WorldWideScience

Sample records for generalized antifungal activity

  1. INVESTIGATION OF ANTIFUNGAL ACTIVITY OF QUINOLINIUM DERIVATIVES

    Directory of Open Access Journals (Sweden)

    G. A. Alexandrova

    2013-01-01

    Full Text Available Abstract. Antifungal activity (Candida albicans, Candida krusei of some substituted quinolinium derivatives has been investigated. It was established that the most perspective compound for detail investigation of antifungal activity by labeled biomarkers method was N-phenylbenzoquinaldinium tetrafluoroborate.

  2. Antifungal activity of streptomycetes isolated bentonite clay

    Directory of Open Access Journals (Sweden)

    V. P. Shirobokov

    2016-12-01

    Full Text Available Aim. To investigate the biological activity of streptomycetes, isolated from Ukrainian bentonite clay. Methods. For identification of the investigated microorganisms there were used generally accepted methods for study of morpho-cultural and biochemical properties and sequencing of 16Ѕ rRNA producer. Antagonistic activity of the strain was determined by agar diffusion and agar block method using gram-positive, gram-negative microorganisms and fungi. Results. Research of autochthonous flora from bentonite clay of Ukrainian various deposits proved the existence of stable politaxonomic prokaryotic-eukaryotic consortia there. It was particularly interesting that the isolated microorganisms had demonstrated clearly expressed antagonistic properties against fungi. During bacteriological investigation this bacterial culture was identified like representative of the genus Streptomyces. Bentonite streptomycetes, named as Streptomyces SVP-71, inagar mediums (agar block method inhibited the growth of fungi (yeast and mold; zones of growth retardation constituted of 11-36 mm, and did not affect the growth of bacteria. There were investigated the inhibitory effects of supernatant culture fluid, ethanol and butanol extracts of biomass streptomycetes on museum and clinical strains of fungi that are pathogenic for humans (Candida albicans, C. krusei, C. utilis, C. parapsilosis, C. tropicalis, C. kefir, S. glabrata, C. lusitaniae, Aspergillus niger, Mucor pusillus, Fusarium sporotrichioides. It has been shown that research antifungal factor had 100% of inhibitory effect against all fungi used in experiments in vitro. In parallel, it was found that alcohol extracts hadn’t influence to the growth of gram-positive and gram-negative bacteria absolutely. It was shown that the cultural fluid supernatant and alcoholic extracts of biomass had the same antagonistic effect, but with different manifestation. This evidenced about identity of antifungal substances

  3. Production, optimization, characterization and antifungal activity of ...

    African Journals Online (AJOL)

    SAM

    2014-04-02

    Apr 2, 2014 ... the present study, the antifungal activity of crude A. terrus chitinase was investigated against Apergillus niger, Aspergillus oryzae .... Chitinase activity was determined spectrophotometrically by estimating the amount of ..... characterization of two. Bifunctional chitinases lysozyme extracellularly produced by.

  4. Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants.

    Science.gov (United States)

    Sen, Ruchira; Ishak, Heather D; Estrada, Dora; Dowd, Scot E; Hong, Eunki; Mueller, Ulrich G

    2009-10-20

    In many host-microbe mutualisms, hosts use beneficial metabolites supplied by microbial symbionts. Fungus-growing (attine) ants are thought to form such a mutualism with Pseudonocardia bacteria to derive antibiotics that specifically suppress the coevolving pathogen Escovopsis, which infects the ants' fungal gardens and reduces growth. Here we test 4 key assumptions of this Pseudonocardia-Escovopsis coevolution model. Culture-dependent and culture-independent (tag-encoded 454-pyrosequencing) surveys reveal that several Pseudonocardia species and occasionally Amycolatopsis (a close relative of Pseudonocardia) co-occur on workers from a single nest, contradicting the assumption of a single pseudonocardiaceous strain per nest. Pseudonocardia can occur on males, suggesting that Pseudonocardia could also be horizontally transmitted during mating. Pseudonocardia and Amycolatopsis secretions kill or strongly suppress ant-cultivated fungi, contradicting the previous finding of a growth-enhancing effect of Pseudonocardia on the cultivars. Attine ants therefore may harm their own cultivar if they apply pseudonocardiaceous secretions to actively growing gardens. Pseudonocardia and Amycolatopsis isolates also show nonspecific antifungal activities against saprotrophic, endophytic, entomopathogenic, and garden-pathogenic fungi, contrary to the original report of specific antibiosis against Escovopsis alone. We conclude that attine-associated pseudonocardiaceous bacteria do not exhibit derived antibiotic properties to specifically suppress Escovopsis. We evaluate hypotheses on nonadaptive and adaptive functions of attine integumental bacteria, and develop an alternate conceptual framework to replace the prevailing Pseudonocardia-Escovopsis coevolution model. If association with Pseudonocardia is adaptive to attine ants, alternate roles of such microbes could include the protection of ants or sanitation of the nest.

  5. Essential Oils and Antifungal Activity

    Science.gov (United States)

    Coppola, Raffaele; De Feo, Vincenzo

    2017-01-01

    Since ancient times, folk medicine and agro-food science have benefitted from the use of plant derivatives, such as essential oils, to combat different diseases, as well as to preserve food. In Nature, essential oils play a fundamental role in protecting the plant from biotic and abiotic attacks to which it may be subjected. Many researchers have analyzed in detail the modes of action of essential oils and most of their components. The purpose of this brief review is to describe the properties of essential oils, principally as antifungal agents, and their role in blocking cell communication mechanisms, fungal biofilm formation, and mycotoxin production. PMID:29099084

  6. Studies of antifungal activity of forsskalea tenacissima

    International Nuclear Information System (INIS)

    Qaisar, M.; Ahmad, V.U.; Nisar, M.; Gilani, S.N.; Pervez, S.

    2011-01-01

    Antifungal activity of different extracts from Forsskalea tenacissima prepared by solvent-solvent extraction and vacuum liquid chromatography (VLC) was determined. Extracts were found to be active against Candida albicans, Trichophyton mentagrophyte, Allescheria boydii, Microsporum canis, Aspergillus niger, Drechslera rostrata, Nigrospora oryzae, Stachybotrys atra, Curvularia lunata, Trichophyton semii and Trichophyton schoenleinii. (author)

  7. In vitro antifungal activity of methanol extracts of some Indian ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-03

    Dec 3, 2008 ... vitro antifungal activity against some yeasts including Candida albicans (1) ATCC2091, ... Key words: medicinal plants, antifungal activity, methanol extracts, yeast, mould, Saussurea lappa. ... Caesalpinia pulcherrima.

  8. Antifungal activity of olive cake extracts

    OpenAIRE

    Ghandi H. Anfoka; Khalil I. Al-Mughrabi; Talal A. Aburaj; Wesam Shahrour

    2001-01-01

    Powdered, dried olive (Olea europaea) cake was extracted with hexane, methanol and butanol. Six phenolic compounds, coumaric acid, ferulic acid, oleuropein, caffeic acid, protocatechuic acid and cinnamic acid, were isolated from these extracts after fractionation. The fractions were tested for their antifungal activity against Verticillium sp., Fusarium oxysporum, Rhizopus sp., Penicillium italicum, Rhizoctonia solani, Stemphylium solani, Cladosporium sp., Mucor sp., Colletotrichu...

  9. Antifungal activity of rice straw extract on some phytopathogenic fungi

    African Journals Online (AJOL)

    user

    2012-09-04

    Sep 4, 2012 ... antifungal properties, thus it can be used as a natural alternative approach to synthetic ..... composition and antifungal activity of essential oils of seven ... Leaf Extracts on Seed-borne Fungi of African Yam Bean Seeds,.

  10. Antibacterial and Antifungal Activities of Spices

    Science.gov (United States)

    Liu, Qing; Meng, Xiao; Li, Ya; Zhao, Cai-Ning; Tang, Guo-Yi; Li, Hua-Bin

    2017-01-01

    Infectious diseases caused by pathogens and food poisoning caused by spoilage microorganisms are threatening human health all over the world. The efficacies of some antimicrobial agents, which are currently used to extend shelf-life and increase the safety of food products in food industry and to inhibit disease-causing microorganisms in medicine, have been weakened by microbial resistance. Therefore, new antimicrobial agents that could overcome this resistance need to be discovered. Many spices—such as clove, oregano, thyme, cinnamon, and cumin—possessed significant antibacterial and antifungal activities against food spoilage bacteria like Bacillus subtilis and Pseudomonas fluorescens, pathogens like Staphylococcus aureus and Vibrio parahaemolyticus, harmful fungi like Aspergillus flavus, even antibiotic resistant microorganisms such as methicillin resistant Staphylococcus aureus. Therefore, spices have a great potential to be developed as new and safe antimicrobial agents. This review summarizes scientific studies on the antibacterial and antifungal activities of several spices and their derivatives. PMID:28621716

  11. Antifungal Activity of Maytenin and Pristimerin

    Directory of Open Access Journals (Sweden)

    Fernanda P. Gullo

    2012-01-01

    Full Text Available Fungal infections in humans have increased alarmingly in recent years, particularly in immunocompromised individuals. Among the infections systemic candidiasis, aspergillosis, cryptococcosis, paracoccidioidomycosis, and histoplasmosis mortality are more prevalent and more severe in humans. The current high incidence of dermatophytosis is in humans, especially as the main etiologic agents Trichophyton rubrum and Trichophyton mentagrophytes. Molecules pristimerin and maytenin obtained from the plant Maytenus ilicifolia (Celastraceae are known to show various pharmacological activities. This study aimed to evaluate the spectrum of antifungal activity of maytenin and pristimerin and their cytotoxicity in human keratinocytes (NOK cells of the oral mucosa. It was concluded that the best spectrum of antifungal activity has been shown to maytenin with MIC varying from 0.12 to 125 mg/L, although it is also active with pristimerin MIC ranging between 0.12 and 250 mg/L. Regarding the toxicity, both showed to have high IC50. The SI showed high pristimerin against some species of fungi, but SI maytenin was above 1.0 for all fungi tested, showing a selective action of fungi. However, when comparing the two substances, maytenin also showed better results. The two molecules can be a possible prototype with a broad spectrum of action for the development of new antifungal agents.

  12. Antifungal Activity of Maytenin and Pristimerin

    Science.gov (United States)

    Gullo, Fernanda P.; Sardi, Janaina C. O.; Santos, Vânia A. F. F. M.; Sangalli-Leite, Fernanda; Pitangui, Nayla S.; Rossi, Suélen A.; de Paula e Silva, Ana C. A.; Soares, Luciana A.; Silva, Julhiany F.; Oliveira, Haroldo C.; Furlan, Maysa; Silva, Dulce H. S.; Bolzani, Vanderlan S.; Mendes-Giannini, Maria José S.; Fusco-Almeida, Ana Marisa

    2012-01-01

    Fungal infections in humans have increased alarmingly in recent years, particularly in immunocompromised individuals. Among the infections systemic candidiasis, aspergillosis, cryptococcosis, paracoccidioidomycosis, and histoplasmosis mortality are more prevalent and more severe in humans. The current high incidence of dermatophytosis is in humans, especially as the main etiologic agents Trichophyton rubrum and Trichophyton mentagrophytes. Molecules pristimerin and maytenin obtained from the plant Maytenus ilicifolia (Celastraceae) are known to show various pharmacological activities. This study aimed to evaluate the spectrum of antifungal activity of maytenin and pristimerin and their cytotoxicity in human keratinocytes (NOK cells of the oral mucosa). It was concluded that the best spectrum of antifungal activity has been shown to maytenin with MIC varying from 0.12 to 125 mg/L, although it is also active with pristimerin MIC ranging between 0.12 and 250 mg/L. Regarding the toxicity, both showed to have high IC50. The SI showed high pristimerin against some species of fungi, but SI maytenin was above 1.0 for all fungi tested, showing a selective action of fungi. However, when comparing the two substances, maytenin also showed better results. The two molecules can be a possible prototype with a broad spectrum of action for the development of new antifungal agents. PMID:22675379

  13. Antifungal activity and molecular identification of endophytic fungi ...

    African Journals Online (AJOL)

    Antifungal activity and molecular identification of endophytic fungi from the angiosperm Rhodomyrtus tomentosa. Juthatip Jeenkeawpieam, Souwalak Phongpaichit, Vatcharin Rukachaisirikul, Jariya Sakayaroj ...

  14. Catalytic Synthesis and Antifungal Activity of New Polychlorinated Natural Terpenes

    Directory of Open Access Journals (Sweden)

    Hana Ighachane

    2017-01-01

    Full Text Available Various unsaturated natural terpenes were selectively converted to the corresponding polychlorinated products in good yields using iron acetylacetonate in combination with nucleophilic cocatalyst. The synthesized compounds were evaluated for their in vitro antifungal activity. The antifungal bioassays showed that 2c and 2d possessed significant antifungal activity against Fusarium oxysporum f. sp. albedinis (Foa, Fusarium oxysporum f. sp. canariensis (Foc, and Verticillium dahliae (Vd.

  15. In vitro antifungal activity of Dorstenia mannii leaf extracts (Moraceae)

    African Journals Online (AJOL)

    Owner

    The active ingredients of this plant could be an addition to the antifungal arsenal to opportunistic fungal yeast pathogens. Key words: Antifungal activity, Dorstenia mannii, yeasts, opportunistic candidiasis. INTRODUCTION. Nowadays, fungal diseases have emerged and are being increasingly recognized as important public ...

  16. In vitro Antifungal, Antioxidant and Cytotoxic Activities of a Partially ...

    African Journals Online (AJOL)

    Purpose: To determine the in vitro antifungal and antioxidant activities of the aqueous extract and protein fraction of Atlantia monophylla Linn (Rutaceae) leaf. Methods: Ammonium sulphate (0 – 80 %) precipitation method was used to extract protein from the leaves of A. monophylla Linn (Rutaceae). In vitro antifungal ...

  17. Antifungal activity of crude extracts of Gladiolus dalenii van Geel ...

    African Journals Online (AJOL)

    Bulb extracts of Gladiolus dalenii reportedly used in the treatment of fungal infections in HIV/AIDS patients in the Lake Victoria region were tested for antifungal activity using the disc diffusion assay technique. Commercially used antifungal drugs, Ketaconazole and Griseofulvin (Cosmos Pharmaceuticals) were used as ...

  18. Synthesis and Antifungal Activity of Musa Phytoalexins and Structural Analogs

    Directory of Open Access Journals (Sweden)

    Adriana Gallego

    2000-07-01

    Full Text Available Several perinaphthenone/phenylphenalenone compounds were synthesized to establish a relationship between structure and antifungal activity against Mycosphaerella fijiensis. Substitutions on the unsaturated carbonyl system or addition of a phenyl group reduced antibiotic activity.

  19. Design, Synthesis and Antifungal Activity of Psoralen Derivatives

    Directory of Open Access Journals (Sweden)

    Xiang Yu

    2017-10-01

    Full Text Available A series of linear furanocoumarins with different substituents have been designed and synthesized. Their structures were confirmed by 1H-NMR spectroscopy, high resolution mass spectra (EI-MS, IR, and X-ray single-crystal diffraction. All of the target compounds were evaluated in vitro for their antifungal activity against Rhizoctorzia solani, Botrytis cinerea, Alternaria solani, Gibberella zeae, Cucumber anthrax, and Alternaria leaf spot at 100 μg/mL, and some of the designed compounds exhibited potential antifungal activities. Compound 3a (67.9% exhibited higher activity than the control Osthole (66.1% against Botrytis cinerea. Furthermore, compound 4b (62.4% represented equivalent antifungal activity as Osthole (69.5% against Rhizoctonia solani. The structure-activity relationship (SAR study demonstrates that linear furanocoumarin moiety has an important effect on the antifungal activity, promoting the idea of the coumarin ring as a framework that might be exploited in the future.

  20. Cryptic antifungal compounds active by synergism with polyene antibiotics.

    Science.gov (United States)

    Kinoshita, Hiroshi; Yoshioka, Mariko; Ihara, Fumio; Nihira, Takuya

    2016-04-01

    The majority of antifungal compounds reported so far target the cell wall or cell membrane of fungi, suggesting that other types of antibiotics cannot exert their activity because they cannot penetrate into the cells. Therefore, if the permeability of the cell membrane could be enhanced, many antibiotics might be found to have antifungal activity. We here used the polyene antibiotic nystatin, which binds to ergosterol and forms pores at the cell membrane, to enhance the cellular permeability. In the presence of nystatin, many culture extracts from entomopathogenic fungi displayed antifungal activity. Among all the active extracts, two active components were purified and identified as helvolic acid and terramide A. Because the minimum inhibitory concentration of either compound was reduced four-fold in the presence of nystatin, it can be concluded that this screening method is useful for detecting novel antifungal activity. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Antimycotoxigenic and antifungal activities of Citrullus colocynthis ...

    African Journals Online (AJOL)

    user

    2013-10-23

    Oct 23, 2013 ... may have significant potential for biological control of fungi and theirs toxins. Key words: Citrullus .... antifungal, antiaflatoxigenic and antiochratoxigenic effect ... C. colocynthis Schrad. fruits were collected in December (2010).

  2. Antifungal activities of ethanolic extract from Jatropha curcas seed cake.

    Science.gov (United States)

    Saetae, Dolaporn; Suntornsuk, Worapot

    2010-02-01

    Phorbol ester extraction was carried out from Jatropha curcas seed cake, a by-product from the bio-diesel fuel industry. Four repeated extractions from 5 g J. curcas seed cake using 15 ml of 90% (v/v) ethanol and a shaking speed of 150 rev/min gave the highest yield of phosbol esters. The ethanolic extract of J. curcas seed cake showed antifungal activities against important phytofungal pathogens: Fusarium oxysporum, Pythium aphanidermatum, Lasiodiplodia theobromae, Curvularia lunata, Fusarium semitectum, Colletotrichum capsici and Colletotrichum gloeosporiodes. The extract contained phorbol esters mainly responsible for antifungal activities. The extract could therefore be used as an antifungal agent for agricultural applications.

  3. In vitro Antifungal Activity of Limonene against Trichophyton rubrum

    OpenAIRE

    Chee, Hee Youn; Kim, Hoon; Lee, Min Hee

    2009-01-01

    In this study, the antifungal activities of limonene against Trichophyton rubrum were evaluated via broth microdilution and vapor contact assays. In both assays, limonene was shown to exert a potent antifungal effect against T. rubrum. The volatile vapor of limonene at concentrations above 1 ?l/800 ml air space strongly inhibited the growth of T. rubrum. The MIC value was 0.5% v/v in the broth microdilution assay. The antifungal activity of limonene against T. rubrum was characterized as a fu...

  4. Antifungal activity of medicinal plant extracts; preliminary screening studies.

    Science.gov (United States)

    Webster, Duncan; Taschereau, Pierre; Belland, René J; Sand, Crystal; Rennie, Robert P

    2008-01-04

    In the setting of HIV and organ transplantation, opportunistic fungal infections have become a common cause of morbidity and mortality. Thus antifungal therapy is playing a greater role in health care. Traditional plants are a valuable source of novel antifungals. To assess in vitro antifungal activity of aqueous plant extracts. The minimum inhibitory concentrations were determined for each extract in the setting of human pathogenic fungal isolates. Plants were harvested and identification verified. Aqueous extracts were obtained and antifungal susceptibilities determined using serial dilutional extracts with a standardized microdilution broth methodology. Twenty-three fungal isolates were cultured and exposed to the plant extracts. Five known antifungals were used as positive controls. Results were read at 48 and 72 h. Of the 14 plants analyzed, Fragaria virginiana Duchesne, Epilobium angustifolium L. and Potentilla simplex Michx. demonstrated strong antifungal potential overall. Fragaria virginiana had some degree of activity against all of the fungal pathogens. Alnus viridis DC., Betula alleghaniensis Britt. and Solidago gigantea Ait. also demonstrated a significant degree of activity against many of the yeast isolates. Fragaria virginiana, Epilobium angustifolium and Potentilla simplex demonstrate promising antifungal potential.

  5. Antifungal activity of multifunctional Fe3O4-Ag nanocolloids

    International Nuclear Information System (INIS)

    Chudasama, Bhupendra; Vala, Anjana K.; Andhariya, Nidhi; Upadhyay, R.V.; Mehta, R.V.

    2011-01-01

    In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe 3 O 4 -Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe 3 O 4 ) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 μg/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients. - Research Highlights: →Synthesis of Fe 3 O 4 -Ag core-shell nanocolloids. →Antifungal activity of Fe 3 O 4 -Ag nanocolloids against Aspergillus glaucus isolates. →The MIC value for A. glaucus is 2000 μg/mL. →Antifungal activity is better or comparable with most prominent antibiotics.

  6. Antifungal Activity of Hypericum havvae Against Some Medical ...

    African Journals Online (AJOL)

    antifungal activity of the extracts was tested against medical yeast, Candida (C. albicans ATCC 10231, ... Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), .... It is important to bear in mind that the.

  7. Phytochemical Analysis, Antifungal and Antioxidant Activity of Leaf ...

    African Journals Online (AJOL)

    Science, Technology and Arts Research Journal ... of total phenolics, antifungal and antioxidant activity of leaf and fruit extract of Zizyphus xylopyrus (Retz.) ... Flavonoids, saponins, terpenoids, tannins and phenols were found in both extracts.

  8. Terbinafine: novel formulations that potentiate antifungal activities.

    Science.gov (United States)

    Ma, Y; Chen, X; Guan, S

    2015-03-01

    Terbinafine, an orally and topically active antifungal agent, has been available for the treatment of dermatophytic infections and onychomycosis for more than a decade. In addition, oral administration has been shown to be associated with drug-drug interactions, hepatotoxicity, low concentration at the infected sites, gastrointestinal and systemic side effects and other adverse effects. Since topical drug delivery can provide higher patient compliance, allow immediate access to the infected site and reduce unwanted systemic drug exposure, an improved topical drug delivery approach with high permeability, sustained release and prolonged retainment could overcome the limitations and side effects caused by oral administration. Conventional topical formulations cannot keep the drug in the targeted sites for a long duration of time and hence a novel drug delivery that can avoid the side effects while still providing sustained efficacy in treatment should be developed. This brief review of novel formulations based on polymers and nanostructure carriers provides insight into the efficacy and topical delivery of terbinafine. Copyright 2015 Prous Science, S.A.U. or its licensors. All rights reserved.

  9. Isolation of antifungally active lactobacilli from edam cheese

    DEFF Research Database (Denmark)

    Tuma, S.; Vogensen, Finn Kvist; Plocková, M.

    2007-01-01

    The antifungal activity of 322 lactobacilli strains isolated from Edam cheese at different stages of the ripening process was tested against Fusarium proliferatum M 5689 using a dual overlay spot assay. Approximately 21% of the isolates showed a certain level of inhibitory activity. Seven strains...... as Lb. paracasei and three as Lb. fermentum. Lb. paracasei ST 68 was chosen for further testing as antifungal protective adjunct for Edam cheese production.  ...

  10. Antifungal activity of essential oils against selected terverticillate penicillia

    Directory of Open Access Journals (Sweden)

    Soňa Felšöciová

    2015-02-01

    Full Text Available The aim of this study was to screen 15 essential oils of selected plant species, viz. Lavandula angustifolia, Carum carvi, Pinus mungo var. pulmilio, Mentha piperita, Chamomilla recutita L., Pinus sylvestris, Satureia hortensis L., Origanum vulgare L., Pimpinella anisum, Rosmarinus officinalis L., Salvia officinalis L., Abietis albia etheroleum, Chamomilla recutita, L. Rausch, Thymus vulgaris L., Origanum vulgare L. for antifungal activity against five Penicillium species: Penicillium brevicompactum, Penicillium citrinum, Penicillium crustosum, Penicillium expansum and Penicillium griseofulvum. The method used for screening included the disc diffusion method. The study points out the wide spectrum of antifungal activity of essential oils against Penicillium fungi. There were five essential oils of the 15 mentioned above which showed a hopeful antifungal activity: Pimpinella anisum, Chamomilla recutita L., Thymus vulgaris, Origanum vulgare L. The most hopeful antifungal activity and killing effect against all tested penicillia was found to be Origanum vulgare L. and Pimpinella anisum. The lowest level of antifungal activity was demonstrated by the oils Pinus mungo var. pulmilio, Salvia officinalis L., Abietis albia etheroleum, Chamomilla recutita L. Rausch, Rosmarinus officinalis.

  11. Antifungal and antibacterial activities of an alcoholic extract of ...

    African Journals Online (AJOL)

    Methanolic, ethanolic and petroleum ether extracts of Senna alata leaves were screened for phytochemicals, antibacterial and antifungal activities. Out of the three crude extracts, the methanolic extract showed the highest activity than the ethanolic and petroleum ether extracts. The unidentified active components purified ...

  12. EFFECT OF EXTRACTION METHODS ON ANTIFUNGAL ACTIVITY OF SEA CUCUMBER (Stichopus japonicus

    Directory of Open Access Journals (Sweden)

    Amir Husni

    2014-05-01

    Both SM and CS exhibited their highest antifungal activity when extracted by HRE with 70% ethanol and by HRE with water, respectively, while their highest yields were obtained when extracted by PSE with water. SM has more antifungal than potassium sorbate but weaker than propyl paraben, while CS has more antifungal than the two antifungal agents. Keywords: Antifungal, heat reflux extraction, pressurized solvent extraction, Stichopus japonicus

  13. Antifungal activity against postharvest fungi by extracts from Colombian propolis

    International Nuclear Information System (INIS)

    Meneses, Erick A.; Durango, Diego L.; Garcia, Carlos M.

    2009-01-01

    The aims of the present study were to evaluate the antifungal properties of Colombian propolis extracts against Colletotrichum gloeosporioides and Botryodiplodia theobromae, and to isolate and identify the main constituents from the active extracts. Therefore, propolis samples were thoroughly extracted with n-hexane/methanol (EPEM), dichloromethane, ethyl acetate, and methanol. Experimental results indicated that mycelial growth of all selected microorganisms was reduced in culture media containing EPEM and dichloromethane fractions. Furthermore, through antifungal bioassay-guided fractionation, three known labdane-type diterpenes: isocupressic acid (1), (+)-agathadiol (2) and epi-13-torulosol (3) were isolated as the main constituents from the active fractions. (author)

  14. Antifungal activity against postharvest fungi by extracts from Colombian propolis

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, Erick A.; Durango, Diego L.; Garcia, Carlos M. [Universidad Nacional de Colombia, Medellin (Colombia). Facultad de Ciencias. Escuela de Quimica], e-mail: cmgarcia@unal.edu.co

    2009-07-01

    The aims of the present study were to evaluate the antifungal properties of Colombian propolis extracts against Colletotrichum gloeosporioides and Botryodiplodia theobromae, and to isolate and identify the main constituents from the active extracts. Therefore, propolis samples were thoroughly extracted with n-hexane/methanol (EPEM), dichloromethane, ethyl acetate, and methanol. Experimental results indicated that mycelial growth of all selected microorganisms was reduced in culture media containing EPEM and dichloromethane fractions. Furthermore, through antifungal bioassay-guided fractionation, three known labdane-type diterpenes: isocupressic acid (1), (+)-agathadiol (2) and epi-13-torulosol (3) were isolated as the main constituents from the active fractions. (author)

  15. Hydrogel of Ketoconazole and PAMAM Dendrimers: Formulation and Antifungal Activity

    Directory of Open Access Journals (Sweden)

    Elzbieta Tryniszewska

    2012-04-01

    Full Text Available Ketoconazole (KET, an imidazole derivative with well-known antifungal properties, is lipophilic and practically insoluble in water, therefore its clinical use has some practical disadvantages. The aim of the present study was to investigate the influence of PAMAM-NH2 and PAMAM-OH dendrimers generation 2 and generation 3 on the solubility and antifungal activity of KET and to design and evaluate KET hydrogel with PAMAM dendrimers. It was shown that the surface charge of PAMAM dendrimers strongly affects their influence on the improvement of solubility and antifungal activity of KET. The MIC and MFC values obtained by broth dilution method indicate that PAMAM-NH2 dendrimers significantly (up to 16-fold increased the antifungal activity of KET against Candida strains (e.g., in culture Candida albicans 1103059/11 MIC value was 0.008 μg/mL and 0.064 μg/mL, and MFC was 2 μg/mL and 32 μg/mL for KET in 10 mg/mL solution of PAMAM-NH2 G2 and pure KET, respectively. Antifungal activity of designed KET hydrogel with PAMAM-NH2 dendrimers measured by the plate diffusion method was definitely higher than pure KET hydrogel and than commercial available product. It was shown that the improvement of solubility and in the consequence the higher KET release from hydrogels seems to be a very significant factor affecting antifungal activity of KET in hydrogels containing PAMAM dendrimers.

  16. Antifungal activity of nicotine and its cobalt complex

    International Nuclear Information System (INIS)

    Zaidi, M.I.; Gul, A.

    2005-01-01

    Nicotine and its metal complex; Co(II)-nicotine were isolated from leaves of Nicotiana tabacum using various metal ions by the reported techniques and studied for their antifungal activity against fourteen different species of fungi. For comparative study, pure sample of nicotine and metal salt used for complexation; cobalt(II) chloride was also subjected to antifungal tests with the same species of fungus under similar conditions. Results indicated that nicotine had antifungal activity against all species of fungi studied except Candida albicans, Microsporum canis, Epidermophyton floccosum, Candida tropicalis, and Alternaria infectoria. Cobalt(II) nicotine was found to be effective against all selected species of fungi but ineffective against Candida solani, Penicillium notalum, Microsporum canis, Fusarium solani and Fusarium moniliforme. (author)

  17. Evaluation of antifungal activity from Bacillus strains against ...

    African Journals Online (AJOL)

    In this study, 30 bacterial strains isolated from marine biofilms were screened for their antifungal activity against Rhizoctonia solani by dual culture assay. Two bacterial strains, Bacillus subtilis and Bacillus cereus, showed a clear antagonism against R. solani on potato dextrose agar (PDA) medium. The antagonistic activity ...

  18. Antifungal activity of methanolic extracts of four Algerian marine ...

    African Journals Online (AJOL)

    cmi

    2012-05-15

    May 15, 2012 ... and antifungal activities of the extracts of marine algae from southern coast of India. Botanica marina. 40: 507-515. Patra JK, Patra AP, Mahapatra NK, Thatoi HN, Das S, Sahu, RK, Swain. GC (2009). Antimicrobial activity of organic solvent extracts of three marine macroalgae from Chilika Lake, Orissa, India.

  19. Evaluation of Antioxidant and Antifungal Activities of Polyphenol-rich ...

    African Journals Online (AJOL)

    Purpose: To evaluate the antioxidant and antifungal activities of polyphenol-rich extracts of the dried fruit pulp of Garcinia pedunculata (GP) and Garcinia morella (GM) to determine their traditional claims of therapeutic activity against certain diseases. Methods: Analysis of total phenolic (TP) and flavonoid (TF) contents of the ...

  20. Antifungal activity of rice straw extract on some phytopathogenic fungi

    African Journals Online (AJOL)

    The antifungal activity of allelochemicals extracted from rice straw on the radial growth rate and the activity of some hydrolyzing enzymes of Aspergillus flavus, Alternaria alternata and Botrytis cinerea were studied in vitro. Five different concentrations (2, 4, 6, 8 and 10%, w/v) of water, methanol and acetone extracts of rice ...

  1. Comparative study of the antifungal activity of some essential oils ...

    African Journals Online (AJOL)

    This study aimed to evaluate the antimould activity of oregano, thyme, rosemary and clove essential oils and some of their main constituents: eugenol, carvacrol and thymol against Aspergillus niger. This antifungal activity was assessed using broth dilution, disc diffusion and micro atmosphere methods. In both agar diffusion ...

  2. Nepenthes rafflesiana pitcher liquid has antifungal activity against Candida spp.

    Directory of Open Access Journals (Sweden)

    Hanna Yolanda

    2014-08-01

    Full Text Available Background To develop new effective antifungals, it is essential to search for antifungal compounds from plants such as Nepenthes spp., which have their greatest diversity in Indonesia. Since chitin-induced liquid (CIL from Nepenthes khasiana pitchers has antifungal activity, due to their naphthoquinone content, this study aimed to evaluate antifungal activity of Nepenthes rafflesiana pitcher liquids on Candida spp. Methods Collected pitcher liquids were of 3 types: non-induced liquid (NIL, prey-induced liquid (PIL, and chitin-induced liquid (CIL. Non-induced liquid (NIL was collected from fresh naturally opened pitchers, PIL from opened pitchers after 3 hours of induction with Zophobas morio larvae, and CIL from closed pitchers after 5 days of chitin solution injection. The antifungal activity of the liquids against C. albicans, C. glabrata, C. krusei, and C. tropicalis were detected by disc diffusion and macrodilution methods. Results Inhibition zone diameters of NIL, PIL, and CIL against C. albicans were 35.00 (35.00 – 39.33 mm, 26.33 (23.00 – 40.00 mm, and 30.00 ( 28.00 – 32.00 mm, respectively, while for C. glabrata the zone diameters were 22.22 ± 3.66 mm, 29.89 ± 2.79 mm, and 28.89 ± 1.17 mm, respectively. No inhibition zones were found for NIL, PIL, and CIL against C. krusei and C. tropicalis. At concentrations of 80%, almost all samples showed visually apparent inhibition of fungal growth. Conclusion The pitcher liquid of N. rafflesiana has antifungal properties, presumably due to the presence of many potentially active substances, such as naphthoquinones, as has been proven in other studies.

  3. Potent In Vitro Antifungal Activities of Naturally Occurring Acetylenic Acids▿

    Science.gov (United States)

    Li, Xing-Cong; Jacob, Melissa R.; Khan, Shabana I.; Ashfaq, M. Khalid; Babu, K. Suresh; Agarwal, Ameeta K.; ElSohly, Hala N.; Manly, Susan P.; Clark, Alice M.

    2008-01-01

    Our continuing effort in antifungal natural product discovery has led to the identification of five 6-acetylenic acids with chain lengths from C16 to C20: 6-hexadecynoic acid (compound 1), 6-heptadecynoic acid (compound 2), 6-octadecynoic acid (compound 3), 6-nonadecynoic acid (compound 4), and 6-icosynoic acid (compound 5) from the plant Sommera sabiceoides. Compounds 2 and 5 represent newly isolated fatty acids. The five acetylenic acids were evaluated for their in vitro antifungal activities against Candida albicans, Candida glabrata, Candida krusei, Candida tropicalis, Candida parapsilosis, Cryptococcus neoformans, Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Trichophyton mentagrophytes, and Trichophyton rubrum by comparison with the positive control drugs amphotericin B, fluconazole, ketoconazole, caspofungin, terbinafine, and undecylenic acid. The compounds showed various degrees of antifungal activity against the 21 tested strains. Compound 4 was the most active, in particular against the dermatophytes T. mentagrophytes and T. rubrum and the opportunistic pathogens C. albicans and A. fumigatus, with MICs comparable to several control drugs. Inclusion of two commercially available acetylenic acids, 9-octadecynoic acid (compound 6) and 5,8,11,14-eicosatetraynoic acid (compound 7), in the in vitro antifungal testing further demonstrated that the antifungal activities of the acetylenic acids were associated with their chain lengths and positional triple bonds. In vitro toxicity testing against mammalian cell lines indicated that compounds 1 to 5 were not toxic at concentrations up to 32 μM. Furthermore, compounds 3 and 4 did not produce obvious toxic effects in mice at a dose of 34 μmol/kg of body weight when administered intraperitoneally. Taking into account the low in vitro and in vivo toxicities and significant antifungal potencies, these 6-acetylenic acids may be excellent leads for further preclinical studies. PMID:18458131

  4. Potent in vitro antifungal activities of naturally occurring acetylenic acids.

    Science.gov (United States)

    Li, Xing-Cong; Jacob, Melissa R; Khan, Shabana I; Ashfaq, M Khalid; Babu, K Suresh; Agarwal, Ameeta K; Elsohly, Hala N; Manly, Susan P; Clark, Alice M

    2008-07-01

    Our continuing effort in antifungal natural product discovery has led to the identification of five 6-acetylenic acids with chain lengths from C(16) to C(20): 6-hexadecynoic acid (compound 1), 6-heptadecynoic acid (compound 2), 6-octadecynoic acid (compound 3), 6-nonadecynoic acid (compound 4), and 6-icosynoic acid (compound 5) from the plant Sommera sabiceoides. Compounds 2 and 5 represent newly isolated fatty acids. The five acetylenic acids were evaluated for their in vitro antifungal activities against Candida albicans, Candida glabrata, Candida krusei, Candida tropicalis, Candida parapsilosis, Cryptococcus neoformans, Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Trichophyton mentagrophytes, and Trichophyton rubrum by comparison with the positive control drugs amphotericin B, fluconazole, ketoconazole, caspofungin, terbinafine, and undecylenic acid. The compounds showed various degrees of antifungal activity against the 21 tested strains. Compound 4 was the most active, in particular against the dermatophytes T. mentagrophytes and T. rubrum and the opportunistic pathogens C. albicans and A. fumigatus, with MICs comparable to several control drugs. Inclusion of two commercially available acetylenic acids, 9-octadecynoic acid (compound 6) and 5,8,11,14-eicosatetraynoic acid (compound 7), in the in vitro antifungal testing further demonstrated that the antifungal activities of the acetylenic acids were associated with their chain lengths and positional triple bonds. In vitro toxicity testing against mammalian cell lines indicated that compounds 1 to 5 were not toxic at concentrations up to 32 muM. Furthermore, compounds 3 and 4 did not produce obvious toxic effects in mice at a dose of 34 mumol/kg of body weight when administered intraperitoneally. Taking into account the low in vitro and in vivo toxicities and significant antifungal potencies, these 6-acetylenic acids may be excellent leads for further preclinical studies.

  5. Antifungal activity of multifunctional Fe 3O 4-Ag nanocolloids

    Science.gov (United States)

    Chudasama, Bhupendra; Vala, Anjana K.; Andhariya, Nidhi; Upadhyay, R. V.; Mehta, R. V.

    2011-05-01

    In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe 3O 4-Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe 3O 4) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 μg/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients.

  6. In vitro antifungal activities of 26 plant extracts on mycelial growth of ...

    African Journals Online (AJOL)

    Antifungal activities of 26 plant extracts were tested against Phytophthora infestans using radial growth technique. While all tested plant extracts produced some antifungal activities Xanthium strumarium, Lauris nobilis, Salvia officinalis and Styrax officinalis were the most active plants that showed potent antifungal activity.

  7. Trypanocide, cytotoxic, and antifungal activities of Momordica charantia.

    Science.gov (United States)

    Santos, Karla K A; Matias, Edinardo F F; Sobral-Souza, Celestina E; Tintino, Saulo R; Morais-Braga, Maria F B; Guedes, Glaucia M M; Santos, Francisco A V; Sousa, Ana Carla A; Rolón, Miriam; Vega, Celeste; de Arias, Antonieta Rojas; Costa, José G M; Menezes, Irwin R A; Coutinho, Henrique D M

    2012-02-01

    Chagas disease, caused by Trypanosoma cruzi, is a public health problem. Currently, chemotherapy is the only available treatment for this disease, and the drugs used, nifurtimox and benzonidazol, present high toxicity levels. An alternative for replacing these drugs are natural extracts from Momordica charantia L. (Cucurbitaceae) used in traditional medicine because of their antimicrobial and biological activities. In this study, we evaluated the extract of M. charantia for its antiepimastigote, antifungal, and cytotoxic activities. An ethanol extract of leaves from M. charantia was prepared. To research in vitro antiepimastigote activity, T. cruzi CL-B5 clone was used. Epimastigotes were inoculated at a concentration of 1 × 10(5) cells/mL in 200 µl tryptose-liver infusion. For the cytotoxicity assay, J774 macrophages were used. The antifungal activity was evaluated by microdilution using strains of Candida albicans, Candida tropicalis, and Candida krusei. The effective concentration capable of killing 50% of parasites (IC(50)) was 46.06 µg/mL. The minimum inhibitory concentration (MIC) was ≤ 1024 µg/mL. Metronidazole showed a potentiation of its antifungal effect when combined with an extract of M. charantia. Our results indicate that M. charantia could be a source of plant-derived natural products with antiepimastigote and antifungal-modifying activity with moderate toxicity.

  8. In vitro investigation on antifungal activity of some plant extracts ...

    African Journals Online (AJOL)

    Prof. Ogunji

    In vitro investigation on antifungal activity of some plant extracts against Pyricularia oryzae. Olufolaji, D. B.1, Adeosun, B.O.1 and Onasanya, R. O.2. 1. Department of Crop, Soil and Pest Management, The Federal University of Technology, PMB 704. Akure, Ondo state, Nigeria. 2. Department of Agriculture, Federal College ...

  9. In vitro antifungal activity of Dorstenia mannii leaf extracts (Moraceae)

    African Journals Online (AJOL)

    Owner

    The disc diffusion method (Chattopadhyay et al., 2001) was employed for the determination of antifungal activities of the crude extract and fractions prepared from D. mannii leaves. Briefly, 0.1 ml of suspension of yeast containing 1.5 × 106 spores/ml was spread on Sabouraud dextrose agar medium in 90 mm Petri dishes.

  10. In vitro antifungal activity of methanol extracts of some Indian ...

    African Journals Online (AJOL)

    The methanol extract of 9 Indian medicinal plants belonging to 9 different families were evaluated for in vitro antifungal activity against some yeasts including Candida albicans (1) ATCC2091, C. albicans (2) ATCC18804, Candida glabrata NCIM3448, Candida tropicalis ATCC4563, Cryptococcus luteolus ATCC32044, ...

  11. In vitro assay of potential antifungal and antibacterial activities of ...

    African Journals Online (AJOL)

    ... the dermatophytes strains Trichophyton rubrum, Trichophyton interdigitale, Trichophyton soudanense, Microsporum langeronii, and Epidermophyton floccosum were used. The E2F2 extract showed strong inhibitory activity on four of the five fungal species used against ketoconazole, a standard antifungal drug. However ...

  12. Antifungal activity of epithelial secretions from selected frog species ...

    African Journals Online (AJOL)

    This study aimed to investigate the antifungal activity of skin secretions from selected frogs (Amietia fuscigula, Strongylopus grayi and Xenopus laevis) and one toad (Amietophrynus pantherinus) of the south Western Cape Province of South Africa. Initially, different extraction techniques for the collection of skin secretions ...

  13. Antifungal activities of selected Venda medicinal plants against ...

    African Journals Online (AJOL)

    USER

    2010-05-17

    May 17, 2010 ... extracts from 30 plants used by Venda traditional healers for the ... cost of antifungal agents (Debruyne, 1997; Traeder et al., ... the use of medicinal plants is very common based on ... used to determine the activity of the plant extracts against the .... diffusion method: Table 3) as well as the two Candida.

  14. Antifungal Activity of Hypericum havvae Against Some Medical ...

    African Journals Online (AJOL)

    ... potency against Candida albicans and Cryptococcus laurentii, with the same MIC value of 1.56 mg/ml. Conclusion: Our findings support the use of Hypericum havvae in traditional medicine for the treatment of fungal infections, especially Candidiasis. Keywords: Antifungal activity, Candida, Hypericum havvae, Candidiasis ...

  15. Composition and antioxidant and antifungal activities of the ...

    African Journals Online (AJOL)

    In this study, the oil constituents of Lippia gracilis were identified by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The antioxidant and antifungal activities were also evaluated. The leaf oil showed a yield of 3.7% and its main constituents were thymol (70.3%), p-cymene (9.2%), thymol ...

  16. In vitro Antifungal Activity of Baccharis trimera Less (DC) Essential ...

    African Journals Online (AJOL)

    investigate their in vitro antifungal activity against seven fungal strains that cause onychomycosis. Methods: The ... 220 °C and detector at 220 °C. The carrier gas used was ... wavelength of 530 nm [31]. ..... (HTSS) followed by 3D graphs.

  17. Antifungal and antibacterial activities of the ethanolic and aqueous ...

    African Journals Online (AJOL)

    SERVER

    2007-07-18

    Jul 18, 2007 ... psoriasis and eczema, through to the more serious disease like leprosy, syphilis and skin cancer (Burkill,. 1985). Previous studies of the fruits of K. africana showed some antibacterial activity (Grace et al., 2002). However there is no report on the antibacterial and antifungal properties of the stem bark of this ...

  18. Antifungal activity of essential oils against selected terverticillate penicillia

    Directory of Open Access Journals (Sweden)

    Soňa Felšöciová

    2015-02-01

    Full Text Available The aim of this study was to screen 15 essential oils of selected plant species, viz. [i]Lavandula angustifolia[/i], [i]Carum carvi[/i], [i]Pinus mungo var. pulmilio[/i], [i]Mentha piperita[/i], [i]Chamomilla recutita[/i] L.,[i] Pinus sylvestris[/i], [i]Satureia hortensis[/i] L., [i]Origanum vulgare[/i] L., [i]Pimpinella anisum[/i], [i]Rosmarinus officinali[/i]s L., [i]Salvia officinalis[/i] L., [i]Abietis albia etheroleum[/i], [i]Chamomilla recutita[/i] L. [i]Rausch[/i], [i]Thymus vulgaris[/i] L., [i]Origanum vulgare[/i] L. for antifungal activity against five [i]Penicillium[/i] species: [i]Penicillium brevicompactum[/i], [i]Penicillium citrinum[/i], [i]Penicillium crustosum[/i], [i]Penicillium expansum[/i] and [i]Penicillium griseofulvum[/i]. The method used for screening included the disc diffusion method. The study points out the wide spectrum of antifungal activity of essential oils against [i]Penicillium[/i] fungi. There were five essential oils of the 15 mentioned above which showed a hopeful antifungal activity: [i]Pimpinella anisum[/i], [i]Chamomilla recutita[/i] L., [i]Thymus vulgaris[/i], [i]Origanum vulgare[/i] L. The most hopeful antifungal activity and killing effect against all tested penicillia was found to be [i]Origanum vulgare[/i] L. and [i]Pimpinella anisum[/i]. The lowest level of antifungal activity was demonstrated by the oils [i]Pinus mungo var. pulmilio[/i], [i]Salvia officinalis[/i] L., [i]Abietis albia etheroleum[/i], [i]Chamomilla recutita[/i] L.[i] Rausch[/i], [i]Rosmarinus officinalis[/i].

  19. Activation of Melanin Synthesis in Alternaria infectoria by Antifungal Drugs.

    Science.gov (United States)

    Fernandes, Chantal; Prados-Rosales, Rafael; Silva, Branca M A; Nakouzi-Naranjo, Antonio; Zuzarte, Mónica; Chatterjee, Subhasish; Stark, Ruth E; Casadevall, Arturo; Gonçalves, Teresa

    2015-12-28

    The importance of Alternaria species fungi to human health ranges from their role as etiological agents of serious infections with poor prognoses in immunosuppressed individuals to their association with respiratory allergic diseases. The present work focuses on Alternaria infectoria, which was used as a model organism of the genus, and was designed to unravel melanin production in response to antifungals. After we characterized the pigment produced by A. infectoria, we studied the dynamics of 1,8-dihydroxynaphthalene (DHN)-melanin production during growth, the degree of melanization in response to antifungals, and how melanization affected susceptibility to several classes of therapeutic drugs. We demonstrate that A. infectoria increased melanin deposition in cell walls in response to nikkomycin Z, caspofungin, and itraconazole but not in response to fluconazole or amphotericin B. These results indicate that A. infectoria activates DHN-melanin synthesis in response to certain antifungal drugs, possibly as a protective mechanism against these drugs. Inhibition of DHN-melanin synthesis by pyroquilon resulted in a lower minimum effective concentration (MEC) of caspofungin and enhanced morphological changes (increased hyphal balloon size), characterized by thinner and less organized A. infectoria cell walls. In summary, A. infectoria synthesizes melanin in response to certain antifungal drugs, and its susceptibility is influenced by melanization, suggesting the therapeutic potential of drug combinations that affect melanin synthesis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Effect of cultivation conditions on growth and antifungal activity of ...

    African Journals Online (AJOL)

    Administrator

    Growth and production of antifungal agent by Mycena leptocephala was investigated in different culture media composition at various initial pH and temperatures. Maximum growth and activity was observed at the initial pH of 5.5 and 25oC. No detectable growth and activity was observed at pH of 3.5 and 7.5. Growth of the ...

  1. Macrophage Reporter Cell Assay for Screening Immunopharmacological Activity of Cell Wall-Active Antifungals

    OpenAIRE

    Lewis, Russell E.; Liao, Guangling; Young, Katherine; Douglas, Cameron; Kontoyiannis, Dimitrios P.

    2014-01-01

    Antifungal exposure can elicit immunological effects that contribute to activity in vivo, but this activity is rarely screened in vitro in a fashion analogous to MIC testing. We used RAW 264.7 murine macrophages that express a secreted embryonic alkaline phosphatase (SEAP) gene induced by transcriptional activation of NF-κB and activator protein 1 (AP-1) to develop a screen for immunopharmacological activity of cell wall-active antifungal agents. Isolates of Candida albicans and Aspergillus f...

  2. Antifungal activity of polycyclic aromatic hydrocarbons against Ligninolytic fungi

    Directory of Open Access Journals (Sweden)

    Memić Mustafa

    2011-01-01

    Full Text Available Environmental contamination by polycyclic aromatic hydrocarbons (PAHs has caused increasing concern because of their known, or suspected, carcinogenic and mutagenic effects. Polycyclic aromatic hydrocarbons occurring in the environment are usually the result of the incomplete combustion of carbon containing materials. The main sources of severe PAHs contamination in soil come from fossil fuels, i.e. production or use of fossil fuels or their products, such as coal tar and creosote. Creosote is used as a wood preservation for railway ties, bridge timbers, pilling and large-sized lumber. It consists mainly of PAHs, phenol and cresol compounds that cause harmful health effects. Research on biodegradation has shown that a special group of microorganisms, the white-rot fungi and brown-rot fungi, has a remarkable potential to degrade PAHs. This paper presents a study of the antifungal activity of 12 selected PAHs against two ligninolytic fungi Hypoxylon fragiforme (white rot and Coniophora puteana (brown rot. The antifungal activity of PAHs was determined by the disc-diffusion method by measuring the diameter of the zone of inhibition. The results showed that the antifungal activity of the tested PAHs (concentration of 2.5 mmol/L depends on the their properties such as molar mass, solubility in water, values of log Kow, ionization potential and Henry’s Law constant as well as number of aromatic rings, molecule topology or pattern of ring linkage. Among the 12 investigated PAHs, benzo(k fluoranthene with five rings, and pyrene with four cyclic condensed benzene rings showed the highest antifungal activity.

  3. Antifungal activity of aloe vera gel against plant pathogenic fungi

    International Nuclear Information System (INIS)

    Sitara, U.; Hassan, N.; Naseem, J.

    2011-01-01

    Aloe vera gel extracted from the Aloe vera leaves was evaluated for their antifungal activity at the rate of 0.15%, 0.25% and 0.35% concentration against five plants pathogenic fungi viz., Aspergillus niger, Aspergillus flavus, Alternaria alternata, Drechslera hawaiensis and Penicillum digitatum 0.35% concentration Aloe vera gel completely inhibited the growth of Drechslera hawaiensis and Alternaria alternata. (author)

  4. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

    Science.gov (United States)

    2013-04-11

    Hedychiums have been reported to possess antibacterial, antifungal, and insecticidal activities [4,5]. Strawberry anthracnose, caused by the plant...pathogens Colletotrichum species is one of the most important diseases affecting strawberries worldwide [6]. Colletotrichum fragariae Brooks is most...often associated with anthracnose crown rot of strawberries grown in hot, humid areas such as the southeastern United States [7]. The azalea lace bug

  5. Antifungal activity of topical microemulsion containing a thiophene derivative

    Directory of Open Access Journals (Sweden)

    Geovani Pereira Guimarães

    2014-06-01

    Full Text Available Fungal infections have become a major problem of worldwide concern. Yeasts belonging to the Candida genus and the pathogenic fungus Cryptococcus neoformans are responsible for different clinical manifestations, especially in immunocompromised patients. Antifungal therapies are currently based on a few chemotherapeutic agents that have problems related to effectiveness and resistance profiles. Microemulsions are isotropic, thermodynamically stable transparent systems of oil, water and surfactant that can improve the solubilization of lipophilic drugs. Taking into account the need for more effective and less toxic drugs along with the potential of thiophene derivatives as inhibitors of pathogenic fungi growth, this study aimed to evaluate the antifungal activity of a thiophene derivative (5CN05 embedded in a microemulsion (ME. The minimum inhibitory concentration (MIC was determined using the microdilution method using amphotericin B as a control. The formulations tested (ME- blank and ME-5CN05 showed physico-chemical properties that would allow their use by the topical route. 5CN05 as such exhibited moderate or weak antifungal activity against Candida species (MIC = 270-540 µg.mL-1 and good activity against C. neoformans (MIC = 17 µg.mL-1. Candida species were susceptible to ME-5CN05 (70-140 µg.mL-1, but C. neoformans was much more, presenting a MIC value of 2.2 µg.mL-1. The results of this work proved promising for the pharmaceutical industry, because they suggest an alternative therapy against C. neoformans.

  6. Antifungal activity of nicotine and its cadmium complex

    International Nuclear Information System (INIS)

    Zaidi, I.M.; Gul, A.

    2005-01-01

    Nicotine and its metal complex; Cd(II)-nicotine were isolated from leaves of Nicotiana tabacum using various metal ions by the reported techniques and studied for their antifungal activities against fourteen different species of fungi. For comparative study, pure sample of nicotine and metal salt used for complexation; cadmium(II) iodide was also subjected to antifungal tests with the same species of fungus under similar conditions. Results indicated that nicotine is quite effective against the rare pathogenic and Non pathogenic fungi but comparatively less effective against Pathogenic fungi. Nicotine was found to be completely ineffective against the selected species of Occasional pathogenic fungi. Cadmium(II) iodide effectively inhibited Pathogenic and Non pathogenic fungi whereas relatively ineffective against the Occasional pathogenic and Rare pathogenic fungi. On the other hand, Cadmium(II) nicotine complex inhibited all the selected species of fungi except Fusarium solani. (author)

  7. Chemical Constituents and Antifungal Activity of Ficus hirta Vahl. Fruits

    Directory of Open Access Journals (Sweden)

    Chunpeng Wan

    2017-09-01

    Full Text Available Phytochemical investigation of Ficus hirta Vahl. (Moraceae fruits led to isolate two carboline alkaloids (1 and 2, five sesquiterpenoids/norsesquiterpenoids (3–7, three flavonoids (8–10, and one phenylpropane-1,2-diol (11. Their structures were elucidated by the analysis of their 1D and 2D NMR, and HR-ESI-MS data. All of the isolates were isolated from this species for the first time, while compounds 2, 4–6, and 8–11 were firstly reported from the genus Ficus. Antifungal assay revealed that compound 8 (namely pinocembrin-7-O-β-d-glucoside, a major flavonoid compound present in the ethanol extract of F. hirta fruits, showed good antifungal activity against Penicillium italicum, the phytopathogen of citrus blue mold caused the majority rotten of citrus fruits.

  8. Synthesis of chitosan derivative with diethyldithiocarbamate and its antifungal activity.

    Science.gov (United States)

    Qin, Yukun; Xing, Ronge; Liu, Song; Li, Kecheng; Hu, Linfeng; Yu, Huahua; Chen, Xiaolin; Li, Pengcheng

    2014-04-01

    With an aim to discover novel chitosan derivatives with enhanced antifungal properties compared with chitosan. Diethyl dithiocarbamate chitosan (EtDTCCS) was investigated and its structure was well identified. The antifungal activity of EtDTCCS against Alternaria porri (A. porri), Gloeosporium theae sinensis Miyake (G. theae sinensis), and Stemphylium solani Weber (S. solani) was tested at 0.25, 0.5, and 1.0 mg/mL, respectively. Compared with plain chitosan, EtDTCCS shows better inhibitory effect with 93.2% inhibitory index on G. theae sinensis at 1.0 mg/mL, even stronger than for polyoxin (82.5%). It was inferred derivatives of this kind may find potential applications for the treatment of various crop-threatening diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Antifungal Activity from Leaves of Acacia Nilotica against Pythium Aphanidermatum

    Directory of Open Access Journals (Sweden)

    A. J. Khan

    1996-01-01

    Full Text Available Gallic acid and methyl ester of gallic acid has been identified as antifungal compounds against the mycelial growth of Pythium aphanidermatum from acetone-water extracts of Acacia nilotica leaves. The growth of fungus was completely ceased by gallic acid and its methyl ester at 1000 ppm and 750 ppm, respectively. Antifungal properties of both compounds were found to be higher in combination than alone. The minimum inhibitory concentration for both compounds was 1000 ppm. No phytotoxic effect of the compounds was observed on watermelon seed germination. The growth of roots and shoots of watermelon seedlings was promoted by gallic acid but decreased with methyl ester of gallic acid. Nitrate reductase activity of the fungus was significantly inhibited by both compounds.

  10. Antifungal activity of natural and synthetic amides from Piper species

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Joaquim V.; Oliveira, Alberto de; Kato, Massuo J., E-mail: majokato@iq.usp.b [Universidade de Sao Paulo (IQ/USP), SP (Brazil). Inst. de Quimica; Raggi, Ludmila; Young, Maria C. [Instituto de Botanica, Sao Paulo, SP (Brazil). Secao de Fisiologia e Bioquimica de Plantas

    2010-07-01

    The antifungal leaves extract from Piper scutifolium was submitted to bioactivity-guided chromatographic separation against Cladosporium cladosporioides and C. sphaerospermum yielding piperine, piperlonguminine and corcovadine as the active principles which displayed a detection limit of 1 {mu}g. Structure-activity relationships were investigated with the preparation of twelve analogs having differences in the number of unsaturations, aromatic ring substituents and in the amide moiety. Analogs having a single double-bond and no substituent in the aromatic ring displayed higher activity, while N,N,-diethyl analogs displayed higher dose-dependent activity. (author)

  11. Potato dextrose agar antifungal susceptibility testing for yeasts and molds: evaluation of phosphate effect on antifungal activity of CMT-3.

    Science.gov (United States)

    Liu, Yu; Tortora, George; Ryan, Maria E; Lee, Hsi-Ming; Golub, Lorne M

    2002-05-01

    The broth macrodilution method (BMM) for antifungal susceptibility testing, approved by the National Committee for Clinical Laboratory Standards (NCCLS), was found to have deficiencies in testing of the antifungal activity of a new type of antifungal agent, a nonantibacterial chemically modified tetracycline (CMT-3). The high content of phosphate in the medium was found to greatly increase the MICs of CMT-3. To avoid the interference of phosphate in the test, a new method using potato dextrose agar (PDA) as a culture medium was developed. Eight strains of fungi, including five American Type Culture Collection strains and three clinical isolates, were used to determine the MICs of amphotericin B and itraconazole with both the BMM and the PDA methods. The MICs of the two antifungal agents determined with the PDA method showed 99% agreement with those determined with the BMM method within 1 log(2) dilution. Similarly, the overall reproducibility of the MICs with the PDA method was above 97%. Three other antifungal agents, fluconazole, ketoconazole, and CMT-3, were also tested in parallel against yeasts and molds with both the BMM and the PDA methods. The MICs of fluconazole and ketoconazole determined with the PDA method showed 100% agreement within 1 log(2) dilution of those obtained with the BMM method. However, the MICs of CMT-3 determined with the BMM method were as high as 128 times those determined with the PDA method. The effect of phosphate on the antifungal activity of CMT-3 was evaluated by adding Na2HPO4 to PDA in the new method. It was found that the MIC of CMT-3 against a Penicillium sp. increased from 0.5 microg/ml (control) to 2.0 microg/ml when the added phosphate was used at a concentration of 0.8 mg/ml, indicating a strong interference of Na2HPO4 with the antifungal activity of CMT-3. Except for fluconazole, all the other antifungal agents demonstrated clear end points among the yeasts and molds tested. Nevertheless, with its high reproducibility

  12. Parasiticidal, antifungal and antibacterial activities of Onosma ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... B. Ahmad1*, N. Ali2, 4, S. Bashir2, M. I. Choudhary3, S. Azam and I. Khan1. 1Centre for ... Table 1. Antileishmanial activities of crude methanolic extract and fractions of Onosma griffithii against the ..... Naphthoquinones from.

  13. Synthesis, Antibacterial and Antifungal Activities of s Derivatives

    Directory of Open Access Journals (Sweden)

    B. B. Baldaniya

    2009-01-01

    Full Text Available Several Nʹ-{4-[(3-chloro-4-fluorophenyl amino]-6-[(-aryl amino] -1, 3, 5-triazin-2-yl} isonicotinohydrazides (6a-r and N2-(Aryl-N4, N6-dipyrimidin-2-yl-1,3,5-triazine-2,4,6-triamines (4a-o were prepared. All newly synthesized compounds have been tested for their antibacterial activity against gram (+ve and gram (-ve bacteria and also on different strains of fungi. Introduction of -OH, -OCH3, -NO2, -Cl and -Br groups to the heterocyclic frame work enhanced antibacterial and antifungal activities.

  14. Antibacterial and antifungal activities of some Mexican medicinal plants.

    Science.gov (United States)

    Ruiz-Bustos, E; Velazquez, C; Garibay-Escobar, A; García, Z; Plascencia-Jatomea, M; Cortez-Rocha, M O; Hernandez-Martínez, J; Robles-Zepeda, R E

    2009-12-01

    In Mexico about 4,000 plant species have some medicinal use. The aim of this work was to evaluate the antimicrobial activity of six Mexican medicinal plants against fungi and Gram-positive and Gram-negative bacteria. Methanolic extracts were prepared from the Mexican medicinal plants Amphypteringium adstrigens, Castella tortuosa, Coutarea latiflora, Ibervillea sonorae, Jatropha cuneata, and Selaginella lepidophylla. The antibacterial and antifungal activities of the plants were determined by the broth microdilution method and the radial growth inhibition assay, respectively. All Mexican plants tested showed antimicrobial activity. Among the six plant extracts analyzed, J. cuneata showed the highest growth-inhibitory activity against fungi, Gram-positive and Gram-negative bacteria (J. cuneata > A. adstrigens > C. latiflora > C. tortuosa > I. sonorae approximately S. lepidophylla). Shigella flexneri and Staphylococcus aureus were the most susceptible bacteria to plant extracts. Complete inhibition of S. flexneri growth was observed with J. cuneata methanolic extract at 90 microg/mL. This plant extract also showed the strongest antifungal activity against Fusarium verticillioides and Aspergillus niger. Our data suggest that the medicinal plants tested have important antimicrobial properties. This is the first report describing the antimicrobial activities of several of the Mexican medicinal plants used in this study.

  15. Antifungal activity of gold nanoparticles prepared by solvothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Manzoor, Nikhat; Ahmad, Aijaz [Department of Biosciences, Jamia Millia Islamia, New Delhi 110025 (India); Ahmed, Jahangeer [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Al-Shihri, Ayed S. [Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004 (Saudi Arabia)

    2013-01-15

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.

  16. Antifungal activity of gold nanoparticles prepared by solvothermal method

    International Nuclear Information System (INIS)

    Ahmad, Tokeer; Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna; Manzoor, Nikhat; Ahmad, Aijaz; Ahmed, Jahangeer; Al-Shihri, Ayed S.

    2013-01-01

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m 2 /g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m 2/ g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl 2 and NaBH 4 as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl 2 , however, NaBH 4 produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m 2 /g for 7 nm and 269 m 2 /g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H + efflux of the Candida species than 15 nm sized gold nanoparticles.

  17. Antifungal Activity of Gallic Acid In Vitro and In Vivo.

    Science.gov (United States)

    Li, Zhi-Jian; Liu, Meng; Dawuti, Gulina; Dou, Qin; Ma, Yu; Liu, Heng-Ge; Aibai, Silafu

    2017-07-01

    Gallic acid (GA) is a polyphenol natural compound found in many medicinal plant species, including pomegranate rind (Punica granatum L.), and has been shown to have antiinflammatory and antibacterial properties. Pomegranate rind is used to treat bacterial and fungal pathogens in Uyghur and other systems of traditional medicine, but, surprisingly, the effects of GA on antifungal activity have not yet been reported. In this study, we aimed to investigate the inhibitory effects of GA on fungal strains both in vitro and in vivo. The minimal inhibitory concentration (MIC) was determined by the NCCLS (M38-A and M27-A2) standard method in vitro, and GA was found to have a broad spectrum of antifungal activity, with MICs for all the tested dermatophyte strains between 43.75 and 83.33 μg/mL. Gallic acid was also active against three Candida strains, with MICs between 12.5 and 100.0 μg/mL. The most sensitive Candida species was Candida albicans (MIC = 12.5 μg/mL), and the most sensitive filamentous species was Trichophyton rubrum (MIC = 43.75 μg/mL), which was comparable in potency to the control, fluconazole. The mechanism of action was investigated for inhibition of ergosterol biosynthesis using an HPLC-based assay and an enzyme linked immunosorbent assay. Gallic acid reduced the activity of sterol 14α-demethylase P450 (CYP51) and squalene epoxidase in the T. rubrum membrane, respectively. In vivo model demonstrated that intraperitoneal injection administration of GA (80 mg/kg d) significantly enhanced the cure rate in a mice infection model of systemic fungal infection. Overall, our results confirm the antifungal effects of GA and suggest a mechanism of action, suggesting that GA has the potential to be developed further as a natural antifungal agent for clinical use. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Antifungal activity of indigenous Bacillus spp. isolated from soil

    Directory of Open Access Journals (Sweden)

    Bjelić Dragana Đ.

    2017-01-01

    Full Text Available Biocontrol using plant growth-promoting rhizobacteria (PGPR represents an alternative approach to disease management, since PGPR are known to promote growth and reduce diseases in various crops. Among the different PGPR, members of the genus Bacillus are prefered for most biotechnological uses due to their capability to form extremely resistant spores and produce a wide variety of metabolites with antimicrobial activity. The objective of this research was to identify antagonistic bacteria for management of the plant diseases. Eleven isolates of Bacillus spp. were obtained from the soil samples collected from different localities in the Province of Vojvodina. The antifungal activity of bacterial isolates against five fungal species was examined using a dual plate assay. Bacillus isolates exhibited the highest antifungal activity against Fusarium proliferatum, Fusarium oxysporum f. sp. cepae and Alternaria padwickii, while they had the least antagonistic effect on Fusarium verticillioides and Fusarium graminearum. Molecular identification showed that effective bacterial isolates were identified as Bacillus safensis (B2, Bacillus pumilus (B3, B11, Bacillus subtilis (B5, B7 and Bacillus megaterium (B8, B9. The highest antagonistic activity was exhibited by isolates B5 (from 39% to 62% reduction in fungal growth and B7 (from 40% to 71% reduction in fungal growth. These isolates of B. subtilis could be used as potential biocontrol agents of plant diseases. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR-31073

  19. New aminoporphyrins bearing urea derivative substituents: synthesis, characterization, antibacterial and antifungal activity

    Directory of Open Access Journals (Sweden)

    Gholamreza Karimipour

    2015-06-01

    Full Text Available This work studied the synthesis of 5,10,15-tris(4-aminophenyl-20-(N,N-dialkyl/diaryl-N-phenylurea porphyrins (P1-P4 with alkyl or aryl groups of Ph, iPr, Et and Me, respectively and also the preparation of their manganese (III and cobalt (II complexes (MnP and CoP. The P1-P4 ligands were characterized by different spectroscopic techniques (1H NMR, FTIR, UV-Vis and elemental analysis, and metalated with Mn and Co acetate salts. The antibacterial and antifungal activities of these compounds in vitro were investigated by agar-disc diffusion method against Escherichia coli (-, Pseudomonas aeruginosa (-, Staphylococcus aureus(+, Bacillus subtilis (+ and Aspergillus oryzae and Candida albicans. Results showed that antibacterial and antifungal activity of the test samples increased with increase of their concentrations and the highest activity was obtained when the concentration of porphyrin compounds was 100 µg/mL. The activity for the porphyrin ligands depended on the nature of the urea derivative substituents and increased in the order P1 > P2 > P3 >P4, which was consistent with the order of their liposolubility. MnP and CoP complexes exhibited much higher antibacterial and antifungal activity than P1-P4ligands. Further, the growth inhibitory effects of these compounds was generally in the order CoP complexes > MnP complexes > P1-P4 ligands. Among these porphyrin compounds, CoP1displayed the highest antibacterial and antifungal activity, especially with a concentration of 100 µg/mL, against all the four tested bacteria and two fungi, and therefore it could be potential to be used as drug.

  20. Antifungal activity of Cymbopogon citratus against Colletotrichum gloesporioides

    Directory of Open Access Journals (Sweden)

    Alexander Francisco Pérez Cordero

    2017-04-01

    Full Text Available The objective of this research was to evaluate in vitro the inhibitory activity of essential oils from fresh leaves of Cymbopogon citratus (lemongrass against Colletotrichum gloeosporioides in yam. The research was conducted in the department of Sucre, Colombia. The essential oils of C. citratus were collected in the municipalities of Sincelejo, La Union and Sampues, in September and October 2015. The essential oil was extract from fresh leaves using the microwave-assisted hydrodistillation. Concentrations of 5000, 8000 and 10 000 ppm of each essential oil were prepared. An absolute control, a positive control (benomyl 1 g/l and a negative control was used. An inhibitory activity was obtained by using the direct seeding on surface of the potato-dextrose-agar method and it was expressed as percentage of inhibition rate. The chemical characterization of essential oils was performed by gas chromatography coupled to mass spectrometry. The highest percentages of antifungal index were observed in the lemongrass from Sincelejo at concentrations of 5000, 8000 and 10 000 ppm, after in La Union at 8000 and 10 000 ppm, and finally at Sampues at 10 000 ppm, with a value of 97.77%; the effect was similar to the positive control with benomyl 1 g/l. Citral was the main constituent of the essential oils extracted. The essential oils obtained from the three municipalities showed antifungal activity against C. gloeosporioides.

  1. Antibacterial, antifungal, and antiviral activities of some flavonoids.

    Science.gov (United States)

    Orhan, Didem Deliorman; Ozçelik, Berrin; Ozgen, Selda; Ergun, Fatma

    2010-08-20

    Antibacterial and antifungal activities of six plant-derived flavonoids representing two different structural groups were evaluated against standard strains of Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumoniae, Acinetobacter baumannii, Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis and their drug-resistant isolates, as well as fungi (Candida albicans, C. krusei) using the microdilution broth method. Herpes simplex virus Type-1 and Parainfluenza-3 virus were employed for antiviral assessment of the flavonoids using Madin-Darby bovine kidney and Vero cell lines. Ampicillin, gentamycin, ofloxacin, levofloxacin, fluconazole, ketoconazole, acyclovir, and oseltamivir were used as the control agents. All tested compounds (32-128 microg/ml) showed strong antimicrobial and antifungal activities against isolated strains of P. aeruginosa, A. baumanni, S. aureus, and C. krusei. Rutin, 5,7-dimethoxyflavanone-4'-O-beta-D-glucopyranoside and 5,7,3'-trihydroxy-flavanone-4'-O-beta-D-glucopyranoside (0.2-0.05 microg/ml) were active against PI-3, while 5,7-dimethoxyflavanone-4'-O-[2''-O-(5'''-O-trans-cinnamoyl)-beta-D-apiofuranosyl]-beta-D-glucopyranoside (0.16-0.2 microg/ml) inhibited potently HSV-1. Copyright 2009 Elsevier GmbH. All rights reserved.

  2. Activities of Available and Investigational Antifungal Agents against Rhodotorula Species

    Science.gov (United States)

    Diekema, D. J.; Petroelje, B.; Messer, S. A.; Hollis, R. J.; Pfaller, M. A

    2005-01-01

    Rhodotorula species are emerging pathogens in immunocompromised patients. We report the in vitro activities of eight antifungals against 64 Rhodotorula isolates collected in surveillance programs between 1987 and 2003. Rhodotorula strains are resistant in vitro to fluconazole (MIC at which 50% of the isolates tested are inhibited [MIC50], >128 μg/ml) and caspofungin (MIC50, >8 μg/ml). Amphotericin B (MIC50,1 μg/ml) and flucytosine (MIC50, 0.12 μg/ml) are both active in vitro, and the new and investigational triazoles all have some in vitro activity, with ravuconazole being the most active (MIC50, 0.25 μg/ml). PMID:15635020

  3. Antifungal activity of lectins against yeast of vaginal secretion

    Directory of Open Access Journals (Sweden)

    Bruno Severo Gomes

    2012-06-01

    Full Text Available Lectins are carbohydrate-binding proteins of non-imune origin. This group of proteins is distributed widely in nature and they have been found in viruses, microorganisms, plants and animals. Lectins of plants have been isolated and characterized according to their chemical, physical-chemical, structural and biological properties. Among their biological activities, we can stress its fungicidal action. It has been previously described the effect of the lectins Dviol, DRL, ConBr and LSL obtained from the seeds of leguminous plants on the growth of yeasts isolated from vaginal secretions. In the present work the experiments were carried out in microtiter plates and the results interpreted by both methods: visual observations and a microplate reader at 530nm. The lectin concentrations varied from 0.5 to 256µg/mL, and the inoculum was established between 65-70% of trammitance. All yeast samples isolated from vaginal secretion were evaluated taxonomically, where were observed macroscopic and microscopic characteristics to each species. The LSL lectin did not demonstrate any antifungal activity to any isolate studied. The other lectins DRL, ConBr and DvioL, showed antifungal potential against yeast isolated from vaginal secretion. These findings offering offer a promising field of investigation to develop new therapeutic strategies against vaginal yeast infections, collaborating to improve women's health.

  4. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

    Directory of Open Access Journals (Sweden)

    Kanniah Rajasekaran

    2013-04-01

    Full Text Available The antimicrobial properties of essential oils have been documented, and their use as “biocides” is gaining popularity. The aims of this study were to analyze the chemical composition and assess the biological activities of Hedychium essential oils. Oils from 19 Hedychium species and cultivars were analyzed by gas chromatography (GC and gas chromatography-mass spectrometry (GC-MS techniques. The antifungal and insecticidal activities of these oils were tested against Colletotrichum acutatum, C. fragariae, and C. gloeosporioides, and three insects, the azalea lace bug (Stephanitis pyrioides, the yellow fever mosquito (Aedes aegypti, and the red imported fire ant (Solenopsis invicta. Hedychium oils were rich in monoterpenes and sesquiterpenes, especially 1,8-cineole (0.1%–42%, linalool (<0.1%–56%, a-pinene (3%–17%, b-pinene (4%–31%, and (E-nerolidol (0.1%–20%. Hedychium oils had no antifungal effect on C. gloeosporioides, C. fragariae, and C. acutatum, but most Hedychium oils effectively killed azalea lace bugs. The oils also show promise as an adult mosquito repellent, but they would make rather poor larvicides or adulticides for mosquito control. Hedychium oils acted either as a fire ant repellent or attractant, depending on plant genotype and oil concentration.

  5. Antifungal activity of some essential oils against toxigenic Aspergillus species.

    Science.gov (United States)

    Alizadeh, Alireza; Zamani, Elham; Sharaifi, Rohollah; Javan-Nikkhah, Mohammad; Nazari, Somayeh

    2010-01-01

    Increasing attentions have been paid on the application of essential oils and plant extracts for control of postharvest pathogens due to their natural origin and less appearance of resistance in fungi pathogens. Some Aspergillus species are toxigenic and responsible for many cases of food and feed contamination. Some Toxins that produce with some Aspergillus species are known to be potent hepatocarcinogens in animals and humans. The present work evaluated the parameters of antifungal activity of the essential oils of Zataria multiflora, Thymus migricus, Satureja hortensis, Foeniculum vulgare, Carum capticum and thiabendazol fungicide on survival and growth of different species of Aspergillus. Aerial part and seeds of plant species were collected then dried and its essential oils isolated by means of hydrodistillation. Antifungal activity was evaluated in vitro by poisonous medium technique with PDA medium at six concentrations. Results showed that all essential oils could inhibit the growth of Aspergillus species. The essential oil with the best effect and lowest EC50 and MIC (Minimum Inhibitory Concentration) was Z. multiflora (223 microl/l and 650 microl/l, respectively). The chemical composition of the Z. multiflora essential oil was analyzed by GC-MS.

  6. Screening of Azotobacter isolates for PGP properties and antifungal activity

    Directory of Open Access Journals (Sweden)

    Bjelić Dragana Đ.

    2015-01-01

    Full Text Available Аmong 50 bacterial isolates obtained from maize rhizospherе, 13 isolates belonged to the genus Azotobacter. Isolates were biochemically characterized and estimated for pH and halo tolerance ability and antibiotic resistance. According to characterization, the six representative isolates were selected and further screened in vitro for plant growth promoting properties: production of indole-3-acetic acid (IAA, siderophores, hydrogen cyanide (HCN, exopolysaccharides, phosphate solubilization and antifungal activity (vs. Helminthosporium sp., Macrophomina sp., Fusarium sp.. Beside HCN production, PGP properties were detected for all isolates except Azt7. All isolates produced IAA in the medium without L-tryptophan and the amount of produced IAA increased with concentration of precursor in medium. The highest amount of IAA was produced by isolates Azt4 (37.69 and 45.86 μg ml-1 and Azt5 (29.44 and 50.38 μg ml-1 in the medium with addition of L-tryptophan (2.5 and 5 mM. The isolates showed the highest antifungal activity against Helminthosporium sp. and the smallest antagonistic effect on Macrophomina sp. Radial Growth Inhibition (RGI obtained by the confrontation of isolates with tested phytopathogenic fungi, ranged from 10 to 48%. [Projekat Ministarstva nauke Republike Srbije, br. TR 31073

  7. Quantitative structure-activity relationship of some 1-benzylbenzimidazole derivatives as antifungal agents

    Directory of Open Access Journals (Sweden)

    Podunavac-Kuzmanović Sanja O.

    2007-01-01

    Full Text Available In the present study, the antifungal activity of some 1-benzylbenzimidazole derivatives against yeast Saccharomyces cerevisiae was investigated. The tested benzimidazoles displayed in vitro antifungal activity and minimum inhibitory concentration (MIC was determined for all the compounds. Quantitative structure-activity relationship (QSAR has been used to study the relationships between the antifungal activity and lipophilicity parameter, logP, calculated by using CS Chem-Office Software version 7.0. The results are discussed on the basis of statistical data. The best QSAR model for prediction of antifungal activity of the investigated series of benzimidazoles was developed. High agreement between experimental and predicted inhibitory values was obtained. The results of this study indicate that the lipophilicity parameter has a significant effect on antifungal activity of this class of compounds, which simplify design of new biologically active molecules.

  8. ANTIFUNGAL ACTIVITY OF SILVER NANOPARTICLES OBTAINED BY GREEN SYNTHESIS

    Directory of Open Access Journals (Sweden)

    Eduardo José J. MALLMANN

    2015-04-01

    Full Text Available Silver nanoparticles (AgNPs are metal structures at the nanoscale. AgNPs have exhibited antimicrobial activities against fungi and bacteria; however synthesis of AgNPs can generate toxic waste during the reaction process. Accordingly, new routes using non-toxic compounds have been researched. The proposal of the present study was to synthesize AgNPs using ribose as a reducing agent and sodium dodecyl sulfate (SDS as a stabilizer. The antifungal activity of these particles against C. albicans and C. tropicalis was also evaluated. Stable nanoparticles 12.5 ± 4.9 nm (mean ± SD in size were obtained, which showed high activity against Candida spp. and could represent an alternative for fungal infection treatment.

  9. Antifungal compounds from turmeric and nutmeg with activity against plant pathogens

    Science.gov (United States)

    The antifungal activity of twenty-two common spices was evaluated against plant pathogens using direct-bioautography coupled Colletotrichum bioassays. Turmeric, nutmeg, ginger, clove, oregano, cinnamon, anise, fennel, basil, black cumin, and black pepper showed antifungal activity against the plant ...

  10. Antifungal activity of the essential oil from Calendula officinalis L. (asteraceae) growing in Brazil

    OpenAIRE

    Gazim, Zilda Cristiane; Rezende, Claudia Moraes; Fraga, Sandra Regina; Svidzinski, Terezinha Inez Estivaleti; Cortez, Di?genes Aparicio Garcia

    2008-01-01

    This study tested in vitro activity of the essential oil from flowers of Calendula officinalis using disk-diffusion techniques. The antifungal assay results showed for the first time that the essential oil has good potential antifungal activity: it was effective against all 23 clinical fungi strains tested.

  11. Antifungal activity of the essential oil from Calendula officinalis L. (asteraceae) growing in Brazil.

    Science.gov (United States)

    Gazim, Zilda Cristiane; Rezende, Claudia Moraes; Fraga, Sandra Regina; Svidzinski, Terezinha Inez Estivaleti; Cortez, Diógenes Aparicio Garcia

    2008-01-01

    This study tested in vitro activity of the essential oil from flowers of Calendula officinalis using disk-diffusion techniques. The antifungal assay results showed for the first time that the essential oil has good potential antifungal activity: it was effective against all 23 clinical fungi strains tested.

  12. ANTI-FUNGAL ACTIVITIES OF m-IODOBENZOIC ACID AND SOME ...

    African Journals Online (AJOL)

    The anti-fungal activities of alkali and alkaline earth metal iodobenzoates were studied. Calcium iodobenzoate exhibited the highest anti-fungal activities of 74.60% inhibition for 15 ppm while sodium iodobenzoate exhibited the least inhibition of 61.64%. An optimum concentration of all the metal complexes for inhibition ...

  13. Antifungal activity of allylamines against agents of eumycetoma

    Directory of Open Access Journals (Sweden)

    Venugopal Pankajalakshmi

    1993-01-01

    Full Text Available The antifungal activity of the two allylamines naftifine and terbinafine was investigated against 22 strains of eumycetes isolated from cases of eumycetoma by agar dilution. The isolates included Madurella mycetomatis (4, M. Grisea (8, Pyrenochaeta romeroi (2, Exophiala jeanselmei (2 and Leptosphaeria tompkinsii (1 from black grain eumycetomas and Pseudalescheria boydii (3 Acremonium kiliense (1 and A. recifei (1 form pale grain eumycetomas. Terbinafine was more active than naftifine inhibiting 50% (MIC50 and 90% (MIC90 of the black grain eumycetoma agents at 0.5 and 2.5 ?g/ml respectively. The MIC50s and MIC90s of naftifine were 1 and 5 ?g/ml. For pale grain eumycetoma agents, the MIC range for terbinafine and naftifine were ??0.01 - 100 and 0.1 - 100 ?g/ml.

  14. Antifungal Activity of Bacillus coagulans TQ33, Isolated from Skimmed Milk Powder, against Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Rui Feng Xiao

    2013-01-01

    Full Text Available Bacillus coagulans TQ33 is isolated from the skimmed milk powder and has a broad antifungal activity against pathogens such as Botrytis cinerea, Alternaria solani, Phytophthora drechsleri Tucker, Fusarium oxysporum and Glomerella cingulata. The characteristics of active antifungal substances produced by B. coagulans TQ33 and its antifungal effects against the growth of plant pathogenic fungi has been evaluated. The effect of pH, temperature and protease on the antifungal activity of B. coagulans TQ33 was determined. The results of partial characterization of the antifungal compound indicated that its activity is likely to be due to the production of a proteinaceous substance together with other substances. The greenhouse trials suggest that B. coagulans TQ33 has a great potential for the control of plant pathogenic fungi.

  15. Antifungal activity of secondary plant metabolites from potatoes (Solanum tuberosum L.): Glycoalkaloids and phenolic acids show synergistic effects.

    Science.gov (United States)

    Sánchez-Maldonado, A F; Schieber, A; Gänzle, M G

    2016-04-01

    To study the antifungal effects of the potato secondary metabolites α-solanine, α-chaconine, solanidine and caffeic acid, alone or combined. Resistance to glycoalkaloids varied among the fungal species tested, as derived from minimum inhibitory concentrations assays. Synergistic antifungal activity between glycoalkaloids and phenolic compounds was found. Changes in the fluidity of fungal membranes caused by potato secondary plant metabolites were determined by calculation of the generalized polarization values. The results partially explained the synergistic effect between caffeic acid and α-chaconine and supported findings on membrane disruption mechanisms from previous studies on artificial membranes. LC/MS analysis was used to determine variability and relative amounts of sterols in the different fungal species. Results suggested that the sterol pattern of fungi is related to their resistance to potato glycoalkaloids and to their taxonomy. Fungal resistance to α-chaconine and possibly other glycoalkaloids is species dependent. α-Chaconine and caffeic acid show synergistic antifungal activity. The taxonomic classification and the sterol pattern play a role in fungal resistance to glycoalkaloids. Results improve the understanding of the antifungal mode of action of potato secondary metabolites, which is essential for their potential utilization as antifungal agents in nonfood systems. © 2016 The Society for Applied Microbiology.

  16. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation

    Directory of Open Access Journals (Sweden)

    Mahoney Noreen

    2011-05-01

    Full Text Available Abstract Background Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Methods Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI. Results Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1Δ, sod2Δ, glr1Δ and two mitogen-activated protein kinase (MAPK mutants of A. fumigatus (sakAΔ, mpkCΔ, indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC or fungicidal (MFC

  17. Antifungal Activity of Endemic Salvia tigrina in Turkey | Dulger ...

    African Journals Online (AJOL)

    Ketoconazole was used as a positive reference standard to determine the sensitivity of the strains. Results: The minimum inhibitory concentration (MIC) ranged from 3.12 to 25 mg/mL. All the extracts exhibited a strong antifungal effect against the fungal cultures. The extracts exhibited greater antifungal effect against C.

  18. Antifungal and antibacterial activities of Petroselinum crispum essential oil.

    Science.gov (United States)

    Linde, G A; Gazim, Z C; Cardoso, B K; Jorge, L F; Tešević, V; Glamoćlija, J; Soković, M; Colauto, N B

    2016-07-29

    Parsley [Petroselinum crispum (Mill.) Fuss] is regarded as an aromatic, culinary, and medicinal plant and is used in the cosmetic, food, and pharmaceutical industries. However, few studies with conflicting results have been conducted on the antimicrobial activity of parsley essential oil. In addition, there have been no reports of essential oil obtained from parsley aerial parts, except seeds, as an alternative natural antimicrobial agent. Also, microorganism resistance is still a challenge for health and food production. Based on the demand for natural products to control microorganisms, and the re-evaluation of potential medicinal plants for controlling diseases, the objective of this study was to determine the chemical composition and antibacterial and antifungal activities of parsley essential oil against foodborne diseases and opportunistic pathogens. Seven bacteria and eight fungi were tested. The essential oil major compounds were apiol, myristicin, and b-phellandrene. Parsley essential oil had bacteriostatic activity against all tested bacteria, mainly Staphylococcus aureus, Listeria monocytogenes, and Salmonella enterica, at similar or lower concentrations than at least one of the controls, and bactericidal activity against all tested bacteria, mainly S. aureus, at similar or lower concentrations than at least one of the controls. This essential oil also had fungistatic activity against all tested fungi, mainly, Penicillium ochrochloron and Trichoderma viride, at lower concentrations than the ketoconazole control and fungicidal activity against all tested fungi at higher concentrations than the controls. Parsley is used in cooking and medicine, and its essential oil is an effective antimicrobial agent.

  19. Enhancement of the antifungal activity of antimicrobial drugs by Eugenia uniflora L.

    Science.gov (United States)

    Santos, Karla K A; Matias, Edinardo F F; Tintino, Saulo R; Souza, Celestina E S; Braga, Maria F B M; Guedes, Gláucia M M; Costa, José G M; Menezes, Irwin R A; Coutinho, Henrique Douglas Melo

    2013-07-01

    Candidiasis is the most frequent infection by opportunistic fungi such as Candida albicans, Candida tropicalis, and Candida krusei. Ethanol extract from Eugenia uniflora was assayed, for its antifungal activity, either alone or combined with four selected chemotherapeutic antimicrobial agents, including anphotericin B, mebendazole, nistatin, and metronidazole against these strains. The obtained results indicated that the association of the extract of E. uniflora to metronidazole showed a potential antifungal activity against C. tropicalis. However, no synergistic activity against the other strains was observed, as observed when the extract was associated with the other, not enhancing their antifungal activity.

  20. Antifungal Activity of Copaifera langsdorffii Desf Oleoresin against Dermatophytes

    Directory of Open Access Journals (Sweden)

    Nádia R. B. Raposo

    2013-10-01

    Full Text Available Dermatophytoses are mycoses that affect keratinized tissues in both humans and animals. The aim of this study was to investigate the antifungal activity of the oleoresin extracted from Copaifera langsdorffii Desf. against the strains Microsporum canis ATCC 32903, Microsporum gypseum ATCC 14683, Trichophyton mentagrophytes ATCC 11481 and Trichophyton rubrum CCT 5507. The antimicrobial activity was determined by minimum inhibitory concentration (MIC and minimum fungicidal concentration (MFC values. Ketoconazole and terbinafine were used as reference drugs. The copaiba oleoresin showed moderate fungicidal activity against T. mentagrophytes ATCC 11481 (MIC and MFC = 170 μg mL−1 and weak fungicidal activity against T. rubrum CCT 5507 (MIC = 1,360 μg mL−1 and MFC = 2,720 μg mL−1. There was no activity against M. canis ATCC 32903 and M. gypseum ATCC 14683. SEM analysis revealed physical damage and morphological alterations such as compression and hyphae clustering in the structure of the fungi exposed to the action of the oleoresin. The results stimulate the achievement of in vivo assays to confirm the benefits of the application of oleoresin extracted from copaiba in the treatment of dermatophytosis, both in humans and in animals.

  1. Antifungal activity of the lemongrass oil and citral against Candida spp.

    Directory of Open Access Journals (Sweden)

    Cristiane de Bona da Silva

    Full Text Available Superficial mycoses of the skin are among the most common dermatological infections, and causative organisms include dermatophytic, yeasts, and non-dermatophytic filamentous fungi. The treatment is limited, for many reasons, and new drugs are necessary. Numerous essential oils have been tested for both in vitro and in vivo antifungal activity and some pose much potential as antifungal agents. By using disk diffusion assay, we evaluated the antifungal activity of lemongrass oil and citral against yeasts of Candida species (Candida albicans, C. glabrata, C. krusei, C. parapsilosis and C. tropicalis. This study showed that lemongrass oil and citral have a potent in vitro activity against Candida spp.

  2. Antifungal activity of neem (Azadirachta indica: Meliaceae extracts against dermatophytes

    Directory of Open Access Journals (Sweden)

    Daniel Iván Ospina Salazar

    2015-09-01

    Full Text Available In order to assess the antifungal activity of methanolic extracts from neem tree (Azadirachta indica A. Juss., several bioassays were conducted following M38-A2 broth microdilution method on 14 isolates of the dermatophytes Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum canis and Epidermophyton floccosum. Neem extracts were obtained through methanol-hexane partitioning of mature green leaves and seed oil. Furthermore, high performance liquid chromatography (HPLC analyses were carried out to relate the chemical profile with their content of terpenoids, of widely known antifungal activity. The antimycotic Terbinafine served as a positive control. Results showed that there was total growth inhibition of the dermatophytes isolates at minimal inhibitory concentrations (MIC between 50 μg/mL and 200 μg/mL for leaves extract, and between 625 μg/mL and 2500 μg/mL for seed oil extract. The MIC of positive control (Terbinafine ranged between 0.0019 μg/mL and 0.0313 μg/mL. Both neem leaves and seed oil methanol extracts exhibited different chromatographic profiles by HPLC, which could explain the differences observed in their antifungal activity. This analysis revealed the possible presence of terpenoids in both extracts, which are known to have biological activity. The results of this research are a new report on the therapeutic potential of neem to the control of dermatophytosis.  Actividad antifúngica de extractos de neem (Azadirachta indica: Meliaceae sobre hongos dermatofitos Se determinó la actividad antifúngica de extractos metanólicos de la especie Azadirachta indica A. Juss. (Meliaceae, conocida comúnmente como neem, empleando el método de microdilución en caldo M38-A2 de referencia para hongos filamentosos y dermatofitos. Se evaluaron 14 aislamientos de los dermatofitos Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum canis y Epidermophyton floccosum. Los extractos de neem fueron obtenidos mediante partici

  3. Antifungal activity of different extracts of Ageratum conyzoides for the ...

    African Journals Online (AJOL)

    Muhammad Arif Javed

    2012-06-19

    Jun 19, 2012 ... In case of aqueous extracts, the maximum reduction was observed in leaf extract (72%) ... antifungal and insecticidal agents (Hajlaoui et al., 2009). Extracts of many ..... growth reduction of mycelia of phytophthora on neem leaf.

  4. Antifungal activity of extracts and phenolic compounds from ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... Key words: Barringtonia racemosa, antifungal, HPLC, phenolic acids, flavonoids. ... Among them, phenolic acids and flavonoids have been the object of .... on the previous method as described by Crozier et al. ... Quantification.

  5. Antifungal Activity of Bee Venom and Sweet Bee Venom against Clinically Isolated Candida albicans

    Directory of Open Access Journals (Sweden)

    Seung-Bae Lee

    2016-03-01

    Full Text Available Objectives: The purpose of this study was to investigate the antifungal effect of bee venom (BV and sweet bee venom (SBV against Candida albicans (C. albicans clinical isolates. Methods: In this study, BV and SBV were examined for antifungal activities against the Korean Collection for Type Cultures (KCTC strain and 10 clinical isolates of C. albicans. The disk diffusion method was used to measure the antifungal activity and minimum inhibitory concentration (MIC assays were performed by using a broth microdilution method. Also, a killing curve assay was conducted to investigate the kinetics of the anti- fungal action. Results: BV and SBV showed antifungal activity against 10 clinical isolates of C. albicans that were cultured from blood and the vagina by using disk diffusion method. The MIC values obtained for clinical isolates by using the broth microdilution method varied from 62.5 μg/ mL to 125 μg/mL for BV and from 15.63 μg/mL to 62.5 μg/mL for SBV. In the killing-curve assay, SBV behaved as amphotericin B, which was used as positive control, did. The antifungal efficacy of SBV was much higher than that of BV. Conclusion: BV and SBV showed antifungal activity against C. albicans clinical strains that were isolated from blood and the vagina. Especially, SBV might be a candidate for a new antifungal agent against C. albicans clinical isolates.

  6. Antifungal activity of fabrics knitted by metalized Silver/Polyester composite yarn

    Science.gov (United States)

    Özkan, İ.; Duru Baykal, P.

    2017-10-01

    In this study, antifungal properties of fabric knitted from metalized silver/polyester composite yarn were investigated. Intermingling is an alternative technique for yarn blending process. Yarns having different features can be combined by feeding the same intermingling jet. This process is defined as commingling. In the study, intermingling process was used to produce metalized silver/polyester composite yarn. Commingled yarns were knitted to single jersey fabrics by IPM brand sample type circular knitting machine. Antifungal activity test was applied to samples against Aspergillus Niger according to AATCC 30 test procedure. It has been identified that the application provides antifungal activity to fabric.

  7. Antifungal activity of multifunctional Fe{sub 3}O{sub 4}-Ag nanocolloids

    Energy Technology Data Exchange (ETDEWEB)

    Chudasama, Bhupendra, E-mail: bnchudasama@thapar.ed [School of Physics and Materials Science, Thapar University, Patiala 147004 (India); Vala, Anjana K.; Andhariya, Nidhi [Department of Physics, Bhavnagar University, Bhavnagar 364022 (India); Upadhyay, R.V. [P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa 388421 (India); Mehta, R.V. [Department of Physics, Bhavnagar University, Bhavnagar 364022 (India)

    2011-05-15

    In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe{sub 3}O{sub 4}-Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe{sub 3}O{sub 4}) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 {mu}g/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients. - Research Highlights: Synthesis of Fe{sub 3}O{sub 4}-Ag core-shell nanocolloids. Antifungal activity of Fe{sub 3}O{sub 4}-Ag nanocolloids against Aspergillus glaucus isolates. The MIC value for A. glaucus is 2000 {mu}g/mL. Antifungal activity is better or comparable with most prominent antibiotics.

  8. Antifungal activity of some marine organisms from India, against food spoilage Aspergillus strains

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosale, S.H.; Jagtap, T.G.; Naik, C.G.

    Crude aqueous methanol extracts obtained from 31 species of various marine organisms (including floral and faunal), were screened for their antifungal activity against food poisoning strains of Aspergillus. Seventeen species exhibited mild (+ = zone...

  9. Anti-inflammatory activity of Vismia guianensis (Aubl.) Pers. extracts and antifungal activity against Sporothrix schenckii.

    Science.gov (United States)

    Oliveira, A H; de Oliveira, G G; Carnevale Neto, F; Portuondo, D F; Batista-Duharte, A; Carlos, I Z

    2017-01-04

    Vismia guianensis (Aubl.) Pers. is traditionally used in North and Northeast of Brazil for the treatment of dermatomycoses. Since the strategy associating immunomodulators with antifungal drugs seems to be promissory to improve the treatment efficacy in fungal infections, we aimed to investigate the antifungal activity of V. guianensis ethanolic extract of leaves (VGL) and bark (VGB) against Sporothrix schenckii ATCC 16345 and their antinflammatory activities. The extracts were analyzed by HPLC-DAD-IT MS/MS for in situ identification of major compounds. Antifungal activity was evaluated in vitro (microdilution test) and in vivo using a murine model of S. schenckii infection. The production of TNF-α, IFN-γ, IL-4, IL-10 and IL-12 by measured by ELISA, as well as measured the production and inhibition of the NO after treatment with the plant extracts or itraconazole (ITR). Two O-glucosyl-flavonoids and 16 prenylated benzophenone derivatives already described for Vismia were detected. Both VGL and VGB showed significant antifungal activity either in in vitro assay of microdilution (MIC=3.9µg/mL) and in vivo model of infection with reduction of S. schenckii load in spleen. It was also observed a predominance of reduction in the production of NO and the proinflammatory cytokines evaluated except TNFα, but with stimulation of IL-10, as evidence of a potential anti-inflammatory effect associated. The results showed that both VGL and VGB have a significant antifungal against S. schenckii and an anti-inflammatory activity. These results can support the use of these extracts for alternative treatment of sporotrichosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Characteristics of bacillus strains with antifungal activity against phytopathogens

    International Nuclear Information System (INIS)

    Lee, Young Keun; Senthilkumar, M.

    2009-01-01

    Four bacterial isolates that showed antifungal activity against Alternaria alternata and other phytopathogens were isolates from bean rhizosphere. 16S rDNA analysis and phylogenetic relationship indicated that these isolates belong to Genus Bacillus. Isolate A1 clustered with Bacillus licheniformis while other isolates A2, A3 and A4 clustered together with B.pumilus. n-Butanol extract of these isolates strongly inhibited the growth of A. alternata while, chloroform extract of isolate A2 and ethyl acetate extract of A1,A3, and A4 inhibited the test fungus partially. All the isolates except A4 produced chitinase enzyme. None of the isolates solubilized mineral phosphate. Radiation sensitivity of isolates A1, A2, A3 and A4 were assessed and the LD 99 values are determined as 0.50, 6.69, 11,60, 1.53 kGy, respectively. Mutant libraries of each isolate were prepared by exposing them to gamma radiation at their respective LD 99 dose. Crude metabolite caused drastic changes on A. alternata hyphal morphology. Appearance of shrunken and collapsed hyphae could be due to the leak of cell wall or changes in membrane permeability

  11. Characteristics of bacillus strains with antifungal activity against phytopathogens

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Keun; Senthilkumar, M. [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-12-15

    Four bacterial isolates that showed antifungal activity against Alternaria alternata and other phytopathogens were isolates from bean rhizosphere. 16S rDNA analysis and phylogenetic relationship indicated that these isolates belong to Genus Bacillus. Isolate A1 clustered with Bacillus licheniformis while other isolates A2, A3 and A4 clustered together with B.pumilus. n-Butanol extract of these isolates strongly inhibited the growth of A. alternata while, chloroform extract of isolate A2 and ethyl acetate extract of A1,A3, and A4 inhibited the test fungus partially. All the isolates except A4 produced chitinase enzyme. None of the isolates solubilized mineral phosphate. Radiation sensitivity of isolates A1, A2, A3 and A4 were assessed and the LD{sub 99} values are determined as 0.50, 6.69, 11,60, 1.53 kGy, respectively. Mutant libraries of each isolate were prepared by exposing them to gamma radiation at their respective LD{sub 99} dose. Crude metabolite caused drastic changes on A. alternata hyphal morphology. Appearance of shrunken and collapsed hyphae could be due to the leak of cell wall or changes in membrane permeability.

  12. In vitro and in vivo activity of a novel antifungal small molecule against Candida infections.

    Directory of Open Access Journals (Sweden)

    Sarah Sze Wah Wong

    Full Text Available Candida is the most common fungal pathogen of humans worldwide and has become a major clinical problem because of the growing number of immunocompromised patients, who are susceptible to infection. Moreover, the number of available antifungals is limited, and antifungal-resistant Candida strains are emerging. New and effective antifungals are therefore urgently needed. Here, we discovered a small molecule with activity against Candida spp. both in vitro and in vivo. We screened a library of 50,240 small molecules for inhibitors of yeast-to-hypha transition, a major virulence attribute of Candida albicans. This screening identified 20 active compounds. Further examination of the in vitro antifungal and anti-biofilm properties of these compounds, using a range of Candida spp., led to the discovery of SM21, a highly potent antifungal molecule (minimum inhibitory concentration (MIC 0.2-1.6 µg/ml. In vitro, SM21 was toxic to fungi but not to various human cell lines or bacterial species and was active against Candida isolates that are resistant to existing antifungal agents. Moreover, SM21 was relatively more effective against biofilms of Candida spp. than the current antifungal agents. In vivo, SM21 prevented the death of mice in a systemic candidiasis model and was also more effective than the common antifungal nystatin at reducing the extent of tongue lesions in a mouse model of oral candidiasis. Propidium iodide uptake assay showed that SM21 affected the integrity of the cell membrane. Taken together, our results indicate that SM21 has the potential to be developed as a novel antifungal agent for clinical use.

  13. Antifungal Activity of Culture Filtrates and Organic Extracts of Aspergillus spp. against Pythium ultimum

    OpenAIRE

    Rania Aydi-Ben Abdallah; Marwa Hassine; Hayfa Jabnoun-Khiareddine; Rabiaa Haouala; Mejda Daami-Remadi

    2014-01-01

    Culture filtrates, chloroform and ethyl acetate extracts of nine isolates of Aspergillus spp. (A. niger, A. terreus, A. flavus and Aspergillus sp.), isolated from soil and compost, were tested for antifungal activity against Pythium ultimum the causal agent of the potato Pythium leak. Culture filtrates showed a significant antifungal activity at the different tested concentrations. Total inhibition of the pathogen was induced by the filtrate of CH8 of Aspergillus sp., used at 10% ...

  14. Occidiofungin is an important component responsible for the antifungal activity of Burkholderia pyrrocinia strain Lyc2.

    Science.gov (United States)

    Wang, X Q; Liu, A X; Guerrero, A; Liu, J; Yu, X Q; Deng, P; Ma, L; Baird, S M; Smith, L; Li, X D; Lu, S E

    2016-03-01

    To identify the taxonomy of tobacco rhizosphere-isolated strain Lyc2 and investigate the mechanisms of the antifungal activities, focusing on antimicrobials gene clusters identification and function analysis. Multilocus sequence typing and 16S rRNA analyses indicated that strain Lyc2 belongs to Burkholderia pyrrocinia. Bioassay results indicated strain Lyc2 showed significant antifungal activities against a broad range of plant and animal fungal pathogens and control efficacy on seedling damping off disease of cotton. A 55·2-kb gene cluster which was homologous to ocf gene clusters in Burkholderia contaminans MS14 was confirmed to be responsible for antifungal activities by random mutagenesis; HPLC was used to verify the production of antifungal compounds. Multiple antibiotic and secondary metabolized biosynthesis gene clusters predicated by antiSMASH revealed the broad spectrum of antimicrobials activities of the strain. Our results revealed the mechanisms of antifungal activities of strain Lyc2 and expand our knowledge about production of occidiofungin in the bacteria Burkholderia. Understanding the mechanisms of antifungal activities of strain Lyc2 has contributed to discovery of new antibiotics and expand our knowledge of production of occidiofungin in the bacteria Burkholderia. © 2015 The Society for Applied Microbiology.

  15. Antifungal activity, main active components and mechanism of Curcuma longa extract against Fusarium graminearum

    Science.gov (United States)

    Zhang, Fusheng; Chen, Qin; Chen, Cheng; Yu, Xiaorui; Liu, Qingya; Bao, Jinku

    2018-01-01

    Curcuma longa possesses powerful antifungal activity, as demonstrated in many studies. In this study, the antifungal spectrum of Curcuma longa alcohol extract was determined, and the resulting EC50 values (mg/mL) of its extract on eleven fungi, including Fusarium graminearum, Fusarium chlamydosporum, Alternaria alternate, Fusarium tricinctum, Sclerotinia sclerotiorum, Botrytis cinerea, Fusarium culmorum, Rhizopus oryzae, Cladosporium cladosporioides, Fusarium oxysporum and Colletotrichum higginsianum, were 0.1088, 0.1742, 0.1888, 0.2547, 0.3135, 0.3825, 0.4229, 1.2086, 4.5176, 3.8833 and 5.0183, respectively. Among them, F. graminearum was selected to determine the inhibitory effects of the compounds (including curdione, isocurcumenol, curcumenol, curzerene, β-elemene, curcumin, germacrone and curcumol) derived from Curcuma longa. In addition, the antifungal activities of curdione, curcumenol, curzerene, curcumol and isocurcumenol and the synergies of the complexes of curdione and seven other chemicals were investigated. Differential proteomics of F. graminearum was also compared, and at least 2021 reproducible protein spots were identified. Among these spots, 46 were classified as differentially expressed proteins, and these proteins are involved in energy metabolism, tRNA synthesis and glucose metabolism. Furthermore, several fungal physiological differences were also analysed. The antifungal effect included fungal cell membrane disruption and inhibition of ergosterol synthesis, respiration, succinate dehydrogenase (SDH) and NADH oxidase. PMID:29543859

  16. Synthesis and Antifungal Activity of Novel 3-Caren-5-One Oxime Esters

    Directory of Open Access Journals (Sweden)

    Min Huang

    2017-09-01

    Full Text Available A series of novel 3-caren-5-one oxime esters were designed and synthesized by multi-step reactions in an attempt to develop potent antifungal agents. Two E-Z stereoisomers of the intermediate 3-caren-5-one oxime were separated by column chromatography for the first time. The structures of all the intermediates and target compounds were confirmed by UV-Vis, FTIR, NMR, ESI-MS, and elemental analysis. The antifungal activity of the target compounds was preliminarily evaluated by the in vitro method against Fusarium oxysporum f. sp. cucumerinum, Physalospora piricola, Alternaria solani, Cercospora arachidicola, Gibberella zeae, Rhizoeotnia solani, Bipolaris maydis, and Colleterichum orbicalare at 50 µg/mL. The target compounds exhibited best antifungal activity against P. piricola, in which compounds (Z-4r (R = β-pyridyl, (Z-4q (R = α-thienyl, (E-4f′ (R = p-F Ph, (Z-4i (R = m-Me Ph, (Z-4j (R = p-Me Ph, and (Z-4p (R = α-furyl had inhibition rates of 97.1%, 87.4%, 87.4%, 85.0%, 81.9%, and 77.7%, respectively, showing better antifungal activity than that of the commercial fungicide chlorothanil. Also, compound (Z-4r (R = β-pyridyl displayed remarkable antifungal activity against all the tested fungi, with inhibition rates of 76.7%, 82.7%, 97.1%, 66.3%, 74.7%, 93.9%, 76.7% and 93.3%, respectively, showing better or comparable antifungal activity than that of the commercial fungicide chlorothanil. Besides, the E-Z isomers of the target oxime esters were found to show obvious differences in antifungal activity. These results provide an encouraging framework that could lead to the development of potent novel antifungal agents.

  17. Synthesis and Antifungal Activity of Novel 3-Caren-5-One Oxime Esters.

    Science.gov (United States)

    Huang, Min; Duan, Wen-Gui; Lin, Gui-Shan; Li, Kun; Hu, Qiong

    2017-09-12

    A series of novel 3-caren-5-one oxime esters were designed and synthesized by multi-step reactions in an attempt to develop potent antifungal agents. Two E - Z stereoisomers of the intermediate 3-caren-5-one oxime were separated by column chromatography for the first time. The structures of all the intermediates and target compounds were confirmed by UV-Vis, FTIR, NMR, ESI-MS, and elemental analysis. The antifungal activity of the target compounds was preliminarily evaluated by the in vitro method against Fusarium oxysporum f. sp. cucumerinum , Physalospora piricola , Alternaria solani , Cercospora arachidicola , Gibberella zeae, Rhizoeotnia solani , Bipolaris maydis , and Colleterichum orbicalare at 50 µg/mL. The target compounds exhibited best antifungal activity against P. piricola , in which compounds ( Z )- 4r (R = β -pyridyl), ( Z )- 4q (R = α -thienyl), ( E )- 4f' (R = p -F Ph), ( Z )- 4i (R = m -Me Ph), ( Z )- 4j (R = p -Me Ph), and ( Z )- 4p (R = α -furyl) had inhibition rates of 97.1%, 87.4%, 87.4%, 85.0%, 81.9%, and 77.7%, respectively, showing better antifungal activity than that of the commercial fungicide chlorothanil. Also, compound ( Z )- 4r (R = β -pyridyl) displayed remarkable antifungal activity against all the tested fungi, with inhibition rates of 76.7%, 82.7%, 97.1%, 66.3%, 74.7%, 93.9%, 76.7% and 93.3%, respectively, showing better or comparable antifungal activity than that of the commercial fungicide chlorothanil. Besides, the E-Z isomers of the target oxime esters were found to show obvious differences in antifungal activity. These results provide an encouraging framework that could lead to the development of potent novel antifungal agents.

  18. Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils

    Directory of Open Access Journals (Sweden)

    MARIA E.A. PINTO

    2017-08-01

    Full Text Available ABSTRACT Fatty acid methyl esters (FAMEs were obtained from vegetable oils of soybean, corn and sunflower. The current study was focused on evaluating the antifungal activity of FAMEs mainly against Paracoccidioides spp., as well as testing the interaction of these compounds with commercial antifungal drugs and also their antioxidant potential. FAMEs presented small IC50 values (1.86-9.42 μg/mL. All three FAMEs tested showed antifungal activity against isolates of Paracoccidioides spp. with MIC values ranging from 15.6-500 µg/mL. Sunflower FAMEs exhibited antifungal activity that extended also to other genera, with an MIC of 15.6 μg/mL against Candida glabrata and C. krusei and 31.2 μg/mL against C. parapsilosis. FAMEs exhibited a synergetic effect with itraconazole. The antifungal activity of the FAMEs against isolates of Paracoccidioides spp. is likely due to the presence of methyl linoleate, the major compound present in all three FAMEs. The results obtained indicate the potential of FAMEs as sources for antifungal and antioxidant activity.

  19. Synthesis of inulin derivatives with quaternary phosphonium salts and their antifungal activity.

    Science.gov (United States)

    Chen, Yuan; Tan, Wenqiang; Li, Qing; Dong, Fang; Gu, Guodong; Guo, Zhanyong

    2018-03-13

    Inulin is a kind of renewable and biodegradable carbohydrate with good water solubility and numerous physiological functions. For further utilization of inulin, chemical modification can be applied to improve its bioactivities. In this paper, five novel inulin derivatives were synthesized via chemical modification with quaternary phosphonium salt. Their antifungal activity against three kinds of plant pathogens including Colletotrichum lagenarium, Phomopsis asparagi, and Fusarium oxysporum was assessed with radial growth assay in vitro. Results revealed that all the inulin derivatives exhibited improved antifungal activity compared with inulin. Particularly, inulin modified with triphenylphosphine (TPhPAIL) exhibited the best antifungal activity with inhibitory indices of 80.0%, 78.8%, and 87.4% against Colletotrichum lagenarium, Phomopsis asparagi, and Fusarium oxysporum at 1.0mg/mL respectively. The results clearly showed that chemical modification of inulin with quaternary phosphonium salt could efficiently improve derivatives' antifungal activity. Further analysis of results indicated that the antifungal activity was influenced by alkyl chain length or electron-withdrawing ability of the grafted quaternary phosphonium salts. Longer alkyl chain lengths or the stronger electron-withdrawing groups would lead to enhanced antifungal efficacy. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Ebselen exerts antifungal activity by regulating glutathione (GSH) and reactive oxygen species (ROS) production in fungal cells.

    Science.gov (United States)

    Thangamani, Shankar; Eldesouky, Hassan E; Mohammad, Haroon; Pascuzzi, Pete E; Avramova, Larisa; Hazbun, Tony R; Seleem, Mohamed N

    2017-01-01

    Ebselen, an organoselenium compound and a clinically safe molecule has been reported to possess potent antifungal activity, but its antifungal mechanism of action and in vivo antifungal activity remain unclear. The antifungal effect of ebselen was tested against Candida albicans, C. glabrata, C. tropicalis, C. parapsilosis, Cryptococcus neoformans, and C. gattii clinical isolates. Chemogenomic profiling and biochemical assays were employed to identify the antifungal target of ebselen. Ebselen's antifungal activity in vivo was investigated in a Caenorhabditis elegans animal model. Ebselen exhibits potent antifungal activity against both Candida spp. and Cryptococcus spp., at concentrations ranging from 0.5 to 2μg/ml. Ebselen rapidly eradicates a high fungal inoculum within 2h of treatment. Investigation of the drug's antifungal mechanism of action indicates that ebselen depletes intracellular glutathione (GSH) levels, leading to increased production of reactive oxygen species (ROS), and thereby disturbs the redox homeostasis in fungal cells. Examination of ebselen's in vivo antifungal activity in two Caenorhabditis elegans models of infection demonstrate that ebselen is superior to conventional antifungal drugs (fluconazole, flucytosine and amphotericin) in reducing Candida and Cryptococcus fungal load. Ebselen possesses potent antifungal activity against clinically relevant isolates of both Candida and Cryptococcus by regulating GSH and ROS production. The potent in vivo antifungal activity of ebselen supports further investigation for repurposing it for use as an antifungal agent. The present study shows that ebselen targets glutathione and also support that glutathione as a potential target for antifungal drug development. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Design, synthesis of novel chitosan derivatives bearing quaternary phosphonium salts and evaluation of antifungal activity.

    Science.gov (United States)

    Tan, Wenqiang; Zhang, Jingjing; Luan, Fang; Wei, Lijie; Chen, Yuan; Dong, Fang; Li, Qing; Guo, Zhanyong

    2017-09-01

    Two novel chitosan derivatives modified with quaternary phosphonium salts were successfully synthesized, including tricyclohexylphosphonium acetyl chitosan chloride (TCPACSC) and triphenylphosphonium acetyl chitosan chloride (TPPACSC), and characterized by FTIR, 1 H NMR, and 13 C NMR spectra. The degree of substitution was also calculated by elemental analysis results. Their antifungal activities against Colletotrichum lagenarium, Watermelon fusarium, and Fusarium oxysporum were investigated in vitro using the radial growth assay, minimal inhibitory concentration, and minimum bactericidal concentration assay. The fungicidal assessment revealed that the synthesized chitosan derivatives had superior antifungal activity compared with chitosan. Especially, TPPACSC exhibited the best antifungal property with inhibitory indices of over 75% at 1.0mg/mL. The results obviously showed that quaternary phosphonium groups could effectively enhance antifungal activity of the synthesized chitosan derivatives. Meanwhile, it was also found that their antifungal activity was influenced by electron-withdrawing ability of the quaternary phosphonium salts. The synthetic strategy described here could be utilized for the development of chitosan as antifungal biomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Composition and antifungal activity of essential oils from Piper aduncum, Piper arboreum and Piper tuberculatum

    OpenAIRE

    Navickiene, HMD; Morandim, ADA; Alecio, A. C.; Regasini, L. O.; Bergamo, DCB; Telascrea, M.; Cavalheiro, Alberto José [UNESP; Lopes, Márcia Nasser [UNESP; Bolzani, Vanderlan da Silva [UNESP; Furlan, Maysa [UNESP; Marques, MOM; Young, MCM; Kato, M. J.

    2006-01-01

    The composition of essential oils from leaves, stems and fruits of Piper aduncum, P. arboreum and P. tuberculatum was examined by means of GC-MS and antifungal assay. There was a predominance of monoterpenes in P. aduncum and P. tuberculatum and of sesquiterpenes in P. arboreum. P. aduncum showed the richest essential oil composition, including linalool. The essential oils from fruits of P. aduncum and P. tuberculatum showed the highest antifungal activity with the MIC of 10 µg as determined ...

  3. Quantitative and qualitative analysis of the antifungal activity of allicin alone and in combination with antifungal drugs.

    Directory of Open Access Journals (Sweden)

    Young-Sun Kim

    Full Text Available The antifungal activity of allicin and its synergistic effects with the antifungal agents flucytosine and amphotericin B (AmB were investigated in Candida albicans (C. albicans. C. albicans was treated with different conditions of compounds alone and in combination (allicin, AmB, flucytosine, allicin + AmB, allicin + flucytosine, allicin + AmB + flucytosine. After a 24-hour treatment, cells were examined by scanning electron microscopy (SEM and atomic force microscopy (AFM to measure morphological and biophysical properties associated with cell death. The clearing assay was conducted to confirm the effects of allicin. The viability of C. albicans treated by allicin alone or with one antifungal drug (AmB, flucytosine in addition was more than 40% after a 24-hr treatment, but the viability of groups treated with combinations of more than two drugs was less than 32%. When the cells were treated with allicin alone or one type of drug, the morphology of the cells did not change noticeably, but when cells were treated with combinations of drugs, there were noticeable morphological changes. In particular, cells treated with allicin + AmB had significant membrane damage (burst or collapsed membranes. Classification of cells according to their cell death phase (CDP allowed us to determine the relationship between cell viability and treatment conditions in detail. The adhesive force was decreased by the treatment in all groups compare to the control. Cells treated with AmB + allicin had a greater adhesive force than cells treated with AmB alone because of the secretion of molecules due to collapsed membranes. All cells treated with allicin or drugs were softer than the control cells. These results suggest that allicin can reduce MIC of AmB while keeping the same efficacy.

  4. Chemical composition and antifungal activity of essential oils of ...

    African Journals Online (AJOL)

    The aim of this study was to determine the chemical composition of the essential oils of Algerian citrus. They were extracted by hydrodistillation from the leaves of citrus species (orange, Bigaradier, mandarin and lemon), using gas chromatography/mass spectrometry (GC/MS). Their chemical composition and antifungal ...

  5. Antifungal activity of methanolic root extract of Withania somnifera

    African Journals Online (AJOL)

    Proff.Adewunmi

    remedy for many diseases in various regions of the world, especially in ... For control, 2 mL of DMSO was added to 16 mL of water, and 4 mL of this .... 3E). Since the four organic solvents used for fractionation of methanolic root .... Purification of a Lectin-Like Antifungal Protein from the Medicinal Herb, Withania Somnifera.

  6. Essential oil of Algerian Eucalyptus citriodora: Chemical composition, antifungal activity.

    Science.gov (United States)

    Tolba, H; Moghrani, H; Benelmouffok, A; Kellou, D; Maachi, R

    2015-12-01

    Essential oil of Eucalyptus citriodora is a natural product which has been attributed for various medicinal uses. In the present investigation, E. citriodora essential oil was used to evaluate its antifungal effect against medically important dermatophytes. Essential oil from the Algerian E. citriodora leaves was analyzed by GC and GC/MS. The antifungal effect of E. citriodora essential oil was evaluated against four dermatophytes: Microsporum canis, Microsporum gypseum, Trichophyton mentagrophytes, Trichophyton rubrum using disc diffusion method, disc volatilization method, and agar dilution method. The chemical composition of the oil revealed the presence of 22 compounds accounting for 95.27% of the oil. The dominant compounds were citronellal (69.77%), citronellol (10.63%) and isopulegol (4.66%). The disc diffusion method, MIC and MFC determination, indicated that E. citriodora essential oil had a higher antifungal potential against the tested strains with inhibition zone diameter which varied from (12 to 90mm) and MIC and MFC values ranged from (0.6 to 5μL/mL and 1.25 to 5μL/mL) respectively. The M. gypseum was the most resistant to the oil. The results of the present study indicated that E. citriodora essential oil may be used as a new antifungal agent recommended by the pharmaceutical industries. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Antifungal activity of Parmotrema tinctorum (Delise ex Nyl.) hale and ...

    African Journals Online (AJOL)

    Lichens are composite organisms comprising of a photobiont and a mycobiont. Studies have shown that extracts and secondary metabolites from lichens exhibit various bioactivities. The present study evaluates antifungal potential of crude methanolic extract of two corticolous Parmotrema species viz. Parmotrema tinctorum ...

  8. Antifungal activity of bacterial strains from the rhizosphere of ...

    African Journals Online (AJOL)

    This study evaluated the antifungal action of biomolecules produced from the secondary metabolism of bacterial strains found in the rhizosphere of semi arid plants against human pathogenic Candida albicans. Crude extracts were obtained using ethyl acetate as an organic solvent and the bioactivity was assessed with a ...

  9. Antifungal activity of leaf extract of Crassocephalum repidiodes on ...

    African Journals Online (AJOL)

    The susceptibility profile of the dermatophytes tested was T. mentagrophytes. > T. rubrum > M. audouinii. The phytochemical studies of the extracts revealed that the aqueous extract lacked terpenes and anthraquinone while terpenes were absent in ethanolic extract. KEY WORDS: Antifungal, Dermatophytes, Extract, ...

  10. In Vitro Activity of E1210, a Novel Antifungal, against Clinically Important Yeasts and Molds▿

    Science.gov (United States)

    Miyazaki, Mamiko; Horii, Takaaki; Hata, Katsura; Watanabe, Nao-aki; Nakamoto, Kazutaka; Tanaka, Keigo; Shirotori, Syuji; Murai, Norio; Inoue, Satoshi; Matsukura, Masayuki; Abe, Shinya; Yoshimatsu, Kentaro; Asada, Makoto

    2011-01-01

    E1210 is a new antifungal compound with a novel mechanism of action and broad spectrum of antifungal activity. We investigated the in vitro antifungal activities of E1210 compared to those of fluconazole, itraconazole, voriconazole, amphotericin B, and micafungin against clinical fungal isolates. E1210 showed potent activities against most Candida spp. (MIC90 of ≤0.008 to 0.06 μg/ml), except for Candida krusei (MICs of 2 to >32 μg/ml). E1210 showed equally potent activities against fluconazole-resistant and fluconazole-susceptible Candida strains. E1210 also had potent activities against various filamentous fungi, including Aspergillus fumigatus (MIC90 of 0.13 μg/ml). E1210 was also active against Fusarium solani and some black molds. Of note, E1210 showed the greatest activities against Pseudallescheria boydii (MICs of 0.03 to 0.13 μg/ml), Scedosporium prolificans (MIC of 0.03 μg/ml), and Paecilomyces lilacinus (MICs of 0.06 μg/ml) among the compounds tested. The antifungal action of E1210 was fungistatic, but E1210 showed no trailing growth of Candida albicans, which has often been observed with fluconazole. In a cytotoxicity assay using human HK-2 cells, E1210 showed toxicity as low as that of fluconazole. Based on these results, E1210 is likely to be a promising antifungal agent for the treatment of invasive fungal infections. PMID:21825291

  11. Antioxidant and antifungal activities of two spices of mangrove plant extract

    Directory of Open Access Journals (Sweden)

    Somayeh Rastegar

    2016-10-01

    Full Text Available Objective: To evaluate the antifungal and the radical scavenging capacity related to antioxidant potential of ethanol and water extracts of leaves of Rhizophora mucronata (R. mucronata and Avicennia marina (A. marina mangrove plant species against five postharvest pathogenic bacteria. Methods: In vitro assessment of antioxidant and antifungal activities was evaluated in this present study for both aqueous and ethanol extracts prepared from leaves of A. marina and R. mucronata. The antioxidant activities of these mangroves were evaluated by using reducing power and 1,1-diphenyl-2-picrylhydrazyl assays with butylated hydroxytoluene and L-(+- ascorbic acid as standards. Results: The result showed that the antioxidant activities of all extracts increased with increasing concentration of extracts. However, the ethanol extracts of both species showed the highest antioxidant activities. Antimicrobial tests were then carried out by the disk diffusion method. The ethanol extracts of both species showed antifungal activities on Penicillium purpurogenum, Penicillium chrysogenum, Penicillium notatum, Aspergillus niger, Alternaria alternata and Penicillium italicum. However, none of the water extracts exhibited antifungal activity on the studied fungi. Among all the pathogens, tested Aspergillus flavus was the most resistant fungi. Different concentrations of extracts from A. marina and R. mucronata showed different amounts of control against tested fungal strains. Conclusions: This study indicated that mangrove species has natural antioxidant and antifungal properties.

  12. Antifungal activity of Andrographis paniculata extracts and active principles against skin pathogenic fungal strains in vitro.

    Science.gov (United States)

    Sule, Abubakar; Ahmed, Qamar Uddin; Latip, Jalifah; Samah, Othman Abd; Omar, Muhammad Nor; Umar, Abdulrashid; Dogarai, Bashar Bello S

    2012-07-01

    Andrographis paniculata Nees. (Acanthaceae) is an annual herbaceous plant widely cultivated in southern Asia, China, and Europe. It is used in the treatment of skin infections in India, China, and Malaysia by folk medicine practitioners. Antifungal activity of the whole plant extracts and isolation of active principles from A. paniculata were investigated. Dichloromethane (DCM) and methanol (MEOH) extracts of A. paniculata whole plant were screened for their antifungal potential using broth microdilution method in vitro against seven pathogenic fungal species responsible for skin infections. Active principles were detected through bioguided assays and isolated using chromatography techniques. Structures of compounds were elucidated through spectroscopy techniques and comparisons were made with previously reported data for similar compounds. DCM extract revealed lowest minimum inhibitory concentration (MIC) value (100 μg/mL) against Microsporum canis, Candida albicans, and Candida tropicalis, whereas MEOH extract revealed lowest MIC (150 µg/mL) against C. tropicalis and Aspergillus niger. DCM extract showed lowest minimum fungicidal concentration (MFC) value (250 µg/mL) against M. canis, C. albicans, C. tropicalis and A. niger, whereas MEOH extract showed lowest MFC (250 µg/mL) against Trichophyton mentagrophytes, Trichophyton rubrum, M. canis, C. albicans, C. tropicalis and A. niger. Bioassay guided isolation from DCM and MEOH extract afforded 3-O-β-d-glucosyl-14-deoxyandrographiside, 14-deoxyandrographolide, and 14-deoxy-11,12-didehydroandrographolide as antifungal compounds. The lowest MIC (50 µg/mL) and MFC (50 µg/mL) was exerted by 14-deoxyandrographolide on M. canis. This is first report on the isolation of antifungal substances through bioassay-guided assay from A. paniculata. Our finding justifies the use of A. paniculata in folk medicines for the treatment of fungal skin infections.

  13. Screening of pharmacologically active small molecule compounds identifies antifungal agents against Candida biofilms

    Directory of Open Access Journals (Sweden)

    Takao eWatamoto

    2015-12-01

    Full Text Available Candida species have emerged as important and common opportunistic human pathogens, particularly in immunocompromised individuals. The current antifungal therapies either have toxic side effects or are insufficiently effect. The aim of this study is develop new small-molecule antifungal compounds by library screening methods using C. albicans, and to evaluate their antifungal effects on Candida biofilms and cytotoxic effects on human cells. Wild-type C. albicans strain SC5314 was used in library screening. To identify antifungal compounds, we screened a small-molecule library of 1,280 pharmacologically active compounds (LOPAC1280TM using an antifungal susceptibility test (AST. To investigate the antifungal effects of the hit compounds, ASTs were conducted using Candida strains in various growth modes, including biofilms. We tested the cytotoxicity of the hit compounds using human gingival fibroblast (hGF cells to evaluate their clinical safety. Only 35 compounds were identified by screening, which inhibited the metabolic activity of C. albicans by >50%. Of these, 26 compounds had fungistatic effects and 9 compounds had fungicidal effects on C. albicans. Five compounds, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate, ellipticine and CV-3988, had strong fungicidal effects and could inhibit the metabolic activity of Candida biofilms. However, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine were cytotoxic to hGF cells at low concentrations. CV-3988 showed no cytotoxicity at a fungicidal concentration.Four of the compounds identified, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine, had toxic effects on Candida strains and hGF cells. In contrast, CV-3988 had fungicidal effects on Candida strains, but low cytotoxic effects on hGF cells. Therefore, this screening reveals agent, CV-3988 that was previously unknown to be antifungal agent, which could be a novel therapies for superficial mucosal

  14. In vitro activities of antifungal drugs against environmental Exophiala isolates and review of the literature.

    Science.gov (United States)

    Gülmez, Dolunay; Doğan, Özlem; Boral, Barış; Döğen, Aylin; İlkit, Macit; de Hoog, G Sybren; Arikan-Akdagli, Sevtap

    2018-04-03

    Exophiala is a genus of black fungi isolated worldwide from environmental and clinical specimens. Data on antifungal susceptibility of Exophiala isolates are limited and the methodology on susceptibility testing is not yet standardized. In this study, we investigated in vitro antifungal susceptibilities of environmental Exophiala isolates. A total of 87 Exophiala isolated from dishwashers or railway ties were included. CLSI M38-A2 microdilution method with modifications was used to determine antifungal susceptibility for fluconazole, voriconazole, posaconazole, itraconazole, amphotericin B, and terbinafine. Minimum inhibitory concentration (MIC) values were determined visually at 48h, 72h, and 96h. MIC-0 endpoint (complete inhibition of growth) was used for amphotericin B and azoles, except fluconazole, for which MIC-2 endpoint (~50% inhibition compared to growth control) was used. Both MIC-0 and MIC-1 (~80% inhibition compared to growth control) results were analysed for terbinafine, to enable comparison with previous studies. Fungal growth was sufficient for determination of MICs at 48h for all isolates except two Exophiala dermatitidis strains. At 72h, most active antifungal agents according to GM MIC were voriconazole and terbinafine, followed by posaconazole, itraconazole, and amphotericin B in rank order of decreasing activity. While amphotericin B displayed adequate in vitro activity despite relatively high MICs, fluconazole showed no meaningful antifungal activity against Exophiala. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Acylated Flavone Glycosides from the Roots of Saussurea lappa and Their Antifungal Activity

    Directory of Open Access Journals (Sweden)

    Yemireddy Venkata Ramnareddy

    2007-03-01

    Full Text Available The isolation of four novel acylated flavonoid glycosides from the roots of Saussurea lappa and their identification using a combination of 1D and 2D NMR and mass spectrometry is described. The in vitro antifungal and antibacterial activities of the isolated compounds and their mixture were tested on nine fungal and four bacterial strains, using the microdilution method. The compounds and mixture showed moderate to high antifungal activity against most of the fungi tested, compared to a miconazole standard, while only one compound and the mixture showed antibacterial activity against all strains tested.

  16. pH-Dependant Antifungal Activity of Valproic Acid against the Human Fungal Pathogen Candida albicans

    Directory of Open Access Journals (Sweden)

    Julien Chaillot

    2017-10-01

    Full Text Available Current antifungal drugs suffer from limitations including toxicity, the emergence of resistance and decreased efficacy at low pH that are typical of human vaginal surfaces. Here, we have shown that the antipsychotic drug valproic acid (VPA exhibited a strong antifungal activity against both sensitive and resistant Candida albicans in pH condition similar to that encountered in vagina. VPA exerted a strong anti-biofilm activity and attenuated damage of vaginal epithelial cells caused by C. albicans. We also showed that VPA synergizes with the allylamine antifungal, Terbinafine. We undertook a chemogenetic screen to delineate biological processes that underlies VPA-sensitivity in C. albicans and found that vacuole-related genes were required to tolerate VPA. Confocal fluorescence live-cell imaging revealed that VPA alters vacuole integrity and support a model where alteration of vacuoles contributes to the antifungal activity. Taken together, this study suggests that VPA could be used as an effective antifungal against vulvovaginal candidiasis.

  17. Chemical composition and antifungal activity of thyme (Thymus vulgaris essential oil

    Directory of Open Access Journals (Sweden)

    S. Farsaraei*

    2017-11-01

    Full Text Available Background and objectives: The antifungal activity of the essential oils and their constituents against some phytopathogenic fungi has been reported. Thymus vulgaris (Lamiaceae is one of the Thymus species.  A large number of studies have concerned the chemical compositions and antifungal activity of thyme’s oil. In order to reduce the use of synthetic fungicides, recently considerable attention has been given to search for naturally occurring compounds. The aim of the present work was to determine the chemical composition and antifungal activity of T. vulgaris oil cultivated in Iran. Methods: The essential oil from aerial parts of the plant at full flowering stage was subjected to hydrodistillation and chemical compounds were analyzed by GC/GC-MS. The in vitro antifungal activity against three phytopathogenic fungi (Drechslera spicifera, Fusarium oxysporum f.sp. ciceris and Macrophomina phaseolinaby of the oil was evaluated by agar dilution method. The data were subjected to ANOVA according to the SPSS 21 software. Results: Totally 45 compounds representing 96.75% of the oil were found. Thymol (36.81% and ρ-cymene (30.90% were the main components of thyme oil. According to the results, the antifungal activity of the oil increased with a rising in concentration. All of the tested fungi growth was completely inhibited on 1600 µL/L. In this study fungicidal activity was only observed on F. oxysporum and D. spicifera at concentrations higher than 800 µL/L.  Conclusion: The antifungal activity of T. vulgaris essential oil could be probably due to the high concentration of oxygenated monoterpenes (thymol and monoterpene hydrocarbons (ρ-cymene.

  18. Antimicrobial and antifungal activities of the extracts and essential oils of Bidens tripartita.

    Directory of Open Access Journals (Sweden)

    Michał Tomczyk

    2008-12-01

    Full Text Available The aim of this study was to determine the antibacterial and antifungal properties of the extracts, subextracts and essential oils of Bidens tripartita flowers and herbs. In the study, twelve extracts and two essential oils were investigated for activity against different Gram-positive Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Gram-negative bacteria Escherichia coli, E. coli (beta-laktamase+, Klebsiella pneumoniae (ESBL+, Pseudomonas aeruginosa and some fungal organisms Candida albicans, C. parapsilosis, Aspergillus fumigatus, A. terreus using a broth microdilution and disc diffusion methods. The results obtained indicate antimicrobial activity of the tested extracts (except butanolic extracts, which however did not inhibit the growth of fungi used in this study. Bacteriostatic effect of both essential oils is insignificant, but they have strong antifungal activity. These results support the use of B. tripartita to treat a microbial infections and it is indicated as an antimicrobial and antifungal agent, which may act as pharmaceuticals and preservatives.

  19. Design, synthesis, and antifungal activities of novel triazole derivatives containing the benzyl group

    Directory of Open Access Journals (Sweden)

    Xu K

    2015-03-01

    Full Text Available Kehan Xu,1,* Lei Huang,1,* Zheng Xu,2 Yanwei Wang,1,3 Guojing Bai,1 Qiuye Wu,1 Xiaoyan Wang,1 Shichong Yu,1 Yuanying Jiang1 1School of Pharmacy, Second Military Medical University, Shanghai, 2Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 3Number 422 Hospital of PLA, Zhanjiang, People’s Republic of China *These authors contributed equally to this work Abstract: In previous studies undertaken by our group, a series of 1-(1H-1,2,4-triazole-1-yl-2-(2,4-difluorophenyl-3-substituted-2-propanols (1a–r, which were analogs of fluconazole, was designed and synthesized by click chemistry. In the study reported here, the in vitro antifungal activities of all the target compounds were evaluated against eight human pathogenic fungi. Compounds 1a, 1q, and 1r showed the more antifungal activity than the others. Keywords: triazole, synthesis, antifungal activity, CYP51

  20. In vitro and in vivo antifungal activities of selected Cameroonian dietary spices.

    Science.gov (United States)

    Dzoyem, Jean Paul; Tchuenguem, Roland T; Kuiate, Jules R; Teke, Gerald N; Kechia, Frederick A; Kuete, Victor

    2014-02-17

    Spices and herbs have been used in food since ancient times to give taste and flavor and also as food preservatives and disease remedies. In Cameroon, the use of spices and other aromatic plants as food flavoring is an integral part of dietary behavior, but relatively little is known about their antifungal potential.The present work was designed to assess the antifungal properties of extracts from spices used in Cameroonian dietary. The in vitro antifungal activities of twenty three extracts from twenty one spices were assessed by the broth micro-dilution method against eight fungi. Also, the in vivo activity of Olax subscorpioidea extract (the most active extract) was evaluated in rat model of disseminated candidiasis due to Candida albicans by estimating the fungal burden in blood and kidney. Seven extracts (30%) exhibited moderate to significant antifungal activities, inhibiting the growth of the microorganisms at concentrations ranging from 0.048 to 0.39 mg/mL. Olax subscorpioidea extract exhibited the highest antifungal activity particularly against Candida albicans and Candida tropicalis (MIC of 0.097 mg/mL and 0.048 mg/mL respectively). Sixteen extracts (70%) were weakly active (MICs > 6.25 mg/mL). Oral administration of O. subscorpioidea extract at the dose 2 g/kg of body weight (bw) to artificially infected rats revealed a drop in the number of colony forming units per milliliter (cfu/mL) of Candida albicans cells in the blood below the detection limit (100 cfu/mL) while a modest decrease was observed in the kidney. The present work shows that some of the spices studied possess interesting antifungal properties and could be used to treat candidiasis. Among the plant species tested, Olax subscorpioidea displayed the most promising result.

  1. Antifungal Activity of Lavandula Angustifolia and Quergues Infectoria Extracts in Comparison with Nystatin on Candida Albicans

    Directory of Open Access Journals (Sweden)

    F. Nouri

    2016-07-01

    Full Text Available Introduction & Objective: Nowadays,herbal extracts are used to treat diseases, especially infec-tious ones. Candida albicans is the most common causes of oral opportunistic infections.In this study, antifungal effects of two herbal extracts were evaluated on an oral pathogen i.e. Candida albicans. Materials & Methods: In this descriptive- analytic study, the Department of Prosthodontics, ,Tehran University of Medical Sciences, school of Dentistry the oral samples of 25 patients with denture stomatitis were collected using sterile swabs. Then the isolated candida albicans and standard candida albicans PTCC 5027 were cultured. The antifungal effect was evaluated with disk plate method. Nystatin and methanol were used as positive and negative control groups, respectively. The power of antifungal activity was evaluated with the inhibition zone diameter of each of the extracts. At the end, the data were analyzed by ANOVA and Fried-man statistical tests. Results: Results showed that extracts of Querques infectoria had great antifungal effects. There was not statistically significant difference between nystatine and Querques infectoria extract (P>0.05 however , Querques infectoria was statistically more effective than lavender extract and nystatin showed the highest antifungal activity (P <0.001. Conclusion: This study showed that plant extracts had positive effects on Candida albicans as compared to nystatin. Thus, we hope to find new herbal medicines and compounds to treat candidiasis in the future. (Sci J Hamadan Univ Med Sci 2016; 23 (2:172-178

  2. Simple Method of Preparation and Characterization of New Antifungal Active Biginelli Type Heterocyclic Compounds

    Science.gov (United States)

    Velan, A. Senthilkumara; Joseph, J.; Raman, N.

    2008-01-01

    A simple, efficient and cost effective method is described for the synthesis of Biginelli type heterocyclic compounds of dihydropyrimidinones analogous. They were prepared from a reaction mixture consisting of substituted benzaldehydes, thiourea and ethylacetoacetate using ammonium dihydrogenphosphate as catalyst. The procedure for the preparation of the compounds is environmentally benign and safe which is advantageous in terms of experimentation, catalyst reusability, yields of the products, shorter reaction times and preclusion of toxic solvents. The four new synthesised compounds were tested for their antifungal activity. They have good antifungal activity comparing to the standard (Fluconazole). PMID:23997611

  3. Essential oil composition and antifungal activity of Foeniculum vulgare Mill obtained by different distillation conditions.

    Science.gov (United States)

    Mimica-Dukić, N; Kujundzić, S; Soković, M; Couladis, M

    2003-04-01

    The influence of different hydrodistillation conditions was evaluated from the standpoint of essential oil yield, chemical composition and antifungal activity from seeds of Foeniculum vulgare Mill. Three hydrodistillation conditions were considered. The main constituents of the oils were: (E)-anethole (72.27%-74.18%), fenchone (11.32%-16.35%) and methyl chavicol (3.78%-5.29%). The method of distillation significantly effected the essential oil yield and quantitative composition, although the antifungal activity of the oils against some fungi was only slightly altered. Copyright 2003 John Wiley & Sons, Ltd.

  4. Antifungal activity of Leuconostoc citreum and Weissella confusa in rice cakes.

    Science.gov (United States)

    Baek, Eunjong; Kim, Hyojin; Choi, Hyejung; Yoon, Sun; Kim, Jeongho

    2012-10-01

    The antifungal activity of organic acids greatly improves the shelf life of bread and bakery products. However, little is known about the effect of lactic acid fermentation on fungal contamination in rice cakes. Here, we show that lactic acid fermentation in rice dough can greatly retard the growth of three fungal species when present in rice cakes, namely Cladosporium sp. YS1, Neurospora sp. YS3, and Penicillium crustosum YS2. The antifungal activity of the lactic acid bacteria against these fungi was much better than that of 0.3% calcium propionate. We found that organic acids including lactic and acetic acid, which are byproducts of lactic fermentation or can be artificially added, were the main antifungal substances. We also found that some Leuconostoc citreum and Weissella confusa strains could be good starter species for rice dough fermentation. These results imply that these lactic acid bacteria can be applicable to improve the preservation of rice cakes.

  5. Antifungal Activity of Clove Essential Oil and its Volatile Vapour Against Dermatophytic Fungi

    OpenAIRE

    Chee, Hee Youn; Lee, Min Hee

    2007-01-01

    Antifungal activities of clove essential oil and its volatile vapour against dermatophytic fungi including Candida albicans, Epidermophyton floccosum. Microsporum audouinii, Trichophyton mentagrophytes, and Trichophyton rubrum were investigated. Both clove essential oil and its volatile vapour strongly inhibit spore germination and mycelial growth of the dermatophytic fungi tested. The volatile vapour of clove essential oil showed fungistatic activity whereas direct application of clove essen...

  6. In vitro antifungal activity of 63 Iranian plant species against three ...

    African Journals Online (AJOL)

    Centaurea behen, Lavandula sp., roots of Tribulus terrestris were the most active plant species against R. solani, F. oxysporum, and C. sativus, respectively. Extracts of I and T. terrestris exhibited a broad-spectrum of antifungal activity. According to these results, we conclude that the flora in the west of Iran can be regarded ...

  7. Antibacterial and antifungal activity of endodontic intracanal medications

    Science.gov (United States)

    TONEA, ANDRADA; BADEA, MANDRA; OANA, LIVIU; SAVA, SORINA; VODNAR, DAN

    2017-01-01

    Background and aims The sterilization of the entire root canal system represents the main goal of every endodontist, given the fact that the control of the microbial flora is the key point of every root canal treatment. The diversity of microorganisms found inside the root canal and also the resistance of some bacterial species to intracanal medications led to a continuous development of new endodontic products. The present study focuses on the comparison of the antibacterial and antifungal properties of different endodontic products, two commercially available, one experimental plant based extract, and two control substances. Methods The disc diffusion assay was used to determine the antibacterial and antifungal properties of chlorhexidine, calcium hydroxide, a mix extract between Arctium lappa root powder and Aloe barbadensis Miller gel, Amoxicillin with clavulanic acid and Fluconazole (as control substances). Two of the most common microorganisms found in endodontic infections were chosen: Enterococcus faecalis (ATCC 29212) and Candida albicans ATCC(10231). Results All tested substances showed inhibition zones around the discs, for Enterococcus faecalis and Candida albicans, including the experimental mix extract of Arctium lappa root powder with Aloe vera gel. Conclusion The experimental mix extract of Arctium lappa root powder and Aloe vera gel is able to inhibit very resistant microorganisms, like Enterococcus faecalis and Candida albicans. PMID:28781531

  8. Antifungal activity of aqueous and methanolic extracts of some seaweeds against common soil-borne plant pathogenic fungi

    International Nuclear Information System (INIS)

    Khan, S.A.; Abid, M.; Hussain, F.

    2017-01-01

    Total 32 species of different seaweeds belonging to Chlorophyta, Phaeophyta and Rhodophyta were collected from the coast of Karachi, Pakistan to investigate their antifungal activity. Most of the seaweeds inhibited growth of Fusarium oxypsorum, Macrophomina phaseolina and Rhizoctonia solani. The highest antifungal activities were observed in Sargasssum tenerrimum in both aqueous and methanolic extracts as compared to other seaweeds. (author)

  9. Analysis by UPLC-MS-QTOF and antifungal activity of guava (Psidium guajava L.).

    Science.gov (United States)

    Bezerra, Camila Fonseca; Rocha, Janaína Esmeraldo; Nascimento Silva, Maria Karollyna do; de Freitas, Thiago Sampaio; de Sousa, Amanda Karine; Dos Santos, Antônia Thassya Lucas; da Cruz, Rafael Pereira; Ferreira, Maciel Horácio; da Silva, Josefa Carolaine Pereira; Machado, Antonio Judson Targino; Carneiro, Joara Nályda Pereira; Sales, Débora Lima; Coutinho, Henrique Douglas Melo; Ribeiro, Paulo Riceli Vasconcelos; de Brito, Edy Sousa; Morais-Braga, Maria Flaviana Bezerra

    2018-05-08

    Psidium guajava L. is a plant widely used for food and in folk medicine all over the world. Studies have shown that guava leaves have antifungal properties. In this study, Flavonoid and Tannic fractions were tested to investigate their chemical composition and antifungal potential in vitro.21 compounds in the two fractions, presenting a higher content of phenolic compounds. The antifungal assays were performed against Candida albicans, Candida tropicalis and Candida krusei by microdilution to determine the IC 50 and the cell viability curve. Minimal Fungicidal Concentration(MFC) and the inhibitory effects of the association of the fractions with Fluconazole, as well as the assays used to verify any morphological changes were performed in microculture chambers based on the concentrations from the microdilution. The IC 50 of the isolated fractions and the fractions associated with each other were calculated, varying from 69.29 to 3444.62 μg/mL and the fractions associated with fluconazole varied from 925.56 to 1.57 μg/mL, it was clear that the association of the natural product with the antifungal presented a synergism. The fractions affected pleomorphism capacity and have a potential antifungal activity as they caused fungal inhibition in isolated use, potentiated the action of Fluconazole, reducing its concentration and impeding morphological transition, one of the virulence factors of the genus. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol

    Directory of Open Access Journals (Sweden)

    Lidia Lipińska

    2016-01-01

    Full Text Available Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis and yeasts (Candida vini. We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds.

  11. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol.

    Science.gov (United States)

    Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana

    2016-01-01

    Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds.

  12. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol

    Science.gov (United States)

    Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana

    2016-01-01

    Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds. PMID:27294124

  13. Antimicrobial and antifungal activities of Cordia dichotoma (Forster F.) bark extracts.

    Science.gov (United States)

    Nariya, Pankaj B; Bhalodia, Nayan R; Shukla, V J; Acharya, R N

    2011-10-01

    Cordia dichotoma Forst.f. bark, identified as botanical source of Shlesmataka in Ayurvedic pharmacopoeias. Present study was carried out with an objective to investigate the antibacterial and antifungal potentials of Cordia dichotoma bark. Antibacterial activity of methanol and butanol extracts of the bark was carried out against two gram negative bacteria (Escherichia coli, and Pseudomonas aeruginosa) and two Gram positive bacteria (St. pyogenes and Staphylococcus aureus). The antifungal activity of the extracts was carried out against three common pathogenic fungi (Aspergillus niger, A.clavatus, and Candida albicans). Zone of inhibition of extracts was compared with that of different standards like Amplicilline, Ciprofloxacin, Norfloxacin and Chloramphenicol for antibacterial activity and Nystain and Greseofulvin for antifungal activity. The extracts showed remarkable inhibition of zone of bacterial growth and fungal growth and the results obtained were comparable with that of standards drugs against the organisms tested. The activity of extracts increased linearly with increase in concentration of extract (mg/ml). The results showed the antibacterial and antifungal activity against the organisms tested.

  14. Study of the Cytotoxic and Antifungal Activities of Neolignans 8.O.4´ and Structurally Related Compounds

    Directory of Open Access Journals (Sweden)

    P. Matyus

    2000-03-01

    Full Text Available In the present work we report the antifungal and cytotoxic activities of a neolignan 8.O.4´series. The most active antifungal compounds show a significant cytotoxic effect which might be related.

  15. Bacterial strains diversity in Musa spp. phyllosphere with antifungal activity against Mycosphaerella fijiensis Morelet

    Directory of Open Access Journals (Sweden)

    Mileidy Cruz-Martín

    2016-01-01

    Full Text Available The search for alternatives to agricultural pesticides used for the management of black Sigatoka (Mycosphaerella fijiensis Morelet includes the selection of microorganisms strains with potential for the control of this pathogen. The objective of the work was to characterize bacterial strains isolated from the phylosphere of Musa spp. with antifungal effect against M. fijiensis. A morphological, cultural, physiological and molecular characterization of the strains was performed and the antifungal activity of these strains was quantified by dual culture. It was verified the diversity of bacteria with antifungal properties against M. fijiensis present in the phylosphere of Musa spp.  In addition, it was found that the phyllosphere of these crops can be used as a source of obtaining possible biological controls of M. fijiensis.   Keywords: bacteria, biocontrol, Black Sigatoka, epiphytes

  16. Synthesis and characterization of dithiocarbamate chitosan derivatives with enhanced antifungal activity.

    Science.gov (United States)

    Qin, Yukun; Liu, Song; Xing, Ronge; Yu, Huahua; Li, Kecheng; Meng, Xiangtao; Li, Rongfeng; Li, Pengcheng

    2012-06-20

    In this study, ammonium dithiocarbamate chitosan (ADTCCS) and triethylene diamine dithiocarbamate chitosan (TEDADTCCS) derivatives were obtained respectively by mixing chitosan with carbon disulfide and ammonia (triethylenediamine). Their structures were confirmed by FT-IR, 1H NMR, XRD, DSC, SEM, and elemental analysis. Antifungal properties of them against the plant pathogenic fungi Fusarium oxysporum and Alternaria porri were investigated at concentrations ranged from 31.25 to 500 mg/L. The dithiocarbamate chitosan derivatives had enhanced antifungal activity compared with chitosan. Particularly, they showed obvious inhibitory effect on Fusarium oxysporum. At 500 mg/L, TEDADTCCS inhibited growth of F. oxysporum at 60.4%, stronger than polyoxin and triadimefon whose antifungal indexes were found to be 25.3% and 37.7%. The chitosan derivatives described here deserve further study for use in crop protection. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  17. Studies on antifungal activity and elemental composition of the medicinal plant trianthema pentendra linn

    International Nuclear Information System (INIS)

    Pirzada, A.J.; Shaikh, W.; Ghaffar, S.A.

    2010-01-01

    Antifungal activity of crude solvent and aqueous extracts of the medicinal plant, Trianthema pentendra Linn., against the dermatophytic fungi, Aspergillus niger, Aspergillus flavus, Paecilomyces varioti, Microsporum gypseum and Trichophyton rubrum revealed that ethanol and aqueous extracts were the most effective antifungal agents as compared to methanol, chloroform and ethyl acetate extracts. Some basic elements, Al, Ca, Cu, Fe, Mg, Mn, P, S and Zn were also determined in the medicinal plant, T. pentendra, using atomic absorption spectrophotometry and U.V spectrophotometry. T. pentendra contained considerable amount of elements which have therapeutic effects in skin diseases. (author)

  18. Composition and antifungal activity of essential oils from Piper aduncum, Piper arboreum and Piper tuberculatum

    Directory of Open Access Journals (Sweden)

    Hosana M. Debonsi Navickiene

    2006-06-01

    Full Text Available The composition of essential oils from leaves, stems and fruits of Piper aduncum, P. arboreum and P. tuberculatum was examined by means of GC-MS and antifungal assay. There was a predominance of monoterpenes in P. aduncum and P. tuberculatum and of sesquiterpenes in P. arboreum. P. aduncum showed the richest essential oil composition, including linalool. The essential oils from fruits of P. aduncum and P. tuberculatum showed the highest antifungal activity with the MIC of 10 µg as determined against Cladosporium cladosporioides and C. sphaerospermum, respectively. This is the first report of the composition of essential oils from P. tuberculatum.

  19. Antifungal Activity of Decyl Gallate against Several Species of Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Ana Carolina Alves de Paula e Silva

    2014-01-01

    Full Text Available This work aims to demonstrate that the gallic acid structure modification to the decyl gallate (G14 compound contributed to increase the antifungal activity against several species of pathogenic fungi, mainly, Candida spp., Cryptococcus spp., Paracoccidioides spp., and Histoplasma capsulatum, according to standardized microdilution method described by Clinical Laboratory Standard Institute (CLSI documents. Moreover this compound has a particularly good selectivity index value, which makes it an excellent candidate for broad-spectrum antifungal prototype and encourages the continuation of subsequent studies for the discovery of its mechanism of action.

  20. Antifungal activities of diphenyl diselenide and ebselen alone and in combination with antifungal agents against Fusarium spp.

    Science.gov (United States)

    Venturini, Tarcieli Pozzebon; Chassot, Francieli; Loreto, Érico Silva; Keller, Jéssica Tairine; Azevedo, Maria Izabel; Zeni, Gilson; Santurio, Janio Morais; Alves, Sydney Hartz

    2016-07-01

    Herein, we describe the in vitro activity of a combination of the organoselenium compounds diphenyl diselenide and ebselen alone and in combination with amphotericin B, caspofungin, itraconazole, and voriconazole against 25 clinical isolates of Fusarium spp. For this analysis, we used the broth microdilution method based on the M38-A2 technique and checkerboard microdilution method. Diphenyl diselenide (MIC range = 4-32 μg/ml) and ebselen (MIC range = 2-8 μg/ml) showed in vitro activity against the isolates tested. The most effective combinations were (synergism rates): ebselen + amphotericin B (88%), ebselen + voriconazole (80%), diphenyl diselenide + amphotericin B (72%), and diphenyl diselenide + voriconazole (64%). Combination with caspofungin resulted in low rates of synergism: ebselen + caspofungin, 36%, and diphenyl diselenide + caspofungin, 28%; combination with itraconazole demonstrated indifferent interactions. Antagonistic effects were not observed for any of the combinations tested. Our findings suggest that the antifungal potential of diphenyl diselenide and ebselen deserves further investigation in in vivo experimental models, especially in combination with amphotericin B and voriconazole. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Antifungal activity of Erigeron floribundus (Asteraceae) from Côte d ...

    African Journals Online (AJOL)

    Purpose: Erigeron floribundus is a reputed medicinal plant used in Côte d'Ivoire, West Africa for the treatment of skin disorders. The aim of this study was to evaluate the antifungal activity of this plant against fungi from human origin. Method: Dichloromethane, methanol 80% and aqueous extracts from the leaves with stem ...

  2. In Vitro Antifungal Activity of Allium Hirtifolium in Comparison With Miconazole

    Directory of Open Access Journals (Sweden)

    Manijheh Motevallian

    2010-05-01

    Full Text Available Objective:Shallots are important part of the diet for many people and there is long-held belief in their health enhancing properties. The aim of this study was to determine antifungal activity of shallot against reference fungal strains.Methods:Alcoholic and aqueous extracts of shallot (Allium hirtifoliumwere tested for in vitro antifungal activities against Aspergillus fumigatus, Aspergillus   flavus, Aspergillus niger, Penicillium gryseogenum, Alternaria, Microsporum canis and Trichophyton mentagrophytes. The minimal inhibitory concentration (MICwas determined using broth macrodilution method. The effects of shallot extracts   were also compared with those of miconazole.Results:Allium hirtifolium showed antifungal activity against all the fungi species tested with MIC values ranging from 0.058 to 0.8 mg/ml for alcoholic extract and 0.26 to 3.84 mg/ml for aqueous extract.The minimum fungicidal concentration (MFC of alcoholic and aqueous extracts ranged from 0.1 to 12.8 mg/ml and 0.6 to 68.26mg/ml, respectively.Conclusions: The results indicate that crude juice of shallot has antifungal activity and might be promising, at least, in treatment of fungal-associated diseases from mentioned fungi.  

  3. In vivo screening antifungal activity of methanolic extract of Protoparmeliopsis muralis against Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Somaye Rashki

    2017-06-01

    Full Text Available Background & Objective: Lichens are the result of the symbiosis of fungi and algae or a cyanobacterium. Various biological activities of some lichen and their components such as: antifungal, anti-bacterial, anti-tumor, anti-inflammatory, antiprotozoal substances are known. In the present study, antifungal activity of methanolic extract of Protoparmeliopsis muralis against Aspergillus flavus is investigated on rats. Materials & Methods: 500 g of Protoparmeliopsis muralis was collected from KaneGonbad mountains in Ilam province, the methanol extract was prepared by soxhle. In order to determine the antifungal activity in in vivo conditions, a wound was created and infected with Aspergillus flavus. Having infected the wound, the researchers divided the rats into 4 subgroups: negative control group, treated with Kotrimoksazol, %5 ointment extract methanolic P. muralis, and with %10 ointment extract methanolic P. muralis. Treatment continued until complete healing of the wound. Finally, the percentage of wound healing was calculated. Results: The result of the present study demonstrated that methanolic extract of P. muralis decreased the area of wound in the treatment group compared to the control group. Conclusion: The antifungal and antioxidant activity of the extract of Protoparmeliopsis muralis accelerated the wound healing process.

  4. Antifungal activity of Boerhavia diffusa L. extract against Phytophthora spp. in tomato and pepper

    Czech Academy of Sciences Publication Activity Database

    Švecová, Eva; Colla, G.; Crino, P.

    2017-01-01

    Roč. 148, č. 1 (2017), s. 27-34 ISSN 0929-1873 Institutional support: RVO:67985939 Keywords : antifungal activity * phytophora * plant extract Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection OBOR OECD: Agronomy, plant breeding and plant protection Impact factor: 1.478, year: 2016

  5. Anti-Fungal activity of essential oil from Baeckea frutescens L against Pleuratus ostreatus

    Science.gov (United States)

    Jemi, Renhart; Barus, Ade Irma; Nuwa, Sarinah, Luhan, Gimson

    2017-11-01

    Ujung Atap is an herb that have distinctive odor on its leaves. The plant's essential oil contains bioactive compounds but has not been investigated its anti-fungal activity against Pleurotus ostreatus. Essential oil from Ujung Atap leaves is one environmentally friendly natural preservative. This study consisted of distillation Ujung Atap leaves with boiled method, determining the number of acid, essential oil ester, and anti-fungal activity against Pleurotus ostreatus. Analysis of the data to calculate anti-fungal activity used probit analysis method to determine the IC50. Results for the distillation of leaves Ujung Atap produce essential oil yield of 0.071% and the average yield of the acid number and the ester of essential oils Ujung Atap leaves are 5.24 and 12.15. Anti-fungal activity Pleurotus ostreatus at a concentration of 1000 µg/mL, 100 µg/mL, 75 µg/mL, 50 µg/mL and 100 µg/mL BA defunct or fungi was declared dead, while at a concentration of 25 µg/mL, 10 µg/mL and 5 µg/mL still occur inhibitory processes. Results obtained probit analysis method IC50 of 35.48 mg/mL; means the essential oil of Ujung Atap leaf can inhibit fungal growth by 50 percent to 35.48 µg/mL concentration.

  6. Antifungal activity of root, bark, leaf and soil extracts of Androstachys ...

    African Journals Online (AJOL)

    Extracts of leaf, root, soil and bark of Androstachys johnsonii Prain (commonly called Lembobo ironwood) screened for antifungal activity had a significant inhibitory effect on the most of fungi tested in this investigation. Of the four fungi tested in the present study Fusarium solani was significantly inhibited by all extracts (that ...

  7. Complete Genome Sequence of Bacillus velezensis GQJK49, a Plant Growth-Promoting Rhizobacterium with Antifungal Activity.

    Science.gov (United States)

    Ma, Jinjin; Liu, Hu; Liu, Kai; Wang, Chengqiang; Li, Yuhuan; Hou, Qihui; Yao, Liangtong; Cui, Yanru; Zhang, Tongrui; Wang, Haide; Wang, Beibei; Wang, Yun; Ge, Ruofei; Xu, Baochao; Yao, Gan; Xu, Wenfeng; Fan, Lingchao; Ding, Yanqin; Du, Binghai

    2017-08-31

    Bacillus velezensis GQJK49 is a plant growth-promoting rhizobacterium with antifungal activity, which was isolated from Lycium barbarum L. rhizosphere. Here, we report the complete genome sequence of B. velezensis GQJK49. Twelve gene clusters related to its biosynthesis of secondary metabolites, including antifungal and antibacterial antibiotics, were predicted. Copyright © 2017 Ma et al.

  8. Evaluation of antifungal activity of standardized extract of Salvia rhytidea Benth. (Lamiaceae) against various Candida isolates.

    Science.gov (United States)

    Salari, S; Bakhshi, T; Sharififar, F; Naseri, A; Ghasemi Nejad Almani, P

    2016-12-01

    Salvia species have long been described in traditional medicine for various indications. Owing to the widespread use of this genus by ethnic populations, especially for various infections ranging from skin disease to gastrointestinal disorders, we were encouraged to determine whether Salvia rhytidea could be effective against fungal infections. Given the increased incidence of candidiasis in the past decade, limits on the use of antifungal drugs, emergence of azole-resistant Candida species and increased incidence of treatment failures, it is necessary to identify a novel agent with antifungal properties. Aim of the study was to evaluate the antifungal properties of S. rhytidea against various Candida isolates. In this study, at first rosmarinic acid content of plant extract was determined. A total of 96 Candida isolates were tested, including the following species: Candida albicans (n=42), Candida glabrata (n=16), Candida tropicalis (n=11), Candida krusei (n=9), Candida parapsilosis (n=9), Candida lusitaniae (n=7) and Candida guilliermondii (n=2). The in vitro antifungal activity of methanolic extracts of S. rhytidea Benth. was evaluated against Candida isolates and compared with that of the standard antifungal drug nystatin by using a broth microdilution method, according to CLSI. Phytochemical screening results showed that the methanolic extract of S. rhytidea Benth. was rich in flavonoids and tannins. The minimal inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values of S. rhytidea Benth. ranged from 3.125 to>100μg/ml and 6.25 to>100μg/ml respectively. The growth inhibition value displayed that C. tropicalis, C. krusei and C. albicans isolates were most susceptible to S. rhytidea. Findings show that S. rhytidea possesses an antifungal effect against Candida isolates. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Antifungal activity of tioconazole (UK-20,349), a new imidazole derivative.

    Science.gov (United States)

    Jevons, S; Gymer, G E; Brammer, K W; Cox, D A; Leeming, M R

    1979-04-01

    Tioconazole (UK-20,349), a new antifungal imidazole derivative, was compared with miconazole for activity in vitro against Candida spp., Torulopsis glabrata, Cryptococcus neoformans, Aspergillus spp., and dermatophyte fungi (Trichophyton spp. and Microsporum spp.). Tioconazole was more active than miconazole against all the fungal species examined except Aspergillus, against which both agents showed similar activity. Both tioconazole and miconazole inhibited the growth of all fungi examined at concentrations well below their quoted minimum inhibitory concentrations. Their activity against fungi in vivo was investigated in mice infected systemically with Candida albicans. Both agents significantly reduced the numbers of viable Candida cells recoverable from the kidneys of infected animals, with tioconazole producing a generally more marked reduction. After administration of a single oral dose (25 mg/kg) to beagle dogs or white mice, higher and more sustained circulating levels of bioactive drug were detectable of tioconazole than of miconazole. These observations suggest that tioconazole may have potential in the treatment of both superficial and systemic mycoses in humans.

  10. New Polyurethane Nail Lacquers for the Delivery of Terbinafine: Formulation and Antifungal Activity Evaluation.

    Science.gov (United States)

    Gregorí Valdes, Barbara S; Serro, Ana Paula; Gordo, Paulo M; Silva, Alexandra; Gonçalves, Lídia; Salgado, Ana; Marto, Joana; Baltazar, Diogo; Dos Santos, Rui Galhano; Bordado, João Moura; Ribeiro, Helena Margarida

    2017-06-01

    Onychomycosis is a fungal nail infection. The development of new topical antifungal agents for the treatment of onychomycosis has focused on formulation enhancements that optimize the pharmacological characteristics required for its effective treatment. Polyurethanes (PUs) have never been used in therapeutic nail lacquers. The aim of this work has been the development of new PU-based nail lacquers with antifungal activity containing 1.0% (wt/wt) of terbinafine hydrochloride. The biocompatibility, wettability, and the prediction of the free volume in the polymeric matrix were assessed using a human keratinocytes cell line, contact angle, and Positron Annihilation Lifetime Spectroscopy determinations, respectively. The morphology of the films obtained was confirmed by scanning electron microscopy, while the nail lacquers' bioadhesion to nails was determined by mechanical tests. Viscosity, in vitro release profiles, and antifungal activity were also assessed. This study demonstrated that PU-terbinafine-based nail lacquers have good keratinocyte compatibility, good wettability properties, and adequate free volume. They formed a homogenous film after application, with suitable adhesion to the nail plate. Furthermore, the antifungal test results demonstrated that the terbinafine released from the nail lacquer Formulation A PU 19 showed activity against dermatophytes, namely Trichophyton rubrum. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Antifungal Activity of Commercial Essential Oils and Biocides against Candida Albicans.

    Science.gov (United States)

    Serra, Elisa; Hidalgo-Bastida, Lilia Araida; Verran, Joanna; Williams, David; Malic, Sladjana

    2018-01-25

    Management of oral candidosis, most frequently caused by Candida albicans , is limited due to the relatively low number of antifungal drugs and the emergence of antifungal tolerance. In this study, the antifungal activity of a range of commercial essential oils, two terpenes, chlorhexidine and triclosan was evaluated against C. albicans in planktonic and biofilm form. In addition, cytotoxicity of the most promising compounds was assessed using murine fibroblasts and expressed as half maximal inhibitory concentrations (IC50). Antifungal activity was determined using a broth microdilution assay. The minimum inhibitory concentration (MIC) was established against planktonic cells cultured in a range of concentrations of the test agents. The minimal biofilm eradication concentration (MBEC) was determined by measuring re-growth of cells after pre-formed biofilm was treated for 24 h with the test agents. All tested commercial essential oils demonstrated anticandidal activity (MICs from 0.06% ( v / v ) to 0.4% ( v / v )) against planktonic cultures, with a noticeable increase in resistance exhibited by biofilms (MBECs > 1.5% ( v / v )). The IC50s of the commercial essential oils were lower than the MICs, while a one hour application of chlorhexidine was not cytotoxic at concentrations lower than the MIC. In conclusion, the tested commercial essential oils exhibit potential as therapeutic agents against C. albicans , although host cell cytotoxicity is a consideration when developing these new treatments.

  12. 2-(Substituted phenyl-3,4-dihydroisoquinolin-2-iums as Novel Antifungal Lead Compounds: Biological Evaluation and Structure-Activity Relationships

    Directory of Open Access Journals (Sweden)

    Xin-Juan Yang

    2013-08-01

    Full Text Available The title compounds are a class of structurally simple analogues of quaternary benzo[c]phenanthridine alkaloids (QBAs. In order to develop novel QBA-like antifungal drugs, in this study, 24 of the title compounds with various substituents on the N-phenyl ring were evaluated for bioactivity against seven phytopathogenic fungi using the mycelial growth rate method and their SAR discussed. Almost all the compounds showed definite activities in vitro against each of the test fungi at 50 μg/mL and a broad antifungal spectrum. In most cases, the mono-halogenated compounds 2–12 exhibited excellent activities superior to the QBAs sanguinarine and chelerythrine. Compound 8 possessed the strongest activities on each of the fungi with EC50 values of 8.88–19.88 µg/mL and a significant concentration-dependent relationship. The SAR is as follows: the N-phenyl group is a high sensitive structural moiety for the activity and the characteristics and position of substituents intensively influence the activity. Generally, electron-withdrawing substituents remarkably enhance the activity while electron-donating substituents cause a decrease of the activity. In most cases, ortha- and para-halogenated isomers were more active than the corresponding m-halogenated isomers. Thus, the title compounds emerged as promising lead compounds for the development of novel biomimetic antifungal agrochemicals. Compounds 8 and 2 should have great potential as new broad spectrum antifungal agents for plant protection.

  13. Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil.

    Science.gov (United States)

    Braga, Fernanda G; Bouzada, Maria Lúcia M; Fabri, Rodrigo L; de O Matos, Magnum; Moreira, Francis O; Scio, Elita; Coimbra, Elaine S

    2007-05-04

    The antileishmanial and antifungal activity of 24 methanol extracts from 20 plants, all of them used in the Brazilian traditional medicine for the treatment of several infectious and inflammatory disorders, were evaluated against promastigotes forms of two species of Leishmania (L. amazonensis and L. chagasi) and two yeasts (Candida albicans and Cryptococcus neoformans). Among the 20 tested methanolic extracts, those of Vernonia polyanthes was the most active against L. amazonensis (IC(50) of 4 microg/ml), those of Ocimum gratissimum exhibited the best activity against L. chagasi (IC(50) of 71 microg/ml). Concerning antifungical activity, Schinus terebintifolius, O. gratissimum, Cajanus cajan, and Piper aduncum extracts were the most active against C. albicans (MIC of 1.25 mg/ml) whereas Bixa orellana, O. gratissimum and Syzygium cumini exhibited the best activity against C. neoformans (MIC of 0.078 mg/ml).

  14. Antifungal activity of essential oils on Aspergillus parasiticus isolated from peanuts

    Directory of Open Access Journals (Sweden)

    Yooussef Mina M.

    2016-04-01

    Full Text Available Aspergillus parasiticus is one of the most common fungi which contaminates peanuts by destroying peanut shells before they are harvested and the fungus produces aflatoxins. The aim of this study was to evaluate the antifungal activities of seventeen essential oils on the growth of the aflatoxigenic form of A. parasiticus in contaminated peanuts from commercial outlets in Georgia. The agar dilution method was used to test the antifungal activity of essential oils against this form of A. parasiticus at various concentrations: 500; 1,000; 1,500; 2,000; 2,500 ppm. Among the seventeen essential oils tested, the antifungal effect of cinnamon, lemongrass, clove and thyme resulted in complete inhibition of mycelial growth. Cinnamon oil inhibited mycelial growth at ≥ 1,000 ppm, lemongrass and clove oils at ≥ 1,500 ppm and thyme at 2,500 ppm. However, cedar wood, citronella, cumin and peppermint oils showed partial inhibition of mycelial growth. Eucalyptus oil, on the other hand, had less antifungal properties against growth of A. parasiticus, irrespective of its concentration. Our results indicate that the aflatoxigenic form of A. parasiticus is sensitive to selected essential oils, especially cinnamon. These findings clearly indicate that essential oils may find a practical application in controlling the growth of A. parasiticus in stored peanuts.

  15. Antifungal activity of clove essential oil and its volatile vapour against dermatophytic fungi.

    Science.gov (United States)

    Chee, Hee Youn; Lee, Min Hee

    2007-12-01

    Antifungal activities of clove essential oil and its volatile vapour against dermatophytic fungi including Candida albicans, Epidermophyton floccosum. Microsporum audouinii, Trichophyton mentagrophytes, and Trichophyton rubrum were investigated. Both clove essential oil and its volatile vapour strongly inhibit spore germination and mycelial growth of the dermatophytic fungi tested. The volatile vapour of clove essential oil showed fungistatic activity whereas direct application of clove essential oil showed fungicidal activity.

  16. In Vitro antifungal activity of essential oils against Colletotrichum gloeosporioides

    Science.gov (United States)

    Yusoff, Nor Hanis Aifaa; Abdullah, Siti Aisyah; Othman, Zaulia; Zainal, Zamri

    2018-04-01

    The efficacy of Citrus hystrix, Azadirachta indica and Cymbopogon citratus essential oils were evaluated for controlling the growth of mycelia and spore germination of Colletotrichum gloeosporioides. In order to determine the best essential oil (EO) and suitable concentration of essential oil, in vitro experiment was conducted by preparing a pure culture of antrachnose on Potato Dextrose Agar containing EOs of C. hystrix, A. indica and C. citratus with different concentrations (0.2%, 0.6%, 1% and 1.4% (v/v)). The result shows that C. hystrix essential oil at a concentration of 1.4% (v/v) reduced of mycelia growth of C. gloeosporioides by 29.49%. A second experiment was conducted, but at higher concentration of each essential oils (1.8%, 2.2%, 2.6% and 2.8% (v/v)). Significant difference (p ≤ 0.05) inhibition of mycelia growth was obtained in all treatments except the control. The antifungal index values of essential oils were proportionally increased with concentration of essential oil applied in each treatment. It is concluded that essential oil from C. hystrix are efficient in inhibiting C. gloeosporioides.

  17. Chemical Composition of Essential Oilsof Thymus and Mentha Speciesand Their Antifungal Activities

    Directory of Open Access Journals (Sweden)

    Leo J. L. D. van Griensven

    2009-01-01

    Full Text Available The potential antifungal effects of Thymus vulgaris L., Thymus tosevii L., Mentha spicata L., and Mentha piperita L. (Labiatae essential oils and their components against 17 micromycetal food poisoning, plant, animal and human pathogens are presented. The essential oils were obtained by hydrodestillation of dried plant material. Their composition was determined by GC-MS. Identification of individual constituents was made by comparison with analytical standards, and by computer matching mass spectral data with those of the Wiley/NBS Library of Mass Spectra. MIC’s and MFC’s of the oils and their components were determined by dilution assays. Thymol (48.9% and p-cymene (19.0% were the main components of T. vulgaris, while carvacrol (12.8%, a-terpinyl acetate (12.3%, cis-myrtanol (11.2% and thymol (10.4% were dominant in T. tosevii. Both Thymus species showed very strong antifungal activities. In M. piperita oil menthol (37.4%, menthyl acetate (17.4% and menthone (12.7% were the main components, whereas those of M. spicata oil were carvone (69.5% and menthone (21.9%. Mentha sp. showed strong antifungal activities, however lower than Thymus sp. The commercial fungicide, bifonazole, used as a control, had much lower antifungal activity than the oils and components investigated. It is concluded that essential oils of Thymus and Mentha species possess great antifungal potential and could be used as natural preservatives and fungicides.

  18. In vitro antifungal activity of hydroxychavicol isolated from Piper betle L.

    Science.gov (United States)

    Ali, Intzar; Khan, Farrah G; Suri, Krishan A; Gupta, Bishan D; Satti, Naresh K; Dutt, Prabhu; Afrin, Farhat; Qazi, Ghulam N; Khan, Inshad A

    2010-02-03

    Hydroxychavicol, isolated from the chloroform extraction of the aqueous leaf extract of Piper betle L., (Piperaceae) was investigated for its antifungal activity against 124 strains of selected fungi. The leaves of this plant have been long in use tropical countries for the preparation of traditional herbal remedies. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of hydroxychavicol were determined by using broth microdilution method following CLSI guidelines. Time kill curve studies, post-antifungal effects and mutation prevention concentrations were determined against Candida species and Aspergillus species "respectively". Hydroxychavicol was also tested for its potential to inhibit and reduce the formation of Candida albicans biofilms. The membrane permeability was measured by the uptake of propidium iodide. Hydroxychavicol exhibited inhibitory effect on fungal species of clinical significance, with the MICs ranging from 15.62 to 500 microg/ml for yeasts, 125 to 500 microg/ml for Aspergillus species, and 7.81 to 62.5 microg/ml for dermatophytes where as the MFCs were found to be similar or two fold greater than the MICs. There was concentration-dependent killing of Candida albicans and Candida glabrata up to 8 x MIC. Hydroxychavicol also exhibited an extended post antifungal effect of 6.25 to 8.70 h at 4 x MIC for Candida species and suppressed the emergence of mutants of the fungal species tested at 2 x to 8 x MIC concentration. Furthermore, it also inhibited the growth of biofilm generated by C. albicans and reduced the preformed biofilms. There was increased uptake of propidium iodide by C. albicans cells when exposed to hydroxychavicol thus indicating that the membrane disruption could be the probable mode of action of hydroxychavicol. The antifungal activity exhibited by this compound warrants its use as an antifungal agent particularly for treating topical infections, as well as gargle mouthwash against oral Candida

  19. In vitro antifungal activity of hydroxychavicol isolated from Piper betle L

    Directory of Open Access Journals (Sweden)

    Afrin Farhat

    2010-02-01

    Full Text Available Abstract Background Hydroxychavicol, isolated from the chloroform extraction of the aqueous leaf extract of Piper betle L., (Piperaceae was investigated for its antifungal activity against 124 strains of selected fungi. The leaves of this plant have been long in use tropical countries for the preparation of traditional herbal remedies. Methods The minimum inhibitory concentration (MIC and minimum fungicidal concentration (MFC of hydroxychavicol were determined by using broth microdilution method following CLSI guidelines. Time kill curve studies, post-antifungal effects and mutation prevention concentrations were determined against Candida species and Aspergillus species "respectively". Hydroxychavicol was also tested for its potential to inhibit and reduce the formation of Candida albicans biofilms. The membrane permeability was measured by the uptake of propidium iodide. Results Hydroxychavicol exhibited inhibitory effect on fungal species of clinical significance, with the MICs ranging from 15.62 to 500 μg/ml for yeasts, 125 to 500 μg/ml for Aspergillus species, and 7.81 to 62.5 μg/ml for dermatophytes where as the MFCs were found to be similar or two fold greater than the MICs. There was concentration-dependent killing of Candida albicans and Candida glabrata up to 8 × MIC. Hydroxychavicol also exhibited an extended post antifungal effect of 6.25 to 8.70 h at 4 × MIC for Candida species and suppressed the emergence of mutants of the fungal species tested at 2 × to 8 × MIC concentration. Furthermore, it also inhibited the growth of biofilm generated by C. albicans and reduced the preformed biofilms. There was increased uptake of propidium iodide by C. albicans cells when exposed to hydroxychavicol thus indicating that the membrane disruption could be the probable mode of action of hydroxychavicol. Conclusions The antifungal activity exhibited by this compound warrants its use as an antifungal agent particularly for treating topical

  20. Antifungal activities of diphenyl diselenide and ebselen against echinocandin-susceptible and -resistant strains of Candida parapsilosis.

    Science.gov (United States)

    Chassot, Francieli; Pozzebon Venturini, Tarcieli; Baldissera Piasentin, Fernanda; Morais Santurio, Janio; Estivalet Svidzinski, Terezinha Inez; Hartz Alves, Sydney

    2016-10-01

    We evaluated the in vitro antifungal activity of diphenyl diselenide and ebselen against echinocandin-susceptible and -resistant strains of Candida parapsilosis using the broth microdilution method. Diphenyl diselenide (MIC range =1-8 µg/mL) and ebselen (MIC range =0.25-4 µg/mL) showed in vitro activity against echinocandin-susceptible isolates. However, ebselen also showed the highest antifungal activity against echinocandin-resistant strains (MIC range =0.06-4 µg/mL). This study demonstrated that the antifungal potential of diphenyl diselenide and ebselen deserves further investigation using in vivo experimental protocols.

  1. In Vitro Antibacterial and Antifungal Activity of Lavandula x intermedia Emeric ex Loisel. ‘Budrovka’

    OpenAIRE

    Blazekovic, Biljana; Stanic, Gordana; Pepeljnjak, Stjepan; Vladimir-Knezevic, Sanda

    2011-01-01

    This study aimed to evaluate the in vitro antibacterial and antifungal activities of Lavandula x intermedia Emeric ex Loisel. ‘Budrovka’, an indigenous Croatian cultivar of lavandin. For that purpose the activity of ethanolic extracts of flowers, inflorescence stalks and leaves against thirty one strains of bacteria, yeasts, dermatophytes and moulds were studied using both the agar well diffusion and broth dilution assays. Among the investigated extracts found to be effective against a broad ...

  2. Differential Antifungal Activity of Human and Cryptococcal Melanins with Structural Discrepancies

    OpenAIRE

    Néstor Correa; Néstor Correa; Néstor Correa; Cristian Covarrubias; Paula I. Rodas; Germán Hermosilla; Verónica R. Olate; Verónica R. Olate; Cristián Valdés; Wieland Meyer; Fabien Magne; Cecilia V. Tapia; Cecilia V. Tapia

    2017-01-01

    Melanin is a pigment found in all biological kingdoms, and plays a key role in protection against ultraviolet radiation, oxidizing agents, and ionizing radiation damage. Melanin exerts an antimicrobial activity against bacteria, fungi, and parasites. We demonstrated an antifungal activity of synthetic and human melanin against Candida sp. The members of the Cryptococcus neoformans and C. gattii species complexes are capsulated yeasts, which cause cryptococcosis. For both species melanin is an...

  3. ANTIOXIDANT AND ANTIFUNGAL ACTIVITY OF SELECTED MEDICINAL PLANT EXTRACTS AGAINST PHYTOPATHOGENIC FUNGI.

    Science.gov (United States)

    Mahlo, Salome Mamokone; Chauke, Hasani Richard; McGaw, Lyndy; Eloff, Jacobus

    2016-01-01

    Medicinal plants are used by many ethnic groups as a source of medicine for the treatment of various ailments in both humans and domestic animals. These plants produce secondary metabolites that have antimicrobial properties, thus screening of medicinal plants provide another alternative for producing chemical fungicides that are relatively non-toxic and cost-effective. Leaf extracts of selected South African plant species ( Bucida buceras, Breonadia salicina, Harpephyllum caffrum, Olinia ventosa, Vangueria infausta and Xylotheca kraussiana ) were investigated for activity against selected phytopathogenic fungi ( Aspergillus niger, Aspergillus parasiticus, Colletotricum gloeosporioides, Penicillium janthinellum, P. expansum, Trichoderma harzianum and Fusarium oxysporum ). These plant fungal pathogens causes major economic losses in fruit industry such as blue rot on nectaries and postharvest disease in citrus. Plant species were selected from 600 evaluated inter alia, against two animal fungal pathogens ( Candida albicans and Cryptococcus neoformans ). Antioxidant activity of the selected plant extracts were investigated using a qualitative assay (2, 2-diphenyl-1-picrylhydrazyl (DPPH)). Bioautography assay was used to determine the number of antifungal compounds in plant extracts. All plant extracts were active against the selected plant phytopathogenic fungi. Moreover, Bucida buceras had the best antifungal activity against four of the fungi, with minimum inhibitory concentration (MIC) values as low as 0.02 mg/ml and 0.08 mg/ml against P. expansum, P. janthinellum, T. harzianum and F. oxysporum . The plant extracts of five plant species did not possess strong antioxidant activity. However, methanol extract of X. kraussiana was the most active radical scavenger in the DPPH assay amongst the six medicinal plants screened. No antifungal compounds were observed in some of the plant extracts with good antifungal activity as shown in the microdilution assay, indicating

  4. Antifungal Activity of Coumarin from Ageratum conyzoides L. Leaves on Candida albicans cells

    Directory of Open Access Journals (Sweden)

    Gunawan Pamudji Widodo

    2012-07-01

    Full Text Available The aim of this study was to identify the antifungal activity of coumarin isolated from Ageratum conyzoides L. leaves and to observe its influence on Candida albicans cells by scanning electron microscope (SEM and transmission electron microscope (TEM. Antifungal activity testing by disk diffusion method showed coumarin was active toward pathogenic fungus, Candida albicans with the MIC value of coumarin of 125 g mL-1. The influence of this substance on C. albicans cells was observed by scanning and transmission electron microscopies. The result showed that this compound damaged the cell by pores formation on the cell wall. The death of cells occurred due to leakage and necrotic of cytoplasmic content.

  5. Phytochemical and antifungal activity of anthraquinones and root and leaf extracts of Coccoloba mollis on phytopathogens

    Directory of Open Access Journals (Sweden)

    Iuri Bezerra de Barros

    2011-06-01

    Full Text Available The aim of this work was to study the phytochemical and antifungal activity of anthraquinones and root and leaf extracts of Coccoloba mollis on phytopathogens. The chemical analysis of ethanolic extracts showed a mixture of long-chain hydrocarbons, carboxyl esters and 3-taraxerone in the leaf extract. Two anthraquinones (emodin and physcion were isolated and identified from the root extract. Phytochemical screening using the pharmacognostic methods revealed the presence of flavonoids and tannins in the leaves and roots. Anthraquinones were only found in the root extract, no alkaloids, coumarins, saponins and simple phenolics were present. The antifungal activity of C. mollis extracts and anthraquinones isolated from the root of this plant against Botryospheria ribis, B. rhodina, Lasiodiplodia theobromae and Fusarium sp showed promising results for their use as fungicides, where emodin was the most active compound, which inhibited the microorganisms tested up to 44%.

  6. Design, synthesis and antifungal activities of novel strobilurin derivatives containing pyrimidine moieties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang; Geo, Yongxin; Liu, Huijun; Guo, Baoyuan; Wang, Huili [Research Center for Eco-Environmental Sciences/Chinese Academy of Sciences, Beijing (China)

    2012-04-15

    Strobilurins are one of the most important classes of agricultural fungicides. To discover new strobilurin derivatives with high activity against resistant pathogens, a series of novel β-methoxy acrylate analogues were designed and synthesized by integrating substituted pyrimidine with a strobilurin pharmacophore. The compounds were confirmed and characterized by infrared, {sup 1}H nuclear magnetic resonance, elemental analysis and mass spectroscopy. The bioassays indicated that most of the compounds (1a-1h) exhibited potent antifungal activities against Colletotrichum orbicular, Botrytis cinerea Pers and Protoporphyria caps ici Leon ian at the concentration of 50 μg/mL. Exhilaratingly, compound 1d (R=3-trifluoromethylphenyl) showed better antifungal activity against all the tested fungi than the commercial stilbenetriol fungicide azoxystrobin.

  7. Chemical composition, antibacterial and antifungal activity of the essential oils of Cotinus coggygria from Serbia

    Directory of Open Access Journals (Sweden)

    MIROSLAV NOVAKOVIC

    2007-11-01

    Full Text Available Essential oils from leaves with young branches of Cotinus coggygria Scop. from two localities in Serbia (Deliblatska pescara and Zemun, obtained by hydrodistillation, were analysed by GC–MS. Thirty-one component were identified from both oils and among them monoterpenic hydrocarbons were the dominant class (87.4 and 93.1 %. The dominant constituent in both essential oils was limonene (47.0 and 39.2 %. Both oils were also tested for antibacterial and antifungal activities. In comparison to streptomycin, both oils showed slightly higher activity (against most Gram-positive bacteria in the disc diffusion method and slightly lower activity when the microdilution method was employed. They also exhibited antifungal potential higher than that of the commercial fungicide bifonazole.

  8. Antifungal and antioxidant activities of mature leaves of Myrcia splendens (Sw. DC.

    Directory of Open Access Journals (Sweden)

    F. C. Pontes

    2018-05-01

    Full Text Available Abstract In recent years, natural products with antifungal and antioxidant activities are being increasingly researched for a more sustainable alternative to the chemicals currently used for the same purpose. The plant pathogenic fungus Alternaria alternata is a causative agent of diseases in citrus, leading to huge economic losses. Antioxidants are important for the production of medicines for various diseases that may be related to the presence of free radicals, such as cancer, and in the cosmetic industry as an anti-aging agent and the food industry as preservatives. This study evaluated the antifungal and antioxidant potential of extracts of mature leaves of Myrcia splendens, a tree species that occurs in the Brazilian Cerrado. The antioxidant potential was analyzed by an assay of 1,1-diphenyl-2-picrylhydrazyl radical-scavenging method, and the antifungal activity was assessed through the evaluation of mycelial growth. Majority of the extracts exhibited a strong antioxidant activity, especially the acetonic extract (4A. The antioxidant activity may be related to the presence of phenolic compounds. However, the extracts showed no inhibitory activity of mycelial growth of the fungus tested, with the exception of dichloromethanic extract (2B, which had an inhibitory effect (10.2% at the end of testing.

  9. Synthesis and antifungal activity of nicotinamide derivatives as succinate dehydrogenase inhibitors.

    Science.gov (United States)

    Ye, Yong-Hao; Ma, Liang; Dai, Zhi-Cheng; Xiao, Yu; Zhang, Ying-Ying; Li, Dong-Dong; Wang, Jian-Xin; Zhu, Hai-Liang

    2014-05-07

    Thirty-eight nicotinamide derivatives were designed and synthesized as potential succinate dehydrogenase inhibitors (SDHI) and precisely characterized by (1)H NMR, ESI-MS, and elemental analysis. The compounds were evaluated against two phytopathogenic fungi, Rhizoctonia solani and Sclerotinia sclerotiorum, by mycelia growth inhibition assay in vitro. Most of the compounds displayed moderate activity, in which, 3a-17 exhibited the most potent antifungal activity against R. solani and S. sclerotiorum with IC50 values of 15.8 and 20.3 μM, respectively, comparable to those of the commonly used fungicides boscalid and carbendazim. The structure-activity relationship (SAR) of nicotinamide derivatives demonstrated that the meta-position of aniline was a key position contributing to the antifungal activity. Inhibition activities against two fungal SDHs were tested and achieved the same tendency with the data acquired from in vitro antifungal assay. Significantly, 3a-17 was demonstrated to successfully suppress disease development in S. sclerotiorum infected cole in vivo. In the molecular docking simulation, sulfur and chlorine of 3a-17 were bound with PHE291 and PRO150 of the SDH homology model, respectively, which could explain the probable mechanism of action between the inhibitory and target protein.

  10. Antibacterial and antifungal activity of Flindersine isolated from the traditional medicinal plant, Toddalia asiatica (L.) Lam.

    Science.gov (United States)

    Duraipandiyan, V; Ignacimuthu, S

    2009-06-25

    The leaves and root of Toddalia asiatica (L.) Lam. (Rutaceae) are widely used as a folk medicine in India. Hexane, chloroform, ethyl acetate, methanol and water extracts of Toddalia asiatica leaves and isolated compound Flindersine were tested against bacteria and fungi. Antibacterial and antifungal activities were tested against bacteria and fungi using disc-diffusion method and minimum inhibitory concentrations (MICs). The compound was confirmed using X-ray crystallography technique. Antibacterial and antifungal activities were observed in ethyl acetate extract. One active principle Flindersine (2,6-dihydro-2,2-dimethyl-5H-pyrano [3,2-c] quinoline-5-one-9cl) was isolated from the ethyl acetate extract. The MIC values of the compound against bacteria Bacillus subtilis (31.25 microg/ml), Staphylococcus aureus (62.5 microg/ml), Staphylococcus epidermidis (62.5 microg/ml), Enterococcus faecalis (31.25 microg/ml), Pseudomonas aeruginosa (250 microg/ml), Acinetobacter baumannii (125 microg/ml) and fungi Trichophyton rubrum 57 (62.5 microg/ml), Trichophyton mentagrophytes (62.5 microg/ml), Trichophyton simii (62.5 microg/ml), Epidermophyton floccosum (62.5 microg/ml), Magnaporthe grisea (250 microg/ml) and Candida albicans (250 microg/ml) were determined. Ethyl acetate extract showed promising antibacterial and antifungal activity and isolated compound Flindersine showed moderate activity against bacteria and fungi.

  11. In vitro production and antifungal activity of peptide ABP-dHC-cecropin A.

    Science.gov (United States)

    Zhang, Jiaxin; Movahedi, Ali; Xu, Junjie; Wang, Mengyang; Wu, Xiaolong; Xu, Chen; Yin, Tongming; Zhuge, Qiang

    2015-04-10

    The antimicrobial peptide ABP-dHC-cecropin A is a small cationic peptide with potent activity against a wide range of bacterial species. Evidence of antifungal activity has also been suggested; however, testing of this peptide has been limited due to the low expression of cecropin proteins in Escherichia coli. To improve expression of this peptide in E. coli, ABP-dHC-cecropin A was cloned into a pSUMO vector and transformed into E. coli, resulting in the production of a pSUMO-ABP-dHC-cecropin A fusion protein. The soluble form of this protein was then purified by Ni-IDA chromatography, yielding a total of 496-mg protein per liter of fermentation culture. The SUMO-ABP-dHC-cecropin A fusion protein was then cleaved using a SUMO protease and re-purified by Ni-IDA chromatography, yielding a total of 158-mg recombinant ABP-dHC-cecropin A per liter of fermentation culture at a purity of ≥94%, the highest yield reported to date. Antifungal activity assays performed using this purified recombinant peptide revealed strong antifungal activity against both Candida albicans and Neurospora crassa, as well as Rhizopus, Fusarium, Alternaria, and Mucor species. Combined with previous analyses demonstrating strong antibacterial activity against a number of important bacterial pathogens, these results confirm the use of ABP-dHC-cecropin A as a broad-spectrum antimicrobial peptide, with significant therapeutic potential. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Interaction of gelatin with polyenes modulates antifungal activity and biocompatibility of electrospun fiber mats

    Directory of Open Access Journals (Sweden)

    Lakshminarayanan R

    2014-05-01

    Full Text Available Rajamani Lakshminarayanan,1,2 Radhakrishnan Sridhar,3,4 Xian Jun Loh,5 Muruganantham Nandhakumar,1 Veluchamy Amutha Barathi,1,6 Madhaiyan Kalaipriya,3,4 Jia Lin Kwan,1 Shou Ping Liu,1,2 Roger Wilmer Beuerman,1,2 Seeram Ramakrishna3,4,7 1Singapore Eye Research Institute, 2Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, 3Department of Mechanical Engineering, National University of Singapore, 4Center for Nanofibers and Nanotechnology, National University of Singapore, 5Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research, 3 Research Link, Singapore, 6Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 7NUS Nanoscience and Nanotechnology Initiative, Singapore Abstract: Topical application of antifungals does not have predictable or well-controlled release characteristics and requires reapplication to achieve therapeutic local concentration in a reasonable time period. In this article, the efficacy of five different US Food and Drug Administration-approved antifungal-loaded (amphotericin B, natamycin, terbinafine, fluconazole, and itraconazole electrospun gelatin fiber mats were compared. Morphological studies show that incorporation of polyenes resulted in a two-fold increase in fiber diameter and the mats inhibit the growth of yeasts and filamentous fungal pathogens. Terbinafine-loaded mats were effective against three filamentous fungal species. Among the two azole antifungals compared, the itraconazole-loaded mat was potent against Aspergillus strains. However, activity loss was observed for fluconazole-loaded mats against all of the test organisms. The polyene-loaded mats displayed rapid candidacidal activities as well. Biophysical and rheological measurements indicate strong interactions between polyene antifungals and gelatin matrix. As a result, the polyenes stabilized the triple helical

  13. Screening for antibacterial and antifungal activities in some marine algae from the Fujian coast of China with three different solvents

    Science.gov (United States)

    Zheng, Yi; Chen, Yin-Shan; Lu, Hai-Sheng

    2001-12-01

    Three different solvents viz ethanol, acetone and methanol-toluene (3:1) were used to extract antibiotics from 23 species of marine algae belonging to the Chlorophyta, Phaeophyta and Rhodophyta. Their crude extracts were tested for antibacterial and antifungal activities. Among them, the ethanol extract showed the strongest activity against the bacteria and fungi tested. Four species of the Rhodophyta ( Laurencia okamurai, Dasya scoparia, Grateloupia filicina and plocamium telfairiae) showed a wide spectrum of antibacterial activity. Every solvent extract from the four species was active against all the bacteria tested. The test bacterium Pseudomonas solancearum and the fungus Penicilium citrinum were most sensitive to the extracts of marine algae. In general, the extracts of seaweeds inhibited bacteria more strongly than fungi and species of the Rhodophyta showed the greatest activity against the bacteria and fungi tested.

  14. Antifungal activity of salaceyin A against Colletotrichum orbiculare and Phytophthora capsici.

    Science.gov (United States)

    Park, C N; Lee, D; Kim, W; Hong, Y; Ahn, J S; Kim, B S

    2007-08-01

    The antifungal activities of novel salicylic acid derivatives, salaceyin A, 6-(9-methyldecyl) salicylic acid, and salaceyin B, 6-(9-methylundecyl) salicylic acid were evaluated against plant pathogenic fungi. Salaceyin A showed antifungal activity against Cladosporium cucumerinum, Colletotrichum orbiculare and Phytophthora capsici at 64 microg ml(-1) while salaceyin B was less effective. In vitro antifungal activities of the compounds were influenced by the experimental pH value of the MIC test medium wherein their antifungal activities were enhanced by increasingly acidic conditions. Salaceyin A showed potent in vivo control efficacy against Phytophthora blight in pepper plants. The disease was effectively suppressed at 500 microg ml(-1), which was comparable to the commercial fungicide, metalaxyl. Salaceyin A suppressed anthracnose development on cucumber leaves in a concentration dependent manner. The control efficacy of salaceyin A against C. orbiculare infection was similar to chlorothalonil when applied prior to pathogen inoculation. Since the salaceyins are derivatives of salicylic acid, a known important signal molecule critical to plant defenses against pathogen invasion, we investigated the possibility that exogenous application of the salaceyin A would activate a systemic acquired resistance against P. capsici infection and C. orbiculare development on pepper and cucumber plants respectively. The addition of 500 microg ml(-1) of salaceyin A to the plant root systems did not significantly decrease disease development in the hosts. We are led to conclude that the disease control efficacy of salaceyin A against the Phytophthora blight and anthracnose diseases, mainly originates from the direct interaction of the agent with the pathogens.

  15. Screening of Lactic Acid Bacteria Isolated from Iranian sourdoughs for Antifungal Activity: Enterococcus faecium showed the Most Potent Antifungal Activity in Bread

    Directory of Open Access Journals (Sweden)

    Alam Taghi-Zadeh

    2017-09-01

    Full Text Available Background and Objective: The use of antifungal lactic acid bacteria as starter for bread making could be a good alternative to improve the stability of bread shelf life.Material and Methods: In this study, a total of 57 lactic acid bacteria were isolated from spontaneously fermented wheat sourdoughs collected in Chahar-Mahalo Bakhryari province of Iran. The isolates were screened for in vitro antifungal activity (towards Aspergilus niger or Penicillium roqueforti; and the selected isolates (six isolates were applied in flat bread making. The freshly baked breads were nebulized with a suspension of either molds, containing 104 spores ml-1, and the fungal growth on breads was monitored over a 7-day storage period.Results and Conclusion: Bread produced with either isolates AN3 and MB1 (both were identified as Enterococcus faecium restrained the growth of Aspergillus niger for up to 5 days. Even though none of the isolates were strong enough to inhibit the growth of Penicillium roquforti on bread, the surface area of breads contaminated by this fungus was significantly lower than the control samples. To our knowledge, it was the first report indicating the anti-mold activity of Enterococcus faecium strains isolated from sourdough. These isolates seem to be promising for further analysis and their application in bread industry for prolonging the shelf life.Conflict of interest: The authors declare that there is no conflict of interest.

  16. Synthesis and antifungal activity of the derivatives of novel pyrazole carboxamide and isoxazolol pyrazole carboxylate.

    Science.gov (United States)

    Sun, Jialong; Zhou, Yuanming

    2015-03-09

    A series of pyrazole carboxamide and isoxazolol pyrazole carboxylate derivatives were designed and synthesized in this study. The structures of the compounds were elucidated based on spectral data (infrared, proton nuclear magnetic resonance and mass spectroscopy). Then, all of the compounds were bioassayed in vitro against four types of phytopathogenic fungi (Alternaria porri, Marssonina coronaria, Cercospora petroselini and Rhizoctonia solani) using the mycelium growth inhibition method. The results showed that some of the synthesized pyrazole carboxamides displayed notable antifungal activity. The isoxazole pyrazole carboxylate 7ai exhibited significant antifungal activity against R. solani, with an EC50 value of 0.37 μg/mL. Nonetheless, this value was lower than that of the commercial fungicide, carbendazol.

  17. Synthesis and Antifungal Activity of the Derivatives of Novel Pyrazole Carboxamide and Isoxazolol Pyrazole Carboxylate

    Directory of Open Access Journals (Sweden)

    Jialong Sun

    2015-03-01

    Full Text Available A series of pyrazole carboxamide and isoxazolol pyrazole carboxylate derivatives were designed and synthesized in this study. The structures of the compounds were elucidated based on spectral data (infrared, proton nuclear magnetic resonance and mass spectroscopy. Then, all of the compounds were bioassayed in vitro against four types of phytopathogenic fungi (Alternaria porri, Marssonina coronaria, Cercospora petroselini and Rhizoctonia solani using the mycelium growth inhibition method. The results showed that some of the synthesized pyrazole carboxamides displayed notable antifungal activity. The isoxazole pyrazole carboxylate 7ai exhibited significant antifungal activity against R. solani, with an EC50 value of 0.37 μg/mL. Nonetheless, this value was lower than that of the commercial fungicide, carbendazol.

  18. Synthesis and Antifungal Activity of Novel Sulfone Derivatives Containing 1,3,4-Oxadiazole Moieties

    Directory of Open Access Journals (Sweden)

    Maoguo Tong

    2011-11-01

    Full Text Available A series of new sulfone compounds containing 1,3,4-oxadiazole moieties were synthesized. The structures of these compounds were confirmed by spectroscopic data (IR, 1H- and 13C-NMR and elemental analyses. Antifungal tests indicated that all the title compounds exhibited good antifungal activities against eight kinds of plant pathogenic fungi, and some showed superiority over the commercial fungicide hymexazol. Among them, compounds 5d, 5e, 5f, and 5i showed prominent activity against B. cinerea, with determined EC50 values of 5.21 μg/mL, 8.25 µg/mL, 8.03 µg/mL, and 21.00 µg/mL, respectively. The present work demonstrates that sulfone derivatives such as 5d containing a 1,3,4-oxadiazole moiety can be used as possible lead compounds for the development of potential agrochemicals.

  19. Chemical composition and antifungal activity of the essential oils of Lavandula pedunculata (Miller) Cav.

    Science.gov (United States)

    Zuzarte, Monica; Gonçalves, Maria J; Cavaleiro, Carlos; Dinis, Augusto M; Canhoto, Jorge M; Salgueiro, Lígia R

    2009-08-01

    The chemical composition and antifungal activity of the essential oils of Lavandula pedunculata (Miller) Cav., harvested in North and Central Portugal, were investigated. The essential oils were isolated by hydrodistillation and analyzed by GC and GC/MS. The minimal-inhibitory concentration (MIC) and the minimal-lethal concentration (MLC) of the essential oils and of their major constituents were used to evaluate the antifungal activity against different strains of fungi involved in candidosis, dematophytosis, and aspergillosis. The oils were characterized by a high percentage of oxygenated monoterpenes, the main compounds being 1,8-cineole (2.4-55.5%), fenchone (1.3-59.7%), and camphor (3.6-48.0%). Statistical analysis differentiated the essential oils into two main types, one characterized by the predominance of fenchone and the other one by the predominance of 1,8-cineole. Within the 1,8-cineole chemotype, two subgroups were well-defined taking into account the percentages of camphor. A significant antifungal activity of the oils was found against dermatophyte strains. The essential oil with the highest content of camphor was the most active with MIC and MLC values ranging from 0.32-0.64 microl/ml.

  20. Light-induced antifungal activity of TiO{sub 2} nanoparticles/ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, N. [Nano-Physics Research Lab., Department of Physics, University of Tehran, Tehran (Iran, Islamic Republic of); Abdi, Y., E-mail: y.abdi@ut.ac.ir [Nano-Physics Research Lab., Department of Physics, University of Tehran, Tehran (Iran, Islamic Republic of); Haghighi, F. [Department of Medical Mycology, School of Medical sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2011-09-15

    Antifungal activity of TiO{sub 2}/ZnO nanostructures under visible light irradiation was investigated. A simple chemical method was used to synthesize ZnO nanowires. Zinc acetate dihydrate, Polyvinyl Pyrrolidone and deionized water were used as precursor, capping and solvent, respectively. TiO{sub 2} nanoparticles were deposited on ZnO nanowires using an atmospheric pressure chemical vapor deposition system. X-ray diffraction pattern of TiO{sub 2}/ZnO nano-composite has represented the diffraction peaks relating to the crystal planes of the TiO{sub 2} (anatase and rutile) and ZnO. TiO{sub 2}/ZnO nanostructure antifungal effect on Candida albicans biofilms was studied and compared with the activity of TiO{sub 2} nanoparticles and ZnO nanowires. The high efficiency photocatalytic activity of TiO{sub 2} nanoparticles leads to increased antifungal activity of ZnO nanowires. Scanning electron microscope was utilized to study the morphology of the as prepared nanostructures and the degradation of the yeast.

  1. Light-induced antifungal activity of TiO2 nanoparticles/ZnO nanowires

    International Nuclear Information System (INIS)

    Haghighi, N.; Abdi, Y.; Haghighi, F.

    2011-01-01

    Antifungal activity of TiO 2 /ZnO nanostructures under visible light irradiation was investigated. A simple chemical method was used to synthesize ZnO nanowires. Zinc acetate dihydrate, Polyvinyl Pyrrolidone and deionized water were used as precursor, capping and solvent, respectively. TiO 2 nanoparticles were deposited on ZnO nanowires using an atmospheric pressure chemical vapor deposition system. X-ray diffraction pattern of TiO 2 /ZnO nano-composite has represented the diffraction peaks relating to the crystal planes of the TiO 2 (anatase and rutile) and ZnO. TiO 2 /ZnO nanostructure antifungal effect on Candida albicans biofilms was studied and compared with the activity of TiO 2 nanoparticles and ZnO nanowires. The high efficiency photocatalytic activity of TiO 2 nanoparticles leads to increased antifungal activity of ZnO nanowires. Scanning electron microscope was utilized to study the morphology of the as prepared nanostructures and the degradation of the yeast.

  2. Antifungal Activity of Oleuropein against Candida albicans—The In Vitro Study

    Directory of Open Access Journals (Sweden)

    Nataša Zorić

    2016-11-01

    Full Text Available In the present study we investigated activity of oleuropein, a complex phenol present in large quantities in olive tree products, against opportunistic fungal pathogen Candida albicans. Oleuropein was found to have in vitro antifungal activity with a minimal inhibitory concentration (MIC value of 12.5 mg·mL−1. Morphological changes in the nuclei after staining with fluorescent DNA-binding dyes revealed that apoptosis was a primary mode of cell death in the analyzed samples treated with subinhibitory concentrations of oleuropein. Our results suggest that this antifungal agent targets virulence factors essential for establishment of the fungal infection. We noticed that oleuropein modulates morphogenetic conversion and inhibits filamentation of C. albicans. The hydrophobicity assay showed that oleuropein in sub-MIC values has significantly decreased, in both aerobic and anaerobic conditions, the cellular surface hydrophobicity (CSH of C. albicans, a factor associated with adhesion to epithelial cells. It was also demonstrated that the tested compound inhibits the activity of SAPs, cellular enzymes secreted by C. albicans, which are reported to be related to the pathogenicity of the fungi. Additionally, we detected that oleuropein causes a reduction in total sterol content in the membrane of C. albicans cells, which might be involved in the mechanism of its antifungal activity.

  3. Antifungal Activity of the Volatiles of High Potency Cannabis sativa L. Against Cryptococcus neoformans

    Directory of Open Access Journals (Sweden)

    Amira S. Wanas

    2016-03-01

    Full Text Available The n-hexane extracted volatile fraction of high potency Cannabis sativa L (Cannabaceae . was assessed in vitro for antifungal, antibacterial and antileishmanial activities. The oil exhibited selective albeit modest, antifungal activity against Cryptococcus neoformans with an IC 50 value of 33.1 µg/mL. Biologically-guided fractionation of the volatile fraction resulted in the isolation of three major compounds (1-3 using various chromatographic techniques. The chemical structures of the isolated compounds were identified as α-humulene (1, b -caryophyllene (2 and caryophyllene oxide (3 using GC/FID, GC/MS, 1D- and 2D-NMR analyses, respectively. Compound 1 showed potent and selective antifungal activity against Cryptococcus neoformans with IC 50 and MIC values of 1.18 m g/mL and 5.0 m g/mL respectively. Whereas compound 2 showed weak activity (IC 50 19.4 µg/mL, while compound 3 was inactive against C. neoformans.

  4. Comparative evaluation of two Trichoderma harzianum strains for major secondary metabolite production and antifungal activity.

    Science.gov (United States)

    Ahluwalia, Vivek; Kumar, Jitendra; Rana, Virendra S; Sati, Om P; Walia, S

    2015-01-01

    This investigation was undertaken to identify the major secondary metabolite, produced by two Trichoderma harzianum strains (T-4 and T-5) with their antifungal activity against phytopathogenic fungi using poison food technique. The ethyl acetate extract was subjected to column chromatography using n-hexane, ethyl acetate and methanol gradually. Chromatographic separation of ethyl acetate extract of T. harzianum (T-4) resulted in the isolation and identification of palmitic acid (1), 1,8-dihydroxy-3-methylanthraquinone (2), 6-pentyl-2H-pyran-2-one (3), 2(5H)-furanone (4), stigmasterol (5) and β-sitosterol (6), while T. harzianum (T-5) gave palmitic acid (1), 1-hydroxy-3-methylanthraquinone (7), δ-decanolactone (8), 6-pentyl-2H-pyran-2-one (3), ergosterol (9), harzianopyridone (10) and 6-methyl-1,3,8-trihydroxyanthraquinone (11) as major metabolites. Among compounds screened for antifungal activity, compound 10 was found to be most active (EC50 35.9-50.2 μg mL(-1)). In conclusion, the present investigation provided significant information about antifungal activity and compounds isolated from two different strains of T. harzianum obtained from two different Himalayan locations.

  5. Antifungal Activity of 14-Helical β-Peptides against Planktonic Cells and Biofilms of Candida Species

    Directory of Open Access Journals (Sweden)

    Namrata Raman

    2015-08-01

    Full Text Available Candida albicans is the most prevalent cause of fungal infections and treatment is further complicated by the formation of drug resistant biofilms, often on the surfaces of implanted medical devices. In recent years, the incidence of fungal infections by other pathogenic Candida species such as C. glabrata, C. parapsilosis and C. tropicalis has increased. Amphiphilic, helical β-peptide structural mimetics of natural antimicrobial α-peptides have been shown to exhibit specific planktonic antifungal and anti-biofilm formation activity against C. albicans in vitro. Here, we demonstrate that β-peptides are also active against clinically isolated and drug resistant strains of C. albicans and against other opportunistic Candida spp. Different Candida species were susceptible to β-peptides to varying degrees, with C. tropicalis being the most and C. glabrata being the least susceptible. β-peptide hydrophobicity directly correlated with antifungal activity against all the Candida clinical strains and species tested. While β-peptides were largely ineffective at disrupting existing Candida biofilms, hydrophobic β-peptides were able to prevent the formation of C. albicans, C. glabrata, C. parapsilosis and C. tropicalis biofilms. The broad-spectrum antifungal activity of β-peptides against planktonic cells and in preventing biofilm formation suggests the promise of this class of molecules as therapeutics.

  6. Phytochemical Composition, Antifungal and Antioxidant Activity of Duguetia furfuracea A. St.-Hill

    Science.gov (United States)

    Pinho, Francisca Valéria Soares de Araújo; da Cruz, Litiele Cezar; Rodrigues, Nathane Rosa; Waczuk, Emily Pansera; Souza, Celestina Elba Sobral; da Costa, José Galberto Martins; Athayde, Margareth Linde; de Menezes, Irwin Rose Alencar

    2016-01-01

    Background. Duguetia furfuracea is popular plant used in popular medicine. Hypothesis/Purpose. This claim evaluated the phytochemical composition of the hydroethanolic extract (HEDF), fractions of Duguetia furfuracea, and antioxidant and antifungal activity. Methods. The chemical profile was carried out by HPLC-DAD. The total phenolic contents and flavonoid components were determined by Folin-Ciocalteu and aluminium chloride reaction. The antioxidant activity was measured by scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical and ferric reducing ability of plasma (FRAP) methods. The antifungal activity was determined by microdilution assay. Results. HPLC analysis revealed caffeic acid and rutin as major compounds (HEDF), caffeic acid and quercitrin (Mt-OH fraction), and quercitrin and isoquercitrin (Ac-OEt fraction). The highest levels of phenols and total flavonoids were found for Ac-OEt fraction, and the crude extract showed higher in vitro antioxidant potential. The antifungal activity showed synergic effect with fluconazole and EHDF against C. krusei, fluconazole and Mt-OH against C. krusei and C. tropicalis, and Ac-OE and fluconazole against C. albicans. Conclusion. The highest levels of phenols and total flavonoids were marked with antioxidant effect. This is the first report of bioactivity of the synergic effect of HEDF and fractions. More studies would be required to better clarify its mechanism of synergic action. PMID:27127550

  7. In vitro activity of econazole in comparison with three common antifungal agents against clinical Candida strains isolated from superficial infections

    Directory of Open Access Journals (Sweden)

    Mahdi Abastabar

    2015-03-01

    Conclusion: The present study demonstrated that for Candida albicans isolates, miconazole and econazole had the best effect, but in non-albicans Candida species, itraconazole and miconazole displayed more activity than other antifungal agents.

  8. The in vitro antifungal activity of sudanese medicinal plants against Madurella mycetomatis, the eumycetoma major causative agent.

    Science.gov (United States)

    Elfadil, Hassabelrasoul; Fahal, Ahmed; Kloezen, Wendy; Ahmed, Elhadi M; van de Sande, Wendy

    2015-03-01

    Eumycetoma is a debilitating chronic inflammatory fungal infection that exists worldwide but it is endemic in many tropical and subtropical regions. The major causative organism is the fungus Madurella mycetomatis. The current treatment of eumycetoma is suboptimal and characterized by low cure rate and high recurrence rates. Hence, an alternative therapy is needed to address this. Here we determined the antifungal activity of seven Sudanese medicinal plant species against Madurella mycetomatis. Of these, only three species; Boswellia papyrifera, Acacia nubica and Nigella sativa, showed some antifungal activity against M. mycetomatis and were further studied. Crude methanol, hexane and defatted methanol extracts of these species were tested for their antifungal activity. B. papyrifera had the highest antifungal activity (MIC50 of 1 ug/ml) and it was further fractionated. The crude methanol and the soluble ethyl acetate fractions of B. papyrifera showed some antifungal activity. The Gas-Liquid-Chromatography hybrid Mass-Spectrophotometer analysis of these two fractions showed the existence of beta-amyrin, beta-amyrone, beta-Sitosterol and stigmatriene. Stigmatriene had the best antifungal activity, compared to other three phytoconstituents, with an MIC-50 of 32 μg/ml. Although the antifungal activity of the identified phytoconstituents was only limited, the antifungal activity of the complete extracts is more promising, indicating synergism. Furthermore these plant extracts are also known to have anti-inflammatory activity and can stimulate wound-healing; characteristics which might also be of great value in the development of novel therapeutic drugs for this chronic inflammatory disease. Therefore further exploration of these plant species in the treatment of mycetoma is encouraging.

  9. The in vitro antifungal activity of sudanese medicinal plants against Madurella mycetomatis, the eumycetoma major causative agent.

    Directory of Open Access Journals (Sweden)

    Hassabelrasoul Elfadil

    2015-03-01

    Full Text Available Eumycetoma is a debilitating chronic inflammatory fungal infection that exists worldwide but it is endemic in many tropical and subtropical regions. The major causative organism is the fungus Madurella mycetomatis. The current treatment of eumycetoma is suboptimal and characterized by low cure rate and high recurrence rates. Hence, an alternative therapy is needed to address this. Here we determined the antifungal activity of seven Sudanese medicinal plant species against Madurella mycetomatis. Of these, only three species; Boswellia papyrifera, Acacia nubica and Nigella sativa, showed some antifungal activity against M. mycetomatis and were further studied. Crude methanol, hexane and defatted methanol extracts of these species were tested for their antifungal activity. B. papyrifera had the highest antifungal activity (MIC50 of 1 ug/ml and it was further fractionated. The crude methanol and the soluble ethyl acetate fractions of B. papyrifera showed some antifungal activity. The Gas-Liquid-Chromatography hybrid Mass-Spectrophotometer analysis of these two fractions showed the existence of beta-amyrin, beta-amyrone, beta-Sitosterol and stigmatriene. Stigmatriene had the best antifungal activity, compared to other three phytoconstituents, with an MIC-50 of 32 μg/ml. Although the antifungal activity of the identified phytoconstituents was only limited, the antifungal activity of the complete extracts is more promising, indicating synergism. Furthermore these plant extracts are also known to have anti-inflammatory activity and can stimulate wound-healing; characteristics which might also be of great value in the development of novel therapeutic drugs for this chronic inflammatory disease. Therefore further exploration of these plant species in the treatment of mycetoma is encouraging.

  10. Production, characterization, and antifungal activity of a biosurfactant produced by Rhodotorula babjevae YS3.

    Science.gov (United States)

    Sen, Suparna; Borah, Siddhartha Narayan; Bora, Arijit; Deka, Suresh

    2017-05-30

    Sophorolipids are one of the most promising glycolipid biosurfactants and have been successfully employed in bioremediation and various other industrial sectors. They have also been described to exhibit antimicrobial activity against different bacterial species. Nevertheless, previous literature pertaining to the antifungal activity of sophorolipids are limited indicating the need for further research to explore novel strains with wide antimicrobial activity. A novel yeast strain, Rhodotorula babjevae YS3, was recently isolated from an agricultural field in Assam, Northeast India. This study was primarily emphasized at the characterization and subsequent evaluation of antifungal activity of the sophorolipid biosurfactant produced by R. babjevae YS3. The growth kinetics and biosurfactant production by R. babjevae YS3 was evaluated by cultivation in Bushnell-Haas medium containing glucose (10% w/v) as the sole carbon source. A reduction in the surface tension of the culture medium from 70 to 32.6 mN/m was observed after 24 h. The yield of crude biosurfactant was recorded to be 19.0 g/l which might further increase after optimization of the growth parameters. The biosurfactant was characterized to be a heterogeneous sophorolipid (SL) with both lactonic and acidic forms after TLC, FTIR and LC-MS analyses. The SL exhibited excellent oil spreading and emulsifying activity against crude oil at 38.46 mm 2 and 100% respectively. The CMC was observed to be 130 mg/l. The stability of the SL was evaluated over a wide range of pH (2-10), salinity (2-10% NaCl) and temperature (at 120 °C for time intervals of 30 up to 120 min). The SL was found to retain surface-active properties under the extreme conditions. Additionally, the SL exhibited promising antifungal activity against a considerably broad group of pathogenic fungi viz. Colletotrichum gloeosporioides, Fusarium verticilliodes, Fusarium oxysporum f. sp. pisi, Corynespora cassiicola, and Trichophyton rubrum. The

  11. Genome Sequence of an Endophytic Fungus, Fusarium solani JS-169, Which Has Antifungal Activity.

    Science.gov (United States)

    Kim, Jung A; Jeon, Jongbum; Park, Sook-Young; Kim, Ki-Tae; Choi, Gobong; Lee, Hyun-Jung; Kim, Yangsun; Yang, Hee-Sun; Yeo, Joo-Hong; Lee, Yong-Hwan; Kim, Soonok

    2017-10-19

    An endophytic fungus, Fusarium solani strain JS-169, isolated from a mulberry twig, showed considerable antifungal activity. Here, we report the draft genome sequence of this strain. The assembly comprises 17 scaffolds, with an N 50 value of 4.93 Mb. The assembled genome was 45,813,297 bp in length, with a G+C content of 49.91%. Copyright © 2017 Kim et al.

  12. Antifungal Activity and Aflatoxin Degradation of Bifidobacterium Bifidum and Lactobacillus Fermentum Against Toxigenic Aspergillus Parasiticus

    OpenAIRE

    Ghazvini, Roshanak Daie; Kouhsari, Ebrahim; Zibafar, Ensieh; Hashemi, Seyed Jamal; Amini, Abolfazl; Niknejad, Farhad

    2016-01-01

    Food and feedstuff contamination with aflatoxins (AFTs) is a serious health problem for humans and animals, especially in developing countries. The present study evaluated antifungal activities of two lactic acid bacteria (LAB) against growth and aflatoxin production of toxigenic Aspergillus parasiticus. The mycelial growth inhibition rate of A. parasiticus PTCC 5286 was investigated in the presence of Bifidobacterium bifidum PTCC 1644 and Lactobacillus fermentum PTCC 1744 by the pour plate m...

  13. Antifungal activity of plant extracts with potential to control plant pathogens in pineapple

    Directory of Open Access Journals (Sweden)

    Maria Diana Cerqueira Sales

    2016-01-01

    Conclusions: The findings of the present study concluded that mother tinctures can effectively control phytopathogens. The mother tincture extract of Myroxylon balsamum showed antifungal activity and was used here for the first time for inhibition of phytopathogenic fungi. This study paves the way for the development of bioactive natural products with phytosanitary applications, with the added benefits of an environmentally safe and economically viable product.

  14. Probiotic Potential of Lactobacillus Strains with Antifungal Activity Isolated from Animal Manure

    OpenAIRE

    Ilavenil, Soundharrajan; Park, Hyung Soo; Vijayakumar, Mayakrishnan; Valan Arasu, Mariadhas; Kim, Da Hye; Ravikumar, Sivanesan; Choi, Ki Choon

    2015-01-01

    The aim of the study was to isolate and characterize the lactic acid bacteria (LAB) from animal manure. Among the thirty LAB strains, four strains, namely, KCC-25, KCC-26, KCC-27, and KCC-28, showed good cell growth and antifungal activity and were selected for further characterization. Biochemical and physiology properties of strains confirmed that the strains are related to the Lactobacillus sp.; further, the 16S rRNA sequencing confirmed 99.99% sequence similarity towards Lactobacillus pla...

  15. Antifungal Activity Against Plant Pathogens of Metabolites from the Endophytic Fungus Cladosporium cladosporioides

    OpenAIRE

    Wang, Xiaoning; Radwan, Mohamed M.; Taráwneh, Amer H.; Gao, Jiangtao; Wedge, David E.; Rosa, Luiz H.; Cutler, Horace G.; Cutler, Stephen J.

    2013-01-01

    Bioassay-guided fractionation of Cladosporium cladosporioides (Fresen.) de Vries extracts led to the isolation of four compounds, including cladosporin, 1, isocladosporin, 2, 5′-hydroxyasperentin, 3, and cladosporin-8-methyl ether, 4. An additional compound 5′,6-diacetyl cladosporin, 5, was synthesized by acetylation of compound 3. Compounds 1-5 were evaluated for antifungal activity against plant pathogens. Phomopsis viticola was the most sensitive fungus to the tested compounds. At 30 μM, c...

  16. The comparative study of antifungal activity of Syzygium aromaticum, Punica granatum and nystatin on Candida albicans; an in vitro study.

    Science.gov (United States)

    Mansourian, A; Boojarpour, N; Ashnagar, S; Momen Beitollahi, J; Shamshiri, A R

    2014-12-01

    Candida species are opportunistic fungi, among which, Candida albicans is the most important species responsible for infections in immunocompromised patients with invasive fungal disease. Resistance of Candida species to antifungal drugs has led scientists to pay more attention to traditional medicine herbs. Due to the limitations in the treatment of fungal diseases such as shortages, high prices, antifungal side effects and drug resistance or reduced susceptibility to fungal drugs we decided to study the antifungal effects of herbal extracts of Syzygium aromaticum and Punica granatum. Twenty-one isolates of oral C. albicans in patients with denture stomatitis referred to prosthesis department, Dental faculty of Tehran University of Medical Sciences were prepared and cultured. Plant extracts were prepared from the herbs market. Tests on patient samples and standard strains 5027ATCC (PTCC10231) yeast C. albicans were performed via well diffusion method. In addition, nystatin and methanol were used as positive and negative control, respectively. Finally, the antifungal effect of extracts using Statistical Repeated measurement ANOVA test was investigated. Both S. aromaticum and P. granatum showed noticeable antifungal activity in well method. Syzygium aromaticum showed better anti candida activity than nystatin (Pgranatum showed good antifungal effects (P-value<0.001). S. aromaticum (inhibition zone diameter: 29.62) showed better antifungal effects than nystatin (inhibition zone diameter: 28.48). Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Anti-fungal activity of cold and hot water extracts of spices against fungal pathogens of Roselle (Hibiscus sabdariffa) in vitro.

    Science.gov (United States)

    Touba, Eslaminejad Parizi; Zakaria, Maziah; Tahereh, Eslaminejad

    2012-02-01

    Crude extracts of seven spices, viz. cardamom, chilli, coriander, onion, garlic, ginger, and galangale were made using cold water and hot water extraction and they were tested for their anti-fungal effects against the three Roselle pathogens i.e. Phoma exigua, Fusarium nygamai and Rhizoctonia solani using the 'poisoned food technique'. All seven spices studied showed significant anti-fungal activity at three concentrations (10, 20 and 30% of the crude extract) in-vitro. The cold water extract of garlic exhibited good anti-fungal activity against all three tested fungi. In the case of the hot water extracts, garlic and ginger showed the best anti-fungal activity. Of the two extraction methods, cold water extraction was generally more effective than hot water extraction in controlling the pathogens. Against P. exigua, the 10% cold water extracts of galangale, ginger, coriander and cardamom achieved total (100%) inhibition of pathogen mycelial growth. Total inhibition of F. nygamai mycelial growth was similarly achieved with the 10% cold water extracts garlic. Against R. solani, the 10% cold water extract of galangale was effective in imposing 100% inhibition. Accordingly, the 10% galangale extract effectively controlled both P. exigua and R. solani in vitro. None of the hot water extracts of the spices succeeded in achieving 100% inhibition of the pathogen mycelial growth. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Antifungal activity of four honeys of different types from Algeria against pathogenic yeast: Candida albicans and Rhodotorula sp.

    OpenAIRE

    Ahmed Moussa; Djebli Noureddine; Aissat Saad; Meslem Abdelmelek; Benhalima Abdelkader

    2012-01-01

    Objective: To evaluate the antifungal activity of four honeys of different types from Algeria against pathogenic yeast i.e. Candida albicans (C. albicans) and Rhodotorula sp. Methods: Four Algeria honeys of different botanical origin were analyzed to test antifungal effect against C. albicans, and Rhodotorula sp. Different concentrations (undiluted, 10%, 30%, 50% and 70% w/v) of honey were studied in vitro for their antifugal activity using C. albicans and Rhodotorula sp. as fungal strains...

  19. Antifungal activity of linalool in cases of Candida spp. isolated from individuals with oral candidiasis

    Directory of Open Access Journals (Sweden)

    I. J. Dias

    2017-09-01

    Full Text Available Abstract This study analyzed the antifungal activity of phytoconstituents from linalool on Candida spp. strains, in vitro, isolated from patients with clinical diagnoses of oral candidiasis associated with the use of a dental prosthesis. Biological samples were collected from 12 patients using complete dentures or removable partial dentures and who presented mucous with diffuse erythematous or stippled features, indicating a clinical diagnosis of candidiasis. To identify fungal colonies of the genus Candida, samples were plated onto CHROMagar Candida®. The antifungal activity of linalool, a monoterpene unsaturated constituent of basil oil, was performed using the broth microdilution technique. Then, the minimum inhibitory concentration (MIC, the two subsequent stronger concentrations and the positive controls were subcultured on Sabouraud Dextrose Agar plates to determine the minimum fungicidal concentration (MFC. The experiments were performed in triplicate and nystatin was used as a positive control in all tests. Diagnoses of oral candidiasis were verified in eight patients (66.6% and the most prevalent fungal species was Candida albicans (37.5%, followed by Candida krusei (25.0%; and Candida tropicalis (4.2%. The best antifungal activity of linalool was observed on Candida tropicalis (MIC = 500 mg/mL, followed by Candida albicans (MIC = 1.000 mg/mL, and Candida krusei (MIC = 2.000 mg/mL.Under the study conditions and based on the results obtained, it can be concluded that the Candida strains tested were susceptible to linalool.

  20. Diminished Antimicrobial Peptide and Antifungal Antibiotic Activities against Candida albicans in Denture Adhesive

    Directory of Open Access Journals (Sweden)

    Amber M. Bates

    2017-02-01

    Full Text Available The underlying causes of denture stomatitis may be related to the long-term use of adhesives, which may predispose individuals to oral candidiasis. In this study, we hypothesize that antimicrobial peptides and antifungal antibiotics have diminished anti-Candida activities in denture adhesive. To show this, nine antimicrobial peptides and five antifungal antibiotics with and without 1.0% denture adhesive were incubated with Candida albicans strains ATCC 64124 and HMV4C in radial diffusion assays. In gels with 1.0% adhesive, HNP-1, HBD2, HBD3, IP-10, LL37 (only one strain, histatin 5 (only one strain, lactoferricin B, and SMAP28 showed diminished activity against C. albicans. In gels with 1.0% adhesive, amphotericin B and chlorhexidine dihydrochloride were active against both strains of C. albicans. These results suggest that denture adhesive may inactivate innate immune mediators in the oral cavity increasing the risk of C. albicans infections, but inclusion of antifungal antibiotics to denture adhesive may aid in prevention or treatment of Candida infections and denture stomatitis.

  1. Antifungal activity of selected Malaysian honeys: a comparison with Manuka honey

    Directory of Open Access Journals (Sweden)

    Siti Aisyah Sayadi

    2015-07-01

    Full Text Available Objective: To evaluate four selected Malaysian honey samples from different floral sources (Gelam, Tualang, Nenas and Acacia for their ability to inhibit the growth of fungi and yeast strains (Candida albicans, Aspergillus niger, Epidermophyton floccosum, Microsporum gypseum, Trichophyton rubrum and Trichophyton mentagrophytes. Methods: The broth microdilution method was used to assess the antifungal activity of honey against yeasts at different concentrations ranging from 0.01% to 70% (v/v. Minimum inhibitory concentration (MIC of the honeys were determined by visual inspection and spectrophotometric assay. Minimum fungicidal concentration test was performed by further sub-culturing from the plates which showed no visible growth in the MIC assay onto Sabroud dextrose agar. Results: All tested Malaysian honeys except Gelam showed antifungal activity against all species analysed, with the MIC ranging from 25% (v/v to 50% (v/v while MIC of Manuka honey ranged between 21% to 53% (v/v. Candida albicans was more susceptible to honey than other species tested. Conclusions: Locally produced honeys exhibited antifungal activity which is less than or equal to that of Manuka honey. Our data showed evidence in support of the therapeutic uses of Malaysian honeys.

  2. Diversities in virulence, antifungal activity, pigmentation and DNA fingerprint among strains of Burkholderia glumae.

    Science.gov (United States)

    Karki, Hari S; Shrestha, Bishnu K; Han, Jae Woo; Groth, Donald E; Barphagha, Inderjit K; Rush, Milton C; Melanson, Rebecca A; Kim, Beom Seok; Ham, Jong Hyun

    2012-01-01

    Burkholderia glumae is the primary causal agent of bacterial panicle blight of rice. In this study, 11 naturally avirulent and nine virulent strains of B. glumae native to the southern United States were characterized in terms of virulence in rice and onion, toxofalvin production, antifungal activity, pigmentation and genomic structure. Virulence of B. glumae strains on rice panicles was highly correlated to virulence on onion bulb scales, suggesting that onion bulb can be a convenient alternative host system to efficiently determine the virulence of B. glumae strains. Production of toxoflavin, the phytotoxin that functions as a major virulence factor, was closely associated with the virulence phenotypes of B. glumae strains in rice. Some strains of B. glumae showed various levels of antifungal activity against Rhizoctonia solani, the causal agent of sheath blight, and pigmentation phenotypes on casamino acid-peptone-glucose (CPG) agar plates regardless of their virulence traits. Purple and yellow-green pigments were partially purified from a pigmenting strain of B. glumae, 411gr-6, and the purple pigment fraction showed a strong antifungal activity against Collectotrichum orbiculare. Genetic variations were detected among the B. glumae strains from DNA fingerprinting analyses by repetitive element sequence-based PCR (rep-PCR) for BOX-A1R-based repetitive extragenic palindromic (BOX) or enterobacterial repetitive intergenic consensus (ERIC) sequences of bacteria; and close genetic relatedness among virulent but pigment-deficient strains were revealed by clustering analyses of DNA fingerprints from BOX-and ERIC-PCR.

  3. Purification, characterization, and antifungal activity of chitinases from pineapple (Ananas comosus) leaf.

    Science.gov (United States)

    Taira, Toki; Toma, Noriko; Ishihara, Masanobu

    2005-01-01

    Three chitinases, designated pineapple leaf chitinase (PL Chi)-A, -B, and -C were purified from the leaves of pineapple (Ananas comosus) using chitin affinity column chromatography followed by several column chromatographies. PL Chi-A is a class III chitinase having a molecular mass of 25 kDa and an isoelectric point of 4.4. PL Chi-B and -C are class I chitinases having molecular masses of 33 kDa and 39 kDa and isoelectric points of 7.9 and 4.6 respectively. PL Chi-C is a glycoprotein and the others are simple proteins. The optimum pHs of PL Chi-A, -B, and -C toward glycolchitin are pH 3, 4, and 9 respectively. The chitin-binding ability of PL Chi-C is higher than that of PL Chi-B, and PL Chi-A has lower chitin-binding ability than the others. At low ionic strength, PL Chi-B exhibits strong antifungal activity toward Trichoderma viride but the others do not. At high ionic strength, PL Chi-B and -C exhibit strong and weak antifungal activity respectively. PL Chi-A does not have antifungal activity.

  4. Antifungal activity and mechanism of action of monoterpenes against dermatophytes and yeasts

    Directory of Open Access Journals (Sweden)

    Diogo Miron

    Full Text Available Dermatomycosis causes highly frequent dermal lesions, and volatile oils have been proven to be promising as antifungal agents. The antifungal activity of geraniol, nerol, citral, neral and geranial (monoterpenes, and terbinafine and anidulafungin (control drugs against seven opportunistic pathogenic yeasts and four dermatophyte species was evaluated by the Clinical and Laboratory Standards Institute microdilution tests. Monoterpenes were more active against dermatophytes than yeasts (geometric mean of minimal inhibitory concentration (GMIC of 34.5 and 100.4 µg.ml-1, respectively. Trichophyton rubrum was the fungal species most sensitive to monoterpenes (GMIC of 22.9 µg.ml-1. The trans isomers showed higher antifungal activity than the cis. The mechanism of action was investigated evaluating damage in the fungal cell wall (Sorbitol Protection Assay and in the cell membrane (Ergosterol Affinity Assay. No changes were observed in the MIC of monoterpenes in the sorbitol protection assay.The MIC of citral and geraniol was increased from 32 to 160 µg.ml-1 when the exogenous ergosterol concentrations was zero and 250 µg.ml-1, respectively. The monoterpenes showed an affinity for ergosterol relating their mechanism of action to cell membrane destabilization.

  5. Chemical Composition and Antifungal Activity of Ocimum basilicum L. Essential Oil

    Directory of Open Access Journals (Sweden)

    Neveen Helmy Abou El-Soud

    2015-07-01

    Full Text Available BACKGROUND: The leaves of Ocimum basilicum L. (basil are used in traditional cuisine as spices; its essential oil has found a wide application in perfumery, dental products as well as antifungal agents. AIM: To assess the chemical composition as well as the in vitro antifungal activity of O. basilicum L. essential oil against Aspergillus flavus fungal growth and aflatoxin B1 production. MATERIAL AND METHODS: The essential oil of O. basilicum was obtained by hydrodistillation and analysed using gas chromatography (GC and GC coupled with mass spectrometry (GC/MS. The essential oil was tested for its effects on Aspergillus flavus (A. flavus mycelial growth and aflatoxin B1 production in Yeast Extract Sucrose (YES growth media. Aflatoxin B1 production was determined by high performance liquid chromatography (HPLC. RESULTS: Nineteen compounds, representing 96.7% of the total oil were identified. The main components were as follows: linalool (48.4%, 1,8-cineol (12.2%, eugenol (6.6%, methyl cinnamate (6.2%, α-cubebene (5.7%, caryophyllene (2.5%, β-ocimene (2.1% and α-farnesene (2.0%.The tested oil showed significant antifungal activity that was dependent on the used oil concentration. The complete inhibition of A. flavus growth was observed at 1000 ppm oil concentration, while marked inhibition of aflatoxin B1 production was observed at all oil concentrations tested (500, 750 and 1000 ppm. CONCLUSION: These results confirm the antifungal activities of O. basilicum L. oil and its potential use to cure mycotic infections and act as pharmaceutical preservative against A. flavus growth and aflatoxin B1 production.

  6. Effect of temperature, pH and detergents on the antifungal activity of bacterial culture filtrates against Mycosphaerella fijiensis

    Directory of Open Access Journals (Sweden)

    Eilyn Mena

    2014-01-01

    Full Text Available The bacteria associated to crops have been studied as potential biocontrol agents. However, few investigations on the interaction Musa spp. - Mycosphaerella fijiensis-Musa associated bacteria have been developed. Consequently, bacterial metabolites involved and the effect on them of physical and chemical factors remain unknown. Therefore, this study aimed to determine the effect of temperature, pH and detergents on bacterial culture filtrates with antifungal activity in vitro against Mycosphaerella fijiensis. The pathogen growth inhibition was assessed by absorbance reading at OD 565nm. It was found that the antifungal activity of the bacterial culture filtrates against M. fijiensis, varied in the presence of different values of temperature, pH, and types of detergents and this was related to the bacterial strain. The results suggested the possible protein nature of the metabolites with antifungal activity. Keywords: bacteria, biological control, antifungal metabolites

  7. Antifungal activity of essential oils evaluated by two different application techniques against rye bread spoilage fungi

    DEFF Research Database (Denmark)

    Suhr, Karin Isabel; Nielsen, Per Væggemose

    2003-01-01

    Aims: To study how antifungal activity of natural essential oils depends on the assay method used.Methods and Results: Oils of bay, cinnamon leaf, clove, lemongrass, mustard, orange, sage, thyme and two rosemary oils were tested by two methods: (1) a rye bread-based agar medium was supplemented...... with 100 and 250 mu l l(-1) essential oil and (2) real rye bread was exposed to 136 and 272 mu l l(-1) volatile oil in air. Rye bread spoilage fungi were used for testing. Method 1 proved thyme oil to be the overall best growth inhibitor, followed by clove and cinnamon. On the contrary, orange, sage...... and rosemary oils had very limited effects. Mustard and lemongrass were the most effective oils by the volatile method, and orange, sage and one rosemary showed some effects. Oil compositions were analysed by gas chromatography-mass spectrography.Conclusions: Antifungal effects of the essential oils depended...

  8. Differential Antifungal Activity of Human and Cryptococcal Melanins with Structural Discrepancies

    Directory of Open Access Journals (Sweden)

    Néstor Correa

    2017-07-01

    Full Text Available Melanin is a pigment found in all biological kingdoms, and plays a key role in protection against ultraviolet radiation, oxidizing agents, and ionizing radiation damage. Melanin exerts an antimicrobial activity against bacteria, fungi, and parasites. We demonstrated an antifungal activity of synthetic and human melanin against Candida sp. The members of the Cryptococcus neoformans and C. gattii species complexes are capsulated yeasts, which cause cryptococcosis. For both species melanin is an important virulence factor. To evaluate if cryptococcal and human melanins have antifungal activity against Cryptococcus species they both were assayed for their antifungal properties and physico-chemical characters. Melanin extracts from human hair and different strains of C. neoformans (n = 4 and C. gattii (n = 4 were investigated. The following minimum inhibitory concentrations were found for different melanins against C. neoformans and C. gattii were (average/range: 13.7/(7.8–15.6 and 19.5/(15.6–31.2 μg/mL, respectively, for human melanin; 273.4/(125–>500 and 367.2/(125.5–>500 μg/mL for C. neoformans melanin and 125/(62.5–250 and 156.2/(62–250 μg/mL for C. gattii melanin. Using Scanning Electron Microscopy we observed that human melanin showed a compact conformation and cryptococcal melanins exposed an amorphous conformation. Infrared spectroscopy (FTIR showed some differences in the signals related to C-C bonds of the aromatic ring of the melanin monomers. High Performance Liquid Chromatography established differences in the chromatograms of fungal melanins extracts in comparison with human and synthetic melanin, particularly in the retention time of the main compound of fungal melanin extracts and also in the presence of minor unknown compounds. On the other hand, MALDI-TOF-MS analysis showed slight differences in the spectra, specifically the presence of a minor intensity ion in synthetic and human melanin, as well as in some fungal

  9. Differential Antifungal Activity of Human and Cryptococcal Melanins with Structural Discrepancies.

    Science.gov (United States)

    Correa, Néstor; Covarrubias, Cristian; Rodas, Paula I; Hermosilla, Germán; Olate, Verónica R; Valdés, Cristián; Meyer, Wieland; Magne, Fabien; Tapia, Cecilia V

    2017-01-01

    Melanin is a pigment found in all biological kingdoms, and plays a key role in protection against ultraviolet radiation, oxidizing agents, and ionizing radiation damage. Melanin exerts an antimicrobial activity against bacteria, fungi, and parasites. We demonstrated an antifungal activity of synthetic and human melanin against Candida sp. The members of the Cryptococcus neoformans and C. gattii species complexes are capsulated yeasts, which cause cryptococcosis. For both species melanin is an important virulence factor. To evaluate if cryptococcal and human melanins have antifungal activity against Cryptococcus species they both were assayed for their antifungal properties and physico-chemical characters. Melanin extracts from human hair and different strains of C. neoformans ( n = 4) and C. gattii ( n = 4) were investigated. The following minimum inhibitory concentrations were found for different melanins against C. neoformans and C. gattii were (average/range): 13.7/(7.8-15.6) and 19.5/(15.6-31.2) μg/mL, respectively, for human melanin; 273.4/(125->500) and 367.2/(125.5->500) μg/mL for C. neoformans melanin and 125/(62.5-250) and 156.2/(62-250) μg/mL for C. gattii melanin. Using Scanning Electron Microscopy we observed that human melanin showed a compact conformation and cryptococcal melanins exposed an amorphous conformation. Infrared spectroscopy (FTIR) showed some differences in the signals related to C-C bonds of the aromatic ring of the melanin monomers. High Performance Liquid Chromatography established differences in the chromatograms of fungal melanins extracts in comparison with human and synthetic melanin, particularly in the retention time of the main compound of fungal melanin extracts and also in the presence of minor unknown compounds. On the other hand, MALDI-TOF-MS analysis showed slight differences in the spectra, specifically the presence of a minor intensity ion in synthetic and human melanin, as well as in some fungal melanin extracts. We

  10. Indolo[3,2-c]cinnolines with antiproliferative, antifungal, and antibacterial activity.

    Science.gov (United States)

    Barraja, P; Diana, P; Lauria, A; Passannanti, A; Almerico, A M; Minnei, C; Longu, S; Congiu, D; Musiu, C; La Colla, P

    1999-08-01

    A series of indolo[3,2-c]cinnoline derivatives was prepared and tested to evaluate their biological activity. Most of them inhibited the proliferation of leukemia, lymphoma and solid tumor-derived cell lines at micromolar concentrations, whereas none of the compounds were active against HIV-1. With the exception of 7g, all title compounds showed antibacterial activity against gram-positive bacteria, being up to 200 times more potent than the reference drug streptomycin. Some of the indolo[3,2-c]cinnolines were also endowed with good antifungal activity, particularly against Criptococcus neoformans.

  11. Antibacterial and antifungal activity of sulfur-containing compounds from Petiveria alliacea L.

    Science.gov (United States)

    Kim, Seokwon; Kubec, Roman; Musah, Rabi A

    2006-03-08

    A total of 18 organosulfur compounds originating from Petiveria alliacea L. roots have been tested for their antibacterial and antifungal activities. These represent compounds occurring in fresh homogenates as well as those present in various macerates, extracts and other preparations made from Petiveria alliacea. Of the compounds assayed, the thiosulfinates, trisulfides and benzylsulfinic acid were observed to be the most active, with the benzyl-containing thiosulfinates exhibiting the broadest spectrum of antimicrobial activity. The effect of plant sample preparation conditions on the antimicrobial activity of the extract is discussed.

  12. In vitro antifungal activity of Ocimum selloi essential oil and methylchavicol against phytopathogenic fungi1

    Directory of Open Access Journals (Sweden)

    Larissa Corrêa Bomfim Costa

    Full Text Available The efficacy of Ocimum selloi essential oil was evaluated for controlling the growth of mycelia and spores germination Moniliophthora perniciosa. Six compounds (99.89% of the total oil were identified by GC-MS, of which methyl chavicol, methyl eugenol, β-caryophyllene, germacrene-D, bicyclogermacrene and spathulenol. Essential oil was tested for antifungal activity, which was determined by disc diffusion and minimum inhibitory concentration (MIC determination methods. Application of the oil reduced mycelial growth in a dose dependent manner, with maximum inhibition being observed at concentration of 1,000 ppm. Such antifungal activity could be attributed to methyl chavicol since the pure compound was shown to be similarly effective against Moniliophthora perniciosa at 1,000 ppm. The oil when applied at a concentration of 1,000 ppm, reduced the spore germination of Colletotrichum gloeosporioides and M. perniciosa by 93 and 87%, respectively, but had no effect on the Alternaria alternata. It is concluded that the oil from O. selloi and its major constituent, methyl chavicol, are efficient in inhibiting M. perniciosa, but less effective against C. gloeosporioides and A. alternata. The results obtained from this work may contribute to the development of alternative anti-fungal agents to protect the cacao crop from fungal disease.

  13. Evaluation of Antifungal Activity and Mechanism of Action of Citral against Candida albicans

    Directory of Open Access Journals (Sweden)

    Maria Clerya Alvino Leite

    2014-01-01

    Full Text Available Candida albicans is a yeast that commensally inhabits the human body and can cause opportunistic or pathogenic infections. Objective. To investigate the antifungal activity of citral against C. albicans. Methodology. The minimum inhibitory concentration (MIC and the minimum fungicidal concentration (MFC were determined by the broth microdilution techniques. We also investigated possible citral action on cell walls (0.8 M sorbitol, cell membranes (citral to ergosterol binding, the time-kill curve, and biological activity on the yeast’s morphology. Results. The MIC and MFC of citral were, respectively, 64 µg/mL and 256 µg/mL. Involvement with the cell wall and ergosterol binding were excluded as possible mechanisms of action. In the morphological interference assay, it was observed that the product inhibited pseudohyphae and chlamydoconidia formation. The MIC and the MFC of citral required only 4 hours of exposure to effectively kill 99.9% of the inoculum. Conclusion. Citral showed in vitro antifungal potential against strains of C. albicans. Citral’s mechanism of action does not involve the cell wall or ergosterol, and further study is needed to completely describe its effects before being used in the future as a component of new antifungals.

  14. Antibacterial and antifungal activities of the extract and fractions of ...

    African Journals Online (AJOL)

    African Journal of Traditional, Complementary and Alternative Medicines ... Klebsiella Pneumoniae, Bacillus subtilis and Bacillus atrophaeus were used for ... Keywords: H. bacciferum, Medicinal Plant, crude fractions, Antimicrobial activities.

  15. Antifungal Activity of Volatile Oil of Mustard (VOM)

    National Research Council Canada - National Science Library

    Sikes, A; Yang, T; Richardson, M; Ehioba, R

    2005-01-01

    .... The active volatile antimicrobial factor in VOM is allyl isothiocyanate (AIT). To evaluate the efficacy of VOM as a fungistatic agent, military-type sandwiches and commercial cheddar cheese samples were inoculated with several mold isolates...

  16. Antifungal Activity and Molecular Identification of Endophytic Fungi ...

    African Journals Online (AJOL)

    Academic Journals

    2012-09-18

    Sep 18, 2012 ... After surface-drying with sterile filter paper, the leaf segments were placed ... was performed utilizing the NucleoSpin® extract DNA purification kit Cat. No. ..... activity of olive oil polyphenols against Helicobacter pylori. J. Agric.

  17. Evaluation of Antioxidant and Antifungal Activities of Polyphenol-rich ...

    African Journals Online (AJOL)

    therapeutic activity against certain diseases. Methods: Analysis of ... hydroxyl radical (HO-) and nitric oxide (NO) radical are ... medicinal and aromatic plant section, Life. Sciences ..... Many antioxidant defenses depend on ... Mechanisms of cell.

  18. Antibacterial and antifungal activities of selected microalgae and cyanobacteria

    Czech Academy of Sciences Publication Activity Database

    Najdenski, H. M.; Gigova, L. G.; Iliev, I. I.; Pilarski, P. S.; Lukavský, Jaromír; Tsvetkova, I. V.; Ninova, M. S.; Kussovski, V. K.

    2013-01-01

    Roč. 48, č. 7 (2013), s. 1533-1540 ISSN 0950-5423 Institutional support: RVO:67985939 Keywords : antimicrobial activity * cyanobacteria * microalgae Subject RIV: EF - Botanics Impact factor: 1.354, year: 2013

  19. Evaluation of antibacterial, antifungal and modulatory activity of ...

    African Journals Online (AJOL)

    2014-06-02

    Jun 2, 2014 ... adverse effects of conventional drugs and the increase of microbial resistance ... species of bacteria, enhancing the activity of a specific antibiotic, reversing the .... Cordia verbenaceae, and others10,22. The results in Table 1 ...

  20. In vitro antibacterial and antifungal activities of twelve sponges collected from the Anambas Islands, Indonesia

    Directory of Open Access Journals (Sweden)

    Masteria Yunovilsa Putra

    2016-09-01

    Full Text Available Objective: To evaluate antimicrobial activities in methanolic extracts of twelve sponges collected from the Anambas Islands, Indonesia. Methods: The antibacterial activity of methanolic extracts was tested against two Grampositive bacteria, viz. Bacillus subtilis (ATCC 6633 and Staphylococcus aureus (ATCC 25923, and two Gram-negative bacteria, viz. Eschericia coli (ATCC 25922 and Vibrio anguillarum (ATCC 19264 using the disk diffusion assay. The antifungal activity was similarly tested against Candida albicans (ATCC 10231 and Aspergillus niger (ATCC 16404. The minimum inhibitory concentrations of promising sponges extracts were determined by the microdilution technique. Results: All the sponge species in this study showed antimicrobial activities against at least one of the test strains. Antibacterial activities were observed in 66.7% of the sponges extracts, while 30.0% of the extracts exhibited antifungal activities. Among them, the extracts of the sponges Stylissa massa and Axinyssa sp. were the most active against four tested bacteria and the yeast Candida albicans. The sponge Theonella swinhoei and two species of Xestospongia also displayed significant activities against two fungal pathogens Candida albicans and Aspergillus niger. Conclusions: Antimicrobial activities were demonstrated in extracts from various marine sponges collected from the Anambas Islands, Indonesia. The most promising sponges among them were Stylissa massa and Axinyssa sp. This is the first report of antimicrobial activity in extracts of marine sponges from the Indonesian Anambas Islands.

  1. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin

    OpenAIRE

    Zorofchian Moghadamtousi, Soheil; Abdul Kadir, Habsah; Hassandarvish, Pouya; Tajik, Hassan; Abubakar, Sazaly; Zandi, Keivan

    2014-01-01

    Curcuma longa L. (Zingiberaceae family) and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agen...

  2. Characterization of a chitinase with antifungal activity from a native Serratia marcescens B4A

    Directory of Open Access Journals (Sweden)

    Mandana Zarei

    2011-09-01

    Full Text Available Chitinases have the ability of chitin digestion that constitutes a main compound of the cell wall in many of the phytopathogens such as fungi. In the following investigation, a novel chitinase with antifungal activity was characterized from a native Serratia marcescens B4A. Partially purified enzyme had an apparent molecular mass of 54 kDa. It indicated an optimum activity in pH 5 at 45ºC. Enzyme was stable in 55ºC for 20 min and at a pH range of 3-9 for 90 min at 25ºC. When the temperature was raised to 60ºC, it might affect the structure of enzymes lead to reduction of chitinase activity. Moreover, the Km and Vmax values for chitin were 8.3 mg/ml and 2.4 mmol/min, respectively. Additionally, the effect of some cations and chemical compounds were found to stimulate the chitinase activity. In addition, Iodoacetamide and Idoacetic acid did not inhibit enzyme activity, indicating that cysteine residues are not part of the catalytic site of chitinase. Finally, chitinase activity was further monitored by scanning electronic microscopy data in which progressive changes in chitin porosity appeared upon treatment with chitinase. This enzyme exhibited antifungal activity against Rhizoctonia solani, Bipolaris sp, Alternaria raphani, Alternaria brassicicola, revealing a potential application for the industry with potentially exploitable significance. Fungal chitin shows some special features, in particular with respect to chemical structure. Difference in chitinolytic ability must result from the subsite structure in the enzyme binding cleft. This implies that why the enzyme didn't have significant antifungal activity against other Fungi.

  3. Synthetic arylquinuclidine derivatives exhibit antifungal activity against Candida albicans, Candida tropicalis and Candida parapsilopsis

    Directory of Open Access Journals (Sweden)

    Gilbert Ian

    2011-01-01

    Full Text Available Abstract Background Sterol biosynthesis is an essential pathway for fungal survival, and is the biochemical target of many antifungal agents. The antifungal drugs most widely used to treated fungal infections are compounds that inhibit cytochrome P450-dependent C14α-demethylase (CYP51, but other enzymes of this pathway, such as squalene synthase (SQS which catalyses the first committed step in sterol biosynthesis, could be viable targets. The aim of this study was to evaluate the antifungal activity of SQS inhibitors on Candida albicans, Candida tropicalis and Candida parapsilopsis strains. Methods Ten arylquinuclidines that act as SQS inhibitors were tested as antiproliferative agents against three ATCC strains and 54 clinical isolates of Candida albicans, Candida tropicalis and Candida parapsilopsis. Also, the morphological alterations induced in the yeasts by the experimental compounds were evaluated by fluorescence and transmission electron microscopy. Results The most potent arylquinuclidine derivative (3-[1'-{4'-(benzyloxy-phenyl}]-quinuclidine-2-ene (WSP1267 had a MIC50 of 2 μg/ml for all species tested and MIC90 varying from 4 μg/ml to 8 μg/ml. Ultrathin sections of C. albicans treated with 1 μg/ml of WSP1267 showed several ultrastructural alterations, including (a loss of cell wall integrity, (b detachment of the plasma membrane from the fungal cell wall, (c accumulation of small vesicles in the periplasmic region, (d presence of large electron-dense vacuoles and (e significantly increased cell size and cell wall thickness. In addition, fluorescence microscopy of cells labelled with Nile Red showed an accumulation of lipid droplets in the cytoplasm of treated yeasts. Nuclear staining with DAPI revealed the appearance of uncommon yeast buds without a nucleus or with two nuclei. Conclusion Taken together, our data demonstrate that arylquinuclidine derivatives could be useful as lead compounds for the rational synthesis of new

  4. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin

    Science.gov (United States)

    Zorofchian Moghadamtousi, Soheil; Abdul Kadir, Habsah; Hassandarvish, Pouya; Tajik, Hassan; Abubakar, Sazaly; Zandi, Keivan

    2014-01-01

    Curcuma longa L. (Zingiberaceae family) and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agents through synergism. Indeed, different investigations have been done to increase the antimicrobial activity of curcumin, including synthesis of different chemical derivatives to increase its water solubility as well ass cell up take of curcumin. This review aims to summarize previous antimicrobial studies of curcumin towards its application in the future studies as a natural antimicrobial agent. PMID:24877064

  5. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin

    Directory of Open Access Journals (Sweden)

    Soheil Zorofchian Moghadamtousi

    2014-01-01

    Full Text Available Curcuma longa L. (Zingiberaceae family and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agents through synergism. Indeed, different investigations have been done to increase the antimicrobial activity of curcumin, including synthesis of different chemical derivatives to increase its water solubility as well ass cell up take of curcumin. This review aims to summarize previous antimicrobial studies of curcumin towards its application in the future studies as a natural antimicrobial agent.

  6. Potential Applications and Antifungal Activities of Engineered Nanomaterials against Gray Mold Disease Agent Botrytis cinerea on Rose Petals

    Directory of Open Access Journals (Sweden)

    Yi Hao

    2017-08-01

    Full Text Available Nanoparticles (NPs have great potential for use in the fields of biomedicine, building materials, and environmental protection because of their antibacterial properties. However, there are few reports regarding the antifungal activities of NPs on plants. In this study, we evaluated the antifungal roles of NPs against Botrytis cinerea, which is a notorious worldwide fungal pathogen. Three common carbon nanomaterials, multi-walled carbon nanotubes, fullerene, and reduced graphene oxide, and three commercial metal oxidant NPs, copper oxide (CuO NPs, ferric oxide (Fe2O3 NPs, and titanium oxides (TiO2 NPs, were independently added to water-agar plates at 50 and 200-mg/L concentrations. Detached rose petals were inoculated with spores of B. cinerea and co-cultured with each of the six nanomaterials. The sizes of the lesions on infected rose petals were measured at 72 h after inoculation, and the growth of fungi on the rose petals was observed by scanning electron microscopy. The six NPs inhibited the growth of B. cinerea, but different concentrations had different effects: 50 mg/L of fullerene and CuO NPs showed the strongest antifungal properties among the treatments, while 200 mg/L of CuO and Fe2O3 showed no significant antifungal activities. Thus, NPs may have antifungal activities that prevent B. cinerea infections in plants, and they could be used as antifungal agents during the growth and post-harvesting of roses and other flowers.

  7. In vitro evaluation of the antifungal activity of Sclerocarya birrea ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... More compounds with antioxidant activity were observed in polar separation system .... finely ground leaves and rhizomes were extracted in 10 ml in each of hexane .... The chromatograms were dried for up to a week at room temperature ... compounds from the roots of S. birrea (Figure 2); how- ever, the ...

  8. Antibacterial and antifungal activity of Isatis tinctoria L. (Brassicaceae) using the micro-plate method

    International Nuclear Information System (INIS)

    Ullah, I.; Wakeel, A.; Jan, S.A.

    2017-01-01

    Isatis tinctoria L. has well-documented history as conventional therapeutic herb. In present study its crude extract was examined for broad-spectrum antimicrobial activity using micro-titer plate method. Four different plant parts were extracted with 14 different solvents. All fractions were analyzed against seven bacterial and four fungal strains. Ethyl acetate, chloroform, n-hexane and acetone showed maximum antibacterial activity with minimum IC50 value (=200 mu g/ml). Leaves>branches> roots>flower is the order of different parts based on antibacterial activity. Although, in some cases like against Klebsiella pneumonia and Micrococcus luteus the flower showed better results as compared to other parts. Roots showed better results against Staphylococcus aureus and Pseudomonas aeruginosa. Extracts showed better antimicrobial activity as compared to antibiotics (cefotaxime). The activity of the extracts against gram positive was better than gram negative. For antifungal activity, ethyl acetate > n-hexane-ethyl acetate (1:1) > chloroform> acetone was the order of the fraction with increasing growth inhibition rate. All the parts (except branches) were observed having antifungal activity. The most resistant strains found in this study were Mucor mycosis, none of the fraction have more than 30% inhibition on used concentration. Plant crude extract being having broad spectrum antimicrobial activity is suggested for pre-clinical and clinical trials. (author)

  9. Synthesis, antifungal activity, and QSAR studies of 1,6-dihydropyrimidine derivatives

    Directory of Open Access Journals (Sweden)

    Chirag Rami

    2013-01-01

    Full Text Available Introduction: A practical synthesis of pyrimidinone would be very helpful for chemists because pyrimidinone is found in many bioactive natural products and exhibits a wide range of biological properties. The biological significance of pyrimidine derivatives has led us to the synthesis of substituted pyrimidine. Materials and Methods: With the aim of developing potential antimicrobials, new series of 5-cyano-6-oxo-1,6-dihydro-pyrimidine derivatives namely 2-(5-cyano-6-oxo-4-substituted (aryl-1,6-dihydropyrimidin-2-ylthio-N-substituted (phenyl acetamide (C1-C41 were synthesized and characterized by Fourier transform infrared spectroscopy (FTIR, mass analysis, and proton nuclear magnetic resonance ( 1 H NMR. All the compounds were screened for their antifungal activity against Candida albicans (MTCC, 227. Results and Discussion: Quantitative structure activity relationship (QSAR studies of a series of 1,6-dihydro-pyrimidine were carried out to study various structural requirements for fungal inhibition. Various lipophilic, electronic, geometric, and spatial descriptors were correlated with antifungal activity using genetic function approximation. Developed models were found predictive as indicated by their square of predictive regression values (r 2pred and their internal and external cross-validation. Study reveals that CHI_3_C, Molecular_SurfaceArea, and Jurs_DPSA_1 contributed significantly to the activity along with some electronic, geometric, and quantum mechanical descriptors. Conclusion: A careful analysis of the antifungal activity data of synthesized compounds revealed that electron withdrawing substitution on N-phenyl acetamide ring of 1,6-dihydropyrimidine moiety possess good activity.

  10. Antifungal activity of various essential oils against Rhizoctonia solani and Macrophomina phaseolina as major bean pathogens.

    Science.gov (United States)

    Khaledi, N; Taheri, P; Tarighi, S

    2015-03-01

    The main objective of this study was to investigate the effect of various essential oils (EOs) to decrease the activity of cell wall degrading enzymes (CWDEs) produced by fungal phytopathogens, which are associated with disease progress. Also, effect of seed treatment and foliar application of peppermint EO and its main constituent, menthol, on diseases caused by two necrotrophic pathogens on bean was investigated. Antifungal activity of EOs on Rhizoctonia solani and Macrophomina phaseolina, as bean pathogens, was evaluated. The EOs of Mentha piperita, Bunium persicum and Thymus vulgaris revealed the highest antifungal activity against fungi. The EO of M. piperita had the lowest minimum inhibitory concentration (MIC) for R. solani among the three EOs tested. This pathogen did not grow in the presence of M. piperita, B. persicum and T. vulgaris EOs at 850, 1200 and 1100 ppm concentrations, respectively. The B. persicum EO had the lowest MIC for M. phaseolina as this fungus did not grow in the presence of M. piperita, B. persicum and T. vulgaris EOs at concentrations of 975, 950 and 1150 ppm, respectively. Hyphae exposed to EOs showed structural changes. Activities of cellulase and pectinase, as main CWDEs of pathogens, decreased by EOs at low concentration without effect on fungal growth. Seed treatment and foliar application of peppermint EO and/or menthol significantly reduced the development of bean diseases caused by both fungi. Higher capability of menthol than peppermint EO in decreasing diseases on bean was observed. Reducing CDWEs activity is a mechanism of EOs' effect on fungi. Higher antifungal activity of menthol compared to peppermint EO was observed not only in vitro but also in vivo. Effect of EOs on CWDEs involved in pathogenesis is described in this study for the first time. Menthol can be used as a botanical fungicide to control destructive fungal diseases on bean. © 2014 The Society for Applied Microbiology.

  11. Synthesis and antifungal activity of new salicylic acid derivatives

    Directory of Open Access Journals (Sweden)

    Wodnicka Alicja

    2017-03-01

    Full Text Available A simple one-step procedure for synthesis of 1-methoxy-1-oxoalkan-2-yl salicylates and 1-methoxy-1-oxoalkan-2-yl 2-[(1-methoxy-1-oxoalkan-2-yloxy]benzoates by reaction of salicylic acid with several methyl 2-bromoalkanoates was developed. The reactions were carried out in N,N-dimethylformamide (DMF in the presence of anhydrous potassium carbonate. Conditions for regioselective synthesis of target compounds were established. The developed procedure could be easily applied in the industrial production process. The new salicylic acid derivatives were obtained with satisfactory yields and were characterized by MS and 1H NMR spectra. The fungicidal activity of the prepared compounds was tested in vitro against seven species of plant pathogenic fungi. The best results were observed for 1-methoxy-1-oxoalkan-2-yl salicylates which showed moderate or good activity against Botrytis cinerea and Rhizoctonia solani.

  12. Synthesis and antifungal activity of new bis-{gamma}-lactones analogous to avenaciolide

    Energy Technology Data Exchange (ETDEWEB)

    Magaton, Andreia da Silva; Rubinger, Mayura M. M.; Macedo Junior, Fernando C. de [Vicosa Univ., MG (Brazil). Dept. de Quimica]. E-mail: mayura@ufv.br; Zambolim, Laercio [Vicosa Univ., MG (Brazil). Dept. de Fitopatologia

    2007-03-15

    In a study of the antifungal activity of selected compounds as potentials agrochemicals, we have prepared and characterized by elemental analyses, infrared and NMR spectroscopies three new bis-{gamma}-lactones analogous to avenaciolide, where the octyl group of this natural product was replaced by heptyl, hexyl and pentyl groups. The effects on the mycelia development and conidia germination of Colletotrichum gloesporioides of these compounds and their synthetic precursors were evaluated in vitro. The title compounds were active in the tested conditions, while all the synthetic precursors were inactive. The preparation and characterization of 15 new synthetic intermediates are also described. (author)

  13. Synthesis and antifungal activity of halogenated aromatic bis-γ-lactones analogous to avenaciolide

    Directory of Open Access Journals (Sweden)

    Pedro A. Castelo-Branco

    2012-01-01

    Full Text Available Here we describe the total syntheses and characterization by elemental analyses, infrared and NMR spectroscopy of three new compounds analogous to avenaciolide, a bis-γ-lactone isolated from Aspergillus avenaceus that possesses antifungal activity, where the octyl group of the natural product was replaced by aromatic groups containing chlorine and fluorine atoms. The effects of the avenaciolide, the novel compounds and their synthetic precursors on mycelia development and conidia germination of Colletotrichum gloeosporioides and Fusarium solani were evaluated in vitro. The title compounds were almost as active as avenaciolide. The absolute structures of the chlorinated analogs were determined by X-ray diffraction analysis.

  14. In vitro antifungal activity of Myracrodruon urundeuva Allemão against human vaginal Candida species

    Directory of Open Access Journals (Sweden)

    FERNANDO A. DE OLIVEIRA

    Full Text Available ABSTRACT Myracrodruon urundeuva is a plant native to Brazil, which is used by the indigenous population for the treatment of candidiasis. The aims of this study were to evaluate the antifungal activity of extract against human vaginal Candida species and evaluate the possible toxicological activities of M. urundeuva. Initially, ethanol extracts, ethyl acetate fractions, and hydroalcoholic fractions of the bark and leaf of M. urundeuva were used to determine the minimum inhibitory concentration. The extracts that showed antifungal activity were characterized by liquid chromatography and subjected to toxicity assessment. Toxic, cytotoxic, genotoxic, and mutagenic testing were performed using Allium cepa and Ames assays with the ethanol extracts of the bark and leaves. Hemolytic activity was evaluated in erythrocytes and acute toxicity in rats. The ethanol bark extracts showed best activity against Candida albicans, C. krusei, and C. tropicalis ATCC (4-512 µg/mL. Chemical characterization indicated the presence of flavonoids and tannins in the extracts. Hemolytic activity, genotoxicity, and mutagenicity were not observed. The results of the Ames and A. cepa tests were also in agreement, ethanol bark extracts and ethanol leaf extracts of M. urundeuva showed absence of mutagenic activity. Similar results were observed in the A. cepa assay and acute toxicity test in rats. M. urundeuva bark extracts showed potential for the treatment of vaginal infections caused Candida species, as a topical.

  15. Antifungal activity of acetone extracts from Punica granatum L., Quercus suber L. and Vicia faba L.

    Science.gov (United States)

    Akroum, S

    2017-03-01

    Human and animal mycoses become more frequent and more resistant to traditional treatments. In this work, we tested the in vitro antifungal activity of acetonic extracts of Punica granatum L., Quercus suber L. and Vicia faba L. against seven pathogen fungi and the in vivo antifungal activity against Candida albicans and Trichophyton mentagrophytes. The phytochemical screening was also carried out and showed that the extracts contained mainly proanthocyanidins. Other polyphenols were also present but in low quantity. The acetone extract of V. faba L. gave a good in vitro inhibition of yeasts and was the most active for treating candidiasis in mice. It decreased the percentage of mortality with only 20μg. But the in vivo antifungal activity of this extract on T. mentagrophytes was low. It only showed a small diminution of crusting and erythema after the administration of 100μg. On the contrary, the acetone extracts of P. granatum L. had a poor activity against yeasts and a better one against moulds. It gave the best in vivo antifungal activity against T. mentagrophytes by healing animals with 40μg. The extract of P. granatum L. gave also an interesting in vivo antifungal activity against T. mentagrophytes with an active dose of 80μg. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Agrobacterium-assisted selenium nanoparticles: molecular aspect of antifungal activity

    Science.gov (United States)

    Kumar, Anil; Bera, Smritilekha; Singh, Man; Mondal, Dhananjoy

    2018-03-01

    Selenium nanoparticles (SeNPs) were synthesized through the bioreduction of sodium selenite (Na2SeO3) using gram-negative agrobacterium (AGBT) species. Subsequently, their physicochemical properties (pH, viscosity and surface tension) and medicinal activities as anti-dermatophyte against soil keratinophilic fungi at the molecular level were assessed. UV-visible and FTIR spectroscopic data of the biologically synthesized SeNPs were then recorded for confirming the presence of native biological materials adhered to nanoparticles, which are inherently required to enhance the stability and solubility through inhibition of the nanoparticle’s natural aggregation and agglomeration. The λ max value between 290-300 nm in the absorption spectra of the biogenic materials in different concentrations of the Na2SeO3 corroborated the presence of SeNPs in the solution. The interaction of SeNPs in solution state was further studied through the determination of pH, viscosity and surface tension values of agrobacterium-derived SeNPs in different solvents. The pH value of SeNPs dispersed in water is reported as above 7.0 and the average viscosity, and surface tensions of the SeNPs are appeared as near to the water. The particle size distribution was further determined by DLS and the highest % of particle size of the synthesized SeNPs is found in between 200-300 nm. The anti-dermatophyte activity and molecular interaction with fungi DNA molecules were assessed providing the highest anti-dermatophyte activity at 0.1 M concentration and it is observed that the quantities and qualities of fungi DNA were affected by SeNPs. Considering all the outcomes of the studies together, our findings suggest that agrobacterium-mediated synthesis of SeNPs is dependent on bacterial metabolisms but not on the concentration of Na2SeO3 and are promising selenium-derived species with potential application in the prevention of fungal infection through denaturation of fungi DNA.

  17. Characterization of volatile constituents from Origanum onites and their antifungal and antibacterial activity.

    Science.gov (United States)

    Altintas, Ayhan; Tabanca, Nurhayat; Tyihák, Erno; Ott, Peter G; Móricz, Agnes M; Mincsovics, Emil; Wedge, David E

    2013-01-01

    Essential oils obtained by hydrodistillation (HD) and microwave-assisted HD (MWHD) of Origanum onites aerial parts were analyzed by GC and GCIMS. Thirty-one constituents representing 98.6% of the water-distilled oil and 52 constituents representing 99.6% of the microwave-distilled oil were identified. Carvacrol (76.8% HD and 79.2% MWHD) and thymol (4.7% HD and 4.4% MWHD) were characterized as major constituents in both essential oils. Separation of carvacrol and thymol was achieved by overpressured layer chromatography. HPTLC and TLC separations were also compared. Essential oils were evaluated for antifungal activity against the strawberry anthracnose-causing fungal plant pathogens Colletotrichum acutatum, C. fragariae, and C. gloeosporioides using a direct overlay bioautography assay. Furthermore, main oil components carvacrol and thymol were then evaluated for antifungal activity; only carvacrol demonstrated nonselective antifungal activity against the three Colletotrichum species. Thymol and carvacrol were subsequently evaluated in a 96-well microdilution broth assay against Phomopsis obscurans, Fusarium oxysporum, three Colletotrichum species, and Botrytis cinerea. No activity was observed against any of the three Colletotrichum species at or below 30 pM. However, thymol demonstrated antifungal activity and produced 31.7% growth inhibition of P. obscurans at 120 h and 0.3 pM, whereas carvacrol appeared inactive. Thymol and carvacrol at 30 pM showed 51.5 and 36.9% growth inhibition of B. cinerea at 72 h. The mechanism of antibacterial activity was studied in a bioautography-based BioArena system. Thymol and carvacrol showed similar inhibition/killing effect against Bacillus subtilis soil bacteria; the action could be enhanced by the formaldehyde generator and transporter copper (II) ions and could be decreased in the presence of L-arginine, a formaldehyde capturer. Results indicated that Origanum essential oils and its major components thymol and carvacrol

  18. Antibacterial and Antifungal Activity of ZnO Containing Glasses.

    Science.gov (United States)

    Esteban-Tejeda, Leticia; Prado, Catuxa; Cabal, Belén; Sanz, Jesús; Torrecillas, Ramón; Moya, José Serafín

    2015-01-01

    A new family of non-toxic biocides based on low melting point (1250°C) transparent glasses with high content of ZnO (15-40wt%) belonging to the miscibility region of the B2O3-SiO2-Na2O-ZnO system has been developed. These glasses have shown an excellent biocide activity (logarithmic reduction >3) against Gram- (E. coli), Gram+ (S. aureus) and yeast (C. krusei); they are chemically stable in different media (distilled water, sea-like water, LB and DMEN media) as well as biocompatible. The cytotoxicity was evaluated by the Neutral Red Uptake using NIH-3T3 (mouse embryonic fibroblast cells) and the cell viability was >80%. These new glasses can be considered in several and important applications in the field of inorganic non-toxic biocide agents such as medical implants, surgical equipment, protective apparels in hospitals, water purifications systems, food packaging, food storages or textiles.

  19. Chemical Composition, Antibacterial and Antifungal Activities of Crude Dittrichia viscosa (L. Greuter Leaf Extracts

    Directory of Open Access Journals (Sweden)

    Wafa Rhimi

    2017-06-01

    Full Text Available The small amount of data regarding the antifungal activity of Dittrichia viscosa (L. Greuter against dermatophytes, Malassezia spp. and Aspergillus spp., associated with the few comparative studies on the antimicrobial activity of methanolic, ethanolic, and butanolic extracts underpins the study herein presented. The total condensed tannin (TCT, phenol (TPC, flavonoid (TFC, and caffeoylquinic acid (CQC content of methanol, butanol, and ethanol (80% and 100% extracts of D. viscosa were assessed and their bactericidal and fungicidal activities were evaluated. The antibacterial, anti-Candida and anti-Malassezia activities were evaluated by using the disk diffusion method, whereas the anti-Microsporum canis and anti-Aspergillus fumigatus activities were assessed by studying the toxicity effect of the extracts on vegetative growth, sporulation and germination. The methanolic extract contained the highest TPC and CQC content. It contains several phytochemicals mainly caffeoylquinic acid derivatives as determined by liquid chromatography with photodiode array and electrospray ionisation mass spectrometric detection (LC/PDA/ESI-MS analysis. All extracts showed an excellent inhibitory effect against bacteria and Candida spp., whereas methanolic extract exhibited the highest antifungal activities against Malassezia spp., M. canis and A. fumigatus strains. The results clearly showed that all extracts, in particular the methanolic extract, might be excellent antimicrobial drugs for treating infections that are life threatening (i.e., Malassezia or infections that require mandatory treatments (i.e., M. canis or A. fumigatus.

  20. Screening of Bunium bulbocastanum for antibacterial, antifungal, phytotoxic and haemagglutination activities.

    Science.gov (United States)

    Khan, Ibrar; Ahmad, Haroon; Ali, Nasir; Ahmad, Bashir; Tanoli, Hamid

    2013-07-01

    The current study was aimed at screening the Bunium bulbocastanum for its antibacterial, antifungal, phytotoxic and haemagglutination activities.The crude methanolic extract and n-hexane fraction showed significant (89%) and good activity (61%) against Staphylococcus aureus while the CHCl3fraction was moderately active against S.aureus (53%). Moderate activitywas shown by the EtOAc fraction against B. subtilis (44%). This fraction was inactive against P.aerogenosa and S.aureus. The aqueous fraction showed significant activity against B. subtilis (85%), moderate against S.aureus(34 %) and E. coli (33%)and low activity against P.aerogenosa(29%). Our results for antifungal assay indicated that all the test samples were inactive against all the test fungi. The phytotoxic activity of the plant at 1000 and 100 μg/ml was: crude methanolic extract (53.33 and 46.66%), n-hexane (46.66 and 26.66%), CHCl3 (20 and 6.66%), EtOAc (46.66 and 26.66%) and aqueous (40 and 33.33%). All the test samples (crude methanolic extract and fractions) of B. bulbocastanum were unable to agglutinate RBCs of the human blood indicating that this species lack phytolectins.

  1. Effects of sugar and amino acid supplementation on Aureobasidium pullulans NRRL 58536 antifungal activity against four Aspergillus species.

    Science.gov (United States)

    Prasongsuk, Sehanat; Ployngam, Saowaluck; Wacharasindhu, Sumrit; Lotrakul, Pongtharin; Punnapayak, Hunsa

    2013-09-01

    Cultured cell extracts from ten tropical strains of Aureobasidium pullulans were screened for antifungal activity against four pathogenic Aspergillus species (Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus, and Aspergillus terreus) using the well diffusion and conidial germination inhibition assays. The crude cell extract from A. pullulans NRRL 58536 resulted in the greatest fungicidal activity against all four Aspergillus species and so was selected for further investigation into enhancing the production of antifungal activity through optimization of the culture medium, carbon source (sucrose and glucose) and amino acid (phenylalanine, proline, and leucine) supplementation. Sucrose did not support the production of any detectable antifungal activity, while glucose did with the greatest antifungal activity against all four Aspergillus species being produced in cells grown in medium containing 2.5 % (w/v) glucose. With respect to the amino acid supplements, variable trends between the different Aspergillus species and amino acid combinations were observed, with the greatest antifungal activities being obtained when grown with phenylalanine plus leucine supplementation for activity against A. flavus, proline plus leucine for A. terreus, and phenylalanine plus proline and leucine for A. niger and A. fumigatus. Thin layer chromatography, spectrophotometry, high-performance liquid chromatography, (1)H-nuclear magnetic resonance, and MALDI-TOF mass spectrometry analyses were all consistent with the main component of the A. pullulans NRRL 58536 extracts being aureobasidins.

  2. Antifungal activity of essential oils on two Venturia inaequalis strains with different sensitivities to tebuconazole.

    Science.gov (United States)

    Muchembled, Jérôme; Deweer, Caroline; Sahmer, Karin; Halama, Patrice

    2017-11-02

    The antifungal activity of seven essential oils (eucalyptus, clove, mint, oregano, savory, tea tree, and thyme) was studied on Venturia inaequalis, the fungus responsible for apple scab. The composition of the essential oils was checked by gas chromatography-mass spectrometry. Each essential oil had its main compound. Liquid tests were performed to calculate the IC 50 of essential oils as well as their majority compounds. The tests were made on two strains with different sensitivities to tebuconazole: S755, the sensitive strain, and rs552, the strain with reduced sensitivity. Copper sulfate was selected as the reference mineral fungicidal substance. IC 50 with confidence intervals were calculated after three independent experiments. The results showed that all essential oils and all major compounds had in vitro antifungal activities. Moreover, it was highlighted that the effectiveness of four essential oils (clove, eucalyptus, mint, and savory) was higher than copper sulfate on both strains. For each strain, the best activity was obtained using clove and eucalyptus essential oils. For clove, the IC 50 obtained on the sensitive strain (5.2 mg/L [4.0-6.7 mg/L]) was statistically lower than the IC 50 of reduced sensitivity strain (14 mg/L [11.1-17.5 mg/L]). In contrast, for eucalyptus essential oil, the IC 50 were not different with respectively 9.4-13.0 and 12.2-17.9 mg/L for S755 and rs552 strains. For mint, origano, savory, tea tree, and thyme, IC 50 were always the best on rs552 strain. The majority compounds were not necessarily more efficient than their corresponding oils; only eugenol (for clove) and carvacrol (for oregano and savory) seemed to be more effective on S755 strain. On the other hand, rs552 strain seemed to be more sensitive to essential oils than S755 strain. In overall, it was shown that essential oils have different antifungal activities but do not have the same antifungal activities depending on the fungus strain used.

  3. Synthesis of Azole-containing Piperazine Derivatives and Evaluation of their Antibacterial, Antifungal and Cytotoxic Activities

    International Nuclear Information System (INIS)

    Gan, Lin Ling; Fang, Bo; Zhou, Cheng He

    2010-01-01

    A series of azole-containing piperazine derivatives have been designed and synthesized. The obtained compounds were investigated in vitro for their antibacterial, antifungal and cytotoxic activities. The preliminary results showed that most compounds exhibited moderate to significant antibacterial and antifungal activities in vitro. 1-(4-((4-chlorophenyl) (phenyl)methyl)piperazin-1-yl)-2-(1H-imidazol-1-yl)ethanone and 1-(4-((4-Chlorophenyl)(phenyl)methyl)piperazin-1- yl)-2-(2-phenyl-1H-imidazol-1-yl)ethanone gave remarkable and broad-spectrum antimicrobial efficacy against all tested strains with MIC values ranging from 3.1 to 25 μg/mL, and exhibited comparable activities to the standard drugs chloramphenicol and fluconazole in clinic. Moreover, 2-((4-((4-chlorophenyl)(phenyl)methyl)piperazin-1-yl)methyl)- 1H-benzo[d]imidazole was found to be the most effective in vitro against the PC-3 cell line, reaching growth inhibition values (36.4, 60.1 and 76.5%) for each tested concentration: 25 μM, 50 μM and 100 μM in dose-dependent manner. The results also showed that the azole ring had noticeable effect on their antimicrobial and cytotoxic activities, and imidazole and benzimidazole moiety were much more favourable to biological activity than 1,2,4-triazole

  4. Antifungal Activity of Thapsia villosa Essential Oil against Candida, Cryptococcus, Malassezia, Aspergillus and Dermatophyte Species

    Directory of Open Access Journals (Sweden)

    Eugénia Pinto

    2017-09-01

    Full Text Available The composition of the essential oil (EO of Thapsia villosa (Apiaceae, isolated by hydrodistillation from the plant’s aerial parts, was analysed by GC and GC-MS. Antifungal activity of the EO and its main components, limonene (57.5% and methyleugenol (35.9%, were evaluated against clinically relevant yeasts (Candida spp., Cryptococcus neoformans and Malassezia furfur and moulds (Aspergillus spp. and dermatophytes. Minimum inhibitory concentrations (MICs were measured according to the broth macrodilution protocols by Clinical and Laboratory Standards Institute (CLSI. The EO, limonene and methyleugenol displayed low MIC and MFC (minimum fungicidal concentration values against Candida spp., Cryptococcus neoformans, dermatophytes, and Aspergillus spp. Regarding Candida species, an inhibition of yeast–mycelium transition was demonstrated at sub-inhibitory concentrations of the EO (MIC/128; 0.01 μL/mL and their major compounds in Candida albicans. Fluconazole does not show this activity, and the combination with low concentrations of EO could associate a supplementary target for the antifungal activity. The association of fluconazole with T. villosa oil does not show antagonism, but the combination limonene/fluconazole displays synergism. The fungistatic and fungicidal activities revealed by T. villosa EO and its main compounds, associated with their low haemolytic activity, confirm their potential antimicrobial interest against fungal species often associated with human mycoses.

  5. Characterization of anticancer, DNase and antifungal activity of pumpkin 2S albumin.

    Science.gov (United States)

    Tomar, Prabhat Pratap Singh; Nikhil, Kumar; Singh, Anamika; Selvakumar, Purushotham; Roy, Partha; Sharma, Ashwani Kumar

    2014-06-13

    The plant 2S albumins exhibit a spectrum of biotechnologically exploitable functions. Among them, pumpkin 2S albumin has been shown to possess RNase and cell-free translational inhibitory activities. The present study investigated the anticancer, DNase and antifungal activities of pumpkin 2S albumin. The protein exhibited a strong anticancer activity toward breast cancer (MCF-7), ovarian teratocarcinoma (PA-1), prostate cancer (PC-3 and DU-145) and hepatocellular carcinoma (HepG2) cell lines. Acridine orange staining and DNA fragmentation studies indicated that cytotoxic effect of pumpkin 2S albumin is mediated through induction of apoptosis. Pumpkin 2S albumin showed DNase activity against both supercoiled and linear DNA and exerted antifungal activity against Fusarium oxysporum. Secondary structure analysis by CD showed that protein is highly stable up to 90°C and retains its alpha helical structure. These results demonstrated that pumpkin 2S albumin is a multifunctional protein with host of potential biotechnology applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Synthesis of Azole-containing Piperazine Derivatives and Evaluation of their Antibacterial, Antifungal and Cytotoxic Activities

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Lin Ling; Fang, Bo; Zhou, Cheng He [Southwest University, Chongqing (China)

    2010-12-15

    A series of azole-containing piperazine derivatives have been designed and synthesized. The obtained compounds were investigated in vitro for their antibacterial, antifungal and cytotoxic activities. The preliminary results showed that most compounds exhibited moderate to significant antibacterial and antifungal activities in vitro. 1-(4-((4-chlorophenyl) (phenyl)methyl)piperazin-1-yl)-2-(1H-imidazol-1-yl)ethanone and 1-(4-((4-Chlorophenyl)(phenyl)methyl)piperazin-1- yl)-2-(2-phenyl-1H-imidazol-1-yl)ethanone gave remarkable and broad-spectrum antimicrobial efficacy against all tested strains with MIC values ranging from 3.1 to 25 μg/mL, and exhibited comparable activities to the standard drugs chloramphenicol and fluconazole in clinic. Moreover, 2-((4-((4-chlorophenyl)(phenyl)methyl)piperazin-1-yl)methyl)- 1H-benzo[d]imidazole was found to be the most effective in vitro against the PC-3 cell line, reaching growth inhibition values (36.4, 60.1 and 76.5%) for each tested concentration: 25 μM, 50 μM and 100 μM in dose-dependent manner. The results also showed that the azole ring had noticeable effect on their antimicrobial and cytotoxic activities, and imidazole and benzimidazole moiety were much more favourable to biological activity than 1,2,4-triazole.

  7. Antifungal activity of synthetic di(hetero)arylamines based on the benzo[b]thiophene moiety.

    Science.gov (United States)

    Pinto, Eugénia; Queiroz, Maria-João R P; Vale-Silva, Luís A; Oliveira, João F; Begouin, Agathe; Begouin, Jeanne-Marie; Kirsch, Gilbert

    2008-09-01

    The antifungal activity of several di(hetero)arylamine derivatives of the benzo[b]thiophene system was evaluated against clinically relevant Candida, Aspergillus, and dermatophyte species by a broth macrodilution test based on CLSI (formerly NCCLS) guidelines. The most active compound showed a broad spectrum of activity (against all tested fungal strains, including fluconazole-resistant fungi), with particularly low MICs for dermatophytes. Results from the inhibition of the dimorphic transition in Candida albicans and flow cytometry studies further confirmed their biological activity. With this study it was possible to establish some structure-activity relationships (SARs). The hydroxy groups proved to be essential for the activity in the aryl derivatives. Furthermore, the spectrum of activity in the pyridine derivatives was broadened by the absence of the ester group on position 2 of the benzo[b]thiophene system.

  8. The antibiotic polymyxin B exhibits novel antifungal activity against Fusarium species.

    Science.gov (United States)

    Hsu, Li-Hang; Wang, Hsuan-Fu; Sun, Pei-Lun; Hu, Fung-Rong; Chen, Ying-Lien

    2017-06-01

    The genus Fusarium comprises many species, including Fusarium oxysporum, Fusarium solani, Fusarium graminearum and Fusarium verticillioides, and causes severe infections in plants and humans. In clinical settings, Fusarium is the third most frequent mould to cause invasive fungal infections after Aspergillus and the Mucorales. F. solani and F. oxysporum are the most prevalent Fusarium spp. causing clinical disease. However, few effective antifungal drugs are available to treat human and plant Fusarium infections. The cationic peptide antibiotic polymyxin B (PMB) exhibits antifungal activity against the human fungal pathogens Candida albicans and Cryptococcus neoformans, but its efficacy against Fusarium spp. is unknown. In this study, the antifungal activity of PMB was tested against 12 Fusarium strains that infect humans and plants (banana, tomato, melon, pea, wheat and maize). PMB was fungicidal against all 12 Fusarium strains, with minimum fungicidal concentrations of 32 µg/mL or 64 µg/mL for most strains tested, as evidenced by broth dilution, methylene blue staining and XTT reduction assays. PMB can reduce the germination rates of conidia, but not chlamydospores, and can cause defects in cell membrane integrity in Fusarium strains. PMB exhibits synergistic activity with posaconazole and can potentiate the effect of fluconazole, voriconazole or amphotericin B against Fusarium spp. However, PMB does not show synergistic effects with fluconazole against Fusarium spp. as it does against Candida glabrata and C. neoformans, indicating evolutionary divergence of mechanisms between yeast pathogens and the filamentous fungus Fusarium. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  9. Identification and antifungal activity of an actinomycete strain against Alternaria spp.

    Directory of Open Access Journals (Sweden)

    Fen Gao

    2014-10-01

    Full Text Available Alternaria alternata (Fries Keissler is a phytopathogenic fungus responsible for tobacco brown spot disease. This study aims to evaluate the antifungal activity of strain 163 against A. alternata and clarify its taxonomic status. The evaluation of the antifungal activity of strain 163 and its bacteria-free filtrate of fermentation broth was done through measuring the diameters of inhibition zones, and testing the antimicrobial spectrum and the inhibition effect on mycelial growth in vitro. The biocontrol activity of the bacteria-free filtrate in vivo was evaluated by using detached tobacco leaves method and assaying the inhibition rate to disease incidence in growth chamber. A polyphasic approach was taken in the identification of strain 163. The bacterial strain 163 showed inhibitory effect in vitro against A. alternata. The bacteria-free filtrate of the strain 163 fermentation broth showed a 56.7% inhibition rate in a detached leaf assay. In growth chamber conditions, it showed greater biocontrol activity when applied before plants being inoculated with A. alternata than after, the inhibition rate being 46.05%. Investigations into the morphological, cultural, physiological and biochemical properties of strain 163 found it to be most similar to Streptomyces microflavus. Its classification into cell wall type I and sugar type C further confirmed its Streptomyces characteristics. Construction of a phylogenetic tree based on 16S rDNA verified that strain 163 was most closely related to Streptomyces microflavus. From polyphasic taxonomical analysis, strain 163 was found to be identical to S. microflavus.

  10. Anti-fungal and Anti-Mycobacterial activity of plants of Nuevo Leon, Mexico.

    Science.gov (United States)

    Garza, Blanca Alicia Alanis; Arroyo, Joel López; González, Gloria González; González, Elvira Garza; González, Elvira Garza; de Torres, Noemí Waksman; Aranda, Ricardo Salazar

    2017-01-01

    Severe fungal infections, particularly those caused by Candida spp, have increased in recent decades and are associated with an extremely high rate of morbidity and mortality. Since plants are an important source of potentially bioactive compounds, in this work the antifungal activity of the methanol extracts of 10 plants (Acacia rigidula, Buddleja cordata, Cephalanthus occidentalis, Juglans nigra, Parkinsonia aculeata, Parthenium hysterophorus, Quercus canbyi, Ricinus communis, Salvia coccinea and Teucrium bicolor) were evaluated. The activity was evaluated according to the micro dilution assay described in CLSI M27-A protocol using some clinical isolates of different species of Candida (C. albicans, C. parapsilosis, C. tropicalis, C. krusei and C. glabrata). All extracts showed MIC values < 31.25μg/mL against at least one of the strains used, which is very interesting because it was crude extracts. Acacia rigidula (0.93-3.75μg/mL) and Quercus canbyi (0.93-7.5μg/mL) had antifungal activity against 7 strains with MIC values <8μg/mL in all cases. Furthermore excerpts activity against Mycobacterium tuberculosis (strain H37rv) was evaluated. Only Salvia coccinea and Teucrium bicolor showed MIC values125μg/mL by the method of MABA.

  11. Known and novel terpenes from Buddleja globosa displaying selective antifungal activity against dermatophytes.

    Science.gov (United States)

    Mensah, A Y; Houghton, P J; Bloomfield, S; Vlietinck, A; Vanden Berghe, D

    2000-09-01

    Lipophilic extracts of the stembark of Buddleja globosa were found to have antifungal activity at 125 microg/mL against three dermatophytic fungal species but had no activity at 1000 microg/mL against four other fungal species or two yeast species. Bioassay-guided fractionation of Si gel column eluates using the sensitive fungal species resulted in active fractions from which were isolated five compounds that were characterized by spectroscopic methods as one novel and four known compounds. The known compounds were the diterpene buddlejone (1), the bisditerpene maytenone, and the two sesquiterpenes buddledin A and buddledin B, while the novel compound was characterized as the diterpene deoxybuddlejone (2). The minimum inhibitory concentration of all the compounds was determined against all the microorganisms under test, and buddledins A and B were shown to exhibit the greatest antifungal activity, with values of 43 microM and 51 microM, respectively, against the sensitive fungi Trichophyton rubrum, Tricophyton interdigitale, and Epidermophyton floccosum.

  12. Functional properties and antifungal activity of films based on gliadins containing cinnamaldehyde and natamycin.

    Science.gov (United States)

    Balaguer, Mari Pau; Fajardo, Paula; Gartner, Hunter; Gomez-Estaca, Joaquin; Gavara, Rafael; Almenar, Eva; Hernandez-Munoz, Pilar

    2014-03-03

    Gliadin films cross-linked with cinnamaldehyde (1.5, 3, and 5%) and incorporated with natamycin (0.5%) were prepared by casting, and their antifungal activity, water resistance, and barrier properties were characterized. Incorporation of natamycin gave rise to films with greater water uptake, weight loss and diameter gain, and higher water vapor and oxygen permeabilities. These results may be associated to a looser packing of the protein chains as a consequence of the presence of natamycin. The different cross-linking degree of the matrices influenced the natamycin migration to the agar test media, increasing from 13.3 to 23.7 (μg/g of film) as the percentage of cinnamaldehyde was reduced from 5% to 1.5%. Antifungal activity of films was assayed against common food spoilage fungi (Penicillium species, Alternaria solani, Colletotrichum acutatum). The greatest effectiveness was obtained for films containing natamycin and treated with 5% of cinnamaldehyde. The level of cinnamaldehyde reached in the head-space of the test assay showed a diminishing trend as a function of time, which was in agreement with fungal growth and cinnamaldehyde metabolization. Developed active films were used in the packaging of cheese slices showing promising results for their application in active packaging against food spoilage. Copyright © 2013. Published by Elsevier B.V.

  13. In Vitro Antifungal Activities of a Series of Dication-Substituted Carbazoles, Furans, and Benzimidazoles

    Science.gov (United States)

    Del Poeta, Maurizio; Schell, Wiley A.; Dykstra, Christine C.; Jones, Susan K.; Tidwell, Richard R.; Kumar, Arvind; Boykin, David W.; Perfect, John R.

    1998-01-01

    Aromatic dicationic compounds possess antimicrobial activity against a wide range of eucaryotic pathogens, and in the present study an examination of the structures-functions of a series of compounds against fungi was performed. Sixty-seven dicationic molecules were screened for their inhibitory and fungicidal activities against Candida albicans and Cryptococcus neoformans. The MICs of a large number of compounds were comparable to those of the standard antifungal drugs amphotericin B and fluconazole. Unlike fluconazole, potent inhibitory compounds in this series were found to have excellent fungicidal activities. The MIC of one of the most potent compounds against C. albicans was 0.39 μg/ml, and it was the most potent compound against C. neoformans (MIC, ≤0.09 μg/ml). Selected compounds were also found to be active against Aspergillus fumigatus, Fusarium solani, Candida species other than C. albicans, and fluconazole-resistant strains of C. albicans and C. neoformans. Since some of these compounds have been safely given to animals, these classes of molecules have the potential to be developed as antifungal agents. PMID:9756748

  14. Antifungal activity of low molecular weight chitosan produced from non-traditional marine resources

    Directory of Open Access Journals (Sweden)

    Francisco Pires Avelelas

    2014-06-01

    Full Text Available The four plants pathogens, Botrytis cinerea, Phytophthora cinnamomi, Cryphonectria parasitica and Heterobasidion annosum are responsible for several diseases affecting different plant species in Portugal, such as pines (H. annosum, chestnuts (P. cinnamomi and C. parasitica and eucalyptus (B. cinerea. These pathogens incurs in large economic losses, and ultimately causes the death of these plants. The use of biopolymers as antimicrobial agents, such as chitosan (derived from chitin, is increasing, in order to reduce the negative impact of conventional chemical treatments on the environment, avoiding health risks. Therefore, eco-friendly polymers were produced through (1 N-acetylation with addition of acetic anhydride and (2 hydrogen peroxide of chitosan samples, obtained from two different sources: shrimp (commercial chitosan and swimming crab bycatch specie Polybius henslowii. The chemical structure and molecular weight of the prepared chitosan derivatives, water soluble chitosan (WSC and chitooligosaccharides (COS, was confirmed by Fourier Transform Infrared (FT-IR and Gel Permeation Chromatography (GPC and their antifungal activity evaluated against Botrytis cinerea, Phytophthora cinnamomi, Cryphonectria parasitica and Heterobasidion annosum. The concentration range varied from 0.0125 to 0.1 mg/mL and inhibition percentages were determined by differences in radial growth on the agar plates for all species. Although not all species tested exhibited equal vulnerability towards the concentrations range, antifungal activity of chitosan samples proved to be dependent, increasing the inhibitory capacity with lower concentrations. The results obtained support the use of chitosan fromPolybius henslowii when compared with commercial chitosan with shrimp towards antifungal approaches, suggesting that chitin producers can rely on this crab waste as a raw material for chitin extraction, adding value to this bycatch specie. Financial support was obtained

  15. Antifungal activity of components used for decontamination of dental prostheses on the growth of Candida albicans

    Directory of Open Access Journals (Sweden)

    Cíntia Lima Gouveia

    Full Text Available Introduction: The effectiveness of antimicrobial solutions employed in dental prosthesis decontamination is still uncertain. Aim: To evaluate the antifungal activity of cleaners used in the decontamination of dental prostheses on the growth of Candida albicans. Material and method: The evaluated products were: Corega Tabs(r (S1, Sodium Hypochlorite 1% (S2, Sodium Bicarbonate 1% (S3, Hydrogen Peroxide 1% (S4, Chlorhexidine Digluconate 0.12% - Periogard (r (S5, Mouthrinse based on essential oils - Listerine(r (S6, essential oil from Rosmarinus officinalis (rosemary at concentrations of 1% (S7 and 2% (S8. The antifungal activity of the products was evaluated by agar diffusion technique and the determination of microbial death curve of samples of C. albicans (ATCC 90028 in concentration 1.5 × 106 CFU/mL. The tests were performed in triplicate and statistical analysis was made by ANOVA Two-Way and Tukey tests, with the confidence level of 95%. Result: The average of the zones of inhibition growth, in millimeters, obtained for the products were: 0.0 (S1, 44.7 (S2, 0.0 (S3, 21.6 (S4, 10.0 (S5, 6.1 (S6, 0.0 (S7 and 2.4 (S8. Considering the determination of microbial death curve, all products showed a statistical difference (p<0.01 from control (0.85% sodium chloride and S3 groups. Fungal growth less than 2×104 CFU/mL and an accentuation of the microbial death curve were observed after 30 minutes, with exception for S3 and control groups. Conclusion: The studied compounds, with the exception of Sodium Bicarbonate, have antifungal effect against C. albicans, which contribute for dental prostheses hygiene.

  16. Optimization of antifungal activity of Aeollanthus heliotropioides oliv essential oil and Time Kill Kinetic Assay.

    Science.gov (United States)

    Ngo Mback, M N L; Agnaniet, H; Nguimatsia, F; Jazet Dongmo, P-M; Hzounda Fokou, J-B; Bakarnga-Via, I; Fekam Boyom, F; Menut, C

    2016-09-01

    The limitations encountered in the management of fungal infections are due to the resistance, high toxicity, and overuse of conventional antifungal drugs. For bringing solutions, the antifungal activity of Aeollanthus heliotropioides essential oil will be evaluated and optimized. The aerial parts of A. heliotropioides were harvested and essential oil extracted by hydrodistillation. The chemical composition was determined using gas chromatography and gas chromatography coupled with mass spectrometry and nuclear magnetic resonance. The sensitivity of fungal strains was determined using broth microdilution method. The fungicidal parameters were checked by viability assay using methylene blue dye. The Fractional Inhibitory Concentration Index was determined according the two-dimensional checkboard methods. The efficiency of the simulated optimum concentrations confirmed experimentally on American type culture collection strains, through the Time Kill Kinetic Study. The yield of extraction of essential oil was 0.1%. The major compounds were linalool (38.5%), Z-α-farnesene (25.1%), 9-hexa-decen-1-ol (13.9%) saturated/unsaturated massoia and γ-lactones (4.5%). The MIC of extract on yeast isolates ranged from 0.6mg/mL to 5mg/mL. The combination of essential oil with thymol leads mainly to synergistic effects (0.5≤FICI). The optimums of essential oil (1.6±0.4μl/mL) and thymol (0.6±0.1mg/mL) revealed a total inhibition of yeast after 120 and 180minutes according to the yeasts strains used. This study highlights the in vitro antifungal activity of A. heliotropioides essential oil and it synergistic effect with thymol. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. A preliminary study on radiation treatment of chitosan for enhancement of antifungal activity tested on fruit - spoiling strains

    International Nuclear Information System (INIS)

    Nguyen Duy Lam; Tran Bang Diep

    2003-01-01

    Chitosan samples were irradiated at doses ranging from 20 to 200 kGy, and then were supplemented to liquid medium for growth of fungi. Method of fungal cultivation using liquid medium showed that it has higher sensitivity compared with the cultivation on agar plate. Our study indicated that degree of deacetylation of chitosan clearly affects its antifungal activity, the higher the deacetylation of chitosan, stronger antifungal activity can be observed. Radiation treatment at doses higher than 20 kGy increased clearly the antifungal activity of chitosan. In addition, dose of 60-75 kGy where the viscosity-average molecular weight reduced to 110,000, expressed the highest activity. (author)

  18. Investigation of the effect of base strength on the antifungal activity and chemical composition of the fish scales hydrolyzates

    International Nuclear Information System (INIS)

    Niaz, S.; Dil, S.

    2016-01-01

    The effect of base strength on the antifungal activity of the fish scale hydrolyzate was investigated for six types of samples prepared from the scales of Cyprinus carpio using sodium hydroxide in the range of 1-11 percent strength in the aqueous solution. Each of the sample was analyzed for its acid-base content using titration against HCl in addition to the spot test analysis for phenolic compounds. Each of these samples was analyzed using FTIR spectroscopy. Variation in chemical composition and functional group were observed with variation in the base strength. The in vitro antifungal activity of the fish scale hydrolyzates was tested against four pathogenic fungi including Acremonium, Pythium, Verticillium, and Alternaria. The antifungal assay was carried out using agar well diffusion methods. The sterilization was carried out using streptomycin while ketoconazole was used as the standard antifungal agent. Minimum inhibitory concentration was determined for the most active hydrolyzate which was obtained by 9 percent base solution. The cause of this antifungal activity was also discussed in this communication. (author)

  19. Phytochemical analysis and antifungal activity of selected seaweeds from Okha coast, Gujarat, India

    Directory of Open Access Journals (Sweden)

    Isaiah Nirmal Kumar

    2015-07-01

    Full Text Available Objective: To deal with the assessment of the chemical composition of carbohydrate, protein, phenol, flavanoid, chlorophyll, and carotenoid and antifungal activity of various marine seaweeds collected from Okha coast, Gujarat during September, 2013. Methods: Biochemical compounds of selected seaweeds were quantified and antifungal activity of these species belonging to red, green, and brown seaweeds was explored and the seaweeds were extracted in acetone, ethanol and chloroform. Results: The carbohydrate content was highest in Cystoseira indica Mairh, protein was highest in Gracilaria corticata J. Agardh and phenol content was highest in Padina boergesenii; flavanoid content was found greater in Cystoseira indica, chlorophyll content was found greater in Monostroma latissimum Wittrock and carotenoid content was more in Dictyopteris acrostichoides Bornet. The highest inhibiting effect was noted for Sargassum tenerrimum J. Agardh and Turbinaria ornata J. Agardh belonging to brown algae, against Aspergillus niger and Penicillium janthinellum in chloroform extracts and ethanolic extracts, which caused opportunistic infection of HIV-infected person, lung disease, aspergillosis, and otomycosis (fungal ear infections. Conclusions: The study reveals that the seaweeds contain high amount of biochemical constituents. Besides, the crude extracts of the seaweeds showed promising activity against the tested fungal pathogens. Therefore, seaweeds collected from Okha coast, Gujarat region are biochemical compounds with potential capacity which make them useful for screening natural products for pharmaceutical industry.

  20. Antifungal activity of different neem leaf extracts and the nimonol against some important human pathogens

    Directory of Open Access Journals (Sweden)

    D.A Mahmoud

    2011-09-01

    Full Text Available This study was conducted to evaluate the effect of aqueous, ethanolic and ethyl acetate extracts from neem leaves on growth of some human pathogens (Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus terreus, Candida albicans and Microsporum gypseum in vitro. Different concentrations (5, 10, 15 and 20% prepared from these extracts inhibited the growth of the test pathogens and the effect gradually increased with concentration. The 20% ethyl acetate extract gave the strongest inhibition compared with the activity obtained by the same concentration of the other extracts. High Performance Liquid Chromatography (HPLC analysis of ethyl acetate extract showed the presence of a main component (nimonol which was purified and chemically confirmed by Nuclear Magnetic Resonance (NMR spectroscopic analysis. The 20% ethyl acetate extract lost a part of its antifungal effect after pooling out the nimonol and this loss in activity was variable on test pathogens. The purified nimonol as a separate compound did not show any antifungal activity when assayed against all the six fungal pathogens.

  1. Anti-fungal activity of some medicinal plants on different pathogenic fungi

    International Nuclear Information System (INIS)

    Hussain, F.; Abid, M.; Farzana, A.; Shaukat, S.; Akbar, M.

    2015-01-01

    The antifungal activity of different medicinal and locally available plants extracts (leaves, fruit, seeds) which are usually found in the surrounding of fields or in the fields on some fungi were tested in lab conditions. Six different plants were selected for testing these plants were Acacia nilotica (Lamk.) Willd. Azadirachta indica (A.) Juss. Crotalaria juncea L. Eucalyptus camaldulensis Dehnh. Ocimum basilicum L. and Prosopis juliflora (Sw.) Dc. These plants showed antifungal activity against the Aspergillus flavus, A. niger, Fusarium solani, Macrophomina phaseolina and Rhizoctonia solani. These plants crude extracts of leaves showed inhibition activity against the fungi and suppressed the myclial growth. Over all selected plants exhibited moderate type of inhibition against these above mentioned pathogens. Among these plants, Azadirachta indica, Ocimum basilicum and Crotalaria juncea showed the most effective results against the Aspergillus, Fusarium and Rhizoctonia sp. of fungal pathogens. Whereas, Acacia nilotica, Eucalyptus camaldulensis and Prosopis juliflora showed least potential of inhibition against all above mentioned fungal pathogens. It is investigated in present studies that Azadirachta indica, Ocimum basilicum and Crotalaria juncea can be utilized against the management of fungal diseases particularly Aspergillus flavus, A. niger, Fusarium solani, Macrophomina phaseolina and Rhizoctonia solani. (author)

  2. Probiotic Potential of Lactobacillus Strains with Antifungal Activity Isolated from Animal Manure.

    Science.gov (United States)

    Ilavenil, Soundharrajan; Park, Hyung Soo; Vijayakumar, Mayakrishnan; Arasu, Mariadhas Valan; Kim, Da Hye; Ravikumar, Sivanesan; Choi, Ki Choon

    2015-01-01

    The aim of the study was to isolate and characterize the lactic acid bacteria (LAB) from animal manure. Among the thirty LAB strains, four strains, namely, KCC-25, KCC-26, KCC-27, and KCC-28, showed good cell growth and antifungal activity and were selected for further characterization. Biochemical and physiology properties of strains confirmed that the strains are related to the Lactobacillus sp.; further, the 16S rRNA sequencing confirmed 99.99% sequence similarity towards Lactobacillus plantarum. The strains exhibited susceptibility against commonly used antibiotics with negative hemolytic property. Strains KCC-25, KCC-26, KCC-27, and KCC-28 showed strong antifungal activity against Aspergillus fumigatus, Penicillium chrysogenum, Penicillium roqueforti, Botrytis elliptica, and Fusarium oxysporum, respectively. Fermentation studies noted that the strains were able to produce significant amount of lactic, acetic, and succinic acids. Further, the production of extracellular proteolytic and glycolytic enzymes, survival under low pH, bile salts, and gastric juice together with positive bile salt hydrolase (Bsh) activity, cholesterol lowering, cell surface hydrophobicity, and aggregation properties were the strains advantages. Thus, KCC-25, KCC-26, KCC-27, and KCC-28 could have the survival ability in the harsh condition of the digestive system in the gastrointestinal tract. In conclusion, novel L. plantarum KCC-25, KCC-26, KCC-27, and KCC-28 could be considered as potential antimicrobial probiotic strains.

  3. Synthesis, Antimycobacterial, Antifungal and Photosynthesis-Inhibiting Activity of Chlorinated N-phenylpyrazine-2-carboxamides †

    Directory of Open Access Journals (Sweden)

    Katarina Kralova

    2010-11-01

    Full Text Available A series of sixteen pyrazinamide analogues with the -CONH- linker connecting the pyrazine and benzene rings was synthesized by the condensation of chlorides of substituted pyrazinecarboxylic acids with ring-substituted (chlorine anilines. The prepared compounds were characterized and evaluated for their antimycobacterial and antifungal activity, and for their ability to inhibit photosynthetic electron transport (PET. 6-Chloro-N-(4-chlorophenylpyrazine-2-carboxamide manifested the highest activity against Mycobacterium tuberculosis strain H37Rv (65% inhibition at 6.25 μg/mL. The highest antifungal effect against Trichophyton mentagrophytes, the most susceptible fungal strain tested, was found for 6-chloro-5-tert-butyl-N-(3,4-dichlorophenylpyrazine-2-carboxamide (MIC = 62.5 μmol/L. 6-Chloro-5-tert-butyl-N-(4-chlorophenylpyrazine-2-carboxamide showed the highest PET inhibition in spinach chloroplasts (Spinacia oleracea L. chloroplasts (IC50 = 43.0 μmol/L. For all the compounds, the relationships between the lipophilicity and the chemical structure of the studied compounds as well as their structure-activity relationships are discussed.

  4. An in vitro antifungal efficacy of silver nanoparticles activated by diode laser to Candida albicans

    Science.gov (United States)

    Astuti, S. D.; Kharisma, D. H.; Kholimatussa'diah, S.; Zaidan, A. H.

    2017-09-01

    Microbial infectious diseases and increased resistance to antibiotics become urgent problems requiring immediate solutions. One promising alternative is the using of silver nanoparticles. The combination of the microbial inhibition characteristic of silver nanotechnology enhances the activity of antimicrobial effect. This study aims to determine effectiveness of antifungal silver nanoparticles with the activation of the diode laser on Candida albicans. The samples were culture of Candida albicans. Candida albicans cultures were incubated with silver nanoparticles (concentration 10-4 M) and treated with various exposure time of diode laser (15, 30, 45, 60, 75, 90)s. The suspension was planted on Sabouraud Dextrone Agar sterile media and incubated for 24 hours at temperature of 37oC. The number of colony-forming units per milliliter (CFU/ml) was determined after incubation. The results were log-transformed and analyzed by analysis of variance (ANOVA). In this analysis, P value ≤0.05 was considered to indicate a statistically significant difference. The result of this study showed the quantum yield of silver nanoparticles with diode laser 450 nm was 63,61%. Irradiating with diode laser 450 nm for 75 s resulted in the highest decreasing percentage of Candida albicans viability 65,03%. Irradiating with diode laser 450 nm 75 s with silver nanoparticles resulted in the higest decreasing percentage of Candida albicans viability 84,63%. Therefore, silver nanoparticles activated with diode laser irradiation of 450 nm resulted antifungal effect to Candida albicans viability.

  5. Probiotic Potential of Lactobacillus Strains with Antifungal Activity Isolated from Animal Manure

    Directory of Open Access Journals (Sweden)

    Soundharrajan Ilavenil

    2015-01-01

    Full Text Available The aim of the study was to isolate and characterize the lactic acid bacteria (LAB from animal manure. Among the thirty LAB strains, four strains, namely, KCC-25, KCC-26, KCC-27, and KCC-28, showed good cell growth and antifungal activity and were selected for further characterization. Biochemical and physiology properties of strains confirmed that the strains are related to the Lactobacillus sp.; further, the 16S rRNA sequencing confirmed 99.99% sequence similarity towards Lactobacillus plantarum. The strains exhibited susceptibility against commonly used antibiotics with negative hemolytic property. Strains KCC-25, KCC-26, KCC-27, and KCC-28 showed strong antifungal activity against Aspergillus fumigatus, Penicillium chrysogenum, Penicillium roqueforti, Botrytis elliptica, and Fusarium oxysporum, respectively. Fermentation studies noted that the strains were able to produce significant amount of lactic, acetic, and succinic acids. Further, the production of extracellular proteolytic and glycolytic enzymes, survival under low pH, bile salts, and gastric juice together with positive bile salt hydrolase (Bsh activity, cholesterol lowering, cell surface hydrophobicity, and aggregation properties were the strains advantages. Thus, KCC-25, KCC-26, KCC-27, and KCC-28 could have the survival ability in the harsh condition of the digestive system in the gastrointestinal tract. In conclusion, novel L. plantarum KCC-25, KCC-26, KCC-27, and KCC-28 could be considered as potential antimicrobial probiotic strains.

  6. In vitro antibacterial and antifungal activity of flower buds (clove) of syzygium aromaticum

    International Nuclear Information System (INIS)

    Begum, S.; Sara, A.; Siddiqui, B.S.; Ahmed, A.

    2014-01-01

    The antibacterial and antifungal activity of methanolic extract, its different fractions and pure compounds oleanolic acid (1) and 3, 4, 3-tri-o-methylellagic acid (2) was evaluated against various gram positive and gram negative bacteria and fungi. the methanolic extract, its ether soluble and ethyl acetate soluble fractions exhibited strong g/disc. ethyl activity against bacillus subtilis with mic = 62.5 acetate soluble fraction also showed strong activity against micrococcus g/disc. acetone soluble fraction luteus atcc 9341 with mic=62.5 g/disc). demonstrated activity against shigella dysenteriae (mic= 62.5 the petroleum ether soluble fraction was found to be active against fungi aspergullus flavus, aspergullus niger and trichophyton rubrum with g/disc. compounds 1 and 2 were found inactive against the mic 250 microorganisms tested. (author)

  7. Antifungal activity of food additives in vitro and as ingredients of hydroxypropyl methylcellulose-lipid edible coatings against Botrytis cinerea and Alternaria alternata on cherry tomato fruit.

    Science.gov (United States)

    Fagundes, Cristiane; Pérez-Gago, María B; Monteiro, Alcilene R; Palou, Lluís

    2013-09-16

    The antifungal activity of food additives or 'generally recognized as safe' (GRAS) compounds was tested in vitro against Botrytis cinerea and Alternaria alternata. Radial mycelial growth of each pathogen was measured in PDA Petri dishes amended with food preservatives at 0.2, 1.0, or 2.0% (v/v) after 3, 5, and 7 days of incubation at 25 °C. Selected additives and concentrations were tested as antifungal ingredients of hydroxypropyl methylcellulose (HPMC)-lipid edible coatings. The curative activity of stable coatings was tested in in vivo experiments. Cherry tomatoes were artificially inoculated with the pathogens, coated by immersion about 24 h later, and incubated at 20 °C and 90% RH. Disease incidence and severity (lesion diameter) were determined after 6, 10, and 15 days of incubation and the 'area under the disease progress stairs' (AUDPS) was calculated. In general, HPMC-lipid antifungal coatings controlled black spot caused by A. alternata more effectively than gray mold caused by B. cinerea. Overall, the best results for reduction of gray mold on cherry tomato fruit were obtained with coatings containing 2.0% of potassium carbonate, ammonium phosphate, potassium bicarbonate, or ammonium carbonate, while 2.0% sodium methylparaben, sodium ethylparaben, and sodium propylparaben were the best ingredients for coatings against black rot. © 2013 Elsevier B.V. All rights reserved.

  8. Bombyx mori cecropin A has a high antifungal activity to entomopathogenic fungus Beauveria bassiana.

    Science.gov (United States)

    Lu, Dingding; Geng, Tao; Hou, Chengxiang; Huang, Yuxia; Qin, Guangxing; Guo, Xijie

    2016-05-25

    A cDNA encoding cecropin A (CecA) was cloned from the larvae of silkworm, Bombyx mori, using RT-PCR. It encodes a protein of 63 amino acids, containing a 22 amino acid signal peptide and a 37 amino acid mat peptide of functional domain. The CecA secondary structure contains two typical amphiphilic α-helices. Real-time qPCR analysis revealed that CecA was expressed in all the tissues tested, including cuticle, fat body, hemocytes, Malpighian tubule, midgut and silk gland in the silkworm larvae with the highest expression in the fat body and hemocytes. The gene expression of B. mori CecA was rapidly induced by Beauveria bassiana challenge and reached maximum levels at 36h after inoculation in third instar larvae. In the fifth instar larvae infected with B. bassiana, the relative expression level of CecA was upregulated in fat body and hemocytes, but not in cuticle, Malpighian tubule, midgut and silk gland. The cDNA segment of the CecA was inserted into the expression plasmid pET-30a(+) to construct a recombinant expression plasmid. Western blot results revealed that his-tagged fusion protein was successfully expressed and purified. Then the mat peptide of CecA was chemically synthesized with C-terminus amidation for in vivo antifungal assay and purity achieved 93.7%. Mass spectrometry and SDS-PAGE showed its molecular weight to be 4046.95Da. Antifungal assays indicated that the B. mori CecA had a high antifungal activity to entomopathogenic fungus B. bassiana both in vitro and in vivo in the silkworm larvae. This is the first report that the CecA is effective to inhibit B. bassiana inside the body of silkworm. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Antifungal activity of four honeys of different types from Algeria against pathogenic yeast: Candida albicans and Rhodotorula sp.

    Science.gov (United States)

    Moussa, Ahmed; Noureddine, Djebli; Saad, Aissat; Abdelmelek, Meslem; Abdelkader, Benhalima

    2012-07-01

    To evaluate the antifungal activity of four honeys of different types from Algeria against pathogenic yeast i.e. Candida albicans (C. albicans) and Rhodotorula sp. Four Algeria honeys of different botanical origin were analyzed to test antifungal effect against C. albicans, and Rhodotorula sp. Different concentrations (undiluted, 10%, 30%, 50% and 70% w/v) of honey were studied in vitro for their antifugal activity using C. albicans and Rhodotorula sp. as fungal strains. The range of the diameter of zone of inhibition of various concentrations of tested honeys was (7-23 mm) for Rhodotorula sp., while C. albicans showed clearly resistance towards all concentrations used. The MICs of tested honey concentrations against C. albicans and Rhodotorula sp. were (70.09-93.48)% and (4.90-99.70)% v/v, respectively. This study demonstrates that, in vitro, these natural products have clearly an antifungal activity against Rhodotorula sp. and C. albicans.

  10. Screening of antibacterial and antifungal activities of selected Macedonian wild mushrooms

    Directory of Open Access Journals (Sweden)

    Nikolovska-Nedelkoska Daniela

    2013-01-01

    Full Text Available Regarding the development of novel safe antimicrobials of natural origin, macrofungi became attractive for the researchers in the last decade. In this study, antimicrobial potential of methanolic extracts of six wild macromycetes (Boletus lupinus, Flammulina velutypes, Phellinus igniarius, Sarcodon imbricatus, Tricholoma aurantium, Xerocomus ichnusanus was evaluated. In vitro antimicrobial activity was investigated by the microdilution method and minimum inhibitory concentration (MIC was determined. Testing was conducted against eleven microorganisms, including six strains of bacteria and five species of fungi. Extracts showed selective antimicrobial properties while the activities depended both on the species of microorganism and on the type and concentration of extract. The evaluated extracts demonstrated antimicrobial activity, exhibiting more potent inhibitory effects on the growth of bacteria than on fungi. The highest antibacterial and antifungal activity was observed in methanolic extract of polypore fungus P. igniarius.

  11. Antifungal Activity of (+-2,2’-Epicytoskyrin A and Its Membrane-Disruptive Action

    Directory of Open Access Journals (Sweden)

    Dewi Wulansari

    2016-12-01

    Full Text Available (+-2,2’-Epicytoskyrin A, a bis-anthraquinone isolated from fungal endophyte Diaporthe sp. GNBP-10 associated with Uncaria gambir Roxb., was investigated for its antifungal activity. The broth microdilution method was used to determine the minimum inhibitory concentration (MIC against 22 yeast strains and three filamentous fungi. The MICs of (+-2,2’-epicytoskyrin A ranged from 16 to 128 µg/mL, which exhibited lower activity than the antifungal nystatin. A study of the mechanism of action revealed similar effects of (+-2,2’-epicytoskyrin A and nystatin on Candida tropicalis at their MICs (16 and 8 µg/mL, respectively and 2 times of the MIC. Both compounds caused cytoplasmic material and ion leakages on fungal cell, which were characterized by an increase in absorbance at 260 nm and 280 nm as well as Ca2+ and K+ ion concentrations. The morphology of the fungal cells after (+-2,2’-epicytoskyrin A treatment was observed under a scanning electron microscope. The control cells, which were not treated with either (+-2,2’-epicytoskyrin A or nystatin, showed a smooth surface, while the cells treated with either (+-2,2’-epicytoskyrin A or nystatin shrank and displayed a donut-like shape. More shrinkage was observed in the 2 times MIC concentration and even more in the cells exposed to nystatin. The action of (+-2,2’-epicytoskyrin A was proposed through membrane disruption.

  12. Screening for antifungal activities of extracts of the brazilian seaweed genus Laurencia (Ceramiales, Rhodophyta

    Directory of Open Access Journals (Sweden)

    Erika M. Stein

    2011-04-01

    Full Text Available The resistance of pathogens to commonly used antibiotics has enhanced morbidity and mortality and has triggered the search for new drugs. Several species of the red alga genus Laurencia are very interesting candidates as potential sources of natural products with pharmaceutical activity because they are known to produce a wide range of chemically interesting halogenated secondary metabolites. This is an initial report of the antifungal activities of the secondary metabolites of five species of Laurencia, collected in the state of Espírito Santo, against three strains of pathogenic fungi: Candida albicans (CA, Candida parapsilosis (CP, and Cryptococcus neoformans (CN. Minimum inhibitory concentrations (MIC of the algal extracts were determined by serial dilution method in RPMI 1640 Medium in 96-well plates according to the NCCLS and microbial growth was determined by absorbance at 492nm. A result showing maintenance or reduction of the inoculum was defined as fungistatic, while fungicidal action was no observed growth in the 10 µL fungistatic samples subcultured in Sabouraud Agar. Our results indicate that apolar extracts of Laurencia species possess antifungal properties and encourage continued research to find new drugs for therapy of infectious diseases in these algae.

  13. Antifungal activity of Brazilian medicinal plants involved in popular treatment of mycoses.

    Science.gov (United States)

    Cruz, M C S; Santos, P O; Barbosa, A M; de Mélo, D L F M; Alviano, C S; Antoniolli, A R; Alviano, D S; Trindade, R C

    2007-05-04

    A survey of medicinal plants used to treat common mycoses was done in the Curituba district, Sergipe State, Brazil. One hundred inhabitants were interviewed by health agents and traditional healers. Four different plants were the most cited (more than 50% of the citations): Ziziphus joazeiro, Caesalpinia pyramidalis, Bumelia sartorum and Hymenea courbaril. The aqueous extracts obtained following traditional methods and using different parts of these plants, were submitted to drop agar diffusion tests for primary antimicrobial screening. Only the water infusion extract of Ziziphus joazeiro and Caesalpinea pyramidalis presented a significant antifungal activity against Trichophyton rubrum, Candida guilliermondii, Candida albicans, Cryptococcus neoformans and Fonsecaea pedrosoi, when compared to the antifungal agent amphotericin B. The minimal inhibitory concentration (MIC) of the bioactive extracts was evaluated by the microdilution method. Best activity with a MIC of 6.5 microg/ml for both extracts was observed against Trichophyton rubrum and Candida guilliermondii. Ziziphus joazeiro and Caesalpinea pyramidalis extracts presented also low acute toxicity in murine models. The present study validates the folk use of these plant extracts and indicates that they can be effective potential candidates for the development of new strategies to treat fungal infections.

  14. Antifungal activity of methanolic extracts of some indigenous plants against common soil-borne fungi

    International Nuclear Information System (INIS)

    Tuba, T.; Abid, M.; Shaukat, S. S.; Shaikh, A.

    2016-01-01

    Present study was conducted to evaluate the fungicidal property of methanolic extracts of some indigenous plants of Karachi such as Hibiscus rosa-sinensis (leaves), The spesia populnea (leaves, stem and fruit), Withania somnifera (leaves and stem), Solanum surattense (shoot) and Melia azedarach (fruit) against common soil-borne phytopathogens viz., Macrophomina phaseolina, Rhizoctonia solani and Fusarium oxysporum by using food poison technique. Among the eight methanolic extracts of tested parts of plants, seven showed antifungal activity, of which T. populnea leaves and S. surattense shoots inhibited growth of all three test pathogens. Leaves of H. rosa-sinensis did not exhibit antifungal activity. T. populnea (leaves and stem), W. somnifera (stem) and M. azedarach (fruit) suppressed growth of Rhizoctonia solani by 100 percent. T. populnea leaves and M. azedarach fruit inhibited growth of M. phaseolina by 100 percent and 82 percent, respectively T. populnea leaves inhibited 99 percent mycelial growth of F. oxysporum. It is concluded that the methanolic extracts of the tested indigenous plants contain natural fungicidal compounds, which can be used for the control of common soil-borne pathogens. (author)

  15. [The in vitro antifungal activities of fluconazole against pathogenic yeasts recently isolated from clinical specimens].

    Science.gov (United States)

    Yamaguchi, H; Igari, J; Kume, H; Abe, M; Oguri, T; Kanno, H; Kawakami, S; Okuzumi, K; Fukayama, M; Ito, A; Kawata, K; Uchida, K

    1997-09-01

    The emergence of Candida albicans resistance to azole antifungal agents have been reported in the U. S. and Europe. We examined the in vitro antifungal activities of fluconazole against clinical isolates collected by seven investigators in three years to examine if a tendency existed toward the development of azole-resistance among fungal isolates in Japan. The following results were obtained: 1. Sensitivities to fluconazole (FLCZ) were determined for yeast-like fungi, including 113 strains isolated in 1993, 149 strains isolated in 1994 and 205 strains isolated in 1995. No significant differences in sensitivities in the three years were detected. 2. Minimum inhibitory concentrations of FLCZ were 0.1-0.78 microgram/ml for C. albicans and 3.13-25 micrograms/ml for C. glabrata. Strains with 25 micrograms/ml of FLCZ's MIC were detected; two strains of C. krusei and one strain each of C. krusei, Trichospron beigelii and Hansenula anomala. No strains with higher than 50 micrograms/ml MIC of FLCZ were detected. 3. In vitro activities of FLCZ were compared between clinical strains isolated between 1993 and 1995 and clinical strains isolated before the marketing of FLCZ (up to December 1987) or clinical yeasts isolated between 1991 and 1992. No significant differences were observed, suggesting that no tendency existed toward azole resistance among fungal strains examined.

  16. Isolation of Bacteria with Antifungal Activity against the Phytopathogenic Fungi Stenocarpella maydis and Stenocarpella macrospora

    Science.gov (United States)

    Petatán-Sagahón, Iván; Anducho-Reyes, Miguel Angel; Silva-Rojas, Hilda Victoria; Arana-Cuenca, Ainhoa; Tellez-Jurado, Alejandro; Cárdenas-Álvarez, Isabel Oyuki; Mercado-Flores, Yuridia

    2011-01-01

    Stenocarpella maydis and Stenocarpella macrospora are the causal agents of ear rot in corn, which is one of the most destructive diseases in this crop worldwide. These fungi are important mycotoxin producers that cause different pathologies in farmed animals and represent an important risk for humans. In this work, 160 strains were isolated from soil of corn crops of which 10 showed antifungal activity against these phytopathogens, which, were identified as: Bacillus subtilis, Pseudomonas spp., Pseudomonas fluorescens, and Pantoea agglomerans by sequencing of 16S rRNA gene and the phylogenetic analysis. From cultures of each strain, extracellular filtrates were obtained and assayed to determine antifungal activity. The best filtrates were obtained in the stationary phase of B. subtilis cultures that were stable to the temperature and extreme pH values; in addition they did not show a cytotoxicity effect against brine shrimp and inhibited germination of conidia. The bacteria described in this work have the potential to be used in the control of white ear rot disease. PMID:22016606

  17. Isolation of Bacteria with Antifungal Activity against the Phytopathogenic Fungi Stenocarpella maydis and Stenocarpella macrospora

    Directory of Open Access Journals (Sweden)

    Yuridia Mercado-Flores

    2011-08-01

    Full Text Available Stenocarpella maydis and Stenocarpella macrospora are the causal agents of ear rot in corn, which is one of the most destructive diseases in this crop worldwide. These fungi are important mycotoxin producers that cause different pathologies in farmed animals and represent an important risk for humans. In this work, 160 strains were isolated from soil of corn crops of which 10 showed antifungal activity against these phytopathogens, which, were identified as: Bacillus subtilis, Pseudomonas spp., Pseudomonas fluorescens, and Pantoea agglomerans by sequencing of 16S rRNA gene and the phylogenetic analysis. From cultures of each strain, extracellular filtrates were obtained and assayed to determine antifungal activity. The best filtrates were obtained in the stationary phase of B. subtilis cultures that were stable to the temperature and extreme pH values; in addition they did not show a cytotoxicity effect against brine shrimp and inhibited germination of conidia. The bacteria described in this work have the potential to be used in the control of white ear rot disease.

  18. Antifungal activity of plant essential oils and selected Pseudomonas strains against Phomopsis theicola

    Directory of Open Access Journals (Sweden)

    Starović Mira

    2017-01-01

    Full Text Available Development of natural plant protection products as an alternative to synthetic fungicides is of significant importance regarding the environment. This study was carried out with an objective to investigate in vitro antifungal activities of several essential oils extracted from oregano, basil, myrtle and Turkish pickling herb, and the plant growth-promoting rhizobacteria in the genus Pseudomonas, against the phytopathogenic fungus Phomopsis theicola. Microdilution methods were used to determine the minimum inhibitory concentrations (MIC of selected antimicrobial essential oils (EOs. All EOs exhibited significant levels of antifungal activity against the tested fungal isolates. The oregano EO was found the most potent one (MIC - 5.5 µg/mL, followed by basil (MIC - 75.0µg/mL, myrtle (MIC - 775 µg/mL and Turkish pickling herb (MIC - 7750 µg/mL. Inhibition of Ph. theicola mycelial growth was observed for all tested Pseudomonas spp. strains. K113 and L1 strains were highly effective and achieved more than 60% of fungal growth inhibition using the overnight culture and more than 57% inhibition by applying cell-free supernatants of both strains. A future field trial with K113 and L1 cultures and cell-free supernatants, containing extracellular metabolites toward Ph. theicola, will estimate their effectiveness and applicability as an alternative to chemical protection of apple trees.

  19. Antifungal activity evaluation of Aloe arborescens dry extract against trichosporon genus yeasts

    Directory of Open Access Journals (Sweden)

    João Ricardo Bueno de Morais Borba

    2014-10-01

    Full Text Available The objective of this study was to investigate the antifungal activity of Aloe arborescens dry extract against Trichosporon genus yeast species. Extraction was carried out by means of a longitudinal incision in fresh leaves, which were collected on a vat, and the total volume was frozen and subsequently lyophilized. Then, 40 mg of the dry extract was dissolved in DMSO by gentle inversion in order to obtain a solution whose concentration was 4000 µg mL-1. This solution became limpid and slightly yellowish because the pigment of the latex was attenuated. It was performed serial dilutions from 2,000 to 15.625 µg mL-1 with RPMI-1640 broth. There was already no pigment in the first dilution of 2000 μg mL-1. It was analyzed fifteen strains of Trichosporon spp., and Candida albicans ATCC 10231 was used as control strain. We carried out the reading of microplates in the ELISA reader device at a wavelength of 530 nm, after incubation for 24 and 48 hours, and it was determinated the Minimum Inhibitory Concentration (MIC. The MIC50 value obtained for all Trichosporon species and for C. albicans was 500 µg mL-1. As a result, we concluded that Aloe arborescens dry extract has antifungal activity against Trichosporon yeasts.

  20. Antifungal activity of terrestrial Streptomyces rochei strain HF391 against clinical azole -resistant Aspergillus fumigatus

    Science.gov (United States)

    Hadizadeh, S; Forootanfar, H; Shahidi Bonjar, GH; Falahati Nejad, M; Karamy Robati, A; Ayatollahi Mousavi, SA; Amirporrostami, S

    2015-01-01

    Background and Purpose: Actinomycetes have been discovered as source of antifungal compounds that are currently in clinical use. Invasive aspergillosis (IA) due to Aspergillus fumigatus has been identified as individual drug-resistant Aspergillus spp. to be an emerging pathogen opportunities a global scale. This paper described the antifungal activity of one terrestrial actinomycete against the clinically isolated azole-resistant A. fumigatus. Materials and Methods: Soil samples were collected from various locations of Kerman, Iran. Thereafter, the actinomycetes were isolated using starch-casein-nitrate-agar medium and the most efficient actinomycetes (capable of inhibiting A. fumigatus) were screened using agar block method. In the next step, the selected actinomycete was cultivated in starch-casein- broth medium and the inhibitory activity of the obtained culture broth was evaluated using agar well diffusion method. Results: The selected actinomycete, identified as Streptomyces rochei strain HF391, could suppress the growth of A. fumigatus isolates which was isolated from the clinical samples of patients treated with azoles. This strain showed higher inhibition zones on agar diffusion assay which was more than 15 mm. Conclusion: The obtained results of the present study introduced Streptomyces rochei strain HF391 as terrestrial actinomycete that can inhibit the growth of clinically isolated A. fumigatus. PMID:28680984

  1. Purification and characterisation of a novel chitinase from persimmon (Diospyros kaki) with antifungal activity.

    Science.gov (United States)

    Zhang, Jianzhi; Kopparapu, Narasimha Kumar; Yan, Qiaojuan; Yang, Shaoqing; Jiang, Zhengqiang

    2013-06-01

    A novel chitinase from the persimmon fruit was isolated, purified and characterised in this report. The Diospyros kaki chitinase (DKC) was found to be a monomer with a molecular mass of 29 kDa. It exhibited optimal activity at pH 4.5 with broad pH stability from pH 4.0-9.0. It has an optimal temperature of 60°C and thermostable up to 60°C when incubated for 30 min. The internal peptide sequences of DKC showed similarity with other reported plant chitinases. It has the ability to hydrolyse colloidal chitin into chito-oligomers such as chitotriose, chitobiose and into its monomer N-acetylglucosamine. It can be used to degrade chitin waste into useful products such as chito-oligosacchaarides. DKC exhibited antifungal activity towards pathogenic fungus Trichoderma viride. Chitinases with antifungal property can be used as biocontrol agents replacing chemical fungicides. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Antifungal Activity of Brazilian Propolis Microparticles against Yeasts Isolated from Vulvovaginal Candidiasis

    Directory of Open Access Journals (Sweden)

    Kelen Fátima Dalben Dota

    2011-01-01

    Full Text Available Propolis, a resinous compound produced by Apis mellifera L. bees, is known to possess a variety of biological activities and is applied in the therapy of various infectious diseases. The aim of this study was to evaluate the in vitro antifungal activity of propolis ethanol extract (PE and propolis microparticles (PMs obtained from a sample of Brazilian propolis against clinical yeast isolates of importance in the vulvovaginal candidiasis (VVC. PE was used to prepare the microparticles. Yeast isolates (n=89, obtained from vaginal exudates of patients with VVC, were exposed to the PE and the PMs. Moreover, the main antifungal drugs used in the treatment of VVC (Fluconazole, Voriconazole, Itraconazole, Ketoconazole, Miconazole and Amphotericin B were also tested. Minimum inhibitory concentration (MIC was determined according to the standard broth microdilution method. Some Candida albicans isolates showed resistance or dose-dependent susceptibility for the azolic drugs and Amphotericin B. Non-C. albicans isolates showed more resistance and dose-dependent susceptibility for the azolic drugs than C. albicans. However, all of them were sensitive or dose-dependent susceptible for Amphotericin B. All yeasts were inhibited by PE and PMs, with small variation, independent of the species of yeast. The overall results provided important information for the potential application of PMs in the therapy of VVC and the possible prevention of the occurrence of new symptomatic episodes.

  3. Screening for antifungal activities of extracts of the brazilian seaweed genus Laurencia (Ceramiales, Rhodophyta

    Directory of Open Access Journals (Sweden)

    Erika M. Stein

    2011-05-01

    Full Text Available The resistance of pathogens to commonly used antibiotics has enhanced morbidity and mortality and has triggered the search for new drugs. Several species of the red alga genus Laurencia are very interesting candidates as potential sources of natural products with pharmaceutical activity because they are known to produce a wide range of chemically interesting halogenated secondary metabolites. This is an initial report of the antifungal activities of the secondary metabolites of five species of Laurencia, collected in the state of Espírito Santo, against three strains of pathogenic fungi: Candida albicans (CA, Candida parapsilosis (CP, and Cryptococcus neoformans (CN. Minimum inhibitory concentrations (MIC of the algal extracts were determined by serial dilution method in RPMI 1640 Medium in 96-well plates according to the NCCLS and microbial growth was determined by absorbance at 492nm. A result showing maintenance or reduction of the inoculum was defined as fungistatic, while fungicidal action was no observed growth in the 10 µL fungistatic samples subcultured in Sabouraud Agar. Our results indicate that apolar extracts of Laurencia species possess antifungal properties and encourage continued research to find new drugs for therapy of infectious diseases in these algae.

  4. Assessment of in vitro antifungal activity of preparation ''fin Candimis'' against Candida strains

    Directory of Open Access Journals (Sweden)

    Anna Głowacka

    2013-12-01

    Full Text Available The aim of the study was to assess the antifungal activity of preparation „fin Candimis” (oregano essential oil against yeast-like strains belonging to the genus Candida. During the investigation, there were used up nine Candida albicans strains and ten C. glabrata strains isolated from different clinical material, along with one C. albicans demonstration strain ATCC 90028. The oregano essential oil, utilized in the study, was obtained from fresh leaves of Origanum vulgare L. and bore a trade name „fin Candimis”. According to data yielded by its manufacturer, concentration of pure oregano essential oil in preparation „fin Candimis” totals up to 210 mg/ml. The susceptibility of the Candida strains to preparation „fin Candimis” was assessed by means of the disc-diffusion method, upon the Sabouraud solid medium (after a 24-hour incubation of the cultures at temperature of 37 degrees centigrade; the oregano essential oil had been diluted in 1 ml of DMSO, according to the geometrical progression. A measure of the antifungal activity of preparation „fin Candimis” was the minimal inhibitory concentration (MIC, in terms of the fungus growth. Preparation „fin Candimis” is capable of being applied in the prevention and treatment of candidiasis – alone, or as a natural adjunctive agent. The C. albicans strains are more susceptible to preparation „fin Candimis” in comparison to the C. glabrata ones.

  5. Antifungical Activity of Autochthonous Bacillus subtilis Isolated from Prosopis juliflora against Phytopathogenic Fungi.

    Science.gov (United States)

    Abdelmoteleb, Ali; Troncoso-Rojas, Rosalba; Gonzalez-Soto, Tania; González-Mendoza, Daniel

    2017-12-01

    The ability of Bacillus subtilis , strain ALICA to produce three mycolytic enzymes (chitinase, β-1,3-glucanase, and protease), was carried out by the chemical standard methods. Bacillus subtilis ALICA was screened based on their antifungal activity in dual plate assay and cell-free culture filtrate (25%) against five different phytopathogenic fungi Alternaria alternata , Macrophomina sp., Colletotrichum gloeosporioides , Botrytis cinerea , and Sclerotium rolfesii . The B. subtilis ALICA detected positive for chitinase, β-1,3-glucanase and protease enzymes. Fungal growth inhibition by both strain ALICA and its cell-free culture filtrate ranged from 51.36% to 86.3% and 38.43% to 68.6%, respectively. Moreover, hyphal morphological changes like damage, broken, swelling, distortions abnormal morphology were observed. Genes expression of protease, β-1,3-glucanase, and lipopeptides (subtilosin and subtilisin) were confirmed their presence in the supernatant of strain ALICA. Our findings indicated that strain ALICA provided a broad spectrum of antifungal activities against various phytopathogenic fungi and may be a potential effective alternative to chemical fungicides.

  6. Antifungal Activity of the Crude Extracts and Extracted Phenols from Gametophytes and Sporophytes of Two Species of Adiantum

    Directory of Open Access Journals (Sweden)

    Piyali Guha (Ghosh

    2005-12-01

    Full Text Available The water extracts and extracted phenols from gametophytes and different parts of sporophytes of the two ferns, Adiantum capillus-veneris L. and Adiantum lunulatum Burm. f., used as folkloric medicines in India, China, Tibet, America, Philippines and Italy, were investigated for their antifungal activity against Aspergillus niger and Rhizopus stolonifer. Both crude extracts and extracted phenols of gametophytes and different parts of sporophytes of both fern species were found to be bioactive against the fungal strains. Antifungal activity was found to be higher in gametophytes than different parts of sporophytes. Among the different parts of sporophyte, immature pinnule possesses highest fungistatic property. Adiantum capillus-veneris was found a better antifungal agent than Adiantum lunulatum.

  7. ANTIFUNGAL AND CYTOTOXIC ACTIVITIES OF FIVE TRADITIONALLY USED INDIAN MEDICINAL PLANTS

    Directory of Open Access Journals (Sweden)

    Adhikarimayum Haripyaree

    2013-02-01

    Full Text Available Hexane, Methanol and Distilled water extracts of five Indian Medicinal plants viz., Mimosa pudica L, Vitex trifolia Linn, Leucas aspera Spreng, Centella asiatica (L Urban and Plantago major Linn belonging to different families were subjected to preliminary antimicrobial screening against six standard organisms viz., Ceratocystis paradoxa, Aspergillus niger, Penicillium citrinum, Macrophomina phaseoli, Trichoderma viride and Rhizopus nigricans. To evaluate antifungal activity agar well diffusion method was used. In addition LD50 of the same plant extracts were determined by using Range test on Mus musculus for cytotoxic activity. Methanolic extract of M. pudica showed the highest and significant inhibitory effect against some fungal species. Again, methanolic extract of M. pudica displayed the greatest cytotoxic activity.

  8. Correlation between Biosurfactants and Antifungal Activity of a Biocontrol Bacterium, Bacillus amyloliquefaciens LM11

    Directory of Open Access Journals (Sweden)

    Beom Ryong Kang

    2017-06-01

    Full Text Available Bacillus amyloliquefaciens LM11 was isolated from the feces of larvae of the rhino beetle and showed strong antifungal activities against various phytopathogenic fungi by producing biosurfactants. In this study, our overall goal was to determine relationship between biosurfactants produced from the LM11 strain and its role in growth inhibition of phytopathogenic fungi. Production and expression levels of B. amyloliquefaciens LM11 biosurfactants were significantly differed depending on growth phases. Transcriptional and biochemical analysis indicated that the biosurfactants of the LM11 strain were greatly enhanced in late log-phase to stationary phase. Inhibitions of phytopathogenic mycelial growth and spore germination were directly correlated (P<0.001, R=0.761 with concentrations of the LM11 cell-free culture filtrates. The minimum inhibitory surface tension of the culture filtrate of the B. amyloliquefaciens LM11 grown in stationary phase to inhibit mycelial growth of the phytopathogenic fungi was 38.5 mN/m (P<0.001, R=0.951–0.977. Our results indicated that the biosurfactants of B. amyloliquefaciens LM11 act as key antifungal metabolites in biocontrol of plant diseases, and measuring surface tension of the cell-free culture fluids can be used as an easy indicator for optimal usage of the biocontrol agents.

  9. Antifungal activity of indigenous bacillus sp. isolate Q3 against marshmallow mycobiota

    Directory of Open Access Journals (Sweden)

    Jošić Dragana Lj.

    2011-01-01

    Full Text Available Marshmallow is a host of a number of saprophytic and parasitic fungi in Serbia. The seeds of marshmallow are contaminated with fungi from different genera, especially Alternaria and Fusarium, which significantly reduced seed germination and caused seedling decay. In this study we investigate antagnonism of indigenous Bacillus sp. isolate Q3 against marshmallow mycopopulation. Bacillus sp. Q3 was isolated from maize rhizosphere, characterized by polyphasic approch and tested for plant growth promoting treats. Bacillus sp. Q3 produced antifungal metabolites with growth inhibition activity against numerous fungi in dual culture: 61.8% of Alternaria alternata, 74.8% of Myrothecium verrucaria and 33.6% of Sclerotinia sclerotiorum. That effect could be caused by different antifungal metabolites including siderophores, hydrolytic enzymes, organic acids and indole acetic acid (IAA. Suppression of natural marshmallow seed infection by Q3 isolate was observed. The seeds were immersed in different concentrations of bacterial suspension during 2h and their infections by phytopathogenic fungi were estimated. The results showed significant reduction of seed infection by Alternaria spp. The presented results indicate possible application of this isolate as promising biological agent for control of marshmallow seed pathogenic fungi.

  10. Possible mechanisms of the antifungal activity of fluconazole in combination with terbinafine against Candida albicans.

    Science.gov (United States)

    Khodavandi, Alireza; Alizadeh, Fahimeh; Vanda, Nasim Aghai; Karimi, Golgis; Chong, Pei Pei

    2014-12-01

    Candidiasis is a term describing infections by yeasts from the genus Candida, the majority Candida albicans. Treatment of such infections often requires antifungals such as the azoles, but increased use of these drugs has led to selection of yeasts with increased resistance to these drugs. Combination therapy would be one of the best strategies for the treatment of candidiasis due to increased resistance to azoles. The antifungal activities of fluconazole and terbinafine were evaluated in vitro alone and in combination using broth microdilution test and time kill study. Eventually the expression level of selected genes involved in ergosterol biosynthesis of Candida was evaluated using semi-quantitative RT-PCR. The obtained results showed the significant MICs ranging from 0.25 to 8 µg/mL followed by FICs ranged from 0.37 to 1 in combination with fluconazole/terbinafine. Our findings have demonstrated that the combination of fluconazole and terbinafine could also significantly reduce the expression of ERG1, 3, and 11 in the cell membrane of Candida in all concentrations tested ranging from 1.73- to 6.99-fold. This study was undertaken with the ultimate goal of finding the probable targets of fluconazole/terbinafine in C. albicans by looking at its effects on cell membrane synthesis.

  11. Antibacterial, antifungal and antioxidant activity of Olea africana against pathogenic yeast and nosocomial pathogens.

    Science.gov (United States)

    Masoko, Peter; Makgapeetja, David M

    2015-11-17

    Olea africana leaves are used by Bapedi people to treat different ailments. The use of these leaves is not validated, therefore the aim of this study is to validate antimicrobial properties of this plant. The ground leaves were extracted using solvents of varying polarity (hexane, chloroform, dichloromethane (DCM), ethyl acetate, acetone, ethanol, methanol, butanol and water). Thin layer chromatography (TLC) was used to analyse the chemical constituents of the extracts. The TLC plates were developed in three different solvent systems, namely, benzene/ethanol/ammonium solution (BEA), chloroform/ethyl acetate/formic acid (CEF) and ethyl acetate/methanol/water (EMW). The micro-dilution assay and bioautography method were used to evaluate the antibacterial activity of the extracts against Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis and Staphylococcus aureus and the antifungal activity against Candida albicans and Cryptococcus neoformans. Methanol was the best extractant, yielding a larger amount of plant material whereas hexane yielded the least amount. In phytochemical analyses, more compounds were observed in BEA, followed by EMW and CEF. Qualitative 2, 2- diphenylpacryl-1-hydrazyl (DPPH) assay displayed that all the extracts had antioxidant activity. Antioxidant compounds could not be separated using BEA solvent system while with CEF and EMW enabled antioxidant compounds separation. The minimum inhibitory concentrations (MIC) values against test bacteria ranged between 0.16 and 2.50 mg/mL whereas against fungi, MIC ranged from 0.16 to 0.63 mg/mL. Bioautography results demonstrated that more than one compound was responsible for antimicrobial activity in the microdilution assay as the compounds were located at different Rf values. The results indicate that leaf extracts of Olea africana contain compounds with antioxidant, antibacterial and antifungal activities. Therefore, further studies are required to isolate the active compounds and perform

  12. Streptomyces luozhongensis sp. nov., a novel actinomycete with antifungal activity and antibacterial activity.

    Science.gov (United States)

    Zhang, Renwen; Han, Xiaoxue; Xia, Zhanfeng; Luo, Xiaoxia; Wan, Chuanxing; Zhang, Lili

    2017-02-01

    A novel actinomycete strain, designated TRM 49605 T , was isolated from a desert soil sample from Lop Nur, Xinjiang, north-west China, and characterised using a polyphasic taxonomic approach. The strain exhibited antifungal activity against the following strains: Saccharomyces cerevisiae, Curvularia lunata, Aspergillus flavus, Aspergillus niger, Fusarium oxysporum, Penicillium citrinum, Candida albicans and Candida tropicalis; Antibacterial activity against Bacillus subtilis, Staphylococcus epidermidis and Micrococcus luteus; and no antibacterial activity against Escherichia coli. Phylogenetic analysis based on 16S rRNA gene sequences affiliated strain TRM 49605 T to the genus Streptomyces. Strain TRM 49605 T shows high sequence similarities to Streptomyces roseolilacinus NBRC 12815 T (98.62 %), Streptomyces flavovariabilis NRRL B-16367 T (98.45 %) and Streptomyces variegatus NRRL B-16380 T (98.45 %). Whole cell hydrolysates of strain TRM 49605 T were found to contain LL-diaminopimelic acid as the diagnostic diamino acid and galactose, glucose, xylose and mannose as the major whole cell sugars. The major fatty acids in strain TRM 49605 T were identified as iso C 16:0 , anteiso C 15:0 , C 16:0 and Summed Feature 5 as defined by MIDI. The main menaquinones were identified as MK-9(H 4 ), MK-9(H 6 ), MK-9(H 8 ) and MK-10(H 6 ). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol and phosphatidylinositol mannoside. The G+C content of the genomic DNA was determined to be 71.2 %. The DNA-DNA relatedness between strain TRM 49605 T and the phylogenetically related strain S. roseolilacinus NBRC 12815 T was 60.12 ± 0.06 %, which is lower than the 70 % threshold value for delineation of genomic prokaryotic species. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain TRM 49605 T (=CCTCC AA2015026 T  = KCTC 39666 T ) should be designated as the type strain of a novel species of the genus

  13. The Emerging Pathogen Candida auris: Growth Phenotype, Virulence Factors, Activity of Antifungals, and Effect of SCY-078, a Novel Glucan Synthesis Inhibitor, on Growth Morphology and Biofilm Formation.

    Science.gov (United States)

    Larkin, Emily; Hager, Christopher; Chandra, Jyotsna; Mukherjee, Pranab K; Retuerto, Mauricio; Salem, Iman; Long, Lisa; Isham, Nancy; Kovanda, Laura; Borroto-Esoda, Katyna; Wring, Steve; Angulo, David; Ghannoum, Mahmoud

    2017-05-01

    Candida auris , a new multidrug-resistant Candida spp. which is associated with invasive infection and high rates of mortality, has recently emerged. Here, we determined the virulence factors (germination, adherence, biofilm formation, phospholipase and proteinase production) of 16 C. auris isolates and their susceptibilities to 11 drugs belonging to different antifungal classes, including a novel orally bioavailable 1,3-β-d-glucan synthesis inhibitor (SCY-078). We also examined the effect of SCY-078 on the growth, ultrastructure, and biofilm-forming abilities of C. auris Our data showed that while the tested strains did not germinate, they did produce phospholipase and proteinase in a strain-dependent manner and had a significantly reduced ability to adhere and form biofilms compared to that of Candida albicans ( P = 0.01). C. auris isolates demonstrated reduced susceptibility to fluconazole and amphotericin B, while, in general, they were susceptible to the remaining drugs tested. SCY-078 had an MIC 90 of 1 mg/liter against C. auris and caused complete inhibition of the growth of C. auris and C. albicans Scanning electron microscopy analysis showed that SCY-078 interrupted C. auris cell division, with the organism forming abnormal fused fungal cells. Additionally, SCY-078 possessed potent antibiofilm activity, wherein treated biofilms demonstrated significantly reduced metabolic activity and a significantly reduced thickness compared to the untreated control ( P < 0.05 for both comparisons). Our study shows that C. auris expresses several virulence determinants (albeit to a lesser extent than C. albicans ) and is resistant to fluconazole and amphotericin B. SCY-078, the new orally bioavailable antifungal, had potent antifungal/antibiofilm activity against C. auris , indicating that further evaluation of this antifungal is warranted. Copyright © 2017 Larkin et al.

  14. Some southern African plant species used to treat helminth infections in ethnoveterinary medicine have excellent antifungal activities

    Directory of Open Access Journals (Sweden)

    Adamu Mathew

    2012-11-01

    Full Text Available Abstract Background Diseases caused by microorganisms and parasites remain a major challenge globally and particularly in sub-Saharan Africa to man and livestock. Resistance to available antimicrobials and the high cost or unavailability of antimicrobials complicates matters. Many rural people use plants to treat these infections. Because some anthelmintics e.g. benzimidazoles also have good antifungal activity we examined the antifungal activity of extracts of 13 plant species used in southern Africa to treat gastrointestinal helminth infections in livestock and in man. Methods Antifungal activity of acetone leaf extracts was determined by serial microdilution with tetrazolium violet as growth indicator against Aspergillus fumigatus, Cryptococcus neoformans and Candida albicans. These pathogens play an important role in opportunistic infections of immune compromised patients. Cytotoxicity was determined by MTT cellular assay. Therapeutic indices were calculated and selectivity for different pathogens determined. We proposed a method to calculate the relation between microbicidal and microbistatic activities. Total activities for different plant species were calculated. Results On the whole, all 13 extracts had good antifungal activities with MIC values as low as 0.02 mg/mL for extracts of Clausena anisata against Aspergillus fumigatus and 0.04 mg/mL for extracts of Zanthoxylum capense, Clerodendrum glabrum, and Milletia grandis, against A. fumigatus. Clausena anisata extracts had the lowest cytotoxicity (LC50 of 0.17 mg/mL, a reasonable therapeutic index (2.65 against A. fumigatus. It also had selective activity against A. fumigatus, an overall fungicidal activity of 98% and a total activity of 3395 mL/g against A. fumigatus. This means that 1 g of acetone leaf extract can be diluted to 3.4 litres and it would still inhibit the growth. Clerodendrum glabrum, Zanthoxylum capense and Milletia grandis extracts also yielded promising results

  15. Radiation-induced enhancement of antifungal activity of chitosan on fruit-spoiling fungi during postharvest storage

    Energy Technology Data Exchange (ETDEWEB)

    Diep, Tran Bang; Lam, Nguyen Duy; Quynh, Tran Minh [Institute for Nuclear Science and Technique-VAEC, Hanoi (Viet Nam); Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Experiment conducted four fruit-spoiling fungal strains that were isolated from spoilt fruits (mango and dragon fruit) and were identified as follows: Fusarium dimerum Penzig, Aspergillus nidulans Wint, Aspergillus fumigatus Fresenius and Aspergillus japonicus Saito. Chitosan samples with various deacetylation degree (70-99%) were irradiated at doses ranging from 20 to 200kGy, then were supplemented to liquid medium for growth of fungi. We have found that chitosan possesses not only well known antibacterial activity but also the antifungal one on fruit-spoiling fungi. Method of fungal cultivation using liquid medium showed that it has higher sensitivity compared with the cultivation on agar plate, so we recommend this method should be used for evaluation of antimicrobial activity of chitosan. Our study also indicated that deacetylation degree of chitosan clearly affects its antifungal activity, the higher the deacetylation of chitosan, stronger antifungal activity can be observed. This finding recommends the use of chitosan with higher deacetylation for fruit coating and other pharmacology utilization. Results from the minimal inhibitory concentrations (MIC) on fungal growth showed that radiation treatment increased antifungal activity of chitosan and dose of 60kGy gave highest activity. (author)

  16. Natural products as sources of new fungicides (I: synthesis and antifungal activity of Kakuol derivatives against phytopathogenic fungi

    Directory of Open Access Journals (Sweden)

    Wei Shi

    2014-12-01

    Full Text Available In order to establish an advanced structural-activity relationship (SAR and to explore the feasibility of kakuol analogues with better anti-fungi activity, a series of 2-hydroxy-4,5-methylenedioxyaryl ketones were conveniently synthesized by the Friedel-Crafts acyl reaction, etherification reaction, reduction reaction and oximation reaction. Their structures characterized by 1H and 13C NMR and HRMS methods. Their in vitro antifungal activities were assayed. Most of the derivatives showed a remarkable in vitro activity, and some of them appeared significantly more effective than a commercial fungicide hymexazol as positive control. In particular compounds 2h and 2i, were found active with a IC50 value of 3.1 mg/ml and 2.9 mg/ml against Glomerella cingulate, which suggested that 2-hydroxy-4,5-methylenedioxyaryl ketones might be a promising candidates in the development of new antifungal compounds. Compounds 2e, 5 and 6 also exhibited high antifungal activities on a wide range of organisms, which might be considered as leading compounds in the development of new antifungal compounds.DOI: http://doi.dx.org/10.5564/mjc.v15i0.331 Mongolian Journal of Chemistry 15 (41, 2014, p94-100

  17. Radiation-induced enhancement of antifungal activity of chitosan on fruit-spoiling fungi during postharvest storage

    International Nuclear Information System (INIS)

    Diep, Tran Bang; Lam, Nguyen Duy; Quynh, Tran Minh; Kume, Tamikazu

    2001-01-01

    Experiment conducted four fruit-spoiling fungal strains that were isolated from spoilt fruits (mango and dragon fruit) and were identified as follows: Fusarium dimerum Penzig, Aspergillus nidulans Wint, Aspergillus fumigatus Fresenius and Aspergillus japonicus Saito. Chitosan samples with various deacetylation degree (70-99%) were irradiated at doses ranging from 20 to 200kGy, then were supplemented to liquid medium for growth of fungi. We have found that chitosan possesses not only well known antibacterial activity but also the antifungal one on fruit-spoiling fungi. Method of fungal cultivation using liquid medium showed that it has higher sensitivity compared with the cultivation on agar plate, so we recommend this method should be used for evaluation of antimicrobial activity of chitosan. Our study also indicated that deacetylation degree of chitosan clearly affects its antifungal activity, the higher the deacetylation of chitosan, stronger antifungal activity can be observed. This finding recommends the use of chitosan with higher deacetylation for fruit coating and other pharmacology utilization. Results from the minimal inhibitory concentrations (MIC) on fungal growth showed that radiation treatment increased antifungal activity of chitosan and dose of 60kGy gave highest activity. (author)

  18. Antifungal activity of water-stable copper-containing metal-organic frameworks

    Science.gov (United States)

    Bouson, Supaporn; Krittayavathananon, Atiweena; Phattharasupakun, Nutthaphon; Siwayaprahm, Patcharaporn; Sawangphruk, Montree

    2017-10-01

    Although metal-organic frameworks (MOFs) or porous coordination polymers have been widely studied, their antimicrobial activities have not yet been fully investigated. In this work, antifungal activity of copper-based benzene-tricarboxylate MOF (Cu-BTC MOF), which is water stable and industrially interesting, is investigated against Candida albicans, Aspergillus niger, Aspergillus oryzae and Fusarium oxysporum. The Cu-BTC MOF can effectively inhibit the growth rate of C. albicans and remarkably inhibit the spore growth of A. niger, A. oryzae and F. oxysporum. This finding shows the potential of using Cu-BTC MOF as a strong biocidal material against representative yeasts and moulds that are commonly found in the food and agricultural industries.

  19. Synthesis and antimicrobial, antifungal and anthelmintic activities of 3H-1,5-benzodiazepine derivatives

    Directory of Open Access Journals (Sweden)

    RAJESH KUMAR

    2008-10-01

    Full Text Available The diazonium salt of 4-amino-1-methyl-3-propyl-1H-pyrazole-5-carboxamide in the presence of sodium hydroxide was condensed with different β-diketones/β-ketoesters, 3a–e, to obtain new β-diketones/β-ketoesters, 4a–e. The β-diketones/β-ketoesters 4a–e were condensed with o-phenylenediamine (o-PDA in presence of p-toluenesulfonic acid/SiO2 to give biologically active 3H-1,5-benzodiazepines, 5a–e. All the newly synthesized compounds were characterized by elemental analysis and spectral studies. The compounds 5a–e was screened for their antimicrobial, antifungal and anthelmintic activities.

  20. Selection of sourdough lactobacilli with antifungal activity for use as biopreservatives in bakery products.

    Science.gov (United States)

    Garofalo, Cristiana; Zannini, Emanuele; Aquilanti, Lucia; Silvestri, Gloria; Fierro, Olga; Picariello, Gianluca; Clementi, Francesca

    2012-08-08

    Two hundred and sixteen LAB cultures from sourdoughs and dough for bread and panettone production were screened for in vitro antifungal properties against three indicator cultures ascribed to Aspergillus japonicus , Eurotium repens , and Penicillium roseopurpureum , isolated from bakery environment and moldy panettone. Nineteen preselected isolates were subjected to minimum inhibitory concentration determination against the indicator cultures. Sourdoughs prepared with the two most promising strains, identified as Lactobacillus rossiae LD108 and Lactobacillus paralimentarius PB127, were characterized. The sourdough extracts were subjected to HPLC analysis coupled with a microtiter plate bioassay against A. japonicus to identify the active fractions. MALDI-TOF MS analysis revealed the occurrence of a series of peptides corresponding to wheat α-gliadin proteolysis fragments in the active fraction from L. rossiae LD108 sourdough. The ability to prevent mold growth on bread was demonstrated for both strains, whereas L. rossiae LD108 also inhibited mold growth on panettone.

  1. Antifungal activity and isomerization of octadecyl p-coumarates from Ipomoea carnea subsp. fistulosa.

    Science.gov (United States)

    Nidiry, Eugene Sebastian J; Ganeshan, Girija; Lokesha, Ankanahalli N

    2011-12-01

    Bioassay monitored HPLC assisted isolation and purification of the chief antifungal fraction of the leaves of Ipomoea carnea subsp. fistulosa (Convulvulaceae) were achieved using Colletotrichum gloeosporioides and Cladosporium cucumerinum as test organisms. The activity of the purified fraction was further confirmed by the dose dependent inhibition of the spore germination of Alternaria alternata and A. porri. The active fraction was identified as a mixture of (E)-octadecyl p-coumarate and (Z)-octadecyl p-coumarate. The two isomers were detected on an HPLC column with substantially different retention times, but once eluted from the column, one form was partly converted to the other in daylight. Conclusive evidence for the structures and their isomerization were obtained from the HPLC behavior, IR, UV, HRESIMS, CIMS and and NMR spectral data. Important 1H NMR and 13C NMR signals could be separately assigned for the isomers using 2D NMR techniques.

  2. ANTIFUNGAL ACTIVITY OF Cymbopogon nardus (L. Rendle (CITRONELLA AGAINST Microsporum canis FROM ANIMALS AND HOME ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Isis Regina Grenier CAPOCI

    2015-12-01

    Full Text Available Dermatophytosis is a common zoonosis in urban centers. Dogs and cats have played an important role as its disseminators. Environmental decontamination is essential for the prevention of its propagation to humans and animals. However, sanitizers or disinfectants with antifungal activity, currently available, have high toxicity. The present study evaluated the in vitro effects of an extract of citronella (Cymbopogon nardus on 31 Microsporum canis isolates from animals and home environments. Susceptibility tests were performed based on document M38-A2 (2008 of the Clinical and Laboratory Standards Institute with modifications for natural products. Although susceptibility variation was observed between the fungus tested, the concentrations that inhibited the growth of 50 and 90% of the microorganisms were low (19.5 and 78 µg/mL, respectively. Thus, this citronella extract showed potent fungistatic and fungicide activities against M. canis isolated from animals and home environments. Therefore, it could be an alternative for dermatophytosis prophylaxis in the home environment.

  3. A new aurone glycoside with antifungal activity from marine-derived fungus Penicillium sp. FJ-1.

    Science.gov (United States)

    Song, Yan-xia; Ma, Qiang; Li, Jie

    2015-03-01

    Endophytic fungi which reside in the tissue of mangrove plants seem to play an important role in the discovery of new biologically active substances. During the course of screening for the antimicrobial metabolites from the endophytic fugus Penicillium sp. FJ-1 of mangrove plant Avicennia marina, a new aurone glycoside (1) was isolated by repeated column chromatography on silica gel and recrystallization methods. The structure of 1 was elucidated as (Z)-7,4'-dimethoxy-6-hydroxy-aurone-4-O-β-glucopyranoside, on the basis of spectroscopic analysis. Compound 1 exhibited antifungal activity against Candida sp., with the potency comparable to amphotericin B and much better than fluconazole. Compound 1 can also inhibit extracellular phospholipase secretion in a concentration-dependent manner.

  4. In Vitro Antibacterial and Antifungal Activity of Lavandula x intermedia Emeric ex Loisel. ‘Budrovka’

    Directory of Open Access Journals (Sweden)

    Sanda Vladimir-Knezevic

    2011-05-01

    Full Text Available This study aimed to evaluate the in vitro antibacterial and antifungal activities of Lavandula x intermedia Emeric ex Loisel. ‘Budrovka’, an indigenous Croatian cultivar of lavandin. For that purpose the activity of ethanolic extracts of flowers, inflorescence stalks and leaves against thirty one strains of bacteria, yeasts, dermatophytes and moulds were studied using both the agar well diffusion and broth dilution assays. Among the investigated extracts found to be effective against a broad spectrum of microorganisms, the flower extract was considered to be the most potent one. Linalool and rosmarinic acid, as the most abundant constituents found, are very likely major contributors to the observed antimicrobial effects. The results suggest that flowers of lavandin ‘Budrovka’ could serve as a rich source of natural terpene and polyphenol antimicrobial agents.

  5. Synthesis, antifungal activity and docking study of 2-amino-4H-benzochromene-3-carbonitrile derivatives

    Science.gov (United States)

    Mirjalili, BiBi Fatemeh; Zamani, Leila; Zomorodian, Kamiar; Khabnadideh, Soghra; Haghighijoo, Zahra; Malakotikhah, Zahra; Ayatollahi Mousavi, Seyyed Amin; Khojasteh, Shaghayegh

    2016-07-01

    Pathogenic fungi are associated with diseases ranging from simple dermatosis to life-threatening infections, particularly in immunocompromised patients. During the past two decades, resistance to established antifungal drugs has increased dramatically and has made it crucial to identify novel antimicrobial compounds. Here, we selected 12 new compounds of 2-amino-4H-benzochromene-3-carbonitrile drivetives (C1-C12) for synthesis by using nano-TiCl4.SiO2 as efficient and green catalyst, then nine of synthetic compounds were evaluated against different species of fungi, positive gram and negative gram of bacteria. Standard and clinical strains of antibiotics sensitive and resistant fungi and bacteria were cultured in appropriate media. Biological activity of the 2-amino-4H-benzochromene-3-carbonitrile derivatives against fungi and bacteries were estimated by the broth micro-dilution method as recommended by clinical and laboratory standard institute (CLSI). In addition minimal fangicidal and bactericial concenteration of the compounds were also determined. Considering our results showed that compound 2-amino-4-(4-methyl benzoate)-4H-benzo[f]chromen-3-carbonitrile (C9) had the most antifungal activity against Aspergillus clavatus, Candida glabarata, Candida dubliniensis, Candida albicans and Candida tropicalis at concentrations ranging from 8 to ≤128 μg/mL. Also compounds 2-amino-4-(3,4-dimethoxyphenyl)-4H-benzo[f]chromen-3-carbonitrile (C4) and 2-amino-4-(4-isopropylphenyl)-4H-benzo[f]chromen-3-carbonitrile (C3) had significant inhibitory activities against Epidermophyton floccosum following 2-amino-4-(4-methylbenzoate)-4H-benzo[f]chromen-3-carbonitrile (C9), respectively. Docking simulation was performed to insert compounds C3, C4 and C9 in to CYP51 active site to determine the probable binding model.

  6. Evaluation of antifungal metabolites activity from bacillus licheniformis OE-04 against Colletotrichum gossypii.

    Science.gov (United States)

    Nawaz, Hafiz Husnain; Nelly Rajaofera, M J; He, Qiguang; Anam, Usmani; Lin, Chunhua; Miao, Weiguo

    2018-04-01

    Anthracnose disease in the cotton plant caused by fungal pathogen Colletotrichum gossypii. It is supposed to be most critical diseases in the cotton crop as it causes infection and leads to complete damaging of the cotton crop by infecting the leaves, stems, and bolls in the field. The disease control is challenging due to the absence of an effective fungicide without damaging the farmer health and environment. So the series of experiments were designed to assess the antagonistic activity of biosurfactant released by strain Bacillus licheniformis OE-04 against the anthracnose causing agent in cotton and this strain was screened out from forty eight strain of rhizobacteria. We also estimated the heat stability and pH range and toxicity of biosurfactant produced by strain 0E-04. The results showed that biosurfactant has maximum antifungal activity against C. gossypii. In vitro study concluded that the biosurfactant can reduce fungal activity by inhibiting the spore germination of C. gossypii. Moreover, the biosurfactant also has wide pH and temperature range. We observed Antifungal activity of biosurfactant at 5 to 10 pH range and temperature range was also wide from room temperature to 100 °C. We also observed the toxicity of biosurfactant produced by Bacillus licheniformis against zebra fish (Danio rerio). We were noticed that biosurfactant have least harmful effect with maximum concentration. The study confirmed that biosurfactant of Bacillus licheniformis have high pH and heat stability range with least harmful effects so it can be a good replacement of chemical pesticides for cotton anthracnose control. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Western Bats as a Reservoir of Novel Streptomyces Species with Antifungal Activity.

    Science.gov (United States)

    Hamm, Paris S; Caimi, Nicole A; Northup, Diana E; Valdez, Ernest W; Buecher, Debbie C; Dunlap, Christopher A; Labeda, David P; Lueschow, Shiloh; Porras-Alfaro, Andrea

    2017-03-01

    At least two-thirds of commercial antibiotics today are derived from Actinobacteria , more specifically from the genus Streptomyces Antibiotic resistance and new emerging diseases pose great challenges in the field of microbiology. Cave systems, in which actinobacteria are ubiquitous and abundant, represent new opportunities for the discovery of novel bacterial species and the study of their interactions with emergent pathogens. White-nose syndrome is an invasive bat disease caused by the fungus Pseudogymnoascus destructans , which has killed more than six million bats in the last 7 years. In this study, we isolated naturally occurring actinobacteria from white-nose syndrome (WNS)-free bats from five cave systems and surface locations in the vicinity in New Mexico and Arizona, USA. We sequenced the 16S rRNA region and tested 632 isolates from 12 different bat species using a bilayer plate method to evaluate antifungal activity. Thirty-six actinobacteria inhibited or stopped the growth of P. destructans , with 32 (88.9%) actinobacteria belonging to the genus Streptomyces Isolates in the genera Rhodococcus , Streptosporangium , Luteipulveratus , and Nocardiopsis also showed inhibition. Twenty-five of the isolates with antifungal activity against P. destructans represent 15 novel Streptomyces spp. based on multilocus sequence analysis. Our results suggest that bats in western North America caves possess novel bacterial microbiota with the potential to inhibit P. destructans IMPORTANCE This study reports the largest collection of actinobacteria from bats with activity against Pseudogymnoascus destructans , the fungal causative agent of white-nose syndrome. Using multigene analysis, we discovered 15 potential novel species. This research demonstrates that bats and caves may serve as a rich reservoir for novel Streptomyces species with antimicrobial bioactive compounds. Copyright © 2017 American Society for Microbiology.

  8. Essential oils from Schinus species of northwest Argentina: Composition and antifungal activity.

    Science.gov (United States)

    Sampietro, Diego A; Belizana, Maria Melina E; Baptista, Zareath P Terán; Vattuone, Marta A; Catalán, Cesar A N

    2014-07-01

    The composition of the essential oils from leaves (Sal) and fruits of S. areira (Saf), and fruits of S. fasciculatus (Sff) and S. gracilipes (Sgf) were analyzed by GC/MS. The major compounds identified were sabinene (26.0 +/- 0.5%), bicyclogermacrene (14.5 +/- 0.4%), and E-citral (6.7+/- 0.2%) in Sal oil, limonene (27.7 +/- 0.7%), sabinene (16.0+/- 0.5%), beta-phellandrene (14.6 +/- 0.8%) and bicyclogermacrene (8.1 +/- 0.2%) in Saf oil, sabinene (22.7 +/- 0.6%), alpha-phellandrene (18.7 +/- 0.3%), beta-phellandrene (15.7 +/- 0.4%), and bicyclogermacrene (8.1 +/- 0.2%) in Sff oil and beta-pinene (25.4 +/- 0.8%), alpha-pinene (24.7 +/- 0.7%), and sabinene (13.6 +/- 0.4%) in Sgf oil.The antifungal activity of the four oils was evaluated on strains of Fusarium verticillioides and F. graminearum, and the results compared with the effect of epoxyconazole, pyraclostrobin and thyme oil. The Sff oil had the highest antifungal activity among the Schinus oils tested, with MIC100 (F. graminearum) = 6 per thousand and MIC100 (F. verticillioides) = 12 per thousand. A principal component analysis suggests that 9 constituents (alpha-thujene, alpha-terpinene, p-cymene, gamma-terpinene, terpinolene, 1-terpineol, alpha-calacorene, alpha-phellandrene, and terpinen-4-ol) explain the higher antifungal effect of Sff. The MIC100s of Schinus oils were on average 30-60 and 8.5-17 fold lower than those obtained for thyme oil on F. verticillioides and F. graminearum, respectively. In the case of commercial fungicides, their MIC100s were three orders of magnitude lower than those of Schinus oils. The last ones showed an additive interaction when assayed in mixtures with the commecial fungicides and thyme oil. The results suggest that the doses of fungicides required for control of the Fusarium species can be reduced when they are assayed in mixtures with the Schinus oils.

  9. Chemical composition and antifungal activities of essential oils of Satureja thymbra L. and Salvia pomifera ssp. calycina (Sm.) Hayek

    NARCIS (Netherlands)

    Glamoclija, J.; Sokovic, M.; Vukojevic, J.; Milenkovic, I.; Griensven, van L.J.L.D.

    2006-01-01

    This work covers the chemical composition and antifungal activities of essential oils isolated from savory (Satureja thymbra) and sage (Salvia pomifera ssp. calycina) analyzed using GC/MS. The main components of S. thymbra oil were gamma-terpinene (23.2%) and carvacrol (48.5%). The main components

  10. Authentication of Piper betle L. folium and quantification of their antifungal-activity

    Directory of Open Access Journals (Sweden)

    I Made Agus Gelgel Wirasuta

    2017-07-01

    The NCPs profiles of intra- and inter-day precision results offered multi-dimensional chromatogram fingerprints for better marker peak pattern recognition and identification. Using the r-value fingerprints data series generated with this method allowed more precise discrimination the PBL. from other Piper species compared to the marker peak area fingerprint method. The cosine pair comparison was a simple method for authentication of two different fingerprints. The ward linkage clustering and the pair cross-correlation comparison were better chemometric methods to determine the consistency peak area ratio between fingerprints. The first component PCA-loading values of peak marker area fingerprints were correlated linearly to both the bio-marker concentration as well as the antifungal activity. This relationship could be used to control the quality and pharmacological potency. This simple method was developed for the authentication and quantification of herbal medicine.

  11. Sugar-mediated ‘green’ synthesis of copper nanoparticles with high antifungal activity

    International Nuclear Information System (INIS)

    Ray, Debajyoti; Prasad Mandal, Ranju; De, Swati; Pramanik, Satadru; Chaudhuri, Sujata

    2015-01-01

    Herein we present a novel and facile approach to effectively synthesize and stabilize copper nanoparticles (CuNPs) using the sugars dextrose, dextrin and β-cyclodextrin. This approach adopts the fundamental principles of ‘green chemistry’ by usage of nontoxic, renewable chemicals and use of ambient temperature, normal pH and other mild conditions. This work shows that the amphiphilicity presented by the sugars determines the CuNP characteristics. One very important aspect of this work is that these CuNPs show significant antifungal activity towards a potent rice pathogen whose action is wide spread and difficult to control. Thus this work provides a biocompatible method to arrest the growth of a potent rice pathogen. This has widespread implications in areas where rice is the main food crop. (paper)

  12. The Antifungal Activity of Functionalized Chitin Nanocrystals in Poly (Lactid Acid Films

    Directory of Open Access Journals (Sweden)

    Asier M. Salaberria

    2017-05-01

    Full Text Available As, in the market, poly (lactic acid (PLA is the most used polymer as an alternative to conventional plastics, and as functionalized chitin nanocrystals (CHNC can provide structural and bioactive properties, their combination sounds promising in the preparation of functional nanocomposite films for sustainable packaging. Chitin nanocrystals were successfully modified via acylation using anhydride acetic and dodecanoyl chloride acid to improve their compatibility with the matrix, PLA. The nanocomposite films were prepared by extrusion/compression approach using different concentrations of both sets of functionalized CHNC. This investigation brings forward that both sets of modified CHNC act as functional agents, i.e., they slightly improved the hydrophobic character of the PLA nanocomposite films, and, very importantly, they also enhanced their antifungal activity. Nonetheless, the nanocomposite films prepared with the CHNC modified with dodecanoyl chloride acid presented the best properties.

  13. PVP-coated silver nanoparticles showing antifungal improved activity against dermatophytes

    Science.gov (United States)

    Silva, Edgar; Saraiva, Sofia M.; Miguel, Sónia P.; Correia, Ilídio J.

    2014-11-01

    Fungal infections affecting human beings have increased during the last years and the currently available treatments, when administered for long periods, trigger microbial resistance. Such demands the development of new viable therapeutic alternatives. Silver is known since the antiquity by its antimicrobial properties and, herein, it was used to produce two types of nanoparticles (NPs), uncoated and coated with polyvinylpyrrolidone (PVP), which were aimed to be used in fungal infection treatment. NPs properties were characterized by Transmission electron microscopy, X-ray diffraction, UV-Vis, Dynamic light scattering, Fourier transform infrared, and Energy-dispersive X-ray spectroscopy. Furthermore, in vitro studies were also performed to evaluate NPs cytotoxic profile and antifungal activity. The results obtained revealed that the produced nanoparticles are biocompatible and have a good potential for being used in the treatment of common skin infections caused by Trichophyton rubrum and Trichophyton mentagrophytes, being PVP-coated silver NPs the most suitable ones.

  14. General administrative activities

    International Nuclear Information System (INIS)

    Silver, E.G.

    1984-01-01

    General Administrative Activities summarizes events that are related to safety but are not covered elsewhere in Nuclear Safety. Included in this issue are events reported during May and June 1984. Among the topics discussed are reports from the Advisory Committee on Reactor Safeguards (ACRS) on several safety issues, the DOE plans to aid in the completion of nuclear power plants and its long-term mission plan for the disposal of high-level waste, action by New York City to delay shipment of Brookhaven waste through its streets, a federal Court ruling on emergency evacuation exercises, and changes in NRC rules on spent-fuel shipments. Also included is the report on an address by DOE Secretary Hodel, a summary of two speeches by NRC Commissioner Gilinsky, and a number of other noteworthy items with significance for nuclear safety

  15. Activity of Posaconazole and Other Antifungal Agents against Mucorales Strains Identified by Sequencing of Internal Transcribed Spacers▿

    Science.gov (United States)

    Alastruey-Izquierdo, Ana; Castelli, Maria Victoria; Cuesta, Isabel; Monzon, Araceli; Cuenca-Estrella, Manuel; Rodriguez-Tudela, Juan Luis

    2009-01-01

    The antifungal susceptibility profiles of 77 clinical strains of Mucorales species, identified by internal transcribed spacer sequencing, were analyzed. MICs obtained at 24 and 48 h were compared. Amphotericin B was the most active agent against all isolates, except for Cunninghamella and Apophysomyces isolates. Posaconazole also showed good activity for all species but Cunninghamella bertholletiae. Voriconazole had no activity against any of the fungi tested. Terbinafine showed good activity, except for Rhizopus oryzae, Mucor circinelloides, and Rhizomucor variabilis isolates. PMID:19171801

  16. Activity of posaconazole and other antifungal agents against Mucorales strains identified by sequencing of internal transcribed spacers.

    Science.gov (United States)

    Alastruey-Izquierdo, Ana; Castelli, Maria Victoria; Cuesta, Isabel; Monzon, Araceli; Cuenca-Estrella, Manuel; Rodriguez-Tudela, Juan Luis

    2009-04-01

    The antifungal susceptibility profiles of 77 clinical strains of Mucorales species, identified by internal transcribed spacer sequencing, were analyzed. MICs obtained at 24 and 48 h were compared. Amphotericin B was the most active agent against all isolates, except for Cunninghamella and Apophysomyces isolates. Posaconazole also showed good activity for all species but Cunninghamella bertholletiae. Voriconazole had no activity against any of the fungi tested. Terbinafine showed good activity, except for Rhizopus oryzae, Mucor circinelloides, and Rhizomucor variabilis isolates.

  17. Authentication of Piper betle L. folium and quantification of their antifungal-activity.

    Science.gov (United States)

    Wirasuta, I Made Agus Gelgel; Srinadi, I Gusti Ayu Made; Dwidasmara, Ida Bagus Gede; Ardiyanti, Ni Luh Putu Putri; Trisnadewi, I Gusti Ayu Arya; Paramita, Ni Luh Putu Vidya

    2017-07-01

    The TLC profiles of intra- and inter-day precision for Piper betle L . (PBL) folium methanol extract was studied for their peak marker recognition and identification. The Numerical chromatographic parameters (NCPs) of the peak markers, the hierarchical clustering analysis (HCA) and the principal component analysis (PCA) were applied to authenticate the PBL. folium extract from other Piper species folium extract and to ensure the antifungal activity quality of the PBL essential oil. The spotted extract was developed with the mobile phase of toluene: ethyl acetate; 93:7, (v/v). The eluted plate was viewed with the TLC-Visualizer, scanned under absorption and fluorescent mode detection, and on each sample the in-situ UV spectra were recorded between 190 to 400 nm. The NCPs profiles of intra- and inter-day precision results offered multi-dimensional chromatogram fingerprints for better marker peak pattern recognition and identification. Using the r -value fingerprints data series generated with this method allowed more precise discrimination the PBL. from other Piper species compared to the marker peak area fingerprint method. The cosine pair comparison was a simple method for authentication of two different fingerprints. The ward linkage clustering and the pair cross-correlation comparison were better chemometric methods to determine the consistency peak area ratio between fingerprints. The first component PCA-loading values of peak marker area fingerprints were correlated linearly to both the bio-marker concentration as well as the antifungal activity. This relationship could be used to control the quality and pharmacological potency. This simple method was developed for the authentication and quantification of herbal medicine.

  18. Chemical composition and antifungal activity of essential oils from medicinal plants of Kazakhstan.

    Science.gov (United States)

    Sampietro, Diego A; Gomez, Analía de Los A; Jimenez, Cristina M; Lizarraga, Emilio F; Ibatayev, Zharkyn A; Suleimen, Yerlan M; Catalán, Cesar A

    2017-06-01

    The composition of essential oils from leaves of Kazakhstan medicinal plants was analysed by GC-MS. The major compounds identified were 1,8-cineole (34.2%), myrcene (19.1%) and α-pinene (9.4%) in Ajania fruticulosa; 1,8-cineole (21.0%), β-thujone (11.0%), camphor (8.5%), borneol (7.3%) and α-thujone (6.5%), in Achillea nobilis; camphor (47.3%), 1,8-cineole (23.9%), camphene (9.8%) and β-thujone (6.0%) in Artemisia terrae-albae; 1,8-cineole(55.8%) and β-pinene (6.2%) in Hyssopus ambiguus; α-thuyene(46.3%) and δ-cadinene(6.3%) in Juniperus sibirica; sabinene (64%) in Juniperus sabina; and α-pinene (51.5%), β-phellandrene (11.2%) and δ-cadinene (6.3%) in Pinus sibirica. The essential oils did not show antifungal effect (MIC > 1.20 mg/mL) on Aspergillus carbonarius and Aspergillus niger, while the oils from A. nobilis, A. terrae-albae, H. ambiguus and J. sabina exhibited moderate and moderate to weak antimicrobial activities on Fusarium verticillioides (MIC = 0.60 mg/mL) and Fusarium graminearum (MIC = 0.60-1.20 mg/mL), respectively. A principal component analysis associated the antifungal activity (r 2  > 0.80, p = 0.05) with the presence of borneol, camphor, camphene, 1,8-cineole,α- and β-thujone, and of the oxygenated monoterpenes.

  19. Triazole derivatives with improved in vitro antifungal activity over azole drugs

    Directory of Open Access Journals (Sweden)

    Yu S

    2014-04-01

    Full Text Available Shichong Yu,1,* Xiaoyun Chai,1,* Yanwei Wang,1 Yongbing Cao,2 Jun Zhang,3 Qiuye Wu,1 Dazhi Zhang,1 Yuanying Jiang,2 Tianhua Yan,4 Qingyan Sun11Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China; 2Drug Research Center, School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China; 3Overseas Education Faculty of the Second Military Medical University, Shanghai, People's Republic of China; 4Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China*These authors contributed equally to this workAbstract: A series of triazole antifungal agents with piperidine side chains was designed and synthesized. The results of antifungal tests against eight human pathogenic fungi in vitro showed that all the compounds exhibited moderate-to-excellent activities. Molecular docking between 8d and the active site of Candida albicans CYP51 was provided based on the computational docking results. The triazole interacts with the iron of the heme group. The difluorophenyl group is located in the S3 subsite and its fluorine atom (2-F can form H-bonds with Gly307. The side chain is oriented into the S4 subsite and formed hydrophobic and van der Waals interactions with the amino residues. Moreover, the phenyl group in the side chain interacts with the phenol group of Phe380 through the formation of π–π face-to-edge interactions.Keywords: synthesis, CYP51, molecular docking, azole agents

  20. Biosynthesis of components with antifungal activity against Aspergillus spp. using Streptomyces hygroscopicus

    Directory of Open Access Journals (Sweden)

    Dodić Jelena M.

    2015-01-01

    Full Text Available Losses of apple fruit during storage are mainly caused by fungal phytopathogens. Traditionally, postharvest fungal disease is controlled by the application of synthetic fungicides. However, the harmful impact on environment as well as human health largely limits their application. To reduce these problems in agrochemicals usage, new compounds for plant protection, which are eco-friendly, should be developed. The aim of this study is optimization of medium composition in terms of glucose, soybean meal and phosphates content, by applying response surface methodology, for the production of agents with antifungal activity against Aspergillus spp. For biosynthesis was used strain of Streptomyces hygroscopicus isolated from the environment. Experiments were carried out in accordance with Box-Behnken design with three factors on three levels and three repetitions in the central point. Antifungal activity of the obtained cultivation mediums against Aspergillus oryzae and Aspergillus niger was determined, in vitro, using the diffusion - disc method. For determination optimal medium components desirability function was used. Achieved model predicts that the maximum inhibition zone diameter (40.93 mm against test microorganisms is produced when the initial content of glucose, soybean meal and phosphates are 47.77 g/l, 24.54 g/l and 0.98 g/l, respectively. To minimize the consumption of medium components and costs of effluents processing, additional three sets of optimization were made. The chosen method for optimization of medium components was efficient, relatively simple and time and material saving. Obtained results can be used for the further techno-economic analysis of the process to select optimal medium composition for industrial application.

  1. In Vitro Investigation of Antifungal Activities of Actinomycetes against Microsporum gypseum

    Directory of Open Access Journals (Sweden)

    Naser Keikha

    2013-02-01

    Conclusion: The findings of the present research show that terrigenous actinomycetes have an antifungal effect upon Microsporum gypseum. So, one hopes that-in future-rather than administering antifungal chemicals that have side-effects, dermatophytic infections can be cured by applying these actinomycetes.

  2. Investigating the antifungal activity of TiO{sub 2} nanoparticles deposited on branched carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Darbari, S; Abdi, Y; Haghighi, N [Nano-Physics Research Laboratory, Department of Physics, University of Tehran, Tehran (Iran, Islamic Republic of); Haghighi, F [Department of Medical Mycology, School of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mohajerzadeh, S, E-mail: y.abdi@ut.ac.ir [Thin Film Laboratory, ECE Department, University of Tehran, Tehran (Iran, Islamic Republic of)

    2011-06-22

    Branched carbon nanotube (CNT) arrays were synthesized by plasma-enhanced chemical vapour deposition on a silicon substrate. Ni was used as the catalyst and played an important role in the realization of branches in vertically aligned nanotubes. TiO{sub 2} nanoparticles on the branched CNTs were produced by atmospheric pressure chemical vapour deposition followed by a 500 {sup 0}C annealing step. Transmission and scanning electron microscopic techniques were used to study the morphology of the TiO{sub 2}/branched CNT structures while x-ray diffraction and Raman spectroscopy were used to verify the characteristics of the prepared nanostructures. Their antifungal effect on Candida albicans biofilms under visible light was investigated and compared with the activity of TiO{sub 2}/CNT arrays and thin films of TiO{sub 2}. The TiO{sub 2}/branched CNTs showed a highly improved photocatalytic antifungal activity in comparison with the TiO{sub 2}/CNTs and TiO{sub 2} film. The excellent visible light-induced photocatalytic antifungal activity of the TiO{sub 2}/branched CNTs was attributed to the generation of electron-hole pairs by visible light excitation with a low recombination rate, in addition to the high surface area provided for the interaction between the cells and the nanostructures. Scanning electron microscopy was used to observe the resulting morphological changes in the cell body of the biofilms existing on the antifungal samples.

  3. Antifungal resistance in mucorales.

    Science.gov (United States)

    Dannaoui, E

    2017-11-01

    The order Mucorales, which includes the agents of mucormycosis, comprises a large number of species. These fungi are characterised by high-level resistance to most currently available antifungal drugs. Standardised antifungal susceptibility testing methods are now available, allowing a better understanding of the in vitro activity of antifungal drugs against members of Mucorales. Such tests have made apparent that antifungal susceptibility within this group may be species-specific. Experimental animal models of mucormycosis have also been developed and are of great importance in bridging the gap between in vitro results and clinical trials. Amphotericin B, posaconazole and isavuconazole are currently the most active agents against Mucorales; however, their activity remains suboptimal and new therapeutic strategies are needed. Combination therapy could be a promising approach to overcome resistance, but further studies are required to confirm its benefits and safety for patients. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  4. Synthesis and Antifungal Activities of 5-(o-Hydroxy phenyl-2-[4'aryl-3'chloro-2'azetidinon-1-yl]-1,3,4-thiadiazole

    Directory of Open Access Journals (Sweden)

    Shiv K. Gupta

    2011-01-01

    Full Text Available New series of 5-(o-hydroxy phenyl-2-[4'aryl-3'chloro-2'azetidinon-1-yl]-1,3,4-thiadiazole have been synthesized and the structures of the new compounds were established on the basis of IR, 1H NMR spectral data. In vitro antifungal activity (MIC activity was evaluated and compared with standard drugs of ketoconazole. Compounds 3c in the series has shown interesting antifungal activity against both C. albicans and A. niger fungus. In the gratifying result, most of the compounds were found to have moderate antifungal activity.

  5. Synthesis, Antifungal Activity and QSAR of Some Novel Carboxylic Acid Amides

    Directory of Open Access Journals (Sweden)

    Shijie Du

    2015-03-01

    Full Text Available A series of novel aromatic carboxylic acid amides were synthesized and tested for their activities against six phytopathogenic fungi by an in vitro mycelia growth inhibition assay. Most of them displayed moderate to good activity. Among them N-(2-(1H-indazol-1-ylphenyl-2-(trifluoromethylbenzamide (3c exhibited the highest antifungal activity against Pythium aphanidermatum (EC50 = 16.75 µg/mL and Rhizoctonia solani (EC50 = 19.19 µg/mL, compared to the reference compound boscalid with EC50 values of 10.68 and 14.47 µg/mL, respectively. Comparative molecular field analysis (CoMFA and comparative molecular similarity indices analysis (CoMSIA were employed to develop a three-dimensional quantitative structure-activity relationship model for the activity of the compounds. In the molecular docking, a fluorine atom and the carbonyl oxygen atom of 3c formed hydrogen bonds toward the hydroxyl hydrogens of TYR58 and TRP173.

  6. Antifungal activity of strains of lactic acid bacteria isolated from a semolina ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces fibuliger contaminating bakery products.

    Science.gov (United States)

    Valerio, Francesca; Favilla, Mara; De Bellis, Palmira; Sisto, Angelo; de Candia, Silvia; Lavermicocca, Paola

    2009-09-01

    Thirty samples of Italian durum wheat semolina and whole durum wheat semolina, generally used for the production of Southern Italy's traditional breads, were subjected to microbiological analysis in order to explore their lactic acid bacteria (LAB) diversity and to find strains with antifungal activity. A total of 125 presumptive LAB isolates (Gram-positive and catalase-negative) were characterized by repetitive extragenic palindromic-PCR (REP-PCR) and sequence analysis of the 16S rRNA gene, leading to the identification of the following species: Weissella confusa, Weissella cibaria, Leuconostoc citreum, Leuconostoc mesenteroides, Lactococcus lactis, Lactobacillus rossiae and Lactobacillus plantarum. The REP-PCR results delineated 17 different patterns whose cluster analysis clearly differentiated W. cibaria from W. confusa isolates. Seventeen strains, each characterized by a different REP-PCR pattern, were screened for their antifungal properties. They were grown in a flour-based medium, comparable to a real food system, and the resulting fermentation products (FPs) were tested against fungal species generally contaminating bakery products, Aspergillus niger, Penicillium roqueforti and Endomyces fibuliger. The results of the study indicated a strong inhibitory activity - comparable to that obtained with the common preservative calcium propionate (0.3% w/v) - of ten LAB strains against the most widespread contaminant of bakery products, P. roqueforti. The screening also highlighted the unexplored antifungal activity of L. citreum, L. rossiae and W. cibaria (1 strain), which inhibited all fungal strains to the same or a higher extent compared with calcium propionate. The fermentation products of these three strains were characterized by low pH values, and a high content of lactic and acetic acids.

  7. The behavior of active bactericidal and antifungal coating under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Gang; Zhang, Xiaodong; Zhao, Yan; Su, Haijia, E-mail: suhj@mail.buct.edu.cn; Tan, Tianwei

    2014-02-15

    In the present paper, the novel active bactericidal and antifungal coatings (ABAC) have been prepared through the immobilization of Fe-doped TiO{sub 2} (anatase) with chitosan. The characterization of ABAC using optical microscope imaging, SEM, AFM and FTIR shows that the Fe doped TiO{sub 2} is embedded into the chitosan coating with favorable dispersion through the hydrogen bonds interaction between chitosan molecules and TiO{sub 2}. The contact angle measurement demonstrated the hydrophilicity of ABAC (θ = 34.5 ± 4.1°). The bactericidal activity of ABAC has been evaluated by inactivating three different test strains: Escherichia coli, Candida albicans and Aspergillus niger which illustrates the apparently higher bactericidal ability than chitosan, Fe-TiO{sub 2} and chitosan/TiO{sub 2} (pure) under visible light irradiation and its bactericidal activity is lasting for at least 24 h. ABAC showed rapid and efficient antibacterial ability for the three tested strains and its antibacterial ratio in 2 h for E. coli, C. albicans and A. niger was 99.9%, 97.0% and 95.0%, respectively. The prepared chitosan/TiO{sub 2} composite emulsion shows favorable storage stability and can be stored up to 1 year without losing its bactericidal activity. ABAC is a low-cost and eco-friendly antibacterial coating products and promising for domestic, medical and industrial applications.

  8. Antioxidant, antifungal and anticancer activities of se-enriched Pleurotus spp. mycelium extracts

    Directory of Open Access Journals (Sweden)

    Milovanović Ivan

    2014-01-01

    Full Text Available The goal of this study was the evaluation of antifungal, antioxidant and anticancer potentials of Pleurotus eryngii, P. ostreatus and P. pulmonarius mycelial extracts, and the influence of mycelium enrichment with selenium on these activities. Both Se-amended and non-amended extracts showed the same or similar minimal inhibitory concentration for 14 studied micromycetes, while a fungicidal effect was not noted, contrary to ketoconazole, which had inhibitory and fungicidal effects at very low concentrations. Se-non-amended extracts exhibited antioxidant activity, especially at higher concentrations. Selenium enrichment influenced activity, its effects decreasing in P. eryngii and P. pulmonarius, while in P. ostreatus no effect was noted. The DPPH• radical scavenging capacity of the extracts was in direct correlation with their phenol and flavonoid contents. Cytotoxic activity against both HeLa and LS174 cell lines was very low compared with cis-DDP. These features suggest that mycelium should be an object of intensive studies. [Projekat Ministarstva nauke Republike Srbije, br. 173032

  9. Antifungal Activity and Biochemical Response of Cuminic Acid against Phytophthora capsici Leonian.

    Science.gov (United States)

    Wang, Yong; Sun, Yang; Zhang, Ying; Zhang, Xing; Feng, Juntao

    2016-06-11

    Phytophthora blight of pepper caused by Phytophthora capsici Leonian is a destructive disease throughout the world. Cuminic acid, extracted from the seed of Cuminum cyminum L., belongs to the benzoic acid chemical class. In this study, the sensitivity and biochemical response of P. capsici to cuminic acid was determined. The mean EC50 (50% effective concentration) values for cuminic acid in inhibiting mycelial growth and zoospore germination of the 54 studied P. capsici isolates were 14.54 ± 5.23 μg/mL and 6.97 ± 2.82 μg/mL, respectively. After treatment with cuminic acid, mycelial morphology, sporangium formation and mycelial respiration were significantly influenced; cell membrane permeability and DNA content increased markedly, but pyruvic acid content, adenosine triphosphate (ATP) content, and ATPase activity decreased compared with the untreated control. In pot experiments, cuminic acid exhibited both protective and curative activity. Importantly, POD and PAL activity of the pepper leaves increased after being treated with cuminic acid. These indicated that cuminic acid not only showed antifungal activity, but also could improve the defense capacity of the plants. All the results suggested that cuminic acid exhibits the potential to be developed as a new phytochemical fungicide, and this information increases our understanding of the mechanism of action of cuminic acid against Phytophthora capsici.

  10. Antiproliferative, Antibacterial and Antifungal Activity of the Lichen Xanthoria parietina and Its Secondary Metabolite Parietin

    Directory of Open Access Journals (Sweden)

    Adriana Basile

    2015-04-01

    Full Text Available Lichens are valuable natural resources used for centuries throughout the world as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous purposes. This study investigates the antiproliferative, antibacterial and antifungal activity of the acetone extract of the lichen Xanthoria parietina (Linnaeus Theodor Fries and its major secondary metabolite, parietin. The extract and parietin were tested for antimicrobial activity against nine American Type Culture Collection standard and clinically isolated bacterial strains, and three fungal strains. Both showed strong antibacterial activity against all bacterial strains and matched clinical isolates, particularly against Staphylococcus aureus from standard and clinical sources. Among the fungi tested, Rhizoctonia solani was the most sensitive. The antiproliferative effects of the extract and parietin were also investigated in human breast cancer cells. The extract inhibited proliferation and induced apoptosis, both effects being accompanied by modulation of expression of cell cycle regulating genes such as p16, p27, cyclin D1 and cyclin A. It also mediated apoptosis by activating extrinsic and intrinsic cell death pathways, modulating Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL and B-cell lymphoma 2 (Bcl-2, and inducing Bcl-2-associated agonist of cell death (BAD phosphorylation. Our results indicate that Xanthoria parietina is a major potential source of antimicrobial and anticancer substances.

  11. Antibacterial and antifungal activities of different parts of Tribulus terrestris L. growing in Iraq

    Science.gov (United States)

    Al-Bayati, Firas A.; Al-Mola, Hassan F.

    2008-01-01

    Antimicrobial activity of organic and aqueous extracts from fruits, leaves and roots of Tribulus terrestris L., an Iraqi medicinal plant used as urinary anti-infective in folk medicine, was examined against 11 species of pathogenic and non-pathogenic microorganisms: Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Corynebacterium diphtheriae, Escherichia coli, Proteus vulgaris, Serratia marcescens, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Candida albicans using microdilution method in 96 multiwell microtiter plates. All the extracts from the different parts of the plant showed antimicrobial activity against most tested microorganisms. The most active extract against both Gram-negative and Gram-positive bacteria was ethanol extract from the fruits with a minimal inhibitory concentration (MIC) value of 0.15 mg/ml against B. subtilis, B. cereus, P. vulgaris and C. diphtheriae. In addition, the same extract from the same plant part demonstrated the strongest antifungal activity against C. albicans with an MIC value of 0.15 mg/ml. PMID:18257138

  12. [Antifungal activity of aqueous extracts from the leaf of cowparsnip and comfrey].

    Science.gov (United States)

    Karavaev, V A; Solntsev, M K; Iurina, T P; Iurina, E V; Poliakova, I B; Kuznetsov, A M

    2001-01-01

    We found that extracts from the leaves of medicinal comfrey and cowparsnip strongly inhibit the germination of Erysiphe graminis conidia and uredospores of Puccinia graminis. Spraying wheat seedlings with these extracts, in contrast to the irrigation of soil, markedly diminished infection in plants with powdery mildew. Antifungal activity in vitro and protective activity (when plants were sprayed) correlated with the level of phenolic compounds in these extracts. Experiments with healthy plants have demonstrated that the photosynthetic apparatus of wheat plants is stimulated by extracts. Spraying seedlings with the extracts resulted in an increased rate of O2 evolution calculated per unit of chlorophyll, an increase in the ratio (FM-FT)/FT in the experiments that recorded slow fluorescence induction, an increase in the relative light intensity of band A, and a decrease of relative intensity of band C in experiments with thermoluminescence of wheat leaves. These results provide evidence that the protective activity of comfrey and cowparsnip extracts is associated with their action on the pathogenic fungus and with the activation of natural defense reactions of the host plant.

  13. In vitro antifungal and demelanizing activity of Nepeta rtanjensis essential oil against the human pathogen Bipolaris spicifera

    Directory of Open Access Journals (Sweden)

    Ljaljević-Grbić Milica

    2011-01-01

    Full Text Available The antifungal activity of Nepeta rtanjensis Diklić & Milojević essential oil was tested against the human pathogenic fungus Bipolaris spicifera (Bainier Subramanian via mycelial growth assay and conidia germination assay. The minimally inhibitory concentration (MIC of the oil was determined at 1.0 μg ml-1, while the MIC for the antifungal drug Bifonazole in a positive control was determined at 10.0 μg ml-1. The maximum of conidia germination inhibition was accomplished at 0.6 μg ml-1. In addition, at 0.6 μg ml-1 and 0.8 μg ml-1 the oil was able to cause morphophysiological changes in B. spicifera. The most significant result is the bleaching effect of the melanized conidial apparatus of the test fungi, since the melanin is the virulence factor in human pathogenic fungi. These results showed the strong antifungal properties of N. rtanjensis essential oil, supporting its possible rational use as an alternative source of new antifungal compounds.

  14. An Antifungal Combination Matrix Identifies a Rich Pool of Adjuvant Molecules that Enhance Drug Activity against Diverse Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Nicole Robbins

    2015-11-01

    Full Text Available There is an urgent need to identify new treatments for fungal infections. By combining sub-lethal concentrations of the known antifungals fluconazole, caspofungin, amphotericin B, terbinafine, benomyl, and cyprodinil with ∼3,600 compounds in diverse fungal species, we generated a deep reservoir of chemical-chemical interactions termed the Antifungal Combinations Matrix (ACM. Follow-up susceptibility testing against a fluconazole-resistant isolate of C. albicans unveiled ACM combinations capable of potentiating fluconazole in this clinical strain. We used chemical genetics to elucidate the mode of action of the antimycobacterial drug clofazimine, a compound with unreported antifungal activity that synergized with several antifungals. Clofazimine induces a cell membrane stress for which the Pkc1 signaling pathway is required for tolerance. Additional tests against additional fungal pathogens, including Aspergillus fumigatus, highlighted that clofazimine exhibits efficacy as a combination agent against multiple fungi. Thus, the ACM is a rich reservoir of chemical combinations with therapeutic potential against diverse fungal pathogens.

  15. Comparative study on antifungal activities of chitosan nanoparticles and chitosan silver nano composites against Fusarium oxysporum species complex.

    Science.gov (United States)

    Dananjaya, S H S; Erandani, W K C U; Kim, Cheol-Hee; Nikapitiya, Chamilani; Lee, Jehee; De Zoysa, Mahanama

    2017-12-01

    Though the metal nanoparticles (NPs) have been shown favorable results against fungal diseases, erratic environmental toxicity of NPs have raised serious concerns against their applications. Hence, it is vital to modify antifungal compounds into safe substitutes over synthetic chemicals. In this study, antifungal effects of chitosan nanoparticles (CNPs) and chitosan silver nanocomposites (CAgNCs) were compared against Fusarium oxysporum species complex. CNPs and CAgNCs were synthesized, characterized and compared based on the transmission electron microscope, X-ray diffraction, UV-vis absorbance spectra, particle size distribution, zeta potential and thermal stability analysis. Ultra-structural analysis on mycelium membrane of treated F. oxysporum showed that CNPs and CAgNCs could induce a pronounced membrane damage and disruption of the mycelium surface, increase the membrane permeability, and even cell disintegration. CAgNCs showed a significantly higher radial growth inhibition than CNPs in all the tested concentrations. Both CNPs and CAgNCs were not only effective in reducing the fungal growth, but also caused morphological and ultrastructural changes in the pathogen, thereby suggesting its usage as an antifungal dispersion system to control F. oxysporum. Additionally, CNPs and CAgNCs therapy reduced the F. oxysporum infection in zebrafish. Data demonstrates biologically active CNPs and CAgNCs are promising antifungal agents against F. oxysporum. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Combinatorial effect of mutagenesis and medium component optimization on Bacillus amyloliquefaciens antifungal activity and efficacy in eradicating Botrytis cinerea.

    Science.gov (United States)

    Masmoudi, Fatma; Ben Khedher, Saoussen; Kamoun, Amel; Zouari, Nabil; Tounsi, Slim; Trigui, Mohamed

    2017-04-01

    This work is directed towards Bacillus amyloliquefaciens strain BLB371 metabolite production for biocontrol of fungal phytopathogens. In order to maximise antifungal metabolite production by this strain, two approaches were combined: random mutagenesis and medium component optimization. After three rounds of mutagenesis, a hyper active mutant, named M3-7, was obtained. It produces 7 fold more antifungal metabolites (1800AU/mL) than the wild strain in MC medium. A hybrid design was applied to optimise a new medium to enhance antifungal metabolite production by M3-7. The new optimized medium (35g/L of peptone, 32.5g/L of sucrose, 10.5g/L of yeast extract, 2.4g/L of KH 2 PO 4 , 1.3g/L of MgSO 4 and 23mg/L of MnSO 4 ) achieved 1.62 fold enhancement in antifungal compound production (3000AU/mL) by this mutant, compared to that achieved in MC medium. Therefore, combinatory effect of these two approaches (mutagenesis and medium component optimization) allowed 12 fold improvement in antifungal activity (from 250UA/mL to 3000UA/mL). This improvement was confirmed against several phytopathogenic fungi with an increase of MIC and MFC over than 50%. More interestingly, a total eradication of gray mold was obtained on tomato fruits infected by Botrytis cinerea and treated by M3-7, compared to those treated by BLB371. From the practical point of view, combining random mutagenesis and medium optimization could be considered as an excellent tool for obtaining promising biological products useful against phytopathogenic fungi. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Antibacterial and antifungal activities of new acylated derivatives of epigallocatechin gallate

    Directory of Open Access Journals (Sweden)

    Yoshimi eMatsumoto

    2012-02-01

    Full Text Available (--Epigallocatechin-3-O-gallate (EGCG has useful antiviral, antimicrobial, antitoxin, and antitumor properties. Previously, Mori, S. et al. (Bioorg Med Chem Lett 18:4249-4252, 2008 found that addition of long acyl chains (C16–18 to EGCG enhanced its anti-influenza virus activity up to 44-fold. The chemical stability of EGCG against oxidative degradation was also enhanced by acylation. We further evaluated the in vitro activity spectrum of the EGCG derivatives against a wide range of bacteria and fungi. A series of EGCG O-acyl derivatives were synthesized by lipase-catalyzed transesterification. These derivatives exhibited several-fold higher activities than EGCG, particularly against Gram-positive organisms. Antifungal activities of the derivatives were also 2 to 4-fold superior to those of EGCG. The activities of the EGCG derivatives against Gram-negative bacteria were not distinguishable from those of EGCG. Among the derivatives evaluated, MICs of dioctanoate, palmitate (C16, palmitoleate, and linolenate for 17 Staphylococcus aureus strains were 4–32 μg/ml, although MIC of EGCG for these 17 strains was >128 μg/ml. C16 demonstrated rapid bactericidal activity against MRSA at 25 μg/ml. The enhanced activity of C16 against S. aureus was supported by its increased membrane permeabilizing activity determined by increased SYTOX Green uptake. The EGCG derivatives were exported by the efflux pump AcrAB-TolC of Escherichia coli. The tolC deletion mutant exhibited higher sensitivity to C16 than to EGCG. Addition of long alkyl chains to EGCG significantly enhanced its activities against various bacteria and fungi, particularly against S. aureus including MRSA. C16 would be an alternative to antibiotics and disinfectants.

  18. Antifungal activity of extracts from three species of lichens in Cuba

    International Nuclear Information System (INIS)

    Vaillant-Flores, Daymara Idonay; Romeu-Carballo, Carlos Rafael; Ramirez-Ochoa, Rebeca; Porras-Gonzalez, Angela; Gomez-Peralta, Marlene

    2015-01-01

    The antifungal activity of the three lichens extracts was evaluated in this work. Extracts from Leptogium cyanescens, Physcia americana and Pyxine aff. cocoes were collected extracts from the lichens thallus in 2009 in areas fromo the Jardin Botanico Cienfuego, Cuba. The fungicide activity was evaluated against phytopathogens fungi of potato: Rhizoctonia solani and Phytophthora nicotianae var parasitica. The study was conducted from 2009 to 2011. The compounds were extracted with acetone, concentrated by rotoevaporation, and evaluated at concentrated of 0,01 and 0,07% in potato dextrose agar (PDA) culture medium; stock solution was made of 5% dimethilsufoxide. These extracts were classified by their toxicity as: toxic, slight and moderately toxic and harmless. The extracts from P. americana of 0,07% inhibited P. nicotianae 100%, and it showed values over 50% for R. solani. L. cyanescens only showed fungicide activity in both phytopathogens at the maximum concentration studied; similar results were obtained with the extract from P. aff. cocoes. The lichens extracts were classified as lightly toxic at the maximun concentration, and harmless at the minimum concentration. (author) [es

  19. Antifungal and proteolytic activities of endophytic fungi isolated from Piper hispidum Sw

    Directory of Open Access Journals (Sweden)

    Ravely Casarotti Orlandelli

    2015-06-01

    Full Text Available Endophytes are being considered for use in biological control, and the enzymes they secrete might facilitate their initial colonization of internal plant tissues and direct interactions with microbial pathogens. Microbial proteases are also biotechnologically important products employed in bioremediation processes, cosmetics, and the pharmaceutical, photographic and food industries. In the present study, we evaluated antagonism and competitive interactions between 98 fungal endophytes and Alternaria alternata, Colletotrichum sp., Phyllosticta citricarpa and Moniliophthora perniciosa. We also examined the proteolytic activities of endophytes grown in liquid medium and conducted cup plate assays. The results showed that certain strains in the assemblage of P. hispidum endophytes are important sources of antifungal properties, primarily Lasiodiplodia theobromae JF766989, which reduced phytopathogen growth by approximately 54 to 65%. We detected 28 endophytes producing enzymatic halos of up to 16.40 mm in diameter. The results obtained in the present study highlight the proteolytic activity of the endophytes Phoma herbarum JF766995 and Schizophyllum commune JF766994, which presented the highest enzymatic halo diameters under at least one culture condition tested. The increased activities of certain isolates in the presence of rice or soy flour as a substrate (with halos up to 17.67 mm in diameter suggests that these endophytes have the potential to produce enzymes using agricultural wastes.

  20. Synthesis, Antiproliferative and Antifungal Activities of 1,2,3-Triazole-Substituted Carnosic Acid and Carnosol Derivatives

    Directory of Open Access Journals (Sweden)

    Mariano Walter Pertino

    2015-05-01

    Full Text Available Abietane diterpenes exhibit an array of interesting biological activities, which have generated significant interest among the pharmacological community. Starting from the abietane diterpenes carnosic acid and carnosol, twenty four new triazole derivatives were synthesized using click chemistry. The compounds differ in the length of the linker and the substituent on the triazole moiety. The compounds were assessed as antiproliferative and antifungal agents. The antiproliferative activity was determined on normal lung fibroblasts (MRC-5, gastric epithelial adenocarcinoma (AGS, lung cancer (SK-MES-1 and bladder carcinoma (J82 cells while the antifungal activity was assessed against Candida albicans ATCC 10231 and Cryptococcus neoformans ATCC 32264. The carnosic acid γ-lactone derivatives 1–3 were the most active antiproliferative compounds of the series, with IC50 values in the range of 43.4–46.9 μM and 39.2–48.9 μM for MRC-5 and AGS cells, respectively. Regarding antifungal activity, C. neoformans was the most sensitive fungus, with nine compounds inhibiting more than 50% of its fungal growth at concentrations ≤250 µg∙mL−1. Compound 22, possessing a p-Br-benzyl substituent on the triazole ring, showed the best activity (91% growth inhibition at 250 µg∙mL−1 In turn, six compounds inhibited 50% C. albicans growth at concentrations lower than 250 µg∙mL−1.

  1. Antifungal activity of Helichrysum italicum (Roth G. Don (Asteraceae essential oil against fungi isolated from cultural heritage objects

    Directory of Open Access Journals (Sweden)

    Stupar Miloš

    2014-01-01

    Full Text Available There is considerable interest in the use of essential oils as alternative methods to control micromycetes from cultural heritage objects. We investigated the chemical composition and antifungal activity of the essential oil of Helichrysum italicum. The main components of the oil were γ-curcumene (22.45%, α-pinene (15.91 % and neryl acetate (7.85 %. H. italicum essential oil showed moderate antifungal activity against fungi isolated from cultural heritage objects. The most susceptible fungi to oil treatment were Epicoccum nigrum and Penicillium sp., while the most resistant was Trichoderma viride. The H. italicum essential oil showed demelanizing activity against Aspergillus niger. [Projekat Ministarstva nauke Republike Srbije, br. 173032

  2. Antifungal activity of the extracts and neolignans from Piper regnellii (Miq.) C. DC. var. pallescens (C. DC.) Yunck

    International Nuclear Information System (INIS)

    Pessini, Greisiele Lorena; Cortez, Diogenes Aparicio Garcia; Dias Filho, Benedito Prado; Nakamura, Celso Vataru

    2005-01-01

    Piper regnellii (Miq.) C. DC. var. pallescens (C. DC.) Yunck (Piperaceae) is a medicinal plant traditionally used in Brazil to treat infectious diseases. The extracts obtained from the leaves of P. regnellii were investigated for their antifungal activities against the yeasts Candida albicans, C. krusei, C. parapsilosis, and C. tropicalis. The EtOAc extract presented a significant activity against Candida albicans with MIC at 125 μg mL -1 , and a moderate activity against both C. krusei and C. parapsilosis with MIC at 500 μg mL -1 . Candida tropicalis was not inhibited by this extract at concentrations as high as 1000 μg mL -1 . Based on these findings, the EtOAc extract was fractionated by silica gel column chromatography into nine fractions. The hexane and CHCl 3 fractions showed varied levels of antifungal activity against all test yeasts. Further column chromatography separation of the hexane fraction afforded the pure compounds eupomatenoid-6, eupomatenoid-5, eupomatenoid-3 and conocarpan. The structure of the compounds was based on spectral data ( 1 H and 13 C NMR, HSQC, HMBC, gNOE, IR and MS). Conocarpan was the only active compound on the yeasts. The antifungal property of P. regnellii extract provides preliminary scientific validation for the traditional medicinal use of this plant. (author)

  3. [Identification and characterization of a Bacillus amyloliquefaciens with high antifungal activity].

    Science.gov (United States)

    Quan, Chun-shan; Wang, Jun-hua; Xu, Hong-tao; Fan, Sheng-di

    2006-02-01

    Plant disease can cause serious crop losses, and chemical control of disease is costly both to the environment and to the farmer. Some microorganism can produce the substance which has the preventing and exterminating functions to plant pathogens. These substances are valid to plant pathogens with only lower concentration, in addition the substances do not remain in soil and crops without being decomposed. If composization is performed with the microorganism, or the microorganism is mixed into compost, the functional compost having preventing and exterminating action will be made out and that can be more useful to environmental preservation. In order to screen antifungal bacteria for use in biological control, 200 compost samples were taken from different regions in China, over 10 bacterium with clear antifungal activity were isolated from composts, among them, strain Q-12 exhibited the highest antifungal activity which was strongly inhibits the growth of many plant pathogenic fungi such as Fusarium oxysporum and Rhizoctonia solan. According to the characteristics of morphology, physiology and biochemistry tests (API 50 CHB/E system) and the comparison of 16S rDNA sequence, the strain Q-12 was similar to B. subtilis and B. amyloliquefaciens. Some specific genes yyaR, yyaO and tetB, which have previously been shown to be effective for resolving these closely related taxa of the B. subtilis group, were analysed to clarify further the classification of Q-12, and two pairs of primers YyaR _ F/TetB _ R and YyaO _ F/TetB _ R were designed. From the analysis of fingerprints obtained with the two primers, strain Q-12 and B. amyloliquefaciens showed identical genomic fingerprints with primers YyaR _ F/TetB R, indicating their closely genetic relationship, and was identified as B. amyloliquefaciens. In the investigation of the culture condition, growth was carried out in a basal medium and gradually supplemented with the various ingredients to be investigated. The major

  4. Antifungal activity of the essential oils from some species of the genus Pinus.

    Science.gov (United States)

    Krauze-Baranowska, Mirosława; Mardarowicz, Marek; Wiwart, Marian; Pobłocka, Loretta; Dynowska, Maria

    2002-01-01

    The chemical composition of the essential oils from the needles of Pinus ponderosa (north american pine), P. resinosa (red pine) and P. strobus (eastern white pine) has been determined by GC/MS (FID). The essential oils from P. resinosa and P. ponderosa in comparison to P. strobus have been characterized by the higher content of beta-pinene (42.4%, 45.7% and 7.9% respectively). On the other hand, a-pinene (17.7%) and germacrene D (12.2%) were dominant compounds of P strobus. Moreover the essential oil from P. resinosa was more rich in myrcene-15.9%. Estragole and delta-3-carene, each one in amount ca 8% were identified only in P. ponderosa. The content of essential oils in the needles slightly varied--0.65%--P. resinosa, 0.4%--P strobus, 0.3%--P. ponderosa. The antifungal activity has been investigated towards Fusarium culmorum, F solani and F. poae. The strongest activity was observed for the essential oil from P. ponderosa, which fully inhibited the growth of fungi at the following concentrations--F. culmorum, F. solani at 2% and F. poae at 5%.

  5. Antifungal Activity and Aflatoxin Degradation of Bifidobacterium Bifidum and Lactobacillus Fermentum Against Toxigenic Aspergillus Parasiticus.

    Science.gov (United States)

    Ghazvini, Roshanak Daie; Kouhsari, Ebrahim; Zibafar, Ensieh; Hashemi, Seyed Jamal; Amini, Abolfazl; Niknejad, Farhad

    2016-01-01

    Food and feedstuff contamination with aflatoxins (AFTs) is a serious health problem for humans and animals, especially in developing countries. The present study evaluated antifungal activities of two lactic acid bacteria (LAB ) against growth and aflatoxin production of toxigenic Aspergillus parasiticus . The mycelial growth inhibition rate of A. parasiticus PTCC 5286 was investigated in the presence of Bifidobacterium bifidum PTCC 1644 and Lactobacillus fermentum PTCC 1744 by the pour plate method. After seven days incubation in yeast extract sucrose broth at 30°C, the mycelial mass was weighed after drying. The inhibitory activity of LAB metabolites against aflatoxin production by A. parasiticus was evaluated using HPLC method. B. bifidum and L. fermentum significantly reduced aflatoxin production and growth rate of A. parasiticus in comparison with the controls (p≤0.05). LAB reduced total aflatoxins and B 1 , B 2 , G 1 and G 2 fractions by more than 99%. Moreover, LAB metabolites reduced the level of standard AFB 1 , B 2 , G 1 and G 2 from 88.8% to 99.8% (p≤0.05). Based on these findings, B. bifidum and L. fermentum are recommended as suitable biocontrol agents against the growth and aflatoxin production by aflatoxigenic Aspergillus species.

  6. Antifungal activity of caspofungin in experimental infective endocarditis caused by Candida albicans.

    Science.gov (United States)

    Victorio, Gerardo Becerra; Bourdon, Lorena Michele Brennan; Benavides, Leonel García; Huerta-Olvera, Selene G; Plascencia, Arturo; Villanueva, José; Martinez-Lopez, Erika; Hernández-Cañaveral, Iván Isidro

    2017-05-01

    Infective endocarditis is a disease characterised by heart valve lesions, which exhibit extracellular matrix proteins that act as a physical barrier to prevent the passage of antimicrobial agents. The genus Candida has acquired clinical importance given that it is increasingly being isolated from cases of nosocomial infections. To evaluate the activity of caspofungin compared to that of liposomal amphotericin B against Candida albicans in experimental infective endocarditis. Wistar rats underwent surgical intervention and infection with strains of C. albicans to develop infective endocarditis. Three groups were formed: the first group was treated with caspofungin, the second with liposomal amphotericin B, and the third received a placebo. In vitro sensitivity was first determined to further evaluate the effect of these treatments on a rat experimental model of endocarditis by semiquantitative culture of fibrinous vegetations and histological analysis. Our semiquantitative culture of growing vegetation showed massive C. albicans colonisation in rats without treatment, whereas rats treated with caspofungin showed significantly reduced colonisation, which was similar to the results obtained with liposomal amphotericin B. The antifungal activity of caspofungin is similar to that of liposomal amphotericin B in an experimental model of infective endocarditis caused by C. albicans.

  7. Antifungal activity using medicinal plant extracts against pathogens of coffee tree

    Directory of Open Access Journals (Sweden)

    J.L. Silva

    2014-09-01

    Full Text Available Generally, the medicinal plants have antifungal substances that can be used for the plant protection against phytopathogens. The objective of this study was to know the efficiency of aqueous extracts from medicinal plants against the major etiological agents of coffee tree. The aqueous extracts used were extracted from bulbs of Allium sativum, leaves of Vernonia polysphaera, Cymbopogon citratus, Cymbopogon nardus, Cordia verbenacea, Eucalyptus citriodora, Ricinus communis, Azadirachta indica, Piper hispidinervum and flower buds of Syzygium aromaticum. The etiological agents considered for this study were Cercospora coffeicola, Colletotrichum gloeosporioides, Fusarium oxysporum, Phoma tarda, Rhizoctonia solani and Hemileia vastatrix. The screening for harmful extracts was done based on mycelial growth and conidial germination inhibition. All experiments performed were in vitro conditions. The inhibition of mycelial growth was performed mixing the extracts with the PDA. This mixture was poured in Petri dishes. On the center of the dishes was added one PDA disc with mycelium. It was incubated in a chamber set to 25ºC. The evaluation was done daily by measuring the mycelial growth. The germination assessment was also performed with Petri dishes containing agar-water medium at 2%. These were incubated at 25ºC for 24 hours. After this period the interruption of germination was performed using lactoglycerol. The experiments were conducted in a completely randomized design. The most effective plant extracts against the micelial growth and conidial germination were V. polysphaera, S. aromaticum and A. sativum.

  8. Antifungal compounds from cyanobacteria.

    Science.gov (United States)

    Shishido, Tânia K; Humisto, Anu; Jokela, Jouni; Liu, Liwei; Wahlsten, Matti; Tamrakar, Anisha; Fewer, David P; Permi, Perttu; Andreote, Ana P D; Fiore, Marli F; Sivonen, Kaarina

    2015-04-13

    Cyanobacteria are photosynthetic prokaryotes found in a range of environments. They are infamous for the production of toxins, as well as bioactive compounds, which exhibit anticancer, antimicrobial and protease inhibition activities. Cyanobacteria produce a broad range of antifungals belonging to structural classes, such as peptides, polyketides and alkaloids. Here, we tested cyanobacteria from a wide variety of environments for antifungal activity. The potent antifungal macrolide scytophycin was detected in Anabaena sp. HAN21/1, Anabaena cf. cylindrica PH133, Nostoc sp. HAN11/1 and Scytonema sp. HAN3/2. To our knowledge, this is the first description of Anabaena strains that produce scytophycins. We detected antifungal glycolipopeptide hassallidin production in Anabaena spp. BIR JV1 and HAN7/1 and in Nostoc spp. 6sf Calc and CENA 219. These strains were isolated from brackish and freshwater samples collected in Brazil, the Czech Republic and Finland. In addition, three cyanobacterial strains, Fischerella sp. CENA 298, Scytonema hofmanni PCC 7110 and Nostoc sp. N107.3, produced unidentified antifungal compounds that warrant further characterization. Interestingly, all of the strains shown to produce antifungal compounds in this study belong to Nostocales or Stigonematales cyanobacterial orders.

  9. Antifungal Compounds from Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Tânia K. Shishido

    2015-04-01

    Full Text Available Cyanobacteria are photosynthetic prokaryotes found in a range of environments. They are infamous for the production of toxins, as well as bioactive compounds, which exhibit anticancer, antimicrobial and protease inhibition activities. Cyanobacteria produce a broad range of antifungals belonging to structural classes, such as peptides, polyketides and alkaloids. Here, we tested cyanobacteria from a wide variety of environments for antifungal activity. The potent antifungal macrolide scytophycin was detected in Anabaena sp. HAN21/1, Anabaena cf. cylindrica PH133, Nostoc sp. HAN11/1 and Scytonema sp. HAN3/2. To our knowledge, this is the first description of Anabaena strains that produce scytophycins. We detected antifungal glycolipopeptide hassallidin production in Anabaena spp. BIR JV1 and HAN7/1 and in Nostoc spp. 6sf Calc and CENA 219. These strains were isolated from brackish and freshwater samples collected in Brazil, the Czech Republic and Finland. In addition, three cyanobacterial strains, Fischerella sp. CENA 298, Scytonema hofmanni PCC 7110 and Nostoc sp. N107.3, produced unidentified antifungal compounds that warrant further characterization. Interestingly, all of the strains shown to produce antifungal compounds in this study belong to Nostocales or Stigonematales cyanobacterial orders.

  10. Aaptamine Derivatives with Antifungal and Anti-HIV-1 Activities from the South China Sea Sponge Aaptos aaptos

    Directory of Open Access Journals (Sweden)

    Hao-Bing Yu

    2014-12-01

    Full Text Available Five new alkaloids of aaptamine family, compounds (1–5 and three known derivatives (6–8, have been isolated from the South China Sea sponge Aaptos aaptos. The structures of all compounds were unambiguously elucidated by spectroscopic analyses, as well as by comparison with the literature data. Compounds 1–2 are characterized with triazapyrene lactam skeleton, whereas compounds 4–5 share an imidazole-fused aaptamine moiety. These compounds were evaluated in antifungal and anti-HIV-1 assays. Compounds 3, 7, and 8 showed antifungal activity against six fungi, with MIC values in the range of 4 to 64 μg/mL. Compounds 7–8 exhibited anti-HIV-1 activity, with inhibitory rates of 88.0% and 72.3%, respectively, at a concentration of 10 μM.

  11. Essential oil composition, phytotoxic and antifungal activities of Ruta chalepensis L. leaves from High Atlas Mountains (Morocco).

    Science.gov (United States)

    Bouajaj, Sana; Romane, Abderrahmane; Benyamna, Abdennaji; Amri, Ismail; Hanana, Mohsen; Hamrouni, Lamia; Romdhane, Mehrez

    2014-01-01

    This study aimed at the determination of chemical composition of essential oil obtained by hydrodistillation, and to evaluate their phytotoxic and antifungal activities. Leaves of Ruta chalepensis L. were collected from the region of Tensift Al Haouz (High Atlas Mountains) Marrakech, Morocco. The essential oil (oil yield is 0.56%) was analysed by GC-FID and GC/MS. Twenty-two compounds were identified and accounted for 92.4% of the total oil composition. The major components were undecan-2-one (49.08%), nonan-2-one (33.15%), limonene (4.19%) and decanone (2.71%). Antifungal ability of essential oils was tested by disc agar diffusion against five plant pathogenic fungi: Fusarium proliferatum, Fusarium pseudograminearum, Fusarium culmorum, Fusarium graminearum and Fusarium polyphialidicum. The oils were also tested in vitro for herbicidal activity by determining their influence on the germination and the shoot and root growth of two weed species, Triticum durum and Phalaris canariensis L.

  12. Neural network modelling of antifungal activity of a series of oxazole derivatives based on in silico pharmacokinetic parameters

    Directory of Open Access Journals (Sweden)

    Kovačević Strahinja Z.

    2013-01-01

    Full Text Available In the present paper, the antifungal activity of a series of benzoxazole and oxazolo[ 4,5-b]pyridine derivatives was evaluated against Candida albicans by using quantitative structure-activity relationships chemometric methodology with artificial neural network (ANN regression approach. In vitro antifungal activity of the tested compounds was presented by minimum inhibitory concentration expressed as log(1/cMIC. In silico pharmacokinetic parameters related to absorption, distribution, metabolism and excretion (ADME were calculated for all studied compounds by using PreADMET software. A feedforward back-propagation ANN with gradient descent learning algorithm was applied for modelling of the relationship between ADME descriptors (blood-brain barrier penetration, plasma protein binding, Madin-Darby cell permeability and Caco-2 cell permeability and experimental log(1/cMIC values. A 4-6-1 ANN was developed with the optimum momentum and learning rates of 0.3 and 0.05, respectively. An excellent correlation between experimental antifungal activity and values predicted by the ANN was obtained with a correlation coefficient of 0.9536. [Projekat Ministarstva nauke Republike Srbije, br. 172012 i br. 172014

  13. Antibacterial and antifungal activity of streptomycetes isolated from Portonova coastal environment. Papers presented in the symposium held at Cochin, India, 16-17 September 1993

    Digital Repository Service at National Institute of Oceanography (India)

    Lakshmanaperumalsamy, P.; Chandramohan, D.; Natarajan, R.

    The antibacterial and antifungal activities of 518 streptomycetes strains were tested against Bacillus circulans, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Saccharomyces cerevisiae and Fusarium oxysporum. 27.03% of the strains...

  14. Combination of CuO nanoparticles and fluconazole: preparation, characterization, and antifungal activity against Candida albicans

    Energy Technology Data Exchange (ETDEWEB)

    Weitz, Iris S., E-mail: irisweitz@braude.ac.il; Maoz, Michal; Panitz, Daniel [ORT Braude College, Department of Biotechnology Engineering (Israel); Eichler, Sigal; Segal, Ester [Technion – Israel Institute of Technology, Department of Biotechnology and Food Engineering (Israel)

    2015-08-15

    Combination therapy becomes an important strategy in the management of invasive fungal infections and emergence of resistant fungi mutants. In this work, we examine the combination of copper oxide (CuO) nanoparticles (NPs) with fluconazole as potential treatment against the pathogenic fungi, Candidaalbicans. CuO NPs (∼7 nm in size) were synthesized with acetate ligands assembled on their surface, as shown by both thermal gravimetric analysis and FTIR spectroscopy. Unlike the commercial CuO (both bulk and 50 nm particles), that are poorly dispersed in water, the interaction with water allows the fine dispersion of the coated CuO NPs and their excellent colloidal stability. The addition of fluconazole to the aqueous CuO dispersion induced spontaneous self-assembly of the NPs into linear pearl-like chains network, shown by cryogenic transmission electron microscopy (cryo-TEM). The antifungal activity of the CuO NPs and their combination with fluconazole (fluconazole–CuO NPs) was studied against C. albicans. The best MIC values were obtained at concentrations as low as 0.2 and 0.3 mg/mL, respectively. The results suggest that fluconazole–CuO NPs can provide a potential alternative treatment for C. albicans infections.

  15. Antifungal activity of the osthol derivative JS-B against Phytophthora capsici.

    Science.gov (United States)

    Wang, Chun-Mei; Guan, Wei; Fang, Shu; Chen, Hao; Li, You-Qin; Cai, Chun; Fan, Yong-Jian; Shi, Zhi-Qi

    2010-08-01

    JS-B (C(12)H(10)O(3)) is a derivative compound of osthol. The antifungal properties of JS-B were tested against 10 economically important plant pathogens. JS-B was effective in inhibiting the mycelial growth of Phytophthora capsici, and its inhibition on different stages of the life cycle of P. capsici was observed. The 50% effective concentration (EC(50)) of JS-B on mycelial dry weight and zoospore germination of P. capsici was 43.74 and 86.03 microg/ml, respectively. The rupture of released zoospores induced by JS-B was reduced by the addition of 100 mM glucose. The ultrastructural study showed that JS-B caused destruction of most of the mitochondrions, the concentration of cell nuclear, and the existing vesicles. When compared with dimethomorph, the activity of JS-B on P. capsici was determined under pot conditions. The result showed that JS-B has a curative effect on pepper blight.

  16. In vitro antifungal activity of bacteria against Mycosphaerella fijiensis mediated by diffused and volatile metabolites

    Directory of Open Access Journals (Sweden)

    Mileidy Cruz-Martín

    2012-07-01

    Full Text Available Antagonistic microorganisms do not have a unique mode of action. Multiplicity of these is an important feature for selection as biological control agents. Black Sigatoka is considered the foliar disease with most economic impact for the banana industry worldwide. New strategies to control it are required to reduce the use of fungicides. That is why an increasing interest to find biological alternatives, such as the use of antagonistic bacteria, has risen. Assays wer e carr ied ou t to determine whether in v it r o ant if ungal ac ti vity of 20 bacterial str ai ns against My cosphaer ella fijiensis was caused by metabolites diffused into the culture medium or volatile. Results demonstrated that 80.0% of bacterial strains tested showed in vitro antifungal activity by diffused metabolites in the culture medium and 60.0% by producing volatile metabolites. The 55.0% of strains showed both mechanisms. This feature makes these bacteria the best candidate for its selection as biological control agent. Keywords: antagonistic, biocontrol, volatile compounds, diffused metabolites.

  17. Fungal Glucosylceramide-Specific Camelid Single Domain Antibodies Are Characterized by Broad Spectrum Antifungal Activity

    Directory of Open Access Journals (Sweden)

    Barbara De Coninck

    2017-06-01

    Full Text Available Chemical crop protection is widely used to control plant diseases. However, the adverse effects of pesticide use on human health and environment, resistance development and the impact of regulatory requirements on the crop protection market urges the agrochemical industry to explore innovative and alternative approaches. In that context, we demonstrate here the potential of camelid single domain antibodies (VHHs generated against fungal glucosylceramides (fGlcCer, important pathogenicity factors. To this end, llamas were immunized with purified fGlcCer and a mixture of mycelium and spores of the fungus Botrytis cinerea, one of the most important plant pathogenic fungi. The llama immune repertoire was subsequently cloned in a phage display vector to generate a library with a diversity of at least 108 different clones. This library was incubated with fGlcCer to identify phages that bind to fGlcCer, and VHHs that specifically bound fGlcCer but not mammalian or plant-derived GlcCer were selected. They were shown to inhibit the growth of B. cinerea in vitro, with VHH 41D01 having the highest antifungal activity. Moreover, VHH 41D01 could reduce disease symptoms induced by B. cinerea when sprayed on tomato leaves. Based on all these data, anti-fGlcCer VHHs show the potential to be used as an alternative approach to combat fungal plant diseases.

  18. Antifungal activity of phenolic-rich Lavandula multifida L. essential oil.

    Science.gov (United States)

    Zuzarte, M; Vale-Silva, L; Gonçalves, M J; Cavaleiro, C; Vaz, S; Canhoto, J; Pinto, E; Salgueiro, L

    2012-07-01

    This study evaluates the antifungal activity and mechanism of action of a new chemotype of Lavandula multifida from Portugal. The essential oil was analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS), and the minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) of the oil and its major compounds were determined against several pathogenic fungi responsible for candidosis, meningitis, dermatophytosis, and aspergillosis. The influence of the oil on the dimorphic transition in Candida albicans was also studied, as well as propidium iodide (PI) and FUN-1 staining of C. albicans cells by flow cytometry. The essential oil was characterized by high contents of monoterpenes, with carvacrol and cis-β-ocimene being the main constituents. The oil was more effective against dermatophytes and Cryptococcus neoformans, with MIC and MLC values of 0.16 μL/mL and 0.32 μL/mL, respectively. The oil was further shown to completely inhibit filamentation in C. albicans at concentrations below the respective MIC (0.08 μL/mL), with cis-β-ocimene being the main compound responsible for this inhibition (0.02 μL/mL). The flow cytometry results suggest a mechanism of action ultimately leading to cytoplasmic membrane disruption and cell death. L. multifida essential oil may be useful in complementary therapy to treat disseminated candidosis, since the inhibition of filamentation alone appears to be sufficient to treat this type of infection.

  19. Streptomyces gamaensis sp. nov., a novel actinomycete with antifungal activity isolated from soil in Gama, Chad.

    Science.gov (United States)

    Zhao, Shanshan; Ye, Lan; Liu, Chongxi; Abagana, Adam Yacoub; Zheng, Weiwei; Sun, Pengyu; Li, Jiansong; Xiang, Wensheng; Wang, Xiangjing

    2017-04-01

    During an investigation exploring potential sources of novel species and natural products, a novel actinomycete with antifungal activity, designated strain NEAU-Gz11 T , was isolated from a soil sample, which was collected from Gama, Chad. The isolate was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. 16S rRNA gene sequence similarity studies showed that strain NEAU-Gz11 T belongs to the genus Streptomyces with high sequence similarity to Streptomyces hiroshimensis JCM 4098 T (98.0 %). Similarities to other type strains of the genus Streptomyces were lower than 98.0 %. However, the physiological and biochemical characteristics and low levels of DNA-DNA relatedness could differentiate the isolate genotypically and phenotypically from S. hiroshimensis JCM 4098 T . Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces gamaensis sp. nov. is proposed. The type strain is NEAU-Gz11 T (=CGMCC 4.7304 T =DSM 101531 T ).

  20. Antifungal activity against plant pathogens of metabolites from the endophytic fungus Cladosporium cladosporioides.

    Science.gov (United States)

    Wang, Xiaoning; Radwan, Mohamed M; Taráwneh, Amer H; Gao, Jiangtao; Wedge, David E; Rosa, Luiz H; Cutler, Horace G; Cutler, Stephen J

    2013-05-15

    Bioassay-guided fractionation of Cladosporium cladosporioides (Fresen.) de Vries extracts led to the isolation of four compounds, including cladosporin, 1; isocladosporin, 2; 5'-hydroxyasperentin, 3; and cladosporin-8-methyl ether, 4. An additional compound, 5',6-diacetylcladosporin, 5, was synthesized by acetylation of compound 3. Compounds 1-5 were evaluated for antifungal activity against plant pathogens. Phomopsis viticola was the most sensitive fungus to the tested compounds. At 30 μM, compound 1 exhibited 92.7, 90.1, 95.4, and 79.9% growth inhibition against Colletotrichum acutatum , Colletotrichum fragariae , Colletotrichum gloeosporioides , and P. viticola, respectively. Compound 2 showed 50.4, 60.2, and 83.0% growth inhibition at 30 μM against Co. fragariae, Co. gloeosporioides, and P. viticola, respectively. Compounds 3 and 4 were isolated for the first time from Cl. cladosporioides. Moreover, the identification of essential structural features of the cladosporin nuclei has also been evaluated. These structures provide new templates for the potential treatment and management of plant diseases.

  1. Antifungal activity of Momordica charantia seed extracts toward the pathogenic fungus Fusarium solani L.

    Science.gov (United States)

    Wang, Shuzhen; Zheng, Yongliang; Xiang, Fu; Li, Shiming; Yang, Guliang

    2016-10-01

    Momordica charantia L., a vegetable crop with high nutritional value, has been used as an antimutagenic, antihelminthic, anticancer, antifertility, and antidiabetic agent in traditional folk medicine. In this study, the antifungal activity of M. charantia seed extract toward Fusarium solani L. was evaluated. Results showed that M. charantia seed extract effectively inhibited the mycelial growth of F. solani, with a 50% inhibitory rate (IC 50 ) value of 108.934 μg/mL. Further analysis with optical microscopy and fluorescence microscopy revealed that the seed extract led to deformation of cells with irregular budding, loss of integrity of cell wall, as well as disruption of the fungal cell membrane. In addition, genomic DNA was also severely affected, as small DNA fragments shorter than 50 bp appeared on agarose gel. These findings implied that M. charantia seed extract containing α-momorcharin, a typical ribosome-inactivating protein, could be an effective agent in the control of fungal pathogens, and such natural products would represent a sustainable alternative to the use of synthetic fungicides. Copyright © 2016. Published by Elsevier B.V.

  2. Processing, Targeting, and Antifungal Activity of Stinging Nettle Agglutinin in Transgenic Tobacco

    Science.gov (United States)

    Does, Mirjam P.; Houterman, Petra M.; Dekker, Henk L.; Cornelissen, Ben J.C.

    1999-01-01

    The gene encoding the precursor to stinging nettle (Urtica dioica L.) isolectin I was introduced into tobacco (Nicotiana tabacum). In transgenic plants this precursor was processed to mature-sized lectin. The mature isolectin is deposited intracellularly, most likely in the vacuoles. A gene construct lacking the C-terminal 25 amino acids was also introduced in tobacco to study the role of the C terminus in subcellular trafficking. In tobacco plants that expressed this construct, the mutant precursor was correctly processed and the mature isolectin was targeted to the intercellular space. These results indicate the presence of a C-terminal signal for intracellular retention of stinging nettle lectin and most likely for sorting of the lectin to the vacuoles. In addition, correct processing of this lectin did not depend on vacuolar deposition. Isolectin I purified from tobacco displayed identical biological activities as isolectin I isolated from stinging nettle. In vitro antifungal assays on germinated spores of the fungi Botrytis cinerea, Trichoderma viride, and Colletotrichum lindemuthianum revealed that growth inhibition by stinging nettle isolectin I occurs at a specific phase of fungal growth and is temporal, suggesting that the fungi had an adaptation mechanism. PMID:10364393

  3. Antifungal and antibacterial activity of endophytic penicillium species isolated from salvadora species

    International Nuclear Information System (INIS)

    Korejo, F.; Shafique, H.A.; Haque, S.E.; Ali, S.A.

    2014-01-01

    Salvadora persica and S. S.oleoides are facultative holophytic plants, well known as miswak, are traditionally used to ensure oral hygiene among Muslim people in Asian and African counties. Species of Salvadora have a number of proven pharmacological importance. Besides, terrestrial fungi endophytic fungi are also gaining importance for the isolation of bioactive compounds. In this study 74 samples (root, shoot and leaves) from S. persica and S. oleoides were examined for endophytic fungi, 22 samples showed presence of Penicillium spp., 48 were found positive for aspergilli, whereas 10 samples showed infection of Fusarium solani, 4 were found infected with Macrophomina phaseolina and one with Rhizoctonia solani. Most of the Penicillium isolated were identified as P. restrictum, P. citrinum and P. canescens. In dual culture plate assay out of four Penicillium isolates tested, P. citrinum and one isolate of P. restrictum caused growth inhibition of all four test root rotting fungi, Fusarium solani, F. oxysporum, Macrophomina phaseolina and Rhizoctonia solani. Culture filtrates of Penicillium spp., were also evaluated against four common laboratory bacteria namely Bacillus subtilis, Staphylococcus aureus, Salmonella typhimurium and Escherichia coli and above mentioned root rotting fungi. Culture filtrates of endophytic Penicillium spp., also showed significant antibacterial and antifungal activity. Secondary metabolites of endophytic Penicillium spp., offer an exciting area of research for the discovery of novel antimicrobial compounds. (author)

  4. Antifungal Activity of Phenyllactic Acid against Molds Isolated from Bakery Products

    Science.gov (United States)

    Lavermicocca, Paola; Valerio, Francesca; Visconti, Angelo

    2003-01-01

    Phenyllactic acid (PLA) has recently been found in cultures of Lactobacillus plantarum that show antifungal activity in sourdough breads. The fungicidal activity of PLA and growth inhibition by PLA were evaluated by using a microdilution test and 23 fungal strains belonging to 14 species of Aspergillus, Penicillium, and Fusarium that were isolated from bakery products, flours, or cereals. Less than 7.5 mg of PLA ml−1 was required to obtain 90% growth inhibition for all strains, while fungicidal activity against 19 strains was shown by PLA at levels of ≤10 mg ml−1. Levels of growth inhibition of 50 to 92.4% were observed for all fungal strains after incubation for 3 days in the presence of 7.5 mg of PLA ml−1 in buffered medium at pH 4, which is a condition more similar to those in real food systems. Under these experimental conditions PLA caused an unpredictable delaying effect that was more than 2 days long for 12 strains, including some mycotoxigenic strains of Penicillium verrucosum and Penicillium citrinum and a strain of Penicillium roqueforti (the most widespread contaminant of bakery products); a growth delay of about 2 days was observed for seven other strains. The effect of pH on the inhibitory activity of PLA and the combined effects of the major organic acids produced by lactic acid bacteria isolated from sourdough bread (PLA, lactic acid, and acetic acid) were also investigated. The ability of PLA to act as a fungicide and delay the growth of a variety of fungal contaminants provides new perspectives for possibly using this natural antimicrobial compound to control fungal contaminants and extend the shelf lives of foods and/or feedstuffs. PMID:12514051

  5. Purification and characterization of a CkTLP protein from Cynanchum komarovii seeds that confers antifungal activity.

    Directory of Open Access Journals (Sweden)

    Qinghua Wang

    Full Text Available BACKGROUND: Cynanchum komarovii Al Iljinski is a desert plant that has been used as analgesic, anthelminthic and antidiarrheal, but also as a herbal medicine to treat cholecystitis in people. We have found that the protein extractions from C. komarovii seeds have strong antifungal activity. There is strong interest to develop protein medication and antifungal pesticides from C. komarovii for pharmacological or other uses. METHODOLOGY/PRINCIPAL FINDINGS: An antifungal protein with sequence homology to thaumatin-like proteins (TLPs was isolated from C. komarovii seeds and named CkTLP. The three-dimensional structure prediction of CkTLP indicated the protein has an acid cleft and a hydrophobic patch. The protein showed antifungal activity against fungal growth of Verticillium dahliae, Fusarium oxysporum, Rhizoctonia solani, Botrytis cinerea and Valsa mali. The full-length cDNA was cloned by RT-PCR and RACE-PCR according to the partial protein sequences obtained by nanoESI-MS/MS. The real-time PCR showed the transcription level of CkTLP had a significant increase under the stress of abscisic acid (ABA, salicylic acid (SA, methyl jasmonate (MeJA, NaCl and drought, which indicates that CkTLP may play an important role in response to abiotic stresses. Histochemical staining showed GUS activity in almost the whole plant, especially in cotyledons, trichomes and vascular tissues of primary root and inflorescences. The CkTLP protein was located in the extracellular space/cell wall by CkTLP::GFP fusion protein in transgenic Arabidopsis. Furthermore, over-expression of CkTLP significantly enhanced the resistance of Arabidopsis against V. dahliae. CONCLUSIONS/SIGNIFICANCE: The results suggest that the CkTLP is a good candidate protein or gene for contributing to the development of disease-resistant crops.

  6. Miconazole-loaded solid lipid nanoparticles: formulation and evaluation of a novel formula with high bioavailability and antifungal activity

    Directory of Open Access Journals (Sweden)

    Aljaeid BM

    2016-01-01

    Full Text Available Bader Mubarak Aljaeid,1 Khaled Mohamed Hosny1,2 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt Background and objective: Miconazole is a broad-spectrum antifungal drug that has poor aqueous solubility (<1 µg/mL; as a result, a reduction in its therapeutic efficacy has been reported. The aim of this study was to formulate and evaluate miconazole-loaded solid lipid nanoparticles (MN-SLNs for oral administration to find an innovative way to alleviate the disadvantages associated with commercially available capsules. Methods: MN-SLNs were prepared by hot homogenization/ultrasonication. The solubility of miconazole in different solid lipids was measured. The effect of process variables, such as surfactant types, homogenization and ultrasonication times, and the charge-inducing agent on the particle size, zeta potential, and encapsulation efficiency were determined. Furthermore, in vitro drug release, antifungal activity against Candida albicans, and in vivo pharmacokinetics were studied in rabbits. Results: The MN-SLN, consisting of 1.5% miconazole, 2% Precirol ATO5, 2.5% Cremophor RH40, 0.5% Lecinol, and 0.1% Dicetylphosphate, had an average diameter of 23 nm with a 90.2% entrapment efficiency. Furthermore, the formulation of MN-SLNs enhanced the antifungal activity compared with miconazole capsules. An in vivo pharmacokinetic study revealed that the bioavailability was enhanced by >2.5-fold. Conclusion: MN-SLN was more efficient in the treatment of candidiasis with enhanced oral bioavailability and could be a promising carrier for the oral delivery of miconazole. Keywords: miconazole, Precirol ATO5, solid lipid nanoparticles, encapsulation, Cremophor RH40, antifungal activity

  7. In vitro antifungal activity of fatty acid methyl esters of the seeds of Annona cornifolia A.St.-Hil. (Annonaceae) against pathogenic fungus Paracoccidioides brasiliensis.

    Science.gov (United States)

    Lima, Luciana Alves Rodrigues dos Santos; Johann, Susana; Cisalpino, Patrícia Silva; Pimenta, Lúcia Pinheiro Santos; Boaventura, Maria Amélia Diamantino

    2011-01-01

    Fatty acids are abundant in vegetable oils. They are known to have antibacterial and antifungal properties. Antifungal susceptibility was evaluated by broth microdilution assay following CLSI (formerly the NCCLS) guidelines against 16 fungal strains of clinical interest. In this work, fatty acid methyl esters (FAME) was able to inhibit 12 clinical strains of the pathogenic fungus Paracoccidioides brasiliensis and were also active in the bioautographic assay against Cladosporium sphaerospermum. FAME was a more potent antifungal than trimethoprim-sulfamethoxazole against P. brasiliensis under the experimental conditions tested.

  8. Penetratin and derivatives acting as antifungal agents

    NARCIS (Netherlands)

    Masman, Marcelo F.; Rodriguez, Ana M.; Raimondi, Marcela; Zacchino, Susana A.; Luiten, Paul G. M.; Somlai, Csaba; Kortvelyesi, Tamas; Penke, Botond; Enriz, Ricardo D.

    The synthesis, in vitro evaluation, and conformational study of RQIKTWFQNRRMKWKK-NH(2) (penetratin) and related derivatives acting as antifungal agents are reported. Penetratin and some of its derivatives displayed antifungal activity against the human opportunistic pathogenic standardized ATCC

  9. Microemulsion Formulation of Carbendazim and Its In Vitro Antifungal Activities Evaluation

    Science.gov (United States)

    Leng, Pengfei; Zhang, Zhiming; Li, Qian; Zhao, Maojun; Pan, Guangtang

    2014-01-01

    The fungus Rhizoctonia solani Kuhn is a widespread and destructive plant pathogen with a very broad host range. Although various pathogens, including R. solani, have been traditionally controlled using chemical pesticides, their use faces drawbacks such as environmental pollution, development of pesticide resistance, and other negative effects. Carbendazim is a well-known antifungal agent capable of controlling a broad range of plant diseases, but its use is hampered by its poor aqueous solubility. In this study, we describe an environmentally friendly pharmaceutical microemulsion system using carbendazim as the active ingredient, chloroform and acetic acid as solvents, and the surfactants HSH and 0204 as emulsifiers. This system increased the solubility of carbendazim to 30 g/L. The optimal microemulsion formulation was determined based on a pseudo-ternary phase diagram; its physicochemical characteristics were also tested. The cloud point was greater than 90°C and it was resistant to freezing down to −18°C, both of which are improvements over the temperature range in which pure carbendazim can be used. This microemulsion meets the standard for pesticide microemulsions and demonstrated better activity against R. solani AG1-IA, relative to an aqueous solution of pure carbendazim (0.2 g/L). The mechanism of activity was reflected in the inhibition of against R. solani AG1-IA including mycelium growth, and sclerotia formation and germination were significantly better than that of 0.2 g/L carbendazim water solution according to the results of t-test done by SPSS 19. PMID:25310219

  10. Essential oil composition, antioxidant and antifungal activities of Salvia sclarea L. from Munzur Valley in Tunceli, Turkey.

    Science.gov (United States)

    Yuce, E; Yildirim, N; Yildirim, N C; Paksoy, M Y; Bagci, E

    2014-06-15

    The essential oil composition and in vitro antioxidant and antifungal activity of the Salvia sclarea L. from Munzur Valley in Tunceli, Turkey were evaluated in this research. The in vitro antifungal activity of ethanol, hexane and aqueous extracts of S. sclarea against pathogen fungi Epicoccum nigrum and Colletotrichum coccodes were investigated. The essential oil of aerial parts of S. sclarea was obtained by hydrodistillation and was analysed by GC and GC—MS. Total antioxidant status was determined by using Rel assay diagnostics TAS assay kit (Lot.RL024) by Multiscan FC (Thermo). 33 compounds were identified representing the 85.0% of the total oil. The most abundant components (>5%) of the S. sclarea essential oils were caryophyllene oxide (24.1%), sclareol (11.5%), spathulenol (11.4%), 1H-naphtho (2,1,6) pyran (8.6%) and b—caryophyllene (5.1%). The best antifungal and antioxidant effect was seen in ethanolic S. sclarea extract. It can be said that Salvia sclerae could be used as natural antioxidant.

  11. Posaconazole exhibits in vitro and in vivo synergistic antifungal activity with caspofungin or FK506 against Candida albicans.

    Directory of Open Access Journals (Sweden)

    Ying-Lien Chen

    Full Text Available The object of this study was to test whether posaconazole, a broad-spectrum antifungal agent inhibiting ergosterol biosynthesis, exhibits synergy with the β-1,3 glucan synthase inhibitor caspofungin or the calcineurin inhibitor FK506 against the human fungal pathogen Candida albicans. Although current drug treatments for Candida infection are often efficacious, the available antifungal armamentarium may not be keeping pace with the increasing incidence of drug resistant strains. The development of drug combinations or novel antifungal drugs to address emerging drug resistance is therefore of general importance. Combination drug therapies are employed to treat patients with HIV, cancer, or tuberculosis, and has considerable promise in the treatment of fungal infections like cryptococcal meningitis and C. albicans infections. Our studies reported here demonstrate that posaconazole exhibits in vitro synergy with caspofungin or FK506 against drug susceptible or resistant C. albicans strains. Furthermore, these combinations also show in vivo synergy against C. albicans strain SC5314 and its derived echinocandin-resistant mutants, which harbor an S645Y mutation in the CaFks1 β-1,3 glucan synthase drug target, suggesting potential therapeutic applicability for these combinations in the future.

  12. General administrative activities

    International Nuclear Information System (INIS)

    Cottrell, W.B.

    1982-01-01

    Significant safety-related activities reported during May and June, which are not covered elsewhere in this issue, are summarized. The Advisory Committee on Reactor Safeguards (ACRS) issued several reports on a variety of topics of current concern to the Nuclear Regulatory Commission (NRC). Both the ACRS and Scientists and Engineers for Secure Energy (SE 2 ) comments on safety goals are excerpted. Five speeches by various NRC Commissioners are summarized. A House Committee conducted a hearing on the pressure-vessel thermal shock question. Proposed regulations dealing with Licensee Event Reports (LERs) and mandatory property insurance are reviewed. Last is a listing of a variety of safety-related topics

  13. General administrative activities

    International Nuclear Information System (INIS)

    Cottrell, W.B.

    1980-01-01

    Significant safety-related activities reported during September and October, which are not covered elsewhere in this issue, are summarized here. The Nuclear Regulatory Commission (NRC) has adopted an interim statement of policy on the licensing of nuclear power plants. Four speeches by NRC Commissioners are summarized. The Advisory Committee on Reactor Safeguards (ACRS) issued a review of the NRC Systematic Evaluation Program (SEP). The NRC also issued a policy statement on emergency planning guidance. Two Research Informantion Letters (RILs) issued during the report period are summarized. Last is a listing of developments on a variety os safety-related topics

  14. Identification of antifungal activity substances on seedborn disease from garlic and taxus extracts

    Energy Technology Data Exchange (ETDEWEB)

    Chung, I.M.; Paik, S.B. [Konkuk University, Seoul (Korea, Republic of)

    1999-02-01

    Antifungal substances were isolated and identified from garlic and taxus extracts to develop safe and broad fungicide. The inhibitory effect of seedborn disease of sesame, pepper, radish, chinese cabbage by formulation of antifungal substances was investigated. The antifungal substance isolated through column chromatography from garlic and taxus extracts was confirmed by GC-MS as allicin (C{sub 6}H{sub 10}OS{sub 2}) and taxol(C{sub 47}H{sub 51}NO{sub 14}) and the quantified content from each extracts by HPLC analysis was 0.62%, 0.29%, respectively. The formulation composed of garlic and taxus extracts controlled effectively the seedborn fungi tested in this study at 10X dilution, but at 100X dilution the inhibitory effect decreased. Phytotoxicity of these formulations did not recognized. 22 refs., 6 figs., 5 tabs.

  15. Improved antifungal activity and stability of chitosan nanofibers using cellulose nanocrystal on banknote papers.

    Science.gov (United States)

    Mohammadi Amirabad, Leila; Jonoobi, Mehdi; Mousavi, Narges Sharif; Oksman, Kristiina; Kaboorani, Alireza; Yousefi, Hossein

    2018-06-01

    Microorganisms can spread on the surface of banknotes and cause many infectious diseases. Chitosan nanofibers (CNFs) and cellulose nanocrystals (CNCs) are nanomaterials, which can affect the antimicrobial properties. In this study, the fungal species that grew on the surfaces of collected banknotes from different places were identified. To examine the antifungal effect of the both nanomaterials on the banknotes, the stable coatings using CNFs and CNCs emulsions were prepared by roller coating. The results revealed that the most colonies in the banknotes obtained from the bakeries and butcheries were Aspergillus sp., whereas the colonies in bus terminals and the hospitals were Aspergillus niger and Penicillium, respectively. The results showed that the CNCs had no antifungal effect alone on the aforementioned species, but it could improve the antifungal effect, adhesion, and stability of CNFs on the banknote surfaces. This study suggested a new approach to decrease the infection spreads through banknotes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. General administrative activities

    International Nuclear Information System (INIS)

    Cottrell, W.B.

    1982-01-01

    Significant safety-related activities reported during March and April, which are not covered elsewhere in this issue, are summarized here. The Advisory Committee on Reactor Safeguards (ACRS) issued several reports on a variety of topics of current concern to the Nuclear Regulatory Commission (NRC). A recent NRC draft report identifies preliminary ranking of safety issues. The NRC is establishing a new Office of Investigations. The NRC also released a list of plants now under construction which it suspects will be canceled or indefinitely deferred. Four speeches by NRC Commissioners are summarized, as is the only Research Information Letter issued during the report period. Last is a listing of a variety of safety-related topics

  17. Tioconazole, a new imidazole-antifungal agent for the treatment of dermatomycoses. Antifungal and pharmacologic properties.

    Science.gov (United States)

    Marriott, M S; Baird, J R; Brammer, K W; Faulkner, J K; Halliwell, G; Jevons, S; Tarbit, M H

    1983-01-01

    Tioconazole is a new imidazole antifungal agent with broad-spectrum activity. Its in vitro activity against common dermal pathogens is generally better than miconazole by a factor of 2-8. This activity is paralleled by good topical efficacy in a guinea pig dermatomycosis model. Pharmacokinetic studies in animals have demonstrated minimal systemic exposure following dermal application. Acute general pharmacology studies have shown that the compound is well tolerated in animals and unlikely to produce side-effects in man.

  18. Antifungal activity of saponins originated from Medicago hybrida against some ornamental plant pathogens

    Directory of Open Access Journals (Sweden)

    Alicja Saniewska

    2012-12-01

    Full Text Available Antifungal activity of total saponins originated from roots of Medicago hybrida (Pourret Trautv. were evaluated in vitro against six pathogenic fungi and eight individual major saponin glycosides were tested against one of the most susceptible fungi. The total saponins showed fungitoxic effect at all investigated concentrations (0.01%, 0.05% and 0.1% but their potency was different for individual fungi. The highest saponin concentration (0.1% was the most effective and the inhibition of Fusarium oxysporum f. sp. callistephi, Botrytis cinerea, Botrytis tulipae, Phoma narcissi, Fusarium oxysporum f. sp. narcissi was 84.4%, 69.9%, 68.6%, 57.2%, 55.0%, respectively. While Fusarium oxysporum Schlecht., a pathogen of Muscari armeniacum, was inhibited by 9.5% only. Eight major saponin glycosides isolated from the total saponins of M. hybrida roots were tested against the mycelium growth of Botrytis tulipae. The mycelium growth of the pathogen was greatly inhibited by hederagenin 3-O-β-D-glucopyranoside and medicagenic acid 3-O-β-D-glucopyranoside. Medicagenic acid 3-O-β-D-glucuronopyranosyl-28-O-β-D-glucopyranoside and oleanolic acid 3-O-[β-D-glucuronopyranosyl(1→2-α-L-galactopyranosyl]-28-O-β-D-glucopyranoside showed low fungitoxic activity. Medicagenic acid 3-O-a-D-glucopyranosyl- 28-O-β-D-glucopyranoside, hederagenin 3-O-[α-L- hamnopyranosyl(1→2-β-D-glucopyranosyl(1→2-β-D-glucopyranosyl]- 28-O-α-D-glucopyranoside and hederagenin 3-O-β-D-glucuronopyranosyl-28-O-β-D- lucopyranoside did not limit or only slightly inhibited growth of the tested pathogen. While 2β, 3β-dihydroxyolean-12 ene-23-al-28-oic acid 3-O-β-D-glucuronopyranosyl-28-O-β-D-glucopyranoside slightly stimulated mycelium growth of B. tulipae.

  19. Chemical composition, toxicity and larvicidal and antifungal activities of Persea americana (avocado) seed extracts.

    Science.gov (United States)

    Leite, João Jaime Giffoni; Brito, Erika Helena Salles; Cordeiro, Rossana Aguiar; Brilhante, Raimunda Sâmia Nogueira; Sidrim, José Júlio Costa; Bertini, Luciana Medeiros; Morais, Selene Maia de; Rocha, Marcos Fábio Gadelha

    2009-01-01

    The present study had the aim of testing the hexane and methanol extracts of avocado seeds, in order to determine their toxicity towards Artemia salina, evaluate their larvicidal activity towards Aedes aegypti and investigate their in vitro antifungal potential against strains of Candida spp, Cryptococcus neoformans and Malassezia pachydermatis through the microdilution technique. In toxicity tests on Artemia salina, the hexane and methanol extracts from avocado seeds showed LC50 values of 2.37 and 24.13 mg mL-1 respectively. Against Aedes aegypti larvae, the LC50 results obtained were 16.7 mg mL-1 for hexane extract and 8.87 mg mL-1 for methanol extract from avocado seeds. The extracts tested were also active against all the yeast strains tested in vitro, with differing results such that the minimum inhibitory concentration of the hexane extract ranged from 0.625 to 1.25mg L-(1), from 0.312 to 0.625 mg mL-1 and from 0.031 to 0.625 mg mL-1, for the strains of Candida spp, Cryptococcus neoformans and Malassezia pachydermatis, respectively. The minimal inhibitory concentration for the methanol extract ranged from 0.125 to 0.625 mg mL-1, from 0.08 to 0.156 mg mL-1 and from 0.312 to 0.625 mg mL-1, for the strains of Candida spp., Cryptococcus neoformans and Malassezia pachydermatis, respectively.

  20. In vitro antifungal activity against Candida species of Sri Lankan orthodox black tea (Camellia sinensis L. belonging to different agro-climatic elevations

    Directory of Open Access Journals (Sweden)

    Wanigasekara Daya Ratnasooriya

    2017-02-01

    Full Text Available Objective: To investigate the antifungal potential of different grades of Sri Lankan orthodox black tea [orange pekoe, broken orange pekoe fannings (BOPF and Dust No. 1] belonging to the three agro-climatic elevations (low, mid and high. Methods: Antifungal activity was assessed in vitro using methanolic extracts (300 µg/disc and agar disc diffusion bioassay technique against three Candida species, Candida albicans (C. albicans, Candida glabrata (C. glabrata, and Candida tropicalis. ketoconazole and itraconazole mixture was used as positive control (10 µg/disc and methanol was used as the negative control. The minimum inhibitory concentrations were also determined using standard protocols. Results: None of the extracts were effective against Candida tropicalis. Furthermore, orange pekoe grade tea belonging to all agro-climatic elevations did not induce any antifungal activity against C. albicans and C. glabrata as well. Conversely, Dust No. 1 belonging to all three agro-climatic elevations and low-grown BOPF showed moderate antifungal activity against C. albicans and C. glabrata. Interestingly, the severity of the antifungal effect varied with agroclimatic elevations. The minimum inhibitory concentrations ranged from 64.00–128.00 µg/mL against C. glabrata and 128.00-256.00 µg/mL against C. albicans. Conclusions: Sri Lankan Dust No. 1 and BOPF have marked antifungal activity in vitro and offer promise to be used as a supplementary beverage in prophylaxis and during drug treatment in candidiasis.

  1. Chemical composition and antifungal activity of the essential oils of Schinus weinmannifolius collected in the spring and winter.

    Science.gov (United States)

    Hernandes, Camila; Taleb-Contini, Silvia H; Bartolomeu, Ana Carolina D; Bertoni, Bianca W; França, Suzelei C; Pereira, Ana Maria S

    2014-09-01

    Reports on the chemical and pharmacological profile of the essential oil of Schinus weinmannifolius do not exist, although other Schinus species have been widely investigated for their biological activities. This work aimed to evaluate the chemical composition and antimicrobial activity of the essential oil of S. weinmannifolius collected in the spring and winter. The essential oils were extracted by hydrodistillation, analyzed by GC/MS and submitted to microdilution tests, to determine the minimum inhibitory concentration. The oils displayed different chemical composition and antimicrobial action. Bicyclogermacrene and limonene predominated in the oils extracted in the winter and spring, respectively, whereas only the latter oil exhibited antifungal activity.

  2. Antifungal Activity of Leaf and Latex Extracts of Calotropis procera (Ait.) against Dominant Seed-Borne Storage Fungi of Some Oil Seeds

    OpenAIRE

    Manoorkar V B; Mandge S V; B D Gachande

    2015-01-01

    In present study, aqueous and ethanol extracts of leaf & latex of Calotropis procera (Ait.) was tested for their antifungal activity against dominant storage seed-borne fungi of some oil seeds such as groundnut, soybean, sunflower and mustard. The antifungal effect of ethanol and aqueous extracts of leaf & latex of Calotropis procera (Ait.) against ten seed-borne dominant fungi viz., Cuvularia lunata, Alternaria alternata, Rhizoctonia solani, Fusarium solani, Penicillium chrysogenum, Asperg...

  3. Screening of antifungal azole drugs and agrochemicals with an adapted alamarBlue-based assay demonstrates antibacterial activity of croconazole against Mycobacterium ulcerans.

    Science.gov (United States)

    Scherr, Nicole; Röltgen, Katharina; Witschel, Matthias; Pluschke, Gerd

    2012-12-01

    An alamarBlue-based growth inhibition assay has been adapted for the thermosensitive and slow-growing pathogen Mycobacterium ulcerans. The standardized test procedure enables medium-throughput screening of preselected compound libraries. Testing of a set of 48 azoles with known antifungal activity led to the identification of an imidazole antifungal displaying an inhibitory dose (ID) of 9 μM for M. ulcerans.

  4. Rapamycin exerts antifungal activity in vitro and in vivo against Mucor circinelloides via FKBP12-dependent inhibition of Tor.

    Science.gov (United States)

    Bastidas, Robert J; Shertz, Cecelia A; Lee, Soo Chan; Heitman, Joseph; Cardenas, Maria E

    2012-03-01

    The zygomycete Mucor circinelloides is an opportunistic fungal pathogen that commonly infects patients with malignancies, diabetes mellitus, and solid organ transplants. Despite the widespread use of antifungal therapy in the management of zygomycosis, the incidence of infections continues to rise among immunocompromised individuals. In this study, we established that the target and mechanism of antifungal action of the immunosuppressant rapamycin in M. circinelloides are mediated via conserved complexes with FKBP12 and a Tor homolog. We found that spontaneous mutations that disrupted conserved residues in FKBP12 conferred rapamycin and FK506 resistance. Disruption of the FKBP12-encoding gene, fkbA, also conferred rapamycin and FK506 resistance. Expression of M. circinelloides FKBP12 (McFKBP12) complemented a Saccharomyces cerevisiae mutant strain lacking FKBP12 to restore rapamycin sensitivity. Expression of the McTor FKBP12-rapamycin binding (FRB) domain conferred rapamycin resistance in S. cerevisiae, and McFKBP12 interacted in a rapamycin-dependent fashion with the McTor FRB domain in a yeast two-hybrid assay, validating McFKBP12 and McTor as conserved targets of rapamycin. We showed that in vitro, rapamycin exhibited potent growth inhibitory activity against M. circinelloides. In a Galleria mellonella model of systemic mucormycosis, rapamycin improved survival by 50%, suggesting that rapamycin and nonimmunosuppressive analogs have the potential to be developed as novel antifungal therapies for treatment of patients with mucormycosis.

  5. Antifungal activity of the pygidial gland secretion of Laemostenus punctatus (Coleoptera: Carabidae) against cave-dwelling micromycetes

    Science.gov (United States)

    Nenadić, Marija; Ljaljević-Grbić, Milica; Stupar, Miloš; Vukojević, Jelena; Ćirić, Ana; Tešević, Vele; Vujisić, Ljubodrag; Todosijević, Marina; Vesović, Nikola; Živković, Nemanja; Ćurčić, Srećko

    2017-06-01

    The antifungal potential of the pygidial gland secretion of the troglophilic ground beetle Laemostenus punctatus from a cave in Southeastern Serbia against cave-dwelling micromycetes, isolated from the same habitat, has been investigated. Eleven collected samples were analyzed and 32 isolates of cave-dwelling fungi were documented. A total of 14 fungal species were identified as members of the genera Aspergillus, Penicillium, Alternaria, Cladosporium, Rhizopus, Trichoderma, Arthrinium, Aureobasidium, Epicoccum, Talaromyces, and Fusarium. Five isolates were selected for testing the antifungal activity of the pygidial gland secretion: Talaromyces duclauxi, Aspergillus brunneouniseriatus, Penicillium sp., Rhizopus stolonifer, and Trichoderma viride. The microdilution method has been applied to detect minimal inhibitory concentrations (MICs) and minimal fungicidal concentrations (MFCs). The most sensitive isolate was Penicillium sp., while the other isolates demonstrated a high level of resistance to the tested agent. L. punctatus has developed a special mechanism of producing specific compounds that act synergistically within the secretion mixture, which are responsible for the antifungal action against pathogens from the cave. The results open opportunities for further research in the field of ground beetle defense against pathogens, which could have an important application in human medicine, in addition to the environmental impact, primarily.

  6. Rapamycin Exerts Antifungal Activity In Vitro and In Vivo against Mucor circinelloides via FKBP12-Dependent Inhibition of Tor

    Science.gov (United States)

    Bastidas, Robert J.; Shertz, Cecelia A.; Lee, Soo Chan; Heitman, Joseph

    2012-01-01

    The zygomycete Mucor circinelloides is an opportunistic fungal pathogen that commonly infects patients with malignancies, diabetes mellitus, and solid organ transplants. Despite the widespread use of antifungal therapy in the management of zygomycosis, the incidence of infections continues to rise among immunocompromised individuals. In this study, we established that the target and mechanism of antifungal action of the immunosuppressant rapamycin in M. circinelloides are mediated via conserved complexes with FKBP12 and a Tor homolog. We found that spontaneous mutations that disrupted conserved residues in FKBP12 conferred rapamycin and FK506 resistance. Disruption of the FKBP12-encoding gene, fkbA, also conferred rapamycin and FK506 resistance. Expression of M. circinelloides FKBP12 (McFKBP12) complemented a Saccharomyces cerevisiae mutant strain lacking FKBP12 to restore rapamycin sensitivity. Expression of the McTor FKBP12-rapamycin binding (FRB) domain conferred rapamycin resistance in S. cerevisiae, and McFKBP12 interacted in a rapamycin-dependent fashion with the McTor FRB domain in a yeast two-hybrid assay, validating McFKBP12 and McTor as conserved targets of rapamycin. We showed that in vitro, rapamycin exhibited potent growth inhibitory activity against M. circinelloides. In a Galleria mellonella model of systemic mucormycosis, rapamycin improved survival by 50%, suggesting that rapamycin and nonimmunosuppressive analogs have the potential to be developed as novel antifungal therapies for treatment of patients with mucormycosis. PMID:22210828

  7. Antifungal activity of oral (Tragacanth/acrylic acid) Amphotericin B carrier for systemic candidiasis: in vitro and in vivo study.

    Science.gov (United States)

    Mohamed, Heba A; Radwan, Rasha R; Raafat, Amany I; Ali, Amr El-Hag

    2018-02-01

    In an effort to increase the oral bioavailability of Amphotericin B (AmB), a pH-sensitive drug carrier composed of Tragacanth (Trag) and acrylic acid (AAc) was prepared using γ-irradiation. The swelling behavior of (Trag/AAc) hydrogels was characterized as a function of pH and ionic strength of the swelling medium. The obtained swelling indices revealed the ability of the prepared hydrogel to protect a loaded drug in stomach-simulated medium (Fickian behavior) and to release such drug in intestinal-simulated medium (non-Fickian behavior). In vitro release studies of the antifungal (AmB) were performed to evaluate the hydrogel potential as a drug carrier. The antifungal activity of the prepared oral formulation was investigated in a mouse model of systemic candidiasis. Data revealed that (Trag/AAc)-AmB has a potent antifungal efficacy as demonstrated by prolonging the survival time and reducing the tissue fungal burden, serum antibody titers, as well as inflammatory cytokines in kidney and liver tissues. Furthermore, in vivo toxicity of (Trag/AAc)-AmB was assessed via measuring kidney and liver functions, and results displayed the safety of this novel AmB formulation which was confirmed by histopathological examination. Overall, results indicated that the prepared (Trag/AAc)-AmB is an effective oral delivery system for AmB with better bioavailability and minimal toxicity and could represent a promising approach for improving the therapeutic index of the drug.

  8. An in vitro study of the antifungal activity of Trichoderma virens 7b and a profile of its non-polar antifungal components released against Ganoderma boninense.

    Science.gov (United States)

    Angel, Lee Pei Lee; Yusof, Mohd Termizi; Ismail, Intan Safinar; Ping, Bonnie Tay Yen; Mohamed Azni, Intan Nur Ainni; Kamarudin, Norman Hj; Sundram, Shamala

    2016-11-01

    Ganoderma boninense is the causal agent of a devastating disease affecting oil palm in Southeast Asian countries. Basal stem rot (BSR) disease slowly rots the base of palms, which radically reduces productive lifespan of this lucrative crop. Previous reports have indicated the successful use of Trichoderma as biological control agent (BCA) against G. boninense and isolate T. virens 7b was selected based on its initial screening. This study attempts to decipher the mechanisms responsible for the inhibition of G. boninense by identifying and characterizing the chemical compounds as well as the physical mechanisms by T. virens 7b. Hexane extract of the isolate gave 62.60% ± 6.41 inhibition against G. boninense and observation under scanning electron microscope (SEM) detected severe mycelial deformation of the pathogen at the region of inhibition. Similar mycelia deformation of G. boninense was observed with a fungicide treatment, Benlate ® indicating comparable fungicidal effect by T. virens 7b. Fraction 4 and 5 of hexane active fractions through preparative thin layer chromatography (P-TLC) was identified giving the best inhibition of the pathogen. These fractions comprised of ketones, alcohols, aldehydes, lactones, sesquiterpenes, monoterpenes, sulphides, and free fatty acids profiled through gas chromatography mass spectrometry detector (GC/MSD). A novel antifungal compound discovery of phenylethyl alcohol (PEA) by T. virens 7b is reported through this study. T. virens 7b also proved to be an active siderophore producer through chrome azurol S (CAS) agar assay. The study demonstrated the possible mechanisms involved and responsible in the successful inhibition of G. boninense.

  9. Preparations based on minerals extracts of Calicotome villosa roots and bovine butyrate matter: Evaluation in vitro of their antifungal activity.

    Science.gov (United States)

    Barhouchi, B; Aouadi, S; Abdi, A

    2017-06-01

    The use of preparations based on minerals extracts of Calicotome villosa and butter is born from the misuse of drugs without specific microbiological analyzes. Seventeen different preparations were performed. The antibacterial and antifungal activities were determined on five bacteria and two fungi strains respectively. C. villosa ashes are obtained by incineration of roots plant at 498°C for 4hours. They are analyzed to determine the shape of the particles and the mineral constituents by scanning electronic microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) techniques respectively. The effectiveness of preparations or tablets is measured in solid medium. It allows to measure the diameter of the inhibition zone for the antibacterial activity as well as the diameter of mycelia growth and the critical values (MIC, MFC, IC 50 and IC 90 ) for the antifungal activity. Finally, the results are compared to the activity of a commercial positive control aiming to give value of the observed activity. SEM observations reveal the presence of nanoparticles agglomerated with size of about 50nm. The EDX analyzes indicate the presence of Fe, Na, Al, Mg, Si, K, Ca, O 2 and C. Among all the results, the preparation (B s +A) or (B sd +A) can completely inhibit the growth of two fungal pathogens. The activity of the preparation is faced with the activity of the synthetic fungicide nystatin. The efficacy of the preparation (B s +A) or (B sd +A) is higher than that of nystatin against Aspergillus sp. and Fusarium sp. The preparation could serve as natural antifungal for the pharmaceutical industry. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Oral administration of amphotericin B nanoparticles: antifungal activity, bioavailability and toxicity in rats.

    Science.gov (United States)

    Radwan, Mahasen A; AlQuadeib, Bushra T; Šiller, Lidija; Wright, Matthew C; Horrocks, Benjamin

    2017-11-01

    Amphotericin B (AMB) is used most commonly in severe systemic life-threatening fungal infections. There is currently an unmet need for an efficacious (AMB) formulation amenable to oral administration with better bioavailability and lower nephrotoxicity. Novel PEGylated polylactic-polyglycolic acid copolymer (PLGA-PEG) nanoparticles (NPs) formulations of AMB were therefore studied for their ability to kill Candida albicans (C. albicans). The antifungal activity of AMB formulations was assessed in C. albicans. Its bioavalability was investigated in nine groups of rats (n = 6). Toxicity was examined by an in vitro blood hemolysis assay, and in vivo nephrotoxicity after single and multiple dosing for a week by blood urea nitrogen (BUN) and plasma creatinine (PCr) measurements. The MIC of AMB loaded to PLGA-PEG NPs against C. albicans was reduced two to threefold compared with free AMB. Novel oral AMB delivery loaded to PLGA-PEG NPs was markedly systemically available compared to Fungizone® in rats. The addition of 2% of GA to the AMB formulation significantly (p bioavailability from 1.5 to 10.5% and the relative bioavailability was > 790% that of Fungizone®. The novel AMB formulations showed minimal toxicity and better efficacy compared to Fungizone®. No nephrotoxicity in rats was detected after a week of multiple dosing of AMB NPs based on BUN and PCr, which remained at normal levels. An oral delivery system of AMB-loaded to PLGA-PEG NPs with better efficacy and minimal toxicity was formulated. The addition of glycyrrhizic acid (GA) to AMB NPs formulation resulted in a significant oral absorption and improved bioavailability in rats.

  11. Chemical composition and antifungal activity of the essential oils of Lavandula viridis L'Her.

    Science.gov (United States)

    Zuzarte, Mónica; Gonçalves, Maria José; Cavaleiro, Carlos; Canhoto, Jorge; Vale-Silva, Luís; Silva, Maria João; Pinto, Eugénia; Salgueiro, Lígia

    2011-05-01

    In the present work we report for what we believe to be the first time the antifungal activity and mechanism of action of the essential oils of Lavandula viridis from Portugal. The essential oils were isolated by hydrodistillation and analysed by GC and GC/MS. The MIC and the minimal lethal concentration (MLC) of the essential oil and its major compounds were determined against several pathogenic fungi. The influence of subinhibitory concentrations of the essential oil on the dimorphic transition in Candida albicans was also studied, as well as propidium iodide and FUN-1 staining of Candida albicans cells by flow cytometry following short treatments with the essential oil. The oils were characterized by a high content of oxygen-containing monoterpenes, with 1,8-cineole being the main constituent. Monoterpene hydrocarbons were present at lower concentrations. According to the determined MIC and MLC values, the dermatophytes and Cryptococcus neoformans were the most sensitive fungi (MIC and MLC values ranging from 0.32 to 0.64 µl ml⁻¹), followed by Candida species (at 0.64-2.5 µl ml⁻¹). For most of these strains, MICs were equivalent to MLCs, indicating a fungicidal effect of the essential oil. The oil was further shown to completely inhibit filamentation in Candida albicans at concentrations well below the respective MICs (as low as MIC/16). Flow cytometry results suggested a mechanism of action ultimately leading to cytoplasmic membrane disruption and cell death. Our results show that L. viridis essential oils may be useful in the clinical treatment of fungal diseases, particularly dermatophytosis and candidosis, although clinical trials are required to evaluate the practical relevance of our in vitro research.

  12. Role of chitosan on controlling the characteristics and antifungal activity of bioadhesive fluconazole vaginal tablets

    Directory of Open Access Journals (Sweden)

    Rawan A. Fitaihi

    2018-02-01

    Full Text Available Vaginal fluconazole (FLZ prolonged release tablets containing chitosan in physical blends with other bioadhesive polymers were designed. Chitosan was mixed with hydroxypropyl methylcellulose (HPMC, guar gum or sodium carboxymethyl cellulose (NaCMC at different ratios and directly compressed into tablets. In-vitro release profiles of FLZ were monitored at pH 4.8. Compressing chitosan with HPMC at different ratios slowed FLZ release, however, time for 80% drug release (T80 did not exceed 4.3 h for the slowest formulation (F11. Adding of chitosan to guar gum at 1:2 ratio (F3 showed delayed release with T80 17.4 h while, in presence of PVP at 1:2:1 ratio (F5, T80 was 8.8 h. A blend of chitosan and NaCMC at 1:2 ratio (F15 showed prolonged drug release with T80 11.16 h. Formulations F5 and F15 showed fair physical characteristics for the powder and tablets and were subjected to further studies. Fast swelling was observed for F15 that reached 1160.53 ± 13.02% in 4 h with 2 h bioadhesion time to mouse peritoneum membrane compared with 458.83 ± 7.09% swelling with bioadhesion time exceeding 24 h for F5. Extensive swelling of F15 could indicate possible dehydration effect on vaginal mucosa. Meanwhile, antifungal activity against C. albicans was significantly high for F5.

  13. [Does the sampling locality influence on the antifungal activity of the flavonoids of Marrubium vulgare against Aspergillus niger and Candida albicans?].

    Science.gov (United States)

    Bouterfas, K; Mehdadi, Z; Aouad, L; Elaoufi, M M; Khaled, M B; Latreche, A; Benchiha, W

    2016-09-01

    The study was undertaken to determine the effect of the sampling locality on the antifungal activity of the flavonoids extracted from the leaves of Marrubium vulgare L. against two fungal strains; Aspergillus niger ATCC 16404 and Candida albicans ATCC 10231. The leaves were collected from three different sampling localities belonging northwest Algeria: Tessala mount, M'sila forest and Ain Skhouna. The flavonoid extraction was carried out by using organic solvents with increasing polarity. A phytochemical screening was performed by staining test tubes. The inhibition diameters were measured by solid medium diffusion method. The minimum inhibitory concentrations were determined by dilution method on solid medium. The antifungal activity varied significantly (Pflavonoid extract and its concentration, and the strain fungal type. The inhibition diameters varied between 8.16 and recorded 37.5mm even recording a total inhibition of fungal growth and often exceed those induced marketed antifungals (Amphotericin, Fluconazole, Terbinafine and econazole nitrate). The minimum inhibitory concentrations (MICs) obtained range between 6.25 and 100μg/mL; experiencing strong antifungal inhibition. The phytochemical screening revealed the existence of certain flavonoids classes such as flavans and flavanols which may be responsible of this remarkable antifungal power. The sampling locality of Marrubium vulgare leaves influenced on the antifungal activity of flavonoids. These have proven very good fungistatic and worth valuing in pharmacology. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. On a difference in the antifungal activity of tridemorph and its formulated product Calixin

    NARCIS (Netherlands)

    Kerkenaar, A.; Kaars Sijpesteijn, A.

    1979-01-01

    The antifungal effects of tridemorph and its formulated product Calixin were compared in vitro on Ustilago maydis, Saccharomyces cerevisiae, Torulopsis candida, Botrytis allii, and Cladosporium cucumerinum. MIC values for both products were about the same. In liquid media the products were somewhat

  15. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities.

    NARCIS (Netherlands)

    Sokovic, M.D.; Vukojevic, J.; Marin, P.D.; Brkic, D.D.; Vajs, V.; Griensven, van L.J.L.D.

    2009-01-01

    The potential antifungal effects of Thymus vulgaris L., Thymus tosevii L., Mentha spicata L., and Mentha piperita L. (Labiatae) essential oils and their components against 17 micromycetal food poisoning, plant, animal and human pathogens are presented. The essential oils were obtained by

  16. Antifungal and repellent activities of the essential oils from three aromatic herbs from western Himalaya

    Science.gov (United States)

    In this investigation we examined the essential oils of three aromatic plants; Zanthoxylum armatum, Juniperus communis, and, Dysphania ambrosioides, which are used by the local population of the western Himalayan region for medicinal purposes. These plants were studied for their antifungal, larvicid...

  17. The Elements of Antifungal Drug Discovery

    DEFF Research Database (Denmark)

    Kjellerup, Lasse

    In this PhD thesis I will explore the development of antifungal drugs. Fungal infections are estimated to cause the death of 1.5 million patients each year. There is currently a need for new antifungal drugs as the existing drugs are hampered by lack of broad-spectrum antifungal activity, resista...

  18. Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products.

    Science.gov (United States)

    Russo, Pasquale; Arena, Mattia Pia; Fiocco, Daniela; Capozzi, Vittorio; Drider, Djamel; Spano, Giuseppe

    2017-04-17

    Cereal-based fermented products are worldwide diffused staple food resources and cereal-based beverages represent a promising innovative field in the food market. Contamination and development of spoilage filamentous fungi can result in loss of cereal-based food products and it is a critical safety concern due to their potential ability to produce mycotoxins. Lactic Acid Bacteria (LAB) have been proposed as green strategy for the control of the moulds in the food industry due to their ability to produce antifungal metabolites. In this work, eighty-eight Lactobacillus plantarum strains were screened for their antifungal activity against Aspergillus niger, Aspergillus flavus, Fusarium culmorum, Penicillium roqueforti, Penicillium expansum, Penicillium chrysogenum, and Cladosporium spp. The overlayed method was used for a preliminary discrimination of the strains as no, mild and strong inhibitors. L. plantarum isolates that displayed broad antifungal spectrum activity were further screened based on the antifungal properties of their cell-free supernatant (CFS). CFSs from L. plantarum UFG 108 and L. plantarum UFG 121, in reason of their antifungal potential, were characterized and analyzed by HPLC. Results indicated that lactic acid was produced at high concentration during the growth phase, suggesting that this metabolic aptitude, associated with the low pH, contributed to explain the highlighted antifungal phenotype. Production of phenyllactic acid was also observed. Finally, a new oat-based beverage was obtained by fermentation with the strongest antifungal strain L. plantarum UFG 121. This product was submitted or not to a thermal stabilization and artificially contaminated with F. culmorum. Samples containing L. plantarum UFG 121 showed the best biopreservative effects, since that no differences were observed in terms of some qualitative features between not or contaminated samples with F. culmorum. Here we demonstrate, for the first time, the suitability of LAB

  19. Isolation of flavonoids from Anemopaegma arvense (Vell Stellf. ex de Souza and their antifungal activity against Trichophyton rubrum

    Directory of Open Access Journals (Sweden)

    Camila Di Giovane Costanzo

    2013-09-01

    Full Text Available Anemopaegma arvense (Vell Stellf. ex de Souza belongs to the family Bignoniaceae, and is popularly known as catuaba. To evaluate the cytotoxic and antimicrobial activity of A. arvense, fraction F3 and flavonoids 1 (quercetin 3-O-α-L-rhamnopyranosyl-(1→6-β-D-glucopyranoside (rutin and flavonoid 2 (quercetin 3-O-α-L-rhamnopyranosyl-(1→6-β-D-galactopyranoside were isolated from the leaves of this plant. Fraction F3 and flavonoids 1 and 2 exhibited no antibacterial activity. Furthermore, no cytotoxic activity of fraction 3 or flavonoids 1 and 2 was observed against the tumor cells tested. However, analysis of the antifungal activity of flavonoids 1 and 2 revealed minimum inhibitory concentrations of 0.5 and 0.25 mg/mL, respectively, against the Trichophyton rubrum strains tested (wild type and mutant. This study demonstrates for the first time the antifungal activity of isolated flavonoids, validating the same activity for A. arvense.

  20. Chemical composition profiling and antifungal activity of the essential oil and plant extracts of Mesembryanthemum edule (L.) bolus leaves.

    Science.gov (United States)

    Omoruyi, Beauty Etinosa; Afolayan, Anthony Jide; Bradley, Graeme

    2014-01-01

    Essential oil from Mesembryanthemum edule leaves have been used by the Eastern Cape traditional healers for the treatment of respiratory tract infections, tuberculosis, dysentery, diabetic mellitus, laryngitis and vaginal infections. The investigation of bioactive compounds in the essential oil of this plant could help to verify the efficacy of the plant in the management or treatment of these illnesses. Various concentrations of the hydro-distilled essential oil, ranging from 0.005-5 mg/ml, were tested against some fungal strains, using the micro-dilution method. Minimum inhibitory activity was compared with four other different crude extracts of hexane, acetone, ethanol and aqueous samples from the same plant. The chemical composition of the essential oil, hexane, acetone and ethanol extracts was determined using GC-MS. GC/MS analysis of the essential oil resulted in the identification of 28 compounds, representing 99.99% of the total oil. Phytoconstituents of hexane, acetone and ethanol extracts yielded a total peak chromatogram of fifty nine compounds. A total amount of 10.6% and 36.61% of the constituents were obtained as monoterpenes and oxygenated monoterpenes. Sesquiterpene hydrocarbons (3.58%) were relatively low compared to the oxygenated sesquiterpenes (9.28%), while the major concentrated diterpenes and oxygenated diterpenes were 1.43% and 19.24 %, respectively and phytol 12.41%. Total amount of fatty acids and their methyl esters content, present in the oil extract, were found to be 19.25 %. Antifungal activity of the oil extract and four solvent extracts were tested against five pathogenic fungal strains. The oil extract showed antifungal activity against Candida albican, Candida krusei, Candida rugosa, Candida glabrata and Cryptococcus neoformans with MIC ranges of 0.02 0.31 mg/ml. Hexane extract was active against the five fungal strains with MICs ranging between 0.02-1.25 mg/ml. Acetone extracts were active against C. krusei only at 0.04mg/ml. No

  1. Vegetable Peel Waste for the Production of ZnO Nanoparticles and its Toxicological Efficiency, Antifungal, Hemolytic, and Antibacterial Activities

    Science.gov (United States)

    Surendra, T. V.; Roopan, Selvaraj Mohana; Al-Dhabi, Naif Abdullah; Arasu, Mariadhas Valan; Sarkar, Gargi; Suthindhiran, K.

    2016-12-01

    Zinc oxide (ZnO) nanoparticles (NPs) are important materials when making different products like sun screens, textiles, and paints. In the current study, the photocatalytic effect of prepared ZnO NPs from Moringa oleifera ( M. oleifera) was evaluated on degradation of crystal violet (CV) dye, which is largely released from textile industries and is harmful to the environment. Preliminarily, ZnO NP formation was confirmed using a double beam ultraviolet visible (UV-Vis) spectrophotometer; further, the NP size was estimated using XRD analysis and the functional group analysis was determined using Fourier transform infrared (FT-IR) spectroscopy. The morphology of the synthesized NPs was found to be a hexagonal shape using SEM and TEM analysis and elemental screening was analyzed using EDX. ZnO NPs were shown sized 40-45 nm and spherical in shape. The degradation percentage of ZnO NPs was calculated as 94% at 70 min and the rate of the reaction -k = 0.0282. The synthesized ZnO NPs were determined for effectiveness on biological activities such as antifungal, hemolytic, and antibacterial activity. ZnO NPs showed good antifungal activity against Alternaria saloni and Sclerrotium rolfii strains. Further, we have determined the hemolytic and antibacterial activity of ZnO NPs and we got successive results in antibacterial and hemolytic activities.

  2. MDGC-MS analysis of essential oils from Protium heptaphyllum (Aubl. and their antifungal activity against Candida specie

    Directory of Open Access Journals (Sweden)

    M. MOBIN

    Full Text Available ABSTRACT Protium heptaphyllum is found in the Amazon region, and in various Brazilian states and South American countries. Also Known as almecega, it produces an oil resin used in traditional medicine as analgesic, anti-inflammatory, cicatrizant and expectorant, it is rich in pentacyclic triterpenes and essential oil. The main objective of this study was to analyze the chemical composition of P. heptaphyllumresin (OEPh over different extraction times and to evaluate their antifungal activity against Candida species, obtained from gardeners with onychomycosis, using the disk diffusion method. The OEPh was obtained by hydrodistillation and analyzed by Multidimensional Gas Chromatography coupled with Mass Spectrometry (MDGC / MS. Candida species were obtained from lesions on the nails of horticulturist from a community garden in the city of Teresina, Piauí, Brazil. The antifungal activity in concentrations of 1000 µg/L, 500 µg/L and 250 µg/L, PROTOCOL M44-A2 (CLSI 2009 OEPh was tested. The main constituents identified were: l-limonene, α-terpineol, p-cineol, o-cymene and α-phellandrene, however, its composition varies significantly with extraction time. All species, except C. rugosa, were inhibited with halo (≥ 14 mm at 1000 μg / L. C. krusei is naturally resistant to the drug fluconazole, but when tested with OEPh the clinical species (case 9 demonstrated sensitivity in three dilutions (halo ≤ 10 ≥ 14 and the standard strain was inhibited at concentration of 1000 μg/Lg / L (halo 14mm. A similar situation also occurred with the standard strain of C. parapsilosis (halo ≥ 11mm. OEPh has considerable antifungal activity, which merits further investigation for alternative clinical applications, since this species is widely distributed in our community, and it presents good yields, and also has important therapeutic applications.

  3. Antifungal activity of eicosanoic acids isolated from the endophytic fungus Mycosphaerella sp. against Cryptococcus neoformans and C. gattii.

    Science.gov (United States)

    Pereira, Cristiane Bigatti; Pereira de Sá, Nívea; Borelli, Beatriz Martins; Rosa, Carlos Augusto; Barbeira, Paulo Jorge Sanches; Cota, Betania Barros; Johann, Susana

    2016-11-01

    The antifungal effects of two eicosanoic acids, 2-amino-3,4-dihydroxy-2-25-(hydroxymethyl)-14-oxo-6,12-eicosenoic acid (compound 1) and myriocin (compound 2), isolated from Mycosphaerella sp. were evaluated against Cryptococcus neoformans and C. gattii. The compounds displayed antifungal activities against several isolates of C. neoformans and C. gattii, with minimal inhibitory concentration (MIC) values ranging from 0.49 to 7.82 μM for compound 1 and 0.48-1.95 μM for compound 2. In the checkerboard microtiter test, both compounds exhibited synergistic activity with amphotericin B against C. gattii. Ultrastructural analysis revealed several signs of damage in C. gattii and C. neoformans cells treated with compounds 1 and 2, including deformities in cell shape, depressions on the surface, and withered cells. The cells of C. gattii treated with compounds 1 and 2 showed less loss of cellular material in comparison to those treated with amphotericin B. The difference in cellular material loss increased in a test compound concentration-dependent manner. Consistent with this observation, compounds 1 and 2 were able to internalize propidium iodide (PI) in C. gattii cells. In addition, compound 2 induced the formation of several pseudohyphae, suggesting that it could reduce virulence in C. gattii cells. The study results show that these natural products led to membrane damage; however, this may not be the main target of action. These compounds have potential antifungal activity and could be useful in further studies for developing more effective combination therapies with amphotericin B and reducing side effects in patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Antifungal (in vitro) activity of plant extracts for the control of anthracnose (Colletotrichum acutatum)

    OpenAIRE

    Villacís-Aldaz Luis Alfredo; León-Gordon Olguer; Santana-Mayorga Rita; Mangui-Tobar José; Carranza Galo; Pazmiño-Miranda Pilar

    2017-01-01

    The antifungal effect of five plant extracts: nettle (Urtica dioica), chamomile (Chamaemelum nobile), frame (Artemisia vulgaris), lavender (Lavandula officinalis) and chamico (Datura ferox) were evaluated at laboratory level for control of anthracnose (Colletotrichum acutatum) of the tree tomato (Solanum betaceum), using two methods of extraction (maceration and steam trapping), in the results obtained, statistical differences were observed in the percentage of inhibition of mycelial growth o...

  5. ANTIFUNGAL ACTIVITY OF SELECTED ESSENTIAL OILS AGAINST THE FUNGAL SPECIES OF THE GENUS EUROTIUM BY CONTACT VAPOUR

    OpenAIRE

    Miroslava Císarová; Jaroslava Kačinová; Dana Tančinová

    2014-01-01

    The aim of this study was evaluation of the antifungal activity of 5 essential oils (EOs),we used concretely thyme, clove, basil, jasmine and rosemary, by vapour contact against the fungal species Eurotium rubrum, E. chevalieri and Eurotium sp.. Each fungus was inoculated in the centre on Czapek Yeast Autolysate Agar (CYA) plates. Plates were tightly sealed with parafilm and incubated for 7, 14, and 21 days at 25 ± 1 °C (three replicates were used for each treatment). Volatile phase effect o...

  6. Unexplored antifungal activity of linear battacin lipopeptides against planktonic and mature biofilms of C. albicans.

    Science.gov (United States)

    De Zoysa, Gayan Heruka; Glossop, Hugh Douglas; Sarojini, Vijayalekshmi

    2018-02-25

    Novel antifungal agents are required against pathogenic fungi such as Candida albicans. We report the anticandidal activity of battacin lipopeptide antibiotics with previously unexplored antifungal activity. From amongst sixteen battacin lipopeptides tested against C. alibicans (SC5314) the 4-methyl hexanoyl conjugated trimeric lipopeptide 13 emerged as the lead candidate with a MIC of 6.25 μM and negligible haemolysis of mouse red blood cells. The potency of this lipopeptide was maintained under acidic conditions. Additionally, antifungal activity was further enhanced with amphotericin B at its non-haemolytic concentrations. Herein we have demonstrated for the first time that battacin lipopeptides prevent C. albicans biofilm colonisation as well as inhibit pre-formed biofilms of this fungal pathogen. XTT biofilm assays revealed that 13 prevented colonisation of C. albicans biofilms at its MIC (6.25 μM) and, at a higher concentration, eradicated 24 h (25 μM) and 48 h (62.5 μM) old preformed biofilms. In comparison, we found that amphotericin at much lower concentrations prevented biofilm colonisation (0.78 μM) and inhibited 24 h old preformed biofilms (6.25 μM), however was completely inactive against 48 h old preformed biofilms. Thus, lipopeptide 13 is more effective than amphotericin at eradicating more mature C. albicans biofilms. The membrane lytic mechanism of action of compound 13 was validated by a colorimetric assay using lipid vesicles mimicking fungal membranes in which compound 13 effected an immediate dark purple to red colour transition of suspended vesicles upon peptide interaction. In addition, TEM images of C. albicans cells exposed to 13 showed clearly disrupted cellular membranes. Interestingly, compound 13 increased the endogenous generation of reactive oxygen species (ROS) in a concentration dependent manner. In the presence of an antioxidant, ascorbic acid, ROS production was diminished yet antifungal activity

  7. Bioactive compounds and antifungal activity of three different seaweed species Ulva lactuca, Sargassum tenerrimum and Laurencia obtusa collected from Okha coast, Western India

    Directory of Open Access Journals (Sweden)

    Megha Barot

    2016-04-01

    Full Text Available Objective: To evaluate bioactive compounds responsible for antifungal activity from seaweeds of Okha coast, Western India. Methods: Each species were extracted with different solvents with increasing polarity: hexane, ethyl acetate, chloroform and methanol using Soxhlet apparatus. The antifungal activity was determined by agar diffusion plate method by using fluconazole, ketoconazole and amphotericin B as standards. Gas chromatography-mass spectrometer analysis was done for identification of bioactive compounds present in crude extract. Results: The gas chromatography-mass spectrometer analysis of all the extracts revealed the presence of steroids, fatty acids and esters compounds. Among the three species, the maximum crude extract yield (53.46% and the largest inhibition zone (36 mm were recorded in methanol extract of Ulva lactuca, whereas the minimum crude extract yield and inhibition zone were recorded in chloroform extract of the same species as 0.5% and 10 mm, respectively. Methanol and ethyl acetate extract showed the maximum antifungal activity and the major important compounds like steroids, fatty acids and esters were detected with higher amount in all the extracts. Conclusions: The present study revealed that the different seaweed extracts showed moderate to significant antifungal activity against the strains tested as compared with the standard fungicides, and polar solvents methanol and ethyl acetate were comparatively efficient for extraction of different metabolites that are responsible for antifungal activity.

  8. Antifungal activity of rimocidin and a new rimocidin derivative BU16 produced by Streptomyces mauvecolor BU16 and their effects on pepper anthracnose.

    Science.gov (United States)

    Jeon, B J; Kim, J D; Han, J W; Kim, B S

    2016-05-01

    The objective of this study was to explore antifungal metabolites targeting fungal cell envelope and to evaluate the control efficacy against anthracnose development in pepper plants. A natural product library comprising 3000 microbial culture extracts was screened via an adenylate kinase (AK)-based cell lysis assay to detect antifungal metabolites targeting the cell envelope of plant-pathogenic fungi. The culture extract of Streptomyces mauvecolor strain BU16 displayed potent AK-releasing activity. Rimocidin and a new rimocidin derivative, BU16, were identified from the extract as active constituents. BU16 is a tetraene macrolide containing a six-membered hemiketal ring with an ethyl group side chain instead of the propyl group in rimocidin. Rimocidin and BU16 showed broad-spectrum antifungal activity against various plant-pathogenic fungi and demonstrated potent control efficacy against anthracnose development in pepper plants. Antifungal metabolites produced by S. mauvecolor strain BU16 were identified to be rimocidin and BU16. The compounds displayed potent control efficacy against pepper anthracnose. Rimocidin and BU16 would be active ingredients of disease control agents disrupting cell envelope of plant-pathogenic fungi. The structure and antifungal activity of rimocidin derivative BU16 is first described in this study. © 2016 The Society for Applied Microbiology.

  9. Antifungal activity of volatile compounds generated by essential oils against fungi commonly causing deterioration of bakery products.

    Science.gov (United States)

    Guynot, M E; Ramos, A J; Setó, L; Purroy, P; Sanchis, V; Marín, S

    2003-01-01

    To investigate the volatile fractions of 16 essential oils for activity against the more common fungi causing spoilage of bakery products, Eurotium amstelodami, E. herbariorum, E. repens, E. rubrum, Aspergillus flavus, A. niger and Penicillium corylophilum. The study applied 50 microl of pure essential oils in a sterilized filter paper, were carried out at pH 6 and at different water activity levels (0.80-0.90). First, a wheat flour based agar medium was used, where cinnamon leaf, clove, bay, lemongrass and thyme essential oils where found to totally inhibit all microorganisms tested. These five essential oils were then tested in sponge cake analogues, but the antifungal activity detected was much more limited. Five essential oils showed potential antifungal capacity against all species tested, over a wide range of water availability. Their activity, however, seems to be substrate-dependent. More research is needed to make them work in real bakery products, as in the preliminary study limited effectiveness was found. The potential of the cinnamon leaf, clove, bay, lemongrass and thyme essential oils against species belonging to Eurotium, Aspergillus and Penicillium genus has been demonstrated.

  10. Genomic insights into the broad antifungal activity, plant-probiotic properties, and their regulation, in Pseudomonas donghuensis strain SVBP6

    Science.gov (United States)

    Iriarte, Andrés; Valverde, Claudio Fabián

    2018-01-01

    Plant-growth promotion has been linked to the Pseudomonas genus since the beginning of this research field. In this work, we mined the genome of an Argentinean isolate of the recently described species P. donghuensis. Strain SVBP6, isolated from bulk soil of an agricultural plot, showed a broad antifungal activity and several other plant-probiotic activities. As this species has been recently described, and it seems like some plant-growth promoting (PGP) traits do not belong to the classical pseudomonads toolbox, we decide to explore the SVBP6 genome via an bioinformatic approach. Genome inspection confirmed our previous in vitro results about genes involved in several probiotic activities. Other genetic traits possibly involved in survival of SVBP6 in highly competitive environments, such as rhizospheres, were found. Tn5 mutagenesis revealed that the antifungal activity against the soil pathogen Macrophomina phaseolina was dependent on a functional gacS gene, from the regulatory cascade Gac-Rsm, but it was not due to volatile compounds. Altogether, our genomic analyses and in vitro tests allowed the phylogenetic assignment and provided the first insights into probiotic properties of the first P. donghuensis isolate from the Americas. PMID:29538430

  11. In Vitro Efficacy Of Lactic Acid Bacteria With Antifungal Activity Against Fusarium Sp. CID124-CS Isolate From Chilli Seeds

    Directory of Open Access Journals (Sweden)

    Akaram Husain

    2017-09-01

    Full Text Available Lactic acid bacteria LAB are known as to have inhibitory activity against fungi and other pathogens. In this study LAB from soil and fermented chilli fruits were evaluated for their inhibitory activity against Fusarium sp. CID124-CS that was isolated from chilli fruits. Three LAB isolates Lb. plantarum1-MSS P. pentoceous1-MSS isolated from soil one Lb. plantarum1-FCF from fermented chilli and two from ATCC culture Lb. acidophilus ATTCC314 and Lb. plantarum ATCC8014 showed strong inhibitory activity against growth of target fungi evaluated by well diffusion assay showed high growth inhibition 6.05 mm to 7.60 mm within 48 h at 28oC. Adding LAB supernatant to Potato Dextrose Broth PDA with fungi reduced mycelia growth from 36.00 to 60.00. Similarly fungal mass reduction with cells of LAB in De Man Rogosa and Sharpe Broth MRSB ranged 98.0 to 99.9 after 72 h incubation at 28oC by micro tire plate assay. Whereas conidial germination in MEB with LAB supernatants were reduced by 93.3 to 96.6 using micro titre plate assay. This study showed that cells and CFS of LAB isolated from soil have antifungal activity and could be used as antifungal agent against Fusarium sp. CID124-CS that infect to chilli.

  12. Antibacterial, antifungal and cytotoxic activities exhibited by endophytic fungi from the Brazilian marine red alga Bostrychia tenella (Ceramiales

    Directory of Open Access Journals (Sweden)

    Rafael de Felício

    Full Text Available Abstract Marine environment is one of the most important sources regarding natural products research. Besides, marine microorganisms have been denominated as a talented natural source for discovery of new leads. Although the association of macroalgae and fungi has been described regarding ecological issues, there is a lack of studies about marine seaweed endophytic fungi. In this context, the goal of this study was to evaluate cytotoxic, antifungal and antibacterial activities of endophytic fungi isolated from the Brazilian marine seaweed Bostrychia tenella (J.V. Lamouroux J. Agardh (Ceramiales, Rhodophyta. Forty-five endophytic microorganism strains were isolated from B. tenella. Crude extracts and organic fractions of ten selected strains were obtained after growth in rice medium. Samples were evaluated for cytotoxicity, antifungal and antibacterial assays. Penicillium strains showed positive results in a diversity of assays, and other five strains were active in at least one test. In addition, cytochalasin D was isolated from Xylaria sp. This alga is composed of a microbiological potential, since its endophytic strains exhibited remarkable biological properties. Moreover, cytochalasin D isolation has confirmed chemical potential of marine endophytic strains. This is the first study in which cultured fungi isolates from the Brazilian macroalga B. tenella were evaluated concerning biological properties. Results corroborated that this species could be a pharmaceutical source from marine environment. Furthermore, Acremonium implicatum is being firstly described as marine endophyte and Xylaria sp., Trichoderma atroviride and Nigrospora oryzae as marine seaweed endophytes. Thus, this work reports the first study relating detailed isolation, cultivation and biological evaluation (cytotoxic, antifungal and antibacterial of endophytes Penicillium decaturense and P. waksmanii from the Brazilian marine red alga B. tenella. We are also reporting the

  13. Synthesis and Characterization of Some New Cu(II, Ni(II and Zn(II Complexes with Salicylidene Thiosemicarbazones: Antibacterial, Antifungal and in Vitro Antileukemia Activity

    Directory of Open Access Journals (Sweden)

    Tudor Rosu

    2013-07-01

    Full Text Available Thirty two new Cu(II, Ni(II and Zn(II complexes (1–32 with salicylidene thiosemicarbazones (H2L1–H2L10 were synthesized. Salicylidene thiosemicarbazones, of general formula (XN-NH-C(S-NH(Y, were prepared through the condensation reaction of 2-hydroxybenzaldehyde and its derivatives (X with thiosemicarbazide or 4-phenylthiosemicarbazide (Y = H, C6H5. The characterization of the new formed compounds was done by 1H-NMR, 13C-NMR, IR spectroscopy, elemental analysis, magnetochemical, thermoanalytical and molar conductance measurements. In addition, the structure of the complex 5 has been determined by X-ray diffraction method. All ligands and metal complexes were tested as inhibitors of human leukemia (HL-60 cells growth and antibacterial and antifungal activities.

  14. Evaluation of radical scavenging activity, intestinal cell viability and antifungal activity of Brazilian propolis by-product.

    Science.gov (United States)

    de Francisco, Lizziane; Pinto, Diana; Rosseto, Hélen; Toledo, Lucas; Santos, Rafaela; Tobaldini-Valério, Flávia; Svidzinski, Terezinha; Bruschi, Marcos; Sarmento, Bruno; Oliveira, M Beatriz P P; Rodrigues, Francisca

    2018-03-01

    Propolis is a natural adhesive resinous compound produced by honeybees to protect hives from bacteria and fungi, being extremely expensive for food industry. During propolis production, a resinous by-product is formed. This resinous waste is currently undervalued and underexploited. Accordingly, in this study the proximate physical and chemical quality, as well as the antioxidant activity, radical scavenging activity and cell viability of this by-product were evaluated and compared with propolis in order to boost new applications in food and pharmaceutical industries. The results revealed that the by-product meets the physical and chemical quality standards expected and showed that the propolis waste contains similar amounts of total phenolic content (TPC) and total flavonoid content (TFC) to propolis. Also, a good scavenging activity against reactive oxygen and nitrogen species (ROS and RNS, respectively) determined by the assays of superoxide anion radical (O 2 - ), hydrogen peroxide (H 2 O 2 ), hypochlorous acid (HOCl), nitric oxide (NO) and peroxyl radical (ROO) were determined. Linear positive correlations were established between the TPC of both samples and the antioxidant activity evaluated by three different methods (DPPH, ABTS and FRAP assays). The extracts were also screened for cell viability assays in two different intestinal cell lines (HT29-MTX and Caco-2), showing a viability concentration-dependent. Similarly, the Artemia salina assay, used to assess toxicity, demonstrated the concentration influence on results. Finally, the antifungal activity against ATCC species of Candida was demonstrated. These results suggest that propolis by-product can be used as a new rich source of bioactive compounds for different areas, such as food or pharmaceutical. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts

    Directory of Open Access Journals (Sweden)

    Kelly Ishida

    2014-04-01

    Full Text Available The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependent way up to 1 mM silver nitrate until 30 days of reaction. Monodispersed and spherical SNPs were predominantly produced. After 60 days, it was possible to observe degenerated SNPs with in additional needle morphology. The SNPs showed a high antifungal activity against Candida and Cryptococcus , with minimum inhibitory concentration values ≤ 1.68 µg/mL for both genera. Morphological alterations of Cryptococcus neoformans treated with SNPs were observed such as disruption of the cell wall and cytoplasmic membrane and lost of the cytoplasm content. This work revealed that SNPs can be easily produced by F. oxysporum aqueous extracts and may be a feasible, low-cost, environmentally friendly method for generating stable and uniformly sized SNPs. Finally, we have demonstrated that these SNPs are active against pathogenic fungi, such as Candida and Cryptococcus .

  16. Chemical Composition, Enantiomeric Distribution, and Antifungal Activity of the Oleoresin Essential Oil of Protium amazonicum from Ecuador.

    Science.gov (United States)

    Satyal, Prabodh; Powers, Chelsea N; Parducci V, Rafael; McFeeters, Robert L; Setzer, William N

    2017-09-23

    Background: Protium species (Burseraceae) have been used in the treatment of various diseases and conditions such as ulcers and wounds. Methods: The essential oil from the oleoresin of Protium amazonicum was obtained by hydrodistillation and analyzed by GC-MS, GC-FID, and chiral GC-MS. P. amazonicum oleoresin oil was screened for antifungal activity against Candida albicans , Aspergillus niger , and Cryptococcus neoformans . Results: A total of 54 components representing 99.6% of the composition were identified in the oil. The essential oil was dominated by δ-3-carene (47.9%) with lesser quantities of other monoterpenoids α-pinene (4.0%), p -cymene (4.1%), limonene (5.1%), α-terpineol (5.5%) and p -cymen-8-ol (4.8%). Chiral GC-MS revealed most of the monoterpenoids to have a majority of levo enantiomers present with the exceptions of limonene and α-terpineol, which showed a dextro majority. P. amazonicum oleoresin oil showed promising activity against Cryptococcus neoformans , with MIC = 156 μg/mL. Conclusions: This account is the first reporting of both the chemical composition and enantiomeric distribution of the oleoresin essential oil of P. amazonicum from Ecuador. The oil was dominated by (-)-δ-3-carene, and this compound, along with other monoterpenoids, likely accounts for the observed antifungal activity of the oil.

  17. Chemical composition and antifungal activity of essential oils and supercritical CO2 extracts of Apium nodiflorum (L.) Lag.

    Science.gov (United States)

    Maxia, Andrea; Falconieri, Danilo; Piras, Alessandra; Porcedda, Silvia; Marongiu, Bruno; Frau, Maria Assunta; Gonçalves, Maria J; Cabral, Célia; Cavaleiro, Carlos; Salgueiro, Lígia

    2012-07-01

    Aerial parts of Apium nodiflorum collected in Portugal and Italy were submitted to hydrodistillation; also a supercritical fluid extract was obtained from Italian plants. The extracts were analyzed by GC and GC/MS. Both essential oils, obtained from Portuguese and Italian plants, posses high content of phenylpropanoids (51.6 vs. 70.8%); in the former, the percentage split in myristicin (29.1%) and dillapiol (22.5%), whereas in the latter, the total percentage is only of dillapiol (70.8%). The co-occurrence of myristicin and dillapiol is frequent because dillapiol results from enzymatic methoxylation of myristicin. Antimicrobial activity of phenylpropanoids has been patented, what suggest the potential of plants with high amounts of these compounds. Minimal inhibitory concentration (MIC) and minimal lethal concentration, determined according to NCCLS, were used to evaluate the antifungal activity of the essential oils against yeasts, Aspergillus species and dermatophytes. Essential oils exhibited higher antifungal activity than other Apiaceae against dermatophytes, with MIC ranging from 0.04 to 0.32 μl/ml. These results support the potential of A. nodiflorum oil in the treatment of dermatophytosis and candidosis.

  18. Antifungal activity of the extracts and saponins from Sapindus saponaria L.

    Directory of Open Access Journals (Sweden)

    Joyce K. Tsuzuki

    2007-12-01

    Full Text Available Extracts from the dried pericarp of Sapindus saponaria L. (Sapindaceae fruits were investigated for their antifungal activity against clinical isolates of yeasts Candida albicans and C. non-albicans from vaginal secretions of women with Vulvovaginal Candidiasis. Four clinical isolates of C. albicans, a single clinical isolated of each of the species C. parapsilosis, C. glabrata, C. tropicalis, and the strain of C. albicans ATCC 90028 were used. The hydroalcoholic extract was bioactivity-directed against a clinical isolate of C. parapsilosis, and showed strong activity. The n-BuOH extract and one fraction showed strong activity against all isolates tested. Further column-chromatography on silica gel separation of this fraction afforded two pure triterpene acetylated saponins: 3-O-(4-acetyl-beta-D-xylopyranosyl-(1->3-alpha-Lrhamnopyranosyl-(1->2-alpha-L-arabinopyranosyl-hederagenin (1 and 3-O-(3,4-di-acetyl-beta-D-xylopyranosyl-(1->3-alpha-L-rhamnopyranosyl-(1->2-alpha-L-arabynopyranosyl-hederagenin (2. The structures of the compounds were based on spectral data (¹H and 13C NMR, HSQC, HMBC and MS, and on with literature. The saponins isolated showed strong activity against C. parapsilosis.Extratos do pericarpo de frutos de Sapindus saponaria L. (Sapindaceae foram testados para a atividade antifúngica sobre isolados clínicos de leveduras de Candida albicans e C. não-albicans obtidos de secreção vaginal de mulheres com Candidíase Vulvovaginal. Foram avaliados quatro isolados clínicos de C. albicans, um de cada uma das espécies C. glabrata, C. parapsilosis, C. tropicalis e uma cepa referência de C. albicans ATCC 90028. O extrato hidroalcoólico foi biomonitorado contra um isolado clínico de C. parapsilosis, apresentando forte atividade. O extrato butanólico e uma fração apresentaram forte atividade contra todos os isolados testados. Posterior análise desta fração via cromatografia em sílica gel (CHCl3:CH3OH, 1:1, v/v resultou no

  19. Antifungal activity of the basil (Ocimmum basilicum L. extract on Penicillium aurantiogriseum, P. glabrum, P. chrysogenum, and P. brevicompactum

    Directory of Open Access Journals (Sweden)

    Kocić-Tanackov Sunčica D.

    2012-01-01

    Full Text Available This study was aimed at investigating the antifungal potential of basil (Ocimmum basilicum L. extract against toxin-producing Penicillium spp. (P. aurantiogriseum, P. glabrum, P. chrysogenum, and P. brevicompactum isolated from food. The basil extract composition was determined by the GC-MS method. The major component identified in the extract was estragole (86.72%. The determination of the antifungal activity of basil extract on Penicillium spp. was performed using the agar plate method. Basil extract reduced the growth of Penicillium spp. at all applied concentration levels (0.16, 0.35, 0.70, and 1.50 mL/100mL with the colony growth inhibition from 3.6 (for P. glabrum to 100% (for P. chrysogenum. The highest sensitivity showed P. chrysogenum, where the growth was completely inhibited at the basil extract concentration of 1.50 mL/100mL. The growth of other Penicillium spp. was partially inhibited with the colony growth inhibition of 63.4 % (P. brevicompactum, 67.5% (P. aurantiogriseum, and 71.7% (P. glabrum. Higher concentrations (0.70 and 1.50 mL/100mL reduced the growth of the aerial mycelium of all tested Penicillium species. In addition, at the same extract concentrations, the examination of microscopic preparation showed the deformation of hyphae with the frequent occurrence of fragmentations and thickenings, occurrence of irregular vesicle, frequently without metulae and phialides, enlarged metulae. The results obtained in this investigation point to the possibility of using basil extract for the antifungal food protection. [Projekat Ministarstva nauke Republike Srbije, br. TR-31017

  20. Antifungal activity of wide band gap Thioglycolic acid capped ZnS:Mn semiconductor nanoparticles against some pathogenic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Isam M.; Ali, Iftikhar M. [Department of physics, College of Science, Baghdad University, Baghdad (Iraq); Dheeb, Batol Imran [Department of Biology, College of Education, Iraqia University, Baghdad (Iraq); Abas, Qayes A. [Department of physics, College of Education, University of Anbar, Anbar (Iraq); Asmeit Ramizy, E-mail: asmat_hadithi@yahoo.com [Department of physics, College of Science, University of Anbar, Anbar (Iraq); Renewable energy Research Center, University of Anbar, Anbar (Iraq); Eisa, M.H. [Department of physics, College of Science, Sudan University of Science Technology, Khartoum 11113 (Sudan); Department of physics, College of Science, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623 (Saudi Arabia); Aljameel, A.I. [Department of physics, College of Science, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623 (Saudi Arabia)

    2017-04-01

    The manganese doped zinc sulfide nanoparticles were synthesized by simple aqueous chemical reaction of manganese chloride, zinc acetate and thioacitamide in aqueous solution. Thioglycolic acid is used as capping agent for controlling the nanoparticle size. The main advantage of the ZnS:Mn nanoparticles of diameter ~ 2.73 nm is that the sample is prepared by using non-toxic precursors in a cost effective and eco-friendly way. The structural, morphological and chemical composition of the nanoparticles have been investigated by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) with energy dispersion spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy. The nanosize of the prepared nanoparticles was elucidated by Scanning Electron Microscopy (SEM). FTIR result ensures that Thioglycolic acid is well bonded on the surface of ZnS:Mn NPs. The antifungal effects of Thioglycolic acid capped ZnS:Mn nanoparticles exhibited a potent antifungal activity against tested fungal strains, so deserving further investigation for clinical applications. The antifungal property of manganese doped zinc sulphide nanoparticles is attributed to the generation of reactive oxygen species due to the interaction of nanoparticles with water. Additionally, the presence of Zn and S in the zone of inhibition area leads to perturbation of fungi cell membranes resulting in growth inhibition. - Highlights: • The manganese doped zinc sulfide nanoparticles were synthesized. • Thioglycolic acid is used as capping agent for controlling the nanoparticle size. • The structural, morphological and chemical composition of the nanoparticles has been investigated. • The presence of Zn and S in the zone of inhibition area leads to perturbation of fungi cell membranes.

  1. Antifungal activity of wide band gap Thioglycolic acid capped ZnS:Mn semiconductor nanoparticles against some pathogenic fungi

    International Nuclear Information System (INIS)

    Ibrahim, Isam M.; Ali, Iftikhar M.; Dheeb, Batol Imran; Abas, Qayes A.; Asmeit Ramizy; Eisa, M.H.; Aljameel, A.I.

    2017-01-01

    The manganese doped zinc sulfide nanoparticles were synthesized by simple aqueous chemical reaction of manganese chloride, zinc acetate and thioacitamide in aqueous solution. Thioglycolic acid is used as capping agent for controlling the nanoparticle size. The main advantage of the ZnS:Mn nanoparticles of diameter ~ 2.73 nm is that the sample is prepared by using non-toxic precursors in a cost effective and eco-friendly way. The structural, morphological and chemical composition of the nanoparticles have been investigated by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) with energy dispersion spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy. The nanosize of the prepared nanoparticles was elucidated by Scanning Electron Microscopy (SEM). FTIR result ensures that Thioglycolic acid is well bonded on the surface of ZnS:Mn NPs. The antifungal effects of Thioglycolic acid capped ZnS:Mn nanoparticles exhibited a potent antifungal activity against tested fungal strains, so deserving further investigation for clinical applications. The antifungal property of manganese doped zinc sulphide nanoparticles is attributed to the generation of reactive oxygen species due to the interaction of nanoparticles with water. Additionally, the presence of Zn and S in the zone of inhibition area leads to perturbation of fungi cell membranes resulting in growth inhibition. - Highlights: • The manganese doped zinc sulfide nanoparticles were synthesized. • Thioglycolic acid is used as capping agent for controlling the nanoparticle size. • The structural, morphological and chemical composition of the nanoparticles has been investigated. • The presence of Zn and S in the zone of inhibition area leads to perturbation of fungi cell membranes.

  2. Use of a modified hair strand test to assess the antifungal activity kinetics of dog hair after a 2% climbazole shampoo application.

    Science.gov (United States)

    Petit, Jean Yanique; Cavana, Paola; Thoumire, Sandra; Guillot, Jacques; Perrot, Sébastien

    2016-06-01

    The "hair strand test" was first developed as a model to evaluate the antifungal activity of antidandruff shampoos. To assess the residual activity of an antifungal shampoo on the hair shafts of dogs after a single application, followed by bathing with a physiological shampoo one month later. Six beagles (two males and four females) from a research colony. Dogs were bathed with a 2% climbazole shampoo. Hairs were collected before application of the shampoo and at scheduled intervals for 30 days after treatment. A physiological shampoo was then applied to all dogs and hairs were collected following the same schedule. The inhibition zone around the hair shafts was measured after incubation on Sabouraud's dextrose agar plates streaked with three Malassezia pachydermatis strains. Inhibition zones around hairs collected from dogs bathed with 2% climbazole shampoo were significantly larger than those around hairs collected before shampooing at all time points (P = 0.003). An increase in the width of the inhibition zones around climbazole treated hairs was observed following physiological shampoo on Day 30 (P = 0.005). No significant differences were observed between Malassezia pachydermatis isolates (P = 0.571). No inhibition zones were seen around the hairs of dogs bathed with physiological shampoo only. The modified hair strand test is useful for the assessment of residual antifungal activity on animal hairs. Use of a physiological shampoo following antifungal shampoo therapy may increase the efficacy of the antifungal product for the control of Malassezia overgrowth. © 2016 ESVD and ACVD.

  3. Antifungal Activity of Phenyl Derivative of Pyranocoumarin from Psoralea corylifolia L. Seeds by Inhibition of Acetylation Activity of Trichothecene 3-O-Acetyltransferase (Tri101

    Directory of Open Access Journals (Sweden)

    Sangeetha Srinivasan

    2012-01-01

    Full Text Available Antifungal activity of petroleum ether extract of Psoralea corylifolia L. seed, tested against Fusarium sp. namely, Fusarium oxysporum, Fusarium moniliforme, and Fusarium graminearum, was evaluated by agar well diffusion assay. The chromatographic fractionation of the extract yielded a new phenyl derivative of pyranocoumarin (PDP. The structure of the PDP was confirmed using spectroscopic characterization (GC-MS, IR, and NMR, and a molecular mass of m/z 414 [M-2H]+ with molecular formula C27H28O4 was obtained. The PDP had a potent antifungal activity with a minimum inhibitory concentration of 1 mg/mL against Fusarium sp. Molecular docking using Grid-Based Ligand Docking with Energetics (GLIDE, Schrodinger was carried out with the Tri101, trichothecene 3-O-acetyltransferase, as target protein to propose a mechanism for the antifungal activity. The ligand PDP showed bifurcated hydrogen bond interaction with active site residues at TYR 413 and a single hydrogen bond interaction at ARG 402 with a docking score −7.19 and glide energy of −45.78 kcal/mol. This indicated a strong binding of the ligand with the trichothecene 3-O-acetyltransferase, preventing as a result the acetylation of the trichothecene mycotoxin and destruction of the “self-defense mechanism” of the Fusarium sp.

  4. Antifungal and Anti-Biofilm Activity of Essential Oil Active Components against Cryptococcus neoformans and Cryptococcus laurentii

    Directory of Open Access Journals (Sweden)

    Poonam Kumari

    2017-11-01

    Full Text Available Cryptococcosis is an emerging and recalcitrant systemic infection occurring in immunocompromised patients. This invasive fungal infection is difficult to treat due to the ability of Cryptococcus neoformans and Cryptococcus laurentii to form biofilms resistant to standard antifungal treatment. The toxicity concern of these drugs has stimulated the search for natural therapeutic alternatives. Essential oil and their active components (EO-ACs have shown to possess the variety of biological and pharmacological properties. In the present investigation the effect of six (EO-ACs sourced from Oregano oil (Carvacrol, Cinnamon oil (Cinnamaldehyde, Lemongrass oil (Citral, Clove oil (Eugenol, Peppermint oil (Menthol and Thyme oil (thymol against three infectious forms; planktonic cells, biofilm formation and preformed biofilm of C. neoformans and C. laurentii were evaluated as compared to standard drugs. Data showed that antibiofilm activity of the tested EO-ACs were in the order: thymol>carvacrol>citral>eugenol=cinnamaldehyde>menthol respectively. The three most potent EO-ACs, thymol, carvacrol, and citral showed excellent antibiofilm activity at a much lower concentration against C. laurentii in comparison to C. neoformans indicating the resistant nature of the latter. Effect of the potent EO-ACs on the biofilm morphology was visualized using scanning electron microscopy (SEM and confocal laser scanning microscopy (CLSM, which revealed the absence of extracellular polymeric matrix (EPM, reduction in cellular density and alteration in the surface morphology of biofilm cells. Further, to realize the efficacy of the EO-ACs in terms of human safety, cytotoxicity assays and co-culture model were evaluated. Thymol and carvacrol as compared to citral were the most efficient in terms of human safety in keratinocyte- Cryptococcus sp. co-culture infection model suggesting that these two can be further exploited as cost-effective and non-toxic anti

  5. Antifungal activity of essential oils from Iranian plants against fluconazole-resistant and fluconazole-susceptible Candida albicans

    Directory of Open Access Journals (Sweden)

    Aghil Sharifzadeh

    2016-03-01

    Full Text Available Objectives: The purpose of this study was to assay the antifungal activity of selected essential oils obtained from plants against both fluconazole (FLU-resistant and FLU-susceptible C. albicans strains isolated from HIV positive patients with oropharyngeal candidiasis (OPC. Materials and Methods: The essential oils were obtained by hydrodistillation method from Myrtus communis (My. communis, Zingiber officinale roscoe (Z. officinale roscoe, Matricaria chamomilla (Ma. chamomilla, Trachyspermum ammi (T. ammi and Origanum vulgare (O. vulgare. The susceptibility test was based on the M27-A2 methodology. The chemical compositions of the essential oils were obtained by gas chromatography- mass spectroscopy (GC-MS. Results: In GC-MS analysis, thymol (63.40%, linalool (42%, α-pinene (27.87%, α-pinene (22.10%, and zingiberene (31.79% were found to be the major components of T. ammi, O. vulgare, My. communis, Ma. chamomilla and Z. officinale roscoe, respectively. The results showed that essential oils have different levels of antifungal activity. O. vulgare and T. ammi essential oils were found to be the most efficient (P

  6. ANTIFUNGAL ACTIVITY OF SELECTED ESSENTIAL OILS AGAINST THE FUNGAL SPECIES OF THE GENUS EUROTIUM BY CONTACT VAPOUR

    Directory of Open Access Journals (Sweden)

    Miroslava Císarová

    2014-02-01

    Full Text Available The aim of this study was evaluation of the antifungal activity of 5 essential oils (EOs,we used concretely thyme, clove, basil, jasmine and rosemary, by vapour contact against the fungal species Eurotium rubrum, E. chevalieri and Eurotium sp.. Each fungus was inoculated in the centre on Czapek Yeast Autolysate Agar (CYA plates. Plates were tightly sealed with parafilm and incubated for 7, 14, and 21 days at 25 ± 1 °C (three replicates were used for each treatment. Volatile phase effect of concentration 50 µl of the essential oils was found to inhibit on growth of E. rubrum, E. chevalieri and Eurotium sp.. Complete growth inhibition of the isolates by EOs of thyme and clove was observed. The essential oil (EO of basil had antifungal activity on growth of E. chevalieri only after 7th and 14th days of the incubation, but in case of Eurotium sp. on all days of cultivation. Only E. rubrum was sensitive to jasmine EO and E. chevalieri to basil EO after all days of the incubation. Data was evaluated statistically by 95.0 % Tukey HSD test. The conclusions indicate that volatile phase of combinations of thyme oil and clove oil showed good potential in the inhibition of growth of Eurotium spp. EOs should find a practical application in the inhibition of the fungal mycelial growth in some kind of the food.

  7. Antifungal activities of the essential oil and its fractions rich in sesquiterpenes from leaves of Casearia sylvestris Sw.

    Science.gov (United States)

    Pereira, Flaviane G; Marquete, Ronaldo; Domingos, Levy T; Rocha, Marco E N; Ferreira-Pereira, Antonio; Mansur, Elisabeth; Moreira, Davyson L

    2017-01-01

    Casearia genus (Salicaceae) is found in sub-tropical and tropical regions of the world and comprises about 160-200 species. It is a medicinal plant used in South America, also known as "guaçatonga", "erva-de-tiú", "cafezinho-do-mato". In Brazil, there are about 48 species and 12 are registered in the State of Rio de Janeiro, including Casearia sylvestris Sw. There are many studies related to the chemical profile and cytotoxic activities of extracts from these plants, although few studies about the antifungal potential of the essential oil have been reported. In this work, we have studied the antifungal properties of the essential oil of C. sylvestris leaves, as well as of their fractions, against four yeasts (Saccharomyces cerevisae, Candida albicans, C. glabrata and C. krusei) for the first time. The chemical analysis of the essential oil revealed a very diversified (n = 21 compounds) volatile fraction composed mainly of non-oxygenated sesquiterpenes (72.1%). These sesquiterpenes included α-humulene (17.8%) and α-copaene (8.5%) and the oxygenated sesquiterpene spathulenol (11.8%) were also identified. Monoterpenes were not identified. The fractions are mainly composed of oxygenated sesquiterpenes, and the most active fraction is rich in the sesquiterpene 14-hydroxy -9-epi-β-caryophyllene. This fraction was the most effective in inhibiting the growth of three yeast strains.

  8. Optimization of Bacillus aerius strain JS-786 cell dry mass and its antifungal activity against Botrytis cinerea using response surface methodology

    Directory of Open Access Journals (Sweden)

    Shafi Jamil

    2017-01-01

    Full Text Available The optimization of fermentation conditions is necessary for field application of biological control agents. The present study was designed to optimize the fermentation conditions for the Bacillus aerius strain, JS-786 in terms of cell dry mass and its antifungal activity against Botrytis cinerea with response surface methodology. A strain of bacteria with strong antifungal activity was isolated from the phyllosphere of tomato plant and identified as B. aerius JS-786 based on the sequence homology of its 16S rRNA gene. After the success of preliminary antifungal activity tests, response surface methodology was used to optimize the fermentation conditions (medium pH, gelatin percentage, incubation period, rotatory speed and incubation temperature to maximize the cell dry mass and antifungal activity against B. cinerea. A 25 factorial central composite design was employed and multiple response optimization was used to determine the desirability of the operation. The results of regression analysis showed that at the individual level, all of the experimental parameters were significant for cell dry mass; significant results were obtained for antifungal activity pH, incubation period, rotatory speed and incubation temperature. The interactive effect of the incubation period, rotatory speed and incubation temperature was significant. Maximum cell dry mass (8.7 g/L and inhibition zone (30.4 mm were obtained at pH 6.4, gelatin 3.2%, incubation period 36.92 h, rotatory speed 163 rpm, and temperature 33.5°C. This study should help to formulate a more rational and cost-effective biological product both in terms of bacterial growth and antifungal activity.

  9. Cool temperatures reduce antifungal activity of symbiotic bacteria of threatened amphibians--implications for disease management and patterns of decline.

    Directory of Open Access Journals (Sweden)

    Joshua H Daskin

    Full Text Available Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd, is a widespread disease of amphibians responsible for population declines and extinctions. Some bacteria from amphibians' skins produce antimicrobial substances active against Bd. Supplementing populations of these cutaneous antifungal bacteria might help manage chytridiomycosis in wild amphibians. However, the activity of protective bacteria may depend upon environmental conditions. Biocontrol of Bd in nature thus requires knowledge of how environmental conditions affect their anti-Bd activity. For example, Bd-driven amphibian declines have often occurred at temperatures below Bd's optimum range. It is possible these declines occurred due to reduced anti-Bd activity of bacterial symbionts at cool temperatures. Better understanding of the effects of temperature on chytridiomycosis development could also improve risk evaluation for amphibian populations yet to encounter Bd. We characterized, at a range of temperatures approximating natural seasonal variation, the anti-Bd activity of bacterial symbionts from the skins of three species of rainforest tree frogs (Litoria nannotis, Litoria rheocola, and Litoria serrata. All three species declined during chytridiomycosis outbreaks in the late 1980s and early 1990s and have subsequently recovered to differing extents. We collected anti-Bd bacterial symbionts from frogs and cultured the bacteria at constant temperatures from 8 °C to 33 °C. Using a spectrophotometric assay, we monitored Bd growth in cell-free supernatants (CFSs from each temperature treatment. CFSs from 11 of 24 bacteria showed reduced anti-Bd activity in vitro when they were produced at cool temperatures similar to those encountered by the host species during population declines. Reduced anti-Bd activity of metabolites produced at low temperatures may, therefore, partially explain the association between Bd-driven declines and cool temperatures. We show that to

  10. Cool temperatures reduce antifungal activity of symbiotic bacteria of threatened amphibians--implications for disease management and patterns of decline.

    Science.gov (United States)

    Daskin, Joshua H; Bell, Sara C; Schwarzkopf, Lin; Alford, Ross A

    2014-01-01

    Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is a widespread disease of amphibians responsible for population declines and extinctions. Some bacteria from amphibians' skins produce antimicrobial substances active against Bd. Supplementing populations of these cutaneous antifungal bacteria might help manage chytridiomycosis in wild amphibians. However, the activity of protective bacteria may depend upon environmental conditions. Biocontrol of Bd in nature thus requires knowledge of how environmental conditions affect their anti-Bd activity. For example, Bd-driven amphibian declines have often occurred at temperatures below Bd's optimum range. It is possible these declines occurred due to reduced anti-Bd activity of bacterial symbionts at cool temperatures. Better understanding of the effects of temperature on chytridiomycosis development could also improve risk evaluation for amphibian populations yet to encounter Bd. We characterized, at a range of temperatures approximating natural seasonal variation, the anti-Bd activity of bacterial symbionts from the skins of three species of rainforest tree frogs (Litoria nannotis, Litoria rheocola, and Litoria serrata). All three species declined during chytridiomycosis outbreaks in the late 1980s and early 1990s and have subsequently recovered to differing extents. We collected anti-Bd bacterial symbionts from frogs and cultured the bacteria at constant temperatures from 8 °C to 33 °C. Using a spectrophotometric assay, we monitored Bd growth in cell-free supernatants (CFSs) from each temperature treatment. CFSs from 11 of 24 bacteria showed reduced anti-Bd activity in vitro when they were produced at cool temperatures similar to those encountered by the host species during population declines. Reduced anti-Bd activity of metabolites produced at low temperatures may, therefore, partially explain the association between Bd-driven declines and cool temperatures. We show that to avoid

  11. Antibacterial and antifungal activities of the polyphenolic fractions isolated from the seed coat of Abrus precatorius and Caesalpinia crista.

    Science.gov (United States)

    Mobin, Lubna; Saeed, Syed Asad; Ali, Rashida; Saeed, Syed Ghufran; Ahmed, Rahil

    2017-09-26

    Crude seed coat extracts from Abrus precatorius and Caesalpinia crista were purified into four different fractions namely phenolic acids, flavonols, flavanols and anthocyanin which were then examined for their polyphenol contents and antimicrobial potentials. The fractions derived from seed coat of A. precatorius were found more potent with high phenolic and flavonoid contents as compared to C. crista fractions. The significant antibacterial activity was observed against all strain tested by the fractions of both samples apart from anthocyanin fraction. It was interesting to note that the phenolic acid fractions of both samples was found more active against gram-negative bacteria, while gram-positive bacteria were found to be more sensitive towards flavonol fractions. The phenolic acid and flavonol fractions being potent antibacterial were selected to demonstrate the antifungal capacity of two samples. Among them, phenolic acid fraction of both samples was found active towards all the fungal strain.

  12. Synthesis and in Vitro Antifungal Activity against Botrytis cinerea of Geranylated Phenols and Their Phenyl Acetate Derivatives

    Science.gov (United States)

    Chávez, María I.; Soto, Mauricio; Taborga, Lautaro; Díaz, Katy; Olea, Andrés F.; Bay, Camila; Peña-Cortés, Hugo; Espinoza, Luis

    2015-01-01

    The inhibitory effects on the mycelial growth of plant pathogen Botritys cinerea have been evaluated for a series of geranylphenols substituted with one, two and three methoxy groups in the aromatic ring. The results show that the antifungal activity depends on the structure of the geranylphenols, increasing from 40% to 90% by increasing the number of methoxy groups. On the other hand, the acetylation of the –OH group induces a change of activity that depends on the number of methoxy groups. The biological activity of digeranyl derivatives is lower than that exhibited by the respective monogeranyl compound. All tested geranylphenols have been synthesized by direct coupling of geraniol and the respective phenol. The effect of solvent on yields and product distribution is discussed. For monomethoxyphenols the reaction gives better yields when acetonitrile is used as a solvent and AgNO3 is used as a secondary catalyst. However, for di- and trimethoxyphenols the reaction proceeds only in dioxane. PMID:26287171

  13. Antimicrobial and antifungal activity of 2-(1H-tetrazolo-5-ylanilines and products of their structural modifications

    Directory of Open Access Journals (Sweden)

    O. M. Antypenko

    2016-08-01

    Full Text Available Virtually any molecule of antibiotic can be inactivated in the microbial cell by particular resistance mechanism. In this regard, each antibiotic effectiveness starts to decrease, which necessitates the synthesis of new antimicrobial agents. Aim. To examine the previously synthesized substituted 2-(1H-tetrazolo-5-ylanilines and products of their structural modification for antimicrobial and antifungal activity. Materials and methods. The study of biological activity was conducted by disco-diffusion method on Mueller-Hinton agar on these strains of microorganisms: Gram-positive cocci (Staphylococcus aureus ATCC 25923, Enterococcus aeruginosa, E. faecalis ATCC 29212, Gram-negative bacteria (Pseudomonas aeruginosa PSS27853, Escherichia coli ATCC 25922, facultative anaerobic gram-negative bacteria (Klebsiella pneumonia and fungi (Candida albicans ATCC 885653. Results. The studies showed, that the antifungal activity was characteristic only for S-substituted of tetrazolo[1,5-c]quinazoline-(6H-5-ones(thiones. The growth of gram-positive cocci Staphylococcus aureus and Enterococcus faecalis, more effectively detained 5-(N,N-dialkylaminoethylthio-tetrazolo[1,5-c]quinazolines (4.4-4.6. 1-(2- (1H-tetrazolo-5-yl-R1-phenyl-3-R2-phenyl(ethylureas (2.1-2.31 were more selective against Staphylococcus aureus and Enterococcus faecalis. Analysis of «structure-activity relationship» showed, that the introduction of halogen to the aniline fragment leads to increase of activity. Thus, the compound 2.3 with fluorine stopped the growth of Escherichia coli and Klebsiella pneumonia for 31 mm and 21 mm, respectively. Structures with chlorine (2.4 and bromine (2.5 stopped the growth of Pseudomonas aeruginosa at 20 mm and 23 mm, respectively. And the presence of trifluoromethyl group in the phenylureide fragment and chlorine in aniline fragment of compound 2.27 led to the highest growth delay zone 25 mm. Among the investigated compounds only 1-(4-methoxyphenyl-2

  14. Antifungal activity of extracts from Piper aduncum leaves prepared by different solvents and extraction techniques against dermatophytes Trichophyton rubrum and Trichophyton interdigitale.

    Science.gov (United States)

    Santos, Maximillan Leite; Magalhães, Chaiana Froés; da Rosa, Marcelo Barcellos; de Assis Santos, Daniel; Brasileiro, Beatriz Gonçalves; de Carvalho, Leandro Machado; da Silva, Marcelo Barreto; Zani, Carlos Leomar; de Siqueira, Ezequias Pessoa; Peres, Rodrigo Loreto; Andrade, Anderson Assunção

    2013-12-01

    The effects of different solvents and extraction techniques upon the phytochemical profile and anti-Trichophyton activity of extracts from Piper aduncum leaves were evaluated. Extract done by maceration method with ethanol has higher content of sesquiterpenes and antifungal activity. This extract may be useful as an alternative treatment for dermatophytosis.

  15. Antifungal activity of extracts from Piper aduncum leaves prepared by different solvents and extraction techniques against dermatophytes Trichophyton rubrum and Trichophyton interdigitale

    Directory of Open Access Journals (Sweden)

    Maximillan Leite Santos

    2013-12-01

    Full Text Available The effects of different solvents and extraction techniques upon the phytochemical profile and anti-Trichophyton activity of extracts from Piper aduncum leaves were evaluated. Extract done by maceration method with ethanol has higher content of sesquiterpenes and antifungal activity. This extract may be useful as an alternative treatment for dermatophytosis.

  16. Chemical composition, antibacterial and antifungal activities of flowerhead and root essential oils of Santolina chamaecyparissus L., growing wild in Tunisia

    Directory of Open Access Journals (Sweden)

    Karima Bel Hadj Salah-Fatnassi

    2017-05-01

    Full Text Available The antimicrobial properties of essential oil from various Santolina species have not been investigated enough in the previous studies dealing with the biological activities of medicinal plants. In Tunisia, Santolina chamaecyparissus L. (Asteraceae is the only Santolina species recorded and is used as vermifuge and emmenagogue. The chemical composition, antibacterial and antifungal properties of essential oils from the flowerheads and roots of spontaneous S. chamaecyparissus growing in Tunisia and the chemical composition which leads to the Tunisian chemotype are investigated here for the first time. Essential oils isolated by hydro distillation from flowerheads and roots of S. chamaecyparissus were analyzed by GC and GC/MS. Two methods served for antimicrobial assays of the essential oils: diffusion in a solid medium and micro-well dilution assay. Antifungal tests were carried out by the agar incorporation method. Sixty-seven constituents were identified from the essential oil of the flowerhead. The major constituents were: 1,8-cineole and β-eudesmol. Two non identified compounds were present at the highest concentration in root oil. Flowerhead oil was characterized by high contents in monoterpenes and sesquiterpenes oxygenated compounds. The flowerhead essential oil demonstrated potent of antibacterial properties against Pseudomonas aeruginosa ATCC and Enterococcus faecalis ATCC, with MIC of 0.625 μg/ml. These findings demonstrate that the flowerhead essential oils of S. chamaecyparissus have excellent antibacterial properties and for this reason they could contribute to decrease the problem of microbial resistance to antibiotics.

  17. Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum

    Science.gov (United States)

    Gopinath, V.; Velusamy, P.

    2013-04-01

    In last few decades nanoparticles have attracted and emerged as a field in biomedical research due to their incredible applications. The current research was focused on extracellular synthesis of silver nanoparticles (AgNPs) using cell free culture supernatant of strain GP-23. It was found that the strain GP-23 belonged to Bacillus species by 16S rRNA sequence analysis. Biosynthesis of AgNPs was achieved by addition of culture supernatant with aqueous silver nitrate solution, after 24 h it turned to brown color solution with a peak at 420 nm corresponding to the Plasmon absorbance of AgNPs by UV-Vis Spectroscopy. The nanoparticles were characterized by FTIR, XRD, HRTEM, EDX and AFM. The synthesized nanoparticles were found to be spherical in shape with size in the range of 7-21 nm. It was stable in aqueous solution for five months period of storage at room temperature under dark condition. The biosynthesized AgNPs exhibited strong antifungal activity against plant pathogenic fungus, Fusarium oxysporum at the concentration of 8 μg ml-1. The results suggest that the synthesized AgNPs act as an effective antifungal agent/fungicide.

  18. Bacterial and fungal keratitis in Upper Egypt: In vitro screening of enzymes, toxins and antifungal activity

    Directory of Open Access Journals (Sweden)

    Abdullah A Gharamah

    2014-01-01

    Full Text Available Purpose: This work was conducted to study the ability of bacterial and fungal isolates from keratitis cases in Upper Egypt to produce enzymes, toxins, and to test the isolated fungal species sensitivity to some therapeutic agents. Materials and Methods: One hundred and fifteen patients clinically diagnosed to have microbial keratitis were investigated. From these cases, 37 bacterial isolates and 25 fungal isolates were screened for their ability to produce extra-cellular enzymes in solid media. In addition, the ability of fungal isolates to produce mycotoxins and their sensitivity to 4 antifungal agents were tested. Results: Protease, lipase, hemolysins, urease, phosphatase, and catalase were detected respectively in 48.65%, 37.84%, 59.46%, 43.24%, 67.57%, and 100% out of 37 bacterial isolates tested. Out of 25 fungal isolates tested during the present study, 80% were positive for protease, 84% for lipase and urease, 28% for blood hemolysis, and 100% for phosphatase and catalase enzymes. Thirteen fungal isolates were able to produce detectable amounts of 7 mycotoxins in culture medium (aflatoxins (B1, B2, G1, and G2, sterigmatocystin, fumagillin, diacetoxyscirpenol, zearalenone, T-2 toxin, and trichodermin. Among the antifungal agents tested in this study, terbinafine showed the highest effect against most isolates in vitro. Conclusion: In conclusion, the ability of bacterial and fungal isolates to produce extracellular enzymes and toxins may be aid in the invasion and destruction of eye tissues, which, in turn, lead to vision loss.

  19. Synergism of Antifungal Activity between Mitochondrial Respiration Inhibitors and Kojic Acid

    Directory of Open Access Journals (Sweden)

    Ronald P. Haff

    2013-01-01

    Full Text Available Co-application of certain types of compounds to conventional antimicrobial drugs can enhance the efficacy of the drugs through a process termed chemosensitization. We show that kojic acid (KA, a natural pyrone, is a potent chemosensitizing agent of complex III inhibitors disrupting the mitochondrial respiratory chain in fungi. Addition of KA greatly lowered the minimum inhibitory concentrations of complex III inhibitors tested against certain filamentous fungi. Efficacy of KA synergism in decreasing order was pyraclostrobin > kresoxim-methyl > antimycin A. KA was also found to be a chemosensitizer of cells to hydrogen peroxide (H2O2, tested as a mimic of reactive oxygen species involved in host defense during infection, against several human fungal pathogens and Penicillium strains infecting crops. In comparison, KA-mediated chemosensitization to complex III inhibitors/H2O2 was undetectable in other types of fungi, including Aspergillus flavus, A. parasiticus, and P. griseofulvum, among others. Of note, KA was found to function as an antioxidant, but not as an antifungal chemosensitizer in yeasts. In summary, KA could serve as an antifungal chemosensitizer to complex III inhibitors or H2O2 against selected human pathogens or Penicillium species. KA-mediated chemosensitization to H2O2 seemed specific for filamentous fungi. Thus, results indicate strain- and/or drug-specificity exist during KA chemosensitization.

  20. Synergism of antifungal activity between mitochondrial respiration inhibitors and kojic acid.

    Science.gov (United States)

    Kim, Jong H; Campbell, Bruce C; Chan, Kathleen L; Mahoney, Noreen; Haff, Ronald P

    2013-01-25

    Co-application of certain types of compounds to conventional antimicrobial drugs can enhance the efficacy of the drugs through a process termed chemosensitization. We show that kojic acid (KA), a natural pyrone, is a potent chemosensitizing agent of complex III inhibitors disrupting the mitochondrial respiratory chain in fungi. Addition of KA greatly lowered the minimum inhibitory concentrations of complex III inhibitors tested against certain filamentous fungi. Efficacy of KA synergism in decreasing order was pyraclostrobin > kresoxim-methyl > antimycin A. KA was also found to be a chemosensitizer of cells to hydrogen peroxide (H₂O₂), tested as a mimic of reactive oxygen species involved in host defense during infection, against several human fungal pathogens and Penicillium strains infecting crops. In comparison, KA-mediated chemosensitization to complex III inhibitors/H₂O₂ was undetectable in other types of fungi, including Aspergillus flavus, A. parasiticus, and P. griseofulvum, among others. Of note, KA was found to function as an antioxidant, but not as an antifungal chemosensitizer in yeasts. In summary, KA could serve as an antifungal chemosensitizer to complex III inhibitors or H₂O₂ against selected human pathogens or Penicillium species. KA-mediated chemosensitization to H₂O₂ seemed specific for filamentous fungi. Thus, results indicate strain- and/or drug-specificity exist during KA chemosensitization.

  1. Chemical constituents from Swartzia apetala Raddi var. glabra and evaluation of their antifungal activity against Candida spp.

    Directory of Open Access Journals (Sweden)

    Marcelo Francisco de Araujo

    Full Text Available From the hexanic extract of the stem from Swartzia apetala Raddi var. glabra were isolated one stilbene (1, one flavanone (2, one pterocarpan (3, one triterpene (4 and a mixture of three steroids (5 to 7. The crude extract and the compounds isolated were submitted to evaluation of the antifungal activity against nine yeast standard ATCC of the Candida genus. Among the compounds only the triterpene (4 and the mixture of steroids (5 to 7 showed no activity. The structures of the compounds were determined by spectral data analysis of GC/MS and ¹H and 13C NMR (1D and 2D experiments, as well as comparison with literature values.

  2. Studies on the antifungal activities of the novel synthesized chelating co-polymer emulsion lattices and their silver complexes

    Directory of Open Access Journals (Sweden)

    Abd-El-Ghaffar M.A.

    2008-01-01

    Full Text Available The novel binary chelating co-polymers of butyl acrylate with itaconic and maleic acids were prepared by emulsion polymerization process. The chelating co-polymers of butyl acrylate-co-itaconic acid (BuA/IA and butyl acrylate-co-maleic acid (BuA/MA and their silver complexes were characterized and identified using IR spectroscopy and differential scanning calorimetry (DSC measurements. The biological activities of these compounds were studied against various types of fungal species. The dose and the rate of leached silver ions were controlled by the type of the co-polymers used and the solubility in the medium. The results provided laboratory support for the concept that the polymers containing chemically bound biocide are useful for controlling microbial growth. The silver uptake by strains of different fungal species was studied to determine their difference in behavior to the antifungal activities of these compounds. The uptake strategy was examined by transmission electron microscopy (TEM.

  3. Chemical composition and antifungal activity of essential oil of Salvia sclarea L. from Bulgaria against isolates of Candida species

    Directory of Open Access Journals (Sweden)

    Yana Hristova

    2013-01-01

    Full Text Available The essential oil of Salvia sclarea L., growing in Bulgaria, was analyzed by gas chromatography – mass spectrometry. A total of 52 different compounds were identified, representing 98.25% of total oil content. Linalyl acetate (56.88% and linalool (20.75% were determined as major essential oil constituents, followed by germacrene D (5.08% and β-cariophyllene (3.41%. Antifungal activities of clary sage essential oil and major compounds linalyl acetate and linalool against 30 clinical isolates, belonging to species Candida albicans, Candida tropicalis, Candida krusei, Candida glabrata and Candida parapsilosis were evaluated. Essential oil characterized with stronger anticandidial activity in comparison with pure compounds.

  4. Chemical Variability, Antioxidant and Antifungal Activities of Essential Oils and Hydrosol Extract of Calendula arvensis L. from Western Algeria.

    Science.gov (United States)

    Belabbes, Rania; Dib, Mohammed El Amine; Djabou, Nassim; Ilias, Faiza; Tabti, Boufeldja; Costa, Jean; Muselli, Alain

    2017-05-01

    The chemical composition of the essential oils and hydrosol extract from aerial parts of Calendula arvensis L. was investigated using GC-FID and GC/MS. Intra-species variations of the chemical compositions of essential oils from 18 Algerian sample locations were investigated using statistical analysis. Chemical analysis allowed the identification of 53 compounds amounting to 92.3 - 98.5% with yields varied of 0.09 - 0.36% and the main compounds were zingiberenol 1 (8.7 - 29.8%), eremoligenol (4.2 - 12.5%), β-curcumene (2.1 - 12.5%), zingiberenol 2 (4.6 - 19.8%) and (E,Z)-farnesol (3.5 - 23.4%). The study of the chemical variability of essential oils allowed the discrimination of two main clusters confirming that there is a relation between the essential oil compositions and the harvest locations. Different concentrations of essential oil and hydrosol extract were prepared and their antioxidant activity were assessed using three methods (2,2-diphenyl-1-picrylhydrazyl, Ferric-Reducing Antioxidant Power Assay and β-carotene). The results showed that hydrosol extract presented an interesting antioxidant activity. The in vitro antifungal activity of hydrosol extract produced the best antifungal inhibition against Penicillium expansum and Aspergillus niger, while, essential oil was inhibitory at relatively higher concentrations. Results showed that the treatments of pear fruits with essential oil and hydrosol extract presented a very interesting protective activity on disease severity of pears caused by P. expansum. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  5. In Vitro Study of the Antifungal Activity of Essential Oils Obtained from Mentha spicata, Thymus vulgaris, and Laurus nobilis.

    Science.gov (United States)

    Houicher, Abderrahmane; Hechachna, Hind; Teldji, Hanifa; Ozogul, Fatih

    2016-01-01

    The aim of this study was to determine the antifungal activity of the essential oils isolated from three aromatic plants against 13 filamentous fungal strains. The major constituents of Mentha spicata, Thymus vulgaris, and Laurus nobilis essential oils were carvone (52.2%), linalool (78.1%), and 1,8-cineole (45.6%), respectively. There are also some patents suggesting the use of essential oils as natural and safe alternatives to fungicides for plant protection. In the present work, M. spicata essential oil exhibited the strongest activity against all tested fungi in which Fusarium graminearum, F.moniliforme, and Penicillium expansum were the most sensitive to mint oil with lower minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) values of 2.5 μL mL-1 (v/v). Thymus vulgaris essential oil was less active compared to the oil of M. spicata. Aspergillus ochraceus was the most sensitive strain to thyme oil with MIC and MFC values of 2.5 and 5 μL mL-1, respectively. Thymus vulgaris essential oil also exhibited a moderate fungicidal effect against the tested fungi, except for A. niger (MFC >20 μL-1). L. nobilis essential oil showed a similar antifungal activity with thyme oil in which A. parasiticus was the most resistant strain to this oil (MFC >20 μL mL-1). Our findings suggested the use of these essential oils as alternatives to synthetic fungicides in order to prevent pre-and post-harvest infections and ensure product safety. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Synthesis, spectral characterization and in vitro antifungal activity of Lanthanum(III) and Praseodymium(III) complexes with Schiff bases derived from 5-substituted-4-amino-5-hydrazino-1,2,4-triazoles and isatin

    International Nuclear Information System (INIS)

    Singh, Shweta; Tripathi, Priti; Pandey, Om P.; Sengupta, Soumitra K.

    2013-01-01

    The new lanthanum(III) and praseodymium(III) complexes of the general formula (LnCl(L)(H 2 O) 2 ) (Ln = La III or Pr III ; H 2 L = Schiff bases derived from 3-substituted-4-amino-5-hydrazino-1,2,4-triazoles and isatin) have been prepared. The complexes have been characterized by elemental analyses, molecular weight by FAB-mass, thermogravimetry, electrical conductance, magnetic moment and spectral (electronic, infrared, far-infrared, 1 H NMR and 13 C NMR) data. The ligands and all prepared complexes were assayed for antifungal (Aspergillus niger and Helminthosporium oryzae) activities. The activities have been correlated with the structures of the complexes. (author)

  7. Antifungal pharmacodynamics: Latin America's perspective

    Directory of Open Access Journals (Sweden)

    Javier M. Gonzalez

    2017-01-01

    Full Text Available The current increment of invasive fungal infections and the availability of new broad-spectrum antifungal agents has increased the use of these agents by non-expert practitioners, without an impact on mortality. To improve efficacy while minimizing prescription errors and to reduce the high monetary cost to the health systems, the principles of pharmacokinetics (PK and pharmacodynamics (PD are necessary. A systematic review of the PD of antifungals agents was performed aiming at the practicing physician without expertise in this field. The initial section of this review focuses on the general concepts of antimicrobial PD. In vitro studies, fungal susceptibility and antifungal serum concentrations are related with different doses and dosing schedules, determining the PD indices and the magnitude required to obtain a specific outcome. Herein the PD of the most used antifungal drug classes in Latin America (polyenes, azoles, and echinocandins is discussed.

  8. Radiation application for upgrading of bioresources - Development of antifungal and/or nitrogen fixative microbes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Sung; Ko, Dong Kyu; Han, Gab Jin [Paichai University, Taejon (Korea)

    2000-04-01

    (1) In this study, the antifungal bacteria six strains were isolated from various environment located in Chung-cheong area, Korea. These isolates were identified the genera Bacillus sp, Pseudomonas sp. through morphological, physiological and biochemical analysis. Strains KL3362 and KL3397 were identified as Pseudomonas aurantiaca and Alcaligenes faecalis, respectively. Considering antifungal(AF) spectrum, strain KL3303, 3334, and 3341 show the broad range, KL3362 and KL3397 the narrow range of AF activity on a number of pathogenic fungi. Therefore, strains KL3341 and KL3362 were selected as the strong candidate of antifungal bacteria on every purpose and usage related with our research goal. (2) KL3341 producing-antifungal substances were consisted of five different kinds of low molecular weight polypeptides (3) Optimal conditions for the production of antifungal substances were analyzed under various environmental conditions. Growth rates were different according to carbon and nitrogen source, antifungal substance production yields were not different, however. Product of antifungal substances according t phosphate is proportional to the concentration. And productivity of antifungal substances was generally high in the range 30 {approx} 37 deg. C at pH 7. In case of adding vitamin B1 or lysine to medium, the antifungal activity was enhanced. (4) Mutants with enhanced antifungal activities were constructed by radiation of {gamma}-ray. (5) AF strains were screened and selected from this research can be used in the microbial biocides as well as multifunctional bio-controllers in order to remove plant pathogenic fungi and to clarify the polluted environment. Due to their excellent degradation capability for agricultural and/or organic substances, they also can be used to improve soil quality, to ferment compost and to clean up the environment. 35 refs., 17 figs., 15 tabs. (Author)

  9. Antifungal activity of fluconazole-loaded natural rubber latex against Candida albicans.

    Science.gov (United States)

    Yonashiro Marcelino, Mônica; Azevedo Borges, Felipe; Martins Costa, Ana Flávia; de Lacorte Singulani, Junya; Ribeiro, Nathan Vinícius; Barcelos Costa-Orlandi, Caroline; Garms, Bruna Cambraia; Soares Mendes-Giannini, Maria José; Herculano, Rondinelli Donizetti; Fusco-Almeida, Ana Marisa

    2018-03-01

    This work aimed to produce a membrane based on fluconazole-loaded natural rubber latex (NRL), and study their interaction, drug release and antifungal susceptibility against Candida albicans. Fluconazole-loaded NRL membrane was obtained by casting method. The Fourier Transform Infrared Spectroscopy showed no modifications either in NRL or fluconazole after the incorporation. Mechanical test presented low Young's modulus and high strain, indicating the membranes have sufficient elasticity for biomedical application. The bio-membrane was able to release the drug and inhibit the growth of C. albicans as demonstrated by disk diffusion and macrodilution assays. The biomembrane was able to release fluconazole and inhibit the growth of C. albicans, representing a promising biomaterial for skin application.

  10. Phenolic composition and medicinal usage of Psidium guajava Linn.: Antifungal activity or inhibition of virulence?

    Directory of Open Access Journals (Sweden)

    Maria F.B. Morais-Braga

    2017-02-01

    Full Text Available Psidium guajava is a Myrtaceae plant whose medicinal properties are recognized in several locations. The use of teas and tinctures prepared from their leaves has been used to combat infections caused by fungi of the genus Candida. In this study, aqueous extracts of leaves and hydroethanolic were tested to verify the antifungal potential and its chemical composition has been investigated. The microbiological assays were performed by broth microdilution to determine the minimum inhibitory concentration (MIC and from these the minimum fungicidal concentration was performed (MFC by subculturing on solid media. A cell viability curve was obtained for demonstration of inhibition of fungal growth of strains of Candida albicans and Candida tropicalis. Tests to check morphological changes by the action of the extracts were performed in microcultive cameras depleted environment at concentrations of MIC/2, MIC and MIC × 2. Extracts analyzed by high performance liquid chromatography demonstrated flavonoids and phenolic acids. The extracts showed fungistatic effect and no fungicide with MIC >8192 μg/mL, MFC above 8192 μg/mL. The IC50 was calculated ranging from 1803.02 to 5623.41 μg/mL. It has been found that the extracts affect the morphological transition capability, preventing the formation of pseudohyphae and hyphae. Teas and tinctures, therefore, have the potential antifungal, by direct contact, causing inhibition of fungal multiplication and its virulence factor, the cell dimorphism, preventing tissue invasion. Further studies are needed to elucidate the biochemical pathways and genes assets involved in these processes.

  11. Preliminary phytochemical screening, antifungal and cytotoxic activities of leaves extract of moringa oleifera lam. from salt range, pakistan

    International Nuclear Information System (INIS)

    Maqsood, M.; Qureshi, R.; Arshad, M.; Ahmed, M.E.; Ikram, M.

    2017-01-01

    Moringa oleifera Lam. is a miraculous plant that endowed with variety of medicinal properties and traditionally used as herbal drug as well as nutraceutical agent. There is sporadic information on phytochemical and antifungal activity of various solvents based leaves extracts. Therefore, the present study was designed to explore In vitro antifungal activity of M. oleifera leaves against Aspergillus fumigatus, A. niger and Candida albicans at four different concentrations (50-300 mg/ml) by ager well diffusion method. Leaves of this plant were collected from the Thal Desert, Pakistan, dried under shade, powdered and kept in air tight sterilized bottles. Polarity based solvent extraction of powdered samples were carried out with different solvents. The ethanolic and methanolic extracts were found the most effective against all selected fungal strains. The maximum zone of inhibition was recorded in the case of methanolic leaves extract (16 mm) against A. niger at a concentration of 300 mg/ml, which was at par to the standard antibiotic. Methanolic extract showed the highest MIC value (70 mg/ml) against A. niger. There was very strong activity in terms of IC50 against MCF-7, INS-1, RG2 and HeLa (<5 mu gmL-1). The quantitative phytochemical analysis revealed that leaves possessed high amount of flavonoids (21.76+-0.68), followed tannins (14.3+-0.26), saponins (12.56+-0.51) and alkaloids (2.4+-0.85). This piece of research would be used as benchmark to carry-out further detailed study ranging from isolation, characterization, pharmacological diagnosis and clinical trials prior to launching marketable drug. (author)

  12. Screening of marine algae (Padina sp. from the Lengeh Port, Persian Gulf for antibacterial and antifungal activities

    Directory of Open Access Journals (Sweden)

    Azadeh Taherpour

    2016-09-01

    Full Text Available Objective: To evaluate the antibacterial efficacy of different solvent extracts of Padina sp. against selected human pathogenic bacteria and fungi species such as Escherichia coli, Shigella sp., Staphylococcus aureus (S. aureus, Pseudomonas aeruginosa, Aspergillus flavus and Candida albicans. Methods: Various solvents including methanol, ethyl acetate, chloroform and hexane were used to acquire crude extracts from marine algae Padina sp. After crude preparation, antibacterial and antifungal activities were screened against clinically important human pathogenic bacteria using disc and well diffusion methods. For all the bacterial species used in this research, minimum inhibitory concentration was undertaken considering various solvent extracts of Padina sp. To ensure the accuracy of experiments, a positive control was also included. Results: Confirmed that hexane is the best solvent to extract antimicrobial agents from Padina sp. Among selected bacteria, S. aureus was the most sensitive test microorganism. While, all other microorganisms showed resistance against methanol, ethyl acetate, chloroform extracts. In fact, by increasing concentration of hexane extract, inhibition of S. aureus growth or antimicrobial activity was increased. Growth inhibition zone in well method showed better results compared to disc diffusion method. The minimum inhibitory concentration and minimum bactericidal concentration of hexane extract were 15 and 30 mg/mL against S. aureus, respectively. All Padina sp. extracts did not reveal any antifungal activities against fungi species in this study. Conclusions: Brown algae extracts showed sufficient antibacterial properties against S. aureus. Therefore, Padina sp. in this research can be a good candidate to design and manufacture novel antibacterial agents used in pharmaceutical industries.

  13. Reveromycins A and B from Streptomyces sp. 3–10: Antifungal activity against plant pathogenic fungi in vitro and in a strawberry food model system

    Science.gov (United States)

    This study was conducted to determine the antifungal activity of the metabolites from Streptomyces sp. 3–10, and to purify and identify the metabolites. Meanwhile, the taxonomic status of strain 3–10 was re-evaluated. The cultural filtrates of strain 3–10 in potato dextrose broth were extract...

  14. Synthesis of selected 5-thio-substituted tetrazole derivatives and evaluation of their antibacterial and antifungal activities

    Directory of Open Access Journals (Sweden)

    NALILU SUCHETHA KUMARI

    2011-02-01

    Full Text Available Several 5-thio-substituted tetrazole derivatives were efficiently synthesized by a three-step process. The substituted tetrazol-5-thiol, namely, 1-benzyl-1H-tetrazole-5-thiol (2 was prepared by refluxing commercially available benzyl isothiocyanate (1 with sodium azide in water. The second step was the synthesis of 1-benzyl-5-[(3-bromopropylthio]-1H-tetrazole (3 by thioalkylation of tetrazole-5-thiol 2 with 1,3-dibromopropane in tetrahydrofuran. Finally, the 5-thio-substituted tetrazole derivatives 4a–i were prepared by condensation of 3 with the corresponding amine or thiol. The structures of the newly synthesized compounds were characterized by NMR, LC/MS/MS, IR spectral data and elemental analysis. All the synthesized compounds were screened for their antibacterial and antifungal activities.

  15. Antimicrobial and antifungal activity of some (5-(adamantane-1-yl-4R-1,2,4-triazole-3-ylthiols substitutes

    Directory of Open Access Journals (Sweden)

    V. M. Odyntsova

    2016-12-01

    Full Text Available Lately adamantine containing substances have found wide use among the skeleton derivatives. The combination of adamantane and 1,2,4-triazole in one molecule creates significant preconditions to design new potential drugs with low toxicity and pronounced pharmacological activity. The aim of the research is the study of antimicrobial and antifungal activity of (5-(adamantane-1-yl-4-R-1,2,4-triazole-3-ylthiols substitutes. Materials and methods. Determination of antimicrobial and antifungal activity has been carried out by 2-fold serial dilutions method in liquid nutrient media. The substance of the antibacterial drug Trimethoprim has been applied as a control in determining antimicrobial activity of the compounds against the investigated strains of microorganisms. Results. According to the data of experiments the 5-(((5-(adamantane-1-yl-4-ethyl-4H-1,2,4-triazole-3-ylthiomethyl-4-ethyl-4H-1,2,4-triazole-3-thiol shows the same activity as Trimethoprim against P. aeruginosa (MIC is 62.5 µg/ml, MBC – 125 μg/ml, marked activity towards S. aureus (MIC is 15.6 μg/ml, MBC – 31.25 μg/ml while trimethoprim – 31.25 μg/ml, MBC – 62.5 µg/ml, greater fungistatic and fungicidal activity towards C. albicans, which amounted to 31.25 µg/ml, MFC – 62.5 µg/ml (while trimethoprim 62.5 µg/ml, MFC – 125 µg/ml. Reconstration of benzyldenhydrazide group to hydrazide one leads to the slight increase of bacteriostatic activity. Replacing the radical R from -Н to -C2H5 does not influence on the change of fungistatic activity. However, this resulted to the decrease in bacteriostatic activity against E. coli. The same is observed in relation to P. aeruginosa: from 62.5 μg/ml, MFC – 125 mcg/ml to 125 μg/ml, MFC – 125 µg/m respectively. Conclusion. The conducted study has showed that among the synthesized compounds there are some substances which strength of the antimicrobial and antifungal action in some cases exceeds the standard of comparison

  16. Fumigant Antifungal Activity of Myrtaceae Essential Oils and Constituents from Leptospermum petersonii against Three Aspergillus Species

    Directory of Open Access Journals (Sweden)

    Il-Kwon Park

    2012-09-01

    Full Text Available Commercial plant essential oils obtained from 11 Myrtaceae plant species were tested for their fumigant antifungal activity against Aspergillus ochraceus, A. flavus, and A. niger. Essential oils extracted from Leptospermum petersonii at air concentrations of 56 × 10−3 mg/mL and 28 × 10−3 mg/mL completely inhibited the growth of the three Aspergillus species. However, at an air concentration of 14 × 10−3 mg/mL, inhibition rates of L. petersonii essential oils were reduced to 20.2% and 18.8% in the case of A. flavus and A. niger, respectively. The other Myrtaceae essential oils (56 × 10−3 mg/mL only weakly inhibited the fungi or had no detectable affect. Gas chromatography-mass spectrometry analysis identified 16 compounds in L. petersonii essential oil. The antifungal activity of the identified compounds was tested individually by using standard or synthesized compounds. Of these, neral and geranial inhibited growth by 100%, at an air concentration of 56 × 10−3 mg/mL, whereas the activity of citronellol was somewhat lover (80%. The other compounds exhibited only moderate or weak antifungal activity. The antifungal activities of blends of constituents identified in L. petersonii oil indicated that neral and geranial were the major contributors to the fumigant and antifungal activities.

  17. Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil.

    Science.gov (United States)

    Sharma, Abhishek; Rajendran, Sasireka; Srivastava, Ankit; Sharma, Satyawati; Kundu, Bishwajit

    2017-03-01

    The antifungal effects of four essential oils viz., clove (Syzygium aromaticum), lemongrass (Cymbopogon citratus), mint (Mentha × piperita) and eucalyptus (Eucalyptus globulus) were evaluated against wilt causing fungus, Fusarium oxysporum f. sp. lycopersici 1322. The inhibitory effect of oils showed dose-dependent activity on the tested fungus. Most active being the clove oil, exhibiting complete inhibition of mycelial growth and spore germination at 125 ppm with IC 50 value of 18.2 and 0.3 ppm, respectively. Essential oils of lemongrass, mint and eucalyptus were inhibitory at relatively higher concentrations. The Minimum inhibitory concentration (MIC) of clove oil was 31.25 ppm by broth microdilution method. Thirty one different compounds of clove oil, constituting approximately ≥99% of the oil, were identified by gas chromatography-mass spectroscopy analysis. The major components were eugenol (75.41%), E-caryophyllene (15.11%), α-humulene (3.78%) and caryophyllene oxide (1.13%). Effect of clove oil on surface morphology of F. oxysporum f. sp. lycopersici 1322 was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SEM observation revealed shrivelled hyphae while AFM observation showed shrunken and disrupted spores in clove oil treated samples. In pots, 5% aqueous emulsion of clove oil controlled F. oxysporum f. sp. lycopersici 1322 infection on tomato plants. This study demonstrated clove oil as potent antifungal agent that could be used as biofungicide for the control of F. oxysporum f. sp. lycopersici in both preventive and therapeutic manner. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Protective antifungal activity of essential oils extracted from Buddleja perfoliata and Pelargonium graveolens against fungi isolated from stored grains.

    Science.gov (United States)

    Juárez, Z N; Bach, H; Sánchez-Arreola, E; Bach, H; Hernández, L R

    2016-05-01

    The chemical composition and antifungal activity of essential oils extracted from Buddleja perfoliata and Pelargonium graveolens were analysed to assess their efficacy as a potential alternative to synthetic chemical fungicides to protect stored grain. Essential oils were obtained by hydrodistillation, while GC-MS were used to characterize the components of theses oils. The main components identified from the essential oil of B. perfoliata were cubenol, eudesmol, germacrene D-4-ol and cis-verbenol; whereas (-)-aristolene, β-citronellol and geraniol, were identified in P. graveolens. These essential oils were tested against a panel of fungal strains isolated from stored grains. Toxicity of the essential oils was assessed using two models represented by human-derived macrophages and the brine shrimp assay. Moreover, inflammatory response of the oils was assessed by measuring secretion of the pro-inflammatory cytokines IL-6 and TNF-α using a human-derived macrophage cell line. Results show potent antifungal activity against a collection of fungi, with minimal inhibitory concentrations ranging from 0·3 to 50 μg ml(-1) for both plants. A moderated cytotoxicity was observed, but no inflammatory responses. These oils can be used as an alternative for synthetic chemical fungicides used to protect stored grains. Synthetic chemical fungicides are used to protect stored grains, but their broad use raises concerns about effects on the environment and human health. The impact of the present report is that the use of essential oils is an eco-friendly alternative for fungal control in postharvest grains with a low impact to the environment. © 2016 The Society for Applied Microbiology.

  19. Copper(II) complexes with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid: Syntheses, crystal structures and antifungal activities

    International Nuclear Information System (INIS)

    Xiong, Pingping; Li, Jie; Bu, Huaiyu; Wei, Qing; Zhang, Ruolin; Chen, Sanping

    2014-01-01

    Reaction of Cu(II) with an asymmetric semi-rigid organic ligand 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid (HL), yielded five compounds, [Cu 0.5 L] n (1), [Cu(HL) 2 Cl 2 ] n (2), [Cu(HL) 2 Cl 2 (H 2 O)] (3), [Cu(L) 2 (H 2 O)] n (4) and [Cu(L)(phen)(HCO 2 )] n (5), which have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. As for compounds 1, 2 and 5, Cu(II) is bridged through HL, Cl - , and formic acid, respectively, featuring 1D chain-structure. In compound 3, Cu(II) with hexahedral coordination sphere is assembled through hydrogen-bonding into 3D supramolecular framework. In compound 4, 1D chain units –Cu–O–Cu–O– are ligand-bridged into a 3D network. All compounds were tested on fungi (Fusarium graminearum, Altemaria solani, Macrophoma kawatsukai, Alternaria alternata and Colletotrichum gloeosporioides). Compound 1 exhibits a better antifungal effect compared to other compounds. An effect of structure on the antifungal activity has also been correlated. - Graphical abstract: Copper(II) compounds with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid, were prepared, structurally characterized and investigated for antifungal activity. - Highlights: • The title compounds formed by thermodynamics and thermokinetics. • The five compounds show higher inhibition percentage than reactants. • The structure effect on the antifungal activity

  20. ANTIFUNGAL ACTIVITY OF VOLATILE COMPONENTS GENERATED BY ESSENTIAL OILS AGAINST THE GENUS PENICILLIUM ISOLATED FROM BAKERY PRODUCTS

    Directory of Open Access Journals (Sweden)

    Miroslava Císarová

    2015-02-01

    Full Text Available The aim of this study was evaluation of the antifungal activity of 5 essential oils (EOs. We concretely used thyme, clove, basil, jasmine and rosemary EOs by vapor contact against the fungal species, namely Penicillium citrinum, P. chrysogenum, P. hordei, P. citreonigrum, and P. viridicatum and their ability to affect production of mycotoxins. Each fungus was inoculated in the centre on Czapek Yeast Autolysate Agar (CYA dishes. Dishes were tightly sealed with parafilm and incubated for fourteen days at 25 ± 1 °C (three replicates were used for each treatment. Volatile phase effect of 50 μl of the essential oils was found to inhibit on growth of Penicillium spp.. Complete growth inhibition of the isolates by EOs of thyme and clove was observed. The EO of basil had antifungal effect on growth of P. citreonigrum only after 3rd and 7th day of the incubation at concentration 100 % of EO, like a P. viridicatum, which was inhibited by basil EO (100 % in comparison with control sets. Data was evaluated statistically by 95.0 % Tukey HSD test. In this study we also tested potentional effect of EOs to affect production of mycotoxins of tested Penicillium isolates which are potential toxigenic fungi. After 14 days of incubation with EOs (100 % with control sets, they were screened for a production of mycotoxins by TLC chromatography. Results showed non affecting production of mycotoxins by tested EOs. Conclusions indicate that volatile phase of combinations of thyme oil and clove oil showed good potential in the inhibition of growth of Penicillium spp. EOs should find a practical application in the inhibition of the fungal mycelial growth in some kind of the food.

  1. Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp.

    Science.gov (United States)

    Peixoto, Larissa Rangel; Rosalen, Pedro Luiz; Ferreira, Gabriela Lacet Silva; Freires, Irlan Almeida; de Carvalho, Fabíola Galbiatti; Castellano, Lúcio Roberto; de Castro, Ricardo Dias

    2017-01-01

    The present study demonstrated the antifungal potential of the chemically characterized essential oil (EO) of Laurus nobilis L. (bay laurel) against Candida spp. biofilm adhesion and formation, and further established its mode of action on C. albicans. L. nobilis EO was obtained and tested for its minimum inhibitory and fungicidal concentrations (MIC/MFC) against Candida spp., as well as for interaction with cell wall biosynthesis and membrane ionic permeability. Then we evaluated its effects on the adhesion, formation, and reduction of 48hC. albicans biofilms. The EO phytochemical profile was determined by gas chromatography coupled to mass spectrometry (GC/MS). The MIC and MFC values of the EO ranged from (250 to 500) μg/mL. The MIC values increased in the presence of sorbitol (osmotic protector) and ergosterol, which indicates that the EO may affect cell wall biosynthesis and membrane ionic permeability, respectively. At 2 MIC the EO disrupted initial adhesion of C. albicans biofilms (p0.05). When applied for 1min, every 8h, for 24h and 48h, the EO reduced the amount of C. albicans mature biofilm with no difference in relation to nystatin (p>0.05). The phytochemical analysis identified isoeugenol as the major compound (53.49%) in the sample. L. nobilis EO has antifungal activity probably due to monoterpenes and sesquiterpenes in its composition. This EO may affect cell wall biosynthesis and membrane permeability, and showed deleterious effects against C. albicans biofilms. Copyright © 2016. Published by Elsevier Ltd.

  2. A Facile and Efficient Synthesis of Diaryl Amines or Ethers under Microwave Irradiation at Presence of KF/Al2O3 without Solvent and Their Anti-Fungal Biological Activities against Six Phytopathogens

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2013-09-01

    Full Text Available A series of diaryl amines, ethers and thioethers were synthesized under microwave irradiation efficiently at presence of KF/Al2O3 in 83%–96% yields without any solvent. The salient characters of this method lie in short reaction time, high yields, general applicability to substrates and simple workup procedure. At the same time, their antifungal biological activities against six phytopathogen were evaluated. Most of the compounds (3b, 3c, 3g–o are more potent than thiophannate-methyl against to Magnaporthe oryzae. This implies that diaryl amine or ether moiety may be helpful in finding a fungicide against Magnaporthe oryzae.

  3. Enzymatic Activity and Susceptibility to Antifungal Agents of Brazilian Environmental Isolates of Hortaea werneckii.

    Science.gov (United States)

    Formoso, Andrea; Heidrich, Daiane; Felix, Ciro Ramón; Tenório, Anne Carolyne; Leite, Belize R; Pagani, Danielle M; Ortiz-Monsalve, Santiago; Ramírez-Castrillón, Mauricio; Landell, Melissa Fontes; Scroferneker, Maria L; Valente, Patricia

    2015-12-01

    Four strains of Hortaea werneckii were isolated from different substrates in Brazil (a salt marsh macrophyte, a bromeliad and a marine zoanthid) and had their identification confirmed by sequencing of the 26S rDNA D1/D2 domain or ITS region. Most of the strains were able to express amylase, lipase, esterase, pectinase and/or cellulase, enzymes that recognize components of plant cells as substrates, but did not express albuminase, keratinase, phospholipase and DNAse, whose substrates are animal-related. Urease production was positive for all isolates, while caseinase, gelatinase and laccase production were variable among the strains. All the strains grew in media containing up to 30% NaCl. We propose that the primary substrate associated with H. werneckii is plant-related, in special in saline environments, where the fungus may live as a saprophyte and decomposer. Infection of animal-associated substrates would be secondary, with the fungus acting as an opportunistic animal pathogen. All strains were resistant to fluconazole and presented high MIC for amphotericin B, while they were susceptible to all the other antifungal agents tested.

  4. Antifungal activity of Piper aduncum and Peperomia pellucida leaf ethanol extract against Candida albicans

    Science.gov (United States)

    Hastuti, Utami Sri; Ummah, Yunita Putri Irsadul; Khasanah, Henny Nurul

    2017-05-01

    This research was done to 1) examine the effect of Piper aduncum leaf ethanol extract at certain concentrations against Candida albicans colony growth inhibition in vitro; 2) examine the effect of Peperomia pellucida leaf ethanol extract at certain concentrations toward Candida albicans colony growth inhibition in vitro; and 3) determine the most effective concentration of P. aduncum and P. pellucida leaves ethanol extract against C. albicans colony growth inhibition in vitro. These plant extracts were prepared by the maceration technique using 95% ethanol, and then sterile filtered and evaporated to obtain the filtrate. The filtrate was diluted with sterile distilled water at certain concentrations, i.e.: 0%, 10%, 20%, 30%, 405, 50%, 60%, 70%, 80%, and 90%. The antifungal effect of each leaf extract concentration was examined by the agar diffusion method on Sabouraud Dextrose Agar medium. The research results are: 1) the P.aduncum leaf ethanol extract at some concentrations has an effect against C. albicans colony growth inhibition in vitro; 2) the P.pellucida leaf ethanol extract at some concentrations has an effect against C. albicans colony growth inhibition in vitro; 3) the P. aduncum leaf ethanol extract at 80% is the most effective for C. albicans colony growth inhibition in vitro; and 4) the P. pellucida leaf ethanol extract at 70% is the most effective for C. albicans colony growth inhibition in vitro.

  5. In vitro and in vivo antifungal activity of natural inhibitors against Penicillium expansum

    Directory of Open Access Journals (Sweden)

    Claudia Fieira

    2013-02-01

    Full Text Available Penicillium expansum is the causative agent of apple blue mold. The inhibitory effects of the capsaicin derived from Capsicum spp. fruits and yeast Hansenula wingei against P. expansum were evaluated in an in vitro and in in vivo assay using Fuji apples. The minimum inhibitory concentration of capsaicin determined using the broth micro-dilution method was 122.16 µg mL-1. Capsaicin did not reduce blue mold incidence in apples. However, it was able to delay fungal growth in the first 14 days of the in vivo assay. The in vivo effect of the yeast Hansenula wingei AM2(-2, alone and combined with thiabendazole at low dosage (40 µg mL-1, on the incidence of apple diseases caused by P. expansum was also described. H. wingei AM2(-2 combined with a low fungicide dosage (10% of the dosage recommended by the manufacturer showed the best efficacy (100% up to 7 days of storage at 21 ºC, later showing a non-statistically different decrease (p > 0.05 after 14 (80.45% and 21 days (72.13%, respectively. These results contribute providing new options for using antifungal agents against Penicillium expansum.

  6. Antifungal (in vitro activity of plant extracts for the control of anthracnose (Colletotrichum acutatum

    Directory of Open Access Journals (Sweden)

    Villacís-Aldaz Luis Alfredo

    2017-05-01

    Full Text Available The antifungal effect of five plant extracts: nettle (Urtica dioica, chamomile (Chamaemelum nobile, frame (Artemisia vulgaris, lavender (Lavandula officinalis and chamico (Datura ferox were evaluated at laboratory level for control of anthracnose (Colletotrichum acutatum of the tree tomato (Solanum betaceum, using two methods of extraction (maceration and steam trapping, in the results obtained, statistical differences were observed in the percentage of inhibition of mycelial growth of the fungus, the treatment with lavender extract obtained by the steam trapping method presented the greatest efficiency for anthracnose control (66.23%. The other treatments tested also showed effectiveness against the anthracnose pathogen in the following order of inhibition: chamomile (52.78%, frame (21.63, chamico (24.14%, nettle (12.94, the ability of various species to inhibit certain fungal diseases, taking into account the different content of secondary metabolites that have each of the plant species, constituting new clean production alternatives that reduce the use of chemical pesticides for the control of fungal diseases.

  7. Antifungal Activity of the Essential Oil of Cymbopogon citratus (DC Stapf. An in vitro study.

    Directory of Open Access Journals (Sweden)

    Naiana Braga da Silva

    2017-12-01

    Full Text Available Aim. To evaluate the antifungal potential of the essential oil of Cymbopogon citratus by determining the Minimum Inhibitory Concentration (MIC and the Minimum Fungicidal Concentration (MFC for Candida albicans (ATCC 90029, Candida albicans (CBS 562, Candida tropicalis (ATCC 705 and Candida tropicalis strains (CBS 94, as well as to analyze the possible mechanism of action of the oil through the addition of sorbitol to the culture medium. Methods. For the MIC determination, inocula were previously adjusted through spectrophotometry and 100μL were added to the wells of plates already containing the culture medium and 100μL of the serial dilutions of the oil, incubating them in aerobiosis for 24 hours, with subsequent staining by 1% TCT. For the MFC, 50μL of the supernatant from the MIC assay wells were dripped onto Petri dishes and incubated in aerobiosis for 24 hours. Tests were performed in triplicate and data analysed by descriptive statistics. Results. It was determined that the MIC for C. albicans was 125 μg/mL while MIC for C. tropicalis was 250 μg/mL, with the essential oil presenting fungicidal effect for both analyzed yeasts. Conclusion. The essential oil of Cymbopogon citratus does not act at the cellular wall level and demonstrated an antimicrobial effect on Candida albicans and Candida tropicalis, therefore acting as a fungicide.

  8. Chemical composition and antifungal activity of Hyptis suaveolens (L. poit leaves essential oil against Aspergillus species

    Directory of Open Access Journals (Sweden)

    Ana Carolina Pessoa Moreira

    2010-03-01

    Full Text Available This study aimed to identify the constituents of the essential oil from Hyptis suaveolens (L. leaves using a Gas Chromatograph -Mass Spectrometer and assess its inhibitory effect on some potentially pathogenic Aspergilli (A. flavus, A. parasiticus, A. ochraceus, A. fumigatus and A. niger. Eucaliptol (47.64 % was the most abundant component in the oil, followed for gama-ellemene (8.15 %, beta-pynene (6.55 %, (+3-carene (5.16 %, trans-beta-cariophyllene (4.69 % and germacrene (4.86 %. The essential oil revealed an interesting anti-Aspergillus property characterized by a Minimum Inhibitory Concentration and Minimum Fungicidal Concentration of 40 and 80 µL/mL, respectively. The oil at 80 and 40 µL/mL strongly inhibited the mycelial growth of A. fumigatus and A. parasiticus along 14 days. In addition, at 10 and 20 µL/mL the oil was able to cause morphological changes in A. flavus as decreased conidiation, leakage of cytoplasm, loss of pigmentation and disrupted cell structure suggesting fungal wall degeneration. These findings showed the interesting anti-Aspergillus property of H. suaveolens leaves essential oil supporting its possible rational use as alternative source of new antifungal compounds to be applied in the aspergillosis treatment.

  9. Effects of Chitosan on Candida albicans: Conditions for Its Antifungal Activity

    Science.gov (United States)

    Peña, Antonio; Sánchez, Norma Silvia; Calahorra, Martha

    2013-01-01

    The effects of low molecular weight (96.5 KDa) chitosan on the pathogenic yeast Candida albicans were studied. Low concentrations of chitosan, around 2.5 to 10 μg·mL−1 produced (a) an efflux of K+ and stimulation of extracellular acidification, (b) an inhibition of Rb+ uptake, (c) an increased transmembrane potential difference of the cells, and (d) an increased uptake of Ca2+. It is proposed that these effects are due to a decrease of the negative surface charge of the cells resulting from a strong binding of the polymer to the cells. At higher concentrations, besides the efflux of K+, it produced (a) a large efflux of phosphates and material absorbing at 260 nm, (b) a decreased uptake of Ca2+, (c) an inhibition of fermentation and respiration, and (d) the inhibition of growth. The effects depend on the medium used and the amount of cells, but in YPD high concentrations close to 1 mg·mL−1 are required to produce the disruption of the cell membrane, the efflux of protein, and the growth inhibition. Besides the findings at low chitosan concentrations, this work provides an insight of the conditions required for chitosan to act as a fungistatic or antifungal and proposes a method for the permeabilization of yeast cells. PMID:23844364

  10. Effects of Chitosan on Candida albicans: Conditions for Its Antifungal Activity

    Directory of Open Access Journals (Sweden)

    Antonio Peña

    2013-01-01

    Full Text Available The effects of low molecular weight (96.5 KDa chitosan on the pathogenic yeast Candida albicans were studied. Low concentrations of chitosan, around 2.5 to 10 μg·mL−1 produced (a an efflux of K+ and stimulation of extracellular acidification, (b an inhibition of Rb+ uptake, (c an increased transmembrane potential difference of the cells, and (d an increased uptake of Ca2+. It is proposed that these effects are due to a decrease of the negative surface charge of the cells resulting from a strong binding of the polymer to the cells. At higher concentrations, besides the efflux of K+, it produced (a a large efflux of phosphates and material absorbing at 260 nm, (b a decreased uptake of Ca2+, (c an inhibition of fermentation and respiration, and (d the inhibition of growth. The effects depend on the medium used and the amount of cells, but in YPD high concentrations close to 1 mg·mL−1 are required to produce the disruption of the cell membrane, the efflux of protein, and the growth inhibition. Besides the findings at low chitosan concentrations, this work provides an insight of the conditions required for chitosan to act as a fungistatic or antifungal and proposes a method for the permeabilization of yeast cells.

  11. In vitro activity of the novel antifungal compound F901318 against difficult-to-treat Aspergillus isolates.

    Science.gov (United States)

    Buil, J B; Rijs, A J M M; Meis, J F; Birch, M; Law, D; Melchers, W J G; Verweij, P E

    2017-09-01

    F901318 is a new antifungal agent with a novel mechanism of action with activity against Aspergillus species. We investigated the in vitro activity of F901318 against a collection of Aspergillus isolates. A total of 213 Aspergillus isolates were used in this study. A total of 143 Aspergillus fumigatus sensu stricto isolates were used, of which 133 were azole resistant [25 TR34/L98H; 25 TR46/Y121F/T289A; 33 A. fumigatus with cyp51A-associated point mutations (25 G54, 1 G432 and 7 M220); and 50 azole-resistant A. fumigatus without known resistance mechanisms]. Ten azole-susceptible A. fumigatus isolates were used as WT controls. The in vitro activity was also determined against Aspergillus calidoustus (25 isolates), Aspergillus flavus (10), Aspergillus nidulans (10) and Aspergillus tubingensis (25). F901318 activity was compared with that of itraconazole, voriconazole, posaconazole, isavuconazole, amphotericin B and anidulafungin. Minimum effective concentrations and MICs were determined using the EUCAST broth microdilution method. F901318 was active against all tested isolates: A. fumigatus WT, MIC90 0.125 mg/L (range 0.031-0.125); TR34/L98H,TR46/Y121F/T289A and azole resistant without known resistance mechanisms, MIC90 0.125 mg/L (range 0.031-0.25); A. fumigatus with cyp51A-associated point mutations, MIC90 0.062 mg/L (range 0.015-0.125); and other species, A. calidoustus MIC90 0.5 mg/L (range 0.125-0.5), A. flavus MIC90 0.062 mg/L (range 0.015-0.62), A. nidulans MIC90 0.125 mg/L (range 0.062-0.25) and A. tubingensis MIC90 0.062 mg/L (range 0.015-0.25). F901318 showed potent and consistent in vitro activity against difficult-to-treat Aspergillus spp. with intrinsic and acquired antifungal resistance due to known and unknown resistance mechanisms, suggesting no significant implications of azole resistance mechanisms for the mode of action of F901318. © The Author 2017. Published by Oxford University Press on behalf of the British Society for

  12. Improvement of the antifungal activity of lactic acid bacteria by addition to the growth medium of phenylpyruvic acid, a precursor of phenyllactic acid.

    Science.gov (United States)

    Valerio, Francesca; Di Biase, Mariaelena; Lattanzio, Veronica M T; Lavermicocca, Paola

    2016-04-02

    The aim of the current study was to improve the antifungal activity of eight lactic acid bacterial (LAB) strains by the addition of phenylpyruvic acid (PPA), a precursor of the antifungal compound phenyllactic acid (PLA), to a defined growth medium (DM). The effect of PPA addition on the LABs antifungal activity related to the production of organic acids (PLA, d-lactic, l-lactic, acetic, citric, formic and 4-hydroxy-phenyllactic acids) and of other phenylpyruvic-derived molecules, was investigated. In the presence of PPA the inhibitory activity (expressed as growth inhibition percentage) against fungal bread contaminants Aspergillus niger and Penicillium roqueforti significantly increased and was, even if not completely, associated to PLA increase (from a mean value of 0.44 to 0.93 mM). While the inhibitory activity against Endomyces fibuliger was mainly correlated to the low pH and to lactic, acetic and p-OH-PLA acids. When the PCA analysis based on data of growth inhibition percentage and organic acid concentrations was performed, strains grown in DM+PPA separated from those grown in DM and the most active strains Lactobacillus plantarum 21B, Lactobacillus fermentum 18B and Lactobacillus brevis 18F grouped together. The antifungal activity resulted to be strain-related, based on a different mechanism of action for filamentous fungi and the yeast and was not exclusively associated to the increase of PLA. Therefore, a further investigation on the unique unidentified peak in HPLC-UV chromatograms, was performed by LC-MS/MS analysis. Actually, full scan mass spectra (negative ion mode) recorded at the retention time of the unknown compound, showed a main peak of m/z 291.0 which was consistent with the nominal mass of the molecular ion [M-H](-) of polyporic acid, a PPA derivative whose antifungal activity has been previously reported (Brewer et al., 1977). In conclusion, the addition of PPA to the growth medium contributed to improve the antifungal activity of LAB

  13. Antifungal Activity of Tamarix aphylla (L. Karst. Stem-bark Extract Against Some Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Sadaf bibi bibi

    2015-03-01

    Full Text Available The largest identified, Tamarix aphylla (L. Karst. belonging to family Tamaricaceae is traditionally an important plant used to cure various ailments. Three concentrations of crude ethanolic extracts 2000 ppm, 1000 ppm and 500 ppm were tested against six pathogenic fungi: Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Fusarium oxysporum, Penicillium notatum and Saccharomyces cerevisiae using five different solvents: acetone, chloroform, distilled water (DW, ethanol and methanol. Percent inhibition in growth of fungi was found to be dose dependent. The standard antifungal synthetic drug, Terbinafine, was used in different concentrations mixed with distilled water against different test fungi. Terbinafine completely controlled the growth of A. flavus, A. fumigatus, A. niger, F. oxysporum, P. notatum and S. cerevisiae with the concentrations of 65±0.58, 72±1.00, 70±1.15, 59±1.00, 60±0.58 and 80±0.58 (µg/ml of PDA medium, respectively. Chloroform was considered to be the most effective solvent preventing 97.68±0.58% growth of F. oxysporum, 9.37±0.33% in A. niger, 92.68±3.33% in S. cerevisiae, 91.46±2.08% in A. fumigatus, 88.48±0.88% in A. flavus and 87.95±1.15% in P. notatum. Statistically, the results were compared with negative control and most of the results were found to be highly significant (p≤0.000. Overall, our results suggest that T. aphylla stem-bark extract illustrated maximum percent inhibition with chloroform followed by ethanol, acetone, methanol and distilled water.

  14. PF1163A and B, new antifungal antibiotics produced by Penicillium sp. I. Taxonomy of producing strain, fermentation, isolation and biological activities.

    Science.gov (United States)

    Nose, H; Seki, A; Yaguchi, T; Hosoya, A; Sasaki, T; Hoshiko, S; Shomura, T

    2000-01-01

    Two novel antifungal antibiotics, PF1163A and B, were isolated from the fermentation broth of Penicillium sp. They were purified from the solid cultures of rice media using ethyl acetate extraction, silica gel and Sephadex LH-20 column chromatographies. PF1163A and B showed potent growth inhibitory activity against pathogenic fungal strain Candida albicans but did not show cytotoxic activity against mammalian cells. These compounds inhibited the ergosterol biosynthesis in Candida albicans.

  15. Synthesis and in Vitro Antifungal Activity against Botrytis cinerea of Geranylated Phenols and Their Phenyl Acetate Derivatives

    Directory of Open Access Journals (Sweden)

    María I. Chávez

    2015-08-01

    Full Text Available The inhibitory effects on the mycelial growth of plant pathogen Botritys cinerea have been evaluated for a series of geranylphenols substituted with one, two and three methoxy groups in the aromatic ring. The results show that the antifungal activity depends on the structure of the geranylphenols, increasing from 40% to 90% by increasing the number of methoxy groups. On the other hand, the acetylation of the –OH group induces a change of activity that depends on the number of methoxy groups. The biological activity of digeranyl derivatives is lower than that exhibited by the respective monogeranyl compound. All tested geranylphenols have been synthesized by direct coupling of geraniol and the respective phenol. The effect of solvent on yields and product distribution is discussed. For monomethoxyphenols the reaction gives better yields when acetonitrile is used as a solvent and AgNO3 is used as a secondary catalyst. However, for di- and trimethoxyphenols the reaction proceeds only in dioxane.

  16. Antifungal and phytotoxic activity of essential oil from root of Senecio amplexicaulis Kunth. (Asteraceae) growing wild in high altitude-Himalayan region.

    Science.gov (United States)

    Singh, Rajendra; Ahluwalia, Vivek; Singh, Pratap; Kumar, Naresh; Prakash Sati, Om; Sati, Nitin

    2016-08-01

    This work was aimed to evaluate the essential oil from root of medicinally important plant Senecio amplexicaulis for chemical composition, antifungal and phytotoxic activity. The chemical composition analysed by GC/GC-MS showed the presence of monoterpene hydrocarbons in high percentage with marker compounds as α-phellandrene (48.57%), o-cymene (16.80%) and β-ocimene (7.61%). The essential oil exhibited significant antifungal activity against five phytopathogenic fungi, Sclerotium rolfsii, Macrophomina phaseolina, Rhizoctonia solani, Pythium debaryanum and Fusarium oxysporum. The oil demonstrated remarkable phytotoxic activity in tested concentration and significant reduction in seed germination percentage of Phalaris minor and Triticum aestivum at higher concentrations. The roots essential oil showed high yield for one of its marker compound (α-phellandrene) which makes it important natural source of this compound.

  17. Synthesis, Antifungal Activity and Structure-Activity Relationships of Novel 3-(Difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic Acid Amides.

    Science.gov (United States)

    Du, Shijie; Tian, Zaimin; Yang, Dongyan; Li, Xiuyun; Li, Hong; Jia, Changqing; Che, Chuanliang; Wang, Mian; Qin, Zhaohai

    2015-05-08

    A series of novel 3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic acid amides were synthesized and their activities were tested against seven phytopathogenic fungi by an in vitro mycelia growth inhibition assay. Most of them displayed moderate to excellent activities. Among them N-(2-(5-bromo-1H-indazol-1-yl)phenyl)-3-(difluoro-methyl)-1-methyl-1H-pyrazole-4-carboxamide (9m) exhibited higher antifungal activity against the seven phytopathogenic fungi than boscalid. Topomer CoMFA was employed to develop a three-dimensional quantitative structure-activity relationship model for the compounds. In molecular docking, the carbonyl oxygen atom of 9m could form hydrogen bonds towards the hydroxyl of TYR58 and TRP173 on SDH.

  18. Synthesis, Antifungal Activity and Structure-Activity Relationships of Novel 3-(Difluoromethyl-1-methyl-1H-pyrazole-4-carboxylic Acid Amides

    Directory of Open Access Journals (Sweden)

    Shijie Du

    2015-05-01

    Full Text Available A series of novel 3-(difluoromethyl-1-methyl-1H-pyrazole-4-carboxylic acid amides were synthesized and their activities were tested against seven phytopathogenic fungi by an in vitro mycelia growth inhibition assay. Most of them displayed moderate to excellent activities. Among them N-(2-(5-bromo-1H-indazol-1-ylphenyl-3-(difluoro-methyl-1-methyl-1H-pyrazole-4-carboxamide (9m exhibited higher antifungal activity against the seven phytopathogenic fungi than boscalid. Topomer CoMFA was employed to develop a three-dimensional quantitative structure-activity relationship model for the compounds. In molecular docking, the carbonyl oxygen atom of 9m could form hydrogen bonds towards the hydroxyl of TYR58 and TRP173 on SDH.

  19. Evaluation of the antifungal activity and mode of action of Lafoensia pacari A. St.-Hil., Lythraceae, stem-bark extracts, fractions and ellagic acid

    Directory of Open Access Journals (Sweden)

    Iberê F. Silva Junior

    Full Text Available Stem-bark extracts, fractions and the isolated constituent, ellagic acid of Lafoensia pacari St. Hil. (Lythraceae were in vitro assayed for antifungal activity against a panel of yeasts, hialohyphomycetes as well as dermatophytes with the microbroth dilution method. The EtOH extract and its fractions and ellagic acid exhibited activity against Candida spp and Saccharomyces cerevisiae with MIC values between 250-1000 µg/mL, but they showed no action against filamentous fungi and dermatophytes (MIC>1000 µg/mL. Active extracts were evaluated in Neurospora crassa hyphal growth inhibition and sorbitol assays and then the effect of ergosterol on the MIC of ellagic acid was studied. The active extracts and its fractions and ellagic acid showed a blotchy zone around the paper disk and induced malformations of the hypha. Besides, MIC of the ellagic acid against the Saccharomyces cerevisiae was raised from 62 to 250 µg/mL in the presence of sorbitol 0.8 M, suggesting that the ellagic acid would probably exert its action on fungal cell wall. These results indicate that ellagic acid might be the main active antifungal compound of Lafoensia pacari and further suggest that the mode of antifungal action of these extracts and ellagic acid could be associated with the inhibition of fungal cell wall.

  20. Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers.

    Science.gov (United States)

    Kefi, Asma; Ben Slimene, Imen; Karkouch, Ines; Rihouey, Christophe; Azaeiz, Sana; Bejaoui, Marwa; Belaid, Rania; Cosette, Pascal; Jouenne, Thierry; Limam, Ferid

    2015-12-01

    Eighty endophytic bacteria were isolated from healthy tissues of roots, stems, leaves and fruits of tomato plants (Lycopersicon esculentum). Four strains, named BL1, BT5, BR8 and BF11 were selected for their antagonism against Botrytis cinerea, a phytopathogenic fungus responsible of gray mold in several important crops, with growth inhibitory <