WorldWideScience

Sample records for generalized phase contrast

  1. Generalized Phase Contrast

    CERN Document Server

    Glückstad, Jesper

    2009-01-01

    Generalized Phase Contrast elevates the phase contrast technique not only to improve phase imaging but also to cross over and interface with diverse and seemingly disparate fields of contemporary optics and photonics. This book presents a comprehensive introduction to the Generalized Phase Contrast (GPC) method including an overview of the range of current and potential applications of GPC in wavefront sensing and phase imaging, structured laser illumination and image projection, optical trapping and manipulation, and optical encryption and decryption. The GPC method goes further than the restrictive assumptions of conventional Zernike phase contrast analysis and achieves an expanded range of validity beyond weak phase perturbations. The generalized analysis yields design criteria for tuning experimental parameters to achieve optimal performance in terms of accuracy, fidelity and light efficiency. Optimization can address practical issues, such as finding an optimal spatial filter for the chosen application, ...

  2. Generalized phase contrast:

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    Generalized Phase Contrast elevates the phase contrast technique not only to improve phase imaging but also to cross over and interface with diverse and seemingly disparate fields of contemporary optics and photonics. This book presents a comprehensive introduction to the Generalized Phase Contrast...... (GPC) method including an overview of the range of current and potential applications of GPC in wavefront sensing and phase imaging, structured laser illumination and image projection, optical trapping and manipulation, and optical encryption and decryption. The GPC method goes further than...... the restrictive assumptions of conventional Zernike phase contrast analysis and achieves an expanded range of validity beyond weak phase perturbations. The generalized analysis yields design criteria for tuning experimental parameters to achieve optimal performance in terms of accuracy, fidelity and light...

  3. Generalized phase contrast:

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    Generalized Phase Contrast elevates the phase contrast technique not only to improve phase imaging but also to cross over and interface with diverse and seemingly disparate fields of contemporary optics and photonics. This book presents a comprehensive introduction to the Generalized Phase Contrast...... (GPC) method including an overview of the range of current and potential applications of GPC in wavefront sensing and phase imaging, structured laser illumination and image projection, optical trapping and manipulation, and optical encryption and decryption. The GPC method goes further than...... efficiency. Optimization can address practical issues, such as finding an optimal spatial filter for the chosen application, and can even enable a Reverse Phase Contrast mode where intensity patterns are converted into a phase modulation....

  4. Laser projection using generalized phase contrast

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Rodrigo, Peter John

    2007-01-01

    We demonstrate experimental laser projection of a gray-level photographic image with 74% light efficiency using the generalized phase contrast (GPC) method. In contrast with a previously proposed technique [Alonzo et al., New J. Phys. 9, 132 (2007)], a new approach to image construction via GPC...... is introduced. An arbitrary phase shift filter eliminates the need for high-frequency modulation and conjugate phase encoding. This lowers device performance requirements and allows practical implementation with currently available dynamic spatial light modulators. (c) 2007 Optical Society of America....

  5. Holo-GPC: Holographic Generalized Phase Contrast

    DEFF Research Database (Denmark)

    Bañas, Andrew; Glückstad, Jesper

    2017-01-01

    Light shaping methods based on spatial phase-only modulation can be classified depending on whether they distribute multiple beams or shape the individual beams. Diffractive optics or holography can be classified as the former, as it spatially distributes a plurality of focal spots over a working...... volume. On the other hand, Generalized Phase Contrast (GPC) forms beams with well-defined lateral shapes and could be classified as the latter. To certain extents, GPC and holography can also perform both beam distribution and beam shaping. But despite the overlap in beam distribution and beam shaping...... of GPC in forming well-defined speckle-free shapes that can be distributed over an extended 3D volume through holographic means. The combined strengths of the two photon-efficient phase-only light shaping modalities open new possibilities for contemporary laser sculpting applications....

  6. Diffractive generalized phase contrast for adaptive phase imaging and optical security

    DEFF Research Database (Denmark)

    Palima, Darwin; Glückstad, Jesper

    2012-01-01

    We analyze the properties of Generalized Phase Contrast (GPC) when the input phase modulation is implemented using diffractive gratings. In GPC applications for patterned illumination, the use of a dynamic diffractive optical element for encoding the GPC input phase allows for onthe- fly...... optimization of the input aperture parameters according to desired output characteristics. For wavefront sensing, the achieved aperture control opens a new degree of freedom for improving the accuracy of quantitative phase imaging. Diffractive GPC input modulation also fits well with grating-based optical...

  7. Matched filtering Generalized Phase Contrast using binary phase for dynamic spot- and line patterns in biophotonics and structured lighting

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Aabo, Thomas; Palima, Darwin

    2013-01-01

    as a combination of Generalized Phase Contrast and phase-only correlation. Such an analysis makes it convenient to optimize an mGPC system for different setup conditions. Results showing binary-only phase generation of dynamic spot arrays and line patterns are presented. © 201 Optical Society of America...

  8. Generalized Phase contrast and matched filtering for speckle‐free patterned illumination

    DEFF Research Database (Denmark)

    Palima, Darwin; Bañas, Andrew Rafael; Villangca, Mark Jayson

    2013-01-01

    Generalized Phase Contrast (GPC) and matched‐filtering GPC use tandem diffractive phase elements on Fourier‐conjugate planes of a 4f optical processor to efficiently reshape incident light into a pattern that resembles the input phase modulation pattern. The synthesized patterns are inherently sp...... excitation, exhibits some robustness against light scattering and, hence, makes a promising tool for spatially precise targeting of deeper subsurface neurons using minimally speckled patterned illumination for multiphoton excitation....

  9. Combining Generalized Phase Contrast with matched filtering into a versatile beam shaping approach

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    2010-01-01

    We adapt concepts from matched filtering to propose a method for generating reconfigurable multiple beams. Combined with the Generalized Phase Contrast (GPC) technique, the proposed method coined mGPC can yield dynamically reconfigurable optical beam arrays with high light efficiency for optical ...... manipulation, high-speed sorting and other parallel spatial light applications [1].......We adapt concepts from matched filtering to propose a method for generating reconfigurable multiple beams. Combined with the Generalized Phase Contrast (GPC) technique, the proposed method coined mGPC can yield dynamically reconfigurable optical beam arrays with high light efficiency for optical...

  10. Combining generalized phase contrast with matched filtering into a versatile beam shaping system

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    2009-01-01

    We adapt concepts from matched filtering to propose a method for generating reconfigurable multiple beams. Combined with the Generalized Phase Contrast (GPC) technique, the proposed method coined mGPC can yield dynamically reconfigurable optical beam arrays with high light efficiency for optical ...... manipulation, high-speed sorting and other parallel spatial light applications.......We adapt concepts from matched filtering to propose a method for generating reconfigurable multiple beams. Combined with the Generalized Phase Contrast (GPC) technique, the proposed method coined mGPC can yield dynamically reconfigurable optical beam arrays with high light efficiency for optical...

  11. Efficient formation of extended line intensity patterns using matched-filtering generalized phase contrast

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Aabo, Thomas;

    2013-01-01

    We demonstrate the efficient generation of line patterns using matched-filtering Generalized Phase Contrast (mGPC). So far, the main emphasis of mGPC light addressing has been on the creation of rapidly reconfigurable focused spots. This has recently been extended to encoding extended line patter...

  12. Generalized Phase Contrast with matched filtering using LCoS pico-projectors

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Glückstad, Jesper

    2012-01-01

    We report a beam shaping system for generating high intensity programmable optical spots using mGPC: matched filtering combined with Generalized Phase Contrast applying two consumer handheld pico-projectors. Such a system presents a low cost alternative for optical trapping and manipulation......, optical lattices and other beam shaping applications usually implemented with high-end spatial light modulators. Portable pico-projectors based on liquid crystal on silicon (LCoS) devices were used as binary phase-only spatial light modulators by setting the appropriate polarization of the illumination...... in these consumer pico-projector LCoS-devices, the mGPC approach tolerates phase aberrations that would have otherwise been contrasted by a standard phase imaging technique....

  13. Array illumination with minimal non-uniformity based on generalized phase contrast

    DEFF Research Database (Denmark)

    Palima, Darwin; Glückstad, Jesper

    2009-01-01

    The generalized phase contrast method (GPC) has been previously shown to be an efficient technique for generating array illumination and is thus highly suitable for such applications as dynamic multiple beam trapping and optical micromanipulation. However, projected arrays usually exhibit intensity...... roll-offs that may be undesirable for some applications. We show that the uniformity of GPC-generated array illuminations can be improved using intuitive corrections to the input spatial phase modulation, by increasing or decreasing it to respectively raise or lower the intensity of the corresponding...... output spots to improve uniformity. This is combined with matching corrections to the phase shift introduced by the phase contrast filter. Results from numerical experiments show that the array illumination uniformity error improves from over 40% to less than 1% while maintaining the efficiency prior...

  14. Regularized Newton Methods for X-ray Phase Contrast and General Imaging Problems

    CERN Document Server

    Maretzke, Simon; Krenkel, Martin; Salditt, Tim; Hohage, Thorsten

    2015-01-01

    Like many other advanced imaging methods, x-ray phase contrast imaging and tomography require mathematical inversion of the observed data to obtain real-space information. While an accurate forward model describing the generally nonlinear image formation from a given object to the observations is often available, explicit inversion formulas are typically not known. Moreover, the measured data might be insufficient for stable image reconstruction, in which case it has to be complemented by suitable a priori information. In this work, regularized Newton methods are presented as a general framework for the solution of such ill-posed nonlinear imaging problems. For a proof of principle, the approach is applied to x-ray phase contrast imaging in the near-field propagation regime. Simultaneous recovery of the phase- and amplitude from a single near-field diffraction pattern is demonstrated for the first time. The presented methods further permit all-at-once phase contrast tomography, i.e. simultaneous phase retriev...

  15. Parallel optical sorting of biological cells using the generalized phase contrast method

    DEFF Research Database (Denmark)

    Rindorf, Lars; Bu, Minqiang; Glückstad, Jesper

    2014-01-01

    of biological cells in microfluidic systems exclusively using light. We demonstrate an optical cell sorter that uses simultaneous manipulation by multiple laser beams using the Generalized Phase Contrast method (GPC). The basic principle in an optical sorter is that the radiation force of the optical beam can...... push the biological cell from one microfluidic sheath flow to another. By incorporating a spatial light modulator the manipulation can be made parallel with multiple laser beams. We claim advantages over the serial optical sorters with only a single laser beam that has been demonstrated by others.......Optical forces are used to fixate biological cells with optical tweezers where numerous biological parameters and phenomena can be studied. Optical beams carry a small momentum which generates a weak optical force, but on a cellular level this force is strong enough to allow for manipulation...

  16. Generalized phase contrast-enhanced diffractive coupling to light-driven microtools

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Bañas, Andrew Rafael; Palima, Darwin;

    2015-01-01

    We have previously demonstrated on-demand dynamic coupling to optically manipulated microtools coined as wave-guided optical waveguides using diffractive techniques on a “point and shoot” approach. These microtools are extended microstructures fabricated using two-photon photopolymerization and f...... of the trapping medium. The ability to switch from on-demand to continuous addressing with efficient illumination leverages our microtools for potential applications in stimulation and near-field-based biophotonics on cellular scales...... capability of the microtools, the applied spatial light modulator has been illuminated with a properly matched input beam cross section based on the generalized phase contrast method. Our results show a significant gain in the output at the tip of each microtool as measured from the fluorescence signal...

  17. Phase contrast image synthesis

    DEFF Research Database (Denmark)

    Glückstad, J.

    1996-01-01

    A new method is presented for synthesizing arbitrary intensity patterns based on phase contrast imaging. The concept is grounded on an extension of the Zernike phase contrast method into the domain of full range [0; 2 pi] phase modulation. By controlling the average value of the input phase...... function and by choosing appropriate phase retardation at the phase contrast filter, a pure phase to intensity imaging is accomplished. The method presented is also directly applicable in dark field image synthesis....

  18. Generalized phase contrast-enhanced diffractive coupling to light-driven microtools

    Science.gov (United States)

    Villangca, Mark; Bañas, Andrew; Palima, Darwin; Glückstad, Jesper

    2015-11-01

    We have previously demonstrated on-demand dynamic coupling to optically manipulated microtools coined as wave-guided optical waveguides using diffractive techniques on a "point and shoot" approach. These microtools are extended microstructures fabricated using two-photon photopolymerization and function as free-floating optically trapped waveguides. Dynamic coupling of focused light via these structures being moved in three-dimensional space is done holographically. However, calculating the necessary holograms is not straightforward when using counter-propagating trapping geometry. The generation of the coupling spots is done in real time following the position of each microtool with the aid of an object tracking routine. This approach allows continuous coupling of light through the microtools which can be useful in a variety of biophotonics applications. To complement the targeted-light delivery capability of the microtools, the applied spatial light modulator has been illuminated with a properly matched input beam cross section based on the generalized phase contrast method. Our results show a significant gain in the output at the tip of each microtool as measured from the fluorescence signal of the trapping medium. The ability to switch from on-demand to continuous addressing with efficient illumination leverages our microtools for potential applications in stimulation and near-field-based biophotonics on cellular scales.

  19. Compressive Phase Contrast Tomography

    CERN Document Server

    Maia, F R N C; Marchesini, S; Padmore, H A; Parkinson, D Y; Pien, J; Schirotzek, A; Yang, C; 10.1117/12.861946

    2010-01-01

    When x-rays penetrate soft matter, their phase changes more rapidly than their amplitude. In- terference effects visible with high brightness sources creates higher contrast, edge enhanced images. When the object is piecewise smooth (made of big blocks of a few components), such higher con- trast datasets have a sparse solution. We apply basis pursuit solvers to improve SNR, remove ring artifacts, reduce the number of views and radiation dose from phase contrast datasets collected at the Hard X-Ray Micro Tomography Beamline at the Advanced Light Source. We report a GPU code for the most computationally intensive task, the gridding and inverse gridding algorithm (non uniform sampled Fourier transform).

  20. Matched-filtering generalized phase contrast using LCoS pico-projectors for beam-forming

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Glückstad, Jesper

    2012-01-01

    We report on a new beam-forming system for generating high intensity programmable optical spikes using so-called matched-filtering Generalized Phase Contrast (mGPC) applying two consumer handheld pico-projectors. Such a system presents a low-cost alternative for optical trapping and manipulation......, optical lattices and other beam-shaping applications usually implemented with high-end spatial light modulators. Portable pico-projectors based on liquid crystal on silicon (LCoS) devices are used as binary phase-only spatial light modulators by carefully setting the appropriate polarization of the laser...... patterns suited for different requirements. Despite imperfections in these consumer pico-projectors, the mGPC approach tolerates phase aberrations that would have otherwise been hard to overcome by standard phase projection....

  1. Phase Contrast Imaging

    DEFF Research Database (Denmark)

    1996-01-01

    with a simple one-to-one mapping between resolution elements of a spatial phase modulator and resolution elements of the generated intensity pattern is provided. According to the invention a method is provided for synthesizing an intensity pattern with low loss of electromagnetic energy, comprising spatial...... modulation of electromagnetic radiation with a spatial phase mask for modulation of the phase of the incident eletromagnetic radiation by phasor values of individual resolution elements of the spatial phase mask, each phasor value being determined in such a way that the values of the Fourier transformed......The invention relates to a method and a system for synthesizing a prescribed intensity pattern based on phase contrast imaging that is not based on the assumption of prior art methods that the pahase shift phi is less than 1 radian. An improved method based on a simple imaging operation...

  2. Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shaper

    DEFF Research Database (Denmark)

    Tauro, Sandeep; Bañas, Andrew Rafael; Palima, Darwin

    2011-01-01

    -cost binary-phase optics fabricated using photolithography and chemical etching techniques can replace the SLM in static and high power beam shaping applications. The design parameters for the binary-phase elements of the module are chosen according to the results of our previously conducted analysis...... and numerical demonstrations [Opt. Express 15, 11971 (2007)]. Beams with a variety of cross-sections such as circular, rectangular and square, with near flat-top intensity distributions are demonstrated. GPC-based beam shaping is inherently speckle-free and the shaped beams maintain a flat output phase. The non...

  3. Matched-filtering generalized phase contrast using LCoS pico-projectors for beam-forming.

    Science.gov (United States)

    Bañas, Andrew; Palima, Darwin; Glückstad, Jesper

    2012-04-23

    We report on a new beam-forming system for generating high intensity programmable optical spikes using so-called matched-filtering Generalized Phase Contrast (mGPC) applying two consumer handheld pico-projectors. Such a system presents a low-cost alternative for optical trapping and manipulation, optical lattices and other beam-shaping applications usually implemented with high-end spatial light modulators. Portable pico-projectors based on liquid crystal on silicon (LCoS) devices are used as binary phase-only spatial light modulators by carefully setting the appropriate polarization of the laser illumination. The devices are subsequently placed into the object and Fourier plane of a standard 4f-setup according to the mGPC spatial filtering configuration. Having a reconfigurable spatial phase filter, instead of a fixed and fabricated one, allows the beam shaper to adapt to different input phase patterns suited for different requirements. Despite imperfections in these consumer pico-projectors, the mGPC approach tolerates phase aberrations that would have otherwise been hard to overcome by standard phase projection.

  4. The Generalised Phase Contrast Method

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    . Optimal conditions for visibility, peak irradiance and accuracy are derived and shown to be perfectly in line with empirical results from the literature. New graphic methods for advanced analysis purposes are demonstrated supporting these conclusions as well as providing new tools for innovative filter...... designs and parameter settings. Finally, a number of original applications facilitated by the parallel light-beam encoding of the Generalised Phase Contrast method are briefly outlined. These include among others, wavefront sensing and generation, advanced usercontrolled optical micro......-manipulation, optical phase-only encryption/decryption and fully integrated micro-optical implementations....

  5. Spiral phase contrast imaging in microscopy.

    Science.gov (United States)

    Fürhapter, Severin; Jesacher, Alexander; Bernet, Stefan; Ritsch-Marte, Monika

    2005-02-07

    We demonstrate an optical method for edge contrast enhancement in light microscopy. The method is based on holographic Fourier plane filtering of the microscopic image with a spiral phase element (also called vortex phase or helical phase filter) displayed as an off-axis hologram at a computer controlled high resolution spatial light modulator (SLM) in the optical imaging pathway. The phase hologram imprints a helical phase term of the form exp(i phi) on the diffracted light field in its Fourier plane. In the image plane, this results in a strong and isotropic edge contrast enhancement for both amplitude and phase objects.

  6. Generalised phase contrast: microscopy, manipulation and more

    DEFF Research Database (Denmark)

    Palima, Darwin; Glückstad, Jesper

    2010-01-01

    Generalised phase contrast (GPC) not only leads to more accurate phase imaging beyond thin biological samples, but serves as an enabling framework in developing tools over a wide spectrum of contemporary applications in optics and photonics, including optical trapping and micromanipulation, optic...... phase cryptography, light-efficient image projection and parallel laser beam shaping for optical landscapes. In this review, we discuss the fundamental ideas behind generalised phase contrast and present a survey of its exciting applications.......Generalised phase contrast (GPC) not only leads to more accurate phase imaging beyond thin biological samples, but serves as an enabling framework in developing tools over a wide spectrum of contemporary applications in optics and photonics, including optical trapping and micromanipulation, optical...

  7. X-ray phase-contrast methods

    Energy Technology Data Exchange (ETDEWEB)

    Lider, V. V., E-mail: lider@ns.crys.ras.ru; Kovalchuk, M. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2013-11-15

    This review is devoted to a comparative description of the methods for forming X-ray phase-contrast images of weakly absorbing (phase) objects. These include the crystal interferometer method, the Talbot interferometer method, diffraction-enhanced X-ray imaging, and the in-line method. The potential of their practical application in various fields of science and technology is discussed. The publications on the development and optimization of X-ray phase-contrast methods and the experimental study of phase objects are analyzed.

  8. Phase contrast imaging of cochlear soft tissue.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.; Hwang, M.; Rau, C.; Fishman, A.; Lee, W.; Richter, C. (X-Ray Science Division); (Northwestern Univ.); (Diamond Light Source, Ltd.)

    2011-01-01

    A noninvasive technique to image soft tissue could expedite diagnosis and disease management in the auditory system. We propose inline phase contrast imaging with hard X-rays as a novel method that overcomes the limitations of conventional absorption radiography for imaging soft tissue. In this study, phase contrast imaging of mouse cochleae was performed at the Argonne National Laboratory Advanced Photon Source. The phase contrast tomographic reconstructions show soft tissue structures of the cochlea, including the inner pillar cells, the inner spiral sulcus, the tectorial membrane, the basilar membrane, and the Reissner's membrane. The results suggest that phase contrast X-ray imaging and tomographic techniques hold promise to noninvasively image cochlear structures at an unprecedented cellular level.

  9. Phase-contrast X-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi [Hitachi Ltd., Hatoyama, Saitama (Japan). Advanced Research Lab.

    1996-08-01

    X-ray transmission imaging that creates image contrast from the distribution of the X-ray absorption coefficient is not sensitive to materials consisting of light elements such as hydrogen, carbon, nitrogen, and oxygen. On the other hand, the X-ray phase shift caused by the light elements is substantial enough to be detected even when absorption is almost zero. Hence, phase-contrast X-ray imaging is a promising technique for observing the structure inside biological soft tissues without the need for staining and without serious radiation exposure. Using fringe scanning X-ray interferometry, the X-ray phase shift caused by an object was measured. Three-dimensional image reconstruction of cancerous tissues using the measured phase shifts was enabled under tomographic configuration phase-contrast X-ray computed tomography (CT). (author)

  10. Compressed sensing for phase contrast CT

    Energy Technology Data Exchange (ETDEWEB)

    Gaass, Thomas; Potdevin, Guillaume; Noeel, Peter B.; Tapfer, Arne; Willner, Marian; Herzen, Julia; Bech, Martin; Pfeiffer, Franz; Haase, Axel [Zentralinstitut fuer Medizintechnik, Technische Universitaet Muenchen, Garching (Germany); Department of Physics, Technische Universitaet Muenchen, Garching (Germany); Department of Radiology, Technische Universitaet Muenchen, Munich (Germany)

    2012-07-31

    Modern x-ray techniques opened the possibility to retrieve phase information. Phase-contrast computed tomography (PCCT) has the potential to significantly improve soft tissue contrast. Radiation dose, however, continues to be an issue when moving from bench to bedside. Dose reduction in this work is achieved by sparsely acquiring PCCT data. To compensate for appearing aliasing artifacts we introduce a compressed sensing (CS) reconstruction framework. We present the feasibility of CS on PCCT with numerical as well as measured phantom data. The results proof that CS compensates for under-sampling artifacts and maintains the superior soft tissue contrast and detail visibility in the reconstructed images.

  11. Compressed sensing for phase contrast CT

    Science.gov (United States)

    Gaass, Thomas; Potdevin, Guillaume; Noël, Peter B.; Tapfer, Arne; Willner, Marian; Herzen, Julia; Bech, Martin; Pfeiffer, Franz; Haase, Axel

    2012-07-01

    Modern x-ray techniques opened the possibility to retrieve phase information. Phase-contrast computed tomography (PCCT) has the potential to significantly improve soft tissue contrast. Radiation dose, however, continues to be an issue when moving from bench to bedside. Dose reduction in this work is achieved by sparsely acquiring PCCT data. To compensate for appearing aliasing artifacts we introduce a compressed sensing (CS) reconstruction framework. We present the feasibility of CS on PCCT with numerical as well as measured phantom data. The results proof that CS compensates for under-sampling artifacts and maintains the superior soft tissue contrast and detail visibility in the reconstructed images.

  12. Phase contrast imaging of Bose condensed clouds

    NARCIS (Netherlands)

    Meppelink, R; Rozendaal, R.A.; Koller, S.B.; Vogels, J.M.; van der Straten, P.

    2010-01-01

    Phase contrast imaging is used to observe Bose-Einstein condensates (BECs) at finite temperature in situ. The imaging technique is used to accurately derive the absolute phase shift of a probe laser beam due to both the condensate and the thermal cloud. The accuracy of the method is enhanced by usin

  13. Phase-contrast X-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi [Hitachi Ltd., Saitama (Japan). Advanced Research Laboratory; Takeda, Tohoru; Itai, Yuji

    1995-12-01

    Phase-contrast X-ray computed tomography (CT) enabling the observation of biological soft tissues without contrast enhancement has been developed. The X-ray phase shift caused by an object is measured and input to a standard CT reconstruction algorithm. A thousand times increase in the image sensitivity to soft tissues is achieved compared with the conventional CT using absorption contrast. This is because the X-ray phase shift cross section of light elements is about a thousand times larger than the absorption cross section. The phase shift is detected using an X-ray interferometer and computer analyses of interference patterns. Experiments were performed using a synchrotron X-ray source. Excellent image sensitivity is demonstrated in the observation of cancerous rabbit liver. The CT images distinguish cancer lesion from normal liver tissue and, moreover, visualize the pathological condition in the lesion. Although the X-ray energy employed and the present observation area size are not suitable for medical applications as they are, phase-contrast X-ray CT is promising for investigating the internal structure of soft tissue which is almost transparent for X-rays. The high sensitivity also provides the advantage of reducing X-ray doses. (author).

  14. Vowel identification by amplitude and phase contrast.

    Science.gov (United States)

    Molis, Michelle R; Diedesch, Anna; Gallun, Frederick; Leek, Marjorie R

    2013-02-01

    Vowel identification is largely dependent on listeners' access to the frequency of two or three peaks in the amplitude spectrum. Earlier work has demonstrated that, whereas normal-hearing listeners can identify harmonic complexes with vowel-like spectral shapes even with very little amplitude contrast between "formant" components and remaining harmonic components, listeners with hearing loss require greater amplitude differences. This is likely the result of the poor frequency resolution that often accompanies hearing loss. Here, we describe an additional acoustic dimension for emphasizing formant versus non-formant harmonics that may supplement amplitude contrast information. The purpose of this study was to determine whether listeners were able to identify "vowel-like" sounds using temporal (component phase) contrast, which may be less affected by cochlear loss than spectral cues, and whether overall identification improves when congruent temporal and spectral information are provided together. Five normal-hearing and five hearing-impaired listeners identified three vowels over many presentations. Harmonics representing formant peaks were varied in amplitude, phase, or a combination of both. In addition to requiring less amplitude contrast, normal-hearing listeners could accurately identify the sounds with less phase contrast than required by people with hearing loss. However, both normal-hearing and hearing-impaired groups demonstrated the ability to identify vowel-like sounds based solely on component phase shifts, with no amplitude contrast information, and they also showed improved performance when congruent phase and amplitude cues were combined. For nearly all listeners, the combination of spectral and temporal information improved identification in comparison to either dimension alone.

  15. Iterative Reconstruction for Differential Phase Contrast Imaging

    NARCIS (Netherlands)

    Koehler, T.; Brendel, B.; Roessl, E.

    2011-01-01

    Purpose: The purpose of this work is to combine two areas of active research in tomographic x-ray imaging. The first one is the use of iterative reconstruction techniques. The second one is differential phase contrast imaging (DPCI). Method: We derive an SPS type maximum likelihood (ML) reconstructi

  16. Reconstruction methods for phase-contrast tomography

    Energy Technology Data Exchange (ETDEWEB)

    Raven, C.

    1997-02-01

    Phase contrast imaging with coherent x-rays can be distinguished in outline imaging and holography, depending on the wavelength {lambda}, the object size d and the object-to-detector distance r. When r << d{sup 2}{lambda}, phase contrast occurs only in regions where the refractive index fastly changes, i.e. at interfaces and edges in the sample. With increasing object-to-detector distance we come in the area of holographic imaging. The image contrast outside the shadow region of the object is due to interference of the direct, undiffracted beam and a beam diffracted by the object, or, in terms of holography, the interference of a reference wave with the object wave. Both, outline imaging and holography, offer the possibility to obtain three dimensional information of the sample in conjunction with a tomographic technique. But the data treatment and the kind of information one can obtain from the reconstruction is different.

  17. Phase contrast without phase plates and phase rings--optical solutions for improved imaging of phase structures.

    Science.gov (United States)

    Piper, Timm; Piper, Jörg

    2013-10-01

    Using the optical methods described, phase specimens can be observed with a modified light microscope in enhanced clarity, purified from typical artifacts which are apparent in standard phase contrast illumination. In particular, haloing and shade-off are absent, lateral and vertical resolution are maximized and the image quality remains constant even in problematic preparations which cannot be well examined in normal phase contrast, such as specimens beyond a critical thickness or covered by obliquely situated cover slips. The background brightness and thus the range of contrast can be continuously modulated and specimens can be illuminated in concentric-peripheral, axial or paraxial light. Additional contrast effects can be achieved by spectral color separation. Normal glass or mirror lenses can be used; they do not need to be fitted with a phase plate or a phase ring. The methods described should be of general interest for all disciplines using phase microscopy.

  18. Minimally-destructive Partial Phase Contrast Imaging

    CERN Document Server

    Wigley, Paul; Hardman, Kyle; Sooriyabandara, Mahasen; Perumbil, Manju; Close, John; Robins, Nicholas; Kuhn, Carlos

    2016-01-01

    This paper presents a minimally-destructive imaging technique based on a combination of phase contrast and Faraday rotation imaging used to continuously observe a condensate of 85 Rb. We demonstrate that the technique is capable of imaging a small sample of only 10 4 atoms up to 100 times with negligible decreases in atom number and no observable heating. At approximately 1GHz detuning, the SNR remains at approximately 7 for all 100 images, with a 22ms TOF absorption image confirming the survival of the condensate. The splitting of the magnetic sublevels of this species at such fields show non-trivial selection rules. We present experimental data outlining particular allowed transitions in this regime.

  19. Monitoring stem cells in phase contrast imaging

    Science.gov (United States)

    Lam, K. P.; Dempsey, K. P.; Collins, D. J.; Richardson, J. B.

    2016-04-01

    Understanding the mechanisms behind the proliferation of Mesenchymal Stem cells (MSCs) can offer a greater insight into the behaviour of these cells throughout their life cycles. Traditional methods of determining the rate of MSC differentiation rely on population based studies over an extended time period. However, such methods can be inadequate as they are unable to track cells as they interact; for example, in autologous cell therapies for osteoarthritis, the development of biological assays that could predict in vivo functional activity and biological action are particularly challenging. Here further research is required to determine non-histochemical biomarkers which provide correlations between cell survival and predictive functional outcome. This paper proposes using a (previously developed) advanced texture-based analysis algorithm to facilitate in vitro cells tracking using time-lapsed microscopy. The technique was adopted to monitor stem cells in the context of unlabelled, phase contrast imaging, with the goal of examining the cell to cell interactions in both monoculture and co-culture systems. The results obtained are analysed using established exploratory procedures developed for time series data and compared with the typical fluorescent-based approach of cell labelling. A review of the progress and the lessons learned are also presented.

  20. Adaptive optimisation of a generalised phase contrast beam shaping system

    Science.gov (United States)

    Kenny, F.; Choi, F. S.; Glückstad, J.; Booth, M. J.

    2015-05-01

    The generalised phase contrast (GPC) method provides versatile and efficient light shaping for a range of applications. We have implemented a generalised phase contrast system that used two passes on a single spatial light modulator (SLM). Both the pupil phase distribution and the phase contrast filter were generated by the SLM. This provided extra flexibility and control over the parameters of the system including the phase step magnitude, shape, radius and position of the filter. A feedback method for the on-line optimisation of these properties was also developed. Using feedback from images of the generated light field, it was possible to dynamically adjust the phase filter parameters to provide optimum contrast.

  1. Optimal Phase Masks for High Contrast Imaging Applications

    Science.gov (United States)

    Ruane, Garreth J.

    2016-05-01

    Phase-only optical elements can provide a number of important functions for high-contrast imaging. This thesis presents analytical and numerical optical design methods for accomplishing specific tasks, the most significant of which is the precise suppression of light from a distant point source. Instruments designed for this purpose are known as coronagraphs. Here, advanced coronagraph designs are presented that offer improved theoretical performance in comparison to the current state-of-the-art. Applications of these systems include the direct imaging and characterization of exoplanets and circumstellar disks with high sensitivity. Several new coronagraph designs are introduced and, in some cases, experimental support is provided. In addition, two novel high-contrast imaging applications are discussed: the measurement of sub-resolution information using coronagraphic optics and the protection of sensors from laser damage. The former is based on experimental measurements of the sensitivity of a coronagraph to source displacement. The latter discussion presents the current state of ongoing theoretical work. Beyond the mentioned applications, the main outcome of this thesis is a generalized theory for the design of optical systems with one of more phase masks that provide precise control of radiation over a large dynamic range, which is relevant in various high-contrast imaging scenarios. The optimal phase masks depend on the necessary tasks, the maximum number of optics, and application specific performance measures. The challenges and future prospects of this work are discussed in detail.

  2. Feasibility of differential phase contrast CT for whole body imaging

    Science.gov (United States)

    Li, Ke; Bevins, Nicholas B.; Zambelli, Joseph N.; Chen, Guang-Hong

    2012-07-01

    Phase contrast based imaging techniques have shown improved contrast in certain biological materials. This has led to an increased interest for the potential of preclinical and clinical imaging systems that incorporate phase sensitive imaging techniques. However, the interplay between the phase contrast mechanism and the so-called small-angle scattering or dark-field mechanism is often not considered. In this work we explore the potential for phase-sensitive whole body imaging by imaging a freshly euthanized specimen. The results suggest that when extrapolating phantom and ex vivo results to whole body imaging, one must consider the complex anatomy of the entire body and its effect on each contrast mechanism.

  3. Contrast-to-noise in X-ray differential phase contrast imaging

    NARCIS (Netherlands)

    Engel, K.J.; Geller, D.; Koehler, T.; Martens, G.; Schusser, S.; Vogtmeier, G.; Roessl, E.

    2011-01-01

    A quantitative theory for the contrast-to-noise ratio (CNR) in differential phase contrast imaging (DPCI) is proposed and compared to that of images derived from classical absorption contrast imaging (ACI). Most prominently, the CNR for DPCI contains the reciprocal of thespatial wavelength to be ima

  4. Spatial frequency, phase, and the contrast of natural images

    Science.gov (United States)

    Bex, Peter J.; Makous, Walter

    2002-06-01

    We examined contrast sensitivity and suprathreshold apparent contrast with natural images. The spatial-frequency components within single octaves of the images were removed (notch filtered), their phases were randomized, or the polarity of the images was inverted. Of Michelson contrast, root-mean-square (RMS) contrast, and band-limited contrast, RMS contrast was the best index of detectability. Negative images had lower apparent contrast than their positives. Contrast detection thresholds showed spatial-frequency-dependent elevation following both notch filtering and phase randomization. The peak of the spatial-frequency tuning function was approximately 0.5-2 cycles per degree (c/deg). Suprathreshold contrast matching functions also showed spatial-frequency-dependent contrast loss for both notch-filtered and phase-randomized images. The peak of the spatial-frequency tuning function was approximately 1-3 c/deg. There was no detectable difference between the effects of phase randomization and notch filtering on contrast sensitivity. We argue that these observations are consistent with changes in the activity within spatial-frequency channels caused by the higher-order phase structure of natural images that is responsible for the presence of edges and specularities.

  5. Acoustically modulated x-ray phase contrast imaging.

    Science.gov (United States)

    Hamilton, Theron J; Bailat, Claude J; Rose-Petruck, Christoph; Diebold, Gerald J

    2004-11-07

    We report the use of ultrasonic radiation pressure with phase contrast x-ray imaging to give an image proportional to the space derivative of a conventional phase contrast image in the direction of propagation of an ultrasonic beam. Intense ultrasound is used to exert forces on objects within a body giving displacements of the order of tens to hundreds of microns. Subtraction of images made with and without the ultrasound field gives an image that removes low spatial frequency features and highlights high frequency features. The method acts as an acoustic 'contrast agent' for phase contrast x-ray imaging, which in soft tissue acts to highlight small density changes.

  6. Axial Phase-Darkfield-Contrast (APDC), a new technique for variable optical contrasting in light microscopy.

    Science.gov (United States)

    Piper, T; Piper, J

    2012-09-01

    Axial phase-darkfield-contrast (APDC) has been developed as an illumination technique in light microscopy which promises significant improvements and a higher variability in imaging of several transparent 'problem specimens'. With this method, a phase contrast image is optically superimposed on an axial darkfield image so that a partial image based on the principal zeroth order maximum (phase contrast) interferes with an image, which is based on the secondary maxima (axial darkfield). The background brightness and character of the resulting image can be continuously modulated from a phase contrast-dominated to a darkfield-dominated character. In order to achieve this illumination mode, normal objectives for phase contrast have to be fitted with an additional central light stopper needed for axial (central) darkfield illumination. In corresponding condenser light masks, a small perforation has to be added in the centre of the phase contrast providing light annulus. These light modulating elements are properly aligned when the central perforation is congruent with the objective's light stop and the light annulus is conjugate with the phase ring. The breadth of the condenser light annulus and thus the intensity of the phase contrast partial image can be regulated with the aperture diaphragm. Additional contrast effects can be achieved when both illuminating light components are filtered at different colours. In this technique, the axial resolution (depth of field) is significantly enhanced and the specimen's three-dimensional appearance is accentuated with improved clarity as well as fine details at the given resolution limit. Typical artefacts associated with phase contrast and darkfield illumination are reduced in our methods.

  7. LEEM image phase contrast of MnAs stripes

    Energy Technology Data Exchange (ETDEWEB)

    Pang, A.B., E-mail: pangangbo@gmail.com [School of Physics and Electronic Information, Huaibei Normal University, Huaibei, Anhui, 235000 (China); Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Pavlovska, A. [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States); Däweritz, L. [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, D-10117 Berlin (Germany); Locatelli, A. [Sincrotrone Trieste, S.C.p.a., Basovizza, Trieste 34012 (Italy); Bauer, E. [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States); Altman, M.S. [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China)

    2013-07-15

    Low energy electron microscopy (LEEM) imaging of strained MnAs layers epitaxially grown on GaAs(001) reveals striped contrast features that become more pronounced and vary systematically in width with increasing defocus, but that are completely absent in focus. Weaker subsidiary fringe-like features are observed along the stripe lengths, while asymmetric contrast reversal occurs between under-focus and over-focus conditions. A Fourier optics calculation is performed that demonstrates that these unusual observations can be attributed to a phase contrast mechanism between the hexagonal α phase and orthorhombic β phase regions of the MnAs film, which self-organize into a periodic stripe array with ridge-groove morphology. The unequal widths of the α and β phase regions are determined accurately from the through focus series, while the height variation in this system can also be determined in principle from the energy dependence of contrast. - Highlights: • LEEM image of MnAs/GaAs(001) reveals striped contrast features varying with defocus. • Duplex contrast and asymmetric reversal between under- and over-focus are observed. • Fourier optics calculation attributes the contrast to a phase contrast mechanism. • Widths of the α and β phase regions are determined accurately. • Height variation in this system can also be determined in principle.

  8. Generation of a Desired Wavefront with a Plurality of Phase Contrast Filters

    DEFF Research Database (Denmark)

    2004-01-01

    The present invention relates to a method and a system for synthesizing an intensity pattern based on generalized phase contrast imaging. The phase filter contains a plurality of phase shifting regions that is matched to the layout of a light source array, each of the regions being positioned...

  9. Experimentally enhanced model-based deconvolution of propagation-based phase-contrast data

    Science.gov (United States)

    Pichotka, M.; Palma, K.; Hasn, S.; Jakubek, J.; Vavrik, D.

    2016-12-01

    In recent years phase-contrast has become a much investigated modality in radiographic imaging. The radiographic setups employed in phase-contrast imaging are typically rather costly and complex, e.g. high performance Talbot-Laue interferometers operated at synchrotron light sources. In-line phase-contrast imaging states the most pedestrian approach towards phase-contrast enhancement. Utilizing small angle deflection within the imaged sample and the entailed interference of the deflected and un-deflected beam during spatial propagation, in-line phase-contrast imaging only requires a well collimated X-ray source with a high contrast & high resolution detector. Employing high magnification the above conditions are intrinsically fulfilled in cone-beam micro-tomography. As opposed of 2D imaging, where contrast enhancement is generally considered beneficial, in tomographic modalities the in-line phase-contrast effect can be quite a nuisance since it renders the inverse problem posed by tomographic reconstruction inconsistent, thus causing reconstruction artifacts. We present an experimentally enhanced model-based approach to disentangle absorption and in-line phase-contrast. The approach employs comparison of transmission data to a system model computed iteratively on-line. By comparison of the forward model to absorption data acquired in continuous rotation strong local deviations of the data residual are successively identified as likely candidates for in-line phase-contrast. By inducing minimal vibrations (few mrad) to the sample around the peaks of such deviations the transmission signal can be decomposed into a constant absorptive fraction and an oscillating signal caused by phase-contrast which again allows to generate separate maps for absorption and phase-contrast. The contributions of phase-contrast and the corresponding artifacts are subsequently removed from the tomographic dataset. In principle, if a 3D handling of the sample is available, this method also

  10. Contrast-to-noise ratio optimization for a prototype phase-contrast computed tomography scanner

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Mark, E-mail: mark-mueller@ph.tum.de; Yaroshenko, Andre; Velroyen, Astrid; Tapfer, Arne [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Bech, Martin [Medical Radiation Physics, Lund University, Barngatan 2:1, 221 85 Lund (Sweden); Pauwels, Bart; Bruyndonckx, Peter; Sasov, Alexander [Bruker microCT, Kartuizersweg 3B, B-2550 Kontich (Belgium); Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, 81675 München (Germany); Institute for Advanced Study, Technische Universität München, 85748 Garching (Germany)

    2015-12-15

    In the field of biomedical X-ray imaging, novel techniques, such as phase-contrast and dark-field imaging, have the potential to enhance the contrast and provide complementary structural information about a specimen. In this paper, a first prototype of a preclinical X-ray phase-contrast CT scanner based on a Talbot-Lau interferometer is characterized. We present a study of the contrast-to-noise ratios for attenuation and phase-contrast images acquired with the prototype scanner. The shown results are based on a series of projection images and tomographic data sets of a plastic phantom in phase and attenuation-contrast recorded with varying acquisition settings. Subsequently, the signal and noise distribution of different regions in the phantom were determined. We present a novel method for estimation of contrast-to-noise ratios for projection images based on the cylindrical geometry of the phantom. Analytical functions, representing the expected signal in phase and attenuation-contrast for a circular object, are fitted to individual line profiles of the projection data. The free parameter of the fit function is used to estimate the contrast and the goodness of the fit is determined to assess the noise in the respective signal. The results depict the dependence of the contrast-to-noise ratios on the applied source voltages, the number of steps of the phase stepping routine, and the exposure times for an individual step. Moreover, the influence of the number of projection angles on the image quality of CT slices is investigated. Finally, the implications for future imaging purposes with the scanner are discussed.

  11. Contrast-to-noise ratio optimization for a prototype phase-contrast computed tomography scanner.

    Science.gov (United States)

    Müller, Mark; Yaroshenko, Andre; Velroyen, Astrid; Bech, Martin; Tapfer, Arne; Pauwels, Bart; Bruyndonckx, Peter; Sasov, Alexander; Pfeiffer, Franz

    2015-12-01

    In the field of biomedical X-ray imaging, novel techniques, such as phase-contrast and dark-field imaging, have the potential to enhance the contrast and provide complementary structural information about a specimen. In this paper, a first prototype of a preclinical X-ray phase-contrast CT scanner based on a Talbot-Lau interferometer is characterized. We present a study of the contrast-to-noise ratios for attenuation and phase-contrast images acquired with the prototype scanner. The shown results are based on a series of projection images and tomographic data sets of a plastic phantom in phase and attenuation-contrast recorded with varying acquisition settings. Subsequently, the signal and noise distribution of different regions in the phantom were determined. We present a novel method for estimation of contrast-to-noise ratios for projection images based on the cylindrical geometry of the phantom. Analytical functions, representing the expected signal in phase and attenuation-contrast for a circular object, are fitted to individual line profiles of the projection data. The free parameter of the fit function is used to estimate the contrast and the goodness of the fit is determined to assess the noise in the respective signal. The results depict the dependence of the contrast-to-noise ratios on the applied source voltages, the number of steps of the phase stepping routine, and the exposure times for an individual step. Moreover, the influence of the number of projection angles on the image quality of CT slices is investigated. Finally, the implications for future imaging purposes with the scanner are discussed.

  12. Improved Hilbert phase contrast for transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koeck, Philip J.B.

    2015-07-15

    Hilbert phase contrast has been recognized as a means of recording high resolution images with high contrast using a transmission electron microscope. This imaging mode could be used to image typical phase objects such as unstained biological molecules or cryo sections of biological tissue. According to the original proposal by (Danev et al., 2002) the Hilbert phase plate applies a phase shift of π to approximately half the focal plane (for example the right half excluding the central beam) and an image is recorded at Gaussian focus. After correction for the inbuilt asymmetry of differential phase contrast this image will have an almost perfect contrast transfer function (close to 1) from the lowest spatial frequency up to a maximum resolution determined by the wave length and spherical aberration of the microscope. In this paper I present theory and simulations showing that this maximum spatial frequency can be increased considerably almost without loss of contrast by using a Hilbert phase plate of half the thickness, leading to a phase shift of π/2, and recording images at Scherzer defocus. The maximum resolution can be improved even more by imaging at extended Scherzer defocus, though at the cost of contrast loss at lower spatial frequencies. - Highlights: • In this paper I present theory and simulations for a Hilbert phase plate that phase shifts the electron wave by π/2 instead of π while images are recorded close to Scherzer defocus instead of Gaussian focus. • I show that the point resolution for this new imaging mode is considerably higher without loss of contrast. • An additional advantage lies in the reduced thickness of the phase plate which leads to reduced inelastic scattering in the phase plate and less noise.

  13. Phase contrast image guidance for synchrotron microbeam radiotherapy

    Science.gov (United States)

    Pelliccia, Daniele; Crosbie, Jeffrey C.; Larkin, Kieran G.

    2016-08-01

    Recent image guidance developments for preclinical synchrotron microbeam radiotherapy represent a necessary step for future clinical translation of the technique. Image quality can be further improved using x-ray phase contrast, which is readily available at synchrotron facilities. We here describe a methodology for phase contrast image guidance at the Imaging and Medical Beamline at the Australian Synchrotron. Differential phase contrast is measured alongside conventional attenuation and used to improve the image quality. Post-processing based on the inverse Riesz transform is employed on the measured data to obtain noticeably sharper images. The procedure is extremely well suited for applications such as image guidance which require both visual assessment and sample alignment based on semi automatic image registration. Moreover, our approach can be combined with all other differential phase contrast imaging techniques, in all cases where a quantitative evaluation of the refractive index is not required.

  14. Phase-contrast MRI and applications in congenital heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, A., E-mail: adgoldberg@geisinger.edu [Department of Radiology, Geisinger Health System, Danville, PA (United States); Jha, S. [Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA (United States)

    2012-05-15

    A review of phase-contrast magnetic resonance imaging techniques, with specific application to congenital heart disease, is presented. Theory, pitfalls, advantages, and specific examples of multiple, well-described congenital heart disease presentations are discussed.

  15. Improved Zernike-type phase contrast for transmission electron microscopy.

    Science.gov (United States)

    Koeck, P J B

    2015-07-01

    Zernike phase contrast has been recognized as a means of recording high-resolution images with high contrast using a transmission electron microscope. This imaging mode can be used to image typical phase objects such as unstained biological molecules or cryosections of biological tissue. According to the original proposal discussed in Danev and Nagayama (2001) and references therein, the Zernike phase plate applies a phase shift of π/2 to all scattered electron beams outside a given scattering angle and an image is recorded at Gaussian focus or slight underfocus (below Scherzer defocus). Alternatively, a phase shift of -π/2 is applied to the central beam using the Boersch phase plate. The resulting image will have an almost perfect contrast transfer function (close to 1) from a given lowest spatial frequency up to a maximum resolution determined by the wave length, the amount of defocus and the spherical aberration of the microscope. In this paper, I present theory and simulations showing that this maximum spatial frequency can be increased considerably without loss of contrast by using a Zernike or Boersch phase plate that leads to a phase shift between scattered and unscattered electrons of only π /4, and recording images at Scherzer defocus. The maximum resolution can be improved even more by imaging at extended Scherzer defocus, though at the cost of contrast loss at lower spatial frequencies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  16. Phase contrast imaging with coherent high energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Snigireva, I. [ESRF, Grenoble (France)

    1997-02-01

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known in optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.

  17. Spectral phase-contrast CT using the LAMBDA detector

    Energy Technology Data Exchange (ETDEWEB)

    Ehn, Sebastian; Epple, Michael; Potdevin, Guillaume; Renker, Dieter; Pfeiffer, Franz [Chair of Biomedical Physics, TU Muenchen (Germany); Pennicard, David; Smoljanin, Sergej; Lange, Sabine; Graafsma, Heinz [DESY, Hamburg (Germany)

    2013-07-01

    X-ray phase-contrast techniques offer significantly improved soft-tissue contrast compared to absorption-based measurements commonly used in clinical radiology. Grating-based phase contrast methods have proven to be fully compatible to standard laboratory X-ray sources and are currently being used in preclinical research. However, the imaging quality in this method is strongly energy-dependent, which may result in poor signal to noise ratios when using beams with broad energy spectra. One can overcome this disadvantage using energy sensitive detectors like the Medipix3, only taking into account the energies where the SNR is at a maximum. Thereby, an improvement to image quality and a reduction in radiation dose may be reached. This presentation will give an overview over the new Medipix3-based LAMBDA detector, which is currently being developed at DESY, used in grating-based spectral phase-contrast tomography.

  18. X-ray phase-contrast CT of a pancreatic ductal adenocarcinoma mouse model.

    Directory of Open Access Journals (Sweden)

    Arne Tapfer

    Full Text Available To explore the potential of grating-based x-ray phase-contrast computed tomography (CT for preclinical research, a genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDAC was investigated. One ex-vivo mouse specimen was scanned with different grating-based phase-contrast CT imaging setups covering two different settings: i high-resolution synchrotron radiation (SR imaging and ii dose-reduced imaging using either synchrotron radiation or a conventional x-ray tube source. These experimental settings were chosen to assess the potential of phase-contrast imaging for two different types of application: i high-performance imaging for virtual microscopy applications and ii biomedical imaging with increased soft-tissue contrast for in-vivo applications. For validation and as a reference, histological slicing and magnetic resonance imaging (MRI were performed on the same mouse specimen. For each x-ray imaging setup, attenuation and phase-contrast images were compared visually with regard to contrast in general, and specifically concerning the recognizability of lesions and cancerous tissue. To quantitatively assess contrast, the contrast-to-noise ratios (CNR of selected regions of interest (ROI in the attenuation images and the phase images were analyzed and compared. It was found that both for virtual microscopy and for in-vivo applications, there is great potential for phase-contrast imaging: in the SR-based benchmarking data, fine details about tissue composition are accessible in the phase images and the visibility of solid tumor tissue under dose-reduced conditions is markedly superior in the phase images. The present study hence demonstrates improved diagnostic value with phase-contrast CT in a mouse model of a complex endogenous cancer, promoting the use and further development of grating-based phase-contrast CT for biomedical imaging applications.

  19. Grid-Based Fourier Transform Phase Contrast Imaging

    Science.gov (United States)

    Tahir, Sajjad

    Low contrast in x-ray attenuation imaging between different materials of low electron density is a limitation of traditional x-ray radiography. Phase contrast imaging offers the potential to improve the contrast between such materials, but due to the requirements on the spatial coherence of the x-ray beam, practical implementation of such systems with tabletop (i.e. non-synchrotron) sources has been limited. One recently developed phase imaging technique employs multiple fine-pitched gratings. However, the strict manufacturing tolerances and precise alignment requirements have limited the widespread adoption of grating-based techniques. In this work, we have investigated a technique recently demonstrated by Bennett et al. that utilizes a single grid of much coarser pitch. Our system consisted of a low power 100 microm spot Mo source, a CCD with 22 microm pixel pitch, and either a focused mammography linear grid or a stainless steel woven mesh. Phase is extracted from a single image by windowing and comparing data localized about harmonics of the grid in the Fourier domain. A Matlab code was written to perform the image processing. For the first time, the effects on the diffraction phase contrast and scattering amplitude images of varying grid types and periods, and of varying the window function type used to separate the harmonics, and the window widths, were investigated. Using the wire mesh, derivatives of the phase along two orthogonal directions were obtained and new methods investigated to form improved phase contrast images.

  20. Mesh-based phase contrast Fourier transform imaging

    Science.gov (United States)

    Tahir, Sajjad; Bashir, Sajid; MacDonald, C. A.; Petruccelli, Jonathan C.

    2017-04-01

    Traditional x-ray radiography is limited by low attenuation contrast in materials of low electron density. Phase contrast imaging offers the potential to improve the contrast between such materials, but due to the requirements on the spatial coherence of the x-ray beam, practical implementation of such systems with tabletop (i.e. non-synchrotron) sources has been limited. One phase imaging technique employs multiple fine-pitched gratings. However, the strict manufacturing tolerances and precise alignment requirements have limited the widespread adoption of grating-based techniques. In this work, we have investigated a recently developed technique that utilizes a single grid of much coarser pitch. Our system consisted of a low power 100 μm spot Mo source, a CCD with 22 μm pixel pitch, and either a focused mammography linear grid or a stainless steel woven mesh. Phase is extracted from a single image by windowing and comparing data localized about harmonics of the mesh in the Fourier domain. The effects on the diffraction phase contrast and scattering amplitude images of varying grid types and periods, and of varying the width of the window function used to separate the harmonics were investigated. Using the wire mesh, derivatives of the phase along two orthogonal directions were obtained and combined to form improved phase contrast images.

  1. Resolution enhancement phase-contrast imaging by microsphere digital holography

    Science.gov (United States)

    Wang, Yunxin; Guo, Sha; Wang, Dayong; Lin, Qiaowen; Rong, Lu; Zhao, Jie

    2016-05-01

    Microsphere has shown the superiority of super-resolution imaging in the traditional 2D intensity microscope. Here a microsphere digital holography approach is presented to realize the resolution enhancement phase-contrast imaging. The system is designed by combining the microsphere with the image-plane digital holography. A microsphere very close to the object can increase the resolution by transforming the object wave from the higher frequency to the lower one. The resolution enhancement amplitude and phase images can be retrieved from a single hologram. The experiments are carried on the 1D and 2D gratings, and the results demonstrate that the observed resolution has been improved, meanwhile, the phase-contrast image is obtained. The proposed method can improve the transverse resolution in all directions based on a single exposure. Furthermore, this system has extended the application of the microsphere from the conventional 2D microscopic imaging to 3D phase-contrast microscopic imaging.

  2. Near-field x-ray phase contrast imaging and phase retrieval algorithm

    Institute of Scientific and Technical Information of China (English)

    Zhu Hua-Feng; Xie Hong-Lan; Gao Hong-Yi; Chen Jian-Wen; Li Ru-Xin; Xu Zhi-Zhan

    2005-01-01

    Theoretical analyses of x-ray diffraction phase contrast imaging and near field phase retrieval method are presented.A new variant of the near field intensity distribution is derived with the optimal phase imaging distance and spatial frequency of object taken into account. Numerical examples of phase retrieval using simulated data are also given. On the above basis, the influence of detecting distance and polychroism of radiation on the phase contrast image and the retrieved phase distribution are discussed. The present results should be useful in the practical application of in-line phase contrast imaging.

  3. Phase-contrast microfocus X-ray system

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Henrique S.; Pereira, Gabriela R.; Oliveira, Davi F.; Lopes, Ricardo T. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mails: henrique@lin.ufrj.br; gabriela@lin.ufrj.br; davi@lin.ufrj.br; ricardo@lin.ufrj.br

    2007-07-01

    A phase-contrast X-ray system was developed using a microfocus source. This system uses a highly coherent cone-beam with ten micrometers of minimal focal spot size in a free-space propagation method to obtain phase contrast imaging (PCI). The phase contrast technique relies on its ability to record intensity data which contains information on the X-ray's phase shift. In this technique, the contrast is obtained through refraction, differing from the conventional techniques that use the X-ray attenuation. The system was developed at the Nuclear Instrumentation Laboratory (LIN), COPPE/UFRJ, and it utilizes a high-resolution image plate as a detector. This image plate has a high energy-efficiency in low energy. The results showed that the system allows obtaining high contrast images with less than fifty micrometers of resolution for low density samples and it can be used in several areas, mainly in biology, medical physics and in applications with composites materials. (author)

  4. Optimization of phase contrast in bimodal amplitude modulation AFM

    Directory of Open Access Journals (Sweden)

    Mehrnoosh Damircheli

    2015-04-01

    Full Text Available Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM. Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing the amplitude of the second mode. We demonstrate that the roles of the excited modes are asymmetric. The operational range of bimodal AM is maximized when the second mode is free to follow changes in the force. We also study the contrast in trimodal AFM by analyzing the kinetic energy ratios. The phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes.

  5. Optimization of phase contrast in bimodal amplitude modulation AFM.

    Science.gov (United States)

    Damircheli, Mehrnoosh; Payam, Amir F; Garcia, Ricardo

    2015-01-01

    Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM) by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM). Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing the amplitude of the second mode. We demonstrate that the roles of the excited modes are asymmetric. The operational range of bimodal AM is maximized when the second mode is free to follow changes in the force. We also study the contrast in trimodal AFM by analyzing the kinetic energy ratios. The phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes.

  6. Interactive cell segmentation based on phase contrast optics.

    Science.gov (United States)

    Su, Hang; Su, Zhou; Zheng, Shibao; Yang, Hua; Wei, Sha

    2014-01-01

    Cell segmentation in phase contrast microscopy images lays a crucial foundation for numerous subsequent computer-aided cell image analysis, but it encounters many unsolved challenges due to image qualities and artifacts caused by phase contrast optics. Addressing the unsolved challenges, the authors propose an interactive cell segmentation scheme over phase retardation features. After partitioning the images into phase homogeneous atoms, human annotations are propagated to unlabeled atoms over an affinity graph that is learned based on discrimination analysis. Then, an active query strategy is proposed for which the most informative unlabeled atom is selected for annotation, which is also propagated to the other unlabeled atoms. Cell segmentation converges to quality results after several rounds of interactions involving both the user's intentions and characteristics of image features. Experimental results demonstrate that cells with different optical properties are well segmented via the proposed approach.

  7. Contrast enhanced two-phase spiral CT of urinary bladder

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeung Uk; Cha, Seong Sook; Ryu, Ji Hwa; Oh, Jeong Geun; Chang, Seung Kuk; Choi, Seok Jin; Eun, Choong Kie [Inje Univ. College of Medicine, Pusan (Korea, Republic of); Seo, Chang Hye [Daedong General Hospital, Pusan (Korea, Republic of)

    1997-10-01

    To determine optimal scan time for the early phase of two-phase spiral CT and to evaluate its usefulness in the detection and assessment of extension of urinary bladder lesions. In four normal adults, we performed dynamic scanning and obtained time-density curves for internal and external iliac arteries and veins, and the wall of the urinary bladder. Sixty patients with 68 lesions of the urinary bladder or prostate underwent precontrast and two-phase spiral CT scanning. After injection of 100ml of noninonic contrast material, images for the early and delayed phases were obtained at 60 seconds and 5 minutes, respectively. We measured CT H. U. of the wall, the lesion, and lumen of urinary bladder as seen on axial scanning, in each image in which the lesion was best shown. For the detection of bladder lesions and assessment of their extension, precontrast, early-, and delayed phsed images were compared. Dynamic study of normal adults showed maximum enhancement of bladder wall between 60 and 100 seconds. The difference of CT H. U. between bladder wall and the lesion was greatest in the early phase. The best detection rate(98.5%) was seen during this phase, and for the detection of bladder lesion, this same phase was superior or equal (66/68, 97.1%) to the delayed phase. The precontrast image was also superior or equal (31/68, 45.6%) to that of the delayed phase. For the assessment of extension of bladder lesion, the early phase was superior (36/68, 52.9%) to the delayed phase, and precontrast image was superiour (1/68, 1.5%) to that of the delayed phase. For determining the stage of bladder cancer, the early phase was most accurate if the stages was below B{sub 2} or D, while for stage C, the delayed phase was most accurate. In two-hpase spiral CT scanning, we consider the optimal time for the early phase to be between 60 and 100 seconds after injection of contrast material. For the detection and assessment of extension of urinary bladder lesion, the early phase was

  8. Phase contrast imaging of breast tumours with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Olivo, A. [Department of Medical Physics and Bioengineering, University College London, Malet Place, Gower Street, London WC1E 6BT (United Kingdom)], E-mail: aolivo@medphys.ucl.ac.uk; Rigon, L. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Area Science Park, Padriciano 99, 34012 Trieste (Italy)], E-mail: rigon@ts.infn.it; Vinnicombe, S.J. [Department of Radiology, St. Bartholomews Hospital, Barts and the London NHS Trust, West Smithfield, London EC1A 7BE (United Kingdom)], E-mail: s.j.vinnicombe@qmul.ac.uk; Cheung, K.C. [STFC Daresbury Laboratory, Keckwick Lane, Warrington, Cheshire WA4 4AD (United Kingdom)], E-mail: k.c.cheung@dl.ac.uk; Ibison, M. [Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)], E-mail: m.ibison@dl.ac.uk; Speller, R.D. [Department of Medical Physics and Bioengineering, University College London, Malet Place, Gower Street, London WC1E 6BT (United Kingdom)], E-mail: rspeller@medphys.ucl.ac.uk

    2009-06-15

    Even though the potential of phase contrast (PC) imaging has been demonstrated in a number of biological tissue samples, the availability of free-space propagation phase contrast images of real breast tumours is still limited. The aim of this study was to obtain phase contrast images of two different pathological breast specimens containing tumours of differing morphological type at two synchrotron radiation (SR) facilities, and to assess any qualitative improvements in the evaluation and characterisation of the masses through the use of phase contrast imaging. A second aim was to assess the effects of parameters such as detector resolution, beam energy and sample-to-detector distance on image quality using the same breast specimens, as to date these effects have been modelled and discussed only for geometric phantoms. At each synchrotron radiation facility a range of images was acquired with different detectors and by varying the above parameters. Images of the same samples were also acquired with the absorption-based approach to allow a direct comparison and estimation of the advantages specifically ascribable to the PC technique.

  9. Differential phase contrast X-ray imaging system and components

    Science.gov (United States)

    Stutman, Daniel; Finkenthal, Michael

    2014-07-01

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  10. Differential phase contrast X-ray imaging system and components

    Energy Technology Data Exchange (ETDEWEB)

    Stutman, Daniel; Finkenthal, Michael

    2017-01-31

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  11. Multilayer coated gratings for phase-contrast computed tomography (CT)

    Science.gov (United States)

    Marton, Zsolt; Bhandari, Harish B.; Wen, Harold H.; Nagarkar, Vivek V.

    2014-03-01

    By using the principle of grating interferometry, X-ray phase contrast imaging can now be performed with incoherent radiation from standard X-ray tube. This approach is in stark contrast with imaging methods using coherent synchrotron X-ray sources or micro-focus sources to improve contrast. The gratings interferometer imaging technique is capable of measuring the phase shift of hard X-rays travelling through a sample, which greatly enhances the contrast of low absorbing specimen compared to conventional amplitude contrast images. The key components in this approach are the gratings which consists of alternating layers of high and low Z (atomic number) materials fabricated with high aspect ratios. Here we report on a novel method of fabricating the grating structures using the technique of electron-beam (ebeam) thin film deposition. Alternating layers of silicon (Z=14) and tungsten (Z=74) were deposited, each measuring 100 nm each, on a specially designed echelle substrate, which resulted in an aspect ratio of ~100:1. Fabrication parameters related to the thin film deposition such as geometry, directionality, film adhesion, stress and the resulting scanning electron micrographs will be discussed in detail. Using e-beam method large-area gratings with precise multilayer coating thicknesses can be fabricated economically circumventing the expensive lithography steps.

  12. Multiscale differential phase contrast analysis with a unitary detector

    KAUST Repository

    Lopatin, Sergei

    2015-12-30

    A new approach to generate differential phase contrast (DPC) images for the visualization and quantification of local magnetic fields in a wide range of modern nano materials is reported. In contrast to conventional DPC methods our technique utilizes the idea of a unitary detector under bright field conditions, making it immediately usable by a majority of modern transmission electron microscopes. The approach is put on test to characterize the local magnetization of cylindrical nanowires and their 3D ordered arrays, revealing high sensitivity of our method in a combination with nanometer-scale spatial resolution.

  13. Spherical-Wave Far-Field Interferometer for Hard X-Ray Phase Contrast Imaging

    CERN Document Server

    Miao, Houxun; Harmon, Katherine J; Bennett, Eric E; Chedid, Nicholas; Panna, Alireza; Bhandarkar, Priya; Wen, Han

    2014-01-01

    Low dose, high contrast x-ray imaging is of general interest in medical diagnostic applications. X-ray Mach-Zehnder interferometers using collimated synchrotron beams demonstrate the highest levels of phase contrast under a given exposure dose. However, common x-ray sources emit divergent cone beams. Here, we developed a spherical-wave inline Mach-Zehnder interferometer for phase contrast imaging over an extended area with a broadband and divergent source. The first tabletop system was tested in imaging experiments of a mammographic accreditation phantom and various biological specimens. The noise level of the phase contrast images at a clinical radiation dose corresponded to a 6 nano radian bending of the x-ray wavefront. Un-resolved structures with conventional radiography and near-field interferometer techniques became visible at a fraction of the radiation dose.

  14. Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure.

    Science.gov (United States)

    Betz, Oliver; Wegst, Ulrike; Weide, Daniela; Heethoff, Michael; Helfen, Lukas; Lee, Wah-Keat; Cloetens, Peter

    2007-07-01

    Synchrotron-generated X-rays provide scientists with a multitude of investigative techniques well suited for the analysis of the composition and structure of all types of materials and specimens. Here, we describe the properties of synchrotron-generated X-rays and the advantages that they provide for qualitative morphological research of millimetre-sized biological organisms and biomaterials. Case studies of the anatomy of insect heads, of whole microarthropods and of the three-dimensional reconstruction of the cuticular tendons of jumping beetles, all performed at the beamline ID19 of the European Synchrotron Radiation Facility (ESRF), are presented to illustrate the techniques of phase-contrast tomography available for anatomical and structural investigations. Various sample preparation techniques are described and compared and experimental settings that we have found to be particularly successful are given. On comparing the strengths and weaknesses of the technique with traditional histological thin sectioning, we conclude that synchrotron radiation microtomography has a great potential in biological microanatomy.

  15. Observation of multilayer graphene sheets using terahertz phase contrast microscopy

    Indian Academy of Sciences (India)

    ZHIKUN LIU; YANAN XIE; LI GENG; DENGKE PAN; PAN SONG

    2017-01-01

    Although it is important for the study of graphene, identifying and characterizing the number of graphene layers is challenging. In this paper, we calculate graphene’s transmission.The result shows that the phase change is more sensitive than the intensity change when light passes through graphene in some THz frequencies. Based on this fact, a simple route is presented for identifying the single or few layers of graphene sheets by using terahertz phase contrast microscopy (TPCM). The route is fast, and easy to be carried out.

  16. Elemental x-ray imaging using Zernike phase contrast

    Science.gov (United States)

    Shao, Qi-Gang; Chen, Jian; Wali, Faiz; Bao, Yuan; Wang, Zhi-Li; Zhu, Pei-Ping; Tian, Yang-Chao; Gao, Kun

    2016-10-01

    We develop an element-specific x-ray microscopy method by using Zernike phase contrast imaging near absorption edges, where a real part of refractive index changes abruptly. In this method two phase contrast images are subtracted to obtain the target element: one is at the absorption edge of the target element and the other is near the absorption edge. The x-ray exposure required by this method is expected to be significantly lower than that of conventional absorption-based x-ray elemental imaging methods. Numerical calculations confirm the advantages of this highly efficient imaging method. Project supported by the National Basic Research Program of China (Grant No. 2012CB825801) and the National Natural Science Foundation of China (Grant Nos. 11505188, and 11305173).

  17. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC).

    Science.gov (United States)

    Phillips, Zachary F; Chen, Michael; Waller, Laura

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel.

  18. Heralded phase-contrast imaging using an orbital angular momentum phase-filter

    Science.gov (United States)

    Aspden, Reuben S.; Morris, Peter A.; He, Ruiqing; Chen, Qian; Padgett, Miles J.

    2016-05-01

    We utilise the position and orbital angular momentum (OAM) correlations between the signal and idler photons generated in the down-conversion process to obtain ghost images of a phase object. By using an OAM phase filter, which is non-local with respect to the object, the images exhibit isotropic edge-enhancement. This imaging technique is the first demonstration of a full-field, phase-contrast imaging system with non-local edge enhancement, and enables imaging of phase objects using significantly fewer photons than standard phase-contrast imaging techniques.

  19. Simulation study of phase retrieval for hard X-ray in-line phase contrast imaging

    Institute of Scientific and Technical Information of China (English)

    YU; Bin; PENG; Xiang; TIAN; Jindong; NIU; Hanben; DIAO; Luh

    2005-01-01

    Two algorithms for the phase retrieval of hard X-ray in-line phase contrast imaging are presented. One is referred to as Iterative Angular Spectrum Algorithm (IASA) and the other is a hybrid algorithm that combines IASA with TIE (transport of intensity equation). The calculations of the algorithms are based on free space propagation of the angular spectrum. The new approaches are demonstrated with numerical simulations. Comparisons with other phase retrieval algorithms are also performed. It is shown that the phase retrieval method combining the IASA and TIE is a promising technique for the application of hard X-ray phase contrast imaging.

  20. A uniqueness result for propagation-based phase contrast imaging from a single measurement

    CERN Document Server

    Maretzke, Simon

    2014-01-01

    Phase contrast imaging seeks to reconstruct the complex refractive index of an unknown sample from scattering intensities, measured for example under illumination with coherent X-rays. By incorporating refraction, this method yields improved contrast compared to purely absorption-based radiography but involves a phase retrieval problem which, in general, allows for ambiguous reconstructions. In this paper, we show uniqueness of propagation-based phase contrast imaging for compactly supported objects in the near field regime, based on a description by the projection- and paraxial approximations. In this setting, propagation is governed by the Fresnel propagator and the unscattered part of the illumination function provides a known reference wave at the detector which facilitates phase reconstruction. The uniqueness theorem is derived using the theory of entire functions. Unlike previous results based on exact solution formulae, it is valid for arbitrary complex objects and requires intensity measurements only ...

  1. A general formalism for phase space calculations

    Science.gov (United States)

    Norbury, John W.; Deutchman, Philip A.; Townsend, Lawrence W.; Cucinotta, Francis A.

    1988-01-01

    General formulas for calculating the interactions of galactic cosmic rays with target nuclei are presented. Methods for calculating the appropriate normalization volume elements and phase space factors are presented. Particular emphasis is placed on obtaining correct phase space factors for 2-, and 3-body final states. Calculations for both Lorentz-invariant and noninvariant phase space are presented.

  2. Registration of phase-contrast images in propagation-based X-ray phase tomography.

    Science.gov (United States)

    Weber, L; Hänsch, A; Wolfram, U; Pacureanu, A; Cloetens, P; Peyrin, F; Rit, S; Langer, M

    2017-08-16

    X-ray phase tomography aims at reconstructing the 3D electron density distribution of an object. It offers enhanced sensitivity compared to attenuation-based X-ray absorption tomography. In propagation-based methods, phase contrast is achieved by letting the beam propagate after interaction with the object. The phase shift is then retrieved at each projection angle, and subsequently used in tomographic reconstruction to obtain the refractive index decrement distribution, which is proportional to the electron density. Accurate phase retrieval is achieved by combining images at different propagation distances. For reconstructions of good quality, the phase-contrast images recorded at different distances need to be accurately aligned. In this work, we characterise the artefacts related to misalignment of the phase-contrast images, and investigate the use of different registration algorithms for aligning in-line phase-contrast images. The characterisation of artefacts is done by a simulation study and comparison with experimental data. Loss in resolution due to vibrations is found to be comparable to attenuation-based computed tomography. Further, it is shown that registration of phase-contrast images is nontrivial due to the difference in contrast between the different images, and the often periodical artefacts present in the phase-contrast images if multilayer X-ray optics are used. To address this, we compared two registration algorithms for aligning phase-contrast images acquired by magnified X-ray nanotomography: one based on cross-correlation and one based on mutual information. We found that the mutual information-based registration algorithm was more robust than a correlation-based method. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  3. Various clinical application of phase contrast X-ray

    Science.gov (United States)

    Oh, Chilhwan; Park, Sangyong; Ha, Seunghan; Park, Gyuman; Lee, Gunwoo; Lee, Onseok; Je, Jungho

    2008-02-01

    In biomedical application study using phase contrast X-ray, both sample thickness or density and absorption difference are very important factors in aspects of contrast enhancement. We present experimental evidence that synchrotron hard X-ray are suitable for radiological imaging of biological samples down to the cellular level. We investigated the potential of refractive index radiology using un-monochromatized synchrotron hard X-rays for the imaging of cell and tissue in various diseases. Material had been adopted various medical field, such as apoE knockout mouse in cardiologic field, specimen from renal and prostatic carcinoma patient in urology, basal cell epithelioma in dermatology, brain tissue from autosy sample of pakinson's disease, artificially induced artilrtis tissue from rabbits and extracted tooth from patients of crack tooth syndrome. Formalin and paraffin fixed tissue blocks were cut in 3 mm thickness for the X-ray radiographic imaging. From adjacent areas, 4 μm thickness sections were also prepared for hematoxylin-eosin staining. Radiographic images of dissected tissues were obtained using the hard X-rays from the 7B2 beamline of the Pohang Light Source (PLS). The technique used for the study was the phase contrast images were compared with the optical microscopic images of corresponding histological slides. Radiographic images of various diseased tissues showed clear histological details of organelles in normal tissues. Most of cancerous lesions were well differentiated from adjacent normal tissues and detailed histological features of each tumor were clearly identified. Also normal microstructures were identifiable by the phase contrast imaging. Tissue in cancer or other disease showed clearly different findings from those of surrounding normal tissue. For the first time we successfully demonstrated that synchrotron hard X-rays can be used for radiological imaging of relatively thick tissue samples with great histological details.

  4. Stability estimates for linearized near-field phase retrieval in X-ray phase contrast imaging

    CERN Document Server

    Maretzke, Simon

    2016-01-01

    Propagation-based X-ray phase contrast enables nanoscale imaging of biological tissue by probing not only the attenuation, but also the real part of the refractive index of the sample. Since only intensities of diffracted waves can be measured, the main mathematical challenge consists in a phase-retrieval problem in the near-field regime. We treat an often used linearized version of this problem known as contract transfer function model. Surprisingly, this inverse problem turns out to be well-posed assuming only a compact support of the imaged object. Moreover, we establish bounds on the Lipschitz stability constant. In general this constant grows exponentially with the Fresnel number of the imaging setup. However, both for homogeneous objects, characterized by a fixed ratio of the induced refractive phase shifts and attenuation, and in the case of measurements at two distances, a much more favorable algebraic dependence on the Fresnel number can be shown. In some cases we establish order optimality of our es...

  5. Renal stones on portal venous phase contrast-enhanced CT: does intravenous contrast interfere with detection?

    Science.gov (United States)

    Dym, R. Joshua; Duncan, Dameon R.; Spektor, Michael; Cohen, Hillel W.; Scheinfeld, Meir H.

    2015-01-01

    Purpose To determine the sensitivity of portal venous phase contrast-enhanced CT for the detection of renal stones. Methods This retrospective study included 97 CT examinations of the abdomen without and with intravenous contrast, including 85 (87.6%) examinations with at least one renal stone on the “gold standard” noncontrast images, as scored by a single radiologist. Three other radiologists each independently reviewed only the contrast-enhanced images from all 97 examinations and recorded all renal stones. Reviewer sensitivity for stones was categorized by stone diameter. Reviewer sensitivity and specificity for stone disease were also calculated on a per-kidney basis. Results The 97 cases included a total of 238 stones ≥1 mm, with a mean (±SD) of 1.2 ± 1.9 stones per kidney and a stone diameter of 3.5 ± 3.0 mm. Pooling data for the three reviewers, sensitivity for all stones was 81%; sensitivity for stones ≥2, ≥3, ≥4, and ≥5 mm was 88%, 95%, 99%, and 98%, respectively. Sensitivity for stone disease on a per-kidney basis was 94% when considering all stones; when considering only stones ≥2, ≥3, and ≥4 mm, sensitivity was 96%, 99%, and 100%, respectively. Specificity for stone disease on a per-kidney basis was 98% overall, 99% when considering only stones ≥2 mm, and 100% when considering only stones ≥3 mm. Conclusion: Contrast-enhanced CT is highly sensitive for the detection of renal stones ≥3 mm in diameter and less sensitive for smaller stones. In cases where the clinical diagnosis is uncertain and performance of a CT examination is being contemplated, intravenous contrast utilization would allow assessment for stone disease while also optimizing evaluation for other conditions. PMID:24504541

  6. Implementation of neutron phase contrast imaging at FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Klaus

    2008-11-12

    At ANTARES, the beam line for neutron imaging at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II) in Garching, the option to do phase contrast imaging besides conventional absorption based neutron imaging was implemented and successfully used for the non-destructive testing of various types of objects. The used propagation-based technique is based on the interference of neutron waves in the detector plane that were differently strong diffracted by the sample. A comparison with other phase-sensitive neutron imaging techniques highlights assets and drawbacks of the different methods. In preliminary measurements at ANTARES and the spallation source SINQ at PSI in Villigen, the influence of the beam geometry, the neutron spectrum and the detector on the quality of the phase contrast measurements were investigated systematically. It was demonstrated that gamma radiation and epithermal neutrons in the beam contribute severely to background noise in measurements, which motivated the installation of a remotely controlled filter wheel for a quick and precise positioning of different crystal filters in the beam. By the installation of a similar aperture wheel, a quick change between eight different beam geometries was made possible. Besides pinhole and slit apertures, coded apertures based on non redundant arrays were investigated. The possibilities, which arise by the exploitation of the real part of the refractive index in neutron imaging, were demonstrated in experiments with especially designed test samples and in measurements with ordinary, industrial components. (orig.)

  7. Optical phase encryption by phase contrast using electrically addressed spatial light modulator

    Science.gov (United States)

    Nishchal, Naveen Kumar; Joseph, Joby; Singh, Kehar

    2003-03-01

    We report the use of an electrically addressed liquid crystal spatial light modulator (EALCSLM) operating in the phase mode as a phase-contrast filter (PCF). As an application, an optical phase encryption system has been implemented. We encrypt and decrypt a two-dimensional phase image obtained from an amplitude image. Encrypted image is holographically recorded in a Barium titanate crystal and is then decrypted by generating through phase conjugation, a conjugate of the encrypted image. The decrypted phase image is converted into an amplitude image using an EASLM as a PCF. The idea has been supported by the experimental results.

  8. Phase-only spatial light modulation by the reverse phase contrast method

    DEFF Research Database (Denmark)

    Glückstad, J.; Mogensen, P.C.; Eriksen, R.L.

    2002-01-01

    A new approach to phase-only spatial light modulation is proposed in which a given amplitude pattern can be converted into a spatially identical binary phase pattern. A spatial filtering approach is applied to transform spatial amplitude modulation into spatial phase modulation using the Reverse...... Phase Contrast (RPC) method. The analytical method for achieving this is outlined and experimental results are shown for the generation of a binary phase-only distribution using an amplitude spatial light modulator and a phase-only spatial filter....

  9. Noise robustness of a combined phase retrieval and reconstruction method for phase-contrast tomography

    DEFF Research Database (Denmark)

    Kongskov, Rasmus Dalgas; Jørgensen, Jakob Sauer; Poulsen, Henning Friis

    2016-01-01

    Classical reconstruction methods for phase-contrast tomography consist of two stages: phase retrieval and tomographic reconstruction. A novel algebraic method combining the two was suggested by Kostenko et al. [Opt. Express 21, 12185 (2013) [CrossRef], and preliminary results demonstrated improved...... is substantially more robust toward noise; our simulations point to a possible reduction in counting times by an order of magnitude....

  10. Breast cancer detection using phase contrast diffuse optical tomography

    Science.gov (United States)

    Liang, Xiaoping; Zhang, Qizhi; Li, Changqing; Grobmyer, Stephen R.; Fajardo, Laurie L.; Jiang, Huabei

    2007-02-01

    In this report, a phase-contrast diffuse optical tomography system, which can measure the refractive indices of human breast masses in vivo, is described. To investigate the utility of phase-contrast diffuse optical tomography (PCDOT) for differentiation of malignant and benign breast masses in humans, and to compare PCDOT with conventional diffuse optical tomography (DOT) for analysis of breast masses in humans. 35 breast masses were imaged in 33 patients (mean age = 51 years; range 22-80 years) using PCDOT. Images characterizing the tissue refractive index, absorption and scattering of breast masses were obtained with a finite element-based reconstruction algorithm. The accuracies of absorption and scattering images were compared with images of refractive index in light of the pathology results. Absorption and scattering images were unable to accurately discriminate benign from malignant lesions. Malignant lesions tended to have decreased refractive index allowing them to discriminate from benign lesions in most cases. The sensitivity, specificity, false positive value, and overall accuracy for refractive index were 81.8%, 70.8%, 29.2%, and 74.3%, respectively. Overall we show that benign and malignant breast masses in humans demonstrate different refractive index and differences in refractive index properties can be used to discriminate benign from malignant masses in patients with high accuracy. This opens up a new avenue for improved breast cancer detection using NIR diffusing light.

  11. [Measurement of cerebral blood flow using phase-contrast MRI].

    Science.gov (United States)

    Obata, T; Shishido, F; Koga, M; Ikehira, H; Kimura, F; Yoshida, K

    1997-07-01

    The development of phase-contrast magnetic resonance imaging(P-C MRI) provides a noninvasive method for measurement of volumetric blood flow(VFR). The VFR of the left and right internal carotid arteries and basilar artery were measured using P-C MRI, and total cerebral blood flow(tCBF) was calculated by summing up the VFR values in three vessels. We investigated the changes in these blood flows as influenced from age, head size, height, weight, body surface area and handedness. Moreover, regional CBF(rCBF) was measured by combining with the single photon emission computed tomography(SPECT) of 123I. The blood flows were 142 +/- 58 mL/ min(mean +/- SD) in the basilar artery, 229 +/- 86 mL/min in the left, 223 +/- 58 mL/min in the right internal carotid artery, and tCBF was 617 +/- 128 mL/min(Ref. Magn Resn Imaging 14:P. 1143, 1996). Significant increases were observed in head-size-related change of VFR in the basilar artery and height-related change of tCBF. The value of rCBF was easily acquired in combination with SPECT. Phase-contrast MRI is useful for a noninvasive and rapid analysis of cerebral VFR and has potential for clinical use.

  12. Homogenization of two-phase flow: high contrast of phase permeability; Homogeneisation d'ecoulement diphasique: grand contraste de permeabilite d'une phase

    Energy Technology Data Exchange (ETDEWEB)

    Panasenko, G.P. [Saint-Etienne Universite, Equipe d' Analyse Numerique, UPRES EA 3058, 42 (France); Universite Pierre et Marie Curie, Lab. de Modelisation en Numerique, CNRS UMR 7607, 75 - Paris (France); Virnovsky, G. [R.F. - Rogaland Research, Stavanger (Norway)

    2003-01-01

    The steady-state two-phase flow non-linear equation is considered in the case when one of phases has low effective permeability in some periodic set, while on the complementary set it is high; the second phase has no contrast of permeabilities in different zones. A homogenization procedure gives the homogenized model with macroscopic effective permeability of the second phase depending on the gradient and on the second order derivatives of the macroscopic pressure of the first phase. This effect cannot be obtained by classical (one small parameter) homogenization. (author)

  13. In-line phase-contrast imaging for strong absorbing objects

    Energy Technology Data Exchange (ETDEWEB)

    De Caro, Liberato; Giannini, Cinzia [Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (IC-CNR), via Amendola 122/O, I-70125 Bari (Italy); Cedola, Alessia; Bukreeva, Inna; Lagomarsino, Stefano [Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR), via Cinto Romano 42, I-00156 Roma (Italy)

    2008-11-21

    Phase-contrast imaging is one of the most important emerging x-ray imaging techniques. In this work we analyse, from a theoretical point of view, the in-line phase-contrast image formation under general assumptions. The approach is based on wave-optical theory (Fresnel/Kirchoff diffraction integrals) and on the formalism of the mutual coherence function for the evolution of the coherence wavefield properties. Our theoretical model can be applied to phase-contrast imaging realized both by using highly coherent synchrotron radiation and micro-focus x-ray laboratory sources. Thus, the model is suitable for widespread applications, ranging from material science to medical imaging of human body parts. However, it cannot be applied to polychromatic sources, although the validity of the model does not require particularly demanding characteristics of monochromaticity. In addition, for moderate phase gradients, a useful analytical formula of the phase-contrast visibility is derived, based on the a priori knowledge of source size and distance, pixel detector size, defocus distance, material/tissue dielectric susceptibility and characteristic scales of transversal and longitudinal non-uniformities of the material/tissue dielectric susceptibility. Comparisons both with experimental results published by other authors and with simulations based on a Fourier optics approach have been reported, to confirm the validity of the proposed analytical formula.

  14. Noise characteristics of x-ray differential phase contrast CT

    Science.gov (United States)

    Zambelli, Joseph; Li, Ke; Bevins, Nicholas; Qi, Zhihua; Chen, Guang-Hong

    2011-03-01

    The noise characteristics of x-ray differential phase contrast computed tomography (DPC-CT) were investigated. Both theoretical derivation and experimental results demonstrated that the dependence of noise variance on spatial resolution in DPC-CT follows an inverse linear law. This behavior distinguishes DPC-CT from conventional absorption based x-ray CT, where the noise variance varies inversely with the cube of the spatial resolution. This anomalous noise behavior in DPC-CT is due to the Hilbert filtering kernel used in the CT reconstruction algorithm, which equally weights all spatial frequency content. Additionally, we demonstrate that the noise power of DPC-CT is scaled by the inverse of spatial frequency and is highly concentrated at the low spatial frequencies, whereas conventional absorption CT increases in power at the high spatial frequencies.

  15. Computed tomography using broadband Bessel THz beams and phase contrast.

    Science.gov (United States)

    Bitman, Assaf; Goldring, Sharone; Moshe, Inon; Zalevsky, Zeev

    2014-04-01

    We present new results demonstrating the capability of performing computed tomography (CT) using broadband Bessel terahertz (THz) beams. Nondiffractive beams such as these exhibit propagation-invariant lines of focus with an extended depth-of-field compared to conventional Gaussian beams. Using this property, we demonstrate a considerable improvement in the 3D reconstruction image of a synthetic sample through the backprojection algorithm. Only when THz Bessel beams are used, a full reconstruction of the object structure is made. Moreover, we use phase-contrast mechanism which improves the spatial resolution and reconstructed images. Our results highlight the potential in using nondiffractive Bessel beams to significantly improve 3D-image reconstruction of THz CT.

  16. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    Energy Technology Data Exchange (ETDEWEB)

    Demi, Libertario, E-mail: l.demi@tue.nl; Sloun, Ruud J. G. van; Mischi, Massimo [Lab. of Biomedical Diagnostics, Dept. of Electrical Eng., Eindhoven University of Technology (Netherlands); Wijkstra, Hessel [Lab. of Biomedical Diagnostics, Dept. of Electrical Eng., Eindhoven University of Technology (Netherlands); Academic Medical Center, Urology Dept., University of Amsterdam (Netherlands)

    2015-10-28

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC plate (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO{sup ®} UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.

  17. General Phase Matching Condition for Quantum Searching

    CERN Document Server

    Long, G L; Sun, Y; Long, Gui-Lu; Xiao, Li; Sun, Yang

    2001-01-01

    We present a general phase matching condition for the quantum search algorithm with arbitrary unitary transformation and arbitrary phase rotations. We show by an explicit expression that the phase matching condition depends both on the unitary transformation U and the initial state. Assuming that the initial amplitude distribution is an arbitrary superposition sin\\theta_0 |1> + cos\\theta_0 e^{i\\delta} |2> with |1> = {1 / sin\\beta} \\sum_k |\\tau_k> and |2> = {1 / cos\\beta} \\sum_{i \

  18. Unstained viable cell recognition in phase-contrast microscopy

    Science.gov (United States)

    Skoczylas, M.; Rakowski, W.; Cherubini, R.; Gerardi, S.

    2011-09-01

    Individual cell recognition is a relevant task to be accomplished when single-ion microbeam irradiations are performed. At INFN-LNL facility cell visualization system is based on a phase-contrast optical microscope, without the use of any cell dye. Unstained cells are seeded in the special designed Petri dish, between two mylar foils, and at present the cell recognition is achieved manually by an expert operator. Nevertheless, this procedure is time consuming and sometimes it could be not practical if the amount of living cells to be irradiated is large. To reduce the time needed to recognize unstained cells on the Petri dish, it has been designed and implemented an automated, parallel algorithm. Overlapping ROIs sliding in steps over the captured grayscale image are firstly pre-classified and potential cell markers for the segmentation are obtained. Segmented objects are additionally classified to categorize cell bodies from other structures considered as sample dirt or background. As a result, cell coordinates are passed to the dedicated CELLView program that controls all the LNL single-ion microbeam irradiation protocol, including the positioning of individual cells in front of the ion beam. Unstained cell recognition system was successfully tested in experimental conditions with two different mylar surfaces. The recognition time and accuracy was acceptable, however, improvements in speed would be useful.

  19. Optimal transmit phasing on tissue background suppression in contrast harmonic imaging.

    Science.gov (United States)

    Shen, Che-Chou; Hsieh, Yi-Chun

    2008-11-01

    Ultrasonic harmonic imaging provides superior image quality than linear imaging and has become an important diagnostic tool in many clinical applications. Nevertheless, the contrast-to-tissue ratio (CTR) in harmonic imaging is generally limited by tissue background signal comprising both the leakage harmonic signal and the tissue harmonic signal. Harmonic leakage generally occurs when a wideband transmit pulse is used for better axial resolution. In addition, generation of tissue harmonic signal during acoustic propagation also decreases the CTR. In this paper, suppression of tissue background signal in harmonic imaging is studied by selecting an optimal phase of the transmit signal to achieve destructive cancellation between the tissue harmonic signal and the leakage harmonic signal. With the optimal suppression phase, our results indicate that the tissue signal can be significantly reduced at second harmonic band, whereas the harmonic amplitude from contrast agents shows negligible change with the selection of transmit phase. Consequently, about 5-dB CTR improvement can be achieved from effective reduction of tissue background amplitude in optimal transmit phasing.

  20. Vibration-resistant phase retrieval method with contrast compensation for phase-shifting interferometry

    Science.gov (United States)

    Liu, Qian; He, Huabin; Yuan, Daocheng; He, Jianguo; Ji, Fang

    2017-04-01

    Vibration hinders the application of phase-shifting interferometry (PSI) to on-machine test and large-aperture mirror measurement. The investigation of PSI fringe disturbed by vibration indicates that, besides tilt-shifting error, inter- and intra-frame contrast variation is significant. The contrast variation is another dominant error source in phase retrieval of PSI. An inter- and intra-frame contrast compensation method is proposed here to retrieve wavefront phase from interferograms subjected to vibration. The method constructs algebraic equations with interferogram data and solves equations using iterative procedures. Experiments validate its effectiveness and manifest its capability to suppress vibration-induced error over a large frequency region. To enhance the calculation efficiency, a spatial subsampling strategy is proposed. Practical testing shows that subsampling reduces calculation time exponentially and preserves retrieval accuracy and spatial resolution. The proposed method, of which the unique ability is compensating the tilt-shifting error and fringe blur caused by vibration, predicates an effective and low-cost solution for PSI applied in vibration.

  1. CONTRAST

    DEFF Research Database (Denmark)

    Kristensen, Thomas Krogsgaard

    2007-01-01

    Dette er en afrapportering fra den årlige CONTRAST workshop, der i 2007 blev afholdt i Yaoundé, Cameroon.......Dette er en afrapportering fra den årlige CONTRAST workshop, der i 2007 blev afholdt i Yaoundé, Cameroon....

  2. Quantitative imaging of complex samples by spiral phase contrast microscopy.

    Science.gov (United States)

    Bernet, Stefan; Jesacher, Alexander; Fürhapter, Severin; Maurer, Christian; Ritsch-Marte, Monika

    2006-05-01

    Recently a spatial spiral phase filter in a Fourier plane of a microscopic imaging setup has been demonstrated to produce edge enhancement and relief-like shadow formation of amplitude and phase samples. Here we demonstrate that a sequence of at least 3 spatially filtered images, which are recorded with different rotational orientations of the spiral phase plate, can be used to obtain a quantitative reconstruction of both, amplitude and phase information of a complex microscopic sample, i.e. an object consisting of mixed absorptive and refractive components. The method is demonstrated using a calibrated phase sample, and an epithelial cheek cell.

  3. Estimation of visibility of phase contrast with extraction voltages for field emission gun electron microscopes.

    Science.gov (United States)

    Meng, Xing

    2017-02-01

    Estimation was made for visibility of phase contrast with varying extraction voltages. The resulting decay rates of visibility show that images with low image contrast from cryo EM will be seriously impacted with high extraction voltages.

  4. Convenient contrast enhancement by a hole-free phase plate

    DEFF Research Database (Denmark)

    Malac, Marek; Beleggia, Marco; Kawasaki, Masahiro

    2012-01-01

    Decrease of the irradiation dose needed to obtain a desired signal-to-noise ratio can be achieved by Zernike phase-plate imaging. Here we present results on a hole-free phase plate (HFPP) design that uses the incident electron beam to define the center of the plate, thereby eliminating the need...... for high precision alignment and with advantages in terms of ease of fabrication. The Zernike-like phase shift is provided by a charge distribution induced by the primary beam, rather than by a hole in the film. Compared to bright-field Fresnel-mode imaging, the hole-free phase plate (HFPP) results in two...

  5. Sensitive Phase Gratings for X-ray Phase Contrast -- a Simulation-based Comparison

    CERN Document Server

    Preusche, Oliver

    2016-01-01

    Medical differential phase contrast x-ray imaging (DPCI) promises improved soft-tissue contrast at lower x-ray dose. The dose strongly depends on both the angular sensitivity and on the visibility of a grating-based Talbot-Lau interferometer. Using a conventional x-ray tube, a high sensitivity and a high visibility are somewhat contradicting goals: To increase sensitivity, the grating period has to be reduced and/or the grating distance increased. Technically, this means using a higher Talbot order (3rd or 5th one instead of first one). This however reduces the visibility somewhat, because only a smaller part of the tube spectrum will get used. This work proposes to relax this problem by changing the phase grating geometry. This allows to double sensitivity (i.e., double the Talbot order) without reducing the visibility. One proposed grating geometry is an older binary one (75% of a period $\\pi$-shifting), but applied in a novel way. The second proposed geometry is a novel one, requiring three height levels f...

  6. Effect of a physical phase plate on contrast transfer in an aberration-corrected transmission electron microscope.

    Science.gov (United States)

    Gamm, B; Schultheiss, K; Gerthsen, D; Schröder, R R

    2008-08-01

    In this theoretical study we analyze contrast transfer of weak-phase objects in a transmission electron microscope, which is equipped with an aberration corrector (C(s)-corrector) in the imaging lens system and a physical phase plate in the back focal plane of the objective lens. For a phase shift of pi/2 between scattered and unscattered electrons induced by a physical phase plate, the sine-type phase contrast transfer function is converted into a cosine-type function. Optimal imaging conditions could theoretically be achieved if the phase shifts caused by the objective lens defocus and lens aberrations would be equal to zero. In reality this situation is difficult to realize because of residual aberrations and varying, non-zero local defocus values, which in general result from an uneven sample surface topography. We explore the conditions--i.e. range of C(s)-values and defocus--for most favourable contrast transfer as a function of the information limit, which is only limited by the effect of partial coherence of the electron wave in C(s)-corrected transmission electron microscopes. Under high-resolution operation conditions we find that a physical phase plate improves strongly low- and medium-resolution object contrast, while improving tolerance to defocus and C(s)-variations, compared to a microscope without a phase plate.

  7. Casimir Force Contrast Between Amorphous and Crystalline Phases of AIST

    NARCIS (Netherlands)

    Torrichelli, G.; Zwol, van P.J.; Shpak, O.; Palasantzas, G.; Svetovoy, V.B.; Binns, C.; Kooi, B.J.; Jost, P.; Wittig, M.

    2012-01-01

    Phase change materials (PCMs) can be rapidly and reversibly switched between the amorphous and crystalline state. The structural transformation is accompanied by a signifi cant change of optical and electronic properties rendering PCMs suitable for rewritable optical data storage and nonvolatile ele

  8. Results from the first preclinical CT scanner with grating based phase contrast and a rotating gantry

    Science.gov (United States)

    Bech, Martin; Tapfer, Arne; Velroyen, Astrid; Yaroshenko, Andre; Pauwels, Bart; Bruyndonckx, Peter; Liu, Xuan; Sasov, Alexander; Mohr, Jürgen; Walter, Marco; Pfeiffer, Franz

    2012-07-01

    After successful demonstrations of soft-tissue phase-contrast imaging with grating interferometers at synchrotron radiation sources and at laboratory based x-ray tubes, a first preclinical CT scanner with grating based phase contrast imaging modality has been constructed. The rotating gantry is equipped with a three-grating interferometer, a 50 watt tungsten anode source and a Hamamatsu flat panel detector. The total length of the interferometer is 45 cm, and the bed of the scanner is optimized for mice, with a scanning diameter of 35 mm. From one single scan both phase-contrast and standard attenuation based tomography can be attained, providing an overall gain in image contrast.

  9. Results from the first preclinical CT scanner with grating based phase contrast and a rotating gantry

    Energy Technology Data Exchange (ETDEWEB)

    Bech, Martin; Tapfer, Arne; Velroyen, Astrid; Yaroshenko, Andre; Pauwels, Bart; Bruyndonckx, Peter; Liu Xuan; Sasov, Alexander; Mohr, Juergen; Walter, Marco; Pfeiffer, Franz [Department of Physics, Technische Universitaetet Muenchen, 85748 Garching (Germany) and Medical Radiation Physics, Lund University, 22185 Lund (Germany); Bruker microCT, 2550 Kontich (Belgium); Institute of Micro Technology, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Microworks GmbH, 76137 Karlsruhe (Germany)

    2012-07-31

    After successful demonstrations of soft-tissue phase-contrast imaging with grating interferometers at synchrotron radiation sources and at laboratory based x-ray tubes, a first preclinical CT scanner with grating based phase contrast imaging modality has been constructed. The rotating gantry is equipped with a three-grating interferometer, a 50 watt tungsten anode source and a Hamamatsu flat panel detector. The total length of the interferometer is 45 cm, and the bed of the scanner is optimized for mice, with a scanning diameter of 35 mm. From one single scan both phase-contrast and standard attenuation based tomography can be attained, providing an overall gain in image contrast.

  10. Development of a compact gantry for quantitative phase-contrast CT applications

    Energy Technology Data Exchange (ETDEWEB)

    Tapfer, Arne; Bech, Martin; Pfeiffer, Franz [Department of Physics (E17) and Institute of Medical Engineering (IMETUM), Technische Universitaet Muenchen (Germany); Pauwels, Bart; Bruyndonckx, Peter; Liu, Xuan; Sasov, Alexander [Skyscan, Kontich (Belgium); Kenntner, Johannes [Karlsruhe Institute of Technology, Karlsruhe (Germany); Walter, Marco; Schulz, Joachim [Microworks, Karlsruhe (Germany)

    2011-07-01

    Here we present experimental X-ray cone-beam phase-contrast imaging results of a phantom study obtained with a highly compact grating-based gantry setup. The aim of this study is to investigate the performance, quantitativeness and accuracy of phase-contrast and absorption-based computed tomography scans which yield the three dimensional distribution of attenuation coefficient {mu} and refractive index decrement {delta} of different liquids contained in the phantom. Furthermore two different methods of color coding are explored to display both absorption and phase data in a single image. Experimental results for {mu} and {delta} match accurately with tabulated data meaning that the gantry setup performs well in both absorption and phase contrast. The substances contained in the phantom can be considerably better distinguished as the grating-based approach - which combines absorption and phase contrast - provides significantly more information than conventional absorption contrast alone.

  11. Visualization of neurons in the brain with phase-contrast CT

    Science.gov (United States)

    Onodera, Hiroshi; Hoshino, Masato; Takashima, Kenta; Uesugi, Kentaro; Yagi, Naoto

    2012-07-01

    Three-dimensional structural analysis of brain is essential to understand neuronal function and brain pathology. The phase-contrast X-ray imaging technique uses an X-ray interferometer and is an extremely sensitive method to visualize structures with low X-ray absorbance. Since the phase shifts caused by light elements can be detected as interference patterns in spite of nearly zero absorption coefficients, the signal/noise ratio for the phase-contrast images of the brain is expected to be hundreds times higher than that obtained with the conventional X-ray absorption contrast method. With phase-contrast imaging technique, we could visualize brain microstructures and specific types of neurons, such as the pyramidal cells in the hippocampus. Phase-contrast CT is a promising technique for nondestructive visualization of brain and spinal cord.

  12. Optical Fourier techniques for medical image processing and phase contrast imaging.

    Science.gov (United States)

    Yelleswarapu, Chandra S; Kothapalli, Sri-Rajasekhar; Rao, D V G L N

    2008-04-01

    This paper briefly reviews the basics of optical Fourier techniques (OFT) and applications for medical image processing as well as phase contrast imaging of live biological specimens. Enhancement of microcalcifications in a mammogram for early diagnosis of breast cancer is the main focus. Various spatial filtering techniques such as conventional 4f filtering using a spatial mask, photoinduced polarization rotation in photosensitive materials, Fourier holography, and nonlinear transmission characteristics of optical materials are discussed for processing mammograms. We also reviewed how the intensity dependent refractive index can be exploited as a phase filter for phase contrast imaging with a coherent source. This novel approach represents a significant advance in phase contrast microscopy.

  13. Simultaneous maximum-likelihood reconstruction for x-ray grating based phase-contrast tomography avoiding intermediate phase retrieval

    CERN Document Server

    Ritter, André; Durst, Jürgen; Gödel, Karl; Haas, Wilhelm; Michel, Thilo; Rieger, Jens; Weber, Thomas; Wucherer, Lukas; Anton, Gisela

    2013-01-01

    Phase-wrapping artifacts, statistical image noise and the need for a minimum amount of phase steps per projection limit the practicability of x-ray grating based phase-contrast tomography, when using filtered back projection reconstruction. For conventional x-ray computed tomography, the use of statistical iterative reconstruction algorithms has successfully reduced artifacts and statistical issues. In this work, an iterative reconstruction method for grating based phase-contrast tomography is presented. The method avoids the intermediate retrieval of absorption, differential phase and dark field projections. It directly reconstructs tomographic cross sections from phase stepping projections by the use of a forward projecting imaging model and an appropriate likelihood function. The likelihood function is then maximized with an iterative algorithm. The presented method is tested with tomographic data obtained through a wave field simulation of grating based phase-contrast tomography. The reconstruction result...

  14. Evaluation of edge effect due to phase contrast imaging for mammography.

    Science.gov (United States)

    Matsuo, Satoru; Katafuchi, Tetsuro; Tohyama, Keiko; Morishita, Junji; Yamada, Katsuhiko; Fujita, Hiroshi

    2005-08-01

    It is well-known that the edge effect produced by phase contrast imaging results in the edge enhancement of x-ray images and thereby sharpens those images. It has recently been reported that phase contrast imaging using practical x-ray tubes with small focal spots has improved image sharpness as observed in the phase contrast imaging with x-ray from synchrotron radiation or micro-focus x-ray tubes. In this study, we conducted the phase contrast imaging of a plastic fiber and plant seeds using a customized mammography equipment with a 0.1 mm focal spot, and the improvement of image sharpness was evaluated in terms of spatial frequency response of the images. We observed that the image contrast of the plastic fiber was increased by edge enhancement, and, as predicted elsewhere, spectral analysis revealed that as the spatial frequencies of the x-ray images increased, so did the sharpness gained through phase contrast imaging. Thus, phase contrast imaging using a practical molybdenum anode tube with a 0.1 mm-focal spot would benefit mammography, in which the morphological detectability of small species such as microcalcifications is of great concern. And detectability of tumor-surrounded glandular tissues in dense breast would be also improved by the phase contrast imaging.

  15. Efficient phase contrast imaging in STEM using a pixelated detector. Part II: Optimisation of imaging conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao, E-mail: hao.yang@materials.ox.ac.uk [University of Oxford, Department of Materials. Parks Rd, Oxford OX1 3PH (United Kingdom); Pennycook, Timothy J.; Nellist, Peter D. [University of Oxford, Department of Materials. Parks Rd, Oxford OX1 3PH (United Kingdom); EPSRC SuperSTEM Facility, Daresbury Laboratory, WA4 4AD (United Kingdom)

    2015-04-15

    In Part I of this series of two papers, we demonstrated the formation of a high efficiency phase-contrast image at atomic resolution using a pixelated detector in the scanning transmission electron microscope (STEM) with ptychography. In this paper we explore the technique more quantitatively using theory and simulations. Compared to other STEM phase contrast modes including annular bright field (ABF) and differential phase contrast (DPC), we show that the ptychographic phase reconstruction method using pixelated detectors offers the highest contrast transfer efficiency and superior low dose performance. Applying the ptychographic reconstruction method to DPC segmented detectors also improves the detector contrast transfer and results in less noisy images than DPC images formed using difference signals. We also find that using a minimum array of 16×16 pixels is sufficient to provide the highest signal-to-noise ratio (SNR) for imaging beam sensitive weak phase objects. Finally, the convergence angle can be adjusted to enhance the contrast transfer based on the spatial frequencies of the specimen under study. - Highlights: • High efficiency phase contrast transfer function (PCTF) can be achieved using pixelated detectors followed by a ptychographic reconstruction. • Ptychographic reconstruction offers the highest PCTF across the entire spatial frequency range compared to DPC and ABF. • Image simulations show that a ptychographic reconstruction using pixelated detectors offers a superior low dose performance for imaging weak phase objects. • Optimisation of imaging conditions using pixelated detectors are discussed by considering the contrast transfer function for various cases.

  16. Accelerated phase-contrast cine MRI using k-t SPARSE-SENSE.

    Science.gov (United States)

    Kim, Daniel; Dyvorne, Hadrien A; Otazo, Ricardo; Feng, Li; Sodickson, Daniel K; Lee, Vivian S

    2012-04-01

    Phase-contrast (PC) cine MRI is a promising method for assessment of pathologic hemodynamics, including cardiovascular and hepatoportal vascular dynamics, but its low data acquisition efficiency limits the achievable spatial and temporal resolutions within clinically acceptable breath-hold durations. We propose to accelerate PC cine MRI using an approach which combines compressed sensing and parallel imaging (k-t SPARSE-SENSE). We validated the proposed 6-fold accelerated PC cine MRI against 3-fold accelerated PC cine MRI with parallel imaging (generalized autocalibrating partially parallel acquisitions). With the programmable flow pump, we simulated a time varying waveform emulating hepatic blood flow. Normalized root mean square error between two sets of velocity measurements was 2.59%. In multiple blood vessels of 12 control subjects, two sets of mean velocity measurements were in good agreement (mean difference = -0.29 cm/s; lower and upper 95% limits of agreement = -5.26 and 4.67 cm/s, respectively). The mean phase noise, defined as the standard deviation of the phase in a homogeneous stationary region, was significantly lower for k-t SPARSE-SENSE than for generalized autocalibrating partially parallel acquisitions (0.05 ± 0.01 vs. 0.19 ± 0.06 radians, respectively; P cine MRI pulse sequence with k-t SPARSE-SENSE is a promising investigational method for rapid velocity measurement with relatively high spatial (1.7 mm × 1.7 mm) and temporal (∼35 ms) resolutions.

  17. Feasibility study of phase-contrast cone beam CT imaging systems

    Science.gov (United States)

    Cai, Weixing

    Attenuation-based x-ray imaging techniques have been developed for many decades. One of the state-of-the-art imaging modalities is the cone beam computed tomography (CBCT) that efficiently scans an object and reproduces high-resolution and isotropic three-dimensional images of it. However, attenuation-based imaging shows a limitation in soft tissue imaging where the absorption contrast is low. Recently several phase-contrast techniques have been developed that are expected to improve low-contrast details by using the phase information of the object. The idea of this thesis is to incorporate the phase-contrast techniques into the current cone beam CT systems to combine the advantages of both phase-contrast imaging and CBCT. From a practical view of medical imaging, two phase-contrast cone beam CT systems are proposed by using the in-line phase-contrast technique and the differential phase-contrast technique, respectively. An in-line phase-contrast image is a Fresnel diffraction pattern in the near field. The image is edge-enhanced, and for soft tissues it is possible to retrieve the phase projection from a single in-line image. Therefore, this technique can be utilized in either of two methods. The first method is to produce edge-enhanced reconstruction images of the attenuation coefficient, and the second is to reconstruct the phase coefficient using the retrieved phase projections. In order to investigate this modality, computer simulations were performed for both working modes. The results using the in-line phase-contrast technique demonstrate superior image quality than that of the attenuation-based technique. A bench-top in-line PC-CBCT system was designed and constructed on top of an optical table, and a simple phantom was imaged and reconstructed using both modes to validate the principle of the proposed imaging scheme. The grating-based differential phase-contrast technique is able to produce the first derivative of phase projections using the principle of

  18. Quantum fixed-point search algorithm with general phase shifts

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Grover presented the Phase-π/3 search by replacing the selective inversions by selective phase shifts of π/3.In this paper,we review and discuss the fixed-point search with general but equal phase shifts and the fixedpoint search with general but different phase shifts.

  19. Stochastic optimal phase retrieval algorithm for high-contrast imaging

    Science.gov (United States)

    Give'on, Amir; Kasdin, N. Jeremy; Vanderbei, Robert J.; Spergel, David N.; Littman, Michael G.; Gurfil, Pini

    2003-12-01

    The Princeton University Terrestrial Planet Finder (TPF) has been working on a novel method for direct imaging of extra solar planets using a shaped-pupil coronagraph. The entrance pupil of the coronagraph is optimized to have a point spread function (PSF) that provides the suppression level needed at the angular separation required for detection of extra solar planets. When integration time is to be minimized, the photon count at the planet location in the image plane is a Poisson distributed random process. The ultimate limitation of these high-dynamic-range imaging systems comes from scattering due to imperfections in the optical surfaces of the collecting system. The first step in correcting the wavefront errors is the estimation of the phase aberrations. The phase aberration caused by these imperfections is assumed to be a sum of two-dimensional sinusoidal functions. Its parameters are estimated using a global search with a genetic algorithm and a local optimization with the BFGS quasi-Newton method with a mixed quadratic and cubic line search procedure.

  20. Spatial phase sensitivity of complex cells in primary visual cortex depends on stimulus contrast.

    Science.gov (United States)

    Meffin, H; Hietanen, M A; Cloherty, S L; Ibbotson, M R

    2015-12-01

    Neurons in primary visual cortex are classified as simple, which are phase sensitive, or complex, which are significantly less phase sensitive. Previously, we have used drifting gratings to show that the phase sensitivity of complex cells increases at low contrast and after contrast adaptation while that of simple cells remains the same at all contrasts (Cloherty SL, Ibbotson MR. J Neurophysiol 113: 434-444, 2015; Crowder NA, van Kleef J, Dreher B, Ibbotson MR. J Neurophysiol 98: 1155-1166, 2007; van Kleef JP, Cloherty SL, Ibbotson MR. J Physiol 588: 3457-3470, 2010). However, drifting gratings confound the influence of spatial and temporal summation, so here we have stimulated complex cells with gratings that are spatially stationary but continuously reverse the polarity of the contrast over time (contrast-reversing gratings). By varying the spatial phase and contrast of the gratings we aimed to establish whether the contrast-dependent phase sensitivity of complex cells results from changes in spatial or temporal processing or both. We found that most of the increase in phase sensitivity at low contrasts could be attributed to changes in the spatial phase sensitivities of complex cells. However, at low contrasts the complex cells did not develop the spatiotemporal response characteristics of simple cells, in which paired response peaks occur 180° out of phase in time and space. Complex cells that increased their spatial phase sensitivity at low contrasts were significantly overrepresented in the supragranular layers of cortex. We conclude that complex cells in supragranular layers of cat cortex have dynamic spatial summation properties and that the mechanisms underlying complex cell receptive fields differ between cortical layers.

  1. X-ray phase contrast imaging at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghazaly, M.; Backe, H.; Lauth, W.; Kube, G.; Kunz, P.; Sharafutdinov, A.; Weber, T. [Universitaet Mainz, Institut fuer Kernphysik, Mainz (Germany)

    2006-05-15

    Experiments have been performed to explore the potential of the low emittance 855 MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450 {mu}m, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40 keV. The electron beam spot size had standard deviation {sigma}{sub h}=(8.6{+-}0.1) {mu}m in the horizontal and {sigma}{sub v}=(7.5{+-}0.1) {mu}m in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4 m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size {sigma}{sub v}=(0.50{+-}0.05) {mu}m in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13 x 13 {mu}m{sup 2} provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be {sigma}{sub f}=(1.2{+-}0.4) {mu}m, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size

  2. In-line phase contrast micro-CT reconstruction for biomedical specimens.

    Science.gov (United States)

    Fu, Jian; Tan, Renbo

    2014-01-01

    X-ray phase contrast micro computed tomography (micro-CT) can non-destructively provide the internal structure information of soft tissues and low atomic number materials. It has become an invaluable analysis tool for biomedical specimens. Here an in-line phase contrast micro-CT reconstruction technique is reported, which consists of a projection extraction method and the conventional filter back-projection (FBP) reconstruction algorithm. The projection extraction is implemented by applying the Fourier transform to the forward projections of in-line phase contrast micro-CT. This work comprises a numerical study of the method and its experimental verification using a biomedical specimen dataset measured at an X-ray tube source micro-CT setup. The numerical and experimental results demonstrate that the presented technique can improve the imaging contrast of biomedical specimens. It will be of interest for a wide range of in-line phase contrast micro-CT applications in medicine and biology.

  3. Bilateral filtering using the full noise covariance matrix applied to x-ray phase-contrast computed tomography

    Science.gov (United States)

    Allner, S.; Koehler, T.; Fehringer, A.; Birnbacher, L.; Willner, M.; Pfeiffer, F.; Noël, P. B.

    2016-05-01

    The purpose of this work is to develop an image-based de-noising algorithm that exploits complementary information and noise statistics from multi-modal images, as they emerge in x-ray tomography techniques, for instance grating-based phase-contrast CT and spectral CT. Among the noise reduction methods, image-based de-noising is one popular approach and the so-called bilateral filter is a well known algorithm for edge-preserving filtering. We developed a generalization of the bilateral filter for the case where the imaging system provides two or more perfectly aligned images. The proposed generalization is statistically motivated and takes the full second order noise statistics of these images into account. In particular, it includes a noise correlation between the images and spatial noise correlation within the same image. The novel generalized three-dimensional bilateral filter is applied to the attenuation and phase images created with filtered backprojection reconstructions from grating-based phase-contrast tomography. In comparison to established bilateral filters, we obtain improved noise reduction and at the same time a better preservation of edges in the images on the examples of a simulated soft-tissue phantom, a human cerebellum and a human artery sample. The applied full noise covariance is determined via cross-correlation of the image noise. The filter results yield an improved feature recovery based on enhanced noise suppression and edge preservation as shown here on the example of attenuation and phase images captured with grating-based phase-contrast computed tomography. This is supported by quantitative image analysis. Without being bound to phase-contrast imaging, this generalized filter is applicable to any kind of noise-afflicted image data with or without noise correlation. Therefore, it can be utilized in various imaging applications and fields.

  4. Bilateral filtering using the full noise covariance matrix applied to x-ray phase-contrast computed tomography.

    Science.gov (United States)

    Allner, S; Koehler, T; Fehringer, A; Birnbacher, L; Willner, M; Pfeiffer, F; Noël, P B

    2016-05-21

    The purpose of this work is to develop an image-based de-noising algorithm that exploits complementary information and noise statistics from multi-modal images, as they emerge in x-ray tomography techniques, for instance grating-based phase-contrast CT and spectral CT. Among the noise reduction methods, image-based de-noising is one popular approach and the so-called bilateral filter is a well known algorithm for edge-preserving filtering. We developed a generalization of the bilateral filter for the case where the imaging system provides two or more perfectly aligned images. The proposed generalization is statistically motivated and takes the full second order noise statistics of these images into account. In particular, it includes a noise correlation between the images and spatial noise correlation within the same image. The novel generalized three-dimensional bilateral filter is applied to the attenuation and phase images created with filtered backprojection reconstructions from grating-based phase-contrast tomography. In comparison to established bilateral filters, we obtain improved noise reduction and at the same time a better preservation of edges in the images on the examples of a simulated soft-tissue phantom, a human cerebellum and a human artery sample. The applied full noise covariance is determined via cross-correlation of the image noise. The filter results yield an improved feature recovery based on enhanced noise suppression and edge preservation as shown here on the example of attenuation and phase images captured with grating-based phase-contrast computed tomography. This is supported by quantitative image analysis. Without being bound to phase-contrast imaging, this generalized filter is applicable to any kind of noise-afflicted image data with or without noise correlation. Therefore, it can be utilized in various imaging applications and fields.

  5. Phase contrast soft x-ray microscopy using Zernike zone plates.

    Science.gov (United States)

    Sakdinawat, Anne; Liu, Yanwei

    2008-02-04

    Soft x-ray Zernike phase contrast microscopy was implemented using a "Zernike zone plate" (ZZP) without the use of a separate phase filter in the back focal plane. The ZZP is a single optic that integrates the appropriate +/-pi/2 radians phase shift through selective zone placement shifts in a Fresnel zone plate. Imaging using a regular zone plate, positive ZZP, and negative ZZP was performed at a wavelength of lambda = 2.163 nm. Contrast enhancement with the positive ZZP and contrast reversal with the negative ZZP were observed.

  6. Imaging of metastatic lymph nodes by X-ray phase-contrast micro-tomography

    DEFF Research Database (Denmark)

    Jensen, Torben Haugaard; Bech, Martin; Binderup, Tina

    2013-01-01

    whether malignancy could be revealed by non-invasive x-ray phase-contrast tomography in lymph nodes from breast cancer patients. Seventeen formalin-fixed paraffin-embedded lymph nodes from 10 female patients (age range 37-83 years) diagnosed with invasive ductal carcinomas were analyzed by X-ray phase......-contrast tomography. Ten lymph nodes had metastatic deposits and 7 were benign. The phase-contrast images were analyzed according to standards for conventional CT images looking for characteristics usually only visible by pathological examinations. Histopathology was used as reference. The result of this study...

  7. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    Science.gov (United States)

    Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.

  8. Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI

    DEFF Research Database (Denmark)

    Rispoli, Vinicius C; Nielsen, Jon; Nayak, Krishna S

    2015-01-01

    approach in regularizing 3D flow fields is evaluated. METHODS: The proposed algorithm incorporates both a Newtonian fluid physics model and a linear PC-MRI signal model. The model equations are solved numerically using a modified CFD algorithm. The numerical solution corresponds to the optimal solution......BACKGROUND: Phase contrast magnetic resonance imaging (PC-MRI) is used clinically for quantitative assessment of cardiovascular flow and function, as it is capable of providing directly-measured 3D velocity maps. Alternatively, vascular flow can be estimated from model-based computation fluid...... dynamics (CFD) calculations. CFD provides arbitrarily high resolution, but its accuracy hinges on model assumptions, while velocity fields measured with PC-MRI generally do not satisfy the equations of fluid dynamics, provide limited resolution, and suffer from partial volume effects. The purpose...

  9. Prevention of generalized reactions to contrast media: a consensus report and guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Morcos, S.K. [Dept. of Diagnostic Imaging, Northern General Hospital, Sheffield (United Kingdom); Thomsen, H.S. [Dept. of Diagnostic Radiology, Herlev Hospital, University of Copenhagen (Denmark); Webb, J.A.W. [Diagnostic Radiology Department, St. Bartholomew' s Hospital, London (United Kingdom)

    2001-09-01

    The aim of this study was to document, using consensus methodology, current practice for prevention of generalized reactions to contrast media, to identify areas where there is disagreement or confusion and to draw up guidelines for reducing the risk of generalized contrast media reactions based on the survey and a review of the literature. A document with 165 questions was mailed to 202 members of the European Society of Urogenital Radiology. The questions covered risk factors and prophylactic measures for generalized contrast media reactions. Sixty-eight members (34%) responded. The majority indicated that a history of moderate and severe reaction(s) to contrast media and asthma are important risk factors. The survey also indicated that patients with risk factors should receive non-ionic contrast media. In patients at high risk of reaction, if the examination is deemed absolutely necessary, a resuscitation team should be available at the time of the procedure. The majority (91%) used corticosteroid prophylaxis given at least 11 h before contrast medium to patients at increased risk of reaction. The frequency of the dosage varied from one to three times. Fifty-five percent also use antihistamine Hl, mainly administered orally and once. Antihistamine H2 and ephedrine are rarely used. All essential drugs are available on the emergency resuscitation trolley. Patients with risk factors are observed up to 30 min by 48% and up to 60 min by 43% of the responders. Prophylactic measures are not taken before extravascular use of contrast media. Prophylactic drugs are given to patients with a history of moderate or severe generalized reaction to contrast media. In patients with asthma, opinion is divided with only half of the responders giving prophylactic drugs. Aspirin, {beta}-blockers, interleukin-2 and non-steroid anti-inflammatory drugs are not considered risk factors and therefore are not stopped before injection of contrast media. The survey showed some variability in

  10. Thickness Measurements from Single X-ray Phase-contrast Speckle Projection

    CERN Document Server

    Xi, Yan; Ma, Jingchen; Zhao, Jun

    2015-01-01

    We propose a one-shot thickness measurement method for sponge-like structures using a propagation-based X-ray phase-contrast imaging (P-PCI) method. In P-PCI, the air-material interface refracts the incident X-ray. Refracted many times along their paths by such a structure, incident X-rays propagate randomly within a small divergent angle range, resulting in a speckle pattern in the captured image. We found structure thickness and contrast of a phase-contrast projection are directly related in images. This relationship can be described by a natural logarithm equation. Thus, from the one phase-contrast view, depth information can be retrieved from its contrast. Our preliminary biological experiments indicate promise in its application to measurements requiring in vivo and ongoing assessment of lung tumor progression.

  11. Quantitative Characterization of Inertial Confinement Fusion Capsules Using Phase Contrast Enhanced X-Ray Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kozioziemski, B J; Koch, J A; Barty, A; Martz, H E; Lee, W; Fezzaa, K

    2004-05-07

    Current designs for inertial confinement fusion capsules for the National Ignition Facility (NIF) consist of a solid deuterium-tritium (D-T) fuel layer inside of a copper doped beryllium capsule. Phase contrast enhanced x-ray imaging is shown to render the D-T layer visible inside the Be(Cu) capsule. Phase contrast imaging is experimentally demonstrated for several surrogate capsules and validates computational models. Polyimide and low density divinyl benzene foam capsules were imaged at the Advanced Photon Source synchrotron. The surrogates demonstrate that phase contrast enhanced imaging provides a method to characterize surfaces when absorption imaging cannot be used. Our computational models demonstrate that a rough surface can be accurately reproduced in phase contrast enhanced x-ray images.

  12. Dynamic measures of regional lung air volume using phase contrast x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kitchen, M J; Lewis, R A; Morgan, M J; Siu, K K W; Habib, A [School of Physics, Monash University, Melbourne VIC 3800 (Australia); Wallace, M J; Siew, M L; Hooper, S B [Department of Physiology, Monash University, Melbourne VIC 3800 (Australia); Fouras, A [Division of Biological Engineering, Monash University, Melbourne VIC 3800 (Australia); Yagi, N; Uesugi, K [SPring-8/JASRI, Sayo, Hyogo 679-5198 (Japan)], E-mail: Marcus.Kitchen@sci.monash.edu.au

    2008-11-07

    Phase contrast x-ray imaging can provide detailed images of lung morphology with sufficient spatial resolution to observe the terminal airways (alveoli). We demonstrate that quantitative functional and anatomical imaging of lung ventilation can be achieved in vivo using two-dimensional phase contrast x-ray images with high contrast and spatial resolution (<100 {mu}m) in near real time. Changes in lung air volume as small as 25 {mu}L were calculated from the images of term and preterm rabbit pup lungs (n = 28) using a single-image phase retrieval algorithm. Comparisons with plethysmography and computed tomography showed that the technique provided an accurate and robust method of measuring total lung air volumes. Furthermore, regional ventilation was measured by partitioning the phase contrast images, which revealed differences in aeration for different ventilation strategies.

  13. CO2-based in-line phase contrast imaging of small intestine in mice

    Science.gov (United States)

    Tang, Rongbiao; Li, Wei-Xia; Huang, Wei; Yan, Fuhua; Chai, Wei-Min; Yang, Guo-Yuan; Chen, Ke-Min

    2013-07-01

    The objective of this study was to explore the potential of CO2 single contrast in-line phase contrast imaging (PCI) for pre-clinical small intestine investigation. The absorption and phase contrast images of CO2 gas production were attained and compared. A further increase in image contrast was observed in PCI. Compared with CO2-based absorption contrast imaging (ACI), CO2-based PCI significantly enhanced the detection of mucosal microstructures, such as pits and folds. The CO2-based PCI could provide sufficient image contrast for clearly showing the intestinal mucosa in living mice without using barium. We concluded that CO2-based PCI might be a novel and promising imaging method for future studies of gastrointestinal disorders.

  14. Application of phase-contrast cine magnetic resonance imaging in endoscopic aqueductoplasty.

    Science.gov (United States)

    Chen, Guoqiang; Zheng, Jiaping; Xiao, Qing; Liu, Yunsheng

    2013-06-01

    The aim of this study was to evaluate the application of phase-contrast cine magnetic resonance imaging (MRI) in endoscopic aqueductoplasty (EA) for patients with obstructive hydrocephalus. The clinical diagnosis of hydrocephalus caused by aqueduct obstruction in 23 patients was confirmed by phase-contrast cine MRI examination. The patients were treated with EA and MRI was repeated during the follow-up. The cerebrospinal fluid (CSF) flow velocity in the aqueduct was measured to determine whether the aqueduct was obstructed. The results of phase-contrast cine MRI examinations indicated that there was no CSF flow in the aqueduct for all patients prior to surgery. Aqueductoplasty was successfully performed in all patients. The results of phase-contrast cine MRI examinations performed a week after surgery demonstrated an average CSF flow velocity of 4.74±1.77 cm/sec. During the follow-up, intracranial hypertension recurred in two patients in whom CSF flow was not observed in the aqueduct by the phase-contrast cine MRI scan. Aqueduct re-occlusion was revealed by an endoscopic exploration. By measuring the CSF flow velocity, phase-contrast cine MRI accurately identifies aqueduct obstruction. Cine MRI is a nontraumatic, simple and reliable method for determining whether the aqueduct is successfully opened following aqueductoplasty.

  15. Generalized eikonal treatment of the Gouy phase shift.

    Science.gov (United States)

    Yang, Jun; Winful, Herbert G

    2006-01-01

    We use a generalized refractive index that includes diffraction effects to show that the Gouy phase shift can be seen as an intensity averaged optical path difference between the generalized eikonal and the geometrical eikonal. This approach generalizes previous treatments to include the effects of phase distortion and confirms the role of transverse spatial confinement in the Gouy shift.

  16. Visualizing typical features of breast fibroadenomas using phase-contrast CT: an ex-vivo study.

    Directory of Open Access Journals (Sweden)

    Susanne Grandl

    Full Text Available BACKGROUND: Fibroadenoma is the most common benign solid breast lesion type and a very common cause for histologic assessment. To justify a conservative therapy, a highly specific discrimination between fibroadenomas and other breast lesions is crucial. Phase-contrast imaging offers improved soft-tissue contrast and differentiability of fine structures combined with the potential of 3-dimensional imaging. In this study we assessed the potential of grating-based phase-contrast CT imaging for visualizing diagnostically relevant features of fibroadenomas. MATERIALS AND METHODS: Grating-based phase-contrast CT was performed on six ex-vivo formalin-fixed breast specimens containing a fibroadenoma and three samples containing benign changes that resemble fibroadenomas using Talbot Lau interferometry and a polychromatic X-ray source. Phase-contrast and simultaneously acquired absorption-based 3D-datasets were manually matched with corresponding histological slices. The visibility of diagnostically valuable features was assessed in comparison with histology as the gold-standard. RESULTS: In all cases, matching of grating-based phase-contrast CT images and histology was successfully completed. Grating-based phase-contrast CT showed greatly improved differentiation of fine structures and provided accurate depiction of strands of fibrous tissue within the fibroadenomas as well as of the diagnostically valuable dilated, branched ductuli of the fibroadenomas. A clear demarcation of tumor boundaries in all cases was provided by phase- but not absorption-contrast CT. CONCLUSIONS: Pending successful translation of the technology to a clinical setting and considerable reduction of the required dose, the data presented here suggest that grating-based phase-contrast CT may be used as a supplementary non-invasive diagnostic tool in breast diagnostics. Phase-contrast CT may thus contribute to the reduction of false positive findings and reduce the recall and core

  17. Evaluation of a new reconstruction algorithm for x-ray phase-contrast imaging

    Science.gov (United States)

    Seifert, Maria; Hauke, Christian; Horn, Florian; Lachner, Sebastian; Ludwig, Veronika; Pelzer, Georg; Rieger, Jens; Schuster, Max; Wandner, Johannes; Wolf, Andreas; Michel, Thilo; Anton, Gisela

    2016-04-01

    X-ray grating-based phase-contrast imaging might open up entirely new opportunities in medical imaging. However, transferring the interferometer technique from laboratory setups to conventional imaging systems the necessary rigidity of the system is difficult to achieve. Therefore, vibrations or distortions of the system lead to inaccuracies within the phase-stepping procedure. Given insufficient stability of the phase-step positions, up to now, artifacts in phase-contrast images occur, which lower the image quality. This is a problem with regard to the intended use of phase-contrast imaging in clinical routine as for example tiny structures of the human anatomy cannot be observed. In this contribution we evaluate an algorithm proposed by Vargas et.al.1 and applied to X-ray imaging by Pelzer et.al. that enables us to reconstruct a differential phase-contrast image without the knowledge of the specific phase-step positions. This method was tested in comparison to the standard reconstruction by Fourier analysis. The quality of phase-contrast images remains stable, even if the phase-step positions are completely unknown and not uniformly distributed. To also achieve attenuation and dark-field images the proposed algorithm has been combined with a further algorithm of Vargas et al.3 Using this algorithm, the phase-step positions can be reconstructed. With the help of the proper phase-step positions it is possible to get information about the phase, the amplitude and the offset of the measured data. We evaluated this algorithm concerning the measurement of thick objects which show a high absorbency.

  18. X-ray phase-contrast tomosynthesis for improved breast tissue discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Schleede, Simone, E-mail: Schleede@tum.de [Department of Physics and Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching (Germany); Bech, Martin, E-mail: martin.bech@tum.de [Department of Physics and Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching (Germany); Medical Radiation Physics, Lund University, 22185 Lund (Sweden); Grandl, Susanne, E-mail: Susanne.Grandl@med.uni-muenchen.de [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistr. 15, 81377 München (Germany); Sztrókay, Aniko, E-mail: Aniko.Sztrokay@med.uni-muenchen.de [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistr. 15, 81377 München (Germany); Herzen, Julia, E-mail: julia.herzen@hzg.de [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht (Germany); Mayr, Doris, E-mail: doris.mayr@med.uni-muenchen.de [Institute of Pathology, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337 Munich (Germany); Stockmar, Marco, E-mail: marco.stockmar@ph.tum.de [Department of Physics and Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching (Germany); Potdevin, Guillaume, E-mail: potdevinguillaume@gmail.com [Department of Physics and Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching (Germany); and others

    2014-03-15

    Purpose: Attenuation-based tomosynthesis has proven to successfully resolve the glandular tissue overlap present in mammography. However, the ability of tomosynthesis to differentiate tumorous and glandular tissue remains limited, due to the small differences in X-ray attenuation in breast tissue. One possibility to overcome this limitation and to further increase the diagnostic value of tomosynthesis exams, is the application of recently developed grating-based phase-contrast methods, which provide complementary information on the phase shift and the local scattering power of the sample. In this study, we report on first phase-contrast breast tomosynthesis results of a mastectomy sample slice with an invasive ductal carcinoma. Material and methods: A slice of a mastectomy sample with histologically proven invasive ductal cancer was imaged at the synchrotron radiation source ESRF (Grenoble, France). We used a two-grating interferometer setup at the ninth fractional Talbot distance and with an X-ray energy of 23 keV. In grating interferometry absorption, differential phase, and scattering images are recorded simultaneously. The tomosynthesis scan comprises 61 projections. Multimodal tomosynthesis results were reconstructed using a standard filtered back-projection approach. Our findings are supported by a comparison of tomographic views to histopathology. Results: Phase-contrast tomosynthesis combines the advantage of improved soft-tissue discrimination in phase-contrast imaging with the ability of tomosynthesis to provide a third dimension so that improved feature visibility is not hampered by superposition artifacts. Our results indicate superior diagnostic value due to the depth resolution supplied in tomosynthesis imaging; a region of necrotic tissue that is obscured in a projection image can clearly be depicted in one single tomosynthesis slice. Compared to absorption tomosynthesis alone, soft tissue contrast is significantly enhanced in phase-contrast

  19. Instability of Solution of Phase Retrieval in Direct Diffraction Phase-Contrast Imaging with Partially Coherent X-Ray Source

    Institute of Scientific and Technical Information of China (English)

    GUO Hua; HAN Shen-Sheng

    2006-01-01

    The theoretical model of direct diffraction phase-contrast imaging with partially coherent x-ray source is expressedby an operator of multiple integral. It is presented that the integral operator is linear. The problem of its phaseretrieval is described by solving an operator equation of multiple integral. It is demonstrated that the solution ofthe phase retrieval is unstable. The numerical simulation is performed and the result validates that the solutionof the phase retrieval is unstable.

  20. Flexible retrospective phase stepping in x-ray scatter correction and phase contrast imaging using structured illumination.

    Directory of Open Access Journals (Sweden)

    Han Wen

    Full Text Available The development of phase contrast methods for diagnostic x-ray imaging is inspired by the potential of seeing the internal structures of the human body without the need to deposit any harmful radiation. An efficient class of x-ray phase contrast imaging and scatter correction methods share the idea of using structured illumination in the form of a periodic fringe pattern created with gratings or grids. They measure the scatter and distortion of the x-ray wavefront through the attenuation and deformation of the fringe pattern via a phase stepping process. Phase stepping describes image acquisition at regular phase intervals by shifting a grating in uniform steps. However, in practical conditions the actual phase intervals can vary from step to step and also spatially. Particularly with the advent of electromagnetic phase stepping without physical movement of a grating, the phase intervals are dependent upon the focal plane of interest. We describe a demodulation algorithm for phase stepping at arbitrary and position-dependent (APD phase intervals without assuming a priori knowledge of the phase steps. The algorithm retrospectively determines the spatial distribution of the phase intervals by a Fourier transform method. With this ability, grating-based x-ray imaging becomes more adaptable and robust for broader applications.

  1. Basic system design of a broad-band real-time phase contrast wavefront sensor for adaptive optics

    Science.gov (United States)

    Bloemhof, E. E.; Wallace, J. K.

    2005-08-01

    The most common wavefront sensor for real-time use in high-order adaptive optics systems is the Shack-Hartmann, in part because it is sensitive to a broad optical band. An alternative possibility is based on Zernike's phase contrast technique. Though quite sensitive in principle, at least for monochromatic light, there had been no simple way to obtain the broadband performance needed for competitive sensitivity in an actual adaptive optics system. Recently, we proposed a general achromatization scheme that relies upon the innate π/2 phase shift between the transmitted and reflected beams in a beam splitter. Here, a more detailed study of this broad-band phase contrast wavefront sensor is presented, along with some practical issues concerning component tolerances. These results offer encouraging indications that broad-wavelength-band implementations will be feasible in practice.

  2. Report of improved performance in Talbot–Lau phase-contrast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Thomas, E-mail: thomas.weber@fau.de; Pelzer, Georg; Rieger, Jens; Ritter, André; Anton, Gisela [Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics (ECAP), Radiation and Detector Physics Group, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany)

    2015-06-15

    Purpose: Many expectations have been raised since the use of conventional x-ray tubes on grating-based x-ray phase-contrast imaging. Despite a reported increase in contrast-to-noise ratio (CNR) in many publications, there is doubt on whether phase-contrast computed tomography (CT) is advantageous in clinical CT scanners in vivo. The aim of this paper is to contribute to this discussion by analyzing the performance of a phase-contrast CT laboratory setup. Methods: A phase-contrast CT performance analysis was done. Projection images of a phantom were recorded, and image slices were reconstructed using standard filtered back projection methods. The resulting image slices were analyzed by determining the CNRs in the attenuation and phase image. These results were compared to analytically calculated expectations according to the already published phase-contrast CT performance analysis by Raupach and Flohr [Med. Phys. 39, 4761–4774 (2012)]. There, a severe mistake was found leading to wrong predictions of the performance of phase-contrast CT. The error was corrected and with the new formulae, the experimentally obtained results matched the analytical calculations. Results: The squared ratios of the phase-contrast CNR and the attenuation CNR obtained in the authors’ experiment are five- to ten-fold higher than predicted by Raupach and Flohr [Med. Phys. 39, 4761–4774 (2012)]. The effective lateral spatial coherence length deduced outnumbers the already optimistic assumption of Raupach and Flohr [Med. Phys. 39, 4761–4774 (2012)] by a factor of 3. Conclusions: The authors’ results indicate that the assumptions made in former performance analyses are pessimistic. The break-even point, when phase-contrast CT outperforms attenuation CT, is within reach even with realistic, nonperfect gratings. Further improvements to state-of-the-art clinical CT scanners, like increasing the spatial resolution, could change the balance in favor of phase-contrast computed tomography

  3. Method for automatization of the alignment of a laboratory based x-ray phase contrast edge illumination system.

    Science.gov (United States)

    Millard, T P; Endrizzi, M; Ignatyev, K; Hagen, C K; Munro, P R T; Speller, R D; Olivo, A

    2013-08-01

    Here we present a general alignment algorithm for an edge illumination x-ray phase contrast imaging system, which is used with the laboratory systems developed at UCL. It has the flexibility to be used with all current mask designs, and could also be applied to future synchrotron based systems. The algorithm has proved to be robust experimentally, and can be used for the automatization of future commercial systems through automatic alignment and alignment correction.

  4. Preliminary results from a first preclinical X-ray phase-contrast CT scanner

    Energy Technology Data Exchange (ETDEWEB)

    Velroyen, Astrid; Tapfer, Arne; Bech, Martin; Pfeiffer, Franz [Department of Physics and Institute of Medical Engineering (IMETUM), Technische Universitaet Muenchen (Germany); Pauwels, Bart; Bruyndonckx, Peter; Liu, Xuan; Sasov, Alexander [Skyscan, Kontich (Belgium)

    2012-07-01

    Conventional absorption-based X-ray imaging of biomedical samples provides only weak soft-tissue contrast. This limitation can be addressed by phase-contrast imaging, which exploits the phase shift that X-rays undergo when passing through an object. The phase shift, apparent in a minimal angular refraction of the X-ray, can be measured by grating-based interferometric methods at laboratory X-ray sources. Using this technique, improved soft-tissue contrast can be achieved and great potential for medical imaging is anticipated. As a first step towards clinical implementation, we have developed a grating-based compact preclinical phase-contrast CT scanner with rotating gantry, from which we present the first results of soft tissue samples. In particular, the effect of the rotational movement of the gantry on the interferometric image acquisition is characterized and the consequent challenges for image preprocessing and image formation are presented. First scans of biological samples clearly show the improved soft-tissue contrast and hence prove the feasibility of phase-contrast X-ray tomography with a compact rotating gantry system.

  5. Intact Imaging of Human Heart Structure Using X-ray Phase-Contrast Tomography.

    Science.gov (United States)

    Kaneko, Yukihiro; Shinohara, Gen; Hoshino, Masato; Morishita, Hiroyuki; Morita, Kiyozo; Oshima, Yoshihiro; Takahashi, Masashi; Yagi, Naoto; Okita, Yutaka; Tsukube, Takuro

    2017-02-01

    Structural examination of human heart specimens at the microscopic level is a prerequisite for understanding congenital heart diseases. It is desirable not to destroy or alter the properties of such specimens because of their scarcity. However, many of the currently available imaging techniques either destroy the specimen through sectioning or alter the chemical and mechanical properties of the specimen through staining and contrast agent injection. As a result, subsequent studies may not be possible. X-ray phase-contrast tomography is an imaging modality for biological soft tissues that does not destroy or alter the properties of the specimen. The feasibility of X-ray phase-contrast tomography for the structural examination of heart specimens was tested using infantile and fetal heart specimens without congenital diseases. X-ray phase-contrast tomography was carried out at the SPring-8 synchrotron radiation facility using the Talbot grating interferometer at the bending magnet beamline BL20B2 to visualize the structure of five non-pretreated whole heart specimens obtained by autopsy. High-resolution, three-dimensional images were obtained for all specimens. The images clearly showed the myocardial structure, coronary vessels, and conduction bundle. X-ray phase-contrast tomography allows high-resolution, three-dimensional imaging of human heart specimens. Intact imaging using X-ray phase-contrast tomography can contribute to further structural investigation of heart specimens with congenital heart diseases.

  6. Imaging of metastatic lymph nodes by X-ray phase-contrast micro-tomography

    DEFF Research Database (Denmark)

    Jensen, Torben Haugaard; Bech, Martin; Binderup, Tina;

    2013-01-01

    whether malignancy could be revealed by non-invasive x-ray phase-contrast tomography in lymph nodes from breast cancer patients. Seventeen formalin-fixed paraffin-embedded lymph nodes from 10 female patients (age range 37-83 years) diagnosed with invasive ductal carcinomas were analyzed by X-ray phase...... was that the diagnostic sensitivity of the image analysis for detecting malignancy was 100% and the specificity was 87%. The positive predictive value was 91% for detecting malignancy and the negative predictive value was 100%. We conclude that x-ray phase-contrast imaging can accurately detect density variations...

  7. Characterization of phase and contrast of high peak power, ultrashort laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Sagisaka, Akito; Aoyama, Makoto; Matsuoka, Sinichi; Akahane, Yutaka; Nakano, Fumihiko; Yamakawa, Koichi [Advanced Photon Research Center, Kansai Research Establishment, Japan Atomic Energy Research Inst., Kizu, Kyoto (Japan)

    2000-03-01

    We fully characterize a high-peak power, ultrashort laser pulse in a Ti:sapphire chirped-pulse amplification laser system. The phase and contrast of the 20 fs pulse are determined by using frequency-resolved optical gating and high dynamic range cross-correlation techniques. The result of the phase measurement of the pulse indicate that the predominant phase distortion is quartic. The measured contrast of the pulse is of the order of 10{sup -6} limited by amplified spontaneous emission coming from the amplifiers. (author)

  8. Lyot-plane phase masks for improved high-contrast imaging with a vortex coronagraph

    CERN Document Server

    Ruane, Garreth J; Absil, Olivier; Mawet, Dimitri; Delacroix, Christian; Carlomagno, Brunella; Swartzlander, Grover A

    2015-01-01

    The vortex coronagraph is an optical instrument that precisely removes on-axis starlight allowing for high contrast imaging at small angular separation from the star, thereby providing a crucial capability for direct detection and characterization of exoplanets and circumstellar disks. Telescopes with aperture obstructions, such as secondary mirrors and spider support structures, require advanced coronagraph designs to provide adequate starlight suppression. We introduce a phase-only Lyot-plane optic to the vortex coronagraph that offers improved contrast performance on telescopes with complicated apertures. Potential solutions for the European Extremely Large Telescope (E-ELT) are described and compared. Adding a Lyot-plane phase mask relocates residual starlight away from a region of the image plane thereby reducing stellar noise and improving sensitivity to off-axis companions. The phase mask is calculated using an iterative phase retrieval algorithm. Numerically, we achieve a contrast on the order of $10^...

  9. Fourier transform based iterative method for x-ray differential phase-contrast computed tomography

    CERN Document Server

    Cong, Wenxiang; Wang, Ge

    2011-01-01

    Biological soft tissues encountered in clinical and pre-clinical imaging mainly consist of light element atoms, and their composition is nearly uniform with little density variation. Thus, x-ray attenuation imaging suffers from low image contrast resolution. By contrast, x-ray phase shift of soft tissues is about a thousand times greater than x-ray absorption over the diagnostic energy range, thereby a significantly higher sensitivity can be achieved in terms of phase shift. In this paper, we propose a novel Fourier transform based iterative method to perform x-ray tomographic imaging of the refractive index directly from differential phase shift data. This approach offers distinct advantages in cases of incomplete and noisy data than analytic reconstruction, and especially suitable for phase-contrast interior tomography by incorporating prior knowledge in a region of interest (ROI). Biological experiments demonstrate the merits of the proposed approach.

  10. Phase Quantization Study of Spatial Light Modulator for Extreme High contrast Imaging

    CERN Document Server

    Dou, Jiangpei

    2016-01-01

    Direct imaging of exoplanets by reflected starlight is extremely challenging due to the large luminosity ratio to the primary star. Wave front control is a critical technique to attenuate the speckle noise in order to achieve an extreme high contrast. We present the phase quantization study of spatial light modulator for wave front control to meet the contrast requirement of detection of a terrestrial planet in the habitable zone of a solar-type star. We perform the numerical simulation by employing the SLM with different phase accuracy and actuator numbers, which are related to the achievable contrast. We use an optimization algorithm to solve the quantization problems that is matched to the controllable phase step of the SLM. Two optical configurations are discussed with the SLM located before and after the coronagraph focal plane mask, respectively. The simulation result has constrained the specification for phase accuracy of SLM in above two optical configurations. Finally, we have demonstrated that the S...

  11. Evaluation on correction factor for in-line X-ray phase contrast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Mingli; Huang, Zhifeng; Zhang, Li; Zhang, Ran [Tsinghua Univ., Beijing (China). Dept. of Engineering Physics; Ministry of Education, Beijing (China). Key Laboratory of Particle and Radiation Imaging; Yin, Hongxia; Liu, Yunfu; Wang, Zhenchang [Capital Medical Univ., Beijing (China). Medical Imaging Center; Xiao, Tiqiao [Chinese Academy of Sciences, Shanghai (China). Shanghai Inst. of Applied Physics

    2011-07-01

    X-ray in-line phase contrast computed tomography (CT) is an effective nondestructive tool, providing 3D distribution of the refractive index of weakly absorbing low-Z object with high resolution and image contrast, especially with high-brilliance third-generation synchrotron radiation sources. Modified Bronnikov's algorithm (MBA), one of the in-line phase contrast CT reconstruction algorithms, can reconstruct the refractive index distribution of a pure phase object with a single computed tomographic data set. The key idea of the MBA is to use a correction factor in the filter function to stabilize the behavior at low frequencies. In this paper, we evaluate the influences of the correction factor to the final reconstruction results of the absorption-phase-mixed objects with analytical simulation and actual experiments. The limitations of the MBA are discussed finally. (orig.)

  12. Practical aspects of Boersch phase contrast electron microscopy of biological specimens

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Andreas [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60439 Frankfurt (Germany); Muzik, Heiko; Vieker, Henning; Turchanin, Andrey; Beyer, Andre; Goelzhaeuser, Armin [University of Bielefeld, Physics of Supramolecular Systems and Surfaces, Universitaetsstr. 25, D-33615 Bielefeld (Germany); Lacher, Manfred; Steltenkamp, Siegfried; Schmitz, Sam; Holik, Peter [Caesar Research Center, Ludwig-Erhard-Allee 2, D-53175 Bonn (Germany); Kuehlbrandt, Werner [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60439 Frankfurt (Germany); Rhinow, Daniel, E-mail: daniel.rhinow@biophys.mpg.de [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60439 Frankfurt (Germany)

    2012-05-15

    Implementation of physical phase plates into transmission electron microscopes to achieve in-focus contrast for ice-embedded biological specimens poses several technological challenges. During the last decade several phase plates designs have been introduced and tested for electron cryo-microscopy (cryoEM), including thin film (Zernike) phase plates and electrostatic devices. Boersch phase plates (BPPs) are electrostatic einzel lenses shifting the phase of the unscattered beam by an arbitrary angle. Adjusting the phase shift to 90 Degree-Sign achieves the maximum contrast transfer for phase objects such as biomolecules. Recently, we reported the implementation of a BPP into a dedicated phase contrast aberration-corrected electron microscope (PACEM) and demonstrated its use to generate in-focus contrast of frozen-hydrated specimens. However, a number of obstacles need to be overcome before BPPs can be used routinely, mostly related to the phase plate devices themselves. CryoEM with a physical phase plate is affected by electrostatic charging, obliteration of low spatial frequencies, and mechanical drift. Furthermore, BPPs introduce single sideband contrast (SSB), due to the obstruction of Friedel mates in the diffraction pattern. In this study we address the technical obstacles in detail and show how they may be overcome. We use X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) to identify contaminants responsible for electrostatic charging, which occurs with most phase plates. We demonstrate that obstruction of low-resolution features is significantly reduced by lowering the acceleration voltage of the microscope. Finally, we present computational approaches to correct BPP images for SSB contrast and to compensate for mechanical drift of the BPP. -- Highlights: Black-Right-Pointing-Pointer Various obstacles need to be overcome before Boersch phase plates can be used routinely. Black-Right-Pointing-Pointer Technical problems include

  13. Investigation of Source Grating Stepping for Differential Phase-contrast Cone Beam CT (DPC-CBCT) System

    Science.gov (United States)

    Cai, Weixing; Yu, Yang; Ning, Ruola; Liu, Jiangkun; Conover, David

    2012-01-01

    Differential phase contrast (DPC) imaging, which utilizes phase shift information of X-ray, has the potential of dramatically increasing the contrast in biological sample imaging compared to attenuation-based method that relies on X-ray absorption information, since the X-ray phase is much more sensitive than the attenuation during transmission. In a DPC imaging system, the phase stepping method is widely used to obtain DPC images: at each angle the phase grating is shifted incrementally to produce a set of images and then the so obtained images are used to retrieve DPC image. However, DPC imaging requires a high mechanical precision to perform phase stepping, which is generally one order higher than the period of phase grating. Given that phase grating period is generally 2–4 um, the requirement of mechanical accuracy and stability are very demanding (<0.5um) and difficult to meet in a system with rotating gantry. In this paper, we present a method that is able to greatly relax the requirement of mechanical accuracy and stability by stepping the source grating rather than the analyzer grating. This method is able to increase the system’s mechanical tolerance without compromising image quality and make it feasible to install the system on a rotating gantry to perform differential phase-contrast cone beam CT (DPC-CBCT). It is also able to increase the grating shifting precision and as a result improve the reconstructed image quality. Mechanical tolerance investigation and image quality investigation at different phase stepping schemes and different dose levels will be carried out on both the original modality and the new modality, the results will be evaluated and compared. We will deliberately create random mechanical errors in phase stepping and evaluate the resulting DPC images and DPC-CBCT reconstructions. The contrast, noise level and sharpness will be evaluated to assess the influence of mechanical errors. By stepping the source grating, the system is

  14. Investigation of source grating stepping for differential phase-contrast cone-beam CT (DPC-CBCT) system

    Science.gov (United States)

    Cai, Weixing; Yu, Yang; Ning, Ruola; Liu, Jiangkun; Conover, David

    2012-03-01

    Differential phase contrast (DPC) imaging, which utilizes phase shift information of X-ray, has the potential of dramatically increasing the contrast in biological sample imaging compared to attenuation-based method that relies on X-ray absorption information, since the X-ray phase is much more sensitive than the attenuation during transmission. In a DPC imaging system, the phase stepping method is widely used to obtain DPC images: at each angle the phase grating is shifted incrementally to produce a set of images and then the so obtained images are used to retrieve DPC image. However, DPC imaging requires a high mechanical precision to perform phase stepping, which is generally one order higher than the period of phase grating. Given that phase grating period is generally 2-4 um, the requirement of mechanical accuracy and stability are very demanding (<0.5um) and difficult to meet in a system with rotating gantry. In this paper, we present a method that is able to greatly relax the requirement of mechanical accuracy and stability by stepping the source grating rather than the analyzer grating. This method is able to increase the system's mechanical tolerance without compromising image quality and make it feasible to install the system on a rotating gantry to perform differential phase-contrast cone beam CT (DPC-CBCT). It is also able to increase the grating shifting precision and as a result improve the reconstructed image quality. Mechanical tolerance investigation and image quality investigation at different phase stepping schemes and different dose levels will be carried out on both the original modality and the new modality, the results will be evaluated and compared. We will deliberately create random mechanical errors in phase stepping and evaluate the resulting DPC images and DPC-CBCT reconstructions. The contrast, noise level and sharpness will be evaluated to assess the influence of mechanical errors. By stepping the source grating, the system is expected

  15. Phase contrast X-ray microtomography of the Rhodnius prolixus head: Comparison of direct reconstruction and phase retrieval approach

    Science.gov (United States)

    Almeida, A. P.; Braz, D.; Nogueira, L. P.; Colaço, M. V.; Soares, J.; Cardoso, S. C.; Garcia, E. S.; Azambuja, P.; Gonzalez, M. S.; Mohammadi, S.; Tromba, G.; Barroso, R. C.

    2014-02-01

    We have used phase-contrast X-ray microtomography (PPC-μCT) to study the head of the blood-feeding bug, Rhodnius prolixus, which is one of the most important insect vector of Trypanosoma cruzi, ethiologic agent of Chagas disease in Latin America. Images reconstructed from phase-retrieved projections processed by ANKA phase are compared to those obtained through direct tomographic reconstruction of the flat-field-corrected transmission radiographs. It should be noted that the relative locations of the important morphological internal structures are observable with a precision that is difficult to obtain without the phase retrieval approach.

  16. Quantitative and dynamic measurements of biological fresh samples with X-ray phase contrast tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Masato, E-mail: hoshino@spring8.or.jp; Uesugi, Kentaro [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Tsukube, Takuro [Japanese Red Cross Kobe Hospital, 1-3-1 Wakinohamakaigandori, Chuo-ku, Kobe, Hyogo 651-0073 (Japan); Yagi, Naoto [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2014-10-08

    Quantitative measurements of biological fresh samples based on three-dimensional densitometry using X-ray phase contrast tomography are presented. X-ray phase contrast tomography using a Talbot grating interferometer was applied to biological fresh samples which were not fixed by any fixatives. To achieve a high-throughput measurement for the fresh samples the X-ray phase contrast tomography measurement procedure was improved. The three-dimensional structure of a fresh mouse fetus was clearly depicted as a mass density map using X-ray phase contrast tomography. The mouse fetus measured in the fresh state was then fixed by formalin and measured in the fixed state. The influence of the formalin fixation on soft tissue was quantitatively evaluated by comparing the fresh and fixed samples. X-ray phase contrast tomography was also applied to the dynamic measurement of a biological fresh sample. Morphological changes of a ring-shaped fresh pig aorta were measured tomographically under different degrees of stretching.

  17. Imaging of metastatic lymph nodes by X-ray phase-contrast micro-tomography.

    Directory of Open Access Journals (Sweden)

    Torben Haugaard Jensen

    Full Text Available Invasive cancer causes a change in density in the affected tissue, which can be visualized by x-ray phase-contrast tomography. However, the diagnostic value of this method has so far not been investigated in detail. Therefore, the purpose of this study was, in a blinded manner, to investigate whether malignancy could be revealed by non-invasive x-ray phase-contrast tomography in lymph nodes from breast cancer patients. Seventeen formalin-fixed paraffin-embedded lymph nodes from 10 female patients (age range 37-83 years diagnosed with invasive ductal carcinomas were analyzed by X-ray phase-contrast tomography. Ten lymph nodes had metastatic deposits and 7 were benign. The phase-contrast images were analyzed according to standards for conventional CT images looking for characteristics usually only visible by pathological examinations. Histopathology was used as reference. The result of this study was that the diagnostic sensitivity of the image analysis for detecting malignancy was 100% and the specificity was 87%. The positive predictive value was 91% for detecting malignancy and the negative predictive value was 100%. We conclude that x-ray phase-contrast imaging can accurately detect density variations to obtain information regarding lymph node involvement previously inaccessible with standard absorption x-ray imaging.

  18. In vitro motility of cells from human epidermoid carcinomas. A study by phase-contrast and reflection-contrast cinematography.

    Science.gov (United States)

    Haemmerli, G; Sträuli, P

    1981-05-15

    The motile behavior of six cell lines derived from human squamous carcinomas (two from the larynx, four from the tongue) was studied by cinematography under phase- and reflection-contrast illumination. The recorded cell activities consist in spreading, stationary and translocation motility, and aggregate formation. Within this common pattern, quantitative modifications ("sub-pattern") are stable properties of the individual cells lines. Such modifications are particularly evident with regard to the dynamic texture of the aggregates which ranges from loose, netlike structures to compact islands with smooth borders. Accordingly, the intensity of cell traffic within and around the aggregates varies considerably. It is discussed to what extent the in vitro motility of the carcinoma cell populations reflects their behavior in the organism and thus the significance of cell movements for invasion.

  19. Robust interferometric imaging via prior-less phase recovery: redundant spacing calibration with generalized closure phases

    Science.gov (United States)

    Kurien, Binoy G.; Ashcom, Jonathan B.; Shah, Vinay N.; Rachlin, Yaron; Tarokh, Vahid

    2016-09-01

    Atmospheric turbulence presents a fundamental challenge to Fourier phase recovery in optical interferometry. Typical reconstruction algorithms employ Bayesian inference techniques which rely on prior knowledge of the scene under observation. In contrast, Redundant Spacing Calibration (RSC) algorithms employ redundancy in the baselines of the interferometric array to directly expose the contribution of turbulence, thereby enabling phase recovery for targets of arbitrary and unknown complexity. Traditionally RSC algorithms have been applied directly to single-exposure measurements, which are reliable only at high photon flux in general. In scenarios of low photon flux, such as those arising in the observation of dim objects in space, one must instead rely on time-averaged, atmosphere-invariant quantities such as the bispectrum. In this paper, we develop a novel RSC-based algorithm for prior-less phase recovery in which we generalize the bispectrum to higher-order atmosphere-invariants (n-spectra) for improved sensitivity. We provide a strategy for selection of a high-SNR set of n-spectra using the graph-theoretic notion of the minimum cycle basis. We also discuss a key property of this set (wrap-invariance), which then enables reliable application of standard linear estimation techniques to recover the Fourier phases from the 2π-wrapped n-spectra phases. For validation, we analyze the expected shot-noise-limited performance of our algorithm for both pairwise and Fizeau interferometric architectures, and corroborate this analysis with simulation results showing performance near an atmosphere-oracle Cramer-Rao bound. Lastly, we apply techniques from the field of compressed sensing to perform image reconstruction from the estimated complex visibilities.

  20. Nodular hepatocellular carcinoma : contrast enhancement patterns on three - phase spiral CT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hak Jong; Choi, Byung Ihn; Han, Joon Koo; Kim, Seung Hyup; Kim, Woo Sun; Kim, Tae Kyung; Choi, Dae Seop [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    1996-09-01

    To evaluate contrast enhancement patterns of nodular hepatocellular carcinomas (HCCs) on three-phase spiral CT. A retrospective analysis of contrast enhancement patterns was performed in 48 patients with HCC. Three-phase dynamic CT images of hepatic arterial dominant phase, portal dominant phase, and delayed phase were obtained at 30, 65 and 360 seconds after the initiation of injection of contrast material, respectively. Iodized-oil CT was performed two weeks after angiography and infusion of iodized-oil. Masses were divided into three groups, according to size ; 1-20mm (n=34), 21-40mm (n=26), and over 40mm (n=19). Contrast enhancement patterns of tumors compared with attenuation of surrounding liver parenchyma, were cheracterized as one of four types, as follows : high, iso, low and mixed attenuation. Seventy-three of 79 HCC nodules detected on iodized-oil CT (92%) were detected on three-phase spiral CT. In the 1-20mm group, masses showed high-attenuation in the arterial dominant phase(19/34, 55.9%), and iso-attenuation in the portal dominant phase(16/34, 47.1 %) and delayed phase(18/34, 52.9%). In the 21-40mm group, masses showed high-attenuation in the arterial dominant phase(21/26, 80.8 %), low-attenuation in the portal dominant phase(13/26, 50%) and delayed phase(21/26, 80.8 %). In the over 40m group, the masses showed mixed-attenuation in the arterial dominant phase(9/19, 47.4%), low-attenuation in the portal dominant phase(12/19, 63.2%), and delayed phase(16/19, 84.2 %). The most common enhancement pattern was high(arterial dominant)-iso(portal dominant)-iso(delayed) in the 1-20 mm group (8/34, 23.5 %), high-low-low in the group 21-40 mm (8/26, 30.8%), and mixed-low-low in the over 40mm group (5/19, 26.3%). Hepatocellular carcinomas showed variable enhancing patterns according to the size of the tumor on three-phase spiral CT. Understanding these enhancing characteristics of HCCs on three-phase spiral CT may be helpful in their diagnosis.

  1. High resolution laboratory grating-based x-ray phase-contrast CT

    Science.gov (United States)

    Viermetz, Manuel P.; Birnbacher, Lorenz J. B.; Fehringer, Andreas; Willner, Marian; Noel, Peter B.; Pfeiffer, Franz; Herzen, Julia

    2017-03-01

    Grating-based phase-contrast computed tomography (gbPC-CT) is a promising imaging method for imaging of soft tissue contrast without the need of any contrast agent. The focus of this study is the increase in spatial resolution without loss in sensitivity to allow visualization of pathologies comparable to the convincing results obtained at the synchrotron. To improve the effective pixel size a super-resolution reconstruction based on subpixel shifts involving a deconvolution of the image is applied on differential phase-contrast data. In our study we could achieve an effective pixel sizes of 28mm without any drawback in terms of sensitivity or the ability to measure quantitative data.

  2. Contrast enhancement characteristics of hepatocellular carcinoma on two-phase dynamic scan with spiral CT

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Dae Young; Choi, Byung Ihn; Han, Joon Koo; Han, Man Chung [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    1994-12-15

    The purpose of this study was to characterize the enhancing patterns of hepatocellular carcinoma (HCC) on two-phase dynamic incremental liver scan with spiral CT. Two-phase dynamic incremental liver scan using spiral CT was performed on 230 lesions in 107 patients with HCC. CT scanning was performed with a table speed of 13 mm/sec and a section thickness of 10 mm; 120 mL of contrast medium was injected intravenously with a automatic injector at the rate of 3 mL/sec. CT scans were started 35 sec(early phase) and 3 min(delayed phase) after beginning injection of contrast medium. The tumors were divided into 2 groups according to size({<=}3cm and > 3cm), the contrast enhancement patterns of HCCs and capsules in the early and delayed phases were analyzed in each group. Most of HCCs appeared as high-attenuating lesions in the early phase(75% in tumors smaller than 3cm and 61 % in tumors larger than 3cm), and as low-attenuating lesions in the delayed phase(68% in tumors smaller than 3cm and 90% in tumors larger than 3cm). Forty-eight percent of HCCs smaller than 3cm and 58% of HCCs larger than 3 cm were high-attenuating in the early phase and low-attenuating in the delayed phase. Thirty-two percent of capsules were low- or iso-attenuating in the early phase and high-attenuating in the delayed phase. Capsules were demonstrated in 22% in HCCs smaller than 3cm and 67% in HCCs larger than 3 cm (p <. 01). Two-phase dynamic scan with spiral CT is useful in the diagnosis of HCC because of a precise display of hemodynamic characteristics of HCCs.

  3. An analysis-synthesis approach for neurosphere modelisation under phase-contrast microscopy.

    Science.gov (United States)

    Rigaud, Stéphane; Huang, Chao-Hui; Ahmed, Sohail; Lim, Joo-Hwee; Racoceanu, Daniel

    2013-01-01

    The study of stem cells is one of the most important biomedical research. Understanding their development could allow multiple applications in regenerative medicine. For this purpose, automated solutions for the observation of stem cell development process are needed. This study introduces an on-line analysis method for the modelling of neurosphere evolution during the early time of their development under phase contrast microscopy. From the corresponding phase contrast time-lapse sequences, we extract information from the neurosphere using a combination of phase contrast physics deconvolution and curve detection for locate the cells inside the neurosphere. Then, based on prior biological knowledge, we generate possible and optimal 3-dimensional configuration using 2D to 3D registration methods and evolutionary optimisation algorithm.

  4. X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants

    OpenAIRE

    Appel, Alyssa A.; Larson, Jeffery C.; Jiang, Bin; Zhong, Zhong; Anastasio, Mark A.; Brey, Eric M.

    2015-01-01

    Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray...

  5. Polychromatic phase contrast imaging as a basic step towards a widespread application of the technique

    Science.gov (United States)

    Olivo, A.; Speller, R.

    2007-10-01

    Phase contrast imaging (PCI) is probably the most exciting amongst emerging X-ray imaging techniques, as it has the potential to remove some of the main limitations of conventional radiology. As a consequence, significant effort is currently directed towards developing the technique for the first clinical implementations. In recent years, PCI has been widely experimented, but its use has been mainly restricted to synchrotron radiation (SR) facilities. Source-related limitations are in fact the most relevant in this context, and the fact that most phase techniques require monochromatic radiation makes these limitations even more severe. Amongst the different techniques, free-space propagation is the most suited to a polychromatic implementation. A detailed simulation, based on Fresnel/Kirchoff diffraction integrals, was devised to describe this imaging modality. This simulation accounts for source dimensions, beam spectrum and divergence and detector point spread function, and can thus be applied to any X-ray imaging system. In particular, by accepting these parameters as input, along with ones describing the sample, the model can be used to optimize the geometry of the set-up, i.e. to assess the source-to-sample and sample-to-detector distances that maximize feature detection. The simulation was validated experimentally by acquiring a range of images of different samples with a laboratory X-ray source. Good agreement was found between simulated and experimental data in all cases. In order to maximize the generality of the results, all acquisitions were carried out using a polychromatic source and an energy-resolving detector. This effectively allowed the recording of a range of monochromatic and polychromatic images in a single acquisition, as an assortment of the former can be created by integrating different parts of the acquired spectra. The most notable result obtained in this study is that in most practical cases polychromatic PCI can provide the same image

  6. Experimental results from a preclinical X-ray phase-contrast CT scanner

    Science.gov (United States)

    Tapfer, Arne; Bech, Martin; Velroyen, Astrid; Meiser, Jan; Mohr, Jürgen; Walter, Marco; Schulz, Joachim; Pauwels, Bart; Bruyndonckx, Peter; Liu, Xuan; Sasov, Alexander; Pfeiffer, Franz

    2012-01-01

    To explore the future clinical potential of improved soft-tissue visibility with grating-based X-ray phase contrast (PC), we have developed a first preclinical computed tomography (CT) scanner featuring a rotating gantry. The main challenge in the transition from previous bench-top systems to a preclinical scanner are phase artifacts that are caused by minimal changes in the grating alignment during gantry rotation. In this paper, we present the first experimental results from the system together with an adaptive phase recovery method that corrects for these phase artifacts. Using this method, we show that the scanner can recover quantitatively accurate Hounsfield units in attenuation and phase. Moreover, we present a first tomography scan of biological tissue with complementary information in attenuation and phase contrast. The present study hence demonstrates the feasibility of grating-based phase contrast with a rotating gantry for the first time and paves the way for future in vivo studies on small animal disease models (in the mid-term future) and human diagnostics applications (in the long-term future). PMID:23019354

  7. Design and construction of an X-ray phase contrast CT system at BSRF

    Energy Technology Data Exchange (ETDEWEB)

    Wang Junyue [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhu Peiping [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)]. E-mail: zhupp@ihep.ac.cn; Yuan Qingxi [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Huang Wanxia [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Shu Hang [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Hu Tiandou [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)]. E-mail: wuzy@ihep.ac.cn

    2006-11-15

    The 4W1A beamline at the Beijing Synchrotron Radiation Facility (BSRF) had been dedicated to researches in the field of X-ray phase contrast imaging. In both available layouts, e.g., in-line imaging and diffraction enhanced imaging, a spatial resolution better than 10 {mu}m has been achieved and an X-ray phase contrast CT system has been installed and tested on the beamline. With or without analyzer, it can work either in in-line or the diffraction enhanced mode.

  8. Design and construction of an X-ray phase contrast CT system at BSRF

    Science.gov (United States)

    Wang, Junyue; Zhu, Peiping; Yuan, Qingxi; Huang, Wanxia; Shu, Hang; Hu, Tiandou; Wu, Ziyu

    2006-11-01

    The 4W1A beamline at the Beijing Synchrotron Radiation Facility (BSRF) had been dedicated to researches in the field of X-ray phase contrast imaging. In both available layouts, e.g., in-line imaging and diffraction enhanced imaging, a spatial resolution better than 10 μm has been achieved and an X-ray phase contrast CT system has been installed and tested on the beamline. With or without analyzer, it can work either in in-line or the diffraction enhanced mode.

  9. Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhentian; Thuering, Thomas; David, Christian; Roessl, Ewald; Trippel, Mafalda; Kubik-Huch, Rahel A.; Singer, Gad; Hohl, Michael K.; Hauser, Nik; Stampanoni, Marco [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen (Switzerland); Laboratory for Micro and Nanotechnology, Paul Scherrer Institut, 5232 Villigen (Switzerland); Philips Technologie GmbH, Roentgenstrasse 24, 22335 Hamburg (Germany); Institute of Pathology, Kantonsspital Baden, 5404 Baden (Switzerland); Department of Radiology, Kantonsspital Baden, 5404 Baden (Switzerland); Institute of Pathology, Kantonsspital Baden, 5404 Baden (Switzerland); Department of Gynecology and Obstetrics, Interdisciplinary Breast Center Baden, Kantonsspital Baden, 5404 Baden (Switzerland); Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland and Institute for Biomedical Engineering, University and ETH Zuerich, 8092 Zuerich (Switzerland)

    2012-07-31

    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process.

  10. Anomalous scaling law for noise variance and spatial resolution in differential phase contrast computed tomography

    CERN Document Server

    Chen, Guang-Hong; Qi, Zhihua; Bevins, Nicholas

    2010-01-01

    In conventional absorption based x-ray computed tomography (CT), the noise variance in reconstructed CT images scales with spatial resolution following an inverse cubic relationship. Without reconstruction, in x-ray absorption radiography, the noise variance scales as an inverse square with spatial resolution. In this letter we report that while the inverse square relationship holds for differential phase contrast projection imaging, there exists an anomalous scaling law in differential phase contrast CT, where the noise variance scales with spatial resolution following an inverse linear relationship. The anomalous scaling law is theoretically derived and subsequently validated with phantom results from an experimental Talbot-Lau interferometer system.

  11. Investigation of suitable biopsy markers for grating-based phase contrast mammography

    Science.gov (United States)

    Arboleda, C.; Wang, Z.; Forte, S.; Kubik-Huch, R. A.; Stampanoni, M.

    2017-01-01

    Phase-contrast mammography is a rising technology where, in addition to X-ray absorption, images show phase and dark-field contrast. Although the use of biopsy markers constitutes a fundamental task in breast examinations, there has not been any investigation concerning appropriate clips for this technology. We studied the suitability of three markers (Tumark, Somatex Medical Technologies; Hydromark, Mammotome; and Mammostar, Mammotome) for this modality on a laboratory source setup using a chicken breast phantom. The first two clips appeared to be innocuous, whereas Mammostar showed the potential that the non-metallic portion only could be used as a marker for this technique.

  12. On the relationship between intensity diffraction tomography and phase-contrast tomography

    Science.gov (United States)

    Anastasio, Mark A.; Shi, Daxin

    2004-10-01

    Diffraction tomography (DT) is a well-known method for reconstructing the complex-valued refractive index distribution of weakly scattering objects. A reconstruction theory of intensity DT (I-DT) has been proposed [Gbur and Wolf, JOSA A, 2002] that can accomplish such a reconstruction from knowledge of only the wavefield intensities on two different transverse planes at each tomographic view angle. In this work, we elucidate the relationship between I-DT and phase-contrast tomography and demonstrate that I-DT reconstruction theory contains some of the existing reconstruction algorithms for phase-contrast tomography as special cases.

  13. Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging

    Science.gov (United States)

    Baran, P.; Pacile, S.; Nesterets, Y. I.; Mayo, S. C.; Dullin, C.; Dreossi, D.; Arfelli, F.; Thompson, D.; Lockie, D.; McCormack, M.; Taba, S. T.; Brun, F.; Pinamonti, M.; Nickson, C.; Hall, C.; Dimmock, M.; Zanconati, F.; Cholewa, M.; Quiney, H.; Brennan, P. C.; Tromba, G.; Gureyev, T. E.

    2017-03-01

    The aim of this study was to optimise the experimental protocol and data analysis for in-vivo breast cancer x-ray imaging. Results are presented of the experiment at the SYRMEP beamline of Elettra Synchrotron using the propagation-based phase-contrast mammographic tomography method, which incorporates not only absorption, but also x-ray phase information. In this study the images of breast tissue samples, of a size corresponding to a full human breast, with radiologically acceptable x-ray doses were obtained, and the degree of improvement of the image quality (from the diagnostic point of view) achievable using propagation-based phase-contrast image acquisition protocols with proper incorporation of x-ray phase retrieval into the reconstruction pipeline was investigated. Parameters such as the x-ray energy, sample-to-detector distance and data processing methods were tested, evaluated and optimized with respect to the estimated diagnostic value using a mastectomy sample with a malignant lesion. The results of quantitative evaluation of images were obtained by means of radiological assessment carried out by 13 experienced specialists. A comparative analysis was performed between the x-ray and the histological images of the specimen. The results of the analysis indicate that, within the investigated range of parameters, both the objective image quality characteristics and the subjective radiological scores of propagation-based phase-contrast images of breast tissues monotonically increase with the strength of phase contrast which in turn is directly proportional to the product of the radiation wavelength and the sample-to-detector distance. The outcomes of this study serve to define the practical imaging conditions and the CT reconstruction procedures appropriate for low-dose phase-contrast mammographic imaging of live patients at specially designed synchrotron beamlines.

  14. Peak flow velocities in the ascending aorta-real-time phase-contrast magnetic resonance imaging vs. cine magnetic resonance imaging and echocardiography.

    Science.gov (United States)

    Sohns, Jan M; Kowallick, Johannes T; Joseph, Arun A; Merboldt, K Dietmar; Voit, Dirk; Fasshauer, Martin; Staab, Wieland; Frahm, Jens; Lotz, Joachim; Unterberg-Buchwald, Christina

    2015-10-01

    This prospective study of eight healthy volunteers evaluates peak flow velocities (PFV) in the ascending aorta using real-time phase-contrast magnetic resonance imaging (MRI) in comparison to cine phase-contrast MRI and echocardiography. Flow measurements by echocardiography and cine phase-contrast MRI with breath-holding were performed according to clinical standards. Real-time phase-contrast MRI at 40 ms temporal resolution and 1.3 mm in-plane resolution was based on highly undersampled radial fast low-angle shot (FLASH) sequences with image reconstruction by regularized nonlinear inversion (NLINV). Evaluations focused on the determination of PFV. Linear regressions and Bland-Altman plots were used for comparisons of methods. When averaged across subjects, real-time phase-contrast MRI resulted in PFV of 120±20 cm s(-1) (mean ± SD) in comparison to 122±16 cm s(-1) for cine MRI and 124±20 cm s(-1) for echocardiography. The maximum deviations between real-time phase-contrast MRI and echocardiography ranged from -20 to +14 cm s(-1) (cine MRI: -10 to +12 cm s(-1)). Thus, in general, real-time phase-contrast MRI of cardiac outflow revealed quantitative agreement with cine MRI and echocardiography. The advantages of real-time MRI are measurements during free breathing and access to individual cardiac cycles.

  15. Theoretical considerations for X-ray phase contrast mammography by Thomson source

    Energy Technology Data Exchange (ETDEWEB)

    Cedola, A. [Istituto di Fotonica e Nanotecnologie-Consiglio Nazionale delle Ricerche (IFN-CNR), via Cineto Romano 42, I-00156 Roma (Italy); INFN, Sezione di Roma1, Piazzale Aldo Moro2, 00185 Rome (Italy)], E-mail: cedola@ifn.cnr.it; Bukreeva, I.; Lagomarsino, S. [Istituto di Fotonica e Nanotecnologie-Consiglio Nazionale delle Ricerche (IFN-CNR), via Cineto Romano 42, I-00156 Roma (Italy); INFN, Sezione di Roma1, Piazzale Aldo Moro2, 00185 Rome (Italy); Petrillo, V.; Maroli, C. [Universita di Milano, Physics Department and INFN Sezione di Milano Via Celoria 16, 20133 Milano (Italy)

    2009-09-01

    The advent, in the near future, of compact X-ray sources like Thomson Back-Scattering (TBS) will allow the clinical application of advanced X-ray imaging techniques, such as phase contrast, with higher sensitivity and lower impact in terms of dose delivery. In this work, we theoretically investigated the possibility of using such sources for phase contrast imaging of micro-calcifications included in a breast tissue. In our study we analyzed the phase and amplitude distribution of the TBS source and we showed that this source can be used for phase contrast imaging since the source coherence at the sample position is sufficiently high for achieving good contrast and micrometer spatial resolution. Indeed the spatial coherence of a TBS source is closer to that of a synchrotron radiation source, and much better than that of a laboratory source. Moreover, we showed the advantages of phase imaging with respect to standard absorption imaging, in the specific case of micro-calcifications detection.

  16. X-ray phase contrast tomography by tracking near field speckle

    Science.gov (United States)

    Wang, Hongchang; Berujon, Sebastien; Herzen, Julia; Atwood, Robert; Laundy, David; Hipp, Alexander; Sawhney, Kawal

    2015-03-01

    X-ray imaging techniques that capture variations in the x-ray phase can yield higher contrast images with lower x-ray dose than is possible with conventional absorption radiography. However, the extraction of phase information is often more difficult than the extraction of absorption information and requires a more sophisticated experimental arrangement. We here report a method for three-dimensional (3D) X-ray phase contrast computed tomography (CT) which gives quantitative volumetric information on the real part of the refractive index. The method is based on the recently developed X-ray speckle tracking technique in which the displacement of near field speckle is tracked using a digital image correlation algorithm. In addition to differential phase contrast projection images, the method allows the dark-field images to be simultaneously extracted. After reconstruction, compared to conventional absorption CT images, the 3D phase CT images show greatly enhanced contrast. This new imaging method has advantages compared to other X-ray imaging methods in simplicity of experimental arrangement, speed of measurement and relative insensitivity to beam movements. These features make the technique an attractive candidate for material imaging such as in-vivo imaging of biological systems containing soft tissue.

  17. General Motors Phase II Catalyst System

    Energy Technology Data Exchange (ETDEWEB)

    Canale, R.P.; Winegarden, S.R.; Carlson, C.R.; Miles, D.L.

    1978-01-01

    Three-way catalysts provide a means of catalytically achieving lower NOx emission levels while maintaining good control of HC and CO emissions. However, very accurate control of air-fuel ratio is necessary. The precise air-fuel ratio control required is accomplished by employing a closed loop fuel metering system in conjunction with an exhaust gas sensor and an electronic control unit. To gain production experience with this type of system, General Motors is introducing it on two 1978 engine families sold in California. One is a 2.5 liter L-4 engine and the other is a 3.8 liter V-6 engine. Closed loop controlled carburetors are used on both systems. The components used on both systems are described and emission and fuel economy results are reviewed.

  18. Extending Local Canonical Correlation Analysis to Handle General Linear Contrasts for fMRI Data

    Directory of Open Access Journals (Sweden)

    Mingwu Jin

    2012-01-01

    Full Text Available Local canonical correlation analysis (CCA is a multivariate method that has been proposed to more accurately determine activation patterns in fMRI data. In its conventional formulation, CCA has several drawbacks that limit its usefulness in fMRI. A major drawback is that, unlike the general linear model (GLM, a test of general linear contrasts of the temporal regressors has not been incorporated into the CCA formalism. To overcome this drawback, a novel directional test statistic was derived using the equivalence of multivariate multiple regression (MVMR and CCA. This extension will allow CCA to be used for inference of general linear contrasts in more complicated fMRI designs without reparameterization of the design matrix and without reestimating the CCA solutions for each particular contrast of interest. With the proper constraints on the spatial coefficients of CCA, this test statistic can yield a more powerful test on the inference of evoked brain regional activations from noisy fMRI data than the conventional t-test in the GLM. The quantitative results from simulated and pseudoreal data and activation maps from fMRI data were used to demonstrate the advantage of this novel test statistic.

  19. Experimental demonstration of passive coherent combining of fiber lasers by phase contrast filtering.

    Science.gov (United States)

    Jeux, François; Desfarges-Berthelemot, Agnès; Kermène, Vincent; Barthelemy, Alain

    2012-12-17

    We report experiments on a new laser architecture involving phase contrast filtering to coherently combine an array of fiber lasers. We demonstrate that the new technique yields a more stable phase-locking than standard methods using only amplitude filtering. A spectral analysis of the output beams shows that the new scheme generates more resonant frequencies common to the coupled lasers. This property can enhance the combining efficiency when the number of lasers to be coupled is large.

  20. Theoretical analysis of x-ray CT phase-contrast imaging

    Science.gov (United States)

    Feng, Sheng; Liu, Song; Zhang, Xuelong

    2008-12-01

    Recently phase contrast imaging has attracted much attention. An obvious advantage of using X-rays for imaging the internal structure of relatively thick samples lies in its high degree of penetration of solid objects. However, often leads to poor image contrast for soft tissue. Phase contrast imaging can be very useful in such situation, as the phase of the transmitted beam may often be more sensitive indicator of density of sample than convention contrast. On the other hand, Computed Tomography is the best technology in the aspect of X-rays detection. Using the technology, the detected object can be imaged to three-dimensional image, so as to observe the inner structure of object, and be convenient to the disease examination. If the phase contrast imaging can be used to the technology of Computed Tomography, the high resolution image can be gained. The technology will become the development orientation of medical image. The aim of this article was to apply the theory of X-rays phase contrast imaging to the traditional X-CT technique. For this purpose, the formula deduced from the imaging theory with parallel monochromatic X-rays illuminating the object based on the Fresnel-Kircohhof theory had been completed and a formula similar to that of the traditional X-CT reconstruction had been gained, which was Radon transform formula. At last, X-rays reconstruction simulation had been carried out according to the formula, and proved that the method could be used in clinical medical imaging. The method discussed in this paper had a very bright prospect for application.

  1. Evaluation of tumor detection and peak hepatic contrast enhancement in the portal dominant phase of two-phase helical CT

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Kazuhiro; Sakurada, Akira; Baba, Seiko; Ishida, Jirou; Kakizaki, Dai; Abe, Kimihiko [Tokyo Medical Coll. (Japan)

    1997-11-01

    We evaluated the portal dominant phase of two-phase helical CT. The livers of 203 (112 cirrhotic and 91 non-cirrhotic) patients were examined. Three protocols were performed in succession in three consecutive periods. In the first period 90 ml iohexol (300 mgI/ml) (300/90) was employed. In the second, 120 ml ioversol (240 mgI/ml) (240/120) and in the third 120 ml iomeprol (300 mgI/ml) (300/120) were given. The injection flow rate was 3 ml/sec. Scanning started 25 sec (arterial dominant phase) and 75 sec (portal dominant phase) after the beginning of contrast medium injection. In cirrhotic patients we evaluated whether the peak hepatic contrast enhancement (PHCE) was acquired or not. Among the 203 patients those 48 cases clinically diagnosed as hepatocellular carcinoma were examined in terms of tumor detection. The PHCE for each protocol showed no significant difference in the cirrhotic and non-cirrhotic groups. The presence of portosystemic shunt (P-S shunt) did not affect the PHCE in cirrhotic patients. The peak times were significantly different in cases with or without P-S shunt (p=.0004). Concerning tumor detection, the portal dominant phase was inferior to the arterial dominant phase (p=.00013) and equivalent to the delayed phase (p=.056). (author)

  2. Dynamic measurements of total hepatic blood flow with Phase Contrast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Yzet, Thierry [Department of Radiology, University Hospital, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: Yzet.Thierry@chu-amiens.fr; Bouzerar, Roger [Department of Imaging and Biophysics, University Hospital, Jules Verne University of Picardie, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: bouzerar.roger@chu-amiens.fr; Baledent, Olivier [Department of Imaging and Biophysics, University Hospital, Jules Verne University of Picardie, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: Olivier.Baledent@chu-amiens.fr; Renard, Cedric [Department of Radiology, University Hospital, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: Renard.Cedric@chu-amiens.fr; Lumbala, Didier Mbayo [Department of Radiology, University Hospital, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: MbayoLumbala.Didier@chu-amiens.fr; Nguyen-Khac, Eric [Mobile Unit of Alcoology, University Hospital, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: Nguyen-Khac.Eric@chu-amiens.fr; Regimbeau, Jean-Marc [Department of Visceral and Digestive General Surgery, University Hospital, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: regimbeau.jean-marc@chu-amiens.fr; Deramond, H. [Department of Radiology, University Hospital, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: deramond.herve@chu-amiens.fr; Meyer, Marc-Etienne [Department of Imaging and Biophysics, University Hospital, Jules Verne University of Picardie, Place Victor Pauchet, 80054 Amiens cedex 1 (France)], E-mail: Meyer.Marc-Etienne@chu-amiens.fr

    2010-01-15

    Background/Aims: To measure total hepatic blood flow including portal and proper hepatic artery flows as well as the temporal evolution of the vessel's section during a cardiac cycle. Methods: Twenty healthy subjects, with a mean age of 26 years, were explored. Magnetic resonance imaging blood flow measurements were carried out in the portal vein and the proper hepatic artery. MR studies were performed using a 1.5T imager (General Electric Medical Systems). Gradient-echo 2D Fast Cine Phase Contrast sequences were used with both cardiac and respiratory gatings. Data analysis was performed using a semi-automatic software built in our laboratory. Results: The total hepatic flow rate measured was 1.35 {+-} 0.18 L/min or 19.7 {+-} 4.6 mL/(min kg). The proper hepatic artery provided 19.1% of the total hepatic blood flow entering the liver. Those measurements were in agreement with earlier studies using direct measurements. Mean and maximum velocities were also assessed and a discrepancy between our values and the literature's Doppler data was found. Measurements of the portal vein area have shown a mean variation, defined as a 'pulsatility' index of 18% over a cardiac cycle. Conclusions: We report here proper hepatic artery blood flow rate measurements using MRI. Associated with portal flow measurements, we have shown the feasibility of total hepatic flowmetry using a non-invasive and harmless technique.

  3. Hemodynamic evaluation with TURBO BRISK--a rapid phase contrast angiography technique.

    Science.gov (United States)

    Anayiotos, A S; Kortright, E; Doyle, M; Walsh, E G; Fuisz, A R; Pohost, G M

    2000-01-01

    Hemodynamic imaging by phase contrast angiography was significantly accelerated by selective interpolation and segmentation in k-space using TURBO BRISK. The method was tested in vitro on three independent flowfields, representative of human blood rheology: a straight tube simulating the descending aorta, a curved tube simulating the aortic arch and a two-chamber orifice flow model simulating valvular regurgitation. The results were compared to data obtained by Laser Doppler Velocimetry (LDV) and showed good agreement. For the straight tube, the flow velocity obtained by five TURBO BRISK methods with increasing segmentation factors and corresponding time savings showed good agreement with LDV. For the curved tube, the velocity showed good general agreement with some differences in the decelerating part of the cycle, and in the low-velocity secondary flow structures. The orifice flow evaluation, the most time consuming case, was performed by the control volume method. It showed good agreement with actual flows through the orifice. Data acquisitions for TURBO-4 BRISK could be performed in 20s for each velocity component. The method shows promise for breath-hold acquisitions in clinical applications, including calculation of blood flow volumes through diseased arteries, measurement of blood backflow volumes through dysfunctional heart valves to time valve replacement operations, and evaluation of arterial wall shear stress, an important factor in the genesis of atherosclerosis.

  4. Hepatic hemangioma: contrast enhancement patterns on two-phase spiral CT

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Eun Joo; Choi, Byung Ihn; Han, Joon Koo; Jang, Hyun Jung; Kim, Tae Kyoung; Kim, Ah Young; Lee, Ki Yeol [Seoul National Univ., Seoul (Korea, Republic of). Coll. of Medicine

    1998-01-01

    To evaluate contrast enhancement patterns of hemangioma according to size, as seen during the arterial and portal venous phase of spiral CT. Overall, the most common enhancement pattern was peripheral high (44/82, 53.7%), during the arterial and portal venous phase. The second and third most common patterns were uniform high (11/82, 13.4%) and peripheral high-uniform high (9/82, 11.0%), also during the arterial and portal venous phase. In tumors smaller than 20 mm, low-low attenuation was seen in eight (9.8%), and iso-low attenuation in two (2.4%), during the arterial and portal venous phase, respectively. On two-phase spiral CT, the most common enhancement pattern of hemangioma was peripheral high, seen during the arterial and portal venous phase. However, a small hemangioma less than 2cm may show atypical patterns, including low and iso attenuation. (author). 23 refs., 1 tab., 4 figs.

  5. Comparison of post contrast CT urography phases in bladder cancer detection

    Energy Technology Data Exchange (ETDEWEB)

    Helenius, Malin; Dahlman, Par; Lonnemark, Maria; Magnusson, Anders [Uppsala University Hospital, Department of Surgical Sciences, Section of Radiology, Uppsala (Sweden); Brekkan, Einar [Uppsala University Hospital, Department of Surgical Sciences, Section of Urology, Uppsala (Sweden); Wernroth, Lisa [Uppsala University Hospital, Uppsala Clinical Research Center, Uppsala (Sweden)

    2016-02-15

    The aim of this study was to investigate which post-contrast phase(s) in a four-phase CT urography protocol is (are) most suitable for bladder cancer detection. The medical records of 106 patients with visible haematuria who underwent a CT urography examination, including unenhanced, enhancement-triggered corticomedullary (CMP), nephrographic (NP) and excretory (EP) phases, were reviewed. The post-contrast phases (n = 318 different phases) were randomized into an evaluation order and blindly reviewed by two uroradiologists. Twenty-one patients were diagnosed with bladder cancer. Sensitivity for bladder cancer detection was 0.95 in CMP, 0.83 in NP and 0.81 in EP. Negative predictive value (NPV) was 0.99 in CMP, 0.96 in NP and 0.95 in EP. The sensitivity was higher in CMP than in both NP (p-value 0.016) and EP (p-value 0.0003). NPV was higher in CMP than in NP (p-value 0.024) and EP (p-value 0.002). In the CT urography protocol with enhancement-triggered scan, sensitivity and NPV were highest in the corticomedullary phase, and this phase should be used for bladder assessment. (orig.)

  6. Detection performance study for cone-beam differential phase contrast CT

    Science.gov (United States)

    Li, Ke; Bevins, Nicholas; Zambelli, Joseph; Qi, Zhihua; Chen, Guang-Hong

    2012-03-01

    X-ray phase sensitive imaging methods have seen tremendous growth and increased interest in recent years. Each method has its advantages and disadvantages, but all have shown the ability to improve the detection of various objects because of the additional phase measurements. Of the various methods, grating-based differential phase contrast computed tomography (DPC-CT) imaging has shown greater quantitative and diagnostic capabilities than traditional absorption CT. Although it has been shown that DPC-CT provides superior contrast of certain materials, one question has not been fully addressed to date is whether DPC-CT can provide improved accuracy in detecting low contrast masses using the same radiation dose as that given in absorption CT. The detectability is not only related to contrast to noise ratio, but also to the noise texture. The purpose of this study is to investigate how the peculiar noise texture found in cone-beam DPC-CT affects low contrast objects' detectability through human observer ROC analysis. Studies for both axial and sagittal planes were carried out, as both could potentially be used in clinical practice for a 3D image. The results demonstrate that noise texture found in conebeam DPC-CT strongly affects human visual perception, and that object detectabilities in axial and sagittal images of DPC-CT are different.

  7. High-Resolution and Quantitative X-Ray Phase-Contrast Tomography for Mouse Brain Research

    Directory of Open Access Journals (Sweden)

    Yan Xi

    2015-01-01

    Full Text Available Imaging techniques for visualizing cerebral vasculature and distinguishing functional areas are essential and critical to the study of various brain diseases. In this paper, with the X-ray phase-contrast imaging technique, we proposed an experiment scheme for the ex vivo mouse brain study, achieving both high spatial resolution and improved soft-tissue contrast. This scheme includes two steps: sample preparation and volume reconstruction. In the first step, we use heparinized saline to displace the blood inside cerebral vessels and then replace it with air making air-filled mouse brain. After sample preparation, X-ray phase-contrast tomography is performed to collect the data for volume reconstruction. Here, we adopt a phase-retrieval combined filtered backprojection method to reconstruct its three-dimensional structure and redesigned the reconstruction kernel. To evaluate its performance, we carried out experiments at Shanghai Synchrotron Radiation Facility. The results show that the air-tissue structured cerebral vasculatures are highly visible with propagation-based phase-contrast imaging and can be clearly resolved in reconstructed cross-images. Besides, functional areas, such as the corpus callosum, corpus striatum, and nuclei, are also clearly resolved. The proposed method is comparable with hematoxylin and eosin staining method but represents the studied mouse brain in three dimensions, offering a potential powerful tool for the research of brain disorders.

  8. Correlation between contrast enhancement of portal vein and spleen size in dual-phase spiral CT

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Seung Eon; Choi, Jong Cheol; Nam, Kyung Jin; Jung, Won Jung; Goo, Bong Sik; Park, Byung Ho; Lee, Young Ii; Chung, Duck Hwan [Donga Univ. College of Medicine, Pusan (Korea, Republic of)

    1996-10-01

    To evaluate using spiral CT the effect of spleen size on blood flow in the portal venous system and to know the usefulness of this evaluation. Fifty-one patients without evidence on spiral CT scan of abnormality thought to affect portal venous flow presented between December 1994 and June 1995. We measured spleen size and Hounsfield units of portal vein in dual-phase, and calculated the ratio of the unit in the portal phase to that in the arterial phase. Spleen size was measured, using the length of X-axis by that of Z-axis on spiral CT scan. We then measured the correlation between the two values. CT was performed with a Somatom Plus-S scanner(Siemens, Erlangen, Germany). A total dose of 120ml of non-ionic contrast material(Ultravist) was administered at a rate of 3 ml/sec. Arterial and portal phase were obtained after 30 seconds and 60 seconds from the begining of the contrast agent injection. The correlation between spleen size and contrast enhancement of the portal vein was relatively significant(Pearson's correlation coefficient(r)=0.41801). Spleen size significantly affects portal venous flow on spiral CT scan. The evaluation of spleen size and contrast enhancement of the portal vein could be useful in the differential diagnosis of diseases which affect portal venous flow.

  9. Phase contrast micro-CT with an ultrafast laser-based x-ray source

    Science.gov (United States)

    Toth, R.; Kieffer, J. C.; Krol, A.; Fourmaux, S.; Ozaki, T.; Ye, H.; Kincaid, R. E., Jr.; Rakhman, A.

    2005-08-01

    We investigated performance of ultrafast laser-based x-ray source for phase contrast imaging in 2D projection imaging and in enhanced micro-CT imaging. Good quality images were obtained, including images of small animals, in the single energy and multiple energy, in line phase-contrast enhancing geometry using x-ray line energy matching object thickness and density. Phase information has been inferred from images obtained at the same x-ray energy but at different object-to-detector distances and also from images obtained at the same object-to-detector distance but with different K-alpha line energies. Ultrafast laser-based, compact, x-ray source is a promising technique for micro-CT systems. Its utilization might result in faster scans with lower radiation dose, better spatial and contrast resolution and also femtosecond temporal resolution. In addition, it might allow practical implementation of dual-energy and phase-contrast imaging micro-CT that is not possible with conventional micro-CT.

  10. Differential diagnosis of arachnoid cyst from subarachnoid space enlargement by phase-contrast cine MRI

    Institute of Scientific and Technical Information of China (English)

    于群; 孔祥泉; 刘定西

    2003-01-01

    Objectives To reveal the relationship of brain motion and cerebrospinal fluid (CSF) flow by phase-contrast cine MRI, and to evaluate this technique in differentiating between arachnoid cysts and subarachnoid space enlargement. Methods Using a phase-contrast cine MRI pulse sequence, we measured brain motion and CSF flow during the cardiac cycle in 10 healthy volunteers and 10 patients with MRI-suspected arachnoid cyst or subarachnoid space enlargement. CSF stroke volume curve was illustrated according to flow quantification, and time-signal intensity curve was traced. The two curves were compared. Results This study showed that brain motion was due to the volume difference between arterial and venous blood flow during a cardiac cycle, and thus drives CSF pulsation. Arachnoid cysts and subarachnoid space enlargement carried different curve patterns, demonstrating that phase-contrast MRI and flow quantification can be a useful and reliable technique for non-invasive evaluation of brain motion and CSF flow. Conclusion Arachnoid cysts can be successfully differentiated using phase-contrast cine MRI from subarachnoid space enlargement.

  11. Complete staining of human spermatozoa and immature germ cells combined with phase contrast microscopy

    DEFF Research Database (Denmark)

    Michael, A Y; Drejer, J O; Bagger, P V

    1987-01-01

    A method combining Janus green B and Thymol blue stains the anterior part of the head, the nuclear membrane, middle piece, and tail of spermatozoa light green and the nucleus deep purple. The method provides excellent stained preparations for the evaluation of sperm morphology by phase contrast...

  12. Characterization of bacterial spore germination using integrated phase contrast microscopy, Raman spectroscopy, and optical tweezers.

    Science.gov (United States)

    Kong, Lingbo; Zhang, Pengfei; Setlow, Peter; Li, Yong-Qing

    2010-05-01

    We present a methodology that combines external phase contrast microscopy, Raman spectroscopy, and optical tweezers to monitor a variety of changes during the germination of single Bacillus cereus spores in both nutrient (l-alanine) and non-nutrient (Ca-dipicolinic acid (DPA)) germinants with a temporal resolution of approximately 2 s. Phase contrast microscopy assesses changes in refractility of individual spores during germination, while Raman spectroscopy gives information on changes in spore-specific molecules. The results obtained include (1) the brightness of the phase contrast image of an individual dormant spore is proportional to the level of CaDPA in that spore; (2) the end of the first Stage of germination, revealed as the end of the rapid drop in spore refractility by phase contrast microscopy, precisely corresponds to the completion of the release of CaDPA as revealed by Raman spectroscopy; and (3) the correspondence between the rapid drop in spore refractility and complete CaDPA release was observed not only for spores germinating in the well-controlled environment of an optical trap but also for spores germinating when adhered on a microscope coverslip. Using this latter method, we also simultaneously characterized the distribution of the time-to-complete-CaDPA release (T(release)) of hundreds of individual B. cereus spores germinating with both saturating and subsaturating concentrations of l-alanine and with CaDPA.

  13. High-Resolution and Quantitative X-Ray Phase-Contrast Tomography for Mouse Brain Research.

    Science.gov (United States)

    Xi, Yan; Lin, Xiaojie; Yuan, Falei; Yang, Guo-Yuan; Zhao, Jun

    2015-01-01

    Imaging techniques for visualizing cerebral vasculature and distinguishing functional areas are essential and critical to the study of various brain diseases. In this paper, with the X-ray phase-contrast imaging technique, we proposed an experiment scheme for the ex vivo mouse brain study, achieving both high spatial resolution and improved soft-tissue contrast. This scheme includes two steps: sample preparation and volume reconstruction. In the first step, we use heparinized saline to displace the blood inside cerebral vessels and then replace it with air making air-filled mouse brain. After sample preparation, X-ray phase-contrast tomography is performed to collect the data for volume reconstruction. Here, we adopt a phase-retrieval combined filtered backprojection method to reconstruct its three-dimensional structure and redesigned the reconstruction kernel. To evaluate its performance, we carried out experiments at Shanghai Synchrotron Radiation Facility. The results show that the air-tissue structured cerebral vasculatures are highly visible with propagation-based phase-contrast imaging and can be clearly resolved in reconstructed cross-images. Besides, functional areas, such as the corpus callosum, corpus striatum, and nuclei, are also clearly resolved. The proposed method is comparable with hematoxylin and eosin staining method but represents the studied mouse brain in three dimensions, offering a potential powerful tool for the research of brain disorders.

  14. X-ray phase contrast imaging of biological specimens with tabletop synchrotron radiation

    CERN Document Server

    Kneip, S; Dollar, F; Bloom, M S; Chvykov, V; Kalintchenko, G; Krushelnick, K; Maksimchuk, A; Mangles, S P D; Matsuoka, T; Najmudin, Z; Palmer, C A J; Schreiber, J; Schumaker, W; Thomas, A G R; Yanovsky, V

    2011-01-01

    Since their discovery in 1896, x-rays have had a profound impact on science, medicine and technology. Here we show that the x-rays from a novel tabletop source of bright coherent synchrotron radiation can be applied to phase contrast imaging of biological specimens, yielding superior image quality and avoiding the need for scarce or expensive conventional sources.

  15. Requirements for dynamical differential phase contrast x-ray imaging with a laboratory source

    Science.gov (United States)

    Macindoe, David; Kitchen, Marcus J.; Irvine, Sarah C.; Fouras, Andreas; Morgan, Kaye S.

    2016-12-01

    X-ray phase contrast enables weakly-attenuating structures to be imaged, with bright synchrotron sources adding the ability to capture time sequences and analyse sample dynamics. Here, we describe the translation of dynamical differential phase contrast imaging from the synchrotron to a compact x-ray source, in order to achieve this kind of time sequence imaging in the laboratory. We formulate broadly-applicable set-up guidelines for the single-grid, single-exposure imaging technique using a divergent source, exploring the experimental factors that restrict set-up size, imaging sensitivity and sample size. Experimental images are presented using the single-grid phase contrast technique with a steel attenuation grid and a liquid-metal-jet x-ray source, enabling exposure times as short as 0.5 s for dynamic imaging. Differential phase contrast images were retrieved from phantoms, incorporating noise filtering to improve the low-count images encountered when imaging dynamics using short exposures.

  16. Phase-Contrast Magnetic Resonance Angiography Measurements of Global Cerebral Blood Flow in the Neonate

    NARCIS (Netherlands)

    Benders, Manon J. N. L.; Hendrikse, Jeroen; de Vries, Linda S.; van Bel, Frank; Groenendaal, Floris

    2011-01-01

    Cerebral blood flow (CBF) alterations are important in pathogenesis of neonatal ischemic/hemorrhagic brain damage. In clinical practice, estimation of neonatal CBF is mostly based on Doppler-measured blood flow velocities in major intracranial arteries. Using phase-contrast magnetic resonance angiog

  17. Table-top phase-contrast imaging employing photon-counting detectors towards mammographic applications

    Science.gov (United States)

    Palma, K. D.; Pichotka, M.; Hasn, S.; Granja, C.

    2017-02-01

    In mammography the difficult task to detect microcalcifications (≈ 100 μm) and low contrast structures in the breast has been a topic of interest from its beginnings. The possibility to improve the image quality requires the effort to employ novel X-ray imaging techniques, such as phase-contrast, and high resolution detectors. Phase-contrast techniques are promising tools for medical diagnosis because they provide additional and complementary information to traditional absorption-based X-ray imaging methods. In this work a Hamamatsu microfocus X-ray source with tungsten anode and a photon counting detector (Timepix operated in Medipix mode) was used. A significant improvement in the detection of phase-effects using Medipix detector was observed in comparison to an standard flat-panel detector. An optimization of geometrical parameters reveals the dependency on the X-ray propagation path and the small angle deviation. The quantification of these effects was achieved taking into account the image noise, contrast, spatial resolution of the phase-enhancement, absorbed dose, and energy dependence.

  18. SR biomedical imaging with phase-contrast and fluorescent x-ray CT

    Science.gov (United States)

    Takeda, Tohoru; Wu, Jin; Yoneyama, Akio; Tsuchiya, Yoshinori; Lwin, Thet-Thet; Hirai, Yasuharu; Kuroe, Taichi; Yuasa, Tetsuya; Hyodo, Kazuyaki; Dilmanian, F. A.; Akatsuka, Takao

    2004-10-01

    New synchrotron x-ray CT system with phase-contrast and fluorescent techniques are being developed for biomedical researches with the high-contrast and high-spatial resolution. We have applied these techniques for in-vivo and ex-vivo imaging. The phase-contrast x-ray CT (PCCT) was a highly sensitive imaging technique to depict the morphological information of the soft tissue in biological object, whereas fluorescent x-ray CT (FXCT) could depict the functional information concerning to specific heavy atomic number elements at very low content. Thus, the success of in-vivo imaging by PCCT and FXCT allows starting new approach to bio-imaging researches.

  19. Multilevel markov chain monte carlo method for high-contrast single-phase flow problems

    KAUST Repository

    Efendiev, Yalchin R.

    2014-12-19

    In this paper we propose a general framework for the uncertainty quantification of quantities of interest for high-contrast single-phase flow problems. It is based on the generalized multiscale finite element method (GMsFEM) and multilevel Monte Carlo (MLMC) methods. The former provides a hierarchy of approximations of different resolution, whereas the latter gives an efficient way to estimate quantities of interest using samples on different levels. The number of basis functions in the online GMsFEM stage can be varied to determine the solution resolution and the computational cost, and to efficiently generate samples at different levels. In particular, it is cheap to generate samples on coarse grids but with low resolution, and it is expensive to generate samples on fine grids with high accuracy. By suitably choosing the number of samples at different levels, one can leverage the expensive computation in larger fine-grid spaces toward smaller coarse-grid spaces, while retaining the accuracy of the final Monte Carlo estimate. Further, we describe a multilevel Markov chain Monte Carlo method, which sequentially screens the proposal with different levels of approximations and reduces the number of evaluations required on fine grids, while combining the samples at different levels to arrive at an accurate estimate. The framework seamlessly integrates the multiscale features of the GMsFEM with the multilevel feature of the MLMC methods following the work in [26], and our numerical experiments illustrate its efficiency and accuracy in comparison with standard Monte Carlo estimates. © Global Science Press Limited 2015.

  20. Quantitative Evaluation Methods of In-Line X-Ray Phase Contrast Techniques

    Institute of Scientific and Technical Information of China (English)

    LI Zheng; LI Cheng-Quan; YU Ai-Min

    2007-01-01

    By revealing the relationship between edge visibility and imaging parameters in in-line phase contrast imaging (PCI), we propose a method to quantitatively measure the contribution of absorption and phase shift from acquired images. We also prove that edge visibility will grow with the increasing source-object distance and object-detector distance. The result is validated by relative phase factor and by experiments conducted on a microfocus x-ray source. This method provides a new approach to evaluate in-line PCI images and is helpful for deciding imaging parameters.

  1. Extracting optical scattering properties on the basis of phase contrast images for diagnosing stomach cancer

    Science.gov (United States)

    Li, Zhifang; Li, Hui; Zhang, Hui; Lin, Xiaona; Chen, Wei R.

    2013-04-01

    We combine morphological granulometry with Mie theory in order to analyze phase contrast images of biomedical tissue for cancer diagnosis. This method correlates microscopic phase distributions of the tissue image and macroscopic optical scattering properties of the tissue. Our results show that the particle size density distribution can be used to quantitatively identify morphological changes of cancerous stomach tissues. Our method can distinguish normal tissue from cancerous tissues, using the significant differences in scattering coefficient, reduced scattering coefficient and phase function. Therefore, this method can provide not only quantitative information for the diagnosis of cancer, but also accurate optical scattering parameters for photothermal therapy for cancer.

  2. Late phase contrast enhanced-CT analysis of thrombosed type aortic dissection

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Hiromitsu; Kawamata, Hiroshi; Takagi, Ryo; Kumazaki, Tatsuo [Nippon Medical School, Tokyo (Japan)

    1995-10-01

    Seven patients with thrombosed type aortic dissection who underwent both early- and late-phase contrast enhanced (CE)-CT scans were analyzed. The image acquisition of early-phase CE-CT began 30 seconds after the intravenous administration of contrast material at an injection rate of 1.5 ml per second. Late-phase CE-CT began 6 minutes after contrast material injection. The thrombosed false lumens were not enhanced on early-phase CE-CTs in any of the cases. In five of seven cases, on the other hand, false lumens of the descending aorta were enhanced on late-phase images. Late enhancement in the false lumen was roughly divided into two patterns; a crescentic enhancement of the sub-adventitial region (3 cases), and a vague enhancement around the ulcer-like projection (2 cases). The mechanism of late enhancement in the false lumen was not fully elucidated. Although the clinical significance of late enhancement has not yet been established, it will be useful to demonstrate an unstable status of the thrombosed false lumens before organization. (author).

  3. Quantitative measurement of ultrasound pressure field by optical phase contrast method and acoustic holography

    Science.gov (United States)

    Oyama, Seiji; Yasuda, Jun; Hanayama, Hiroki; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    A fast and accurate measurement of an ultrasound field with various exposure sequences is necessary to ensure the efficacy and safety of various ultrasound applications in medicine. The most common method used to measure an ultrasound pressure field, that is, hydrophone scanning, requires a long scanning time and potentially disturbs the field. This may limit the efficiency of developing applications of ultrasound. In this study, an optical phase contrast method enabling fast and noninterfering measurements is proposed. In this method, the modulated phase of light caused by the focused ultrasound pressure field is measured. Then, a computed tomography (CT) algorithm used to quantitatively reconstruct a three-dimensional (3D) pressure field is applied. For a high-intensity focused ultrasound field, a new approach that combines the optical phase contrast method and acoustic holography was attempted. First, the optical measurement of focused ultrasound was rapidly performed over the field near a transducer. Second, the nonlinear propagation of the measured ultrasound was simulated. The result of the new approach agreed well with that of the measurement using a hydrophone and was improved from that of the phase contrast method alone with phase unwrapping.

  4. Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons

    Energy Technology Data Exchange (ETDEWEB)

    Close, R.; Chen, Z. [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia); Shibata, N. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Findlay, S.D., E-mail: scott.findlay@monash.edu [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia)

    2015-12-15

    Differential phase contrast images in scanning transmission electron microscopy can be directly and quantitatively related to the gradient of the projected specimen potential provided that (a) the specimen can be treated as a phase object and (b) full 2D diffraction patterns as a function of probe position can be obtained. Both are challenging to achieve in atomic resolution imaging. The former is fundamentally limited by probe spreading and dynamical electron scattering, and we explore its validity domain in the context of atomic resolution differential phase contrast imaging. The latter, for which proof-of-principle experimental data sets exist, is not yet routine. We explore the extent to which more established segmented detector geometries can instead be used to reconstruct a quantitatively good approximation to the projected specimen potential. - Highlights: • Atomic-resolution differential phase contrast (DPC) imaging explored via simulation. • Phase-object approximation limits quantification to specimens a few nanometers thick. • Segmented detectors give good estimates of the diffraction pattern's first moment.

  5. Generalized Thermodynamics of Phase Equilibria in Scalar Active Matter

    OpenAIRE

    Solon, Alexandre P.; Stenhammar, Joakim; Cates, Michael E.; Kafri, Yariv; Tailleur, Julien

    2016-01-01

    Motility-induced phase separation (MIPS) arises generically in fluids of self-propelled particles when interactions lead to a kinetic slowdown at high density. Starting from a continuum description of diffusive scalar active matter, we give a general prescription for phase equilibria that amounts, at a hydrodynamics scale, to extremalizing a generalized free energy. We illustrate our approach on two well known models: self-propelled particles interacting either through a density-dependent pro...

  6. A general theory of phase noise in electrical oscillators

    OpenAIRE

    Hajimiri, Ali; Lee, Thomas H.

    1998-01-01

    A general model is introduced which is capable of making accurate, quantitative predictions about the phase noise of different types of electrical oscillators by acknowledging the true periodically time-varying nature of all oscillators. This new approach also elucidates several previously unknown design criteria for reducing close-in phase noise by identifying the mechanisms by which intrinsic device noise and external noise sources contribute to the total phase noise. In particular, it expl...

  7. High-energy x-ray grating-based phase-contrast radiography of human anatomy

    Science.gov (United States)

    Horn, Florian; Hauke, Christian; Lachner, Sebastian; Ludwig, Veronika; Pelzer, Georg; Rieger, Jens; Schuster, Max; Seifert, Maria; Wandner, Johannes; Wolf, Andreas; Michel, Thilo; Anton, Gisela

    2016-03-01

    X-ray grating-based phase-contrast Talbot-Lau interferometry is a promising imaging technology that has the potential to raise soft tissue contrast in comparison to conventional attenuation-based imaging. Additionally, it is sensitive to attenuation, refraction and scattering of the radiation and thus provides complementary and otherwise inaccessible information due to the dark-field image, which shows the sub-pixel size granularity of the measured object. Until recent progress the method has been mainly limited to photon energies below 40 keV. Scaling the method to photon energies that are sufficient to pass large and spacious objects represents a challenging task. This is caused by increasing demands regarding the fabrication process of the gratings and the broad spectra that come along with the use of polychromatic X-ray sources operated at high acceleration voltages. We designed a setup that is capable to reach high visibilities in the range from 50 to 120 kV. Therefore, spacious and dense parts of the human body with high attenuation can be measured, such as a human knee. The authors will show investigations on the resulting attenuation, differential phase-contrast and dark-field images. The images experimentally show that X-ray grating-based phase-contrast radiography is feasible with highly absorbing parts of the human body containing massive bones.

  8. Gastric stromal tumor: two-phase dynamic CT findings with water as oral contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Se Hyo; Cho, June Sik; Shin, Kyung Sook; Jeong, Ki Ho; Park, Jin Yong; Yu, Ho Jun; Kim, Young Min; Jeon, Kwang Jin [College of Medicine, Chungnam National University, Taejon (Korea, Republic of)

    2000-01-01

    To evaluate two-phase dynamic CT with water as oral contrast agents in the CT diagnosis of gastric stromal tumors. We retrospectively reviewed the CT findings in 21 patients with pathologically proven gastric stromal tumors. Six were found to be benign, twelve were malignant, and there were three cases of STUMP (stromal tumor uncertain malignant potential). Two-phase dynamic CT scans with water as oral contrast agents were obtained 60-70 secs (portal phase) and 3 mins (equilibrium phase) after the start of IV contrast administration. We determined the size, growth pattern, and enhancement pattern of the tumors and overlying mucosa, the presence or absence of ulceration and necrosis, tumor extent, and lymph nod and distant metastasis. The CT and pathologic findings were correlated. All six benign tumors and three STUMP were less than 5.5 cm in size, and during the portal phase showed round endogastric masses with highly enhanced, intact overlying mucosa. Twelve malignant tumors were 4.5-15.5 cm in size (mean, 11.5 cm); an endogastric mass was seen in three cases, an exogastric mass in one, and a mixed pattern in eight. On portal phase images the tumors were not significantly enhanced, but highly enhanced feeding vessels were noted in five larger tumors (greater than 10 cm). All 12 malignant tumors showed ulceration and necrosis, and interruption of overlying mucosa was clearly seen during the portal phase. We were readily able to evaluate tumor extent during this phase, and in ten malignant tumors there was no invasion of adjacent organs. Seven malignant tumors showed air density within their necrotic portion (p less than 0.05). On equilibrium phase images, all malignant tumors showed heterogeneous enhancement due to necrosis, and poorly enhanced overlying mucosa. Dynamic CT during the portal phase with water as oral contrast agents was useful for depicting the submucosal origin of gastric stromal tumors and for evaluating the extent of malignant stromal tumors. Our

  9. Segmentation and Tracking of Lymphocytes Based on Modified Active Contour Models in Phase Contrast Microscopy Images

    Directory of Open Access Journals (Sweden)

    Yali Huang

    2015-01-01

    Full Text Available The paper proposes an improved active contour model for segmenting and tracking accurate boundaries of the single lymphocyte in phase-contrast microscopic images. Active contour models have been widely used in object segmentation and tracking. However, current external-force-inspired methods are weak at handling low-contrast edges and suffer from initialization sensitivity. In order to segment low-contrast boundaries, we combine the region information of the object, extracted by morphology gray-scale reconstruction, and the edge information, extracted by the Laplacian of Gaussian filter, to obtain an improved feature map to compute the external force field for the evolution of active contours. To alleviate initial location sensitivity, we set the initial contour close to the real boundaries by performing morphological image processing. The proposed method was tested on live lymphocyte images acquired through the phase-contrast microscope from the blood samples of mice, and comparative experimental results showed the advantages of the proposed method in terms of the accuracy and the speed. Tracking experiments showed that the proposed method can accurately segment and track lymphocyte boundaries in microscopic images over time even in the presence of low-contrast edges, which will provide a good prerequisite for the quantitative analysis of lymphocyte morphology and motility.

  10. Estimating phase integrals - A generalization of Russell's law

    Science.gov (United States)

    Verbiscer, Anne J.; Veverka, Joseph

    1988-01-01

    An attempt is made to demonstrate, by means of Hapke's (1981) photometric function, that a simple and reliable method exists for the estimation of phase integrals from limited higher phase angle measurements. This method is a generalization of the approximation first proposed by Russell (1916) and more recently treated by Veverka (1971). It is shown that this generalization of Russell's law can employ observations anywhere in the range of phase angles from 40 to 90 deg; optimum estimates of q will be obtained if the data near 70 deg are obtainable.

  11. Reverse projection retrieval in edge illumination x-ray phase contrast computed tomography

    Science.gov (United States)

    Hagen, Charlotte K.; Endrizzi, Marco; Diemoz, Paul C.; Olivo, Alessandro

    2016-06-01

    Edge illumination (EI) x-ray phase contrast computed tomography (CT) can provide three-dimensional distributions of the real and imaginary parts of the complex refractive index (n=1-δ +\\text{i}β ) of the sample. Phase retrieval, i.e. the separation of attenuation and refraction data from projections that contain a combination of both, is a key step in the image reconstruction process. In EI-based x-ray phase contrast CT, this is conventionally performed on the basis of two projections acquired in opposite illumination configurations (i.e. with different positions of the pre-sample mask) at each CT angle. Displacing the pre-sample mask at each projection makes the scan susceptible to motor-induced misalignment and prevents a continuous sample rotation. We present an alternative method for the retrieval of attenuation and refraction data that does not require repositioning the pre-sample mask. The method is based on the reverse projection relation published by Zhu et al (2010 Proc. Natl Acad. Sci. USA 107 13576-81) for grating interferometry-based x-ray phase contrast CT. We use this relation to derive a simplified acquisition strategy that allows acquiring data with a continuous sample rotation, which can reduce scan time when combined with a fast read-out detector. Besides discussing the theory and the necessary alignment of the experimental setup, we present tomograms obtained with reverse projection retrieval and demonstrate their agreement with those obtained with the conventional EI retrieval.

  12. Laboratory-based x-ray phase-contrast tomography enables 3D virtual histology

    Science.gov (United States)

    Töpperwien, Mareike; Krenkel, Martin; Quade, Felix; Salditt, Tim

    2016-09-01

    Due to the large penetration depth and small wavelength hard x-rays offer a unique potential for 3D biomedical and biological imaging, combining capabilities of high resolution and large sample volume. However, in classical absorption-based computed tomography, soft tissue only shows a weak contrast, limiting the actual resolution. With the advent of phase-contrast methods, the much stronger phase shift induced by the sample can now be exploited. For high resolution, free space propagation behind the sample is particularly well suited to make the phase shift visible. Contrast formation is based on the self-interference of the transmitted beam, resulting in object-induced intensity modulations in the detector plane. As this method requires a sufficiently high degree of spatial coherence, it was since long perceived as a synchrotron-based imaging technique. In this contribution we show that by combination of high brightness liquid-metal jet microfocus sources and suitable sample preparation techniques, as well as optimized geometry, detection and phase retrieval, excellent three-dimensional image quality can be obtained, revealing the anatomy of a cobweb spider in high detail. This opens up new opportunities for 3D virtual histology of small organisms. Importantly, the image quality is finally augmented to a level accessible to automatic 3D segmentation.

  13. Image reconstruction in phase-contrast tomography exploiting the second-order statistical properties of the projection data.

    Science.gov (United States)

    Chou, Cheng-Ying; Huang, Pin-Yu

    2011-11-21

    X-ray phase-contrast tomography (PCT) methods seek to quantitatively reconstruct separate images that depict an object's absorption and refractive contrasts. Most PCT reconstruction algorithms generally operate by explicitly or implicitly performing the decoupling of the projected absorption and phase properties at each tomographic view angle by use of a phase-retrieval formula. However, the presence of zero-frequency singularity in the Fourier-based phase retrieval formulas will lead to a strong noise amplification in the projection estimate and the subsequent refractive image obtained using conventional algorithms like filtered backprojection (FBP). Tomographic reconstruction by use of statistical methods can account for the noise model and a priori information, and thereby can produce images with better quality over conventional filtered backprojection algorithms. In this work, we demonstrate an iterative image reconstruction method that exploits the second-order statistical properties of the projection data can mitigate noise amplification in PCT. The autocovariance function of the reconstructed refractive images was empirically computed and shows smaller and shorter noise correlation compared to those obtained using the FBP and unweighted penalized least-squares methods. Concepts from statistical decision theory are applied to demonstrate that the statistical properties of images produced by our method can improve signal detectability.

  14. Focusing properties of phase-only generalized Fibonacci photon sieves

    Science.gov (United States)

    Ke, Jie; Zhang, Junyong

    2016-06-01

    We propose a new algorithm to extend the standard Fibonacci photon sieve to the phase-only generalized Fibonacci photon sieve (GFiPS) and find that the focusing properties of the phase-only GFiPS are only relevant to the characteristic roots of the recursion relation of the generalized Fibonacci sequences. By switching the transparent and opaque zones on the basis of the generalized Fibonacci sequences, we not only realize adjustable bifocal lengths, but also give their corresponding analytic expressions. Besides, we investigate a special phase-only GFiPS, a spiral-phase GFiPS, which can present twin vortices along the axial coordinate. Compared with the single focusing system, bifocal system can be exploited to enhance the processing speed, and offer a broad range of applications, such as direct laser writing, optical tweezers or atom trapping and paralleled fluorescence microscope.

  15. Simple weight-based contrast dosing for standardization of portal phase CT liver enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Benbow, M. [Department of Radiology, Royal Bournemouth Hospital, Bournemouth, Dorset (United Kingdom); Bull, R.K., E-mail: russell.bull@rbch.nhs.uk [Department of Radiology, Royal Bournemouth Hospital, Bournemouth, Dorset (United Kingdom)

    2011-10-15

    Aim: To investigate the use of a weight-based volume of contrast media to optimize portal enhancement in patients undergoing abdominal computed tomography (CT). Materials and methods: Thirty-one patients were assessed to establish whether a relationship existed between their weight and the portal liver enhancement achieved. Three methods of estimating weight were evaluated to establish which was the most appropriate to use in clinical practice. One hundred patients were then examined using 100 ml contrast media and 100 further patients using a weight-based contrast volume as dictated by a look-up table. The enhancement achieved by each technique was assessed. Results: A good correlation was shown between patient weight and contrast enhancement when a fixed volume of contrast media was used (r = -0.825, p < 0.0001). Asking the patient was shown to be the most appropriate method for estimating their weight. The mean portal liver enhancement using the fixed dose and weight-adjusted dose were 110 HU (SD = 25.1) and 108 HU (SD = 11.9), respectively. Weight-adjusted dose brought 37% more patients into the 'ideal' enhancement range of 100-125 HU. Conclusion: The use of a simple, practical, weight-based look-up table to decide contrast media volumes during portal phase liver CT can greatly reduce inter-patient variability compared to a fixed-volume technique.

  16. Comparison of laboratory grating-based and speckle-tracking x-ray phase-contrast imaging

    Science.gov (United States)

    Romell, J.; Zhou, T.; Zdora, M.; Sala, S.; Koch, F. J.; Hertz, H. M.; Burvall, A.

    2017-06-01

    Phase-contrast imaging with x-rays is a developing field for imaging weakly absorbing materials. In this work, two phase-contrast imaging methods, grating- and speckle-based imaging, that measure the derivative of the phase shift, have been implemented with a laboratory source and compared experimentally. It was found that for the same dose conditions, the speckle-tracking differential phase-contrast images have considerably higher contrast-to-noise ratio than the grating-based images, but at the cost of lower resolution. Grating-based imaging performs better in terms of resolution, but would require longer exposure times, mainly due to absorption in the grating interferometer.

  17. Improving image quality in laboratory x-ray phase-contrast imaging

    Science.gov (United States)

    De Marco, F.; Marschner, M.; Birnbacher, L.; Viermetz, M.; Noël, P.; Herzen, J.; Pfeiffer, F.

    2017-03-01

    Grating-based X-ray phase-contrast (gbPC) is known to provide significant benefits for biomedical imaging. To investigate these benefits, a high-sensitivity gbPC micro-CT setup for small (≍ 5 cm) biological samples has been constructed. Unfortunately, high differential-phase sensitivity leads to an increased magnitude of data processing artifacts, limiting the quality of tomographic reconstructions. Most importantly, processing of phase-stepping data with incorrect stepping positions can introduce artifacts resembling Moiré fringes to the projections. Additionally, the focal spot size of the X-ray source limits resolution of tomograms. Here we present a set of algorithms to minimize artifacts, increase resolution and improve visual impression of projections and tomograms from the examined setup. We assessed two algorithms for artifact reduction: Firstly, a correction algorithm exploiting correlations of the artifacts and differential-phase data was developed and tested. Artifacts were reliably removed without compromising image data. Secondly, we implemented a new algorithm for flatfield selection, which was shown to exclude flat-fields with strong artifacts. Both procedures successfully improved image quality of projections and tomograms. Deconvolution of all projections of a CT scan can minimize blurring introduced by the finite size of the X-ray source focal spot. Application of the Richardson-Lucy deconvolution algorithm to gbPC-CT projections resulted in an improved resolution of phase-contrast tomograms. Additionally, we found that nearest-neighbor interpolation of projections can improve the visual impression of very small features in phase-contrast tomograms. In conclusion, we achieved an increase in image resolution and quality for the investigated setup, which may lead to an improved detection of very small sample features, thereby maximizing the setup's utility.

  18. Renal Arteries: Isotropic, High-Spatial-Resolution, Unenhanced MR Angiography with Three-dimensional Radial Phase Contrast1

    Science.gov (United States)

    Lum, Darren P.; Johnson, Kevin M.; Landgraf, Benjamin R.; Bley, Thorsten A.; Reeder, Scott B.; Schiebler, Mark L.; Grist, Thomas M.; Wieben, Oliver

    2011-01-01

    Purpose: To prospectively compare a new three-dimensional (3D) radial phase-contrast magnetic resonance (MR) angiographic method with contrast material–enhanced MR angiography for anatomic assessment of the renal arteries. Materials and Methods: An institutional review board approved this prospective HIPAA-compliant study. Informed consent was obtained. Twenty-seven subjects (mean age, 52.6 years ± 20.5 [standard deviation]) were imaged with respiratory-gated phase-contrast vastly undersampled isotropic projection reconstruction (VIPR) prior to contrast-enhanced MR angiographic acquisition with a 3.0-T clinical system. The imaging duration for phase-contrast VIPR was 10 minutes and provided magnitude and complex difference (“angiographic”) images with 3D volumetric (320 mm) coverage and isotropic high spatial resolution (1.25 mm3). Quantitative analysis consisted of comparing vessel diameters between the two techniques. Qualitative assessment included evaluation of the phase-contrast VIPR and contrast-enhanced MR angiographic techniques for artifacts, noise, and image quality. Bland-Altman analysis was used for comparison of quantitative measurements, and the Wilcoxon signed rank test was used for comparison of qualitative scores. Results: Phase-contrast VIPR images were successfully acquired in all subjects. The vessel diameters measured with phase-contrast VIPR were slightly greater than those measured with contrast-enhanced MR angiography (mean bias = 0.09 mm). Differences in mean artifact, quality scores for the proximal renal arteries, and overall image quality scores between phase-contrast VIPR and contrast-enhanced MR angiographic techniques were not statistically significant (P = .31 and .29, .27 and .39, and .43 and .69 for readers 1 and 2, respectively). The quality scores for the segmental renal arteries were higher for phase-contrast VIPR than for contrast-enhanced MR angiography (P contrast-enhanced MR angiography and were statistically

  19. First small-animal in-vivo phase-contrast micro-CT scanner

    Science.gov (United States)

    Pauwels, B.; Bruyndonckx, P.; Liu, X.; Tapfer, A.; Velroyen, A.; Yaroshenko, A.; Bech, M.; Pfeiffer, F.; Sasov, A.

    2012-10-01

    We have developed a compact grating-based in-vivo phase-contrast micro-CT system with a rotating gantry. The 50 W microfocus x-ray source operates with 20 to 50 kV peak energy. The length of the rotating interferometer is around 47 cm. Pixel size in the object is 30 micron; the field of view is approx. 35 mm in diameter, suited to image a mouse. The interferometer consists of three gratings: an absorption grating close to the x-ray source, a phase grating to introduce a π/2 phase shift and an absorption analyzer grating positioned at the first fractional Talbot distance. Numerous drives and actuators are used to provide angular and linear grating alignment, phase stepping and object/gantry precision positioning. Phantom studies were conducted to investigate performance, accuracy and stability of the scanner. In particular, the influences of gantry rotation and of temperature fluctuations on the interferometric image acquisition were characterized. Also dose measurements were performed. The first imaging results obtained with the system show the complementary nature of phase-contrast micro-CT images with respect to absorption-based micro-CT. Future improvements, necessary to optimize the scanner for in-vivo small-animal CT scanning on a regular and easy-to-use basis, are also discussed.

  20. The Phase-Contrast Imaging Instrument at the Matter in Extreme Conditions Endstation at LCLS

    CERN Document Server

    Nagler, Bob; Galtier, Eric C; Arnold, Brice; Brown, Shaughnessy B; Fry, Alan; Gleason, Arianna; Granados, Eduardo; Hashim, Akel; Hastings, Jerome B; Samberg, Dirk; Seiboth, Frank; Tavella, Franz; Xing, Zhou; Lee, Hae Ja; Schroer, Christian G

    2016-01-01

    We describe the Phase-Contrast Imaging instrument at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Light Source. The instrument can image phenomena with a spatial resolution of a few hundreds of nanometers and at the same time reveal the atomic structure through X-ray diffraction, with a temporal resolution better than 100 femtosecond. It was specifically designed for studies relevant to High-Energy-Density Science and can monitor, e.g., shock fronts, phase transitions, or void collapses. This versatile instrument was commissioned last year and is now available to the MEC user community.

  1. Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography.

    Science.gov (United States)

    Paturzo, Melania; Finizio, Andrea; Memmolo, Pasquale; Puglisi, Roberto; Balduzzi, Donatella; Galli, Andrea; Ferraro, Pietro

    2012-09-07

    We show that sharp imaging and quantitative phase-contrast microcopy is possible in microfluidics in flowing turbid media by digital holography. In fact, in flowing liquids with suspended colloidal particles, clear vision is hindered and cannot be recovered by any other microscopic imaging technique. On the contrary, using digital holography, clear imaging is possible thanks to the Doppler frequency shift experienced by the photons scattered by the flowing colloidal particles, which do not contribute to the interference process, i.e. the recorded hologram. The method is illustrated and imaging results are demonstrated for pure phase objects, i.e. biological cells in microfluidic channels.

  2. Phase-contrast CT: fundamental theorem and fast image reconstruction algorithms

    Science.gov (United States)

    Bronnikov, Andrei V.

    2006-08-01

    Phase-contrast x-ray computed tomography (CT) is an emerging imaging technique that can be implemented at third generation synchrotron radiation sources or by using a microfocus x-ray tube. Promising experimental results have recently been obtained in material science and biological applications. At the same time, the lack of a mathematical theory comparable to that of conventional absorption-based CT limits the progress in this field. We suggest such a theory and prove a fundamental theorem that plays the same role for phase-contrast CT as the Fourier slice theorem does for absorption-based CT. The fundamental theorem allows us to derive fast image reconstruction algorithms in the form of filtered backprojection (FBP).

  3. Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources

    Energy Technology Data Exchange (ETDEWEB)

    Krenkel, Martin, E-mail: mkrenke@gwdg.de; Töpperwien, Mareike; Salditt, Tim, E-mail: tsaldit@gwdg.de [Institute for X-Ray Physics, University of Göttingen, 37077 Göttingen (Germany); Dullin, Christian [Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, 37075 Göttingen (Germany); Alves, Frauke [Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, 37075 Göttingen (Germany); Department of Haematology and Medical Oncology, Medical Center Göttingen, 37075 Göttingen (Germany); Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute of Experimental Medicine, 37075 Göttingen (Germany)

    2016-03-15

    We have performed high-resolution phase-contrast tomography on whole mice with a laboratory setup. Enabled by a high-brilliance liquid-metal-jet source, we show the feasibility of propagation-based phase contrast in local tomography even in the presence of strongly absorbing surrounding tissue as it is the case in small animal imaging of the lung. We demonstrate the technique by reconstructions of the mouse lung for two different fields of view, covering the whole organ, and a zoom to the local finer structure of terminal airways and alveoli. With a resolution of a few micrometers and the wide availability of the technique, studies of larger biological samples at the cellular level become possible.

  4. Phase contrast and DIC instrumentation and applications in cell, developmental, and marine biology

    Science.gov (United States)

    Gundlach, Heinz

    1994-05-01

    Nomarski's differential interference contrast (DIC) microscopy is discussed in comparison to Zernike's phase contrast (PhC) microscopy. The possibilities and limits of both are demonstrated by various applications. The high contrast and the use of the full numerical aperture of the DIC optics makes it possible to obtain a series of 'optical sections' through rather thick living specimens (e.g. head of water flea, salivary gland of Drosophila, Xenopus nucleolus, sea urchen egg, mouse embryo). PhC and DIC optics are today available for high resolution light microscopy until N.A. 1.4 Oil as well as for long working distance (LWD) optics, mainly combined with inverted biological microscopes.

  5. Subtraction MR Venography Acquired from Time-Resolved Contrast-Enhanced MR Angiography: Comparison with Phase-Contrast MR Venography and Single-Phase Contrast-Enhanced MR Venography.

    Science.gov (United States)

    Jang, Jinhee; Kim, Bum-Soo; Sung, Jinkyeong; Kim, Bom-Yi; Choi, Hyun Seok; Jung, So-Lyung; Ahn, Kook-Jin

    2015-01-01

    To evaluate the image characteristics of subtraction magnetic resonance venography (SMRV) from time-resolved contrast-enhanced MR angiography (TRMRA) compared with phase-contrast MR venography (PCMRV) and single-phase contrast-enhanced MR venography (CEMRV). Twenty-one patients who underwent brain MR venography (MRV) using standard protocols (PCMRV, CEMRV, and TRMRA) were included. SMRV was made by subtracting the arterial phase data from the venous phase data in TRMRA. Co-registration and subtraction of the two volume data was done using commercially available software. Image quality and the degree of arterial contamination of the three MRVs were compared. In the three MRVs, 19 pre-defined venous structures (14 dural sinuses and 5 cerebral veins) were evaluated. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the three MRVs were also compared. Single-phase contrast-enhanced MR venography showed better image quality (median score 4 in both reviewers) than did the other two MRVs (p < 0.001), whereas SMRV (median score 3 in both reviewers) and PCMRV (median score 3 in both reviewers) had similar image quality (p ≥ 0.951). SMRV (median score 0 in both reviewers) suppressed arterial signal better than did the other MRVs (median score 1 in CEMRV, median score 2 in PCMRV, both reviewers) (p < 0.001). The dural sinus score of SMRV (median and interquartile range [IQR] 48, 43-50 for reviewer 1, 47, 43-49 for reviewer 2) was significantly higher than for PCMRV (median and IQR 31, 25-34 for reviewer 1, 30, 23-32 for reviewer 2) (p < 0.01) and did not differ from that of CEMRV (median and IQR 50, 47-52 for reviewer 1, 49, 45-51 for reviewer 2) (p = 0.146 in reviewer 1 and 0.123 in reviewer 2). The SNR and CNR of SMRV (median and IQR 104.5, 83.1-121.2 and 104.1, 74.9-120.5, respectively) were between those of CEMRV (median and IQR 150.3, 111-182.6 and 148.4, 108-178.2) and PCMRV (median and IQR 59.4, 49.2-74.9 and 53.6, 43.8-69.2). Subtraction magnetic

  6. Subtraction MR venography acquired from time-resolved contrast-enhanced MR angiography: Comparison with phase-contrast MR venography and single-phase contrast-enhanced MR venography

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin Hee; Kim, Bum Soo; KIm, Bom Yi; Choi, Hyun Seok; Jung, So Lyung; Ahn, Kook Jin [Dept. of Radiology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Sung, Ji Kyeong [Dept. of Radiology, St. Vincent' s Hospital, College of Medicine, The Catholic University of Korea, Suwon (Korea, Republic of)

    2015-12-15

    To evaluate the image characteristics of subtraction magnetic resonance venography (SMRV) from time-resolved contrast-enhanced MR angiography (TRMRA) compared with phase-contrast MR venography (PCMRV) and single-phase contrast-enhanced MR venography (CEMRV). Twenty-one patients who underwent brain MR venography (MRV) using standard protocols (PCMRV, CEMRV, and TRMRA) were included. SMRV was made by subtracting the arterial phase data from the venous phase data in TRMRA. Co-registration and subtraction of the two volume data was done using commercially available software. Image quality and the degree of arterial contamination of the three MRVs were compared. In the three MRVs, 19 pre-defined venous structures (14 dural sinuses and 5 cerebral veins) were evaluated. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the three MRVs were also compared. Single-phase contrast-enhanced MR venography showed better image quality (median score 4 in both reviewers) than did the other two MRVs (p < 0.001), whereas SMRV (median score 3 in both reviewers) and PCMRV (median score 3 in both reviewers) had similar image quality (p ≥ 0.951). SMRV (median score 0 in both reviewers) suppressed arterial signal better than did the other MRVs (median score 1 in CEMRV, median score 2 in PCMRV, both reviewers) (p < 0.001). The dural sinus score of SMRV (median and interquartile range [IQR] 48, 43-50 for reviewer 1, 47, 43-49 for reviewer 2) was significantly higher than for PCMRV (median and IQR 31, 25-34 for reviewer 1, 30, 23-32 for reviewer 2) (p < 0.01) and did not differ from that of CEMRV (median and IQR 50, 47-52 for reviewer 1, 49, 45-51 for reviewer 2) (p = 0.146 in reviewer 1 and 0.123 in reviewer 2). The SNR and CNR of SMRV (median and IQR 104.5, 83.1-121.2 and 104.1, 74.9-120.5, respectively) were between those of CEMRV (median and IQR 150.3, 111-182.6 and 148.4, 108-178.2) and PCMRV (median and IQR 59.4, 49.2-74.9 and 53.6, 43.8-69.2). Subtraction magnetic

  7. Synchrotron radiation phase-contrast X-ray CT imaging of acupuncture points

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongming; Yan, Xiaohui; Zhang, Xinyi [Fudan University, Synchrotron Radiation Research Center, State Key Laboratory of Surface Physics and Department of Physics, Shanghai (China); Liu, Chenglin [Physics Department of Yancheng Teachers' College, Yancheng (China); Dang, Ruishan [The Second Military Medical University, Shanghai (China); Xiao, Tiqiao [Chinese Academy of Sciences, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Shanghai (China); Zhu, Peiping [Chinese Academy of Sciences, Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Beijing (China)

    2011-08-15

    Three-dimensional (3D) topographic structures of acupuncture points were investigated by using synchrotron radiation in-line X-ray phase contrast computerized tomography. Two acupuncture points, named Zhongji (RN3) and Zusanli (ST36), were studied. We found an accumulation of microvessels at each acupuncture point region. Images of the tissues surrounding the acupuncture points do not show such kinds of structure. This is the first time that 3D images have revealed the specific structures of acupuncture points. (orig.)

  8. TV-regularized phase reconstruction in differential-interference-contrast (DIC) microscopy

    Science.gov (United States)

    Rebegoldi, Simone; Bautista, Lola; Blanc-Féraud, Laure; Prato, Marco; Zanni, Luca; Plata, Arturo

    2016-10-01

    In this paper we address the problem of reconstructing the phase from color images acquired with differential-interference-contrast (DIC) microscopy. In particular, we reformulate the problem as the minimization of a least-squares fidelity function regularized with a total variation term, and we address the solution by exploiting a recently proposed inexact forward-backward approach. The effectiveness of this method is assessed on a realistic synthetic test.

  9. Spatial resolution characterization of differential phase contrast CT systems via modulation transfer function (MTF) measurements

    Science.gov (United States)

    Li, Ke; Zambelli, Joseph; Bevins, Nicholas; Ge, Yongshuai; Chen, Guang-Hong

    2013-06-01

    By adding a Talbot-Lau interferometer to a conventional x-ray absorption computed tomography (CT) imaging system, both differential phase contrast (DPC) signal and absorption contrast signal can be simultaneously measured from the same set of CT measurements. The imaging performance of such multi-contrast x-ray CT imaging systems can be characterized with standard metrics such as noise variance, noise power spectrum, contrast-to-noise ratio, modulation transfer function (MTF), and task-based detectability index. Among these metrics, the measurement of the MTF can be challenging in DPC-CT systems due to several confounding factors such as phase wrapping and the difficulty of using fine wires as probes. To address these technical challenges, this paper discusses a viable and reliable method to experimentally measure the MTF of DPC-CT. It has been found that the spatial resolution of DPC-CT is degraded, when compared to that of the corresponding absorption CT, due to the presence of a source grating G0 in the Talbot-Lau interferometer. An effective MTF was introduced and experimentally estimated to describe the impact of the Talbot-Lau interferometer on the system MTF.

  10. The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes

    Science.gov (United States)

    Eastwood, D. S.; Bradley, R. S.; Tariq, F.; Cooper, S. J.; Taiwo, O. O.; Gelb, J.; Merkle, A.; Brett, D. J. L.; Brandon, N. P.; Withers, P. J.; Lee, P. D.; Shearing, P. R.

    2014-04-01

    In order to accelerate the commercialization of fuel cells and batteries across a range of applications, an understanding of the mechanisms by which they age and degrade at the microstructural level is required. Here, the most widely commercialized Li-ion batteries based on porous graphite based electrodes which de/intercalate Li+ ions during charge/discharge are studied by two phase contrast enhanced X-ray imaging modes, namely in-line phase contrast and Zernike phase contrast at the micro (synchrotron) and nano (laboratory X-ray microscope) level, respectively. The rate of charge cycling is directly dependent on the nature of the electrode microstructure, which are typically complex multi-scale 3D geometries with significant microstructural heterogeneities. We have been able to characterise the porosity and the tortuosity by micro-CT as well as the morphology of 5 individual graphite particles by nano-tomography finding that while their volume varied significantly their sphericity was surprisingly similar. The volume specific surface areas of the individual grains measured by nano-CT are significantly larger than the total volume specific surface area of the electrode from the micro-CT imaging, which can be attributed to the greater particle surface area visible at higher resolution.

  11. A reconstruction method for cone-beam differential x-ray phase-contrast computed tomography.

    Science.gov (United States)

    Fu, Jian; Velroyen, Astrid; Tan, Renbo; Zhang, Junwei; Chen, Liyuan; Tapfer, Arne; Bech, Martin; Pfeiffer, Franz

    2012-09-10

    Most existing differential phase-contrast computed tomography (DPC-CT) approaches are based on three kinds of scanning geometries, described by parallel-beam, fan-beam and cone-beam. Due to the potential of compact imaging systems with magnified spatial resolution, cone-beam DPC-CT has attracted significant interest. In this paper, we report a reconstruction method based on a back-projection filtration (BPF) algorithm for cone-beam DPC-CT. Due to the differential nature of phase contrast projections, the algorithm restrains from differentiation of the projection data prior to back-projection, unlike BPF algorithms commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a micro-focus x-ray tube source. Moreover, the numerical simulation and experimental results demonstrate that the proposed method can deal with several classes of truncated cone-beam datasets. We believe that this feature is of particular interest for future medical cone-beam phase-contrast CT imaging applications.

  12. A phase contrast cytomorphometric study of squames of normal oral mucosa and oral leukoplakia: Original study

    Directory of Open Access Journals (Sweden)

    Afreen Nadaf

    2014-01-01

    Full Text Available Oral leukoplakia represents the most common potentially malignant oral disorder, representing 85% of such lesions. The worldwide prevalence of leukoplakia is 1.5- 4.3%. Leukoplakia is often associated with carcinogenic exposures, such as from use of tobacco, alcohol or betel nut. The level of risk for malignant transformation of leukoplakia is associated with lesion histology. The overall malignant transformation rates for dysplastic lesions range from 11% to 36%, depending on the length of follow-up. Exfoliative cytology is a simple and minimally invasive method. Phase contrast microscope, an essential tool in the field of biology and medical research provides improved discrimination of cellular details. Aims: To study and compare the cytomorphological and cytomorphometric features of squames obtained from the mucosa of normal individuals, tobacco habituates with and without clinically evident leukoplakia. To assess the role of phase contrast microscopy as an alternative and easy method of cytological evaluation of wet and unstained smears. Materials and Methods: Fifty cases from each group were taken. Fixed, unstained smears were viewed under phase contrast microscope and were evaluated morphologically and morphometrically for nuclear and cellular diameters. Results: The study showed a significant increase in the mean nuclear diameter and decrease in the mean cellular diameter. Conclusion: Cytomorphometric changes could be the earliest indicators of cellular alterations. This indicates that there could be a cause-effect relationship between tobacco and quantitative alterations.

  13. Phase-space geometry of the generalized Langevin equation.

    Science.gov (United States)

    Bartsch, Thomas

    2009-09-28

    The generalized Langevin equation is widely used to model the influence of a heat bath upon a reactive system. This equation will here be studied from a geometric point of view. A dynamical phase space that represents all possible states of the system will be constructed, the generalized Langevin equation will be formally rewritten as a pair of coupled ordinary differential equations, and the fundamental geometric structures in phase space will be described. It will be shown that the phase space itself and its geometric structure depend critically on the preparation of the system: A system that is assumed to have been in existence forever has a larger phase space with a simpler structure than a system that is prepared at a finite time. These differences persist even in the long-time limit, where one might expect the details of preparation to become irrelevant.

  14. Improving visibility of X-ray phase-contrast imaging with Wiener filtering.

    Science.gov (United States)

    Gong, Shaorun; Gao, Feng; Zhou, Zhongxing

    2010-01-01

    To investigate the degrading effects of the physical parameters on the in-line X-ray phase-contrast imaging (XPCi), a simulation tool based on the Fresnel/Kirchhoff diffraction integral was firstly developed with comprehensively considering effects of the source-to-sample (S-S) and sample-to-detector (S-D) distances, the practical characteristics of a polychromatic and finite size source, the point spread function (PSF) of the fluorescent screen and the spatial resolution of the detector on the theoretical phase-contrast pattern. By a comparison between the simulative profile and the experimental one under the commonly-used parameters, an acceptable consistency has been demonstrated in despite of the deviation between the theoretically-predicted contrast (0.188) and the original experimental one (0.12). From the simulations, it is apparently observed that the fine interference pattern has been severely degraded by the finite spatial resolution, and will inevitably be further deteriorated by the system noise in practice. Since the image quality of the X-ray phase-contrast imaging is strongly dependent on the physical parameters of the system, a model-based deblurring procedure to upgrade the image visibility is preferably desired. As a simple restoration way, a Wiener filter was then introduced to offer an optimal tradeoff between the contrast preservation and the noise suppression. Finally, to minimize the deviation resulting from the finite spatial resolution, one-dimensional interpolation was performed by positioning the set square at a tiny angle to the vertical direction. The result after the Wiener-filtering-based deblurring has shown a considerably improved profile visibility: the processed experimental contrast (0.156) increased by 30% as compared to the original one (0.12) in company with the increase in the signal-to-noise ratio (SNR) by 0.9dB. With the trend of the post-filtered experimental contrast to the theoretical one, it could be motivated that

  15. Investigation into spiral phase plate contrast in optical and electron microscopy

    CERN Document Server

    Juchtmans, Roeland; Lubk, Axel; Verbeeck, Jo

    2016-01-01

    The use of phase plates in the back focal plane of a microscope is a well established technique in optical microscopy to increase the contrast of weakly interacting samples and is gaining interest in electron microscopy as well. In this paper we study the spiral phase plate (SPP), also called helical, vortex, or two-dimensional Hilbert phase plate, that adds an angularly dependent phase of the form $e^{i\\ell\\phi}$ to the exit wave in Fourier space. In the limit of large collection angles, we analytically calculate that the average of a pair of $\\ell=\\pm1$ SPP images is directly proportional to the gradient squared of the exit wave, explaining the edge contrast previously seen in optical SPP work. The difference between a clockwise-anticlockwise pair of SPP images and conditions where this difference vanishes and the gradient of the exit wave can be seen from one single SPP image, are discussed. Finally, we demonstrate how with three images, one without and one with each of an $\\ell=\\pm1$ SPP, may give enough ...

  16. A method for automatic liver segmentation from multi-phase contrast-enhanced CT images

    Science.gov (United States)

    Yuan, Rong; Luo, Ming; Wang, Shaofa; Wang, Luyao; Xie, Qingguo

    2014-03-01

    Liver segmentation is a basic and indispensable function in systems of computer aided liver surgery for volume calculation, operation designing and risk evaluation. Traditional manual segmentation is very time consuming because of the complicated contours of liver and the big amount of images. For increasing the efficiency of the clinical work, in this paper, a fully-automatic method was proposed to segment the liver from multi-phase contrast-enhanced computed tomography (CT) images. As an advanced region growing method, we applied various pre- and post-processing to get better segmentation from the different phases. Fifteen sets of clinical abdomens CT images of five patients were segmented by our algorithm, and the results were acceptable and evaluated by an experienced surgeon. The running-time is about 30 seconds for a single-phase data which includes more than 200 slices.

  17. Baseline correction of phase-contrast images in congenital cardiovascular magnetic resonance

    Directory of Open Access Journals (Sweden)

    Lai Wyman W

    2010-03-01

    Full Text Available Abstract Background One potential source of error in phase contrast (PC congenital CMR flow measurements is caused by phase offsets due to local non-compensated eddy currents. Phantom correction of these phase offset errors has been shown to result in more accurate measurements of blood flow in adults with structurally normal hearts. We report the effect of phantom correction on PC flow measurements at a clinical congenital CMR program. Results Flow was measured in the ascending aorta, main pulmonary artery, and right and left pulmonary arteries as clinically indicated, and additional values such as Qp/Qs were derived from these measurements. Phantom correction in our study population of 149 patients resulted in clinically significant changes in 13% to 48% of these phase-contrast measurements in patients with known or suspected heart disease. Overall, 640 measurements or calculated values were analyzed, and clinically significant changes were found in 31%. Larger vessels were associated with greater phase offset errors, with 22% of the changes in PC flow measurements attributed to the size of the vessel measured. In patients with structurally normal hearts, the pulmonary-to-systemic flow ratio after phantom correction was closer to 1.0 than before phantom correction. There was no significant difference in the effect of phantom correction for patients with tetralogy of Fallot as compared to the group as a whole. Conclusions Phantom correction often resulted in clinically significant changes in PC blood flow measurements in patients with known or suspected congenital heart disease. In laboratories performing clinical CMR with suspected phase offset errors of significance, the routine use of phantom correction for PC flow measurements should be considered.

  18. 4D x-ray phase contrast tomography for repeatable motion of biological samples

    Science.gov (United States)

    Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto

    2016-09-01

    X-ray phase contrast tomography based on a grating interferometer was applied to fast and dynamic measurements of biological samples. To achieve this, the scanning procedure in the tomographic scan was improved. A triangle-shaped voltage signal from a waveform generator to a Piezo stage was used for the fast phase stepping in the grating interferometer. In addition, an optical fiber coupled x-ray scientific CMOS camera was used to achieve fast and highly efficient image acquisitions. These optimizations made it possible to perform an x-ray phase contrast tomographic measurement within an 8 min scan with density resolution of 2.4 mg/cm3. A maximum volume size of 13 × 13 × 6 mm3 was obtained with a single tomographic measurement with a voxel size of 6.5 μm. The scanning procedure using the triangle wave was applied to four-dimensional measurements in which highly sensitive three-dimensional x-ray imaging and a time-resolved dynamic measurement of biological samples were combined. A fresh tendon in the tail of a rat was measured under a uniaxial stretching and releasing condition. To maintain the freshness of the sample during four-dimensional phase contrast tomography, the temperature of the bathing liquid of the sample was kept below 10° using a simple cooling system. The time-resolved deformation of the tendon and each fascicle was measured with a temporal resolution of 5.7 Hz. Evaluations of cross-sectional area size, length of the axis, and mass density in the fascicle during a stretching process provided a basis for quantitative analysis of the deformation of tendon fascicle.

  19. Phase Error Correction in Time-Averaged 3D Phase Contrast Magnetic Resonance Imaging of the Cerebral Vasculature.

    Directory of Open Access Journals (Sweden)

    M Ethan MacDonald

    Full Text Available Volume flow rate (VFR measurements based on phase contrast (PC-magnetic resonance (MR imaging datasets have spatially varying bias due to eddy current induced phase errors. The purpose of this study was to assess the impact of phase errors in time averaged PC-MR imaging of the cerebral vasculature and explore the effects of three common correction schemes (local bias correction (LBC, local polynomial correction (LPC, and whole brain polynomial correction (WBPC.Measurements of the eddy current induced phase error from a static phantom were first obtained. In thirty healthy human subjects, the methods were then assessed in background tissue to determine if local phase offsets could be removed. Finally, the techniques were used to correct VFR measurements in cerebral vessels and compared statistically.In the phantom, phase error was measured to be <2.1 ml/s per pixel and the bias was reduced with the correction schemes. In background tissue, the bias was significantly reduced, by 65.6% (LBC, 58.4% (LPC and 47.7% (WBPC (p < 0.001 across all schemes. Correction did not lead to significantly different VFR measurements in the vessels (p = 0.997. In the vessel measurements, the three correction schemes led to flow measurement differences of -0.04 ± 0.05 ml/s, 0.09 ± 0.16 ml/s, and -0.02 ± 0.06 ml/s. Although there was an improvement in background measurements with correction, there was no statistical difference between the three correction schemes (p = 0.242 in background and p = 0.738 in vessels.While eddy current induced phase errors can vary between hardware and sequence configurations, our results showed that the impact is small in a typical brain PC-MR protocol and does not have a significant effect on VFR measurements in cerebral vessels.

  20. High energy x-ray phase contrast CT using glancing-angle grating interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Sarapata, A., E-mail: adrian.sarapata@tum.de [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 and Department of Physics and Institute of Medical Engineering, Technische Universität München, 85748 Garching (Germany); Stayman, J. W.; Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Finkenthal, M.; Stutman, D. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Pfeiffer, F. [Department of Physics and Institute of Medical Engineering, Technische Universität München, 85748 Garching (Germany)

    2014-02-15

    Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code the authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not as

  1. High energy x-ray phase contrast CT using glancing-angle grating interferometers

    Science.gov (United States)

    Sarapata, A.; Stayman, J. W.; Finkenthal, M.; Siewerdsen, J. H.; Pfeiffer, F.; Stutman, D.

    2014-01-01

    Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code the authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not as

  2. Phase contrast image simulations for electron holography of magnetic and electric fields

    DEFF Research Database (Denmark)

    Beleggia, Marco; Pozzi, Giulio

    2013-01-01

    representation of the magnetic vector potential, that enables us to simulate realistic phase images of fluxons. The aim of this paper is to review the main ideas underpinning our computational framework and the results we have obtained throughout the collaboration. Furthermore, we outline how to generalize...

  3. Microdissection of Human Esophagogastric Junction Wall with Phase-contrast X-ray CT Imaging

    Science.gov (United States)

    Zhang, Jianfa; Zhou, Guangzhao; Tian, Dongping; Lin, Runhua; Peng, Guanyun; Su, Min

    2015-01-01

    Phase-contrast x-ray imaging using an x-ray interferometer has great potential to reveal the structures inside soft tissues, because the sensitivity of this method to hydrogen, carbon, nitrogen, and oxygen is about 1000 times higher than that of the absorption-contrast x-ray method. In this study, we used phase-contrast X-ray CT to investigate human resected esophagogastric junction. This technology revealed the three-layer structure of the esophagogastric junction wall—mucous, submucosa and muscular layers. The mucous and muscular layers were clearly separated by a loose submucosa layer with a honeycomb appearance. The shape of the mucous and muscular layers was intact. The boundary between the mucous and submucosa layers was distinct, as was the border of the muscular and submucosa layers. The surface of the esophagogastric junction was displayed clearly through 3D reconstruction. The technology might be helpful in the diagnosis of esophagogastric junction lesion, especially for the early adenocarcinoma. PMID:26346099

  4. X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging

    Science.gov (United States)

    Vågberg, William; Larsson, Daniel H.; Li, Mei; Arner, Anders; Hertz, Hans M.

    2015-11-01

    Imaging of muscular structure with cellular or subcellular detail in whole-body animal models is of key importance for understanding muscular disease and assessing interventions. Classical histological methods for high-resolution imaging methods require excision, fixation and staining. Here we show that the three-dimensional muscular structure of unstained whole zebrafish can be imaged with sub-5 μm detail with X-ray phase-contrast tomography. Our method relies on a laboratory propagation-based phase-contrast system tailored for detection of low-contrast 4-6 μm subcellular myofibrils. The method is demonstrated on 20 days post fertilization zebrafish larvae and comparative histology confirms that we resolve individual myofibrils in the whole-body animal. X-ray imaging of healthy zebrafish show the expected structured muscle pattern while specimen with a dystrophin deficiency (sapje) displays an unstructured pattern, typical of Duchenne muscular dystrophy. The method opens up for whole-body imaging with sub-cellular detail also of other types of soft tissue and in different animal models.

  5. Quantitative X-Ray Phase-Contrast Microtomography from a Compact Laser Driven Betatron Source

    CERN Document Server

    Wenz, J; Khrennikov, K; Bech, M; Thibault, P; Heigoldt, M; Pfeiffer, F; Karsch, S

    2014-01-01

    X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to brilliant keV X-ray emission. This so-called Betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present the first phase-contrast micro-tomogram revealing quantitative electron density values of a biological sample using betatron X-rays, and a comprehensive source characterization. Our results suggest that laser-based X-ray technology offers the potential fo...

  6. Phase-contrast imaging using a scanning-double-grating configuration.

    Science.gov (United States)

    Nesterets, Ya I; Wilkins, S W

    2008-04-14

    A new double-grating-based phase-contrast imaging technique is described. This technique differs from the conventional double-grating imaging method by the image acquisition strategy. The novelty of the proposed method is in lateral scanning of both gratings simultaneously while an image is collected. The collected image is not contaminated by a Moiré pattern and can be recorded even by using a high-spatial-resolution integrating detector (e.g. X-ray film), thus facilitating improved resolution and/or contrast in the image. A detailed theoretical analysis of image formation in the scanning-double-grating method is carried out within the rigorous wave-optical formalism. The transfer function for the scanning-double-grating imaging system is derived. An approximate geometrical-optics solution for the image intensity distribution is derived from the exact wave-optical formula using the stationary-phase approach. Based on the present formalism, the effects of finite source size on the preferred operating conditions and of polychromaticity on the image contrast and resolution are investigated.

  7. Preliminary Research on Dual-Energy X-Ray Phase-Contrast Imaging

    CERN Document Server

    Han, Huajie; Gao, Kun; Wang, Zhili; Zhang, Can; Yang, Meng; Zhang, Kai; Zhu, Peiping

    2015-01-01

    Dual-energy X-ray absorptiometry (DEXA) has been widely applied to measure bone mineral density (BMD) and soft-tissue composition of human body. However, the use of DEXA is greatly limited for low-Z materials such as soft tissues due to their weak absorption. While X-ray phase-contrast imaging (XPCI) shows significantly improved contrast in comparison with the conventional standard absorption-based X-ray imaging for soft tissues. In this paper, we propose a novel X-ray phase-contrast method to measure the area density of low-Z materials, including a single-energy method and a dual-energy method. The single-energy method is for the area density calculation of one low-Z material, while the dual-energy method is aiming to calculate the area densities of two low-Z materials simultaneously. Comparing the experimental and simulation results with the theoretic ones, the new method proves to have the potential to replace DEXA in area density measurement. The new method sets the prerequisites for future precise and lo...

  8. Transient inhomogeneous contrast enhancement of the spleen on arterial phase of spiral CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taik Kun; Kang, Hyo Jun; Lee, Ki Yeol; Park, Cheol Min; Chung, Kyoo Byung [Korea Univ. College of Medicine, Seoul (Korea, Republic of)

    1997-02-01

    To assess the relationship between splenic transient inhomogeneous contrast enhancement(CE) on the arterial phase of spiral CT, and splenic volume, and to classify the CE pattern in liver cirrhosis. We measured the splenic volume of 120 patients, 60 showed inhomogeneous splenic CE on arterial phase, and 60 showed homogeneous splenic CE. CT scans with intrinsic splenic pathology were excluded. Sixteen patients with clinically confirmed liver cirrhosis were included. Splenic volumes of the inhomogeneous and homogeneous CE group were compared. The inhomogeneous group was divided into grades according to areas of non-enhanced portion (grade 1, focal geographic; grade 2, multifocal patchy; grade 3, extensive serpentine inhomogeneous CE), and these were correlated with splenic volume. Among the 60 inhomogeneous CE scans, 23 cases (38.3%) showed splenomegaly (spleen volume > 220cm{sup 3}); in contrast, this applied to only 8 cases (13.3%) of the 60 homogeneous CE scans. Mean splenic volume in the inhomogeneous CE group (226.74 {+-} 129.78cm{sup 3}) was greater than in the homogeneous CE group (184.56 {+-} 77.44cm{sup 3}) (p < 0.033). A larger splenic volume and extensive inhomogeneous CE (grade 3) were noted, and most liver cirrhosis patients(14/16) were grade 3. Three such patients who had shown inhomogeneous splenic CE on arterial phase showed inhomogeneous CE even on portal phase. Inhomogeneous splenic CE on arterial phase was more common in cases of an enlarged spleen, and more extensive in liver cirrhosis. These findings suggest hemodynamic change of the spleen may be a contributory factor.

  9. On the feasibility of exomoon detection via exoplanet phase curve spectral contrast

    Science.gov (United States)

    Forgan, D. H.

    2017-09-01

    An exoplanet-exomoon system presents a superposition of phase curves to observers - the dominant component varies according to the planetary period, and the lesser component varies according to both the planetary and the lunar periods. If the spectra of the two bodies differ significantly, then it is likely that there are wavelength regimes where the contrast between the moon and planet is significantly larger. In principle, this effect could be used to isolate periodic oscillations in the combined phase curve. Being able to detect the exomoon component would allow a characterization of the exomoon radius, and potentially some crude atmospheric data. We run a parameter survey of combined exoplanet-exomoon phase curves, which shows that for most sets of planet-moon parameters, the lunar component of the phase curve is undetectable to current state-of-the-art transit observations. Even with future transit survey missions, measuring the exomoon signal will most likely require photometric precision of 10 parts per million or better. The only exception to this is if the moon is strongly tidally heated or in some way self-luminous. In this case, measurements of the phase curve at wavelengths greater than a few μm can be dominated by the lunar contribution. Instruments like the James Webb Space Telescope and its successors are needed to make this method feasible.

  10. On detector linearity and precision of beam shift detection for quantitative differential phase contrast applications.

    Science.gov (United States)

    Zweck, Josef; Schwarzhuber, Felix; Wild, Johannes; Galioit, Vincent

    2016-09-01

    Differential phase contrast is a STEM imaging mode where minute sideways deflections of the electron probe are monitored, usually by using a position sensitive device (Chapman, 1984 [1]; Lohr et al., 2012 [2]) or, alternatively in some cases, a fast camera (Müller et al., 2012 [3,4]; Yang et al., 2015 [5]; Pennycook et al., 2015 [6]) as a pixelated detector. While traditionally differential phase contrast electron microscopy was mainly focused on investigations of micro-magnetic domain structures and their specific features, such as domain wall widths, etc. (Chapman, 1984 [1]; Chapman et al., 1978, 1981, 1985 [7-9]; Sannomiya et al., 2004 [10]), its usage has recently been extended to mesoscopic (Lohr et al., 2012, 2016 [2,12]; Bauer et al., 2014 [11]; Shibata et al., 2015 [13]) and nano-scale electric fields (Shibata et al., 2012 [14]; Mueller et al., 2014 [15]). In this paper, the various interactions which can cause a beam deflection are reviewed and expanded by two so far undiscussed mechanisms which may be important for biological applications. As differential phase contrast microscopy strongly depends on the ability to detect minute beam deflections we first treat the linearity problem for an annular four quadrant detector and then determine the factors which limit the minimum measurable deflection angle, such as S/N ratio, current density, dwell time and detector geometry. Knowing these factors enables the experimenter to optimize the set-up for optimum performance of the microscope and to get a clear figure for the achievable field resolution error margins.

  11. Design and characterization of a phase contrast X-ray CT system

    Science.gov (United States)

    Zambelli, Joseph N.

    Phase contrast x-ray imaging has recently attracted wide research interest, as it offers the possibility to exploit different contrast mechanisms than conventional absorption imaging, with the potential for higher quality images or more available information as a result. This work details design and construction of au experimental grating-interferometer-based differential phase contrast computed tomography (DPC-CT) imaging system, presents measurements of performance, and compares this new imaging technique with conventional absorption imaging. Details of the fabrication of the specialized x-ray phase and absorption gratings are also provided. This system is unique in that makes use of a conventional rotating-anode x-ray tube, unlike previous designs which were based upon stationary anode x-ray tubes or synchrotron sources. The imaging system described here enables simultaneous reconstruction of electron density, effective atomic number, attenuation coefficient, and small-angle scatter density with data acquired from a single scan. It is theoretically shown and experimentally verified that DPC-CT imaging allows imaging of electron density at high spatial resolution with a much less severe dose penalty compared with conventional absorption imaging. Improved object visibility using electron density imaging is demonstrated with CNR measurements in physical phantoms and comparisons of reconstructions of breast tissue samples. The ability to directly image both electron density and effective atomic number provides a truly quantitative imaging technique and accuracy of the technique is shown using phantoms and potential applications are demonstrated using breast tissue samples. A new reconstruction algorithm which allows a doubling of the diameter of the scanning field of view, a potential enabling technology for eventual clinical use, is also demonstrated.

  12. Wavefront sensing based on phase contrast theory and coherent optical processing

    Science.gov (United States)

    Lei, Huang; Qi, Bian; Chenlu, Zhou; Tenghao, Li; Mali, Gong

    2016-07-01

    A novel wavefront sensing method based on phase contrast theory and coherent optical processing is proposed. The wavefront gradient field in the object plane is modulated into intensity distribution in a gang of patterns, making high-density detection available. By applying the method, we have also designed a wavefront sensor. It consists of a classical coherent optical processing system, a CCD detector array, two pieces of orthogonal composite sinusoidal gratings, and a mechanical structure that can perform real-time linear positioning. The simulation results prove and demonstrate the validity of the method and the sensor in high-precision measurement of the wavefront gradient field.

  13. Ultrafast, high resolution, phase contrast imaging of impact response with synchrotron radiation

    Directory of Open Access Journals (Sweden)

    B. J. Jensen

    2012-03-01

    Full Text Available Understanding the dynamic response of materials at extreme conditions requires diagnostics that can provide real-time, in situ, spatially resolved measurements on the nanosecond timescale. The development of methods such as phase contrast imaging (PCI typically used at synchrotron sources offer unique opportunities to examine dynamic material response. In this work, we report ultrafast, high-resolution, dynamic PCI measurements of shock compressed materials with 3 μm spatial resolution using a single 60 ps synchrotron X-ray bunch. These results firmly establish the use of PCI to examine dynamic phenomena at ns to μs timescales.

  14. Source effects in analyzer-based X-ray phase contrast imaging with conventional sources

    Energy Technology Data Exchange (ETDEWEB)

    Hoennicke, M. G. [Universidade Federal da Integracao Latino-Americana, 85867-970 Foz do Iguacu, PR (Brazil); Manica, J. [Universidade Estadual do Oeste do Parana, 85867-970 Foz do Iguacu, PR (Brazil); Mazzaro, I.; Cusatis, C. [LORXI, Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19091, 81531-990 Curitiba, PR (Brazil); Huang, X.-R. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2012-11-15

    Several recent papers have shown the implementation of analyzer based X-ray phase contrast imaging (ABI) with conventional X-ray sources. The high flux is always a requirement to make the technique useful for bio-medical applications. Here, we present and discuss three important parameters, which need to be taken into account, when searching for the high flux ABI: anisotropic magnification, double image, and source size spread due to intrinsic dispersive diffraction by asymmetrically cut crystals. These parameters, if not well optimized, may cause important features in the acquired images which can mislead the interpretation. A few ways to minimize these effects are implemented and discussed, including some experimental results.

  15. Berry phase in a generalized nonlinear two-level system

    Institute of Scientific and Technical Information of China (English)

    Liu Ji-Bing; Li Jia-Hua; Song Pei-Jun; Li Wei-Bin

    2008-01-01

    In this paper,we investigate the behaviour of the geometric phase of a more generalized nonlinear system composed of an effective two-level system interacting with a single-mode quantized cavity field.Both the field nonlinearity and the atom-field coupling nonlinearity are considered.We find that the geometric phase depends on whether the index k is an odd number or an even number in the resonant case.In addition,we also find that the geometric phase may be easily observed when the field nonlinearity is not considered.The fractional statistical phenomenon appears in this system if the strong nonlinear atom-field coupling is considered.We have also investigated the geometric phase of an effective two-level system interacting with a two-mode quantized cavity field.

  16. Fourier domain image fusion for differential X-ray phase-contrast breast imaging.

    Science.gov (United States)

    Coello, Eduardo; Sperl, Jonathan I; Bequé, Dirk; Benz, Tobias; Scherer, Kai; Herzen, Julia; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz; Cozzini, Cristina; Grandl, Susanne

    2017-04-01

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  17. Scattering properties of normal and cancerous tissues from human stomach based on phase-contrast microscope

    Science.gov (United States)

    Zhang, Hui; Li, Zhifang; Li, Hui

    2012-12-01

    In order to study scattering properties of normal and cancerous tissues from human stomach, we collect images for human gastric specimens by using phase-contrast microscope. The images were processed by the way of mathematics morphology. The equivalent particle size distribution of tissues can be obtained. Combining with Mie scattering theory, the scattering properties of tissues can be calculated. Assume scattering of light in biological tissue can be seen as separate scattering events by different particles, total scattering properties can be equivalent to as scattering sum of particles with different diameters. The results suggest that scattering coefficient of the cancerous tissue is significantly higher than that of normal tissue. The scattering phase function is different especially in the backscattering area. Those are significant clinical benefits to diagnosis cancerous tissue

  18. Programmable aperture microscopy: A computational method for multi-modal phase contrast and light field imaging

    Science.gov (United States)

    Zuo, Chao; Sun, Jiasong; Feng, Shijie; Zhang, Minliang; Chen, Qian

    2016-05-01

    We demonstrate a simple and cost-effective programmable aperture microscope to realize multi-modal computational imaging by integrating a programmable liquid crystal display (LCD) into a conventional wide-field microscope. The LCD selectively modulates the light distribution at the rear aperture of the microscope objective, allowing numerous imaging modalities, such as bright field, dark field, differential phase contrast, quantitative phase imaging, multi-perspective imaging, and full resolution light field imaging to be achieved and switched rapidly in the same setup, without requiring specialized hardwares and any moving parts. We experimentally demonstrate the success of our method by imaging unstained cheek cells, profiling microlens array, and changing perspective views of thick biological specimens. The post-exposure refocusing of a butterfly mouthpart and RFP-labeled dicot stem cross-section is also presented to demonstrate the full resolution light field imaging capability of our system for both translucent and fluorescent specimens.

  19. Effect of a Physical Phase Plate on Contrast Transfer in an Aberration-Corrected Transmission Electron Microscope

    OpenAIRE

    Gamm, B.; Schultheiß, K.; Schröder, R. R.; Gerthsen, D.

    2010-01-01

    In this theoretical study we analyze contrast transfer of weak-phase objects in a transmission electron microscope, which is equipped with an aberration corrector (Cs-corrector) in the imaging lens system and a physical phase plate in the back focal plane of the objective lens. For a phase shift of pi/2 between scattered and unscattered electrons induced by a physical phase plate, the sine-type phase contrast transfer function is converted into a cosine-type function. Optimal imaging conditio...

  20. Ultrasonic guided wave focusing by a generalized phased array

    Science.gov (United States)

    Zhang, Bixing; Xie, Fuli; Dong, Hefeng; Gong, Junjie

    2013-01-01

    Ultrasonic guided wave focusing by a generalized phased array is studied based on dispersion curves in a multi-layered medium. The different phase of the guided waves with different frequency is added on the excitation signal on each element of the transducer array for focusing. This can be realized by designing a proper excitation pulse based on the dispersion curves of the guided waves for each of the transducer array elements. The numerical simulation results show that the guided waves with different modes, different frequency components, and from different elements of the transducer array can all be focused at the target and focusing is achieved.

  1. Quantitative imaging of electron density and effective atomic number using phase contrast CT

    Energy Technology Data Exchange (ETDEWEB)

    Qi Zhihua; Zambelli, Joseph; Bevins, Nicholas; Chen Guanghong, E-mail: gchen7@wisc.ed [Department of Medical Physics, University of Wisconsin-Madison, WI 53705 (United States)

    2010-05-07

    Compared to single energy CT, which only provides information for x-ray linear attenuation coefficients, dual-energy CT is able to obtain both the electron density and effective atomic number for different materials in a quantitative way. In this study, as an alternative to dual-energy CT, a novel quantitative imaging method based on phase contrast CT is presented. Rather than requiring two projection data sets with different x-ray energy spectra, diffraction-grating-based phase contrast CT is capable of reconstructing images of both linear attenuation and refractive index decrement from the same projection data using a single x-ray energy spectra. From the two images, quantitative information of both the electron density and effective atomic number can be extracted. Two physical phantoms were constructed and used to validate the presented method. Experimental results demonstrate that (1) electron density can be accurately determined from refractive index decrement through a linear relationship, and (2) the effective atomic number can be explicitly derived from the ratio of the linear attenuation to refractive index decrement using a power function plus a constant. The presented method will provide insight into the technique of material separation and find its use in medical and industrial applications.

  2. Quantitative imaging of electron density and effective atomic number using phase contrast CT

    Science.gov (United States)

    Qi, Zhihua; Zambelli, Joseph; Bevins, Nicholas; Chen, Guang-Hong

    2010-05-01

    Compared to single energy CT, which only provides information for x-ray linear attenuation coefficients, dual-energy CT is able to obtain both the electron density and effective atomic number for different materials in a quantitative way. In this study, as an alternative to dual-energy CT, a novel quantitative imaging method based on phase contrast CT is presented. Rather than requiring two projection data sets with different x-ray energy spectra, diffraction-grating-based phase contrast CT is capable of reconstructing images of both linear attenuation and refractive index decrement from the same projection data using a single x-ray energy spectra. From the two images, quantitative information of both the electron density and effective atomic number can be extracted. Two physical phantoms were constructed and used to validate the presented method. Experimental results demonstrate that (1) electron density can be accurately determined from refractive index decrement through a linear relationship, and (2) the effective atomic number can be explicitly derived from the ratio of the linear attenuation to refractive index decrement using a power function plus a constant. The presented method will provide insight into the technique of material separation and find its use in medical and industrial applications.

  3. A novel quantitative imaging technique for material differentiation based on differential phase contrast CT

    Science.gov (United States)

    Qi, Zhihua; Zambelli, Joseph; Bevins, Nicholas; Chen, Guang-Hong

    2010-04-01

    Compared to single energy CT, which provides information only about the x-ray linear attenuation coefficients, dual energy CT is able to obtain the electron density and effective atomic number for different materials in a quantitative way. In this study, as an alternative to dual energy CT, a novel quantitative imaging method based on phase contrast CT is described. Rather than requiring two scans with different x-ray photon energies, diffraction grating-based phase contrast CT is capable of reconstructing images of both the linear attenuation and refractive index decrement from a single scan. From the two images, quantitative information of both the electron density and effective atomic number can be extracted. Experimental results demonstrate that: (1) electron density can be accurately determined from refractive index decrement through a linear relationship; and (2) effective atomic number can be explicitly derived from the ratio of linear attenuation to refractive index decrement, using a simple function, i.e., a power function plus a constant. The presented method will shed insight into the field of material separation and find its use in medical and non-medical applications.

  4. Teachable, high-content analytics for live-cell, phase contrast movies.

    Science.gov (United States)

    Alworth, Samuel V; Watanabe, Hirotada; Lee, James S J

    2010-09-01

    CL-Quant is a new solution platform for broad, high-content, live-cell image analysis. Powered by novel machine learning technologies and teach-by-example interfaces, CL-Quant provides a platform for the rapid development and application of scalable, high-performance, and fully automated analytics for a broad range of live-cell microscopy imaging applications, including label-free phase contrast imaging. The authors used CL-Quant to teach off-the-shelf universal analytics, called standard recipes, for cell proliferation, wound healing, cell counting, and cell motility assays using phase contrast movies collected on the BioStation CT and BioStation IM platforms. Similar to application modules, standard recipes are intended to work robustly across a wide range of imaging conditions without requiring customization by the end user. The authors validated the performance of the standard recipes by comparing their performance with truth created manually, or by custom analytics optimized for each individual movie (and therefore yielding the best possible result for the image), and validated by independent review. The validation data show that the standard recipes' performance is comparable with the validated truth with low variation. The data validate that the CL-Quant standard recipes can provide robust results without customization for live-cell assays in broad cell types and laboratory settings.

  5. Absorption and Phase Contrast X-Ray Imaging in Paleontology Using Laboratory and Synchrotron Sources.

    Science.gov (United States)

    Bidola, Pidassa; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz; Pacheco, Mírian L A F; Soriano, Carmen; Beckmann, Felix; Herzen, Julia

    2015-10-01

    X-ray micro-computed tomography (μCT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray μCT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumbá (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based μCT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies.

  6. Systolically gated 3D phase contrast MRA of mesenteric arteries in suspected mesenteric ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Wasser, M.N.; Schultze Kool, L.J.; Roos, A. de [Leiden Univ. Hospital (Netherlands)] [and others

    1996-03-01

    Our goal was to assess the value of MRA for detecting stenoses in the celiac (CA) and superior mesenteric (SMA) arteries in patients suspected of having chronic mesenteric ischemia, using an optimized systolically gated 3D phase contrast technique. In an initial study in 24 patients who underwent conventional angiography of the abdominal vessels for different clinical indications, a 3D phase contrast MRA technique (3D-PCA) was evaluated and optimized to image the CAs and SMAs. Subsequently, a prospective study was performed to assess the value of systolically gated 3D-PCA in evaluation of the mesenteric arteries in 10 patients with signs and symptoms of chronic mesenteric ischemia. Intraarterial digital subtraction angiography and surgical findings were used as the reference standard. In the initial study, systolic gating appeared to be essential in imaging the SMA on 3D-PCA. In 10 patients suspected of mesenteric ischemia, systolically gated 3D-PCA identified significant proximal disease in the two mesenteric vessels in 4 patients. These patients underwent successful reconstruction of their stenotic vessels. Cardiac-gated MRA may become a useful tool in selection of patients suspected of having mesenteric ischemia who may benefit from surgery. 16 refs., 6 figs., 4 tabs.

  7. Laser light-field fusion for wide-field lensfree on-chip phase contrast nanoscopy

    CERN Document Server

    Kazemzadeh, Farnoud

    2016-01-01

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. Nanoscopy is often synonymous with high equipment costs and limited FOV. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast nanoscopy, where interferometric laser light-field encodings acquired using an on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images with resolving power below the pixel pitch of the sensor array as well as the wavelength of the probing light source, beyond the diffraction limit. Experimental results demonstrate, for the first time, a lensfree on-chip instrument successfully detecting 500 nm nanoparticles without any specialized or intricate sample preparation or the use of synthetic aperture- or lateral shift-based t...

  8. Cine phase-contrast magnetic resonance imaging for analysis of flow phenomena in experimental aortic dissection.

    Science.gov (United States)

    Iwai, F; Sostman, H D; Evans, A J; Nadel, S N; Hedlund, L W; Beam, C A; Charles, H C; Spritzer, C E

    1991-12-01

    Using a 1.5 T magnetic resonance imaging (MRI) system, cine phase-contrast and magnitude images were obtained in three phantoms that simulated different anatomic configurations of aortic dissection. The dissection phantoms were made of compliant materials, and pulsatile flow was used in all experiments. Phantoms differed only in the location of the fenestration between the true and false lumens (I: an upstream "entry" only, II: both upstream "entry" and downstream "re-entry," and III: a downstream "entry" only). Flow jets, flap motion, and wave propagation were clearly visualized in cine MR images of each phantom, and quantitatively analyzed with reference to the stimulated cardiac cycle of the pump. Flow in the false lumen was always bidirectional. Upstream and downstream flow waves collided and dispersed within the false lumen. Flow through the false lumen was the same in phantoms I and II, and least in phantom III. The average area of the true lumen was largest in phantom III and smallest in I. Phantom I had the highest overall flow rate in the false lumen and greatest change in false lumen size during the cardiac cycle, while the downstream "entry" phantom had the lowest of both parameters. Flow phenomena in aortic dissections can be studied by cine phase-contrast MRI.

  9. Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images.

    Directory of Open Access Journals (Sweden)

    Yuliang Wang

    Full Text Available Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells.

  10. Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images.

    Science.gov (United States)

    Wang, Yuliang; Zhang, Zaicheng; Wang, Huimin; Bi, Shusheng

    2015-01-01

    Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells.

  11. Absorption and Phase Contrast X-Ray Imaging in Paleontology Using Laboratory and Synchrotron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Bidola, Pidassa; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz; Pacheco, Mirian L.A.F.; Soriano, Carmen; Beckmann, Felix; Herzen, Julia

    2015-10-01

    X-ray micro-computed tomography (CT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray CT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumba (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based CT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies.

  12. Propagator based formalism for optimizing in-line phase contrast imaging in laboratory X-ray setups.

    Science.gov (United States)

    Balles, Andreas; Zabler, Simon; Ebensperger, Thomas; Fella, Christian; Hanke, Randolf

    2016-09-01

    We derive a propagator based formalism for optimizing phase contrast imaging in laboratory setups as well as in synchrotron setups. We confirm based on five different setups the well known existence of an optimum position for the sample in terms of phase contrast by measuring two types of fibers and evaluating the fringe contrast. Furthermore, we demonstrate for these setups a correlation of our formula and the fringe contrast. Hence, an estimate of this optimum position is given by our formalism which only depends on the source size, the detector blurring, and the total distance between source and detector.

  13. The Accuracy and Precision of Flow Measurements Using Phase Contrast Techniques

    Science.gov (United States)

    Tang, Chao

    Quantitative volume flow rate measurements using the magnetic resonance imaging technique are studied in this dissertation because the volume flow rates have a special interest in the blood supply of the human body. The method of quantitative volume flow rate measurements is based on the phase contrast technique, which assumes a linear relationship between the phase and flow velocity of spins. By measuring the phase shift of nuclear spins and integrating velocity across the lumen of the vessel, we can determine the volume flow rate. The accuracy and precision of volume flow rate measurements obtained using the phase contrast technique are studied by computer simulations and experiments. The various factors studied include (1) the partial volume effect due to voxel dimensions and slice thickness relative to the vessel dimensions; (2) vessel angulation relative to the imaging plane; (3) intravoxel phase dispersion; (4) flow velocity relative to the magnitude of the flow encoding gradient. The partial volume effect is demonstrated to be the major obstacle to obtaining accurate flow measurements for both laminar and plug flow. Laminar flow can be measured more accurately than plug flow in the same condition. Both the experiment and simulation results for laminar flow show that, to obtain the accuracy of volume flow rate measurements to within 10%, at least 16 voxels are needed to cover the vessel lumen. The accuracy of flow measurements depends strongly on the relative intensity of signal from stationary tissues. A correction method is proposed to compensate for the partial volume effect. The correction method is based on a small phase shift approximation. After the correction, the errors due to the partial volume effect are compensated, allowing more accurate results to be obtained. An automatic program based on the correction method is developed and implemented on a Sun workstation. The correction method is applied to the simulation and experiment results. The

  14. A general tool for evaluating high-contrast coronagraphic telescope performance error budgets

    Science.gov (United States)

    Marchen, Luis F.; Shaklan, Stuart B.

    2009-08-01

    This paper describes a general purpose Coronagraph Performance Error Budget (CPEB) tool that we have developed under the NASA Exoplanet Exploration Program. The CPEB automates many of the key steps required to evaluate the scattered starlight contrast in the dark hole of a space-based coronagraph. It operates in 3 steps: first, a CodeV or Zemax prescription is converted into a MACOS optical prescription. Second, a Matlab program calls ray-trace code that generates linear beam-walk and aberration sensitivity matrices for motions of the optical elements and line-ofsight pointing, with and without controlled coarse and fine-steering mirrors. Third, the sensitivity matrices are imported by macros into Excel 2007 where the error budget is created. Once created, the user specifies the quality of each optic from a predefined set of PSDs. The spreadsheet creates a nominal set of thermal and jitter motions and combines them with the sensitivity matrices to generate an error budget for the system. The user can easily modify the motion allocations to perform trade studies.

  15. The Phase Space Elementary Cell in Classical and Generalized Statistics

    Directory of Open Access Journals (Sweden)

    Piero Quarati

    2013-10-01

    Full Text Available In the past, the phase-space elementary cell of a non-quantized system was set equal to the third power of the Planck constant; in fact, it is not a necessary assumption. We discuss how the phase space volume, the number of states and the elementary-cell volume of a system of non-interacting N particles, changes when an interaction is switched on and the system becomes or evolves to a system of correlated non-Boltzmann particles and derives the appropriate expressions. Even if we assume that nowadays the volume of the elementary cell is equal to the cube of the Planck constant, h3, at least for quantum systems, we show that there is a correspondence between different values of h in the past, with important and, in principle, measurable cosmological and astrophysical consequences, and systems with an effective smaller (or even larger phase-space volume described by non-extensive generalized statistics.

  16. Generalized Fourier analysis for phase retrieval of fringe pattern.

    Science.gov (United States)

    Zhong, Jingang; Weng, Jiawen

    2010-12-20

    A generalized Fourier analysis, by use of an adaptive multiscale windowed Fourier transform (AWFT), has been presented for the phase retrieval of fringe patterns. The Fourier transform method can be considered as a special case of AWFT method with a maximum window. The instantaneous frequency of the local signal is introduced to estimate whether the condition for separating the first spectrum component is satisfied for the phase retrieval of fringe patterns. The adaptive window width for this algorithm is determined by the length of the local stationary fringe pattern in order to balance the frequency and space resolution. The local stationary length of fringe pattern is defined as the signal satisfying the condition that whose first spectrum component is separated from all the other spectra within the local spatial area. In comparison with Fourier transform, fixed windowed Fourier transform and wavelet transform in numerical simulation and experiment, the adaptive multiscale windowed Fourier transform can present more accurate results of phase retrieval.

  17. Development of a Digital Control for the Phase Contrast Imaging Alignment Feedback System

    Science.gov (United States)

    Hirata, M.; Marinoni, A.; Rost, J. C.; Davis, E. M.; Porkolab, M.

    2016-10-01

    The Phase Contrast Imaging diagnostic is an internal reference interferometer that images density fluctuations on a 32-element linear detector array. Since proper operation of the system requires accurate alignment of a CO2 laser beam on a phase plate, beam motion due to vibrations of the DIII-D vessel need to be compensated up to 1 kHz. The feedback network controlling the steering mirrors currently uses a linear analog controller, but a digital controller can provide improved stability performance and flexibility. A prototype was developed using an Arduino Due, a low-cost microcontroller, to assess performance capabilities. Digital control parameters will be developed based on the measured frequency and phase response of the physical components. Finally, testing of the digital feedback system and the required revisions will be done to achieve successful performance. This upgrade to the linear analog controller is expected to be used routinely on similar diagnostics in fusion devices, especially in view of restricted access to the machine hall. Work supported in part by the US Department of Energy under DE-FG02-94ER54235, DE-FC02-04ER54698, and the Science Undergraduate Laboratory Internships Program (SULI).

  18. Simulated cystic renal lesions: quantitative X-ray phase-contrast CT--an in vitro phantom study

    National Research Council Canada - National Science Library

    Fingerle, Alexander A; Willner, Marian; Herzen, Julia; Münzel, Daniela; Hahn, Dieter; Rummeny, Ernst J; Noël, Peter B; Pfeiffer, Franz

    2014-01-01

    To determine if grating-based x-ray phase-contrast computed tomography (CT) can allow differentiation of simulated simple, protein-rich, hemorrhagic, and enhancing cystic renal lesions in an in vitro phantom...

  19. Dynamics of phase oscillators with generalized frequency-weighted coupling

    Science.gov (United States)

    Xu, Can; Gao, Jian; Xiang, Hairong; Jia, Wenjing; Guan, Shuguang; Zheng, Zhigang

    2016-12-01

    Heterogeneous coupling patterns among interacting elements are ubiquitous in real systems ranging from physics, chemistry to biology communities, which have attracted much attention during recent years. In this paper, we extend the Kuramoto model by considering a particular heterogeneous coupling scheme in an ensemble of phase oscillators, where each oscillator pair interacts with different coupling strength that is weighted by a general function of the natural frequency. The Kuramoto theory for the transition to synchronization can be explicitly generalized, such as the expression for the critical coupling strength. Also, a self-consistency approach is developed to predict the stationary states in the thermodynamic limit. Moreover, Landau damping effects are further revealed by means of linear stability analysis and resonance poles theory below the critical threshold, which turns to be far more generic. Our theoretical analysis and numerical results are consistent with each other, which can help us understand the synchronization transition in general networks with heterogenous couplings.

  20. Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup

    Energy Technology Data Exchange (ETDEWEB)

    Diemoz, Paul C., E-mail: p.diemoz@ucl.ac.uk; Vittoria, Fabio A. [University College London, London WC1 E6BT (United Kingdom); Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom); Hagen, Charlotte K.; Endrizzi, Marco [University College London, London WC1 E6BT (United Kingdom); Coan, Paola [Ludwig-Maximilians-University, Munich 81377 (Germany); Ludwig-Maximilians-University, Garching 85748 (Germany); Brun, Emmanuel [Ludwig-Maximilians-University, Garching 85748 (Germany); European Synchrotron Radiation Facility, Grenoble 38043 (France); Wagner, Ulrich H.; Rau, Christoph [Diamond Light Source, Harwell Oxford Campus, Didcot OX11 0DE (United Kingdom); Robinson, Ian K. [Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom); London Centre for Nanotechnology, London WC1 H0AH (United Kingdom); Bravin, Alberto [European Synchrotron Radiation Facility, Grenoble 38043 (France); Olivo, Alessandro [University College London, London WC1 E6BT (United Kingdom); Research Complex at Harwell, Oxford Harwell Campus, Didcot OX11 0FA (United Kingdom)

    2015-06-25

    A method enabling the retrieval of thickness or projected electron density of a sample from a single input image is derived theoretically and successfully demonstrated on experimental data. A method is proposed which enables the retrieval of the thickness or of the projected electron density of a sample from a single input image acquired with an edge illumination phase-contrast imaging setup. The method assumes the case of a quasi-homogeneous sample, i.e. a sample with a constant ratio between the real and imaginary parts of its complex refractive index. Compared with current methods based on combining two edge illumination images acquired in different configurations of the setup, this new approach presents advantages in terms of simplicity of acquisition procedure and shorter data collection time, which are very important especially for applications such as computed tomography and dynamical imaging. Furthermore, the fact that phase information is directly extracted, instead of its derivative, can enable a simpler image interpretation and be beneficial for subsequent processing such as segmentation. The method is first theoretically derived and its conditions of applicability defined. Quantitative accuracy in the case of homogeneous objects as well as enhanced image quality for the imaging of complex biological samples are demonstrated through experiments at two synchrotron radiation facilities. The large range of applicability, the robustness against noise and the need for only one input image suggest a high potential for investigations in various research subjects.

  1. X-ray phase-contrast tomography of renal ischemia-reperfusion damage.

    Directory of Open Access Journals (Sweden)

    Astrid Velroyen

    Full Text Available The aim of the study was to investigate microstructural changes occurring in unilateral renal ischemia-reperfusion injury in a murine animal model using synchrotron radiation.The effects of renal ischemia-reperfusion were investigated in a murine animal model of unilateral ischemia. Kidney samples were harvested on day 18. Grating-Based Phase-Contrast Imaging (GB-PCI of the paraffin-embedded kidney samples was performed at a Synchrotron Radiation Facility (beam energy of 19 keV. To obtain phase information, a two-grating Talbot interferometer was used applying the phase stepping technique. The imaging system provided an effective pixel size of 7.5 µm. The resulting attenuation and differential phase projections were tomographically reconstructed using filtered back-projection. Semi-automated segmentation and volumetry and correlation to histopathology were performed.GB-PCI provided good discrimination of the cortex, outer and inner medulla in non-ischemic control kidneys. Post-ischemic kidneys showed a reduced compartmental differentiation, particularly of the outer stripe of the outer medulla, which could not be differentiated from the inner stripe. Compared to the contralateral kidney, after ischemia a volume loss was detected, while the inner medulla mainly retained its volume (ratio 0.94. Post-ischemic kidneys exhibited severe tissue damage as evidenced by tubular atrophy and dilatation, moderate inflammatory infiltration, loss of brush borders and tubular protein cylinders.In conclusion GB-PCI with synchrotron radiation allows for non-destructive microstructural assessment of parenchymal kidney disease and vessel architecture. If translation to lab-based approaches generates sufficient density resolution, and with a time-optimized image analysis protocol, GB-PCI may ultimately serve as a non-invasive, non-enhanced alternative for imaging of pathological changes of the kidney.

  2. Measurement of depth-resolved thermal deformation distribution using phase-contrast spectral optical coherence tomography.

    Science.gov (United States)

    Zhang, Yun; Dong, Bo; Bai, Yulei; Ye, Shuangli; Lei, Zhenkun; Zhou, Yanzhou

    2015-10-19

    An updated B-scan method is proposed for measuring the evolution of thermal deformation fields in polymers. In order to measure the distributions of out-of-plane deformation and normal strain field, phase-contrast spectral optical coherence tomography (PC-SOCT) was performed with the depth range and resolution of 4.3 mm and 10.7 μm, respectively, as thermal loads were applied to three different multilayer samples. The relation between temperature and material refractive index was predetermined before the measurement. After accounting for the refractive index, the thermal deformation fields in the polymer were obtained. The measured thermal expansion coefficient of silicone sealant was approximately equal to its reference value. This method allows correctly assessing the mechanical properties in semitransparent polymers.

  3. Non-invasive classification of microcalcifications with phase-contrast X-ray mammography

    Science.gov (United States)

    Wang, Zhentian; Hauser, Nik; Singer, Gad; Trippel, Mafalda; Kubik-Huch, Rahel A.; Schneider, Christof W.; Stampanoni, Marco

    2014-05-01

    Microcalcifications can be indicative in the diagnosis of early breast cancer. Here we report a non-invasive diagnostic method that may potentially distinguish between different types of microcalcifications using X-ray phase-contrast imaging. Our approach exploits the complementary nature of the absorption and small-angle scattering signals of microcalcifications, obtained simultaneously with an X-ray grating interferometer on a conventional X-ray tube. We demonstrate that the new approach has 100% sensitivity and specificity when applied to phantom data, and we provide evidence of the solidity of the technique by showing its discrimination power when applied to fixed biopsies, to non-fixed tissue specimens and to fresh, whole-breast samples. The proposed method might be further developed to improve early breast cancer diagnosis and has the potential to increase the diagnostic accuracy and reduce the number of uncomfortable breast biopsies, or, in case of widespread microcalcifications, to select the biopsy site before intervention.

  4. High-sensitivity phase-contrast tomography of rat brain in phosphate buffered saline

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, Franz [Department of Physics, Technical University Munich, 85748 Garching (Germany); David, Christian; Bunk, Oliver [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Poitry-Yamate, Carole; Gruetter, Rolf [Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Mueller, Bert [Biomaterials Science Center, University of Basel, 4031 Basel (Switzerland); Weitkamp, Timm, E-mail: franz.pfeiffer@ph.tum.d [European Synchrotron Radiation Facility, B.P. 220, 38043 Grenoble Cedex (France)

    2009-09-01

    We report advances and complementary results concerning a recently developed method for high-sensitivity grating-based x-ray phase-contrast tomography. In particular we demonstrate how the soft tissue sensitivity of the technique can be used to obtain in-vitro tomographic images of rat brain specimens. Contrary to our previous experiments with fixated specimen (chemically modified or formalin fixed), the present results on the rat's brain are closer to the in-vivo situation. The findings are particularly important from a clinical point of view, since a similar approach using three gratings can be implemented with more readily available x-ray sources, such as standard x-ray tubes.

  5. Note: Gratings on low absorbing substrates for x-ray phase contrast imaging

    Science.gov (United States)

    Koch, F. J.; Schröter, T. J.; Kunka, D.; Meyer, P.; Meiser, J.; Faisal, A.; Khalil, M. I.; Birnbacher, L.; Viermetz, M.; Walter, M.; Schulz, J.; Pfeiffer, F.; Mohr, J.

    2015-12-01

    Grating based X-ray phase contrast imaging is on the verge of being applied in clinical settings. To achieve this goal, compact setups with high sensitivity and dose efficiency are necessary. Both can be increased by eliminating unwanted absorption in the beam path, which is mainly due to the grating substrates. Fabrication of gratings via deep X-ray lithography can address this issue by replacing the commonly used silicon substrate with materials with lower X-ray absorption that fulfill certain boundary conditions. Gratings were produced on both graphite and polymer substrates without compromising on structure quality. These gratings were tested in a three-grating setup with a source operated at 40 kVp and lead to an increase in the detector photon count rate of almost a factor of 4 compared to a set of gratings on silicon substrates. As the visibility was hardly affected, this corresponds to a significant increase in sensitivity and therefore dose efficiency.

  6. Feedback control of an interacting Bose-Einstein condensate using phase-contrast imaging

    CERN Document Server

    Szigeti, Stuart S; Carvalho, Andre R R; Hope, Joseph J

    2010-01-01

    The linewidth of an atom laser is limited by density fluctuations in the Bose-Einstein condensate (BEC) from which the atom laser beam is outcoupled. In this paper we show that a stable spatial mode for an interacting BEC can be generated using a realistic control scheme that includes the effects of the measurement backaction. This model extends the feedback theory, based on a phase-contrast imaging setup, presented in \\cite{Szigeti:2009}. In particular, it is applicable to a BEC with large interatomic interactions and solves the problem of inadequacy of the mean-field (coherent state) approximation by utilising a fixed number state approximation. Our numerical analysis shows the control to be more effective for a condensate with a large nonlinearity.

  7. Feedback control of an interacting Bose-Einstein condensate using phase-contrast imaging

    Science.gov (United States)

    Szigeti, S. S.; Hush, M. R.; Carvalho, A. R. R.; Hope, J. J.

    2010-10-01

    The linewidth of an atom laser is limited by density fluctuations in the Bose-Einstein condensate (BEC) from which the atom laser beam is outcoupled. In this paper we show that a stable spatial mode for an interacting BEC can be generated using a realistic control scheme that includes the effects of the measurement backaction. This model extends the feedback theory, based on a phase-contrast imaging setup, presented by Szigeti, Hush, Carvalho, and Hope [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.013614 80, 013614 (2009)]. In particular, it is applicable to a BEC with large interatomic interactions and solves the problem of inadequacy of the mean-field (coherent state) approximation by utilizing a fixed number state approximation. Our numerical analysis shows the control to be more effective for a condensate with a large nonlinearity.

  8. Understanding phase contrast MR angiography a practical approach with Matlab examples

    CERN Document Server

    Suresh Paul, Joseph

    2016-01-01

    Providing many unique MATLAB codes and functions throughout, this book covers the basics of Magnetic Resonance Imaging (MRI), leading to an in-depth understanding of the concepts and tools required for analysis and interpretation of Phase Contrast MR Angiography (PC-MRA). The concept of PC-MRA is often difficult, but essential for practicing engineers and scientists working in MR related areas. The concepts are better understood by uniquely combining the physical principles of fluid flow and MR imaging, laid out by modeling the theory and applications using a commonly used software tool MATLAB®. The book starts with a detailed theory of PC-MRA followed by a description of various image processing methods, including detailed MATLAB codes used for their implementation. The flow concepts in the context of MR imaging are explained using MATLAB based simulations.

  9. Theory of single-shot phase contrast imaging in spinor Bose-Einstein condensates.

    Science.gov (United States)

    Ilo-Okeke, Ebubechukwu O; Byrnes, Tim

    2014-06-13

    We introduce a theoretical framework for single-shot phase contrast imaging (PCI) measurements of spinor Bose-Einstein condensates (BECs). Our model allows for the simple calculation of the quantum backaction resulting from the measurement, and the amount of information that is read out. We find that there is an optimum time Gτ ∼ 1/N for the light-matter interaction (G is the ac Stark shift frequency, N is the number of particles in the BEC), where the maximum amount of information can be read out from the BEC. A universal information-disturbance tradeoff law ε(F)ε(G) ∝ 1/N(2) is found where ε(F) is the amount of backaction and ε(G) is the estimation error. The PCI measurement can also be found to be a direct probe of the quantum fluctuations of the BEC, via the noise of the PCI signal.

  10. Theory of single-shot phase contrast imaging in spinor Bose-Einstein condensates

    CERN Document Server

    Ilo-Okeke, Ebubechukwu O

    2014-01-01

    We introduce a theoretical framework for single-shot phase contrast imaging (PCI) measurements of spinor Bose-Einstein condensates. Our model allows for the simple calculation of the quantum backaction resulting from the measurement, and the amount of information that is read out. We find that there is an optimum time $ G\\tau \\sim 1/N $ for the light-matter interaction ($G $ is the ac Stark shift frequency, $ N $ is the number of particles in the BEC), where the maximum amount of information can be read out from the BEC. A universal information-disturbance tradeoff law $ \\epsilon_F \\epsilon_G \\propto 1/N^2 $ is found where $ \\epsilon_F $ is the amount of backaction and $ \\epsilon_G $ is the estimation error. The PCI measurement can also be found to be a direct probe of the quantum fluctuations of the BEC, via the noise of the PCI signal.

  11. Hemodynamic analysis of intracranial aneurysms using phase-contrast magnetic resonance imaging and computational fluid dynamics

    Science.gov (United States)

    Zhao, Xuemei; Li, Rui; Chen, Yu; Sia, Sheau Fung; Li, Donghai; Zhang, Yu; Liu, Aihua

    2017-03-01

    Additional hemodynamic parameters are highly desirable in the clinical management of intracranial aneurysm rupture as static medical images cannot demonstrate the blood flow within aneurysms. There are two ways of obtaining the hemodynamic information—by phase-contrast magnetic resonance imaging (PCMRI) and computational fluid dynamics (CFD). In this paper, we compared PCMRI and CFD in the analysis of a stable patient's specific aneurysm. The results showed that PCMRI and CFD are in good agreement with each other. An additional CFD study of two stable and two ruptured aneurysms revealed that ruptured aneurysms have a higher statistical average blood velocity, wall shear stress, and oscillatory shear index (OSI) within the aneurysm sac compared to those of stable aneurysms. Furthermore, for ruptured aneurysms, the OSI divides the positive and negative wall shear stress divergence at the aneurysm sac.

  12. X-ray phase-contrast CT imaging of the acupoints based on synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chenglin, Liu, E-mail: lclyctc@163.com [Physics Department of Yancheng Teachers’ College, Yancheng 224051 (China); Xiaohua, Wang; Hua, Xu [Physics Department of Yancheng Teachers’ College, Yancheng 224051 (China); Fang, Liu; Ruishan, Dang [Anatomy Department of Second Military Medical University, Shanghai 200433 (China); Dongming, Zhang; Xinyi, Zhang [Synchrotron Radiation Research Center of Fudan University, Shanghai 200433 (China); Honglan, Xie; Tiqiao, Xiao [Shanghai Synchrotron Radiation Facility of Shanghai Institute of Applied Physics, CAS, Shanghai 201800 (China)

    2014-10-15

    In this paper, the morphology of the acupuncture point (abbreviated as acupoint hereafter) or tissue where there were no acupoints in the fractional rabbit hind limb was studied by in-line phase contrast CT imaging (PCI-CT) methods based on synchrotron radiation. The density of micro-vessels was calculated for tissues with acupoints or without acupoints. Differences between acupoints area and non-acupoint areas determined by the density of the micro-vessels propose a strong evidence of the existence of acupoints. Our results showed that there were two significantly higher densities of the micro-vessels, where two acupoints were located, respectively. In addition, there were large numbers of involutedly microvascular structure in the acupoint areas. Nevertheless, in non-acupoints area, the microvascular structure was relatively simple and flat.

  13. Turbulent stress measurements with phase-contrast magnetic resonance through tilted slices

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, Jordan; Soederberg, Daniel; Lundell, Fredrik [Linne FLOW Centre, KTH Mechanics, Stockholm (Sweden); Swerin, Agne [SP Technical Research Institute of Sweden-Chemistry, Materials and Surfaces, Stockholm (Sweden); KTH Royal Institute of Technology, Surface and Corrosion Science, Stockholm (Sweden)

    2017-05-15

    Aiming at turbulent measurements in opaque suspensions, a simplistic methodology for measuring the turbulent stresses with phase-contrast magnetic resonance velocimetry is described. The method relies on flow-compensated and flow-encoding protocols with the flow encoding gradient normal to the slice. The experimental data is compared with direct numerical simulations (DNS), both directly but also, more importantly, after spatial averaging of the DNS data that resembles the measurement and data treatment of the experimental data. The results show that the most important MRI data (streamwise velocity, streamwise variance and Reynolds shear stress) is reliable up to at least anti r = 0.75 without any correction, paving the way for dearly needed turbulence and stress measurements in opaque suspensions. (orig.)

  14. Phase Contrast X-Ray Synchrotron Microtomography for Virtual Dissection of the Head of Rhodnius prolixus

    Science.gov (United States)

    Sena, G.; Almeida, A. P.; Braz, D.; Nogueira, L. P.; Colaço, M. V.; Soares, J.; Cardoso, S. C.; Garcia, E. S.; Azambuja, P.; Gonzalez, M. S.; Mohammadi, S.; Tromba, G.; Barroso, R. C.

    2014-04-01

    Phase Contrast X-Ray Synchroton Microtomography is a non-destructive technique that allows the microanatomical investigations of Rhodnius prolixus, one of the most important insect vectors of Trypanosoma cruzi. In this work complete series of virtual thin sections through the heads of selected Rhodnius prolixus were obtained. The sections of the head were important to compare the difference in use the spatial resolution of 2 μm or 4.5 μm and to see anatomical details that couldn't be seen with other technique. Three different groups of Rhodnius prolixus were used. One group was fed with defibrinated rabbit blood and after 10 days was sacrificed, other group was sacrificed 4 days after feeding and the last group remained unfed. The results show some differences for each kind of groups and for the different resolutions.

  15. Nondestructive X-ray imaging of inner structure of soft tissues in phase contrast

    Institute of Scientific and Technical Information of China (English)

    XIAO Ti-Qiao; ZHANG Gui-Lin; XU Hong-Jie; TIAN Yu-Lian; HUANG Wan-Xia; ZHU Pei-Ping

    2003-01-01

    An experimental study on nondestructive X-ray imaging of inner structure of soft tissues in phase con-trast has been conducted with Beijing Synchrotron Radiation Facility (BSRF). Modification to the beamline setupwas made to enlarge the X-ray beam section and consequently larger samples could be imaged. In-line setup was em-ployed for experiments. Results on a series of samples were given and soft-tissue details of less than 50 μm inside afresh goldfish were obtained. Diagnosis of tumor in its early stage was also investigated taking SD rats as the model.Tumor at the size of ~ 100μm was observed. Potential of this technique in clinic diagnosis was discussed.

  16. Design of tangential viewing phase contrast imaging for turbulence measurements in JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K., E-mail: ktanaka@nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Department of Advanced Energy Engineering, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Coda, S. [EPFL–SPC, Lausanne (Switzerland); Yoshida, M.; Sasao, H.; Kawano, Y.; Imazawa, R.; Kubo, H.; Kamada, Y. [National Institutes for Quantum and Radiological Science and Technology, Naka, Ibaraki 311-0193 (Japan)

    2016-11-15

    A tangential viewing phase contrast imaging system is being designed for the JT-60SA tokamak to investigate microturbulence. In order to obtain localized information on the turbulence, a spatial-filtering technique is applied, based on magnetic shearing. The tangential viewing geometry enhances the radial localization. The probing laser beam is injected tangentially and traverses the entire plasma region including both low and high field sides. The spatial resolution for an Internal Transport Barrier discharge is estimated at 30%–70% of the minor radius at k = 5 cm{sup −1}, which is the typical expected wave number of ion scale turbulence such as ion temperature gradient/trapped electron mode.

  17. Revealing letters in rolled Herculaneum papyri by X-ray phase-contrast imaging

    Science.gov (United States)

    Mocella, Vito; Brun, Emmanuel; Ferrero, Claudio; Delattre, Daniel

    2015-01-01

    Hundreds of papyrus rolls, buried by the eruption of Mount Vesuvius in 79 AD and belonging to the only library passed on from Antiquity, were discovered 260 years ago at Herculaneum. These carbonized papyri are extremely fragile and are inevitably damaged or destroyed in the process of trying to open them to read their contents. In recent years, new imaging techniques have been developed to read the texts without unwrapping the rolls. Until now, specialists have been unable to view the carbon-based ink of these papyri, even when they could penetrate the different layers of their spiral structure. Here for the first time, we show that X-ray phase-contrast tomography can reveal various letters hidden inside the precious papyri without unrolling them. This attempt opens up new opportunities to read many Herculaneum papyri, which are still rolled up, thus enhancing our knowledge of ancient Greek literature and philosophy.

  18. Evaluation of hyperdense renal lesions incidentally detected on single-phase post-contrast CT using dual-energy CT

    Science.gov (United States)

    Park, Jung Jae; Park, Byung Kwan

    2016-01-01

    Objective: To investigate the utility of dual-energy CT (DECT) for differentiating between solid and benign cystic lesions presenting as hyperdense renal lesions incidentally detected on single-phase post-contrast CT. Methods: 90 hyperdense renal lesions incidentally detected on single-phase post-contrast CT were evaluated with follow-up DECT. DECT protocols included true non-contrast (TNC), DE corticomedullary and DE late nephrographic phase imaging. The CT numbers of hyperdense renal lesions were calculated on linearly blended and iodine overlay (IO) images, and the results were compared. Results: In total, 47 benign cystic and 43 solid renal lesions were analyzed. For differentiating between solid and benign cystic lesions on the two phases, the specificity and accuracy of all lesions and lesions  0.05). For all types of lesions ≥1.5 cm, the CT numbers between linearly blended and IO images and between TNC and virtual non-contrast images were not statistically different (p > 0.05). Conclusion: DECT may be useful for differentiating between solid and benign cystic lesions presenting as hyperdense renal lesions incidentally detected on single-phase post-contrast CT, particularly with the size ≥1.5 cm. Advances in knowledge: DECT may be used to characterize hyperdense renal lesions ≥1.5 cm incidentally detected on single-phase post-contrast CT, without the use of TNC images. PMID:27043480

  19. Differential phase contrast 2.0-Opening new 'fields' for an established technique

    Energy Technology Data Exchange (ETDEWEB)

    Lohr, Matthias; Schregle, Ralph [Physics Faculty, Regensburg University, Universitaetsstrasse 31, D-93040 Regensburg (Germany); Jetter, Michael; Waechter, Clemens [Institute for Semiconductor Optics and Functional Interfaces, Stuttgart University, Pfaffenwaldring 57, D-70569 Stuttgart (Germany); Wunderer, Thomas; Scholz, Ferdinand [Institute for Optoelectronics, Ulm University, Albert-Einstein-Allee 45, D-89081 Ulm (Germany); Zweck, Josef, E-mail: josef.zweck@physik.uni-regensburg.de [Physics Faculty, Regensburg University, Universitaetsstrasse 31, D-93040 Regensburg (Germany)

    2012-06-15

    Differential phase contrast microscopy has become known as a high resolution imaging technique for magnetic micro-structures in the past. The method senses the local induction by measuring the deflection of the probe beam after it passes through a specimen area carrying a magnetic field. Little attention has been paid, however, to the fact that this technique is also capable of measuring electric fields. An application of the technique to measure piezoelectric polarization fields inside multi-layered structures such as quantum wells is demonstrated. For this purpose, piezoelectric fields within non-centrosymmetric crystal structures, based on GaN/InGaN/GaN quantum wells, are investigated. It can be shown that the technique is sensitive to these fields and yields detailed information about the field distribution. The specific information and experimental limitations as well as artefacts of the technique will be discussed in detail and first measurements are shown. The main advantages turn out to be high sensitivity for electric fields, combined with a very high resolution, which is limited only by the STEM probe size. Another advantage is the large achievable field of view. -- Highlights: Black-Right-Pointing-Pointer We describe a technique which allows the determination of inner electric fields in matter. Black-Right-Pointing-Pointer Inner fields are believed to be one major reason for the so-called efficiency 'droop' in green solid state lasers. Black-Right-Pointing-Pointer The technique used is differential phase contrast, used for the first time for inner electric field determination. Black-Right-Pointing-Pointer The technique is complementary to electron holography, offers a wider field of view and reveals new structures.

  20. Low-dose x-ray phase-contrast and absorption CT using equally sloped tomography

    Science.gov (United States)

    Fahimian, Benjamin P.; Mao, Yu; Cloetens, Peter; Miao, Jianwei

    2010-09-01

    Tomographic reconstruction from undersampled and noisy projections is often desirable in transmission CT modalities for purposes of low-dose tomography and fast acquisition imaging. However under such conditions, due to the violation of the Nyquist sampling criteria and the presence of noise, reconstructions with acceptable accuracy may not be possible. Recent experiments in transmission electron tomography and coherent diffraction microscopy have shown that the technique of equally sloped tomography (EST), an exact tomographic method utilizing an oversampling iterative Fourier-based reconstruction, provides more accurate image reconstructions when the number of projections is significantly undersampled relative to filtered back projection and algebraic iterative methods. Here we extend this technique by developing new reconstruction algorithms which allow for the incorporation of advanced mathematical regularization constraints, such as the nonlocal means total variational model, in a manner that is consistent with experimental projections. We then evaluate the resulting image quality of the developed algorithm through simulations and experiments at the European Synchrotron Radiation Facility on image quality phantoms using the x-ray absorption and phase contrast CT modalities. Both our simulation and experimental results have indicated that the method can reduce the number of projections by 60-75% in parallel beam modalities, while achieving comparable or better image quality than the conventional reconstructions. As large-scale and compact synchrotron radiation facilities are currently under rapid development worldwide, the implementation of low-dose x-ray absorption and phase-contrast CT can find broad applications in biology and medicine using these advanced x-ray sources.

  1. Low-dose x-ray phase-contrast and absorption CT using equally sloped tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fahimian, Benjamin P; Miao Jianwei [Department of Physics and Astronomy, and the California NanoSystems Institute, University of California, Los Angeles, CA 90095 (United States); Mao Yu [Department of Mathematics, University of California, Los Angeles, CA 90095 (United States); Cloetens, Peter, E-mail: miao@physics.ucla.ed, E-mail: fahimian@stanford.ed [European Synchrotron Radiation Facility, BP 220, 6 Rue Jules Horowitz, 38043 Grenoble Cedex (France)

    2010-09-21

    Tomographic reconstruction from undersampled and noisy projections is often desirable in transmission CT modalities for purposes of low-dose tomography and fast acquisition imaging. However under such conditions, due to the violation of the Nyquist sampling criteria and the presence of noise, reconstructions with acceptable accuracy may not be possible. Recent experiments in transmission electron tomography and coherent diffraction microscopy have shown that the technique of equally sloped tomography (EST), an exact tomographic method utilizing an oversampling iterative Fourier-based reconstruction, provides more accurate image reconstructions when the number of projections is significantly undersampled relative to filtered back projection and algebraic iterative methods. Here we extend this technique by developing new reconstruction algorithms which allow for the incorporation of advanced mathematical regularization constraints, such as the nonlocal means total variational model, in a manner that is consistent with experimental projections. We then evaluate the resulting image quality of the developed algorithm through simulations and experiments at the European Synchrotron Radiation Facility on image quality phantoms using the x-ray absorption and phase contrast CT modalities. Both our simulation and experimental results have indicated that the method can reduce the number of projections by 60-75% in parallel beam modalities, while achieving comparable or better image quality than the conventional reconstructions. As large-scale and compact synchrotron radiation facilities are currently under rapid development worldwide, the implementation of low-dose x-ray absorption and phase-contrast CT can find broad applications in biology and medicine using these advanced x-ray sources.

  2. Analyzer-based phase-contrast imaging system using a micro focus x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [BME Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Majidi, Keivan; Brankov, Jovan G., E-mail: brankov@iit.edu [ECE Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States)

    2014-08-15

    Here we describe a new in-laboratory analyzer based phase contrast-imaging (ABI) instrument using a conventional X-ray tube source (CXS) aimed at bio-medical imaging applications. Phase contrast-imaging allows visualization of soft tissue details usually obscured in conventional X-ray imaging. The ABI system design and major features are described in detail. The key advantage of the presented system, over the few existing CXS ABI systems, is that it does not require high precision components, i.e., CXS, X-ray detector, and electro-mechanical components. To overcome a main problem introduced by these components, identified as temperature stability, the system components are kept at a constant temperature inside of three enclosures, thus minimizing the electrical and mechanical thermal drifts. This is achieved by using thermoelectric (Peltier) cooling/heating modules that are easy to control precisely. For CXS we utilized a microfocus X-ray source with tungsten (W) anode material. In addition the proposed system eliminates tungsten's multiple spectral lines by selecting monochromator crystal size appropriately therefore eliminating need for the costly mismatched, two-crystal monochromator. The system imaging was fine-tuned for tungsten Kα{sub 1} line with the energy of 59.3 keV since it has been shown to be of great clinical significance by a number of researchers at synchrotron facilities. In this way a laboratory system that can be used for evaluating and quantifying tissue properties, initially explored at synchrotron facilities, would be of great interest to a larger research community. To demonstrate the imaging capability of our instrument we use a chicken thigh tissue sample.

  3. Cardiac magnetic resonance: is phonocardiogram gating reliable in velocity-encoded phase contrast imaging?

    Energy Technology Data Exchange (ETDEWEB)

    Nassenstein, Kai; Schlosser, Thomas [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Orzada, Stephan; Ladd, Mark E.; Maderwald, Stefan [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); Haering, Lars; Czylwik, Andreas [University Duisburg-Essen, Department of Communication Systems, Duisburg (Germany); Jensen, Christoph; Bruder, Oliver [Elisabeth Hospital Essen, Department of Cardiology and Angiology, Essen (Germany)

    2012-12-15

    To assess the diagnostic accuracy of phonocardiogram (PCG) gated velocity-encoded phase contrast magnetic resonance imaging (MRI). Flow quantification above the aortic valve was performed in 68 patients by acquiring a retrospectively PCG- and a retrospectively ECG-gated velocity-encoded GE-sequence at 1.5 T. Peak velocity (PV), average velocity (AV), forward volume (FV), reverse volume (RV), net forward volume (NFV), as well as the regurgitant fraction (RF) were assessed for both datasets, as well as for the PCG-gated datasets after compensation for the PCG trigger delay. PCG-gated image acquisition was feasible in 64 patients, ECG-gated in all patients. PCG-gated flow quantification overestimated PV ({Delta} 3.8 {+-} 14.1 cm/s; P = 0.037) and underestimated FV ({Delta} -4.9 {+-} 15.7 ml; P = 0.015) and NFV ({Delta} -4.5 {+-} 16.5 ml; P = 0.033) compared with ECG-gated imaging. After compensation for the PCG trigger delay, differences were only observed for PV ({Delta} 3.8 {+-} 14.1 cm/s; P = 0.037). Wide limits of agreement between PCG- and ECG-gated flow quantification were observed for all variables (PV: -23.9 to 31.4 cm/s; AV: -4.5 to 3.9 cm/s; FV: -35.6 to 25.9 ml; RV: -8.0 to 7.2 ml; NFV: -36.8 to 27.8 ml; RF: -10.4 to 10.2 %). The present study demonstrates that PCG gating in its current form is not reliable enough for flow quantification based on velocity-encoded phase contrast gradient echo (GE) sequences. (orig.)

  4. Phase contrast imaging reveals low lung volumes and surface areas in the developing marsupial.

    Directory of Open Access Journals (Sweden)

    Shannon J Simpson

    Full Text Available Marsupials are born with immature lungs when compared to eutherian mammals and rely, to various extents, on cutaneous gas exchange in order to meet metabolic requirements. Indeed, the fat-tailed dunnart is born with lungs in the canalicular stage of development and relies almost entirely on the skin for gas exchange at birth; consequently undergoing the majority of lung development in air. Plane radiographs and computed tomography data sets were acquired using phase contrast imaging with a synchrotron radiation source for two marsupial species, the fat-tailed dunnart and the larger tammar wallaby, during the first weeks of postnatal life. Phase contrast imaging revealed that only two lung sacs contain air after the first hour of life in the fat-tailed dunnart. While the lung of the tammar wallaby was comparatively more developed, both species demonstrated massive increases in air sac number and architectural complexity during the postnatal period. In addition, both the tammar wallaby and fat-tailed dunnart had lower lung volumes and parenchymal surface areas than were expected from morphometrically determined allometric equations relating these variables to body mass during the neonatal period. However, lung volume is predicted to scale with mass as expected after the neonatal marsupial reaches a body mass of ∼1 g and no longer relies on the skin for gas exchange. Decreased lung volume in the marsupial neonate further supports the maxim that cutaneous gas exchange occurs in the marsupial neonate because the respiratory apparatus is not yet capable of meeting the gas exchange requirements of the newborn.

  5. Contrast biases the autocorrelation phase shift estimation in Doppler tissue imaging.

    Science.gov (United States)

    Ressner, Marcus; Jansson, Tomas; Cedefamn, Jonny; Ask, Per; Janerot-Sjoberg, Birgitta

    2009-03-01

    Quantitative assessment of regional myocardial function at rest and during stress with Doppler tissue imaging (DTI) plays an important role in daily routine echocardiography. However, reliable visual analysis is largely dependent on image quality and adequate border delineation, which still remains a challenge in a significant number of patients. In this respect, an ultrasound contrast agent (UCA) is often used to improve visualization in patients with suboptimal image quality. The knowledge of how DTI measurements will be affected by UCA present in the tissue is therefore of significant importance for an accurate interpretation of local myocardial motion. The aim of this paper was to investigate how signal contribution from UCA and nonlinear wave propagation influence the performance of the autocorrelation phase shift estimator used for DTI applications. Our results are based on model experiments with a clinical 2-D grayscale scanner and computational simulations of the DTI velocity estimator for synthetically-derived pulses, simulated bubble echoes and experimentally-sampled RF data of transmitted pulses and backscattered contrast echoes. The results show that destruction of UCA present in the tissue will give rise to an apparent bidirectional velocity bias of individual velocity estimates, but that spatial averaging of individual velocity measurements within a region-of-interest will result in a negative bias (away from the transducer) of the estimated mean or mean peak velocity. The UCA destruction will also have a significant impact on the measured integrated mean velocity over time, i.e., displacement. To achieve improved visualization with UCA during DTI-examinations, we either recommend that it is performed at low acoustic powers, mechanical index contrast microbubbles.

  6. Talbot phase-contrast x-ray imaging for the small joints of the hand

    Energy Technology Data Exchange (ETDEWEB)

    Stutman, Dan [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Beck, Thomas J [Quantum Medical Metrics, 1450 South Rolling Road, Baltimore, MD 21227 (United States); Carrino, John A [Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287 (United States); Bingham, Clifton O, E-mail: stutman@pha.jhu.edu [Divisions of Rheumatology and Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD 21224 (United States)

    2011-09-07

    A high-resolution radiographic method for soft tissues in the small joints of the hand would aid in the study and treatment of rheumatoid arthritis (RA) and osteoarthritis (OA), which often attacks these joints. Of particular interest would be imaging with <100 {mu}m resolution the joint cartilage, whose integrity is a main indicator of disease. Differential phase-contrast (DPC) or refraction-based x-ray imaging with Talbot grating interferometers could provide such a method, since it enhances soft tissue contrast and can be implemented with conventional x-ray tubes. A numerical joint phantom was first developed to assess the angular sensitivity and spectrum needed for a hand DPC system. The model predicts that, due to quite similar refraction indexes for joint soft tissues, the refraction effects are very small, requiring high angular resolution. To compare our model to experiment we built a high-resolution bench-top interferometer using 10 {mu}m period gratings, a W anode tube and a CCD-based detector. Imaging experiments on animal cartilage and on a human finger support the model predictions. For instance, the estimated difference between the index of refraction of cartilage and water is of only several percent at {approx}25 keV mean energy, comparable to that between the linear attenuation coefficients. The potential advantage of DPC imaging thus comes mainly from the edge enhancement at the soft tissue interfaces. Experiments using a cadaveric human finger are also qualitatively consistent with the joint model, showing that refraction contrast is dominated by tendon embedded in muscle, with the cartilage layer difficult to observe in our conditions. Nevertheless, the model predicts that a DPC radiographic system for the small hand joints of the hand could be feasible using a low energy quasi-monochromatic source, such as a K-edge filtered Rh or Mo tube, in conjunction with a {approx}2 m long 'symmetric' interferometer operated in a high Talbot order.

  7. Talbot phase-contrast x-ray imaging for the small joints of the hand

    Science.gov (United States)

    Stutman, Dan; Beck, Thomas J.; Carrino, John A.; Bingham, Clifton O.

    2011-09-01

    A high-resolution radiographic method for soft tissues in the small joints of the hand would aid in the study and treatment of rheumatoid arthritis (RA) and osteoarthritis (OA), which often attacks these joints. Of particular interest would be imaging with <100 µm resolution the joint cartilage, whose integrity is a main indicator of disease. Differential phase-contrast (DPC) or refraction-based x-ray imaging with Talbot grating interferometers could provide such a method, since it enhances soft tissue contrast and can be implemented with conventional x-ray tubes. A numerical joint phantom was first developed to assess the angular sensitivity and spectrum needed for a hand DPC system. The model predicts that, due to quite similar refraction indexes for joint soft tissues, the refraction effects are very small, requiring high angular resolution. To compare our model to experiment we built a high-resolution bench-top interferometer using 10 µm period gratings, a W anode tube and a CCD-based detector. Imaging experiments on animal cartilage and on a human finger support the model predictions. For instance, the estimated difference between the index of refraction of cartilage and water is of only several percent at ~25 keV mean energy, comparable to that between the linear attenuation coefficients. The potential advantage of DPC imaging thus comes mainly from the edge enhancement at the soft tissue interfaces. Experiments using a cadaveric human finger are also qualitatively consistent with the joint model, showing that refraction contrast is dominated by tendon embedded in muscle, with the cartilage layer difficult to observe in our conditions. Nevertheless, the model predicts that a DPC radiographic system for the small hand joints of the hand could be feasible using a low energy quasi-monochromatic source, such as a K-edge filtered Rh or Mo tube, in conjunction with a ~2 m long 'symmetric' interferometer operated in a high Talbot order.

  8. Phase change events of volatile liquid perfluorocarbon contrast agents produce unique acoustic signatures

    Science.gov (United States)

    Sheeran, Paul S.; Matsunaga, Terry O.; Dayton, Paul A.

    2014-01-01

    Phase-change contrast agents (PCCAs) provide a dynamic platform to approach problems in medical ultrasound (US). Upon US-mediated activation, the liquid core vaporizes and expands to produce a gas bubble ideal for US imaging and therapy. In this study, we demonstrate through high-speed video microscopy and US interrogation that PCCAs composed of highly volatile perfluorocarbons (PFCs) exhibit unique acoustic behavior that can be detected and differentiated from standard microbubble contrast agents. Experimental results show that when activated with short pulses PCCAs will over-expand and undergo unforced radial oscillation while settling to a final bubble diameter. The size-dependent oscillation phenomenon generates a unique acoustic signal that can be passively detected in both time and frequency domain using confocal piston transducers with an ‘activate high’ (8 MHz, 2 cycles), ‘listen low’ (1 MHz) scheme. Results show that the magnitude of the acoustic ‘signature’ increases as PFC boiling point decreases. By using a band-limited spectral processing technique, the droplet signals can be isolated from controls and used to build experimental relationships between concentration and vaporization pressure. The techniques shown here may be useful for physical studies as well as development of droplet-specific imaging techniques.

  9. Interior tomography in x-ray differential phase contrast CT imaging

    Science.gov (United States)

    Thériault Lauzier, Pascal; Qi, Zhihua; Zambelli, Joseph; Bevins, Nicholas; Chen, Guang-Hong

    2012-05-01

    Differential phase contrast computed tomography (DPC-CT) is an x-ray imaging method that uses the wave properties of imaging photons as the contrast mechanism. It has been demonstrated that DPC images can be obtained using a conventional x-ray tube and a Talbot-Lau-type interferometer. Due to the limited size of the gratings, current data acquisition systems only offer a limited field of view, and thus are prone to data truncation. As a result, the reconstructed DPC-CT image may suffer from image artifacts and increased inaccuracy in the reconstructed image values. In this paper, we demonstrate that a small region of interest (ROI) within a large object can be accurately and stably reconstructed using fully truncated projection datasets provided that a priori information on electron density is known for a small region inside the ROI. The method reconstructs an image iteratively to satisfy a group of physical conditions by using a projection onto convex set (POCS) approach. In this work, this POCS algorithm is validated using both numerical simulations and physical phantom experimental data. In both cases, the root mean square error is reduced by an order of magnitude with respect to the truncated analytic reconstructions. Truncation artifacts observed in the latter reconstructions are eliminated using the POCS algorithm.

  10. Polypyrrole coated phase-change contrast agents for sono-photoacoustic imaging (Conference Presentation)

    Science.gov (United States)

    Li, David S.; Yoon, Soon Joon; Matula, Thomas J.; O'Donnell, Matthew; Pozzo, Lilo D.

    2017-03-01

    A new light and sound sensitive nanoemulsion contrast agent is presented. The agents feature a low boiling point liquid perfluorocarbon core and a broad light spectrum absorbing polypyrrole (PPy) polymer shell. The PPy coated nanoemulsions can reversibly convert from liquid to gas phase upon cavitation of the liquid perfluorocarbon core. Cavitation can be initiated using a sufficiently high intensity acoustic pulse or from heat generation due to light absorption from a laser pulse. The emulsions can be made between 150 and 350 nm in diameter and PPy has a broad optical absorption covering both the visible spectrum and extending into the near-infrared spectrum (peak absorption 1053 nm). The size, structure, and optical absorption properties of the PPy coated nanoemulsions were characterized and compared to PPy nanoparticles (no liquid core) using dynamic light scattering, ultraviolet-visible spectrophotometry, transmission electron microscopy, and small angle X-ray scattering. The cavitation threshold and signal intensity were measured as a function of both acoustic pressure and laser fluence. Overlapping simultaneous transmission of an acoustic and laser pulse can significantly reduce the activation energy of the contrast agents to levels lower than optical or acoustic activation alone. We also demonstrate that simultaneous light and sound cavitation of the agents can be used in a new sono-photoacoustic imaging method, which enables greater sensitivity than traditional photoacoustic imaging.

  11. X-ray Phase Contrast Imaging of Calcified Tissue and Biomaterial Structure in Bioreactor Engineered Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Alyssa A. [Illinois Inst. of Technology, Chicago, IL (United States); Edward Hines Jr. VA Hospital, IL (United States); Larson, Jeffery C. [Illinois Inst. of Technology, Chicago, IL (United States); Edward Hines Jr. VA Hospital, IL (United States); Garson, III, Alfred B. [George Washington Univ., Washington, DC (United States); Guan, Huifeng [George Washington Univ., Washington, DC (United States); Zhong, Zhong [Brookhaven National Lab. (BNL), Upton, NY (United States); Nguyen, Bao-Ngoc [Univ. of Maryland, College Park, MD (United States); Fisher, John P. [Univ. of Maryland, College Park, MD (United States); Anastasio, Mark A. [George Washington Univ., Washington, DC (United States); Brey, Eric M. [Illinois Inst. of Technology, Chicago, IL (United States); Edward Hines Jr. VA Hospital, IL (United States)

    2014-11-04

    Tissues engineered in bioreactor systems have been used clinically to replace damaged tissues and organs. In addition, these systems are under continued development for many tissue engineering applications. The ability to quantitatively assess material structure and tissue formation is critical for evaluating bioreactor efficacy and for preimplantation assessment of tissue quality. These techniques allow for the nondestructive and longitudinal monitoring of large engineered tissues within the bioreactor systems and will be essential for the translation of these strategies to viable clinical therapies. X-ray Phase Contrast (XPC) imaging techniques have shown tremendous promise for a number of biomedical applications owing to their ability to provide image contrast based on multiple X-ray properties, including absorption, refraction, and scatter. In this research, mesenchymal stem cell-seeded alginate hydrogels were prepared and cultured under osteogenic conditions in a perfusion bioreactor. The constructs were imaged at various time points using XPC microcomputed tomography (µCT). Imaging was performed with systems using both synchrotron- and tube-based X-ray sources. XPC µCT allowed for simultaneous three-dimensional (3D) quantification of hydrogel size and mineralization, as well as spatial information on hydrogel structure and mineralization. Samples were processed for histological evaluation and XPC showed similar features to histology and quantitative analysis consistent with the histomorphometry. Furthermore, these results provide evidence of the significant potential of techniques based on XPC for noninvasive 3D imaging engineered tissues grown in bioreactors.

  12. X-ray phase contrast imaging of calcified tissue and biomaterial structure in bioreactor engineered tissues.

    Science.gov (United States)

    Appel, Alyssa A; Larson, Jeffery C; Garson, Alfred B; Guan, Huifeng; Zhong, Zhong; Nguyen, Bao-Ngoc B; Fisher, John P; Anastasio, Mark A; Brey, Eric M

    2015-03-01

    Tissues engineered in bioreactor systems have been used clinically to replace damaged tissues and organs. In addition, these systems are under continued development for many tissue engineering applications. The ability to quantitatively assess material structure and tissue formation is critical for evaluating bioreactor efficacy and for preimplantation assessment of tissue quality. Techniques that allow for the nondestructive and longitudinal monitoring of large engineered tissues within the bioreactor systems will be essential for the translation of these strategies to viable clinical therapies. X-ray Phase Contrast (XPC) imaging techniques have shown tremendous promise for a number of biomedical applications owing to their ability to provide image contrast based on multiple X-ray properties, including absorption, refraction, and scatter. In this research, mesenchymal stem cell-seeded alginate hydrogels were prepared and cultured under osteogenic conditions in a perfusion bioreactor. The constructs were imaged at various time points using XPC microcomputed tomography (µCT). Imaging was performed with systems using both synchrotron- and tube-based X-ray sources. XPC µCT allowed for simultaneous three-dimensional (3D) quantification of hydrogel size and mineralization, as well as spatial information on hydrogel structure and mineralization. Samples were processed for histological evaluation and XPC showed similar features to histology and quantitative analysis consistent with the histomorphometry. These results provide evidence of the significant potential of techniques based on XPC for noninvasive 3D imaging engineered tissues grown in bioreactors.

  13. Synchrotron-radiation phase-contrast imaging of human stomach and gastric cancer: in vitro studies.

    Science.gov (United States)

    Tang, Lei; Li, Gang; Sun, Ying-Shi; Li, Jie; Zhang, Xiao-Peng

    2012-05-01

    The electron density resolution of synchrotron-radiation phase-contrast imaging (SR-PCI) is 1000 times higher than that of conventional X-ray absorption imaging in light elements, through which high-resolution X-ray imaging of biological soft tissue can be achieved. For biological soft tissue, SR-PCI can give better imaging contrast than conventional X-ray absorption imaging. In this study, human resected stomach and gastric cancer were investigated using in-line holography and diffraction enhanced imaging at beamline 4W1A of the Beijing Synchrotron Radiation Facility. It was possible to depict gastric pits, measuring 50-70 µm, gastric grooves and tiny blood vessels in the submucosa layer by SR-PCI. The fine structure of a cancerous ulcer was displayed clearly on imaging the mucosa. The delamination of the gastric wall and infiltration of cancer in the submucosa layer were also demonstrated on cross-sectional imaging. In conclusion, SR-PCI can demonstrate the subtle structures of stomach and gastric cancer that cannot be detected by conventional X-ray absorption imaging, which prompt the X-ray diagnosis of gastric disease to the level of the gastric pit, and has the potential to provide new methods for the imageology of gastric cancer.

  14. Definition of contrast enhancement phases of the liver using a perfluoro-based microbubble agent, perflubutane microbubbles.

    Science.gov (United States)

    Shunichi, Sasaki; Hiroko, Iijima; Fuminori, Moriyasu; Waki, Hidehiko

    2009-11-01

    To define the contrast enhancement phases in the liver with perflubutane microbubbles, the liver enhancement time-intensity curves were investigated in 14 healthy volunteers. The agent was injected intravenously as a bolus and the liver was imaged with an ultrasound scanner as long as 4h after the injection. Time-intensity curves from the hepatic artery, the intrahepatic portal vein, the hepatic vein and the parenchyma of the liver were obtained from the liver ultrasound images. The arrival of the agent in the hepatic artery, the portal vein and the hepatic vein were visually distinguishable and the mean arrival times were 19.2, 24.3 and 32.2 s after the injection, respectively. The signal intensity in these vessels increased rapidly after the arrival of the contrast and gradually reverted to baseline after the peak. In contrast, within 5 min after the injection, the intensity in the parenchyma increased and reached a plateau, which persisted for at least 2h. The contrast enhancement phases in the liver with perflubutane microbubbles could be defined as two major phases-a vascular phase, in which the vessels are enhanced between 15 s and 10 min after injection, and a Kupffer phase, in which the parenchyma is enhanced 10 min after injection. The vascular phase is divided into three subphases: the arterial phase (15 to 45 s after injection); the portal phase (45 s to 1 min after injection); and the vasculo-Kupffer phase (1 to 10 min after injection).

  15. Reduced order generalized integrators with phase compensation for three-phase active power filter

    DEFF Research Database (Denmark)

    Xie, Chuan; Li, Kai; Zhao, Xin

    2017-01-01

    Current regulation is a critical issue for the stable operation of three-phase active power filters (APF). The challenge of the current controller lies in how to track the high slew rate reference with zero steady-state error in a fast and accurate way. Conventionally, multiple paralleled second-order...... generalized integrators (SOGIs) are utilized to achieve those objectives. However, it will increase the computational burden due to calculation of the multiple paralleled SOGIs. To overcome this issue, phase compensated reduced order generalized integrator (ROGI) is proposed in this paper. Compared...

  16. Phases in a General Chaotic Three-Coupled-Laser Array

    Institute of Scientific and Technical Information of China (English)

    ZHOU Liang; DUAN Kai-Liang

    2012-01-01

    Phases in a general chaotic three-coupled-laser array are numerically investigated.Phase attractors are firstly found to exist within corresponding basins of attraction on the projection plane of phase differences of the threecoupled-laser array.Whether the chaos appears or not is related not only to the coupling strength but also to the initial phase differences.For a large coupling strength new phase attractors can occur.With the increase of coupling strength,the three-coupled-laser array has a great chance of resulting in a quiescent to chaotic state.Based on these results,we present the method to reach phase-locking when the coupling strength is strong.%The quantitative analysis of zinc isopropyl-isooctyl-dithiophosphate (T204) mixed with lube base oil from Korea with viscosity index 70 (T204-Korea70) is presented by using terahertz time-domain spectroscopy (THz-TDS). Compared with the middle-infrared spectra of zinc n-butyl-isooctyl-dithiophosphate (T202) and T204, THz spectra of T202 and T204 show the weak broad absorption bands. Then, the absorption coefficients of the T204-Korea70 system follow Beer's law at the concentration from 0.124 to 4.024%. The experimental absorption spectra of T204-Korea70 agree with the calculated ones based on the standard absorption coefficients of T204 and Korea70. The quantitative analysis enables a strategy to monitor the formulation of lubricating oil in real time.

  17. Phase-contrast imaging of a soft biological object using X-pinch as X-ray source

    Science.gov (United States)

    Liu, R.; Wang, X. X.; Zou, X. B.; Zeng, N. G.; He, L. Y.

    2008-07-01

    The X-ray emission from an X-pinch was measured with diamond photoconducting detectors and a pinhole camera, and the results show that the X-ray source of the X-pinch is extremely small in size and high in brightness. As such, the X-pinch could be considered as an X-ray point source having a high spatial coherence that is required by a simplified scheme of X-ray phase-contrast imaging. The X-pinch was used as X-ray source for the phase-contrast imaging of a weakly X-ray-absorbing mosquito and an image with high contrast was obtained.

  18. Information and backaction due to phase contrast imaging measurements of cold atomic gases: beyond Gaussian states

    CERN Document Server

    Ilo-Okeke, Ebubechukwu O

    2016-01-01

    We further examine a theory of phase contrast imaging (PCI) of cold atomic gases, first introduced by us in Phys. Rev. Lett. {\\bf 112}, 233602 (2014). We model the PCI measurement by directly calculating the entangled state between the light and the atoms due to the ac Stark shift, which induces a conditional phase shift on the light depending upon the atomic state. By interfering the light that passes through the BEC with the original light, one can obtain information of the atomic state at a single shot level. We derive an exact expression for a measurement operator that embodies the information obtained from PCI, as well as the back-action on the atomic state. By the use of exact expressions for the measurement process, we go beyond the continuous variables approximation such that the non-Gaussian regime can be accessed for both the measured state and the post-measurement state. Features such as the photon probability density, signal, signal variance, Fisher information, error of the measurement, and the b...

  19. Design of a phase contrast imaging diagnostic for the Wendelstein 7-X stellarator

    Science.gov (United States)

    Edlund, E. M.; Porkolab, M.; Grulke, O.; Böttger, L.-G.; Sehren, C.

    2016-10-01

    The Wendelstein 7-X stellarator at IPP Greifswald commenced operation in 2015, and while its design has been aimed at minimizing neoclassical transport, turbulent transport is expected to be strongly affected by the magnetic geometry. With this in mind, MIT and IPP-Greifswald scientists have undertaken a project to design and implement a phase contrast imaging (PCI) diagnostic to measure turbulence in W7-X in the OP1.2 operating phase starting in 2017. The principle and design aspects of the PCI method have been described in numerous past publications. In W7-X the PCI system will have two imaging systems differing only in the angle of the spatial mask that selects for magnetic pitch angle, and will produce measurements of poloidal and radial correlations. A series of remotely controllable optics will allow the beam size and image magnification to be adjustable. We expect sensitivity to fluctuations in the range of 2 kHz to approximately 2 MHz and wavenumbers in the range of 1 cm-1 to 30 cm-1 which should allow us to detect ITG, TEM and possibly ETG turbulence. The MIT portion of this project is supported by the US DOE under Grant DE-SC0014229, and the IPP part is funded under Euratom Grant agreement No 633053.

  20. Phase-contrast tomography of neuronal tissues: from laboratory- to high resolution synchrotron CT

    Science.gov (United States)

    Töpperwien, Mareike; Krenkel, Martin; Müller, Kristin; Salditt, Tim

    2016-10-01

    Assessing the three-dimensional architecture of neuronal tissues with sub-cellular resolution presents a significant analytical challenge. Overcoming the limitations associated with serial slicing, phase-contrast x-ray tomography has the potential to contribute to this goal. Even compact laboratory CT at an optimized liquid-metal jet micro- focus source combined with suitable phase-retrieval algorithms and preparation protocols can yield renderings with single cell sensitivity in millimeter sized brain areas of mouse. Here, we show the capabilities of the setup by imaging a Golgi-Cox impregnated mouse brain. Towards higher resolution we extend these studies at our recently upgraded waveguide-based cone-beam holo-tomography instrument GINIX at DESY. This setup allows high resolution recordings with adjustable field of view and resolution, down to the voxel sizes in the range of a few ten nanometers. The recent results make us confident that important issues of neuronal connectivity can be addressed by these methods, and that 3D (virtual) histology with nanoscale resolution will become an attractive modality for neuroscience research.

  1. Life Cycle Leadership Theory vs. Theory on the Phases of Small Group Discussion: Comparisons, Contrasts, and Examples.

    Science.gov (United States)

    Preston, Charles Thomas, Jr.

    The work of Paul Hersey and Kenneth Blanchard on life-cycle leadership was compared and contrasted to three studies on group phase theories. The studies on group phases were conducted by Robert Bales and Fred Strodtbeck in 1951, Thomas Scheidel and Laura Crowell in 1964, and B. Aubrey Fisher in 1970. The two theoretical approaches were found to…

  2. Value of dynamic susceptibility contrast perfusion MRI in the acute phase of transient global amnesia.

    Directory of Open Access Journals (Sweden)

    Alex Förster

    Full Text Available Transient global amnesia (TGA is a transitory, short-lasting neurological disorder characterized by a sudden onset of antero- and retrograde amnesia. Perfusion abnormalities in TGA have been evaluated mainly by use of positron emission tomography (PET or single-photon emission computed tomography (SPECT. In the present study we explore the value of dynamic susceptibility contrast perfusion-weighted MRI (PWI in TGA in the acute phase.From a MRI report database we identified TGA patients who underwent MRI including PWI in the acute phase and compared these to control subjects. Quantitative perfusion maps (cerebral blood flow (CBF and volume (CBV were generated and analyzed by use of Signal Processing In NMR-Software (SPIN. CBF and CBV values in subcortical brain regions were assessed by use of VOI created in FIRST, a model-based segmentation tool in the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB Software Library (FSL.Five TGA patients were included (2 men, 3 women. On PWI, no relevant perfusion alterations were found by visual inspection in TGA patients. Group comparisons for possible differences between TGA patients and control subjects showed significant lower rCBF values bilaterally in the hippocampus, in the left thalamus and globus pallidus as well as bilaterally in the putamen and the left caudate nucleus. Correspondingly, significant lower rCBV values were observed bilaterally in the hippocampus and the putamen as well as in the left caudate nucleus. Group comparisons for possible side differences in rCBF and rCBV values in TGA patients revealed a significant lower rCBV value in the left caudate nucleus.Mere visual inspection of PWI is not sufficient for the assessment of perfusion changes in TGA in the acute phase. Group comparisons with healthy control subjects might be useful to detect subtle perfusion changes on PWI in TGA patients. However, this should be confirmed in larger data sets and serial PWI

  3. Error analysis of cine phase contrast MRI velocity measurements used for strain calculation.

    Science.gov (United States)

    Jensen, Elisabeth R; Morrow, Duane A; Felmlee, Joel P; Odegard, Gregory M; Kaufman, Kenton R

    2015-01-02

    Cine Phase Contrast (CPC) MRI offers unique insight into localized skeletal muscle behavior by providing the ability to quantify muscle strain distribution during cyclic motion. Muscle strain is obtained by temporally integrating and spatially differentiating CPC-encoded velocity. The aim of this study was to quantify CPC measurement accuracy and precision and to describe error propagation into displacement and strain. Using an MRI-compatible jig to move a B-gel phantom within a 1.5 T MRI bore, CPC-encoded velocities were collected. The three orthogonal encoding gradients (through plane, frequency, and phase) were evaluated independently in post-processing. Two systematic error types were corrected: eddy current-induced bias and calibration-type error. Measurement accuracy and precision were quantified before and after removal of systematic error. Through plane- and frequency-encoded data accuracy were within 0.4 mm/s after removal of systematic error - a 70% improvement over the raw data. Corrected phase-encoded data accuracy was within 1.3 mm/s. Measured random error was between 1 to 1.4 mm/s, which followed the theoretical prediction. Propagation of random measurement error into displacement and strain was found to depend on the number of tracked time segments, time segment duration, mesh size, and dimensional order. To verify this, theoretical predictions were compared to experimentally calculated displacement and strain error. For the parameters tested, experimental and theoretical results aligned well. Random strain error approximately halved with a two-fold mesh size increase, as predicted. Displacement and strain accuracy were within 2.6 mm and 3.3%, respectively. These results can be used to predict the accuracy and precision of displacement and strain in user-specific applications.

  4. Design of a sensitive grating-based phase contrast mammography prototype (Conference Presentation)

    Science.gov (United States)

    Arboleda Clavijo, Carolina; Wang, Zhentian; Köhler, Thomas; van Stevendaal, Udo; Martens, Gerhard; Bartels, Matthias; Villanueva-Perez, Pablo; Roessl, Ewald; Stampanoni, Marco

    2017-03-01

    Grating-based phase contrast mammography can help facilitate breast cancer diagnosis, as several research works have demonstrated. To translate this technique to the clinics, it has to be adapted to cover a large field of view within a limited exposure time and with a clinically acceptable radiation dose. This indicates that a straightforward approach would be to install a grating interferometer (GI) into a commercial mammography device. We developed a wave propagation based optimization method to select the most convenient GI designs in terms of phase and dark-field sensitivities for the Philips Microdose Mammography (PMM) setup. The phase sensitivity was defined as the minimum detectable breast tissue electron density gradient, whereas the dark-field sensitivity was defined as its corresponding signal-to-noise Ratio (SNR). To be able to derive sample-dependent sensitivity metrics, a visibility reduction model for breast tissue was formulated, based on previous research works on the dark-field signal and utilizing available Ultra-Small-Angle X-ray Scattering (USAXS) data and the outcomes of measurements on formalin-fixed breast tissue specimens carried out in tube-based grating interferometers. The results of this optimization indicate the optimal scenarios for each metric are different and fundamentally depend on the noise behavior of the signals and the visibility reduction trend with respect to the system autocorrelation length. In addition, since the inter-grating distance is constrained by the space available between the breast support and the detector, the best way we have to improve sensitivity is to count on a small G2 pitch.

  5. Detection and characterization of hepatocellular carcinoma: Value of dynamic CT during the arterial dominant phase with uniphasic contrast medium injection

    Energy Technology Data Exchange (ETDEWEB)

    Cho, June-Sik; Kwag, Jin-Geun; Oh, Young-Ran; Han, Se-Dong; Song, Chang-June [Chungnam Univ. Hospital, Taejon (Korea, Democratic People`s Republic of)

    1996-01-01

    Our goal was to assess the effect of dynamic CT during the arterial dominant phase with uniphasic injection of intravenous contrast material (5 ml/s) in the detection and characterization of hepatocellular carcinomas (HCCs). Three-phase incremental dynamic CT was performed in 66 patients with 84 HCCs diagnosed by pathologic findings, characteristic angiographic findings, and clinical manifestations. One hundred fifty milliliters of nonionic contrast medium was administered intravenously by using a power injector at a flow rate of 5 ml/s for 30 s, and three-phase images were obtained at 20-45 s (arterial dominant phase), 55-80 s (portal venous phase), and 2-4 min (equilibrium phase) after the start of uniphasic intravenous injection. Three-phase images in 66 patients were compared and assessed for the delectability and enhancement pattern of the tumors. The arterial dominant phase images of dynamic CT showed a moderate to marked hyperattenuation in 73 (87%) of the 84 HCCs, isoattenuation in 6 (7%), and hypoattenuation in 5 (6%). The portal venous phase images showed hyperattenuation in 6 (7%), isoattenuation in 45 (54%), and hypoattenuation in 33 (39%). In the equilibrium phase, CT findings showed hypoattenuation in 67 (80%) and isoattenuation in 17 (20%). The delectability of HCCs in the arterial dominant, portal venous, and equilibrium phase was 93, 46, and 80%, respectively. The delectability of HCCs in the arterial dominant phase was significantly (p < 0.0001) superior to that in both the portal venous phase and the equilibrium phase. Dynamic CT during the arterial dominant phase with uniphasic injection of intravenous contrast medium (5 ml/s) is a useful method in the detection and characterization of HCCs. 20 refs., 4 figs., 1 tab.

  6. Fresnel zone-plate based X-ray microscopy in Zernike phase contrast with sub-50 nm resolution at NSRL

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jie; Li Wenjie; Tian Jinping; Liu Longhua; Xiong Ying; Liu Gang; Wu Ziyu; Tian Yangchao [National Synchrotron Radiation Laboratory (China); Liu Yijin [School of Physics (China); Yue Zhengbo; Yu Hanqing [Laboratory of Environmental Engineering, School of Chemistry, University of Science and Technology of China, Hefei Anhui 230029 (China); Wang Chunru, E-mail: ychtian@ustc.edu.c [Institute of Chemistry, Chinese Academy of Sciences, Beijing 10060 (China)

    2009-09-01

    A transmission X-ray microscope using Fresnel zone-plates (FZPs) has been installed at U7A beamline of National Synchrotron Radiation Laboratory (NSRL). The objective FZP with 45 nm outermost zone width delivers a sub-50 nm resolution. A gold phase ring with 2.5 {mu}m thickness and 4 {mu}m width was placed at the focal plane of the objective FZP at 8 keV to produce a negative Zernike phase contrast. A series of samples were used to test the performance of the Zernike phase contrast X-ray microscopy.

  7. Accelerated three-dimensional cine phase contrast imaging using randomly undersampled echo planar imaging with compressed sensing reconstruction.

    Science.gov (United States)

    Basha, Tamer A; Akçakaya, Mehmet; Goddu, Beth; Berg, Sophie; Nezafat, Reza

    2015-01-01

    The aim of this study was to implement and evaluate an accelerated three-dimensional (3D) cine phase contrast MRI sequence by combining a randomly sampled 3D k-space acquisition sequence with an echo planar imaging (EPI) readout. An accelerated 3D cine phase contrast MRI sequence was implemented by combining EPI readout with randomly undersampled 3D k-space data suitable for compressed sensing (CS) reconstruction. The undersampled data were then reconstructed using low-dimensional structural self-learning and thresholding (LOST). 3D phase contrast MRI was acquired in 11 healthy adults using an overall acceleration of 7 (EPI factor of 3 and CS rate of 3). For comparison, a single two-dimensional (2D) cine phase contrast scan was also performed with sensitivity encoding (SENSE) rate 2 and approximately at the level of the pulmonary artery bifurcation. The stroke volume and mean velocity in both the ascending and descending aorta were measured and compared between two sequences using Bland-Altman plots. An average scan time of 3 min and 30 s, corresponding to an acceleration rate of 7, was achieved for 3D cine phase contrast scan with one direction flow encoding, voxel size of 2 × 2 × 3 mm(3) , foot-head coverage of 6 cm and temporal resolution of 30 ms. The mean velocity and stroke volume in both the ascending and descending aorta were statistically equivalent between the proposed 3D sequence and the standard 2D cine phase contrast sequence. The combination of EPI with a randomly undersampled 3D k-space sampling sequence using LOST reconstruction allows a seven-fold reduction in scan time of 3D cine phase contrast MRI without compromising blood flow quantification. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Immunological evaluation of the new stable ultrasound contrast agent LK565: a phase one clinical trial

    Directory of Open Access Journals (Sweden)

    Wild P

    2004-09-01

    Full Text Available Abstract Background Ultrasound contrast agents (UCAs allow the enhancement of vascular definition, thereby providing more diagnostic information. LK565 is a new second-generation UCA based on synthetic polymers of aspartic acid which is eliminated from the blood stream via phagocytosis. LK565 forms very stable air-filled microspheres and is capable of repeated passage through the pulmonary capillary bed after peripheral intravenous injection. This characteristic allows examination of the cardiac function or extracardiac vessel abnormalities up to 15 minutes. Methods A phase one clinical study was conducted on 15 healthy volunteers to identify the development of an undesirable immune response. Phagocytosis capacity, TNF-α secretion, and MHC class II upregulation of monocytes was monitored, as well as microsphere specific antibody development (IgM, IgG. Furthermore, the kinetics of the activation surface markers CD69, CD25, CD71, and CD11b on leukocytes were analyzed. Results Due to LK565-metabolism the administration of the UCA led to saturation of phagocytes which was reversible after 24 hrs. Compared to positive controls neither significant TNF-α elevation, neither MHC class II and activation surface markers upregulation, nor specific antibody development was detectable. Conclusion The administration of LK565 provides a comfortable duration of signal enhancement, esp. in echocardiography, without causing a major activation cascade or triggering an adaptive immune response. To minimize the risk of undesirable adverse events such as anaphylactoid reactions, immunological studies should be included in clinical trials for new UCAs. The use of LK565 as another new ultrasound contrast agent should be encouraged as a safe means to provide additional diagnostic information.

  9. Contrast-enhanced multiple-phase imaging features in hepatic epithelioid hemangioendothelioma

    Institute of Scientific and Technical Information of China (English)

    Ying Chen; Ri-Sheng Yu; Ling-Ling Qiu; Ding-Yao Jiang; Yan-Bin Tan; Yan-Biao Fu

    2011-01-01

    AIM: To investigate and review the contrast-enhanced multiple-phase computed tomography (CEMP CT) and magnetic resonance imaging (MRI) findings in patients with pathologically confirmed hepatic epithelioid hemangioendothelioma (HEHE). METHODS: Findings from imaging examinations in 8 patients (5 women and 3 men) with pathologically confirmed HEHE were retrospectively reviewed (CT images obtained from 7 patients and MR images obtained from 6 patients). The age of presentation varied from 27 years to 60 years (average age 39.8 years). RESULTS: There were two types of HEHE: multifocal type (n = 7) and diffuse type (n = 1). In the multifocal- type cases, there were 74 lesions on CT and 28 lesions on MRI with 7 lesions found with diffusion weighted imaging; 18 (24.3%) of 74 lesions on plain CT and 26 (92.9%) of 28 lesions on pre-contrast MRI showed the target sign. On CEMP CT, 28 (37.8%) of 74 lesions appeared with the target sign and a progressive-enhancement rim and 9 (12.2%) of 74 lesions displayed progressive enhancement, maintaining a state of persistent enhancement. On CEMP MRI, 27 (96.4%) of 28 lesions appeared with the target sign with a progressive-enhancement rim and 28 (100%) of 28 lesions displayed progressive-enhancement, maintaining a state of persistent enhancement. In the diffuse-type cases, an enlarged liver was observed with a large nodule appearing with persistent enhancement on CEMP CT and MRI. CONCLUSION: The most important imaging features of HEHE are the target sign and/or progressive enhancement with persistent enhancement on CEMP CT and MRI. MRI is advantageous over CT in displaying these imaging features.

  10. Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach

    Energy Technology Data Exchange (ETDEWEB)

    Fredenberg, Erik; Danielsson, Mats; Stayman, J. Webster; Siewerdsen, Jeffrey H.; Aslund, Magnus [Research and Development, Philips Women' s Healthcare, Smidesvaegen 5, SE-171 41 Solna, Sweden and Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering and Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Research and Development, Philips Women' s Healthcare, Smidesvaegen 5, SE-171 41 Solna (Sweden)

    2012-09-15

    Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption

  11. Phase-dependent dual-frequency contrast imaging at sub-harmonic frequency.

    Science.gov (United States)

    Shen, Che-Chou; Cheng, Chih-Hao; Yeh, Chih-Kuang

    2011-02-01

    Sub-harmonic imaging techniques have been shown to provide a higher contrast-to-tissue ratio (CTR) at the cost of relatively low signal intensity from ultrasound contrast agents (UCAs). In this study, we propose a method of dual-frequency excitation to further enhance the CTR of subharmonic imaging. A dual-frequency excitation pulse is an amplitude-modulated waveform which consists of two sinusoids with frequencies of f₁ (e.g., 9 MHz) and f₂ (e.g., 6 MHz) and the resulting envelope component at (f₁ - f₂) (e.g., 3 MHz) can serve as a driving force to excite the nonlinear response of UCAs. In this study, the f₂, at twice of the resonance frequency of UCAs, is adopted to efficiently generate a sub-harmonic component at half of the f₂ frequency, and f₁ is included to enhance the high-order nonlinear response of UCAs at the sub-harmonic frequency. The second- and third-order nonlinear components resulting from the envelope component would spectrally overlap at the sub-harmonic frequency when f₁ and f₂ are properly selected. We further optimize the generation of the sub-harmonic component by tuning the phase terms between second- and third-order nonlinear components. The results show that, with dual-frequency excitation, the CTR at sub-harmonic frequency improves compared with the conventional tone-burst method. Moreover, the CTR changes periodically with the relative phase of the separate frequency component in the dual-frequency excitation, leading to a difference of as much as 9.1 dB between the maximal and minimal CTR at 300 kPa acoustic pressure. The echo produced from the envelope component appears to be specific for UCAs, and thus the proposed method has the potential to improve both SNR and CTR in sub-harmonic imaging. Nevertheless, the dual-frequency waveform may suffer from frequency-dependent attenuation that degrades the generation of the envelope component. The deviation of the microbubble's resonance characteristics from the selection of

  12. Correlation between human observer performance and model observer performance in differential phase contrast CT

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ke; Garrett, John [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Chen, Guang-Hong [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 and Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, Wisconsin 53792 (United States)

    2013-11-15

    Purpose: With the recently expanding interest and developments in x-ray differential phase contrast CT (DPC-CT), the evaluation of its task-specific detection performance and comparison with the corresponding absorption CT under a given radiation dose constraint become increasingly important. Mathematical model observers are often used to quantify the performance of imaging systems, but their correlations with actual human observers need to be confirmed for each new imaging method. This work is an investigation of the effects of stochastic DPC-CT noise on the correlation of detection performance between model and human observers with signal-known-exactly (SKE) detection tasks.Methods: The detectabilities of different objects (five disks with different diameters and two breast lesion masses) embedded in an experimental DPC-CT noise background were assessed using both model and human observers. The detectability of the disk and lesion signals was then measured using five types of model observers including the prewhitening ideal observer, the nonprewhitening (NPW) observer, the nonprewhitening observer with eye filter and internal noise (NPWEi), the prewhitening observer with eye filter and internal noise (PWEi), and the channelized Hotelling observer (CHO). The same objects were also evaluated by four human observers using the two-alternative forced choice method. The results from the model observer experiment were quantitatively compared to the human observer results to assess the correlation between the two techniques.Results: The contrast-to-detail (CD) curve generated by the human observers for the disk-detection experiments shows that the required contrast to detect a disk is inversely proportional to the square root of the disk size. Based on the CD curves, the ideal and NPW observers tend to systematically overestimate the performance of the human observers. The NPWEi and PWEi observers did not predict human performance well either, as the slopes of their CD

  13. Optimization of the in-line X-ray phase-contrast imaging setup considering edge-contrast enhancement and spatial resolution

    Institute of Scientific and Technical Information of China (English)

    JIA Quan-Jie; CHEN Yu; LI Gang; JIANG Xiao-Ming

    2012-01-01

    Employing the approximation theory based on refraction and the definition of the total pointspread-function of the imaging system,the variation in the edge contrast of simple model samples is discussed with different source-to-sample and sample-to-detector distances,which actually means different spatial resolutions of the imaging system.The experiments were carried out with the Beamline 4W1A imaging setup at the Beijing Synchrotron Radiation Facility for simple model and insect samples.The results show that to obtain clear phase-contrast images of biologic tissues for the X-ray in-line imaging setup,with determined parameters such as the size of the X-ray source,the pixel size of the detector and the fixed source-to-sample distance,there is a range of optimized sample-to-detector distances.The analysis method discussed in this article can be helpful in optimizing the setup of X-ray in-line phase-contrast imaging.

  14. [Pulmonary blood flow measurement using magnetic resonance imaging (MRI) without contrast medium;comparison of phase contrast MRI and perfusion-ventilation scintigraphy].

    Science.gov (United States)

    Yatsuyanagi, Eiji; Sato, Kazuhiro; Kikuchi, Keisuke; Saito, Hirotsugu

    2014-02-01

    To define the accuracy of pulmonary arterial blood flow (PA-flow) measured by phase contrast magnetic resonance imaging (PC-MRI), we compared the PA-flow data of PC-MRI with the data of perfusion-ventilation lung scintigraphy. Eighteen patients who preoperatively underwent PA-flow measurement using PC-MRI and perfusion-ventilation lung scintigraphy were evaluated. The PA-flow (cm3/sec) of MRI was calculated by multiplying maximum velocity (cm/sec) by region of interest (ROI) area (cm2) of measured main pulmonary artery using phase contrast method. The left to right ratio (R/L ratio) of PA-flow measured by PC-MRI was compared with the R/L ratios of the date of perfusion-ventilation lung scintigraphy. The R/L ratios of PC-MRI and perfusion lung scintigraphy were 1.43 ± 1.07 and 1.35 ± 0.82, respectively. Both ratios showed excellent correlation( y=-0.50+1.30x, r=0.99,pperfusion lung scintigraphy in the patients with a past history of lung resection, even if their R/L ratios of perfusion lung scintigraphy differed from those of ventilation lung scintigraphy. These results revealed that the PA-flow could be accurately measured by PC-MRI without contrast medium and nuclear medicine instruments.

  15. When the non-contrast-enhanced phase is unnecessary in abdominal computed tomography scans? A retrospective analysis of 244 cases

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Danilo Manuel Cerqueira; Salvadori, Priscila Silveira; Monjardim, Rodrigo da Fonseca; Bretas, Elisa Almeida Sathler; Torres, Lucas Rios; Caldana, Rogerio Pedreschi; Shigueoka, David Carlos; Medeiros, Regina Bitelli; D' ippolito, Giuseppe, E-mail: giuseppe_dr@uol.com.br [Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP (Brazil). Escola Paulista de Medicina. Departamento de Diagnostico por Imagem

    2013-06-15

    Objective: to evaluate the necessity of the non contrast-enhanced phase in abdominal computed tomography scans. Materials and Methods: A retrospective, cross-sectional, observational study was developed, evaluating 244 consecutive abdominal computed tomography scans both with and without contrast injection. Initially, the contrast-enhanced images were analyzed (first analysis). Subsequently, the observers had access to the non-contrast-enhanced images for a second analysis. The primary and secondary diagnoses were established as a function of the clinical indications for each study (such as tumor staging, acute abdomen, investigation for abdominal collection and hepatocellular carcinoma, among others). Finally, the changes in the diagnoses resulting from the addition of the non-contrast-enhanced phase were evaluated. Results: Only one (0.4%; p > 0.999; non-statistically significant) out of the 244 reviewed cases had the diagnosis changed after the reading of non-contrast-enhanced images. As the secondary diagnoses are considered, 35 (14%) cases presented changes after the second analysis, as follows: nephrolithiasis (10%), steatosis (3%), adrenal nodule (0.7%) and cholelithiasis (0.3%). Conclusion: For the clinical indications of tumor staging, acute abdomen, investigation of abdominal collections and hepatocellular carcinoma, the non-contrast-enhanced phase can be excluded from abdominal computed tomography studies with no significant impact on the diagnosis. (author)

  16. When the non-contrast-enhanced phase is unnecessary in abdominal computed tomography scans? A retrospective analysis of 244 cases

    Directory of Open Access Journals (Sweden)

    Danilo Manuel Cerqueira Costa

    2013-07-01

    Full Text Available Objective: To evaluate the necessity of the non contrast-enhanced phase in abdominal computed tomography scans. Materials and Methods: A retrospective, cross-sectional, observational study was developed, evaluating 244 consecutive abdominal computed tomography scans both with and without contrast injection. Initially, the contrast-enhanced images were analyzed (first analysis. Subsequently, the observers had access to the non-contrast-enhanced images for a second analysis. The primary and secondary diagnoses were established as a function of the clinical indications for each study (such as tumor staging, acute abdomen, investigation for abdominal collection and hepatocellular carcinoma, among others. Finally, the changes in the diagnoses resulting from the addition of the non-contrast-enhanced phase were evaluated. Results: Only one (0.4%; p > 0.999; non-statistically significant out of the 244 reviewed cases had the diagnosis changed after the reading of non-contrast-enhanced images. As the secondary diagnoses are considered, 35 (14% cases presented changes after the second analysis, as follows: nephrolithiasis (10%, steatosis (3%, adrenal nodule (0.7% and cholelithiasis (0.3%. Conclusion: For the clinical indications of tumor staging, acute abdomen, investigation of abdominal collections and hepatocellular carcinoma, the non-contrast-enhanced phase can be excluded from abdominal computed tomography studies with no significant impact on the diagnosis.

  17. Noise texture and signal detectability in propagation-based x-ray phase-contrast tomography

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Cheng-Ying; Anastasio, Mark A. [Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei, Taiwan 106, Taiwan (China); Department of Biomedical Engineering, Medical Imaging Research Center, Illinois Institute of Technology, 3440 S. Dearborn Street, E1-116, Chicago, Illinois 60616 (United States)

    2010-01-15

    Purpose: X-ray phase-contrast tomography (PCT) is a rapidly emerging imaging modality for reconstructing estimates of an object's three-dimensional x-ray refractive index distribution. Unlike conventional x-ray computed tomography methods, the statistical properties of the reconstructed images in PCT remain unexplored. The purpose of this work is to quantitatively investigate noise propagation in PCT image reconstruction. Methods: The authors derived explicit expressions for the autocovariance of the reconstructed absorption and refractive index images to characterize noise texture and understand how the noise properties are influenced by the imaging geometry. Concepts from statistical detection theory were employed to understand how the imaging geometry-dependent statistical properties affect the signal detection performance in a signal-known-exactly/background-known-exactly task. Results: The analytical formulas for the phase and absorption autocovariance functions were implemented numerically and compared to the corresponding empirical values, and excellent agreement was found. They observed that the reconstructed refractive images are highly spatially correlated, while the absorption images are not. The numerical results confirm that the strength of the covariance is scaled by the detector spacing. Signal detection studies were conducted, employing a numerical observer. The detection performance was found to monotonically increase as the detector-plane spacing was increased. Conclusions: The authors have conducted the first quantitative investigation of noise propagation in PCT image reconstruction. The reconstructed refractive images were found to be highly spatially correlated, while absorption images were not. This is due to the presence of a Fourier space singularity in the reconstruction formula for the refraction images. The statistical analysis may facilitate the use of task-based image quality measures to further develop and optimize this emerging

  18. High spatial resolution hard X-ray microscope using X-ray refractive lens and phase contrast imaging experiments

    CERN Document Server

    Kohmura, Y; Takeuchi, A; Takano, H; Suzuki, Y; Ishikawa, T; Ohigashi, T; Yokosuka, H

    2001-01-01

    A high spatial resolution X-ray microscope was constructed using an X-ray refractive lens as an objective. The spatial resolution was tested using 18 keV X-ray. A 0.4 mu m line and 0.4 mu m space tantalum test pattern was successfully resolved. Using the similar setup with the addition of a phase plate, a Zernike type phase-contrast microscopy experiment was carried out for the phase retrieval of the samples. Two-dimensional phase-contrast images were successfully taken for the first time in the hard X-ray region. Images of a gold mesh sample were analyzed and the validity of this method was indicated. An improvement of the lens, however, is required for the precise phase retrieval of the samples.

  19. An FBP image reconstruction algorithm for x-ray differential phase contrast CT

    Science.gov (United States)

    Qi, Zhihua; Chen, Guang-Hong

    2008-03-01

    Most recently, a novel data acquisition method has been proposed and experimentally implemented for x-ray differential phase contrast computed tomography (DPC-CT), in which a conventional x-ray tube and a Talbot-Lau type interferometer were utilized in data acquisition. The divergent nature of the data acquisition system requires a divergent-beam image reconstruction algorithm for DPC-CT. This paper focuses on addressing this image reconstruction issue. We developed a filtered backprojection algorithm to directly reconstruct the DPC-CT images from acquired projection data. The developed algorithm allows one to directly reconstruct the decrement of the real part of the refractive index from the measured data. In order to accurately reconstruct an image, the data need to be acquired over an angular range of at least 180° plus the fan-angle. Different from the parallel beam data acquisition and reconstruction methods, a 180° rotation angle for data acquisition system does not provide sufficient data for an accurate reconstruction of the entire field of view. Numerical simulations have been conducted to validate the image reconstruction algorithm.

  20. Proposed imaging of the ultrafast electronic motion in samples using x-ray phase-contrast

    CERN Document Server

    Dixit, Gopal; Santra, Robin

    2013-01-01

    Tracing the motion of electrons has enormous relevance to understanding ubiquitous phenomena in ultrafast science, such as the dynamical evolution of the electron density during complex chemical and biological processes. Scattering of ultrashort x-ray pulses from an electronic wavepacket would appear to be the most obvious approach to image the electronic motion in real-time and real-space with the notion that such scattering patterns, in the far-field regime, encode the instantaneous electron density of the wavepacket. However, recent results by Dixit {\\em et al.} [Proc. Natl. Acad. Sci. U.S.A., {\\bf 109}, 11636 (2012)] have put this notion into question and shown that the scattering in the far-field regime probes spatio-temporal density-density correlations. Here, we propose a possible way to image the instantaneous electron density of the wavepacket via ultrafast x-ray {\\em phase contrast imaging}. Moreover, we show that inelastic scattering processes, which plague ultrafast scattering in the far-field reg...

  1. X-ray micro-beam techniques and phase contrast tomography applied to biomaterials

    Science.gov (United States)

    Fratini, Michela; Campi, Gaetano; Bukreeva, Inna; Pelliccia, Daniele; Burghammer, Manfred; Tromba, Giuliana; Cancedda, Ranieri; Mastrogiacomo, Maddalena; Cedola, Alessia

    2015-12-01

    A deeper comprehension of the biomineralization (BM) process is at the basis of tissue engineering and regenerative medicine developments. Several in-vivo and in-vitro studies were dedicated to this purpose via the application of 2D and 3D diagnostic techniques. Here, we develop a new methodology, based on different complementary experimental techniques (X-ray phase contrast tomography, micro-X-ray diffraction and micro-X-ray fluorescence scanning technique) coupled to new analytical tools. A qualitative and quantitative structural investigation, from the atomic to the micrometric length scale, is obtained for engineered bone tissues. The high spatial resolution achieved by X-ray scanning techniques allows us to monitor the bone formation at the first-formed mineral deposit at the organic-mineral interface within a porous scaffold. This work aims at providing a full comprehension of the morphology and functionality of the biomineralization process, which is of key importance for developing new drugs for preventing and healing bone diseases and for the development of bio-inspired materials.

  2. Schlieren, Phase-Contrast, and Spectroscopy Diagnostics for the LBNL HIF Plasma Channel Experiment

    Science.gov (United States)

    Ponce, D. M.; Niemann, C.; Fessenden, T. J.; Leemans, W.; Vandersloot, K.; Dahlbacka, G.; Yu, S. S.; Sharp, W. M.; Tauschwitz, A.

    1999-11-01

    The LBNL Plasma Channel experiment has demonstrated stable 42-cm Z-pinch discharge plasma channels with peak currents in excess of 50 kA for a 7 torr nitrogen, 30 kV discharge. These channels offer the possibility of transporting heavy-ion beams for inertial fusion. We postulate that the stability of these channels resides in the existance of a neutral-gas density depresion created by a pre-pulse discharge before the main capacitor bank discharge is created. Here, we present the results and experimental diagnostics setup used for the study of the pre-pulse and main bank channels. Observation of both the plasma and neutral gas dynamics is achieved. Schlieren, Zernike's phase-contrast, and spectroscopic techniques are used. Preliminary Schlieren results show a gas shockwave moving radially at a rate of ≈ 10^6 mm/sec as a result of the fast and localized deposited energy during the evolution of the pre-pulse channel. This data will be used to validate simulation codes (BUCKY and CYCLOPS).

  3. Value of MR phase-contrast flow measurements for functional assessment of pulmonary arterial hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Ley, Sebastian [German Cancer Research Center DKFZ, Department of Radiology (E010), Heidelberg (Germany); University Heidelberg, Department of Pediatric Radiology, Heidelberg (Germany); Mereles, Derliz; Gruenig, Ekkehard [University Heidelberg, Department of Internal Medicine III, Heidelberg (Germany); Puderbach, Michael; Schoeck, Helena; Eichinger, Monika; Ley-Zaporozhan, Julia; Fink, Christian; Kauczor, Hans-Ulrich [German Cancer Research Center DKFZ, Department of Radiology (E010), Heidelberg (Germany)

    2007-07-15

    Goals of our study were to compare the pulmonary hemodynamics between healthy volunteers and patients with pulmonary arterial hypertension (PAH) and correlate MR flow measurements with echocardiography. Twenty-five patients with PAH and 25 volunteers were examined at 1.5 T. Phase-contrast flow measurements were performed in the ascending aorta and pulmonary trunk, resulting in the following parameters: peak velocity (cm/s), average blood flow (l/min), time to peak velocity (ms), velocity rise gradient and pulmonary distensibility (cm{sup 2}). The bronchosystemic shunt was calculated. In PAH patients transthoracic echocardiography and right-heart catheterization (RHC) served as the gold standard. In comparison to volunteers, the PAH patients showed significantly reduced pulmonary velocities (P = 0.002), blood flow (P = 0.002) and pulmonary distensibility (P = 0.008). In patients, the time to peak velocity was shorter (P<0.001), and the velocity rise gradient was steeper (P = 0.002) than in volunteers. While in volunteers the peak velocity in the aorta was reached earlier, it was the reverse in patients. Patients showed a significant bronchosystemic shunt (P = 0.01). No meaningful correlation was found between MRI measurements and echocardiography or RHC. MRI is a feasible technique for the differentiation between PAH and volunteers. Further studies have to be conducted for the absolute calculation of pressure estimates. (orig.)

  4. X-ray micro-beam techniques and phase contrast tomography applied to biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Fratini, Michela, E-mail: michela.fratini@gmail.com [Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, 00184 Roma (Italy); Dipartimento di Scienze, Università di Roma Tre, 00144 Roma (Italy); Campi, Gaetano [Institute of Crystallography, CNR, 00015 Monterotondo, Roma (Italy); Bukreeva, Inna [CNR NANOTEC-Institute of Nanotechnology, 00195 Roma (Italy); P.N. Lebedev Physical Institute RAS, 119991 Moscow (Russian Federation); Pelliccia, Daniele [School of Physics, Monash University, Victoria 3800 (Australia); Burghammer, Manfred [ESRF-The European Synchrotron, 3800 Grenoble (France); Tromba, Giuliana [Sincrotrone Trieste SCpA, 34149 Basovizza, Trieste (Italy); Cancedda, Ranieri; Mastrogiacomo, Maddalena [Dipartimento di Medicina Sperimentale dell’Università di Genova & AUO San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, 16132 Genova (Italy); Cedola, Alessia [CNR NANOTEC-Institute of Nanotechnology, 00195 Roma (Italy)

    2015-12-01

    A deeper comprehension of the biomineralization (BM) process is at the basis of tissue engineering and regenerative medicine developments. Several in-vivo and in-vitro studies were dedicated to this purpose via the application of 2D and 3D diagnostic techniques. Here, we develop a new methodology, based on different complementary experimental techniques (X-ray phase contrast tomography, micro-X-ray diffraction and micro-X-ray fluorescence scanning technique) coupled to new analytical tools. A qualitative and quantitative structural investigation, from the atomic to the micrometric length scale, is obtained for engineered bone tissues. The high spatial resolution achieved by X-ray scanning techniques allows us to monitor the bone formation at the first-formed mineral deposit at the organic–mineral interface within a porous scaffold. This work aims at providing a full comprehension of the morphology and functionality of the biomineralization process, which is of key importance for developing new drugs for preventing and healing bone diseases and for the development of bio-inspired materials.

  5. Vascular centerline extraction in 3D MR angiograms for phase contrast MRI blood flow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Hoyos, M. [CREATIS, CNRS 5515 et INSERM U630 Research Unit, INSA de Lyon, 69 - Villeurbanne (France); Universidad de los Andes, Bogota (Colombia). Grupo Imagine, Grupo de Ingenieria Biomedica; Orlowski, P.; Piatkowska-Janko, E.; Bogorodzki, P. [Warsaw Univ. of Tech. (Poland). ZEJM-BINSK, Inst. of Radioelectronics; Orkisz, M. [CREATIS, CNRS 5515 et INSERM U630 Research Unit, INSA de Lyon, 69 - Villeurbanne (France)

    2006-03-15

    The accuracy of 2D phase contrast (PC) magnetic resonance angiography (MRA) depends on the alignment between the vessels and the imaging plane. PC MRA imaging of blood flow is challenging when the flow in several vessels is to be evaluated with one acquisition. For this purpose, semi-automatic determination of the plane most perpendicular to several vessels is proposed based on centerlines extracted from 3D MRA. Arterial centerlines are extracted from 3D MRA based on iterative estimation-prediction, multi-scale analysis of image moments, and a second-order shape model. The optimal plane is determined by minimizing misalignment between its normal vector and the centerlines' tangent vectors. The method was evaluated on a phantom and on 35 patients, by seeking the optimal plane for cerebral blood flow quantification simultaneously in internal carotids and vertebral arteries. In the phantom, difference of orientation and of height between known and calculated planes was 1.2 and 2.5 mm, respectively. In the patients, all but one centerline were correctly extracted and the misalignment of the plane was within 12 per artery. Semi-automatic centerline extraction simplifies and automates determination of the plane orthogonal to one vessel, thereby permitting automatic simultaneous minimization of the misalignment with several vessels in PC MRA. (orig.)

  6. Volumetric characterization of human patellar cartilage matrix on phase contrast x-ray computed tomography

    Science.gov (United States)

    Abidin, Anas Z.; Nagarajan, Mahesh B.; Checefsky, Walter A.; Coan, Paola; Diemoz, Paul C.; Hobbs, Susan K.; Huber, Markus B.; Wismüller, Axel

    2015-03-01

    Phase contrast X-ray computed tomography (PCI-CT) has recently emerged as a novel imaging technique that allows visualization of cartilage soft tissue, subsequent examination of chondrocyte patterns, and their correlation to osteoarthritis. Previous studies have shown that 2D texture features are effective at distinguishing between healthy and osteoarthritic regions of interest annotated in the radial zone of cartilage matrix on PCI-CT images. In this study, we further extend the texture analysis to 3D and investigate the ability of volumetric texture features at characterizing chondrocyte patterns in the cartilage matrix for purposes of classification. Here, we extracted volumetric texture features derived from Minkowski Functionals and gray-level co-occurrence matrices (GLCM) from 496 volumes of interest (VOI) annotated on PCI-CT images of human patellar cartilage specimens. The extracted features were then used in a machine-learning task involving support vector regression to classify ROIs as healthy or osteoarthritic. Classification performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). The best classification performance was observed with GLCM features correlation (AUC = 0.83 +/- 0.06) and homogeneity (AUC = 0.82 +/- 0.07), which significantly outperformed all Minkowski Functionals (p GLCM-derived statistical features can distinguish between healthy and osteoarthritic tissue with high accuracy.

  7. X-ray phase-contrast tomography with a compact laser-driven synchrotron source.

    Science.gov (United States)

    Eggl, Elena; Schleede, Simone; Bech, Martin; Achterhold, Klaus; Loewen, Roderick; Ruth, Ronald D; Pfeiffer, Franz

    2015-05-05

    Between X-ray tubes and large-scale synchrotron sources, a large gap in performance exists with respect to the monochromaticity and brilliance of the X-ray beam. However, due to their size and cost, large-scale synchrotrons are not available for more routine applications in small and medium-sized academic or industrial laboratories. This gap could be closed by laser-driven compact synchrotron light sources (CLS), which use an infrared (IR) laser cavity in combination with a small electron storage ring. Hard X-rays are produced through the process of inverse Compton scattering upon the intersection of the electron bunch with the focused laser beam. The produced X-ray beam is intrinsically monochromatic and highly collimated. This makes a CLS well-suited for applications of more advanced--and more challenging--X-ray imaging approaches, such as X-ray multimodal tomography. Here we present, to our knowledge, the first results of a first successful demonstration experiment in which a monochromatic X-ray beam from a CLS was used for multimodal, i.e., phase-, dark-field, and attenuation-contrast, X-ray tomography. We show results from a fluid phantom with different liquids and a biomedical application example in the form of a multimodal CT scan of a small animal (mouse, ex vivo). The results highlight particularly that quantitative multimodal CT has become feasible with laser-driven CLS, and that the results outperform more conventional approaches.

  8. A minute fossil phoretic mite recovered by phase-contrast X-ray computed tomography.

    Science.gov (United States)

    Dunlop, Jason A; Wirth, Stefan; Penney, David; McNeil, Andrew; Bradley, Robert S; Withers, Philip J; Preziosi, Richard F

    2012-06-23

    High-resolution phase-contrast X-ray computed tomography (CT) reveals the phoretic deutonymph of a fossil astigmatid mite (Acariformes: Astigmata) attached to a spider's carapace (Araneae: Dysderidae) in Eocene (44-49 Myr ago) Baltic amber. Details of appendages and a sucker plate were resolved, and the resulting three-dimensional model demonstrates the potential of tomography to recover morphological characters of systematic significance from even the tiniest amber inclusions without the need for a synchrotron. Astigmatids have an extremely sparse palaeontological record. We confirm one of the few convincing fossils, potentially the oldest record of Histiostomatidae. At 176 µm long, we believe this to be the smallest arthropod in amber to be CT-scanned as a complete body fossil, extending the boundaries for what can be recovered using this technique. We also demonstrate a minimum age for the evolution of phoretic behaviour among their deutonymphs, an ecological trait used by extant species to disperse into favourable environments. The occurrence of the fossil on a spider is noteworthy, as modern histiostomatids tend to favour other arthropods as carriers.

  9. Cranial MR angiography in children with cerebrovascular diseases; Evaluation of new phase contrast technique

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, Masayuki; Uozumi, Tohru; Kuwabara, Satoshi; Kurisu, Kaoru; Ikawa, Fusao; Satoh, Hideki; Yukawa, Osamu; Migita, Keisuke; Hada, Hiroshi (Hiroshima Univ. (Japan). School of Medicine)

    1993-06-01

    We evaluated the phase contrast (PC) method, a new type of MR angiography (MRA), in children with cerebrovascular diseases, and compared it with the time of flight (TOF) method and conventional angiography. The patients were nine children with the following diagnoses: two with arteriovenous malformations (AVM), one with Galenic AVM, one with cavernous angioma, four with moyamoya disease, and one with cerebral infarction. A 1.5 T Signa Advantage and a 3-D PC were used. In AVM and Galenic AVM, feeder, nidus and drainer were demonstrated separately by changing velocity encoding (VENC). In the patient with cavernous angioma, the cortical veins were well demonstrated. In moyamoya disease and infarction, stenosis or obstruction of the main arteries and revascularization after surgery were clearly demonstrated. PC is useful in the diagnosis and follow up of cerebrovascular diseases in children because PC is superior in demonstrating veins and scanning in any direction is possible. However, MRA alone cannot demonstrate small vessels and direction of flow, so preoperative conventional angiography is still necessary. (author).

  10. A new method for information retrieval in two-dimensional grating-based X-ray phase contrast imaging

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-Li; Gao Kun; Chen Jian; Ge Xin; Zhu Pei-Ping; Tian Yang-Chao; Wu Zi-Yu

    2012-01-01

    Grating-based X-ray phase contrast imaging has been demonstrated to be an extremely powerful phase-sensitive imaging technique.By using two-dimensional (2D) gratings,the observable contrast is extended to two refraction directions.Recently,we have developed a novel reverse-projection (RP) method,which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging.In this contribution,we present its extension to the 2D grating-based X-ray phase contrast imaging,named the two-dimensional reverseprojection (2D-RP) method,for information retrieval.The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption,the horizontal and the vertical refraction images.The obtained information can be used for the reconstruction of the three-dimensional phase gradient field,and for an improved phase map retrieval and reconstruction.Numerical experiments are carried out,and the results confirm the validity of the 2D-RP method.

  11. X-ray phase contrast imaging of the breast: Analysis of tissue simulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Vedantham, Srinivasan; Karellas, Andrew [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)

    2013-04-15

    Purpose: Phase contrast imaging, particularly of the breast, is being actively investigated. The purpose of this work is to investigate the x-ray phase contrast properties of breast tissues and commonly used breast tissue substitutes or phantom materials with an aim of determining the phantom materials best representative of breast tissues. Methods: Elemental compositions of breast tissues including adipose, fibroglandular, and skin were used to determine the refractive index, n= 1 -{delta}+i {beta}. The real part of the refractive index, specifically the refractive index decrement ({delta}), over the energy range of 5-50 keV were determined using XOP software (version 2.3, European Synchrotron Radiation Facility, France). Calcium oxalate and calcium hydroxyapatite were considered to represent the material compositions of microcalcifications in vivo. Nineteen tissue substitutes were considered as possible candidates to represent adipose tissue, fibroglandular tissue and skin, and four phantom materials were considered as possible candidates to represent microcalcifications. For each material, either the molecular formula, if available, or the elemental composition based on weight fraction, was used to determine {delta}. At each x-ray photon energy, the absolute percent difference in {delta} between the breast tissue and the substitute material was determined, from which three candidates were selected. From these candidate tissue substitutes, the material that minimized the absolute percent difference in linear attenuation coefficient {mu}, and hence {beta}, was considered to be best representative of that breast tissue. Results: Over the energy range of 5-50 keV, while the {delta} of CB3 and fibroglandular tissue-equivalent material were within 1% of that of fibroglandular tissue, the {mu} of fibroglandular tissue-equivalent material better approximated the fibroglandular tissue. While the {delta} of BR10 and adipose tissue-equivalent material were within 1% of

  12. Quantitative studies on inner interfaces in conical metal joints using hard x-ray inline phase contrast radiography

    Science.gov (United States)

    Zabler, S.; Rack, T.; Rack, A.; Nelson, K.

    2010-10-01

    Quantitative investigation of micrometer and submicrometer gaps between joining metal surfaces is applied to conical plug-socket connections in dental titanium implants. Microgaps of widths well beyond the resolving power of industrial x-ray systems are imaged by synchrotron phase contrast radiography. Furthermore, by using an analytical model for the relatively simple sample geometry and applying it to numerical forward simulations of the optical Fresnel propagation, we show that quantitative measurements of the microgap width down to 0.1 μm are possible. Image data recorded at the BAMline (BESSY-II light source, Germany) are presented, with the resolving power of the imaging system being 4 μm in absorption mode and ˜14 μm in phase contrast mode (z2=0.74 m). Thus, phase contrast radiography, combined with numerical forward simulations, is capable of measuring the widths of gaps that are two orders of magnitude thinner than the conventional detection limit.

  13. Phase contrast imaging using Betatron x-ray beams produced by a 100 TW high intensity laser system

    Science.gov (United States)

    Fourmaux, Sylvain; Corde, Sebastien; Ta Phuoc, Kim; Lassonde, Philippe; Martin, Francois; Malka, Victor; Rousse, Antoine; Kieffer, Jean

    2011-10-01

    Development of x-ray phase contrast imaging applications with a laboratory scale source have been limited by the long exposure time needed to obtain one image. We demonstrate, using the Betatron x-ray radiation produced when electrons are accelerated and wiggled in the laser-wakefield cavity, the potential of Betatron x-ray radiation for femtosecond phase contrast imaging. We characterize the x-ray source using a knife edge technique and nylon wires for calibration. We then show that high-quality phase contrast images of complex objects located in air, can be obtained with only a single laser shot. The Betatron x-ray source used in this demonstration experiment has a source diameter of 1.7 microns and produces a synchrotron spectrum with critical energy Ec = 12 . 3 + / - 2 . 5 keV and 109 photons per shot in the whole spectrum.

  14. A LabVIEW based user-friendly X-ray phase-contrast imaging system software platform

    CERN Document Server

    Wang, Shenghao; Gao, Kun; Wang, Zhili; Zhang, Can; Yang, Meng; Wu, Zhao; Marcelli, Augusto; Wu, Ziyu

    2014-01-01

    X-ray phase-contrast imaging can provide greatly improved contrast over conventional absorption-based imaging for weakly absorbing samples, such as biological soft tissues and fibre composites. In this manuscript, we introduce an easy and fast way to develop a user-friendly system software platform dedicated for the newly built grating-based X-ray phase-contrast imaging setup at the National Synchrotron Radiation Laboratory, University of Science and Technology of China. Unified management and control upon 21 motorized positioning stages, an ultra-precision piezoelectric translation stage and an X-ray tube are achieved with this platform, the software also covers automatic image acquisition with a flat panel detector for phase-stepping scanning. Moreover, data post-processing module for signals retrieval and other custom features could be realized on it. With a seamless integration of all the necessary functions into an organism, this software platform greatly facilitate activity of the users during experimen...

  15. In vivo x-ray phase contrast analyzer-based imaging for longitudinal osteoarthritis studies in guinea pigs

    Energy Technology Data Exchange (ETDEWEB)

    Coan, Paola [Faculty of Medicine and Institute of Clinical Radiology, Ludwig-Maximilians University, Munich (Germany); Wagner, Andreas; Mollenhauer, Juergen [Department of Orthopaedics of the University of Jena, Rudolf-Elle-Hospital Eisenberg (Germany); Bravin, Alberto; Diemoz, Paul C; Keyrilaeinen, Jani, E-mail: Paola.Coan@physik.uni-muenchen.d [European Synchrotron Radiation Facility (ESRF), Grenoble (France)

    2010-12-21

    Over the last two decades phase contrast x-ray imaging techniques have been extensively studied for applications in the biomedical field. Published results demonstrate the high capability of these imaging modalities of improving the image contrast of biological samples with respect to standard absorption-based radiography and routinely used clinical imaging techniques. A clear depiction of the anatomic structures and a more accurate disease diagnosis may be provided by using radiation doses comparable to or lower than those used in current clinical methods. In the literature many works show images of phantoms and excised biological samples proving the high sensitivity of the phase contrast imaging methods for in vitro investigations. In this scenario, the applications of the so-called analyzer-based x-ray imaging (ABI) phase contrast technique are particularly noteworthy. The objective of this work is to demonstrate the feasibility of in vivo x-ray ABI phase contrast imaging for biomedical applications and in particular with respect to joint anatomic depiction and osteoarthritis detection. ABI in planar and tomographic modes was performed in vivo on articular joints of guinea pigs in order to investigate the animals with respect to osteoarthritis by using highly monochromatic x-rays of 52 keV and a low noise detector with a pixel size of 47 x 47 {mu}m{sup 2}. Images give strong evidence of the ability of ABI in depicting both anatomic structures in complex systems as living organisms and all known signs of osteoarthritis with high contrast, high spatial resolution and with an acceptable radiation dose. This paper presents the first proof of principle study of in vivo application of ABI. The technical challenges encountered when imaging an animal in vivo are discussed. This experimental study is an important step toward the study of clinical applications of phase contrast x-ray imaging techniques.

  16. In vivo x-ray phase contrast analyzer-based imaging for longitudinal osteoarthritis studies in guinea pigs

    Science.gov (United States)

    Coan, Paola; Wagner, Andreas; Bravin, Alberto; Diemoz, Paul C.; Keyriläinen, Jani; Mollenhauer, Juergen

    2010-12-01

    Over the last two decades phase contrast x-ray imaging techniques have been extensively studied for applications in the biomedical field. Published results demonstrate the high capability of these imaging modalities of improving the image contrast of biological samples with respect to standard absorption-based radiography and routinely used clinical imaging techniques. A clear depiction of the anatomic structures and a more accurate disease diagnosis may be provided by using radiation doses comparable to or lower than those used in current clinical methods. In the literature many works show images of phantoms and excised biological samples proving the high sensitivity of the phase contrast imaging methods for in vitro investigations. In this scenario, the applications of the so-called analyzer-based x-ray imaging (ABI) phase contrast technique are particularly noteworthy. The objective of this work is to demonstrate the feasibility of in vivo x-ray ABI phase contrast imaging for biomedical applications and in particular with respect to joint anatomic depiction and osteoarthritis detection. ABI in planar and tomographic modes was performed in vivo on articular joints of guinea pigs in order to investigate the animals with respect to osteoarthritis by using highly monochromatic x-rays of 52 keV and a low noise detector with a pixel size of 47 × 47 µm2. Images give strong evidence of the ability of ABI in depicting both anatomic structures in complex systems as living organisms and all known signs of osteoarthritis with high contrast, high spatial resolution and with an acceptable radiation dose. This paper presents the first proof of principle study of in vivo application of ABI. The technical challenges encountered when imaging an animal in vivo are discussed. This experimental study is an important step toward the study of clinical applications of phase contrast x-ray imaging techniques.

  17. Generalized SVPWM Algorithm for Two Legged Three Phase Multilevel Inverter

    Directory of Open Access Journals (Sweden)

    Devisree Sasi

    2013-07-01

    Full Text Available This paper establishes the inherent fractal structure in the space vector representation of two legged three phase multilevel inverters. The established fractal structure is utilized to propose a generalized algorithm for space vector PWM generation for two legged multilevel inverters. The voltage space vectors of higher level inverters can be generated from the voltage space vectors of equivalent 2-level inverter. The proposed algorithm can be easily extended to n-level inverters without any computational complexity and it doesn’t use any look up table for sector identification. The paper explains the proposed method for 5-level inverter and simulation results are presented for 2-level, 3-level and 5-level configurations in MATLAB/SIMULINK.

  18. A generalized quantitative interpretation of dark-field contrast for highly concentrated microsphere suspensions

    Science.gov (United States)

    Gkoumas, Spyridon; Villanueva-Perez, Pablo; Wang, Zhentian; Romano, Lucia; Abis, Matteo; Stampanoni, Marco

    2016-10-01

    In X-ray grating interferometry, dark-field contrast arises due to partial extinction of the detected interference fringes. This is also called visibility reduction and is attributed to small-angle scattering from unresolved structures in the imaged object. In recent years, analytical quantitative frameworks of dark-field contrast have been developed for highly diluted monodisperse microsphere suspensions with maximum 6% volume fraction. These frameworks assume that scattering particles are separated by large enough distances, which make any interparticle scattering interference negligible. In this paper, we start from the small-angle scattering intensity equation and, by linking Fourier and real-space, we introduce the structure factor and thus extend the analytical and experimental quantitative interpretation of dark-field contrast, for a range of suspensions with volume fractions reaching 40%. The structure factor accounts for interparticle scattering interference. Without introducing any additional fitting parameters, we successfully predict the experimental values measured at the TOMCAT beamline, Swiss Light Source. Finally, we apply this theoretical framework to an experiment probing a range of system correlation lengths by acquiring dark-field images at different energies. This proposed method has the potential to be applied in single-shot-mode using a polychromatic X-ray tube setup and a single-photon-counting energy-resolving detector.

  19. Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging.

    Science.gov (United States)

    Gureyev, Timur E; Nesterets, Yakov I; Stevenson, Andrew W; Miller, Peter R; Pogany, Andrew; Wilkins, Stephen W

    2008-03-03

    Simple analytical expressions are derived for the spatial resolution, contrast and signal-to-noise in X-ray projection images of a generic phase edge. The obtained expressions take into account the maximum phase shift generated by the sample and the sharpness of the edge, as well as such parameters of the imaging set-up as the wavelength spectrum and the size of the incoherent source, the source-to-object and object-to-detector distances and the detector resolution. Different asymptotic behavior of the expressions in the cases of large and small Fresnel numbers is demonstrated. The analytical expressions are compared with the results of numerical simulations using Kirchhoff diffraction theory, as well as with experimental X-ray measurements.

  20. Single-shot x-ray differential phase-contrast and diffraction imaging using two-dimensional transmission gratings.

    Science.gov (United States)

    Wen, Harold H; Bennett, Eric E; Kopace, Rael; Stein, Ashley F; Pai, Vinay

    2010-06-15

    We describe an x-ray differential phase-contrast imaging method based on two-dimensional transmission gratings that are directly resolved by an x-ray camera. X-ray refraction and diffraction in the sample lead to variations of the positions and amplitudes of the grating fringes on the camera. These effects can be quantified through spatial harmonic analysis. The use of 2D gratings allows differential phase contrast in several directions to be obtained from a single image. When compared to previous grating-based interferometry methods, this approach obviates the need for multiple exposures and separate measurements for different directions and thereby accelerates imaging speed.

  1. Quantized Brans-Dicke theory: Phase transition, strong coupling limit, and general relativity

    Science.gov (United States)

    Pal, Sridip

    2016-10-01

    We show that Friedmann-Robertson-Walker geometry with a flat spatial section in quantized (Wheeler deWitt quantization) Brans-Dicke (BD) theory reveals a rich phase structure owing to anomalous breaking of a classical symmetry, which maps the scale factor a ↦λ a for some constant λ . In the weak coupling (ω ) limit, the theory goes from a symmetry preserving phase to a broken phase. The existence of a phase boundary is an obstruction to another classical symmetry [see V. Faraoni, Phys. Rev. D 59, 084021 (1999).] (which relates two BD theories with different couplings) admitted by BD theory with scale invariant matter content, i.e., Tμμ=0 . Classically, this prohibits the BD theory from reducing to general relativity (GR) for scale invariant matter content. We show that a strong coupling limit of both BD and GR preserves the symmetry involving the scale factor. We also show that with scale invariant matter content (radiation, i.e., P =1/3 ρ ), the quantized BD theory does reduce to GR as ω →∞ , which is in sharp contrast to classical behavior. This is a first known illustration of a scenario where quantized BD theory provides an example of anomalous symmetry breaking and resulting binary phase structure. We make a conjecture regarding the strong coupling limit of the BD theory in a generic scenario.

  2. On filtration for high-energy phase-contrast x-ray imaging

    Science.gov (United States)

    Riess, Christian; Mohamed, Ashraf; Hinshaw, Waldo; Fahrig, Rebecca

    2015-03-01

    Phase-sensitive x-ray imaging promises unprecedented soft-tissue contrast and resolution. However, several practical challenges have to be overcome when using the setup in a clinical environment. The system design that is currently closest to clinical use is the grating-based Talbot-Lau interferometer (GBI).1-3 The requirements for patient imaging are low patient dose, fast imaging time, and high image quality. For GBI, these requirements can be met most successfully with a narrow energy width, high- ux spectrum. Additionally, to penetrate a human-sized object, the design energy of the system has to be well above 40 keV. To our knowledge, little research has been done so far to investigate optimal GBI filtration at such high x-ray energies. In this paper, we study different filtration strategies and their impact on high-energy GBI. Specifically, we compare copper filtration at low peak voltage with equal-absorption, equal-imaging time K-edge filtration of spectra with higher peak voltage under clinically realistic boundary conditions. We specifically focus on a design energy of 59 keV and investigate combinations of tube current, peak voltage, and filtration that lead to equal patient absorption. Theoretical considerations suggest that the K edge of tantalum might provide a transmission pocket at around 59 keV, yielding a well-shaped spectrum. Although one can observe a slight visibility benefit when using tungsten or tantalum filtration, experimental results indicate that visibility benefits most from a low x-ray tube peak voltage.

  3. Measurement of cerebral blood flow using phase contrast magnetic resonance imaging and duplex ultrasonography.

    Science.gov (United States)

    Khan, Muhammad Ayaz; Liu, Jie; Tarumi, Takashi; Lawley, Justin Stevan; Liu, Peiying; Zhu, David C; Lu, Hanzhang; Zhang, Rong

    2017-02-01

    Phase contrast magnetic resonance imaging (PC-MRI) and color-coded duplex ultrasonography (CDUS) are commonly used for measuring cerebral blood flow in the internal carotid (ICA) and vertebral arteries. However, agreement between the two methods has been controversial. Recent development of high spatial and temporal resolution blood vessel wall edge-detection and wall-tracking methods with CDUS increased the accuracy and reliability of blood vessel diameter, hence cerebral blood flow measurement. The aim of this study was to compare the improved CDUS method with 3 T PC-MRI for cerebral blood flow measurements. We found that cerebral blood flow velocity measured in the ICA was lower using PC-MRI than CDUS (left ICA: PC-MRI, 18.0 ± 4.2 vs. CDUS, 25.6 ± 8.6 cm/s; right ICA: PC-MRI, 18.5 ± 4.8 vs. CDUS, 26.6 ± 6.7 cm/s, both p blood flow velocity measured in the left vertebral artery with PC-MRI was also lower than CDUS, but no differences in vertebral artery diameter were observed between the methods. Dynamic changes and/or intrinsic physiological fluctuations may have caused these differences in vessel diameter and velocity measurements between the methods. However, estimation of volumetric cerebral blood flow was similar and correlated between the methods despite the presence of large individual differences. These findings support the use of CDUS for cerebral blood flow measurements in the ICA and vertebral artery.

  4. Real-time phase contrast magnetic resonance imaging for assessment of haemodynamics: from phantom to patients

    Energy Technology Data Exchange (ETDEWEB)

    Traber, Julius; Wurche, Lennart; Dieringer, Matthias A.; Utz, Wolfgang; Knobelsdorff-Brenkenhoff, Florian von; Schulz-Menger, Jeanette [Max-Delbrueck-Centrum and Charite -Medical University Berlin and HELIOS Klinikum Berlin-Buch, Department of Cardiology and Nephrology, Working Group on Cardiovascular Magnetic Resonance Imaging, Experimental and Clinical Research Center, Berlin (Germany); Greiser, Andreas [Siemens AG Healthcare Sector, Erlangen (Germany); Jin, Ning [Siemens Medical Solutions USA, Inc., Columbus, OH (United States)

    2016-04-15

    Assessment of haemodynamics is crucial in many cardiac diseases. Phase contrast MRI (PC-MRI) can accurately access it. Arrhythmia is a major limitation in conventional segmented PC-MRI (SEG). A real-time PC-MRI sequence (RT) could overcome this. We validated RT by comparing to SEG. A prototype RT using shared velocity encoding was tested against SEG at 1.5 T in a flow phantom and consecutively included patients with (n = 55) or without (n = 59) aortic valve disease. In patients with atrial fibrillation (Afib, n = 15), only RT was applied. Phantom: PC images were acquired in front of and behind an interchangeable aortic-stenosis-like inlay. Mean velocity and flow were quantified. Patients: PC images were acquired in the ascending aorta, pulmonary trunk and superior caval vein. Peak velocity, stroke volume and regurgitant fraction were quantified. Phantom: Mean velocities (11 ± 1 to 207 ± 10 cm/s) and flow correlated closely between SEG and RT (r ≥ 0.99, ICC ≥ 0.98, p < 0.0005). Patients without AVD or with aortic regurgitation: Concordance of SEG and RT was excellent regarding peak velocities, stroke volumes (r ≥ 0.91, ICC ≥ 0.94, p < 0.0005) and regurgitant fractions (r = 0.95, ICC = 0.95, p < 0.0005). RT was feasible in all patients with Afib. The real-time sequence is accurate compared to conventional segmented PC-MRI. Its applicability in Afib was shown. Real-time PC-MRI might become a valuable tool in arrhythmia. (orig.)

  5. Simulation study of spatial resolution in phase-contrast X-ray imaging with Takagi-Taupin equation

    CERN Document Server

    Koyama, I

    2003-01-01

    To evaluate attainable spatial resolution of phase-contrast X-ray imaging using an LLL X-ray interferometer with a thin crystal wafer, a computer simulation study with Takagi-Taupin equation was performed. Modulation transfer function of the wafer for X-ray phase was evaluated. For a polyester film whose thickness is 0.1 mm, it was concluded that the spatial resolution can be improved up to 3 mu m by thinning the wafer, under our experimental condition.

  6. Imaging performance in differential phase contrast CT compared with the conventional CT-noise equivalent quanta NEQ(k)

    Science.gov (United States)

    Tang, Xiangyang; Yang, Yi; Tang, Shaojie

    2012-03-01

    The grating-based x-ray differential phase contrast (DPC) CT is emerging as a new technology with the potential for extensive preclinical and clinical applications. In general, the performance of an imaging system is jointly determined by its signal property (modulation transfer function-MTF(k)) and noise property (noise power spectrum-NPS(k)), which is characterized by its spectrum of noise equivalent quanta. As reported by us previously, owing to an adoption of the Hilbert filtering for image reconstruction in the fashion of filtered backprojection (FBP), the noise property of DPC-CT characterized by its NPS(k) differs drastically from that of the conventional attenuation-based CT (1/|k| trait vs. |k| trait). In this work, via system analysis, modeling and simulated phantom study, we initially investigate the signal property of DPC-CT characterized by its MTF(k) and compare it with that of the conventional CT. In addition, we investigate the DPC-CT's spectrum of noise equivalent quanta NEQ(k) - the most important figure of merit (FOM) in the assessment of an imaging system's performance - by taking the MTF(k) and NPS(k) jointly into account. Through such a thorough investigation into both the signal and noise properties, the imaging performance of DPC-CT and its potential over the conventional attenuation-based CT can be fully understood and appreciated.

  7. Using digital inline holographic microscopy and quantitative phase contrast imaging to assess viability of cultured mammalian cells

    Science.gov (United States)

    Missan, Sergey; Hrytsenko, Olga

    2015-03-01

    Digital inline holographic microscopy was used to record holograms of mammalian cells (HEK293, B16, and E0771) in culture. The holograms have been reconstructed using Octopus software (4Deep inwater imaging) and phase shift maps were unwrapped using the FFT-based phase unwrapping algorithm. The unwrapped phase shifts were used to determine the maximum phase shifts in individual cells. Addition of 0.5 mM H2O2 to cell media produced rapid rounding of cultured cells, followed by cell membrane rupture. The cell morphology changes and cell membrane ruptures were detected in real time and were apparent in the unwrapped phase shift images. The results indicate that quantitative phase contrast imaging produced by the digital inline holographic microscope can be used for the label-free real time automated determination of cell viability and confluence in mammalian cell cultures.

  8. Dose efficiency consideration for volume-of-interest breast imaging using x-ray differential phase-contrast CT

    Science.gov (United States)

    Cai, Weixing; Ning, Ruola

    2009-02-01

    The newly developed differential phase-contrast (DPC) imaging technique has attracted increasing interest among researchers. In a DPC system, the self-imaging effect and the phase-stepping method are implemented through three gratings to manifest phase contrast, and differentiated phase images can be obtained. An important advantage of this technique is that hospital-grade x-ray tubes can be used, allowing much higher x-ray output power and faster image processing than with micro-focus in-line phase-contrast imaging. A DPC-CT system can acquire images from different view angles along a circular orbit, and tomographic images can be reconstructed. However, the principle of DPC imaging requires multiple exposures to compute any differentiated phase image at each view angle, which raises concerns about radiation exposure via x-ray dose. Computer simulations are carried out to study the dose efficiency for DPC-CT for volume-of-interest breast imaging. A conceptual CBCT/DPC-CT hybrid imaging system and a numerical breast phantom are designed for this study. A FBP-type reconstruction algorithm is optimized for the VOI reconstruction. Factors including the x-ray flux and detector pixel size are considered and their effects on reconstruction image quality in terms of noise level and contrast-to-noise ratio are investigated. The results indicate that with a pixel size of 20 microns and a dose level of 5.7mGy, which is equivalent to the patient dose of a two-view mammography screening or a dedicated CBCT breast imaging scan, much better tissue contrast and spatial resolution can be achieved using the DPC-CT technique. It is very promising for possible application at pathology-level in vivo study for human breasts.

  9. Phase-contrast computed tomography for quantification of structural changes in lungs of asthma mouse models of different severity

    Energy Technology Data Exchange (ETDEWEB)

    Dullin, Christian, E-mail: christian.dullin@med.uni-goettingen.de [University Medical Center Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); Larsson, Emanuel [Elettra-Sincrotrone Trieste, Strada Statale 14, km 163,5 in AREA Science Park, Basovizza (Trieste) 34149 (Italy); University of Trieste, Trieste (Italy); Linkoeping University, SE-581 83 Linkoeping (Sweden); Tromba, Giuliana [Elettra-Sincrotrone Trieste, Strada Statale 14, km 163,5 in AREA Science Park, Basovizza (Trieste) 34149 (Italy); Markus, Andrea M. [University Medical Center Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); Alves, Frauke [University Medical Center Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); University Medical Center Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); Max Planck Institut for Experimental Medicine, Hermann-Rein-Strasse 3, Goettingen, Lower Saxony 37075 (Germany)

    2015-06-17

    Synchrotron inline phase-contrast computed tomography in combination with single-distance phase retrieval enables quantification of morphological alterations in lungs of mice with mild and severe experimental allergic airways disease in comparison with healthy controls. Lung imaging in mouse disease models is crucial for the assessment of the severity of airway disease but remains challenging due to the small size and the high porosity of the organ. Synchrotron inline free-propagation phase-contrast computed tomography (CT) with its intrinsic high soft-tissue contrast provides the necessary sensitivity and spatial resolution to analyse the mouse lung structure in great detail. Here, this technique has been applied in combination with single-distance phase retrieval to quantify alterations of the lung structure in experimental asthma mouse models of different severity. In order to mimic an in vivo situation as close as possible, the lungs were inflated with air at a constant physiological pressure. Entire mice were embedded in agarose gel and imaged using inline free-propagation phase-contrast CT at the SYRMEP beamline (Synchrotron Light Source, ‘Elettra’, Trieste, Italy). The quantification of the obtained phase-contrast CT data sets revealed an increasing lung soft-tissue content in mice correlating with the degree of the severity of experimental allergic airways disease. In this way, it was possible to successfully discriminate between healthy controls and mice with either mild or severe allergic airway disease. It is believed that this approach may have the potential to evaluate the efficacy of novel therapeutic strategies that target airway remodelling processes in asthma.

  10. Amyloid-β plaque deposition measured using propagation-based X-ray phase contrast CT imaging

    Science.gov (United States)

    Astolfo, Alberto; Lathuilière, Aurélien; Laversenne, Vanessa; Schneider, Bernard; Stampanoni, Marco

    2016-01-01

    Amyloid beta accumulation into insoluble plaques (Aβp) is known to play a significant role in the pathological process in Alzheimer’s disease (AD). The presence of Aβp is also one of the neuropathological hallmarks for the disease. AD final diagnosis is generally acknowledged after the evaluation of Aβp deposition in the brain. Insoluble Aβp accumulation may also concur to cause AD as postulated in the so-called amyloid hypothesis. Therefore, the visualization, evaluation and quantification of Aβp are nowadays the keys for a better understanding of the disease, which may point to a possible cure for AD in the near future. Synchrotron-based X-ray phase contrast (XPC) has been demonstrated as the only imaging method that can retrieve the Aβp signal with high spatial resolution (up to 10 µm), high sensitivity and three-dimensional information at the same time. Although at the moment XPC is suitable for ex vivo samples only, it may develop into an alternative to positron emission tomography and magnetic resonance imaging in Aβp imaging. In this contribution the possibility of using synchrotron-based X-ray phase propagation computed tomography to visualize and measure Aβp on mouse brains is presented. A careful setup optimization for this application leads to a significant improvement of spatial resolution (∼1 µm), data acquisition speed (five times faster), X-ray dose (five times lower) and setup complexity, without a substantial loss in sensitivity when compared with the classic implementation of grating-based X-ray interferometry. PMID:27140162

  11. Generalizing the Boltzmann equation in complex phase space.

    Science.gov (United States)

    Zadehgol, Abed

    2016-08-01

    In this work, a generalized form of the BGK-Boltzmann equation is proposed, where the velocity, position, and time can be represented by real or complex variables. The real representation leads to the conventional BGK-Boltzmann equation, which can recover the continuity and Navier-Stokes equations. We show that the complex representation yields a different set of equations, and it can also recover the conservation and Navier-Stokes equations, at low Mach numbers, provided that the imaginary component of the macroscopic mass can be neglected. We briefly review the Constant Speed Kinetic Model (CSKM), which was introduced in Zadehgol and Ashrafizaadeh [J. Comp. Phys. 274, 803 (2014)JCTPAH0021-999110.1016/j.jcp.2014.06.053] and Zadehgol [Phys. Rev. E 91, 063311 (2015)PLEEE81539-375510.1103/PhysRevE.91.063311]. The CSKM is then used as a basis to show that the complex-valued equilibrium distribution function of the present model can be identified with a simple singularity in the complex phase space. The virtual particles, in the present work, are concentrated on virtual "branes" which surround the computational nodes. Employing the Cauchy integral formula, it is shown that certain variations of the "branes," in the complex phase space, do not affect the local kinetic states. This property of the new model, which is referred to as the "apparent jumps" in the present work, is used to construct new models. The theoretical findings have been tested by simulating three benchmark flows. The results of the present simulations are in excellent agreement with the previous results reported by others.

  12. Generalizing the Boltzmann equation in complex phase space

    Science.gov (United States)

    Zadehgol, Abed

    2016-08-01

    In this work, a generalized form of the BGK-Boltzmann equation is proposed, where the velocity, position, and time can be represented by real or complex variables. The real representation leads to the conventional BGK-Boltzmann equation, which can recover the continuity and Navier-Stokes equations. We show that the complex representation yields a different set of equations, and it can also recover the conservation and Navier-Stokes equations, at low Mach numbers, provided that the imaginary component of the macroscopic mass can be neglected. We briefly review the Constant Speed Kinetic Model (CSKM), which was introduced in Zadehgol and Ashrafizaadeh [J. Comp. Phys. 274, 803 (2014), 10.1016/j.jcp.2014.06.053] and Zadehgol [Phys. Rev. E 91, 063311 (2015), 10.1103/PhysRevE.91.063311]. The CSKM is then used as a basis to show that the complex-valued equilibrium distribution function of the present model can be identified with a simple singularity in the complex phase space. The virtual particles, in the present work, are concentrated on virtual "branes" which surround the computational nodes. Employing the Cauchy integral formula, it is shown that certain variations of the "branes," in the complex phase space, do not affect the local kinetic states. This property of the new model, which is referred to as the "apparent jumps" in the present work, is used to construct new models. The theoretical findings have been tested by simulating three benchmark flows. The results of the present simulations are in excellent agreement with the previous results reported by others.

  13. Investigation of the signature of lung tissue in X-ray grating-based phase-contrast imaging

    CERN Document Server

    Weber, Thomas; Haas, Wilhelm; Pelzer, Georg; Rieger, Jens; Ritter, André; Wucherer, Lukas; Braun, Jan Matthias; Durst, Jürgen; Michel, Thilo; Anton, Gisela

    2012-01-01

    Purpose: Grating-based X-ray phase-contrast imaging is a promising modality increasing the soft tissue contrast in medical imaging. In this work, the signature of lung tissue in X-ray grating-based physe-contrast imaging is investigated. Methods: We used a Talbot-Lau interferometer for our investigations of two C57BL/6 mice. Both underwent projection imaging and computed tomography. Results: The results show that the three images obtained by X-ray phase-contrast imaging show complementary anatomical structures. Especially the dark field image allows a more-exact determination of the position of the lung in the chest cavity. Conclusion: Due to its sensitivity to granular structures, the dark field image may be used for the diagnosis of lung diseases in earlier stages or without a CT scan. Furthermore, X-ray phase-contrast imaging may also have great potential in the application of animal laboratory sciences to reduce the number of required animals used in long-term translational, toxicity, and regenerative med...

  14. Detectability index of differential phase contrast CT compared with conventional CT: a preliminary channelized Hotelling observer study

    Science.gov (United States)

    Tang, Xiangyang; Yang, Yi; Tang, Shaojie

    2013-03-01

    Under the framework of model observer with signal and background exactly known (SKE/BKE), we investigate the detectability of differential phase contrast CT compared with that of the conventional attenuation-based CT. Using the channelized Hotelling observer and the radially symmetric difference-of-Gaussians channel template , we investigate the detectability index and its variation over the dimension of object and detector cells. The preliminary data show that the differential phase contrast CT outperforms the conventional attenuation-based CT significantly in the detectability index while both the object to be detected and the cell of detector used for data acquisition are relatively small. However, the differential phase contrast CT's dominance in the detectability index diminishes with increasing dimension of either object or detector cell, and virtually disappears while the dimension of object or detector cell approaches a threshold, respectively. It is hoped that the preliminary data reported in this paper may provide insightful understanding of the differential phase contrast CT's characteristic in the detectability index and its comparison with that of the conventional attenuation-based CT.

  15. Experimental Realisation of High-sensitivity Laboratory X-ray Grating-based Phase-contrast Computed Tomography.

    Science.gov (United States)

    Birnbacher, Lorenz; Willner, Marian; Velroyen, Astrid; Marschner, Mathias; Hipp, Alexander; Meiser, Jan; Koch, Frieder; Schröter, Tobias; Kunka, Danays; Mohr, Jürgen; Pfeiffer, Franz; Herzen, Julia

    2016-04-04

    The possibility to perform high-sensitivity X-ray phase-contrast imaging with laboratory grating-based phase-contrast computed tomography (gbPC-CT) setups is of great interest for a broad range of high-resolution biomedical applications. However, achieving high sensitivity with laboratory gbPC-CT setups still poses a challenge because several factors such as the reduced flux, the polychromaticity of the spectrum, and the limited coherence of the X-ray source reduce the performance of laboratory gbPC-CT in comparison to gbPC-CT at synchrotron facilities. In this work, we present our laboratory X-ray Talbot-Lau interferometry setup operating at 40 kVp and describe how we achieve the high sensitivity yet unrivalled by any other laboratory X-ray phase-contrast technique. We provide the angular sensitivity expressed via the minimum resolvable refraction angle both in theory and experiment, and compare our data with other differential phase-contrast setups. Furthermore, we show that the good stability of our high-sensitivity setup allows for tomographic scans, by which even the electron density can be retrieved quantitatively as has been demonstrated in several preclinical studies.

  16. Estimation of age based on tooth cementum annulations: A comparative study using light, polarized, and phase contrast microscopy.

    Science.gov (United States)

    Kaur, Prabhpreet; Astekar, Madhusudan; Singh, Jappreet; Arora, Karandeep Singh; Bhalla, Gagandeep

    2015-01-01

    The identification of living or deceased persons using unique traits and characteristics of the teeth and jaws is a cornerstone of forensic science. Teeth have been used to estimate age both in the young and old, as well as in the living and dead. Gradual structural changes in teeth throughout life are the basis for age estimation. Tooth cementum annulation (TCA) is a microscopic method for the determination of an individual's age based on the analysis of incremental lines of cementum. To compare ages estimated using incremental lines of cementum as visualized by bright field microscopy, polarized microscopy, and phase contrast microscopy with the actual age of subject and to determine accuracy and feasibility of the method used. Cementum annulations of 60 permanent teeth were analyzed after longitudinal ground sections were made in the mesiodistal plane. The incremental lines were counted manually using a light, polarized and phase contrast microscopy. Ages were estimated and then compared with the actual age of individual. Analysis of variance (ANOVA), Student's t-test, the Pearson product-moment corre (PPMCC) and regression analysis were performed. PPMCC value r = 0.347, 0.542 and 0.989 were obtained using light, polarized and phase contrast microscopy methods respectively. It was concluded that incremental lines of cementum were most clearly visible under a phase contrast microscope, followed by a polarized microscope, and then a light microscope when used for age estimation.

  17. A user-friendly LabVIEW software platform for grating based X-ray phase-contrast imaging.

    Science.gov (United States)

    Wang, Shenghao; Han, Huajie; Gao, Kun; Wang, Zhili; Zhang, Can; Yang, Meng; Wu, Zhao; Wu, Ziyu

    2015-01-01

    X-ray phase-contrast imaging can provide greatly improved contrast over conventional absorption-based imaging for weakly absorbing samples, such as biological soft tissues and fibre composites. In this study, we introduced an easy and fast way to develop a user-friendly software platform dedicated to the new grating-based X-ray phase-contrast imaging setup at the National Synchrotron Radiation Laboratory of the University of Science and Technology of China. The control of 21 motorized stages, of a piezoelectric stage and of an X-ray tube are achieved with this software, it also covers image acquisition with a flat panel detector for automatic phase stepping scan. Moreover, a data post-processing module for signals retrieval and other custom features are in principle available. With a seamless integration of all the necessary functions in one software package, this platform greatly facilitate users' activities during experimental runs with this grating based X-ray phase contrast imaging setup.

  18. High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography

    Science.gov (United States)

    Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre; Yildirim, Ali Önder; Hertz, Hans M.

    2016-12-01

    X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-power small-spot liquid-metal-jet electron-impact source. The tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.

  19. Investigation of Moiré pattern-based phase retrieval approach for differential phase-contrast cone beam CT imaging using a hospital-grade tube

    Science.gov (United States)

    Cai, Weixing; Ning, Ruola; Yu, Yang; Liu, Jiangkun; Conover, David

    2012-03-01

    The phase stepping algorithm is commonly used for phase retrieval in grating-based differential phase-contrast (DPC) imaging, which requires multiple intensity images to compute one DPC image. It is not efficient for data acquisition, especially in the case of dynamic imaging using either DPC imaging or DPC-based come beam CT (DPC-CBCT) imaging. A Fourier transform-based approach has been developed for fringe pattern analysis in optics, and it was recently implemented into a synchrotron-based DPC tomography system. In this research, this approach is further developed for a bench-top DPC-CBCT imaging system with a hospital-grade x-ray tube. The key idea is to separate carrier fringes and object information in Fourier domain of the interferogram and to reconstruct the differentiated phase information using the object information. Only one interferogram is required for phase retrieval at a cost of spatial resolution. The fringes of moiré patterns are used as the carrier fringes, and a phantom is scanned to evaluate the approach. Various interferograms with different carrier fringe frequencies are investigated and the reconstruction image quality is evaluated in terms of contrast, noise and sharpness. The results indicated that the DPC images can be effectively retrieved using the Fourier transform-based approach and the reconstructed phase coefficient showed better contrast compared to that of attenuation-based contrast. The spatial resolution is acceptable in the phantom studies although it is not as good as the results of phase-stepping approach. The Fourier transform-based phase retrieval approach is able to greatly simplify data acquisition, to improve the temporal resolution and to make it possible for dynamic DPC-CBCT imaging. It is promising for perfusion imaging where spatial resolution is not a concern.

  20. Optimisation of image reconstruction for phase-contrast x-ray Talbot-Lau imaging with regard to mechanical robustness.

    Science.gov (United States)

    Seifert, M; Kaeppler, S; Hauke, C; Horn, F; Pelzer, G; Rieger, J; Michel, T; Riess, C; Anton, G

    2016-09-01

    X-ray grating-based phase-contrast imaging opens new opportunities, inter alia, in medical imaging and non-destructive testing. Because, information about the attenuation properties and about the refractive properties of an object are gained simultaneously. Talbot-Lau imaging requires the knowledge of a reference or free-field image. The long-term stability of a Talbot-Lau interferometer is related to the time span of the validity of a measured reference image. It would be desirable to keep the validity of the reference image for a day or longer to improve feasibility of Talbot-Lau imaging. However, for example thermal and other long-term external influences result in drifting effects of the phase images. Therefore, phases are shifting over time and the reference image is not valid for long-term measurements. Thus, artifacts occur in differential phase-contrast images. We developed an algorithm to determine the differential phase-contrast image with the help of just one calibration image, which is valid for a long time-period. With the help of this algorithm, called phase-plane-fit method, it is possible to save measurement-time, as it is not necessary to take a reference image for each measurement. Additionally, transferring the interferometer technique from laboratory setups to conventional imaging systems the necessary rigidity of the system is difficult to achieve. Therefore, short-term effects like vibrations or distortions of the system lead to imperfections within the phase-stepping procedure. Consequently, artifacts occur in all three image modalities (differential phase-contrast image, attenuation image and dark-field image) of Talbot-Lau imaging. This is a problem with regard to the intended use of phase-contrast imaging for example in clinical routine or non-destructive testing. In this publication an algorithm of Vargas et al is applied and complemented to correct inaccurate phase-step positions with the help of a principal component analysis (PCA

  1. Optimisation of image reconstruction for phase-contrast x-ray Talbot-Lau imaging with regard to mechanical robustness

    Science.gov (United States)

    Seifert, M.; Kaeppler, S.; Hauke, C.; Horn, F.; Pelzer, G.; Rieger, J.; Michel, T.; Riess, C.; Anton, G.

    2016-09-01

    X-ray grating-based phase-contrast imaging opens new opportunities, inter alia, in medical imaging and non-destructive testing. Because, information about the attenuation properties and about the refractive properties of an object are gained simultaneously. Talbot-Lau imaging requires the knowledge of a reference or free-field image. The long-term stability of a Talbot-Lau interferometer is related to the time span of the validity of a measured reference image. It would be desirable to keep the validity of the reference image for a day or longer to improve feasibility of Talbot-Lau imaging. However, for example thermal and other long-term external influences result in drifting effects of the phase images. Therefore, phases are shifting over time and the reference image is not valid for long-term measurements. Thus, artifacts occur in differential phase-contrast images. We developed an algorithm to determine the differential phase-contrast image with the help of just one calibration image, which is valid for a long time-period. With the help of this algorithm, called phase-plane-fit method, it is possible to save measurement-time, as it is not necessary to take a reference image for each measurement. Additionally, transferring the interferometer technique from laboratory setups to conventional imaging systems the necessary rigidity of the system is difficult to achieve. Therefore, short-term effects like vibrations or distortions of the system lead to imperfections within the phase-stepping procedure. Consequently, artifacts occur in all three image modalities (differential phase-contrast image, attenuation image and dark-field image) of Talbot-Lau imaging. This is a problem with regard to the intended use of phase-contrast imaging for example in clinical routine or non-destructive testing. In this publication an algorithm of Vargas et al is applied and complemented to correct inaccurate phase-step positions with the help of a principal component analysis (PCA

  2. Analysis of an automated background correction method for cardiovascular MR phase contrast imaging in children and young adults

    Energy Technology Data Exchange (ETDEWEB)

    Rigsby, Cynthia K.; Hilpipre, Nicholas; Boylan, Emma E.; Popescu, Andrada R.; Deng, Jie [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); McNeal, Gary R. [Siemens Medical Solutions USA Inc., Customer Solutions Group, Cardiovascular MR R and D, Chicago, IL (United States); Zhang, Gang [Ann and Robert H. Lurie Children' s Hospital of Chicago Research Center, Biostatistics Research Core, Chicago, IL (United States); Choi, Grace [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Greiser, Andreas [Siemens AG Healthcare Sector, Erlangen (Germany)

    2014-03-15

    Phase contrast magnetic resonance imaging (MRI) is a powerful tool for evaluating vessel blood flow. Inherent errors in acquisition, such as phase offset, eddy currents and gradient field effects, can cause significant inaccuracies in flow parameters. These errors can be rectified with the use of background correction software. To evaluate the performance of an automated phase contrast MRI background phase correction method in children and young adults undergoing cardiac MR imaging. We conducted a retrospective review of patients undergoing routine clinical cardiac MRI including phase contrast MRI for flow quantification in the aorta (Ao) and main pulmonary artery (MPA). When phase contrast MRI of the right and left pulmonary arteries was also performed, these data were included. We excluded patients with known shunts and metallic implants causing visible MRI artifact and those with more than mild to moderate aortic or pulmonary stenosis. Phase contrast MRI of the Ao, mid MPA, proximal right pulmonary artery (RPA) and left pulmonary artery (LPA) using 2-D gradient echo Fast Low Angle SHot (FLASH) imaging was acquired during normal respiration with retrospective cardiac gating. Standard phase image reconstruction and the automatic spatially dependent background-phase-corrected reconstruction were performed on each phase contrast MRI dataset. Non-background-corrected and background-phase-corrected net flow, forward flow, regurgitant volume, regurgitant fraction, and vessel cardiac output were recorded for each vessel. We compared standard non-background-corrected and background-phase-corrected mean flow values for the Ao and MPA. The ratio of pulmonary to systemic blood flow (Qp:Qs) was calculated for the standard non-background and background-phase-corrected data and these values were compared to each other and for proximity to 1. In a subset of patients who also underwent phase contrast MRI of the MPA, RPA, and LPA a comparison was made between standard non

  3. Quantitative evaluation of a single-distance phase-retrieval method applied on in-line phase-contrast images of a mouse lung

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Sara, E-mail: sara.mohammadi@elettra.trieste.it [The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Synchrotron Light Source ‘Elettra’ Trieste, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149 (Italy); Larsson, Emanuel [Synchrotron Light Source ‘Elettra’ Trieste, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149 (Italy); Linköping University, SE-581 83 (Sweden); University of Trieste, Trieste (Italy); Alves, Frauke [University Hospital Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); Dal Monego, Simeone [Cluster in Biomedicine s.c.r.l., AREA Science Park, Strada Statale 14, km 163.5, Basovizza, 34149 Trieste (Italy); Biffi, Stefania; Garrovo, Chiara [IRCCS Burlo Garofolo, via dell’Istria 65/1, 34137 Trieste (Italy); Lorenzon, Andrea [Cluster in Biomedicine s.c.r.l., AREA Science Park, Strada Statale 14, km 163.5, Basovizza, 34149 Trieste (Italy); Tromba, Giuliana [Synchrotron Light Source ‘Elettra’ Trieste, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149 (Italy); Dullin, Christian, E-mail: sara.mohammadi@elettra.trieste.it [University Hospital Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany)

    2014-05-16

    Quantitative analysis concerning the application of a single-distance phase-retrieval algorithm on in-line phase-contrast images of a mouse lung at different sample-to-detector distances is presented. Propagation-based X-ray phase-contrast computed tomography (PBI) has already proven its potential in a great variety of soft-tissue-related applications including lung imaging. However, the strong edge enhancement, caused by the phase effects, often hampers image segmentation and therefore the quantitative analysis of data sets. Here, the benefits of applying single-distance phase retrieval prior to the three-dimensional reconstruction (PhR) are discussed and quantified compared with three-dimensional reconstructions of conventional PBI data sets in terms of contrast-to-noise ratio (CNR) and preservation of image features. The PhR data sets show more than a tenfold higher CNR and only minor blurring of the edges when compared with PBI in a predominately absorption-based set-up. Accordingly, phase retrieval increases the sensitivity and provides more functionality in computed tomography imaging.

  4. Investigation of the effect of tube voltage and imaging geometry on phase contrast imaging for a micro-CT system

    Energy Technology Data Exchange (ETDEWEB)

    Gui Jianbao; Zou Jing; Rong Junyan [Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen (China); Key Lab for Biomedical Informatics and Health Engineering, Chinese Academy of Sciences, Shenzhen (China); Hu Zhanli [Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen (China); Key Lab for Biomedical Informatics and Health Engineering, Chinese Academy of Sciences, Shenzhen (China); Graduate University of Chinese Academy of Sciences (China); Zhang Qiyang; Zheng Hairong [Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen (China); Key Lab for Biomedical Informatics and Health Engineering, Chinese Academy of Sciences, Shenzhen (China); Xia Dan, E-mail: dan.xia@siat.ac.cn [Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen (China); Key Lab for Biomedical Informatics and Health Engineering, Chinese Academy of Sciences, Shenzhen (China)

    2012-03-21

    Based upon a bench-top micro-CT system, propagation-based phase-contrast imaging has been investigated using insects and a thin plastic sheet. The system mainly includes a micro-focus source with focal spot size of 13-20 {mu}m and a cooled X-ray CCD detector with pixel size of 24 {mu}m. The edge-enhancement effect can be found clearly in the acquired images. With a 0.5 mm thickness plastic edge phantom, the effects of X-ray tube voltage and imaging geometry on the phase-contrast imaging were investigated, and quantitative index, edge-enhancement index (EEI), were also calculated. In our study, an interesting phenomenon was observed that the phase-contrast effect becomes more pronounced as the tube voltage increases from 20 kVp to 90 kVp. Further investigation indicates that smaller focal spot size resulting from the reduction of tube current at higher tube voltage, has caused the unexpected phenomenon. Inferred from our results, phase-contrast effect is insensitive to the tube voltage in the range of 20-90 kVp (widely used in medical diagnosis); however, it is sensitive to the focal spot size. In addition, for the investigation of the effect of imaging geometry, an optimal geometric magnification range of 2.5-4.5 is suggested to get a good phase-contrast imaging for a micro-CT system with source-to-detector distance of 720 mm.

  5. Investigation of the effect of tube voltage and imaging geometry on phase contrast imaging for a micro-CT system

    Science.gov (United States)

    Gui, Jianbao; Zou, Jing; Rong, Junyan; Hu, Zhanli; Zhang, Qiyang; Zheng, Hairong; Xia, Dan

    2012-03-01

    Based upon a bench-top micro-CT system, propagation-based phase-contrast imaging has been investigated using insects and a thin plastic sheet. The system mainly includes a micro-focus source with focal spot size of 13-20 μm and a cooled X-ray CCD detector with pixel size of 24 μm. The edge-enhancement effect can be found clearly in the acquired images. With a 0.5 mm thickness plastic edge phantom, the effects of X-ray tube voltage and imaging geometry on the phase-contrast imaging were investigated, and quantitative index, edge-enhancement index (EEI), were also calculated. In our study, an interesting phenomenon was observed that the phase-contrast effect becomes more pronounced as the tube voltage increases from 20 kVp to 90 kVp. Further investigation indicates that smaller focal spot size resulting from the reduction of tube current at higher tube voltage, has caused the unexpected phenomenon. Inferred from our results, phase-contrast effect is insensitive to the tube voltage in the range of 20-90 kVp (widely used in medical diagnosis); however, it is sensitive to the focal spot size. In addition, for the investigation of the effect of imaging geometry, an optimal geometric magnification range of 2.5-4.5 is suggested to get a good phase-contrast imaging for a micro-CT system with source-to-detector distance of 720 mm.

  6. Limited-angle tomography for analyzer-based phase-contrast x-ray imaging

    Science.gov (United States)

    Majidi, Keivan; Wernick, Miles N.; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-07-01

    Multiple-image radiography (MIR) is an analyzer-based phase-contrast x-ray imaging method, which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT

  7. Phase-contrast magnetic resonance imaging reveals net retrograde aqueductal flow in idiopathic normal pressure hydrocephalus.

    Science.gov (United States)

    Ringstad, Geir; Emblem, Kyrre Eeg; Eide, Per Kristian

    2016-06-01

    OBJECT The objective of this study was to assess the net aqueductal stroke volume (ASV) and CSF aqueductal flow rate derived from phase-contrast MRI (PC-MRI) in patients with probable idiopathic normal pressure hydrocephalus (iNPH) before and after ventriculoperitoneal shunt surgery, and to compare observations with intracranial pressure (ICP) scores. METHODS PC-MRI at the level of the sylvian aqueduct was undertaken in patients undergoing assessment for probable iNPH. Aqueductal flow in the craniocaudal direction was defined as positive, or antegrade flow, and net ASV was calculated by subtracting retrograde from antegrade aqueductal flow. Aqueductal flow rate per minute was calculated by multiplying net ASV by heart rate. During the same hospital admission, clinical examination was performed using NPH score and overnight continuous ICP monitoring. Twelve patients were followed prospectively 12 months after shunt placement with clinical assessment and a second PC-MRI. The study also included 2 healthy controls. RESULTS Among 21 patients examined for iNPH, 17 (81%) received a shunt (shunt group), and 4 were treated conservatively (conservative group). Among the patients with shunts, a clinical improvement was observed in 16 (94%) of the 17. Net ASV was negative in 16 (76%) of 21 patients before shunt placement and in 5 (42%) of 12 patients after shunt placement, and increased from a median of -5 μl (range -175 to 27 μl) to a median of 1 μl (range -61 to 30 μl; p = 0.04). Among the 12 patients with PC-MRI after shunt placement, 11 were shunt responders, and in 9 of these 11 either a reduced magnitude of retrograde aqueductal flow, or a complete reversal from retrograde to antegrade flow, occurred. Net ASV was significantly lower in the shunt group than in the conservative group (p = 0.01). The aqueductal flow rate increased from -0.56 ml/min (range -12.78 to 0.58 ml/min) to 0.06 ml/min (range -4.51 to 1.93 ml/min; p = 0.04) after shunt placement. CONCLUSIONS In

  8. Coronary artery flow measurement using navigator echo gated phase contrast magnetic resonance velocity mapping at 3.0 T.

    Science.gov (United States)

    Johnson, Kevin; Sharma, Puneet; Oshinski, John

    2008-01-01

    A validation study and early results for non-invasive, in vivo measurement of coronary artery blood flow using phase contrast magnetic resonance imaging (PC-MRI) at 3.0T is presented. Accuracy of coronary artery blood flow measurements by phase contrast MRI is limited by heart and respiratory motion as well as the small size of the coronary arteries. In this study, a navigator echo gated, cine phase velocity mapping technique is described to obtain time-resolved velocity and flow waveforms of small diameter vessels at 3.0T. Phantom experiments using steady, laminar flow are presented to validate the technique and show flow rates measured by 3.0T phase contrast MRI to be accurate within 15% of true flow rates. Subsequently, in vivo scans on healthy volunteers yield velocity measurements for blood flow in the right, left anterior descending, and left circumflex arteries. Measurements of average, cross-sectional velocity were obtainable in 224/243 (92%) of the cardiac phases. Time-averaged, cross-sectional velocity of the blood flow was 6.8+/-4.3cm/s in the LAD, 8.0+/-3.8cm/s in the LCX, and 6.0+/-1.6cm/s in the RCA.

  9. Contrast and phase-shift of a trapped atom interferometer using a thermal ensemble with internal state labelling

    CERN Document Server

    Dupont-Nivet, M; Schwartz, S

    2016-01-01

    We report a theoretical study of a double-well Ramsey interferometer using internal state labelling. We consider the use of a thermal ensemble of cold atoms rather than a Bose-Einstein condensate to minimize the effects of atomic interactions. To maintain a satisfactory level of coherence in this case, a high degree of symmetry is required between the two arms of the interferometer. Assuming that the splitting and recombination processes are adiabatic, we theoretically derive the phase-shift and the contrast of such an interferometer in the presence of gravity or an acceleration field. We also consider using a "shortcut to adiabaticity" protocol to speed up the splitting process and discuss how such a procedure affects the phase shift and contrast. We find that the two procedures lead to phase-shifts of the same form.

  10. Evaluation of the potential of phase-contrast computed tomography for improved visualization of cancerous human liver tissue

    Energy Technology Data Exchange (ETDEWEB)

    Noel, Peter B.; Fingerle, Alexander A. [Technische Univ. Muenchen (Germany). Dept. of Radiology; Herzen, Julia [Technische Univ. Muenchen (Germany). Physics Dept. and Inst. of Medical Engineering] [and others

    2013-10-01

    Purpose: Phase-contrast X-ray computed tomography (PCCT) is currently investigated and developed as a potentially very interesting extension of conventional CT, and can offer several advantages for specific indications in diagnostic imaging. Current absorption-based computed tomography (CT) without the application of contrast material is limited in the detection of minor density differences in soft-tissue. The purpose of this study is to test whether PCCT can improve soft tissue contrast in healthy and tumorous human liver specimens. Materials and Methods: Two specimens of human liver (one healthy and one metastasized liver sample) were imaged with brilliant X-ray beam at the synchrotron radiation source ESRF in Grenoble, France. For correlation the same specimens were imaged with a magnetic resonance imaging system at 1.5 T. The histopathology confirmed our findings in the corresponding sections of the specimens. Results: In the phase-contrast CT images we observed a significantly enhanced soft-tissue contrast when compared to simultaneously recorded standard absorption CT measurements. Further, we found that the pathological and morphological information in the PCCT reconstructions show significant improvement when compared to those performed on MRI. Based on matching of prominent features, a good correlation between PCCT and the histological section is demonstrated; especially the tumor capsule and the surrounding vascular structures are visible in PCCT. In addition, our study revealed the ability of PCCT to visualize the blood vessels structure in the tumorous liver without the need of any contrast agents. Conclusion: Grating-based PCCT significantly improves the soft-tissue contrast in ex-vivo liver specimens and holds the potential to overcome the need of contrast materials for visualization of the tumor vascularization. (orig.)

  11. Grating-based X-ray phase-contrast tomography of atherosclerotic plaque at high photon energies

    Energy Technology Data Exchange (ETDEWEB)

    Hetterich, Holger; Fill, Sandra [Klinikum der Ludwig-Maximilians-Univ., Muenchen (Germany). Inst. fuer Klinische Radiologie; Herzen, Julia [Technische Univ. Muenchen, Garching (Germany). Physik-Dept. und Inst. fuer Medizintechnik; Helmholtz-Zentrum Geesthacht, Geesthacht (Germany). Zentrum fuer Materialforschung] [and others

    2013-10-01

    Background: Tissue characterization of atherosclerosis by absorption-based imaging methods is limited due to low soft-tissue contrast. Grating-based phase-contrast computed tomography (PC-CT) may become an alternative for plaque assessment if the phase signal can be retrieved at clinically applicable photon energies. The aims of this feasibility study were (i) to characterize arterial vessels at low and high photon energies, (ii) to extract qualitative features and (iii) quantitative phase-contrast Hounsfield units (HU-phase) of plaque components at 53 keV using histopathology as gold standard. Materials and methods: Five human carotid artery specimens underwent grating-based PC-CT using synchrotron radiation of either 23 keV or 53 keV and histological work-up. Specimens without advanced atherosclerosis were used to extract signal criteria of vessel layers. Diseased specimens were screened for important plaque components including fibrous tissue (FT), lipid (LIP), necrotic core (NEC), intraplaque hemorrhage (IPH), inflammatory cell infiltration (INF) and calcifications (CA). Qualitative features as well as quantitative HU-phase were analyzed. Results: Thirty-three regions in 6 corresponding PC-CT scans and histology sections were identified. Healthy samples had the same signal characteristics at 23 keV and 53 keV with bright tunica intima and adventitia and dark media. Plaque components showed differences in signal intensity and texture at 53 keV. Quantitative analysis demonstrated the highest HU-phase of soft plaque in dense FT. Less organized LIP, NEC and INF were associated with lower HU-phase values. The highest HU-phase were measured in CA. Conclusion: PC-CT of atherosclerosis is feasible at high, clinically relevant photon energies and provides detailed information about plaque structure including features of high risk vulnerable plaques. (orig.)

  12. Zernike phase contrast cryo-electron microscopy reveals 100 kDa component in a protein complex

    Science.gov (United States)

    Wu, Yi-Min; Wang, Chun-Hsiung; Chang, Jen-wei; Chen, Yi-yun; Miyazaki, Naoyuki; Murata, Kazuyoshi; Nagayama, Kuniaki; Chang, Wei-Hau

    2013-12-01

    Cryo-electron microscopy (cryo-EM) has become a powerful technique for obtaining near atomic structures for large protein assemblies or large virus particles, but the application to protein particles smaller than 200-300 kDa has been hampered by the feeble phase contrast obtained for such small samples and the limited number of electrons tolerated by them without incurring excessive radiation damage. By implementing a thin-film quarter-wave phase plate to a cryo-EM, Nagayama, one of the present authors, has recently restored the long-lost very low spatial frequencies, generating in-focus phase contrast superior to that of conventional defocusing phase contrast, and successfully applied the so-called Zernike phase-plate cryo-EM to target various biological samples in native state. Nevertheless, the sought-after goal of using enhanced phase contrast to reveal a native protein as small as 100 kDa waits to be realized. Here, we report a study in which 200 kV Zernike phase-plate cryo-EM with a plate cut-on periodicity of 36 nm was applied to visualize 100 kDa components of various protein complexes, including the small domains on the surface of an icosahedral particle of ˜38 nm derived from the dragon grouper nervous necrosis virus (DGNNV) and the labile sub-complex dissociated from yeast RNA polymerase III of 17 nm. In the former case, we observed a phase contrast reversal phenomenon at the centre of the icosahedral particle and traced its root cause to the near matching of the cut-on size and the particle size. In summary, our work has demonstrated that Zernike phase-plate implementation can indeed expand the size range of proteins that can be successfully investigated by cryo-EM, opening the door for countless proteins. Finally, we briefly discuss the possibility of using a transfer lens system to enlarge the cut-on periodicity without further miniaturizing the plate pinhole.

  13. NPWE model observer as a validated alternative for contrast detail analysis of digital detectors in general radiography

    Science.gov (United States)

    Van Peteghem, N.; Bosmans, H.; Marshall, N. W.

    2016-11-01

    To propose and validate a non-prewhitening with eye filter (NPWE) model observer as an alternative means of quantifying and specifying imaging performance for general radiography detectors, in a comparative study with contrast detail analysis and detective quantum efficiency (DQE). Five different x-ray detectors were assessed, covering a range of detector technologies including powder computed radiography (CR), needle CR, and three indirect conversion flat panel digital radiography detectors (DR). For each detector, threshold contrast detail (c-d) detectability was measured using the Leeds TO20 test object. A tube voltage of 70 kV and 1 mm Cu added filtration was used and five target detector air kerma (DAK) levels were set, ranging from 0.625 µGy to 10 µGy. Three c-d images were acquired at the same DAK levels and these were scored by two observers. Presampling modulation transfer function (MTF) was measured using an edge method while contrast was measured with a 2 mm Al square of dimension 10  ×  10 mm. The normalized noise power spectrum (NNPS) was calculated at the target DAK values of the c-d images. The MTF, NNPS and contrast data were then used to calculate a detectability index (d‧) with the NPWE model and compared to the human observer c-d results. The standard quantitative means of evaluating detector performance i.e. DQE, was then calculated for each detector. A linear correlation was found between the logarithm of threshold contrast and the logarithm of d’ for all detectors, as DAK was increased. Furthermore, the absolute value of d‧ tracked threshold contrast between the five detectors, enabling the use of detectability to quantify image quality rather than the intrinsically subjective threshold contrast scored by human observers from c-d test object images. At 2.5 µGy target DAK, d’ followed the differences in DQE between the five detectors. The NPWE detectability index can be used an alternative parameter for the

  14. Two-phase helical hepatic CT. Contrast-injection protocol, optimal timing and its usefulness in clinical cases

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Rie [Univ. of Occupational and Environmental Health, Kitakyushu, Fukuoka (Japan)

    1998-03-01

    The usefulness of two-phase helical computed tomography (CT) of the liver was evaluated in clinical cases. First, an optimal scanning protocol was determined using time-attenuation analysis. Monophasic dynamic CT was performed with 100 ml of contrast media (iodine 300 mg/ml) injected either at 3 ml/s or at 2 ml/s. Aortic, hepatic and portal time-attenuation curves were made for each protocol. The results showed that these two different injection protocols produce equivalent enhancements and that the injection rate of 2 ml/s is satisfactorily applicable to clinical cases. The first scanning (arterial phase) must be started 40-45 s after the beginning of the injection of contrast media and the second scanning (delayed phase) 80-120 s after the beginning of injection. Using these CT protocols, 327 cases were examined. In this study 83 hepatic lesions (hepatocellular carcinoma; HCC, n=29; suspected HCC, n=30; hemangioma, n=24) were evaluated. There were 15 HCCs smaller than 30 mm in diameter (71.4%) detected by either arterial phase or delayed phase alone. This result indicates that two-phase helical hepatic CT is very useful in the detection of small HCC. Particularly, four or 5 HCCs of less than 10 mm in size (80%) showed a hyperattenuation area in the arterial phase alone. HCCs which have sufficient vascularity were also easily demonstrated. However, this two-phase helical hepatic CT could not demonstrate 11 lesions (13.3%) with almost normal blood supply. In such cases the complementary role of ultrasound (US) seems to be important. Hence as a screening of hepatic mass lesions both CT and US are necessary. Most HCC could be differentiated from hemangioma by an enhancement pattern using this protocol. But the small liver lesions of less than 15 mm in size with homogeneous hyperattenuation in the arterial phase and isoattenuation in the delayed phase included HCC, hemangioma and metastatic tumors. (author)

  15. Diagnostic Performance of Combined Contrast-Enhanced Magnetic Resonance Angiography and Phase-Contrast Magnetic Resonance Imaging in Suspected Subclavian Steal Syndrome.

    Science.gov (United States)

    Tsao, Teng-Fu; Cheng, Kai-Lun; Shen, Chao-Yu; Wu, Ming-Chi; Huang, Hsin-Hui; Su, Chun-Hung; Chen, Fong-Lin; Tyan, Yeu-Sheng; Lin, Yung-Chang

    2016-05-01

    The study sought to evaluate the efficacy of magnetic resonance imaging (MRI) in patients with suspected subclavian steal syndrome (SSS) using both contrast-enhanced (CE) MR angiography and phase-contrast (PC) MRI. Fifteen suspected SSSs from 13 patients were evaluated using CE-MR angiography and PC-MRI. Ten patients also received dynamic CE-MR angiography. All MRI examinations were technically successful. By combining CE-MR angiography with PC-MRI, 10 SSSs were diagnosed in 9 patients. The delay enhancement dynamic technique predicted SSS with a sensitivity, specificity, and accuracy of 57.1%, 100%, and 72.7%, respectively. Without the dynamic technique, affected delay-enhanced arteries were poorly visualized and could be mistaken for occluded vessels. Retrograde vertebral flow by PC-MRI was used to predict ipsilateral SSS with a sensitivity, specificity, and accuracy of 100%, 60%, and 86.7%, respectively. There were 2 false positives including 1 patient with a proximal total occlusion of the affected vertebral artery and another with brachiocephalic steal syndrome rather than SSS. This suggested that retrograde vertebral flow does not always indicate SSS. CE-MR angiography combined with PC-MRI is efficacious when evaluating SSS in clinical practice. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  16. A General Framework for Modeling Sub- and Ultraharmonics of Ultrasound Contrast Agent Signals with MISO Volterra Series

    Directory of Open Access Journals (Sweden)

    Fatima Sbeity

    2013-01-01

    Full Text Available Sub- and ultraharmonics generation by ultrasound contrast agents makes possible sub- and ultraharmonics imaging to enhance the contrast of ultrasound images and overcome the limitations of harmonic imaging. In order to separate different frequency components of ultrasound contrast agents signals, nonlinear models like single-input single-output (SISO Volterra model are used. One important limitation of this model is its incapacity to model sub- and ultraharmonic components. Many attempts are made to model sub- and ultraharmonics using Volterra model. It led to the design of mutiple-input singe-output (MISO Volterra model instead of SISO Volterra model. The key idea of MISO modeling was to decompose the input signal of the nonlinear system into periodic subsignals at the subharmonic frequency. In this paper, sub- and ultraharmonics modeling with MISO Volterra model is presented in a general framework that details and explains the required conditions to optimally model sub- and ultraharmonics. A new decomposition of the input signal in periodic orthogonal basis functions is presented. Results of application of different MISO Volterra methods to model simulated ultrasound contrast agents signals show its efficiency in sub- and ultraharmonics imaging.

  17. Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution

    Energy Technology Data Exchange (ETDEWEB)

    Pennycook, Timothy J., E-mail: tpennycook@gmail.com [EPSRC SuperSTEM Facility, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lupini, Andrew R. [Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37830 (United States); Yang, Hao [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Murfitt, Matthew F. [Nion Co., 1102 8th St., Kirkland, WA 98033 (United States); Jones, Lewys [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Nellist, Peter D. [EPSRC SuperSTEM Facility, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2015-04-15

    We demonstrate a method to achieve high efficiency phase contrast imaging in aberration corrected scanning transmission electron microscopy (STEM) with a pixelated detector. The pixelated detector is used to record the Ronchigram as a function of probe position which is then analyzed with ptychography. Ptychography has previously been used to provide super-resolution beyond the diffraction limit of the optics, alongside numerically correcting for spherical aberration. Here we rely on a hardware aberration corrector to eliminate aberrations, but use the pixelated detector data set to utilize the largest possible volume of Fourier space to create high efficiency phase contrast images. The use of ptychography to diagnose the effects of chromatic aberration is also demonstrated. Finally, the four dimensional dataset is used to compare different bright field detector configurations from the same scan for a sample of bilayer graphene. Our method of high efficiency ptychography produces the clearest images, while annular bright field produces almost no contrast for an in-focus aberration-corrected probe. - Highlights: • Ptychographic high efficiency phase contrast imaging is demonstrated in STEM. • We rely on a hardware aberration corrector to eliminate aberrations. • High efficiency is achieved by collecting all the relevant interference. • Use of a pixelated detector allows comparison of bright field modes post acquisition. • Ptychography provides the clearest images among the STEM bright field modes tested.

  18. Single shot x-ray phase contrast imaging using a direct conversion microstrip detector with single photon sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Kagias, M.; Cartier, S.; Wang, Z.; Stampanoni, M. [Swiss Light Source, Paul Scherrer Institute, 5232 Villigen (Switzerland); Institute for Biomedical Engineering, University and ETH Zurich, 8092 Zurich (Switzerland); Bergamaschi, A.; Dinapoli, R.; Mozzanica, A.; Schmitt, B. [Swiss Light Source, Paul Scherrer Institute, 5232 Villigen (Switzerland)

    2016-06-06

    X-ray phase contrast imaging enables the measurement of the electron density of a sample with high sensitivity compared to the conventional absorption contrast. This is advantageous for the study of dose-sensitive samples, in particular, for biological and medical investigations. Recent developments relaxed the requirement for the beam coherence, such that conventional X-ray sources can be used for phase contrast imaging and thus clinical applications become possible. One of the prominent phase contrast imaging methods, Talbot-Lau grating interferometry, is limited by the manufacturing, alignment, and photon absorption of the analyzer grating, which is placed in the beam path in front of the detector. We propose an alternative improved method based on direct conversion charge integrating detectors, which enables a grating interferometer to be operated without an analyzer grating. Algorithms are introduced, which resolve interference fringes with a periodicity of 4.7 μm recorded with a 25 μm pitch Si microstrip detector (GOTTHARD). The feasibility of the proposed approach is demonstrated by an experiment at the TOMCAT beamline of the Swiss Light Source on a polyethylene sample.

  19. High-order myopic coronagraphic phase diversity (COFFEE) for wave-front control in high-contrast imaging systems.

    Science.gov (United States)

    Paul, B; Mugnier, L M; Sauvage, J-F; Dohlen, K; Ferrari, M

    2013-12-30

    The estimation and compensation of quasi-static aberrations is mandatory to reach the ultimate performance of high-contrast imaging systems. COFFEE is a focal plane wave-front sensing method that consists in the extension of phase diversity to high-contrast imaging systems. Based on a Bayesian approach, it estimates the quasi-static aberrations from two focal plane images recorded from the scientific camera itself. In this paper, we present COFFEE's extension which allows an estimation of low and high order aberrations with nanometric precision for any coronagraphic device. The performance is evaluated by realistic simulations, performed in the SPHERE instrument framework. We develop a myopic estimation that allows us to take into account an imperfect knowledge on the used diversity phase. Lastly, we evaluate COFFEE's performance in a compensation process, to optimize the contrast on the detector, and show it allows one to reach the 10(-6) contrast required by SPHERE at a few resolution elements from the star. Notably, we present a non-linear energy minimization method which can be used to reach very high contrast levels (better than 10(7) in a SPHERE-like context).

  20. General Tool for Evaluating High-Contrast Coronagraphic Telescope Performance Error Budgets

    Science.gov (United States)

    Marchen, Luis F.

    2011-01-01

    The Coronagraph Performance Error Budget (CPEB) tool automates many of the key steps required to evaluate the scattered starlight contrast in the dark hole of a space-based coronagraph. The tool uses a Code V prescription of the optical train, and uses MATLAB programs to call ray-trace code that generates linear beam-walk and aberration sensitivity matrices for motions of the optical elements and line-of-sight pointing, with and without controlled fine-steering mirrors (FSMs). The sensitivity matrices are imported by macros into Excel 2007, where the error budget is evaluated. The user specifies the particular optics of interest, and chooses the quality of each optic from a predefined set of PSDs. The spreadsheet creates a nominal set of thermal and jitter motions, and combines that with the sensitivity matrices to generate an error budget for the system. CPEB also contains a combination of form and ActiveX controls with Visual Basic for Applications code to allow for user interaction in which the user can perform trade studies such as changing engineering requirements, and identifying and isolating stringent requirements. It contains summary tables and graphics that can be instantly used for reporting results in view graphs. The entire process to obtain a coronagraphic telescope performance error budget has been automated into three stages: conversion of optical prescription from Zemax or Code V to MACOS (in-house optical modeling and analysis tool), a linear models process, and an error budget tool process. The first process was improved by developing a MATLAB package based on the Class Constructor Method with a number of user-defined functions that allow the user to modify the MACOS optical prescription. The second process was modified by creating a MATLAB package that contains user-defined functions that automate the process. The user interfaces with the process by utilizing an initialization file where the user defines the parameters of the linear model

  1. Implementation of a phase detection algorithm for dynamic cardiac computed tomography analysis based on time dependent contrast agent distribution.

    Directory of Open Access Journals (Sweden)

    Carsten Kendziorra

    Full Text Available This paper presents a phase detection algorithm for four-dimensional (4D cardiac computed tomography (CT analysis. The algorithm detects a phase, i.e. a specific three-dimensional (3D image out of several time-distributed 3D images, with high contrast in the left ventricle and low contrast in the right ventricle. The purpose is to use the automatically detected phase in an existing algorithm that automatically aligns the images along the heart axis. Decision making is based on the contrast agent distribution over time. It was implemented in KardioPerfusion--a software framework currently being developed for 4D CT myocardial perfusion analysis. Agreement of the phase detection algorithm with two reference readers was 97% (95% CI: 82-100%. Mean duration for detection was 0.020 s (95% CI: 0.018-0.022 s, which was 800 times less than the readers needed (16±7 s, p<03001. Thus, this algorithm is an accurate and fast tool that can improve work flow of clinical examinations.

  2. Optimal scan time of dual-phase spiral CT in normal rabbit liver : effect of contrast injection rate

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Byung Kook; Kim, Sang Ho; Liu, Wei Chiang [Sungae General Hospital, Seoul (Korea, Republic of)] (and others)

    1999-06-01

    To determine the effect of contrast injection rate on rabbit liver enhancement and the optimal temporal window for dual-phase spiral CT of rabbit liver at each injection rate Using spiral CT, seven New Zealand White rabbits underwent dynamic scanning at one level of liver. Three protocols of contrast injection rates were employed, namely 0.3ml/sec(group 1), 1 ml/sec(group 2) and 2 ml/sec(group 3). During 120 seconds of total scan time, the scan interval was 3 seconds. Densities of the aorta, liver and portal vein were averaged in equivalent time. The different injection rate protocols were compared for peak enhancement/time on a time density curve. Mean peak enhancement (HU) in equivalent time(secs) was 310/18(group 1), 383/9(group 2) and 357/6(group 3) in the aorta ; 34/36, 40/36 and 41/30 in the liver ; and 135/36, 153/24 and 170/21 in the portal vein. The temporal window during the arterial phase was 12-21 sec(group 1), 6-12 sec(group 2), and 6-12 sec(group 3). The temporal window during the portal phase was from 30 sec(0.3ml/sec), 21 sec(1ml/sec) and 21sec(2ml/sec). During dual-phase spiral CT, the temporal window for liver scanning should be determined according to each contrast injection rate. A slow contrast injection rate prolongs the temporal window during the arterial phase.

  3. Contrast-Enhanced Tissue Harmonic Imaging versus Phase Inversion Harmonic Sonographic Imaging for the Delineation of Hepatocellular Carcinomas.

    Science.gov (United States)

    Kono, Masashi; Minami, Yasunori; Iwanishi, Mina; Minami, Tomohiro; Chishina, Hirokazu; Arizumi, Tadaaki; Komeda, Yoriaki; Sakurai, Toshiharu; Takita, Masahiro; Yada, Norihisa; Ida, Hiroshi; Hagiwara, Satoru; Ueshima, Kazuomi; Nishida, Naoshi; Kudo, Masatoshi

    2017-01-01

    To compare contrast tissue harmonic imaging (THI) with low mechanical index (MI) and conventional contrast harmonic imaging (CHI) with respect to lesion visibility of hepatocellular carcinoma (HCC). One hundred and twenty-five patients (84 men and 41 women, age range 39-94 years, mean age 74 years) with 100 naïve HCCs and 30 lesions after radiofrequency ablation (RFA) for HCC were evaluated. One hundred and four patients had liver cirrhosis of Child-Pugh class A, and the remaining 21 had Child-Pugh class B cirrhosis. The lesion conspicuity and intratumoral echogenicity during the postvascular phase were compared using conventional CHI and contrast THI with low MI. The MI values ranged from 0.20 to 0.30 on conventional CHI and from 0.30 to 0.35 on contrast THI. Regarding HCC lesion conspicuity, contrast THI with low MI was clearer in 79 lesions (60.8%), equal in 34 lesions (26.2%), and less clear in 17 lesions (13.1%) when compared with conventional CHI. The lesion conspicuity with contrast THI was significantly better than that with conventional CHI (p imaging for the guiding of RFA. © 2016 S. Karger AG, Basel.

  4. Contrast of Relief Effect of Tramadol and Dexmedetomidine on Shivering after General Anesthesia%Medical Recapitulate

    Institute of Scientific and Technical Information of China (English)

    王怡

    2016-01-01

    目的:比较曲马多与右美托咪定缓解全身麻醉术后寒战的临床效果。方法选取于2013年1月至2014年1月来辽宁省肿瘤医院行择期腹部手术后发生寒战的患者100例,依据随机数字表法分为右美托咪啶组(35例)、曲马多组(35例)、生理盐水组(30例)。右美托咪啶组给予右美托咪啶0.5μg/kg,曲马多组给予曲马多1 mg/kg,生理盐水组给予0.9%NaCl注射液0.05 mg/kg。观察对比三组患者的临床效果及术后寒战情况。结果右美托咪定组、曲马多组全身麻醉腹部手术患者给药后5、10 min寒战评分均较给药前呈下降趋势,右美托咪定组下降速度更快;生理盐水组给药后5、10 min寒战评分均较给药前无变化[右美托咪定组:(0.60±0.11)分、(0.22±0.03)分比(3.82±0.11)分;曲马多组:(2.01±0.41)分、(2.23±0.21)分比(3.91±0.12)分;生理盐水组:(3.71±0.13)分、(3.72±0.22)分比(3.74±0.13)分],三组寒战评分组间、时点间、组间・时点间交互效应比较差异有统计学意义( P<0.05)。右美托咪啶组给药后10 min 的镇静评分均高于曲马多、生理盐水两组[(2.89±0.23)分比(1.97±0.35)分、(1.74±0.28)分,P<0.05],差异有统计学意义;右美托咪啶组用药后恶心呕吐、心动过缓不良反应发生率为5.71%(2/35),低于曲马多组的22.86%(8/35),差异有统计学意义(P<0.05)。结论与曲马多相比,全身麻醉中静脉注射右美托咪定可有效减少术后寒战、恶心、呕吐等并发症发生,临床效果好,具有良好的临床价值。%Objective To compare the clinical effect of tramadol and dexmedetomidine for the relief of shivering after general anesthesia.Methods From Jan.2013 to Jan.2004 100 patients with postoperative shivering after elective

  5. A Closer Look at Phase Diagrams for the General Chemistry Course.

    Science.gov (United States)

    Gramsch, Stephen A.

    2000-01-01

    Information concerning structural chemistry and phase equilibria contained in the full phase diagrams of common substances is a great deal richer than the general chemistry students are given to believe. Discusses ways of enriching the traditional presentation of phase diagrams in general chemistry courses. (Contains over 20 references.) (WRM)

  6. An efficient reconstruction algorithm for differential phase-contrast tomographic images from a limited number of views

    Energy Technology Data Exchange (ETDEWEB)

    Sunaguchi, Naoki [Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Yuasa, Tetsuya [Graduate School of Engineering and Science, Yamagata University, Yonezawa, Yamagata 992-8510 (Japan); Gupta, Rajiv [Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); Ando, Masami [Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510 (Japan)

    2015-12-21

    The main focus of this paper is reconstruction of tomographic phase-contrast image from a set of projections. We propose an efficient reconstruction algorithm for differential phase-contrast computed tomography that can considerably reduce the number of projections required for reconstruction. The key result underlying this research is a projection theorem that states that the second derivative of the projection set is linearly related to the Laplacian of the tomographic image. The proposed algorithm first reconstructs the Laplacian image of the phase-shift distribution from the second-derivative of the projections using total variation regularization. The second step is to obtain the phase-shift distribution by solving a Poisson equation whose source is the Laplacian image previously reconstructed under the Dirichlet condition. We demonstrate the efficacy of this algorithm using both synthetically generated simulation data and projection data acquired experimentally at a synchrotron. The experimental phase data were acquired from a human coronary artery specimen using dark-field-imaging optics pioneered by our group. Our results demonstrate that the proposed algorithm can reduce the number of projections to approximately 33% as compared with the conventional filtered backprojection method, without any detrimental effect on the image quality.

  7. Investigation of pure- and aerated-liquid jets using ultra-fast X-ray phase contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Kuo-Cheng, E-mail: Kuo-Cheng.Lin@wpafb.af.mil [Taitech, Inc., Beavercreek, OH 45430 (United States); Rajnicek, Christopher; McCall, Jonathan; Carter, Campbell [Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433 (United States); Fezzaa, Kamel [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2011-09-01

    Pure- and aerated-liquid jets were observed using the ultra-fast X-ray phase contrast imaging technique. Highly convoluted wrinkle structures were seen on the column surface of a turbulent pure-liquid jet, gas bubbles were discovered inside droplets and ligaments of aerated-liquid sprays, and apparently homogenous two-phase mixtures were observed inside the aerated-liquid injector. The major limitation of this X-ray technique lies in its line-of-sight nature, which can create overlapped objects/interfaces on the X-ray images.

  8. Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles

    Science.gov (United States)

    Kazemzadeh, Farnoud; Wong, Alexander

    2016-12-01

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm2 without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.

  9. Soft tissue small avascular tumor imaging with x-ray phase-contrast micro-CT in-line holography

    Science.gov (United States)

    Nesterets, Yakov; Gureyev, Tim; Stevenson, Andrew; Pogany, Andrew; Wilkins, Steve; Kincaid, Russell; Ye, Hongwei; Vogelsang, Levon; Lipson, Edward; Coman, Ioana; Fourmaux, Sylvain; Kieffer, Jean-Claude; Krol, Andrzej

    2008-03-01

    To assess the feasibility of small soft tissue avascular tumor micro-CT imaging with x-ray phase-contrast in-line holography, we have studied micro-CT imaging with in-line geometry of small spheroidal avascular tumor models with quiescent cell core (< 250 μm) and various distributions of the proliferating cell density (PCD) forming the outer shell. We have simulated imaging with an ultrafast laser-based x-ray source with a Mo target. We observe phase-contrast enhancement of the tumor boundaries in the reconstructed transaxial images, resulting in improved detection of small soft tissue tumors, providing that the PCD density gradient is sufficiently large.

  10. Progress in biomedical application of phase-contrast x-ray imaging and fluorescent x-ray CT

    Science.gov (United States)

    Takeda, Tohoru; Wu, Jin; Lwin, Thet-Thet; Yoneyama, Akio; Hirai, Yasuharu; Hyodo, Kazuyuki; Sunaguchi, Naoki; Yuasa, Tetsuya; Minami, Manabu; Kose, Katsumi; Akatsuka, Takao

    2006-08-01

    X-ray CT system with phase-contrast and fluorescent techniques are being developed for biomedical researches. We have applied these techniques for in-vivo and ex-vivo imaging. The phase-contrast x-ray CT enables to reveal the detailed morphological information of cancer lesion, and image quality of ex-vivo specimen was excellent comparing to 4.74T micro-MRI. Fluorescent x-ray CT could depict the functional information with high spatial resolution, and its image quality was almost the same as autoradiogram. Improvement of imaging system with much high-speed data acquisition will enable to use these techniques for new biomedical researches.

  11. Application of X-ray phase-contrast tomography in quantative studies of heat induced structural changes in meat

    DEFF Research Database (Denmark)

    Miklos, R.; Nielsen, M. S.; Einarsdottir, Hildur;

    2013-01-01

    X-ray computed tomography is increasingly used in the studies of food structure. This paper describes the perspectives of use of phase contrast computed tomography in studies of heat induced structural changes in meat. From the data it was possible to obtain reconstructed images of the sample str...... structure for visualization and qualitative studies of the sample structure. Further data segmentation allowed structural changes to be quantified.......X-ray computed tomography is increasingly used in the studies of food structure. This paper describes the perspectives of use of phase contrast computed tomography in studies of heat induced structural changes in meat. From the data it was possible to obtain reconstructed images of the sample...

  12. Soft tissue small avascular tumor imaging with x-ray phase-contrast micro-CT in-line holography

    Science.gov (United States)

    Nesterets, Yakov; Gureyev, Tim; Stevenson, Andrew; Pogany, Andrew; Wilkins, Steve; Kincaid, Russell; Ye, Hongwei; Vogelsang, Levon; Lipson, Edward; Coman, Ioana; Fourmaux, Sylvain; Kieffer, Jean-Claude; Krol, Andrzej

    2009-01-01

    To assess the feasibility of small soft tissue avascular tumor micro-CT imaging with x-ray phase-contrast in-line holography, we have studied micro-CT imaging with in-line geometry of small spheroidal avascular tumor models with quiescent cell core (< 250 μm) and various distributions of the proliferating cell density (PCD) forming the outer shell. We have simulated imaging with an ultrafast laser-based x-ray source with a Mo target. We observe phase-contrast enhancement of the tumor boundaries in the reconstructed transaxial images, resulting in improved detection of small soft tissue tumors, providing that the PCD density gradient is sufficiently large. PMID:20052303

  13. Towards tender X-rays with Zernike phase-contrast imaging of biological samples at 50 nm resolution.

    Science.gov (United States)

    Vartiainen, Ismo; Warmer, Martin; Goeries, Dennis; Herker, Eva; Reimer, Rudolph; David, Christian; Meents, Alke

    2014-07-01

    X-ray microscopy is a commonly used method especially in material science application, where the large penetration depth of X-rays is necessary for three-dimensional structural studies of thick specimens with high-Z elements. In this paper it is shown that full-field X-ray microscopy at 6.2 keV can be utilized for imaging of biological specimens with high resolution. A full-field Zernike phase-contrast microscope based on diffractive optics is used to study lipid droplet formation in hepatoma cells. It is shown that the contrast of the images is comparable with that of electron microscopy, and even better contrast at tender X-ray energies between 2.5 keV and 4 keV is expected.

  14. Accuracy of four-dimensional phase-contrast velocity mapping for blood flow visualizations: a phantom study.

    Science.gov (United States)

    Nilsson, Anders; Bloch, Karin Markenroth; Töger, Johannes; Heiberg, Einar; Ståhlberg, Freddy

    2013-07-01

    Time-resolved three-dimensional, three-directional phase-contrast magnetic resonance velocity mapping (4D PC-MRI) is a powerful technique to depict dynamic blood flow patterns in the human body. However, the impact of phase background effects on flow visualizations has not been thoroughly studied previously, and it has not yet been experimentally demonstrated to what degree phase offsets affect flow visualizations and create errors such as inaccurate particle traces. To quantify background phase offsets and their subsequent impact on particle trace visualizations in a 4D PC-MRI sequence. Additionally, we sought to investigate to what degree visualization errors are reduced by background phase correction. A rotating phantom with a known velocity field was used to quantify background phase of 4D PC-MRI sequences accelerated with SENSE as well as different k-t BLAST speed-up factors. The deviation in end positions between particle traces in the measured velocity fields were compared before and after the application of two different phase correction methods. Phantom measurements revealed background velocity offsets up to 7 cm/s (7% of velocity encoding sensitivity) in the central slice, increasing with distance from the center. Background offsets remained constant with increasing k-t BLAST speed-up factors. End deviations of up to 5.3 mm (1.8 voxels) in the direction perpendicular to the rotating disc were found between particle traces and the seeding plane of the traces. Phase correction by subtraction of the data from the stationary phantom reduced the average deviation by up to 56%, while correcting the data-set with a first-order polynomial fit to stationary regions decreased average deviation up to 78%. Pathline visualizations can be significantly affected by background phase errors, highlighting the importance of dedicated and robust phase correction methods. Our results show that pathline deviation can be substantial if adequate phase background errors are not

  15. Novel X-ray phase-contrast tomography method for quantitative studies of heat induced structural changes in meat

    DEFF Research Database (Denmark)

    Miklos, Rikke; Nielsen, Mikkel Schou; Einarsdottir, Hildur;

    2014-01-01

    The objective of this study was to evaluate the use of X-ray phase-contrast tomography combined with 3D image segmentation to investigate the heat induced structural changes in meat. The measurements were performed at the Swiss synchrotron radiation light source using a grating interferometric se...... in a qualitative and quantitative manner without prior sample preparation as isolation of single muscle components, calibration or histology....

  16. Twin-beams digital holography for 3D tracking and quantitative phase-contrast microscopy in microfluidics.

    Science.gov (United States)

    Memmolo, Pasquale; Finizio, Andrea; Paturzo, Melania; Miccio, Lisa; Ferraro, Pietro

    2011-12-05

    We report on a compact twin-beam interferometer that can be adopted as a flexible diagnostic tool in microfluidic platforms with twofold functionality. The novel configuration allows 3D tracking of micro-particles and, at same time, can simultaneously furnish Quantitative Phase-contrast maps of tracked micro-objects by interference microscopy, without changing the configuration. Experimental demonstration is given on for in vitro cells in a microfluidic environment.

  17. Monitoring Rates and Heterogeneity of High-Pressure Germination of Bacillus Spores by Phase-Contrast Microscopy of Individual Spores

    Science.gov (United States)

    2014-01-01

    SECURITY CLASSIFICATION OF: The germination of multiple individual Bacillus subtilis spores by a high pressure (HP) of 140-150 (unless noted...otherwise) megaPascals (MPa) that activates spore germinant receptors (GRs) was monitored by phase contrast microscopy in a diamond anvil cell. Major...conclusions were that: i) >95% of spores germinated in 40 min; ii) individual spore’s HP germination kinetics were very similar to those for nutrient

  18. Computational cell quantification in the human brain tissues based on hard x-ray phase-contrast tomograms

    Science.gov (United States)

    Hieber, Simone E.; Bikis, Christos; Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Thalmann, Peter; Chicherova, Natalia; Rack, Alexander; Zdora, Marie-Christine; Zanette, Irene; Schweighauser, Gabriel; Hench, Jürgen; Müller, Bert

    2016-10-01

    Cell visualization and counting plays a crucial role in biological and medical research including the study of neurodegenerative diseases. The neuronal cell loss is typically determined to measure the extent of the disease. Its characterization is challenging because the cell density and size already differs by more than three orders of magnitude in a healthy cerebellum. Cell visualization is commonly performed by histology and fluorescence microscopy. These techniques are limited to resolve complex microstructures in the third dimension. Phase- contrast tomography has been proven to provide sufficient contrast in the three-dimensional imaging of soft tissue down to the cell level and, therefore, offers the basis for the three-dimensional segmentation. Within this context, a human cerebellum sample was embedded in paraffin and measured in local phase-contrast mode at the beamline ID19 (ESRF, Grenoble, France) and the Diamond Manchester Imaging Branchline I13-2 (Diamond Light Source, Didcot, UK). After the application of Frangi-based filtering the data showed sufficient contrast to automatically identify the Purkinje cells and to quantify their density to 177 cells per mm3 within the volume of interest. Moreover, brain layers were segmented in a region of interest based on edge detection. Subsequently performed histological analysis validated the presence of the cells, which required a mapping from the two- dimensional histological slices to the three-dimensional tomogram. The methodology can also be applied to further tissue types and shows potential for the computational tissue analysis in health and disease.

  19. Rethinking the role of worry in generalized anxiety disorder: evidence supporting a model of emotional contrast avoidance.

    Science.gov (United States)

    Llera, Sandra J; Newman, Michelle G

    2014-05-01

    The Contrast Avoidance model (Newman & Llera, 2011) proposes that individuals with generalized anxiety disorder (GAD) are hypersensitive to sharp upward shifts in negative emotion that typically accompany negative events, and use worry to maintain sustained intrapersonal negativity in an attempt to avoid these shifts. Although research shows that worry increases negative emotionality and mutes further emotional reactivity to a stressor when compared to the worry period (e.g., Llera & Newman, 2010), no study has tracked changes in negative emotionality from baseline to worry inductions followed by a range of emotional exposures. Further, no study has yet assessed participants' subjective appraisals of prior worry on helping to cope with such exposures. The present study tested the main tenets of the Contrast Avoidance model by randomly assigning participants with GAD (n=48) and nonanxious controls (n=47) to experience worry, relaxation, and neutral inductions prior to sequential exposure to fearful, sad, and humorous film clips. Both physiological (nonspecific skin conductance responses [NS-SCRs]) and self-reported emotional changes were observed. Results indicated that worry boosted negative emotionality from baseline, which was sustained across negative exposures, whereas low negative emotionality during relaxation and neutral inductions allowed for sharp increases in response to exposures. Furthermore, GAD participants found worry to be more helpful than other conditions in coping with exposures, whereas control participants reported the opposite pattern. Results provide preliminary support for the Contrast Avoidance model. This suggests that treatment should focus on underlying avoidance patterns before attempting to reduce worry behavior.

  20. Quantitative studies on inner interfaces in conical metal joints using hard x-ray inline phase contrast radiography

    Energy Technology Data Exchange (ETDEWEB)

    Zabler, S. [Institute for Materials Science, Technical University of Berlin, EB 13, Strasse des 17, Juni 135, D-10623 Berlin (Germany); Rack, T.; Nelson, K. [Clinic for Oral and Maxifacial Surgery, Charite University Medicine, Augustenburger Platz 1, D-13353 Berlin (Germany); Rack, A. [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, F-38043 Grenoble (France)

    2010-10-15

    Quantitative investigation of micrometer and submicrometer gaps between joining metal surfaces is applied to conical plug-socket connections in dental titanium implants. Microgaps of widths well beyond the resolving power of industrial x-ray systems are imaged by synchrotron phase contrast radiography. Furthermore, by using an analytical model for the relatively simple sample geometry and applying it to numerical forward simulations of the optical Fresnel propagation, we show that quantitative measurements of the microgap width down to 0.1 {mu}m are possible. Image data recorded at the BAMline (BESSY-II light source, Germany) are presented, with the resolving power of the imaging system being 4 {mu}m in absorption mode and {approx}14 {mu}m in phase contrast mode (z{sub 2}=0.74 m). Thus, phase contrast radiography, combined with numerical forward simulations, is capable of measuring the widths of gaps that are two orders of magnitude thinner than the conventional detection limit.

  1. Optimal velocity encoding during measurement of cerebral blood flow volume using phase-contrast magnetic resonance angiography

    Institute of Scientific and Technical Information of China (English)

    Gang Guo; Yonggui Yang; Weiqun Yang

    2011-01-01

    This study investigated the effect of velocity encoding on measurement of brain blood flow and blood volume of inflow and outflow using phase-contrast magnetic resonance angiography. A single two-dimensional phase-contrast magnetic resonance angiography slice was applied perpendicular to the internal carotid artery and the vertebral artery at C2 level. For each subject, the velocity encoding was set from 30 to 90 cm/s with an interval of 10 cm/s for a total of seven settings. Various velocity encodings greatly affected blood flow volume, maximal blood flow velocity and mean blood flow velocity in the internal carotid artery, but did not significantly affect vertebral arteries and jugular veins. When velocity encoding was 60-80 cm/s, the inflow blood volume was 655 ± 118 mL/min, and the outflow volume was 506 ± 186 mL/min. The ratio of outflow/inflow was steady at 0.78-0.83, and there was no aliasing in any of the images. These findings suggest that velocity encodings of 60-80 cm/s should be selected during measurement of cerebral blood flow volume using phase-contrast magnetic resonance angiography.

  2. Three-dimensional mouse brain cytoarchitecture revealed by laboratory-based x-ray phase-contrast tomography

    Science.gov (United States)

    Töpperwien, Mareike; Krenkel, Martin; Vincenz, Daniel; Stöber, Franziska; Oelschlegel, Anja M.; Goldschmidt, Jürgen; Salditt, Tim

    2017-02-01

    Studies of brain cytoarchitecture in mammals are routinely performed by serial sectioning of the specimen and staining of the sections. The procedure is labor-intensive and the 3D architecture can only be determined after aligning individual 2D sections, leading to a reconstructed volume with non-isotropic resolution. Propagation-based x-ray phase-contrast tomography offers a unique potential for high-resolution 3D imaging of intact biological specimen due to the high penetration depth and potential resolution. We here show that even compact laboratory CT at an optimized liquid-metal jet microfocus source combined with suitable phase-retrieval algorithms and a novel tissue preparation can provide cellular and subcellular resolution in millimeter sized samples of mouse brain. We removed water and lipids from entire mouse brains and measured the remaining dry tissue matrix in air, lowering absorption but increasing phase contrast. We present single-cell resolution images of mouse brain cytoarchitecture and show that axons can be revealed in myelinated fiber bundles. In contrast to optical 3D techniques our approach does neither require staining of cells nor tissue clearing, procedures that are increasingly difficult to apply with increasing sample and brain sizes. The approach thus opens a novel route for high-resolution high-throughput studies of brain architecture in mammals.

  3. Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers.

    Science.gov (United States)

    Kong, Lingbo; Zhang, Pengfei; Wang, Guiwen; Yu, Jing; Setlow, Peter; Li, Yong-qing

    2011-05-01

    This protocol describes a method combining phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers to characterize the germination of single bacterial spores. The characterization consists of the following steps: (i) loading heat-activated dormant spores into a temperature-controlled microscope sample holder containing a germinant solution plus a nucleic acid stain; (ii) capturing a single spore with optical tweezers; (iii) simultaneously measuring phase-contrast images, Raman spectra and fluorescence images of the optically captured spore at 2- to 10-s intervals; and (iv) analyzing the acquired data for the loss of spore refractility, changes in spore-specific molecules (in particular, dipicolinic acid) and uptake of the nucleic acid stain. This information leads to precise correlations between various germination events, and takes 1-2 h to complete. The method can also be adapted to use multi-trap Raman spectroscopy or phase-contrast microscopy of spores adhered on a cover slip to simultaneously obtain germination parameters for multiple individual spores.

  4. Inflationary Phase in a Generalized Brans-Dicke Theory

    Science.gov (United States)

    Berman, Marcelo S.; Trevisan, Luis A.

    2009-07-01

    We find a solution for exponential inflation in a Brans-Dicke generalized model, where the coupling “constant” is variable. While in General Relativity the equation of state is p=- ρ, here we find p= α ρ, where α<-2/3. The negativity of cosmic pressure implies acceleration of the expansion, even with Λ<0.

  5. Linear information retrieval method in X-ray grating-based phase contrast imaging and its interchangeability with tomographic reconstruction

    Science.gov (United States)

    Wu, Z.; Gao, K.; Wang, Z. L.; Shao, Q. G.; Hu, R. F.; Wei, C. X.; Zan, G. B.; Wali, F.; Luo, R. H.; Zhu, P. P.; Tian, Y. C.

    2017-06-01

    In X-ray grating-based phase contrast imaging, information retrieval is necessary for quantitative research, especially for phase tomography. However, numerous and repetitive processes have to be performed for tomographic reconstruction. In this paper, we report a novel information retrieval method, which enables retrieving phase and absorption information by means of a linear combination of two mutually conjugate images. Thanks to the distributive law of the multiplication as well as the commutative law and associative law of the addition, the information retrieval can be performed after tomographic reconstruction, thus simplifying the information retrieval procedure dramatically. The theoretical model of this method is established in both parallel beam geometry for Talbot interferometer and fan beam geometry for Talbot-Lau interferometer. Numerical experiments are also performed to confirm the feasibility and validity of the proposed method. In addition, we discuss its possibility in cone beam geometry and its advantages compared with other methods. Moreover, this method can also be employed in other differential phase contrast imaging methods, such as diffraction enhanced imaging, non-interferometric imaging, and edge illumination.

  6. Zernike phase-contrast x-ray microscope with pseudo-Kohler illumination generated by sectored (polygon) condenser plate

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio, E-mail: take@spring8.or.j [JASRI / SPring-8, Kouto 1-1-1, Sayo, Hyogo 679-5198 (Japan)

    2009-09-01

    Zernike phase contrast x-ray microscope has been developed at the undulator beamline 20XU and 47XU of SPring-8. The system consists of a pseudo-Koehler-illuminating system, a Fresnel zone plate objective with outermost zone width of 100 nm, a Zernike phase plate (0.96-{mu}m-thick tantalum, {lambda}/4 or 3{lambda}/4 phase-shifter at 8 keV) installed at the back-focal plane of the objective, and a visible-light conversion type cooled CCD camera as an image detector. A sectored (polygon) condenser plate is employed as the condenser in order to secure a large and flat field of view. Details and experimental results of the system will be shown.

  7. Evaluation of the dark-medium objective lens in counting asbestos fibers by phase-contrast microscopy.

    Science.gov (United States)

    Lee, Eun Gyung; Nelson, John H; Kashon, Michael L; Harper, Martin

    2015-06-01

    A Japanese round-robin study revealed that analysts who used a dark-medium (DM) objective lens reported higher fiber counts from American Industrial Hygiene Association (AIHA) Proficiency Analytical Testing (PAT) chrysotile samples than those using a standard objective lens, but the cause of this difference was not investigated at that time. The purpose of this study is to determine any major source of this difference by performing two sets of round-robin studies. For the first round-robin study, 15 AIHA PAT samples (five each of chrysotile and amosite generated by water-suspended method, and five chrysotile generated by aerosolization method) were prepared with relocatable cover slips and examined by nine laboratories. A second round-robin study was then performed with six chrysotile field sample slides by six out of nine laboratories who participated in the first round-robin study. In addition, two phase-shift test slides to check analysts' visibility and an eight-form diatom test plate to compare resolution between the two objectives were examined. For the AIHA PAT chrysotile reference slides, use of the DM objective resulted in consistently higher fiber counts (1.45 times for all data) than the standard objective (P-value counts between the two objectives were not significantly different. No statistically significant differences were observed in the visibility of blocks of the test slides between the two objectives. Also, the DM and standard objectives showed no pattern of differences in viewing the fine lines and/or dots of each species images on the eight-form diatom test plate. Among various potential factors that might affect the analysts' performance of fiber counts, this study supports the greater contrast caused by the different phase plate absorptions as the main cause of high counts for the AIHA PAT chrysotile slides using the DM objective. The comparison of fiber count ratios (DM/standard) between the AIHA PAT chrysotile samples and chrysotile field

  8. [Quantitative Analysis of Wall Shear Stress for Human Carotid Bifurcation at Cardiac Phases by the Use of Phase Contrast Cine Magnetic Resonance Imaging: Computational Fluid Dynamics Study].

    Science.gov (United States)

    Saho, Tatsunori; Onishi, Hideo

    2015-12-01

    Detailed strategy for regional hemodynamics is significant for knowledge of plaque development on vascular diseases such as atherosclerosis. The aim of this study was to derive relation between atherosclerosis and hemodynamics at human carotid bifurcation by the use of computational fluid dynamics (CFD), and to provide more accurate hemodynamic information. Blood velocity datasets at common carotid artery were obtained by phase-contrast cine magnetic resonance imaging (PC cine MRI). Carotid bifurcation model was computed for systolic, mid-diastolic, and end-diastolic phase. Comparison of wall shear stress (WSS) was performed for each cardiac phase. PC cine MRI provided velocity measurement for common carotid artery with various cardiac phases. The blood velocity had acute variation from 0.21 m/s to 1.07 m/s at systolic phase. The variation of WSS during cardiac phase was presented at carotid bifurcation model. High shear stress area was observed at dividing wall for all cardiac phases. The systole-diastole WSS ratio was 10.15 at internal carotid side of bifurcation. And low shear stress (cine MRI was allowed to determine an accurate analysis condition. This led to the representation of hemodynamics in vivo.

  9. Early and Delayed Myocardial Enhancement in Myocardial Infarction Using Two-Phase Contrast-Enhanced Multidetector-Row CT

    Science.gov (United States)

    Kim, Young-Whan; Han, Seong-Wook; Seo, Joon-Beom

    2007-01-01

    Objective The purpose of this study was to describe the myocardial enhancement patterns in patients with myocardial infarction using two-phase contrast-enhanced multidetector-row computed tomography (MDCT). Materials and Methods Twenty-three patients with clinically proven myocardial infarction (17 acute myocardial infarction [AMI] and 6 chronic myocardial infarction [CMI]) were examined with two-phase contrast-enhanced ECG-gated MDCT. The presence, location, and patterns of myocardial enhancement on two-phase MDCT images were compared with infarcted myocardial territories determined by using electrocardiogram, echocardiography, thallium-201 single photon emission computed tomography, catheter and MDCT coronary angiography. Results After clinical assessment, the presence of myocardial infarctions were found in 27 territories (19 AMI and 8 CMI) of 23 patients. Early perfusion defects were observed in 30 territories of all 23 patients. Three territories not corresponding to a myocardial infarction were detected in three patients with AMI and were associated with artifacts. Fourteen of perfusion defects were in the left anterior descending artery territory, four in the left circumflex artery territory, and nine in the right coronary artery territory. Delayed enhancement was observed in 25 territories (17 AMI and 8 CMI) of 21 patients. Delayed enhancement patterns were variable. Transmural early perfusion defects (n =12) were closely associated with transmural late enhancement (n = 5) and subendocardial residual defect with subepicardial late enhancement (n = 5). Conclusion Myocardial infarction showed early perfusion defects and variable delayed enhancement patterns on two-phase contrast-enhanced MDCT. Delayed enhancement technique of MDCT could provide additional information of the location and extent of infarcted myocardium, and could be useful to plan appropriate therapeutic strategies in patients with AMI. PMID:17420626

  10. Early and Delayed Myocardial Enhancement in Myocardial Infarction Using Two-Phase Contrast-Enhanced Multidetector-Row CT

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Sung-Min; Kim, Young-Whan; Han, Seong-Wook [University of Keimyung College of Medicine, Dongsan Medical Center, Daegu (Korea, Republic of); Seo, Joon-Beom [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2007-04-15

    The purpose of this study was to describe the myocardial enhancement patterns in patients with myocardial infarction using two-phase contrast enhanced multidetector-row computed tomography (MDCT). Twenty-three patients with clinically proven myocardial infarction (17 acute myocardial infarction [AMI] and 6 chronic myocardial infarction [CMI]) were examined with two-phase contrast-enhanced ECG-gated MDCT. The presence, location, and patterns of myocardial enhancement on two phase MDCT images were compared with infarcted myocardial territories determined by using electrocardiogram, echocardiography, thallium-201 single photon emission computed tomography, catheter and MDCT coronary angiography. After clinical assessment, the presence of myocardial infarctions were found in 27 territories (19 AMI and 8 CMI) of 23 patients. Early perfusion defects were observed in 30 territories of all 23 patients. Three territories not corresponding to a myocardial infarction were detected in three patients with AMI and were associated with artifacts. Fourteen of perfusion defects were in the left anterior descending artery territory, four in the left circumflex artery territory, and nine in the right coronary artery territory. Delayed enhancement was observed in 25 territories (17 AMI and 8 CMI) of 21 patients. Delayed enhancement patterns were variable. Transmural early perfusion defects (n =12) were closely associated with transmural late enhancement (n = 5) and subendocardial residual defect with subepicardial late enhancement (n = 5). Myocardial infarction showed early perfusion defects and variable delayed enhancement patterns on two-phase contrast-enhanced MDCT. Delayed enhancement technique of MDCT could provide additional information of the location and extent of infarcted myocardium, and could be useful to plan appropriate therapeutic strategies in patients with AMI.

  11. Contrast Enhanced Microscopy Digital Image Correlation: A General Method to Contact-Free Coefficient of Thermal Expansion Measurement of Polymer Films

    Science.gov (United States)

    Jairo A. Diaz; Robert J. Moon; Jeffrey P. Youngblood

    2014-01-01

    Thermal expansion represents a vital indicator of the processing history and dimensional stability of materials. Solvent-sensitive, thin, and compliant samples are particularly challenging to test. Here we describe how textures highlighted by contrast enhanced optical microscopy modes (i.e., polarized light (PL), phase contrast (PC)) and bright field (BF) can be used...

  12. Experimental and theoretical contributions to X-ray phase-contrast techniques for medical imaging; Contributions experimentales et theoriques aux techniques de contraste de phase pour l'imagerie medicale par rayons X

    Energy Technology Data Exchange (ETDEWEB)

    Diemoz, P.C.

    2011-02-28

    Several X-ray phase-contrast techniques have recently been developed. Unlike conventional X-ray methods, which measure the absorption properties of the tissues, these techniques derive contrast also from the modulation of the phase produced by the sample. Since the phase shift can be significant even for small details characterized by weak or absent absorption, the achievable image contrast can be greatly increased, notably for the soft biological tissues. These methods are therefore very promising for applications in the medical domain. The aim of this work is to contribute to a deeper understanding of these techniques, in particular propagation-based imaging (PBI), analyzer-based imaging (ABI) and grating interferometry (GIFM), and to study their potential and the best practical implementation for medical imaging applications. An important part of this work is dedicated to the use of mathematical algorithms for the extraction, from the acquired images, of quantitative sample information (the absorption, refraction and scattering sample properties). In particular, five among the most known algorithms based on the geometrical optics approximation have been theoretically analysed and experimentally compared, in planar and tomographic modalities, by using geometrical phantoms and human bone-cartilage and breast samples. A semi-quantitative method for the acquisition and reconstruction of tomographic images in the ABI and GIFM techniques has also been proposed. The validity conditions are analyzed in detail and the method, enabling a considerable simplification of the imaging procedure, has been experimentally checked on phantoms and human samples. Finally, a theoretical and experimental comparison of the PBI, ABI and GIFM techniques is presented. The advantages and drawbacks of each of these techniques are discussed. The results obtained from this analysis can be very useful for determining the most adapted technique for a given application. (author)

  13. Identification of the contrast full vowel-schwa: training effects and generalization to a new perceptual context

    Directory of Open Access Journals (Sweden)

    Esther Gómez Lacabex

    2008-01-01

    Full Text Available http://dx.doi.org/10.5007/2175-8026.2008n55p173 This study examines the ability to identify the English phonological contrast full vowel-schwa by Spanish learners of English after two different types of training: auditory and articulatory. Perceptual performance was measured in isolated words in order to investigate the effect of training and in sentences to study the robustness of acquisition in generalizing to a context which was not used during training. Subjects were divided into three groups: two experimental groups, one undergoing perceptual training and one undergoing production based training, and a control group. Both experimental groups' perception of the reduced vowel improved significantly after training. Results indicated that students were able to generalize their reduced vowel identification abilities to the new context. The control group did not show any significant improvement. Our findings agree with studies that have demonstrated positive effects of phonetic training (Derwing. Munro & Wiebe, 1998; Rochet, 1995; Cenoz & García Lecumberri, 1995, 1999. Interestingly, the results also support the facilitating view between perception and production since production training proved beneficial in the development of perceptual abilities (Catford & Pisoni, 1970; Mathews, 1997. Finally, our data showed that training resulted in robust learning, since students were able generalize their improved perceptual abilities to a new context.

  14. Identification of the contrast full vowel-schwa: training effects and generalization to a new perceptual context

    Directory of Open Access Journals (Sweden)

    Esther Gómez Lacabex

    2010-11-01

    Full Text Available This study examines the ability to identify the English phonological contrast full vowel-schwa by Spanish learners of English after two different types of training: auditory and articulatory. Perceptual performance was measured in isolated words in order to investigate the effect of training and in sentences to study the robustness of acquisition in generalizing to a context which was not used during training. Subjects were divided into three groups: two experimental groups, one undergoing perceptual training and one undergoing production based training, and a control group. Both experimental groups' perception of the reduced vowel improved significantly after training. Results indicated that students were able to generalize their reduced vowel identification abilities to the new context. The control group did not show any significant improvement. Our findings agree with studies that have demonstrated positive effects of phonetic training (Derwing. Munro & Wiebe, 1998; Rochet, 1995; Cenoz & García Lecumberri, 1995, 1999. Interestingly, the results also support the facilitating view between perception and production since production training proved beneficial in the development of perceptual abilities (Catford & Pisoni, 1970; Mathews, 1997. Finally, our data showed that training resulted in robust learning, since students were able generalize their improved perceptual abilities to a new context.

  15. Quantifying activation of perfluorocarbon-based phase-change contrast agents using simultaneous acoustic and optical observation.

    Science.gov (United States)

    Li, Sinan; Lin, Shengtao; Cheng, Yi; Matsunaga, Terry O; Eckersley, Robert J; Tang, Meng-Xing

    2015-05-01

    Phase-change contrast agents in the form of nanoscale droplets can be activated into microbubbles by ultrasound, extending the contrast beyond the vasculature. This article describes simultaneous optical and acoustical measurements for quantifying the ultrasound activation of phase-change contrast agents over a range of concentrations. In experiments, decafluorobutane-based nanodroplets of different dilutions were sonicated with a high-pressure activation pulse and two low-pressure interrogation pulses immediately before and after the activation pulse. The differences between the pre- and post-interrogation signals were calculated to quantify the acoustic power scattered by the microbubbles activated over a range of droplet concentrations. Optical observation occurred simultaneously with the acoustic measurement, and the pre- and post-microscopy images were processed to generate an independent quantitative indicator of the activated microbubble concentration. Both optical and acoustic measurements revealed linear relationships to the droplet concentration at a low concentration range <10(8)/mL when measured at body temperature. Further increases in droplet concentration resulted in saturation of the acoustic interrogation signal. Compared with body temperature, room temperature was found to produce much fewer and larger bubbles after ultrasound droplet activation.

  16. Visualization of microvasculature by x-ray in-line phase contrast imaging in rat spinal cord

    Science.gov (United States)

    Hu, Jian-Zhong; Wu, Tian-Ding; Zeng, Lei; Liu, Hui-Qiang; He, You; Du, Guo-Hao; Lu, Hong-Bin

    2012-03-01

    Computed tomography combined with angiography has recently been developed to visualize three-dimensional (3D) vascular structure in experi-mental and clinical studies. However, there remain difficulties in using conventional x-ray angiography to detect small vessels with a diameter less than 200 µm. This study attempted to develop a novel method for visualizing the micro-angioarchitecture of rat spinal cord. Herein, synchrotron radiation-based x-ray in-line phase contrast computed tomography (IL-XPCT) was used to obtain 3D micro-vessel structure without angiography. The digital phase contrast images were compared with conventional histological sections. Our results clearly demonstrated that the resolution limit of the spatial blood supply network in the normal rat thoracic cord appeared to be as small as ∼10 µm. The rendered images were consistent with that obtained from histo-morphology sections. In summary, IL-XPCT is a potential tool to investigate the 3D neurovascular morphology of the rat spinal cord without the use of contrast agents, and it could help to evaluate the validity of the pro- or anti-angiogenesis therapeutic strategies on microvasculature repair or regeneration.

  17. Blind Carrier Phase Recovery for General 2{\\pi}/M-rotationally Symmetric Constellations

    CERN Document Server

    Slimane, Emna Ben; Bouallègue, Ammar; 10.5121/ijwmn.2012.4104

    2012-01-01

    This paper introduces a novel blind carrier phase recovery estimator for general 2{\\Pi}/M-rotationally symmetric constellations. This estimation method is a generalization of the non-data-aided (NDA) nonlinear Phase Metric Method (PMM) estimator already designed for general quadrature amplitude constellations. This unbiased estimator is seen here as a fourth order PMM then generalized to Mth order (Mth PMM) in such manner that it covers general 2{\\Pi}/M-rotationally symmetric constellations such as PAM, QAM, PSK. Simulation results demonstrate the good performance of this Mth PMM estimation algorithm against competitive blind phase estimators already published for various modulation systems of practical interest.

  18. High-resolution breast tomography at high energy: a feasibility study of phase contrast imaging on a whole breast

    Science.gov (United States)

    Sztrókay, A.; Diemoz, P. C.; Schlossbauer, T.; Brun, E.; Bamberg, F.; Mayr, D.; Reiser, M. F.; Bravin, A.; Coan, P.

    2012-05-01

    Previous studies on phase contrast imaging (PCI) mammography have demonstrated an enhancement of breast morphology and cancerous tissue visualization compared to conventional imaging. We show here the first results of the PCI analyser-based imaging (ABI) in computed tomography (CT) mode on whole and large (>12 cm) tumour-bearing breast tissues. We demonstrate in this work the capability of the technique of working at high x-ray energies and producing high-contrast images of large and complex specimens. One entire breast of an 80-year-old woman with invasive ductal cancer was imaged using ABI-CT with monochromatic 70 keV x-rays and an area detector of 92×92 µm2 pixel size. Sagittal slices were reconstructed from the acquired data, and compared to corresponding histological sections. Comparison with conventional absorption-based CT was also performed. Five blinded radiologists quantitatively evaluated the visual aspects of the ABI-CT images with respect to sharpness, soft tissue contrast, tissue boundaries and the discrimination of different structures/tissues. ABI-CT excellently depicted the entire 3D architecture of the breast volume by providing high-resolution and high-contrast images of the normal and cancerous breast tissues. These results are an important step in the evolution of PCI-CT towards its clinical implementation.

  19. Clinical application of low-dose phase contrast breast CT: methods for the optimization of the reconstruction workflow

    Science.gov (United States)

    Pacilè, S.; Brun, F.; Dullin, C.; Nesterest, Y. I.; Dreossi, D.; Mohammadi, S.; Tonutti, M.; Stacul, F.; Lockie, D.; Zanconati, F.; Accardo, A.; Tromba, G.; Gureyev, T. E.

    2015-01-01

    Results are presented of a feasibility study of three-dimensional X-ray tomographic mammography utilising in-line phase contrast. Experiments were performed at SYRMEP beamline of Elettra synchrotron. A specially designed plastic phantom and a mastectomy sample containing a malignant lesion were used to study the reconstructed image quality as a function of different image processing operations. Detailed evaluation and optimization of image reconstruction workflows have been carried out using combinations of several advanced computed tomography algorithms with different pre-processing and post-processing steps. Special attention was paid to the effect of phase retrieval on the diagnostic value of the reconstructed images. A number of objective image quality indices have been applied for quantitative evaluation of the results, and these were compared with subjective assessments of the same images by three experienced radiologists and one pathologist. The outcomes of this study provide practical guidelines for the optimization of image processing workflows in synchrotron-based phase-contrast mammo-tomography. PMID:26309770

  20. Correlation of VEGF with contrast enhancement on dual-phase dynamic helical CT in liver tumors: preliminary study.

    Science.gov (United States)

    Kwak, B. K.; Shim, H. J.; Park, U. S.; Lee, T. J.; Paeng, S. S.; Lee, C. J.; Lim, H. K.; Park, C. K.

    2001-01-01

    The purpose of this preliminary study is to elucidate that vascular endothelial growth factor (VEGF) influences contrast enhancement of hepatic tumors on computed tomography (CT). Fourteen patients with hepatic tumors (11 hepatocellular carcinomas; 3 metastatic cancers) underwent a dual-phase dynamic helical CT or computed tomographic hepatic arteriography. The attenuation of each mass was determined as hyperattenuation, isoattenuation or hypoattenuation with respect to the adjacent nontumorous parenchyma. Gun-needle biopsy was done for each tumor, and paraffin sections were immunostained with anti- VEGF antibody by the avidin-biotin-peroxidase complex method. The pathologic grade was made by intensity (1 +, 2+, 3+) and area (+/-, 1 +, 2+). The tumor ranged 2.0-14.0 cm in size (mean, 5.8 cm). In arterial phase, the intensity was not correlated with the degree of enhancement (p=0.086). However, the correlation between the attenuation value of hepatic arterial phase and the area of positive tumor cells was statistically significant (p=0.002). VEGF may be the factor that enhances the hepatic mass with water-soluble iodinated contrast agent in CT. PMID:11289406

  1. Large-area full field x-ray differential phase-contrast imaging using 2D tiled gratings

    Science.gov (United States)

    Schröter, Tobias J.; Koch, Frieder J.; Kunka, Danays; Meyer, Pascal; Tietze, Sabrina; Engelhardt, Sabine; Zuber, Marcus; Baumbach, Tilo; Willer, Konstantin; Birnbacher, Lorenz; Prade, Friedrich; Pfeiffer, Franz; Reichert, Klaus-Martin; Hofmann, Andreas; Mohr, Jürgen

    2017-06-01

    Grating-based x-ray differential phase-contrast imaging (DPCI) is capable of acquiring information based on phase-shift and dark-field signal, in addition to conventional x-ray absorption-contrast. Thus DPCI gives an advantage to investigate composite materials with component wise similar absorption properties like soft tissues. Due to technological challenges in fabricating high quality gratings over a large extent, the field of view (FoV) of the imaging systems is limited to a grating area of a couple of square centimeters. For many imaging applications (e.g. in medicine), however, a FoV that ranges over several ten centimeters is needed. In this manuscript we propose to create large area gratings of theoretically any extent by assembling a number of individual grating tiles. We discuss the precision needed for alignment of each microstructure tile in order to reduce image artifacts and to preserve minimum 90% of the sensitivity obtainable with a monolithic grating. To achieve a reliable high precision alignment a semiautomatic assembly system consisting of a laser autocollimator, a digital microscope and a force sensor together with positioning devices was built. The setup was used to tile a first four times four analyzer grating with a size of 200 mm  ×  200 mm together with a two times two phase grating. First imaging results prove the applicability and quality of the tiling concept.

  2. Investigation of the phase morphology of bacterial PHA inclusion bodies by contrast variation SANS

    Energy Technology Data Exchange (ETDEWEB)

    Russell, R.A. [ANSTO Institute for Environmental Research, NSW 2234 (Australia)]. E-mail: robert.russell@ansto.gov.au; Holden, P.J. [ANSTO Institute for Environmental Research, NSW 2234 (Australia); Garvey, C.J. [ANSTO Institute for Environmental Research, NSW 2234 (Australia); Wilde, K.L. [ANSTO Institute for Environmental Research, NSW 2234 (Australia); Hammerton, K.M. [ANSTO Institute for Environmental Research, NSW 2234 (Australia); Foster, L.J. [School of Biotechnology and Biomolecular Sciences, UNSW, NSW 2052 (Australia)

    2006-11-15

    Under growth-limiting conditions, many bacteria are able to metabolise excess organic acids into polyhydroxyalkanoates (PHA) and store these polymers as intracellular inclusions until the return of favourable conditions. Various models have been proposed for the macromolecular organisation of the boundary layer surrounding the polymer, and contrast-variation small-angle neutron scattering (SANS) was used to study its organisation. Inclusions formed by Pseudomonas oleovorans under hydrogenating conditions showed lowest scattering intensity at ca. 20% D{sub 2}O. The inclusions consist of protein and membrane lipids in the boundary layer and polyhydroxyoctanoate (lipid) in the inclusion body. At 20% D{sub 2}O the contributions of lipids were contrast matched with the solvent, indicating that lipids contributed the bulk of the scattering intensity observed at other D{sub 2}O/H{sub 2}O ratios. These results are inconsistent with a model of the boundary layer which proposed outer and inner layers of crystalline protein lattice sandwiching a membrane lipid membrane layer [E.S. Stuart, R.W. Lenz, R.C. Fuller, Can J Microbiol 41(Suppl 1) (1995) 84-93], and is more consistent with a model consisting of a lipid monolayer containing embedded proteins [U. Pieper-furst, M.H. Madkour, F. Mayer, A. Steinbuchel, J. Bacteriol. 176 (1994) 4328-4337.] By altering the H/D content of the precursors, we were able to collect SANS data from preparations of both deuterated and H/D copolymer inclusions, where initial PHA produced was hydrogenated followed by deuteration. Deuterated inclusions showed minimum intensity above 90% D{sub 2}O/H{sub 2}O whereas the sequentially produced copolymer (assumed to be in a core/shell arrangement) displayed minimum scattering some 20% lower, which is consistent with the increased hydrogenation of the boundary layer expected from its synthesis during supply of hydrogenated followed by deuterated precursors.

  3. Investigation of the phase morphology of bacterial PHA inclusion bodies by contrast variation SANS

    Science.gov (United States)

    Russell, R. A.; Holden, P. J.; Garvey, C. J.; Wilde, K. L.; Hammerton, K. M.; Foster, L. J.

    2006-11-01

    Under growth-limiting conditions, many bacteria are able to metabolise excess organic acids into polyhydroxyalkanoates (PHA) and store these polymers as intracellular inclusions until the return of favourable conditions. Various models have been proposed for the macromolecular organisation of the boundary layer surrounding the polymer, and contrast-variation small-angle neutron scattering (SANS) was used to study its organisation. Inclusions formed by Pseudomonas oleovorans under hydrogenating conditions showed lowest scattering intensity at ca. 20% D 2O. The inclusions consist of protein and membrane lipids in the boundary layer and polyhydroxyoctanoate (lipid) in the inclusion body. At 20% D 2O the contributions of lipids were contrast matched with the solvent, indicating that lipids contributed the bulk of the scattering intensity observed at other D 2O/H 2O ratios. These results are inconsistent with a model of the boundary layer which proposed outer and inner layers of crystalline protein lattice sandwiching a membrane lipid membrane layer [E.S. Stuart, R.W. Lenz, R.C. Fuller, Can J Microbiol 41(Suppl 1) (1995) 84-93], and is more consistent with a model consisting of a lipid monolayer containing embedded proteins [U. Pieper-furst, M.H. Madkour, F. Mayer, A. Steinbuchel, J. Bacteriol. 176 (1994) 4328-4337.] By altering the H/D content of the precursors, we were able to collect SANS data from preparations of both deuterated and H/D copolymer inclusions, where initial PHA produced was hydrogenated followed by deuteration. Deuterated inclusions showed minimum intensity above 90% D 2O/H 2O whereas the sequentially produced copolymer (assumed to be in a core/shell arrangement) displayed minimum scattering some 20% lower, which is consistent with the increased hydrogenation of the boundary layer expected from its synthesis during supply of hydrogenated followed by deuterated precursors.

  4. Kinetic derivation of generalized phase space Chern-Simons theory

    CERN Document Server

    Hayata, Tomoya

    2016-01-01

    We study a kinetic theory in $2d$ phase space when all abelian Berry curvatures are nonzero. We derive the complete form of the Poisson brackets, and calculate transports induced by Berry curvatures. Then we construct the low-energy effective theory to reproduce the transports. Such an effective theory is given by the Chern-Simons theory in $1+2d$ dimensions. Some implications of the Chern-Simons theory are also discussed.

  5. Iterative reconstruction for few-view grating-based phase-contrast CT —An in vitro mouse model

    Science.gov (United States)

    Gaass, T.; Potdevin, G.; Bech, M.; Noël, P. B.; Willner, M.; Tapfer, A.; Pfeiffer, F.; Haase, A.

    2013-05-01

    The aim of this work is to investigate the improvement of image quality in few-view grating-based phase-contrast computed tomography (PCCT) applications via compressed sensing (CS) inspired iterative reconstruction on an in vitro mouse model. PCCT measurements are performed on a grating-based PCCT setup using a high-brilliance synchrotron source and a conventional tube source. The sampling density of the data is reduced by a factor of up to 20 and iteratively reconstructed. It is demonstrated that grating-based PCCT intrinsically meets the major conditions for a successful application of CS. Contrast fidelity and the reproduction of details is presented in all reconstructed objects. The feasibility of the iterative reconstruction on data generated with a conventional X-ray source is illustrated on a fluid phantom and a mouse specimen, undersampled by a factor of up to 20.

  6. A clinical study concerning hepatic arterial dominant phase and arrival time of contrast media on helical dynamic CT

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Susumu; Uchida, Chiharu; Sato, Sei; Ishida, Junichi; Masuya, Ryozo [Hiroshima Teishin Hospital (Japan); Makiguchi, Mako [Radiation Effects Research Foundation, Hiroshima (Japan); Kanamori, Isao [Gifu Coll. of Medical Technology (Japan)

    2001-10-01

    Hepatic arterial dominant phase in helical dynamic CT was optimized by measuring the arrival time of contrast media (ATCM) with time-density curve (TDC). Subjects were 1005 patients (577 males and 428 females) and 98 nodules diagnosed as advanced hepatocellular carcinoma (HCC). The CT was done with Toshiba 4MHU X-vision SP, ultrasonography with Toshiba SSH-160A and automatic infusion of the contrast medium, iopamidol or iohexol, with Nemotokyorindo Autoenhance A-50. ATCM was found correlated with pulse rate and with arterial diameter, and significantly different between the sex. Elevation slope of TDC was suggested to be made constant by a defined infusion time of the dose corrected by body weight. Fluctuation of TDC among patients , when normalized by ATCM, was found smaller and the TDC was suggested to be useful for better imaging of HCC of less than 10 mm diameter. (K.H.)

  7. Automated method for the rapid and precise estimation of adherent cell culture characteristics from phase contrast microscopy images.

    Science.gov (United States)

    Jaccard, Nicolas; Griffin, Lewis D; Keser, Ana; Macown, Rhys J; Super, Alexandre; Veraitch, Farlan S; Szita, Nicolas

    2014-03-01

    The quantitative determination of key adherent cell culture characteristics such as confluency, morphology, and cell density is necessary for the evaluation of experimental outcomes and to provide a suitable basis for the establishment of robust cell culture protocols. Automated processing of images acquired using phase contrast microscopy (PCM), an imaging modality widely used for the visual inspection of adherent cell cultures, could enable the non-invasive determination of these characteristics. We present an image-processing approach that accurately detects cellular objects in PCM images through a combination of local contrast thresholding and post hoc correction of halo artifacts. The method was thoroughly validated using a variety of cell lines, microscope models and imaging conditions, demonstrating consistently high segmentation performance in all cases and very short processing times (Source-code for MATLAB and ImageJ is freely available under a permissive open-source license.

  8. Contrasting quiescent G0 phase with mitotic cell cycling in the mouse immune system.

    Directory of Open Access Journals (Sweden)

    Michio Tomura

    Full Text Available A transgenic mouse line expressing Fucci (fluorescent ubiquitination-based cell-cycle indicator probes allows us to monitor the cell cycle in the hematopoietic system. Two populations with high and low intensities of Fucci signals for Cdt1(30/120 accumulation were identified by FACS analysis, and these correspond to quiescent G0 and cycling G1 cells, respectively. We observed the transition of immune cells between quiescent and proliferative phases in lymphoid organs during differentiation and immune responses.

  9. Differential X-ray phase-contrast imaging with a grating interferometer using a laboratory X-ray micro-focus tube

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kwon-Ha; Ryu, Jong-Hyun; Jung, Chang-Won [Wonkwang University School of Medicine, Iksan (Korea, Republic of); Ryu, Cheol-Woo; Kim, Young-Jo; Kwon, Young-Man [Jeonbuk Technopark, Iksan (Korea, Republic of); Park, Mi-Ran; Cho, Seung-Ryong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Chon, Kwon-Su [Catholic University of Daegu, Gyeongsan (Korea, Republic of)

    2014-12-15

    X-ray phase-contrast imaging can provide images with much greater soft-tissue contrast than conventional absorption-based images. In this paper, we describe differential X-ray phase-contrast images of insect specimens that were obtained using a grating-based Talbot interferometer and a laboratory X-ray source with a spot size of a few tens of micrometers. We developed the interferometer on the basis of the wavelength, periods, and height of the gratings; the field of view depends on the size of the grating, considering the refractive index of the specimen. The phase-contrast images were acquired using phase-stepping methods. The phase contrast imaging provided a significantly enhanced soft-tissue contrast compared with the attenuation data. The contour of the sample was clearly visible because the refraction from the edges of the object was strong in the differential phase-contrast image. Our results demonstrate that a grating-based Talbot interferometer with a conventional X-ray tube may be attractive as an X-ray imaging system for generating phase images. X-ray phase imaging obviously has sufficient potential and is expected to soon be a great tool for medical diagnostics.

  10. A general thermodynamic analysis and treatment of phases and components in the analysis of phase assemblages in multicomponent systems

    Institute of Scientific and Technical Information of China (English)

    HU JiaWen

    2012-01-01

    Systematic thermodynamic analysis reveals that an essential condition for the thermodynamically valid chemographic projections proposed by Greenwood is completely excessive.In other words,the phases or components from which the projection is made need not be pure,nor have their chemical potentials fixed over the whole chemographic diagram.To facilitate the analysis of phase assemblages in multicomponent systems,all phases and components in the system are divided into internal and external ones in terms of their thermodynamic features and roles,where the external phases are those common to all assemblages in the system,and the external components include excess components and the components whose chemical potentials (or relevant intensive properties of components) are used to define the thermodynamic conditions of the system.This general classification overcomes the difficulties and defects in the previous classifications,and is easier to use than the previous ones.According to the above classification,the phase rule is transformed into a new form.This leads to two findings:(1) the degree of freedom of the system under the given conditions is only determined by the internal components and phases; (2) different external phases can be identified conveniently according to the conditions of the system before knowing the real phase relations.Based on the above results,a simple but general approach is proposed for the treatment of phases and components:all external phases and components can be eliminated from the system without affecting the phase relations,where the external components can be eliminated by appropriate chemographic projections.The projections have no restriction on the states of the phases or the chemical potentials of components from which the projections are made.Th e present work can give a unified explanation of the previous treatments of phases and components in the analysis of phase assemblages under various specific conditions.It helps to avoid

  11. Microscopic identification of Chinese medicinal materials based on X-ray phase contrast imaging: from qualitative to quantitative

    Science.gov (United States)

    Xue, Y.; Liang, Z.; Tan, H.; Ni, L.; Zhao, Z.; Xiao, T.; Xu, H.

    2016-07-01

    Although a variety of methods, ranging from simple morphological examination to physical and chemical analysis, and DNA molecular biology, exist for authenticating Chinese medicinal materials(CMMs), no methods can achieve both the source species identification and quality evaluation of CMMs simultaneously. Furthermore, the methods that are currently available for the identification of CMMs, including both optical and electronic microscopy, usually entail strict requirements for sample preparation or testing environment, such as the slicing of super-thin sections, or processing with specific chemical reagents. These treatments not only damage the CMMs but may also cause some of the original microstructures to be missed. Additionally, they may even yield false results. Owing to the unique penetrating character of X-rays, X-ray phase contrast imaging(XPCI) can be used to realize the inner microstructures of CMMs through nondestructive imaging. With the higher flux and luminance of the third generation of synchrotron radiation facility, XPCI can provides clearer and finer microstructures of CMMs, which are mainly composed of C, H, O, and N elements, with better spatial and density resolutions. For more than ten years, the X-ray imaging group at the Shanghai Institute of Applied Physics has investigated the microstructures of CMMs by XPCI and they have established and developed a quantitative X-ray phase contrast micro-CT for investigating the characteristic microstructures of CMMs. During this period, a variety of typical CMMs have been investigated, from two-dimensional (2D) radiography to three-dimensional (3D) micro-CT, from qualitative to quantitative. Taken together, these results verify that quantitative X-ray phase contrast micro-CT is a practical tool for the microscopic investigation of CMMs. Additionally, further efforts are being made to find the relationship between the microstructures' quantitative factors and active chemical components. At present

  12. 3D tracking and phase-contrast imaging by twin-beams digital holographic microscope in microfluidics

    Science.gov (United States)

    Miccio, L.; Memmolo, P.; Finizio, A.; Paturzo, M.; Merola, F.; Grilli, S.; Ferraro, P.

    2012-06-01

    A compact twin-beam interferometer that can be adopted as a flexible diagnostic tool in microfluidic platforms is presented. The devise has two functionalities, as explained in the follow, and can be easily integrated in microfluidic chip. The configuration allows 3D tracking of micro-particles and, at same time, furnishes Quantitative Phase-Contrast maps of tracked micro-objects by interference microscopy. Experimental demonstration of its effectiveness and compatibility with biological field is given on for in vitro cells in microfluidic environment. Nowadays, several microfluidic configuration exist and many of them are commercially available, their development is due to the possibility for manipulating droplets, handling micro and nano-objects, visualize and quantify processes occurring in small volumes and, clearly, for direct applications on lab-on-a chip devices. In microfluidic research field, optical/photonics approaches are the more suitable ones because they have various advantages as to be non-contact, full-field, non-invasive and can be packaged thanks to the development of integrable optics. Moreover, phase contrast approaches, adapted to a lab-on-a-chip configurations, give the possibility to get quantitative information with remarkable lateral and vertical resolution directly in situ without the need to dye and/or kill cells. Furthermore, numerical techniques for tracking of micro-objects needs to be developed for measuring velocity fields, trajectories patterns, motility of cancer cell and so on. Here, we present a compact holographic microscope that can ensure, by the same configuration and simultaneously, accurate 3D tracking and quantitative phase-contrast analysis. The system, simple and solid, is based on twin laser beams coming from a single laser source. Through a easy conceptual design, we show how these two different functionalities can be accomplished by the same optical setup. The working principle, the optical setup and the mathematical

  13. Generalized phase-shifting algorithms: error analysis and minimization of noise propagation.

    Science.gov (United States)

    Ayubi, Gastón A; Perciante, César D; Di Martino, J Matías; Flores, Jorge L; Ferrari, José A

    2016-02-20

    Phase shifting is a technique for phase retrieval that requires a series of intensity measurements with certain phase steps. The purpose of the present work is threefold: first we present a new method for generating general phase-shifting algorithms with arbitrarily spaced phase steps. Second, we study the conditions for which the phase-retrieval error due to phase-shift miscalibration can be minimized. Third, we study the phase extraction from interferograms with additive random noise, and deduce the conditions to be satisfied for minimizing the phase-retrieval error. Algorithms with unevenly spaced phase steps are discussed under linear phase-shift errors and additive Gaussian noise, and simulations are presented.

  14. Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Hojin [POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Kim, Guk Bae [Asan Institute of Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Kweon, Jihoon [Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Lee, Sang Joon [POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Kim, Young-Hak [Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Lee, Deok Hee; Yang, Dong Hyun [Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Kim, Namkug [Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of)

    2016-11-01

    Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions.

  15. Hemodynamic measurement using four-dimensional phase-contrast MRI: Quantification of hemodynamic parameters and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Ho Jin; Lee, Sang Joon [POSTECH Biotech Center, Pohang University of Science and Technology, Pohang (Korea, Republic of); Kim, Guk Bae; Kweon, Ji Hoon; Kim, Young Hak; Lee, Deok Hee; Yang, Dong Hyun; KIm, Nam Kug [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2016-07-15

    Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions.

  16. RENAL TUMOR QUANTIFICATION AND CLASSIFICATION IN TRIPLE-PHASE CONTRAST-ENHANCED ABDOMINAL CT

    Science.gov (United States)

    Gautam, Rabindra; Peterson, James; Yao, Jianhua; Linehan, W. Marston; Summers, Ronald M.

    2009-01-01

    It is estimated that a quarter of a million people in the USA are living with kidney cancer. In clinical practice, the response to treatment is monitored by manual measurements of tumor size, which are time consuming and show high intra- and inter-operator variability. We propose a computer-assisted radiology tool to assess renal tumors in contrast-enhanced CT for the management of tumor diagnoses and treatments. The algorithm employs anisotropic diffusion, a combination of fast-marching and geodesic level-sets, and a novel statistical refinement step to adapt to the shape of the lesions. It also quantifies the 3D size, volume and enhancement of the lesion and allows serial management of tumors. The comparison between manual and semi-automated quantifications shows disparity within the limits of inter-observer variability. The automated tumor classification shows great separation between cysts, von Hippel-Lindau syndrome (VHL) lesions and hereditary papillary renal carcinomas (HPRC) (p < 0.004). PMID:20383290

  17. A method for high-energy, low-dose mammography using edge illumination x-ray phase-contrast imaging

    Science.gov (United States)

    Diemoz, Paul C.; Bravin, Alberto; Sztrókay-Gaul, Anikó; Ruat, Marie; Grandl, Susanne; Mayr, Doris; Auweter, Sigrid; Mittone, Alberto; Brun, Emmanuel; Ponchut, Cyril; Reiser, Maximilian F.; Coan, Paola; Olivo, Alessandro

    2016-12-01

    Since the breast is one of the most radiosensitive organs, mammography is arguably the area where lowering radiation dose is of the uttermost importance. Phase-based x-ray imaging methods can provide opportunities in this sense, since they do not require x-rays to be stopped in tissue for image contrast to be generated. Therefore, x-ray energy can be considerably increased compared to those usually exploited by conventional mammography. In this article we show how a novel, optimized approach can lead to considerable dose reductions. This was achieved by matching the edge-illumination phase method, which reaches very high angular sensitivity also at high x-ray energies, to an appropriate image processing algorithm and to a virtually noise-free detection technology capable of reaching almost 100% efficiency at the same energies. Importantly, while proof-of-concept was obtained at a synchrotron, the method has potential for a translation to conventional sources.

  18. High Resolutions Obtained by Microspheres, and Phase Contrast Microscope with a Microsphere

    CERN Document Server

    Ben-Aryeh, Y

    2015-01-01

    High resolutions obtained in optical systems with microspheres are studied by Helmholtz equation and boundary conditions for the EM fields. The large lateral spatial wave vectors of the evanescent waves, which include information on the fine structures of the object, are converted at the microsphere surface to smaller spatial wave vectors. Due to reduction in the magnitudes of these spatial wave vectors a part of the EM waves propagate in the microsphere without decay, but preserve the fine structures which can be recovered in the image plane. A new method for measuring phase objects, like those of semi-transparent biological tissues, with high resolutions is described by an optical system composed of a combination of the microsphere with an interferometer.

  19. Generalized Ferroelectricity in the Mesomorphic Phase of Nylon Polymers

    Science.gov (United States)

    Zhang, Zhongbo; Zhu, Lei; Litt, Morton

    Novel ferroelectric polymers, featured by narrow electric displacement-electric (D-E) hysteresis loop, are attractive for electric energy storage applications due to their high dielectric constant and low loss property. Currently, only poly(vinylidene fluoride) (PVDF)-based copolymers (e-beamed) and terpolymers show novel ferroelectric behavior. It is desired to achieve novel ferroelectricity in other polymers such as nylons by carefully modifying the chemical and crystal structures. In this presentation, isomorphic crystals are successfully achieved by copolymerization of nylon 11 and nylon 12 with different compositions. In this way, both chemical and structural defects (i.e., dangling amide groups and kinked bonds) are introduced into the mesomorphic phase. As a consequence, hydrogen bonding interaction is successfully weakened and thus enhanced ferroelectricity with higher maximum polarization and better polarizability is obtained. In addition, for the purpose of further disturbing the mesomorphic phase and pinning effect, partially methylated nylon copolymers are synthesized. With the help of N-methylation of amide groups, the methylated nylon copolymers show relatively narrow hysteresis loops, suggesting the pinning effect from the N-methylated amide moieties.

  20. Accuracy of single phase contrast enhanced multidetector CT colonography in the preoperative staging of colo-rectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mainenti, Pier Paolo [IBB CNR, Via Pansini 5, 80131 Naples (Italy) and Department of Biomorphological and Functional Sciences, University of Naples ' Federico II' , Via Pansini 5, 80131 Naples (Italy)]. E-mail: pierpamainenti@hotmail.com; Cirillo, Luigi Carlo [Department of Biomorphological and Functional Sciences, University of Naples ' Federico II' , Via Pansini 5, 80131 Naples (Italy); Hospital ' dei Pellegrini' , ASLNA 1, Via Portamedina 41, 80100 Naples (Italy); Camera, Luigi [Department of Biomorphological and Functional Sciences, University of Naples ' Federico II' , Via Pansini 5, 80131 Naples (Italy); Persico, Francesco [Department of General Surgery, Geriatry and Endoscopy, University of Naples ' Federico II' , Via Pansini 5, 80131 Naples (Italy); Cantalupo, Teresa [Department of Biomorphological and Functional Sciences, University of Naples ' Federico II' , Via Pansini 5, 80131 Naples (Italy); Pace, Leonardo [Department of Biomorphological and Functional Sciences, University of Naples ' Federico II' , Via Pansini 5, 80131 Naples (Italy); Palma, Giovanni Domenico De [Department of General Surgery, Geriatry and Endoscopy, University of Naples ' Federico II' , Via Pansini 5, 80131 Naples (Italy); Persico, Giovanni [Department of General Surgery, Geriatry and Endoscopy, University of Naples ' Federico II' , Via Pansini 5, 80131 Naples (Italy); Salvatore, Marco [Department of Biomorphological and Functional Sciences, University of Naples ' Federico II' , Via Pansini 5, 80131 Naples (Italy)

    2006-12-15

    Aim: The optimal acquisition time for staging colo-rectal carcinoma with a contrast enhanced multidetector CT colonography (CE CTC) has not yet been established. A dual phase with both arterial and portal venous acquisition has been proposed. The purpose of our study is to assess the value of single portal venous phase CE CTC in the preoperative staging of colo-rectal carcinoma. Materials and methods: Fifty two (30 M, 22 F; aged 35-82 years) consecutive patients with a histologically proven diagnosis of colo-rectal adenocarcinoma or a highly suspected colo-rectal cancer on conventional colonoscopy underwent a four-slice CE CTC. The procedure was performed 70 s (portal phase) after the intravenous bolus (3 ml/s) administration of 120 ml iodinated non-ionic contrast agent (370 mg iodine/ml). Scans were performed using the following parameters: 2.5 mm beam collimation, pitch 1.25, 120 kV, 200 mAs, rotation time 0.75 s. Images were reconstructed with an effective thickness of 3.2 mm at intervals of 1.6 mm. Two radiologists independently evaluated the depth of tumour invasion into the colo-rectal wall (T), regional lymph node involvement (N), and extracolonic metastases (M). Disagreement was resolved by means of a consensus decision. The pathological results served as the standard of reference. Assessment was made of sensitivity, specificity and accuracy, as well as positive and negative predictive values were assessed. Results: CE CTC correctly staged the pT of 52/56 (93%) and the N of 40/56 (71%) lesions, as well as properly identifying 13/14 (93%) extracolonic findings. Conclusion: The single portal venous phase CE CTC scanning protocol enables satisfactory preoperative assessment of T, N and M staging in patients with colo-rectal cancer.

  1. Complex flow patterns in a real-size intracranial aneurysm phantom: phase contrast MRI compared with particle image velocimetry and computational fluid dynamics.

    Science.gov (United States)

    van Ooij, P; Guédon, A; Poelma, C; Schneiders, J; Rutten, M C M; Marquering, H A; Majoie, C B; VanBavel, E; Nederveen, A J

    2012-01-01

    The aim of this study was to validate the flow patterns measured by high-resolution, time-resolved, three-dimensional phase contrast MRI in a real-size intracranial aneurysm phantom. Retrospectively gated three-dimensional phase contrast MRI was performed in an intracranial aneurysm phantom at a resolution of 0.2 × 0.2 × 0.3 mm(3) in a solenoid rat coil. Both steady and pulsatile flows were applied. The phase contrast MRI measurements were compared with particle image velocimetry measurements and computational fluid dynamics simulations. A quantitative comparison was performed by calculating the differences between the magnitude of the velocity vectors and angles between the velocity vectors in corresponding voxels. Qualitative analysis of the results was executed by visual inspection and comparison of the flow patterns. The root-mean-square errors of the velocity magnitude in the comparison between phase contrast MRI and computational fluid dynamics were 5% and 4% of the maximum phase contrast MRI velocity, and the medians of the angle distribution between corresponding velocity vectors were 16° and 14° for the steady and pulsatile measurements, respectively. In the phase contrast MRI and particle image velocimetry comparison, the root-mean-square errors were 12% and 10% of the maximum phase contrast MRI velocity, and the medians of the angle distribution between corresponding velocity vectors were 19° and 15° for the steady and pulsatile measurements, respectively. Good agreement was found in the qualitative comparison of flow patterns between the phase contrast MRI measurements and both particle image velocimetry measurements and computational fluid dynamics simulations. High-resolution, time-resolved, three-dimensional phase contrast MRI can accurately measure complex flow patterns in an intracranial aneurysm phantom. Copyright © 2011 John Wiley & Sons, Ltd.

  2. A compressed sensing based reconstruction algorithm for synchrotron source propagation-based X-ray phase contrast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Melli, Seyed Ali, E-mail: sem649@mail.usask.ca [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Wahid, Khan A. [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Babyn, Paul [Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK (Canada); Montgomery, James [College of Medicine, University of Saskatchewan, Saskatoon, SK (Canada); Snead, Elisabeth [Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK (Canada); El-Gayed, Ali [College of Medicine, University of Saskatchewan, Saskatoon, SK (Canada); Pettitt, Murray; Wolkowski, Bailey [College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK (Canada); Wesolowski, Michal [Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK (Canada)

    2016-01-11

    Synchrotron source propagation-based X-ray phase contrast computed tomography is increasingly used in pre-clinical imaging. However, it typically requires a large number of projections, and subsequently a large radiation dose, to produce high quality images. To improve the applicability of this imaging technique, reconstruction algorithms that can reduce the radiation dose and acquisition time without degrading image quality are needed. The proposed research focused on using a novel combination of Douglas–Rachford splitting and randomized Kaczmarz algorithms to solve large-scale total variation based optimization in a compressed sensing framework to reconstruct 2D images from a reduced number of projections. Visual assessment and quantitative performance evaluations of a synthetic abdomen phantom and real reconstructed image of an ex-vivo slice of canine prostate tissue demonstrate that the proposed algorithm is competitive in reconstruction process compared with other well-known algorithms. An additional potential benefit of reducing the number of projections would be reduction of time for motion artifact to occur if the sample moves during image acquisition. Use of this reconstruction algorithm to reduce the required number of projections in synchrotron source propagation-based X-ray phase contrast computed tomography is an effective form of dose reduction that may pave the way for imaging of in-vivo samples.

  3. Geometric calibration and correction for a lens-coupled detector in x-ray phase-contrast imaging.

    Science.gov (United States)

    George, Alex; Chen, Peter Y; Morales-Martinez, Alejandro; Panna, Alireza; Gomella, Andrew A; Bennett, Eric E; Wen, Han

    2017-01-01

    A lens-coupled x-ray camera with a tilted phosphor collects light emission from the x-ray illuminated (front) side of phosphor. Experimentally, it has been shown to double x-ray photon capture efficiency and triple the spatial resolution along the phosphor tilt direction relative to the same detector at normal phosphor incidence. These characteristics benefit grating-based phase-contrast methods, where linear interference fringes need to be clearly resolved. However, both the shallow incident angle on the phosphor and lens aberrations of the camera cause geometric distortions. When tiling multiple images of limited vertical view into a full-field image, geometric distortion causes blurring due to image misregistration. Here, we report a procedure of geometric correction based on global polynomial transformation of image coordinates. The corrected image is equivalent to one obtained with a single full-field flat panel detector placed at the sample plane. In a separate evaluation scan, the position deviations in the horizontal and vertical directions were reduced from 0.76 and 0.028 mm, respectively, to 0.006 and 0.009 mm, respectively, by the correction procedure, which were below the 0.028-mm pixel size of the imaging system. In a demonstration of a phase-contrast imaging experiment, the correction reduced blurring of small structures.

  4. Equilibrium-phase MR angiography: Comparison of unspecific extracellular and protein-binding gadolinium-based contrast media with respect to image quality.

    Science.gov (United States)

    Erb-Eigner, Katharina; Taupitz, Matthias; Asbach, Patrick

    2016-01-01

    The purpose of this study was to compare contrast and image quality of whole-body equilibrium-phase high-spatial-resolution MR angiography using a non-protein-binding unspecific extracellular gadolinium-based contrast medium with that of two contrast media with different protein-binding properties. 45 patients were examined using either 15 mL of gadobutrol (non-protein-binding, n = 15), 32 mL of gadobenate dimeglumine (weakly protein binding, n = 15) or 11 mL gadofosveset trisodium (protein binding, n = 15) followed by equilibrium-phase high-spatial-resolution MR-angiography of four consecutive anatomic regions. The time elapsed between the contrast injection and the beginning of the equilibrium-phase image acquisition in the respective region was measured and was up to 21 min. Signal intensity was measured in two vessels per region and in muscle tissue. Relative contrast (RC) values were calculated. Vessel contrast, artifacts and image quality were rated by two radiologists in consensus on a five-point scale. Compared with gadobutrol, gadofosveset trisodium revealed significantly higher RC values only when acquired later than 15 min after bolus injection. Otherwise, no significant differences between the three contrast media were found regarding vascular contrast and image quality. Equilibrium-phase high-spatial-resolution MR-angiography using a weakly protein-binding or even non-protein-binding contrast medium is equivalent to using a stronger protein-binding contrast medium when image acquisition is within the first 15 min after contrast injection, and allows depiction of the vasculature with high contrast and image quality. The protein-binding contrast medium was superior for imaging only later than 15 min after contrast medium injection.

  5. Using X-ray in-line phase-contrast imaging for the investigation of nude mouse hepatic tumors.

    Science.gov (United States)

    Tao, Qiang; Li, Dongyue; Zhang, Lu; Luo, Shuqian

    2012-01-01

    The purpose of this paper is to report the noninvasive imaging of hepatic tumors without contrast agents. Both normal tissues and tumor tissues can be detected, and tumor tissues in different stages can be classified quantitatively. We implanted BEL-7402 human hepatocellular carcinoma cells into the livers of nude mice and then imaged the livers using X-ray in-line phase-contrast imaging (ILPCI). The projection images' texture feature based on gray level co-occurrence matrix (GLCM) and dual-tree complex wavelet transforms (DTCWT) were extracted to discriminate normal tissues and tumor tissues. Different stages of hepatic tumors were classified using support vector machines (SVM). Images of livers from nude mice sacrificed 6 days after inoculation with cancer cells show diffuse distribution of the tumor tissue, but images of livers from nude mice sacrificed 9, 12, or 15 days after inoculation with cancer cells show necrotic lumps in the tumor tissue. The results of the principal component analysis (PCA) of the texture features based on GLCM of normal regions were positive, but those of tumor regions were negative. The results of PCA of the texture features based on DTCWT of normal regions were greater than those of tumor regions. The values of the texture features in low-frequency coefficient images increased monotonically with the growth of the tumors. Different stages of liver tumors can be classified using SVM, and the accuracy is 83.33%. Noninvasive and micron-scale imaging can be achieved by X-ray ILPCI. We can observe hepatic tumors and small vessels from the phase-contrast images. This new imaging approach for hepatic cancer is effective and has potential use in the early detection and classification of hepatic tumors.

  6. Using X-ray in-line phase-contrast imaging for the investigation of nude mouse hepatic tumors.

    Directory of Open Access Journals (Sweden)

    Qiang Tao

    Full Text Available The purpose of this paper is to report the noninvasive imaging of hepatic tumors without contrast agents. Both normal tissues and tumor tissues can be detected, and tumor tissues in different stages can be classified quantitatively. We implanted BEL-7402 human hepatocellular carcinoma cells into the livers of nude mice and then imaged the livers using X-ray in-line phase-contrast imaging (ILPCI. The projection images' texture feature based on gray level co-occurrence matrix (GLCM and dual-tree complex wavelet transforms (DTCWT were extracted to discriminate normal tissues and tumor tissues. Different stages of hepatic tumors were classified using support vector machines (SVM. Images of livers from nude mice sacrificed 6 days after inoculation with cancer cells show diffuse distribution of the tumor tissue, but images of livers from nude mice sacrificed 9, 12, or 15 days after inoculation with cancer cells show necrotic lumps in the tumor tissue. The results of the principal component analysis (PCA of the texture features based on GLCM of normal regions were positive, but those of tumor regions were negative. The results of PCA of the texture features based on DTCWT of normal regions were greater than those of tumor regions. The values of the texture features in low-frequency coefficient images increased monotonically with the growth of the tumors. Different stages of liver tumors can be classified using SVM, and the accuracy is 83.33%. Noninvasive and micron-scale imaging can be achieved by X-ray ILPCI. We can observe hepatic tumors and small vessels from the phase-contrast images. This new imaging approach for hepatic cancer is effective and has potential use in the early detection and classification of hepatic tumors.

  7. General Electric ATS program technical review: Phase 2 activities

    Energy Technology Data Exchange (ETDEWEB)

    Chance, T. [GE Power Generation, Schenectady, NY (United States); Smith, D. [GE Corporate Research & Development Center, Schenectady, NY (United States)

    1995-10-01

    In response to the industrial and utility objectives specified for the ATS, the GE Power Generation ATS Phase 2 Program consisted of a dual approach. These were (1) development of an Industrial ATS (aircraft engine based) led by GE Aircraft Engines, and (2) development of a Utility ATS which was already underway at GEPG. Both programs required the identification and resolution of critical technical issues. Both systems were studied in Tasks 3-7, and both have resulted in designs that meet all ATS goals. The Industrial ATS as defined (130 MW) did not meet projected market power size requirements, and emphasis has remained on the Utility ATS development. The design and testing effort has been focused on the MS7001H combined cycle gas turbine, as the next product evolution in GE Power Generation`s product line. Common technology derived from the ATS Program is also being incorporated into the 50 Hz version of the ATS utility machine designated as the MS9001H.

  8. Conditional-likelihood approach to material decomposition in spectral absorption-based or phase-contrast CT

    Science.gov (United States)

    Baturin, Pavlo

    2015-03-01

    Material decomposition in absorption-based X-ray CT imaging suffers certain inefficiencies when differentiating among soft tissue materials. To address this problem, decomposition techniques turn to spectral CT, which has gained popularity over the last few years. Although proven to be more effective, such techniques are primarily limited to the identification of contrast agents and soft and bone-like materials. In this work, we introduce a novel conditional likelihood, material-decomposition method capable of identifying any type of material objects scanned by spectral CT. The method takes advantage of the statistical independence of spectral data to assign likelihood values to each of the materials on a pixel-by-pixel basis. It results in likelihood images for each material, which can be further processed by setting certain conditions or thresholds, to yield a final material-diagnostic image. The method can also utilize phase-contrast CT (PCI) data, where measured absorption and phase-shift information can be treated as statistically independent datasets. In this method, the following cases were simulated: (i) single-scan PCI CT, (ii) spectral PCI CT, (iii) absorption-based spectral CT, and (iv) single-scan PCI CT with an added tumor mass. All cases were analyzed using a digital breast phantom; although, any other objects or materials could be used instead. As a result, all materials were identified, as expected, according to their assignment in the digital phantom. Materials with similar attenuation or phase-shift values (e.g., glandular tissue, skin, and tumor masses) were especially successfully when differentiated by the likelihood approach.

  9. Generalized Ginzburg–Landau approach to inhomogeneous phases in nonlocal chiral quark models

    Energy Technology Data Exchange (ETDEWEB)

    Carlomagno, J.P. [IFLP, CONICET – Dpto. de Física, FCE, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Gómez Dumm, D., E-mail: dumm@fisica.unlp.edu.ar [IFLP, CONICET – Dpto. de Física, FCE, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Scoccola, N.N. [CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Physics Department, Comisión Nacional de Energía Atómica, Av. Libertador 8250, 1429 Buenos Aires (Argentina); Universidad Favaloro, Solís 453, 1078 Buenos Aires (Argentina)

    2015-05-18

    We analyze the presence of inhomogeneous phases in the QCD phase diagram within the framework of nonlocal chiral quark models. We concentrate in particular in the positions of the tricritical (TCP) and Lifshitz (LP) points, which are studied in a general context using a generalized Ginzburg–Landau approach. We find that for all the phenomenologically acceptable model parametrizations considered the TCP is located at a higher temperature and a lower chemical potential in comparison with the LP. Consequently, these models seem to favor a scenario in which the onset of the first order transition between homogeneous phases is not covered by an inhomogeneous, energetically favored phase.

  10. Improving the training process of highly skilled bodybuilders in the preparatory period, general preparatory phase

    Directory of Open Access Journals (Sweden)

    Olexandr Tyhorskyy

    2015-08-01

    Full Text Available Purpose: to improve the method of training highly skilled bodybuilders during the general preparatory phase. Material and Methods: the study involved eight highly skilled athletes, members of the team of Ukraine on bodybuilding. Results: comparative characteristics of the most commonly used methods of training process in bodybuilding. Developed and substantiated the optimal method of training highly skilled bodybuilders during the general preparatory phase of the preparatory period, which can increase body weight through muscle athletes component. Conclusions: based on studies, recommended the optimum method of training highly skilled bodybuilders depending on mezotsykles and microcycles general preparatory phase

  11. A feasibility study of X-ray phase-contrast mammographic tomography at the Imaging and Medical beamline of the Australian Synchrotron.

    Science.gov (United States)

    Nesterets, Yakov I; Gureyev, Timur E; Mayo, Sheridan C; Stevenson, Andrew W; Thompson, Darren; Brown, Jeremy M C; Kitchen, Marcus J; Pavlov, Konstantin M; Lockie, Darren; Brun, Francesco; Tromba, Giuliana

    2015-11-01

    Results are presented of a recent experiment at the Imaging and Medical beamline of the Australian Synchrotron intended to contribute to the implementation of low-dose high-sensitivity three-dimensional mammographic phase-contrast imaging, initially at synchrotrons and subsequently in hospitals and medical imaging clinics. The effect of such imaging parameters as X-ray energy, source size, detector resolution, sample-to-detector distance, scanning and data processing strategies in the case of propagation-based phase-contrast computed tomography (CT) have been tested, quantified, evaluated and optimized using a plastic phantom simulating relevant breast-tissue characteristics. Analysis of the data collected using a Hamamatsu CMOS Flat Panel Sensor, with a pixel size of 100 µm, revealed the presence of propagation-based phase contrast and demonstrated significant improvement of the quality of phase-contrast CT imaging compared with conventional (absorption-based) CT, at medically acceptable radiation doses.

  12. 4D phase contrast flow imaging for in-stent flow visualization and assessment of stent patency in peripheral vascular stents – A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Bunck, Alexander C., E-mail: alexander.bunck@uk-koeln.de [Department of Clinical Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Muenster (Germany); Department of Radiology, University Hospital Cologne, Kerpener Strasse 62, 50937 Cologne (Germany); Jüttner, Alena, E-mail: alenajuettner@gmx.de [Department of Clinical Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Muenster (Germany); Kröger, Jan Robert, E-mail: jr.kroeger@uni-muenster.de [Department of Clinical Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Muenster (Germany); Burg, Matthias C., E-mail: m_burg03@uni-muenster.de [Department of Clinical Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Muenster (Germany); Kugel, Harald, E-mail: kugel@uni-muenster.de [Department of Clinical Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Muenster (Germany); Niederstadt, Thomas, E-mail: tnieders@uni-muenster.de [Department of Clinical Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Muenster (Germany); Tiemann, Klaus, E-mail: Klaus.Tiemann@ukmuenster.de [Department of Cardiology and Angiology, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Muenster (Germany); Schnackenburg, Bernhard, E-mail: bernhard.schnackenburg@philips.com [Philips Medical Systems DMC GmbH, Röntgenstraße 24, 22335 Hamburg (Germany); Crelier, Gerard R., E-mail: crelier@biomed.ee.ethz.ch [Institute for Biomedical Engineering, ETH and University of Zurich, ETZ F 95, Gloriastrasse 35, 8092 Zurich (Switzerland); and others

    2012-09-15

    Purpose: 4D phase contrast flow imaging is increasingly used to study the hemodynamics in various vascular territories and pathologies. The aim of this study was to assess the feasibility and validity of MRI based 4D phase contrast flow imaging for the evaluation of in-stent blood flow in 17 commonly used peripheral stents. Materials and methods: 17 different peripheral stents were implanted into a MR compatible flow phantom. In-stent visibility, maximal velocity and flow visualization were assessed and estimates of in-stent patency obtained from 4D phase contrast flow data sets were compared to a conventional 3D contrast-enhanced magnetic resonance angiography (CE-MRA) as well as 2D PC flow measurements. Results: In all but 3 of the tested stents time-resolved 3D particle traces could be visualized inside the stent lumen. Quality of 4D flow visualization and CE-MRA images depended on stent type and stent orientation relative to the magnetic field. Compared to the visible lumen area determined by 3D CE-MRA, estimates of lumen patency derived from 4D flow measurements were significantly higher and less dependent on stent type. A higher number of stents could be assessed for in-stent patency by 4D phase contrast flow imaging (n = 14) than by 2D phase contrast flow imaging (n = 10). Conclusions: 4D phase contrast flow imaging in peripheral vascular stents is feasible and appears advantageous over conventional 3D contrast-enhanced MR angiography and 2D phase contrast flow imaging. It allows for in-stent flow visualization and flow quantification with varying quality depending on stent type.

  13. Light beams with general direction and polarization: Global description and geometric phase

    Energy Technology Data Exchange (ETDEWEB)

    Nityananda, R., E-mail: rajaram@ncra.tifr.res.in [TIFR Centre for Interdisciplinary Sciences, 21, Brundavan colony, Narsingi, Hyderabad 500 089 (India); National Centre for Radio Astrophysics, TIFR, Pune 411 007 (India); Sridhar, S., E-mail: ssridhar@rri.res.in [Raman Research Institute, Sadashivanagar, Bangalore 560 080 (India)

    2014-02-15

    We construct the manifold describing the family of plane monochromatic light waves with all directions, polarizations, phases and intensities. A smooth description of polarization, valid over the entire sphere S{sup 2} of directions, is given through the construction of an orthogonal basis pair of complex polarization vectors for each direction; any light beam is then uniquely and smoothly specified by giving its direction and two complex amplitudes. This implies that the space of all light beams is the six dimensional manifold S{sup 2}×C{sup 2}∖(0), the (untwisted) Cartesian product of a sphere and a two dimensional complex vector space minus the origin. A Hopf map (i.e. mapping the two complex amplitudes to the Stokes parameters) then leads to the four dimensional manifold S{sup 2}×S{sup 2} which describes beams with all directions and polarization states. This product of two spheres can be viewed as an ordered pair of two points on a single sphere, in contrast to earlier work in which the same system was represented using Majorana’s mapping of the states of a spin one quantum system to an unordered pair of points on a sphere. This is a different manifold, CP{sup 2}, two dimensional complex projective space, which does not faithfully represent the full space of all directions and polarizations. Following the now-standard framework, we exhibit the fibre bundle whose total space is the set of all light beams of non-zero intensity, and base space S{sup 2}×S{sup 2}. We give the U(1) connection which determines the geometric phase as the line integral of a one-form along a closed curve in the total space. Bases are classified as globally smooth, global but singular, and local, with the last type of basis being defined only when the curve traversed by the system is given. Existing as well as new formulae for the geometric phase are presented in this overall framework. -- Highlights: • We construct a polarization basis for light which is smooth in all

  14. 3-D growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast X-ray tomography

    DEFF Research Database (Denmark)

    Herbig, M.; King, Andrew; Reischig, Peter;

    2011-01-01

    X-ray diffraction contrast tomography is a recently developed, non-destructive synchrotron imaging technique which characterizes microstructure and grain orientation in polycrystalline materials in three dimensions. By combining it with propagation-based phase-contrast tomography it is possible...

  15. Degradation of Li/S Battery Electrodes On 3D Current Collectors Studied Using X-ray Phase Contrast Tomography.

    Science.gov (United States)

    Zielke, L; Barchasz, C; Waluś, S; Alloin, F; Leprêtre, J-C; Spettl, A; Schmidt, V; Hilger, A; Manke, I; Banhart, J; Zengerle, R; Thiele, S

    2015-06-04

    Lithium/sulphur batteries are promising candidates for future energy storage systems, mainly due to their high potential capacity. However low sulphur utilization and capacity fading hinder practical realizations. In order to improve understanding of the system, we investigate Li/S electrode morphology changes for different ageing steps, using X-ray phase contrast tomography. Thereby we find a strong decrease of sulphur loading after the first cycle, and a constant loading of about 15% of the initial loading afterwards. While cycling, the mean sulphur particle diameters decrease in a qualitatively similar fashion as the discharge capacity fades. The particles spread, migrate into the current collector and accumulate in the upper part again. Simultaneously sulphur particles lose contact area with the conducting network but regain it after ten cycles because their decreasing size results in higher surface areas. Since the capacity s