WorldWideScience

Sample records for generalized information theory

  1. Client-Controlled Case Information: A General System Theory Perspective

    Science.gov (United States)

    Fitch, Dale

    2004-01-01

    The author proposes a model for client control of case information via the World Wide Web built on principles of general system theory. It incorporates the client into the design, resulting in an information structure that differs from traditional human services information-sharing practices. Referencing general system theory, the concepts of…

  2. Client-controlled case information: a general system theory perspective.

    Science.gov (United States)

    Fitch, Dale

    2004-07-01

    The author proposes a model for client control of case information via the World Wide Web built on principles of general system theory. It incorporates the client into the design, resulting in an information structure that differs from traditional human services information-sharing practices. Referencing general system theory, the concepts of controller and controlled system, as well as entropy and negentropy, are applied to the information flow and autopoietic behavior as they relate to the boundary-maintaining functions of today's organizations. The author's conclusions synthesize general system theory and human services values to lay the foundation for an information-sharing framework for human services in the 21st century.

  3. Generalized information theory: aims, results, and open problems

    International Nuclear Information System (INIS)

    Klir, George J.

    2004-01-01

    The principal purpose of this paper is to present a comprehensive overview of generalized information theory (GIT): a research program whose objective is to develop a broad treatment of uncertainty-based information, not restricted to classical notions of uncertainty. After a brief overview of classical information theories, a broad framework for formalizing uncertainty and the associated uncertainty-based information of a great spectrum of conceivable types is sketched. The various theories of imprecise probabilities that have already been developed within this framework are then surveyed, focusing primarily on some important unifying principles applying to all these theories. This is followed by introducing two higher levels of the theories of imprecise probabilities: (i) the level of measuring the amount of relevant uncertainty (predictive, retrodictive, prescriptive, diagnostic, etc.) in any situation formalizable in each given theory, and (ii) the level of some methodological principles of uncertainty, which are contingent upon the capability to measure uncertainty and the associated uncertainty-based information. Various issues regarding both the measurement of uncertainty and the uncertainty principles are discussed. Again, the focus is on unifying principles applicable to all the theories. Finally, the current status of GIT is assessed and future research in the area is discussed

  4. AN EDUCATIONAL THEORY MODEL--(SIGGS), AN INTEGRATION OF SET THEORY, INFORMATION THEORY, AND GRAPH THEORY WITH GENERAL SYSTEMS THEORY.

    Science.gov (United States)

    MACCIA, ELIZABETH S.; AND OTHERS

    AN ANNOTATED BIBLIOGRAPHY OF 20 ITEMS AND A DISCUSSION OF ITS SIGNIFICANCE WAS PRESENTED TO DESCRIBE CURRENT UTILIZATION OF SUBJECT THEORIES IN THE CONSTRUCTION OF AN EDUCATIONAL THEORY. ALSO, A THEORY MODEL WAS USED TO DEMONSTRATE CONSTRUCTION OF A SCIENTIFIC EDUCATIONAL THEORY. THE THEORY MODEL INCORPORATED SET THEORY (S), INFORMATION THEORY…

  5. Entropy and information causality in general probabilistic theories

    International Nuclear Information System (INIS)

    Barnum, Howard; Leifer, Matthew; Spekkens, Robert; Barrett, Jonathan; Clark, Lisa Orloff; Stepanik, Nicholas; Wilce, Alex; Wilke, Robin

    2010-01-01

    We investigate the concept of entropy in probabilistic theories more general than quantum mechanics, with particular reference to the notion of information causality (IC) recently proposed by Pawlowski et al (2009 arXiv:0905.2292). We consider two entropic quantities, which we term measurement and mixing entropy. In the context of classical and quantum theory, these coincide, being given by the Shannon and von Neumann entropies, respectively; in general, however, they are very different. In particular, while measurement entropy is easily seen to be concave, mixing entropy need not be. In fact, as we show, mixing entropy is not concave whenever the state space is a non-simplicial polytope. Thus, the condition that measurement and mixing entropies coincide is a strong constraint on possible theories. We call theories with this property monoentropic. Measurement entropy is subadditive, but not in general strongly subadditive. Equivalently, if we define the mutual information between two systems A and B by the usual formula I(A: B)=H(A)+H(B)-H(AB), where H denotes the measurement entropy and AB is a non-signaling composite of A and B, then it can happen that I(A:BC)< I(A:B). This is relevant to IC in the sense of Pawlowski et al: we show that any monoentropic non-signaling theory in which measurement entropy is strongly subadditive, and also satisfies a version of the Holevo bound, is informationally causal, and on the other hand we observe that Popescu-Rohrlich boxes, which violate IC, also violate strong subadditivity. We also explore the interplay between measurement and mixing entropy and various natural conditions on theories that arise in quantum axiomatics.

  6. Regulative feedback in pattern formation: towards a general relativistic theory of positional information.

    Science.gov (United States)

    Jaeger, Johannes; Irons, David; Monk, Nick

    2008-10-01

    Positional specification by morphogen gradients is traditionally viewed as a two-step process. A gradient is formed and then interpreted, providing a spatial metric independent of the target tissue, similar to the concept of space in classical mechanics. However, the formation and interpretation of gradients are coupled, dynamic processes. We introduce a conceptual framework for positional specification in which cellular activity feeds back on positional information encoded by gradients, analogous to the feedback between mass-energy distribution and the geometry of space-time in Einstein's general theory of relativity. We discuss how such general relativistic positional information (GRPI) can guide systems-level approaches to pattern formation.

  7. The application of foraging theory to the information searching behaviour of general practitioners.

    Science.gov (United States)

    Dwairy, Mai; Dowell, Anthony C; Stahl, Jean-Claude

    2011-08-23

    General Practitioners (GPs) employ strategies to identify and retrieve medical evidence for clinical decision making which take workload and time constraints into account. Optimal Foraging Theory (OFT) initially developed to study animal foraging for food is used to explore the information searching behaviour of General Practitioners. This study is the first to apply foraging theory within this context.Study objectives were: 1. To identify the sequence and steps deployed in identifiying and retrieving evidence for clinical decision making. 2. To utilise Optimal Foraging Theory to assess the effectiveness and efficiency of General Practitioner information searching. GPs from the Wellington region of New Zealand were asked to document in a pre-formatted logbook the steps and outcomes of an information search linked to their clinical decision making, and fill in a questionnaire about their personal, practice and information-searching backgrounds. A total of 115/155 eligible GPs returned a background questionnaire, and 71 completed their information search logbook. GPs spent an average of 17.7 minutes addressing their search for clinical information. Their preferred information sources were discussions with colleagues (38% of sources) and books (22%). These were the two most profitable information foraging sources (15.9 min and 9.5 min search time per answer, compared to 34.3 minutes in databases). GPs nearly always accessed another source when unsuccessful (95% after 1st source), and frequently when successful (43% after 2nd source). Use of multiple sources accounted for 41% of searches, and increased search success from 70% to 89%. By consulting in foraging terms the most 'profitable' sources of information (colleagues, books), rapidly switching sources when unsuccessful, and frequently double checking, GPs achieve an efficient trade-off between maximizing search success and information reliability, and minimizing searching time. As predicted by foraging theory, GPs

  8. The application of foraging theory to the information searching behaviour of general practitioners

    Directory of Open Access Journals (Sweden)

    Dowell Anthony C

    2011-08-01

    Full Text Available Abstract Background General Practitioners (GPs employ strategies to identify and retrieve medical evidence for clinical decision making which take workload and time constraints into account. Optimal Foraging Theory (OFT initially developed to study animal foraging for food is used to explore the information searching behaviour of General Practitioners. This study is the first to apply foraging theory within this context. Study objectives were: 1. To identify the sequence and steps deployed in identifiying and retrieving evidence for clinical decision making. 2. To utilise Optimal Foraging Theory to assess the effectiveness and efficiency of General Practitioner information searching. Methods GPs from the Wellington region of New Zealand were asked to document in a pre-formatted logbook the steps and outcomes of an information search linked to their clinical decision making, and fill in a questionnaire about their personal, practice and information-searching backgrounds. Results A total of 115/155 eligible GPs returned a background questionnaire, and 71 completed their information search logbook. GPs spent an average of 17.7 minutes addressing their search for clinical information. Their preferred information sources were discussions with colleagues (38% of sources and books (22%. These were the two most profitable information foraging sources (15.9 min and 9.5 min search time per answer, compared to 34.3 minutes in databases. GPs nearly always accessed another source when unsuccessful (95% after 1st source, and frequently when successful (43% after 2nd source. Use of multiple sources accounted for 41% of searches, and increased search success from 70% to 89%. Conclusions By consulting in foraging terms the most 'profitable' sources of information (colleagues, books, rapidly switching sources when unsuccessful, and frequently double checking, GPs achieve an efficient trade-off between maximizing search success and information reliability, and

  9. Uncertainty Quantification of Composite Laminate Damage with the Generalized Information Theory

    Energy Technology Data Exchange (ETDEWEB)

    J. Lucero; F. Hemez; T. Ross; K.Kline; J.Hundhausen; T. Tippetts

    2006-05-01

    This work presents a survey of five theories to assess the uncertainty of projectile impact induced damage on multi-layered carbon-epoxy composite plates. Because the types of uncertainty dealt with in this application are multiple (variability, ambiguity, and conflict) and because the data sets collected are sparse, characterizing the amount of delamination damage with probability theory alone is possible but incomplete. This motivates the exploration of methods contained within a broad Generalized Information Theory (GIT) that rely on less restrictive assumptions than probability theory. Probability, fuzzy sets, possibility, and imprecise probability (probability boxes (p-boxes) and Dempster-Shafer) are used to assess the uncertainty in composite plate damage. Furthermore, this work highlights the usefulness of each theory. The purpose of the study is not to compare directly the different GIT methods but to show that they can be deployed on a practical application and to compare the assumptions upon which these theories are based. The data sets consist of experimental measurements and finite element predictions of the amount of delamination and fiber splitting damage as multilayered composite plates are impacted by a projectile at various velocities. The physical experiments consist of using a gas gun to impact suspended plates with a projectile accelerated to prescribed velocities, then, taking ultrasound images of the resulting delamination. The nonlinear, multiple length-scale numerical simulations couple local crack propagation implemented through cohesive zone modeling to global stress-displacement finite element analysis. The assessment of damage uncertainty is performed in three steps by, first, considering the test data only; then, considering the simulation data only; finally, performing an assessment of total uncertainty where test and simulation data sets are combined. This study leads to practical recommendations for reducing the uncertainty and

  10. Generalized Information Theory Meets Human Cognition: Introducing a Unified Framework to Model Uncertainty and Information Search.

    Science.gov (United States)

    Crupi, Vincenzo; Nelson, Jonathan D; Meder, Björn; Cevolani, Gustavo; Tentori, Katya

    2018-06-17

    Searching for information is critical in many situations. In medicine, for instance, careful choice of a diagnostic test can help narrow down the range of plausible diseases that the patient might have. In a probabilistic framework, test selection is often modeled by assuming that people's goal is to reduce uncertainty about possible states of the world. In cognitive science, psychology, and medical decision making, Shannon entropy is the most prominent and most widely used model to formalize probabilistic uncertainty and the reduction thereof. However, a variety of alternative entropy metrics (Hartley, Quadratic, Tsallis, Rényi, and more) are popular in the social and the natural sciences, computer science, and philosophy of science. Particular entropy measures have been predominant in particular research areas, and it is often an open issue whether these divergences emerge from different theoretical and practical goals or are merely due to historical accident. Cutting across disciplinary boundaries, we show that several entropy and entropy reduction measures arise as special cases in a unified formalism, the Sharma-Mittal framework. Using mathematical results, computer simulations, and analyses of published behavioral data, we discuss four key questions: How do various entropy models relate to each other? What insights can be obtained by considering diverse entropy models within a unified framework? What is the psychological plausibility of different entropy models? What new questions and insights for research on human information acquisition follow? Our work provides several new pathways for theoretical and empirical research, reconciling apparently conflicting approaches and empirical findings within a comprehensive and unified information-theoretic formalism. Copyright © 2018 Cognitive Science Society, Inc.

  11. A generalization of the theory of fringe patterns containing displacement information

    Science.gov (United States)

    Sciammarella, C. A.; Bhat, G.

    The theory that provides the interpretation of interferometric fringes as frequency modulated signals, is used to show that the electrooptical system used to analyze fringe patterns can be considered as a simultaneous Fourier spectrum analyzer. This interpretation generalizes the quasi-heterodyning techniques. It is pointed out that the same equations that yield the discrete Fourier transform as summations, yield correct values for a reduced number of steps. Examples of application of the proposed technique to electronic holography are given. It is found that for a uniform field the standard deviation of the individual readings is 1/20 of the fringe spacing.

  12. Generally covariant gauge theories

    International Nuclear Information System (INIS)

    Capovilla, R.

    1992-01-01

    A new class of generally covariant gauge theories in four space-time dimensions is investigated. The field variables are taken to be a Lie algebra valued connection 1-form and a scalar density. Modulo an important degeneracy, complex [euclidean] vacuum general relativity corresponds to a special case in this class. A canonical analysis of the generally covariant gauge theories with the same gauge group as general relativity shows that they describe two degrees of freedom per space point, qualifying therefore as a new set of neighbors of general relativity. The modification of the algebra of the constraints with respect to the general relativity case is computed; this is used in addressing the question of how general relativity stands out from its neighbors. (orig.)

  13. Generalized etale cohomology theories

    CERN Document Server

    Jardine, John F

    1997-01-01

    A generalized etale cohomology theory is a theory which is represented by a presheaf of spectra on an etale site for an algebraic variety, in analogy with the way an ordinary spectrum represents a cohomology theory for spaces. Examples include etale cohomology and etale K-theory. This book gives new and complete proofs of both Thomason's descent theorem for Bott periodic K-theory and the Nisnevich descent theorem. In doing so, it exposes most of the major ideas of the homotopy theory of presheaves of spectra, and generalized etale homology theories in particular. The treatment includes, for the purpose of adequately dealing with cup product structures, a development of stable homotopy theory for n-fold spectra, which is then promoted to the level of presheaves of n-fold spectra.   This book should be of interest to all researchers working in fields related to algebraic K-theory. The techniques presented here are essentially combinatorial, and hence algebraic. An extensive background in traditional stable hom...

  14. Generalized chiral perturbation theory

    International Nuclear Information System (INIS)

    Knecht, M.; Stern, J.

    1994-01-01

    The Generalized Chiral Perturbation Theory enlarges the framework of the standard χPT (Chiral Perturbation Theory), relaxing certain assumptions which do not necessarily follow from QCD or from experiment, and which are crucial for the usual formulation of the low energy expansion. In this way, experimental tests of the foundations of the standard χPT become possible. Emphasis is put on physical aspects rather than on formal developments of GχPT. (author). 31 refs

  15. Generalized G-theory

    International Nuclear Information System (INIS)

    Sladkowski, J.

    1991-01-01

    Various attempts to formulate the fundamental physical interactions in the framework of unified geometric theories have recently gained considerable success (Kaluza, 1921; Klein, 1926; Trautmann, 1970; Cho, 1975). Symmetries of the spacetime and so-called internal spaces seem to play a key role in investigating both the fundamental interactions and the abundance of elementary particles. The author presents a category-theoretic description of a generalization of the G-theory concept and its application to geometric compactification and dimensional reduction. The main reasons for using categories and functors as tools are the clearness and the level of generalization one can obtain

  16. General Practitioners' and patients' perceptions towards stratified care: a theory informed investigation.

    Science.gov (United States)

    Saunders, Benjamin; Bartlam, Bernadette; Foster, Nadine E; Hill, Jonathan C; Cooper, Vince; Protheroe, Joanne

    2016-08-31

    general practice when intervening to support GPs to make changes to their clinical behaviour. Findings will inform further stages of the research programme; specifically, the intervention format and content of support packages for GPs participating in a future randomised controlled trial (RCT). This study also contributes to the theoretical debate on how best to encourage clinical behaviour change in general practice, and the possible role of the TDF in that process.

  17. Gravity, general relativity theory and alternative theories

    International Nuclear Information System (INIS)

    Zel'dovich, Ya.B.; Grishchuk, L.P.; Moskovskij Gosudarstvennyj Univ.

    1986-01-01

    The main steps in plotting the current gravitation theory and some prospects of its subsequent development are reviewed. The attention is concentrated on a comparison of the relativistic gravitational field with other physical fields. Two equivalent formulations of the general relativity (GR) - geometrical and field-theoretical - are considered in detail. It is shown that some theories of gravity constructed as the field theories at a flat background space-time are in fact just different formulations of GR and not alternative theories

  18. Science and information theory

    CERN Document Server

    Brillouin, Léon

    1962-01-01

    A classic source for exploring the connections between information theory and physics, this text is geared toward upper-level undergraduates and graduate students. The author, a giant of 20th-century mathematics, applies the principles of information theory to a variety of issues, including Maxwell's demon, thermodynamics, and measurement problems. 1962 edition.

  19. Labor Informality: General Causes

    Directory of Open Access Journals (Sweden)

    Gustavo Sandoval Betancour

    2016-04-01

    Full Text Available The article examines the main causes of labor informality in order to verify the validity of classical theories that explain unemployment in market economies and its relationship to informality. Methodologically, the project was based, in the empirical part, on international statistics, comparing the evolution of labor market structure in a combined sample of highly industrialized countries and other less industrialized ones. Empirical evidence supports the conclusion that the classical economic theory of Marxist origin is inefficient to explain the causes of unemployment in contemporary market economies, as well as it fails to satisfactorily explain informality. On the contrary, we conclude that the theory in question is more relevant to explain informality in centrally planned economies where this phenomenon has been present even more significantly than in free market economies.

  20. Quantum information and general relativity

    International Nuclear Information System (INIS)

    Peres, A.

    2004-01-01

    The Einstein-Podolsky-Rosen paradox (1935) is reexamined in the light of Shannon's information theory (1948). The EPR argument did not take into account that the observers' information was localized, like any other physical object. General relativity introduces new problems: there are horizons which act as on-way membranes for the propagation of quantum information, in particular black holes which act like sinks. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  1. Quantum information and general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Peres, A. [Technion, Israel Institute of Technology, Haifa (Israel)

    2004-12-01

    The Einstein-Podolsky-Rosen paradox (1935) is reexamined in the light of Shannon's information theory (1948). The EPR argument did not take into account that the observers' information was localized, like any other physical object. General relativity introduces new problems: there are horizons which act as on-way membranes for the propagation of quantum information, in particular black holes which act like sinks. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  2. Quantum information and general relativity

    OpenAIRE

    Peres, Asher

    2004-01-01

    The Einstein-Podolsky-Rosen paradox (1935) is reexamined in the light of Shannon's information theory (1948). The EPR argument did not take into account that the observers' information was localized, like any other physical object. General relativity introduces new problems: there are horizons which act as one-way membranes for the propagation of quantum information, in particular black holes which act like sinks.

  3. Quantum information and general relativity

    Science.gov (United States)

    Peres, A.

    2004-11-01

    The Einstein-Podolsky-Rosen paradox (1935) is reexamined in the light of Shannon's information theory (1948). The EPR argument did not take into account that the observers' information was localized, like any other physical object. General relativity introduces new problems: there are horizons which act as on-way membranes for the propagation of quantum information, in particular black holes which act like sinks.

  4. Information Design Theories

    Science.gov (United States)

    Pettersson, Rune

    2014-01-01

    Information design has practical and theoretical components. As an academic discipline we may view information design as a combined discipline, a practical theory, or as a theoretical practice. So far information design has incorporated facts, influences, methods, practices, principles, processes, strategies, and tools from a large number of…

  5. Quantum biological information theory

    CERN Document Server

    Djordjevic, Ivan B

    2016-01-01

    This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...

  6. Theories of information behavior

    CERN Document Server

    Erdelez, Sandra; McKechnie, Lynne

    2005-01-01

    This unique book presents authoritative overviews of more than 70 conceptual frameworks for understanding how people seek, manage, share, and use information in different contexts. A practical and readable reference to both well-established and newly proposed theories of information behavior, the book includes contributions from 85 scholars from 10 countries. Each theory description covers origins, propositions, methodological implications, usage, links to related conceptual frameworks, and listings of authoritative primary and secondary references. The introductory chapters explain key concepts, theory–method connections, and the process of theory development.

  7. Chemical Speciation - General Information

    Science.gov (United States)

    This page includes general information about the Chemical Speciation Network that is not covered on the main page. Commonly visited documents, including calendars, site lists, and historical files for the program are listed here

  8. Tuberculosis: General Information

    Science.gov (United States)

    TB Elimination Tuberculosis: General Information What is TB? Tuberculosis (TB) is a disease caused by germs that are spread from person ... Viral Hepatitis, STD, and TB Prevention Division of Tuberculosis Elimination CS227840_A What Does a Positive Test ...

  9. Generalized field theory of gravitation

    International Nuclear Information System (INIS)

    Yilmaz, H.

    1976-01-01

    It is shown that if, on empirical grounds, one rules out the existence of cosmic fields of Dicke-Brans (scalar) and Will Nordvedt (vector, tensor) type, then the most general experimentally viable and theoretically reasonable theory of gravitation seems to be a LAMBDA-dependent generalization of Einstein and Yilmez theories, which reduces to the former for LAMBDA=0 and to the latter for LAMBDA=1

  10. Dynamic statistical information theory

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In recent years we extended Shannon static statistical information theory to dynamic processes and established a Shannon dynamic statistical information theory, whose core is the evolution law of dynamic entropy and dynamic information. We also proposed a corresponding Boltzmman dynamic statistical information theory. Based on the fact that the state variable evolution equation of respective dynamic systems, i.e. Fokker-Planck equation and Liouville diffusion equation can be regarded as their information symbol evolution equation, we derived the nonlinear evolution equations of Shannon dynamic entropy density and dynamic information density and the nonlinear evolution equations of Boltzmann dynamic entropy density and dynamic information density, that describe respectively the evolution law of dynamic entropy and dynamic information. The evolution equations of these two kinds of dynamic entropies and dynamic informations show in unison that the time rate of change of dynamic entropy densities is caused by their drift, diffusion and production in state variable space inside the systems and coordinate space in the transmission processes; and that the time rate of change of dynamic information densities originates from their drift, diffusion and dissipation in state variable space inside the systems and coordinate space in the transmission processes. Entropy and information have been combined with the state and its law of motion of the systems. Furthermore we presented the formulas of two kinds of entropy production rates and information dissipation rates, the expressions of two kinds of drift information flows and diffusion information flows. We proved that two kinds of information dissipation rates (or the decrease rates of the total information) were equal to their corresponding entropy production rates (or the increase rates of the total entropy) in the same dynamic system. We obtained the formulas of two kinds of dynamic mutual informations and dynamic channel

  11. Quantum information and relativity theory

    International Nuclear Information System (INIS)

    Peres, Asher; Terno, Daniel R.

    2004-01-01

    This article discusses the intimate relationship between quantum mechanics, information theory, and relativity theory. Taken together these are the foundations of present-day theoretical physics, and their interrelationship is an essential part of the theory. The acquisition of information from a quantum system by an observer occurs at the interface of classical and quantum physics. The authors review the essential tools needed to describe this interface, i.e., Kraus matrices and positive-operator-valued measures. They then discuss how special relativity imposes severe restrictions on the transfer of information between distant systems and the implications of the fact that quantum entropy is not a Lorentz-covariant concept. This leads to a discussion of how it comes about that Lorentz transformations of reduced density matrices for entangled systems may not be completely positive maps. Quantum field theory is, of course, necessary for a consistent description of interactions. Its structure implies a fundamental tradeoff between detector reliability and localizability. Moreover, general relativity produces new and counterintuitive effects, particularly when black holes (or, more generally, event horizons) are involved. In this more general context the authors discuss how most of the current concepts in quantum information theory may require a reassessment

  12. Constructor theory of information

    Science.gov (United States)

    Deutsch, David; Marletto, Chiara

    2015-01-01

    We propose a theory of information expressed solely in terms of which transformations of physical systems are possible and which are impossible—i.e. in constructor-theoretic terms. It includes conjectured, exact laws of physics expressing the regularities that allow information to be physically instantiated. Although these laws are directly about information, independently of the details of particular physical instantiations, information is not regarded as an a priori mathematical or logical concept, but as something whose nature and properties are determined by the laws of physics alone. This theory solves a problem at the foundations of existing information theory, namely that information and distinguishability are each defined in terms of the other. It also explains the relationship between classical and quantum information, and reveals the single, constructor-theoretic property underlying the most distinctive phenomena associated with the latter, including the lack of in-principle distinguishability of some states, the impossibility of cloning, the existence of pairs of variables that cannot simultaneously have sharp values, the fact that measurement processes can be both deterministic and unpredictable, the irreducible perturbation caused by measurement, and locally inaccessible information (as in entangled systems). PMID:25663803

  13. Essays in general equilibrium theory

    NARCIS (Netherlands)

    Konovalov, A.

    2001-01-01

    The thesis focuses on various issues of general equilibrium theory and can approximately be divided into three parts. The first part of the thesis studies generalized equilibria in the Arrow-Debreu model in the situation where the strong survival assumption is not satisfied. Chapter four deals with

  14. Wave theory of information

    CERN Document Server

    Franceschetti, Massimo

    2017-01-01

    Understand the relationship between information theory and the physics of wave propagation with this expert guide. Balancing fundamental theory with engineering applications, it describes the mechanism and limits for the representation and communication of information using electromagnetic waves. Information-theoretic laws relating functional approximation and quantum uncertainty principles to entropy, capacity, mutual information, rate distortion, and degrees of freedom of band-limited radiation are derived and explained. Both stochastic and deterministic approaches are explored, and applications for sensing and signal reconstruction, wireless communication, and networks of multiple transmitters and receivers are reviewed. With end-of-chapter exercises and suggestions for further reading enabling in-depth understanding of key concepts, it is the ideal resource for researchers and graduate students in electrical engineering, physics and applied mathematics looking for a fresh perspective on classical informat...

  15. Quantum information theory

    CERN Document Server

    Wilde, Mark M

    2017-01-01

    Developing many of the major, exciting, pre- and post-millennium developments from the ground up, this book is an ideal entry point for graduate students into quantum information theory. Significant attention is given to quantum mechanics for quantum information theory, and careful studies of the important protocols of teleportation, superdense coding, and entanglement distribution are presented. In this new edition, readers can expect to find over 100 pages of new material, including detailed discussions of Bell's theorem, the CHSH game, Tsirelson's theorem, the axiomatic approach to quantum channels, the definition of the diamond norm and its interpretation, and a proof of the Choi–Kraus theorem. Discussion of the importance of the quantum dynamic capacity formula has been completely revised, and many new exercises and references have been added. This new edition will be welcomed by the upcoming generation of quantum information theorists and the already established community of classical information theo...

  16. Introduction to coding and information theory

    CERN Document Server

    Roman, Steven

    1997-01-01

    This book is intended to introduce coding theory and information theory to undergraduate students of mathematics and computer science. It begins with a review of probablity theory as applied to finite sample spaces and a general introduction to the nature and types of codes. The two subsequent chapters discuss information theory: efficiency of codes, the entropy of information sources, and Shannon's Noiseless Coding Theorem. The remaining three chapters deal with coding theory: communication channels, decoding in the presence of errors, the general theory of linear codes, and such specific codes as Hamming codes, the simplex codes, and many others.

  17. General covariance and quantum theory

    International Nuclear Information System (INIS)

    Mashhoon, B.

    1986-01-01

    The extension of the principle of relativity to general coordinate systems is based on the hypothesis that an accelerated observer is locally equivalent to a hypothetical inertial observer with the same velocity as the noninertial observer. This hypothesis of locality is expected to be valid for classical particle phenomena as well as for classical wave phenomena but only in the short-wavelength approximation. The generally covariant theory is therefore expected to be in conflict with the quantum theory which is based on wave-particle duality. This is explicitly demonstrated for the frequency of electromagnetic radiation measured by a uniformly rotating observer. The standard Doppler formula is shown to be valid only in the geometric optics approximation. A new definition for the frequency is proposed, and the resulting formula for the frequency measured by the rotating observer is shown to be consistent with expectations based on the classical theory of electrons. A tentative quantum theory is developed on the basis of the generalization of the Bohr frequency condition to include accelerated observers. The description of the causal sequence of events is assumed to be independent of the motion of the observer. Furthermore, the quantum hypothesis is supposed to be valid for all observers. The implications of this theory are critically examined. The new formula for frequency, which is still based on the hypothesis of locality, leads to the observation of negative energy quanta by the rotating observer and is therefore in conflict with the quantum theory

  18. Generalized Lorenz-Mie Theories

    CERN Document Server

    Gouesbet, Gérard

    2011-01-01

    The Lorenz-Mie theory, describing the interaction between a homogeneous sphere and an electromagnetic plane wave, is likely to be one of the most famous theories in light scattering. But, with the advent of lasers and their increasing development in various fields, it has become too old-fashioned to meet most of the modern requisites. The book deals with generalized Lorenz-Mie theories when the illuminating beam is an electromagnetic arbitrary shaped beam, relying on the method of separation of variables. A particular emphasis is stressed on the case of the homogeneous sphere but other regular particles are considered too. An extensive discussion of the methods available to the evaluation of beam shape coefficients describing the illuminating beam is provided, and several methods are discussed. Applications concern many fields such as optical particle sizing and, more generally, optical particle characterization, morphology-dependent resonances, or mechanical effects of light for optical trapping, optical twe...

  19. Evaluation of a theory-informed implementation intervention for the management of acute low back pain in general medical practice

    DEFF Research Database (Denmark)

    French, Simon D; McKenzie, Joanne E; O'Connor, Denise A

    2013-01-01

    Introduction: This cluster randomised trial evaluated an intervention to decrease x-ray referrals and increase giving advice to stay active for people with acute low back pain (LBP) in general practice. Methods: General practices were randomised to either access to a guideline for acute LBP...... and 45 practices (59 GPs) to the intervention. The number of GPs available for analysis at 12 months varied by outcome due to missing confounder information; a minimum of 38 GPs were available from the intervention group, and a minimum of 40 GPs from the control group. For the behavioural constructs......, although effect estimates were small, the intervention group GPs had greater intention of practising consistent with the guideline for the clinical behaviour of x-ray referral. For behavioural simulation, intervention group GPs were more likely to adhere to guideline recommendations about x-ray (OR 1...

  20. Quantum Information Theory - an Invitation

    Science.gov (United States)

    Werner, Reinhard F.

    Quantum information and quantum computers have received a lot of public attention recently. Quantum computers have been advertised as a kind of warp drive for computing, and indeed the promise of the algorithms of Shor and Grover is to perform computations which are extremely hard or even provably impossible on any merely ``classical'' computer.In this article I shall give an account of the basic concepts of quantum information theory is given, staying as much as possible in the area of general agreement.The article is divided into two parts. The first (up to the end of Sect. 2.5) is mostly in plain English, centered around the exploration of what can or cannot be done with quantum systems as information carriers. The second part, Sect. 2.6, then gives a description of the mathematical structures and of some of the tools needed to develop the theory.

  1. An introduction to information theory

    CERN Document Server

    Reza, Fazlollah M

    1994-01-01

    Graduate-level study for engineering students presents elements of modern probability theory, information theory, coding theory, more. Emphasis on sample space, random variables, capacity, etc. Many reference tables and extensive bibliography. 1961 edition.

  2. Generalized structural theory of freezing

    International Nuclear Information System (INIS)

    Yussouff, M.

    1980-10-01

    The first-principles order parameter theory of freezing, proposed in an earlier work, has been successful in yielding quantitative agreement with known freezing parameters for monoatomic liquids forming solids with one atom per unit cell. A generalization of this theory is presented here to include the effects of a basis set of many atoms per unit cell. The basic equations get modified by the 'density structure factors' fsub(i) which arise from the density variations within the unit cell. Calculations are presented for the important case of monoatomic liquids freezing into hexagonal close packed solids. It is concluded that all freezing transitions can be described by using structural correlations in the liquid instead of the pair potential; and that the three body correlations are important in deciding the type of solid formed after freezing. (author)

  3. Gestalt Therapy and General System Theory.

    Science.gov (United States)

    Whitner, Phillip A.

    While General Systems Theory (GST) concepts appear to be applicable in explaining some of the phenomena that occur in a Gestalt Therapy group, research is needed to support this assumption. General Systems Theory may not be a group theory per se. Instead, GST may be a theory about groups. A meta-theory exists where its value and usefulness is…

  4. Theory of generalized Bessel functions

    International Nuclear Information System (INIS)

    Dattoli, G.; Giannessi, L.; Mezi, L.; Torre, A.

    1990-01-01

    In this paper it is discussed the theory of generalized Bessel functions which are of noticeable importance in the analysis of scattering processes for which the dipole approximation cannot be used. These functions have been introduced in their standard form and their modified version. The relevant generating functions and Graf-type addition theorems have been stated. The usefulness of the results to construct a fast algorithm for their quantitative computation is also devised. It is commented on the possibility of getting two-index generalized Bessel functions in e.g. the study of sum rules of the type Σ n=-∞ ∞ t n J n 3 (x), where J n is the cylindrical Bessel function of the first kind. The usefulness of the results for problems of practical interest is finally commented on. It is shown that a modified Anger function can be advantageously introduced to get an almost straightforward computation of the Bernstein sum rule in the theory of ion waves

  5. Information theory of molecular systems

    CERN Document Server

    Nalewajski, Roman F

    2006-01-01

    As well as providing a unified outlook on physics, Information Theory (IT) has numerous applications in chemistry and biology owing to its ability to provide a measure of the entropy/information contained within probability distributions and criteria of their information ""distance"" (similarity) and independence. Information Theory of Molecular Systems applies standard IT to classical problems in the theory of electronic structure and chemical reactivity. The book starts by introducing the basic concepts of modern electronic structure/reactivity theory based upon the Density Functional Theory

  6. Quantum physics of nature. Theory, experiment and interpretation. in collaboration with 6th European QIPC workshop. General Information, program, abstracts

    International Nuclear Information System (INIS)

    Arndt, M.; Aspelmeyer, M.; Brukner, C.; Weihs, G.; Jennewein, T.; Schmiedmayer, J.; Weinfurter, H.; Zukowski, M.

    2005-01-01

    Quantum information processing and communication is one of the of the key research areas within the European community. Therefore these two events were dedicated to present the advances in this area. Papers dealing with topics such as atom-photon entanglement, matter waves and quantum gases, decoherence, photonic entanglement, solid state quantum physics, cooling and trapping of atoms and molecules, quantum communication, quantum computation, quantum information and quantum cryptography were addressed. (nevyjel)

  7. Information systems theory

    CERN Document Server

    Dwivedi, Yogesh K; Schneberger, Scott L

    2011-01-01

    The overall mission of this book is to provide a comprehensive understanding and coverage of the various theories and models used in IS research. Specifically, it aims to focus on the following key objectives: To describe the various theories and models applicable to studying IS/IT management issues. To outline and describe, for each of the various theories and models, independent and dependent constructs, reference discipline/originating area, originating author(s), seminal articles, level of analysis (i.e. firm, individual, industry) and links with other theories. To provide a critical revie

  8. Clinical and pharmacogenomic data mining: 1. Generalized theory of expected information and application to the development of tools.

    Science.gov (United States)

    Robson, Barry

    2003-01-01

    New scientific problems, arising from the human genome project, are challenging the classical means of using statistics. Yet quantified knowledge in the form of rules and rule strengths based on real relationships in data, as opposed to expert opinion, is urgently required for researcher and physician decision support. The problem is that with many parameters, the space to be analyzed is highly dimensional. That is, the combinations of data to examine are subject to a combinatorial explosion as the number of possible events (entries, items, sub-records) (a),(b),(c),... per record (a,b,c,..) increases, and hence much of the space is sparsely populated. These combinatorial considerations are particularly problematic for identifying those associations called "Unicorn Events" which occur significantly less than expected to the extent that they are never seen to be counted. To cope with the combinatorial explosion, a novel numerical "book keeping" approach is taken to generate information terms relating to the combinatorial subsets of events (a,b,c,..), and, most importantly, the zeta (Zeta) function is employed. The incomplete Zeta function zeta(s,n) with s = 1, in which frequencies of occurrence such as n = n(a,b,c,...) determine the range of summation n, is argued to be the natural choice of information function. It emerges from Bayesian integration, taken over the distribution of possible values of information measures for sparse and ample data alike. Expected mutual information l(a;b;c) in nats (i.e., natural units analogous to bits but based on the natural logarithm), such as is available to the observer, is measured as e.g., the difference zeta(s,o(a,b,c..)) - zeta(s,e(a,b,c..)) where o(a,b,c,..) and e(a,b,c,..) are, or relate to, the observed and expected frequencies of occurrence, respectively. For real values of s > 1 the qualitative impact of strongly (positively or negatively) ranked data is preserved despite several numerical approximations. As real s

  9. Information theory in analytical chemistry

    National Research Council Canada - National Science Library

    Eckschlager, Karel; Danzer, Klaus

    1994-01-01

    Contents: The aim of analytical chemistry - Basic concepts of information theory - Identification of components - Qualitative analysis - Quantitative analysis - Multicomponent analysis - Optimum analytical...

  10. Fractional Order Generalized Information

    Directory of Open Access Journals (Sweden)

    José Tenreiro Machado

    2014-04-01

    Full Text Available This paper formulates a novel expression for entropy inspired in the properties of Fractional Calculus. The characteristics of the generalized fractional entropy are tested both in standard probability distributions and real world data series. The results reveal that tuning the fractional order allow an high sensitivity to the signal evolution, which is useful in describing the dynamics of complex systems. The concepts are also extended to relative distances and tested with several sets of data, confirming the goodness of the generalization.

  11. Recoverability in quantum information theory

    Science.gov (United States)

    Wilde, Mark

    The fact that the quantum relative entropy is non-increasing with respect to quantum physical evolutions lies at the core of many optimality theorems in quantum information theory and has applications in other areas of physics. In this work, we establish improvements of this entropy inequality in the form of physically meaningful remainder terms. One of the main results can be summarized informally as follows: if the decrease in quantum relative entropy between two quantum states after a quantum physical evolution is relatively small, then it is possible to perform a recovery operation, such that one can perfectly recover one state while approximately recovering the other. This can be interpreted as quantifying how well one can reverse a quantum physical evolution. Our proof method is elementary, relying on the method of complex interpolation, basic linear algebra, and the recently introduced Renyi generalization of a relative entropy difference. The theorem has a number of applications in quantum information theory, which have to do with providing physically meaningful improvements to many known entropy inequalities. This is based on arXiv:1505.04661, now accepted for publication in Proceedings of the Royal Society A. I acknowledge support from startup funds from the Department of Physics and Astronomy at LSU, the NSF under Award No. CCF-1350397, and the DARPA Quiness Program through US Army Research Office award W31P4Q-12-1-0019.

  12. Towards a general theory of implementation

    Science.gov (United States)

    2013-01-01

    Understanding and evaluating the implementation of complex interventions in practice is an important problem for healthcare managers and policy makers, and for patients and others who must operationalize them beyond formal clinical settings. It has been argued that this work should be founded on theory that provides a foundation for understanding, designing, predicting, and evaluating dynamic implementation processes. This paper sets out core constituents of a general theory of implementation, building on Normalization Process Theory and linking it to key constructs from recent work in sociology and psychology. These are informed by ideas about agency and its expression within social systems and fields, social and cognitive mechanisms, and collective action. This approach unites a number of contending perspectives in a way that makes possible a more comprehensive explanation of the implementation and embedding of new ways of thinking, enacting and organizing practice. PMID:23406398

  13. Informed Grounded Theory

    Science.gov (United States)

    Thornberg, Robert

    2012-01-01

    There is a widespread idea that in grounded theory (GT) research, the researcher has to delay the literature review until the end of the analysis to avoid contamination--a dictum that might turn educational researchers away from GT. Nevertheless, in this article the author (a) problematizes the dictum of delaying a literature review in classic…

  14. Genre theory in information studies

    CERN Document Server

    Andersen, Jack

    2015-01-01

    This book highlights the important role genre theory plays within information studies. It illustrates how modern genre studies inform and enrich the study of information, and conversely how the study of information makes its own independent contributions to the study of genre.

  15. Geometric theory of information

    CERN Document Server

    2014-01-01

    This book brings together geometric tools and their applications for Information analysis. It collects current and many uses of in the interdisciplinary fields of Information Geometry Manifolds in Advanced Signal, Image & Video Processing, Complex Data Modeling and Analysis, Information Ranking and Retrieval, Coding, Cognitive Systems, Optimal Control, Statistics on Manifolds, Machine Learning, Speech/sound recognition, and natural language treatment which are also substantially relevant for the industry.

  16. Generalized inverses theory and computations

    CERN Document Server

    Wang, Guorong; Qiao, Sanzheng

    2018-01-01

    This book begins with the fundamentals of the generalized inverses, then moves to more advanced topics. It presents a theoretical study of the generalization of Cramer's rule, determinant representations of the generalized inverses, reverse order law of the generalized inverses of a matrix product, structures of the generalized inverses of structured matrices, parallel computation of the generalized inverses, perturbation analysis of the generalized inverses, an algorithmic study of the computational methods for the full-rank factorization of a generalized inverse, generalized singular value decomposition, imbedding method, finite method, generalized inverses of polynomial matrices, and generalized inverses of linear operators. This book is intended for researchers, postdocs, and graduate students in the area of the generalized inverses with an undergraduate-level understanding of linear algebra.

  17. General Information about Kaposi Sarcoma

    Science.gov (United States)

    ... Sarcoma Treatment Childhood Vascular Tumors Treatment Research Kaposi Sarcoma Treatment (PDQ®)–Patient Version General Information About Kaposi Sarcoma Go to Health Professional Version Key Points Kaposi ...

  18. Information theory and statistics

    CERN Document Server

    Kullback, Solomon

    1968-01-01

    Highly useful text studies logarithmic measures of information and their application to testing statistical hypotheses. Includes numerous worked examples and problems. References. Glossary. Appendix. 1968 2nd, revised edition.

  19. Generalized string theory mapping relations between gravity and gauge theory

    International Nuclear Information System (INIS)

    Bjerrum-Bohr, N.E.J.

    2003-01-01

    A previous study of the Kawai, Lewellen and Tye (KLT) relations between gravity and gauge theories, imposed by the relationship of closed and open strings, are here extended in the light of general relativity and Yang-Mills theory as effective field theories. We discuss the possibility of generalizing the traditional KLT mapping in this effective setting. A generalized mapping between the effective Lagrangians of gravity and Yang-Mills theory is presented, and the corresponding operator relations between gauge and gravity theories at the tree level are further explored. From this generalized mapping remarkable diagrammatic relations are found, linking diagrams in gravity and Yang-Mills theory, as well as diagrams in pure effective Yang-Mills theory. Also the possibility of a gravitational coupling to an antisymmetric field in the gravity scattering amplitude is considered, and shown to allow for mixed open-closed string solutions, i.e., closed heterotic strings

  20. Quantum: information theory: technological challenge

    International Nuclear Information System (INIS)

    Calixto, M.

    2001-01-01

    The new Quantum Information Theory augurs powerful machines that obey the entangled logic of the subatomic world. Parallelism, entanglement, teleportation, no-cloning and quantum cryptography are typical peculiarities of this novel way of understanding computation. (Author) 24 refs

  1. An informational theory of privacy

    NARCIS (Netherlands)

    Schottmuller, C.; Jann, Ole

    2016-01-01

    We develop a theory that explains how and when privacy can increase welfare. Without privacy, some individuals misrepresent their preferences, because they will otherwise be statistically discriminated against. This "chilling effect" hurts them individually, and impairs information aggregation. The

  2. Information theory in molecular biology

    OpenAIRE

    Adami, Christoph

    2004-01-01

    This article introduces the physics of information in the context of molecular biology and genomics. Entropy and information, the two central concepts of Shannon's theory of information and communication, are often confused with each other but play transparent roles when applied to statistical ensembles (i.e., identically prepared sets) of symbolic sequences. Such an approach can distinguish between entropy and information in genes, predict the secondary structure of ribozymes, and detect the...

  3. The theory of quantum information

    CERN Document Server

    Watrous, John

    2018-01-01

    This largely self-contained book on the theory of quantum information focuses on precise mathematical formulations and proofs of fundamental facts that form the foundation of the subject. It is intended for graduate students and researchers in mathematics, computer science, and theoretical physics seeking to develop a thorough understanding of key results, proof techniques, and methodologies that are relevant to a wide range of research topics within the theory of quantum information and computation. The book is accessible to readers with an understanding of basic mathematics, including linear algebra, mathematical analysis, and probability theory. An introductory chapter summarizes these necessary mathematical prerequisites, and starting from this foundation, the book includes clear and complete proofs of all results it presents. Each subsequent chapter includes challenging exercises intended to help readers to develop their own skills for discovering proofs concerning the theory of quantum information.

  4. General Systems Theory and Instructional Design.

    Science.gov (United States)

    Salisbury, David F.

    The use of general systems theory in the field of instructional systems design (ISD) is explored in this paper. Drawing on work by Young, the writings of 12 representative ISD writers and researchers were surveyed to determine the use of 60 general systems theory concepts by the individual authors. The average number of concepts used by these…

  5. Generalized Field Theory and Kasner universe

    International Nuclear Information System (INIS)

    Klotz, A.H.

    1986-01-01

    It is shown that the only Kasner-like solution of the Generalized Field Theory field equations with a nonzero electromagnetic field corresponds to an empty field geometry of the space-time. In this case, the electromagnetic field tensors of the theory coincide as could be expected from general considerations. 6 refs. (author)

  6. The Quantitative Theory of Information

    DEFF Research Database (Denmark)

    Topsøe, Flemming; Harremoës, Peter

    2008-01-01

    Information Theory as developed by Shannon and followers is becoming more and more important in a number of sciences. The concepts appear to be just the right ones with intuitively appealing operational interpretations. Furthermore, the information theoretical quantities are connected by powerful...

  7. Information Theory and Plasma Turbulence

    International Nuclear Information System (INIS)

    Dendy, R. O.

    2009-01-01

    Information theory, applied directly to measured signals, yields new perspectives on, and quantitative knowledge of, the physics of strongly nonlinear and turbulent phenomena in plasmas. It represents a new and productive element of the topical research programmes that use modern techniques to characterise strongly nonlinear signals from plasmas, and that address global plasma behaviour from a complex systems perspective. We here review some pioneering studies of mutual information in solar wind and magnetospheric plasmas, using techniques tested on standard complex systems.

  8. iPhos-PseEvo: Identifying Human Phosphorylated Proteins by Incorporating Evolutionary Information into General PseAAC via Grey System Theory.

    Science.gov (United States)

    Qiu, Wang-Ren; Sun, Bi-Qian; Xiao, Xuan; Xu, Dong; Chou, Kuo-Chen

    2017-05-01

    Protein phosphorylation plays a critical role in human body by altering the structural conformation of a protein, causing it to become activated/deactivated, or functional modification. Given an uncharacterized protein sequence, can we predict whether it may be phosphorylated or may not? This is no doubt a very meaningful problem for both basic research and drug development. Unfortunately, to our best knowledge, so far no high throughput bioinformatics tool whatsoever has been developed to address such a very basic but important problem due to its extremely complexity and lacking sufficient training data. Here we proposed a predictor called iPhos-PseEvo by (1) incorporating the protein sequence evolutionary information into the general pseudo amino acid composition (PseAAC) via the grey system theory, (2) balancing out the skewed training datasets by the asymmetric bootstrap approach, and (3) constructing an ensemble predictor by fusing an array of individual random forest classifiers thru a voting system. Rigorous jackknife tests have indicated that very promising success rates have been achieved by iPhos-PseEvo even for such a difficult problem. A user-friendly web-server for iPhos-PseEvo has been established at http://www.jci-bioinfo.cn/iPhos-PseEvo, by which users can easily obtain their desired results without the need to go through the complicated mathematical equations involved. It has not escaped our notice that the formulation and approach presented here can be used to analyze many other problems in protein science as well. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A theory of generalized Bloch oscillations

    DEFF Research Database (Denmark)

    Duggen, Lars; Lew Yan Voon, L. C.; Lassen, Benny

    2016-01-01

    Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact...... oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics....

  10. On Representation in Information Theory

    Directory of Open Access Journals (Sweden)

    Joseph E. Brenner

    2011-09-01

    Full Text Available Semiotics is widely applied in theories of information. Following the original triadic characterization of reality by Peirce, the linguistic processes involved in information—production, transmission, reception, and understanding—would all appear to be interpretable in terms of signs and their relations to their objects. Perhaps the most important of these relations is that of the representation-one, entity, standing for or representing some other. For example, an index—one of the three major kinds of signs—is said to represent something by being directly related to its object. My position, however, is that the concept of symbolic representations having such roles in information, as intermediaries, is fraught with the same difficulties as in representational theories of mind. I have proposed an extension of logic to complex real phenomena, including mind and information (Logic in Reality; LIR, most recently at the 4th International Conference on the Foundations of Information Science (Beijing, August, 2010. LIR provides explanations for the evolution of complex processes, including information, that do not require any entities other than the processes themselves. In this paper, I discuss the limitations of the standard relation of representation. I argue that more realistic pictures of informational systems can be provided by reference to information as an energetic process, following the categorial ontology of LIR. This approach enables naïve, anti-realist conceptions of anti-representationalism to be avoided, and enables an approach to both information and meaning in the same novel logical framework.

  11. Toward a generalized probability theory: conditional probabilities

    International Nuclear Information System (INIS)

    Cassinelli, G.

    1979-01-01

    The main mathematical object of interest in the quantum logic approach to the foundations of quantum mechanics is the orthomodular lattice and a set of probability measures, or states, defined by the lattice. This mathematical structure is studied per se, independently from the intuitive or physical motivation of its definition, as a generalized probability theory. It is thought that the building-up of such a probability theory could eventually throw light on the mathematical structure of Hilbert-space quantum mechanics as a particular concrete model of the generalized theory. (Auth.)

  12. A nonlinear theory of generalized functions

    CERN Document Server

    1990-01-01

    This book provides a simple introduction to a nonlinear theory of generalized functions introduced by J.F. Colombeau, which gives a meaning to any multiplication of distributions. This theory extends from pure mathematics (it presents a faithful generalization of the classical theory of C? functions and provides a synthesis of most existing multiplications of distributions) to physics (it permits the resolution of ambiguities that appear in products of distributions), passing through the theory of partial differential equations both from the theoretical viewpoint (it furnishes a concept of weak solution of pde's leading to existence-uniqueness results in many cases where no distributional solution exists) and the numerical viewpoint (it introduces new and efficient methods developed recently in elastoplasticity, hydrodynamics and acoustics). This text presents basic concepts and results which until now were only published in article form. It is in- tended for mathematicians but, since the theory and applicati...

  13. Generalized extended Navier-Stokes theory

    DEFF Research Database (Denmark)

    Hansen, J. S.; Daivis, Peter J.; Dyre, Jeppe C.

    2013-01-01

    in molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for small wavevector and frequencies as expected. For example, in the hydrodynamic regime......The extended Navier-Stokes theory accounts for the coupling between the translational and rotational molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies and wavevectors, which enables a new study of spatio-temporal correlation phenomena present...... and for molecular fluids with small moment of inertia like chlorine, the theory predicts that the longitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector and frequencies...

  14. Canonical formulation of general-relativistic theories

    International Nuclear Information System (INIS)

    Bergmann, P.G.

    1987-01-01

    With the birth of quantum field theory in the late twenties physicists decided that nature could not be half classical and half quantum, and that the gravitational field ought to be quanticized, just as the electromagnetic field had been. One could accept the group of differomorphisms as a fundamental characteristic of general relativity (and indeed of all general-relativistic theories), and proceed to construct a quantum field-theory that was adapted to that group. Quantization would be attempted by way of a Hamiltonian formulation of the (classical) theory, and quantum commutation relations be patterned after the Poisson brackets arising in that formulation. This program is usually called the canonical quantization program, whereas the weak-field approach is known as covariant quantization. The first steps, conceived entirely within the framework of the classical theory, turned out to be beset with technical and conceptual difficulties, which today are essentially resolved. In this paper the author traces out these initial steps

  15. Simple recursion relations for general field theories

    International Nuclear Information System (INIS)

    Cheung, Clifford; Shen, Chia-Hsien; Trnka, Jaroslav

    2015-01-01

    On-shell methods offer an alternative definition of quantum field theory at tree-level, replacing Feynman diagrams with recursion relations and interaction vertices with a handful of seed scattering amplitudes. In this paper we determine the simplest recursion relations needed to construct a general four-dimensional quantum field theory of massless particles. For this purpose we define a covering space of recursion relations which naturally generalizes all existing constructions, including those of BCFW and Risager. The validity of each recursion relation hinges on the large momentum behavior of an n-point scattering amplitude under an m-line momentum shift, which we determine solely from dimensional analysis, Lorentz invariance, and locality. We show that all amplitudes in a renormalizable theory are 5-line constructible. Amplitudes are 3-line constructible if an external particle carries spin or if the scalars in the theory carry equal charge under a global or gauge symmetry. Remarkably, this implies the 3-line constructibility of all gauge theories with fermions and complex scalars in arbitrary representations, all supersymmetric theories, and the standard model. Moreover, all amplitudes in non-renormalizable theories without derivative interactions are constructible; with derivative interactions, a subset of amplitudes is constructible. We illustrate our results with examples from both renormalizable and non-renormalizable theories. Our study demonstrates both the power and limitations of recursion relations as a self-contained formulation of quantum field theory.

  16. General relativity invariance and string field theory

    International Nuclear Information System (INIS)

    Aref'eva, I.Ya.; Volovich, I.V.

    1987-04-01

    The general covariance principle in the string field theory is considered. The algebraic properties of the string Lie derivative are discussed. The string vielbein and spin connection are introduced and an action invariant under general co-ordinate transformation is proposed. (author). 18 refs

  17. Victories and defeats in general relativity theory

    International Nuclear Information System (INIS)

    Moeller, C.

    1977-01-01

    Only within the last 20 years has it been possible to conduct far-reaching experimental tests of the validity of Einstein's General Relativity Theory. Experimental confirmation in some fields is embarrassed by considerable difficulties in applying the theory to cosmic systems, which indicate that such major systems lie at the limit of the theory's applicability. The lecture here reproduced discusses both the successes and the limitations of the theory, starting with its replacement of the absolute space-time theory of Newton and its historical replacement by the relativistic gravitational postulates of Einstein which, in spite of its more complicated postulates, nevertheless introduced a great simplicity and comprehensiveness into the overall conception of nature. This theoretical 'beauty', however, can only be trusted if vindicated experimentally, which has to a considerable extent proved to be the case. For weak fields Newtonian and Einsteinian concepts coincide, while for stronger fields, and velocities not far from that of light, Einstein's theory is superior, giving,for example, an excellent correspondence with the precession of the perehelion of Mercury. On a larger scale, however, the theory appears to lead to conclusions which would invalidate the very concepts of space and time, even within a finite time-interval. A more generalized theory seems to be required. (A.D.N.)

  18. Canonical perturbation theory in linearized general relativity theory

    International Nuclear Information System (INIS)

    Gonzales, R.; Pavlenko, Yu.G.

    1986-01-01

    Canonical perturbation theory in linearized general relativity theory is developed. It is shown that the evolution of arbitrary dynamic value, conditioned by the interaction of particles, gravitation and electromagnetic fields, can be presented in the form of a series, each member of it corresponding to the contribution of certain spontaneous or induced process. The main concepts of the approach are presented in the approximation of a weak gravitational field

  19. Quantum information theory mathematical foundation

    CERN Document Server

    Hayashi, Masahito

    2017-01-01

    This graduate textbook provides a unified view of quantum information theory. Clearly explaining the necessary mathematical basis, it merges key topics from both information-theoretic and quantum- mechanical viewpoints and provides lucid explanations of the basic results. Thanks to this unified approach, it makes accessible such advanced topics in quantum communication as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction) and quantum encryption. Since the publication of the preceding book Quantum Information: An Introduction, there have been tremendous strides in the field of quantum information. In particular, the following topics – all of which are addressed here – made seen major advances: quantum state discrimination, quantum channel capacity, bipartite and multipartite entanglement, security analysis on quantum communication, reverse Shannon theorem and uncertainty relation. With regard to the analysis of quantum security, the present book employs an impro...

  20. General Theory of Absorption in Porous Materials: Restricted Multilayer Theory.

    Science.gov (United States)

    Aduenko, Alexander A; Murray, Andy; Mendoza-Cortes, Jose L

    2018-04-18

    In this article, we present an approach for the generalization of adsorption of light gases in porous materials. This new theory goes beyond Langmuir and Brunauer-Emmett-Teller theories, which are the standard approaches that have a limited application to crystalline porous materials by their unphysical assumptions on the amount of possible adsorption layers. The derivation of a more general equation for any crystalline porous framework is presented, restricted multilayer theory. Our approach allows the determination of gas uptake considering only geometrical constraints of the porous framework and the interaction energy of the guest molecule with the framework. On the basis of this theory, we calculated optimal values for the adsorption enthalpy at different temperatures and pressures. We also present the use of this theory to determine the optimal linker length for a topologically equivalent framework series. We validate this theoretical approach by applying it to metal-organic frameworks (MOFs) and show that it reproduces the experimental results for seven different reported materials. We obtained the universal equation for the optimal linker length, given the topology of a porous framework. This work applied the general equation to MOFs and H 2 to create energy-storage materials; however, this theory can be applied to other crystalline porous materials and light gases, which opens the possibility of designing the next generations of energy-storage materials by first considering only the geometrical constraints of the porous materials.

  1. Generalized interferometry - I: theory for interstation correlations

    Science.gov (United States)

    Fichtner, Andreas; Stehly, Laurent; Ermert, Laura; Boehm, Christian

    2017-02-01

    We develop a general theory for interferometry by correlation that (i) properly accounts for heterogeneously distributed sources of continuous or transient nature, (ii) fully incorporates any type of linear and nonlinear processing, such as one-bit normalization, spectral whitening and phase-weighted stacking, (iii) operates for any type of medium, including 3-D elastic, heterogeneous and attenuating media, (iv) enables the exploitation of complete correlation waveforms, including seemingly unphysical arrivals, and (v) unifies the earthquake-based two-station method and ambient noise correlations. Our central theme is not to equate interferometry with Green function retrieval, and to extract information directly from processed interstation correlations, regardless of their relation to the Green function. We demonstrate that processing transforms the actual wavefield sources and actual wave propagation physics into effective sources and effective wave propagation. This transformation is uniquely determined by the processing applied to the observed data, and can be easily computed. The effective forward model, that links effective sources and propagation to synthetic interstation correlations, may not be perfect. A forward modelling error, induced by processing, describes the extent to which processed correlations can actually be interpreted as proper correlations, that is, as resulting from some effective source and some effective wave propagation. The magnitude of the forward modelling error is controlled by the processing scheme and the temporal variability of the sources. Applying adjoint techniques to the effective forward model, we derive finite-frequency Fréchet kernels for the sources of the wavefield and Earth structure, that should be inverted jointly. The structure kernels depend on the sources of the wavefield and the processing scheme applied to the raw data. Therefore, both must be taken into account correctly in order to make accurate inferences on

  2. Transition operators in electromagnetic-wave diffraction theory - General theory

    Science.gov (United States)

    Hahne, G. E.

    1992-01-01

    A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.

  3. Between general relativity and quantum theory

    International Nuclear Information System (INIS)

    Rayski, J.

    1982-01-01

    Some possibilities of reconciling general relativity with quantum theory are discussed. The procedure of quantization is certainly not unique, but depends upon the choice of the coordinate conditions. Most versions of quantization predict the existence of gravitons, but it is also possible to formulate a quantum theory with a classical gravity whereby the expectation values of Tsub(μν) constitute the sources of the classical metric field. (author)

  4. Generalized continued fractions and ergodic theory

    International Nuclear Information System (INIS)

    Pustyl'nikov, L D

    2003-01-01

    In this paper a new theory of generalized continued fractions is constructed and applied to numbers, multidimensional vectors belonging to a real space, and infinite-dimensional vectors with integral coordinates. The theory is based on a concept generalizing the procedure for constructing the classical continued fractions and substantially using ergodic theory. One of the versions of the theory is related to differential equations. In the finite-dimensional case the constructions thus introduced are used to solve problems posed by Weyl in analysis and number theory concerning estimates of trigonometric sums and of the remainder in the distribution law for the fractional parts of the values of a polynomial, and also the problem of characterizing algebraic and transcendental numbers with the use of generalized continued fractions. Infinite-dimensional generalized continued fractions are applied to estimate sums of Legendre symbols and to obtain new results in the classical problem of the distribution of quadratic residues and non-residues modulo a prime. In the course of constructing these continued fractions, an investigation is carried out of the ergodic properties of a class of infinite-dimensional dynamical systems which are also of independent interest

  5. A theory of generalized Bloch oscillations

    International Nuclear Information System (INIS)

    Duggen, Lars; Lassen, Benny; Lew Yan Voon, L C; Willatzen, Morten

    2016-01-01

    Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact calculation is given to confirm this phenomenon. Our results allow for a greater freedom of design for experimentally observing Bloch oscillations. For strongly coupled oscillator systems displaying Bloch oscillations, it is further demonstrated that reordering of oscillators leads to destruction of Bloch oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics. (paper)

  6. Algebraic K-theory of generalized schemes

    DEFF Research Database (Denmark)

    Anevski, Stella Victoria Desiree

    and geometry over the field with one element. It also permits the construction of important Arakelov theoretical objects, such as the completion \\Spec Z of Spec Z. In this thesis, we prove a projective bundle theorem for the eld with one element and compute the Chow rings of the generalized schemes Sp\\ec ZN......Nikolai Durov has developed a generalization of conventional scheme theory in which commutative algebraic monads replace commutative unital rings as the basic algebraic objects. The resulting geometry is expressive enough to encompass conventional scheme theory, tropical algebraic geometry......, appearing in the construction of \\Spec Z....

  7. JIT supply chain; an investigation through general system theory

    Directory of Open Access Journals (Sweden)

    O P Mishra

    2013-03-01

    Full Text Available This paper explains theoretical approach of the four theories of General system Theory (GST developed by Yourdon (1989 [Yourdon, E. (1989. Modern Structured Analysis. Yourdon Press, Prentice-Hall International, Englewood Cliffs, New Jersey. Senge] while applying it in information technology and subsequently used by caddy (2007 [Caddy I.N., & Helou, M.M. (2007. Supply chains and their management: Application of general systems theory. Journal of Retailing and Consumer Services, 14, 319–327.] in field of supply chain and management. JIT philosophy in core activities of supply chain i.e. procurement, production processes, and logistics are discussed through general system theory. The growing structure of the supply chain poses the implication restrictions and requires a heavy support system, many times a compromise is done while implementing JIT. The study would be useful to understand the general trends generated naturally regarding the adoption of the JIT philosophy in the supply chain.

  8. The generalized second law of thermodynamics in generalized gravity theories

    International Nuclear Information System (INIS)

    Wu Shaofeng; Yang Guohong; Wang Bin; Zhang Pengming

    2008-01-01

    We investigate the generalized second law of thermodynamics (GSL) in generalized theories of gravity. We examine the total entropy evolution with time including the horizon entropy, the non-equilibrium entropy production, and the entropy of all matter, field and energy components. We derive a universal condition to protect the generalized second law and study its validity in different gravity theories. In Einstein gravity (even in the phantom-dominated universe with a Schwarzschild black hole), Lovelock gravity and braneworld gravity, we show that the condition to keep the GSL can always be satisfied. In f(R) gravity and scalar-tensor gravity, the condition to protect the GSL can also hold because the temperature should be positive, gravity is always attractive and the effective Newton constant should be an approximate constant satisfying the experimental bounds

  9. Generalized semilocal theories and higher Hopf maps

    International Nuclear Information System (INIS)

    Hindmarsh, M.; Holman, R.; Kephart, T.W.; Vachaspati, T.

    1993-01-01

    In semilocal theories, the vacuum manifold is fibered in a non-trivial way by the action of the gauge group. Here we generalize the original semilocal theory (which was based on the Hopf bundle S 3 → S1 S 2 ) to realize the next Hopf bundle S 7 →S 3 S 4 , and its extensions S 2n+1 → S3 HP n . The semilocal defects in this class of theories are classified by π 3 (S 3 ), and are interpreted as constrained instantons or generalized sphaleron configurations. We fail to find a field theoretic realization of the final Hopf bundle S 15 →S 7 S 8 , but are able to construct other semilocal spaces realizing Stiefel bundles over grassmannian spaces. (orig.)

  10. Generalized locally Toeplitz sequences theory and applications

    CERN Document Server

    Garoni, Carlo

    2017-01-01

    Based on their research experience, the authors propose a reference textbook in two volumes on the theory of generalized locally Toeplitz sequences and their applications. This first volume focuses on the univariate version of the theory and the related applications in the unidimensional setting, while the second volume, which addresses the multivariate case, is mainly devoted to concrete PDE applications. This book systematically develops the theory of generalized locally Toeplitz (GLT) sequences and presents some of its main applications, with a particular focus on the numerical discretization of differential equations (DEs). It is the first book to address the relatively new field of GLT sequences, which occur in numerous scientific applications and are especially dominant in the context of DE discretizations. Written for applied mathematicians, engineers, physicists, and scientists who (perhaps unknowingly) encounter GLT sequences in their research, it is also of interest to those working in the fields of...

  11. Development of Einstein's general theory of relativity

    International Nuclear Information System (INIS)

    Datta, B.K.

    1980-01-01

    Starting from Poincare's Lorentz-invariant theory of gravity formulated in 1906, development of Einstein's general theory of relativity during 1906-1916 is discussed. Three stages in this development are recognised. In the first stage during 1907-1914, Einstein tried to extend the relativity principle of uniform motion to the frames in non-uniform motion. For this purpose, he introduced the principle of equivalence which made it possible to calculate the effect of homogeneous gravitational field on arbitrary physical processes. During the second stage comprising years 1912-1914 overlapping the first stage, Einstein and Grossmann were struggling to translate physical postulates into the language of the absolute differential calculus. In the period 1915-1916, Einstein formulated the field equations of general relativity. While discussing these developmental stages, theories of gravitation formulated by Abraham, Nordstroem and Mie are also discussed. (M.G.B.)

  12. General Systems Theory and Counterplan Competition.

    Science.gov (United States)

    Madsen, Arnie

    1989-01-01

    Discusses the trend in academic debate on policy questions toward a wide acceptance of counterplans, encouraging combinations of proposals which appear at face value able to coexist but upon deeper analysis are incompatible. Argues in opposition to this trend by applying concepts from general systems theory to competition. (KEH)

  13. Educational Interpretations of General Systems Theory.

    Science.gov (United States)

    Hug, William E.; King, James E.

    This chapter discusses General Systems Theory as it applies to education, classrooms, innovations, and instructional design. The principles of equifinality, open and closed systems, the individual as the key system, hierarchical structures, optimization, stability, cooperation, and competition are discussed, and their relationship to instructional…

  14. General Systems Theory and Instructional Systems Design.

    Science.gov (United States)

    Salisbury, David F.

    1990-01-01

    Describes basic concepts in the field of general systems theory (GST) and identifies commonalities that exist between GST and instructional systems design (ISD). Models and diagrams that depict system elements in ISD are presented, and two matrices that show how GST has been used in ISD literature are included. (11 references) (LRW)

  15. Schumpeter's general theory of social evolution

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    The recent neo-Schumpeterian and evolutionary economics appears to cover a much smaller range of topics than Joseph Schumpeter confronted. Thus, it has hardly been recognised that Schumpeter wanted to develop a general theory that served the analysis of evolution in any sector of social life...

  16. The Faraday effect revisited: General theory

    DEFF Research Database (Denmark)

    Cornean, Horia Decebal; Nenciu, Gheorghe; Pedersen, Thomas Garm

    2006-01-01

    This paper is the first in a series revisiting the Faraday effect, or more generally, the theory of electronic quantum transport/optical response in bulk media in the presence of a constant magnetic field. The independent electron approximation is assumed. At zero temperature and zero frequency...

  17. The Faraday effect revisited: General theory

    DEFF Research Database (Denmark)

    Cornean, Horia Decebal; Nenciu, Gheorghe; Pedersen, Thomas Garm

    This paper is the first in a series revisiting the Faraday effect, or more generally, the theory of electronic quantum transport/optical response in bulk media in the presence of a constant magnetic field. The independent electron approximation is assumed. For free electrons, the transverse...

  18. Performativity: The Special and the General Theory

    Directory of Open Access Journals (Sweden)

    Sonia Reverter-Bañón

    2017-07-01

    Full Text Available If in Gender Trouble (1990 Butler presented a proposal of the theory of performativity of speech acts applied to the construction of gender, in her last book, Notes towards a Performative Theory of Assembly (2015, she articulates a theory of performativity applied to collective and concerted action of minorities or populations that are estimated to be “disposable”. The interest of the proposal that we present in this paper is to analyze how the theory of performativity of gender is now extended to the forms of democratic action; going from being a structure that explains the possibilities of gender to explain the possibilities for a livable life. It is what we call here the extension of performativity, from the special case of gender to the general case of a livable life.

  19. Generalized IIB supergravity from exceptional field theory

    Energy Technology Data Exchange (ETDEWEB)

    Baguet, Arnaud; Magro, Marc; Samtleben, Henning [Laboratoire de Physique, Université Claude Bernard Lyon 1, Ens de Lyon, CNRS,F-69342 Lyon (France)

    2017-03-20

    The background underlying the η-deformed AdS{sub 5}×S{sup 5} sigma-model is known to satisfy a generalization of the IIB supergravity equations. Their solutions are related by T-duality to solutions of type IIA supergravity with non-isometric linear dilaton. We show how the generalized IIB supergravity equations can be naturally obtained from exceptional field theory. Within this manifestly duality covariant formulation of maximal supergravity, the generalized IIB supergravity equations emerge upon imposing on the fields a simple Scherk-Schwarz ansatz which respects the section constraint.

  20. REQUIREMENTS FOR A GENERAL INTERPRETATION THEORY

    Directory of Open Access Journals (Sweden)

    Anda Laura Lungu Petruescu

    2013-06-01

    Full Text Available Time has proved that Economic Analysis is not enough as to ensure all the needs of the economic field. The present study wishes to propose a new approach method of the economic phenomena and processes based on the researches made outside the economic space- a new general interpretation theory- which is centered on the human being as the basic actor of economy. A general interpretation theory must assure the interpretation of the causalities among the economic phenomena and processes- causal interpretation; the interpretation of the correlations and dependencies among indicators- normative interpretation; the interpretation of social and communicational processes in economic organizations- social and communicational interpretation; the interpretation of the community status of companies- transsocial interpretation; the interpretation of the purposes of human activities and their coherency – teleological interpretation; the interpretation of equilibrium/ disequilibrium from inside the economic systems- optimality interpretation. In order to respond to such demands, rigor, pragmatism, praxiology and contextual connectors are required. In order to progress, the economic science must improve its language, both its syntax and its semantics. The clarity of exposure requires a language clarity and the scientific theory progress asks for the need of hypotheses in the building of the theories. The switch from the common language to the symbolic one means the switch from ambiguity to rigor and rationality, that is order in thinking. But order implies structure, which implies formalization. Our paper should be a plea for these requirements, requirements which should be fulfilled by a modern interpretation theory.

  1. Relativity the special and the general theory

    CERN Document Server

    Einstein, Albert

    2015-01-01

    After completing the final version of his general theory of relativity in November 1915, Albert Einstein wrote a book about relativity for a popular audience. His intention was "to give an exact insight into the theory of relativity to those readers who, from a general scientific and philosophical point of view, are interested in the theory, but who are not conversant with the mathematical apparatus of theoretical physics." The book remains one of the most lucid explanations of the special and general theories ever written. In the early 1920s alone, it was translated into ten languages, and fifteen editions in the original German appeared over the course of Einstein's lifetime. This new edition of Einstein's celebrated book features an authoritative English translation of the text along with an introduction and a reading companion by Hanoch Gutfreund and Jürgen Renn that examines the evolution of Einstein's thinking and casts his ideas in a broader present-day context. A special chapter explores the history...

  2. A general theory for the Uranian satellites

    Science.gov (United States)

    Laskar, J.

    1986-01-01

    A general analytical theory of the five main satellites of Uranus, including the secular and short period terms hereafter denoted by GUST, is presented. A comparison is made with an internal numerical integration with nominal masses of Veillet (1983). The precision of the theory goes from about 10 km for Miranda to 100 km for Oberon. The short period terms in the motions of Titania and Oberon are larger than 500 km. They should make possible the determination of the masses of the outer satellites through the optical data of Voyager encounter.

  3. Toward a general evolutionary theory of oncogenesis.

    Science.gov (United States)

    Ewald, Paul W; Swain Ewald, Holly A

    2013-01-01

    We propose an evolutionary framework, the barrier theory of cancer, which is based on the distinction between barriers to oncogenesis and restraints. Barriers are defined as mechanisms that prevent oncogenesis. Restraints, which are more numerous, inhibit but do not prevent oncogenesis. Processes that compromise barriers are essential causes of cancer; those that interfere with restraints are exacerbating causes. The barrier theory is built upon the three evolutionary processes involved in oncogenesis: natural selection acting on multicellular organisms to mold barriers and restraints, natural selection acting on infectious organisms to abrogate these protective mechanisms, and oncogenic selection which is responsible for the evolution of normal cells into cancerous cells. The barrier theory is presented as a first step toward the development of a general evolutionary theory of cancer. Its attributes and implications for intervention are compared with those of other major conceptual frameworks for understanding cancer: the clonal diversification model, the stem cell theory and the hallmarks of cancer. The barrier theory emphasizes the practical value of distinguishing between essential and exacerbating causes. It also stresses the importance of determining the scope of infectious causation of cancer, because individual pathogens can be responsible for multiple essential causes in infected cells.

  4. A Triadic Reflective-Impulsive-Interoceptive Awareness Model of General and Impulsive Information System Use: Behavioral Tests of Neuro-Cognitive Theory.

    Science.gov (United States)

    Turel, Ofir; Bechara, Antoine

    2016-01-01

    This study examines a behavioral tripartite model developed in the field of addiction, and applies it here to understanding general and impulsive information technology use. It suggests that technology use is driven by two information-processing brain systems: reflective and impulsive, and that their effects on use are modulated by interoceptive awareness processes. The resultant reflective-impulsive-interoceptive awareness model is tested in two behavioral studies. Both studies employ SEM techniques to time-lagged self-report data from n 1 = 300 and n 2 = 369 social networking site users. Study 1 demonstrated that temptations augment the effect of habit on technology use, and reduce the effect of satisfaction on use. Study 2 showed that temptations strengthen the effect of habit on impulsive technology use, and weaken the effect of behavioral expectations on impulsive technology use. Hence, the results consistently support the notion that information technology users' behaviors are influenced by reflective and impulsive information processing systems; and that the equilibrium of these systems is determined, at least in part, by one's temptations. These results can serve as a basis for understanding the etiology of modern day addictions.

  5. Elaborations of grounded theory in information research: arenas/social worlds theory, discourse and situational analysis

    OpenAIRE

    Vasconcelos, A.C.; Sen, B.A.; Rosa, A.; Ellis, D.

    2012-01-01

    This paper explores elaborations of Grounded Theory in relation to Arenas/Social Worlds Theory. The notions of arenas and social worlds were present in early applications of Grounded Theory but have not been as much used or recognised as the general Grounded Theory approach, particularly in the information studies field. The studies discussed here are therefore very unusual in information research. The empirical contexts of these studies are those of (1) the role of discourse in the organisat...

  6. Lagrangians for generalized Argyres-Douglas theories

    Science.gov (United States)

    Benvenuti, Sergio; Giacomelli, Simone

    2017-10-01

    We continue the study of Lagrangian descriptions of N=2 Argyres-Douglas theories. We use our recent interpretation in terms of sequential confinement to guess the Lagrangians of all the Argyres-Douglas models with Abelian three dimensional mirror. We find classes of four dimensional N=1 quivers that flow in the infrared to generalized Argyres-Douglas theories, such as the ( A k , A kN + N -1) models. We study in detail how the N=1 chiral rings map to the Coulomb and Higgs Branches of the N=2 CFT's. The three dimensional mirror RG flows are shown to land on the N=4 complete graph quivers. We also compactify to three dimensions the gauge theory dual to ( A 1, D 4), and find the expected Abelianization duality with N=4 SQED with 3 flavors.

  7. On the general theory of quantized fields

    International Nuclear Information System (INIS)

    Fredenhagen, K.

    1991-10-01

    In my lecture I describe the present stage of the general theory of quantized fields on the example of 5 subjects. They are ordered in the direction from large to small distances. The first one is the by now classical problem of the structure of superselection sectors. It involves the behavior of the theory at spacelike infinity and is directly connected with particle statistics and internal symmetries. It has become popular in recent years by the discovery of a lot of nontrivial models in 2d conformal-field theory, by connections to integrable models and critical behavior in statistical mechanics and by the relations to the Jones' theory of subfactors in von Neumann algebras and to the corresponding geometrical objects (braids, knots, 3d manifolds, ...). At large timelike distances the by far most important feature of quantum field theory is the particle structure. This will be the second subject of my lecture. It follows the technically most involved part which is concerned with the behavior at finite distances. Two aspets, nuclearity which emphasizes the finite density of states in phase space, and the modular structure which relies on the infinite number of degrees of freedom present even locally, and their mutual relations will be treated. The next point, involving the structure at infinitesimal distances, is the connection between the Haag-Kastler framework of algebras of local and the framework of Wightman fields. Finally, problems in approaches to quantum gravity will be discussed, as far as they are accessible by the methods of the general theory of quantized fields. (orig.)

  8. Information theory and the ethylene genetic network.

    Science.gov (United States)

    González-García, José S; Díaz, José

    2011-10-01

    The original aim of the Information Theory (IT) was to solve a purely technical problem: to increase the performance of communication systems, which are constantly affected by interferences that diminish the quality of the transmitted information. That is, the theory deals only with the problem of transmitting with the maximal precision the symbols constituting a message. In Shannon's theory messages are characterized only by their probabilities, regardless of their value or meaning. As for its present day status, it is generally acknowledged that Information Theory has solid mathematical foundations and has fruitful strong links with Physics in both theoretical and experimental areas. However, many applications of Information Theory to Biology are limited to using it as a technical tool to analyze biopolymers, such as DNA, RNA or protein sequences. The main point of discussion about the applicability of IT to explain the information flow in biological systems is that in a classic communication channel, the symbols that conform the coded message are transmitted one by one in an independent form through a noisy communication channel, and noise can alter each of the symbols, distorting the message; in contrast, in a genetic communication channel the coded messages are not transmitted in the form of symbols but signaling cascades transmit them. Consequently, the information flow from the emitter to the effector is due to a series of coupled physicochemical processes that must ensure the accurate transmission of the message. In this review we discussed a novel proposal to overcome this difficulty, which consists of the modeling of gene expression with a stochastic approach that allows Shannon entropy (H) to be directly used to measure the amount of uncertainty that the genetic machinery has in relation to the correct decoding of a message transmitted into the nucleus by a signaling pathway. From the value of H we can define a function I that measures the amount of

  9. The Faraday effect revisited General theory

    CERN Document Server

    Cornean, H D; Pedersen, T G

    2005-01-01

    This paper is the first in a series revisiting the Faraday effect, or more generally, the theory of electronic quantum transport/optical response in bulk media in the presence of a constant magnetic field. The independent electron approximation is assumed. For free electrons, the transverse conductivity can be explicitly computed and coincides with the classical result. In the general case, using magnetic perturbation theory, the conductivity tensor is expanded in powers of the strength of the magnetic field $B$. Then the linear term in $B$ of this expansion is written down in terms of the zero magnetic field Green function and the zero field current operator. In the periodic case, the linear term in $B$ of the conductivity tensor is expressed in terms of zero magnetic field Bloch functions and energies. No derivatives with respect to the quasimomentum appear and thereby all ambiguities are removed, in contrast to earlier work.

  10. Cosmology in general massive gravity theories

    International Nuclear Information System (INIS)

    Comelli, D.; Nesti, F.; Pilo, L.

    2014-01-01

    We study the cosmological FRW flat solutions generated in general massive gravity theories. Such a model are obtained adding to the Einstein General Relativity action a peculiar non derivative potentials, function of the metric components, that induce the propagation of five gravitational degrees of freedom. This large class of theories includes both the case with a residual Lorentz invariance as well as the case with rotational invariance only. It turns out that the Lorentz-breaking case is selected as the only possibility. Moreover it turns out that that perturbations around strict Minkowski or dS space are strongly coupled. The upshot is that even though dark energy can be simply accounted by massive gravity modifications, its equation of state w eff has to deviate from -1. Indeed, there is an explicit relation between the strong coupling scale of perturbations and the deviation of w eff from -1. Taking into account current limits on w eff and submillimiter tests of the Newton's law as a limit on the possible strong coupling scale, we find that it is still possible to have a weakly coupled theory in a quasi dS background. Future experimental improvements on short distance tests of the Newton's law may be used to tighten the deviation of w eff form -1 in a weakly coupled massive gravity theory

  11. Sturmians and generalized sturmians in quantum theory

    DEFF Research Database (Denmark)

    Avery, John Scales; Avery, James Emil

    2012-01-01

    The theory of Sturmians and generalized Sturmians is reviewed. It is shown that when generalized Sturmians are used as basis functions, calculations on the spectra and physical properties of few-electron atoms can be performed with great ease and good accuracy. The use of many-center Coulomb Stur...... Sturmians as basis functions in calculations on N-electron molecules is also discussed. Basis sets of this type are shown to have many advantages over other types of ETO’s, especially the property of automatic scaling....

  12. Generalized mutual information and Tsirelson's bound

    Energy Technology Data Exchange (ETDEWEB)

    Wakakuwa, Eyuri [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Murao, Mio [Institute for Nano Quantum Information Electronics, The University of Tokyo, Tokyo 113-0033, Japan and Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan)

    2014-12-04

    We introduce a generalization of the quantum mutual information between a classical system and a quantum system into the mutual information between a classical system and a system described by general probabilistic theories. We apply this generalized mutual information (GMI) to a derivation of Tsirelson's bound from information causality, and prove that Tsirelson's bound can be derived from the chain rule of the GMI. By using the GMI, we formulate the 'no-supersignalling condition' (NSS), that the assistance of correlations does not enhance the capability of classical communication. We prove that NSS is never violated in any no-signalling theory.

  13. Chemical Thermodynamics and Information Theory with Applications

    CERN Document Server

    Graham, Daniel J

    2011-01-01

    Thermodynamics and information touch theory every facet of chemistry. However, the physical chemistry curriculum digested by students worldwide is still heavily skewed toward heat/work principles established more than a century ago. Rectifying this situation, Chemical Thermodynamics and Information Theory with Applications explores applications drawn from the intersection of thermodynamics and information theory--two mature and far-reaching fields. In an approach that intertwines information science and chemistry, this book covers: The informational aspects of thermodynamic state equations The

  14. An information integration theory of consciousness

    Directory of Open Access Journals (Sweden)

    Tononi Giulio

    2004-11-01

    Full Text Available Abstract Background Consciousness poses two main problems. The first is understanding the conditions that determine to what extent a system has conscious experience. For instance, why is our consciousness generated by certain parts of our brain, such as the thalamocortical system, and not by other parts, such as the cerebellum? And why are we conscious during wakefulness and much less so during dreamless sleep? The second problem is understanding the conditions that determine what kind of consciousness a system has. For example, why do specific parts of the brain contribute specific qualities to our conscious experience, such as vision and audition? Presentation of the hypothesis This paper presents a theory about what consciousness is and how it can be measured. According to the theory, consciousness corresponds to the capacity of a system to integrate information. This claim is motivated by two key phenomenological properties of consciousness: differentiation – the availability of a very large number of conscious experiences; and integration – the unity of each such experience. The theory states that the quantity of consciousness available to a system can be measured as the Φ value of a complex of elements. Φ is the amount of causally effective information that can be integrated across the informational weakest link of a subset of elements. A complex is a subset of elements with Φ>0 that is not part of a subset of higher Φ. The theory also claims that the quality of consciousness is determined by the informational relationships among the elements of a complex, which are specified by the values of effective information among them. Finally, each particular conscious experience is specified by the value, at any given time, of the variables mediating informational interactions among the elements of a complex. Testing the hypothesis The information integration theory accounts, in a principled manner, for several neurobiological observations

  15. Advances in heuristically based generalized perturbation theory

    International Nuclear Information System (INIS)

    Gandini, A.

    1994-01-01

    A distinctive feature of heuristically based generalized perturbation theory methodology consists in the systematic use of importance conservation concepts. As well known, this use leads to fundamental reciprocity relationship. Instead, the alternative variational and differential one approaches make a consistent use of the properties and adjoint functions. The equivalence between the importance and the adjoint functions have been demonstrated in important cases. There are some instances, however, in which the commonly known operator governing the adjoint function are not adequate. In this paper ways proposed to generalize this rules, as adopted with the heuristic generalized perturbation theory methodology, are illustrated. When applied to the neutron/nuclide field characterizing the core evolution in a power reactor system, in which also an intensive control variable (ρ) is defined, these rules leas to an orthogonality relationship connected to this same control variable. A set of ρ-mode eigenfunctions may be correspondingly defined and an extended concept of reactivity (generalizing that commonly associated with the multiplication factor) proposed as more directly indicative of the controllability of a critical reactor system. (author). 25 refs

  16. A thermodynamically general theory for convective vortices

    Science.gov (United States)

    Renno, Nilton O.

    2008-08-01

    Convective vortices are common features of atmospheres that absorb lower-entropy-energy at higher temperatures than they reject higher-entropy-energy to space. These vortices range from small to large-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective vortices is important to our understanding of some of the basic features of planetary atmospheres. The heat engine framework is a useful tool for studying convective vortices. However, current theories assume that convective vortices are reversible heat engines. Since there are questions about how reversible real atmospheric heat engines are, their usefulness for studying real atmospheric vortices is somewhat controversial. In order to reduce this problem, a theory for convective vortices that includes irreversible processes is proposed. The paper's main result is that the proposed theory provides an expression for the pressure drop along streamlines that includes the effects of irreversible processes. It is shown that a simplified version of this expression is a generalization of Bernoulli's equation to convective circulations. It is speculated that the proposed theory not only explains the intensity, but also sheds light on other basic features of convective vortices such as their physical appearance.

  17. A generalized Yang-Mills Theory I: general aspects of the classical theory

    International Nuclear Information System (INIS)

    Galvao, C.A.P.

    1987-01-01

    A generalized Yang-Mills theory which is the non-Abelian version of the generalized eletrodinamics proposed by Podolsky is analysed both in the Lagrangian an Hamiltonian formulation. A simple class of solutions to the Euler-Lagrange equations is presented and the structure of the Hamiltonian constraints is studied in details. (Author) [pt

  18. Weak lensing in generalized gravity theories

    International Nuclear Information System (INIS)

    Acquaviva, Viviana; Baccigalupi, Carlo; Perrotta, Francesca

    2004-01-01

    We extend the theory of weak gravitational lensing to cosmologies with generalized gravity, described in the Lagrangian by a generic function depending on the Ricci scalar and a nonminimal coupled scalar field. We work out the generalized Poisson equations relating the dynamics of the fluctuating components to the two gauge-invariant scalar gravitational potentials, fixing the contributions from the modified background expansion and fluctuations. We show how the lensing equation gets modified by the cosmic expansion as well as by the presence of anisotropic stress, which is non-null at the linear level both in scalar-tensor gravity and in theories where the gravitational Lagrangian term features a nonminimal dependence on the Ricci scalar. Starting from the geodesic deviation, we derive the generalized expressions for the shear tensor and projected lensing potential, encoding the spacetime variation of the effective gravitational constant and isolating the contribution of the anisotropic stress, which introduces a correction due to the spatial correlation between the gravitational potentials. Finally, we work out the expressions of the lensing convergence power spectrum as well as the correlation between the lensing potential and the integrated Sachs-Wolfe effect affecting cosmic microwave background total intensity and polarization anisotropies. To illustrate phenomenologically the effects, we work out approximate expressions for the quantities above in extended quintessence scenarios where the scalar field coupled to gravity plays the role of the dark energy

  19. Module theory, extending modules and generalizations

    CERN Document Server

    Tercan, Adnan

    2016-01-01

    The main focus of this monograph is to offer a comprehensive presentation of known and new results on various generalizations of CS-modules and CS-rings. Extending (or CS) modules are generalizations of injective (and also semisimple or uniform) modules. While the theory of CS-modules is well documented in monographs and textbooks, results on generalized forms of the CS property as well as dual notions are far less present in the literature. With their work the authors provide a solid background to module theory, accessible to anyone familiar with basic abstract algebra. The focus of the book is on direct sums of CS-modules and classes of modules related to CS-modules, such as relative (injective) ejective modules, (quasi) continuous modules, and lifting modules. In particular, matrix CS-rings are studied and clear proofs of fundamental decomposition results on CS-modules over commutative domains are given, thus complementing existing monographs in this area. Open problems round out the work and establish the...

  20. Evaluation of a theory-informed implementation intervention for the management of acute low back pain in general medical practice: the IMPLEMENT cluster randomised trial.

    Science.gov (United States)

    French, Simon D; McKenzie, Joanne E; O'Connor, Denise A; Grimshaw, Jeremy M; Mortimer, Duncan; Francis, Jill J; Michie, Susan; Spike, Neil; Schattner, Peter; Kent, Peter; Buchbinder, Rachelle; Page, Matthew J; Green, Sally E

    2013-01-01

    This cluster randomised trial evaluated an intervention to decrease x-ray referrals and increase giving advice to stay active for people with acute low back pain (LBP) in general practice. General practices were randomised to either access to a guideline for acute LBP (control) or facilitated interactive workshops (intervention). We measured behavioural predictors (e.g. knowledge, attitudes and intentions) and fear avoidance beliefs. We were unable to recruit sufficient patients to measure our original primary outcomes so we introduced other outcomes measured at the general practitioner (GP) level: behavioural simulation (clinical decision about vignettes) and rates of x-ray and CT-scan (medical administrative data). All those not involved in the delivery of the intervention were blinded to allocation. 47 practices (53 GPs) were randomised to the control and 45 practices (59 GPs) to the intervention. The number of GPs available for analysis at 12 months varied by outcome due to missing confounder information; a minimum of 38 GPs were available from the intervention group, and a minimum of 40 GPs from the control group. For the behavioural constructs, although effect estimates were small, the intervention group GPs had greater intention of practising consistent with the guideline for the clinical behaviour of x-ray referral. For behavioural simulation, intervention group GPs were more likely to adhere to guideline recommendations about x-ray (OR 1.76, 95%CI 1.01, 3.05) and more likely to give advice to stay active (OR 4.49, 95%CI 1.90 to 10.60). Imaging referral was not statistically significantly different between groups and the potential importance of effects was unclear; rate ratio 0.87 (95%CI 0.68, 1.10) for x-ray or CT-scan. The intervention led to small changes in GP intention to practice in a manner that is consistent with an evidence-based guideline, but it did not result in statistically significant changes in actual behaviour. Australian New Zealand

  1. Evaluation of a theory-informed implementation intervention for the management of acute low back pain in general medical practice: the IMPLEMENT cluster randomised trial.

    Directory of Open Access Journals (Sweden)

    Simon D French

    Full Text Available INTRODUCTION: This cluster randomised trial evaluated an intervention to decrease x-ray referrals and increase giving advice to stay active for people with acute low back pain (LBP in general practice. METHODS: General practices were randomised to either access to a guideline for acute LBP (control or facilitated interactive workshops (intervention. We measured behavioural predictors (e.g. knowledge, attitudes and intentions and fear avoidance beliefs. We were unable to recruit sufficient patients to measure our original primary outcomes so we introduced other outcomes measured at the general practitioner (GP level: behavioural simulation (clinical decision about vignettes and rates of x-ray and CT-scan (medical administrative data. All those not involved in the delivery of the intervention were blinded to allocation. RESULTS: 47 practices (53 GPs were randomised to the control and 45 practices (59 GPs to the intervention. The number of GPs available for analysis at 12 months varied by outcome due to missing confounder information; a minimum of 38 GPs were available from the intervention group, and a minimum of 40 GPs from the control group. For the behavioural constructs, although effect estimates were small, the intervention group GPs had greater intention of practising consistent with the guideline for the clinical behaviour of x-ray referral. For behavioural simulation, intervention group GPs were more likely to adhere to guideline recommendations about x-ray (OR 1.76, 95%CI 1.01, 3.05 and more likely to give advice to stay active (OR 4.49, 95%CI 1.90 to 10.60. Imaging referral was not statistically significantly different between groups and the potential importance of effects was unclear; rate ratio 0.87 (95%CI 0.68, 1.10 for x-ray or CT-scan. CONCLUSIONS: The intervention led to small changes in GP intention to practice in a manner that is consistent with an evidence-based guideline, but it did not result in statistically significant

  2. The general physics theory for 21 century

    International Nuclear Information System (INIS)

    Gassym, T. M.

    2006-01-01

    By solving the coupled system of kinetic equations for interacting system of electrons positrons (holes) and photons (phonons) at high external electric, arbitrary magnetic and at the propagation of strong electromagnetic waves non-equilibrium and non-stationary distribution function of photons (phonons) and charge carriers by taking into account of arbitrary heating and mutual drag of carriers and photons (phonons) was found. Author was sure that received him in 1976 distribution function of photons (phonons) must lay on the basis of Theoretical Physics of 21 Century, as the equilibrium Planck's distribution function of black-body radiation received in 1900 lied on the basis of Quantum Physics of 20 Century. Authors many years mental work (from 1976 till today) confirmed the rightness of searched him way and leads to the conclusion that Kinetic Theory is more general and fundamental theory of nature, which unificated Non-stationary Dynamics (the left-hand side) with Non-stationary Statistical Mechanics (the right-hand side) of Kinetic Equation. It is shown that other sections of Theoretical Physics such as Newtonian, Hamiltonian and Relativistic Classical Mechanics, Quantum Physics, Optics, Statistical Mechanics and Thermodynamics, Particle Physics may be received from Kinetic Theory under the special conditions and are the special parts of this theory. The problems such as the irreversibility and instability, the paradox of time, quantum paradox and others are solved. This new General Theory explains all the problems and troubles contents with the foundations and interpretation of quantum mechanics and relativity. It was found the mechanism of quantization and transition from one energetic level to another,the squeezed effect, the transition of particles wave-packets through the energetic barriers. It is shown the possibility of superluminal motion of light pulses and wave-packets through the medium and photonic barriers. It is well known that the experiments

  3. A general theory of quantum relativity

    International Nuclear Information System (INIS)

    Minic, Djordje; Tze, C.-H.

    2004-01-01

    The geometric form of standard quantum mechanics is compatible with the two postulates: (1) the laws of physics are invariant under the choice of experimental setup and (2) every quantum observation or event is intrinsically statistical. These postulates remain compatible within a background independent extension of quantum theory with a local intrinsic time implying the relativity of the concept of a quantum event. In this extension the space of quantum events becomes dynamical and only individual quantum events make sense observationally. At the core of such a general theory of quantum relativity is the three-way interplay between the symplectic form, the dynamical metric and non-integrable almost complex structure of the space of quantum events. Such a formulation provides a missing conceptual ingredient in the search for a background independent quantum theory of gravity and matter. The crucial new technical element in our scheme derives from a set of recent mathematical results on certain infinite-dimensional almost Kahler manifolds which replace the complex projective spaces of standard quantum mechanics

  4. Toward a holographic theory for general spacetimes

    Science.gov (United States)

    Nomura, Yasunori; Salzetta, Nico; Sanches, Fabio; Weinberg, Sean J.

    2017-04-01

    We study a holographic theory of general spacetimes that does not rely on the existence of asymptotic regions. This theory is to be formulated in a holographic space. When a semiclassical description is applicable, the holographic space is assumed to be a holographic screen: a codimension-1 surface that is capable of encoding states of the gravitational spacetime. Our analysis is guided by conjectured relationships between gravitational spacetime and quantum entanglement in the holographic description. To understand basic features of this picture, we catalog predictions for the holographic entanglement structure of cosmological spacetimes. We find that qualitative features of holographic entanglement entropies for such spacetimes differ from those in AdS/CFT but that the former reduce to the latter in the appropriate limit. The Hilbert space of the theory is analyzed, and two plausible structures are found: a direct-sum and "spacetime-equals-entanglement" structure. The former preserves a naive relationship between linear operators and observable quantities, while the latter respects a more direct connection between holographic entanglement and spacetime. We also discuss the issue of selecting a state in quantum gravity, in particular how the state of the multiverse may be selected in the landscape.

  5. 22 CFR 61.9 - General information.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false General information. 61.9 Section 61.9 Foreign Relations DEPARTMENT OF STATE PUBLIC DIPLOMACY AND EXCHANGES WORLD-WIDE FREE FLOW OF AUDIO-VISUAL MATERIALS § 61.9 General information. General information and application forms may be obtained by writing to the...

  6. Generalized detailed balance theory of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kirchartz, Thomas

    2009-12-12

    compatible with the Shockley-Queisser limit and the classical diode theory. For organic solar cells, exciton binding energies are sufficiently high, so that purely bipolar models are no longer applicable. Instead, excitonic transport has to be included. Thus, the inclusion of exciton transport into the bipolar detailed balance model leads to a generalized detailed balance model that simulates solar cells with predominantly bipolar transport, with predominantly excitonic transport and with every combination of both. Due to low exciton diffusion lengths, organic solar cells are usually combined with a specific device geometry, the bulk heterojunction. In a bulk heterojunction device, the whole bulk of the absorber is made up of distributed heterojunctions, where the exciton is transferred to a bound pair at the interface, which is then split into free electron and hole. The assumption that exciton transport is only relevant towards the next heterointerface allows to develop also a version of the detailed balance model that is applicable to bulk heterojunction cells. The last variation of the detailed balance model includes the process of impact ionisation as a means to generate more than one exciton from a single high energy photon. The model for multiple exciton generating absorbers identifies possible bottlenecks as well as maximum efficiencies of future solar cells that use this concept. Another direct consequence of the principle of detailed balance is a reciprocity theorem between electroluminescence and solar cell quantum efficiency. The theoretical part of this thesis discusses the validity range of this reciprocity and checks for each version of the model, whether the relation between electroluminescence and quantum efficiency is still applicable. The main result shows that voltage dependent carrier collection as encountered in low mobility pin-junction devices leads to deviations from the reciprocity, while it still holds for most pn-junction solar cells. The

  7. Quantum Networks: General theory and applications

    International Nuclear Information System (INIS)

    Bisio, A.; D'Ariano, G. M.; Perinotti, P.; Chiribella, G.

    2011-01-01

    In this work we present a general mathematical framework to deal with Quantum Networks, i.e. networks resulting from the interconnection of elementary quantum circuits. The cornerstone of our approach is a generalization of the Choi isomorphism that allows one to efficiently represent any given Quantum Network in terms of a single positive operator. Our formalism allows one to face and solve many quantum information processing problems that would be hardly manageable otherwise, the most relevant of which are reviewed in this work: quantum process tomography, quantum cloning and learning of transformations, inversion of a unitary gate, information-disturbance tradeoff in estimating a unitary transformation, cloning and learning of a measurement device (Authors)

  8. General information about nuclear energy

    International Nuclear Information System (INIS)

    2002-04-01

    The following briefing notes were written to provide background information about nuclear power in Europe for journalists covering ENC 2002. They deal with four separate aspects of nuclear electricity generation: Economics; Environment; Safety; Waste Management. (authors)

  9. Generalized diffusion theory for calculating the neutron transport scalar flux

    International Nuclear Information System (INIS)

    Alcouffe, R.E.

    1975-01-01

    A generalization of the neutron diffusion equation is introduced, the solution of which is an accurate approximation to the transport scalar flux. In this generalization the auxiliary transport calculations of the system of interest are utilized to compute an accurate, pointwise diffusion coefficient. A procedure is specified to generate and improve this auxiliary information in a systematic way, leading to improvement in the calculated diffusion scalar flux. This improvement is shown to be contingent upon satisfying the condition of positive calculated-diffusion coefficients, and an algorithm that ensures this positivity is presented. The generalized diffusion theory is also shown to be compatible with conventional diffusion theory in the sense that the same methods and codes can be used to calculate a solution for both. The accuracy of the method compared to reference S/sub N/ transport calculations is demonstrated for a wide variety of examples. (U.S.)

  10. General theory of the plasmoid instability

    International Nuclear Information System (INIS)

    Comisso, L.; Lingam, M.; Huang, Y.-M.; Bhattacharjee, A.

    2016-01-01

    In a general theory of the onset and development of the plasmoid instability is formulated by means of a principle of least time. We derive and show the scaling relations for the final aspect ratio, transition time to rapid onset, growth rate, and number of plasmoids that depend on the initial perturbation amplitude (ŵ_0), the characteristic rate of current sheet evolution (1/τ), and the Lundquist number (S). They are not simple power laws, and are proportional to S"ατ"β[ln f(S,τ,ŵ_0)]"σ. Finally, the detailed dynamics of the instability is also elucidated, and shown to comprise of a period of quiescence followed by sudden growth over a short time scale.

  11. A general theory of sexual differentiation.

    Science.gov (United States)

    Arnold, Arthur P

    2017-01-02

    A general theory of mammalian sexual differentiation is proposed. All biological sex differences are the result of the inequality in effects of the sex chromosomes, which are the only factors that differ in XX vs. XY zygotes. This inequality leads to male-specific effects of the Y chromosome, including expression of the testis-determining gene Sry that causes differentiation of testes. Thus, Sry sets up lifelong sex differences in effects of gonadal hormones. Y genes also act outside of the gonads to cause male-specific effects. Differences in the number of X chromosomes between XX and XY cells cause sex differences in expression (1) of Xist, (2) of X genes that escape inactivation, and (3) of parentally imprinted X genes. Sex differences in phenotype are ultimately the result of multiple, independent sex-biasing factors, hormonal and sex chromosomal. These factors act in parallel and in combination to induce sex differences. They also can offset each other to reduce sex differences. Other mechanisms, operating at the level of populations, cause groups of males to differ on average from groups of females. The theory frames questions for further study, and directs attention to inherent sex-biasing factors that operate in many tissues to cause sex differences, and to cause sex-biased protection from disease. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Comment on Gallistel: behavior theory and information theory: some parallels.

    Science.gov (United States)

    Nevin, John A

    2012-05-01

    In this article, Gallistel proposes information theory as an approach to some enduring problems in the study of operant and classical conditioning. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Generalized quantum theory of recollapsing homogeneous cosmologies

    International Nuclear Information System (INIS)

    Craig, David; Hartle, James B.

    2004-01-01

    A sum-over-histories generalized quantum theory is developed for homogeneous minisuperspace type A Bianchi cosmological models, focusing on the particular example of the classically recollapsing Bianchi type-IX universe. The decoherence functional for such universes is exhibited. We show how the probabilities of decoherent sets of alternative, coarse-grained histories of these model universes can be calculated. We consider in particular the probabilities for classical evolution defined by a suitable coarse graining. For a restricted class of initial conditions and coarse grainings we exhibit the approximate decoherence of alternative histories in which the universe behaves classically and those in which it does not. For these situations we show that the probability is near unity for the universe to recontract classically if it expands classically. We also determine the relative probabilities of quasiclassical trajectories for initial states of WKB form, recovering for such states a precise form of the familiar heuristic 'J·dΣ' rule of quantum cosmology, as well as a generalization of this rule to generic initial states

  14. Information theory and rate distortion theory for communications and compression

    CERN Document Server

    Gibson, Jerry

    2013-01-01

    This book is very specifically targeted to problems in communications and compression by providing the fundamental principles and results in information theory and rate distortion theory for these applications and presenting methods that have proved and will prove useful in analyzing and designing real systems. The chapters contain treatments of entropy, mutual information, lossless source coding, channel capacity, and rate distortion theory; however, it is the selection, ordering, and presentation of the topics within these broad categories that is unique to this concise book. While the cover

  15. Beyond heat baths II: framework for generalized thermodynamic resource theories

    Science.gov (United States)

    Yunger Halpern, Nicole

    2018-03-01

    Thermodynamics, which describes vast systems, has been reconciled with small scales, relevant to single-molecule experiments, in resource theories. Resource theories have been used to model exchanges of energy and information. Recently, particle exchanges were modeled; and an umbrella family of thermodynamic resource theories was proposed to model diverse baths, interactions, and free energies. This paper motivates and details the family’s structure and prospective applications. How to model electrochemical, gravitational, magnetic, and other thermodynamic systems is explained. Szilárd’s engine and Landauer’s Principle are generalized, as resourcefulness is shown to be convertible not only between information and gravitational energy, but also among diverse degrees of freedom. Extensive variables are associated with quantum operators that might fail to commute, introducing extra nonclassicality into thermodynamic resource theories. An early version of this paper partially motivated the later development of noncommutative thermalization. This generalization expands the theories’ potential for modeling realistic systems with which small-scale statistical mechanics might be tested experimentally.

  16. Financial markets theory equilibrium, efficiency and information

    CERN Document Server

    Barucci, Emilio

    2017-01-01

    This work, now in a thoroughly revised second edition, presents the economic foundations of financial markets theory from a mathematically rigorous standpoint and offers a self-contained critical discussion based on empirical results. It is the only textbook on the subject to include more than two hundred exercises, with detailed solutions to selected exercises. Financial Markets Theory covers classical asset pricing theory in great detail, including utility theory, equilibrium theory, portfolio selection, mean-variance portfolio theory, CAPM, CCAPM, APT, and the Modigliani-Miller theorem. Starting from an analysis of the empirical evidence on the theory, the authors provide a discussion of the relevant literature, pointing out the main advances in classical asset pricing theory and the new approaches designed to address asset pricing puzzles and open problems (e.g., behavioral finance). Later chapters in the book contain more advanced material, including on the role of information in financial markets, non-c...

  17. Econophysics: from Game Theory and Information Theory to Quantum Mechanics

    Science.gov (United States)

    Jimenez, Edward; Moya, Douglas

    2005-03-01

    Rationality is the universal invariant among human behavior, universe physical laws and ordered and complex biological systems. Econophysics isboth the use of physical concepts in Finance and Economics, and the use of Information Economics in Physics. In special, we will show that it is possible to obtain the Quantum Mechanics principles using Information and Game Theory.

  18. Information Theory for Information Science: Antecedents, Philosophy, and Applications

    Science.gov (United States)

    Losee, Robert M.

    2017-01-01

    This paper provides an historical overview of the theoretical antecedents leading to information theory, specifically those useful for understanding and teaching information science and systems. Information may be discussed in a philosophical manner and at the same time be measureable. This notion of information can thus be the subject of…

  19. An information theory account of cognitive control.

    Science.gov (United States)

    Fan, Jin

    2014-01-01

    Our ability to efficiently process information and generate appropriate responses depends on the processes collectively called cognitive control. Despite a considerable focus in the literature on the cognitive control of information processing, neural mechanisms underlying control are still unclear, and have not been characterized by considering the quantity of information to be processed. A novel and comprehensive account of cognitive control is proposed using concepts from information theory, which is concerned with communication system analysis and the quantification of information. This account treats the brain as an information-processing entity where cognitive control and its underlying brain networks play a pivotal role in dealing with conditions of uncertainty. This hypothesis and theory article justifies the validity and properties of such an account and relates experimental findings to the frontoparietal network under the framework of information theory.

  20. An information theory account of cognitive control

    Directory of Open Access Journals (Sweden)

    Jin eFan

    2014-09-01

    Full Text Available Our ability to efficiently process information and generate appropriate responses depends on the processes collectively called cognitive control. Despite a considerable focus in the literature on the cognitive control of information processing, neural mechanisms underlying control are still unclear, and have not been characterized by considering the quantity of information to be processed. A novel and comprehensive account of cognitive control is proposed using concepts from information theory, which is concerned with communication system analysis and the quantification of information. This account treats the brain as an information-processing entity where cognitive control and its underlying brain networks play a pivotal role in dealing with conditions of uncertainty. This hypothesis and theory article justifies the validity and properties of such an account and relates experimental findings to the frontoparietal network under the framework of information theory.

  1. Towards a General Theory of Bilingual Legal Lexicography

    DEFF Research Database (Denmark)

    Nielsen, Sandro

    2003-01-01

    As the need for intercultural communication in the field of law has increased, the foundation of a general theory of bilingual legal lexicography must be given priority. This paper introduces, describes and explains the elements necessary for compiling the optimal bilingual law dictionary....... The theory deals with much more than the traditional question of equivalence, and shows which considerations are necessary to fully exploit the potential of printed dictionaries for the benefit of the users. Most users need linguistic and factual information that must be organised and presented...... in a structured way. This includes user research, organisation of dictionary chapters, and the presentation and structure of the linguistic and factual information in the articles and elsewhere in the dictionary....

  2. Processing Information in Quantum Decision Theory

    OpenAIRE

    Yukalov, V. I.; Sornette, D.

    2008-01-01

    A survey is given summarizing the state of the art of describing information processing in Quantum Decision Theory, which has been recently advanced as a novel variant of decision making, based on the mathematical theory of separable Hilbert spaces. This mathematical structure captures the effect of superposition of composite prospects, including many incorporated intended actions. The theory characterizes entangled decision making, non-commutativity of subsequent decisions, and intention int...

  3. 32 CFR 48.501 - General information.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false General information. 48.501 Section 48.501 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE PERSONNEL, MILITARY AND CIVILIAN RETIRED SERVICEMAN'S FAMILY PROTECTION PLAN Annuity § 48.501 General information. Except as provided in...

  4. Generalized phase retrieval algorithm based on information measures

    OpenAIRE

    Shioya, Hiroyuki; Gohara, Kazutoshi

    2006-01-01

    An iterative phase retrieval algorithm based on the maximum entropy method (MEM) is presented. Introducing a new generalized information measure, we derive a novel class of algorithms which includes the conventionally used error reduction algorithm and a MEM-type iterative algorithm which is presented for the first time. These different phase retrieval methods are unified on the basis of the framework of information measures used in information theory.

  5. Concepts and recent advances in generalized information measures and statistics

    CERN Document Server

    Kowalski, Andres M

    2013-01-01

    Since the introduction of the information measure widely known as Shannon entropy, quantifiers based on information theory and concepts such as entropic forms and statistical complexities have proven to be useful in diverse scientific research fields. This book contains introductory tutorials suitable for the general reader, together with chapters dedicated to the basic concepts of the most frequently employed information measures or quantifiers and their recent applications to different areas, including physics, biology, medicine, economics, communication and social sciences. As these quantif

  6. Ghost properties of generalized theories of gravitation

    International Nuclear Information System (INIS)

    Mann, R.B.; Moffat, J.W.

    1982-01-01

    We investigate theories of gravitation, in which spacetime is non-Riemannian and the metric g/sub munu/ is nonsymmetric, for ghosts and tachyons, using a spin-projection operator formalism. Ghosts are removed not by gauge invariance but by a Lagrange multiplier W/sub μ/, which occurs due to the breaking of projective invariance in the theory. Unified theories based on a Lagrangian containing a term lambdag/sup munu/g/sub / are proved to contain ghosts or tachyons

  7. Applications of quantum information theory to quantum gravity

    International Nuclear Information System (INIS)

    Smolin, L.

    2005-01-01

    Full text: I describe work by and with Fotini Markopoulou and Olaf Dreyeron the application of quantum information theory to quantum gravity. A particular application to black hole physics is described, which treats the black hole horizon as an open system, in interaction with an environment, which are the degrees of freedom in the bulk spacetime. This allows us to elucidate which quantum states of a general horizon contribute to the entropy of a Schwarzchild black hole. This case serves as an example of how methods from quantum information theory may help to elucidate how the classical limit emerges from a background independent quantum theory of gravity. (author)

  8. Generalizing Prototype Theory: A Formal Quantum Framework

    Science.gov (United States)

    Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro

    2016-01-01

    Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper. PMID:27065436

  9. Generalizing Prototype Theory: A Formal Quantum Framework

    Directory of Open Access Journals (Sweden)

    Diederik eAerts

    2016-03-01

    Full Text Available Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper.

  10. Can one tell Einstein's unimodular theory from Einstein's general relativity?

    OpenAIRE

    Alvarez, Enrique

    2005-01-01

    The so called unimodular theory of gravitation is compared with general relativity in the quadratic (Fierz-Pauli) regime, using a quite broad framework, and it is argued that quantum effects allow in principle to discriminate between both theories.

  11. The role of Einstein's general relativity theory in today's physics

    International Nuclear Information System (INIS)

    Bicak, J.

    The relationships are discussed of the general relativity theory to other fields of today's physics. Recent results are reported of studies into gravitational radiation, relativistic astrophysics, cosmology and the quantum theory. (Z.M.)

  12. 70 years of the general theory of relativity

    International Nuclear Information System (INIS)

    Castro Diaz-Balart, F.; Cabezas Solorzano, R.

    1986-06-01

    In view of the 70th anniversary of the discovery of the General Theory of Relativity, an analysis was made of the special and general theories. The basic postulates, their consequences in the formulation of the theories, the main results, some aspects related to the experimental verification and its applications are presented, as are some elements of the mathematical formalism of the theories, to facilitate the logical interrelationships between its results and consequences. (author)

  13. N =1 Lagrangians for generalized Argyres-Douglas theories

    Science.gov (United States)

    Agarwal, Prarit; Sciarappa, Antonio; Song, Jaewon

    2017-10-01

    We find N = 1 Lagrangian gauge theories that flow to generalized ArgyresDouglas theories with N = 2 supersymmetry. We find that certain SU quiver gauge theories flow to generalized Argyres-Douglas theories of type ( A k-1 , A mk-1) and ( I m,km , S). We also find quiver gauge theories of SO/Sp gauge groups flowing to the ( A 2 m-1 , D 2 mk+1), ( A 2 m , D 2 m( k-1)+ k ) and D m(2 k + 2) m(2 k + 2) [ m] theories.

  14. Information Theoretic Characterization of Physical Theories with Projective State Space

    Science.gov (United States)

    Zaopo, Marco

    2015-08-01

    Probabilistic theories are a natural framework to investigate the foundations of quantum theory and possible alternative or deeper theories. In a generic probabilistic theory, states of a physical system are represented as vectors of outcomes probabilities and state spaces are convex cones. In this picture the physics of a given theory is related to the geometric shape of the cone of states. In quantum theory, for instance, the shape of the cone of states corresponds to a projective space over complex numbers. In this paper we investigate geometric constraints on the state space of a generic theory imposed by the following information theoretic requirements: every non completely mixed state of a system is perfectly distinguishable from some other state in a single shot measurement; information capacity of physical systems is conserved under making mixtures of states. These assumptions guarantee that a generic physical system satisfies a natural principle asserting that the more a state of the system is mixed the less information can be stored in the system using that state as logical value. We show that all theories satisfying the above assumptions are such that the shape of their cones of states is that of a projective space over a generic field of numbers. Remarkably, these theories constitute generalizations of quantum theory where superposition principle holds with coefficients pertaining to a generic field of numbers in place of complex numbers. If the field of numbers is trivial and contains only one element we obtain classical theory. This result tells that superposition principle is quite common among probabilistic theories while its absence gives evidence of either classical theory or an implausible theory.

  15. Towards a General Theory of Immunity?

    Science.gov (United States)

    Eberl, Gérard; Pradeu, Thomas

    2018-04-01

    Theories are indispensable to organize immunological data into coherent, explanatory, and predictive frameworks. We propose to combine different models to develop a unifying theory of immunity which situates immunology in the wider context of physiology. We believe that the immune system will be increasingly understood as a central component of a network of partner physiological systems that interconnect to maintain homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Towards a critical theory of information

    Directory of Open Access Journals (Sweden)

    Christian Fuchs

    2009-11-01

    The debate on redistribution and recognition between critical theorists Nancy Fraser and Axel Honneth gives the opportunity to renew the discussion of the relationship of base and superstructure in critical social theory. Critical information theory needs to be aware of economic, political, and cultural demands that it needs to make in struggles for ending domination and oppression, and of the unifying role that the economy and class play in these demands and struggles. Objective and subjective information concepts are based on the underlying worldview of reification. Reification endangers human existence. Information as process and relation enables political and ethical alternatives that have radical implications for society.

  17. The Nature of Living Systems: An Exposition of the Basic Concepts in General Systems Theory.

    Science.gov (United States)

    Miller, James G.

    General systems theory is a set of related definitions, assumptions, and propositions which deal with reality as an integrated hierarchy of organizations of matter and energy. In this paper, the author defines the concepts of space, time, matter, energy, and information in terms of their meaning in general systems theory. He defines a system as a…

  18. Information theory based approaches to cellular signaling.

    Science.gov (United States)

    Waltermann, Christian; Klipp, Edda

    2011-10-01

    Cells interact with their environment and they have to react adequately to internal and external changes such changes in nutrient composition, physical properties like temperature or osmolarity and other stresses. More specifically, they must be able to evaluate whether the external change is significant or just in the range of noise. Based on multiple external parameters they have to compute an optimal response. Cellular signaling pathways are considered as the major means of information perception and transmission in cells. Here, we review different attempts to quantify information processing on the level of individual cells. We refer to Shannon entropy, mutual information, and informal measures of signaling pathway cross-talk and specificity. Information theory in systems biology has been successfully applied to identification of optimal pathway structures, mutual information and entropy as system response in sensitivity analysis, and quantification of input and output information. While the study of information transmission within the framework of information theory in technical systems is an advanced field with high impact in engineering and telecommunication, its application to biological objects and processes is still restricted to specific fields such as neuroscience, structural and molecular biology. However, in systems biology dealing with a holistic understanding of biochemical systems and cellular signaling only recently a number of examples for the application of information theory have emerged. This article is part of a Special Issue entitled Systems Biology of Microorganisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. General Information about Chronic Myelogenous Leukemia

    Science.gov (United States)

    ... ALL Treatment Childhood AML Treatment Research Chronic Myelogenous Leukemia Treatment (PDQ®)–Patient Version General Information About Chronic Myelogenous Leukemia Go to Health Professional Version Key Points Chronic ...

  20. General Information about Small Cell Lung Cancer

    Science.gov (United States)

    ... Lung Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  1. General Information about Renal Cell Cancer

    Science.gov (United States)

    ... Tumors Treatment Genetics of Kidney Cancer Research Renal Cell Cancer Treatment (PDQ®)–Patient Version General Information About Renal Cell Cancer Go to Health Professional Version Key Points Renal ...

  2. General Information about Merkel Cell Carcinoma

    Science.gov (United States)

    ... Genetics of Skin Cancer Skin Cancer Screening Research Merkel Cell Carcinoma Treatment (PDQ®)–Patient Version General Information About Merkel Cell Carcinoma Go to Health Professional Version Key ...

  3. On the Generalized Geometry Origin of Noncommutative Gauge Theory

    CERN Document Server

    Jurco, Branislav; Vysoky, Jan

    2013-01-01

    We discuss noncommutative gauge theory from the generalized geometry point of view. We argue that the equivalence between the commutative and semiclassically noncommutative DBI actions is naturally encoded in the generalized geometry of D-branes.

  4. The general theory of convolutional codes

    Science.gov (United States)

    Mceliece, R. J.; Stanley, R. P.

    1993-01-01

    This article presents a self-contained introduction to the algebraic theory of convolutional codes. This introduction is partly a tutorial, but at the same time contains a number of new results which will prove useful for designers of advanced telecommunication systems. Among the new concepts introduced here are the Hilbert series for a convolutional code and the class of compact codes.

  5. Reasonable fermionic quantum information theories require relativity

    International Nuclear Information System (INIS)

    Friis, Nicolai

    2016-01-01

    We show that any quantum information theory based on anticommuting operators must be supplemented by a superselection rule deeply rooted in relativity to establish a reasonable notion of entanglement. While quantum information may be encoded in the fermionic Fock space, the unrestricted theory has a peculiar feature: the marginals of bipartite pure states need not have identical entropies, which leads to an ambiguous definition of entanglement. We solve this problem, by proving that it is removed by relativity, i.e., by the parity superselection rule that arises from Lorentz invariance via the spin-statistics connection. Our results hence unveil a fundamental conceptual inseparability of quantum information and the causal structure of relativistic field theory. (paper)

  6. Information theory, spectral geometry, and quantum gravity.

    Science.gov (United States)

    Kempf, Achim; Martin, Robert

    2008-01-18

    We show that there exists a deep link between the two disciplines of information theory and spectral geometry. This allows us to obtain new results on a well-known quantum gravity motivated natural ultraviolet cutoff which describes an upper bound on the spatial density of information. Concretely, we show that, together with an infrared cutoff, this natural ultraviolet cutoff beautifully reduces the path integral of quantum field theory on curved space to a finite number of ordinary integrations. We then show, in particular, that the subsequent removal of the infrared cutoff is safe.

  7. A QCD Model Using Generalized Yang-Mills Theory

    International Nuclear Information System (INIS)

    Wang Dianfu; Song Heshan; Kou Lina

    2007-01-01

    Generalized Yang-Mills theory has a covariant derivative, which contains both vector and scalar gauge bosons. Based on this theory, we construct a strong interaction model by using the group U(4). By using this U(4) generalized Yang-Mills model, we also obtain a gauge potential solution, which can be used to explain the asymptotic behavior and color confinement.

  8. A general theory of comic entertainment

    DEFF Research Database (Denmark)

    Grodal, Torben Kragh

    2014-01-01

    The article claims that comic entertainment consists of five elements 1. priming of the comic events to come 2. some comic entertainment inputs that creates arousal 3. Entertainment-internal signals of the playful nature of the comic input 4. Appraisal processes in audience members that evaluate...... the input as 'not real but playful', 5. this leads to a change in hedonic tone, and arousal is combined with the release of endorphins (a morphine-based neurotransmitter) that makes the arousal pleasant. The theory of comic entertainment accords with the PECMA flow theory proposed in Grodal: Embodied...... Visions, because the evaluation: playful, not real, influences the muscular directness towards the world that drops. Comic entertainment is further linked to human bonding....

  9. Quantum theory and Einstein's general relativity

    International Nuclear Information System (INIS)

    Borzeszkowski, H.H.v.; Treder, H.J.

    1984-01-01

    The paper concerns Einstein's general relativity, wave mechanics and the quantization of Einstein's gravitation equations. The principle of equivalence and its association with both wave mechanics and quantum gravity, is discussed. (U.K.)

  10. General Theory versus ENA Theory: Comparing Their Predictive Accuracy and Scope.

    Science.gov (United States)

    Ellis, Lee; Hoskin, Anthony; Hartley, Richard; Walsh, Anthony; Widmayer, Alan; Ratnasingam, Malini

    2015-12-01

    General theory attributes criminal behavior primarily to low self-control, whereas evolutionary neuroandrogenic (ENA) theory envisions criminality as being a crude form of status-striving promoted by high brain exposure to androgens. General theory predicts that self-control will be negatively correlated with risk-taking, while ENA theory implies that these two variables should actually be positively correlated. According to ENA theory, traits such as pain tolerance and muscularity will be positively associated with risk-taking and criminality while general theory makes no predictions concerning these relationships. Data from Malaysia and the United States are used to test 10 hypotheses derived from one or both of these theories. As predicted by both theories, risk-taking was positively correlated with criminality in both countries. However, contrary to general theory and consistent with ENA theory, the correlation between self-control and risk-taking was positive in both countries. General theory's prediction of an inverse correlation between low self-control and criminality was largely supported by the U.S. data but only weakly supported by the Malaysian data. ENA theory's predictions of positive correlations between pain tolerance, muscularity, and offending were largely confirmed. For the 10 hypotheses tested, ENA theory surpassed general theory in predictive scope and accuracy. © The Author(s) 2014.

  11. General Open Systems Theory and the Substrata-Factor Theory of Reading.

    Science.gov (United States)

    Kling, Martin

    This study was designed to extend the generality of the Substrata-Factor Theory by two methods of investigation: (1) theoretically, to est"blish the validity of the hypothesis that an isomorphic relationship exists between the Substrata-Factor Theory and the General Open Systems Theory, and (2) experimentally, to disc"ver through a…

  12. Writing, Proofreading and Editing in Information Theory

    Directory of Open Access Journals (Sweden)

    J. Ricardo Arias-Gonzalez

    2018-05-01

    Full Text Available Information is a physical entity amenable to be described by an abstract theory. The concepts associated with the creation and post-processing of the information have not, however, been mathematically established, despite being broadly used in many fields of knowledge. Here, inspired by how information is managed in biomolecular systems, we introduce writing, entailing any bit string generation, and revision, as comprising proofreading and editing, in information chains. Our formalism expands the thermodynamic analysis of stochastic chains made up of material subunits to abstract strings of symbols. We introduce a non-Markovian treatment of operational rules over the symbols of the chain that parallels the physical interactions responsible for memory effects in material chains. Our theory underlies any communication system, ranging from human languages and computer science to gene evolution.

  13. Geometrical identification of quantum and information theories

    International Nuclear Information System (INIS)

    Caianiello, E.R.

    1983-01-01

    The interrelation of quantum and information theories is investigation on the base of the conception of cross-entropy. It is assumed that ''complex information geometry'' may serve as a tool for ''technological transfer'' from one research field to the other which is not connected directly with the first one. It is pointed out that the ''infinitesimal distance'' ds 2 and ''infinitesimal cross-entropy'' dHsub(c) coincide

  14. Generalized Jacobi identities in gauge theories

    International Nuclear Information System (INIS)

    Chaves, F.M.P.

    1990-01-01

    A spatial generalized Jacobi identity obeyed by the polarization-dependent factors of the vertices in a q q-bar - Wγ process is studied. The amplitude of a scattering gluon-gluon with five particles is worked out. By reorganizing this amplitude in analogy with an interaction process photon-pion, the non existence of the spatial generalized Jacobi identity, but instead many spatial partial identities that compose themselves, in the case of a four particle process, in one single identity is shown. A process with four particles, three of them scalar fields, but in the one loop approximation is studied. In this case also, the non existence of the spatial generalized Jacobi identity is demonstrated. (author)

  15. Structural information theory and visual form

    NARCIS (Netherlands)

    Leeuwenberg, E.L.J.; Kaernbach, C.; Schroeger, E.; Mueller, H.

    2003-01-01

    The paper attends to basic characteristics of visual form as approached by Structural information theory, or SIT, (Leeuwenberg, Van der Helm and Van Lier). The introduction provides a global survey of this approach. The main part of the paper focuses on three characteristics of SIT. Each one is made

  16. Towards an Information Retrieval Theory of Everything

    NARCIS (Netherlands)

    Hiemstra, Djoerd; Lammerink, J.M.W.; Katoen, Joost P.; Kok, J.N.; van de Pol, Jan Cornelis; Raamsdonk, F.

    2009-01-01

    I present three well-known probabilistic models of information retrieval in tutorial style: The binary independence probabilistic model, the language modeling approach, and Google's page rank. Although all three models are based on probability theory, they are very different in nature. Each model

  17. A THEORY OF MAXIMIZING SENSORY INFORMATION

    NARCIS (Netherlands)

    Hateren, J.H. van

    1992-01-01

    A theory is developed on the assumption that early sensory processing aims at maximizing the information rate in the channels connecting the sensory system to more central parts of the brain, where it is assumed that these channels are noisy and have a limited dynamic range. Given a stimulus power

  18. Rényi generalizations of the conditional quantum mutual information

    International Nuclear Information System (INIS)

    Berta, Mario; Seshadreesan, Kaushik P.; Wilde, Mark M.

    2015-01-01

    The conditional quantum mutual information I(A; B|C) of a tripartite state ρ ABC is an information quantity which lies at the center of many problems in quantum information theory. Three of its main properties are that it is non-negative for any tripartite state, that it decreases under local operations applied to systems A and B, and that it obeys the duality relation I(A; B|C) = I(A; B|D) for a four-party pure state on systems ABCD. The conditional mutual information also underlies the squashed entanglement, an entanglement measure that satisfies all of the axioms desired for an entanglement measure. As such, it has been an open question to find Rényi generalizations of the conditional mutual information, that would allow for a deeper understanding of the original quantity and find applications beyond the traditional memoryless setting of quantum information theory. The present paper addresses this question, by defining different α-Rényi generalizations I α (A; B|C) of the conditional mutual information, some of which we can prove converge to the conditional mutual information in the limit α → 1. Furthermore, we prove that many of these generalizations satisfy non-negativity, duality, and monotonicity with respect to local operations on one of the systems A or B (with it being left as an open question to prove that monotonicity holds with respect to local operations on both systems). The quantities defined here should find applications in quantum information theory and perhaps even in other areas of physics, but we leave this for future work. We also state a conjecture regarding the monotonicity of the Rényi conditional mutual informations defined here with respect to the Rényi parameter α. We prove that this conjecture is true in some special cases and when α is in a neighborhood of one

  19. Studying emotion theories through connectivity analysis: Evidence from generalized psychophysiological interactions and graph theory.

    Science.gov (United States)

    Huang, Yun-An; Jastorff, Jan; Van den Stock, Jan; Van de Vliet, Laura; Dupont, Patrick; Vandenbulcke, Mathieu

    2018-05-15

    Psychological construction models of emotion state that emotions are variable concepts constructed by fundamental psychological processes, whereas according to basic emotion theory, emotions cannot be divided into more fundamental units and each basic emotion is represented by a unique and innate neural circuitry. In a previous study, we found evidence for the psychological construction account by showing that several brain regions were commonly activated when perceiving different emotions (i.e. a general emotion network). Moreover, this set of brain regions included areas associated with core affect, conceptualization and executive control, as predicted by psychological construction models. Here we investigate directed functional brain connectivity in the same dataset to address two questions: 1) is there a common pathway within the general emotion network for the perception of different emotions and 2) if so, does this common pathway contain information to distinguish between different emotions? We used generalized psychophysiological interactions and information flow indices to examine the connectivity within the general emotion network. The results revealed a general emotion pathway that connects neural nodes involved in core affect, conceptualization, language and executive control. Perception of different emotions could not be accurately classified based on the connectivity patterns from the nodes of the general emotion pathway. Successful classification was achieved when connections outside the general emotion pathway were included. We propose that the general emotion pathway functions as a common pathway within the general emotion network and is involved in shared basic psychological processes across emotions. However, additional connections within the general emotion network are required to classify different emotions, consistent with a constructionist account. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. On the equivalence of vacuum equations of gauge quadratic theory of gravity and general relativity theory

    International Nuclear Information System (INIS)

    Zhitnikov, V.V.; Ponomarev, V.N.

    1986-01-01

    An attempt is made to compare the solution of field equations, corresponding to quadratic equations for the fields (g μν , Γ μν α ) in gauge gravitation theory (GGT) with general relativity theory solutions. Without restrictions for a concrete type of metrics only solutions of equations, for which torsion turns to zero, are considered. Equivalence of vacuum equations of gauge quadratic theory of gravity and general relativity theory is proved using the Newman-Penrose formalism

  1. An almost general theory of mean size perception.

    Science.gov (United States)

    Allik, Jüri; Toom, Mai; Raidvee, Aire; Averin, Kristiina; Kreegipuu, Kairi

    2013-05-03

    A general explanation for the observer's ability to judge the mean size of simple geometrical figures, such as circles, was advanced. Results indicated that, contrary to what would be predicted by statistical averaging, the precision of mean size perception decreases with the number of judged elements. Since mean size discrimination was insensitive to how total size differences were distributed among individual elements, this suggests that the observer has a limited cognitive access to the size of individual elements pooled together in a compulsory manner before size information reaches awareness. Confirming the associative law of addition means, observers are indeed sensitive to the mean, not the sizes of individual elements. All existing data can be explained by an almost general theory, namely, the Noise and Selection (N&S) Theory, formulated in exact quantitative terms, implementing two familiar psychophysical principles: the size of an element cannot be measured with absolute accuracy and only a limited number of elements can be taken into account in the computation of the average size. It was concluded that the computation of ensemble characteristics is not necessarily a tool for surpassing the capacity limitations of perceptual processing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. A proposed general model of information behaviour.

    Directory of Open Access Journals (Sweden)

    2003-01-01

    Full Text Available Presents a critical description of Wilson's (1996 global model of information behaviour and proposes major modification on the basis of research into information behaviour of managers, conducted in Poland. The theoretical analysis and research results suggest that Wilson's model has certain imperfections, both in its conceptual content, and in graphical presentation. The model, for example, cannot be used to describe managers' information behaviour, since managers basically are not the end users of external from organization or computerized information services, and they acquire information mainly through various intermediaries. Therefore, the model cannot be considered as a general model, applicable to every category of information users. The proposed new model encompasses the main concepts of Wilson's model, such as: person-in-context, three categories of intervening variables (individual, social and environmental, activating mechanisms, cyclic character of information behaviours, and the adoption of a multidisciplinary approach to explain them. However, the new model introduces several changes. They include: 1. identification of 'context' with the intervening variables; 2. immersion of the chain of information behaviour in the 'context', to indicate that the context variables influence behaviour at all stages of the process (identification of needs, looking for information, processing and using it; 3. stress is put on the fact that the activating mechanisms also can occur at all stages of the information acquisition process; 4. introduction of two basic strategies of looking for information: personally and/or using various intermediaries.

  3. General solar energy information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    This report describes the results of a series of telephone interviews with groups of users of information on general solar energy. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from 13 groups of respondents are analyzed in this report: Loan Officers, Real Estate Appraisers, Tax Assessors, Insurers, Lawyers, Utility Representatives, Public Interest Group Representatives, Information and Agricultural Representatives, Public Interest Group Representatives, Information and Agricultural Specialists at State Cooperative Extension Service Offices, and State Energy Office Representatives. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  4. Quantum theory informational foundations and foils

    CERN Document Server

    Spekkens, Robert

    2016-01-01

    This book provides the first unified overview of the burgeoning research area at the interface between Quantum Foundations and Quantum Information.  Topics include: operational alternatives to quantum theory, information-theoretic reconstructions of the quantum formalism, mathematical frameworks for operational theories, and device-independent features of the set of quantum correlations. Powered by the injection of fresh ideas from the field of Quantum Information and Computation, the foundations of Quantum Mechanics are in the midst of a renaissance. The last two decades have seen an explosion of new results and research directions, attracting broad interest in the scientific community. The variety and number of different approaches, however, makes it challenging for a newcomer to obtain a big picture of the field and of its high-level goals. Here, fourteen original contributions from leading experts in the field cover some of the most promising research directions that have emerged in the new wave of quant...

  5. Towards an Information Theory of Complex Networks

    CERN Document Server

    Dehmer, Matthias; Mehler, Alexander

    2011-01-01

    For over a decade, complex networks have steadily grown as an important tool across a broad array of academic disciplines, with applications ranging from physics to social media. A tightly organized collection of carefully-selected papers on the subject, Towards an Information Theory of Complex Networks: Statistical Methods and Applications presents theoretical and practical results about information-theoretic and statistical models of complex networks in the natural sciences and humanities. The book's major goal is to advocate and promote a combination of graph-theoretic, information-theoreti

  6. Multi-iPPseEvo: A Multi-label Classifier for Identifying Human Phosphorylated Proteins by Incorporating Evolutionary Information into Chou's General PseAAC via Grey System Theory.

    Science.gov (United States)

    Qiu, Wang-Ren; Zheng, Quan-Shu; Sun, Bi-Qian; Xiao, Xuan

    2017-03-01

    Predicting phosphorylation protein is a challenging problem, particularly when query proteins have multi-label features meaning that they may be phosphorylated at two or more different type amino acids. In fact, human protein usually be phosphorylated at serine, threonine and tyrosine. By introducing the "multi-label learning" approach, a novel predictor has been developed that can be used to deal with the systems containing both single- and multi-label phosphorylation protein. Here we proposed a predictor called Multi-iPPseEvo by (1) incorporating the protein sequence evolutionary information into the general pseudo amino acid composition (PseAAC) via the grey system theory, (2) balancing out the skewed training datasets by the asymmetric bootstrap approach, and (3) constructing an ensemble predictor by fusing an array of individual random forest classifiers thru a voting system. Rigorous cross-validations via a set of multi-label metrics indicate that the multi-label phosphorylation predictor is very promising and encouraging. The current approach represents a new strategy to deal with the multi-label biological problems, and the software is freely available for academic use at http://www.jci-bioinfo.cn/Multi-iPPseEvo. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics

    International Nuclear Information System (INIS)

    Altaner, Bernhard

    2017-01-01

    Thermodynamics is based on the notions of energy and entropy. While energy is the elementary quantity governing physical dynamics, entropy is the fundamental concept in information theory. In this work, starting from first principles, we give a detailed didactic account on the relations between energy and entropy and thus physics and information theory. We show that thermodynamic process inequalities, like the second law, are equivalent to the requirement that an effective description for physical dynamics is strongly relaxing. From the perspective of information theory, strongly relaxing dynamics govern the irreversible convergence of a statistical ensemble towards the maximally non-commital probability distribution that is compatible with thermodynamic equilibrium parameters. In particular, Markov processes that converge to a thermodynamic equilibrium state are strongly relaxing. Our framework generalizes previous results to arbitrary open and driven systems, yielding novel thermodynamic bounds for idealized and real processes. (paper)

  8. The general theory of quantized fields in the 1950s

    International Nuclear Information System (INIS)

    Wightman, A.S.

    1989-01-01

    This review describes developments in theoretical particle physics in the 1950s which were important in the race to develop a putative general theory of quantized fields, especially ideas that offered a mathematically rigorous theory. Basic theoretical concepts then available included the Hamiltonian formulation of quantum dynamics, canonical quantization, perturbative renormalization theory and the theory of distributions. Following a description of various important theoretical contributions of this era, the review ends with a summary of the most important contributions of axiomatic field theory to concrete physics applications. (UK)

  9. Generalized Einstein-Aether theories and the Solar System

    International Nuclear Information System (INIS)

    Bonvin, Camille; Durrer, Ruth; Ferreira, Pedro G.; Zlosnik, Tom G.; Starkman, Glenn

    2008-01-01

    It has been shown that generalized Einstein-Aether theories may lead to significant modifications to the nonrelativistic limit of the Einstein equations. In this paper we study the effect of a general class of such theories on the Solar System. We consider corrections to the gravitational potential in negative and positive powers of distance from the source. Using measurements of the perihelion shift of Mercury and time delay of radar signals to Cassini, we place constraints on these corrections. We find that a subclass of generalized Einstein-Aether theories is compatible with these constraints

  10. A general sensitivity theory for simulations of nonlinear systems

    International Nuclear Information System (INIS)

    Kenton, M.A.

    1981-01-01

    A general sensitivity theory is developed for nonlinear lumped-parameter system simulations. The point-of-departure is general perturbation theory, which has long been used for linear systems in nuclear engineering and reactor physics. The theory allows the sensitivity of particular figures-of-merit of the system behavior to be calculated with respect to any parameter.An explicit procedure is derived for applying the theory to physical systems undergoing sudden events (e.g., reactor scrams, tank ruptures). A related problem, treating figures-of-merit defined as functions of extremal values of system variables occurring at sudden events, is handled by the same procedure. The general calculational scheme for applying the theory to numerical codes is discussed. It is shown that codes which use pre-packaged implicit integration subroutines can be augmented to include sensitivity theory: a companion set of subroutines to solve the sensitivity problem is listed. This combined system analysis code is applied to a simple model for loss of post-accident heat removal in a liquid metal-cooled fast breeder reactor. The uses of the theory for answering more general sensitivity questions are discussed. One application of the theory is to systematically determine whether specific physical processes in a model contribute significantly to the figures-of-merit. Another application of the theory is for selecting parameter values which enable a model to match experimentally observed behavior

  11. Quantum theory and Einstein's general relativity

    International Nuclear Information System (INIS)

    Borzeszkowski, H. von; Treder, H.

    1982-01-01

    We dicusss the meaning and prove the accordance of general relativity, wave mechanics, and the quantization of Einstein's gravitation equations themselves. Firstly, we have the problem of the influence of gravitational fields on the de Broglie waves, which influence is in accordance with Einstein's weak principle of equivalence and the limitation of measurements given by Heisenberg's uncertainty relations. Secondly, the quantization of the gravitational fields is a ''quantization of geometry.'' However, classical and quantum gravitation have the same physical meaning according to limitations of measurements given by Einstein's strong principle of equivalence and the Heisenberg uncertainties for the mechanics of test bodies

  12. Theory of generalized Bessel functions: Pt. 2

    International Nuclear Information System (INIS)

    Dattoli, G.; Torre, A.; Chiccoli, C.

    1991-01-01

    In this paper the systematic study of the generalized Bessel functions (GBF), recently introduced and often encountered in problems of scattering for which the dipole approximation is inadequate, is continuated. The relations among different GBF are analysed and their importance for the solution of differential finite-difference equation of the Raman-Nath type is discussed. Numerical results for the first-kind cylinder GBF in the preasymptotic region and also a preliminary analysis of the asymptotic properties of the modified GBF are presented

  13. The mathematical theory of general relativity

    CERN Document Server

    Katkar, L N

    2014-01-01

    This book is prepared for M. Sc. Students of Mathematics and Physics. The aim of writing this book is to give the reader a feeling for the necessity and beauty of the laws of general relativity. The contents of the book will attract both mathematicians and physicists which provides motivation and applications of many ideas and powerful mathematical methods of modern analysis and differential geometry. An attempt has been made to make the presentation comprehensive, rigorous and yet simple. Most calculations and transformations have been carried out in great detail. KEY FEATURE: Numerous solved examples using the well known mathematical techniques viz., the tensors and the differential forms in each chapter.

  14. Algorithmic information theory mathematics of digital information processing

    CERN Document Server

    Seibt, Peter

    2007-01-01

    Treats the Mathematics of many important areas in digital information processing. This book covers, in a unified presentation, five topics: Data Compression, Cryptography, Sampling (Signal Theory), Error Control Codes, Data Reduction. It is useful for teachers, students and practitioners in Electronic Engineering, Computer Science and Mathematics.

  15. 32 CFR 2800.4 - General information.

    Science.gov (United States)

    2010-07-01

    ... STATES SECURITY PROCEDURES § 2800.4 General information. (a) Staff Security Officer/Top Secret Control... Staff Security Officer will serve as Top Secret Control Officer and Assistant Top Secret Control Officer... responsible for the overall supervision of the Top Secret Control program. They will maintain positive control...

  16. Informal and Formal Learning of General Practitioners

    Science.gov (United States)

    Spaan, Nadia Roos; Dekker, Anne R. J.; van der Velden, Alike W.; de Groot, Esther

    2016-01-01

    Purpose: The purpose of this study is to understand the influence of formal learning from a web-based training and informal (workplace) learning afterwards on the behaviour of general practitioners (GPs) with respect to prescription of antibiotics. Design/methodology/approach: To obtain insight in various learning processes, semi-structured…

  17. Informal and formal learning of general practitioners

    NARCIS (Netherlands)

    Spaan, Nadia Roos; Dekker, Anne R. J.; van der Velden, Alike W.; de Groot, Esther

    2016-01-01

    Purpose The purpose of this study is to understand the influence of formal learning from a web-based training and informal (workplace) learning afterwards on the behaviour of general practitioners (GPs) with respect to prescription of antibiotics. Design/methodology/approach To obtain insight in

  18. 7 CFR 36.1 - General information.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... WHICH THE AGRICULTURAL MARKETING SERVICE DEVELOPS, REVISES, SUSPENDS, OR TERMINATES VOLUNTARY OFFICIAL GRADE STANDARDS § 36.1 General information. The Agricultural Marketing Service (AMS or agency) of the U...

  19. Parallel Evolution in Science: The Historical Roots and Central Concepts of General Systems Theory; and "General Systems Theory,""Modern Organizational Theory," and Organizational Communication.

    Science.gov (United States)

    Lederman, Linda Costigan; Rogers, Don

    The two papers in this document focus on general systems theory. In her paper, Linda Lederman discusses the emergence and evolution of general systems theory, defines its central concepts, and draws some conclusions regarding the nature of the theory and its value as an epistemology. Don Rogers, in his paper, relates some of the important features…

  20. General algebraic theory of identical particle scattering

    International Nuclear Information System (INIS)

    Bencze, G.; Redish, E.F.

    1978-01-01

    We consider the nonrelativistic N-body scattering problem for a system of particles in which some subsets of the particles are identical. We demonstrate how the particle identity can be included in a general class of linear integral equations for scattering operators or components of scattering operators. The Yakubovskii, Yakubovskii--Narodestkii, Rosenberg, and Bencze--Redish--Sloan equations are included in this class. Algebraic methods are used which rely on the properties of the symmetry group of the system. Operators depending only on physically distinguishable labels are introduced and linear integral equations for them are derived. This procedure maximally reduces the number of coupled equations while retaining the connectivity properties of the original equations

  1. Singularities in the general theory of relativity

    International Nuclear Information System (INIS)

    Treder, H.J.

    1980-01-01

    'Regular solutions of Einstein's equations' mean very different things. In the case of the empty-space equations, Rsub(ik) = o, such solutions must be metrics gsub(ik)(xsup(l)) without additionaly singular 'field sources' (Einstein's 'Particle problem'). However the 'phenomenological matter' is defined by the Einstein equations Rsub(ik) - 1/2gsub(ik)R = -kappaTsub(ik) itselves. Therefore if 10 regular functions gsub(ik)(xsup(l)) are given (which the inequalities of Lorentz-signature fulfil) then these gsub(ik) define 10 functions Tsub(ik)(xsup(l)) without singularities. But, the matter-tensor Tsub(ik) must fulfil the two inequalities T >= o, T 0 0 >= 1/2 T only and therefore the Einstein-equations with 'phenomenological matter' mean the two inequalities R >= o, R 0 0 <= o which are incompatible with a permanently regular metric with Lorentz-signature, generally. (author)

  2. A theory of strong interactions ''from'' general relativity

    International Nuclear Information System (INIS)

    Caldirola, P.; Recami, E.

    1979-01-01

    In this paper a previous letter (where, among other things, a classical ''quark confinement'' was derived from general relativity plus dilatation-covariance), is completed by showing that the theory is compatible also with quarks ''asymptotic freedom''. Then -within a bi-scale theory of gravitational and strong interactions- a classical field theory is proposed for the (strong) interactions between hadrons. Various consequences are briefly analysed

  3. Information theoretic resources in quantum theory

    Science.gov (United States)

    Meznaric, Sebastian

    Resource identification and quantification is an essential element of both classical and quantum information theory. Entanglement is one of these resources, arising when quantum communication and nonlocal operations are expensive to perform. In the first part of this thesis we quantify the effective entanglement when operations are additionally restricted to account for both fundamental restrictions on operations, such as those arising from superselection rules, as well as experimental errors arising from the imperfections in the apparatus. For an important class of errors we find a linear relationship between the usual and effective higher dimensional generalization of concurrence, a measure of entanglement. Following the treatment of effective entanglement, we focus on a related concept of nonlocality in the presence of superselection rules (SSR). Here we propose a scheme that may be used to activate nongenuinely multipartite nonlocality, in that a single copy of a state is not multipartite nonlocal, while two or more copies exhibit nongenuinely multipartite nonlocality. The states used exhibit the more powerful genuinely multipartite nonlocality when SSR are not enforced, but not when they are, raising the question of what is needed for genuinely multipartite nonlocality. We show that whenever the number of particles is insufficient, the degrading of genuinely multipartite to nongenuinely multipartite nonlocality is necessary. While in the first few chapters we focus our attention on understanding the resources present in quantum states, in the final part we turn the picture around and instead treat operations themselves as a resource. We provide our observers with free access to classical operations - ie. those that cannot detect or generate quantum coherence. We show that the operation of interest can then be used to either generate or detect quantum coherence if and only if it violates a particular commutation relation. Using the relative entropy, the

  4. Comparing cosmic web classifiers using information theory

    International Nuclear Information System (INIS)

    Leclercq, Florent; Lavaux, Guilhem; Wandelt, Benjamin; Jasche, Jens

    2016-01-01

    We introduce a decision scheme for optimally choosing a classifier, which segments the cosmic web into different structure types (voids, sheets, filaments, and clusters). Our framework, based on information theory, accounts for the design aims of different classes of possible applications: (i) parameter inference, (ii) model selection, and (iii) prediction of new observations. As an illustration, we use cosmographic maps of web-types in the Sloan Digital Sky Survey to assess the relative performance of the classifiers T-WEB, DIVA and ORIGAMI for: (i) analyzing the morphology of the cosmic web, (ii) discriminating dark energy models, and (iii) predicting galaxy colors. Our study substantiates a data-supported connection between cosmic web analysis and information theory, and paves the path towards principled design of analysis procedures for the next generation of galaxy surveys. We have made the cosmic web maps, galaxy catalog, and analysis scripts used in this work publicly available.

  5. Comparing cosmic web classifiers using information theory

    Energy Technology Data Exchange (ETDEWEB)

    Leclercq, Florent [Institute of Cosmology and Gravitation (ICG), University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom); Lavaux, Guilhem; Wandelt, Benjamin [Institut d' Astrophysique de Paris (IAP), UMR 7095, CNRS – UPMC Université Paris 6, Sorbonne Universités, 98bis boulevard Arago, F-75014 Paris (France); Jasche, Jens, E-mail: florent.leclercq@polytechnique.org, E-mail: lavaux@iap.fr, E-mail: j.jasche@tum.de, E-mail: wandelt@iap.fr [Excellence Cluster Universe, Technische Universität München, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2016-08-01

    We introduce a decision scheme for optimally choosing a classifier, which segments the cosmic web into different structure types (voids, sheets, filaments, and clusters). Our framework, based on information theory, accounts for the design aims of different classes of possible applications: (i) parameter inference, (ii) model selection, and (iii) prediction of new observations. As an illustration, we use cosmographic maps of web-types in the Sloan Digital Sky Survey to assess the relative performance of the classifiers T-WEB, DIVA and ORIGAMI for: (i) analyzing the morphology of the cosmic web, (ii) discriminating dark energy models, and (iii) predicting galaxy colors. Our study substantiates a data-supported connection between cosmic web analysis and information theory, and paves the path towards principled design of analysis procedures for the next generation of galaxy surveys. We have made the cosmic web maps, galaxy catalog, and analysis scripts used in this work publicly available.

  6. Quantum information theory and quantum statistics

    International Nuclear Information System (INIS)

    Petz, D.

    2008-01-01

    Based on lectures given by the author, this book focuses on providing reliable introductory explanations of key concepts of quantum information theory and quantum statistics - rather than on results. The mathematically rigorous presentation is supported by numerous examples and exercises and by an appendix summarizing the relevant aspects of linear analysis. Assuming that the reader is familiar with the content of standard undergraduate courses in quantum mechanics, probability theory, linear algebra and functional analysis, the book addresses graduate students of mathematics and physics as well as theoretical and mathematical physicists. Conceived as a primer to bridge the gap between statistical physics and quantum information, a field to which the author has contributed significantly himself, it emphasizes concepts and thorough discussions of the fundamental notions to prepare the reader for deeper studies, not least through the selection of well chosen exercises. (orig.)

  7. Gauge theories under incorporation of a generalized uncertainty principle

    International Nuclear Information System (INIS)

    Kober, Martin

    2010-01-01

    There is considered an extension of gauge theories according to the assumption of a generalized uncertainty principle which implies a minimal length scale. A modification of the usual uncertainty principle implies an extended shape of matter field equations like the Dirac equation. If there is postulated invariance of such a generalized field equation under local gauge transformations, the usual covariant derivative containing the gauge potential has to be replaced by a generalized covariant derivative. This leads to a generalized interaction between the matter field and the gauge field as well as to an additional self-interaction of the gauge field. Since the existence of a minimal length scale seems to be a necessary assumption of any consistent quantum theory of gravity, the gauge principle is a constitutive ingredient of the standard model, and even gravity can be described as gauge theory of local translations or Lorentz transformations, the presented extension of gauge theories appears as a very important consideration.

  8. DSR Theories, Conformal Group and Generalized Commutation Relation

    International Nuclear Information System (INIS)

    Leiva, Carlos

    2006-01-01

    In this paper the relationship of DSR theories and Conformal Group is reviewed. On the other hand, the relation between DSR Magueijo Smolin generators and generalized commutation relations is also shown

  9. A generalized theory of chromatography and multistep liquid extraction

    Science.gov (United States)

    Chizhkov, V. P.; Boitsov, V. N.

    2017-03-01

    A generalized theory of chromatography and multistep liquid extraction is developed. The principles of highly efficient processes for fine preparative separation of binary mixture components on a fixed sorbent layer are discussed.

  10. Test theories of special relativity: a general critique

    International Nuclear Information System (INIS)

    Maciel, A.K.A.; Tiomno, J.

    1988-01-01

    Absolute Spacetime Theories conceived for the purpose of testing Special Relativity (SR) are reviewed. It is found that most theories proposed were in fact SR in different coordinate systems, since in general no specific SR violations were introduced. Models based on possible SR violating mechanisms are considered. Misconceptions in recently published papers are examined. (author) [pt

  11. General Systems Theory Approaches to Organizations: Some Problems in Application

    Science.gov (United States)

    Peery, Newman S., Jr.

    1975-01-01

    Considers the limitations of General Systems Theory (GST) as a major paradigm within administrative theory and concludes that most systems formulations overemphasize growth and show little appreciation for intraorganizational conflict, diversity of values, and political action within organizations. Suggests that these limitations are mainly due to…

  12. Get with the System: General Systems Theory for Business Officials.

    Science.gov (United States)

    Graczyk, Sandra L.

    1993-01-01

    An introduction to general systems theory and an overview of vocabulary and concepts are presented to introduce school business officials to systems thinking and to foster its use as an analytical tool. The theory is then used to analyze a sample problem: planning changes to a district's administrative computer system. (eight references) (MLF)

  13. A simplified approach to general scalar-tensor theories

    International Nuclear Information System (INIS)

    Bloomfield, Jolyon

    2013-01-01

    The most general covariant action describing gravity coupled to a scalar field with only second order equations of motion, Horndeski's theory (also known as ''Generalized Galileons''), provides an all-encompassing model in which single scalar dark energy models may be constrained. However, the generality of the model makes it cumbersome to manipulate. In this paper, we demonstrate that when considering linear perturbations about a Friedmann-Robertson-Walker background, the theory is completely specified by only six functions of time, two of which are constrained by the background evolution. We utilise the ideas of the Effective Field Theory of Inflation/Dark Energy to explicitly construct these six functions of time in terms of the free functions appearing in Horndeski's theory. These results are used to investigate the behavior of the theory in the quasistatic approximation. We find that only four functions of time are required to completely specify the linear behavior of the theory in this limit, which can further be reduced if the background evolution is fixed. This presents a significantly reduced parameter space from the original presentation of Horndeski's theory, giving hope to the possibility of constraining the parameter space. This work provides a cross-check for previous work on linear perturbations in this theory, and also generalizes it to include spatial curvature

  14. Generalized algebra-valued models of set theory

    NARCIS (Netherlands)

    Löwe, B.; Tarafder, S.

    2015-01-01

    We generalize the construction of lattice-valued models of set theory due to Takeuti, Titani, Kozawa and Ozawa to a wider class of algebras and show that this yields a model of a paraconsistent logic that validates all axioms of the negation-free fragment of Zermelo-Fraenkel set theory.

  15. General Strain Theory, Peer Rejection, and Delinquency/Crime

    Science.gov (United States)

    Higgins, George E.; Piquero, Nicole L.; Piquero, Alex R.

    2011-01-01

    The development of general strain theory (GST) has led to a renewed focus on the influence of negative life experiences on antisocial behavior. Although a number of studies have generated an impressive array of support for the theory, several avenues remain open for research. In this article, we examine how a specific noxious stimuli, peer…

  16. A generalized theory of preferential linking

    Science.gov (United States)

    Hu, Haibo; Guo, Jinli; Liu, Xuan; Wang, Xiaofan

    2014-12-01

    There are diverse mechanisms driving the evolution of social networks. A key open question dealing with understanding their evolution is: How do various preferential linking mechanisms produce networks with different features? In this paper we first empirically study preferential linking phenomena in an evolving online social network, find and validate the linear preference. We propose an analyzable model which captures the real growth process of the network and reveals the underlying mechanism dominating its evolution. Furthermore based on preferential linking we propose a generalized model reproducing the evolution of online social networks, and present unified analytical results describing network characteristics for 27 preference scenarios. We study the mathematical structure of degree distributions and find that within the framework of preferential linking analytical degree distributions can only be the combinations of finite kinds of functions which are related to rational, logarithmic and inverse tangent functions, and extremely complex network structure will emerge even for very simple sublinear preferential linking. This work not only provides a verifiable origin for the emergence of various network characteristics in social networks, but bridges the micro individuals' behaviors and the global organization of social networks.

  17. The informationally-complete quantum theory

    OpenAIRE

    Chen, Zeng-Bing

    2014-01-01

    Quantum mechanics is a cornerstone of our current understanding of nature and extremely successful in describing physics covering a huge range of scales. However, its interpretation remains controversial since the early days of quantum mechanics. What does a quantum state really mean? Is there any way out of the so-called quantum measurement problem? Here we present an informationally-complete quantum theory (ICQT) and the trinary property of nature to beat the above problems. We assume that ...

  18. Information theory of open fragmenting systems

    International Nuclear Information System (INIS)

    Gulminelli, F.; Juillet, O.; Chomaz, Ph.; Ison, M. J.; Dorso, C. O.

    2007-01-01

    An information theory description of finite systems explicitly evolving in time is presented. We impose a MaxEnt variational principle on the Shannon entropy at a given time while the constraints are set at a former time. The resulting density matrix contains explicit time odd components in the form of collective flows. As a specific application we consider the dynamics of the expansion in connection with heavy ion experiments. Lattice gas and classical molecular dynamics simulations are shown

  19. Final Summary: Genre Theory in Information Studies

    DEFF Research Database (Denmark)

    Andersen, Jack

    2015-01-01

    Purpose This chapter offers a re-description of knowledge organization in light of genre and activity theory. Knowledge organization needs a new description in order to account for those activities and practices constituting and causing concrete knowledge organization activity. Genre and activity...... informing and shaping concrete forms of knowledge organization activity. With this, we are able to understand how knowledge organization activity also contributes to construct genre and activity systems and not only aid them....

  20. A general theory for gauge-free lifting

    International Nuclear Information System (INIS)

    Morrison, P. J.

    2013-01-01

    A theory for lifting equations of motion for charged particle dynamics, subject to given electromagnetic like forces, up to a gauge-free system of coupled Hamiltonian Vlasov-Maxwell like equations is given. The theory provides very general expressions for the polarization and magnetization vector fields in terms of the particle dynamics description of matter. Thus, as is common in plasma physics, the particle dynamics replaces conventional constitutive relations for matter. Several examples are considered including the usual Vlasov-Maxwell theory, a guiding center kinetic theory, Vlasov-Maxwell theory with the inclusion of spin, and a Vlasov-Maxwell theory with the inclusion of Dirac's magnetic monopoles. All are shown to be Hamiltonian field theories and the Jacobi identity is proven directly.

  1. A generalization of the Newton-Cartan theory of gravitation

    International Nuclear Information System (INIS)

    Nitsure, Nitin

    1980-01-01

    It is shown that even in the absence of the equivalence principle, the Newtonian theory of gravitation can be given a geometric form in a five-dimensional manifold. The fifth dimension is taken as the ratio of gravitational and inertial mass, which is allowed to be different for different particles. The resulting pondoromotive and field equations in this 5-dimensional space (which are generalizations of Cartan's formulation of Newtonian gravitation) are formulated and their consequences are discussed. It is argued that as general relativity is a 'metric' theory, a similar generalization of general relativity is not possible. (author)

  2. Multimedia information retrieval theory and techniques

    CERN Document Server

    Raieli, Roberto

    2013-01-01

    Novel processing and searching tools for the management of new multimedia documents have developed. Multimedia Information Retrieval (MMIR) is an organic system made up of Text Retrieval (TR); Visual Retrieval (VR); Video Retrieval (VDR); and Audio Retrieval (AR) systems. So that each type of digital document may be analysed and searched by the elements of language appropriate to its nature, search criteria must be extended. Such an approach is known as the Content Based Information Retrieval (CBIR), and is the core of MMIR. This novel content-based concept of information handling needs to be integrated with more traditional semantics. Multimedia Information Retrieval focuses on the tools of processing and searching applicable to the content-based management of new multimedia documents. Translated from Italian by Giles Smith, the book is divided in to two parts. Part one discusses MMIR and related theories, and puts forward new methodologies; part two reviews various experimental and operating MMIR systems, a...

  3. Medical Information Management System (MIMS): A generalized interactive information system

    Science.gov (United States)

    Alterescu, S.; Friedman, C. A.; Hipkins, K. R.

    1975-01-01

    An interactive information system is described. It is a general purpose, free format system which offers immediate assistance where manipulation of large data bases is required. The medical area is a prime area of application. Examples of the system's operation, commentary on the examples, and a complete listing of the system program are included.

  4. On the mathematical theory of classical fields and general relativity

    CERN Document Server

    Klainerman, S

    1993-01-01

    From the perspective of an analyst, like myself, the General Theory of Relativity provides an extrordinary rich and vastly virgin territory. It is the aim of my lecture to provide, first, an account of those aspects of the theory which attract me most and second a perspective of what has been accomplished so far in that respect. In trying to state our main objectives it helps to view General Relativity in the broader context of Classical Field Theory. EinsteiniVacuum equations, or shortly E—V, is already sufficiently complicated. I will thus restrict my attention to them.

  5. Implementation of static generalized perturbation theory for LWR design applications

    International Nuclear Information System (INIS)

    Byron, R.F.; White, J.R.

    1987-01-01

    A generalized perturbation theory (GPT) formulation is developed for application to light water reactor (LWR) design. The extensions made to standard generalized perturbation theory are the treatment of thermal-hydraulic and fission product poisoning feedbacks, and criticality reset. This formulation has been implemented into a standard LWR design code. The method is verified by comparing direct calculations with GPT calculations. Data are presented showing that feedback effects need to be considered when using GPT for LWR problems. Some specific potential applications of this theory to the field of LWR design are discussed

  6. Information Foraging Theory: A Framework for Intelligence Analysis

    Science.gov (United States)

    2014-11-01

    oceanographic information, human intelligence (HUMINT), open-source intelligence ( OSINT ), and information provided by other governmental departments [1][5...Human Intelligence IFT Information Foraging Theory LSA Latent Semantic Similarity MVT Marginal Value Theorem OFT Optimal Foraging Theory OSINT

  7. Do People Use Their Implicit Theories of Creativity as General Theories?

    Science.gov (United States)

    Lee, Hong; Kim, Jungsik; Ryu, Yeonjae; Song, Seokjong

    2015-01-01

    This study examines whether people use the general implicit theories of creativity or not when applying them to themselves and others. On the basis of the actor-observer asymmetry theory, the authors propose that conception of creativity would be differently constructed depending on the targets of attention: general, self, and other. Three studies…

  8. Sequential approach to Colombeau's theory of generalized functions

    International Nuclear Information System (INIS)

    Todorov, T.D.

    1987-07-01

    J.F. Colombeau's generalized functions are constructed as equivalence classes of the elements of a specially chosen ultrapower of the class of the C ∞ -functions. The elements of this ultrapower are considered as sequences of C ∞ -functions, so in a sense, the sequential construction presented here refers to the original Colombeau theory just as, for example, the Mikusinski sequential approach to the distribution theory refers to the original Schwartz theory of distributions. The paper could be used as an elementary introduction to the Colombeau theory in which recently a solution was found to the problem of multiplication of Schwartz distributions. (author). Refs

  9. Sp(2) covariant quantisation of general gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez-Bello, J L

    1994-11-01

    The Sp(2) covariant quantization of gauge theories is studied. The geometrical interpretation of gauge theories in terms of quasi principal fibre bundles Q(M{sub s}, G{sub s}) is reviewed. It is then described the Sp(2) algebra of ordinary Yang-Mills theory. A consistent formulation of covariant Lagrangian quantisation for general gauge theories based on Sp(2) BRST symmetry is established. The original N = 1, ten dimensional superparticle is considered as an example of infinitely reducible gauge algebras, and given explicitly its Sp(2) BRST invariant action. (author). 18 refs.

  10. Sp(2) covariant quantisation of general gauge theories

    International Nuclear Information System (INIS)

    Vazquez-Bello, J.L.

    1994-11-01

    The Sp(2) covariant quantization of gauge theories is studied. The geometrical interpretation of gauge theories in terms of quasi principal fibre bundles Q(M s , G s ) is reviewed. It is then described the Sp(2) algebra of ordinary Yang-Mills theory. A consistent formulation of covariant Lagrangian quantisation for general gauge theories based on Sp(2) BRST symmetry is established. The original N = 1, ten dimensional superparticle is considered as an example of infinitely reducible gauge algebras, and given explicitly its Sp(2) BRST invariant action. (author). 18 refs

  11. Generalization of the test theory of relativity to noninertial frames

    International Nuclear Information System (INIS)

    Abolghasem, G.H.; Khajehpour, M.R.H.; Mansouri, R.

    1988-08-01

    We present a generalized test theory of special relativity, using a noninertial frame. Within the framework of the special theory of relativity the transport- and Einstein-synchronizations are equivalent on a rigidly rotating disk. But in any theory with a preferred frame such an equivalence does not hold. The time difference resulting from the two synchronization procedures is a measurable quantity within the reach of existing clock systems on the earth. The final result contains a term which depends on the angular velocity of the rotating system, and hence measures an absolute effect. This term is of crucial importance in our test theory of the special relativity. (author). 13 refs

  12. Equivalence of the theories of reciprocity and general relativity

    International Nuclear Information System (INIS)

    Qadir, A.

    1976-01-01

    Khan's theory (Nuovo Cimento; 57B:321 (1968) and Int. J. Theor. Phys.; 6:383 (1972)) of reciprocity has been shown to be equivalent to the theory of general relativity (in a conformally flat space-time) in that the same predictions are made physically. It is is proved that, since 'centrifugal forces' are used by Khan, gravitational phenomena are being considered equal in status to electromagnetic phenomena, and hence the difference claimed to exist between Milne's theory and Khan's theory disappears. (author)

  13. Evolution of curvature perturbation in generalized gravity theories

    International Nuclear Information System (INIS)

    Matsuda, Tomohiro

    2009-01-01

    Using the cosmological perturbation theory in terms of the δN formalism, we find the simple formulation of the evolution of the curvature perturbation in generalized gravity theories. Compared with the standard gravity theory, a crucial difference appears in the end-boundary of the inflationary stage, which is due to the non-ideal form of the energy-momentum tensor that depends explicitly on the curvature scalar. Recent study shows that ultraviolet-complete quantum theory of gravity (Horava-Lifshitz gravity) can be approximated by using a generalized gravity action. Our paper may give an important step in understanding the evolution of the curvature perturbation during inflation, where the energy-momentum tensor may not be given by the ideal form due to the corrections from the fundamental theory.

  14. Whiteheadian approach to quantum theory and the generalized bell's theorem

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1979-01-01

    The model of the world proposed by Whitehead provides a natural theoretical framework in which to imbed quantum theory. This model accords with the ontological ideas of Heisenberg, and also with Einstein's view that physical theories should refer nominally to the objective physical situation, rather than our knowledge of that system. Whitehead imposed on his model the relativistic requirement that what happens in any given spacetime region be determined only by what has happened in its absolute past, i.e., in the backward light-cone drawn from that region. This requirement must be modified, for it is inconsistent with the implications of quantum theory expressed by a generalized version of Bell's theorem. Revamping the causal spacetime structure of the Whitehead-Heisenberg ontology to bring it into accord with the generalized Bell's theorem creates the possibility of a nonlocal causal covariant theory that accords with the statistical prediction of quantum theory

  15. Risks associated with radiation: General information

    International Nuclear Information System (INIS)

    Baris, D.; Pomroy, C.; Chatterjee, R.M.

    1995-07-01

    Employers have a general responsibility to explain occupational risks to their workers. This document has been prepared to assist employers in this task. Employers should inform their workers about radiation risks associated with their work by: identifying the source(s) of radiation exposure; identifying the risk of health effects due to exposure to these sources, including the risk to the embryo and foetus of pregnant female workers; explaining the relationship between regulatory dose limits and the risk of health effects; and, explaining a worker's personal dose in terms of risk. This publication provides basic information on these subjects in a form that is clear and easy to understand. For further information, a list of suggested additional reading is included at the end of the text. (author). 15 refs., 5 tabs., 3 figs

  16. Risks associated with radiation: General information

    Energy Technology Data Exchange (ETDEWEB)

    Baris, D; Pomroy, C; Chatterjee, R M

    1995-07-01

    Employers have a general responsibility to explain occupational risks to their workers. This document has been prepared to assist employers in this task. Employers should inform their workers about radiation risks associated with their work by: identifying the source(s) of radiation exposure; identifying the risk of health effects due to exposure to these sources, including the risk to the embryo and foetus of pregnant female workers; explaining the relationship between regulatory dose limits and the risk of health effects; and, explaining a worker`s personal dose in terms of risk. This publication provides basic information on these subjects in a form that is clear and easy to understand. For further information, a list of suggested additional reading is included at the end of the text. (author). 15 refs., 5 tabs., 3 figs.

  17. Generalized force in classical field theory. [Euler-Lagrange equations

    Energy Technology Data Exchange (ETDEWEB)

    Krause, J [Universidad Central de Venezuela, Caracas

    1976-02-01

    The source strengths of the Euler-Lagrange equations, for a system of interacting fields, are heuristically interpreted as generalized forces. The canonical form of the energy-momentum tensor thus consistently appears, without recourse to space-time symmetry arguments. A concept of 'conservative' generalized force in classical field theory is also briefly discussed.

  18. Theory of mind: A foundational component of human general intelligence.

    Science.gov (United States)

    Estes, David; Bartsch, Karen

    2017-01-01

    To understand the evolution of general intelligence, Burkart et al. endorse a "cultural intelligence approach," which emphasizes the critical importance of social interaction. We argue that theory of mind provides an essential foundation and shared perspective for the efficient ontogenetic transmission of crucial knowledge and skills during human development and, together with language, can account for superior human general intelligence.

  19. Iz ''general relativity'' necessary for the Einstein gravitation theory gravitation theory

    International Nuclear Information System (INIS)

    Bondi, G.

    1982-01-01

    Main principles of relativity and gravitation theories are deeply analyzed. Problems of boundaries of applicability for these theories and possible ways of their change and generalization are discussed. It is shown that the notion of general relativity does not introduce any post-newton physics - it only deals with coordinate transformations. It is supposed that ''general relativity'' is a physically senseless phrase which can be considered only as a historical remainder of an interesting philosophic discourse. The paper reveals that there exists appropriate physical substantiation of the Einstein gravitation theory not including a physically senseless concept of general relativity and promoting its fundamental relations with the experiment

  20. Astrophysical data analysis with information field theory

    International Nuclear Information System (INIS)

    Enßlin, Torsten

    2014-01-01

    Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented

  1. Astrophysical data analysis with information field theory

    Science.gov (United States)

    Enßlin, Torsten

    2014-12-01

    Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.

  2. Astrophysical data analysis with information field theory

    Energy Technology Data Exchange (ETDEWEB)

    Enßlin, Torsten, E-mail: ensslin@mpa-garching.mpg.de [Max Planck Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748 Garching, Germany and Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 München (Germany)

    2014-12-05

    Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.

  3. Quantum information theory. Mathematical foundation. 2. ed.

    International Nuclear Information System (INIS)

    Hayashi, Masahito

    2017-01-01

    This graduate textbook provides a unified view of quantum information theory. Clearly explaining the necessary mathematical basis, it merges key topics from both information-theoretic and quantum- mechanical viewpoints and provides lucid explanations of the basic results. Thanks to this unified approach, it makes accessible such advanced topics in quantum communication as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction) and quantum encryption. Since the publication of the preceding book Quantum Information: An Introduction, there have been tremendous strides in the field of quantum information. In particular, the following topics - all of which are addressed here - made seen major advances: quantum state discrimination, quantum channel capacity, bipartite and multipartite entanglement, security analysis on quantum communication, reverse Shannon theorem and uncertainty relation. With regard to the analysis of quantum security, the present book employs an improved method for the evaluation of leaked information and identifies a remarkable relation between quantum security and quantum coherence. Taken together, these two improvements allow a better analysis of quantum state transmission. In addition, various types of the newly discovered uncertainty relation are explained. Presenting a wealth of new developments, the book introduces readers to the latest advances and challenges in quantum information. To aid in understanding, each chapter is accompanied by a set of exercises and solutions.

  4. Quantum information theory. Mathematical foundation. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Masahito [Nagoya Univ. (Japan). Graduate School of Mathematics

    2017-07-01

    This graduate textbook provides a unified view of quantum information theory. Clearly explaining the necessary mathematical basis, it merges key topics from both information-theoretic and quantum- mechanical viewpoints and provides lucid explanations of the basic results. Thanks to this unified approach, it makes accessible such advanced topics in quantum communication as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction) and quantum encryption. Since the publication of the preceding book Quantum Information: An Introduction, there have been tremendous strides in the field of quantum information. In particular, the following topics - all of which are addressed here - made seen major advances: quantum state discrimination, quantum channel capacity, bipartite and multipartite entanglement, security analysis on quantum communication, reverse Shannon theorem and uncertainty relation. With regard to the analysis of quantum security, the present book employs an improved method for the evaluation of leaked information and identifies a remarkable relation between quantum security and quantum coherence. Taken together, these two improvements allow a better analysis of quantum state transmission. In addition, various types of the newly discovered uncertainty relation are explained. Presenting a wealth of new developments, the book introduces readers to the latest advances and challenges in quantum information. To aid in understanding, each chapter is accompanied by a set of exercises and solutions.

  5. Derivation of Einstein-Cartan theory from general relativity

    Science.gov (United States)

    Petti, Richard

    2015-04-01

    General relativity cannot describe exchange of classical intrinsic angular momentum and orbital angular momentum. Einstein-Cartan theory fixes this problem in the least invasive way. In the late 20th century, the consensus view was that Einstein-Cartan theory requires inclusion of torsion without adequate justification, it has no empirical support (though it doesn't conflict with any known evidence), it solves no important problem, and it complicates gravitational theory with no compensating benefit. In 1986 the author published a derivation of Einstein-Cartan theory from general relativity, with no additional assumptions or parameters. Starting without torsion, Poincaré symmetry, classical or quantum spin, or spinors, it derives torsion and its relation to spin from a continuum limit of general relativistic solutions. The present work makes the case that this computation, combined with supporting arguments, constitutes a derivation of Einstein-Cartan theory from general relativity, not just a plausibility argument. This paper adds more and simpler explanations, more computational details, correction of a factor of 2, discussion of limitations of the derivation, and discussion of some areas of gravitational research where Einstein-Cartan theory is relevant.

  6. On the relation of the theoretical foundations of quantum theory and general relativity theory

    International Nuclear Information System (INIS)

    Kober, Martin

    2010-01-01

    The specific content of the present thesis is presented in the following way. First the most important contents of quantum theory and general relativity theory are presented. In connection with the general relativity theory the mathematical property of the diffeomorphism invariance plays the deciding role, while concerning the quantum theory starting from the Copenhagen interpretation first the measurement problem is treated, before basing on the analysis of concrete phenomena and the mathematical apparatus of quantum theory the nonlocality is brought into focus as an important property. This means that both theories suggest a relationalistic view of the nature of the space. This analysis of the theoretical foundations of quantum theory and general relativity theory in relation to the nature of the space obtains only under inclusion of Kant's philosophy and his analysis of the terms space and time as fundamental forms of perception its full persuasive power. Then von Weizsaeckers quantum theory of the ur-alternatives is presented. Finally attempts are made to apply the obtained knowledge to the question of the quantum-theoretical formulation of general relativity theory.

  7. Fundamentals of information theory and coding design

    CERN Document Server

    Togneri, Roberto

    2003-01-01

    In a clear, concise, and modular format, this book introduces the fundamental concepts and mathematics of information and coding theory. The authors emphasize how a code is designed and discuss the main properties and characteristics of different coding algorithms along with strategies for selecting the appropriate codes to meet specific requirements. They provide comprehensive coverage of source and channel coding, address arithmetic, BCH, and Reed-Solomon codes and explore some more advanced topics such as PPM compression and turbo codes. Worked examples and sets of basic and advanced exercises in each chapter reinforce the text's clear explanations of all concepts and methodologies.

  8. Quantum information theory with Gaussian systems

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, O.

    2006-04-06

    This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)

  9. Quantum information theory with Gaussian systems

    International Nuclear Information System (INIS)

    Krueger, O.

    2006-01-01

    This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)

  10. Analysis of General Power Counting Rules in Effective Field Theory

    CERN Document Server

    Gavela, B M; Manohar, A V; Merlo, L

    2016-01-01

    We derive the general counting rules for a quantum effective field theory (EFT) in $\\mathsf{d}$ dimensions. The rules are valid for strongly and weakly coupled theories, and predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. The size of cross sections is controlled by the $\\Lambda$ power counting of EFT, not by chiral counting, even for chiral perturbation theory ($\\chi$PT). The relation between $\\Lambda$ and $f$ is generalized to $\\mathsf{d}$ dimensions. We show that the naive dimensional analysis $4\\pi$ counting is related to $\\hbar$ counting. The EFT counting rules are applied to $\\chi$PT, to Standard Model EFT and to the non-trivial case of Higgs EFT, which combines the $\\Lambda$ and chiral counting rules within a single theory.

  11. General theory of light propagation and imaging through the atmosphere

    CERN Document Server

    McKechnie, T Stewart

    2016-01-01

    This book lays out a new, general theory of light propagation and imaging through Earth’s turbulent atmosphere. Current theory is based on the – now widely doubted – assumption of Kolmogorov turbulence. The new theory is based on a generalized atmosphere, the turbulence characteristics of which can be established, as needed, from readily measurable properties of point-object, or star, images. The pessimistic resolution predictions of Kolmogorov theory led to lax optical tolerance prescriptions for large ground-based astronomical telescopes which were widely adhered to in the 1970s and 1980s. Around 1990, however, it became clear that much better resolution was actually possible, and Kolmogorov tolerance prescriptions were promptly abandoned. Most large telescopes built before 1990 have had their optics upgraded (e.g., the UKIRT instrument) and now achieve, without adaptive optics (AO), almost an order of magnitude better resolution than before. As well as providing a more comprehensive and precise under...

  12. A Thermodynamically General Theory for Convective Circulations and Vortices

    Science.gov (United States)

    Renno, N. O.

    2007-12-01

    Convective circulations and vortices are common features of atmospheres that absorb low-entropy-energy at higher temperatures than they reject high-entropy-energy to space. These circulations range from small to planetary-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective phenomena is important to our understanding of many basic features of planetary atmospheres. A thermodynamically general theory for convective circulations and vortices is proposed. The theory includes irreversible processes and quantifies the pressure drop between the environment and any point in a convective updraft. The article's main result is that the proposed theory provides an expression for the pressure drop along streamlines or streamtubes that is a generalization of Bernoulli's equation to convective circulations. We speculate that the proposed theory not only explains the intensity, but also shed light on other basic features of convective circulations and vortices.

  13. Feminist Praxis, Critical Theory and Informal Hierarchies

    Directory of Open Access Journals (Sweden)

    Eva Giraud

    2015-05-01

    Full Text Available This article draws on my experiences teaching across two undergraduate media modules in a UK research-intensive institution to explore tactics for combatting both institutional and informal hierarchies within university teaching contexts. Building on Sara Motta’s (2012 exploration of implementing critical pedagogic principles at postgraduate level in an elite university context, I discuss additional tactics for combatting these hierarchies in undergraduate settings, which were developed by transferring insights derived from informal workshops led by the University of Nottingham’s Feminism and Teaching network into the classroom. This discussion is framed in relation to the concepts of “cyborg pedagogies” and “political semiotics of articulation,” derived from the work of Donna Haraway, in order to theorize how these tactics can engender productive relationships between radical pedagogies and critical theory.

  14. Quantum Gravity, Information Theory and the CMB

    Science.gov (United States)

    Kempf, Achim

    2018-04-01

    We review connections between the metric of spacetime and the quantum fluctuations of fields. We start with the finding that the spacetime metric can be expressed entirely in terms of the 2-point correlator of the fluctuations of quantum fields. We then discuss the open question whether the knowledge of only the spectra of the quantum fluctuations of fields also suffices to determine the spacetime metric. This question is of interest because spectra are geometric invariants and their quantization would, therefore, have the benefit of not requiring the modding out of diffeomorphisms. Further, we discuss the fact that spacetime at the Planck scale need not necessarily be either discrete or continuous. Instead, results from information theory show that spacetime may be simultaneously discrete and continuous in the same way that information can. Finally, we review the recent finding that a covariant natural ultraviolet cutoff at the Planck scale implies a signature in the cosmic microwave background (CMB) that may become observable.

  15. An information theory of image gathering

    Science.gov (United States)

    Fales, Carl L.; Huck, Friedrich O.

    1991-01-01

    Shannon's mathematical theory of communication is extended to image gathering. Expressions are obtained for the total information that is received with a single image-gathering channel and with parallel channels. It is concluded that the aliased signal components carry information even though these components interfere with the within-passband components in conventional image gathering and restoration, thereby degrading the fidelity and visual quality of the restored image. An examination of the expression for minimum mean-square-error, or Wiener-matrix, restoration from parallel image-gathering channels reveals a method for unscrambling the within-passband and aliased signal components to restore spatial frequencies beyond the sampling passband out to the spatial frequency response cutoff of the optical aperture.

  16. Cognition and biology: perspectives from information theory.

    Science.gov (United States)

    Wallace, Rodrick

    2014-02-01

    The intimate relation between biology and cognition can be formally examined through statistical models constrained by the asymptotic limit theorems of communication theory, augmented by methods from statistical mechanics and nonequilibrium thermodynamics. Cognition, often involving submodules that act as information sources, is ubiquitous across the living state. Less metabolic free energy is consumed by permitting crosstalk between biological information sources than by isolating them, leading to evolutionary exaptations that assemble shifting, tunable cognitive arrays at multiple scales, and levels of organization to meet dynamic patterns of threat and opportunity. Cognition is thus necessary for life, but it is not sufficient: An organism represents a highly patterned outcome of path-dependent, blind, variation, selection, interaction, and chance extinction in the context of an adequate flow of free energy and an environment fit for development. Complex, interacting cognitive processes within an organism both record and instantiate those evolutionary and developmental trajectories.

  17. Chiral perturbation theory for nucleon generalized parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Manashov, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik]|[Sankt-Petersburg State Univ. (Russian Federation). Dept. of Theoretical Physics; Schaefer, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik

    2006-08-15

    We analyze the moments of the isosinglet generalized parton distributions H, E, H, E of the nucleon in one-loop order of heavy-baryon chiral perturbation theory. We discuss in detail the construction of the operators in the effective theory that are required to obtain all corrections to a given order in the chiral power counting. The results will serve to improve the extrapolation of lattice results to the chiral limit. (orig.)

  18. Classical Belief Conditioning and its Generalization to DSm Theory

    Czech Academy of Sciences Publication Activity Database

    Daniel, Milan

    2008-01-01

    Roč. 2, č. 4 (2008), s. 267-279 ISSN 1752-8917 R&D Projects: GA AV ČR 1ET100300419 Institutional research plan: CEZ:AV0Z10300504 Keywords : belief functions * Dempster-Shafer theory * belief conditioning * DSm theory * overlapping elements * hyper-power set * DSm model Subject RIV: BA - General Mathematics http://www.worldacademicunion.com/journal/jus/jusVol02No4paper04.pdf

  19. General coupled mode theory in non-Hermitian waveguides.

    Science.gov (United States)

    Xu, Jing; Chen, Yuntian

    2015-08-24

    In the presence of loss and gain, the coupled mode equation on describing the mode hybridization of various waveguides or cavities, or cavities coupled to waveguides becomes intrinsically non-Hermitian. In such non-Hermitian waveguides, the standard coupled mode theory fails. We generalize the coupled mode theory with a properly defined inner product based on reaction conservation. We apply our theory to the non-Hermitian parity-time symmetric waveguides, and obtain excellent agreement with results obtained by finite element fullwave simulations. The theory presented here is typically formulated in space to study coupling between waveguides, which can be transformed into time domain by proper reformulation to study coupling between non-Hermitian resonators. Our theory has the strength of studying non-Hermitian optical systems with inclusion of the full vector fields, thus is useful to study and design non-Hermitian devices that support asymmetric and even nonreciprocal light propagations.

  20. Information theory perspective on network robustness

    International Nuclear Information System (INIS)

    Schieber, Tiago A.; Carpi, Laura; Frery, Alejandro C.; Rosso, Osvaldo A.; Pardalos, Panos M.; Ravetti, Martín G.

    2016-01-01

    A crucial challenge in network theory is the study of the robustness of a network when facing a sequence of failures. In this work, we propose a dynamical definition of network robustness based on Information Theory, that considers measurements of the structural changes caused by failures of the network's components. Failures are defined here as a temporal process defined in a sequence. Robustness is then evaluated by measuring dissimilarities between topologies after each time step of the sequence, providing a dynamical information about the topological damage. We thoroughly analyze the efficiency of the method in capturing small perturbations by considering different probability distributions on networks. In particular, we find that distributions based on distances are more consistent in capturing network structural deviations, as better reflect the consequences of the failures. Theoretical examples and real networks are used to study the performance of this methodology. - Highlights: • A novel methodology to measure the robustness of a network to component failure or targeted attacks is proposed. • The use of the network's distance PDF allows a precise analysis. • The method provides a dynamic robustness profile showing the response of the topology to each failure event. • The measure is capable to detect network's critical elements.

  1. Indefinite-metric quantum field theory of general relativity

    International Nuclear Information System (INIS)

    Nakanishi, Noboru

    1978-01-01

    Quantum field theory of Einstein's general relativity is formulated in the indefinitemetric Hilbert space in such a way that asymptotic fields are manifestly Lorentz covariant and the physical S-matrix is unitary. The general coordinate transformation is transcribed into a q-number transformation, called the BRS transformation. Its abstract definition is presented on the basis of the BRS transformation for the Yang-Mills theory. The BRS transformation for general relativity is then explicitly constructed. The gauge-fixing Lagrangian density and the Faddeev-Popov one are introduced in such a way that their sum behaves like a scalar density under the BRS transformation. One can then proceed in the same way as in the Kugo-Ojima formalism of the Yang-Mills theory to establish the unitarity of the physical S-matrix. (author)

  2. Information in general medical practices: the information processing model.

    Science.gov (United States)

    Crowe, Sarah; Tully, Mary P; Cantrill, Judith A

    2010-04-01

    The need for effective communication and handling of secondary care information in general practices is paramount. To explore practice processes on receiving secondary care correspondence in a way that integrates the information needs and perceptions of practice staff both clinical and administrative. Qualitative study using semi-structured interviews with a wide range of practice staff (n = 36) in nine practices in the Northwest of England. Analysis was based on the framework approach using N-Vivo software and involved transcription, familiarization, coding, charting, mapping and interpretation. The 'information processing model' was developed to describe the six stages involved in practice processing of secondary care information. These included the amendment or updating of practice records whilst simultaneously or separately actioning secondary care recommendations, using either a 'one-step' or 'two-step' approach, respectively. Many factors were found to influence each stage and impact on the continuum of patient care. The primary purpose of processing secondary care information is to support patient care; this study raises the profile of information flow and usage within practices as an issue requiring further consideration.

  3. Some remarks on general covariance of quantum theory

    International Nuclear Information System (INIS)

    Schmutzer, E.

    1977-01-01

    If one accepts Einstein's general principle of relativity (covariance principle) also for the sphere of microphysics (quantum, mechanics, quantum field theory, theory of elemtary particles), one has to ask how far the fundamental laws of traditional quantum physics fulfil this principle. Attention is here drawn to a series of papers that have appeared during the last years, in which the author criticized the usual scheme of quantum theory (Heisenberg picture, Schroedinger picture etc.) and presented a new foundation of the basic laws of quantum physics, obeying the 'principle of fundamental covariance' (Einstein's covariance principle in space-time and covariance principle in Hilbert space of quantum operators and states). (author)

  4. Informal Theory: The Ignored Link in Theory-to-Practice

    Science.gov (United States)

    Love, Patrick

    2012-01-01

    Applying theory to practice in student affairs is dominated by the assumption that formal theory is directly applied to practice. Among the problems with this assumption is that many practitioners believe they must choose between their lived experiences and formal theory, and that graduate students are taught that their experience "does not…

  5. General quadratic gauge theory: constraint structure, symmetries and physical functions

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D M [Institute of Physics, University of Sao Paulo (Brazil); Tyutin, I V [Lebedev Physics Institute, Moscow (Russian Federation)

    2005-06-17

    How can we relate the constraint structure and constraint dynamics of the general gauge theory in the Hamiltonian formulation to specific features of the theory in the Lagrangian formulation, especially relate the constraint structure to the gauge transformation structure of the Lagrangian action? How can we construct the general expression for the gauge charge if the constraint structure in the Hamiltonian formulation is known? Whether we can identify the physical functions defined as commuting with first-class constraints in the Hamiltonian formulation and the physical functions defined as gauge invariant functions in the Lagrangian formulation? The aim of the present paper is to consider the general quadratic gauge theory and to answer the above questions for such a theory in terms of strict assertions. To fulfil such a programme, we demonstrate the existence of the so-called superspecial phase-space variables in terms of which the quadratic Hamiltonian action takes a simple canonical form. On the basis of such a representation, we analyse a functional arbitrariness in the solutions of the equations of motion of the quadratic gauge theory and derive the general structure of symmetries by analysing a symmetry equation. We then use these results to identify the two definitions of physical functions and thus prove the Dirac conjecture.

  6. String theory compactifications with fluxes, and generalized geometry

    International Nuclear Information System (INIS)

    Cassani, D.

    2009-06-01

    The topic of this thesis is compactifications in string theory and supergravity. We study dimensional reductions of type II theories on backgrounds with fluxes, using the techniques of Hitchin's generalized geometry. We start with an introduction of the needed mathematical tools, focusing on SU(3)xSU(3) structures on the generalized tangent bundle T+T * , and analyzing their deformations. Next we study the four dimensional N equals 2 gauged supergravity which can be defined reducing type II theories on SU(3)*SU(3) structure backgrounds with general NSNS and RR fluxes: we establish the complete bosonic action, and we show how its data are related to the generalized geometry formalism on T+T * . In particular, we derive a geometric expression for the full N = 2 scalar potential. Then we focus on the relations between the 10d and 4d descriptions of supersymmetric flux backgrounds: we spell out the N = 1 vacuum conditions within the 4d N = 2 theory, as well as from its N = 1 truncation, and we establish a precise matching with the equations characterizing the N = 1 backgrounds at the ten dimensional level. We conclude by presenting some concrete examples, based on coset spaces with SU(3) structure. We establish for these spaces the consistency of the truncation based on left-invariance, and we explore the landscape of vacua of the corresponding theory, taking string loop corrections into account. (author)

  7. Fundamentals of the fuzzy logic-based generalized theory of decisions

    CERN Document Server

    Aliev, Rafik Aziz

    2013-01-01

    Every day decision making and decision making in complex human-centric systems are characterized by imperfect decision-relevant information. Main drawback of the existing decision theories is namely incapability to deal with imperfect information and modeling vague preferences. Actually, a paradigm of non-numerical probabilities in decision making has a long history and arose also in Keynes’s analysis of uncertainty. There is a need for further generalization – a move to decision theories with perception-based imperfect information described in NL. The languages of new decision models for human-centric systems should be not languages based on binary logic but human-centric computational schemes able to operate on NL-described information. Development of new theories is now possible due to an increased computational power of information processing systems which allows for computations with imperfect information, particularly, imprecise and partially true information, which are much more complex than comput...

  8. Unification of General Relativity with Quantum Field Theory

    International Nuclear Information System (INIS)

    Ni Jun

    2011-01-01

    In the frame of quantum field theory, instead of using the action principle, we deduce the Einstein equation from purely the general covariant principle and the homogeneity of spacetime. The Einstein equation is shown to be the gauge equation to guarantee the local symmetry of spacetime translation. Gravity is an apparent force due to the curvature of spacetime resulted from the conservation of energy-momentum. In the action of quantum field theory, only electroweak-strong interactions should be considered with the curved spacetime metric determined by the Einstein equation. (general)

  9. General Relativistic Mean Field Theory for rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Madokoro, Hideki [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Matsuzaki, Masayuki

    1998-03-01

    The {sigma}-{omega} model Lagrangian is generalized to an accelerated frame by using the technique of general relativity which is known as tetrad formalism. We apply this model to the description of rotating nuclei within the mean field approximation, which we call General Relativistic Mean Field Theory (GRMFT) for rotating nuclei. The resulting equations of motion coincide with those of Munich group whose formulation was not based on the general relativistic transformation property of the spinor fields. Some numerical results are shown for the yrast states of the Mg isotopes and the superdeformed rotational bands in the A {approx} 60 mass region. (author)

  10. Are general practitioners well informed about fibromyalgia?

    Science.gov (United States)

    Kianmehr, Nahid; Haghighi, Anousheh; Bidari, Ali; Sharafian Ardekani, Yaser; Karimi, Mohammad Ali

    2017-12-01

    Fibromyalgia syndrome (FMS) is a common rheumatologic disorder characterized by easy fatigability, widespread musculoskeletal pain and sleep disorder. In spite of its high prevalence, general practitioners, as primary care providers, seem to have inadequate knowledge about FMS. This study aimed to assess Iranian general practitioners' knowledge about FMS and its treatment. A detailed questionnaire (including items on signs and symptoms, diagnostic criteria and treatment) was completed by 190 general practitioners (54.7% male; mean age: 41 years). Data analysis was performed with SPSS for Windows 15.0 and awareness about all aspects of FMS was reported as percentages. About one-third (30%) of the participants had seen at least one case of FMS during their practice. Most subjects (62.7%) claimed to know 1-6 tender points. Only 3.2% knew 16-18 points. The common proposed symptoms of FMS were widespread pain (72.6%), excessive fatigue (72.6%), weakness (60.5%), sleep disorder (36.3%), anxiety (34.7%) and depression (34.2%). Wrong symptoms including elevated erythrocyte sedimentation rate and C-reactive protein, arthritis, joint swelling, weight loss and abnormal radiologic findings were selected by 27.9%, 18.9%, 14.7%, 12.6% and 2.1% of the physicians, respectively. Moreover, selective serotonin reuptake inhibitors, tricyclic antidepressant and pregabalin were identified as treatment options for FMS by, respectively, 45.8%, 22.1% and 15.3% of the participants. Finally, 52.1% and 23.7% of the subjects incorrectly considered nonsteroidal anti-inflammatory drugs and corticosteroids as treatment modalities for FMS. Iranian general practitioners are not well informed about FMS. Therefore, FMS should be specifically integrated in continuing medical education programs and undergraduate medical training curriculum. © 2015 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  11. General relativity and gauge gravity theories of higher order

    International Nuclear Information System (INIS)

    Konopleva, N.P.

    1998-01-01

    It is a short review of today's gauge gravity theories and their relations with Einstein General Relativity. The conceptions of construction of the gauge gravity theories with higher derivatives are analyzed. GR is regarded as the gauge gravity theory corresponding to the choice of G ∞4 as the local gauge symmetry group and the symmetrical tensor of rank two g μν as the field variable. Using the mathematical technique, single for all fundamental interactions (namely variational formalism for infinite Lie groups), we can obtain Einstein's theory as the gauge theory without any changes. All other gauge approaches lead to non-Einstein theories of gravity. But above-mentioned mathematical technique permits us to construct the gauge gravity theory of higher order (for instance SO (3,1)-gravity) so that all vacuum solutions of Einstein equations are the solutions of the SO (3,1)-gravity theory. The structure of equations of SO(3,1)-gravity becomes analogous to Weeler-Misner geometrodynamics one

  12. Keynes's theories of money and banking in the Treatise and The General Theory

    OpenAIRE

    John Smithin

    2013-01-01

    This paper identifies what seem to have been the five main issues in contention in monetary theory, both historically and in the current era, and discusses the view that J.M. Keynes took on each of them in the Treatise on Money and The General Theory. The key issues in monetary theory are the ontology of money, endogenous versus exogenous money, interest-rate determination, the choice of the monetary policy instrument, and the neutrality versus non-neutrality of money.

  13. Theory of Neural Information Processing Systems

    International Nuclear Information System (INIS)

    Galla, Tobias

    2006-01-01

    It is difficult not to be amazed by the ability of the human brain to process, to structure and to memorize information. Even by the toughest standards the behaviour of this network of about 10 11 neurons qualifies as complex, and both the scientific community and the public take great interest in the growing field of neuroscience. The scientific endeavour to learn more about the function of the brain as an information processing system is here a truly interdisciplinary one, with important contributions from biology, computer science, physics, engineering and mathematics as the authors quite rightly point out in the introduction of their book. The role of the theoretical disciplines here is to provide mathematical models of information processing systems and the tools to study them. These models and tools are at the centre of the material covered in the book by Coolen, Kuehn and Sollich. The book is divided into five parts, providing basic introductory material on neural network models as well as the details of advanced techniques to study them. A mathematical appendix complements the main text. The range of topics is extremely broad, still the presentation is concise and the book well arranged. To stress the breadth of the book let me just mention a few keywords here: the material ranges from the basics of perceptrons and recurrent network architectures to more advanced aspects such as Bayesian learning and support vector machines; Shannon's theory of information and the definition of entropy are discussed, and a chapter on Amari's information geometry is not missing either. Finally the statistical mechanics chapters cover Gardner theory and the replica analysis of the Hopfield model, not without being preceded by a brief introduction of the basic concepts of equilibrium statistical physics. The book also contains a part on effective theories of the macroscopic dynamics of neural networks. Many dynamical aspects of neural networks are usually hard to find in the

  14. On generally covariant quantum field theory and generalized causal and dynamical structures

    International Nuclear Information System (INIS)

    Bannier, U.

    1988-01-01

    We give an example of a generally covariant quasilocal algebra associated with the massive free field. Maximal, two-sided ideals of this algebra are algebraic representatives of external metric fields. In some sense, this algebra may be regarded as a concrete realization of Ekstein's ideas of presymmetry in quantum field theory. Using ideas from our example and from usual algebraic quantum field theory, we discuss a generalized scheme, in which maximal ideals are viewed as algebraic representatives of dynamical equations or Lagrangians. The considered frame is no quantum gravity, but may lead to further insight into the relation between quantum theory and space-time geometry. (orig.)

  15. General time-dependent formulation of quantum scattering theory

    International Nuclear Information System (INIS)

    Althorpe, Stuart C.

    2004-01-01

    We derive and explain the key ideas behind a time-dependent formulation of quantum scattering theory, applicable generally to systems with a finite-range scattering potential. The scattering is initiated and probed by plane wave packets, which are localized just outside the range of the potential. The asymptotic limits of conventional scattering theory (initiation in the remote past; detection in the remote future) are not taken. Instead, the differential cross section (DCS) is obtained by projecting the scattered wave packet onto the probe plane wave packets. The projection also yields a time-dependent version of the DCS. Cuts through the wave packet, just as it exits the scattering potential, yield time-dependent and time-independent angular distributions that give a close-up picture of the scattering which complements the DCS. We have previously applied the theory to interpret experimental cross sections of chemical reactions [e.g., S. C. Althorpe, F. Fernandez-Alonso, B. D. Bean, J. D. Ayers, A. E. Pomerantz, R. N. Zare, and E. Wrede, Nature (London) 416, 67 (2002)]. This paper gives the derivation of the theory, and explains its relation to conventional scattering theory. For clarity, the derivation is restricted to spherical-particle scattering, though it may readily be extended to general multichannel systems. We illustrate the theory using a simple application to hard-sphere scattering

  16. Cognitive performance modeling based on general systems performance theory.

    Science.gov (United States)

    Kondraske, George V

    2010-01-01

    General Systems Performance Theory (GSPT) was initially motivated by problems associated with quantifying different aspects of human performance. It has proved to be invaluable for measurement development and understanding quantitative relationships between human subsystem capacities and performance in complex tasks. It is now desired to bring focus to the application of GSPT to modeling of cognitive system performance. Previous studies involving two complex tasks (i.e., driving and performing laparoscopic surgery) and incorporating measures that are clearly related to cognitive performance (information processing speed and short-term memory capacity) were revisited. A GSPT-derived method of task analysis and performance prediction termed Nonlinear Causal Resource Analysis (NCRA) was employed to determine the demand on basic cognitive performance resources required to support different levels of complex task performance. This approach is presented as a means to determine a cognitive workload profile and the subsequent computation of a single number measure of cognitive workload (CW). Computation of CW may be a viable alternative to measuring it. Various possible "more basic" performance resources that contribute to cognitive system performance are discussed. It is concluded from this preliminary exploration that a GSPT-based approach can contribute to defining cognitive performance models that are useful for both individual subjects and specific groups (e.g., military pilots).

  17. Generalized polarizabilities of the nucleon in baryon chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Lensky, Vadim [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik, Cluster of Excellence PRISMA, Mainz (Germany); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Pascalutsa, Vladimir; Vanderhaeghen, Marc [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik, Cluster of Excellence PRISMA, Mainz (Germany)

    2017-02-15

    The nucleon generalized polarizabilities (GPs), probed in virtual Compton scattering (VCS), describe the spatial distribution of the polarization density in a nucleon. They are accessed experimentally via the process of electron-proton bremsstrahlung (ep → epγ) at electron-beam facilities, such as MIT-Bates, CEBAF (Jefferson Lab), and MAMI (Mainz). We present the calculation of the nucleon GPs and VCS observables at next-to-leading order in baryon chiral perturbation theory (BχPT), and confront the results with the empirical information. At this order our results are predictions, in the sense that all the parameters are well known from elsewhere. Within the relatively large uncertainties of our calculation we find good agreement with the experimental observations of VCS and the empirical extractions of the GPs. We find large discrepancies with previous chiral calculations - all done in heavy-baryon χPT (HBχPT) - and discuss the differences between BχPT and HBχPT responsible for these discrepancies. (orig.)

  18. Information theory and coding solved problems

    CERN Document Server

    Ivaniš, Predrag

    2017-01-01

    This book is offers a comprehensive overview of information theory and error control coding, using a different approach then in existed literature. The chapters are organized according to the Shannon system model, where one block affects the others. A relatively brief theoretical introduction is provided at the beginning of every chapter, including a few additional examples and explanations, but without any proofs. And a short overview of some aspects of abstract algebra is given at the end of the corresponding chapters. The characteristic complex examples with a lot of illustrations and tables are chosen to provide detailed insights into the nature of the problem. Some limiting cases are presented to illustrate the connections with the theoretical bounds. The numerical values are carefully selected to provide in-depth explanations of the described algorithms. Although the examples in the different chapters can be considered separately, they are mutually connected and the conclusions for one considered proble...

  19. Information theory, animal communication, and the search for extraterrestrial intelligence

    Science.gov (United States)

    Doyle, Laurance R.; McCowan, Brenda; Johnston, Simon; Hanser, Sean F.

    2011-02-01

    We present ongoing research in the application of information theory to animal communication systems with the goal of developing additional detectors and estimators for possible extraterrestrial intelligent signals. Regardless of the species, for intelligence (i.e., complex knowledge) to be transmitted certain rules of information theory must still be obeyed. We demonstrate some preliminary results of applying information theory to socially complex marine mammal species (bottlenose dolphins and humpback whales) as well as arboreal squirrel monkeys, because they almost exclusively rely on vocal signals for their communications, producing signals which can be readily characterized by signal analysis. Metrics such as Zipf's Law and higher-order information-entropic structure are emerging as indicators of the communicative complexity characteristic of an "intelligent message" content within these animals' signals, perhaps not surprising given these species' social complexity. In addition to human languages, for comparison we also apply these metrics to pulsar signals—perhaps (arguably) the most "organized" of stellar systems—as an example of astrophysical systems that would have to be distinguished from an extraterrestrial intelligence message by such information theoretic filters. We also look at a message transmitted from Earth (Arecibo Observatory) that contains a lot of meaning but little information in the mathematical sense we define it here. We conclude that the study of non-human communication systems on our own planet can make a valuable contribution to the detection of extraterrestrial intelligence by providing quantitative general measures of communicative complexity. Studying the complex communication systems of other intelligent species on our own planet may also be one of the best ways to deprovincialize our thinking about extraterrestrial communication systems in general.

  20. Could information theory provide an ecological theory of sensory processing?

    Science.gov (United States)

    Atick, Joseph J

    2011-01-01

    The sensory pathways of animals are well adapted to processing a special class of signals, namely stimuli from the animal's environment. An important fact about natural stimuli is that they are typically very redundant and hence the sampled representation of these signals formed by the array of sensory cells is inefficient. One could argue for some animals and pathways, as we do in this review, that efficiency of information representation in the nervous system has several evolutionary advantages. Consequently, one might expect that much of the processing in the early levels of these sensory pathways could be dedicated towards recoding incoming signals into a more efficient form. In this review, we explore the principle of efficiency of information representation as a design principle for sensory processing. We give a preliminary discussion on how this principle could be applied in general to predict neural processing and then discuss concretely some neural systems where it recently has been shown to be successful. In particular, we examine the fly's LMC coding strategy and the mammalian retinal coding in the spatial, temporal and chromatic domains.

  1. A general theory of multimetric indices and their properties

    Science.gov (United States)

    Schoolmaster, Donald R.; Grace, James B.; Schweiger, E. William

    2012-01-01

    1. Stewardship of biological and ecological resources requires the ability to make integrative assessments of ecological integrity. One of the emerging methods for making such integrative assessments is multimetric indices (MMIs). These indices synthesize data, often from multiple levels of biological organization, with the goal of deriving a single index that reflects the overall effects of human disturbance. Despite the widespread use of MMIs, there is uncertainty about why this approach can be effective. An understanding of MMIs requires a quantitative theory that illustrates how the properties of candidate metrics relates to MMIs generated from those metrics. 2. We present the initial basis for such a theory by deriving the general mathematical characteristics of MMIs assembled from metrics. We then use the theory to derive quantitative answers to the following questions: Is there an optimal number of metrics to comprise an index? How does covariance among metrics affect the performance of the index derived from those metrics? And what are the criteria to decide whether a given metric will improve the performance of an index? 3. We find that the optimal number of metrics to be included in an index depends on the theoretical distribution of signal of the disturbance gradient contained in each metric. For example, if the rank-ordered parameters of a metric-disturbance regression can be described by a monotonically decreasing function, then an optimum number of metrics exists and can often be derived analytically. We derive the conditions by which adding a given metric can be expected to improve an index. 4. We find that the criterion defining such conditions depends nonlinearly of the signal of the disturbance gradient, the noise (error) of the metric and the correlation of the metric errors. Importantly, we find that correlation among metric errors increases the signal required for the metric to improve the index. 5. The theoretical framework presented in this

  2. Generalization of information-based concepts in forecast verification

    Science.gov (United States)

    Tödter, J.; Ahrens, B.

    2012-04-01

    This work deals with information-theoretical methods in probabilistic forecast verification. Recent findings concerning the Ignorance Score are shortly reviewed, then the generalization to continuous forecasts is shown. For ensemble forecasts, the presented measures can be calculated exactly. The Brier Score (BS) and its generalizations to the multi-categorical Ranked Probability Score (RPS) and to the Continuous Ranked Probability Score (CRPS) are the prominent verification measures for probabilistic forecasts. Particularly, their decompositions into measures quantifying the reliability, resolution and uncertainty of the forecasts are attractive. Information theory sets up the natural framework for forecast verification. Recently, it has been shown that the BS is a second-order approximation of the information-based Ignorance Score (IGN), which also contains easily interpretable components and can also be generalized to a ranked version (RIGN). Here, the IGN, its generalizations and decompositions are systematically discussed in analogy to the variants of the BS. Additionally, a Continuous Ranked IGN (CRIGN) is introduced in analogy to the CRPS. The applicability and usefulness of the conceptually appealing CRIGN is illustrated, together with an algorithm to evaluate its components reliability, resolution, and uncertainty for ensemble-generated forecasts. This is also directly applicable to the more traditional CRPS.

  3. Generalized perturbation theory (GPT) methods. A heuristic approach

    International Nuclear Information System (INIS)

    Gandini, A.

    1987-01-01

    Wigner first proposed a perturbation theory as early as 1945 to study fundamental quantities such as the reactivity worths of different materials. The first formulation, CPT, for conventional perturbation theory is based on universal quantum mechanics concepts. Since that early conception, significant contributions have been made to CPT, in particular, Soodak, who rendered a heuristic interpretation of the adjoint function, (referred to as the GPT method for generalized perturbation theory). The author illustrates the GPT methodology in a variety of linear and nonlinear domains encountered in nuclear reactor analysis. The author begins with the familiar linear neutron field and then generalizes the methodology to other linear and nonlinear fields, using heuristic arguments. The author believes that the inherent simplicity and elegance of the heuristic derivation, although intended here for reactor physics problems might be usefully adopted in collateral fields and includes such examples

  4. Generalized ensemble theory with non-extensive statistics

    Science.gov (United States)

    Shen, Ke-Ming; Zhang, Ben-Wei; Wang, En-Ke

    2017-12-01

    The non-extensive canonical ensemble theory is reconsidered with the method of Lagrange multipliers by maximizing Tsallis entropy, with the constraint that the normalized term of Tsallis' q -average of physical quantities, the sum ∑ pjq, is independent of the probability pi for Tsallis parameter q. The self-referential problem in the deduced probability and thermal quantities in non-extensive statistics is thus avoided, and thermodynamical relationships are obtained in a consistent and natural way. We also extend the study to the non-extensive grand canonical ensemble theory and obtain the q-deformed Bose-Einstein distribution as well as the q-deformed Fermi-Dirac distribution. The theory is further applied to the generalized Planck law to demonstrate the distinct behaviors of the various generalized q-distribution functions discussed in literature.

  5. Anisotropic cosmological models and generalized scalar tensor theory

    Indian Academy of Sciences (India)

    Abstract. In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–. Sachs space-time. For bulk viscous fluid, both exponential and power-law solutions have been stud- ied and some assumptions ...

  6. Anisotropic cosmological models and generalized scalar tensor theory

    Indian Academy of Sciences (India)

    In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–Sachs space-time. For bulk viscous fluid, both exponential and power-law solutions have been studied and some assumptions among the ...

  7. Variational analysis and generalized differentiation I basic theory

    CERN Document Server

    Mordukhovich, Boris S

    2006-01-01

    Contains a study of the basic concepts and principles of variational analysis and generalized differentiation in both finite-dimensional and infinite-dimensional spaces. This title presents many applications to problems in optimization, equilibria, stability and sensitivity, control theory, economics, mechanics, and more.

  8. An experiment designed to verify the general theory of relativity

    International Nuclear Information System (INIS)

    Surdin, Maurice

    1960-01-01

    The project for an experiment which uses the effect of gravitation on Maser-type clocks placed on the ground at two different heights and which is designed to verify the general theory of relativity. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 250, p. 299-301, sitting of 11 January 1960 [fr

  9. Anmeldelse: Whitney Davis A General Theory of Visual Culture

    DEFF Research Database (Denmark)

    Michelsen, Anders Ib

    2012-01-01

    Whitney Davis bog A General Theory of Visual Culture vil utvivlsomt blive opfattet som en provokation af mange deltagere i forskningsdebatterne om visuel kultur. At basere en »generel« teori om visuel kultur – dvs. en teori, som benytter sig af termer som »visualitet« – på et kerneargument de facto...

  10. Application of generalized perturbation theory to flux disadvantage factor calculations

    International Nuclear Information System (INIS)

    Sallam, O.H.; Akimov, I.S.; Naguib, K.; Hamouda, I.

    1979-01-01

    The possibility of using the generalized perturbation theory to calculate the perturbation of the flux disadvantage factors of reactor cell, resulting from the variation of the cell parameters, is studied. For simplicity the one-group diffusion approximation is considered. All necessary equations are derived for variations both of the cell dimensions. Numerical results are presented in the paper

  11. Gender, General Strain Theory, Negative Emotions, and Disordered Eating

    Science.gov (United States)

    Piquero, Nicole Leeper; Fox, Kristan; Piquero, Alex R.; Capowich, George; Mazerolle, Paul

    2010-01-01

    Much of the prior work on General Strain Theory (GST) has focused on how strain and negative emotions interrelate to produce criminal--especially violent--activity. Very little research has extended GST to examine other types of non-criminal, negative behavior, such as self-harming behaviors associated with disordered eating, a traditionally…

  12. On the general theory of thermo-elastic friction

    NARCIS (Netherlands)

    Alblas, J.B.

    1961-01-01

    A theory of the thermo-elastic dissipation in vibrating bodies is developed, starting from the three-dimensional thermo-elastic equations. After a discussion of the basic thermodynamical foundations, some general considerations on the problem of the conversion of mechanical energy into heat are

  13. An Application of General System Theory (GST) to Group Therapy.

    Science.gov (United States)

    Matthews, Charles O.

    1992-01-01

    Demonstrates the compatibility of General System Theory (GST) with the traditional counseling literature in explicating a therapy group's progression through Tuckman's (1965, 1977) developmental stages (forming, storming, norming, performing, and adjourning). Description uses both traditional group literature and GST concepts. (Author/NB)

  14. What Should Instructional Designers Know about General Systems Theory?

    Science.gov (United States)

    Salisbury, David F.

    1989-01-01

    Describes basic concepts in the field of general systems theory (GST) and explains the relationship between instructional systems design (ISD) and GST. Benefits of integrating GST into the curriculum of ISD graduate programs are discussed, and a short bibliography on GST is included. (LRW)

  15. Indefinite-metric quantum field theory of general relativity, 2

    International Nuclear Information System (INIS)

    Nakanishi, Noboru

    1978-01-01

    The canonical commutation relations are analyzed in detail in the manifestly covariant quantum field theory of general relativity proposed previously. It is explicitly proved that the BRS charge is indeed the generator of the BRS transformation both in the Landau gauge and in the non-Landau one. The equivalence between the field equations and the Heisenberg equations is confirmed. (author)

  16. Membrane models and generalized Z2 gauge theories

    International Nuclear Information System (INIS)

    Lowe, M.J.; Wallace, D.J.

    1980-01-01

    We consider models of (d-n)-dimensional membranes fluctuating in a d-dimensional space under the action of surface tension. We investigate the renormalization properties of these models perturbatively and in 1/n expansion. The potential relationships of these models to generalized Z 2 gauge theories are indicated. (orig.)

  17. A general mixture theory. I. Mixtures of spherical molecules

    Science.gov (United States)

    Hamad, Esam Z.

    1996-08-01

    We present a new general theory for obtaining mixture properties from the pure species equations of state. The theory addresses the composition and the unlike interactions dependence of mixture equation of state. The density expansion of the mixture equation gives the exact composition dependence of all virial coefficients. The theory introduces multiple-index parameters that can be calculated from binary unlike interaction parameters. In this first part of the work, details are presented for the first and second levels of approximations for spherical molecules. The second order model is simple and very accurate. It predicts the compressibility factor of additive hard spheres within simulation uncertainty (equimolar with size ratio of three). For nonadditive hard spheres, comparison with compressibility factor simulation data over a wide range of density, composition, and nonadditivity parameter, gave an average error of 2%. For mixtures of Lennard-Jones molecules, the model predictions are better than the Weeks-Chandler-Anderson perturbation theory.

  18. General theory of spontaneous emission near exceptional points.

    Science.gov (United States)

    Pick, Adi; Zhen, Bo; Miller, Owen D; Hsu, Chia W; Hernandez, Felipe; Rodriguez, Alejandro W; Soljačić, Marin; Johnson, Steven G

    2017-05-29

    We present a general theory of spontaneous emission at exceptional points (EPs)-exotic degeneracies in non-Hermitian systems. Our theory extends beyond spontaneous emission to any light-matter interaction described by the local density of states (e.g., absorption, thermal emission, and nonlinear frequency conversion). Whereas traditional spontaneous-emission theories imply infinite enhancement factors at EPs, we derive finite bounds on the enhancement, proving maximum enhancement of 4 in passive systems with second-order EPs and significantly larger enhancements (exceeding 400×) in gain-aided and higher-order EP systems. In contrast to non-degenerate resonances, which are typically associated with Lorentzian emission curves in systems with low losses, EPs are associated with non-Lorentzian lineshapes, leading to enhancements that scale nonlinearly with the resonance quality factor. Our theory can be applied to dispersive media, with proper normalization of the resonant modes.

  19. Kinetic theory of nonequilibrium ensembles, irreversible thermodynamics, and generalized hydrodynamics

    CERN Document Server

    Eu, Byung Chan

    2016-01-01

    This book presents the fundamentals of irreversible thermodynamics for nonlinear transport processes in gases and liquids, as well as for generalized hydrodynamics extending the classical hydrodynamics of Navier, Stokes, Fourier, and Fick. Together with its companion volume on relativistic theories, it provides a comprehensive picture of the kinetic theory formulated from the viewpoint of nonequilibrium ensembles in both nonrelativistic and, in Vol. 2, relativistic contexts. Theories of macroscopic irreversible processes must strictly conform to the thermodynamic laws at every step and in all approximations that enter their derivation from the mechanical principles. Upholding this as the inviolable tenet, the author develops theories of irreversible transport processes in fluids (gases or liquids) on the basis of irreversible kinetic equations satisfying the H theorem. They apply regardless of whether the processes are near to or far removed from equilibrium, or whether they are linear or nonlinear with respe...

  20. On the generalization of the Kaluza-Klein theory

    International Nuclear Information System (INIS)

    Rosu, Ion

    2003-01-01

    The goal of this paper is to present the Kaluza-Klein theory. In the first part we will discuss the theory elaborated by Kaluza and Klein, in a Riemann space with five dimensions, which unifies the gravitation with electromagnetism. The second part debates the generalization of this theory in a space with 4+n dimensions. This is a mathematical product between the Riemann 4-dimension variety and the G/H n-dimensional homogenous space. In the last part we will propose a theory Kaluza-Klein like in the fiber bundle space with 4+n dimensions. Every part is structured as follows: the metric tensor G will be identified for the gravitation and the potentials Yang-Mills; then the equations of geodesics and the equations of the field will be deduced. (author)

  1. Generalized metric formulation of double field theory on group manifolds

    International Nuclear Information System (INIS)

    Blumenhagen, Ralph; Bosque, Pascal du; Hassler, Falk; Lüst, Dieter

    2015-01-01

    We rewrite the recently derived cubic action of Double Field Theory on group manifolds http://dx.doi.org/10.1007/JHEP02(2015)001 in terms of a generalized metric and extrapolate it to all orders in the fields. For the resulting action, we derive the field equations and state them in terms of a generalized curvature scalar and a generalized Ricci tensor. Compared to the generalized metric formulation of DFT derived from tori, all these quantities receive additional contributions related to the non-trivial background. It is shown that the action is invariant under its generalized diffeomorphisms and 2D-diffeomorphisms. Imposing additional constraints relating the background and fluctuations around it, the precise relation between the proposed generalized metric formulation of DFT WZW and of original DFT from tori is clarified. Furthermore, we show how to relate DFT WZW of the WZW background with the flux formulation of original DFT.

  2. Generalized metric formulation of double field theory on group manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Bosque, Pascal du [Arnold-Sommerfeld-Center für Theoretische Physik,Department für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany); Hassler, Falk [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Lüst, Dieter [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Arnold-Sommerfeld-Center für Theoretische Physik,Department für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany); CERN, PH-TH,1211 Geneva 23 (Switzerland)

    2015-08-13

    We rewrite the recently derived cubic action of Double Field Theory on group manifolds http://dx.doi.org/10.1007/JHEP02(2015)001 in terms of a generalized metric and extrapolate it to all orders in the fields. For the resulting action, we derive the field equations and state them in terms of a generalized curvature scalar and a generalized Ricci tensor. Compared to the generalized metric formulation of DFT derived from tori, all these quantities receive additional contributions related to the non-trivial background. It is shown that the action is invariant under its generalized diffeomorphisms and 2D-diffeomorphisms. Imposing additional constraints relating the background and fluctuations around it, the precise relation between the proposed generalized metric formulation of DFT{sub WZW} and of original DFT from tori is clarified. Furthermore, we show how to relate DFT{sub WZW} of the WZW background with the flux formulation of original DFT.

  3. Generalized perturbation theory using two-dimensional, discrete ordinates transport theory

    International Nuclear Information System (INIS)

    Childs, R.L.

    1979-01-01

    Perturbation theory for changes in linear and bilinear functionals of the forward and adjoint fluxes in a critical reactor has been implemented using two-dimensional discrete ordinates transport theory. The computer program DOT IV was modified to calculate the generalized functions Λ and Λ*. Demonstration calculations were performed for changes in a reaction-rate ratio and a reactivity worth caused by system perturbations. The perturbation theory predictions agreed with direct calculations to within about 2%. A method has been developed for calculating higher lambda eigenvalues and eigenfunctions using techniques similar to those developed for generalized functions. Demonstration calculations have been performed to obtain these eigenfunctions

  4. Informal Risk Perceptions and Formal Theory

    International Nuclear Information System (INIS)

    Cayford, Jerry

    2001-01-01

    Economists have argued persuasively that our goals are wider than just risk minimization, and that they include a prudent weighing of costs and benefits. This economic line of thought recognizes that our policy goals are complex. As we widen the range of goals we are willing to entertain, though, we need to check that the methods we customarily employ are appropriate for the tasks to which we customarily apply them. This paper examines some economic methods of risk assessment, in light of the question of what our policy goals are and should be. Once the question of goals is open, more complexities than just cost intrude: what the public wants and why begs to be addressed. This leads us to the controversial issue of public risk perceptions. We have now examined a number of procedures that experts use to make public policy decisions. Behind all these issues is always the question of social welfare: what actions can we take, what policies should we embrace, to make the world a better place? In many cases, the public and the experts disagree about what the right choice is. In the first section, we saw a possible defense of the experts based on democratic theory: the people's participation, and even their will, can be legitimately set aside in the pursuit of their true interests. If this defense is to work, a great deal of weight rests on the question of the people's interests and the competence and integrity of the experts' pursuit of it. But at the same time, social preferences are ill-defined, and so are not good candidates for rational actor theory. Both the prescriptive legitimacy claim and the very workings of formal theory we have seen to depend on informal, qualitative, political judgments. Unfortunately, we have also seen a steady pattern of expert reliance on technical procedures even when they were manifestly unsuited to the task. The experts seem so intent on excluding informal thought that they would prefer even a bad quantitative process to a qualitative

  5. Informal Risk Perceptions and Formal Theory

    Energy Technology Data Exchange (ETDEWEB)

    Cayford, Jerry [Resources for the Future, Washington, DC (United States)

    2001-07-01

    Economists have argued persuasively that our goals are wider than just risk minimization, and that they include a prudent weighing of costs and benefits. This economic line of thought recognizes that our policy goals are complex. As we widen the range of goals we are willing to entertain, though, we need to check that the methods we customarily employ are appropriate for the tasks to which we customarily apply them. This paper examines some economic methods of risk assessment, in light of the question of what our policy goals are and should be. Once the question of goals is open, more complexities than just cost intrude: what the public wants and why begs to be addressed. This leads us to the controversial issue of public risk perceptions. We have now examined a number of procedures that experts use to make public policy decisions. Behind all these issues is always the question of social welfare: what actions can we take, what policies should we embrace, to make the world a better place? In many cases, the public and the experts disagree about what the right choice is. In the first section, we saw a possible defense of the experts based on democratic theory: the people's participation, and even their will, can be legitimately set aside in the pursuit of their true interests. If this defense is to work, a great deal of weight rests on the question of the people's interests and the competence and integrity of the experts' pursuit of it. But at the same time, social preferences are ill-defined, and so are not good candidates for rational actor theory. Both the prescriptive legitimacy claim and the very workings of formal theory we have seen to depend on informal, qualitative, political judgments. Unfortunately, we have also seen a steady pattern of expert reliance on technical procedures even when they were manifestly unsuited to the task. The experts seem so intent on excluding informal thought that they would prefer even a bad quantitative process to

  6. The general class of the vacuum spherically symmetric equations of the general relativity theory

    International Nuclear Information System (INIS)

    Karbanovski, V. V.; Sorokin, O. M.; Nesterova, M. I.; Bolotnyaya, V. A.; Markov, V. N.; Kairov, T. V.; Lyash, A. A.; Tarasyuk, O. R.

    2012-01-01

    The system of the spherical-symmetric vacuum equations of the General Relativity Theory is considered. The general solution to a problem representing two classes of line elements with arbitrary functions g 00 and g 22 is obtained. The properties of the found solutions are analyzed.

  7. Scalar-tensor theory of gravitation: generalizations and experimental limitations

    International Nuclear Information System (INIS)

    Duruisseau, J.P.

    1983-01-01

    Several theories with scalar field can be derived from different variational principles. Here a very general variational principle is considered and it is proved that, in the exterior case without electromagnetic field, the solution for a particular case generates the set of solutions for the general case. This is applied to the exterior solution in the static case with spherical symmetry without electromagnetic field. The predictions are investigated for the classic effects and the event horizons and some limitations for the variational principles which generalize the usual limitations are obtained. In all these cases the Schwarzschild solution with his horizon appears as a very particular case. (author)

  8. Towards integrating control and information theories from information-theoretic measures to control performance limitations

    CERN Document Server

    Fang, Song; Ishii, Hideaki

    2017-01-01

    This book investigates the performance limitation issues in networked feedback systems. The fact that networked feedback systems consist of control and communication devices and systems calls for the integration of control theory and information theory. The primary contributions of this book lie in two aspects: the newly-proposed information-theoretic measures and the newly-discovered control performance limitations. We first propose a number of information notions to facilitate the analysis. Using those notions, classes of performance limitations of networked feedback systems, as well as state estimation systems, are then investigated. In general, the book presents a unique, cohesive treatment of performance limitation issues of networked feedback systems via an information-theoretic approach. This book is believed to be the first to treat the aforementioned subjects systematically and in a unified manner, offering a unique perspective differing from existing books.

  9. On a Geometric Theory of Generalized Chiral Elasticity with Discontinuities

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2008-01-01

    Full Text Available In this work we develop, in a somewhat extensive manner, a geometric theory of chiral elasticity which in general is endowed with geometric discontinuities (sometimes referred to as defects. By itself, the present theory generalizes both Cosserat and void elasticity theories to a certain extent via geometrization as well as by taking intoaccount the action of the electromagnetic field, i.e., the incorporation of the electromagnetic field into the description of the so-called microspin (chirality also forms the underlying structure of this work. As we know, the description of the electromagnetic field as a unified phenomenon requires four-dimensional space-time rather than three-dimensional space as its background. For this reason we embed the three-dimensional material space in four-dimensional space-time. This way, the electromagnetic spin is coupled to the non-electromagnetic microspin, both being parts of the completemicrospin to be added to the macrospin in the full description of vorticity. In short, our objective is to generalize the existing continuum theories by especially describing microspin phenomena in a fully geometric way.

  10. On a Geometric Theory of Generalized Chiral Elasticity with Discontinuities

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2008-01-01

    Full Text Available In this work we develop, in a somewhat extensive manner, a geometric theory of chiral elasticity which in general is endowed with geometric discontinuities (sometimes re- ferred to as defects . By itself, the present theory generalizes both Cosserat and void elasticity theories to a certain extent via geometrization as well as by taking into ac- count the action of the electromagnetic field, i.e., the incorporation of the electromag- netic field into the description of the so-called microspin ( chirality also forms the un- derlying structure of this work. As we know, the description of the electromagnetic field as a unified phenomenon requires four-dimensional space-time rather than three- dimensional space as its background. For this reason we embed the three-dimensional material space in four-dimensional space-time. This way, the electromagnetic spin is coupled to the non-electromagnetic microspin, both being parts of the complete mi- crospin to be added to the macrospin in the full description of vorticity. In short, our objective is to generalize the existing continuum theories by especially describing mi- crospin phenomena in a fully geometric way.

  11. A few comments on general theory of quantized fields

    International Nuclear Information System (INIS)

    Yamaguchi, Yoshio

    2005-01-01

    Several important comments on General Theory of Quantized Fields shall be supplemented here. Our theory is based on (Riemannian) momentum spaces with finite volumes. Our theory is formulated in the specific inertial frame, i.e., the rest frame of the cosmic back-ground radiation (RF-CBR). To go to other reference frame, we reply on general co-ordinate (in our case, energy and momentum variables, p-representation) transformations and the principle of general relativity. We find the degeneracy on energy levels of all elementary particles (same values of all particle energies appear twice) (as compared to the conventional field theories). This doubling of energy levels might be important at the beginning (very early stage) of our evolutional universe. However, we may not wish to have such a doubling at the present epoch. We can avoid the doubling by introducing appropriate (natural and rational, of course) Yukawa interactions among fermions and bosons. Then it is easy to realize the situation in which elementary particles populated in the half of the energy levels (called 'our particles' having normal spin multiplicity) shall not 'interact' with particles populated in the other half of energy levels except gravity. The particles in the latter group may be called 'dark matter particles', which give the most natural candidates of dark matter. We have already emphasized that other candidates of dark matter are zero-point vibration energy of all elementary particles and the energy of the vacuum due to interaction Hamiltonians. (author)

  12. Cyber Power Theory First, Then Information Operations

    National Research Council Canada - National Science Library

    Smart, Antoinette G

    2001-01-01

    ...) seems disconcerting, at least on the surface. Think tanks, government research organizations, and learned individuals have all pointed to the need for a viable theory of IO, yet no such theory has emerged...

  13. Generalized absorber theory and the Einstein-Podolsky-Rosen paradox

    International Nuclear Information System (INIS)

    Cramer, J.G.

    1980-01-01

    A generalized form of Wheeler-Feynman absorber theory is used to explain the quantum-mechanical paradox proposed by Einstein, Podolsky, and Rosen (EPR). The advanced solutions of the electromagnetic wave equation and of relativistic quantum-mechanical wave equations are shown to play the role of ''verifier'' in quantum-mechanical ''transactions,'' providing microscopic communication paths between detectors across spacelike intervals in violation of the EPR locality postulate. The principle of causality is discussed in the context of this approach, and possibilities for experimental tests of the theory are examined

  14. On complicated continuum models in general relativity theory

    International Nuclear Information System (INIS)

    Tsypkin, A.G.

    1987-01-01

    A set of Euler's equations is obtained in the framework of the general relativity theory from the variational equation in the supposition that lagrangian of the material depends on additional (in comparison with classical theories) thermodynamic parameters and taking into account possible irreversible processes. Momentum equations for continuous medium of a thermodynamic closed set are shown to be the consequence of field equations. The problem about the type of energy-momentum material tensor in the presence of derivatives from additional thermodynamic parameters in the number of lagrangian arguments is considered

  15. General scalar-tensor theories for induced gravity inflation

    International Nuclear Information System (INIS)

    Boutaleb J, H.; Marrakchi, A.L.

    1992-07-01

    Some cosmological implications of a general scalar-tensor theory for induced gravity are discussed. The model exhibits a slow-rolling phase provided that the coupling function ε(φ) varies slowly enough such that φ dlnε(φ)/dφ much less than 2 during almost the inflationary epoch. It is then shown that, as in the ordinary induced gravity inflation, the chaotic scenario is more natural than the new scenario which proves to be even not self-consistent. The results are applied, for illustration, to a scalar-tensor theory of the Barker type. (author). 25 refs

  16. Indefinite-metric quantum field theory of general relativity, 5

    International Nuclear Information System (INIS)

    Nakanishi, Noboru

    1979-01-01

    The indefinite-metric quantum field theory of general relativity is extended to the coupled system of the gravitational field and a Dirac field on the basis of the vierbein formalism. The six extra degrees of freedom involved in vierbein are made unobservable by introducing an extra subsidiary condition Q sub(s) + phys> = 0, where Q sub(s) denotes a new BRS charge corresponding to the local Lorentz invariance. It is shown that a manifestly covariant, unitary, canonical theory can be constructed consistently on the basis of the vierbein formalism. (author)

  17. Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics

    Science.gov (United States)

    Altaner, Bernhard

    2017-11-01

    Thermodynamics is based on the notions of energy and entropy. While energy is the elementary quantity governing physical dynamics, entropy is the fundamental concept in information theory. In this work, starting from first principles, we give a detailed didactic account on the relations between energy and entropy and thus physics and information theory. We show that thermodynamic process inequalities, like the second law, are equivalent to the requirement that an effective description for physical dynamics is strongly relaxing. From the perspective of information theory, strongly relaxing dynamics govern the irreversible convergence of a statistical ensemble towards the maximally non-commital probability distribution that is compatible with thermodynamic equilibrium parameters. In particular, Markov processes that converge to a thermodynamic equilibrium state are strongly relaxing. Our framework generalizes previous results to arbitrary open and driven systems, yielding novel thermodynamic bounds for idealized and real processes. , which features invited work from the best early-career researchers working within the scope of J. Phys. A. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Bernhard Altaner was selected by the Editorial Board of J. Phys. A as an Emerging Talent.

  18. Generalized canonical formalism and the S-matrix of theories with constraints of the general type

    International Nuclear Information System (INIS)

    Fradkina, T.Ye.

    1987-01-01

    A canonical quantization method is given for systems with first and second class constraints of arbitrary rank. The effectiveness of the method is demonstrated using sample Yang-Mills and gravitational fields. A correct expression is derived for the S-matrix of theories that are momentum-quadratic within the scope of canonical gauges, including ghost fields. Generalized quantization is performed and the S-matrix is derived in configurational space for theories of relativistic membranes representing a generalization of theories of strings to the case of an extended spatial implementation. It is demonstrated that the theory of membranes in n+l-dimensional space is a system with rank-n constraints

  19. A General Framework for Portfolio Theory. Part I: theory and various models

    OpenAIRE

    Maier-Paape, Stanislaus; Zhu, Qiji Jim

    2017-01-01

    Utility and risk are two often competing measurements on the investment success. We show that efficient trade-off between these two measurements for investment portfolios happens, in general, on a convex curve in the two dimensional space of utility and risk. This is a rather general pattern. The modern portfolio theory of Markowitz [H. Markowitz, Portfolio Selection, 1959] and its natural generalization, the capital market pricing model, [W. F. Sharpe, Mutual fund performance , 1966] are spe...

  20. Should the model for risk-informed regulation be game theory rather than decision theory?

    Science.gov (United States)

    Bier, Vicki M; Lin, Shi-Woei

    2013-02-01

    Risk analysts frequently view the regulation of risks as being largely a matter of decision theory. According to this view, risk analysis methods provide information on the likelihood and severity of various possible outcomes; this information should then be assessed using a decision-theoretic approach (such as cost/benefit analysis) to determine whether the risks are acceptable, and whether additional regulation is warranted. However, this view ignores the fact that in many industries (particularly industries that are technologically sophisticated and employ specialized risk and safety experts), risk analyses may be done by regulated firms, not by the regulator. Moreover, those firms may have more knowledge about the levels of safety at their own facilities than the regulator does. This creates a situation in which the regulated firm has both the opportunity-and often also the motive-to provide inaccurate (in particular, favorably biased) risk information to the regulator, and hence the regulator has reason to doubt the accuracy of the risk information provided by regulated parties. Researchers have argued that decision theory is capable of dealing with many such strategic interactions as well as game theory can. This is especially true in two-player, two-stage games in which the follower has a unique best strategy in response to the leader's strategy, as appears to be the case in the situation analyzed in this article. However, even in such cases, we agree with Cox that game-theoretic methods and concepts can still be useful. In particular, the tools of mechanism design, and especially the revelation principle, can simplify the analysis of such games because the revelation principle provides rigorous assurance that it is sufficient to analyze only games in which licensees truthfully report their risk levels, making the problem more manageable. Without that, it would generally be necessary to consider much more complicated forms of strategic behavior (including

  1. New Aspects of Probabilistic Forecast Verification Using Information Theory

    Science.gov (United States)

    Tödter, Julian; Ahrens, Bodo

    2013-04-01

    This work deals with information-theoretical methods in probabilistic forecast verification, particularly concerning ensemble forecasts. Recent findings concerning the "Ignorance Score" are shortly reviewed, then a consistent generalization to continuous forecasts is motivated. For ensemble-generated forecasts, the presented measures can be calculated exactly. The Brier Score (BS) and its generalizations to the multi-categorical Ranked Probability Score (RPS) and to the Continuous Ranked Probability Score (CRPS) are prominent verification measures for probabilistic forecasts. Particularly, their decompositions into measures quantifying the reliability, resolution and uncertainty of the forecasts are attractive. Information theory sets up a natural framework for forecast verification. Recently, it has been shown that the BS is a second-order approximation of the information-based Ignorance Score (IGN), which also contains easily interpretable components and can also be generalized to a ranked version (RIGN). Here, the IGN, its generalizations and decompositions are systematically discussed in analogy to the variants of the BS. Additionally, a Continuous Ranked IGN (CRIGN) is introduced in analogy to the CRPS. The useful properties of the conceptually appealing CRIGN are illustrated, together with an algorithm to evaluate its components reliability, resolution, and uncertainty for ensemble-generated forecasts. This algorithm can also be used to calculate the decomposition of the more traditional CRPS exactly. The applicability of the "new" measures is demonstrated in a small evaluation study of ensemble-based precipitation forecasts.

  2. Generalized second law of thermodynamic in modified teleparallel theory

    Energy Technology Data Exchange (ETDEWEB)

    Zubair, M. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom); Jamil, Mubasher [National University of Sciences and Technology (NUST), Department of Mathematics, School of Natural Sciences (SNS), Islamabad (Pakistan)

    2017-07-15

    This study is conducted to examine the validity of the generalized second law of thermodynamics (GSLT) in flat FRW for modified teleparallel gravity involving coupling between a scalar field with the torsion scalar T and the boundary term B = 2∇{sub μ}T{sup μ}. This theory is very useful, since it can reproduce other important well-known scalar field theories in suitable limits. The validity of the first and second law of thermodynamics at the apparent horizon is discussed for any coupling. As examples, we have also explored the validity of those thermodynamics laws in some new cosmological solutions under the theory. Additionally, we have also considered the logarithmic entropy corrected relation and discuss the GSLT at the apparent horizon. (orig.)

  3. Generalized second law of thermodynamic in modified teleparallel theory

    International Nuclear Information System (INIS)

    Zubair, M.; Bahamonde, Sebastian; Jamil, Mubasher

    2017-01-01

    This study is conducted to examine the validity of the generalized second law of thermodynamics (GSLT) in flat FRW for modified teleparallel gravity involving coupling between a scalar field with the torsion scalar T and the boundary term B = 2∇ μ T μ . This theory is very useful, since it can reproduce other important well-known scalar field theories in suitable limits. The validity of the first and second law of thermodynamics at the apparent horizon is discussed for any coupling. As examples, we have also explored the validity of those thermodynamics laws in some new cosmological solutions under the theory. Additionally, we have also considered the logarithmic entropy corrected relation and discuss the GSLT at the apparent horizon. (orig.)

  4. Role of information theoretic uncertainty relations in quantum theory

    Energy Technology Data Exchange (ETDEWEB)

    Jizba, Petr, E-mail: p.jizba@fjfi.cvut.cz [FNSPE, Czech Technical University in Prague, Břehová 7, 115 19 Praha 1 (Czech Republic); ITP, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin (Germany); Dunningham, Jacob A., E-mail: J.Dunningham@sussex.ac.uk [Department of Physics and Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH (United Kingdom); Joo, Jaewoo, E-mail: j.joo@surrey.ac.uk [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom)

    2015-04-15

    Uncertainty relations based on information theory for both discrete and continuous distribution functions are briefly reviewed. We extend these results to account for (differential) Rényi entropy and its related entropy power. This allows us to find a new class of information-theoretic uncertainty relations (ITURs). The potency of such uncertainty relations in quantum mechanics is illustrated with a simple two-energy-level model where they outperform both the usual Robertson–Schrödinger uncertainty relation and Shannon entropy based uncertainty relation. In the continuous case the ensuing entropy power uncertainty relations are discussed in the context of heavy tailed wave functions and Schrödinger cat states. Again, improvement over both the Robertson–Schrödinger uncertainty principle and Shannon ITUR is demonstrated in these cases. Further salient issues such as the proof of a generalized entropy power inequality and a geometric picture of information-theoretic uncertainty relations are also discussed.

  5. Role of information theoretic uncertainty relations in quantum theory

    International Nuclear Information System (INIS)

    Jizba, Petr; Dunningham, Jacob A.; Joo, Jaewoo

    2015-01-01

    Uncertainty relations based on information theory for both discrete and continuous distribution functions are briefly reviewed. We extend these results to account for (differential) Rényi entropy and its related entropy power. This allows us to find a new class of information-theoretic uncertainty relations (ITURs). The potency of such uncertainty relations in quantum mechanics is illustrated with a simple two-energy-level model where they outperform both the usual Robertson–Schrödinger uncertainty relation and Shannon entropy based uncertainty relation. In the continuous case the ensuing entropy power uncertainty relations are discussed in the context of heavy tailed wave functions and Schrödinger cat states. Again, improvement over both the Robertson–Schrödinger uncertainty principle and Shannon ITUR is demonstrated in these cases. Further salient issues such as the proof of a generalized entropy power inequality and a geometric picture of information-theoretic uncertainty relations are also discussed

  6. Novel information theory techniques for phonon spectroscopy

    International Nuclear Information System (INIS)

    Hague, J P

    2007-01-01

    The maximum entropy method (MEM) and spectral reverse Monte Carlo (SRMC) techniques are applied to the determination of the phonon density of states (PDOS) from heat-capacity data. The approach presented here takes advantage of the standard integral transform relating the PDOS with the specific heat at constant volume. MEM and SRMC are highly successful numerical approaches for inverting integral transforms. The formalism and algorithms necessary to carry out the inversion of specific heat curves are introduced, and where possible, I have concentrated on algorithms and experimental details for practical usage. Simulated data are used to demonstrate the accuracy of the approach. The main strength of the techniques presented here is that the resulting spectra are always physical: Computed PDOS is always positive and properly applied information theory techniques only show statistically significant detail. The treatment set out here provides a simple, cost-effective and reliable method to determine phonon properties of new materials. In particular, the new technique is expected to be very useful for establishing where interesting phonon modes and properties can be found, before spending time at large scale facilities

  7. Theory and interpretation in qualitative studies from general practice

    DEFF Research Database (Denmark)

    Malterud, Kirsti

    2016-01-01

    Objective: In this article, I want to promote theoretical awareness and commitment among qualitative researchers in general practice and suggest adequate and feasible theoretical approaches.  Approach: I discuss different theoretical aspects of qualitative research and present the basic foundations...... theory is a consistent and soundly based set of assumptions about a specific aspect of the world, predicting or explaining a phenomenon. Qualitative research is situated in an interpretative paradigm where notions about particular human experiences in context are recognized from different subject...... in qualitative analysis are presented, emphasizing substantive theories to sharpen the interpretative focus. Such approaches are clearly within reach for a general practice researcher contributing to clinical practice by doing more than summarizing what the participants talked about, without trying to become...

  8. Rastall's and related theories are conservative gravitational theories although physically inequivalent to general relativity

    Science.gov (United States)

    Smalley, L. L.

    1983-01-01

    The proper framework for testing Rastall's theory and its generalizations is in the case of non-negligible (i.e. discernible) gravitational effects such as gravity gradients. These theories have conserved integral four-momentum and angular momentum. The Nordtvedt effect then provides limits on the parameters which arise as the result of the non-zero divergence of the energy-momentum tensor.

  9. Fuel management optimization based on generalized perturbation theory

    International Nuclear Information System (INIS)

    White, J.R.; Chapman, D.M.; Biswas, D.

    1986-01-01

    A general methodology for optimization of assembly shuffling and burnable poison (BP) loadings for LWR reload design has been developed. The uniqueness of this approach lies in the coupling of Generalized Perturbation Theory (GPT) methods and standard Integer Programming (IP) techniques. An IP algorithm can simulate the discrete nature of the fuel shuffling and BP loading problems, and the use of GPT sensitivity data provides an efficient means for modeling the behavior of the important core performance parameters. The method is extremely flexible since the choice of objective function and the number and mix of constraints depend only on the ability of GPT to determine the appropriate sensitivity functions

  10. Generalized Poisson processes in quantum mechanics and field theory

    International Nuclear Information System (INIS)

    Combe, P.; Rodriguez, R.; Centre National de la Recherche Scientifique, 13 - Marseille; Hoegh-Krohn, R.; Centre National de la Recherche Scientifique, 13 - Marseille; Sirugue, M.; Sirugue-Collin, M.; Centre National de la Recherche Scientifique, 13 - Marseille

    1981-01-01

    In section 2 we describe more carefully the generalized Poisson processes, giving a realization of the underlying probability space, and we characterize these processes by their characteristic functionals. Section 3 is devoted to the proof of the previous formula for quantum mechanical systems, with possibly velocity dependent potentials and in section 4 we give an application of the previous theory to some relativistic Bose field models. (orig.)

  11. Renormalization in general theories with inter-generation mixing

    International Nuclear Information System (INIS)

    Kniehl, Bernd A.; Sirlin, Alberto

    2011-11-01

    We derive general and explicit expressions for the unrenormalized and renormalized dressed propagators of fermions in parity-nonconserving theories with inter-generation mixing. The mass eigenvalues, the corresponding mass counterterms, and the effect of inter-generation mixing on their determination are discussed. Invoking the Aoki-Hioki-Kawabe-Konuma-Muta renormalization conditions and employing a number of very useful relations from Matrix Algebra, we show explicitly that the renormalized dressed propagators satisfy important physical properties. (orig.)

  12. Magnetotail equilibrium theory - The general three-dimensional solution

    Science.gov (United States)

    Birn, J.

    1987-01-01

    The general magnetostatic equilibrium problem for the geomagnetic tail is reduced to the solution of ordinary differential equations and ordinary integrals. The theory allows the integration of the self-consistent magnetotail equilibrium field from the knowledge of four functions of two space variables: the neutral sheet location, the total pressure, the magnetic field strength, and the z component of the magnetic field at the neutral sheet.

  13. Stringy horizons and generalized FZZ duality in perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Giribet, Gaston [Martin Fisher School of Physics, Brandeis University,Waltham, Massachusetts 02453 (United States); Departamento de Física, Universidad de Buenos Aires FCEN-UBA and IFIBA-CONICET,Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina)

    2017-02-14

    We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n−2 winding modes actually coincide with the correlation functions in the SL(2,ℝ)/U(1) gauged WZW model that include n−2 oscillator operators of the type described by Giveon, Itzhaki and Kutasov in reference https://www.doi.org/10.1007/JHEP10(2016)157. This proves the GFZZ duality for the case of tree level maximally winding violating n-point amplitudes with arbitrary n. We also comment on the connection between GFZZ and other marginal deformations previously considered in the literature.

  14. Theory of Nonlocal Point Transformations in General Relativity

    Directory of Open Access Journals (Sweden)

    Massimo Tessarotto

    2016-01-01

    Full Text Available A discussion of the functional setting customarily adopted in General Relativity (GR is proposed. This is based on the introduction of the notion of nonlocal point transformations (NLPTs. While allowing the extension of the traditional concept of GR-reference frame, NLPTs are important because they permit the explicit determination of the map between intrinsically different and generally curved space-times expressed in arbitrary coordinate systems. For this purpose in the paper the mathematical foundations of NLPT-theory are laid down and basic physical implications are considered. In particular, explicit applications of the theory are proposed, which concern (1 a solution to the so-called Einstein teleparallel problem in the framework of NLPT-theory; (2 the determination of the tensor transformation laws holding for the acceleration 4-tensor with respect to the group of NLPTs and the identification of NLPT-acceleration effects, namely, the relationship established via general NLPT between particle 4-acceleration tensors existing in different curved space-times; (3 the construction of the nonlocal transformation law connecting different diagonal metric tensors solution to the Einstein field equations; and (4 the diagonalization of nondiagonal metric tensors.

  15. Causes of School Bullying: Empirical Test of a General Theory of Crime, Differential Association Theory, and General Strain Theory

    Science.gov (United States)

    Moon, Byongook; Hwang, Hye-Won; McCluskey, John D.

    2011-01-01

    A growing number of studies indicate the ubiquity of school bullying: It is a global concern, regardless of cultural differences. Little previous research has examined whether leading criminological theories can explain bullying, despite the commonality between bullying and delinquency. The current investigation uses longitudinal data on 655…

  16. Relativistic theory of gravitation and nonuniqueness of the predictions of general relativity theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Loskutov, Yu.M.

    1986-01-01

    It is shown that while the predictions of relativistic theory of gravitation (RTG) for the gravitational effects are unique and consistent with the experimental data available, the relevant predictions of general relativity theory are not unique. Therewith the above nonuniqueness manifests itself in some effects in the first order in the gravitational interaction constant in others in the second one. The absence in GRT of the energy-momentum and angular momentum conservation laws for the matter and gravitational field taken together and its inapplicability to give uniquely determined predictions for the gravitational phenomena compel to reject GRT as a physical theory

  17. Exploring a Theory Describing the Physics of Information Systems, Characterizing the Phenomena of Complex Information Systems

    National Research Council Canada - National Science Library

    Harmon, Scott

    2001-01-01

    This project accomplished all of its objectives: document a theory of information physics, conduct a workshop on planing experiments to test this theory, and design experiments that validate this theory...

  18. General Information about Chronic Lymphocytic Leukemia

    Science.gov (United States)

    ... of the lymph system . Having relatives who are Russian Jews or Eastern European Jews. Signs and symptoms ... information about clinical trials is also available. To Learn More About Chronic Lymphocytic Leukemia For more information ...

  19. Energy information systems: a general overview

    International Nuclear Information System (INIS)

    Sen, B.K.

    1991-01-01

    The unprecedented energy crises that engulfed the world in early 1970s brought about a spurt in energy research all over the world, which in turn caused the rapid growth of literature in the field. In order to achieve effective bibliographical control, proper dissemination of information, and rapid access to the desired document, energy information systems of diverse scope came into being. The paper describes the special features of several information systems like (i) International Nuclear Information Systems, which covers world literature on nuclear science and technology (ii) Energy Information Services which takes cares of energy information transfer among the Commonwealth countries of the Asia and Pacific region; (ii) Information Network on New Energy Sources and Technologies for Asia And Pacific. This system is being developed to ensure smooth energy information transfer amongst non-commonwealth countries of Asia and the Pacific. (author)

  20. Critical Theory and Information Studies: A Marcusean Infusion

    Science.gov (United States)

    Pyati, Ajit K.

    2006-01-01

    In the field of library and information science, also known as information studies, critical theory is often not included in debates about the discipline's theoretical foundations. This paper argues that the critical theory of Herbert Marcuse, in particular, has a significant contribution to make to the field of information studies. Marcuse's…

  1. Some Contributions of General Systems Theory, Cybernetics Theory and Management Control Theory to Evaluation Theory and Practice. Research on Evaluation Program Paper and Report Series. Interim Draft.

    Science.gov (United States)

    Cook, Desmond L.

    This document, one of a series of reports examining the possible contribution of other disciplines to evaluation methodology, describes the major elements of general systems theory (GST), cybernetics theory (CT) and management control theory (MCT). The author suggests that MCT encapsulates major concerns of evaluation since it reveals that…

  2. Automated image segmentation using information theory

    International Nuclear Information System (INIS)

    Hibbard, L.S.

    2001-01-01

    Full text: Our development of automated contouring of CT images for RT planning is based on maximum a posteriori (MAP) analyses of region textures, edges, and prior shapes, and assumes stationary Gaussian distributions for voxel textures and contour shapes. Since models may not accurately represent image data, it would be advantageous to compute inferences without relying on models. The relative entropy (RE) from information theory can generate inferences based solely on the similarity of probability distributions. The entropy of a distribution of a random variable X is defined as -Σ x p(x)log 2 p(x) for all the values x which X may assume. The RE (Kullback-Liebler divergence) of two distributions p(X), q(X), over X is Σ x p(x)log 2 {p(x)/q(x)}. The RE is a kind of 'distance' between p,q, equaling zero when p=q and increasing as p,q are more different. Minimum-error MAP and likelihood ratio decision rules have RE equivalents: minimum error decisions obtain with functions of the differences between REs of compared distributions. One applied result is the contour ideally separating two regions is that which maximizes the relative entropy of the two regions' intensities. A program was developed that automatically contours the outlines of patients in stereotactic headframes, a situation most often requiring manual drawing. The relative entropy of intensities inside the contour (patient) versus outside (background) was maximized by conjugate gradient descent over the space of parameters of a deformable contour. shows the computed segmentation of a patient from headframe backgrounds. This program is particularly useful for preparing images for multimodal image fusion. Relative entropy and allied measures of distribution similarity provide automated contouring criteria that do not depend on statistical models of image data. This approach should have wide utility in medical image segmentation applications. Copyright (2001) Australasian College of Physical Scientists and

  3. Generalized perturbation theory in DRAGON: application to CANDU cell calculations

    International Nuclear Information System (INIS)

    Courau, T.; Marleau, G.

    2001-01-01

    Generalized perturbation theory (GPT) in neutron transport is a means to evaluate eigenvalue and reaction rate variations due to small changes in the reactor properties (macroscopic cross sections). These variations can be decomposed in two terms: a direct term corresponding to the changes in the cross section themselves and an indirect term that takes into account the perturbations in the neutron flux. As we will show, taking into account the indirect term using a GPT method is generally straight forward since this term is the scalar product of the unperturbed generalized adjoint with the product of the variation of the transport operator and the unperturbed flux. In the case where the collision probability (CP) method is used to solve the transport equation, evaluating the perturbed transport operator involves calculating the variations in the CP matrix for each change in the reactor properties. Because most of the computational effort is dedicated to the CP matrix calculation the gains expected form the GPT method would therefore be annihilated. Here we will present a technique to approximate the variations in the CP matrices thereby replacing the variations in the transport operator with source term variations. We will show that this approximation yields errors fully compatible with the standard generalized perturbation theory errors. Results for 2D CANDU cell calculations will be presented. (author)

  4. Theory and experiments in general relativity and other metric theories of gravity

    International Nuclear Information System (INIS)

    Ciufolini, I.

    1984-01-01

    In Chapter I, after an introduction to theories of gravity alternative to general relativity, metric theories, and the post-Newtonian parameterized (PNN) formalism, a new class of metric theories of gravity is defined. As a result the post-Newtonian approximation of the new theories is not described by the PPN formalism. In fact under the weak field and slow motion hypothesis, the post-Newtonian expression of the metric tensor contains an infinite set of new terms and correspondingly an infinite set of new PPN parameters. Chapter II, III, and IV are devoted to new experiments to test general relativity and other metric theories of gravity. In particular, in chapter IV, it is shown that two general relativistics effects, the Lense-Thirring and De Sitter-Fokker precessions of the nodal lines of an Earth artificial satellite are today detectable using high altitude laser ranged artificial satellites such as Lageos. The orbit of this satellite is known with unprecedented accuracy. The author then describes a method of measuring these relativistic precessions using Lageos together with another high altitude laser ranged similar satellite with appropriately chosen orbital parameters

  5. A multistep general theory of transition to addiction.

    Science.gov (United States)

    Piazza, Pier Vincenzo; Deroche-Gamonet, Véronique

    2013-10-01

    Several theories propose alternative explanations for drug addiction. We propose a general theory of transition to addiction that synthesizes knowledge generated in the field of addiction into a unitary explanatory frame. Transition to addiction results from a sequential three-step interaction between: (1) individual vulnerability; (2) degree/amount of drug exposure. The first step, sporadic recreational drug use is a learning process mediated by overactivation of neurobiological substrates of natural rewards that allows most individuals to perceive drugs as highly rewarding stimuli. The second, intensified, sustained, escalated drug use occurs in some vulnerable individuals who have a hyperactive dopaminergic system and impaired prefrontal cortex function. Sustained and prolonged drug use induces incentive sensitization and an allostatic state that makes drugs strongly wanted and needed. Habit formation can also contribute to stabilizing sustained drug use. The last step, loss of control of drug intake and full addiction, is due to a second vulnerable phenotype. This loss-of-control-prone phenotype is triggered by long-term drug exposure and characterized by long-lasting loss of synaptic plasticity in reward areas in the brain that induce a form of behavioral crystallization resulting in loss of control of drug intake. Because of behavioral crystallization, drugs are now not only wanted and needed but also pathologically mourned when absent. This general theory demonstrates that drug addiction is a true psychiatric disease caused by a three-step interaction between vulnerable individuals and amount/duration of drug exposure.

  6. Entanglement dynamics in quantum information theory

    Energy Technology Data Exchange (ETDEWEB)

    Cubitt, T.S.

    2007-03-29

    This thesis contributes to the theory of entanglement dynamics, that is, the behaviour of entanglement in systems that are evolving with time. Progressively more complex multipartite systems are considered, starting with low-dimensional tripartite systems, whose entanglement dynamics can nonetheless display surprising properties, progressing through larger networks of interacting particles, and finishing with infinitely large lattice models. Firstly, what is perhaps the most basic question in entanglement dynamics is considered: what resources are necessary in order to create entanglement between distant particles? The answer is surprising: sending separable states between the parties is sufficient; entanglement can be created without it being carried by a ''messenger'' particle. The analogous result also holds in the continuous-time case: two particles interacting indirectly via a common ancilla particle can be entangled without the ancilla ever itself becoming entangled. The latter result appears to discount any notion of entanglement flow. However, for pure states, this intuitive idea can be recovered, and even made quantitative. A ''bottleneck'' inequality is derived that relates the entanglement rate of the end particles in a tripartite chain to the entanglement of the middle one. In particular, no entanglement can be created if the middle particle is not entangled. However, although this result can be applied to general interaction networks, it does not capture the full entanglement dynamics of these more complex systems. This is remedied by the derivation of entanglement rate equations, loosely analogous to the rate equations describing a chemical reaction. A complete set of rate equations for a system reflects the full structure of its interaction network, and can be used to prove a lower bound on the scaling with chain length of the time required to entangle the ends of a chain. Finally, in contrast with these more

  7. Entanglement dynamics in quantum information theory

    International Nuclear Information System (INIS)

    Cubitt, T.S.

    2007-01-01

    This thesis contributes to the theory of entanglement dynamics, that is, the behaviour of entanglement in systems that are evolving with time. Progressively more complex multipartite systems are considered, starting with low-dimensional tripartite systems, whose entanglement dynamics can nonetheless display surprising properties, progressing through larger networks of interacting particles, and finishing with infinitely large lattice models. Firstly, what is perhaps the most basic question in entanglement dynamics is considered: what resources are necessary in order to create entanglement between distant particles? The answer is surprising: sending separable states between the parties is sufficient; entanglement can be created without it being carried by a ''messenger'' particle. The analogous result also holds in the continuous-time case: two particles interacting indirectly via a common ancilla particle can be entangled without the ancilla ever itself becoming entangled. The latter result appears to discount any notion of entanglement flow. However, for pure states, this intuitive idea can be recovered, and even made quantitative. A ''bottleneck'' inequality is derived that relates the entanglement rate of the end particles in a tripartite chain to the entanglement of the middle one. In particular, no entanglement can be created if the middle particle is not entangled. However, although this result can be applied to general interaction networks, it does not capture the full entanglement dynamics of these more complex systems. This is remedied by the derivation of entanglement rate equations, loosely analogous to the rate equations describing a chemical reaction. A complete set of rate equations for a system reflects the full structure of its interaction network, and can be used to prove a lower bound on the scaling with chain length of the time required to entangle the ends of a chain. Finally, in contrast with these more abstract results, the entanglement and

  8. Potential Performance Theory (PPT): A General Theory of Task Performance Applied to Morality

    Science.gov (United States)

    Trafimow, David; Rice, Stephen

    2008-01-01

    People can use a variety of different strategies to perform tasks and these strategies all have two characteristics in common. First, they can be evaluated in comparison with either an absolute or a relative standard. Second, they can be used at varying levels of consistency. In the present article, the authors develop a general theory of task…

  9. Generalized Effective Medium Theory for Particulate Nanocomposite Materials

    Directory of Open Access Journals (Sweden)

    Muhammad Usama Siddiqui

    2016-08-01

    Full Text Available The thermal conductivity of particulate nanocomposites is strongly dependent on the size, shape, orientation and dispersion uniformity of the inclusions. To correctly estimate the effective thermal conductivity of the nanocomposite, all these factors should be included in the prediction model. In this paper, the formulation of a generalized effective medium theory for the determination of the effective thermal conductivity of particulate nanocomposites with multiple inclusions is presented. The formulated methodology takes into account all the factors mentioned above and can be used to model nanocomposites with multiple inclusions that are randomly oriented or aligned in a particular direction. The effect of inclusion dispersion non-uniformity is modeled using a two-scale approach. The applications of the formulated effective medium theory are demonstrated using previously published experimental and numerical results for several particulate nanocomposites.

  10. On special and general relativity theory. 24. ed.

    International Nuclear Information System (INIS)

    Einstein, Albert

    2009-01-01

    The present booklet shall mediate to such an as possible exact view in relativity theory, who are especially interested for the theory from a generally scientific, philosophical, point of view, without mastering the mathematical apparatus. The lecture presupposes some maturity knowledge and - in spite of the shortness of the booklet - quite much perseverance and strength of mind. The author has token very much efforts in order to present the main thoughts as distinctly and simply as possible, in the whole in such a sequence and in such connection, as it has really been arose. With the aim of distinctiveness it seemed to me unavoidable to repeat myself frequently without paying the smallest regard to the elegance of the presentation; I maintained conscientiously the prescription of the ingenious theoretician L. Boltzmann, elegance should by the object of the taylors ans shoemakers [de

  11. Applying Information Processing Theory to Supervision: An Initial Exploration

    Science.gov (United States)

    Tangen, Jodi L.; Borders, L. DiAnne

    2017-01-01

    Although clinical supervision is an educational endeavor (Borders & Brown, [Borders, L. D., 2005]), many scholars neglect theories of learning in working with supervisees. The authors describe 1 learning theory--information processing theory (Atkinson & Shiffrin, 1968, 1971; Schunk, 2016)--and the ways its associated interventions may…

  12. A general theory for ball lightning structure and light output

    Science.gov (United States)

    Morrow, R.

    2018-03-01

    A general theory for free-floating ball lightning is presented which unifies the phantom plasma ball theory involving the production of very little light, with theories for ball lightning involving light output produced by burning particles from the soil. The mechanism for the formation of plasma balls is shown to be quite general, producing very similar plasma balls independent of initial ion densities over four orders of magnitude. All that is required is an excess of positive ions in the initial ball of ions. The central plasma density after 1 s is shown to be the reciprocal of the ion neutralization coefficient for all cases, both analytically and computationally. Further, the plasma region has zero electric field in all cases. Surrounding the plasma ball is a sphere of positive ions moving away from the centre via their own space-charge field; this space-charge field, which is the same in all cases near the plasma ball, drives negative ions and negative particles towards the plasma centre. The connection with burning particle theories is the proposition that the burning particles are highly-charged which is very likely after a lightning strike. Burning negatively charged particles would be driven into the plasma ball region and trapped while any positively charged particles would be driven away. The plasma ball structure is shown to last more than 10 s and the ‘burnout time’ for a typical coal particle (as an example) has been measured at 5-10 s this is comparable with the lifetimes observed for ball lightning. The light output from a few hundred particles is estimated to be ~1 W, a typical output for ball lightning. Finally, suggestions are made for the generation of ball lightning in the laboratory.

  13. General Strain Theory and Substance Use among American Indian Adolescents.

    Science.gov (United States)

    Eitle, Tamela McNulty; Eitle, David; Johnson-Jennings, Michelle

    2013-01-01

    Despite the well-established finding that American Indian adolescents are at a greater risk of illicit substance use and abuse than the general population, few generalist explanations of deviance have been extended to American Indian substance use. Using a popular generalist explanation of deviance, General Strain Theory, we explore the predictive utility of this model with a subsample of American Indian adolescents from waves one and two of the National Longitudinal Study of Adolescent Health (Add-Health). Overall, we find mixed support for the utility of General Strain Theory to account for American Indian adolescent substance use. While exposure to recent life events, a common measure of stress exposure, was found to be a robust indicator of substance use, we found mixed support for the thesis that negative affect plays a key role in mediating the link between strain and substance use. However, we did find evidence that personal and social resources serve to condition the link between stress exposure and substance use, with parental control, self-restraint, religiosity, and exposure to substance using peers each serving to moderate the association between strain and substance use, albeit in more complex ways than expected.

  14. General Information about Langerhans Cell Histiocytosis (LCH)

    Science.gov (United States)

    ... speaking. Trouble seeing. Headaches. Changes in behavior or personality. Memory problems. These signs and symptoms may be ... National Institutes of Health FOLLOW US Facebook Twitter Instagram YouTube Google+ LinkedIn GovDelivery RSS CONTACT INFORMATION Contact ...

  15. INFORMATION MODEL OF A GENERAL PRACTITIONER

    Directory of Open Access Journals (Sweden)

    S. M. Zlepko

    2016-06-01

    Full Text Available In the paper the authors developed information model family doctor shows its innovation and functionality. The proposed model meets the requirements of the current job description and criteria World Organization of Family Doctors.

  16. General Information about Chronic Myeloproliferative Neoplasms

    Science.gov (United States)

    ... Treatment for information on diagnosis , staging , and treatment. Polycythemia Vera Key Points Polycythemia vera is a disease ... blood tests are used to diagnose polycythemia vera. Polycythemia vera is a disease in which too many ...

  17. Generalized probabilistic theories and conic extensions of polytopes

    Science.gov (United States)

    Fiorini, Samuel; Massar, Serge; Patra, Manas K.; Tiwary, Hans Raj

    2015-01-01

    Generalized probabilistic theories (GPT) provide a general framework that includes classical and quantum theories. It is described by a cone C and its dual C*. We show that whether some one-way communication complexity problems can be solved within a GPT is equivalent to the recently introduced cone factorization of the corresponding communication matrix M. We also prove an analogue of Holevo's theorem: when the cone C is contained in {{{R}}n}, the classical capacity of the channel realized by sending GPT states and measuring them is bounded by log n. Polytopes and optimising functions over polytopes arise in many areas of discrete mathematics. A conic extension of a polytope is the intersection of a cone C with an affine subspace whose projection onto the original space yields the desired polytope. Extensions of polytopes can sometimes be much simpler geometric objects than the polytope itself. The existence of a conic extension of a polytope is equivalent to that of a cone factorization of the slack matrix of the polytope, on the same cone. We show that all 0/1 polytopes whose vertices can be recognized by a polynomial size circuit, which includes as a special case the travelling salesman polytope and many other polytopes from combinatorial optimization, have small conic extension complexity when the cone is the completely positive cone. Using recent exponential lower bounds on the linear extension complexity of polytopes, this provides an exponential gap between the communication complexity of GPT based on the completely positive cone and classical communication complexity, and a conjectured exponential gap with quantum communication complexity. Our work thus relates the communication complexity of generalizations of quantum theory to questions of mainstream interest in the area of combinatorial optimization.

  18. Generalized probabilistic theories and conic extensions of polytopes

    International Nuclear Information System (INIS)

    Fiorini, Samuel; Massar, Serge; Patra, Manas K; Tiwary, Hans Raj

    2015-01-01

    Generalized probabilistic theories (GPT) provide a general framework that includes classical and quantum theories. It is described by a cone C and its dual C*. We show that whether some one-way communication complexity problems can be solved within a GPT is equivalent to the recently introduced cone factorization of the corresponding communication matrix M. We also prove an analogue of Holevo's theorem: when the cone C is contained in R n , the classical capacity of the channel realized by sending GPT states and measuring them is bounded by logn. Polytopes and optimising functions over polytopes arise in many areas of discrete mathematics. A conic extension of a polytope is the intersection of a cone C with an affine subspace whose projection onto the original space yields the desired polytope. Extensions of polytopes can sometimes be much simpler geometric objects than the polytope itself. The existence of a conic extension of a polytope is equivalent to that of a cone factorization of the slack matrix of the polytope, on the same cone. We show that all 0/1 polytopes whose vertices can be recognized by a polynomial size circuit, which includes as a special case the travelling salesman polytope and many other polytopes from combinatorial optimization, have small conic extension complexity when the cone is the completely positive cone. Using recent exponential lower bounds on the linear extension complexity of polytopes, this provides an exponential gap between the communication complexity of GPT based on the completely positive cone and classical communication complexity, and a conjectured exponential gap with quantum communication complexity. Our work thus relates the communication complexity of generalizations of quantum theory to questions of mainstream interest in the area of combinatorial optimization. (paper)

  19. USING INFORMATION THEORY TO DEFINE A SUSTAINABILITY INDEX

    Science.gov (United States)

    Information theory has many applications in Ecology and Environmental science, such as a biodiversity indicator, as a measure of evolution, a measure of distance from thermodynamic equilibrium, and as a measure of system organization. Fisher Information, in particular, provides a...

  20. Nonextensive kinetic theory and H-theorem in general relativity

    Science.gov (United States)

    Santos, A. P.; Silva, R.; Alcaniz, J. S.; Lima, J. A. S.

    2017-11-01

    The nonextensive kinetic theory for degenerate quantum gases is discussed in the general relativistic framework. By incorporating nonadditive modifications in the collisional term of the relativistic Boltzmann equation and entropy current, it is shown that Tsallis entropic framework satisfies a H-theorem in the presence of gravitational fields. Consistency with the 2nd law of thermodynamics is obtained only whether the entropic q-parameter lies in the interval q ∈ [ 0 , 2 ] . As occurs in the absence of gravitational fields, it is also proved that the local collisional equilibrium is described by the extended Bose-Einstein (Fermi-Dirac) q-distributions.

  1. Cosmology and a general scalar-tensor theory of gravity

    International Nuclear Information System (INIS)

    Bishop, N.T.

    1976-01-01

    The cosmological models resulting from a general scalar-tensor theory of gravity are discussed. Those models for which the scalar field varies as a power of the cosmological expansion factor (i.e. phi varies as Rsup(n)) are considered in detail, leading to a set of such models compatible with observation. This set includes models in which the scalar coupling parameter ω is negative. The models described here are similar to those of Newtonian cosmology obtained from an impotence principle. (author)

  2. The two-loop renormalization of general quantum field theories

    International Nuclear Information System (INIS)

    Damme, R.M.J. van.

    1984-01-01

    This thesis provides a general method to compute all first order corrections to the renormalization group equations. This requires the computation of the first perturbative corrections to the renormalization group β-functions. These corrections are described by Feynman diagrams with two loops. The two-loop renormalization is treated for an arbitrary renormalization field theory. Two cases are considered: 1. the Yukawa sector; 2. the gauge coupling and the scalar potential. In a final section, the breakdown of unitarity in the dimensional reduction scheme is discussed. (Auth.)

  3. General theory of intensity correlation on light scattering

    International Nuclear Information System (INIS)

    Villaeys, A.A.

    1978-01-01

    A general theory for spatio-temporal intensity correlations measurements for a scattered beam is developed. A completely quantum mechanical description for both excitation and detection set up is used. This description is essentially valid for weak incident light beams and single photon absorption processes. From a unified point of view both, stationary as well as, time resolved experiments are described. The interest for such experiments in the study of processes like resonance raman scattering and resonance fluorescence is emphasized. Also an observable coherent contribution associated to different final levels of the target-atoms or molecules is obtained a result which cannot be reached by intensity measurements

  4. Epistemology as Information Theory: From Leibniz to Omega

    OpenAIRE

    Chaitin, G. J.

    2005-01-01

    In 1686 in his Discours de Metaphysique, Leibniz points out that if an arbitrarily complex theory is permitted then the notion of "theory" becomes vacuous because there is always a theory. This idea is developed in the modern theory of algorithmic information, which deals with the size of computer programs and provides a new view of Godel's work on incompleteness and Turing's work on uncomputability. Of particular interest is the halting probability Omega, whose bits are irreducible, i.e., ma...

  5. Application of Neutrosophic Set Theory in Generalized Assignment Problem

    Directory of Open Access Journals (Sweden)

    Supriya Kar

    2015-09-01

    Full Text Available This paper presents the application of Neutrosophic Set Theory (NST in solving Generalized Assignment Problem (GAP. GAP has been solved earlier under fuzzy environment. NST is a generalization of the concept of classical set, fuzzy set, interval-valued fuzzy set, intuitionistic fuzzy set. Elements of Neutrosophic set are characterized by a truth-membership function, falsity and also indeterminacy which is a more realistic way of expressing the parameters in real life problem. Here the elements of the cost matrix for the GAP are considered as neutrosophic elements which have not been considered earlier by any other author. The problem has been solved by evaluating score function matrix and then solving it by Extremum Difference Method (EDM [1] to get the optimal assignment. The method has been demonstrated by a suitable numerical example.

  6. General Theory of Relativity: Will It Survive the Next Decade?

    Science.gov (United States)

    Bertolami, Orfeu; Paramos, Jorge; Turyshev, Slava G.

    2006-01-01

    The nature of gravity is fundamental to our understanding of our own solar system, the galaxy and the structure and evolution of the Universe. Einstein's general theory of relativity is the standard model that is used for almost ninety years to describe gravitational phenomena on these various scales. We review the foundations of general relativity, discuss the recent progress in the tests of relativistic gravity, and present motivations for high-accuracy gravitational experiments in space. We also summarize the science objectives and technology needs for the laboratory experiments in space with laboratory being the entire solar system. We discuss the advances in our understanding of fundamental physics anticipated in the near future and evaluate discovery potential for the recently proposed gravitational experiments.

  7. A Theory of the Perturbed Consumer with General Budgets

    DEFF Research Database (Denmark)

    McFadden, Daniel L; Fosgerau, Mogens

    We consider demand systems for utility-maximizing consumers facing general budget constraints whose utilities are perturbed by additive linear shifts in marginal utilities. Budgets are required to be compact but are not required to be convex. We define demand generating functions (DGF) whose...... subgradients with respect to these perturbations are convex hulls of the utility-maximizing demands. We give necessary as well as sufficient conditions for DGF to be consistent with utility maximization, and establish under quite general conditions that utility-maximizing demands are almost everywhere single......-valued and smooth in their arguments. We also give sufficient conditions for integrability of perturbed demand. Our analysis provides a foundation for applications of consumer theory to problems with nonlinear budget constraints....

  8. Generalized data management systems and scientific information

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    This report aims to stimulate scientists of all disciplines to consider the advantages of using a generalized data management system (GDMS) for storage, manipulation and retrieval of the data they collect and often need to share. It should also be of interest to managers and programmers who need to make decisions on the management of scientific (numeric or non-numeric) data. Another goal of this report is to expose the features that a GDMS should have which are specifically necessary to support scientific data, such as data types and special manipulation functions. A GDMS is a system that provides generalized tools for the purpose of defining a database structure, for loading the data, for modification of the data, and for organizing the database for efficient retrieval and formatted output. A data management system is 'generalized' when it provides a user-oriented language for the different functions, so that it is possible to define any new database, its internal organization, and to retrieve and modify the data without the need to develop special purpose software (program) for each new database

  9. Rudolf Ahlswede’s lectures on information theory

    CERN Document Server

    Althöfer, Ingo; Deppe, Christian; Tamm, Ulrich

    Volume 1 : The volume “Storing and Transmitting Data” is based on Rudolf Ahlswede's introductory course on "Information Theory I" and presents an introduction to Shannon Theory. Readers, familiar or unfamiliar with the technical intricacies of Information Theory, will benefit considerably from working through the book; especially Chapter VI with its lively comments and uncensored insider views from the world of science and research offers informative and revealing insights. This is the first of several volumes that will serve as a collected research documentation of Rudolf Ahlswede’s lectures on information theory. Each volume includes comments from an invited well-known expert. Holger Boche contributed his insights in the supplement of the present volume. Classical information processing concerns the main tasks of gaining knowledge, storage, transmitting and hiding data. The first task is the prime goal of Statistics. For the two next, Shannon presented an impressive mathematical theory called Informat...

  10. Conformal field theories near a boundary in general dimensions

    International Nuclear Information System (INIS)

    McAvity, D.M.

    1995-01-01

    The implications of restricted conformal invariance under conformal transformations preserving a plane boundary are discussed for general dimensions d. Calculations of the universal function of a conformal invariant ξ which appears in the two-point function of scalar operators in conformally invariant theories with a plane boundary are undertaken to first order in the ε=4-d expansion for the operator φ 2 in φ 4 theory. The form for the associated functions of ξ for the two-point functions for the basic field φ α and the auxiliary field λ in the N→∞ limit of the O(N) non-linear sigma model for any d in the range 2 α φ β and λλ. Using this method the form of the two-point function for the energy-momentum tensor in the conformal O(N) model with a plane boundary is also found. General results for the sum of the contributions of all derivative operators appearing in the operator product expansion, and also in a corresponding boundary operator expansion, to the two-point functions are also derived making essential use of conformal invariance. (orig.)

  11. Efficient molecular density functional theory using generalized spherical harmonics expansions.

    Science.gov (United States)

    Ding, Lu; Levesque, Maximilien; Borgis, Daniel; Belloni, Luc

    2017-09-07

    We show that generalized spherical harmonics are well suited for representing the space and orientation molecular density in the resolution of the molecular density functional theory. We consider the common system made of a rigid solute of arbitrary complexity immersed in a molecular solvent, both represented by molecules with interacting atomic sites and classical force fields. The molecular solvent density ρ(r,Ω) around the solute is a function of the position r≡(x,y,z) and of the three Euler angles Ω≡(θ,ϕ,ψ) describing the solvent orientation. The standard density functional, equivalent to the hypernetted-chain closure for the solute-solvent correlations in the liquid theory, is minimized with respect to ρ(r,Ω). The up-to-now very expensive angular convolution products are advantageously replaced by simple products between projections onto generalized spherical harmonics. The dramatic gain in speed of resolution enables to explore in a systematic way molecular solutes of up to nanometric sizes in arbitrary solvents and to calculate their solvation free energy and associated microscopic solvent structure in at most a few minutes. We finally illustrate the formalism by tackling the solvation of molecules of various complexities in water.

  12. Quantum theory from first principles an informational approach

    CERN Document Server

    D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2017-01-01

    Quantum theory is the soul of theoretical physics. It is not just a theory of specific physical systems, but rather a new framework with universal applicability. This book shows how we can reconstruct the theory from six information-theoretical principles, by rebuilding the quantum rules from the bottom up. Step by step, the reader will learn how to master the counterintuitive aspects of the quantum world, and how to efficiently reconstruct quantum information protocols from first principles. Using intuitive graphical notation to represent equations, and with shorter and more efficient derivations, the theory can be understood and assimilated with exceptional ease. Offering a radically new perspective on the field, the book contains an efficient course of quantum theory and quantum information for undergraduates. The book is aimed at researchers, professionals, and students in physics, computer science and philosophy, as well as the curious outsider seeking a deeper understanding of the theory.

  13. A Mathematical Theory of System Information Flow

    Science.gov (United States)

    2016-06-27

    i.i.d. is usually quite involved. There are numerous experiments , often using photons, to test Bell’s Inequality recorded in the literature, but the...classical setting. Peter focused on non-locality as an alternative theory and experiments using the CHSH inequality , and devised a statistical procedure...761 (2014). 7. BIERHORST, P., A new loophole in recent Bell test experiments , arXiv:1311.4488, (2014). 8. BIERHORST, P., A Mathematical Foundation

  14. Towards a general theory of neural computation based on prediction by single neurons.

    Directory of Open Access Journals (Sweden)

    Christopher D Fiorillo

    Full Text Available Although there has been tremendous progress in understanding the mechanics of the nervous system, there has not been a general theory of its computational function. Here I present a theory that relates the established biophysical properties of single generic neurons to principles of Bayesian probability theory, reinforcement learning and efficient coding. I suggest that this theory addresses the general computational problem facing the nervous system. Each neuron is proposed to mirror the function of the whole system in learning to predict aspects of the world related to future reward. According to the model, a typical neuron receives current information about the state of the world from a subset of its excitatory synaptic inputs, and prior information from its other inputs. Prior information would be contributed by synaptic inputs representing distinct regions of space, and by different types of non-synaptic, voltage-regulated channels representing distinct periods of the past. The neuron's membrane voltage is proposed to signal the difference between current and prior information ("prediction error" or "surprise". A neuron would apply a Hebbian plasticity rule to select those excitatory inputs that are the most closely correlated with reward but are the least predictable, since unpredictable inputs provide the neuron with the most "new" information about future reward. To minimize the error in its predictions and to respond only when excitation is "new and surprising," the neuron selects amongst its prior information sources through an anti-Hebbian rule. The unique inputs of a mature neuron would therefore result from learning about spatial and temporal patterns in its local environment, and by extension, the external world. Thus the theory describes how the structure of the mature nervous system could reflect the structure of the external world, and how the complexity and intelligence of the system might develop from a population of

  15. Theory of the Concealed Information Test

    NARCIS (Netherlands)

    Verschuere, B.; Ben-Shakhar, G.; Verschuere, B.; Ben-Shakhar, G.; Meijer, E.

    2011-01-01

    It is now well established that physiological measures can be validly used to detect concealed information. An important challenge is to elucidate the underlying mechanisms of concealed information detection. We review theoretical approaches that can be broadly classified in two major categories:

  16. Assessment of visual communication by information theory

    Science.gov (United States)

    Huck, Friedrich O.; Fales, Carl L.

    1994-01-01

    This assessment of visual communication integrates the optical design of the image-gathering device with the digital processing for image coding and restoration. Results show that informationally optimized image gathering ordinarily can be relied upon to maximize the information efficiency of decorrelated data and the visual quality of optimally restored images.

  17. Public Management Information Systems: Theory and Prescription.

    Science.gov (United States)

    Bozeman, Barry; Bretschneider, Stuart

    1986-01-01

    The existing theoretical framework for research in management information systems (MIS) is criticized for its lack of attention to the external environment of organizations, and a new framework is developed which better accommodates MIS in public organizations: public management information systems. Four models of publicness that reflect external…

  18. Implications of Information Theory for Computational Modeling of Schizophrenia.

    Science.gov (United States)

    Silverstein, Steven M; Wibral, Michael; Phillips, William A

    2017-10-01

    Information theory provides a formal framework within which information processing and its disorders can be described. However, information theory has rarely been applied to modeling aspects of the cognitive neuroscience of schizophrenia. The goal of this article is to highlight the benefits of an approach based on information theory, including its recent extensions, for understanding several disrupted neural goal functions as well as related cognitive and symptomatic phenomena in schizophrenia. We begin by demonstrating that foundational concepts from information theory-such as Shannon information, entropy, data compression, block coding, and strategies to increase the signal-to-noise ratio-can be used to provide novel understandings of cognitive impairments in schizophrenia and metrics to evaluate their integrity. We then describe more recent developments in information theory, including the concepts of infomax, coherent infomax, and coding with synergy, to demonstrate how these can be used to develop computational models of schizophrenia-related failures in the tuning of sensory neurons, gain control, perceptual organization, thought organization, selective attention, context processing, predictive coding, and cognitive control. Throughout, we demonstrate how disordered mechanisms may explain both perceptual/cognitive changes and symptom emergence in schizophrenia. Finally, we demonstrate that there is consistency between some information-theoretic concepts and recent discoveries in neurobiology, especially involving the existence of distinct sites for the accumulation of driving input and contextual information prior to their interaction. This convergence can be used to guide future theory, experiment, and treatment development.

  19. Equity trees and graphs via information theory

    Science.gov (United States)

    Harré, M.; Bossomaier, T.

    2010-01-01

    We investigate the similarities and differences between two measures of the relationship between equities traded in financial markets. Our measures are the correlation coefficients and the mutual information. In the context of financial markets correlation coefficients are well established whereas mutual information has not previously been as well studied despite its theoretically appealing properties. We show that asset trees which are derived from either the correlation coefficients or the mutual information have a mixture of both similarities and differences at the individual equity level and at the macroscopic level. We then extend our consideration from trees to graphs using the "genus 0" condition recently introduced in order to study the networks of equities.

  20. Bayesian or Laplacien inference, entropy and information theory and information geometry in data and signal processing

    Science.gov (United States)

    Mohammad-Djafari, Ali

    2015-01-01

    The main object of this tutorial article is first to review the main inference tools using Bayesian approach, Entropy, Information theory and their corresponding geometries. This review is focused mainly on the ways these tools have been used in data, signal and image processing. After a short introduction of the different quantities related to the Bayes rule, the entropy and the Maximum Entropy Principle (MEP), relative entropy and the Kullback-Leibler divergence, Fisher information, we will study their use in different fields of data and signal processing such as: entropy in source separation, Fisher information in model order selection, different Maximum Entropy based methods in time series spectral estimation and finally, general linear inverse problems.

  1. Aerodynamic coefficients in generalized unsteady thin airfoil theory

    Science.gov (United States)

    Williams, M. H.

    1980-01-01

    Two cases are considered: (1) rigid body motion of an airfoil-flap combination consisting of vertical translation of given amplitude, rotation of given amplitude about a specified axis, and rotation of given amplitude of the control surface alone about its hinge; the upwash for this problem is defined mathematically; and (2) sinusoidal gust of given amplitude and wave number, for which the upwash is defined mathematically. Simple universal formulas are presented for the most important aerodynamic coefficients in unsteady thin airfoil theory. The lift and moment induced by a generalized gust are evaluated explicitly in terms of the gust wavelength. Similarly, in the control surface problem, the lift, moment, and hinge moments are given as explicit algebraic functions of hinge location. These results can be used together with any of the standard numerical inversion routines for the elementary loads (pitch and heave).

  2. Generalized on-shell ward identities in string theory

    International Nuclear Information System (INIS)

    Lee, Jen-Chi

    1994-01-01

    It is demonstrated that an infinite set of string-tree level on-shell Ward identities, which are valid to all σ-model loop orders, can be systematically constructed without referring to the string field theory. As examples, bosonic massive scattering amplitudes are calculated explicitly up to the second massive excited states. Ward identities satisfied by these amplitudes are derived by using zero-norm states in the spectrum. In particular, the inter-particle Ward identity generated by the D 2 xD 2' zero-norm state at the second massive level is demonstrated. The four physical propagating states of this mass level are then shown to form a large gauge multiplet. This result justifies our previous consideration on higher inter-spin symmetry from the generalized worldsheet σ-model point of view. (author)

  3. Riemannian geometry of Hamiltonian chaos: hints for a general theory.

    Science.gov (United States)

    Cerruti-Sola, Monica; Ciraolo, Guido; Franzosi, Roberto; Pettini, Marco

    2008-10-01

    We aim at assessing the validity limits of some simplifying hypotheses that, within a Riemmannian geometric framework, have provided an explanation of the origin of Hamiltonian chaos and have made it possible to develop a method of analytically computing the largest Lyapunov exponent of Hamiltonian systems with many degrees of freedom. Therefore, a numerical hypotheses testing has been performed for the Fermi-Pasta-Ulam beta model and for a chain of coupled rotators. These models, for which analytic computations of the largest Lyapunov exponents have been carried out in the mentioned Riemannian geometric framework, appear as paradigmatic examples to unveil the reason why the main hypothesis of quasi-isotropy of the mechanical manifolds sometimes breaks down. The breakdown is expected whenever the topology of the mechanical manifolds is nontrivial. This is an important step forward in view of developing a geometric theory of Hamiltonian chaos of general validity.

  4. General theory for environmental effects on (vertical) electronic excitation energies.

    Science.gov (United States)

    Schwabe, Tobias

    2016-10-21

    Almost 70 years ago, the first theoretical model for environmental effects on electronic excitation energies has been derived. Since then, several different interpretations and refined models have been proposed for the perichromic shift of a chromophore due to its surrounding medium. Some of these models are contradictory. Here, the contributing terms are derived within the framework of long-range perturbation theory with the least approximations so far. The derivation is based on a state-specific interpretation of the interaction energies and all terms can be identified with individual properties of either the chromophore or the surroundings, respectively. Further, the much debated contribution due to transition moments coupled to the environment can be verified in the form of a non-resonant excitonic coupling to the dynamic polarizabilities in the environment. These general insights should clarify discussions and interpretations of environmental effects on electronic excitations and should foster the development of new models for the computation of these effects.

  5. A general field-covariant formulation of quantum field theory

    International Nuclear Information System (INIS)

    Anselmi, Damiano

    2013-01-01

    In all nontrivial cases renormalization, as it is usually formulated, is not a change of integration variables in the functional integral, plus parameter redefinitions, but a set of replacements, of actions and/or field variables and parameters. Because of this, we cannot write simple identities relating bare and renormalized generating functionals, or generating functionals before and after nonlinear changes of field variables. In this paper we investigate this issue and work out a general field-covariant approach to quantum field theory, which allows us to treat all perturbative changes of field variables, including the relation between bare and renormalized fields, as true changes of variables in the functional integral, under which the functionals Z and W=lnZ behave as scalars. We investigate the relation between composite fields and changes of field variables, and we show that, if J are the sources coupled to the elementary fields, all changes of field variables can be expressed as J-dependent redefinitions of the sources L coupled to the composite fields. We also work out the relation between the renormalization of variable-changes and the renormalization of composite fields. Using our transformation rules it is possible to derive the renormalization of a theory in a new variable frame from the renormalization in the old variable frame, without having to calculate it anew. We define several approaches, useful for different purposes, in particular a linear approach where all variable changes are described as linear source redefinitions. We include a number of explicit examples. (orig.)

  6. General Systems Theory: Application To The Design Of Speech Communication Courses

    Science.gov (United States)

    Tucker, Raymond K.

    1971-01-01

    General systems theory can be applied to problems in the teaching of speech communication courses. The author describes general systems theory as it is applied to the designing, conducting and evaluation of speech communication courses. (Author/MS)

  7. Discovery of Empirical Components by Information Theory

    Science.gov (United States)

    2016-08-10

    simply trying to design the SVD of the measurement matrix. We have developed a generalization of Bregman divergence to unify vector Poisson and...deals with the lossy compression of random sources. Shannon’s famous rate-distortion theorem relates the encoding rate R and the expected

  8. Comparing Theory and Practice: An Application of Complexity Theory to General Ridgway’s Success in Korea

    Science.gov (United States)

    2010-12-02

    will face in an uncertain future. Complexity Theory , History, Practice, Military Theory , Leadership 14. SUBJECT TERMS 70 15. NUMBER OF PAGES...complexity theory : scale, adaptive leadership , and bottom up feedback from the agents (the soldiers in the field). These are all key sub components of...Approved for Public Release; Distribution is Unlimited COMPARING THEORY AND PRACTICE: AN APPLICATION OF COMPLEXITY THEORY TO GENERAL RIDGWAY’S

  9. IMMAN: free software for information theory-based chemometric analysis.

    Science.gov (United States)

    Urias, Ricardo W Pino; Barigye, Stephen J; Marrero-Ponce, Yovani; García-Jacas, César R; Valdes-Martiní, José R; Perez-Gimenez, Facundo

    2015-05-01

    The features and theoretical background of a new and free computational program for chemometric analysis denominated IMMAN (acronym for Information theory-based CheMoMetrics ANalysis) are presented. This is multi-platform software developed in the Java programming language, designed with a remarkably user-friendly graphical interface for the computation of a collection of information-theoretic functions adapted for rank-based unsupervised and supervised feature selection tasks. A total of 20 feature selection parameters are presented, with the unsupervised and supervised frameworks represented by 10 approaches in each case. Several information-theoretic parameters traditionally used as molecular descriptors (MDs) are adapted for use as unsupervised rank-based feature selection methods. On the other hand, a generalization scheme for the previously defined differential Shannon's entropy is discussed, as well as the introduction of Jeffreys information measure for supervised feature selection. Moreover, well-known information-theoretic feature selection parameters, such as information gain, gain ratio, and symmetrical uncertainty are incorporated to the IMMAN software ( http://mobiosd-hub.com/imman-soft/ ), following an equal-interval discretization approach. IMMAN offers data pre-processing functionalities, such as missing values processing, dataset partitioning, and browsing. Moreover, single parameter or ensemble (multi-criteria) ranking options are provided. Consequently, this software is suitable for tasks like dimensionality reduction, feature ranking, as well as comparative diversity analysis of data matrices. Simple examples of applications performed with this program are presented. A comparative study between IMMAN and WEKA feature selection tools using the Arcene dataset was performed, demonstrating similar behavior. In addition, it is revealed that the use of IMMAN unsupervised feature selection methods improves the performance of both IMMAN and WEKA

  10. Realism and Antirealism in Informational Foundations of Quantum Theory

    Directory of Open Access Journals (Sweden)

    Tina Bilban

    2014-08-01

    Full Text Available Zeilinger-Brukner's informational foundations of quantum theory, a theory based on Zeilinger's foundational principle for quantum mechanics that an elementary system carried one bit of information, explains seemingly unintuitive quantum behavior with simple theoretical framework. It is based on the notion that distinction between reality and information cannot be made, therefore they are the same. As the critics of informational foundations of quantum theory show, this antirealistic move captures the theory in tautology, where information only refers to itself, while the relationships outside the information with the help of which the nature of information would be defined are lost and the questions "Whose information? Information about what?" cannot be answered. The critic's solution is a return to realism, where the observer's effects on the information are neglected. We show that radical antirealism of informational foundations of quantum theory is not necessary and that the return to realism is not the only way forward. A comprehensive approach that exceeds mere realism and antirealism is also possible: we can consider both sources of the constraints on the information, those coming from the observer and those coming from the observed system/nature/reality. The information is always the observer's information about the observed. Such a comprehensive philosophical approach can still support the theoretical framework of informational foundations of quantum theory: If we take that one bit is the smallest amount of information in the form of which the observed reality can be grasped by the observer, we can say that an elementary system (grasped and defined as such by the observer correlates to one bit of information. Our approach thus explains all the features of the quantum behavior explained by informational foundations of quantum theory: the wave function and its collapse, entanglement, complementarity and quantum randomness. However, it does

  11. On the de Sitter and Nariai spacetimes in a generalized theory of gravitation

    International Nuclear Information System (INIS)

    Nariai, Hidekazu.

    1985-07-01

    A possibility of obtaining the de Sitter and Nariai spacetimes in a generalized theory of gravitation (which was in succession proposed by Utiyama-DeWitt, Parker-Fulling-Hu and Gurovich-Starobinski) is examined. It is shown that the generalized theory with a suitable fixation of three parameters admit both spacetimes, just like the general theory of relativity. (author)

  12. Affect Theory and Autoethnography in Ordinary Information Systems

    DEFF Research Database (Denmark)

    Bødker, Mads; Chamberlain, Alan

    2016-01-01

    This paper uses philosophical theories of affect as a lens for exploring autoethnographic renderings of everyday experience with information technology. Affect theories, in the paper, denote a broad trend in post-humanistic philosophy that explores sensation and feeling as emergent and relational...

  13. Response to Patrick Love's "Informal Theory": A Rejoinder

    Science.gov (United States)

    Evans, Nancy J.; Guido, Florence M.

    2012-01-01

    This rejoinder to Patrick Love's article, "Informal Theory: The Ignored Link in Theory-to-Practice," which appears earlier in this issue of the "Journal of College Student Development", was written at the invitation of the Editor. In the critique, we point out the weaknesses of many of Love's arguments and propositions. We provide an alternative…

  14. Essay on a general theory of nervous system functions

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, H J

    1985-01-01

    The axiomatic theory unites the aspects of neurophysiology, psychology and system-theory. The formulation of the structural-nucleus of the theory relies on basic insights from biology, neurophysiology and system-theory. The structural-nucleus allows the reconstruction of the essential properties of nervous system functions, organisation and development. The theory also contributes to the discussion of stochastic automata and artificial intelligence.

  15. A general theory for radioactive processes in rare earth compounds

    International Nuclear Information System (INIS)

    Acevedo, R.; Meruane, T.

    1998-01-01

    The formal theory of radiative processes in centrosymmetric coordination compounds of the Ln X 3+ is a trivalent lanthanide ion and X -1 =Cl -1 , Br -1 ) is put forward based on a symmetry vibronic crystal field-ligand polarisation model. This research considers a truncated basis set for the intermediate states of the central metal ion and have derived general master equations to account for both the overall observed spectral intensities and the measured relative vibronic intensity distributions for parity forbidden but vibronically allowed electronic transitions. In addition, a procedure which includes the closure approximation over the intermediate electronic states is included in order to estimate quantitative crystal field contribution to the total transition dipole moments of various and selected electronic transitions. This formalism is both general and flexible and it may be employed in any electronic excitations involving f N type configurations for the rare earths in centrosymmetric co-ordination compounds in cubic environments and also in doped host crystals belonging to the space group Fm 3m. (author)

  16. Quantum: information theory: technological challenge; Computacion Cuantica: un reto tecnologico

    Energy Technology Data Exchange (ETDEWEB)

    Calixto, M.

    2001-07-01

    The new Quantum Information Theory augurs powerful machines that obey the entangled logic of the subatomic world. Parallelism, entanglement, teleportation, no-cloning and quantum cryptography are typical peculiarities of this novel way of understanding computation. (Author) 24 refs.

  17. Information Processing Theories and the Education of the Gifted.

    Science.gov (United States)

    Rawl, Ruth K.; O'Tuel, Frances S.

    1983-01-01

    The basic assumptions of information processing theories in cognitive psychology are reviewed, and the application of this approach to problem solving in gifted education is considered. Specific implications are cited on problem selection and instruction giving. (CL)

  18. Information theory and its application to optical communication

    NARCIS (Netherlands)

    Willems, F.M.J.

    2017-01-01

    The lecture focusses on the foundations of communication which were developed within the field of information theory. Enumerative shaping techniques and the so-called squareroot transform will be discussed in detail.

  19. An introduction to single-user information theory

    CERN Document Server

    Alajaji, Fady

    2018-01-01

    This book presents a succinct and mathematically rigorous treatment of the main pillars of Shannon’s information theory, discussing the fundamental concepts and indispensable results of Shannon’s mathematical theory of communications. It includes five meticulously written core chapters (with accompanying problems), emphasizing the key topics of information measures; lossless and lossy data compression; channel coding; and joint source-channel coding for single-user (point-to-point) communications systems. It also features two appendices covering necessary background material in real analysis and in probability theory and stochastic processes. The book is ideal for a one-semester foundational course on information theory for senior undergraduate and entry-level graduate students in mathematics, statistics, engineering, and computing and information sciences. A comprehensive instructor’s solutions manual is available.

  20. Toward a generalized theory of epidemic awareness in social networks

    Science.gov (United States)

    Wu, Qingchu; Zhu, Wenfang

    We discuss the dynamics of a susceptible-infected-susceptible (SIS) model with local awareness in networks. Individual awareness to the infectious disease is characterized by a general function of epidemic information in its neighborhood. We build a high-accuracy approximate equation governing the spreading dynamics and derive an approximate epidemic threshold above which the epidemic spreads over the whole network. Our results extend the previous work and show that the epidemic threshold is dependent on the awareness function in terms of one infectious neighbor. Interestingly, when a pow-law awareness function is chosen, the epidemic threshold can emerge in infinite networks.

  1. Activity System Theory Approach to Healthcare Information System

    OpenAIRE

    Bai, Guohua

    2004-01-01

    Healthcare information system is a very complex system and has to be approached from systematic perspectives. This paper presents an Activity System Theory (ATS) approach by integrating system thinking and social psychology. First part of the paper, the activity system theory is presented, especially a recursive model of human activity system is introduced. A project ‘Integrated Mobile Information System for Diabetic Healthcare (IMIS)’ is then used to demonstrate a practical application of th...

  2. Advancing Theory? Landscape Archaeology and Geographical Information Systems

    Directory of Open Access Journals (Sweden)

    Di Hu

    2012-05-01

    Full Text Available This paper will focus on how Geographical Information Systems (GIS have been applied in Landscape Archaeology from the late 1980s to the present. GIS, a tool for organising and analysing spatial information, has exploded in popularity, but we still lack a systematic overview of how it has contributed to archaeological theory, specifically Landscape Archaeology. This paper will examine whether and how GIS has advanced archaeological theory through a historical review of its application in archaeology.

  3. A generalized model via random walks for information filtering

    International Nuclear Information System (INIS)

    Ren, Zhuo-Ming; Kong, Yixiu; Shang, Ming-Sheng; Zhang, Yi-Cheng

    2016-01-01

    There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation. - Highlights: • We propose a generalized recommendation model employing the random walk dynamics. • The proposed model with single and hybrid of degree information is analyzed. • A strategy with the hybrid degree information improves precision of recommendation.

  4. A generalized model via random walks for information filtering

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhuo-Ming, E-mail: zhuomingren@gmail.com [Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Fribourg (Switzerland); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, ChongQing, 400714 (China); Kong, Yixiu [Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Fribourg (Switzerland); Shang, Ming-Sheng, E-mail: msshang@cigit.ac.cn [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, ChongQing, 400714 (China); Zhang, Yi-Cheng [Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Fribourg (Switzerland)

    2016-08-06

    There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation. - Highlights: • We propose a generalized recommendation model employing the random walk dynamics. • The proposed model with single and hybrid of degree information is analyzed. • A strategy with the hybrid degree information improves precision of recommendation.

  5. The theory of magnetohydrodynamic wave generation by localized sources. I - General asymptotic theory

    Science.gov (United States)

    Collins, William

    1989-01-01

    The magnetohydrodynamic wave emission from several localized, periodic, kinematically specified fluid velocity fields are calculated using Lighthill's method for finding the far-field wave forms. The waves propagate through an isothermal and uniform plasma with a constant B field. General properties of the energy flux are illustrated with models of pulsating flux tubes and convective rolls. Interference theory from geometrical optics is used to find the direction of minimum fast-wave emission from multipole sources and slow-wave emission from discontinuous sources. The distribution of total flux in fast and slow waves varies with the ratios of the source dimensions l to the acoustic and Alfven wavelengths.

  6. On the general theory of the origins of retroviruses

    Directory of Open Access Journals (Sweden)

    Wayengera Misaki

    2010-02-01

    Full Text Available Abstract Background The order retroviridae comprises viruses based on ribonucleic acids (RNA. Some, such as HIV and HTLV, are human pathogens. Newly emerged human retroviruses have zoonotic origins. As far as has been established, both repeated infections (themselves possibly responsible for the evolution of viral mutations (Vm and host adaptability (Ha; along with interplay between inhibitors and promoters of cell tropism, are needed to effect retroviral cross-species transmissions. However, the exact modus operadi of intertwine between these factors at molecular level remains to be established. Knowledge of such intertwine could lead to a better understanding of retrovirology and possibly other infectious processes. This study was conducted to derive the mathematical equation of a general theory of the origins of retroviruses. Methods and results On the basis of an arbitrarily non-Euclidian geometrical "thought experiment" involving the cross-species transmission of simian foamy virus (sfv from a non-primate species Xy to Homo sapiens (Hs, initially excluding all social factors, the following was derived. At the port of exit from Xy (where the species barrier, SB, is defined by the Index of Origin, IO, sfv shedding is (1 enhanced by two transmitting tensors (Tt, (i virus-specific immunity (VSI and (ii evolutionary defenses such as APOBEC, RNA interference pathways, and (when present expedited therapeutics (denoted e2D; and (2 opposed by the five accepting scalars (At: (a genomic integration hot spots, gIHS, (b nuclear envelope transit (NMt vectors, (c virus-specific cellular biochemistry, VSCB, (d virus-specific cellular receptor repertoire, VSCR, and (e pH-mediated cell membrane transit, (↓pH CMat. Assuming As and Tt to be independent variables, IO = Tt/As. The same forces acting in an opposing manner determine SB at the port of sfv entry (defined here by the Index of Entry, IE = As/Tt. Overall, If sfv encounters no unforeseen effects on

  7. General framework for fluctuating dynamic density functional theory

    Science.gov (United States)

    Durán-Olivencia, Miguel A.; Yatsyshin, Peter; Goddard, Benjamin D.; Kalliadasis, Serafim

    2017-12-01

    We introduce a versatile bottom-up derivation of a formal theoretical framework to describe (passive) soft-matter systems out of equilibrium subject to fluctuations. We provide a unique connection between the constituent-particle dynamics of real systems and the time evolution equation of their measurable (coarse-grained) quantities, such as local density and velocity. The starting point is the full Hamiltonian description of a system of colloidal particles immersed in a fluid of identical bath particles. Then, we average out the bath via Zwanzig’s projection-operator techniques and obtain the stochastic Langevin equations governing the colloidal-particle dynamics. Introducing the appropriate definition of the local number and momentum density fields yields a generalisation of the Dean-Kawasaki (DK) model, which resembles the stochastic Navier-Stokes description of a fluid. Nevertheless, the DK equation still contains all the microscopic information and, for that reason, does not represent the dynamical law of observable quantities. We address this controversial feature of the DK description by carrying out a nonequilibrium ensemble average. Adopting a natural decomposition into local-equilibrium and nonequilibrium contribution, where the former is related to a generalised version of the canonical distribution, we finally obtain the fluctuating-hydrodynamic equation governing the time-evolution of the mesoscopic density and momentum fields. Along the way, we outline the connection between the ad hoc energy functional introduced in previous DK derivations and the free-energy functional from classical density-functional theory. The resultant equation has the structure of a dynamical density-functional theory (DDFT) with an additional fluctuating force coming from the random interactions with the bath. We show that our fluctuating DDFT formalism corresponds to a particular version of the fluctuating Navier-Stokes equations, originally derived by Landau and Lifshitz

  8. The g-theorem and quantum information theory

    Energy Technology Data Exchange (ETDEWEB)

    Casini, Horacio; Landea, Ignacio Salazar; Torroba, Gonzalo [Centro Atómico Bariloche and CONICET,S.C. de Bariloche, Río Negro, R8402AGP (Argentina)

    2016-10-25

    We study boundary renormalization group flows between boundary conformal field theories in 1+1 dimensions using methods of quantum information theory. We define an entropic g-function for theories with impurities in terms of the relative entanglement entropy, and we prove that this g-function decreases along boundary renormalization group flows. This entropic g-theorem is valid at zero temperature, and is independent from the g-theorem based on the thermal partition function. We also discuss the mutual information in boundary RG flows, and how it encodes the correlations between the impurity and bulk degrees of freedom. Our results provide a quantum-information understanding of (boundary) RG flow as increase of distinguishability between the UV fixed point and the theory along the RG flow.

  9. Comparing integral and incidental emotions: Testing insights from emotions as social information theory and attribution theory.

    Science.gov (United States)

    Hillebrandt, Annika; Barclay, Laurie J

    2017-05-01

    Studies have indicated that observers can infer information about others' behavioral intentions from others' emotions and use this information in making their own decisions. Integrating emotions as social information (EASI) theory and attribution theory, we argue that the interpersonal effects of emotions are not only influenced by the type of discrete emotion (e.g., anger vs. happiness) but also by the target of the emotion (i.e., how the emotion relates to the situation). We compare the interpersonal effects of emotions that are integral (i.e., related to the situation) versus incidental (i.e., lacking a clear target in the situation) in a negotiation context. Results from 4 studies support our general argument that the target of an opponent's emotion influences the degree to which observers attribute the emotion to their own behavior. These attributions influence observers' inferences regarding the perceived threat of an impasse or cooperativeness of an opponent, which can motivate observers to strategically adjust their behavior. Specifically, emotion target influenced concessions for both anger and happiness (Study 1, N = 254), with perceived threat and cooperativeness mediating the effects of anger and happiness, respectively (Study 2, N = 280). Study 3 (N = 314) demonstrated the mediating role of attributions and moderating role of need for closure. Study 4 (N = 193) outlined how observers' need for cognitive closure influences how they attribute incidental anger. We discuss theoretical implications related to the social influence of emotions as well as practical implications related to the impact of personality on negotiators' biases and behaviors. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Weak circulation theorems as a way of distinguishing between generalized gravitation theories

    International Nuclear Information System (INIS)

    Enosh, M.

    1980-01-01

    It was proved in a previous paper that a generalized circulation theorem characterizes Einstein's theory of gravitation as a special case of a more general theory of gravitation, which is also based on the principle of equivalence. Here the question of whether it is possible to weaken this circulation theorem in such ways that it would imply more general theories than Einstein's is posed. This problem is solved. Principally, there are two possibilities. One of them is essentially Weyl's theory. (author)

  11. Cross section recondensation method via generalized energy condensation theory

    International Nuclear Information System (INIS)

    Douglass, Steven; Rahnema, Farzad

    2011-01-01

    Highlights: → A new method is presented which corrects for core environment error from specular boundaries at the lattice cell level. → Solution obtained with generalized energy condensation provides improved approximation to the core level fine-group flux. → Iterative recondensation of the cross sections and unfolding of the flux provides on-the-fly updating of the core cross sections. → Precomputation of energy integrals and fine-group cross sections allows for easy implementation and efficient solution. → Method has been implemented in 1D and shown to correct the environment error, particularly in strongly heterogeneous cores. - Abstract: The standard multigroup method used in whole-core reactor analysis relies on energy condensed (coarse-group) cross sections generated from single lattice cell calculations, typically with specular reflective boundary conditions. Because these boundary conditions are an approximation and not representative of the core environment for that lattice, an error is introduced in the core solution (both eigenvalue and flux). As current and next generation reactors trend toward increasing assembly and core heterogeneity, this error becomes more significant. The method presented here corrects for this error by generating updated coarse-group cross sections on-the-fly within whole-core reactor calculations without resorting to additional cell calculations. In this paper, the fine-group core flux is unfolded by making use of the recently published Generalized Condensation Theory and the cross sections are recondensed at the whole-core level. By iteratively performing this recondensation, an improved core solution is found in which the core-environment has been fully taken into account. This recondensation method is both easy to implement and computationally very efficient because it requires precomputation and storage of only the energy integrals and fine-group cross sections. In this work, the theoretical basis and development

  12. An information theory-based approach to modeling the information processing of NPP operators

    International Nuclear Information System (INIS)

    Kim, Jong Hyun; Seong, Poong Hyun

    2002-01-01

    This paper proposes a quantitative approach to modeling the information processing of NPP operators. The aim of this work is to derive the amount of the information processed during a certain control task. The focus will be on i) developing a model for information processing of NPP operators and ii) quantifying the model. To resolve the problems of the previous approaches based on the information theory, i.e. the problems of single channel approaches, we primarily develop the information processing model having multiple stages, which contains information flows. Then the uncertainty of the information is quantified using the Conant's model, a kind of information theory

  13. Stability analysis of black holes via a catastrophe theory and black hole thermodynamics in generalized theories of gravity

    International Nuclear Information System (INIS)

    Tamaki, Takashi; Torii, Takashi; Maeda, Kei-ichi

    2003-01-01

    We perform a linear perturbation analysis for black hole solutions with a 'massive' Yang-Mills field (the Proca field) in Brans-Dicke theory and find that the results are quite consistent with those via catastrophe theory where thermodynamic variables play an intrinsic role. Based on this observation, we show the general relation between these two methods in generalized theories of gravity which are conformally related to the Einstein-Hilbert action

  14. Does general relativity theory possess the classical newtonian limit

    International Nuclear Information System (INIS)

    Denisov, V.I.; Logunov, A.A.

    1980-01-01

    A detailed comparison of newtonian approximation of the Einstein theory and the Newton theory of gravity is made. A difference of principle between these two theories is clarified at the stage of obtaining integrals of motion. Exact eqautions of motion and Einstein equations shows the existence only zero integrals of motion as well as in the newtonian approximation. A conclusion is that GRT has no classical newtonian limit, since the integrals of motion in the Newton theory of gravity and in the newtonian approximation of the Einstein theory do not coincide [ru

  15. Raising Keynes: A General Theory for the 21st century

    Directory of Open Access Journals (Sweden)

    Stephen A. Marglin

    2018-01-01

    Full Text Available Keynes’s General Theory argues there is no self-regulating mechanism that guarantees full employment. Keynes’s vision has been distorted by mainstream Keynesians to mean that it is the warts on the body of capitalism, not capitalism itself, that are the problem: frictions and imperfections and rigidities may interfere with the mechanism for self-regulation that inheres in the perfectly competitive model. This distortion has two supposed corollaries, first, that the more the economy resembles the textbook model of perfect competition, the less likely are lapses from full employment; second, that since imperfections are limited to the short run, so are lapses from full employment.Keynes was unable to convince the economics profession that the problem is capitalism; that the warts, real though they are, obscure a more fundamental problem. The reason is that Keynes lacked the mathematical tools to substantiate his vision. This paper deploys tools that were unavailable to Keynes, in order to lay the foundations of a Keynesian macroeconomics for the 21st century. Keywords: Keynes, Dynamic vs static models, Flexprice adjustment, Fixprice adjustment, JEL codes: B22, B41, E12

  16. On the role of general system theory for functional neuroimaging.

    Science.gov (United States)

    Stephan, Klaas Enno

    2004-12-01

    One of the most important goals of neuroscience is to establish precise structure-function relationships in the brain. Since the 19th century, a major scientific endeavour has been to associate structurally distinct cortical regions with specific cognitive functions. This was traditionally accomplished by correlating microstructurally defined areas with lesion sites found in patients with specific neuropsychological symptoms. Modern neuroimaging techniques with high spatial resolution have promised an alternative approach, enabling non-invasive measurements of regionally specific changes of brain activity that are correlated with certain components of a cognitive process. Reviewing classic approaches towards brain structure-function relationships that are based on correlational approaches, this article argues that these approaches are not sufficient to provide an understanding of the operational principles of a dynamic system such as the brain but must be complemented by models based on general system theory. These models reflect the connectional structure of the system under investigation and emphasize context-dependent couplings between the system elements in terms of effective connectivity. The usefulness of system models whose parameters are fitted to measured functional imaging data for testing hypotheses about structure-function relationships in the brain and their potential for clinical applications is demonstrated by several empirical examples.

  17. Theory of mind and hypomanic traits in general population.

    Science.gov (United States)

    Terrien, Sarah; Stefaniak, Nicolas; Blondel, Marine; Mouras, Harold; Morvan, Yannick; Besche-Richard, Chrystel

    2014-03-30

    Theory of Mind (ToM) is the ability to assign a set of mental states to yourself and others. In bipolar disorders, alteration of social relationship can be explained by the impairment of the functioning of ToM. Deficit in ToM could be a trait marker of bipolar disorder and people in the general population with high hypomanic personality scores would be more likely to develop bipolar disorders. This study examined 298 participants. Measures of hypomanic personality were evaluated using the Hypomanic Personality Scale. ToM was explored using the Yoni task. Participants also completed the BDI-II. Forward multiple regressions were performed to examine the effect of components of the HPS on the total score in the ToM task. In the women's group, no subscales of the HPS were included in the model. Conversely, the analyses performed on men revealed that the mood vitality and excitement subscale was a significant predictor of ToM abilities. Our study is the first to show the impact of certain dimensions of hypomanic personality on performance in ToM in a male sample. This result supports the idea that deficits in ToM can be a trait marker of bipolar disorder in a healthy male population. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Does the General Strain Theory Explain Gambling and Substance Use?

    Science.gov (United States)

    Greco, Romy; Curci, Antonietta

    2017-09-01

    General Strain Theory (GST: Agnew Criminology 30:47-87, 1992) posits that deviant behaviour results from adaptation to strain and the consequent negative emotions. Empirical research on GST has mainly focused on aggressive behaviours, while only few research studies have considered alternative manifestations of deviance, like substance use and gambling. The aim of the present study is to test the ability of GST to explain gambling behaviours and substance use. Also, the role of family in promoting the adoption of gambling and substance use as coping strategies was verified. Data from 266 families with in mean 8 observations for each group were collected. The multilevel nature of the data was verified before appropriate model construction. The clustered nature of gambling data was analysed by a two-level Hierarchical Linear Model while substance use was analysed by Multivariate Linear Model. Results confirmed the effect of strain on gambling and substance use while the positive effect of depressive emotions on these behaviours was not supported. Also, the impact of family on the individual tendency to engage in addictive behaviours was confirmed only for gambling.

  19. Supergravity and Yang-Mills theories as generalized topological fields with constraints

    International Nuclear Information System (INIS)

    Ling Yi; Tung Rohsuan; Guo Hanying

    2004-01-01

    We present a general approach to construct a class of generalized topological field theories with constraints by means of generalized differential calculus and its application to connection theory. It turns out that not only the ordinary BF formulations of general relativity and Yang-Mills theories, but also the N=1,2 chiral supergravities can be reformulated as these constrained generalized topological field theories once the free parameters in the Lagrangian are specially chosen. We also show that the Chern-Simons action on the boundary may naturally be induced from the generalized topological action in the bulk, rather than introduced by hand

  20. The process of patient enablement in general practice nurse consultations: a grounded theory study.

    Science.gov (United States)

    Desborough, Jane; Banfield, Michelle; Phillips, Christine; Mills, Jane

    2017-05-01

    The aim of this study was to gain insight into the process of patient enablement in general practice nursing consultations. Enhanced roles for general practice nurses may benefit patients through a range of mechanisms, one of which may be increasing patient enablement. In studies with general practitioners enhanced patient enablement has been associated with increases in self-efficacy and skill development. This study used a constructivist grounded theory design. In-depth interviews were conducted with 16 general practice nurses and 23 patients from 21 general practices between September 2013 - March 2014. Data generation and analysis were conducted concurrently using constant comparative analysis and theoretical sampling focussing on the process and outcomes of patient enablement. Use of the storyline technique supported theoretical coding and integration of the data into a theoretical model. A clearly defined social process that fostered and optimised patient enablement was constructed. The theory of 'developing enabling healthcare partnerships between nurses and patients in general practice' incorporates three stages: triggering enabling healthcare partnerships, tailoring care and the manifestation of patient enablement. Patient enablement was evidenced through: 1. Patients' understanding of their unique healthcare requirements informing their health seeking behaviours and choices; 2. Patients taking an increased lead in their partnership with a nurse and seeking choices in their care and 3. Patients getting health care that reflected their needs, preferences and goals. This theoretical model is in line with a patient-centred model of health care and is particularly suited to patients with chronic disease. © 2016 John Wiley & Sons Ltd.

  1. Chiral perturbation theory for generalized parton distributions and baryon distribution amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Wein, Philipp

    2016-05-06

    In this thesis we apply low-energy effective field theory to the first moments of generalized parton distributions and to baryon distribution amplitudes, which are both highly relevant for the parametrization of the nonperturbative part in hard processes. These quantities yield complementary information on hadron structure, since the former treat hadrons as a whole and, thus, give information about the (angular) momentum carried by an entire parton species on average, while the latter parametrize the momentum distribution within an individual Fock state. By performing one-loop calculations within covariant baryon chiral perturbation theory, we obtain sensible parametrizations of the quark mass dependence that are ideally suited for the subsequent analysis of lattice QCD data.

  2. An information theory framework for dynamic functional domain connectivity.

    Science.gov (United States)

    Vergara, Victor M; Miller, Robyn; Calhoun, Vince

    2017-06-01

    Dynamic functional network connectivity (dFNC) analyzes time evolution of coherent activity in the brain. In this technique dynamic changes are considered for the whole brain. This paper proposes an information theory framework to measure information flowing among subsets of functional networks call functional domains. Our method aims at estimating bits of information contained and shared among domains. The succession of dynamic functional states is estimated at the domain level. Information quantity is based on the probabilities of observing each dynamic state. Mutual information measurement is then obtained from probabilities across domains. Thus, we named this value the cross domain mutual information (CDMI). Strong CDMIs were observed in relation to the subcortical domain. Domains related to sensorial input, motor control and cerebellum form another CDMI cluster. Information flow among other domains was seldom found. Other methods of dynamic connectivity focus on whole brain dFNC matrices. In the current framework, information theory is applied to states estimated from pairs of multi-network functional domains. In this context, we apply information theory to measure information flow across functional domains. Identified CDMI clusters point to known information pathways in the basal ganglia and also among areas of sensorial input, patterns found in static functional connectivity. In contrast, CDMI across brain areas of higher level cognitive processing follow a different pattern that indicates scarce information sharing. These findings show that employing information theory to formally measured information flow through brain domains reveals additional features of functional connectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Planting contemporary practice theory in the garden of information science

    NARCIS (Netherlands)

    Huizing, A.; Cavanagh, M.

    2011-01-01

    Introduction. The purpose of this paper is to introduce to information science in a coherent fashion the core premises of contemporary practice theory, and thus to engage the information research community in further debate and discussion. Method. Contemporary practice-based approaches are

  4. Year 7 Students, Information Literacy, and Transfer: A Grounded Theory

    Science.gov (United States)

    Herring, James E.

    2011-01-01

    This study examined the views of year 7 students, teacher librarians, and teachers in three state secondary schools in rural New South Wales, Australia, on information literacy and transfer. The aims of the study included the development of a grounded theory in relation to information literacy and transfer in these schools. The study's perspective…

  5. INFORMATIONAL-METHODICAL SUPPORT OF THE COURSE «MATHEMATICAL LOGIC AND THEORY OF ALGORITHMS»

    Directory of Open Access Journals (Sweden)

    Y. I. Sinko

    2010-06-01

    Full Text Available In this article the basic principles of training technique of future teachers of mathematics to foundations of mathematical logic and theory of algorithms in the Kherson State University with the use of information technologies are examined. General description of functioning of the methodical system of learning of mathematical logic with the use of information technologies, in that variant, when information technologies are presented by the integrated specialized programmatic environment of the educational purpose «MatLog» is given.

  6. Information processing theory in the early design stages

    DEFF Research Database (Denmark)

    Cash, Philip; Kreye, Melanie

    2014-01-01

    suggestions for improvements and support. One theory that may be particularly applicable to the early design stages is Information Processing Theory (IPT) as it is linked to the design process with regard to the key concepts considered. IPT states that designers search for information if they perceive......, the new knowledge is shared between the design team to reduce ambiguity with regards to its meaning and to build a shared understanding – reducing perceived uncertainty. Thus, we propose that Information-Processing Theory is suitable to describe designer activity in the early design stages...... uncertainty with regard to the knowledge necessary to solve a design challenge. They then process this information and compare if the new knowledge they have gained covers the previous knowledge gap. In engineering design, uncertainty plays a key role, particularly in the early design stages which has been...

  7. Generalized Galilean transformations and the measurement problem in the entropic dynamics approach to quantum theory

    Science.gov (United States)

    Johnson, David T.

    Quantum mechanics is an extremely successful and accurate physical theory, yet since its inception, it has been afflicted with numerous conceptual difficulties. The primary subject of this thesis is the theory of entropic quantum dynamics (EQD), which seeks to avoid these conceptual problems by interpreting quantum theory from an informational perspective. We begin by reviewing Cox's work in describing probability theory as a means of rationally and consistently quantifying uncertainties. We then discuss how probabilities can be updated according to either Bayes' theorem or the extended method of maximum entropy (ME). After that discussion, we review the work of Caticha and Giffin that shows that Bayes' theorem is a special case of ME. This important result demonstrates that the ME method is the general method for updating probabilities. We then review some motivating difficulties in quantum mechanics before discussing Caticha's work in deriving quantum theory from the approach of entropic dynamics, which concludes our review. After entropic dynamics is introduced, we develop the concepts of symmetries and transformations from an informational perspective. The primary result is the formulation of a symmetry condition that any transformation must satisfy in order to qualify as a symmetry in EQD. We then proceed to apply this condition to the extended Galilean transformation. This transformation is of interest as it exhibits features of both special and general relativity. The transformation yields a gravitational potential that arises from an equivalence of information. We conclude the thesis with a discussion of the measurement problem in quantum mechanics. We discuss the difficulties that arise in the standard quantum mechanical approach to measurement before developing our theory of entropic measurement. In entropic dynamics, position is the only observable. We show how a theory built on this one observable can account for the multitude of measurements present in

  8. Information Theory - The Bridge Connecting Bounded Rational Game Theory and Statistical Physics

    Science.gov (United States)

    Wolpert, David H.

    2005-01-01

    A long-running difficulty with conventional game theory has been how to modify it to accommodate the bounded rationality of all red-world players. A recurring issue in statistical physics is how best to approximate joint probability distributions with decoupled (and therefore far more tractable) distributions. This paper shows that the same information theoretic mathematical structure, known as Product Distribution (PD) theory, addresses both issues. In this, PD theory not only provides a principle formulation of bounded rationality and a set of new types of mean field theory in statistical physics; it also shows that those topics are fundamentally one and the same.

  9. Toward a General Research Process for Using Dubin's Theory Building Model

    Science.gov (United States)

    Holton, Elwood F.; Lowe, Janis S.

    2007-01-01

    Dubin developed a widely used methodology for theory building, which describes the components of the theory building process. Unfortunately, he does not define a research process for implementing his theory building model. This article proposes a seven-step general research process for implementing Dubin's theory building model. An example of a…

  10. Testing components of Rothbard’s theory with the current information system

    Directory of Open Access Journals (Sweden)

    Aurelian Virgil BĂLUŢĂ

    2016-03-01

    Full Text Available The concept of aggression against property rights of individuals generates a series of developments that allow solutions and options to problems and dilemmas of today's economy: the dynamics of the tax system, focusing attention on shaping the budget with macro-economic calculations, the protection of competition, and customs policy in the modern era. The confidence in theory in general, especially in economic theory, is based on the logical and methodological validation of scientific reasoning and moral aspects. Transforming the theory into a means of changing the society can only be made when a theory is experimentally validated. The economic theory needs confirmation from specialized disciplines such as statistics and accounting. It is possible and necessary for the advantages of radical liberal thinking to be reflected in every company’s bookkeeping and in public statistics. As an example, the paper presents the way some components of Rothbard's theory are reflect in the accounting and statistics information system.

  11. 77 FR 46121 - Notice of Proposed Information Collection; General Provisions

    Science.gov (United States)

    2012-08-02

    ... jurisdiction of surface coal mining and reclamation operations, petitions for rulemaking, and citizen suits... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement Notice of Proposed Information Collection; General Provisions AGENCY: Office of Surface Mining Reclamation and Enforcement...

  12. A general algorithm for distributing information in a graph

    OpenAIRE

    Aji, Srinivas M.; McEliece, Robert J.

    1997-01-01

    We present a general “message-passing” algorithm for distributing information in a graph. This algorithm may help us to understand the approximate correctness of both the Gallager-Tanner-Wiberg algorithm, and the turbo-decoding algorithm.

  13. Raymark Public Open House and General Information Session

    Science.gov (United States)

    The USEPA, CTDEEP, CT DPH, & the Stratford Health Department will host an Open House & General Information Session for Stratford, CT residents to learn more about the Raymark Industries, Inc. Superfund Site, on Tuesday, May 23, 2017...

  14. Modeling Routinization in Games: An Information Theory Approach

    DEFF Research Database (Denmark)

    Wallner, Simon; Pichlmair, Martin; Hecher, Michael

    2015-01-01

    Routinization is the result of practicing until an action stops being a goal-directed process. This paper formulates a definition of routinization in games based on prior research in the fields of activity theory and practice theory. Routinization is analyzed using the formal model of discrete......-time, discrete-space Markov chains and information theory to measure the actual error between the dynamically trained models and the player interaction. Preliminary research supports the hypothesis that Markov chains can be effectively used to model routinization in games. A full study design is presented...

  15. The use of information theory in evolutionary biology.

    Science.gov (United States)

    Adami, Christoph

    2012-05-01

    Information is a key concept in evolutionary biology. Information stored in a biological organism's genome is used to generate the organism and to maintain and control it. Information is also that which evolves. When a population adapts to a local environment, information about this environment is fixed in a representative genome. However, when an environment changes, information can be lost. At the same time, information is processed by animal brains to survive in complex environments, and the capacity for information processing also evolves. Here, I review applications of information theory to the evolution of proteins and to the evolution of information processing in simulated agents that adapt to perform a complex task. © 2012 New York Academy of Sciences.

  16. 75 FR 34093 - Information Collection; General Program Administration

    Science.gov (United States)

    2010-06-16

    ... Administration AGENCY: Farm Service Agency, USDA. ACTION: Notice; request for comments. SUMMARY: In accordance... supports Farm Loan Programs (FLP) for the General Program Administration. DATES: We will consider comments.... SUPPLEMENTARY INFORMATION: Title: Farm Loan Programs--General Program Administration (7 CFR part 761). OMB...

  17. Distinguishing f(R) theories from general relativity by gravitational lensing effect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongguang [Beijing Normal University, Department of Physics, Beijing (China); Aix Marseille Universite et Universite de Toulon, Centre de Physique Theorique (UMR 7332), Marseille (France); Wang, Xin; Li, Haida; Ma, Yongge [Beijing Normal University, Department of Physics, Beijing (China)

    2017-11-15

    The post-Newtonian formulation of a general class of f(R) theories is set up in a third-order approximation. It turns out that the information of a specific form of f(R) gravity is encoded in the Yukawa potential, which is contained in the perturbative expansion of the metric components. Although the Yukawa potential is canceled in the second-order expression of the effective refraction index of light, detailed analysis shows that the difference of the lensing effect between the f(R) gravity and general relativity does appear at the third order when √(f''(0)/f{sup '}(0)) is larger than the distance d{sub 0} to the gravitational source. However, the difference between these two kinds of theories will disappear in the axially symmetric spacetime region. Therefore only in very rare case the f(R) theories are distinguishable from general relativity by gravitational lensing effect in a third-order post-Newtonian approximation. (orig.)

  18. Spacecraft TT&C and information transmission theory and technologies

    CERN Document Server

    Liu, Jiaxing

    2015-01-01

    Spacecraft TT&C and Information Transmission Theory and Technologies introduces the basic theory of spacecraft TT&C (telemetry, track and command) and information transmission. Combining TT&C and information transmission, the book presents several technologies for continuous wave radar including measurements for range, range rate and angle, analog and digital information transmissions, telecommand, telemetry, remote sensing and spread spectrum TT&C. For special problems occurred in the channels for TT&C and information transmission, the book represents radio propagation features and its impact on orbit measurement accuracy, and the effects caused by rain attenuation, atmospheric attenuation and multi-path effect, and polarization composition technology. This book can benefit researchers and engineers in the field of spacecraft TT&C and communication systems. Liu Jiaxing is a professor at The 10th Institute of China Electronics Technology Group Corporation.

  19. Probability and information theory, with applications to radar

    CERN Document Server

    Woodward, P M; Higinbotham, W

    1964-01-01

    Electronics and Instrumentation, Second Edition, Volume 3: Probability and Information Theory with Applications to Radar provides information pertinent to the development on research carried out in electronics and applied physics. This book presents the established mathematical techniques that provide the code in which so much of the mathematical theory of electronics and radar is expressed.Organized into eight chapters, this edition begins with an overview of the geometry of probability distributions in which moments play a significant role. This text then examines the mathematical methods in

  20. A general action for topological quantum field theories

    International Nuclear Information System (INIS)

    Dayi, O.F.

    1989-03-01

    Topological field theories can be formulated by beginning from a higher dimensional action. The additional dimension is an unphysical time parameter and the action is the derivative of a functional W with respect to this variable. In the d = 4 case, it produces actions which are shown to give topological quantum field theory after gauge fixing. In d = 3 this action leads to the Hamiltonian, which yields the Floer groups if the additional parameter is treated as physical when W is the pure Chern-Simons action. This W can be used to define a topological quantum field theory in d = 3 by treating the additional parameter as unphysical. The BFV-BRST operator quantization of this theory yields to an enlarged system which has only first class constraints. This is not identical to the previously introduced d = 3 topological quantum field theory, even if it is shown that the latter theory also gives the theory which we began with, after a partial gauge fixing. (author). 18 refs

  1. Internet Resources for Reference: General Business and Company Information.

    Science.gov (United States)

    Mai, Brent Alan

    1997-01-01

    Outlines a few of the thousands of Internet sites that are helpful in obtaining general business information and company-specific information, including company directories and homepages, telephone directories, Chambers of Commerce, marketing and advertising, agribusiness, government, cost of living, business schools, and nonprofit business.…

  2. The way to inform the general public about radiological risks

    International Nuclear Information System (INIS)

    Artus, J.C.

    2002-01-01

    It is a lawfully necessity that the general public will be informed about matters of radiological risks. For that practitioners have to receive an appropriate knowledge about risk parameters, so the effective dose. Moreover they must do their utmost to give information to their patients, in a context of false ideas and often exaggerated prejudices. (author)

  3. Evaluating accounting information systems that support multiple GAAP reporting using Normalized Systems Theory

    NARCIS (Netherlands)

    Vanhoof, E.; Huysmans, P.; Aerts, Walter; Verelst, J.; Aveiro, D.; Tribolet, J.; Gouveia, D.

    2014-01-01

    This paper uses a mixed methods approach of design science and case study research to evaluate structures of Accounting Information Systems (AIS) that report in multiple Generally Accepted Accounting Principles (GAAP), using Normalized Systems Theory (NST). To comply with regulation, many companies

  4. Generalized canonical quantization and background fields equations of motion in the Bosonic string theory

    International Nuclear Information System (INIS)

    Buchbinder, I.L.; Lyakhovich, S.L.; Pershin, V.D.; Fradkin, E.S.

    1991-01-01

    At present, superstring theory is the only candidate to be a unified theory of all fundamental interactions. For this reason, the various aspects of the string theory have been attracting great attention. String theory has a nontrivial gauge symmetry and therefore is an interesting object from the viewpoint of application of general quantization methods. This paper discusses the bosonic string theory. The purpose of this paper is a consistent operator quantization of the theory with the action. The natural basis for it is provided by the method of the generalized canonical quantization

  5. A generalized model via random walks for information filtering

    Science.gov (United States)

    Ren, Zhuo-Ming; Kong, Yixiu; Shang, Ming-Sheng; Zhang, Yi-Cheng

    2016-08-01

    There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation.

  6. Exact marginality in open string field theory. A general framework

    International Nuclear Information System (INIS)

    Kiermaier, M.

    2007-07-01

    We construct analytic solutions of open bosonic string field theory for any exactly marginal deformation in any boundary conformal field theory when properly renormalized operator products of the marginal operator are given. We explicitly provide such renormalized operator products for a class of marginal deformations which include the deformations of flat D-branes in flat backgrounds by constant massless modes of the gauge field and of the scalar fields on the D-branes, the cosine potential for a space-like coordinate, and the hyperbolic cosine potential for the time-like coordinate. In our construction we use integrated vertex operators, which are closely related to finite deformations in boundary conformal field theory, while previous analytic solutions were based on unintegrated vertex operators. We also introduce a modified star product to formulate string field theory around the deformed background. (orig.)

  7. The contribution of several Nobel Laureates in the development of the Theory of general economic equilibrium

    OpenAIRE

    Florentina Xhelili Krasniqi; Rahmie Topxhiu; Donat Rexha

    2016-01-01

    Nobel Laureates with their contributions to the development of the theory of general equilibrium have enabled this theory to be one of the most important for theoretical and practical analysis of the overall economy and the efficient use of economic resources. Results of the research showing that contributions of Nobel Laureates in the economy belong to two main frameworks of development of the general equilibrium theory: one was the mathematical model of general equilibrium developed by J...

  8. Hanford facility dangerous waste permit application, general information portion

    International Nuclear Information System (INIS)

    Hays, C.B.

    1998-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in this report)

  9. General fluid theories, variational principles and self-organization

    International Nuclear Information System (INIS)

    Mahajan, S.M.

    2002-01-01

    This paper reports two distinct but related advances: (1) The development and application of fluid theories that transcend conventional magnetohydrodynamics (MHD), in particular, theories that are valid in the long-mean-free-path limit and in which pressure anisotropy, heat flow, and arbitrarily strong sheared flows are treated consistently. (2) The discovery of new pressure-confining plasma configurations that are self-organized relaxed states. (author)

  10. Theory of information warfare: basic framework, methodology and conceptual apparatus

    Directory of Open Access Journals (Sweden)

    Олександр Васильович Курбан

    2015-11-01

    Full Text Available It is conducted a comprehensive theoretical study and determine the basic provisions of the modern theory of information warfare in on-line social networks. Three basic blocks, which systematized the theoretical and methodological basis of the topic, are established. There are information and psychological war, social off-line and on-line network. According to the three blocks, theoretical concepts are defined and methodological substantiation of information processes within the information warfare in the social on-line networks is formed

  11. Observational information for f(T) theories and dark torsion

    Energy Technology Data Exchange (ETDEWEB)

    Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio (IAFE), CC 67, Suc. 28, 1428 Buenos Aires (Argentina)

    2011-01-17

    In the present work we analyze and compare the information coming from different observational data sets in the context of a sort of f(T) theories. We perform a joint analysis with measurements of the most recent type Ia supernovae (SNe Ia), Baryon Acoustic Oscillation (BAO), Cosmic Microwave Background radiation (CMB), Gamma-Ray Bursts data (GRBs) and Hubble parameter observations (OHD) to constraint the only new parameter these theories have. It is shown that when the new combined BAO/CMB parameter is used to put constraints, the result is different from previous works. We also show that when we include Observational Hubble Data (OHD) the simpler {Lambda}CDM model is excluded to one sigma level, leading the effective equation of state of these theories to be of phantom type. Also, analyzing a tension criterion for SNe Ia and other observational sets, we obtain more consistent and better suited data sets to work with these theories.

  12. Topics in the Foundations of General Relativity and Newtonian Gravitation Theory

    CERN Document Server

    Malament, David B

    2012-01-01

    In Topics in the Foundations of General Relativity and Newtonian Gravitation Theory, David B. Malament presents the basic logical-mathematical structure of general relativity and considers a number of special topics concerning the foundations of general relativity and its relation to Newtonian gravitation theory. These special topics include the geometrized formulation of Newtonian theory (also known as Newton-Cartan theory), the concept of rotation in general relativity, and Gödel spacetime. One of the highlights of the book is a no-go theorem that can be understood to show that there is

  13. Automated Physico-Chemical Cell Model Development through Information Theory

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Ortoleva

    2005-11-29

    The objective of this project was to develop predictive models of the chemical responses of microbial cells to variations in their surroundings. The application of these models is optimization of environmental remediation and energy-producing biotechnical processes.The principles on which our project is based are as follows: chemical thermodynamics and kinetics; automation of calibration through information theory; integration of multiplex data (e.g. cDNA microarrays, NMR, proteomics), cell modeling, and bifurcation theory to overcome cellular complexity; and the use of multiplex data and information theory to calibrate and run an incomplete model. In this report we review four papers summarizing key findings and a web-enabled, multiple module workflow we have implemented that consists of a set of interoperable systems biology computational modules.

  14. Local versus nonlocal information in quantum-information theory: Formalism and phenomena

    International Nuclear Information System (INIS)

    Horodecki, Michal; Horodecki, Ryszard; Synak-Radtke, Barbara; Horodecki, Pawel; Oppenheim, Jonathan; Sen, Aditi; Sen, Ujjwal

    2005-01-01

    In spite of many results in quantum information theory, the complex nature of compound systems is far from clear. In general the information is a mixture of local and nonlocal ('quantum') information. It is important from both pragmatic and theoretical points of view to know the relationships between the two components. To make this point more clear, we develop and investigate the quantum-information processing paradigm in which parties sharing a multipartite state distill local information. The amount of information which is lost because the parties must use a classical communication channel is the deficit. This scheme can be viewed as complementary to the notion of distilling entanglement. After reviewing the paradigm in detail, we show that the upper bound for the deficit is given by the relative entropy distance to so-called pseudoclassically correlated states; the lower bound is the relative entropy of entanglement. This implies, in particular, that any entangled state is informationally nonlocal - i.e., has nonzero deficit. We also apply the paradigm to defining the thermodynamical cost of erasing entanglement. We show the cost is bounded from below by relative entropy of entanglement. We demonstrate the existence of several other nonlocal phenomena which can be found using the paradigm of local information. For example, we prove the existence of a form of nonlocality without entanglement and with distinguishability. We analyze the deficit for several classes of multipartite pure states and obtain that in contrast to the GHZ state, the Aharonov state is extremely nonlocal. We also show that there do not exist states for which the deficit is strictly equal to the whole informational content (bound local information). We discuss the relation of the paradigm with measures of classical correlations introduced earlier. It is also proved that in the one-way scenario, the deficit is additive for Bell diagonal states. We then discuss complementary features of

  15. Comparison of Predictive Contract Mechanisms from an Information Theory Perspective

    OpenAIRE

    Zhang, Xin; Ward, Tomas; McLoone, Seamus

    2012-01-01

    Inconsistency arises across a Distributed Virtual Environment due to network latency induced by state changes communications. Predictive Contract Mechanisms (PCMs) combat this problem through reducing the amount of messages transmitted in return for perceptually tolerable inconsistency. To date there are no methods to quantify the efficiency of PCMs in communicating this reduced state information. This article presents an approach derived from concepts in information theory for a dee...

  16. Generalized uncertainty principle as a consequence of the effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Faizal, Mir, E-mail: mirfaizalmir@gmail.com [Irving K. Barber School of Arts and Sciences, University of British Columbia – Okanagan, Kelowna, British Columbia V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta T1K 3M4 (Canada); Ali, Ahmed Farag, E-mail: ahmed.ali@fsc.bu.edu.eg [Department of Physics, Faculty of Science, Benha University, Benha, 13518 (Egypt); Netherlands Institute for Advanced Study, Korte Spinhuissteeg 3, 1012 CG Amsterdam (Netherlands); Nassar, Ali, E-mail: anassar@zewailcity.edu.eg [Department of Physics, Zewail City of Science and Technology, 12588, Giza (Egypt)

    2017-02-10

    We will demonstrate that the generalized uncertainty principle exists because of the derivative expansion in the effective field theories. This is because in the framework of the effective field theories, the minimum measurable length scale has to be integrated away to obtain the low energy effective action. We will analyze the deformation of a massive free scalar field theory by the generalized uncertainty principle, and demonstrate that the minimum measurable length scale corresponds to a second more massive scale in the theory, which has been integrated away. We will also analyze CFT operators dual to this deformed scalar field theory, and observe that scaling of the new CFT operators indicates that they are dual to this more massive scale in the theory. We will use holographic renormalization to explicitly calculate the renormalized boundary action with counter terms for this scalar field theory deformed by generalized uncertainty principle, and show that the generalized uncertainty principle contributes to the matter conformal anomaly.

  17. Generalized uncertainty principle as a consequence of the effective field theory

    Directory of Open Access Journals (Sweden)

    Mir Faizal

    2017-02-01

    Full Text Available We will demonstrate that the generalized uncertainty principle exists because of the derivative expansion in the effective field theories. This is because in the framework of the effective field theories, the minimum measurable length scale has to be integrated away to obtain the low energy effective action. We will analyze the deformation of a massive free scalar field theory by the generalized uncertainty principle, and demonstrate that the minimum measurable length scale corresponds to a second more massive scale in the theory, which has been integrated away. We will also analyze CFT operators dual to this deformed scalar field theory, and observe that scaling of the new CFT operators indicates that they are dual to this more massive scale in the theory. We will use holographic renormalization to explicitly calculate the renormalized boundary action with counter terms for this scalar field theory deformed by generalized uncertainty principle, and show that the generalized uncertainty principle contributes to the matter conformal anomaly.

  18. Information richness in construction projects: A critical social theory

    NARCIS (Netherlands)

    Adriaanse, Adriaan Maria; Voordijk, Johannes T.; Greenwood, David

    2002-01-01

    Two important factors influencing the communication in construction projects are the interests of the people involved and the language spoken by the people involved. The objective of the paper is to analyse these factors by using recent insights in the information richness theory. The critical

  19. Information Architecture without Internal Theory: An Inductive Design Process.

    Science.gov (United States)

    Haverty, Marsha

    2002-01-01

    Suggests that information architecture design is primarily an inductive process, partly because it lacks internal theory and partly because it is an activity that supports emergent phenomena (user experiences) from basic design components. Suggests a resemblance to Constructive Induction, a design process that locates the best representational…

  20. Evaluating hydrological model performance using information theory-based metrics

    Science.gov (United States)

    The accuracy-based model performance metrics not necessarily reflect the qualitative correspondence between simulated and measured streamflow time series. The objective of this work was to use the information theory-based metrics to see whether they can be used as complementary tool for hydrologic m...

  1. Axiomatic Quantum Field Theory in Terms of Operator Product Expansions: General Framework, and Perturbation Theory via Hochschild Cohomology

    Directory of Open Access Journals (Sweden)

    Stefan Hollands

    2009-09-01

    Full Text Available In this paper, we propose a new framework for quantum field theory in terms of consistency conditions. The consistency conditions that we consider are ''associativity'' or ''factorization'' conditions on the operator product expansion (OPE of the theory, and are proposed to be the defining property of any quantum field theory. Our framework is presented in the Euclidean setting, and is applicable in principle to any quantum field theory, including non-conformal ones. In our framework, we obtain a characterization of perturbations of a given quantum field theory in terms of a certain cohomology ring of Hochschild-type. We illustrate our framework by the free field, but our constructions are general and apply also to interacting quantum field theories. For such theories, we propose a new scheme to construct the OPE which is based on the use of non-linear quantized field equations.

  2. The Philosophy of Information as an Underlying and Unifying Theory of Information Science

    Science.gov (United States)

    Tomic, Taeda

    2010-01-01

    Introduction: Philosophical analyses of theoretical principles underlying these sub-domains reveal philosophy of information as underlying meta-theory of information science. Method: Conceptual research on the knowledge sub-domains in information science and philosophy and analysis of their mutual connection. Analysis: Similarities between…

  3. A general theory of macrofinance: Towards a new paradigm

    Directory of Open Access Journals (Sweden)

    Chen Yulu

    2017-01-01

    Full Text Available The 2008 international financial crisis triggered retrospection on both theory and policy, reaching a macroeconomic consensus that the financial system plays an important role in the macro economy and macroeconomic theory must be restructured to incorporate endogenous financial factors. Reflecting on the inherent flaws of traditional mainstream economics, this paper puts forward a “macrofinance” proposition as a new paradigm for macro financial analysis. As a scientific methodology based on systematic logic, the major feature of the macrofinance framework is that we must analyze the financial system as a core part of a complete and endogenous analytical framework, instead of only focusing on the money or credit. The goal of “macrofinance” is to return to scientific economic methodologies by analyzing the inherent laws of modern financial systems to set up a comprehensive theoretical framework that unifies the financial sector with the real economy and combines theory and policy practice.

  4. Nonequilibrium statistical mechanics in the general theory of relativity. I. A general formalism

    International Nuclear Information System (INIS)

    Israel, W.; Kandrup, H.E.

    1984-01-01

    This is the first in a series of papers, the overall objective of which is the formulation of a new covariant approach to nonequilibrium statistical mechanics in classical general relativity. The objecct here is the development of a tractable theory for self-gravitating systems. It is argued that the ''state'' of an N-particle system may be characterized by an N-particle distribution function, defined in an 8N-dimensional phase space, which satisfies a collection of N conservation equations. By mapping the true physics onto a fictitious ''background'' spacetime, which may be chosen to satisfy some ''average'' field equations, one then obtains a useful covariant notion of ''evolution'' in response to a fluctuating ''gravitational force.'' For many cases of practical interest, one may suppose (i) that these fluctuating forces satisfy linear field equations and (ii) that they may be modeled by a direct interaction. In this case, one can use a relativistic projection operator formalism to derive exact closed equations for the evolution of such objects as an appropriately defined reduced one-particle distribution function. By capturing, in a natural way, the notion of a dilute gas, or impulse, approximation, one is then led to a comparatively simple equation for the one-particle distribution. If, furthermore, one treats the effects of the fluctuating forces as ''localized'' in space and time, one obtains a tractable kinetic equation which reduces, in the Newtonian limit, to the stardard Landau equation

  5. A General Theory of Markovian Time Inconsistent Stochastic Control Problems

    DEFF Research Database (Denmark)

    Björk, Tomas; Murgochi, Agatha

    We develop a theory for stochastic control problems which, in various ways, are time inconsistent in the sense that they do not admit a Bellman optimality principle. We attach these problems by viewing them within a game theoretic framework, and we look for Nash subgame perfect equilibrium points...... examples of time inconsistency in the literature are easily seen to be special cases of the present theory. We also prove that for every time inconsistent problem, there exists an associated time consistent problem such that the optimal control and the optimal value function for the consistent problem...

  6. Propagation of gravitational waves in the generalized tensor-vector-scalar theory

    International Nuclear Information System (INIS)

    Sagi, Eva

    2010-01-01

    Efforts are underway to improve the design and sensitivity of gravitational wave detectors, with the hope that the next generation of these detectors will observe a gravitational wave signal. Such a signal will not only provide information on dynamics in the strong gravity regime that characterizes potential sources of gravitational waves, but will also serve as a decisive test for alternative theories of gravitation that are consistent with all other current experimental observations. We study the linearized theory of the tensor-vector-scalar theory of gravity with generalized vector action, an alternative theory of gravitation designed to explain the apparent deficit of visible matter in galaxies and clusters of galaxies without postulating yet-undetected dark matter. We find the polarization states and propagation speeds for gravitational waves in vacuum, and show that in addition to the usual transverse-traceless propagation modes, there are two more mixed longitudinal-transverse modes and two trace modes, of which at least one has longitudinal polarization. Additionally, the propagation speeds are different from the speed of light.

  7. How to Produce a Transdisciplinary Information Concept for a Universal Theory of Information?

    DEFF Research Database (Denmark)

    Brier, Søren

    2017-01-01

    the natural, technical, social and humanistic sciences must be defined as a part of real relational meaningful sign-processes manifesting as tokens. Thus Peirce’s information theory is empirically based in a realistic worldview, which through modern biosemiotics includes all living systems....... concept of information as a difference that makes a difference and in Luhmann’s triple autopoietic communication based system theory, where information is always a part of a message. Charles Sanders Peirce’s pragmaticist semiotics differs from other paradigms in that it integrates logic and information...... in interpretative semiotics. I therefore suggest alternatively building information theories based on semiotics from the basic relations of embodied living systems meaningful cognition and communication. I agree with Peircean biosemiotics that all transdisciplinary information concepts in order to work across...

  8. General Education Courses at the University of Botswana: Application of the Theory of Reasoned Action in Measuring Course Outcomes

    Science.gov (United States)

    Garg, Deepti; Garg, Ajay K.

    2007-01-01

    This study applied the Theory of Reasoned Action and the Technology Acceptance Model to measure outcomes of general education courses (GECs) under the University of Botswana Computer and Information Skills (CIS) program. An exploratory model was validated for responses from 298 students. The results suggest that resources currently committed to…

  9. Information and Competitive Advantage: The Rise of General Motors.

    OpenAIRE

    Norton, Seth W

    1997-01-01

    During the mid-1920s Alfred P. Sloan instituted a number of innovations designed to provide the operating divisions at General Motors with more accurate and more timely information regarding final consumer demand. These innovations have not received much attention in attempts to explain General Motors' remarkable rise to dominance of the U.S. domestic automobile industry. The present article reviews these events and provides statistical tests affirming the success of these innovations at the ...

  10. General practice and the new science emerging from the theories of 'chaos' and complexity.

    OpenAIRE

    Griffiths, F; Byrne, D

    1998-01-01

    This paper outlines the general practice world view and introduces the main features of the theories of 'chaos' and complexity. From this, analogies are drawn between general practice and the theories, which suggest a different way of understanding general practice and point to future developments in general practice research. A conceptual and practical link between qualitative and quantitative methods of research is suggested. Methods of combining data about social context with data about in...

  11. Generalized KKR-theory for non-muffin-tin potentials

    NARCIS (Netherlands)

    Molenaar, J.

    1989-01-01

    The author shows that the secular equation in KKR (Korringa, Kohn and Rostoker) theory retains its separable structure also in the case of non-muffin-tin potentials. This generalisation has been extensively discussed recently. During this discussion, in which the possible necessity of so-called near

  12. Indefinite-metric quantum field theory of general relativity, 6

    International Nuclear Information System (INIS)

    Nakanishi, Noboru

    1979-01-01

    The canonical commutation relations are analyzed in detail in the indefinite-metric quantum field theory of gravity based on the vierbein formalism. It is explicitly verified that the BRS charge, the local-Lorentz-BRS charge and the Poincare generators satisfy the expected commutation relations. (author)

  13. Cyberbullying among Adolescents: A General Strain Theory Perspective

    Science.gov (United States)

    Paez, Gabriel R.

    2018-01-01

    Cyber bullying has become more pervasive as a result of advances in communication technology such as email, text messaging, chat rooms, and social media sites. Despite the growth in research on correlates associated with engagement in cyber bullying, few studies test the applicability of criminological theories to explain engagement in cyber…

  14. Information theory and stochastics for multiscale nonlinear systems

    CERN Document Server

    Majda, Andrew J; Grote, Marcus J

    2005-01-01

    This book introduces mathematicians to the fascinating emerging mathematical interplay between ideas from stochastics and information theory and important practical issues in studying complex multiscale nonlinear systems. It emphasizes the serendipity between modern applied mathematics and applications where rigorous analysis, the development of qualitative and/or asymptotic models, and numerical modeling all interact to explain complex phenomena. After a brief introduction to the emerging issues in multiscale modeling, the book has three main chapters. The first chapter is an introduction to information theory with novel applications to statistical mechanics, predictability, and Jupiter's Red Spot for geophysical flows. The second chapter discusses new mathematical issues regarding fluctuation-dissipation theorems for complex nonlinear systems including information flow, various approximations, and illustrates applications to various mathematical models. The third chapter discusses stochastic modeling of com...

  15. An application of information theory to stochastic classical gravitational fields

    Science.gov (United States)

    Angulo, J.; Angulo, J. C.; Angulo, J. M.

    2018-06-01

    The objective of this study lies on the incorporation of the concepts developed in the Information Theory (entropy, complexity, etc.) with the aim of quantifying the variation of the uncertainty associated with a stochastic physical system resident in a spatiotemporal region. As an example of application, a relativistic classical gravitational field has been considered, with a stochastic behavior resulting from the effect induced by one or several external perturbation sources. One of the key concepts of the study is the covariance kernel between two points within the chosen region. Using this concept and the appropriate criteria, a methodology is proposed to evaluate the change of uncertainty at a given spatiotemporal point, based on available information and efficiently applying the diverse methods that Information Theory provides. For illustration, a stochastic version of the Einstein equation with an added Gaussian Langevin term is analyzed.

  16. Grounded theory for radiotherapy practitioners: Informing clinical practice

    International Nuclear Information System (INIS)

    Walsh, N.A.

    2010-01-01

    Radiotherapy practitioners may be best placed to undertake qualitative research within the context of cancer, due to specialist knowledge of radiation treatment and sensitivity to radiotherapy patient's needs. The grounded theory approach to data collection and analysis is a unique method of identifying a theory directly based on data collected within a clinical context. Research for radiotherapy practitioners is integral to role expansion within the government's directive for evidence-based practice. Due to the paucity of information on qualitative research undertaken by radiotherapy radiographers, this article aims to assess the potential impact of qualitative research on radiotherapy patient and service outcomes.

  17. Principles of general relativity theory in terms of the present day physics

    International Nuclear Information System (INIS)

    Pervushin, V.N.

    1986-01-01

    A hystory of gradual unification of general relativity theory and quantum field theory on the basis of unified geometrical principles is detected. The gauge invariance principles became universal for construction of all physical theories. Quantum mechanics, electrodynamics and Einstein gravitation theory were used to form geometrical principles. Identity of inertial and gravitational masses is an experimental basis of the general relativity theory (GRT). It is shown that correct understanding of GRT bases is a developing process related to the development of the present physics and stimulating this development

  18. Analytical implications of using practice theory in workplace information literacy research

    DEFF Research Database (Denmark)

    Moring, Camilla Elisabeth; Lloyd, Annemaree

    2013-01-01

    Introduction: This paper considers practice theory and the analytical implications of using this theoretical approach in information literacy research. More precisely the aim of the paper is to discuss the translation of practice theoretical assumptions into strategies that frame the analytical...... focus and interest when researching workplace information literacy. Two practice theoretical perspectives are selected, one by Theodore Schatzki and one by Etienne Wenger, and their general commonalities and differences are analysed and discussed. Analysis: The two practice theories and their main ideas...... of what constitute practices, how practices frame social life and the central concepts used to explain this, are presented. Then the application of the theories within workplace information literacy research is briefly explored. Results and Conclusion: The two theoretical perspectives share some...

  19. Generalized perturbation theory based on the method of cyclic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Assawaroongruengchot, M.; Marleau, G. [Institut de Genie Nucleaire, Departement de Genie Physique, Ecole Polytechnique de Montreal, 2900 Boul. Edouard-Montpetit, Montreal, Que. H3T 1J4 (Canada)

    2006-07-01

    A GPT algorithm for estimation of eigenvalues and reaction-rate ratios is developed for the neutron transport problems in 2D fuel assemblies with isotropic scattering. In our study the GPT formulation is based on the integral transport equations. The mathematical relationship between the generalized flux importance and generalized source importance functions is applied to transform the generalized flux importance transport equations into the integro-differential forms. The resulting adjoint and generalized adjoint transport equations are then solved using the method of cyclic characteristics (MOCC). Because of the presence of negative adjoint sources, a biasing/decontamination scheme is applied to make the generalized adjoint functions positive in such a way that it can be used for the multigroup re-balance technique. To demonstrate the efficiency of the algorithms, perturbative calculations are performed on a 17 x 17 PWR lattice. (authors)

  20. Generalized perturbation theory based on the method of cyclic characteristics

    International Nuclear Information System (INIS)

    Assawaroongruengchot, M.; Marleau, G.

    2006-01-01

    A GPT algorithm for estimation of eigenvalues and reaction-rate ratios is developed for the neutron transport problems in 2D fuel assemblies with isotropic scattering. In our study the GPT formulation is based on the integral transport equations. The mathematical relationship between the generalized flux importance and generalized source importance functions is applied to transform the generalized flux importance transport equations into the integro-differential forms. The resulting adjoint and generalized adjoint transport equations are then solved using the method of cyclic characteristics (MOCC). Because of the presence of negative adjoint sources, a biasing/decontamination scheme is applied to make the generalized adjoint functions positive in such a way that it can be used for the multigroup re-balance technique. To demonstrate the efficiency of the algorithms, perturbative calculations are performed on a 17 x 17 PWR lattice. (authors)

  1. Calculus of variations in rate of reactions tax using the general pertubation theory

    International Nuclear Information System (INIS)

    Silva, F.C. da.

    1981-02-01

    A perturbation expression to calculate the variations in the rates of integral parameters (such as reaction rates) of a reactor using a Time-Independent Generalized Perturbation Theory, was developed. This theory makes use of the concepts of neutron generation and neutron importance with respect to a given process occurring in a system. The application of Time-Dependent Generalized Perturbation Theory to the calculation of Burnup, by using the expressions derived by A. Gandini, along with the perturbation expression derived in the Time Independent Generalized Perturbation Theory, is done. (Author) [pt

  2. A generalized non-local optical response theory for plasmonic nanostructures

    DEFF Research Database (Denmark)

    Mortensen, N. Asger; Raza, Søren; Wubs, Martijn

    2014-01-01

    for their description. Here instead we present a comparatively simple semiclassical generalized non-local optical response theory that unifies quantum pressure convection effects and induced charge diffusion kinetics, with a concomitant complex-valued generalized non-local optical response parameter. Our theory...

  3. A general theory for dynamic instability of tube arrays in crossflow

    Science.gov (United States)

    Chen, S. S.

    1987-01-01

    A general theory of fluidelastic instability for a tube array in crossflow is presented. Various techniques to obtain the motion-dependent fluid-force coefficients are discussed and the general instability characteristics are summarized. The theory is also used to evaluate the results of other mathematical models for crossflow-induced instability.

  4. General relativity: An introduction to the theory of the gravitational field

    International Nuclear Information System (INIS)

    Stephani, H.

    1985-01-01

    The entire treatment presented here is framed by questions which led to and now lead out of the general theory of relativity: can an absolute acceleration be defined meaningfully? Do gravitational effects propagate with infinite velocity as Newton required? Can the general theory correctly reflect the dynamics of the whole universe while consistently describing stellar evolution? Can a theory which presupposes measurement of properties of space through the interaction of matter be made compatible with a theory in which dimensions of the objects measured are so small that location loses meaning? The book gives the mathematics necessary to understand the theory and begins in Riemannian geometry. Contents, abridged: Foundations of Riemannian geometry. Foundations of Einstein's theory of gravitation. Linearised theory of gravitation, far fields and gravitational waves. Invariant characterisation of exact solutions. Gravitational collapse and black holes. Cosmology. Non-Einsteinian theories of gravitation. Index

  5. Using institutional theory with sensemaking theory: a case study of information system implementation in healthcare

    DEFF Research Database (Denmark)

    Jensen, Tina Blegind; Kjærgaard, Annemette; Svejvig, Per

    2009-01-01

    Institutional theory has proven to be a central analytical perspective for investigating the role of social and historical structures of information systems (IS) implementation. However, it does not explicitly account for how organisational actors make sense of and enact technologies in their local...... context. We address this limitation by exploring the potential of using institutional theory with sensemaking theory to study IS implementation in organisations. We argue that each theoretical perspective has its own explanatory power and that a combination of the two facilitates a much richer...... interpretation of IS implementation by linking macro- and micro-levels of analysis. To illustrate this, we report from an empirical study of the implementation of an Electronic Patient Record (EPR) system in a clinical setting. Using key constructs from the two theories, our findings address the phenomenon...

  6. New graduate nurses as knowledge brokers in general practice in New Zealand: a constructivist grounded theory.

    Science.gov (United States)

    Hoare, Karen J; Mills, Jane; Francis, Karen

    2013-07-01

    Practice nursing in New Zealand is not well described in the literature. One survey illustrated that most of the New Zealand practice nurses sampled did not know of the country's two premier evidence-based health websites. A recent review compared general practice in the UK, New Zealand and Australia and found that whereas there had been significant developments in empowering the practice nurse workforce to run nurse-led clinics in the UK, New Zealand and Australia lagged behind. The aim of this reported constructivist grounded theory study was to investigate practice nurses' use of information. Conducted in Auckland, New Zealand, data were collected through ethnographic techniques in one general practice between September 2009 and January 2010 to enhance theoretical sensitivity to the area of information use. Subsequently, six experienced practice nurses (one twice after moving jobs) and five new graduate nurses from five different general practices were interviewed, using open-ended questions, between January 2010 and August 2011. Concurrent data collection and analysis occurred throughout the study period. The use of memos, the constant comparative method, data categorisation and finally, data abstraction resulted in the final theory of reciprocal role modelling. Experienced practice nurses role modelled clinical skills to new graduate nurses. Unexpectedly, new graduate nurses were unconscious experts at sourcing information and role modelled this skill to experienced practice nurses. Once this attribute was acknowledged by the experienced practice nurse, mutual learning occurred that enabled both groups of nurses to become better practitioners. Graduate nurses of the millennial generation were identified as a resource for experienced practice nurses who belong to the baby boomer generation and generation X. © 2013 John Wiley & Sons Ltd.

  7. Surface loading of a viscoelastic earth-I. General theory

    Science.gov (United States)

    Tromp, Jeroen; Mitrovica, Jerry X.

    1999-06-01

    We present a new normal-mode formalism for computing the response of an aspherical, self-gravitating, linear viscoelastic earth model to an arbitrary surface load. The formalism makes use of recent advances in the theory of the Earth's free oscillations, and is based upon an eigenfunction expansion methodology, rather than the tradi-tional Love-number approach to surface-loading problems. We introduce a surface-load representation theorem analogous to Betti's reciprocity relation in seismology. Taking advantage of this theorem and the biorthogonality of the viscoelastic modes, we determine the complete response to a surface load in the form of a Green's function. We also demonstrate that each viscoelastic mode has its own unique energy partitioning, which can be used to characterize it. In subsequent papers, we apply the theory to spherically symmetric and aspherical earth models.

  8. Matrix theory from generalized inverses to Jordan form

    CERN Document Server

    Piziak, Robert

    2007-01-01

    Each chapter ends with a list of references for further reading. Undoubtedly, these will be useful for anyone who wishes to pursue the topics deeper. … the book has many MATLAB examples and problems presented at appropriate places. … the book will become a widely used classroom text for a second course on linear algebra. It can be used profitably by graduate and advanced level undergraduate students. It can also serve as an intermediate course for more advanced texts in matrix theory. This is a lucidly written book by two authors who have made many contributions to linear and multilinear algebra.-K.C. Sivakumar, IMAGE, No. 47, Fall 2011Always mathematically constructive, this book helps readers delve into elementary linear algebra ideas at a deeper level and prepare for further study in matrix theory and abstract algebra.-L'enseignement Mathématique, January-June 2007, Vol. 53, No. 1-2.

  9. A General Outlook to the Endogenous Money Theory

    OpenAIRE

    ÖZGÜR, Gökçer

    2008-01-01

    The purpose of this study is to shed light on theorigins of the endogenous money theory and analyze the currentdebates on this topic. Endogenous money approach depends on a fundamental postulate: As banks meet the credit needs ofnon-financial businesses, new deposits emerge in the banking sector. Similarly,as the necessary reserves found for these new deposits the broad money expandsas well. Even though the central bank can intervene into this process it cannotfully control it. There...

  10. General topology meets model theory, on p and t.

    Science.gov (United States)

    Malliaris, Maryanthe; Shelah, Saharon

    2013-08-13

    Cantor proved in 1874 [Cantor G (1874) J Reine Angew Math 77:258-262] that the continuum is uncountable, and Hilbert's first problem asks whether it is the smallest uncountable cardinal. A program arose to study cardinal invariants of the continuum, which measure the size of the continuum in various ways. By Gödel [Gödel K (1939) Proc Natl Acad Sci USA 25(4):220-224] and Cohen [Cohen P (1963) Proc Natl Acad Sci USA 50(6):1143-1148], Hilbert's first problem is independent of ZFC (Zermelo-Fraenkel set theory with the axiom of choice). Much work both before and since has been done on inequalities between these cardinal invariants, but some basic questions have remained open despite Cohen's introduction of forcing. The oldest and perhaps most famous of these is whether " p = t," which was proved in a special case by Rothberger [Rothberger F (1948) Fund Math 35:29-46], building on Hausdorff [Hausdorff (1936) Fund Math 26:241-255]. In this paper we explain how our work on the structure of Keisler's order, a large-scale classification problem in model theory, led to the solution of this problem in ZFC as well as of an a priori unrelated open question in model theory.

  11. Generalization of trinification to theories with 3N SU(3) gauge groups

    International Nuclear Information System (INIS)

    Carone, Christopher D.

    2005-01-01

    We consider a natural generalization of trinification to theories with 3N SU(3) gauge groups. These theories have a simple moose representation and a gauge boson spectrum that can be interpreted via the deconstruction of a 5D theory with unified symmetry broken on a boundary. Although the matter and Higgs sectors of the theory have no simple extra-dimensional analog, gauge unification retains features characteristic of the 5D theory. We determine possible assignments of the matter and Higgs fields to unified multiplets and present theories that are viable alternatives to minimal trinified GUTs

  12. 20 CFR 220.142 - General information about work activity.

    Science.gov (United States)

    2010-04-01

    ... gainful activity. (e) Time spent in work. While the time the claimant spends in work is important, the... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false General information about work activity. 220... of whether the claimant spends more time or less time at the job than workers who are not impaired...

  13. 20 CFR 416.973 - General information about work activity.

    Science.gov (United States)

    2010-04-01

    ... individual may show that you are able to do substantial gainful activity. (e) Time spent in work. While the time you spend in work is important, we will not decide whether or not you are doing substantial... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false General information about work activity. 416...

  14. 78 FR 54862 - Information Collection; General Program Administration

    Science.gov (United States)

    2013-09-06

    ... Administration AGENCY: Farm Service Agency, USDA. ACTION: Notice; request for comments. SUMMARY: In accordance... associated with FSA's Farm Loan Programs (FLP) General Program Administration. The information collected is... Program Administration. OMB Control Number: 0560-0238. Expiration Date of Approval: 02/28/2014. Type of...

  15. General Theory of Duality. A proposal to unifiy relativity theory, quantum mechanics and string theory - cognition for a new dynamic world view in physics

    International Nuclear Information System (INIS)

    Harder, M.

    2005-01-01

    The chase after a world formula is presently the most iridescent task for natural science. By the development of a radical new scientistic theory, unifying not only relativity and quantum theory as also astrophysics and string theory to a common view, the author lances the first serious candidate for a TOE (Theory of Everything) in the scientific discussion. The General Theory of Duality (GDT) offers not only surprising answers to fundamental questions of physics, but also discovers the smallest component of our universe, which is still known since a longer time, which we ignored: Planck's Constant. May be possible that by this book a new world view in physics can be created. (GL)

  16. [A competency model of rural general practitioners: theory construction and empirical study].

    Science.gov (United States)

    Yang, Xiu-Mu; Qi, Yu-Long; Shne, Zheng-Fu; Han, Bu-Xin; Meng, Bei

    2015-04-01

    To perform theory construction and empirical study of the competency model of rural general practitioners. Through literature study, job analysis, interviews, and expert team discussion, the questionnaire of rural general practitioners competency was constructed. A total of 1458 rural general practitioners were surveyed by the questionnaire in 6 central provinces. The common factors were constructed using the principal component method of exploratory factor analysis and confirmatory factor analysis. The influence of the competency characteristics on the working performance was analyzed using regression equation analysis. The Cronbach 's alpha coefficient of the questionnaire was 0.974. The model consisted of 9 dimensions and 59 items. The 9 competency dimensions included basic public health service ability, basic clinical skills, system analysis capability, information management capability, communication and cooperation ability, occupational moral ability, non-medical professional knowledge, personal traits and psychological adaptability. The rate of explained cumulative total variance was 76.855%. The model fitting index were Χ(2)/df 1.88, GFI=0.94, NFI=0.96, NNFI=0.98, PNFI=0.91, RMSEA=0.068, CFI=0.97, IFI=0.97, RFI=0.96, suggesting good model fitting. Regression analysis showed that the competency characteristics had a significant effect on job performance. The rural general practitioners competency model provides reference for rural doctor training, rural order directional cultivation of medical students, and competency performance management of the rural general practitioners.

  17. Intuitive theories of information: beliefs about the value of redundancy.

    Science.gov (United States)

    Soll, J B

    1999-03-01

    In many situations, quantity estimates from multiple experts or diagnostic instruments must be collected and combined. Normatively, and all else equal, one should value information sources that are nonredundant, in the sense that correlation in forecast errors should be minimized. Past research on the preference for redundancy has been inconclusive. While some studies have suggested that people correctly place higher value on uncorrelated inputs when collecting estimates, others have shown that people either ignore correlation or, in some cases, even prefer it. The present experiments show that the preference for redundancy depends on one's intuitive theory of information. The most common intuitive theory identified is the Error Tradeoff Model (ETM), which explicitly distinguishes between measurement error and bias. According to ETM, measurement error can only be averaged out by consulting the same source multiple times (normatively false), and bias can only be averaged out by consulting different sources (normatively true). As a result, ETM leads people to prefer redundant estimates when the ratio of measurement error to bias is relatively high. Other participants favored different theories. Some adopted the normative model, while others were reluctant to mathematically average estimates from different sources in any circumstance. In a post hoc analysis, science majors were more likely than others to subscribe to the normative model. While tentative, this result lends insight into how intuitive theories might develop and also has potential ramifications for how statistical concepts such as correlation might best be learned and internalized. Copyright 1999 Academic Press.

  18. Bose-Einstein condensation of light: general theory.

    Science.gov (United States)

    Sob'yanin, Denis Nikolaevich

    2013-08-01

    A theory of Bose-Einstein condensation of light in a dye-filled optical microcavity is presented. The theory is based on the hierarchical maximum entropy principle and allows one to investigate the fluctuating behavior of the photon gas in the microcavity for all numbers of photons, dye molecules, and excitations at all temperatures, including the whole critical region. The master equation describing the interaction between photons and dye molecules in the microcavity is derived and the equivalence between the hierarchical maximum entropy principle and the master equation approach is shown. The cases of a fixed mean total photon number and a fixed total excitation number are considered, and a much sharper, nonparabolic onset of a macroscopic Bose-Einstein condensation of light in the latter case is demonstrated. The theory does not use the grand canonical approximation, takes into account the photon polarization degeneracy, and exactly describes the microscopic, mesoscopic, and macroscopic Bose-Einstein condensation of light. Under certain conditions, it predicts sub-Poissonian statistics of the photon condensate and the polarized photon condensate, and a universal relation takes place between the degrees of second-order coherence for these condensates. In the macroscopic case, there appear a sharp jump in the degrees of second-order coherence, a sharp jump and kink in the reduced standard deviations of the fluctuating numbers of photons in the polarized and whole condensates, and a sharp peak, a cusp, of the Mandel parameter for the whole condensate in the critical region. The possibility of nonclassical light generation in the microcavity with the photon Bose-Einstein condensate is predicted.

  19. A model for hot electron phenomena: Theory and general results

    International Nuclear Information System (INIS)

    Carrillo, J.L.; Rodriquez, M.A.

    1988-10-01

    We propose a model for the description of the hot electron phenomena in semiconductors. Based on this model we are able to reproduce accurately the main characteristics observed in experiments of electric field transport, optical absorption, steady state photoluminescence and relaxation process. Our theory does not contain free nor adjustable parameters, it is very fast computerwise, and incorporates the main collision mechanisms including screening and phonon heating effects. Our description on a set of nonlinear rate equations in which the interactions are represented by coupling coefficients or effective frequencies. We calculate three coefficients from the characteristic constants and the band structure of the material. (author). 22 refs, 5 figs, 1 tab

  20. The General Theory of Homogenization A Personalized Introduction

    CERN Document Server

    Tartar, Luc

    2010-01-01

    Homogenization is not about periodicity, or Gamma-convergence, but about understanding which effective equations to use at macroscopic level, knowing which partial differential equations govern mesoscopic levels, without using probabilities (which destroy physical reality); instead, one uses various topologies of weak type, the G-convergence of Sergio Spagnolo, the H-convergence of Francois Murat and the author, and some responsible for the appearance of nonlocal effects, which many theories in continuum mechanics or physics guessed wrongly. For a better understanding of 20th century science,