle tissue.

  19. [Discovering L-type calcium channels inhibitors of antihypertensive drugs based on drug repositioning].

    Science.gov (United States)

    Liang, Ying-xi; He, Yu-su; Jiang, Lu-di; Yue, Qiao-xin; Cui, Shuai; Bin, Li; Ye, Xiao-tong; Zhang, Xiao-hua; Zhang, Yang-ling

    2015-09-01

    This study was amid to construct the pharmacophore model of L-type calcium channel antagonist in the application of screening Drugbank and TCMD. This paper repositions the approved drugs resulting from virtual screening and discusses the relocation-based drug discovery methods, screening antihypertensive drugs with L-type calcium channel function from TCMD. Qualitative hypotheses wre generated by HipHop separately on the basis of 12 compounds with antagonistic action on L-type calcium channel expressed in rabbit cardiac muscle. Datebase searching method was used to evaluate the generated hypotheses. The optimum hypothesis was used to search Drugbank and TCMD. This paper repositions the approved drugs and evaluates the antihypertensive effect of the chemical constituent of traditional Chinese medicine resulting from virtual screening by the matching score and literature. The results showed that optimum qualitative hypothesis is with six features, which were two hydrogen-bond acceptors, four hydrophobic groups, and the CAI value of 2.78. Screening Drugbank achieves 93 approved drugs. Screening TCMD achieves 285 chemical constituents of traditional Chinese medicine. It was concluded that the hypothesis is reliable and can be used to screen datebase. The approved drugs resulting from virtual screening, such as pravastatin, are potentially L-type calcium channels inhibitors. The chemical constituents of traditional Chinese medicine, such as Arctigenin III and Arctigenin are potentially antihypertensive drugs. It indicates that Drug Repositioning based on hypothesis is possible.

  20. Signal processing by T-type calcium channel interactions in the cerebellum

    Directory of Open Access Journals (Sweden)

    Jordan D.T. Engbers

    2013-11-01

    Full Text Available T-type calcium channels of the Cav3 family are unique among voltage-gated calcium channels due to their low activation voltage, rapid inactivation, and small single channel conductance. These special properties allow Cav3 calcium channels to regulate neuronal processing in the subthreshold voltage range. Here, we review two different subthreshold ion channel interactions involving Cav3 channels and explore the ability of these interactions to expand the functional roles of Cav3 channels. In cerebellar Purkinje cells, Cav3 and intermediate conductance calcium-activated potassium (IKCa channels form a novel complex which creates a low voltage-activated, transient outward current capable of suppressing temporal summation of excitatory postsynaptic potentials (EPSPs. In large diameter neurons of the deep cerebellar nuclei, Cav3-mediated calcium current (IT and hyperpolarization-activated cation current (IH are activated during trains of IPSPs. These currents have distinct, and yet synergistic, roles in the subthreshold domain with IT generating a rebound burst and IH controlling first spike latency and rebound spike precision. However, by shortening the membrane time constant the membrane returns towards resting value at a faster rate, allowing IH to increase the efficacy of IT, and increase the range of burst frequencies that can be generated. The net effect of Cav3 channels thus depends on the channels with which they are paired. When expressed in a complex with a KCa channel, Cav3 channels reduce excitability when processing excitatory inputs. If functionally coupled with an HCN channel, the depolarizing effect of Cav3 channels is accentuated, allowing for efficient inversion of inhibitory inputs to generate a rebound burst output. Therefore, signal processing relies not only on the activity of individual subtypes of channels but also on complex interactions between ion channels whether based on a physical complex or by indirect effects on

  1. Signal processing by T-type calcium channel interactions in the cerebellum.

    Science.gov (United States)

    Engbers, Jordan D T; Anderson, Dustin; Zamponi, Gerald W; Turner, Ray W

    2013-11-27

    T-type calcium channels of the Cav3 family are unique among voltage-gated calcium channels due to their low activation voltage, rapid inactivation, and small single channel conductance. These special properties allow Cav3 calcium channels to regulate neuronal processing in the subthreshold voltage range. Here, we review two different subthreshold ion channel interactions involving Cav3 channels and explore the ability of these interactions to expand the functional roles of Cav3 channels. In cerebellar Purkinje cells, Cav3 and intermediate conductance calcium-activated potassium (IKCa) channels form a novel complex which creates a low voltage-activated, transient outward current capable of suppressing temporal summation of excitatory postsynaptic potentials (EPSPs). In large diameter neurons of the deep cerebellar nuclei, Cav3-mediated calcium current (I T) and hyperpolarization-activated cation current (I H) are activated during trains of inhibitory postsynaptic potentials. These currents have distinct, and yet synergistic, roles in the subthreshold domain with I T generating a rebound burst and I H controlling first spike latency and rebound spike precision. However, by shortening the membrane time constant the membrane returns towards resting value at a faster rate, allowing I H to increase the efficacy of I T and increase the range of burst frequencies that can be generated. The net effect of Cav3 channels thus depends on the channels with which they are paired. When expressed in a complex with a KCa channel, Cav3 channels reduce excitability when processing excitatory inputs. If functionally coupled with an HCN channel, the depolarizing effect of Cav3 channels is accentuated, allowing for efficient inversion of inhibitory inputs to generate a rebound burst output. Therefore, signal processing relies not only on the activity of individual subtypes of channels but also on complex interactions between ion channels whether based on a physical complex or by indirect

  2. Signal processing by T-type calcium channel interactions in the cerebellum

    Science.gov (United States)

    Engbers, Jordan D. T.; Anderson, Dustin; Zamponi, Gerald W.; Turner, Ray W.

    2013-01-01

    T-type calcium channels of the Cav3 family are unique among voltage-gated calcium channels due to their low activation voltage, rapid inactivation, and small single channel conductance. These special properties allow Cav3 calcium channels to regulate neuronal processing in the subthreshold voltage range. Here, we review two different subthreshold ion channel interactions involving Cav3 channels and explore the ability of these interactions to expand the functional roles of Cav3 channels. In cerebellar Purkinje cells, Cav3 and intermediate conductance calcium-activated potassium (IKCa) channels form a novel complex which creates a low voltage-activated, transient outward current capable of suppressing temporal summation of excitatory postsynaptic potentials (EPSPs). In large diameter neurons of the deep cerebellar nuclei, Cav3-mediated calcium current (IT) and hyperpolarization-activated cation current (IH) are activated during trains of inhibitory postsynaptic potentials. These currents have distinct, and yet synergistic, roles in the subthreshold domain with IT generating a rebound burst and IH controlling first spike latency and rebound spike precision. However, by shortening the membrane time constant the membrane returns towards resting value at a faster rate, allowing IH to increase the efficacy of IT and increase the range of burst frequencies that can be generated. The net effect of Cav3 channels thus depends on the channels with which they are paired. When expressed in a complex with a KCa channel, Cav3 channels reduce excitability when processing excitatory inputs. If functionally coupled with an HCN channel, the depolarizing effect of Cav3 channels is accentuated, allowing for efficient inversion of inhibitory inputs to generate a rebound burst output. Therefore, signal processing relies not only on the activity of individual subtypes of channels but also on complex interactions between ion channels whether based on a physical complex or by indirect

  3. Calcium acetate or calcium carbonate for hyperphosphatemia of hemodialysis patients: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Yong Wang

    Full Text Available High levels of serum phosphorus both at baseline and during follow-up are associated with increased mortality in dialysis patients, and administration of phosphate binders was independently associated with improved survival among hemodialysis population. Calcium-based phosphate binders are the most commonly used phosphate binders in developing countries for their relatively low costs.To compare the efficacy and safety between calcium carbonate and calcium acetate in the treatment of hyperphosphatemia in hemodialysis patients.PubMed, EMBASE, Cochrane Library, Google scholar and Chinese databases (Wanfang, Weipu, National Knowledge Infrastructure of China were searched for relevant studies published before March 2014. Reference lists of nephrology textbooks and review articles were checked. A meta-analysis of randomized controlled trials (RCTs and quasi-RCTs that assessed the effects and adverse events of calcium acetate and calcium carbonate in adult patients with MHD was performed using Review Manager 5.0.A total of ten studies (625 participants were included in this meta-analysis. There was insufficient data in all-cause mortality and cardiovascular events for meta-analysis. Compared with calcium carbonate group, the serum phosphorus was significantly lower in calcium acetate group after4 weeks' administration (MD -0.15 mmol/L, 95% CI -0.28 to -0.01 and after 8 weeks' administration (MD -0.25 mmol/L, 95% CI -0.40 to -0.11. There was no difference in serum calcium levels or the incidence of hypercalcemia between two groups at 4 weeks and 8 weeks. No statistical difference was found in parathyroid hormone (PTH levels or serum calcium by phosphorus (Ca x P product. There was significantly higher risk of intolerance with calcium acetate treatment (RR 3.46, 95% CI 1.48 to 8.26.For hyperphosphatemia treatment, calcium acetate showed better efficacy and with a higher incidence of intolerance compared with calcium carbonate. There are insufficient data

  4. The calcium paradox - What should we have to fear?

    Science.gov (United States)

    de Oliveira, Marcos Aurélio Barboza; Brandi, Antônio Carlos; dos Santos, Carlos Alberto; Botelho, Paulo Henrique Husseni; Cortez, José Luís Lasso; Goissis, Gilberto; Braile, Domingo Marcolino

    2014-01-01

    The calcium paradox was first mentioned in 1966 by Zimmerman et al. Thereafter gained great interest from the scientific community due to the fact of the absence of calcium ions in heart muscle cells produce damage similar to ischemia-reperfusion. Although not all known mechanisms involved in cellular injury in the calcium paradox intercellular connection maintained only by nexus seems to have a key role in cellular fragmentation. The addition of small concentrations of calcium, calcium channel blockers, and hyponatraemia hypothermia are important to prevent any cellular damage during reperfusion solutions with physiological concentration of calcium. PMID:25140476

  5. Effects of Adding Chymosin to Milk on Calcium Homeostasis

    DEFF Research Database (Denmark)

    Møller, Ulla Kristine; Jensen, Lars Thorbjørn; Mosekilde, Leif

    2014-01-01

    Calcium intake and absorption is important for bone health. In a randomized double-blind cross-over trial, we investigated effects of adding chymosin to milk on the intestinal calcium absorption as measured by renal calcium excretion and indices of calcium homeostasis. The primary outcome...... of the study was 24-h renal calcium excretion that is considered a proxy measure of the amount of calcium absorbed from the intestine. We studied 125 healthy men and women, aged 34 (25-45) years on two separate days. On each day, a light breakfast was served together with 500 ml of semi-skimmed milk to which...

  6. Microwave generator

    Science.gov (United States)

    Kwan, T.J.T.; Snell, C.M.

    1987-03-31

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

  7. Velocity distribution measurements in atomic beams generated using laser induced back-ablation

    CERN Document Server

    Denning, A; Lee, S; Ammonson, M; Bergeson, S D

    2008-01-01

    We present measurements of the velocity distribution of calcium atoms in an atomic beam generated using a dual-stage laser back-ablation apparatus. Distributions are measured using a velocity selective Doppler time-of-flight technique. They are Boltzmann-like with rms velocities corresponding to temperatures above the melting point for calcium. Contrary to a recent report in the literature, this method does not generate a sub-thermal atomic beam.

  8. EDTA-insoluble, calcium-binding proteoglycan in bovine bone

    Science.gov (United States)

    Hashimoto, Y.; Lester, G. E.; Caterson, B.; Yamauchi, M.

    1995-01-01

    A calcium ion precipitable, trypsin-generated proteoglycan fragment has been isolated from the demineralized, EDTA-insoluble matrices of bone. The demineralized matrix was completely digested with trypsin, increasing concentrations of CaCl2 were added to the supernatant, and the resulting precipitates were analyzed. The amount of precipitate gradually increased with higher concentrations of calcium and was reversibly solubilized by EDTA. After molecular sieve and anion exchange chromatography, a proteoglycan-containing peak was obtained. Immunochemical analysis showed that this peak contained chondroitin 4-sulfate and possibly keratan sulfate. Amino acid analysis showed that this proteoglycan contained high amounts of aspartic acid/asparagine (Asx), serine (Ser), glutamic acid/glutamine (Glx), proline (Pro), and glycine (Gly); however, it contained little leucine (Leu) which suggests that it is not a member of the leucine-rich small proteoglycan family. In addition, significant amounts of phosphoserine (P-Ser) and hydroxyproline (Hyp) were identified in hydrolysates of this fraction. A single band (M(r) 59 kDa) was obtained on SDS-PAGE that stained with Stains-all but not with Coomassie Brilliant Blue R-250. If bone powder was trypsinized prior to demineralization, this proteoglycan-containing fraction was not liberated. Collectively, these results indicate that a proteoglycan occurs in the demineralized matrix that is precipitated with CaCl2 and is closely associated with both mineral and collagen matrices. Such a molecule might facilitate the structural network for the induction of mineralization in bone.

  9. Solar Generator

    Science.gov (United States)

    1985-01-01

    The Vanguard I dish-Stirling module program, initiated in 1982, produced the Vanguard I module, a commercial prototype erected by the Advanco Corporation. The module, which automatically tracks the sun, combines JPL mirrored concentrator technology, an advanced Stirling Solar II engine/generator, a low cost microprocessor-controlled parabolic dish. Vanguard I has a 28% sunlight to electricity conversion efficiency. If tests continue to prove the system effective, Advanco will construct a generating plant to sell electricity to local utilities. An agreement has also been signed with McDonnell Douglas to manufacture a similar module.

  10. Preparation and characterization of calcium phosphate biomaterials.

    Science.gov (United States)

    Calafiori, A R; Di Marco, G; Martino, G; Marotta, M

    2007-12-01

    Calcium phosphate cement (CPC) samples have been prepared with a mixture of monocalciumphosphate monohydrate (MCPM) and calcium carbonate (CC) powders, in stechiometric moles ratio 1:2.5 to obtain a Ca/P ratio of about 1.67 typical of hydroxyapatite (HAp), with or without addition of HAp. All specimens are incubated at 30 degrees C in a steam saturated air environment for 3, 6 and 15 days respectively, afterwards dried and stored under nitrogen. The calcium phosphate samples have been characterized by X-ray diffraction (XRD), Vickers hardness test (HV), diametral compression (d.c.), strength compression, and porosity evaluation. MCPM/CC mixture has a 30% HAp final concentration and is characterized by higher porosity (amount 78%) and mechanical properties useful as filler in bone segments without high mechanical stress.

  11. Vitamin D with calcium reduces mortality

    DEFF Research Database (Denmark)

    Rejnmark, Lars; Avenell, Alison; Masud, Tahir

    2012-01-01

    Introduction:Vitamin D may affect multiple health outcomes. If so, an effect on mortality is to be expected. Using pooled data from randomized controlled trials, we performed individual patient data (IPD) and trial level meta-analyses to assess mortality among participants randomized to either...... vitamin D alone or vitamin D with calcium.Subjects and Methods:Through a systematic literature search, we identified 24 randomized controlled trials reporting data on mortality in which vitamin D was given either alone or with calcium. From a total of 13 trials with more than 1000 participants each, eight......,528 randomized participants (86.8% females) with a median age of 70 (interquartile range, 62-77) yr. Vitamin D with or without calcium reduced mortality by 7% [hazard ratio, 0.93; 95% confidence interval (CI), 0.88-0.99]. However, vitamin D alone did not affect mortality, but risk of death was reduced if vitamin...

  12. OSTEOPOROSIS IN CALCIUM PYROPHOSPHATE CRYSTAL DEPOSITION DISEASE

    Directory of Open Access Journals (Sweden)

    S A Vladimirov

    2013-01-01

    Full Text Available Objective: to study the incidence of osteoporosis (OP in patients with calcium pyrophosphate crystal deposition disease (CPCDD. Subjects and methods. Eighty patients with CPCDD were examined. Bone mineral density (BMD of the forearm, lumbar spine, and femoral neck was determined by dual-energy X-ray absorptiometry. Laboratory diagnosis involved determination of the blood levels of C-reactive protein, parathyroid hormone, calcium, magnesium, and phosphorus and the daily urinary excretion of calcium and phosphates. Results. The patients with OP were significantly older than those with normal BMD and osteopenia. Forearm bones were the most common isolated location of OP and osteopenia. Injuries in the history, traumatic fractures, and the intake of diuretics were somewhat more common in the patients diagnosed with OP. The incidence of hyperparathyroidism did not differ significantly in the groups.

  13. How calcium makes endocytic receptors attractive

    DEFF Research Database (Denmark)

    Andersen, Christian B F; Moestrup, Søren K

    2014-01-01

    Nutrients, biological waste-products, toxins, pathogens, and other ligands for endocytosis are typically captured by multidomain receptors with multiligand specificity. Upon internalization, the receptor-ligand complex segregates, followed by lysosomal degradation of the ligand and recycling...... of the receptor. Endosomal acidification and calcium efflux lead to the essential ligand-receptor affinity switch and separation. Recent data, including crystal structures of receptor-ligand complexes, now reveal how calcium, in different types of domain scaffolds, functions in a common way as a removable...... 'lynchpin' that stabilizes favorable positioning of ligand-attractive receptor residues. In addition to explaining how calcium depletion can cause ligand-receptor dissociation, the new data add further insight into how acidification contributes to dissociation through structural changes that affect...

  14. Glial calcium signaling in physiology and pathophysioilogy

    Institute of Scientific and Technical Information of China (English)

    Alexei VERKHRASKY

    2006-01-01

    Neuronal-glial circuits underlie integrative processes in the nervous system.Function of glial syncytium is,to a very large extent,regulated by the intracellular calcium signaling system.Glial calcium signals are triggered by activation of multiple receptors,expressed in glial membrane,which regulate both Ca2+ entry and Ca2+ release from the endoplasmic reticulum.The endoplasmic reticulum also endows glial cells with intracellular excitable media,which is able to produce and maintain long-ranging signaling in a form of propagating Ca2+ waves.In pathological conditions,calcium signals regulate glial response to injury,which might have both protective and detrimental effects on the nervous tissue.

  15. Thermal structural properties of calcium tungstate

    Energy Technology Data Exchange (ETDEWEB)

    Senyshyn, Anatoliy; Hoelzel, Markus [Technische Univ. Darmstadt (Germany). Inst. for Materials Science; Technische Univ. Muenchen, Garching (Germany). Forschungsneutronenquelle Heinz Maier-Leibnitz FRM-II; Hansen, Thomas [Institute Laue-Langevin, Grenoble (France); Vasylechko, Leonid [Lviv Polytechnic National Univ. (Ukraine). Semiconductor Electronics Dept.; Mikhailik, Vitaliy [Diamond Light Source, Harwell Science and Innovation Campus, Didcot (United Kingdom); Oxford Univ. (United Kingdom). Dept. of Physics; Kraus, Hans [Oxford Univ. (United Kingdom). Dept. of Physics; Ehrenberg, Helmut [Technische Univ. Darmstadt (Germany). Inst. for Materials Science; IFW Dresden (Germany)

    2011-04-15

    The results of in-situ temperature-resolved powder diffraction studies of CaWO{sub 4} scheelite using both synchrotron radiation and neutron scattering are reported. The studies performed over a broad temperature range of 5-1773 K confirm the scheelite type of structure for calcium tungstate over the whole temperature range. The anisotropy of thermal expansion in calcium tungstate as well as the rigidity of WO{sub 4} complexes have been analysed in terms of bond distances, interatomic angles and anisotropic displacement parameters. The WO{sub 4}{sup 2-} complex anions showed a remarkable robustness in the whole studied temperature range, thus pointing out that the layered structure formed by two-dimensional CsCl-type arrangements of Ca cations and WO{sub 4} complexes is the primary reason for the anisotropy of thermal expansion in calcium tungstate. (orig.)

  16. Calcium carbide poisoning via food in childhood.

    Science.gov (United States)

    Per, Hüseyin; Kurtoğlu, Selim; Yağmur, Fatih; Gümüş, Hakan; Kumandaş, Sefer; Poyrazoğlu, M Hakan

    2007-02-01

    The fast ripening of fruits means they may contain various harmful properties. A commonly used agent in the ripening process is calcium carbide, a material most commonly used for welding purposes. Calcium carbide treatment of food is extremely hazardous because it contains traces of arsenic and phosphorous. Once dissolved in water, the carbide produces acetylene gas. Acetylene gas may affect the neurological system by inducing prolonged hypoxia. The findings are headache, dizziness, mood disturbances, sleepiness, mental confusion, memory loss, cerebral edema and seizures. We report the case of a previously healthy 5 year-old girl with no chronic disease history who was transferred to our Emergency Department with an 8-h history of coma and delirium. A careful history from her father revealed that the patient ate unripe dates treated with calcium carbide.

  17. Calcium pathway machinery at fertilization in echinoderms.

    Science.gov (United States)

    Ramos, Isabela; Wessel, Gary M

    2013-01-01

    Calcium signaling in cells directs diverse physiological processes. The calcium waves triggered by fertilization is a highly conserved calcium signaling event essential for egg activation, and has been documented in every egg tested. This activity is one of the few highly conserved events of egg activation through the course of evolution. Echinoderm eggs, as well as many other cell types, have three main intracellular Ca(2+) mobilizing messengers - IP3, cADPR and NAADP. Both cADPR and NAADP were identified as Ca(2+) mobilizing messengers using the sea urchin egg homogenate, and this experimental system, along with the intact urchin and starfish oocyte/egg, continues to be a vital tool for investigating the mechanism of action of calcium signals. While many of the major regulatory steps of the IP3 pathway are well resolved, both cADPR and NAADP remain understudied in terms of our understanding of the fundamental process of egg activation at fertilization. Recently, NAADP has been shown to trigger Ca(2+) release from acidic vesicles, separately from the ER, and a new class of calcium channels, the two-pore channels (TPCs), was identified as the likely targets for this messenger. Moreover, it was found that both cADPR and NAADP can be synthesized by the same family of enzymes, the ADP-rybosyl cyclases (ARCs). In this context of increasing amount of information, the potential coupling and functional roles of different messengers, intracellular stores and channels in the formation of the fertilization calcium wave in echinoderms will be critically evaluated.

  18. Calcium dependent magnesium uptake in myocardium.

    Science.gov (United States)

    Bianchi, C P; Liu, D

    1993-01-01

    The frog myocardium maintains magnesium content at a steady state level when stimulated at 0.4Hz while being perfused with Ringer's solution containing 1 x 10(-3) M Ca2+ and 5 x 10(-7) M magnesium. When calcium is removed 43% of tissue magnesium is lost within 30 seconds or 12 beats. Restoration of calcium to the perfusion solution causes reaccumulation of magnesium from a solution containing 5 x 10(-7) M magnesium. The reaccumulation of magnesium indicates a highly selective transport system for magnesium which is dependent upon the presence of calcium. Calcium appears to reduce the leak of magnesium from the myocardium and enhances the transport of magnesium into the myocardial cell. Intracellular magnesium is a necessary cofactor for hundreds of enzymes, and is essential for protein synthesis and as an extracellular divalent cation helps to stabilize excitable membranes in conjunction with calcium. The concentration of ionized magnesium in the sarcoplasm of myocardial muscle has an average value of 1.45 mM +/- 1.37 (standard deviation), N = 19) with a range of 0.5 to 3.6 mM (1). The heart with its numerous mitochondria and high enzymatic activity is vulnerable to myocardial damage due to magnesium loss. The isolated frog ventricle conserves intracellular magnesium when perfused with Ringer's solution containing no added magnesium and maintains function for hours. The ability to conserve magnesium suggests a low permeability of the sarcolemma to magnesium and an extremely efficient inward transport system. Removal of calcium as well as magnesium from the perfusion solution causes a rapid loss of tension in the electrically driven frog ventricle (0.4) Hz.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Impairment of ciprofloxacin absorption by calcium polycarbophil.

    Science.gov (United States)

    Kato, Ryuji; Ueno, Kazuyuki; Imano, Hideki; Kawai, Masayuki; Kuwahara, Shiro; Tsuchishita, Yoshimasa; Yonezawa, Emi; Tanaka, Kazuhiko

    2002-07-01

    The effect of calcium polycarbophil on the absorption of ciprofloxacin, a broad-spectrum antibacterial agent, was evaluated in an in vitro and in vivo study. In the in vitro study, the release of ciprofloxacin from the cellulose membrane in the presence or absence of metal cations was measured using the dissolution test procedure. In the in vivo study, male ST Wistar rats and male volunteers were employed. First, 20 mg/kg of ciprofloxacin alone (Rat Study 1) or 20 mg/kg of ciprofloxacin in combination with 64 mg/kg of calcium chloride (Rat Study 2) was administered orally to 3 rats. Second, a volunteer study was employed and a randomized crossover design with twophases was used. In onephase, volunteers received 400 mg of ciprofloxacin alone (Study 1); in the other phase, they received 400 mg of ciprofloxacin and 1200 mg of fine calcium polycarbophil granules concomitantly (Study 2). The plasma and serum concentrations of ciprofloxacin were measured by high-performance liquid chromatography. The release of ciprofloxacin from the cellulose membrane in the presence of aluminum, calcium, or iron ions was slower than that in the absence of these metal ions. The AUC0-4 and Cmax in Rat Study 2 were lower than those respective values in Rat Study 1. AUC0-4 was approximately 60% lower in Rat Study 2 than Rat Study 1. In the volunteer study, the AUC0-12 and Cmax in Study 2 were lower than those respective values in Study 1. In particular, AUC0-12 was approximately 50% lowerin Study 2 than in Study 1. These findings suggest that when ciprofloxacin and calcium polycarbophil were coadministered concomitantly, a decrease of ciprofloxacin absorption was observed, and this action was caused by the formation of chelate complexes. Therefore, it seems clear that we should avoid the concomitant administration of ciprofloxacin and calcium polycarbophil.

  20. Roscovitine increases intracellular calcium release and capacitative calcium entry in PC12 cells.

    Science.gov (United States)

    Choi, Ho Sook; Chung, Sul-Hee

    2010-01-18

    Cyclin-dependent kinase 5 (Cdk5), which is activated by the non-cyclin regulator p35 or p39, is a proline-directed serine/threonine kinase that is implicated in many physiological and pathological processes. Here, we studied calcium signaling using the fluorescent cytosolic calcium indicator, Fura-4, in NGF-differentiated PC12 cells treated with roscovitine, a Cdk5 inhibitor. As compared to the control cells, the roscovitine-treated cells significantly potentiated intracellular calcium release by membrane depolarization (high K(+)) or through thapsigargin. In addition, roscovitine increased the magnitude of capacitative calcium entry (CCE), i.e., a calcium influx mechanism triggered by the depletion of intracellular calcium stores. Notably, roscovitine markedly slowed the rate of Ca(2+) removal from the plasma membrane. These results suggest that Cdk5 regulates intracellular calcium homeostasis and that the dysregulation of Cdk5 may contribute to disease pathogenesis by perturbing cellular Ca(2+) signaling. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  1. Calcium-dependent calcium decay explains STDP in a dynamic model of hippocampal synapses.

    Directory of Open Access Journals (Sweden)

    Dominic Standage

    Full Text Available It is widely accepted that the direction and magnitude of synaptic plasticity depends on post-synaptic calcium flux, where high levels of calcium lead to long-term potentiation and moderate levels lead to long-term depression. At synapses onto neurons in region CA1 of the hippocampus (and many other synapses, NMDA receptors provide the relevant source of calcium. In this regard, post-synaptic calcium captures the coincidence of pre- and post-synaptic activity, due to the blockage of these receptors at low voltage. Previous studies show that under spike timing dependent plasticity (STDP protocols, potentiation at CA1 synapses requires post-synaptic bursting and an inter-pairing frequency in the range of the hippocampal theta rhythm. We hypothesize that these requirements reflect the saturation of the mechanisms of calcium extrusion from the post-synaptic spine. We test this hypothesis with a minimal model of NMDA receptor-dependent plasticity, simulating slow extrusion with a calcium-dependent calcium time constant. In simulations of STDP experiments, the model accounts for latency-dependent depression with either post-synaptic bursting or theta-frequency pairing (or neither and accounts for latency-dependent potentiation when both of these requirements are met. The model makes testable predictions for STDP experiments and our simple implementation is tractable at the network level, demonstrating associative learning in a biophysical network model with realistic synaptic dynamics.

  2. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian

    Science.gov (United States)

    Komar, Nemanja; Zeebe, Richard

    2016-04-01

    Negative carbon and calcium isotope excursions, as well as climate shifts, took place during the most severe mass extinction event in Earth's history, the end-Permian (˜252 Ma). Investigating the connection between carbon and calcium cycles during transient carbon cycle perturbation events, such as the end-Permian, may help resolve the intricacies between the coupled calcium-carbon cycles, as well as provide a tool for constraining the causes of mass extinction. Here, we identify the deficiencies of a simplified calcium model employed in several previous studies and we demonstrate the importance of a fully coupled carbon-cycle model when investigating the dynamics of carbon and calcium cycling. Simulations with a modified version of the LOSCAR model, which includes a fully coupled carbon-calcium cycle, indicate that increased weathering rates and ocean acidification (potentially caused by Siberian Trap volcanism) are not capable of producing trends observed in the record, as previously claimed. Our model results suggest that combined effects of carbon input via Siberian Trap volcanism (12,000 Pg C), the cessation of biological carbon export, and variable calcium isotope fractionation (due to a change in the seawater carbonate ion concentration) represents a more plausible scenario. This scenario successfully reconciles δ13C and δ44Ca trends observed in the sediment record, as well as the proposed warming of >6oC.

  3. Characterization of Calcium Compounds in Opuntia ficus indica as a Source of Calcium for Human Diet

    Directory of Open Access Journals (Sweden)

    Isela Rojas-Molina

    2015-01-01

    Full Text Available Analyses of calcium compounds in cladodes, soluble dietary fiber (SDF, and insoluble dietary fiber (IDF of Opuntia ficus indica are reported. The characterization of calcium compounds was performed by using Scanning Electron Microscopy, Energy Dispersive Spectrometry, X-ray diffraction, and infrared spectroscopy. Atomic Absorption Spectroscopy and titrimetric methods were used for quantification of total calcium and calcium compounds. Whewellite (CaC2O4·H2O, weddellite (CaC2O4·(H2O2.375, and calcite (CaCO3 were identified in all samples. Significant differences (P≤0.05 in the total calcium contents were detected between samples. CaC2O4·H2O content in cladodes and IDF was significantly higher (P≤0.05 in comparison to that observed in SDF, whereas minimum concentration of CaCO3 was detected in IDF with regard to CaCO3 contents observed in cladodes and SDF. Additionally, molar ratio oxalate : Ca2+ in all samples changed in a range from 0.03 to 0.23. These results support that calcium bioavailability in O. ficus indica modifies according to calcium compounds distribution.

  4. Biotic Nitrogen Enrichment Regulates Calcium Sources to Forests

    Science.gov (United States)

    Pett-Ridge, J. C.; Perakis, S. S.; Hynicka, J. D.

    2015-12-01

    Calcium is an essential nutrient in forest ecosystems that is susceptible to leaching loss and depletion. Calcium depletion can affect plant and animal productivity, soil acid buffering capacity, and fluxes of carbon and water. Excess nitrogen supply and associated soil acidification are often implicated in short-term calcium loss from soils, but the long-term role of nitrogen enrichment on calcium sources and resupply is unknown. Here we use strontium isotopes (87Sr/86Sr) as a proxy for calcium to investigate how soil nitrogen enrichment from biological nitrogen fixation interacts with bedrock calcium to regulate both short-term available supplies and the long-term sources of calcium in montane conifer forests. Our study examines 22 sites in western Oregon, spanning a 20-fold range of bedrock calcium on sedimentary and basaltic lithologies. In contrast to previous studies emphasizing abiotic control of weathering as a determinant of long-term ecosystem calcium dynamics and sources (via bedrock fertility, climate, or topographic/tectonic controls) we find instead that that biotic nitrogen enrichment of soil can strongly regulate calcium sources and supplies in forest ecosystems. For forests on calcium-rich basaltic bedrock, increasing nitrogen enrichment causes calcium sources to shift from rock-weathering to atmospheric dominance, with minimal influence from other major soil forming factors, despite regionally high rates of tectonic uplift and erosion that can rejuvenate weathering supply of soil minerals. For forests on calcium-poor sedimentary bedrock, we find that atmospheric inputs dominate regardless of degree of nitrogen enrichment. Short-term measures of soil and ecosystem calcium fertility are decoupled from calcium source sustainability, with fundamental implications for understanding nitrogen impacts, both in natural ecosystems and in the context of global change. Our finding that long-term nitrogen enrichment increases forest reliance on atmospheric

  5. Antiatherogenic properties of calcium antagonists. State of the art.

    Science.gov (United States)

    Weinstein, D B; Heider, J G

    1989-04-17

    Atherosclerosis is an arterial disease characterized by localized accumulation of collagen, elastin, lipids, and calcium at sites associated with macrophage infiltration and altered smooth muscle metabolism. Studies in several types of animal models, especially cholesterol-fed rabbits, have shown that calcium competitors, calcium chelators, anticalcifying agents, and calcium antagonists can reduce the accumulation of atherogenic lesion components and decrease the progression of lesions. Although there are some conflicting data in the animal model studies, it is now apparent that several classes of calcium antagonists inhibit the progression of early arterial lesions induced by cholesterol-feeding in animals. The dihydropyridine class of calcium antagonists may be more potent as anti-atherosclerotic agents than the other classes. Mechanisms involving regulation of endothelial cell, smooth muscle cell, and macrophage metabolism may be responsible for the effects of calcium antagonists on early lesion progression. Recent studies in cell culture-model systems suggest that calcium antagonists may significantly alter activities that regulate lipoprotein-derived cholesterol accumulation by arterial wall cells. Some of these activities are independent of calcium flux across voltage-operated calcium channels. Thus, calcium antagonists may reduce the progression of atherogenic lesions by a combination of decreasing calcium accumulation within arterial wall cells and by altering calcium channel-independent metabolic activities, which affect lesion development.

  6. Ground-Based Detection of Exoatmospheric Calcium

    Science.gov (United States)

    Rojo, Patricio M.; Astudillo-Defru, Nicola

    2014-11-01

    Data acquired with HDS@Subaru for HD209458b is re-analyzed. A new pipeline performs an automated search for the exoatmospheric presence of several elements without any a-priori assumptions on its existence or strength. We analyzed thousands of lines in the full spectral range of this optical echelle spectrograph using a robust method to correct for the telluric contamination. We recover previous detections of Sodium and Halpha, and present the first strong detection of Calcium in an Extrasolar Atmosphere as well as the tentative detection of other elements. The Calcium detection is in disagreement with theoretical thermal-equilibrium models.

  7. Calcium and weight control-Publications summaries

    Directory of Open Access Journals (Sweden)

    Feride Çelebi

    2011-08-01

    Full Text Available Obesity is a public health problem. And it is known that both energy balance and nutritional factors are effective on it. The effects of dietary calcium on bone health are known however with recent studies, it has become a food item that focused on the effect on body weight control. Most epidemiyolojik studies claim that there is a relationship between long-term consumption of diary milk and milk products and the decrease of body weight and fat mass. In this article, there are different studies that support or do not support this idea. However the effect mechanism of calcium on weight control is tried to be explained.

  8. Martian Generation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Independent, Internet savvy and with their own Martian language, China’s post-90s generation is rewriting the rules of behavior september 14 was the 18th birth-day of Zhang Zhaoyu from Sichuan Province. He is a new student at Peking University,

  9. Generative Contexts

    Science.gov (United States)

    Lyles, Dan Allen

    Educational research has identified how science, technology, engineering, and mathematics (STEM) practice and education have underperforming metrics in racial and gender diversity, despite decades of intervention. These disparities are part of the construction of a culture of science that is alienating to these populations. Recent studies in a social science framework described as "Generative Justice" have suggested that the context of social and scientific practice might be modified to bring about more just and equitable relations among the disenfranchised by circulating the value they and their non-human allies create back to them in unalienated forms. What is not known are the underlying principles of social and material space that makes a system more or less generative. I employ an autoethnographic method at four sites: a high school science class; a farm committed to "Black and Brown liberation"; a summer program geared towards youth environmental mapping; and a summer workshop for Harlem middle school students. My findings suggest that by identifying instances where material affinity, participatory voice, and creative solidarity are mutually reinforcing, it is possible to create educational contexts that generate unalienated value, and circulate it back to the producers themselves. This cycle of generation may help explain how to create systems of justice that strengthen and grow themselves through successive iterations. The problem of lack of diversity in STEM may be addressed not merely by recruiting the best and the brightest from underrepresented populations, but by changing the context of STEM education to provide tools for its own systematic restructuring.

  10. Synchronous generators

    CERN Document Server

    Boldea, Ion

    2005-01-01

    This work begins with an introduction to energy resources and the main electric energy conversion solutions, along with efficiency and environmental merits and demerits. The classification and principles of various electric generator topologies are covered alongside their power ratings and main applications including constant-speed synchronous gene

  11. Radiatively Generated $\

    CERN Document Server

    Joshipura, A S; Joshipura, Anjan S.; Rindani, Saurabh D.

    2003-01-01

    We study the consequences of assuming that the mass scale $\\Delta_{odot}$ corresponding to the solar neutrino oscillations and mixing angle $U_{e3}$ corresponding to the electron neutrino oscillation at CHOOZ are radiatively generated through the standard electroweak gauge interactions. All the leptonic mass matrices having zero $\\Delta_{odot}$ and $U_{e3}$ at a high scale lead to a unique low energy value for the $\\Delta_{odot}$ which is determined by the (known) size of the radiative corrections, solar and the atmospheric mixing angle and the Majorana mass of the neutrino observed in neutrinoless double beta decay. This prediction leads to the following consequences: ($i$) The MSSM radiative corrections generate only the dark side of the solar neutrino solutions. ($ii$) The inverted mass hierarchy ($m,-m,0$) at the high scale fails in generating the LMA solution but it can lead to the LOW or vacuum solutions. ($iii$) The $\\Delta_{odot}$ generated in models with maximal solar mixing at a high scale is zero t...

  12. Avian eggshell formation in calcium-rich and calcium-poor habitats: Importance of snail shells and anthropogenic calcium sources

    NARCIS (Netherlands)

    Graveland, J.

    1996-01-01

    Most passerines depend on the intake of calcium-rich material in addition to their normal food for proper eggshell formation and skeletal growth. A large proportion of Great Tits (Pants major) in forests on nutrient-poor soils in the Netherlands produce eggs with defective shells as a result of calc

  13. Avian eggshell formation in calcium-rich and calcium-poor habitats: Importance of snail shells and anthropogenic calcium sources

    NARCIS (Netherlands)

    Graveland, J.

    1996-01-01

    Most passerines depend on the intake of calcium-rich material in addition to their normal food for proper eggshell formation and skeletal growth. A large proportion of Great Tits (Pants major) in forests on nutrient-poor soils in the Netherlands produce eggs with defective shells as a result of calc

  14. Avian eggshell formation in calcium-rich and calcium-poor habitats: Importance of snail shells and anthropogenic calcium sources

    NARCIS (Netherlands)

    Graveland, J.

    1996-01-01

    Most passerines depend on the intake of calcium-rich material in addition to their normal food for proper eggshell formation and skeletal growth. A large proportion of Great Tits (Pants major) in forests on nutrient-poor soils in the Netherlands produce eggs with defective shells as a result of

  15. Calcium supplementation does not augment bone gain in young women consuming diets moderately low in calcium.

    Science.gov (United States)

    Barger-Lux, M Janet; Davies, K Michael; Heaney, Robert P

    2005-10-01

    In earlier observational work, the dietary calcium:protein ratio was directly related to bone accrual in healthy postadolescent women. In this study, we sought to test the hypothesis that augmented calcium intake would increase postadolescent skeletal consolidation, using a double-blind, randomized, placebo-controlled design. We recruited 152 healthy young women (age 23.1 +/- 2.7 y, BMI 22.5 +/- 3.0 kg/m2); their usual diets, as assessed by 7-d food diaries, were low in calcium (605 +/- 181 mg/d; 15.1 +/- 4.5 mmol/d) and in the calcium:protein ratio (10.1 +/- 2.0 mg/g). The subjects were randomly assigned to supplemental calcium [500 mg calcium (12.5 mmol) as the carbonate, 3 times/d, with meals] or placebo capsules identical in appearance; all participants also took a daily multivitamin, and they were followed for up to 36 mo with bone densitometry (dual energy X-ray absorptiometry; DXA) at 6-mo intervals. A total of 121 subjects remained in the study for at least 12 mo (median time in the study, 35 mo), with a mean compliance level (observed/expected tablet consumption) of 87.7%. DXA data for these 121 subjects indicated modest but significant mean rates of increase (i.e., 0.24 to 1.10%/y) in bone mineral content (BMC; total body, total hip, and lumbar spine) and in lumbar spine bone mineral density (BMD) but no change in total hip BMD. None of these rates of change differed by group, i.e., calcium supplementation did not have any measurable effect on bone mass accrual. By midstudy, the calcium content of the subjects' usual diets for both groups had risen by approximately 15%. The combined effect of improved intakes of dietary calcium and the small amount of calcium added by the multivitamin tablets resulted in a mean calcium intake for the control group > 800 mg (20 mmol)/d, possibly at or near the threshold beyond which additional calcium has no further effect on bone accrual.

  16. Effects of extracellular calcium on calcium transport during hyperthermia of tumor cells.

    Science.gov (United States)

    Anghileri, L J; Marcha, C; Crone-Escanyé, M C; Robert, J

    1985-08-01

    The effects of different concentrations of extracellular ion calcium on the transport of calcium by tumor cells have been studied by means of the uptake of radiocalcium. Tumor cells incubated at 45 degrees C take up 4-10 times the amount of radioactivity incorporated by cells incubated at 37 degrees C. The difference is still greater (up to 100 times) for the intracellular incorporation as assessed by elimination of the membrane-bound calcium by EGTA treatment. The possible mechanisms involved in this differential behavior are discussed.

  17. Calcium Supplements: A Risk Factor for Heart Attack?

    Science.gov (United States)

    ... Waldman T, et al. Calcium supplements and cardiovascular disease: A review. American Journal of Lifestyle Medicine. 2015;9:298. Reid IR. Cardiovascular effects of calcium supplements. Nutrients. 2013;5:2522. Xiao ...

  18. The effects of calcium regulation of endosperm reserve protein ...

    African Journals Online (AJOL)

    Administrator

    2011-06-15

    Jun 15, 2011 ... The effects of steep liquor calcium ion on sorghum endosperm reserve protein mobilization were ... ularly calcium ion exerted a strong regulatory influence ... determined spectrophotometrically as ammonia using Nessler's.

  19. Hemodynamic effects of calcium gluconate administered to conscious horses.

    Science.gov (United States)

    Grubb, T L; Foreman, J H; Benson, G J; Thurmon, J C; Tranquilli, W J; Constable, P D; Olson, W O; Davis, L E

    1996-01-01

    Calcium gluconate was administered to conscious horses at 3 different rates (0.1, 0.2, and 0.4 mg/kg/min for 15 minutes each). Serum calcium concentrations and parameters of cardiovascular function were evaluated. All 3 calcium administration rates caused marked increases in both ionized and total calcium concentrations, cardiac index, stroke index, and cardiac contractility (dP/dtmax). Mean arterial pressure and right atrial pressure were unchanged; heart rate decreased markedly during calcium administration. Ionized calcium concentration remained between 54% and 57% of total calcium concentration throughout the study. We conclude that calcium gluconate can safely be administered to conscious horses at 0.1 to 0.4 mg/kg/min and that administration will result in improved cardiac function.

  20. Calcium Supplements Might Raise Older Women's Dementia Risk

    Science.gov (United States)

    ... nutrient," she said. "For example, calcium, phosphorus and magnesium all are typically looked at for their effects ... which was not originally designed to assess calcium intake," MacKay noted. "Further, the new analysis included only ...