WorldWideScience

Sample records for generalist herbivore accounts

  1. Can alien plants support generalist insect herbivores?

    Science.gov (United States)

    Douglas Tallamy; Meg Ballard; Vincent D' Amico

    2009-01-01

    Rearing experiments were conducted to address two questions relevant to understanding how generalist lepidopteran herbivores interact with alien plants. We reared 10 yellow-striped armyworms (Spodoptera ornithogalli),...

  2. Contrasting effects of specialist and generalist herbivores on resistance evolution in invasive plants.

    Science.gov (United States)

    Zhang, Zhijie; Pan, Xiaoyun; Blumenthal, Dana; van Kleunen, Mark; Liu, Mu; Li, Bo

    2018-04-01

    Invasive alien plants are likely to be released from specialist herbivores and at the same time encounter biotic resistance from resident generalist herbivores in their new ranges. The Shifting Defense hypothesis predicts that this will result in evolution of decreased defense against specialist herbivores and increased defense against generalist herbivores. To test this, we performed a comprehensive meta-analysis of 61 common garden studies that provide data on resistance and/or tolerance for both introduced and native populations of 32 invasive plant species. We demonstrate that introduced populations, relative to native populations, decreased their resistance against specialists, and increased their resistance against generalists. These differences were significant when resistance was measured in terms of damage caused by the herbivore, but not in terms of performance of the herbivore. Furthermore, we found the first evidence that the magnitude of resistance differences between introduced and native populations depended significantly on herbivore origin (i.e., whether the test herbivore was collected from the native or non-native range of the invasive plant). Finally, tolerance to generalists was found to be higher in introduced populations, while neither tolerance to specialists nor that to simulated herbivory differed between introduced and native plant populations. We conclude that enemy release from specialist herbivores and biotic resistance from generalist herbivores have contrasting effects on resistance evolution in invasive plants. Our results thus provide strong support for the Shifting Defense hypothesis. © 2018 by the Ecological Society of America.

  3. Herbivore preference for native vs. exotic plants: generalist herbivores from multiple continents prefer exotic plants that are evolutionarily naïve.

    Directory of Open Access Journals (Sweden)

    Wendy E Morrison

    2011-03-01

    Full Text Available Enemy release and biotic resistance are competing, but not mutually exclusive, hypotheses addressing the success or failure of non-native plants entering a new region. Enemy release predicts that exotic plants become invasive by escaping their co-adapted herbivores and by being unrecognized or unpalatable to native herbivores that have not been selected to consume them. In contrast, biotic resistance predicts that native generalist herbivores will suppress exotic plants that will not have been selected to deter these herbivores. We tested these hypotheses using five generalist herbivores from North or South America and nine confamilial pairs of native and exotic aquatic plants. Four of five herbivores showed 2.4-17.3 fold preferences for exotic over native plants. Three species of South American apple snails (Pomacea sp. preferred North American over South American macrophytes, while a North American crayfish Procambarus spiculifer preferred South American, Asian, and Australian macrophytes over North American relatives. Apple snails have their center of diversity in South America, but a single species (Pomacea paludosa occurs in North America. This species, with a South American lineage but a North American distribution, did not differentiate between South American and North American plants. Its preferences correlated with preferences of its South American relatives rather than with preferences of the North American crayfish, consistent with evolutionary inertia due to its South American lineage. Tests of plant traits indicated that the crayfish responded primarily to plant structure, the apple snails primarily to plant chemistry, and that plant protein concentration played no detectable role. Generalist herbivores preferred non-native plants, suggesting that intact guilds of native, generalist herbivores may provide biotic resistance to plant invasions. Past invasions may have been facilitated by removal of native herbivores, introduction of

  4. Acceleration of exotic plant invasion in a forested ecosystem by a generalist herbivore.

    Science.gov (United States)

    Eschtruth, Anne K; Battles, John J

    2009-04-01

    The successful invasion of exotic plants is often attributed to the absence of coevolved enemies in the introduced range (i.e., the enemy release hypothesis). Nevertheless, several components of this hypothesis, including the role of generalist herbivores, remain relatively unexplored. We used repeated censuses of exclosures and paired controls to investigate the role of a generalist herbivore, white-tailed deer (Odocoileus virginianus), in the invasion of 3 exotic plant species (Microstegium vimineum, Alliaria petiolata, and Berberis thunbergii) in eastern hemlock (Tsuga canadensis) forests in New Jersey and Pennsylvania (U.S.A.). This work was conducted in 10 eastern hemlock (T. canadensis) forests that spanned gradients in deer density and in the severity of canopy disturbance caused by an introduced insect pest, the hemlock woolly adelgid (Adelges tsugae). We used maximum likelihood estimation and information theoretics to quantify the strength of evidence for alternative models of the influence of deer density and its interaction with the severity of canopy disturbance on exotic plant abundance. Our results were consistent with the enemy release hypothesis in that exotic plants gained a competitive advantage in the presence of generalist herbivores in the introduced range. The abundance of all 3 exotic plants increased significantly more in the control plots than in the paired exclosures. For all species, the inclusion of canopy disturbance parameters resulted in models with substantially greater support than the deer density only models. Our results suggest that white-tailed deer herbivory can accelerate the invasion of exotic plants and that canopy disturbance can interact with herbivory to magnify the impact. In addition, our results provide compelling evidence of nonlinear relationships between deer density and the impact of herbivory on exotic species abundance. These findings highlight the important role of herbivore density in determining impacts on

  5. Increased resistance to a generalist herbivore in a salinity-stressed non-halophytic plant.

    Science.gov (United States)

    Renault, Sylvie; Wolfe, Scott; Markham, John; Avila-Sakar, Germán

    2016-01-01

    Plants often grow under the combined stress of several factors. Salinity and herbivory, separately, can severely hinder plant growth and reproduction, but the combined effects of both factors are still not clearly understood. Salinity is known to reduce plant tissue nitrogen content and growth rates. Since herbivores prefer tissues with high N content, and biochemical pathways leading to resistance are commonly elicited by salt-stress, we hypothesized that plants growing in saline conditions would have enhanced resistance against herbivores. The non-halophyte, Brassica juncea, and the generalist herbivore Trichoplusia ni were used to test the prediction that plants subjected to salinity stress would be both more resistant and more tolerant to herbivory than those growing without salt stress. Plants were grown under different NaCl levels, and either exposed to herbivores and followed by removal of half of their leaves, or left intact. Plants were left to grow and reproduce until senescence. Tissue quality was assessed, seeds were counted and biomass of different organs measured. Plants exposed to salinity grew less, had reduced tissue nitrogen, protein and chlorophyll content, although proline levels increased. Specific leaf area, leaf water content, transpiration and root:shoot ratio remained unaffected. Plants growing under saline condition had greater constitutive resistance than unstressed plants. However, induced resistance and tolerance were not affected by salinity. These results support the hypothesis that plants growing under salt-stress are better defended against herbivores, although in B. juncea this may be mostly through resistance, and less through tolerance. Published by Oxford University Press on behalf of the Annals of Botany Company.

  6. Seasonal and algal diet-driven patterns of the digestive microbiota of the European abalone Haliotis tuberculata, a generalist marine herbivore.

    Science.gov (United States)

    Gobet, Angélique; Mest, Laëtitia; Perennou, Morgan; Dittami, Simon M; Caralp, Claire; Coulombet, Céline; Huchette, Sylvain; Roussel, Sabine; Michel, Gurvan; Leblanc, Catherine

    2018-03-27

    Holobionts have a digestive microbiota with catabolic abilities allowing the degradation of complex dietary compounds for the host. In terrestrial herbivores, the digestive microbiota is known to degrade complex polysaccharides from land plants while in marine herbivores, the digestive microbiota is poorly characterized. Most of the latter are generalists and consume red, green, and brown macroalgae, three distinct lineages characterized by a specific composition in complex polysaccharides, which represent half of their biomass. Subsequently, each macroalga features a specific epiphytic microbiota, and the digestive microbiota of marine herbivores is expected to vary with a monospecific algal diet. We investigated the effect of four monospecific diets (Palmaria palmata, Ulva lactuca, Saccharina latissima, Laminaria digitata) on the composition and specificity of the digestive microbiota of a generalist marine herbivore, the abalone, farmed in a temperate coastal area over a year. The microbiota from the abalone digestive gland was sampled every 2 months and explored using metabarcoding. Diversity and multivariate analyses showed that patterns of the microbiota were significantly linked to seasonal variations of contextual parameters but not directly to a specific algal diet. Three core genera: Psychrilyobacter, Mycoplasma, and Vibrio constantly dominated the microbiota in the abalone digestive gland. Additionally, a less abundant and diet-specific core microbiota featured genera representing aerobic primary degraders of algal polysaccharides. This study highlights the establishment of a persistent core microbiota in the digestive gland of the abalone since its juvenile state and the presence of a less abundant and diet-specific core community. While composed of different microbial taxa compared to terrestrial herbivores, the digestive gland constitutes a particular niche in the abalone holobiont, where bacteria (i) may cooperate to degrade algal polysaccharides to

  7. Response of pest control by generalist predators to local-scale plant diversity: a meta-analysis.

    Science.gov (United States)

    Dassou, Anicet Gbèblonoudo; Tixier, Philippe

    2016-02-01

    Disentangling the effects of plant diversity on the control of herbivores is important for understanding agricultural sustainability. Recent studies have investigated the relationships between plant diversity and arthropod communities at the landscape scale, but few have done so at the local scale. We conducted a meta-analysis of 32 papers containing 175 independent measures of the relationship between plant diversity and arthropod communities. We found that generalist predators had a strong positive response to plant diversity, that is, their abundance increased as plant diversity increased. Herbivores, in contrast, had an overall weak and negative response to plant diversity. However, specialist and generalist herbivores differed in their response to plant diversity, that is, the response was negative for specialists and not significant for generalists. While the effects of scale remain unclear, the response to plant diversity tended to increase for specialist herbivores, but decrease for generalist herbivores as the scale increased. There was no clear effect of scale on the response of generalist predators to plant diversity. Our results suggest that the response of herbivores to plant diversity at the local scale is a balance between habitat and trophic effects that vary according to arthropod specialization and habitat type. Synthesis and applications. Positive effects of plant diversity on generalist predators confirm that, at the local scale, plant diversification of agroecosystems is a credible and promising option for increasing pest regulation. Results from our meta-analysis suggest that natural control in plant-diversified systems is more likely to occur for specialist than for generalist herbivores. In terms of pest management, our results indicate that small-scale plant diversification (via the planting of cover crops or intercrops and reduced weed management) is likely to increase the control of specialist herbivores by generalist predators.

  8. Nocturnal herbivore-induced plant volatiles attract the generalist predatory earwig Doru luteipes Scudder

    Science.gov (United States)

    Naranjo-Guevara, Natalia; Peñaflor, Maria Fernanda G. V.; Cabezas-Guerrero, Milton F.; Bento, José Maurício S.

    2017-10-01

    Numerous studies have demonstrated that entomophagous arthropods use herbivore-induced plant volatile (HIPV) blends to search for their prey or host. However, no study has yet focused on the response of nocturnal predators to volatile blends emitted by prey damaged plants. We investigated the olfactory behavioral responses of the night-active generalist predatory earwig Doru luteipes Scudder (Dermaptera: Forficulidae) to diurnal and nocturnal volatile blends emitted by maize plants ( Zea mays) attacked by either a stem borer ( Diatraea saccharalis) or a leaf-chewing caterpillar ( Spodoptera frugiperda), both suitable lepidopteran prey. Additionally, we examined whether the earwig preferred odors emitted from short- or long-term damaged maize. We first determined the earwig diel foraging rhythm and confirmed that D. luteipes is a nocturnal predator. Olfactometer assays showed that during the day, although the earwigs were walking actively, they did not discriminate the volatiles of undamaged maize plants from those of herbivore damaged maize plants. In contrast, at night, earwigs preferred volatiles emitted by maize plants attacked by D. saccharalis or S. frugiperda over undamaged plants and short- over long-term damaged maize. Our GC-MS analysis revealed that short-term damaged nocturnal plant volatile blends were comprised mainly of fatty acid derivatives (i.e., green leaf volatiles), while the long-term damaged plant volatile blend contained mostly terpenoids. We also observed distinct volatile blend composition emitted by maize damaged by the different caterpillars. Our results showed that D. luteipes innately uses nocturnal herbivore-induced plant volatiles to search for prey. Moreover, the attraction of the earwig to short-term damaged plants is likely mediated by fatty acid derivatives.

  9. The tri-trophic interactions hypothesis: interactive effects of host plant quality, diet breadth and natural enemies on herbivores.

    Directory of Open Access Journals (Sweden)

    Kailen A Mooney

    Full Text Available Several influential hypotheses in plant-herbivore and herbivore-predator interactions consider the interactive effects of plant quality, herbivore diet breadth, and predation on herbivore performance. Yet individually and collectively, these hypotheses fail to address the simultaneous influence of all three factors. Here we review existing hypotheses, and propose the tri-trophic interactions (TTI hypothesis to consolidate and integrate their predictions. The TTI hypothesis predicts that dietary specialist herbivores (as compared to generalists should escape predators and be competitively dominant due to faster growth rates, and that such differences should be greater on low quality (as compared to high quality host plants. To provide a preliminary test of these predictions, we conducted an empirical study comparing the effects of plant (Baccharis salicifolia quality and predators between a specialist (Uroleucon macolai and a generalist (Aphis gossypii aphid herbivore. Consistent with predictions, these three factors interactively determine herbivore performance in ways not addressed by existing hypotheses. Compared to the specialist, the generalist was less fecund, competitively inferior, and more sensitive to low plant quality. Correspondingly, predator effects were contingent upon plant quality only for the generalist. Contrary to predictions, predator effects were weaker for the generalist and on low-quality plants, likely due to density-dependent benefits provided to the generalist by mutualist ants. Because the TTI hypothesis predicts the superior performance of specialists, mutualist ants may be critical to A. gossypii persistence under competition from U. macolai. In summary, the integrative nature of the TTI hypothesis offers novel insight into the determinants of plant-herbivore and herbivore-predator interactions and the coexistence of specialist and generalist herbivores.

  10. Influence of cnicin, a sesquiterpene lactone ofCentaurea maculosa (Asteraceae), on specialist and generalist insect herbivores.

    Science.gov (United States)

    Landau, I; Müller-Schärer, H; Ward, P I

    1994-04-01

    The sesquiterpene lactone cnicin was extracted fromCentaurea maculosa andCentaurea vallesiaca. We examined its effects on the ovipositional response and larval development of generalist and specialist insect herbivores associated withC. maculosa. For the oviposition trials, three plant species (C. maculosa, Achillea millefolium, andCichorium intybus), half of which were sprayed with 3% of cnicin, were exposed to the specialist mothsStenodes straminea, Agapeta zoegana, andPterolonche inspersa in field cages. All three species significantly preferredC. maculosa to other plants andP. inspersa significantly preferred cnicin-sprayed plants to untreated plants for oviposition. Tested over all species, cnicin significantly increased the number of eggs laid on a given plant. A larval diet test examined the toxicity of cnicin for larvae of the generalist noctuid mothSpodoptera littoralis. Cnicin concentrations of 3% and 6% were lethal and 1% and 0.5% seriously inhibited growth and development. The larvae of theC. maculosa specialistStenodes straminea survived at 6% cnicin, but none of the pupae hatched.Agapeta zoegana was able to survive at 1% and 3% cnicin. Both specialists had difficulties with the artificial diet, but weight increase and survival was not further reduced when cnicin was present compared with on the control diet. In conclusion, cnicin influenced host recognition by the specialist species, and larvae of the generalist did not survive on natural levels of cnicin. Growth and survival of the specialist were not influenced by cnicin but were considerably hampered on artificial diet.

  11. Lack of Impact of Posidonia oceanica Leaf Nutrient Enrichment on Sarpa salpa Herbivory: Additional Evidence for the Generalist Consumer Behavior of This Cornerstone Mediterranean Herbivore.

    Science.gov (United States)

    Marco-Méndez, Candela; Wessel, Caitlin; Scheffel, Whitney; Ferrero-Vicente, Luis; Fernández-Torquemada, Yolanda; Cebrián, Just; Heck, Kenneth L; Sánchez-Lizaso, Jose Luis

    2016-01-01

    The fish Sarpa salpa (L.) is one of the main macroherbivores in the western Mediterranean. Through direct and indirect mechanisms, this herbivore can exert significant control on the structure and functional dynamics of seagrass beds and macroalgae. Past research has suggested nutritional quality of their diet influences S. salpa herbivory, with the fish feeding more intensively and exerting greater top down control on macrophytes with higher internal nutrient contents. However recent findings have questioned this notion and shown that herbivores do not preferentially feed on macrophytes with higher nutrient contents, but rather feed on a wide variety of them with no apparent selectivity. To contribute to this debate, we conducted a field fertilization experiment where we enriched leaves of the seagrass Posidonia oceanica, a staple diet for S. salpa, and examined the response by the herbivore. These responses included quantification of leaf consumption in fertilized and non-fertilized/control plots within the bed, and food choice assays where fertilized and non-fertilized/control leaves were simultaneously offered to the herbivore. Despite the duration of leaf exposure to herbivores (30 days) and abundant schools of S. salpa observed around the plots, leaf consumption was generally low in the plots examined. Consumption was not higher on fertilized than on non-fertilized leaves. Food choice experiments did not show strong evidence for selectivity of enriched leaves. These results add to a recent body of work reporting a broad generalist feeding behavior by S. salpa with no clear selectivity for seagrass with higher nutrient content. In concert, this and other studies suggest S. salpa is often generalist consumers not only dictated by diet nutrient content but by complex interactions between other traits of nutritional quality, habitat heterogeneity within their ample foraging area, and responses to predation risk.

  12. Host plant specialization in the generalist moth Heliothis virescens and the role of egg imprinting

    NARCIS (Netherlands)

    Karpinski, A.; Haenniger, S.; Schöfl, G.; Heckel, D.G.; Groot, A.T.

    2014-01-01

    Even though generalist insects are able to feed on many different host plants, local specialization may occur, which could lead to genetic differentiation. In this paper we assessed the level and extent of host plant specialization in the generalist herbivore Heliothis virescens Fabricius

  13. Use of stable isotopes to identify dietary differences across subpopulations and sex for a free-ranging generalist herbivore.

    Science.gov (United States)

    Walter, W David

    2014-01-01

    Carbon and nitrogen isotopes in tissues can be used to understand plants consumed by various taxa, but can they provide additional information about consumers? Values of δ(13)C and δ(15)N were assessed from tissue of free-ranging elk (Cervus elaphus) occupying disparate habitats of mixed prairie-oak savannah that contained C3 agricultural crops in a C4-dominated landscape and in key plants consumed by elk. Muscle and hoof samples were collected from female and male elk in two subpopulations (forested land and grassland) from private land and one subpopulation from the Wichita Mountains Wildlife Refuge (refuge) in 2001-2006. Previous research identified differences between mean muscle δ(13)C and δ(15)N and mean hoof δ(13)C and δ(15)N indicating that isotopes differed between tissues of varying metabolic activity. Mean δ(13)C in hoof of elk on forested land and grassland were lower than hoof δ(13)C from elk in the refuge indicating greater long-term consumption of C3 plants by elk on forested land and grassland subpopulations. The δ(15)N in hoof was greater for elk outside the refuge than that for elk in the refuge. Interaction of sex and subpopulation only occurred for hoof δ(15)N suggesting that factors such as tissue type, sex, and habitat need to be considered to understand free-ranging ecology of generalist herbivores using stable isotopes. Availability of C3 agricultural crops high in percent nitrogen on a nearly annual basis in a C4-dominated landscape was likely driving differences in tissue δ(13)C and δ(15)N among subpopulations of free-ranging elk. An increase in tissue δ(15)N resulted from an increase in the consumption of higher δ(15)N in forage for sexes and subpopulations of a free-ranging ungulate in North America but δ(15)N should be further evaluated as an index of nutrition for subpopulations of generalist herbivores.

  14. The impact of plant chemical diversity on plant-herbivore interactions at the community level.

    Science.gov (United States)

    Salazar, Diego; Jaramillo, Alejandra; Marquis, Robert J

    2016-08-01

    Understanding the role of diversity in ecosystem processes and species interactions is a central goal of ecology. For plant-herbivore interactions, it has been hypothesized that when plant species diversity is reduced, loss of plant biomass to herbivores increases. Although long-standing, this hypothesis has received mixed support. Increasing plant chemical diversity with increasing plant taxonomic diversity is likely to be important for plant-herbivore interactions at the community level, but the role of chemical diversity is unexplored. Here we assess the effect of volatile chemical diversity on patterns of herbivore damage in naturally occurring patches of Piper (Piperaceae) shrubs in a Costa Rican lowland wet forest. Volatile chemical diversity negatively affected total, specialist, and generalist herbivore damage. Furthermore, there were differences between the effects of high-volatility and low-volatility chemical diversity on herbivore damage. High-volatility diversity reduced specialist herbivory, while low-volatility diversity reduced generalist herbivory. Our data suggest that, although increased plant diversity is expected to reduce average herbivore damage, this pattern is likely mediated by the diversity of defensive compounds and general classes of anti-herbivore traits, as well as the degree of specialization of the herbivores attacking those plants.

  15. Novel multitrophic interactions among an exotic, generalist herbivore, its host plants and resident enemies in California.

    Science.gov (United States)

    Hopper, Julie V; Mills, Nicholas J

    2016-12-01

    What happens when an exotic herbivore invades and encounters novel host plants and enemies? Here, we investigate the impacts of host plant quality and plant architecture on an exotic generalist herbivore, Epiphyas postvittana (Lepidoptera: Tortricidae) and its interactions with resident parasitoids in California. Using artificial diet and five plant species, we found significant effects of diet on the fitness of E. postvittana under laboratory conditions. In the field, based on a common garden experiment with host plants of nine species, we found that larval parasitism varied among plant species by a factor of 2.1 with a higher risk of parasitism on shorter than taller plants. Parasitism of egg masses varied by a factor of 4.7 among plant species with a higher risk of parasitism on taller than shorter plants. In the laboratory, the foraging time of a resident egg parasitoid on excised leaves varied among plant species, but did not correspond to observed egg parasitism rates on these same plants in the field. On leaves of Plantago lanceolata, the probability of egg parasitism decreased with trichome density. Overall, there was a significant effect of host plant on the intrinsic rate of increase of E. postvittana and on the extent of parasitism by resident parasitoids, but no correlation existed between these two effects. The recent decline of E. postvittana in California may be due to the low quality of some host plants and to the many resident enemies that readily attack it, perhaps due to its phylogenetic relatedness to resident tortricids.

  16. Learning in Insect Pollinators and Herbivores.

    Science.gov (United States)

    Jones, Patricia L; Agrawal, Anurag A

    2017-01-31

    The relationship between plants and insects is influenced by insects' behavioral decisions during foraging and oviposition. In mutualistic pollinators and antagonistic herbivores, past experience (learning) affects such decisions, which ultimately can impact plant fitness. The higher levels of dietary generalism in pollinators than in herbivores may be an explanation for the differences in learning seen between these two groups. Generalist pollinators experience a high level of environmental variation, which we suggest favors associative learning. Larval herbivores employ habituation and sensitization-strategies useful in their less variable environments. Exceptions to these patterns based on habitats, mobility, and life history provide critical tests of current theory. Relevant plant traits should be under selection to be easily learned and remembered in pollinators and difficult to learn in herbivores. Insect learning thereby has the potential to have an important, yet largely unexplored, role in plant-insect coevolution.

  17. The role of herbivore- and plant-related experiences in intraspecific host preference of a relatively specialized parasitoid.

    Science.gov (United States)

    Morawo, Tolulope; Fadamiro, Henry

    2017-09-06

    Parasitoids use odor cues from infested plants and herbivore hosts to locate their hosts. Specialist parasitoids of generalist herbivores are predicted to rely more on herbivore-derived cues than plant-derived cues. Microplitis croceipes (Cresson) (Hymenoptera: Braconidae) is a relatively specialized larval endoparasitoid of Heliothis virescens (F.) (Lepidoptera: Noctuidae), which is a generalist herbivore on several crops including cotton and soybean. Using M. croceipes/H. virescens as a model system, we tested the following predictions about specialist parasitoids of generalist herbivores: (i) naive parasitoids will show innate responses to herbivore-emitted kairomones, regardless of host plant identity and (ii) herbivore-related experience will have a greater influence on intraspecific oviposition preference than plant-related experience. Inexperienced (naive) female M. croceipes did not discriminate between cotton-fed and soybean-fed H. virescens in oviposition choice tests, supporting our first prediction. Oviposition experience alone with either host group influenced subsequent oviposition preference while experience with infested plants alone did not elicit preference in M. croceipes, supporting our second prediction. Furthermore, associative learning of oviposition with host-damaged plants facilitated host location. Interestingly, naive parasitoids attacked more soybean-fed than cotton-fed host larvae in two-choice tests when a background of host-infested cotton odor was supplied, and vice versa. This suggests that plant volatiles may have created an olfactory contrast effect. We discussed ecological significance of the results and concluded that both plant- and herbivore-related experiences play important role in parasitoid host foraging. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  18. Macroevolution of plant defenses against herbivores in the evening primroses.

    Science.gov (United States)

    Johnson, Marc T J; Ives, Anthony R; Ahern, Jeffrey; Salminen, Juha-Pekka

    2014-07-01

    Plant species vary greatly in defenses against herbivores, but existing theory has struggled to explain this variation. Here, we test how phylogenetic relatedness, tradeoffs, trait syndromes, and sexual reproduction affect the macroevolution of defense. To examine the macroevolution of defenses, we studied 26 Oenothera (Onagraceae) species, combining chemistry, comparative phylogenetics and experimental assays of resistance against generalist and specialist herbivores. We detected dozens of phenolic metabolites within leaves, including ellagitannins (ETs), flavonoids, and caffeic acid derivatives (CAs). The concentration and composition of phenolics exhibited low to moderate phylogenetic signal. There were clear negative correlations between multiple traits, supporting the prediction of allocation tradeoffs. There were also positively covarying suites of traits, but these suites did not strongly predict resistance to herbivores and thus did not act as defensive syndromes. By contrast, specific metabolites did correlate with the performance of generalist and specialist herbivores. Finally, that repeated losses of sex in Oenothera was associated with the evolution of increased flavonoid diversity and altered phenolic composition. These results show that secondary chemistry has evolved rapidly during the diversification of Oenothera. This evolution has been marked by allocation tradeoffs between traits, some of which are related to herbivore performance. The repeated loss of sex appears also to have constrained the evolution of plant secondary chemistry, which may help to explain variation in defense among plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  19. Community-Weighted Mean Plant Traits Predict Small Scale Distribution of Insect Root Herbivore Abundance.

    Directory of Open Access Journals (Sweden)

    Ilja Sonnemann

    Full Text Available Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae larvae (43% in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height, and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio. Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of

  20. Immune defence strategies of generalist and specialist insect herbivores

    NARCIS (Netherlands)

    Barthel, A.; Kopka, I.; Vogel, H.; Zipfel, P.; Heckel, D.G.; Groot, A.T.

    2014-01-01

    Ecological immunology examines the adaptive responses of animals to pathogens in relation to other environmental factors and explores the consequences of trade-offs between investment in immune function and other life-history traits. Among species of herbivorous insects, diet breadth may vary

  1. Structural breakdown of specialized plant-herbivore interaction networks in tropical forest edges

    Directory of Open Access Journals (Sweden)

    Bruno Ximenes Pinho

    2017-10-01

    Full Text Available Plant-herbivore relationships are essential for ecosystem functioning, typically forming an ecological network with a compartmentalized (i.e. modular structure characterized by highly specialized interactions. Human disturbances can favor habitat generalist species and thus cause the collapse of this modular structure, but its effects are rarely assessed using a network-based approach. We investigate how edge proximity alters plant-insect herbivore networks by comparing forest edge and interior in a large remnant (3.500 ha of the Brazilian Atlantic forest. Given the typical dominance of pioneer plants and generalist herbivores in edge-affected habitats, we test the hypothesis that the specialized structure of plant-herbivore networks collapse in forest edges, resulting in lower modularity and herbivore specialization. Despite no differences in the number of species and interactions, the network structure presented marked differences between forest edges and interior. Herbivore specialization, modularity and number of modules were significantly higher in forest interior than edge-affected habitats. When compared to a random null model, two (22.2% and eight (88.8% networks were significantly modular in forest edge and interior, respectively. The loss of specificity and modularity in plant-herbivore networks in forest edges may be related to the loss of important functions, such as density-dependent control of superior plant competitors, which is ultimately responsible for the maintenance of biodiversity and ecosystem functions. Our results support previous warnings that focusing on traditional community measures only (e.g. species diversity may overlook important modifications in species interactions and ecosystem functioning.

  2. Plant traits and plant biogeography control the biotic resistance provided by generalist herbivores

    NARCIS (Netherlands)

    Grutters, B.M.C.; Roijendijk, Yvonne; Verberk, W.C.E.P.; Bakker, E.S.

    2017-01-01

    1.Globalization and climate change trigger species invasions and range shifts, which reshuffle communities at an exceptional rate and expose plant migrants to unfamiliar herbivores. Dominant hypotheses to predict plant success are based on evolutionary novelty: either herbivores are maladapted to

  3. Dietary patterns of two herbivorous rodents: and Parotomys brantsii ...

    African Journals Online (AJOL)

    Frequency of occurrence of plant species in the diets were compared with availability of the plants in the rodents' habitats. Both rodents are generalist herbivores, eating plants species in proportion to the availability in their habitats. Dietary patterns, diversity of diet and degree of overlap between rodent's diets are a function ...

  4. Intraspecific chemical diversity among neighbouring plants correlates positively with plant size and herbivore load but negatively with herbivore damage.

    Science.gov (United States)

    Bustos-Segura, Carlos; Poelman, Erik H; Reichelt, Michael; Gershenzon, Jonathan; Gols, Rieta

    2017-01-01

    Intraspecific plant diversity can modify the properties of associated arthropod communities and plant fitness. However, it is not well understood which plant traits determine these ecological effects. We explored the effect of intraspecific chemical diversity among neighbouring plants on the associated invertebrate community and plant traits. In a common garden experiment, intraspecific diversity among neighbouring plants was manipulated using three plant populations of wild cabbage that differ in foliar glucosinolates. Plants were larger, harboured more herbivores, but were less damaged when plant diversity was increased. Glucosinolate concentration differentially correlated with generalist and specialist herbivore abundance. Glucosinolate composition correlated with plant damage, while in polycultures, variation in glucosinolate concentrations among neighbouring plants correlated positively with herbivore diversity and negatively with plant damage levels. The results suggest that intraspecific variation in secondary chemistry among neighbouring plants is important in determining the structure of the associated insect community and positively affects plant performance. © 2016 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  5. Ability of a Generalist Seed Beetle to Colonize an Exotic Host: Effects of Host Plant Origin and Oviposition Host.

    Science.gov (United States)

    Amarillo-Suárez, A; Repizo, A; Robles, J; Diaz, J; Bustamante, S

    2017-08-01

    The colonization of an exotic species by native herbivores is more likely to occur if that herbivore is a generalist. There is little information on the life-history mechanisms used by native generalist insects to colonize exotic hosts and how these mechanisms are affected by host properties. We examined the ability of the generalist seed beetle Stator limbatus Horn to colonize an exotic species. We compared its host preference, acceptability, performance, and egg size when ovipositing and developing on two native (Pithecellobium dulce (Roxb.) Benth and Senegalia riparia (Kunth)) and one exotic legume species (Leucaena leucocephala (Lam.)). We also analyzed the seed chemistry. We found that females recognize the exotic species as an unfavorable host for larval development and that they delayed oviposition and laid fewer and larger eggs on the exotic species than on the native species. Survivorship on the exotic host was 0%. Additionally, seeds of the native species contain five chemical compounds that are absent in the exotic species, and the exotic species contains three sterols, which are absent in the native legumes. Genetically based differences between beetles adapted to different hosts, plastic responses toward new hosts, and chemical differences among seeds are important in host colonization and recognition of the exotic host. In conclusion, the generalist nature of S. limbatus does not influence its ability to colonize L. leucocephala. Explanations for the colonization of exotic hosts by generalist native species and for the success of invasive species must be complemented with studies measuring local adaptation and plasticity.

  6. Toxicity of a furanocoumarin to armyworms: a case of biosynthetic escape from insect herbivores.

    Science.gov (United States)

    Berenbaum, M

    1978-08-11

    When the linear furanocoumarin xanthotoxin, found in many plants of the families Rutaceae and Umbelliferae, was administered to larvae of Spodoptera eridania, a generalist insect herbivore, it displayed toxic properties lacking in its biosynthetic precursor umbelliferone. Reduced toxicity observed in the absence of ultraviolet light is consistent with the known mechanism of photoinactivation of DNA by furanocoumarins through ultraviolet-catalyzed cross-linkage of strands. Thus, the ability of a plant to convert umbelliferone to linear furanocoumarins appears to confer broader protection against insect herbivores.

  7. A simple enzyme assay for dry matter digestibility and its value in studying food selection by generalist herbivores.

    Science.gov (United States)

    Choo, Gillian M; Waterman, Peter G; McKey, Doyle B; Gartlan, J Stephen

    1981-05-01

    The dry matter digestibility of 94 species of leaf was assayed by a simple method involving sequential treatment with pepsin and fungal cellulase enzymes. It was demonstrated that for foliage from rainforest trees of a wide range of dicotyledonous plant families the assay showed high positive correlation with estimates of dry matter digestibility obtained using rumenliquor from a fistulated steer. Both assays were found to reflect negative correlates of digestibility, notably fibre and condensed tannin, rather than the nutritional value of an item. The higher dry matter digestibility of immature leaves relative to mature leaves appeared to be accounted for by their lower fibre content. It is suggested that the pepsin/cellulase assay offers a cheap, quick, routine method of gaining information on the effects of some types of plant secondary compounds (digestibility reducers) on the 'food potential' of different kinds of foliage to herbivores. Its use in studies of herbivory in rainforest areas in relation to analyses for plant secondary compounds and food selection by herbivores is discussed.

  8. Laccase gene expression as a possible key adaptation for herbivorous niche expansion in the attine fungus-growing ants

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Boomsma, Jacobus Jan

    generalist functional herbivores. Laccases are polyphenol oxidase enzymes (PPOs) that are best known for their ability to degrade lignin in saprophytic and wood-pathogenic fungi. We found that laccase activity was primarily expressed in newly constructed garden sections where secondary leaf compounds...

  9. Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric CO 2 concentration

    Science.gov (United States)

    Vuorinen, Terhi; Reddy, G. V. P.; Nerg, Anne-Marja; Holopainen, Jarmo K.

    The warming of the lower atmosphere due to elevating CO 2 concentration may increase volatile organic compound (VOC) emissions from plants. Also, direct effects of elevated CO 2 on plant secondary metabolism are expected to lead to increased VOC emissions due to allocation of excess carbon on secondary metabolites, of which many are volatile. We investigated how growing at doubled ambient CO 2 concentration affects emissions from cabbage plants ( Brassica oleracea subsp. capitata) damaged by either the leaf-chewing larvae of crucifer specialist diamondback moth ( Plutella xylostella L.) or generalist Egyptian cotton leafworm ( Spodoptera littoralis (Boisduval)). The emission from cabbage cv. Lennox grown in both CO 2 concentrations, consisted mainly of monoterpenes (sabinene, limonene, α-thujene, 1,8-cineole, β-pinene, myrcene, α-pinene and γ-terpinene). ( Z)-3-Hexenyl acetate, sesquiterpene ( E, E)- α-farnesene and homoterpene ( E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) were emitted mainly from herbivore-damaged plants. Plants grown at 720 μmol mol -1 of CO 2 had significantly lower total monoterpene emissions per shoot dry weight than plants grown at 360 μmol mol -1 of CO 2, while damage by both herbivores significantly increased the total monoterpene emissions compared to intact plants. ( Z)-3-Hexenyl acetate, ( E, E)- α-farnesene and DMNT emissions per shoot dry weight were not affected by the growth at elevated CO 2. The emission of DMNT was significantly enhanced from plants damaged by the specialist P. xylostella compared to the plants damaged by the generalist S. littoralis. The relative proportions of total monoterpenes and total herbivore-induced compounds of total VOCs did not change due to the growth at elevated CO 2, while insect damage increased significantly the proportion of induced compounds. The results suggest that VOC emissions that are induced by the leaf-chewing herbivores will not be influenced by elevated CO 2 concentration.

  10. Herbivore specificity and the chemical basis of plant-plant communication in Baccharis salicifolia (Asteraceae).

    Science.gov (United States)

    Moreira, Xoaquín; Nell, Colleen S; Katsanis, Angelos; Rasmann, Sergio; Mooney, Kailen A

    2016-09-06

    It is well known that plant damage by leaf-chewing herbivores can induce resistance in neighbouring plants. It is unknown whether such communication occurs in response to sap-feeding herbivores, whether communication is specific to herbivore identity, and the chemical basis of communication, including specificity. We carried out glasshouse experiments using the California-native shrub Baccharis salicifolia and two ecologically distinct aphid species (one a dietary generalist and the other a specialist) to test for specificity of plant-plant communication and to document the underlying volatile organic compounds (VOCs). We show specificity of plant-plant communication to herbivore identity, as each aphid-damaged plant only induced resistance in neighbours against the same aphid species. The amount and composition of induced VOCs were markedly different between plants attacked by the two aphid species, providing a putative chemical mechanism for this specificity. Furthermore, a synthetic blend of the five major aphid-induced VOCs (ethanone, limonene, methyl salicylate, myrcene, ocimene) triggered resistance in receiving plants of comparable magnitude to aphid damage of neighbours, and the effects of the blend exceeded those of individual compounds. This study significantly advances our understanding of plant-plant communication by demonstrating the importance of sap-feeding herbivores and herbivore identity, as well as the chemical basis for such effects. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  11. Chemical and mechanical defenses vary among maternal lines and leaf ages in Verbascum thapsus L. (Scrophulariaceae and reduce palatability to a generalist insect.

    Directory of Open Access Journals (Sweden)

    Christina Alba

    Full Text Available Intra-specific variation in host-plant quality affects herbivore foraging decisions and, in turn, herbivore foraging decisions mediate plant fitness. In particular, variation in defenses against herbivores, both among and within plants, shapes herbivore behavior. If variation in defenses is genetically based, it can respond to natural selection by herbivores. We quantified intra-specific variation in iridoid glycosides, trichome length, and leaf strength in common mullein (Verbascum thapsus L, Scrophulariaceae among maternal lines within a population and among leaves within plants, and related this variation to feeding preferences of a generalist herbivore, Trichopulsia ni Hübner. We found significant variation in all three defenses among maternal lines, with T. ni preferring plants with lower investment in chemical, but not mechanical, defense. Within plants, old leaves had lower levels of all defenses than young leaves, and were strongly preferred by T. ni. Caterpillars also preferred leaves with trichomes removed to leaves with trichomes intact. Differences among maternal lines indicate that phenotypic variation in defenses likely has a genetic basis. Furthermore, these results reveal that the feeding behaviors of T. ni map onto variation in plant defense in a predictable way. This work highlights the importance of variation in host-plant quality in driving interactions between plants and their herbivores.

  12. Chemical and mechanical defenses vary among maternal lines and leaf ages in Verbascum thapsus L. (Scrophulariaceae) and reduce palatability to a generalist insect.

    Science.gov (United States)

    Alba, Christina; Bowers, M Deane; Blumenthal, Dana; Hufbauer, Ruth A

    2014-01-01

    Intra-specific variation in host-plant quality affects herbivore foraging decisions and, in turn, herbivore foraging decisions mediate plant fitness. In particular, variation in defenses against herbivores, both among and within plants, shapes herbivore behavior. If variation in defenses is genetically based, it can respond to natural selection by herbivores. We quantified intra-specific variation in iridoid glycosides, trichome length, and leaf strength in common mullein (Verbascum thapsus L, Scrophulariaceae) among maternal lines within a population and among leaves within plants, and related this variation to feeding preferences of a generalist herbivore, Trichopulsia ni Hübner. We found significant variation in all three defenses among maternal lines, with T. ni preferring plants with lower investment in chemical, but not mechanical, defense. Within plants, old leaves had lower levels of all defenses than young leaves, and were strongly preferred by T. ni. Caterpillars also preferred leaves with trichomes removed to leaves with trichomes intact. Differences among maternal lines indicate that phenotypic variation in defenses likely has a genetic basis. Furthermore, these results reveal that the feeding behaviors of T. ni map onto variation in plant defense in a predictable way. This work highlights the importance of variation in host-plant quality in driving interactions between plants and their herbivores.

  13. Induced Jasmonate Signaling Leads to Contrasting Effects on Root Damage and Herbivore Performance1

    Science.gov (United States)

    Lu, Jing; Robert, Christelle Aurélie Maud; Riemann, Michael; Cosme, Marco; Mène-Saffrané, Laurent; Massana, Josep; Stout, Michael Joseph; Lou, Yonggen; Gershenzon, Jonathan; Erb, Matthias

    2015-01-01

    Induced defenses play a key role in plant resistance against leaf feeders. However, very little is known about the signals that are involved in defending plants against root feeders and how they are influenced by abiotic factors. We investigated these aspects for the interaction between rice (Oryza sativa) and two root-feeding insects: the generalist cucumber beetle (Diabrotica balteata) and the more specialized rice water weevil (Lissorhoptrus oryzophilus). Rice plants responded to root attack by increasing the production of jasmonic acid (JA) and abscisic acid, whereas in contrast to in herbivore-attacked leaves, salicylic acid and ethylene levels remained unchanged. The JA response was decoupled from flooding and remained constant over different soil moisture levels. Exogenous application of methyl JA to the roots markedly decreased the performance of both root herbivores, whereas abscisic acid and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid did not have any effect. JA-deficient antisense 13-lipoxygenase (asLOX) and mutant allene oxide cyclase hebiba plants lost more root biomass under attack from both root herbivores. Surprisingly, herbivore weight gain was decreased markedly in asLOX but not hebiba mutant plants, despite the higher root biomass removal. This effect was correlated with a herbivore-induced reduction of sucrose pools in asLOX roots. Taken together, our experiments show that jasmonates are induced signals that protect rice roots from herbivores under varying abiotic conditions and that boosting jasmonate responses can strongly enhance rice resistance against root pests. Furthermore, we show that a rice 13-lipoxygenase regulates root primary metabolites and specifically improves root herbivore growth. PMID:25627217

  14. Quantitative effects of cyanogenesis on an adapted herbivore.

    Science.gov (United States)

    Ballhorn, D J; Heil, M; Pietrowski, A; Lieberei, R

    2007-12-01

    Plant cyanogenesis means the release of gaseous hydrogen cyanide (HCN) in response to cell damage and is considered as an effective defense against generalist herbivores. In contrast, specialists are generally believed not to be affected negatively by this trait. However, quantitative data on long-term effects of cyanogenesis on specialists are rare. In this study, we used lima bean accessions (Fabaceae: Phaseolus lunatus L.) with high quantitative variability of cyanogenic features comprising cyanogenic potential (HCNp; concentration of cyanogenic precursors) and cyanogenic capacities (HCNc; release of gaseous HCN per unit time). In feeding trials, we analyzed performance of herbivorous Mexican bean beetle (Coleoptera: Coccinellidae: Epilachna varivestis Mulsant) on selected lines characterized by high (HC-plants) and low HCNp (LC-plants). Larval and adult stages of this herbivore feed on a narrow range of legumes and prefer cyanogenic lima bean as host plant. Nevertheless, we found that performance of beetles (larval weight gain per time and body mass of adult beetles) was significantly affected by lima bean HCNp: Body weight decreased and developmental period of larvae and pupae increased on HC-plants during the first generation of beetles and then remained constant for four consecutive generations. In addition, we found continuously decreasing numbers of eggs and larval hatching as inter-generational effects on HC-plants. In contrast to HC-plants, constantly high performance was observed among four generations on LC-plants. Our results demonstrate that Mexican bean beetle, although preferentially feeding on lima bean, is quantitatively affected by the HCNp of its host plant. Effects can only be detected when considering more than one generation. Thus, cyanide-containing precursors can have negative effects even on herbivores adapted to feed on cyanogenic plants.

  15. Latitudinal Gradients in Induced and Constitutive Resistance against Herbivores.

    Science.gov (United States)

    Anstett, Daniel N; Chen, Wen; Johnson, Marc T J

    2016-08-01

    Plants are hypothesized to evolve increased defense against herbivores at lower latitudes, but an increasing number of studies report evidence that contradicts this hypothesis. Few studies have examined the evolution of constitutive and induced resistance along latitudinal gradients. When induction is not considered, underlying patterns of latitudinal clines in resistance can be obscured because plant resistance represents a combination of induced and constitutive resistance, which may show contrasting patterns with latitude. Here, we asked if there are latitudinal gradients in constitutive versus induced resistance by using genotypes of Oenothera biennis (Onagraceae) sampled along an 18° latitudinal gradient. We conducted two bioassay experiments to compare the resistance of plant genotypes against one generalist (Spodoptera exigua) and one specialist (Acanthoscelidius acephalus) herbivore. These insects were assayed on: i) undamaged control plants, ii) plants that had been induced with jasmonic acid, and iii) plants induced with herbivore damage. Additionally, we examined latitudinal gradients of constitutive and induced chemical resistance by measuring the concentrations of total phenolics, the concentration of oxidized phenolics, and the percentage of phenolics that were oxidized. Spodoptera exigua showed lower performance on plants from lower latitudes, whereas A. acephalus showed no latitudinal pattern. Constitutive total phenolics were greater in plants from lower latitudes, but induced plants showed higher total phenolics at higher latitudes. Oxidative activity was greatest at higher latitudes regardless of induction. Overall, both latitude and induction have an impact on different metrics of plant resistance to herbivory. Further studies should consider the effect of induction and herbivore specialization more explicitly, which may help to resolve the controversy in latitudinal gradients in herbivory and defense.

  16. Chlorophyll degradation in the gut of generalist and specialist Lepidopteran caterpillars.

    Science.gov (United States)

    Badgaa, Amarsanaa; Jia, Aiqun; Ploss, Kerstin; Boland, Wilhelm

    2014-12-01

    Plant feeding herbivores excrete most of the ingested chlorophyll (Chl) as partly degraded derivatives lacking the phytol side chain and the central magnesium ion. An ecological role of digested and degraded Chls in the interactions between insects, their food plant and other insects has been described recently. To gain more information on common degradation patterns in plant-feeding insects, the orals secretions and frass of five Lepidopteran caterpillars covering generalists and specialists, namely Spodoptera littoralis, Spodoptera eridania, Heliothis virescens, Helicoverpa armigera, Manduca sexta, and, for comparison, of the leaf beetle larva Chrysomela lapponica were analyzed for chlorophyll catabolites. The major degradation products were determined as pheohorbide a/b and pyropheophorbide a/b by using LC-MS, LC-NMR, UV, and fluorescence spectrometry. The compounds were not present in fresh leaves of the food plants (Phaseolus lunatus, Nicotiana tabacum). The catabolite spectrum in generalists and specialists was qualitatively similar and could be attributed to the action of gut proteins and the strongly alkaline milieu in the digestive tract. Due to the anaerobic environment of the larval gut, the tetrapyrrole core of the Chl catabolites was not cleaved. Substantial amounts of Chl a/b metabolites were strongly complexed by a protein in the mid-gut.

  17. Innate and Learned Prey-Searching Behavior in a Generalist Predator.

    Science.gov (United States)

    Ardanuy, Agnès; Albajes, Ramon; Turlings, Ted C J

    2016-06-01

    Early colonization by Zyginidia scutellaris leafhoppers might be a key factor in the attraction and settling of generalist predators, such as Orius spp., in maize fields. In this paper, we aimed to determine whether our observations of early season increases in field populations of Orius spp. reflect a specific attraction to Z. scutellaris-induced maize volatiles, and how the responses of Orius predators to herbivore-induced volatiles (HIPVs) might be affected by previous experiences on plants infested by herbivorous prey. Therefore, we examined the innate and learned preferences of Orius majusculus toward volatiles from maize plants attacked by three potential herbivores with different feeding strategies: the leafhopper Z. scutellaris (mesophyll feeder), the lepidopteran Spodoptera littoralis (chewer), and another leafhopper Dalbulus maidis (phloem feeder). In addition, we examined the volatile profiles emitted by maize plants infested by the three herbivores. Our results show that predators exhibit a strong innate attraction to volatiles from maize plants infested with Z. scutellaris or S. littoralis. Previous predation experience in the presence of HIPVs influences the predator's odor preferences. The innate preference for plants with cell or tissue damage may be explained by these plants releasing far more volatiles than plants infested by the phloem-sucking D. maidis. However, a predation experience on D. maidis-infested plants increased the preference for D. maidis-induced maize volatiles. After O. majusculus experienced L3-L4 larvae (too large to serve as prey) on S. littoralis-infested plants, they showed reduced attraction toward these plants and an increased attraction toward D. maidis-infested plants. When offered young larvae of S. littoralis, which are more suitable prey, preference toward HIPVs was similar to that of naive individuals. The HIPVs from plants infested by herbivores with distinctly different feeding strategies showed distinguishable

  18. Formulation of A Novel Phytopesticide PONNEEM and its Potentiality to control generalist Herbivorous Lepidopteran insect pests, Spodoptera litura (Fabricius and Helicoverpa armigera (H übner (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Susaimanickam Maria Packiam

    2012-10-01

    Full Text Available Objective: To evaluate the deterrence of oviposition potentiality of a novel phytopesticide PONNEEM against the generalist herbivorous lepidopteran insect pests Helicoverpa armigera and Spodoptera litura. Methods: Different phytopesticidal formulations were prepared at different ratio to evaluate the deterrence of oviposition activity against S. litura and H. armigera at 5, 10, 15, and 20毺 L/L concentrations. Results: The newly formulated different phytopesticides exhibited good results of oviposition deterrent activity against these two polyphagous insect pests. At 20毺 L/L concentration of PONNEEM, 77.48% of the maximum deterrence of oviposition activity was recorded, followed by formulation A (49.23%. And 68.12% was observed against H. armigera followed by A (49.52%. PONNEEM exhibited statistically significant oviposition deterrent activity compared to all other treatments. Conclusions: The newly formulated PONNEEM was found to be effective phytopesticidal formulation to control the adult of S. litura and H. armigera due to the synergistic effect of biomolecules such as azadirachtin and karanjin. This is the first report of PONNEEM which was patented under the government of India. The potential use of this novel phytopesticide could be an agent of controlling the adults of lepidopteran insect pests which can be applied in the integrated pest management programme.

  19. The ecology of acidification and recovery: changes in herbivore-algal food web linkages across a stream pH gradient

    International Nuclear Information System (INIS)

    Ledger, M.E.; Hildrew, A.G.

    2005-01-01

    We examined the effects of acidification on herbivore-algal food web linkages in headwater streams. We determined the structure and abundance of consumer and benthic algal assemblages, and gauged herbivory, in 10 streams along a pH gradient (mean annual pH 4.6-6.4). Biofilm taxonomic composition changed with pH but total abundance did not vary systematically across the gradient. Mayflies and chironomids dominated under circumneutral conditions but declined with increasing acidity and their consumption of algae was strongly reduced. Contrary to expectations, several putative shredder species consumed algae, maintaining the herbivore-algal linkage where specialist grazers could not persist. These shifts in functioning could render the communities of acidified streams resistant to reinvasion when acidity ameliorates and water chemistry is restored to a pre-acidification condition. This hypothesis is discussed in the light of recent trends in the chemistry and biology of the UK Acid Waters Monitoring Network sites. - Generalist invertebrates maintain algae-herbivore interactions in acid streams

  20. The ecology of acidification and recovery: changes in herbivore-algal food web linkages across a stream pH gradient

    Energy Technology Data Exchange (ETDEWEB)

    Ledger, M.E. [Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)]. E-mail: m.e.ledger@bham.ac.uk; Hildrew, A.G. [Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)

    2005-09-15

    We examined the effects of acidification on herbivore-algal food web linkages in headwater streams. We determined the structure and abundance of consumer and benthic algal assemblages, and gauged herbivory, in 10 streams along a pH gradient (mean annual pH 4.6-6.4). Biofilm taxonomic composition changed with pH but total abundance did not vary systematically across the gradient. Mayflies and chironomids dominated under circumneutral conditions but declined with increasing acidity and their consumption of algae was strongly reduced. Contrary to expectations, several putative shredder species consumed algae, maintaining the herbivore-algal linkage where specialist grazers could not persist. These shifts in functioning could render the communities of acidified streams resistant to reinvasion when acidity ameliorates and water chemistry is restored to a pre-acidification condition. This hypothesis is discussed in the light of recent trends in the chemistry and biology of the UK Acid Waters Monitoring Network sites. - Generalist invertebrates maintain algae-herbivore interactions in acid streams.

  1. Metabolite profiling reveals a specific response in tomato to predaceous Chrysoperla carnea larvae and herbivore(s-predator interactions with the generalist pests Tetranychus urticae and Myzus persicae

    Directory of Open Access Journals (Sweden)

    Audrey Errard

    2016-08-01

    Full Text Available The spider mite Tetranychus urticae Koch and the aphid Myzus persicae (Sulzer both infest a number of economically significant crops, including tomato (Solanum lycopersicum. Although used for decades to control pests, the impact of green lacewing larvae Chrysoperla carnea (Stephens on plant biochemistry was not investigated. Here we used profiling methods and targeted analyses to explore the impact of the predator and herbivore(s-predator interactions on tomato biochemistry. Each pest and pest-predator combination induced a characteristic metabolite signature in the leaf and the fruit thus, the plant exhibited a systemic response. The treatments had a stronger impact on non-volatile metabolites including abscisic acid and amino acids in the leaves in comparison with the fruits. In contrast, the various biotic factors had a greater impact on the carotenoids in the fruits. We identified volatiles such as myrcene and α-terpinene which were induced by pest-predator interactions but not by single species, and we demonstrated the involvement of the phytohormone abscisic acid in tritrophic interactions for the first time. More importantly, C. carnea larvae alone impacted the plant metabolome, but the predator did not appear to elicit particular defense pathways on its own. Since the presence of both C. carnea larvae and pest individuals elicited volatiles which were shown to contribute to plant defense, C. carnea larvae could therefore contribute to the reduction of pest infestation, not only by its preying activity, but also by priming responses to generalist herbivores such as T. urticae and M. persicae. On the other hand, the use of C. carnea larvae alone did not impact carotenoids thus, was not prejudicial to the fruit quality. The present piece of research highlights the specific impact of predator and tritrophic interactions with green lacewing larvae, spider mites and aphids on different components of the tomato primary and secondary metabolism

  2. Field-based insights to the evolution of specialization: plasticity and fitness across habitats in a specialist/generalist species pair.

    Science.gov (United States)

    Griffith, Timothy; Sultan, Sonia E

    2012-04-01

    Factors promoting the evolution of specialists versus generalists have been little studied in ecological context. In a large-scale comparative field experiment, we studied genotypes from naturally evolved populations of a closely related generalist/specialist species pair (Polygonum persicaria and P. hydropiper), reciprocally transplanting replicates of multiple lines into open and partially shaded sites where the species naturally co-occur. We measured relative fitness, individual plasticity, herbivory, and genetic variance expressed in the contrasting light habitats at both low and high densities. Fitness data confirmed that the putative specialist out-performed the generalist in only one environment, the favorable full sun/low-density environment to which it is largely restricted in nature, while the generalist had higher lifetime reproduction in both canopy and dense neighbor shade. The generalist, P. persicaria, also expressed greater adaptive plasticity for biomass allocation and leaf size in shaded conditions than the specialist. We found no evidence that the ecological specialization of P. hydropiper reflects either genetically based fitness trade-offs or maintenance costs of plasticity, two types of genetic constraint often invoked to prevent the evolution of broadly adaptive genotypes. However, the patterns of fitness variance and herbivore damage revealed how release from herbivory in a new range can cause an introduced species to evolve as a specialist in that range, a surprising finding with important implications for invasion biology. Patterns of fitness variance between and within sites are also consistent with a possible role for the process of mutation accumulation (in this case, mutations affecting shade-expressed phenotypes) in the evolution and/or maintenance of specialization in P. hydropiper.

  3. Are Tree Species Diversity and Genotypic Diversity Effects on Insect Herbivores Mediated by Ants?

    Directory of Open Access Journals (Sweden)

    María José Campos-Navarrete

    Full Text Available Plant diversity can influence predators and omnivores and such effects may in turn influence herbivores and plants. However, evidence for these ecological feedbacks is rare. We evaluated if the effects of tree species (SD and genotypic diversity (GD on the abundance of different guilds of insect herbivores associated with big-leaf mahogany (Swietenia macrophylla were contingent upon the protective effects of ants tending extra-floral nectaries of this species. This study was conducted within a larger experiment consisting of mahogany monocultures and species polycultures of four species and -within each of these two plot types- mahogany was represented by either one or four maternal families. We selected 24 plots spanning these treatment combinations, 10 mahogany plants/plot, and within each plot experimentally reduced ant abundance on half of the selected plants, and surveyed ant and herbivore abundance. There were positive effects of SD on generalist leaf-chewers and sap-feeders, but for the latter group this effect depended on the ant reduction treatment: SD positively influenced sap-feeders under ambient ant abundance but had no effect when ant abundance was reduced; at the same time, ants had negative effects on sap feeders in monoculture but no effect in polyculture. In contrast, SD did not influence specialist stem-borers or leaf-miners and this effect was not contingent upon ant reduction. Finally, GD did not influence any of the herbivore guilds studied, and such effects did not depend on the ant treatment. Overall, we show that tree species diversity influenced interactions between a focal plant species (mahogany and ants, and that such effects in turn mediated plant diversity effects on some (sap-feeders but not all the herbivores guilds studied. Our results suggest that the observed patterns are dependent on the combined effects of herbivore identity, diet breadth, and the source of plant diversity.

  4. Differences in Nicotine Metabolism of Two Nicotiana attenuata Herbivores Render Them Differentially Susceptible to a Common Native Predator

    Science.gov (United States)

    Kumar, Pavan; Rathi, Preeti; Schöttner, Matthias; Baldwin, Ian T.; Pandit, Sagar

    2014-01-01

    Background Nicotiana attenuata is attacked by larvae of both specialist (Manduca sexta) and generalist (Spodoptera exigua) lepidopteran herbivores in its native habitat. Nicotine is one of N. attenuata's important defenses. M. sexta is highly nicotine tolerant; whether cytochrome P450 (CYP)-mediated oxidative detoxification and/or rapid excretion is responsible for its exceptional tolerance remains unknown despite five decades of study. Recently, we demonstrated that M. sexta uses its nicotine-induced CYP6B46 to efflux midgut-nicotine into the hemolymph, facilitating nicotine exhalation that deters predatory wolf spiders (Camptocosa parallela). S. exigua's nicotine metabolism is uninvestigated. Methodology/Principal Findings We compared the ability of these two herbivores to metabolize, tolerate and co-opt ingested nicotine for defense against the wolf spider. In addition, we analyzed the spider's excretion to gain insights into its nicotine metabolism. Contrary to previous reports, we found that M. sexta larvae neither accumulate the common nicotine oxides (cotinine, cotinine N-oxide and nicotine N-oxide) nor excrete them faster than nicotine. In M. sexta larvae, ingestion of nicotine as well as its oxides increases the accumulation of CYP6B46 transcripts. In contrast, S. exigua accumulates nicotine oxides and exhales less (66%) nicotine than does M. sexta. Spiders prefer nicotine-fed S. exigua over M. sexta, a preference reversed by topical or headspace nicotine supplementation, but not ingested or topically-coated nicotine oxides, suggesting that externalized nicotine but not the nicotine detoxification products deter spider predation. The spiders also do not accumulate nicotine oxides. Conclusions Nicotine oxidation reduces S. exigua's headspace-nicotine and renders it more susceptible to predation by spiders than M. sexta, which exhales unmetabolized nicotine. These results are consistent with the hypothesis that generalist herbivores incur costs of

  5. Phylogenetic composition of host plant communities drives plant-herbivore food web structure.

    Science.gov (United States)

    Volf, Martin; Pyszko, Petr; Abe, Tomokazu; Libra, Martin; Kotásková, Nela; Šigut, Martin; Kumar, Rajesh; Kaman, Ondřej; Butterill, Philip T; Šipoš, Jan; Abe, Haruka; Fukushima, Hiroaki; Drozd, Pavel; Kamata, Naoto; Murakami, Masashi; Novotny, Vojtech

    2017-05-01

    Insects tend to feed on related hosts. The phylogenetic composition of host plant communities thus plays a prominent role in determining insect specialization, food web structure, and diversity. Previous studies showed a high preference of insect herbivores for congeneric and confamilial hosts suggesting that some levels of host plant relationships may play more prominent role that others. We aim to quantify the effects of host phylogeny on the structure of quantitative plant-herbivore food webs. Further, we identify specific patterns in three insect guilds with different life histories and discuss the role of host plant phylogeny in maintaining their diversity. We studied herbivore assemblages in three temperate forests in Japan and the Czech Republic. Sampling from a canopy crane, a cherry picker and felled trees allowed a complete census of plant-herbivore interactions within three 0·1 ha plots for leaf chewing larvae, miners, and gallers. We analyzed the effects of host phylogeny by comparing the observed food webs with randomized models of host selection. Larval leaf chewers exhibited high generality at all three sites, whereas gallers and miners were almost exclusively monophagous. Leaf chewer generality dropped rapidly when older host lineages (5-80 myr) were collated into a single lineage but only decreased slightly when the most closely related congeneric hosts were collated. This shows that leaf chewer generality has been maintained by feeding on confamilial hosts while only a few herbivores were shared between more distant plant lineages and, surprisingly, between some congeneric hosts. In contrast, miner and galler generality was maintained mainly by the terminal nodes of the host phylogeny and dropped immediately after collating congeneric hosts into single lineages. We show that not all levels of host plant phylogeny are equal in their effect on structuring plant-herbivore food webs. In the case of generalist guilds, it is the phylogeny of deeper

  6. Petunia hybrida PDR2 is involved in herbivore defense by controlling steroidal contents in trichomes.

    Science.gov (United States)

    Sasse, Joëlle; Schlegel, Markus; Borghi, Lorenzo; Ullrich, Friederike; Lee, Miyoung; Liu, Guo-Wei; Giner, José-Luis; Kayser, Oliver; Bigler, Laurent; Martinoia, Enrico; Kretzschmar, Tobias

    2016-12-01

    As a first line of defense against insect herbivores many plants store high concentrations of toxic and deterrent secondary metabolites in glandular trichomes. Plant Pleiotropic Drug Resistance (PDR)-type ABC transporters are known secondary metabolite transporters, and several have been implicated in pathogen or herbivore defense. Here, we report on Petunia hybrida PhPDR2 as a major contributor to trichome-related chemical defense. PhPDR2 was found to localize to the plasma membrane and be predominantly expressed in multicellular glandular trichomes of leaves and stems. Down-regulation of PhPDR2 via RNA interference (pdr2) resulted in a markedly higher susceptibility of the transgenic plants to the generalist foliage feeder Spodoptera littoralis. Untargeted screening of pdr2 trichome metabolite contents showed a significant decrease in petuniasterone and petuniolide content, compounds, which had previously been shown to act as potent toxins against various insects. Our findings suggest that PhPDR2 plays a leading role in controlling petuniasterone levels in leaves and trichomes of petunia, thus contributing to herbivory resistance. © 2016 John Wiley & Sons Ltd.

  7. Birds exploit herbivore-induced plant volatiles to locate herbivorous prey

    NARCIS (Netherlands)

    Amo, L.; Jansen, J.J.; Dam, van N.M.; Dicke, M.; Visser, M.E.

    2013-01-01

    Arthropod herbivory induces plant volatiles that can be used by natural enemies of the herbivores to find their prey. This has been studied mainly for arthropods that prey upon or parasitise herbivorous arthropods but rarely for insectivorous birds, one of the main groups of predators of herbivorous

  8. Distributions of Bacterial Generalists among the Guts of Birds ...

    Science.gov (United States)

    Complex distributions of bacterial taxa within diverse animal microbiomes have inspired ecological and biogeographical approaches to revealing the functions of taxa that may be most important for host health. Of particular interest are bacteria that find many diverse habitats suitable for growth and remain competitive amongst finely-tuned host specialists. While previous work has focused on identifying these specialists, here our aims were to 1) identify generalist taxa, 2) identify taxonomic clades with enriched generalist diversity, and 3) describe the distribution of the largest generalist groups among hosts. We analyzed existing bacterial rRNA tag-sequencing data (v6) available on VAMPs (vamps.mbl.edu) from the microbiomes of 12 host species (106 samples total) spanning birds, mammals, and fish for generalist taxa using the CLAM test. OTUs with approximately equal abundance and a minimum of 10 reads in two hosts were classified as generalists. Generalist OTUs (n=2,982) were found in all hosts tested. Bacterial families Alcaligenaceae and Burkholderiaceae were significantly enriched with generalists OTUs compared to other families. Bacterial families such as Bacteroidaceae and Lachnospiraceae significantly lacked generalists OTUs compared to other families. Enterobacteriaceae, Peptostreptococcaceae, and Erysipelotrichaceae more so than other bacterial families were widely distributed and abundant in birds, mammals, and fish suggesting that these taxa mainta

  9. Facilitating collaboration among academic generalist disciplines: a call to action.

    Science.gov (United States)

    Kutner, Jean S; Westfall, John M; Morrison, Elizabeth H; Beach, Mary Catherine; Jacobs, Elizabeth A; Rosenblatt, Roger A

    2006-01-01

    To meet its population's health needs, the United States must have a coherent system to train and support primary care physicians. This goal can be achieved only though genuine collaboration between academic generalist disciplines. Academic general pediatrics, general internal medicine, and family medicine may be hampering this effort and their own futures by lack of collaboration. This essay addresses the necessity of collaboration among generalist physicians in research, medical education, clinical care, and advocacy. Academic generalists should collaborate by (1) making a clear decision to collaborate, (2) proactively discussing the flow of money, (3) rewarding collaboration, (4) initiating regular generalist meetings, (5) refusing to tolerate denigration of other generalist disciplines, (6) facilitating strategic planning for collaboration among generalist disciplines, and (7) learning from previous collaborative successes and failures. Collaboration among academic generalists will enhance opportunities for trainees, primary care research, and advocacy; conserve resources; and improve patient care.

  10. The Stoichiometry of Nutrient Release by Terrestrial Herbivores and Its Ecosystem Consequences

    Directory of Open Access Journals (Sweden)

    Judith Sitters

    2017-04-01

    Full Text Available It is widely recognized that the release of nutrients by herbivores via their waste products strongly impacts nutrient availability for autotrophs. The ratios of nitrogen (N and phosphorus (P recycled through herbivore release (i.e., waste N:P are mainly determined by the stoichiometric composition of the herbivore's food (food N:P and its body nutrient content (body N:P. Waste N:P can in turn impact autotroph nutrient limitation and productivity. Herbivore-driven nutrient recycling based on stoichiometric principles is dominated by theoretical and experimental research in freshwater systems, in particular interactions between algae and invertebrate herbivores. In terrestrial ecosystems, the impact of herbivores on nutrient cycling and availability is often limited to studying carbon (C:N and C:P ratios, while the role of terrestrial herbivores in mediating N:P ratios is also likely to influence herbivore-driven nutrient recycling. In this review, we use rules and predictions on the stoichiometry of nutrient release originating from algal-based aquatic systems to identify the factors that determine the stoichiometry of nutrient release by herbivores. We then explore how these rules can be used to understand the stoichiometry of nutrient release by terrestrial herbivores, ranging from invertebrates to mammals, and its impact on plant nutrient limitation and productivity. Future studies should focus on measuring both N and P when investigating herbivore-driven nutrient recycling in terrestrial ecosystems, while also taking the form of waste product (urine or feces and other pathways by which herbivores change nutrients into account, to be able to quantify the impact of waste stoichiometry on plant communities.

  11. Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar.

    Science.gov (United States)

    Irmisch, Sandra; Clavijo McCormick, Andrea; Günther, Jan; Schmidt, Axel; Boeckler, Gerhard Andreas; Gershenzon, Jonathan; Unsicker, Sybille B; Köllner, Tobias G

    2014-12-01

    Numerous plant species emit volatile nitriles upon herbivory, but the biosynthesis as well as the relevance of these nitrogenous compounds in plant-insect interactions remains unknown. Populus trichocarpa has been shown to produce a complex blend of nitrogenous volatiles, including aldoximes and nitriles, after herbivore attack. The aldoximes were previously reported to be derived from amino acids by the action of cytochrome P450 enzymes of the CYP79 family. Here we show that nitriles are derived from aldoximes by another type of P450 enzyme in P. trichocarpa. First, feeding of deuterium-labeled phenylacetaldoxime to poplar leaves resulted in incorporation of the label into benzyl cyanide, demonstrating that poplar volatile nitriles are derived from aldoximes. Then two P450 enzymes, CYP71B40v3 and CYP71B41v2, were characterized that produce aliphatic and aromatic nitriles from their respective aldoxime precursors. Both possess typical P450 sequence motifs but do not require added NADPH or cytochrome P450 reductase for catalysis. Since both enzymes are expressed after feeding by gypsy moth caterpillars, they are likely to be involved in herbivore-induced volatile nitrile emission in P. trichocarpa. Olfactometer experiments showed that these volatile nitriles have a strong repellent activity against gypsy moth caterpillars, suggesting they play a role in induced direct defense against poplar herbivores. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  12. Evaluating herbivore extinction probabilities in Addo Elephant ...

    African Journals Online (AJOL)

    Abstract. Population extinction evaluations, based on the model developed by Dennis et al. (1991) that did not take density dependence into account and that were based on census data, suggest that many of the herbivore species in Addo Elephant National Park (AENP) are vulnerable to local extinction. As a result of low ...

  13. Additive genetic variation in resistance traits of an exotic pine species: little evidence for constraints on evolution of resistance against native herbivores.

    Science.gov (United States)

    Moreira, X; Zas, R; Sampedro, L

    2013-05-01

    The apparent failure of invasions by alien pines in Europe has been explained by the co-occurrence of native pine congeners supporting herbivores that might easily recognize the new plants as hosts. Previous studies have reported that exotic pines show reduced tolerance and capacity to induce resistance to those native herbivores. We hypothesize that limited genetic variation in resistance to native herbivores and the existence of evolutionary trade-offs between growth and resistance could represent additional potential constraints on the evolution of invasiveness of exotic pines outside their natural range. In this paper, we examined genetic variation for constitutive and induced chemical defences (measured as non-volatile resin in the stem and total phenolics in the needles) and resistance to two major native generalist herbivores of pines in cafeteria bioassays (the phloem-feeder Hylobius abietis and the defoliator Thaumetopoea pityocampa) using half-sib families drawn from a sample of the population of Pinus radiata introduced to Spain in the mid-19th century. We found (i) significant genetic variation, with moderate-to-high narrow-sense heritabilities for both the production of constitutive non-volatile resin and induced total phenolics, and for constitutive resistance against T. pityocampa in bioassays, (ii) no evolutionary trade-offs between plant resistance and growth traits or between the production of different quantitative chemical defences and (iii) a positive genetic correlation between constitutive resistance to the two studied herbivores. Overall, results of our study indicate that the exotic pine P. radiata has limited genetic constraints on the evolution of resistance against herbivores in its introduced range, suggesting that, at least in terms of interactions with these enemies, this pine species has potential to become invasive in the future.

  14. Endure and call for help

    NARCIS (Netherlands)

    Lucas Gomes Marques Barbosa, Dani; Dicke, Marcel; Kranenburg, Twan; Aartsma, Yavanna; Beek, van Teris A.; Huigens, Martinus E.; Loon, van Joop J.A.

    2017-01-01

    Plants have evolved inducible resistance and tolerance mechanisms against insect herbivores. Resistance mechanisms that affect herbivorous insects directly can be effective against generalist herbivores, but will not deter specialist herbivores from attacking the plant. Tolerance mechanisms and

  15. Effect of qualitative and quantitative variation in allelochemicals on a generalist insect: Iridoid glycosides and the southern armyworm.

    Science.gov (United States)

    Puttick, G M; Bowers, M D

    1988-01-01

    The behavioral and physiological effects of plant allelochemicals have been difficult to demonstrate; it is not often clear whether the compounds are deterrent, toxic, or both. In this study, we compared the qualitative and quantitative effects of several iridoid glycosides on a generalist lepidopteran herbivore,Spodoptera eridania (Noctuidae). Larval growth and survivorship and larval preference or avoidance were measured on artificial diets containing different iridoid glycosides at different concentrations. We also tested the toxicity/deterrence of these compounds. We found that iridoid glycosides retarded larval growth significantly at relatively low concentrations and that they were usually avoided in preference tests. The toxicity/ deterrence test did not always reflect the results of these other tests. The merits of using a variety of methods for determining deterrence and/or toxicity of plant allelochemicals are discussed.

  16. Experimental infection of plants with an herbivore-associated bacterial endosymbiont influences herbivore host selection behavior.

    Directory of Open Access Journals (Sweden)

    Thomas Seth Davis

    Full Text Available Although bacterial endosymbioses are common among phloeophagous herbivores, little is known regarding the effects of symbionts on herbivore host selection and population dynamics. We tested the hypothesis that plant selection and reproductive performance by a phloem-feeding herbivore (potato psyllid, Bactericera cockerelli is mediated by infection of plants with a bacterial endosymbiont. We controlled for the effects of herbivory and endosymbiont infection by exposing potato plants (Solanum tuberosum to psyllids infected with "Candidatus Liberibacter solanacearum" or to uninfected psyllids. We used these treatments as a basis to experimentally test plant volatile emissions, herbivore settling and oviposition preferences, and herbivore population growth. Three important findings emerged: (1 plant volatile profiles differed with respect to both herbivory and herbivory plus endosymbiont infection when compared to undamaged control plants; (2 herbivores initially settled on plants exposed to endosymbiont-infected psyllids but later defected and oviposited primarily on plants exposed only to uninfected psyllids; and (3 plant infection status had little effect on herbivore reproduction, though plant flowering was associated with a 39% reduction in herbivore density on average. Our experiments support the hypothesis that plant infection with endosymbionts alters plant volatile profiles, and infected plants initially recruited herbivores but later repelled them. Also, our findings suggest that the endosymbiont may not place negative selection pressure on its host herbivore in this system, but plant flowering phenology appears correlated with psyllid population performance.

  17. Induced plant-defenses suppress herbivore reproduction but also constrain predation of their offspring.

    Science.gov (United States)

    Ataide, Livia M S; Pappas, Maria L; Schimmel, Bernardus C J; Lopez-Orenes, Antonio; Alba, Juan M; Duarte, Marcus V A; Pallini, Angelo; Schuurink, Robert C; Kant, Merijn R

    2016-11-01

    Inducible anti-herbivore defenses in plants are predominantly regulated by jasmonic acid (JA). On tomato plants, most genotypes of the herbivorous generalist spider mite Tetranychus urticae induce JA defenses and perform poorly on it, whereas the Solanaceae specialist Tetranychus evansi, who suppresses JA defenses, performs well on it. We asked to which extent these spider mites and the predatory mite Phytoseiulus longipes preying on these spider mites eggs are affected by induced JA-defenses. By artificially inducing the JA-response of the tomato JA-biosynthesis mutant def-1 using exogenous JA and isoleucine (Ile), we first established the relationship between endogenous JA-Ile-levels and the reproductive performance of spider mites. For both mite species we observed that they produced more eggs when levels of JA-Ile were low. Subsequently, we allowed predatory mites to prey on spider mite-eggs derived from wild-type tomato plants, def-1 and JA-Ile-treated def-1 and observed that they preferred, and consumed more, eggs produced on tomato plants with weak JA defenses. However, predatory mite oviposition was similar across treatments. Our results show that induced JA-responses negatively affect spider mite performance, but positively affect the survival of their offspring by constraining egg-predation. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. Trade-off between early emergence and herbivore susceptibility mediates exotic success in an experimental California plant community.

    Science.gov (United States)

    Waterton, Joseph; Cleland, Elsa E

    2016-12-01

    Ecological trade-offs are fundamental to theory in community ecology; critical for understanding species coexistence in diverse plant communities, as well as the evolution of diverse life-history strategies. Invasions by exotic species can provide insights into the importance of trade-offs in community assembly, because the ecological strategies of invading species often differ from those present in the native species pool. Exotic annual species have invaded many Mediterranean-climate areas around the globe, and often germinate and emerge earlier in the growing season than native species. Early-season growth can enable exotic annual species to preempt space and resources, competitively suppressing later-emerging native species; however, early-emerging individuals may also be more apparent to herbivores. This suggests a potential trade-off between seasonal phenology and susceptibility to herbivory. To evaluate this hypothesis, we monitored the emergence and growth of 12 focal species (six each native and exotic) in monoculture and polyculture, while experimentally excluding generalist herbivores both early and later in the growing season. Consistent with past studies, the exotic species emerged earlier than native species. Regardless of species origin, earlier-emerging species achieved greater biomass by the end of the experiment, but were more negatively impacted by herbivory, particularly in the early part of the growing season. This greater impact of early-season herbivory on early-active species led to a reduction in the competitive advantage of exotic species growing in polyculture, and improved the performance of later-emerging natives. Such a trade-off between early growth and susceptibility to herbivores could be an important force in community assembly in seasonal herbaceous-dominated ecosystems. These results also show how herbivore exclusion favors early-active exotic species in this system, with important implications for management in many areas invaded

  19. Translocations as experiments in the ecological resilience of an asocial mega-herbivore.

    Science.gov (United States)

    Linklater, Wayne L; Gedir, Jay V; Law, Peter R; Swaisgood, Ron R; Adcock, Keryn; du Preez, Pierre; Knight, Michael H; Kerley, Graham I H

    2012-01-01

    Species translocations are remarkable experiments in evolutionary ecology, and increasingly critical to biodiversity conservation. Elaborate socio-ecological hypotheses for translocation success, based on theoretical fitness relationships, are untested and lead to complex uncertainty rather than parsimonious solutions. We used an extraordinary 89 reintroduction and 102 restocking events releasing 682 black rhinoceros (Diceros bicornis) to 81 reserves in southern Africa (1981-2005) to test the influence of interacting socio-ecological and individual characters on post-release survival. We predicted that the socio-ecological context should feature more prominently after restocking than reintroduction because released rhinoceros interact with resident conspecifics. Instead, an interaction between release cohort size and habitat quality explained reintroduction success but only individuals' ages explained restocking outcomes. Achieving translocation success for many species may not be as complicated as theory suggests. Black rhino, and similarly asocial generalist herbivores without substantial predators, are likely to be resilient to ecological challenges and robust candidates for crisis management in a changing world.

  20. The evolution of resource adaptation: how generalist and specialist consumers evolve.

    Science.gov (United States)

    Ma, Junling; Levin, Simon A

    2006-07-01

    Why and how specialist and generalist strategies evolve are important questions in evolutionary ecology. In this paper, with the method of adaptive dynamics and evolutionary branching, we identify conditions that select for specialist and generalist strategies. Generally, generalist strategies evolve if there is a switching benefit; specialists evolve if there is a switching cost. If the switching cost is large, specialists always evolve. If the switching cost is small, even though the consumer will first evolve toward a generalist strategy, it will eventually branch into two specialists.

  1. Mercury in aquatic forage of large herbivores: impact of environmental conditions, assessment of health threats, and implications for transfer across ecosystem compartments.

    Science.gov (United States)

    Bergman, Brenda Gail; Bump, Joseph K

    2014-05-01

    Mercury (Hg) is a leading contaminant across U.S. water bodies, warranting concern for wildlife species that depend upon food from aquatic systems. The risk of Hg toxicity to large herbivores is little understood, even though some large herbivores consume aquatic vascular plants (macrophytes) that may hyper-accumulate Hg. We investigated whether total Hg and methylmercury (MeHg) in aquatic forage may be of concern to moose (Alces alces) and beaver (Castor canadensis) by measuring total Hg and MeHg concentrations, calculating sediment-water bioconcentration factors for macrophyte species these herbivores consume, and estimating herbivore daily Hg consumption. Abiotic factors impacting macrophyte Hg were assessed, as was the difference in Hg concentrations of macrophytes from glacial lakes and those created or expanded by beaver damming. The amount of aquatic-derived Hg that moose move from aquatic to terrestrial systems was calculated, in order to investigate the potential for movement of Hg across ecosystem compartments by large herbivores. Results indicate that the Hg exposure of generalist herbivores may be affected by macrophyte community composition more so than by many abiotic factors in the aquatic environment. Mercury concentrations varied greatly between macrophyte species, with relatively high concentrations in Utricularia vulgaris (>80 ng g(-1) in some sites), and negligible concentrations in Nuphar variegata (~6 ng g(-1)). Macrophyte total Hg concentration was correlated with water pH in predictable ways, but not with other variables generally associated with aquatic Hg concentrations, such as dissolved organic carbon. Moose estimated daily consumption of MeHg is equivalent to or below human reference levels, and far below wildlife reference levels. However, estimated beaver Hg consumption exceeds reference doses for humans, indicating the potential for sub-lethal nervous impairment. In regions of high moose density, moose may be ecologically important

  2. Generalist palliative care in hospital: cultural and organisational interactions

    DEFF Research Database (Denmark)

    Bergenholtz, Heidi; Jarlbaek, Lene; Hølge-Hazelton, Bibi

    2016-01-01

    : a quantitative study, in which three independent datasets were triangulated to study the organisation and evaluation of generalist palliative care, and a qualitative, ethnographic study exploring the culture of generalist palliative nursing care in medical departments. SETTING/PARTICIPANTS: A Danish regional...

  3. Host specialist clownfishes are environmental niche generalists

    Science.gov (United States)

    Litsios, Glenn; Kostikova, Anna; Salamin, Nicolas

    2014-01-01

    Why generalist and specialist species coexist in nature is a question that has interested evolutionary biologists for a long time. While the coexistence of specialists and generalists exploiting resources on a single ecological dimension has been theoretically and empirically explored, biological systems with multiple resource dimensions (e.g. trophic, ecological) are less well understood. Yet, such systems may provide an alternative to the classical theory of stable evolutionary coexistence of generalist and specialist species on a single resource dimension. We explore such systems and the potential trade-offs between different resource dimensions in clownfishes. All species of this iconic clade are obligate mutualists with sea anemones yet show interspecific variation in anemone host specificity. Moreover, clownfishes developed variable environmental specialization across their distribution. In this study, we test for the existence of a relationship between host-specificity (number of anemones associated with a clownfish species) and environmental-specificity (expressed as the size of the ecological niche breadth across climatic gradients). We find a negative correlation between host range and environmental specificities in temperature, salinity and pH, probably indicating a trade-off between both types of specialization forcing species to specialize only in a single direction. Trade-offs in a multi-dimensional resource space could be a novel way of explaining the coexistence of generalist and specialists. PMID:25274370

  4. Variation in plant defense suppresses herbivore performance

    Science.gov (United States)

    Pearse, Ian; Paul, Ryan; Ode, Paul J.

    2018-01-01

    Defensive variability of crops and natural systems can alter herbivore communities and reduce herbivory. However, it is still unknown how defense variability translates into herbivore suppression. Nonlinear averaging and constraints in physiological tracking (also more generally called time-dependent effects) are the two mechanisms by which defense variability might impact herbivores. We conducted a set of experiments manipulating the mean and variability of a plant defense, showing that defense variability does suppress herbivore performance and that it does so through physiological tracking effects that cannot be explained by nonlinear averaging. While nonlinear averaging predicted higher or the same herbivore performance on a variable defense than on an invariable defense, we show that variability actually decreased herbivore performance and population growth rate. Defense variability reduces herbivore performance in a way that is more than the average of its parts. This is consistent with constraints in physiological matching of detoxification systems for herbivores experiencing variable toxin levels in their diet and represents a more generalizable way of understanding the impacts of variability on herbivory. Increasing defense variability in croplands at a scale encountered by individual herbivores can suppress herbivory, even if that is not anticipated by nonlinear averaging.

  5. Interactions between Plant Metabolites Affect Herbivores: A Study with Pyrrolizidine Alkaloids and Chlorogenic Acid

    Science.gov (United States)

    Liu, Xiaojie; Vrieling, Klaas; Klinkhamer, Peter G.L.

    2017-01-01

    The high structural diversity of plant metabolites suggests that interactions among them should be common. We investigated the effects of single metabolites and combinations of plant metabolites on insect herbivores. In particular we studied the interacting effects of pyrrolizidine alkaloid (PAs), and chlorogenic acid (CGA), on a generalist herbivore, Frankliniella occidentalis. We studied both the predominantly occurring PA N-oxides and the less frequent PA free bases. We found antagonistic effects between CGA and PA free bases on thrips mortality. In contrast PA N-oxides showed synergistic interactions with CGA. PA free bases caused a higher thrips mortality than PA N-oxides while the reverse was through for PAs in combination with CGA. Our results provide an explanation for the predominate storage of PA N-oxides in plants. We propose that antagonistic interactions represent a constraint on the accumulation of plant metabolites, as we found here for Jacobaea vulgaris. The results show that the bioactivity of a given metabolite is not merely dependent upon the amount and chemical structure of that metabolite, but also on the co-occurrence metabolites in, e.g., plant cells, tissues and organs. The significance of this study is beyond the concerns of the two specific groups tested here. The current study is one of the few studies so far that experimentally support the general conception that the interactions among plant metabolites are of great importance to plant-environment interactions. PMID:28611815

  6. Interactions between Plant Metabolites Affect Herbivores: A Study with Pyrrolizidine Alkaloids and Chlorogenic Acid

    Directory of Open Access Journals (Sweden)

    Xiaojie Liu

    2017-05-01

    Full Text Available The high structural diversity of plant metabolites suggests that interactions among them should be common. We investigated the effects of single metabolites and combinations of plant metabolites on insect herbivores. In particular we studied the interacting effects of pyrrolizidine alkaloid (PAs, and chlorogenic acid (CGA, on a generalist herbivore, Frankliniella occidentalis. We studied both the predominantly occurring PA N-oxides and the less frequent PA free bases. We found antagonistic effects between CGA and PA free bases on thrips mortality. In contrast PA N-oxides showed synergistic interactions with CGA. PA free bases caused a higher thrips mortality than PA N-oxides while the reverse was through for PAs in combination with CGA. Our results provide an explanation for the predominate storage of PA N-oxides in plants. We propose that antagonistic interactions represent a constraint on the accumulation of plant metabolites, as we found here for Jacobaea vulgaris. The results show that the bioactivity of a given metabolite is not merely dependent upon the amount and chemical structure of that metabolite, but also on the co-occurrence metabolites in, e.g., plant cells, tissues and organs. The significance of this study is beyond the concerns of the two specific groups tested here. The current study is one of the few studies so far that experimentally support the general conception that the interactions among plant metabolites are of great importance to plant-environment interactions.

  7. To Everything There Is a Season: Summer-to-Winter Food Webs and the Functional Traits of Keystone Species.

    Science.gov (United States)

    Humphries, Murray M; Studd, Emily K; Menzies, Allyson K; Boutin, Stan

    2017-11-01

    From a trophic perspective, a seasonal increase in air temperature and photoperiod propagates as bottom-up pulse of primary production by plants, secondary production by herbivores, and tertiary production by carnivores. However, food web seasonality reflects not only abiotic variation in temperature and photoperiod, but also the composition of the biotic community and their functional responses to this variation. Some plants and animals-here referred to as seasonal specialists-decouple from food webs in winter through migration or various forms of metabolic arrest (e.g., senescence, diapause, and hibernation), whereas some plants and resident animals-here referred to as seasonal generalists-remain present and trophically coupled in winter. The co-occurrence of species with divergent responses to winter introduces seasonal variation in interaction strengths, resulting in summer-to-winter differences in trophic organization. Autumn cooling and shortening day length arrests primary productivity and cues seasonal herbivores to decouple, leaving generalist carnivores to concentrate their predation on the few generalist herbivores that remain resident, active, and vulnerable to predation in winter, which themselves feed on the few generalist plant structures available in winter. Thus, what was a bottom-up pulse, spread among many species in summer, including highly productive seasonal specialists, reverses into strong top-down regulation in winter that is top-heavy, and concentrated among a small number of generalist herbivores and their winter foods. Intermediate-sized, generalist herbivores that remain active and vulnerable to predation in winter are likely to be keystone species in seasonal food webs because they provide the essential ecosystem service of turning summer primary productivity into winter food for carnivores. Empirical examination of terrestrial mammals and their seasonal trophic status in the boreal forest and across an arctic-to-tropics seasonality

  8. Early season herbivore differentially affects plant defence responses to subsequently colonizing herbivores and their abundance in the field

    NARCIS (Netherlands)

    Poelman, E.H.; Broekgaarden, C.; Loon, van J.J.A.; Dicke, M.

    2008-01-01

    Induction of plant defences by early season herbivores can mediate interspecific herbivore competition. We have investigated plant-mediated competition between three herbivorous insects through studies at different levels of biological integration. We have addressed (i) gene expression; (ii) insect

  9. Chemical defense in Elodea nuttallii reduces feeding and growth of aquatic herbivorous Lepidoptera.

    Science.gov (United States)

    Erhard, Daniela; Pohnert, Georg; Gross, Elisabeth M

    2007-08-01

    The submersed macrophyte Elodea nuttallii (Hydrocharitaceae) is invasive in Europe and frequently found in aquatic plant communities. Many invertebrate herbivores, such as larvae of the generalist aquatic moth, Acentria ephemerella (Lepidoptera, Pyralidae), avoid feeding on E. nuttallii and preferably consume native species. First instar larvae exhibited a high mortality on E. nuttallii compared to the native macrophyte Potamogeton perfoliatus. Mortality of older larvae was also high when fed E. nuttallii exposed to high light intensities. Growth of older larvae was strongly reduced on E. nuttallii compared to pondweeds (Potamogeton lucens). Neither differences in nitrogen nor phosphorus content explained the different performance on these submerged macrophytes, but plants differed in their flavonoid content. To investigate whether plant-derived allelochemicals from E. nuttallii affect larval performance in the same way as live plants, we developed a functional bioassay, in which Acentria larvae were reared on artificial diets. We offered larvae Potamogeton leaf disks coated with crude Elodea extracts and partially purified flavonoids. Elodea extracts deterred larvae from feeding on otherwise preferred Potamogeton leaves, and yet, unknown compounds in the extracts reduced growth and survival of Acentria. The flavonoid fraction containing luteolin-7-O-diglucuronide, apigenin-7-O-diglucuronide, and chrysoeriol-7-O-diglucuronide strongly reduced feeding of larvae, but did not increase mortality. The concentrations of these compounds in our assays were 0.01-0.09% of plant dry mass, which is in the lower range of concentrations found in the field (0.02-1.2%). Chemical defense in E. nuttallii thus plays an ecologically relevant role in this aquatic plant-herbivore system.

  10. Macrophytes shape trophic niche variation among generalist fishes.

    Directory of Open Access Journals (Sweden)

    Ivana Vejříková

    Full Text Available Generalist species commonly have a fundamental role in ecosystems as they can integrate spatially distinct habitats and food-web compartments, as well as control the composition, abundance and behavior of organisms at different trophic levels. Generalist populations typically consist of specialized individuals, but the potential for and hence degree of individual niche variation can be largely determined by habitat complexity. We compared individual niche variation within three generalist fishes between two comparable lakes in the Czech Republic differing in macrophyte cover, i.e. macrophyte-rich Milada and macrophyte-poor Most. We tested the hypothesis that large individual niche variation among generalist fishes is facilitated by the presence of macrophytes, which provides niches and predation shelter for fish and their prey items. Based on results from stable nitrogen (δ15N and carbon (δ13C isotopic mixing models, perch (Perca fluviatilis L. and rudd (Scardinius erythrophthalmus (L. showed larger individual variation (i.e., variance in trophic position in Milada as compared to Most, whereas no significant between-lake differences were observed for roach (Rutilus rutilus (L.. Contrary to our hypothesis, all the three species showed significantly lower individual variation in the relative reliance on littoral food resources in Milada than in Most. Rudd relied significantly more whereas perch and roach relied less on littoral food resources in Milada than in Most, likely due to prevalent herbivory by rudd and prevalent zooplanktivory by perch and roach in the macrophyte-rich Milada as compared to macrophyte-poor Most. Our study demonstrates how the succession of macrophyte vegetation, via its effects on the physical and biological complexity of the littoral zone and on the availability of small prey fish and zooplankton, can strongly influence individual niche variation among generalist fishes with different ontogenetic trajectories, and hence

  11. Macrophytes shape trophic niche variation among generalist fishes

    Science.gov (United States)

    Vejřík, Lukáš; Šmejkal, Marek; Čech, Martin; Sajdlová, Zuzana; Frouzová, Jaroslava; Kiljunen, Mikko; Peterka, Jiří

    2017-01-01

    Generalist species commonly have a fundamental role in ecosystems as they can integrate spatially distinct habitats and food-web compartments, as well as control the composition, abundance and behavior of organisms at different trophic levels. Generalist populations typically consist of specialized individuals, but the potential for and hence degree of individual niche variation can be largely determined by habitat complexity. We compared individual niche variation within three generalist fishes between two comparable lakes in the Czech Republic differing in macrophyte cover, i.e. macrophyte-rich Milada and macrophyte-poor Most. We tested the hypothesis that large individual niche variation among generalist fishes is facilitated by the presence of macrophytes, which provides niches and predation shelter for fish and their prey items. Based on results from stable nitrogen (δ15N) and carbon (δ13C) isotopic mixing models, perch (Perca fluviatilis L.) and rudd (Scardinius erythrophthalmus (L.)) showed larger individual variation (i.e., variance) in trophic position in Milada as compared to Most, whereas no significant between-lake differences were observed for roach (Rutilus rutilus (L.)). Contrary to our hypothesis, all the three species showed significantly lower individual variation in the relative reliance on littoral food resources in Milada than in Most. Rudd relied significantly more whereas perch and roach relied less on littoral food resources in Milada than in Most, likely due to prevalent herbivory by rudd and prevalent zooplanktivory by perch and roach in the macrophyte-rich Milada as compared to macrophyte-poor Most. Our study demonstrates how the succession of macrophyte vegetation, via its effects on the physical and biological complexity of the littoral zone and on the availability of small prey fish and zooplankton, can strongly influence individual niche variation among generalist fishes with different ontogenetic trajectories, and hence the overall

  12. Trends and quality of care in outpatient visits to generalist and specialist physicians delivering primary care in the United States, 1997-2010.

    Science.gov (United States)

    Edwards, Samuel T; Mafi, John N; Landon, Bruce E

    2014-06-01

    Although many specialists serve as primary care physicians (PCPs), the type of patients they serve, the range of services they provide, and the quality of care they deliver is uncertain. To describe trends in patient, physician, and visit characteristics, and compare visit-based quality for visits to generalists and specialists self-identified as PCPs. Cross-sectional study and time trend analysis. Nationally representative sample of visits to office-based physicians from the National Ambulatory Medical Care Survey, 1997-2010. Proportions of primary care visits to generalist and specialists, patient characteristics, principal diagnoses, and quality. Among 84,041 visits to self-identified PCPs representing an estimated 4.0 billion visits, 91.5 % were to generalists, 5.9 % were to medical specialists and 2.6 % were to obstetrician/gynecologists. The proportion of PCP visits to generalists increased from 88.4 % in 1997 to 92.4 % in 2010, but decreased for medical specialists from 8.0 % to 4.8 %, p = 0.04). The proportion of medical specialist visits in which the physician self-identified as the patient's PCP decreased from 30.6 % in 1997 to 9.8 % in 2010 (p specialist PCPs take care of older patients (mean age 61 years), and dedicate most of their visits to chronic disease management (51.0 %), while generalist PCPs see younger patients (mean age 55.4 years) most commonly for new problems (40.5 %). Obstetrician/gynecologists self-identified as PCPs see younger patients (mean age 38.3 p specialists. Medical specialists are less frequently serving as PCPs for their patients over time. Generalist, medical specialist, and obstetrician/gynecologist PCPs serve different primary care roles for different populations. Delivery redesign efforts must account for the evolving role of generalist and specialist PCPs in the delivery of primary care.

  13. Inter-varietal interactions among plants in genotypically diverse mixtures tend to decrease herbivore performance.

    Science.gov (United States)

    Grettenberger, Ian M; Tooker, John F

    2016-09-01

    Much research has explored the effects of plant species diversity on herbivore populations, but far less has considered effects of plant genotypic diversity, or how abiotic stressors, like drought, can modify effects. Mechanisms by which plant genotypic diversity affects herbivore populations remain largely unresolved. We used greenhouse studies with a model system of wheat (Triticum aestivum L.) and bird cherry-oat aphid (Rhopalosiphum padi L.) to determine whether the genotypic diversity of a plant's neighborhood influences performance and fitness of herbivores on a focal plant and if drought changes the influence of neighborhood diversity. Taken across all varieties we tested, plant-plant interactions in diverse neighborhoods reduced aphid performance and generated associational resistance, although effects on aphids depended on variety identity. In diverse mixtures, drought stress greatly diminished the genotypic diversity-driven reduction in aphid performance. Neighborhood diversity influenced mother aphid size, and appeared to partially explain how plant-plant interactions reduced the number of offspring produced in mixtures. Plant size did not mediate effects on aphid performance, although neighborhood diversity reduced plant mass across varieties and watering treatments. Our results suggest inter-varietal interactions in genotypic mixtures can affect herbivore performance in the absence of herbivore movement and that abiotic stress may diminish any effects. Accounting for how neighborhood diversity influences resistance of an individual plant to herbivores will help aid development of mixtures of varieties for managing insect pests and clarify the role of plant genotypic diversity in ecosystems.

  14. Large herbivores surf waves of green-up during spring

    Science.gov (United States)

    Merkle, Jerod A.; Monteith, Kevin L.; Aikens, Ellen O.; Hayes, Matthew M.; Hersey, Kent R.; Middleton, Arthur D.; Oates, Brendan A.; Sawyer, Hall; Scurlock, Brandon M.; Kauffman, Matthew J.

    2016-01-01

    The green wave hypothesis (GWH) states that migrating animals should track or ‘surf’ high-quality forage at the leading edge of spring green-up. To index such high-quality forage, recent work proposed the instantaneous rate of green-up (IRG), i.e. rate of change in the normalized difference vegetation index over time. Despite this important advancement, no study has tested the assumption that herbivores select habitat patches at peak IRG. We evaluated this assumption using step selection functions parametrized with movement data during the green-up period from two populations each of bighorn sheep, mule deer, elk, moose and bison, totalling 463 individuals monitored 1–3 years from 2004 to 2014. Accounting for variables that typically influence habitat selection for each species, we found seven of 10 populations selected patches exhibiting high IRG—supporting the GWH. Nonetheless, large herbivores selected for the leading edge, trailing edge and crest of the IRG wave, indicating that other mechanisms (e.g. ruminant physiology) or measurement error inherent with satellite data affect selection for IRG. Our evaluation indicates that IRG is a useful tool for linking herbivore movement with plant phenology, paving the way for significant advancements in understanding how animals track resource quality that varies both spatially and temporally.

  15. The Application of Nursing Interventions: Generalist Therapy to Against Hopelessness on Elderly

    Directory of Open Access Journals (Sweden)

    Ike Mardiati Agustin

    2015-10-01

    Full Text Available Introduction: An increasing number of elderly people followed the emergence of mental health problems. One of mental health problem that arises is hopelesness. Nursing action to hopelesness in elderly people in society is not to optimals. The aimed of this paper was gave an overview about the application of nursing intervention: generalist therapy to against hopelesness on elderly. Method: This research was used descriptive analytic design. Population were elders who lived at RW 3 and RW 4, Kelurahan Ciwaringin, Kota Bogor. Samples were 10 respondents, taken according to purposive sampling technique. Independent variable was generalist therapy, while dependent variables were sign and symptoms of hopelessness and ability to cope with hopelessness. Data were collected by using questionnaire, then analyzed by using frequency distribution. Result: The results showed that generalist therapy can decrease elder’s sign and symptoms of hopelessness (21% and increase their ability to cope with hopelessness (72%. Discussion: It can be concluded that generalist therapy can be used as one of nursing intervention to against hopelesness in the elderly. Keywords: hopelesness, elderly, generalist therapy

  16. Relative effects of exophytic predation, endophytic predation, and intraspecific competition on a subcortical herbivore: consequences to the reproduction of Ips pini and Thanasimus dubius.

    Science.gov (United States)

    Aukema, Brian H; Raffa, Kenneth F

    2002-12-01

    that specializes on endophytic herbivores. We attribute some of the benefits of an endophytic lifestyle not only to escape from generalist predators, but also to relatively low functional and numerical responses of adapted predators.

  17. Endoparasitic nematodes reduce multiplication of ectoparasitic nematodes, but do not prevent growth reduction of Ammophila arenaria (L.) Link (marram grass)

    NARCIS (Netherlands)

    Brinkman, E.P.; Van Veen, J.A.; Van der Putten, W.H.

    2004-01-01

    Several studies have suggested that plants are able to control the development of specialist herbivorous invertebrates, but not that of generalists. Plants are alleged to have evolved tolerance against specialists in order to suppress the development of more damaging generalists through competition.

  18. Lima bean leaves exposed to herbivore-induced conspecific plant volatiles attract herbivores in addition to carnivores

    NARCIS (Netherlands)

    Horiuchi, J.I.; Arimura, G.I.; Ozawa, R.; Shimoda, T.; Dicke, M.; Takabayashi, J.; Nishioka, T.

    2003-01-01

    We tested the response of the herbivorous mite Tetranychus urticae to uninfested lima bean leaves exposed to herbivore-induced conspecific plant volatiles by using a Y-tube olfactometer. First, we confirmed that exposed uninfested leaves next to infested leaves were more attractive to carnivorous

  19. Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores.

    NARCIS (Netherlands)

    Danner, H.; Desurmont, G.A.; Cristescu, S.M.; Dam, N.M. van

    2017-01-01

    Herbivore-induced plant volatiles (HIPVs) serve as specific cues to higher trophic levels. Novel, exotic herbivores entering native foodwebs may disrupt the infochemical network as a result of changes in HIPV profiles. Here, we analysed HIPV blends of native Brassica rapa plants infested with one of

  20. Plant defense against insect herbivores

    DEFF Research Database (Denmark)

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-01-01

    , defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce......Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar...... defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects...

  1. New evidence for a multi-functional role of herbivore-induced plant volatiles in defense against herbivores.

    Science.gov (United States)

    Rodriguez-Saona, Cesar R; Frost, Christopher J

    2010-01-01

    A diverse, often species-specific, array of herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack. Although research in the last 3 decades indicates a multi-functional role of these HIPVs, the evolutionary rationale underpinning HIPV emissions remains an open question. Many studies have documented that HIPVs can attract natural enemies, and some studies indicate that neighboring plants may eavesdrop their undamaged neighbors and induce or prime their own defenses prior to herbivore attack. Both of these ecological roles for HIPVs are risky strategies for the emitting plant. In a recent paper, we reported that most branches within a blueberry bush share limited vascular connectivity, which restricts the systemic movement of internal signals. Blueberry branches circumvent this limitation by responding to HIPVs emitted from neighboring branches of the same plant: exposure to HIPVs increases levels of defensive signaling hormones, changes their defensive status, and makes undamaged branches more resistant to herbivores. Similar findings have been reported recently for sagebrush, poplar and lima beans, where intra-plant communication played a role in activating or priming defenses against herbivores. Thus, there is increasing evidence that intra-plant communication occurs in a wide range of taxonomically unrelated plant species. While the degree to which this phenomenon increases a plant's fitness remains to be determined in most cases, we here argue that within-plant signaling provides more adaptive benefit for HIPV emissions than does between-plant signaling or attraction of predators. That is, the emission of HIPVs might have evolved primarily to protect undamaged parts of the plant against potential enemies, and neighboring plants and predators of herbivores later co-opted such HIPV signals for their own benefit.

  2. Mathematical models for plant-herbivore interactions

    Science.gov (United States)

    Feng, Zhilan; DeAngelis, Donald L.

    2017-01-01

    Mathematical Models of Plant-Herbivore Interactions addresses mathematical models in the study of practical questions in ecology, particularly factors that affect herbivory, including plant defense, herbivore natural enemies, and adaptive herbivory, as well as the effects of these on plant community dynamics. The result of extensive research on the use of mathematical modeling to investigate the effects of plant defenses on plant-herbivore dynamics, this book describes a toxin-determined functional response model (TDFRM) that helps explains field observations of these interactions. This book is intended for graduate students and researchers interested in mathematical biology and ecology.

  3. Outsourcing Physical Education in Primary Schools: Evaluating the Impact of Externally Provided Programmes on Generalist Teachers

    Science.gov (United States)

    Whipp, Peter R.; Hutton, Heidi; Grove, J. Robert; Jackson, Ben

    2011-01-01

    In place of generalist delivery, externally provided physical activity programmes (EPPAPs) are potentially an effective method for offering primary school students specialist physical education (PE) instruction, as well as providing training for generalist classroom teachers. In the present study, a group of generalist teachers were interviewed…

  4. Interaction between Digestive Strategy and Niche Specialization Predicts Speciation Rates across Herbivorous Mammals.

    Science.gov (United States)

    Tran, Lucy A P

    2016-04-01

    Biotic and abiotic factors often are treated as mutually exclusive drivers of diversification processes. In this framework, ecological specialists are expected to have higher speciation rates than generalists if abiotic factors are the primary controls on species diversity but lower rates if biotic interactions are more important. Speciation rate is therefore predicted to positively correlate with ecological specialization in the purely abiotic model but negatively correlate in the biotic model. In this study, I show that the positive relationship between ecological specialization and speciation expected from the purely abiotic model is recovered only when a species-specific trait, digestive strategy, is modeled in the terrestrial, herbivorous mammals (Mammalia). This result suggests a more nuanced model in which the response of specialized lineages to abiotic factors is dependent on a biological trait. I also demonstrate that the effect of digestive strategy on the ecological specialization-speciation rate relationship is not due to a difference in either the degree of ecological specialization or the speciation rate between foregut- and hindgut-fermenting mammals. Together, these findings suggest that a biological trait, alongside historical abiotic events, played an important role in shaping mammal speciation at long temporal and large geographic scales.

  5. Generalist Bee Species on Brazilian Bee-Plant Interaction Networks

    Directory of Open Access Journals (Sweden)

    Astrid de Matos Peixoto Kleinert

    2012-01-01

    Full Text Available Determining bee and plant interactions has an important role on understanding general biology of bee species as well as the potential pollinating relationship between them. Bee surveys have been conducted in Brazil since the end of the 1960s. Most of them applied standardized methods and had identified the plant species where the bees were collected. To analyze the most generalist bees on Brazilian surveys, we built a matrix of bee-plant interactions. We estimated the most generalist bees determining the three bee species of each surveyed locality that presented the highest number of interactions. We found 47 localities and 39 species of bees. Most of them belong to Apidae (31 species and Halictidae (6 families and to Meliponini (14 and Xylocopini (6 tribes. However, most of the surveys presented Apis mellifera and/or Trigona spinipes as the most generalist species. Apis mellifera is an exotic bee species and Trigona spinipes, a native species, is also widespread and presents broad diet breath and high number of individuals per colony.

  6. Learning Abilities and Disabilities: Generalist Genes, Specialist Environments.

    Science.gov (United States)

    Kovas, Yulia; Plomin, Robert

    2007-10-01

    Twin studies comparing identical and fraternal twins consistently show substantial genetic influence on individual differences in learning abilities such as reading and mathematics, as well as in other cognitive abilities such as spatial ability and memory. Multivariate genetic research has shown that the same set of genes is largely responsible for genetic influence on these diverse cognitive areas. We call these "generalist genes." What differentiates these abilities is largely the environment, especially nonshared environments that make children growing up in the same family different from one another. These multivariate genetic findings of generalist genes and specialist environments have far-reaching implications for diagnosis and treatment of learning disabilities and for understanding the brain mechanisms that mediate these effects.

  7. Evaluation of pharmacy generalists performing antimicrobial stewardship services.

    Science.gov (United States)

    Carreno, Joseph J; Kenney, Rachel M; Bloome, Mary; McDonnell, Jane; Rodriguez, Jennifer; Weinmann, Allison; Kilgore, Paul E; Davis, Susan L

    2015-08-01

    Improvements in medication use achieved by pharmacy generalists using a care bundle approach to antimicrobial stewardship are reported. A six-month prospective, repeated-treatment, quasi-experimental study involving three month-long intervention periods and three month-long control periods was conducted in the setting of an existing antimicrobial stewardship program at a large hospital. The intervention involved prospective audit and feedback conducted by pharmacy generalists who were trained in an antimicrobial stewardship care bundle approach. During control months, a pharmacy generalist who was not trained in antimicrobial stewardship rounded with the multidisciplinary team and provided standard-of-care pharmacy services. The primary endpoint was compliance with a care bundle of four antimicrobial stewardship metrics: documentation of indication for therapy in the medical record, selection of empirical therapy according to institutional guidelines, documented performance of indicated culture testing, and deescalation of therapy when indicated. Two-hundred eighty-six patients were enrolled in the study: 124 in the intervention group and 162 in the control group. The cumulative rate of full compliance with all care bundle components during the six-month study was significantly greater during intervention months than during control months (68.5% versus 45.7%, p management. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  8. Generalist palliative care in hospital - Cultural and organisational interactions. Results of a mixed-methods study.

    Science.gov (United States)

    Bergenholtz, Heidi; Jarlbaek, Lene; Hølge-Hazelton, Bibi

    2016-06-01

    It can be challenging to provide generalist palliative care in hospitals, owing to difficulties in integrating disease-oriented treatment with palliative care and the influences of cultural and organisational conditions. However, knowledge on the interactions that occur is sparse. To investigate the interactions between organisation and culture as conditions for integrated palliative care in hospital and, if possible, to suggest workable solutions for the provision of generalist palliative care. A convergent parallel mixed-methods design was chosen using two independent studies: a quantitative study, in which three independent datasets were triangulated to study the organisation and evaluation of generalist palliative care, and a qualitative, ethnographic study exploring the culture of generalist palliative nursing care in medical departments. A Danish regional hospital with 29 department managements and one hospital management. Two overall themes emerged: (1) 'generalist palliative care as a priority at the hospital', suggesting contrasting issues regarding prioritisation of palliative care at different organisational levels, and (2) 'knowledge and use of generalist palliative care clinical guideline', suggesting that the guideline had not reached all levels of the organisation. Contrasting issues in the hospital's provision of generalist palliative care at different organisational levels seem to hamper the interactions between organisation and culture - interactions that appear to be necessary for the provision of integrated palliative care in the hospital. The implementation of palliative care is also hindered by the main focus being on disease-oriented treatment, which is reflected at all the organisational levels. © The Author(s) 2015.

  9. The importance of ecological costs for the evolution of plant defense against herbivory.

    Science.gov (United States)

    van Velzen, Ellen; Etienne, Rampal S

    2015-05-07

    Plant defense against herbivory comes at a cost, which can be either direct (reducing resources available for growth and reproduction) or indirect (through reducing ecological performance, for example intraspecific competitiveness). While direct costs have been well studied in theoretical models, ecological costs have received almost no attention. In this study we compare models with a direct trade-off (reduced growth rate) to models with an ecological trade-off (reduced competitive ability), using a combination of adaptive dynamics and simulations. In addition, we study the dependence of the level of defense that can evolve on the type of defense (directly by reducing consumption, or indirectly by inducing herbivore mortality (toxicity)), and on the type of herbivore against which the plant is defending itself (generalists or specialists). We find three major results: First, for both direct and ecological costs, defense only evolves if the benefit to the plant is direct (through reducing consumption). Second, the type of cost has a major effect on the evolutionary dynamics: direct costs always lead to a single optimal strategy against herbivores, but ecological costs can lead to branching and the coexistence of non-defending and defending plants; however, coexistence is only possible when defending against generalist herbivores. Finally, we find that fast-growing plants invest less than slow-growing plants when defending against generalist herbivores, as predicted by the Resource Availability Hypothesis, but invest more than slow-growing plants when defending against specialists. Our results clearly show that assumptions about ecological interactions are crucial for understanding the evolution of defense against herbivores. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Feeding niches of four large herbivores in the Hluhluwe Game ...

    African Journals Online (AJOL)

    Feeding niches of four large herbivores in the Hluhluwe Game Reserve, Natal. ... equus burchelli burchelli; feeding; grass; grasses; habitat; herbivores; hluhluwe game reserve; kwazulu-natal; large herbivores; ... AJOL African Journals Online.

  11. Detecting changes in insect herbivore communities along a pollution gradient

    Energy Technology Data Exchange (ETDEWEB)

    Eatough Jones, Michele [Department of Entomology, University of California Riverside, Riverside, CA 92521 (United States)]. E-mail: michele.eatough@ucr.edu; Paine, Timothy D. [Department of Entomology, University of California Riverside, Riverside, CA 92521 (United States)]. E-mail: timothy.paine@ucr.edu

    2006-10-15

    The forests surrounding the urban areas of the Los Angeles basin are impacted by ozone and nitrogen pollutants arising from urban areas. We examined changes in the herbivore communities of three prominent plant species (ponderosa pine, California black oak and bracken fern) at six sites along an air pollution gradient. Insects were extracted from foliage samples collected in spring, as foliage reached full expansion. Community differences were evaluated using total herbivore abundance, richness, Shannon-Weiner diversity, and discriminant function analysis. Even without conspicuous changes in total numbers, diversity or richness of herbivores, herbivore groups showed patterns of change that followed the air pollution gradient that were apparent through discriminant function analysis. For bracken fern and oak, chewing insects were more dominant at high pollution sites. Oak herbivore communities showed the strongest effect. These changes in herbivore communities may affect nutrient cycling in forest systems. - Differences in insect herbivore communities were associated with an ambient air pollution gradient in the mixed conifer forest outside the Los Angeles area.

  12. Detecting changes in insect herbivore communities along a pollution gradient

    International Nuclear Information System (INIS)

    Eatough Jones, Michele; Paine, Timothy D.

    2006-01-01

    The forests surrounding the urban areas of the Los Angeles basin are impacted by ozone and nitrogen pollutants arising from urban areas. We examined changes in the herbivore communities of three prominent plant species (ponderosa pine, California black oak and bracken fern) at six sites along an air pollution gradient. Insects were extracted from foliage samples collected in spring, as foliage reached full expansion. Community differences were evaluated using total herbivore abundance, richness, Shannon-Weiner diversity, and discriminant function analysis. Even without conspicuous changes in total numbers, diversity or richness of herbivores, herbivore groups showed patterns of change that followed the air pollution gradient that were apparent through discriminant function analysis. For bracken fern and oak, chewing insects were more dominant at high pollution sites. Oak herbivore communities showed the strongest effect. These changes in herbivore communities may affect nutrient cycling in forest systems. - Differences in insect herbivore communities were associated with an ambient air pollution gradient in the mixed conifer forest outside the Los Angeles area

  13. Herbivore-induced blueberry volatiles and intra-plant signaling.

    Science.gov (United States)

    Rodriguez-Saona, Cesar R

    2011-12-18

    Herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack. These HIPVs are mainly regulated by the defensive plant hormone jasmonic acid (JA) and its volatile derivative methyl jasmonate (MeJA). Over the past 3 decades researchers have documented that HIPVs can repel or attract herbivores, attract the natural enemies of herbivores, and in some cases they can induce or prime plant defenses prior to herbivore attack. In a recent paper, I reported that feeding by gypsy moth caterpillars, exogenous MeJA application, and mechanical damage induce the emissions of volatiles from blueberry plants, albeit differently. In addition, blueberry branches respond to HIPVs emitted from neighboring branches of the same plant by increasing the levels of JA and resistance to herbivores (i.e., direct plant defenses), and by priming volatile emissions (i.e., indirect plant defenses). Similar findings have been reported recently for sagebrush, poplar, and lima beans. Here, I describe a push-pull method for collecting blueberry volatiles induced by herbivore (gypsy moth) feeding, exogenous MeJA application, and mechanical damage. The volatile collection unit consists of a 4 L volatile collection chamber, a 2-piece guillotine, an air delivery system that purifies incoming air, and a vacuum system connected to a trap filled with Super-Q adsorbent to collect volatiles. Volatiles collected in Super-Q traps are eluted with dichloromethane and then separated and quantified using Gas Chromatography (GC). This volatile collection method was used in my study to investigate the volatile response of undamaged branches to exposure to volatiles from herbivore-damaged branches within blueberry plants. These methods are described here. Briefly, undamaged blueberry branches are exposed to HIPVs from neighboring branches within the same plant. Using the same techniques described above, volatiles emitted from branches after exposure to HIPVs are collected and

  14. Factors affecting host range in a generalist seed pathogen of semi-arid shrublands

    Science.gov (United States)

    Julie Beckstead; Susan E. Meyer; Kurt O. Reinhart; Kellene M. Bergen; Sandra R. Holden; Heather F. Boekweg

    2014-01-01

    Generalist pathogens can exhibit differential success on different hosts, resulting in complex host range patterns. Several factors operate to reduce realized host range relative to potential host range, particularly under field conditions. We explored factors influencing host range of the naturally occurring generalist ascomycete grass seed pathogen Pyrenophora...

  15. Predators induce interspecific herbivore competition for food in refuge space

    OpenAIRE

    Pallini, A.; Janssen, A.; Sabelis, M.W.

    1998-01-01

    Resource competition among herbivorous arthropods has long been viewed as unimportant because herbivore populations are controlled by predators. Although recently resurrected as an organizing force in arthropod communities on plants, there is still general agreement that resource competition among herbivores is reduced by predators. Here we show the reverse: predators induce interspecific resource competi-tion among herbivores. We found that thrips larvae (Frankliniella occidentalis) use the ...

  16. Asian Eden : large herbivore ecology in India

    NARCIS (Netherlands)

    Ahrestani, F.S.

    2009-01-01

    The study of large mammalian herbivore ecology has a strong allometric tradition. The
    majority of studies that have helped better understand how body mass affects large herbivore
    ecology in the tropics, from a biological, functional, and ecological perspective, are from
    Africa.

  17. The global distribution of diet breadth in insect herbivores.

    Science.gov (United States)

    Forister, Matthew L; Novotny, Vojtech; Panorska, Anna K; Baje, Leontine; Basset, Yves; Butterill, Philip T; Cizek, Lukas; Coley, Phyllis D; Dem, Francesca; Diniz, Ivone R; Drozd, Pavel; Fox, Mark; Glassmire, Andrea E; Hazen, Rebecca; Hrcek, Jan; Jahner, Joshua P; Kaman, Ondrej; Kozubowski, Tomasz J; Kursar, Thomas A; Lewis, Owen T; Lill, John; Marquis, Robert J; Miller, Scott E; Morais, Helena C; Murakami, Masashi; Nickel, Herbert; Pardikes, Nicholas A; Ricklefs, Robert E; Singer, Michael S; Smilanich, Angela M; Stireman, John O; Villamarín-Cortez, Santiago; Vodka, Stepan; Volf, Martin; Wagner, David L; Walla, Thomas; Weiblen, George D; Dyer, Lee A

    2015-01-13

    Understanding variation in resource specialization is important for progress on issues that include coevolution, community assembly, ecosystem processes, and the latitudinal gradient of species richness. Herbivorous insects are useful models for studying resource specialization, and the interaction between plants and herbivorous insects is one of the most common and consequential ecological associations on the planet. However, uncertainty persists regarding fundamental features of herbivore diet breadth, including its relationship to latitude and plant species richness. Here, we use a global dataset to investigate host range for over 7,500 insect herbivore species covering a wide taxonomic breadth and interacting with more than 2,000 species of plants in 165 families. We ask whether relatively specialized and generalized herbivores represent a dichotomy rather than a continuum from few to many host families and species attacked and whether diet breadth changes with increasing plant species richness toward the tropics. Across geographic regions and taxonomic subsets of the data, we find that the distribution of diet breadth is fit well by a discrete, truncated Pareto power law characterized by the predominance of specialized herbivores and a long, thin tail of more generalized species. Both the taxonomic and phylogenetic distributions of diet breadth shift globally with latitude, consistent with a higher frequency of specialized insects in tropical regions. We also find that more diverse lineages of plants support assemblages of relatively more specialized herbivores and that the global distribution of plant diversity contributes to but does not fully explain the latitudinal gradient in insect herbivore specialization.

  18. Large herbivores as a driving force of woodland-grassland cycles

    NARCIS (Netherlands)

    Cornelissen, Perry

    2017-01-01

    This thesis examines the mutual interactions between the population dynamics of large herbivores and wood-pasture cycles in eutrophic wetlands. Therefore, habitat use and population dynamics of large herbivores, the effects of large herbivores on vegetation development, and the mutual

  19. Herbivore-induced plant responses in Brassica oleracea prevail over effects of constitutive resistance and result in enhanced herbivore attack

    NARCIS (Netherlands)

    Poelman, E.H.; Loon, van J.J.A.; Dam, van N.M.; Vet, L.E.M.; Dicke, M.

    2010-01-01

    2. Here we studied the effect of early-season herbivory by caterpillars of Pieris rapae on the composition of the insect herbivore community on domesticated Brassica oleracea plants. We compared the effect of herbivory on two cultivars that differ in the degree of susceptibility to herbivores to

  20. Herbivore-induced plant responses in Brassica oleracea prevail over effects of constitutive resistance and result in enhanced herbivore attack

    NARCIS (Netherlands)

    Poelman, E.H.; van Loon, J.J.A.; Van Dam, N.M.; Dicke, M.; Vet, L.E.M.

    2010-01-01

    1. Plant responses to herbivore attack may have community-wide effects on the composition of the plant-associated insect community. Thereby, plant responses to an early-season herbivore may have profound consequences for the amount and type of future attack. 2. Here we studied the effect of

  1. Effect of urbanisation on habitat generalists: starlings not so flexible?

    Science.gov (United States)

    Mennechez, Gwénaëlle; Clergeau, Philippe

    2006-09-01

    The small variability of habitat generalist abundances in relation to landscape changes has been related to their behavioural flexibility. We hypothesise that successful generalists, such as the starling, compensate for feeding resource difficulties (poor quality of food, accessibility) in habitats such as urban ecosystems and that its behavioural flexibility allows for similar breeding performance in rural and urban areas. Along an urbanisation gradient we compared simultaneously (1) success factors such as the abundance of breeding starlings, their breeding performance and the fitness of nestlings, and (2) possible flexibility quantified through the rate of parental food-provisioning, and the composition and the amount of food delivered to nestlings. Abundance of breeding starlings are similar throughout the urbanisation gradient, but urbanisation profoundly and negatively affects reproductive parameters of starlings. Differences in the amount of food delivered to nestlings by parents (less food in town centre), and the small masses of nestlings reared in the urban sectors support the idea that urban nestlings received insufficient food loads. Despite modifications to their diurnal food-provisioning rhythm and the incorporation of some human food refuse into their diet, starling parents have a significantly reduced production of young in the urban centre sector. We rebut the idea that the "generalist" starling is able to breed successfully anywhere: other more "specialist" species succeed in producing their young by innovating more in terms of diet resources. We suggest defining successful birds with respect to colonisation or invasion process through behavioural innovation rather than an ambiguous habitat generalist definition.

  2. Responses of Herbivorous Fishes and Benthos to 6 Years of Protection at the Kahekili Herbivore Fisheries Management Area, Maui.

    Directory of Open Access Journals (Sweden)

    Ivor D Williams

    Full Text Available In response to concerns about declining coral cover and recurring macroalgal blooms, in 2009 the State of Hawaii established the Kahekili Herbivore Fisheries Management Area (KHFMA. Within the KHFMA, herbivorous fishes and sea urchins are protected, but other fishing is allowed. As part of a multi-agency monitoring effort, we conducted surveys at KHFMA and comparison sites around Maui starting 19 months before closure, and over the six years since implementation of herbivore protection. Mean parrotfish and surgeonfish biomass both increased within the KHFMA (by 139% [95%QR (quantile range: 98-181%] and 28% [95%QR: 3-52%] respectively. Most of those gains were of small-to-medium sized species, whereas large-bodied species have not recovered, likely due to low levels of poaching on what are preferred fishery targets in Hawaii. Nevertheless, coincident with greater biomass of herbivores within the KHFMA, cover of crustose coralline algae (CCA has increased from ~2% before closure to ~ 15% in 2015, and macroalgal cover has remained low throughout the monitoring period. Strong evidence that changes in the KHFMA were a consequence of herbivore management are that (i there were no changes in biomass of unprotected fish families within the KHFMA; and that (ii there were no similar changes in parrotfish or CCA at comparison sites around Maui. It is not yet clear how effective herbivore protection might eventually be for the KHFMA's ultimate goal of coral recovery. Coral cover declined over the first few years of surveys-from 39.6% (SE 1.4% in 2008, to 32.9% (SE 0.8% in 2012, with almost all of that loss occurring by 2010 (1 year after closure, i.e. before meaningful herbivore recovery had occurred. Coral cover subsequently stabilized and may have slightly increased from 2012 through early 2015. However, a region-wide bleaching event in 2015 had already led to some coral mortality by the time surveys were conducted in late 2015, at which time cover had

  3. The roles of geography and founder effects in promoting host-associated differentiation in the generalist bogus yucca moth Prodoxus decipiens.

    Science.gov (United States)

    Darwell, C T; Fox, K A; Althoff, D M

    2014-12-01

    There is ample evidence that host shifts in plant-feeding insects have been instrumental in generating the enormous diversity of insects. Changes in host use can cause host-associated differentiation (HAD) among populations that may lead to reproductive isolation and eventual speciation. The importance of geography in facilitating this process remains controversial. We examined the geographic context of HAD in the wide-ranging generalist yucca moth Prodoxus decipiens. Previous work demonstrated HAD among sympatric moth populations feeding on two different Yucca species occurring on the barrier islands of North Carolina, USA. We assessed the genetic structure of P. decipiens across its entire geographic and host range to determine whether HAD is widespread in this generalist herbivore. Population genetic analyses of microsatellite and mtDNA sequence data across the entire range showed genetic structuring with respect to host use and geography. In particular, genetic differentiation was relatively strong between mainland populations and those on the barrier islands of North Carolina. Finer scale analyses, however, among sympatric populations using different host plant species only showed significant clustering based on host use for populations on the barrier islands. Mainland populations did not form population clusters based on host plant use. Reduced genetic diversity in the barrier island populations, especially on the derived host, suggests that founder effects may have been instrumental in facilitating HAD. In general, results suggest that the interplay of local adaptation, geography and demography can determine the tempo of HAD. We argue that future studies should include comprehensive surveys across a wide range of environmental and geographic conditions to elucidate the contribution of various processes to HAD. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  4. Troublesome toxins: Time to re-think plant-herbivore interactions in vertebrate ecology

    Science.gov (United States)

    Swihart, R.K.; DeAngelis, D.L.; Feng, Z.; Bryant, J.P.

    2009-01-01

    Earlier models of plant-herbivore interactions relied on forms of functional response that related rates of ingestion by herbivores to mechanical or physical attributes such as bite size and rate. These models fail to predict a growing number of findings that implicate chemical toxins as important determinants of plant-herbivore dynamics. Specifically, considerable evidence suggests that toxins set upper limits on food intake for many species of herbivorous vertebrates. Herbivores feeding on toxin-containing plants must avoid saturating their detoxification systems, which often occurs before ingestion rates are limited by mechanical handling of food items. In light of the importance of plant toxins, a new approach is needed to link herbivores to their food base. We discuss necessary features of such an approach, note recent advances in herbivore functional response models that incorporate effects of plant toxins, and mention predictions that are consistent with observations in natural systems. Future ecological studies will need to address explicitly the importance of plant toxins in shaping plant and herbivore communities.

  5. Biotic resistance via granivory: Establishment by invasive, naturalized, and native asters reflects generalist preference

    Science.gov (United States)

    Dean E. Pearson; Ragan M. Callaway; John L. Maron

    2011-01-01

    Escape from specialist natural enemies is frequently invoked to explain exotic plant invasions, but little attention has been paid to how generalist consumers in the recipient range may influence invasion. We examined how seed preferences of the widespread generalist granivore Peromyscus maniculatus related to recruitment of the strongly invasive exotic Centaurea...

  6. Individual prey choices of octopuses: Are they generalist or specialist?

    Directory of Open Access Journals (Sweden)

    Jennifer A. MATHER, Tatiana S. LEITE, Allan T. BATISTA

    2012-08-01

    Full Text Available Prey choice is often evaluated at the species or population level. Here, we analyzed the diet of octopuses of different populations with the aim to assess the importance of individual feeding habits as a factor affecting prey choice. Two methods were used, an assessment of the extent to which an individual octopus made choices of species representative of those population (PSi and IS and 25% cutoff values for number of choices and percentage intake of individual on their prey. In one population of Octopus cf vulgaris in Bermuda individuals were generalist by IS=0.77, but most chose many prey of the same species, and were specialists on it by >75% intake. Another population had a wider prey selection, still generalist with PSi=0.66, but two individuals specialized by choices. In Bonaire, there was a wide range of prey species chosen, and the population was specialists by IS= 0.42. Individual choices revealed seven specialists and four generalists. A population of Octopus cyanea in Hawaii all had similar choices of crustaceans, so the population was generalist by IS with 0.74. But by individual choices, three were considered a specialist. A population of Enteroctopus dofleini from Puget Sound had a wide range of preferences, in which seven were also specialists, IS=0.53. By individual choices, thirteen were also specialists. Given the octopus specialty of learning during foraging, we hypothesize that both localized prey availability and individual personality differences could influence the exploration for prey and this translates into different prey choices across individuals and populations showed in this study [Current Zoology 58 (4: 597-603, 2012].

  7. Cardenolides, induced responses, and interactions between above- and belowground herbivores of milkweed (Asclepias spp.).

    Science.gov (United States)

    Rasmann, Sergio; Agrawal, Anurag A; Cook, Susan C; Erwin, Alexis C

    2009-09-01

    Theory has long predicted allocation patterns for plant defense against herbivory, but only recently have both above- and belowground plant defenses been considered simultaneously. Milkweeds in the genus Asclepias are a classic chemically defended clade of plants with toxic cardenolides (cardiac glycosides) and pressurized latex employed as anti-herbivore weapons. Here we combine a comparative approach to investigate broadscale patterns in allocation to root vs. shoot defenses across species with a species-specific experimental approach to identify the consequences of defense allocational shifts on a specialist herbivore. Our results show phylogenetic conservatism for inducibility of shoot cardenolides by an aboveground herbivore, with only four closely related tropical species showing significant induction; the eight temperate species examined were not inducible. Allocation to root and shoot cardenolides was positively correlated across species, and this relationship was maintained after accounting for phylogenetic nonindependence. In contrast to long-standing theoretical predictions, we found no evidence for a trade-off between constitutive and induced cardenolides; indeed the two were positively correlated across species in both roots and shoots. Finally, specialist root and shoot herbivores of common milkweed (A. syriaca) had opposing effects on latex production, and these effects had consequences for caterpillar growth consistent with latex providing resistance. Although cardenolides were not affected by our treatments, A. syriaca allocated 40% more cardenolides to shoots over roots. We conclude that constitutive and inducible defenses are not trading off across plant species, and shoots of Asclepias are more inducible than roots. Phylogenetic conservatism cannot explain the observed patterns of cardenolide levels across species, but inducibility per se was conserved in a tropical clade. Finally, given that above- and belowground herbivores can systemically

  8. Effects of large herbivores on grassland arthropod diversity.

    Science.gov (United States)

    van Klink, R; van der Plas, F; van Noordwijk, C G E Toos; WallisDeVries, M F; Olff, H

    2015-05-01

    Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141 studies on this topic of which 24 simultaneously investigated plant and arthropod diversity. Using the data from these 24 studies, we compared the responses of plant and arthropod diversity to an increase in grazing intensity. This quantitative assessment showed no overall significant effect of increasing grazing intensity on plant diversity, while arthropod diversity was generally negatively affected. To understand these negative effects, we explored the mechanisms by which large herbivores affect arthropod communities: direct effects, changes in vegetation structure, changes in plant community composition, changes in soil conditions, and cascading effects within the arthropod interaction web. We identify three main factors determining the effects of large herbivores on arthropod diversity: (i) unintentional predation and increased disturbance, (ii) decreases in total resource abundance for arthropods (biomass) and (iii) changes in plant diversity, vegetation structure and abiotic conditions. In general, heterogeneity in vegetation structure and abiotic conditions increases at intermediate grazing intensity, but declines at both low and high grazing intensity. We conclude that large herbivores can only increase arthropod diversity if they cause an increase in (a)biotic heterogeneity, and then only if this increase is large enough to compensate for the loss of total resource abundance and the increased mortality rate. This is expected to occur only at low herbivore densities or with spatio-temporal variation in herbivore densities. As we demonstrate that arthropod diversity is often more negatively affected by grazing than plant diversity, we strongly recommend considering the

  9. Global environmental controls of diversity in large herbivores

    NARCIS (Netherlands)

    Olff, Han; Ritchie, Mark E.; Prins, Herbert H.T.

    2002-01-01

    Large mammalian herbivores occupy half of the earth's land surface and are important both ecologically and economically, but their diversity is threatened by human activities. We investigated how the diversity of large herbivores changes across gradients of global precipitation and soil fertility.

  10. Evaluating herbivore management outcomes and associated vegetation impacts

    Directory of Open Access Journals (Sweden)

    Rina C.C. Grant

    2011-05-01

    Conservation implications: In rangeland, optimising herbivore numbers to achieve the management objectives without causing unacceptable or irreversible change in the vegetation is challenging. This manuscript explores different avenues to evaluate herbivore impact and the outcomes of management approaches that may affect vegetation.

  11. Response of different-sized herbivores to fire history

    NARCIS (Netherlands)

    Hagenah, N.; Cromsigt, J.P.G.M.; Olff, H.; Prins, H.H.T.

    2006-01-01

    Retrieve original file from: http://edepot.wur.nl/121801 High herbivore densities and re-occurring fires are natural phenomenons that determine the structure and functioning of African savannas. Traditional burning practices have been intensified over the past years due to increased herbivore

  12. Fires can benefit plants by disrupting antagonistic interactions.

    Science.gov (United States)

    García, Y; Castellanos, M C; Pausas, J G

    2016-12-01

    Fire has a key role in the ecology and evolution of many ecosystems, yet its effects on plant-insect interactions are poorly understood. Because interacting species are likely to respond to fire differently, disruptions of the interactions are expected. We hypothesized that plants that regenerate after fire can benefit through the disruption of their antagonistic interactions. We expected stronger effects on interactions with specialist predators than with generalists. We studied two interactions between two Mediterranean plants (Ulex parviflorus, Asphodelus ramosus) and their specialist seed predators after large wildfires. In A. ramosus we also studied the generalist herbivores. We sampled the interactions in burned and adjacent unburned areas during 2 years by estimating seed predation, number of herbivores and fruit set. To assess the effect of the distance to unburned vegetation we sampled plots at two distance classes from the fire perimeter. Even 3 years after the fires, Ulex plants experienced lower seed damage by specialists in burned sites. The presence of herbivores on Asphodelus decreased in burned locations, and the variability in their presence was significantly related to fruit set. Generalist herbivores were unaffected. We show that plants can benefit from fire through the disruption of their antagonistic interactions with specialist seed predators for at least a few years. In environments with a long fire history, this effect might be one additional mechanism underlying the success of fire-adapted plants.

  13. Effects of large herbivores on grassland arthropod diversity

    NARCIS (Netherlands)

    van Klink, R.; van der Plas, F.; van Noordwijk, C. G. E. (Toos); WallisDeVries, M. F.; Olff, H.

    Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141

  14. Troublesome toxins: time to re-think plant-herbivore interactions in vertebrate ecology

    Directory of Open Access Journals (Sweden)

    Feng Zhilan

    2009-02-01

    Full Text Available Abstract Earlier models of plant-herbivore interactions relied on forms of functional response that related rates of ingestion by herbivores to mechanical or physical attributes such as bite size and rate. These models fail to predict a growing number of findings that implicate chemical toxins as important determinants of plant-herbivore dynamics. Specifically, considerable evidence suggests that toxins set upper limits on food intake for many species of herbivorous vertebrates. Herbivores feeding on toxin-containing plants must avoid saturating their detoxification systems, which often occurs before ingestion rates are limited by mechanical handling of food items. In light of the importance of plant toxins, a new approach is needed to link herbivores to their food base. We discuss necessary features of such an approach, note recent advances in herbivore functional response models that incorporate effects of plant toxins, and mention predictions that are consistent with observations in natural systems. Future ecological studies will need to address explicitly the importance of plant toxins in shaping plant and herbivore communities.

  15. The importance of phenology in studies of plant-herbivore-parasitoid interactions

    NARCIS (Netherlands)

    Fei, Minghui

    2016-01-01

    Thesis title: The importance of phenology in studies of plant-herbivore-parasitoid interactions Author: Minghui Fei Abstract As food resources of herbivorous insects, the quality and quantity of plants can directly affect the performance of herbivorous insects and indirectly affect

  16. Large herbivores that strive mightily but eat and drink as friends

    NARCIS (Netherlands)

    Boer, de W.F.; Prins, H.H.T.

    1990-01-01

    Grazing in patches of Cynodon dactylon and of Sporobolus spicatus by four large herbivores, and the interaction between these sedentary herbivores was studied in Lake Manyara National Park, northern Tanzania. The herbivores were the African buffalo, Syncerus caffer; the African elephan, Loxodonta

  17. Recent advances in plant-herbivore interactions [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Deron E. Burkepile

    2017-02-01

    Full Text Available Plant-herbivore interactions shape community dynamics across marine, freshwater, and terrestrial habitats. From amphipods to elephants and from algae to trees, plant-herbivore relationships are the crucial link generating animal biomass (and human societies from mere sunlight. These interactions are, thus, pivotal to understanding the ecology and evolution of virtually any ecosystem. Here, we briefly highlight recent advances in four areas of plant-herbivore interactions: (1 plant defense theory, (2 herbivore diversity and ecosystem function, (3 predation risk aversion and herbivory, and (4 how a changing climate impacts plant-herbivore interactions. Recent advances in plant defense theory, for example, highlight how plant life history and defense traits affect and are affected by multiple drivers, including enemy pressure, resource availability, and the local plant neighborhood, resulting in trait-mediated feedback loops linking trophic interactions with ecosystem nutrient dynamics. Similarly, although the positive effect of consumer diversity on ecosystem function has long been recognized, recent advances using DNA barcoding to elucidate diet, and Global Positioning System/remote sensing to determine habitat selection and impact, have shown that herbivore communities are probably even more functionally diverse than currently realized. Moreover, although most diversity-function studies continue to emphasize plant diversity, herbivore diversity may have even stronger impacts on ecosystem multifunctionality. Recent studies also highlight the role of risk in plant-herbivore interactions, and risk-driven trophic cascades have emerged as landscape-scale patterns in a variety of ecosystems. Perhaps not surprisingly, many plant-herbivore interactions are currently being altered by climate change, which affects plant growth rates and resource allocation, expression of chemical defenses, plant phenology, and herbivore metabolism and behavior. Finally

  18. Insect herbivores should follow plants escaping their relatives

    NARCIS (Netherlands)

    Yguel, B.; Bailey, R.I.; Villemant, C.; Brault, A.; Jactel, H.; Prinzing, A.

    2014-01-01

    Neighboring plants within a local community may be separated by many millions of years of evolutionary history, potentially reducing enemy pressure by insect herbivores. However, it is not known how the evolutionary isolation of a plant affects the fitness of an insect herbivore living on such a

  19. Investigating functional redundancy versus complementarity in Hawaiian herbivorous coral reef fishes.

    Science.gov (United States)

    Kelly, Emily L A; Eynaud, Yoan; Clements, Samantha M; Gleason, Molly; Sparks, Russell T; Williams, Ivor D; Smith, Jennifer E

    2016-12-01

    Patterns of species resource use provide insight into the functional roles of species and thus their ecological significance within a community. The functional role of herbivorous fishes on coral reefs has been defined through a variety of methods, but from a grazing perspective, less is known about the species-specific preferences of herbivores on different groups of reef algae and the extent of dietary overlap across an herbivore community. Here, we quantified patterns of redundancy and complementarity in a highly diverse community of herbivores at a reef on Maui, Hawaii, USA. First, we tracked fish foraging behavior in situ to record bite rate and type of substrate bitten. Second, we examined gut contents of select herbivorous fishes to determine consumption at a finer scale. Finally, we placed foraging behavior in the context of resource availability to determine how fish selected substrate type. All species predominantly (73-100 %) foraged on turf algae, though there were differences among the types of macroalgae and other substrates bitten. Increased resolution via gut content analysis showed the composition of turf algae consumed by fishes differed across herbivore species. Consideration of foraging behavior by substrate availability revealed 50 % of herbivores selected for turf as opposed to other substrate types, but overall, there were variable foraging portfolios across all species. Through these three methods of investigation, we found higher complementarity among herbivorous fishes than would be revealed using a single metric. These results suggest differences across species in the herbivore "rain of bites" that graze and shape benthic community composition.

  20. Coevolutionary arms race versus host defense chase in a tropical herbivore-plant system.

    Science.gov (United States)

    Endara, María-José; Coley, Phyllis D; Ghabash, Gabrielle; Nicholls, James A; Dexter, Kyle G; Donoso, David A; Stone, Graham N; Pennington, R Toby; Kursar, Thomas A

    2017-09-05

    Coevolutionary models suggest that herbivores drive diversification and community composition in plants. For herbivores, many questions remain regarding how plant defenses shape host choice and community structure. We addressed these questions using the tree genus Inga and its lepidopteran herbivores in the Amazon. We constructed phylogenies for both plants and insects and quantified host associations and plant defenses. We found that similarity in herbivore assemblages between Inga species was correlated with similarity in defenses. There was no correlation with phylogeny, a result consistent with our observations that the expression of defenses in Inga is independent of phylogeny. Furthermore, host defensive traits explained 40% of herbivore community similarity. Analyses at finer taxonomic scales showed that different lepidopteran clades select hosts based on different defenses, suggesting taxon-specific histories of herbivore-host plant interactions. Finally, we compared the phylogeny and defenses of Inga to phylogenies for the major lepidopteran clades. We found that closely related herbivores fed on Inga with similar defenses rather than on closely related plants. Together, these results suggest that plant defenses might be more evolutionarily labile than the herbivore traits related to host association. Hence, there is an apparent asymmetry in the evolutionary interactions between Inga and its herbivores. Although plants may evolve under selection by herbivores, we hypothesize that herbivores may not show coevolutionary adaptations, but instead "chase" hosts based on the herbivore's own traits at the time that they encounter a new host, a pattern more consistent with resource tracking than with the arms race model of coevolution.

  1. Modulation of flavonoid metabolites in Arabidopsis thaliana through overexpression of the MYB75 transcription factor: role of kaempferol-3,7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae.

    Science.gov (United States)

    Onkokesung, Nawaporn; Reichelt, Michael; van Doorn, Arjen; Schuurink, Robert C; van Loon, Joop J A; Dicke, Marcel

    2014-05-01

    Anthocyanins and flavonols are secondary metabolites that can function in plant defence against herbivores. In Arabidopsis thaliana, anthocyanin and flavonol biosynthesis are regulated by MYB transcription factors. Overexpression of MYB75 (oxMYB75) in Arabidopsis results in increasing anthocyanin and flavonol levels which enhances plant resistance to generalist caterpillars. However, how these metabolites affect specialist herbivores has remained unknown. Performance of a specialist aphid (Brevicoryne brassicae) was unaffected after feeding on oxMYB75 plants, whereas a specialist caterpillar (Pieris brassicae) gained significantly higher body mass when feeding on this plant. An increase in anthocyanin and total flavonol glycoside levels correlated negatively with the body mass of caterpillars fed on oxMYB75 plants. However, a significant reduction of kaempferol-3,7-dirhamnoside (KRR) corresponded to an increased susceptibility of oxMYB75 plants to caterpillar feeding. Pieris brassicae caterpillars also grew less on an artificial diet containing KRR or on oxMYB75 plants that were exogenously treated with KRR, supporting KRR's function in direct defence against this specialist caterpillar. The results show that enhancing the activity of the anthocyanin pathway in oxMYB75 plants results in re-channelling of quercetin/kaempferol metabolites which has a negative effect on the accumulation of KRR, a novel defensive metabolite against a specialist caterpillar.

  2. Selenium hyperaccumulation offers protection from cell disruptor herbivores

    Directory of Open Access Journals (Sweden)

    Quinn Colin F

    2010-08-01

    Full Text Available Abstract Background Hyperaccumulation, the rare capacity of certain plant species to accumulate toxic trace elements to levels several orders of magnitude higher than other species growing on the same site, is thought to be an elemental defense mechanism against herbivores and pathogens. Previous research has shown that selenium (Se hyperaccumulation protects plants from a variety of herbivores and pathogens. Selenium hyperaccumulating plants sequester Se in discrete locations in the leaf periphery, making them potentially more susceptible to some herbivore feeding modes than others. In this study we investigate the protective function of Se in the Se hyperaccumulators Stanleya pinnata and Astragalus bisulcatus against two cell disrupting herbivores, the western flower thrips (Frankliniella occidentalis and the two-spotted spider mite (Tetranychus urticae. Results Astragalus bisulcatus and S. pinnata with high Se concentrations (greater than 650 mg Se kg-1 were less subject to thrips herbivory than plants with low Se levels (less than 150 mg Se kg-1. Furthermore, in plants containing elevated Se levels, leaves with higher concentrations of Se suffered less herbivory than leaves with less Se. Spider mites also preferred to feed on low-Se A. bisulcatus and S. pinnata plants rather than high-Se plants. Spider mite populations on A. bisulcatus decreased after plants were given a higher concentration of Se. Interestingly, spider mites could colonize A. bisulcatus plants containing up to 200 mg Se kg-1 dry weight, concentrations which are toxic to many other herbivores. Selenium distribution and speciation studies using micro-focused X-ray fluorescence (μXRF mapping and Se K-edge X-ray absorption spectroscopy revealed that the spider mites accumulated primarily methylselenocysteine, the relatively non-toxic form of Se that is also the predominant form of Se in hyperaccumulators. Conclusions This is the first reported study investigating the

  3. Impact of herbivores on nitrogen cycling : contrasting effects of small and large species

    NARCIS (Netherlands)

    Bakker, ES; Olff, H; Boekhoff, M; Gleichman, JM; Berendse, F

    Herbivores are reported to slow down as well as enhance nutrient cycling in grasslands. These conflicting results may be explained by differences in herbivore type. In this study we focus on herbivore body size as a factor that causes differences in herbivore effects on N cycling. We used an

  4. Impact of herbivores on nitrogen cycling: contrasting effects of small and large species

    NARCIS (Netherlands)

    Bakker, E.S.; Olff, H.; Boekhoff, M.; Gleichman, J.M.; Berendse, F.

    2004-01-01

    Herbivores are reported to slow down as well as enhance nutrient cycling in grasslands. These conflicting results may be explained by differences in herbivore type. In this study we focus on herbivore body size as a factor that causes differences in herbivore effects on N cycling. We used an

  5. Insect herbivores change the outcome of plant competition through both inter- and intraspecific processes.

    Science.gov (United States)

    Kim, Tania N; Underwood, Nora; Inouye, Brian D

    2013-08-01

    Insect herbivores can affect plant abundance and community composition, and theory suggests that herbivores influence plant communities by altering interspecific interactions among plants. Because the outcome of interspecific interactions is influenced by the per capita competitive ability of plants, density dependence, and intrinsic rates of increase, measuring herbivore effects on all these processes is necessary to understand the mechanisms by which herbivores influence plant communities. We fit alternative competition models to data from a response surface experiment conducted over four years to examine how herbivores affected the outcome of competition between two perennial plants, Solidago altissima and Solanum carolinense. Within a growing season, herbivores reduced S. carolinense plant size but did not affect the size of S. altissima, which exhibited compensatory growth. Across seasons, herbivores did not affect S. carolinense density or biomass but reduced both the density and population growth of S. altissima. The best-fit models indicated that the effects of herbivores varied with year. In some years, herbivores increased the per capita competitive effect of S. altissima on S. carolinense; in other years, herbivores influenced the intrinsic rate of increase of S. altissima. We examined possible herbivore effects on the longer-term outcome of competition (over the time scale of a typical old-field habitat), using simulations based on the best-fit models. In the absence of herbivores, plant coexistence was observed. In the presence of herbivores, S. carolinense was excluded by S. altissima in 72.3% of the simulations. We demonstrate that herbivores can influence the outcome of competition through changes in both per capita competitive effects and intrinsic rates of increase. We discuss the implications of these results for ecological succession and biocontrol.

  6. The impact of workforce redesign policies on role boundaries in 'generalist' podiatry practice: expert views within the professional body.

    Science.gov (United States)

    Stressing, Samantha J; Borthwick, Alan M

    2014-01-01

    Demographic changes and a predicted rise in the prevalence of chronic illness have led to a range of health policies in the UK (and elsewhere) focused on workforce flexibility and extended roles for the allied health professions. Whilst much academic attention has been paid to extended specialised roles for allied health professionals such as podiatrists, little work has addressed the likely impact of these policy changes on non-specialist, 'generalist' podiatry practice. This study aimed to explore expert professional views on the impact of role flexibility on generalist podiatry practice. Expert podiatry practitioners drawn from within the professional body, the Society of Chiropodists and Podiatrists/College of Podiatry were recruited to 3 focus groups and 4 individual semi structured interviews and the data subject to a thematic analysis. Three key themes emerged, reflecting concerns about the future of generalist podiatry practice in the NHS, a perceived likelihood that generalist care will move inexorably towards private sector provision, and a growth in support worker grades undermining the position of generalist practice in the mainstream health division of labour. Up skilling generalist practitioners was viewed as the strongest defence against marginalisation. An emphasis on enhanced and specialised roles in podiatry by NHS commissioners and profession alike may threaten the sustainability of generalist podiatry provision in the state funded NHS. Non-specialist general podiatry may increasingly become the province of the private sector.

  7. Natal Host Plants Can Alter Herbivore Competition.

    Science.gov (United States)

    Pan, Huipeng; Preisser, Evan L; Su, Qi; Jiao, Xiaoguo; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Zhang, Youjun

    2016-01-01

    Interspecific competition between herbivores is widely recognized as an important determinant of community structure. Although researchers have identified a number of factors capable of altering competitive interactions, few studies have addressed the influence of neighboring plant species. If adaptation to/ epigenetic effects of an herbivore's natal host plant alter its performance on other host plants, then interspecific herbivore interactions may play out differently in heterogeneous and homogenous plant communities. We tested wether the natal host plant of a whitefly population affected interactions between the Middle-east Asia Minor 1 (MEAM1) and Mediterranean (MED) cryptic species of the whitefly Bemisia tabaci by rearing the offspring of a cabbage-derived MEAM1 population and a poinsettia-derived MED population together on three different host plants: cotton, poinsettia, and cabbage. We found that MED dominated on poinsettia and that MEAM1 dominated on cabbage, results consistent with previous research. MED also dominated when reared with MEAM1 on cotton, however, a result at odds with multiple otherwise-similar studies that reared both species on the same natal plant. Our work provides evidence that natal plants affect competitive interactions on another plant species, and highlights the potential importance of neighboring plant species on herbivore community composition in agricultral systems.

  8. Generalist feeding strategies in Arctic freshwater fish: A mechanism for dealing with extreme environments

    Science.gov (United States)

    Laske, Sarah M.; Rosenberger, Amanda E.; Wipfli, Mark S.; Zimmerman, Christian E.

    2018-01-01

    Generalist feeding strategies are favoured in stressful or variable environments where flexibility in ecological traits is beneficial. Species that feed across multiple habitat types and trophic levels may impart stability on food webs through the use of readily available, alternative energy pools. In lakes, generalist fish species may take advantage of spatially and temporally variable prey by consuming both benthic and pelagic prey to meet their energy demands. Using stomach content and stable isotope analyses, we examined the feeding habits of fish species in Alaska's Arctic Coastal Plain (ACP) lakes to determine the prevalence of generalist feeding strategies as a mechanism for persistence in extreme environments (e.g. low productivity, extreme cold and short growing season). Generalist and flexible feeding strategies were evident in five common fish species. Fish fed on benthic and pelagic (or nektonic) prey and across trophic levels. Three species were clearly omnivorous, feeding on fish and their shared invertebrate prey. Dietary differences based on stomach content analysis often exceeded 70%, and overlap in dietary niches based on shared isotopic space varied from zero to 40%. Metrics of community‐wide trophic structure varied with the number and identity of species involved and on the dietary overlap and niche size of individual fishes. Accumulation of energy from shared carbon sources by Arctic fishes creates redundancy in food webs, increasing likely resistance to perturbations or stochastic events. Therefore, the generalist and omnivorous feeding strategies employed by ACP fish may maintain energy flow and food web stability in extreme environments.

  9. Avoidance and tolerance to avian herbivores in aquatic plants

    NARCIS (Netherlands)

    Hidding, A.

    2009-01-01

    Tolerance and avoidance are the two contrasting strategies that plants may adopt to cope with herbivores. Tolerance traits define the degree to which communities remain unaffected by herbivory. Trade-offs between herbivore avoidance and competitive strength and between avoidance and colonization

  10. Resilience in plant-herbivore networks during secondary succession.

    Directory of Open Access Journals (Sweden)

    Edith Villa-Galaviz

    Full Text Available Extensive land-use change in the tropics has produced a mosaic of successional forests within an agricultural and cattle-pasture matrix. Post-disturbance biodiversity assessments have found that regeneration speed depends upon propagule availability and the intensity and duration of disturbance. However, reestablishment of species interactions is still poorly understood and this limits our understanding of the anthropogenic impacts upon ecosystem resilience. This is the first investigation that evaluates plant-herbivore interaction networks during secondary succession. In particular we investigated succession in a Mexican tropical dry forest using data of caterpillar associations with plants during 2007-2010. Plant-herbivore networks showed high resilience. We found no differences in most network descriptors between secondary and mature forest and only recently abandoned fields were found to be different. No significant nestedness or modularity network structure was found. Plant-herbivore network properties appear to quickly reestablish after perturbation, despite differences in species richness and composition. This study provides some valuable guidelines for the implement of restoration efforts that can enhance ecological processes such as the interaction between plants and their herbivores.

  11. Describing a multitrophic plant-herbivore-parasitoid system at four spatial scales

    Science.gov (United States)

    Cuautle, M.; Parra-Tabla, V.

    2014-02-01

    Herbivore-parasitoid interactions must be studied using a multitrophic and multispecies approach. The strength and direction of multiple effects through trophic levels may change across spatial scales. In this work, we use the herbaceous plant Ruellia nudiflora, its moth herbivore Tripudia quadrifera, and several parasitoid morphospecies that feed on the herbivore to answer the following questions: Do herbivore and parasitoid attack levels vary depending on the spatial scale considered? With which plant characteristics are the parasitoid and the herbivore associated? Do parasitoid morphospecies vary in the magnitude of their positive indirect effect on plant reproduction? We evaluated three approximations of herbivore and parasitoid abundance (raw numbers, ratios, and attack rates) at four spatial scales: regional (three different regions which differ in terms of abiotic and biotic characteristics); population (i.e. four populations within each region); patch (four 1 m2 plots in each population); and plant level (using a number of plant characteristics). Finally, we determined whether parasitoids have a positive indirect effect on plant reproductive success (seed number). Herbivore and parasitoid numbers differed at three of the spatial scales considered. However, herbivore/fruit ratio and attack rates did not differ at the population level. Parasitoid/host ratio and attack rates did not differ at any scale, although there was a tendency of a higher attack in one region. At the plant level, herbivore and parasitoid abundances were related to different plant traits, varying the importance and the direction (positive or negative) of those traits. In addition, only one parasitoid species (Bracon sp.) had a positive effect on plant fitness saving up to 20% of the seeds in a fruit. These results underline the importance of knowing the scales that are relevant to organisms at different trophic levels and distinguish between the specific effects of species.

  12. A pharm-ecological perspective of terrestrial and aquatic plant-herbivore interactions.

    Science.gov (United States)

    Forbey, Jennifer Sorensen; Dearing, M Denise; Gross, Elisabeth M; Orians, Colin M; Sotka, Erik E; Foley, William J

    2013-04-01

    We describe some recent themes in the nutritional and chemical ecology of herbivores and the importance of a broad pharmacological view of plant nutrients and chemical defenses that we integrate as "Pharm-ecology". The central role that dose, concentration, and response to plant components (nutrients and secondary metabolites) play in herbivore foraging behavior argues for broader application of approaches derived from pharmacology to both terrestrial and aquatic plant-herbivore systems. We describe how concepts of pharmacokinetics and pharmacodynamics are used to better understand the foraging phenotype of herbivores relative to nutrient and secondary metabolites in food. Implementing these concepts into the field remains a challenge, but new modeling approaches that emphasize tradeoffs and the properties of individual animals show promise. Throughout, we highlight similarities and differences between the historic and future applications of pharm-ecological concepts in understanding the ecology and evolution of terrestrial and aquatic interactions between herbivores and plants. We offer several pharm-ecology related questions and hypotheses that could strengthen our understanding of the nutritional and chemical factors that modulate foraging behavior of herbivores across terrestrial and aquatic systems.

  13. Jumping through "Loops": A Reflective Study on Preparing Generalist Pre-Service Teachers to Teach Music

    Science.gov (United States)

    Heyworth, John

    2011-01-01

    Generalist classroom teachers are being given more responsibility for music education in their schools. How confident and competent are they to do this? I find myself in a position where I am expected to train pre-service generalist teachers to be able to facilitate music in their future classrooms within one unit of music study over a four year…

  14. Positive interactions between large herbivores and grasshoppers, and their consequences for grassland plant diversity.

    Science.gov (United States)

    Zhong, Zhiwei; Wang, Deli; Zhu, Hui; Wang, Ling; Feng, Chao; Wang, Zhongnan

    2014-04-01

    Although the influence of positive interactions on plant and sessile communities has been well documented, surprisingly little is known about their role in structuring terrestrial animal communities. We evaluated beneficial interactions between two distantly related herbivore taxa, large vertebrate grazers (sheep) and smaller insect grazers (grasshoppers), using a set of field experiments in eastern Eurasian steppe of China. Grazing by large herbivores caused significantly higher grasshopper density, and this pattern persisted until the end of the experiment. Grasshoppers, in turn, increased the foraging time of larger herbivores, but such response occurred only during the peak of growing season (August). These reciprocal interactions were driven by differential herbivore foraging preferences for plant resources; namely, large herbivores preferred Artemisia forbs, whereas grasshoppers preferred Leymus grass. The enhancement of grasshopper density in areas grazed by large herbivores likely resulted from the selective consumption of Artemisia forbs by vertebrate grazers, which may potentially improve the host finding of grasshoppers. Likewise, grasshoppers appeared to benefit large herbivores by decreasing the cover and density of the dominant grass Leymus chinensis, which hampers large herbivores' access to palatable forbs. Moreover, we found that large herbivores grazing alone may significantly decrease plant diversity, yet grasshoppers appeared to mediate such negative effects when they grazed with large herbivores. Our results suggest that the positive, reciprocal interactions in terrestrial herbivore communities may be more prevalent and complex than previously thought.

  15. Lower Rates of Promotion of Generalists in Academic Medicine: A Follow-up to the National Faculty Survey.

    Science.gov (United States)

    Blazey-Martin, Deborah; Carr, Phyllis L; Terrin, Norma; Breeze, Janis L; Luk, Carolyn; Raj, Anita; Freund, Karen M

    2017-07-01

    Prior cross-sectional research has found that generalists have lower rates of academic advancement than specialists and basic science faculty. Our objective was to examine generalists relative to other medical faculty in advancement and academic productivity. In 2012, we conducted a follow-up survey (n = 607) of 1214 participants in the 1995 National Faculty Survey cohort and supplemented survey responses with publicly available data. Participants were randomly selected faculty from 24 US medical schools, oversampling for generalists, underrepresented minorities, and senior women. The primary outcomes were (1) promotion to full professor and (2) productivity, as indicated by mean number of peer-reviewed publications, and federal grant support in the prior 2 years. When comparing generalists with medical specialists, surgical specialists, and basic scientists on these outcomes, we adjusted for gender, race/ethnicity, effort distribution, parental and marital status, retention in academic career, and years in academia. When modeling promotion to full professor, we also adjusted for publications. In the intervening 17 years, generalists were least likely to have become full professors (53%) compared with medical specialists (67%), surgeons (66%), and basic scientists (78%, p advancement appears to be related to their lower rate of publication.

  16. Integrating Studies on Plant-Pollinator and Plant-Herbivore Interactions

    NARCIS (Netherlands)

    Lucas-Barbosa, Dani

    2016-01-01

    Research on herbivore-induced plant defence and research on pollination ecology have had a long history of separation. Plant reproduction of most angiosperm species is mediated by pollinators, and the effects of herbivore-induced plant defences on pollinator behaviour have been largely neglected.

  17. A constructivist grounded theory of generalist health professionals and their mental health work.

    Science.gov (United States)

    Brunero, Scott; Ramjan, Lucie M; Salamonson, Yenna; Nicholls, Daniel

    2018-05-30

    Generalist health professionals, often without formal mental health training, provide treatment and care to people with serious mental illness who present with physical health problems in general hospital settings. This article will present findings from a constructivist grounded theory study of the work delivered by generalist health staff to consumers with mental illness on the general medical/surgical wards of two metropolitan hospitals in Sydney, Australia. The results analysed included three participant observations, two focus groups, and 21 interviews and hospital policy and protocol documents. A substantive theory of mental health work in general hospital settings is illustrated which conceptualizes the following categories: (i) the experience: conflicting realities and ideals; (ii) The Context: facilitating social distancing; and (iii) the social processes: invisibility affecting confidence. The categories are understood through the theoretical lens of symbolic interactionism with the theory providing insights into how the generalist health professionals understand their sense of self or identity. © 2018 Australian College of Mental Health Nurses Inc.

  18. Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources.

    Science.gov (United States)

    Tootell, Jesse S; Steele, Mark A

    2016-05-01

    Herbivore distribution can impact community structure and ecosystem function. On coral reefs, herbivores are thought to play an important role in promoting coral dominance, but how they are distributed relative to algae is not well known. Here, we evaluated whether the distribution, behavior, and condition of herbivorous fishes correlated with algal resource availability at six sites in the back reef environment of Moorea, French Polynesia. Specifically, we tested the hypotheses that increased algal turf availability would coincide with (1) increased biomass, (2) altered foraging behavior, and (3) increased energy reserves of herbivorous fishes. Fish biomass and algal cover were visually estimated along underwater transects; behavior of herbivorous fishes was quantified by observations of focal individuals; fish were collected to assess their condition; and algal turf production rates were measured on standardized tiles. The best predictor of herbivorous fish biomass was algal turf production, with fish biomass increasing with algal production. Biomass of herbivorous fishes was also negatively related to sea urchin density, suggesting competition for limited resources. Regression models including both algal turf production and urchin density explained 94 % of the variation in herbivorous fish biomass among sites spread over ~20 km. Behavioral observations of the parrotfish Chlorurus sordidus revealed that foraging area increased as algal turf cover decreased. Additionally, energy reserves increased with algal turf production, but declined with herbivorous fish density, implying that algal turf is a limited resource for this species. Our findings support the hypothesis that herbivorous fishes can spatially track algal resources on coral reefs.

  19. Will generalist physician supply meet demands of an increasing and aging population?

    Science.gov (United States)

    Colwill, Jack M; Cultice, James M; Kruse, Robin L

    2008-01-01

    We predict that population growth and aging will increase family physicians' and general internists' workloads by 29 percent between 2005 and 2025. We expect a 13 percent increased workload for care of children by pediatricians and family physicians. However, the supply of generalists for adult care, adjusted for age and sex, will increase 7 percent, or only 2 percent if the number of graduates continues to decline through 2008. We expect deficits of 35,000-44,000 adult care generalists, although the supply for care of children should be adequate. These forces threaten the nation's foundation of primary care for adults.

  20. Are exotic herbivores better competitors? A meta-analysis.

    Science.gov (United States)

    Radville, Laura; Gonda-King, Liahna; Gómez, Sara; Kaplan, Ian; Preisser, Evan L

    2014-01-01

    Competition plays an important role in structuring the community dynamics of phytophagous insects. As the number and impact of biological invasions increase, it has become increasingly important to determine whether competitive differences exist between native and exotic insects. We conducted a meta-analysis to test the hypothesis that native/ exotic status affects the outcome of herbivore competition. Specifically, we used data from 160 published studies to assess plant-mediated competition in phytophagous insects. For each pair of competing herbivores, we determined the native range and coevolutionary history of each herbivore and host plant. Plant-mediated competition occurred frequently, but neither native nor exotic insects were consistently better competitors. Spatial separation reduced competition in native insects but showed little effect on exotics. Temporal separation negatively impacted native insects but did not affect competition in exotics. Insects that coevolved with their host plant were more affected by interspecific competition than herbivores that lacked a coevolutionary history. Insects that have not coevolved with their host plant may be at a competitive advantage if they overcome plant defenses. As native/exotic status does not consistently predict outcomes of competitive interactions, plant-insect coevolutionary history should be considered in studies of competition.

  1. Interactions among predators and plant specificity protect herbivores from top predators.

    Science.gov (United States)

    Bosc, Christopher; Pauw, Anton; Roets, Francois; Hui, Cang

    2018-05-04

    The worldwide loss of top predators from natural and agricultural systems has heightened the need to understand how important they are in controlling herbivore abundance. The effect of top predators on herbivore species is likely to depend on 1) the importance of the consumption of intermediate predators by top predators (intra-guild predation; IGP), but also on 2) plant specificity by herbivores, because specialists may defend themselves better (enemy-free space; EFS). Insectivorous birds, as top predators, are generally known to effectively control herbivorous insects, despite also consuming intermediate predators such as spiders, but how this effect varies among herbivore species in relation to the cascading effects of IGP and EFS is not known. To explore this, we excluded birds from natural fynbos vegetation in South Africa using large netted cages and recorded changes in abundance relative to control plots for 199 plant-dwelling intermediate predator and 341 herbivore morpho-species that varied in their estimated plant specificity. We found a strong negative effect of birds on the total abundance of all intermediate predators, with especially clear effects on spiders (strong IGP). In contrast with previous studies, which document a negative effect of birds on herbivores, we found an overall neutral effect of birds on herbivore abundance, but the effect varied among species: some species were negatively affected by birds, suggesting that they were mainly consumed by birds, whereas others, likely released from spiders by IGP, were positively affected. Some species were also effectively neutrally affected by birds. These tended to be more specialized to plants compared to the other species, which may imply that some plant specialists benefited from protection provided by EFS from both birds and spiders. These results suggest that the response of herbivore species to top predators may depend on cascading effects of interactions among predators and on their degree

  2. Augmenting Sulfur Metabolism and Herbivore Defense in Arabidopsis by Bacterial Volatile Signaling

    Directory of Open Access Journals (Sweden)

    Mina eAziz

    2016-04-01

    Full Text Available Sulfur is an element necessary for the life cycle of higher plants. Its assimilation and reduction into essential biomolecules are pivotal factors determining a plant’s growth and vigor as well as resistance to environmental stress. While certain soil microbes can enhance ion solubility via chelating agents or oxidation, microbial regulation of plant-sulfur assimilation has not been reported. With an increasing understanding that soil microbes can activate growth and stress tolerance in plants via chemical signaling, the question arises as to whether such beneficial bacteria also regulate sulfur assimilation. Here we report a previously unidentified mechanism by which the growth-promoting rhizobacterium Bacillus amyloliquefaciens (GB03 transcriptionally activates genes responsible for sulfur assimilation, increasing sulfur uptake and accumulation in Arabidopsis. Transcripts encoding for sulfur-rich aliphatic and indolic glucosinolates are also GB03 induced. As a result, GB03-exposed plants with elevated glucosinolates exhibit greater protection against the generalist herbivore, Spodoptera exigua (beet armyworm. In contrast, a previously-characterized glucosinolate mutant compromised in the production of both aliphatic and indolic glucosinolates is also compromised in terms of GB03-induced protection against insect herbivory. As with in vitro studies, soil-grown plants show enhanced glucosinolate accumulation and protection against beet armyworm feeding with GB03 exposure. These results demonstrate the potential of microbes to enhance plant sulfur assimilation and emphasize the sophisticated integration of microbial signaling in plant defense.

  3. Large herbivores maintain termite-caused differences in herbaceous species diversity patterns.

    Science.gov (United States)

    Okullo, Paul; Moe, Stein R

    2012-09-01

    Termites and large herbivores affect African savanna plant communities. Both functional groups are also important for nutrient redistribution across the landscape. We conducted an experiment to study how termites and large herbivores, alone and in combination, affect herbaceous species diversity patterns in an African savanna. Herbaceous vegetation on large vegetated Macrotermes mounds (with and without large herbivores) and on adjacent savanna areas (with and without large herbivores) was monitored over three years in Lake Mburo National Park, Uganda. We found substantial differences in species richness, alpha diversity, evenness, and stability between termite mound herbaceous vegetation and adjacent savanna vegetation. Within months of fencing, levels of species richness, evenness, and stability were no longer significantly different between savanna and mounds. However, fencing reduced the cumulative number of species, particularly for forbs, of which 48% of the species were lost. Fencing increased the beta diversity (dissimilarity among plots) on the resource-poor (in terms of both nutrients and soil moisture) savanna areas, while it did not significantly affect beta diversity on the resource-rich termite mounds. While termites cause substantial heterogeneity in savanna vegetation, large herbivores further amplify these differences by reducing beta diversity on the savanna areas. Large herbivores are, however, responsible for the maintenance of a large number of forbs at the landscape level. These findings suggest that the mechanisms underlying the effects of termites and large herbivores on savanna plant communities scale up to shape community structure and dynamics at a landscape level.

  4. High-Arctic Plant-Herbivore Interactions under Climate Influence

    DEFF Research Database (Denmark)

    Berg, Thomas B.; Schmidt, Niels M.; Høye, Toke Thomas

    This chapter focuses on a 10-year data series from Zackenberg on the trophic interactions between two characteristic arctic plant species, arctic willow Salix arctica and mountain avens Dryas octopetala, and three herbivore species covering the very scale of size present at Zackenberg, namely......, the moth Sympistis zetterstedtii, the collared lemming Dicrostonyx groenlandicus and the musk ox Ovibos moschatus. Data from Zackenberg show that timing of snowmelt, the length of the growing season and summer temperature are the basic variables that determine the phenology of flowering and primary...... production upon which the herbivores depend, and snow may be the most important climatic factor affecting the different trophic levels and the interactions between them. Hence, the spatio-temporal distribution of snow, as well as thawing events during winter, may have considerable effects on the herbivores...

  5. Chemical and behavioral integration of army ant-associated rove beetles - a comparison between specialists and generalists.

    Science.gov (United States)

    von Beeren, Christoph; Brückner, Adrian; Maruyama, Munetoshi; Burke, Griffin; Wieschollek, Jana; Kronauer, Daniel J C

    2018-01-01

    Host-symbiont interactions are embedded in ecological communities and range from unspecific to highly specific relationships. Army ants and their arthropod guests represent a fascinating example of species-rich host-symbiont associations where host specificity ranges across the entire generalist - specialist continuum. In the present study, we compared the behavioral and chemical integration mechanisms of two extremes of the generalist - specialist continuum: generalist ant-predators in the genus Tetradonia (Staphylinidae: Aleocharinae: Athetini), and specialist ant-mimics in the genera Ecitomorpha and Ecitophya (Staphylinidae: Aleocharinae: Ecitocharini). Similar to a previous study of Tetradonia beetles, we combined DNA barcoding with morphological studies to define species boundaries in ant-mimicking beetles. This approach found four ant-mimicking species at our study site at La Selva Biological Station in Costa Rica. Community sampling of Eciton army ant parasites revealed that ant-mimicking beetles were perfect host specialists, each beetle species being associated with a single Eciton species. These specialists were seamlessly integrated into the host colony, while generalists avoided physical contact to host ants in behavioral assays. Analysis of the ants' nestmate recognition cues, i.e. cuticular hydrocarbons (CHCs), showed close similarity in CHC composition and CHC concentration between specialists and Eciton burchellii foreli host ants. On the contrary, the chemical profiles of generalists matched host profiles less well, indicating that high accuracy in chemical host resemblance is only accomplished by socially integrated species. Considering the interplay between behavior, morphology, and cuticular chemistry, specialists but not generalists have cracked the ants' social code with respect to various sensory modalities. Our results support the long-standing idea that the evolution of host-specialization in parasites is a trade-off between the range of

  6. Overcompensation of herbivore reproduction through hyper-suppression of plant defenses in response to competition.

    Science.gov (United States)

    Schimmel, Bernardus C J; Ataide, Livia M S; Chafi, Rachid; Villarroel, Carlos A; Alba, Juan M; Schuurink, Robert C; Kant, Merijn R

    2017-06-01

    Spider mites are destructive arthropod pests on many crops. The generalist herbivorous mite Tetranychus urticae induces defenses in tomato (Solanum lycopersicum) and this constrains its fitness. By contrast, the Solanaceae-specialist Tetranychus evansi maintains a high reproductive performance by suppressing tomato defenses. Tetranychus evansi outcompetes T. urticae when infesting the same plant, but it is unknown whether this is facilitated by the defenses of the plant. We assessed the extent to which a secondary infestation by a competitor affects local plant defense responses (phytohormones and defense genes), mite gene expression and mite performance. We observed that T. evansi switches to hyper-suppression of defenses after its tomato host is also invaded by its natural competitor T. urticae. Jasmonate (JA) and salicylate (SA) defenses were suppressed more strongly, albeit only locally at the feeding site of T. evansi, upon introduction of T. urticae to the infested leaflet. The hyper-suppression of defenses coincided with increased expression of T. evansi genes coding for salivary defense-suppressing effector proteins and was paralleled by an increased reproductive performance. Together, these observations suggest that T. evansi overcompensates its reproduction through hyper-suppression of plant defenses in response to nearby competitors. We hypothesize that the competitor-induced overcompensation promotes competitive population growth of T. evansi on tomato. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  7. Predators induce interspecific herbivore competition for food in refuge space

    NARCIS (Netherlands)

    Pallini, A.; Janssen, A.; Sabelis, M.W.

    1998-01-01

    Resource competition among herbivorous arthropods has long been viewed as unimportant because herbivore populations are controlled by predators. Although recently resurrected as an organizing force in arthropod communities on plants, there is still general agreement that resource competition among

  8. Distributional congruence of mammalian herbivores in the Trans-Himalayan Mountains

    NARCIS (Netherlands)

    Namgail, T.; Wieren, van S.E.; Prins, H.H.T.

    2013-01-01

    Large-scale distribution and diversity patterns of mammalian herbivores, especially less charismatic species in alpine environments remain little understood. We studied distributional congruence of mammalian herbivores in the Trans-Himalayan region of Ladakh to see if the distributions of less

  9. Plant genotypes affect aboveground and belowground herbivore interactions by changing chemical defense.

    Science.gov (United States)

    Li, Xiaoqiong; Guo, Wenfeng; Siemann, Evan; Wen, Yuanguang; Huang, Wei; Ding, Jianqing

    2016-12-01

    Spatially separated aboveground (AG) and belowground (BG) herbivores are closely linked through shared host plants, and both patterns of AG-BG interactions and plant responses may vary among plant genotypes. We subjected invasive (USA) and native (China) genotypes of tallow tree (Triadica sebifera) to herbivory by the AG specialist leaf-rolling weevil Heterapoderopsis bicallosicollis and/or the root-feeding larvae of flea beetle Bikasha collaris. We measured leaf damage and leaves rolled by weevils, quantified beetle survival, and analyzed flavonoid and tannin concentrations in leaves and roots. AG and BG herbivores formed negative feedbacks on both native and invasive genotypes. Leaf damage by weevils and the number of beetle larvae emerging as adults were higher on invasive genotypes. Beetles reduced weevil damage and weevils reduced beetle larval emergence more strongly for invasive genotypes. Invasive genotypes had lower leaf and root tannins than native genotypes. BG beetles decreased leaf tannins of native genotypes but increased root tannins of invasive genotypes. AG herbivory increased root flavonoids of invasive genotypes while BG herbivory decreased leaf flavonoids. Invasive genotypes had lower AG and BG herbivore resistance, and negative AG-BG herbivore feedbacks were much stronger for invasive genotypes. Lower tannin concentrations explained overall better AG and BG herbivore performances on invasive genotypes. However, changes in tannins and flavonoids affected AG and BG herbivores differently. These results suggest that divergent selection on chemical production in invasive plants may be critical in regulating herbivore performances and novel AG and BG herbivore communities in new environments.

  10. Assessing the herbivore role of the sea-urchin Echinometra viridis: Keys to determine the structure of communities in disturbed coral reefs.

    Science.gov (United States)

    Sangil, Carlos; Guzman, Hector M

    2016-09-01

    Echinometra viridis previously was considered a cryptic species unable to control the development and growth of macroalgae on coral reefs. Its role as a herbivore was seen as minor compared to other grazers present on the reef. However, the present disturbed state of some reefs has highlighted the role played by this sea-urchin. Combining field data with experiments on the Caribbean coast of Panama, we demonstrate that the current community organization on disturbed coral reefs in the Mesoamerican Caribbean is largely due to the action of E. viridis. It is the most abundant sea-urchin species, together with two others (Diadema antillarum and Echinometra lucunter). Field data also indicate that the relationship between its density and the abundance of macroalgae is stronger and it is more negative in impact than those of the other two. However, the niche this urchin exploits most efficiently is confined to leeward reefs with low levels of sedimentation. Outside these habitats, their populations are not decisive in controlling macroalgal growth. Grazing experiments showed that E. viridis consumes more fresh macroalgae per day and per weight of sea-urchin, and is a more effective grazer than D. antillarum or E. lucunter. E. viridis showed food preferences for early-successional turf macroalgae (Acanthophora spicifera), avoiding the less palatable late-successional and fleshy macroalgae (Lobophora variegata, Halimeda opuntia). However, it becomes a generalist herbivore feeding on all varieties of macroalgae when resources are scarce. H. opuntia is the macroalga that most resists E. viridis activity, which may explain its wide distribution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Experimental evidence for herbivore limitation of the treeline.

    Science.gov (United States)

    Speed, James D M; Austrheim, Gunnar; Hester, Alison J; Mysterud, Atle

    2010-11-01

    The treeline ecotone divides forest from open alpine or arctic vegetation states. Treelines are generally perceived to be temperature limited. The role of herbivores in limiting the treeline is more controversial, as experimental evidence from relevant large scales is lacking. Here we quantify the impact of different experimentally controlled herbivore densities on the recruitment and survival of birch Betula pubescens tortuosa along an altitudinal gradient in the mountains of southern Norway. After eight years of summer grazing in large-scale enclosures at densities of 0, 25, and 80 sheep/km2, birch recruited within the whole altitudinal range of ungrazed enclosures, but recruitment was rarer in enclosures with low-density sheep and was largely limited to within the treeline in enclosures with high-density sheep. In contrast, the distribution of saplings (birch older than the experiment) did not differ between grazing treatments, suggesting that grazing sheep primarily limit the establishment of new tree recruits rather than decrease the survival of existing individuals. This study provides direct experimental evidence that herbivores can limit the treeline below its potential at the landscape scale and even at low herbivore densities in this climatic zone. Land use changes should thus be considered in addition to climatic changes as potential drivers of ecotone shifts.

  12. Copper Contamination Impairs Herbivore Initiation of Seaweed Inducible Defenses and Decreases Their Effectiveness.

    Directory of Open Access Journals (Sweden)

    Alexandria M Warneke

    Full Text Available Seaweed-herbivore interactions are often mediated by environmental conditions, yet the roles of emerging anthropogenic stressors on these interactions are poorly understood. For example, chemical contaminants have unknown consequences on seaweed inducible resistance and herbivore response to these defenses despite known deleterious effects of contaminants on animal inducible defenses. Here, we investigated the effect of copper contamination on the interactions between a snail herbivore and a brown seaweed that displays inducible resistance to grazing. We examined seaweed inducible resistance and its effectiveness for organisms exposed to copper at two time points, either during induction or after herbivores had already induced seaweed defenses. Under ambient conditions, non-grazed tissues were more palatable than grazed tissues. However, copper additions negated the preference for non-grazed tissues regardless of the timing of copper exposure, suggesting that copper decreased both how herbivores initiated these inducible defenses and their subsequent effectiveness. Copper decreased stimulation of defenses, at least in part, by suppressing snail grazing pressure-the cue that turns inducible defenses on. Copper decreased effectiveness of defenses by preventing snails from preferentially consuming non-grazed seaweed. Thus, contaminants can potentially stress communities by changing seaweed-herbivore interactions mediated via inducible defenses. Given the ubiquity of seaweed inducible resistance and their potential influence on herbivores, we hypothesize that copper contamination may change the impact of these resistant traits on herbivores.

  13. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales

    NARCIS (Netherlands)

    Aartsma, Y.S.Y.; Bianchi, F.J.J.A.; Werf, van der W.; Poelman, E.H.; Dicke, M.

    2017-01-01

    Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger

  14. Interactions between aboveground herbivores and the mycorrhizal mutualists of plants.

    Science.gov (United States)

    Gehring, C A; Whitham, T G

    1994-07-01

    Plant growth, reproduction and survival can be affected both by mycorrhizal fungi and aboveground herbivores, but few studies have examined the interactive effects of these factors on plants. Most of the available data suggest that severe herbivory reduces root colonization by vesicular-arbuscular and ectomycorrhizal fungi. However, the reverse interaction has also been documented - mycorrhizal fungi deter herbivores and interact with fungal endophytes to influence herbivory. Although consistent patterns and mechanistic explanations are yet to emerge, it is likely that aboveground herbivore-mycorrhiza interactions have important implications for plant populations and communities. Copyright © 1994. Published by Elsevier Ltd.

  15. Dynamics of a intraguild predation model with generalist or specialist predator.

    Science.gov (United States)

    Kang, Yun; Wedekin, Lauren

    2013-11-01

    Intraguild predation (IGP) is a combination of competition and predation which is the most basic system in food webs that contains three species where two species that are involved in a predator/prey relationship are also competing for a shared resource or prey. We formulate two intraguild predation (IGP: resource, IG prey and IG predator) models: one has generalist predator while the other one has specialist predator. Both models have Holling-Type I functional response between resource-IG prey and resource-IG predator; Holling-Type III functional response between IG prey and IG predator. We provide sufficient conditions of the persistence and extinction of all possible scenarios for these two models, which give us a complete picture on their global dynamics. In addition, we show that both IGP models can have multiple interior equilibria under certain parameters range. These analytical results indicate that IGP model with generalist predator has "top down" regulation by comparing to IGP model with specialist predator. Our analysis and numerical simulations suggest that: (1) Both IGP models can have multiple attractors with complicated dynamical patterns; (2) Only IGP model with specialist predator can have both boundary attractor and interior attractor, i.e., whether the system has the extinction of one species or the coexistence of three species depending on initial conditions; (3) IGP model with generalist predator is prone to have coexistence of three species.

  16. Indirect effects of domestic and wild herbivores on butterflies in an African savanna.

    Science.gov (United States)

    Wilkerson, Marit L; Roche, Leslie M; Young, Truman P

    2013-10-01

    Indirect interactions driven by livestock and wild herbivores are increasingly recognized as important aspects of community dynamics in savannas and rangelands. Large ungulate herbivores can both directly and indirectly impact the reproductive structures of plants, which in turn can affect the pollinators of those plants. We examined how wild herbivores and cattle each indirectly affect the abundance of a common pollinator butterfly taxon, Colotis spp., at a set of long-term, large herbivore exclosure plots in a semiarid savanna in central Kenya. We also examined effects of herbivore exclusion on the main food plant of Colotis spp., which was also the most common flowering species in our plots: the shrub Cadaba farinosa. The study was conducted in four types of experimental plots: cattle-only, wildlife-only, cattle and wildlife (all large herbivores), and no large herbivores. Across all plots, Colotis spp. abundances were positively correlated with both Cadaba flower numbers (adult food resources) and total Cadaba canopy area (larval food resources). Structural equation modeling (SEM) revealed that floral resources drove the abundance of Colotis butterflies. Excluding browsing wildlife increased the abundances of both Cadaba flowers and Colotis butterflies. However, flower numbers and Colotis spp. abundances were greater in plots with cattle herbivory than in plots that excluded all large herbivores. Our results suggest that wild browsing herbivores can suppress pollinator species whereas well-managed cattle use may benefit important pollinators and the plants that depend on them. This study documents a novel set of ecological interactions that demonstrate how both conservation and livelihood goals can be met in a working landscape with abundant wildlife and livestock.

  17. Implementing Cooperative Learning in Australian Primary Schools: Generalist Teachers' Perspectives

    Science.gov (United States)

    Hennessey, Angela; Dionigi, Rylee A.

    2013-01-01

    To implement cooperative learning successfully in practice, teachers require knowledge of cooperative learning, its features and terms, and how it functions in classrooms. This qualitative study examined 12 Australian generalist primary teachers', understandings of cooperative learning and perceived factors affecting its implementation. Using…

  18. Variação de terpenos em Hyptis suaveolens e seu papel na defesa contra herbívoros The role of terpene variation in Hyptis suaveolens in the defense against herbivores

    Directory of Open Access Journals (Sweden)

    Rachel Benetti Queiroz-Voltan

    1995-01-01

    in the chemistry of monoterpenes in the development of herbivores. Populations were more susceptible to attack by herbivores in the period preceding flowering. Heavy herbivore damage was not detected during this period, in spite of higher herbivore densities. The results suggest that the variation in chemical composition probably has an effect on the development of generalist herbivores. On the other hand, Pyrausta insignatalis Guenée (Lep.-Pyralidae-Pyraustinae is probably well adapted to the plant and appears to be resistent to the terpenes. Differences in chemistry and differences in protection against herbivores were not observed between populations in sunny and shady sites. The results support an important role for genetic variability in populations in protection against herbivory and inhibition of specialization.

  19. Herbivores and nutrients control grassland plant diversity via light limitation

    Science.gov (United States)

    Borer, Elizabeth T.; Seabloom, Eric W.; Gruner, Daniel S.; Harpole, W. Stanley; Hillebrand, Helmut; Lind, Eric M.; Alder, Peter B.; Alberti, Juan; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S.; Brudvig, Lars A.; Buckley, Yvonne M.; Cadotte, Marc; Chu, Cheng-Jin; Cleland, Elsa E.; Crawley, Michael J.; Daleo, Pedro; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W.; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Leakey, Andrew D.B.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Mortensen, Brent; O'Halloran, Lydia R.; Orrock, John L.; Pascual, Jesús; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Williams, Ryan J.; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

    2014-01-01

    Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

  20. Feeding height stratification among the herbivorous dinosaurs from the Dinosaur Park Formation (upper Campanian) of Alberta, Canada

    Science.gov (United States)

    2013-01-01

    Background Herbivore coexistence on the Late Cretaceous island continent of Laramidia has been a topic of great interest, stemming from the paradoxically high diversity and biomass of these animals in relation to the relatively small landmass available to them. Various hypotheses have been advanced to account for these facts, of which niche partitioning is among the most frequently invoked. However, despite its wide acceptance, this hypothesis has not been rigorously tested. This study uses the fossil assemblage from the Dinosaur Park Formation of Alberta as a model to investigate whether niche partitioning facilitated herbivorous dinosaur coexistence on Laramidia. Specifically, the question of feeding height stratification is examined in light of the role it plays in facilitating modern ungulate coexistence. Results Most herbivorous dinosaur species from the Dinosaur Park Formation were restricted to feeding no higher than approximately 1 m above the ground. There is minimal evidence for feeding height partitioning at this level, with ceratopsids capable of feeding slightly higher than ankylosaurs, but the ecological significance of this is ambiguous. Hadrosaurids were uniquely capable of feeding up to 2 m quadrupedally, or up to 5 m bipedally. There is no evidence for either feeding height stratification within any of these clades, or for change in these ecological relationships through the approximately 1.5 Ma record of the Dinosaur Park Formation. Conclusions Although we cannot reject the possibility, we find no good evidence that feeding height stratification, as revealed by reconstructed maximum feeding heights, played an important role in facilitating niche partitioning among the herbivorous dinosaurs of Laramidia. Most browsing pressure was concentrated in the herb layer, although hadrosaurids were capable of reaching shrubs and low-growing trees that were out of reach from ceratopsids, ankylosaurs, and other small herbivores, effectively dividing the

  1. Feeding height stratification among the herbivorous dinosaurs from the Dinosaur Park Formation (upper Campanian) of Alberta, Canada.

    Science.gov (United States)

    Mallon, Jordan C; Evans, David C; Ryan, Michael J; Anderson, Jason S

    2013-04-04

    Herbivore coexistence on the Late Cretaceous island continent of Laramidia has been a topic of great interest, stemming from the paradoxically high diversity and biomass of these animals in relation to the relatively small landmass available to them. Various hypotheses have been advanced to account for these facts, of which niche partitioning is among the most frequently invoked. However, despite its wide acceptance, this hypothesis has not been rigorously tested. This study uses the fossil assemblage from the Dinosaur Park Formation of Alberta as a model to investigate whether niche partitioning facilitated herbivorous dinosaur coexistence on Laramidia. Specifically, the question of feeding height stratification is examined in light of the role it plays in facilitating modern ungulate coexistence. Most herbivorous dinosaur species from the Dinosaur Park Formation were restricted to feeding no higher than approximately 1 m above the ground. There is minimal evidence for feeding height partitioning at this level, with ceratopsids capable of feeding slightly higher than ankylosaurs, but the ecological significance of this is ambiguous. Hadrosaurids were uniquely capable of feeding up to 2 m quadrupedally, or up to 5 m bipedally. There is no evidence for either feeding height stratification within any of these clades, or for change in these ecological relationships through the approximately 1.5 Ma record of the Dinosaur Park Formation. Although we cannot reject the possibility, we find no good evidence that feeding height stratification, as revealed by reconstructed maximum feeding heights, played an important role in facilitating niche partitioning among the herbivorous dinosaurs of Laramidia. Most browsing pressure was concentrated in the herb layer, although hadrosaurids were capable of reaching shrubs and low-growing trees that were out of reach from ceratopsids, ankylosaurs, and other small herbivores, effectively dividing the herbivores in terms of relative

  2. Habitat Heterogeneity Variably Influences Habitat Selection by Wild Herbivores in a Semi-Arid Tropical Savanna Ecosystem.

    Directory of Open Access Journals (Sweden)

    Victor K Muposhi

    Full Text Available An understanding of the habitat selection patterns by wild herbivores is critical for adaptive management, particularly towards ecosystem management and wildlife conservation in semi arid savanna ecosystems. We tested the following predictions: (i surface water availability, habitat quality and human presence have a strong influence on the spatial distribution of wild herbivores in the dry season, (ii habitat suitability for large herbivores would be higher compared to medium-sized herbivores in the dry season, and (iii spatial extent of suitable habitats for wild herbivores will be different between years, i.e., 2006 and 2010, in Matetsi Safari Area, Zimbabwe. MaxEnt modeling was done to determine the habitat suitability of large herbivores and medium-sized herbivores. MaxEnt modeling of habitat suitability for large herbivores using the environmental variables was successful for the selected species in 2006 and 2010, except for elephant (Loxodonta africana for the year 2010. Overall, large herbivores probability of occurrence was mostly influenced by distance from rivers. Distance from roads influenced much of the variability in the probability of occurrence of medium-sized herbivores. The overall predicted area for large and medium-sized herbivores was not different. Large herbivores may not necessarily utilize larger habitat patches over medium-sized herbivores due to the habitat homogenizing effect of water provisioning. Effect of surface water availability, proximity to riverine ecosystems and roads on habitat suitability of large and medium-sized herbivores in the dry season was highly variable thus could change from one year to another. We recommend adaptive management initiatives aimed at ensuring dynamic water supply in protected areas through temporal closure and or opening of water points to promote heterogeneity of wildlife habitats.

  3. A test of genotypic variation in specificity of herbivore-induced responses in Solidago altissima L. (Asteraceae)

    NARCIS (Netherlands)

    Uesugi, A.; Poelman, E.H.; Kessler, A.

    2013-01-01

    Plant-induced responses to multiple herbivores can mediate ecological interactions among herbivore species, thereby influencing herbivore community composition in nature. Several studies have indicated high specificity of induced responses to different herbivore species. In addition, there may be

  4. Genetics-based interactions among plants, pathogens, and herbivores define arthropod community structure.

    Science.gov (United States)

    Busby, Posy E; Lamit, Louis J; Keith, Arthur R; Newcombe, George; Gehring, Catherine A; Whitham, Thomas G; Dirzo, Rodolfo

    2015-07-01

    Plant resistance to pathogens or insect herbivores is common, but its potential for indirectly influencing plant-associated communities is poorly known. Here, we test whether pathogens' indirect effects on arthropod communities and herbivory depend on plant resistance to pathogens and/or herbivores, and address the overarching interacting foundation species hypothesis that genetics-based interactions among a few highly interactive species can structure a much larger community. In a manipulative field experiment using replicated genotypes of two Populus species and their interspecific hybrids, we found that genetic variation in plant resistance to both pathogens and insect herbivores modulated the strength of pathogens' indirect effects on arthropod communities and insect herbivory. First, due in part to the pathogens' differential impacts on leaf biomass among the two Populus species and the hybrids, the pathogen most strongly impacted arthropod community composition, richness, and abundance on the pathogen-susceptible tree species. Second, we found similar patterns comparing pathogen-susceptible and pathogen-resistant genotypes within species. Third, within a plant species, pathogens caused a fivefold greater reduction in herbivory on insect-herbivore-susceptible plant genotypes than on herbivore-resistant genotypes, demonstrating that the pathogen-herbivore interaction is genotype dependent. We conclude that interactions among plants, pathogens, and herbivores can structure multitrophic communities, supporting the interacting foundation species hypothesis. Because these interactions are genetically based, evolutionary changes in genetic resistance could result in ecological changes in associated communities, which may in turn feed back to affect plant fitness.

  5. The functional response of a generalist predator.

    Directory of Open Access Journals (Sweden)

    Sophie Smout

    Full Text Available BACKGROUND: Predators can have profound impacts on the dynamics of their prey that depend on how predator consumption is affected by prey density (the predator's functional response. Consumption by a generalist predator is expected to depend on the densities of all its major prey species (its multispecies functional response, or MSFR, but most studies of generalists have focussed on their functional response to only one prey species. METHODOLOGY AND PRINCIPAL FINDINGS: Using Bayesian methods, we fit an MSFR to field data from an avian predator (the hen harrier Circus cyaneus feeding on three different prey species. We use a simple graphical approach to show that ignoring the effects of alternative prey can give a misleading impression of the predator's effect on the prey of interest. For example, in our system, a "predator pit" for one prey species only occurs when the availability of other prey species is low. CONCLUSIONS AND SIGNIFICANCE: The Bayesian approach is effective in fitting the MSFR model to field data. It allows flexibility in modelling over-dispersion, incorporates additional biological information into the parameter priors, and generates estimates of uncertainty in the model's predictions. These features of robustness and data efficiency make our approach ideal for the study of long-lived predators, for which data may be sparse and management/conservation priorities pressing.

  6. Do herbivores eavesdrop on ant chemical communication to avoid predation?

    Directory of Open Access Journals (Sweden)

    David J Gonthier

    Full Text Available Strong effects of predator chemical cues on prey are common in aquatic and marine ecosystems, but are thought to be rare in terrestrial systems and specifically for arthropods. For ants, herbivores are hypothesized to eavesdrop on ant chemical communication and thereby avoid predation or confrontation. Here I tested the effect of ant chemical cues on herbivore choice and herbivory. Using Margaridisa sp. flea beetles and leaves from the host tree (Conostegia xalapensis, I performed paired-leaf choice feeding experiments. Coating leaves with crushed ant liquids (Azteca instabilis, exposing leaves to ant patrolling prior to choice tests (A. instabilis and Camponotus textor and comparing leaves from trees with and without A. instabilis nests resulted in more herbivores and herbivory on control (no ant-treatment relative to ant-treatment leaves. In contrast to A. instabilis and C. textor, leaves previously patrolled by Solenopsis geminata had no difference in beetle number and damage compared to control leaves. Altering the time A. instabilis patrolled treatment leaves prior to choice tests (0-, 5-, 30-, 90-, 180-min. revealed treatment effects were only statistically significant after 90- and 180-min. of prior leaf exposure. This study suggests, for two ecologically important and taxonomically diverse genera (Azteca and Camponotus, ant chemical cues have important effects on herbivores and that these effects may be widespread across the ant family. It suggests that the effect of chemical cues on herbivores may only appear after substantial previous ant activity has occurred on plant tissues. Furthermore, it supports the hypothesis that herbivores use ant chemical communication to avoid predation or confrontation with ants.

  7. Learning abilities and disabilities: generalist genes in early adolescence.

    Science.gov (United States)

    Davis, Oliver S P; Haworth, Claire M A; Plomin, Robert

    2009-01-01

    The new view of cognitive neuropsychology that considers not just case studies of rare severe disorders but also common disorders, as well as normal variation and quantitative traits, is more amenable to recent advances in molecular genetics, such as genome-wide association studies, and advances in quantitative genetics, such as multivariate genetic analysis. A surprising finding emerging from multivariate quantitative genetic studies across diverse learning abilities is that most genetic influences are shared: they are "generalist", rather than "specialist". We exploited widespread access to inexpensive and fast Internet connections in the United Kingdom to assess over 5000 pairs of 12-year-old twins from the Twins Early Development Study (TEDS) on four distinct batteries: reading, mathematics, general cognitive ability (g) and, for the first time, language. Genetic correlations remain high among all of the measured abilities, with language as highly correlated genetically with g as reading and mathematics. Despite developmental upheaval, generalist genes remain important into early adolescence, suggesting optimal strategies for molecular genetic studies seeking to identify the genes of small effect that influence learning abilities and disabilities.

  8. Interactive effects of herbivory and competition intensity determine invasive plant performance.

    Science.gov (United States)

    Huang, Wei; Carrillo, Juli; Ding, Jianqing; Siemann, Evan

    2012-10-01

    Herbivory can reduce plant fitness, and its effects can be increased by competition. Though numerous studies have examined the joint effects of herbivores and competitors on plant performance, these interactive effects are seldom considered in the context of plant invasions. Here, we examined variation in plant performance within a competitive environment in response to both specialist and generalist herbivores using Chinese tallow as a model species. We combined tallow plants from native and invasive populations to form all possible pairwise combinations, and designated invasive populations as stronger neighbours and native populations as weaker neighbours. We found that when no herbivory was imposed, invasive populations always had higher total biomass than natives, regardless of their neighbours, which is consistent with our assumption of increased competitive ability. Defoliation by either generalist or specialist herbivores suppressed plant growth but the effects of specialists were generally stronger for invasive populations. Invasive populations had their lowest biomass when fed upon by specialists while simultaneously competing with stronger neighbours. The root/shoot ratios of invasive populations were lower than those of native populations under almost all conditions, and invasive plants were taller than native plants overall, especially when herbivores were present, suggesting that invasive populations may adopt an "aboveground first" strategy to cope with herbivory and competition. These results suggest that release from herbivores, especially specialists, improves an invader's performance and helps to increase its competitive ability. Therefore, increasing interspecific competition intensity by planting a stronger neighbour while simultaneously releasing a specialist herbivore may be an especially effective method of managing invasive plants.

  9. Herbivore-specific, density-dependent induction of plant volatiles: honest or "cry wolf" signals?

    Directory of Open Access Journals (Sweden)

    Kaori Shiojiri

    Full Text Available Plants release volatile chemicals upon attack by herbivorous arthropods. They do so commonly in a dose-dependent manner: the more herbivores, the more volatiles released. The volatiles attract predatory arthropods and the amount determines the probability of predator response. We show that seedlings of a cabbage variety (Brassica oleracea var. capitata, cv Shikidori also show such a response to the density of cabbage white (Pieris rapae larvae and attract more (naive parasitoids (Cotesia glomerata when there are more herbivores on the plant. However, when attacked by diamondback moth (Plutella xylostella larvae, seedlings of the same variety (cv Shikidori release volatiles, the total amount of which is high and constant and thus independent of caterpillar density, and naive parasitoids (Cotesia vestalis of diamondback moth larvae fail to discriminate herbivore-rich from herbivore-poor plants. In contrast, seedlings of another cabbage variety of B. oleracea (var. acephala: kale respond in a dose-dependent manner to the density of diamondback moth larvae and attract more parasitoids when there are more herbivores. Assuming these responses of the cabbage cultivars reflect behaviour of at least some genotypes of wild plants, we provide arguments why the behaviour of kale (B. oleracea var acephala is best interpreted as an honest signaling strategy and that of cabbage cv Shikidori (B. oleracea var capitata as a "cry wolf" signaling strategy, implying a conflict of interest between the plant and the enemies of its herbivores: the plant profits from being visited by the herbivore's enemies, but the latter would be better off by visiting other plants with more herbivores. If so, evolutionary theory on alarm signaling predicts consequences of major interest to students of plant protection, tritrophic systems and communication alike.

  10. Impact of two specialist insect herbivores on reproduction of horse nettle, Solanum carolinense.

    Science.gov (United States)

    Wise, Michael J; Sacchi, Christopher F

    1996-10-01

    The frequency of coevolution as a process of strong mutual interaction between a single plant and herbivore species has been questioned in light of more commonly observed, complex relationships between a plant and a suite of herbivore species. Despite recognition of the possibility of diffuse coevolution, relatively few studies have examined ecological responses of plants to herbivores in complex associations. We studied the impact of two specialist herbivores, the horse nettle beetle, Leptinotarsa juncta, and the eggplant flea beetle, Epitrix fuscula, on reproduction of their host, Solanum carolinense. Our study involved field and controlled-environment experimental tests of the impact on sexual and potential asexual reproduction of attack by individuals of the two herbivore species, individually and in combination. Field tests demonstrated that under normal levels of phytophagous insect attack, horse nettle plants experienced a reduction in fruit production of more than 75% compared with plants from which insects were excluded. In controlled-environment experiments using enclosure-exclosure cages, the horse nettle's two principal herbivores, the flea beetle and the horse nettle beetle, caused decreases in sexual reproduction similar to those observed in the field, and a reduction in potential asexual reproduction, represented by root biomass. Attack by each herbivore reduced the numbers of fruits produced, and root growth, when feeding in isolation. When both species were feeding together, fruit production, but not root growth, was lower than when either beetle species fed alone. Ecological interactions between horse nettle and its two primary herbivores necessary for diffuse coevolution to occur were evident from an overall analysis of the statistical interactions between the two herbivores for combined assessment of fruit and vegetative traits. For either of these traits alone, the interactions necessary to promote diffuse coevolution apparently were lacking.

  11. A conserved pattern in plant-mediated interactions between herbivores

    OpenAIRE

    Lu Jing; Robert Christelle A. M.; Lou Yonggen; Erb Matthias

    2016-01-01

    Abstract Plant?mediated interactions between herbivores are important determinants of community structure and plant performance in natural and agricultural systems. Current research suggests that the outcome of the interactions is determined by herbivore and plant identity, which may result in stochastic patterns that impede adaptive evolution and agricultural exploitation. However, few studies have systemically investigated specificity versus general patterns in a given plant system by varyi...

  12. Multi-factor climate change effects on insect herbivore performance

    DEFF Research Database (Denmark)

    Scherber, Christoph; Gladbach, David J; Stevnbak, Karen

    2013-01-01

    The impact of climate change on herbivorous insects can have far-reaching consequences for ecosystem processes. However, experiments investigating the combined effects of multiple climate change drivers on herbivorous insects are scarce. We independently manipulated three climate change drivers (CO...... suturalis Thomson), an important herbivore on heather, to ambient versus elevated drought, temperature, and CO2 (plus all combinations) for 5 weeks. Larval weight and survival were highest under ambient conditions and decreased significantly with the number of climate change drivers. Weight was lowest under...... the drought treatment, and there was a three-way interaction between time, CO2, and drought. Survival was lowest when drought, warming, and elevated CO2 were combined. Effects of climate change drivers depended on other co-acting factors and were mediated by changes in plant secondary compounds, nitrogen...

  13. The importance of pollinator generalization and abundance for the reproductive success of a generalist plant.

    Directory of Open Access Journals (Sweden)

    María Belén Maldonado

    Full Text Available Previous studies have examined separately how pollinator generalization and abundance influence plant reproductive success, but none so far has evaluated simultaneously the relative importance of these pollinator attributes. Here we evaluated the extent to which pollinator generalization and abundance influence plant reproductive success per visit and at the population level on a generalist plant, Opuntia sulphurea (Cactaceae. We used field experiments and path analysis to evaluate whether the per-visit effect is determined by the pollinator's degree of generalization, and whether the population level effect (pollinator impact is determined by the pollinator's degree of generalization and abundance. Based on the models we tested, we concluded that the per-visit effect of a pollinator on plant reproduction was not determined by the pollinators' degree of generalization, while the population-level impact of a pollinator on plant reproduction was mainly determined by the pollinators' degree of generalization. Thus, generalist pollinators have the greatest species impact on pollination and reproductive success of O. sulphurea. According to our analysis this greatest impact of generalist pollinators may be partly explained by pollinator abundance. However, as abundance does not suffice as an explanation of pollinator impact, we suggest that vagility, need for resource consumption, and energetic efficiency of generalist pollinators may also contribute to determine a pollinator's impact on plant reproduction.

  14. Piper kelleyi, a hotspot of ecological interactions and a new species from Ecuador and Peru.

    Science.gov (United States)

    Tepe, Eric J; Rodríguez-Castañeda, Genoveva; Glassmire, Andrea E; Dyer, Lee A

    2014-01-01

    We describe Piper kelleyi sp. nov., a new species from the eastern Andes of Ecuador and Peru, named in honor of Dr. Walter Almond Kelley. Piper kelleyi is a member of the Macrostachys clade of the genus Piper and supports a rich community of generalist and specialist herbivores, their predators and parasitoids, as well as commensalistic earwigs, and mutualistic ants. This new species was recognized as part of an ecological study of phytochemically mediated relationships between plants, herbivores, predators, and parasitoids. Compared to over 100 other Piper species surveyed, Piper kelleyi supports the largest community of specialist herbivores and parasitoids observed to date.

  15. Herbivore species and density affect vegetation-structure patchiness in salt marshes

    NARCIS (Netherlands)

    Nolte, Stefanie; Esselink, Peter; Smit, Christian; Bakker, Jan P.

    2014-01-01

    The importance of spatial patterns for ecosystem functioning and biodiversity has long been recognized in ecology. Grazing by herbivores is an important mechanism leading to spatial patterns in the vegetation structure. How different herbivore species and their densities affect vegetation-structure

  16. Herbivore benefits from vectoring plant virus through reduction of period of vulnerability to predation

    NARCIS (Netherlands)

    Belliure, B.; Janssen, A.; Sabelis, M.W.

    2008-01-01

    Herbivores can profit from vectoring plant pathogens because the induced defence of plants against pathogens sometimes interferes with the induced defence of plants against herbivores. Plants can also defend themselves indirectly by the action of the natural enemies of the herbivores. It is unknown

  17. Predatory Mite Attraction to Herbivore-induced Plant Odors is not a Consequence of Attraction to Individual Herbivore-induced Plant Volatiles

    Science.gov (United States)

    De Bruijn, Paulien J. A.; Sabelis, Maurice W.

    2008-01-01

    Predatory mites locate herbivorous mites, their prey, by the aid of herbivore-induced plant volatiles (HIPV). These HIPV differ with plant and/or herbivore species, and it is not well understood how predators cope with this variation. We hypothesized that predators are attracted to specific compounds in HIPV, and that they can identify these compounds in odor mixtures not previously experienced. To test this, we assessed the olfactory response of Phytoseiulus persimilis, a predatory mite that preys on the highly polyphagous herbivore Tetranychus urticae. The responses of the predatory mite to a dilution series of each of 30 structurally different compounds were tested. They mites responded to most of these compounds, but usually in an aversive way. Individual HIPV were no more attractive (or less repellent) than out-group compounds, i.e., volatiles not induced in plants fed upon by spider-mites. Only three samples were significantly attractive to the mites: octan-1-ol, not involved in indirect defense, and cis-3-hexen-1-ol and methyl salicylate, which are both induced by herbivory, but not specific for the herbivore that infests the plant. Attraction to individual compounds was low compared to the full HIPV blend from Lima bean. These results indicate that individual HIPV have no a priori meaning to the mites. Hence, there is no reason why they could profit from an ability to identify individual compounds in odor mixtures. Subsequent experiments confirmed that naive predatory mites do not prefer tomato HIPV, which included the attractive compound methyl salicylate, over the odor of an uninfested bean. However, upon associating each of these odors with food over a period of 15 min, both are preferred. The memory to this association wanes within 24 hr. We conclude that P. persimilis possesses a limited ability to identify individual spider mite-induced plant volatiles in odor mixtures. We suggest that predatory mites instead learn to respond to prey

  18. Informed herbivore movement and interplant communication determine the effects of induced resistance in an individual-based model.

    Science.gov (United States)

    Rubin, Ilan N; Ellner, Stephen P; Kessler, André; Morrell, Kimberly A

    2015-09-01

    1. Plant induced resistance to herbivory affects the spatial distribution of herbivores, as well as their performance. In recent years, theories regarding the benefit to plants of induced resistance have shifted from ideas of optimal resource allocation towards a more eclectic set of theories that consider spatial and temporal plant variability and the spatial distribution of herbivores among plants. However, consensus is lacking on whether induced resistance causes increased herbivore aggregation or increased evenness, as both trends have been experimentally documented. 2. We created a spatial individual-based model that can describe many plant-herbivore systems with induced resistance, in order to analyse how different aspects of induced resistance might affect herbivore distribution, and the total damage to a plant population, during a growing season. 3. We analyse the specific effects on herbivore aggregation of informed herbivore movement (preferential movement to less-damaged plants) and of information transfer between plants about herbivore attacks, in order to identify mechanisms driving both aggregation and evenness. We also investigate how the resulting herbivore distributions affect the total damage to plants and aggregation of damage. 4. Even, random and aggregated herbivore distributions can all occur in our model with induced resistance. Highest levels of aggregation occurred in the models with informed herbivore movement, and the most even distributions occurred when the average number of herbivores per plant was low. With constitutive resistance, only random distributions occur. Damage to plants was spatially correlated, unless plants recover very quickly from damage; herbivore spatial autocorrelation was always weak. 5. Our model and results provide a simple explanation for the apparent conflict between experimental results, indicating that both increased aggregation and increased evenness of herbivores can result from induced resistance. We

  19. Distance and sex determine host plant choice by herbivorous beetles.

    Directory of Open Access Journals (Sweden)

    Daniel J Ballhorn

    Full Text Available Plants respond to herbivore damage with the release of volatile organic compounds (VOCs. This indirect defense can cause ecological costs when herbivores themselves use VOCs as cues to localize suitable host plants. Can VOCs reliably indicate food plant quality to herbivores?We determined the choice behavior of herbivorous beetles (Chrysomelidae: Gynandrobrotica guerreroensis and Cerotoma ruficornis when facing lima bean plants (Fabaceae: Phaseolus lunatus with different cyanogenic potential, which is an important constitutive direct defense. Expression of inducible indirect defenses was experimentally manipulated by jasmonic acid treatment at different concentrations. The long-distance responses of male and female beetles to the resulting induced plant volatiles were investigated in olfactometer and free-flight experiments and compared to the short-distance decisions of the same beetles in feeding trials.Female beetles of both species were repelled by VOCs released from all induced plants independent of the level of induction. In contrast, male beetles were repelled by strongly induced plants, showed no significant differences in choice behavior towards moderately induced plants, but responded positively to VOCs released from little induced plants. Thus, beetle sex and plant VOCs had a significant effect on host searching behavior. By contrast, feeding behavior of both sexes was strongly determined by the cyanogenic potential of leaves, although females again responded more sensitively than males. Apparently, VOCs mainly provide information to these beetles that are not directly related to food quality. Being induced by herbivory and involved in indirect plant defense, such VOCs might indicate the presence of competitors and predators to herbivores. We conclude that plant quality as a food source and finding a potentially enemy-free space is more important for female than for male insect herbivores, whereas the presence of a slightly damaged

  20. Elucidating the interaction between light competition and herbivore feeding patterns using functional–structural plant modelling

    Science.gov (United States)

    de Vries, Jorad; Poelman, Erik H; Anten, Niels; Evers, Jochem B

    2018-01-01

    Abstract Background and Aims Plants usually compete with neighbouring plants for resources such as light as well as defend themselves against herbivorous insects. This requires investment of limiting resources, resulting in optimal resource distribution patterns and trade-offs between growth- and defence-related traits. A plant’s competitive success is determined by the spatial distribution of its resources in the canopy. The spatial distribution of herbivory in the canopy in turn differs between herbivore species as the level of herbivore specialization determines their response to the distribution of resources and defences in the canopy. Here, we investigated to what extent competition for light affects plant susceptibility to herbivores with different feeding preferences. Methods To quantify interactions between herbivory and competition, we developed and evaluated a 3-D spatially explicit functional–structural plant model for Brassica nigra that mechanistically simulates competition in a dynamic light environment, and also explicitly models leaf area removal by herbivores with different feeding preferences. With this novel approach, we can quantitatively explore the extent to which herbivore feeding location and light competition interact in their effect on plant performance. Key Results Our results indicate that there is indeed a strong interaction between levels of plant–plant competition and herbivore feeding preference. When plants did not compete, herbivory had relatively small effects irrespective of feeding preference. Conversely, when plants competed, herbivores with a preference for young leaves had a strong negative effect on the competitiveness and subsequent performance of the plant, whereas herbivores with a preference for old leaves did not. Conclusions Our study predicts how plant susceptibility to herbivory depends on the composition of the herbivore community and the level of plant competition, and highlights the importance of considering

  1. Elucidating the interaction between light competition and herbivore feeding patterns using functional-structural plant modelling.

    Science.gov (United States)

    de Vries, Jorad; Poelman, Erik H; Anten, Niels; Evers, Jochem B

    2018-01-24

    Plants usually compete with neighbouring plants for resources such as light as well as defend themselves against herbivorous insects. This requires investment of limiting resources, resulting in optimal resource distribution patterns and trade-offs between growth- and defence-related traits. A plant's competitive success is determined by the spatial distribution of its resources in the canopy. The spatial distribution of herbivory in the canopy in turn differs between herbivore species as the level of herbivore specialization determines their response to the distribution of resources and defences in the canopy. Here, we investigated to what extent competition for light affects plant susceptibility to herbivores with different feeding preferences. To quantify interactions between herbivory and competition, we developed and evaluated a 3-D spatially explicit functional-structural plant model for Brassica nigra that mechanistically simulates competition in a dynamic light environment, and also explicitly models leaf area removal by herbivores with different feeding preferences. With this novel approach, we can quantitatively explore the extent to which herbivore feeding location and light competition interact in their effect on plant performance. Our results indicate that there is indeed a strong interaction between levels of plant-plant competition and herbivore feeding preference. When plants did not compete, herbivory had relatively small effects irrespective of feeding preference. Conversely, when plants competed, herbivores with a preference for young leaves had a strong negative effect on the competitiveness and subsequent performance of the plant, whereas herbivores with a preference for old leaves did not. Our study predicts how plant susceptibility to herbivory depends on the composition of the herbivore community and the level of plant competition, and highlights the importance of considering the full range of dynamics in plant-plant-herbivore interactions

  2. Increased control of thrips and aphids in greenhouses with two species of generalist predatory bugs involved in intraguild predation

    NARCIS (Netherlands)

    Messelink, G.J.; Janssen, A.

    2014-01-01

    The combined release of species of generalist predators can enhance multiple pest control when the predators feed on different prey, but, in theory, predators may be excluded through predation on each other. This study evaluated the co-occurrence of the generalist predators Macrolophus pygmaeus

  3. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities

    Science.gov (United States)

    Kant, M. R.; Jonckheere, W.; Knegt, B.; Lemos, F.; Liu, J.; Schimmel, B. C. J.; Villarroel, C. A.; Ataide, L. M. S.; Dermauw, W.; Glas, J. J.; Egas, M.; Janssen, A.; Van Leeuwen, T.; Schuurink, R. C.; Sabelis, M. W.; Alba, J. M.

    2015-01-01

    Background Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence. Scope The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can

  4. Interactive effects of fire and large herbivores on web-building spiders.

    Science.gov (United States)

    Foster, C N; Barton, P S; Wood, J T; Lindenmayer, D B

    2015-09-01

    Altered disturbance regimes are a major driver of biodiversity loss worldwide. Maintaining or re-creating natural disturbance regimes is therefore the focus of many conservation programmes. A key challenge, however, is to understand how co-occurring disturbances interact to affect biodiversity. We experimentally tested for the interactive effects of prescribed fire and large macropod herbivores on the web-building spider assemblage of a eucalypt forest understorey and investigated the role of vegetation in mediating these effects using path analysis. Fire had strong negative effects on the density of web-building spiders, which were partly mediated by effects on vegetation structure, while negative effects of large herbivores on web density were not related to changes in vegetation. Fire amplified the effects of large herbivores on spiders, both via vegetation-mediated pathways and by increasing herbivore activity. The importance of vegetation-mediated pathways and fire-herbivore interactions differed for web density and richness and also differed between web types. Our results demonstrate that for some groups of web-building spiders, the effects of co-occurring disturbance drivers may be mostly additive, whereas for other groups, interactions between drivers can amplify disturbance effects. In our study system, the use of prescribed fire in the presence of high densities of herbivores could lead to reduced densities and altered composition of web-building spiders, with potential cascading effects through the arthropod food web. Our study highlights the importance of considering both the independent and interactive effects of disturbances, as well as the mechanisms driving their effects, in the management of disturbance regimes.

  5. Perceived Social-Ecological Barriers of Generalist Pre-Service Teachers towards Teaching Physical Education: Findings from the GET-PE Study

    Science.gov (United States)

    Hyndman, Brendon P.

    2017-01-01

    Identifying and understanding the perceptions of pre-service teachers (PSTs) is vital to informing teaching practices. The purpose of the "Generalist Entry into Teaching Physical Education" (GET-PE) study was to investigate Australian generalist PSTs' perceptions of the barriers to teaching physical education (PE) classes. A…

  6. Sesquiterpene lactone stereochemistry influences herbivore resistance and plant fitness in the field.

    Science.gov (United States)

    Ahern, Jeffrey R; Whitney, Kenneth D

    2014-03-01

    Stereochemical variation is widely known to influence the bioactivity of compounds in the context of pharmacology and pesticide science, but our understanding of its importance in mediating plant-herbivore interactions is limited, particularly in field settings. Similarly, sesquiterpene lactones are a broadly distributed class of putative defensive compounds, but little is known about their activities in the field. Natural variation in sesquiterpene lactones of the common cocklebur, Xanthium strumarium (Asteraceae), was used in conjunction with a series of common garden experiments to examine relationships between stereochemical variation, herbivore damage and plant fitness. The stereochemistry of sesquiterpene lactone ring junctions helped to explain variation in plant herbivore resistance. Plants producing cis-fused sesquiterpene lactones experienced significantly higher damage than plants producing trans-fused sesquiterpene lactones. Experiments manipulating herbivore damage above and below ambient levels found that herbivore damage was negatively correlated with plant fitness. This pattern translated into significant fitness differences between chemotypes under ambient levels of herbivore attack, but not when attack was experimentally reduced via pesticide. To our knowledge, this work represents only the second study to examine sesquiterpene lactones as defensive compounds in the field, the first to document herbivore-mediated natural selection on sesquiterpene lactone variation and the first to investigate the ecological significance of the stereochemistry of the lactone ring junction. The results indicate that subtle differences in stereochemistry may be a major determinant of the protective role of secondary metabolites and thus of plant fitness. As stereochemical variation is widespread in many groups of secondary metabolites, these findings suggest the possibility of dynamic evolutionary histories within the Asteraceae and other plant families showing

  7. Generalists to Specialists: Transformative Evidences and Impediments to Student-Centered Practices of Primary Music and Art Teachers in Singapore

    Science.gov (United States)

    Costes-Onishi, Pamela; Caleon, Imelda

    2016-01-01

    This article fills in the knowledge gap in the student-centered practices of generalist music and art teachers to prepare 21st century learners. The study shows that generalists, after completing a specialist professional development program, struggle the most in connecting subject matter knowledge to pedagogical knowledge, specifically…

  8. Anomalous dependence of population growth on the birth rate in the plant-herbivore system

    International Nuclear Information System (INIS)

    Cui, Xue M.; Han, Seung K.; Chung, Jean S.

    2010-01-01

    We performed a simulation of the two-species plant-herbivore system by using the agent-based NetLogo program and constructed a dynamic model of populations consistent with the simulation results. The dynamic model is a three-dimensional system including the mean energy of the herbivore in addition to two variables denoting the populations of plants and herbivores. A steady-state analysis of the dynamic model shows that the dependence of the herbivore population on the birth and the death rates observed from the agent model is consistent with the prediction of the dynamic model. Especially, the anomalous dependence of the herbivore population on the birth rate, where the population decreases with the birth rate for small death rate, is consistently explained by a phase plane analysis of the dynamic model.

  9. Combined effects of arthropod herbivores and phytopathogens on plant performance

    DEFF Research Database (Denmark)

    Hauser, Thure Pavlo; Christensen, Stina; Heimes, Christine

    2013-01-01

    1. Many plants are simultaneously attacked by arthropod herbivores and phytopathogens. These may affect each other directly and indirectly, enhancing or reducing the amount of plant resources they each consume. Ultimately, this may reduce or enhance plant performance relative to what should...... be expected from the added impacts of herbivore and pathogen when they attack alone. 2. Previous studies have suggested synergistic and antagonistic impacts on plant performance from certain combinations of arthropods and pathogens, for example, synergistic impacts from necrotrophic pathogens together...... with wounding arthropods because of facilitated infection and antagonistic impacts from induction of pathogen resistance by sucking herbivores. 3. We compiled published studies on the impact of plant–herbivore–pathogen interactions on plant performance and used meta-analysis to search for consistent patterns...

  10. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities.

    Science.gov (United States)

    Kant, M R; Jonckheere, W; Knegt, B; Lemos, F; Liu, J; Schimmel, B C J; Villarroel, C A; Ataide, L M S; Dermauw, W; Glas, J J; Egas, M; Janssen, A; Van Leeuwen, T; Schuurink, R C; Sabelis, M W; Alba, J M

    2015-06-01

    Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence. The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can give rise to

  11. Effects of local tree diversity on herbivore communities diminish with increasing forest fragmentation on the landscape scale.

    Directory of Open Access Journals (Sweden)

    Franziska Peter

    Full Text Available Forest fragmentation and plant diversity have been shown to play a crucial role for herbivorous insects (herbivores, hereafter. In turn, herbivory-induced leaf area loss is known to have direct implications for plant growth and reproduction as well as long-term consequences for ecosystem functioning and forest regeneration. So far, previous studies determined diverging responses of herbivores to forest fragmentation and plant diversity. Those inconsistent results may be owed to complex interactive effects of both co-occurring environmental factors albeit they act on different spatial scales. In this study, we investigated whether forest fragmentation on the landscape scale and tree diversity on the local habitat scale show interactive effects on the herbivore community and leaf area loss in subtropical forests in South Africa. We applied standardized beating samples and a community-based approach to estimate changes in herbivore community composition, herbivore abundance, and the effective number of herbivore species on the tree species-level. We further monitored leaf area loss to link changes in the herbivore community to the associated process of herbivory. Forest fragmentation and tree diversity interactively affected the herbivore community composition, mainly by a species turnover within the family of Curculionidae. Furthermore, herbivore abundance increased and the number of herbivore species decreased with increasing tree diversity in slightly fragmented forests whereas the effects diminished with increasing forest fragmentation. Surprisingly, leaf area loss was neither affected by forest fragmentation or tree diversity, nor by changes in the herbivore community. Our study highlights the need to consider interactive effects of environmental changes across spatial scales in order to draw reliable conclusions for community and interaction patterns. Moreover, forest fragmentation seems to alter the effect of tree diversity on the herbivore

  12. Jasmonate-deficient plants have reduced direct and indirect defences against herbivores

    NARCIS (Netherlands)

    Thaler, J.S.; Farag, M.A.; Paré, P.W.; Dicke, M.

    2002-01-01

    Plants employ a variety of defence mechanisms, some of which act directly by having a negative effect on herbivores and others that act indirectly by attracting natural enemies of herbivores. In this study we asked if a common jasmonate-signalling pathway links the regulation of direct and indirect

  13. Native herbivore exerts contrasting effects on fire regime and vegetation structure

    Science.gov (United States)

    Jose L. Hierro; Kenneth L. Clark; Lyn C. Branch; Diego Villarreal

    2011-01-01

    Although native herbivores can alter fire regimes by consuming herbaceous vegetation that serves as fine fuel and, less commonly, accumulating fuel as nest material and other structures, simultaneous considerations of contrasting effects of herbivores on fire have scarcely been addressed. We proposed that a colonial rodent, vizcacha (Lagostomus maximus...

  14. Bubble Curtains: Herbivore Exclusion Devices for Ecology and Restoration of Marine Ecosystems?

    Directory of Open Access Journals (Sweden)

    Scott Bennett

    2017-09-01

    Full Text Available Herbivorous fishes play a critical role in maintaining or disrupting the ecological resilience of many kelp forests, coral reefs and seagrass ecosystems, worldwide. The increasing rate and scale of benthic habitat loss under global change has magnified the importance of herbivores and highlights the need to study marine herbivory at ecologically relevant scales. Currently, underwater herbivore exclusions (or inclusions have been restricted to small scale experimental plots, in large part due to the challenges of designing structures that can withstand the physical forces of waves and currents, without drastically altering the physical environment inside the exclusion area. We tested the ability of bubble curtains to deter herbivorous fishes from feeding on seaweeds as an alternative to the use of rigid exclusion cages. Kelps (Ecklonia radiata were transplanted onto reefs with high browsing herbivore pressure into either unprotected plots, exclusion cages or plots protected by bubble curtains of 0.785 m2 and 3.14 m2. Remote underwater video was used to compare the behavioral response of fishes to kelps protected and unprotected by bubble curtains. Kelp biomass loss was significantly lower inside the bubble curtains compared to unprotected kelps and did not differ from kelp loss rates in traditional exclusion cages. Consistent with this finding, no herbivorous fishes were observed entering into the bubble curtain at any point during the experiment. In contrast, fish bite rates on unprotected kelps were 1,621 ± 702 bites h−1 (mean ± SE. Our study provides initial evidence that bubble curtains can exclude herbivorous fishes, paving the way for future studies to examine their application at larger spatial and temporal scales, beyond what has been previously feasible using traditional exclusion cages.

  15. Rapidly increasing macroalgal cover not related to herbivorous fishes on Mesoamerican reefs

    Directory of Open Access Journals (Sweden)

    Adam Suchley

    2016-05-01

    Full Text Available Long-term phase shifts from coral to macroalgal dominated reef systems are well documented in the Caribbean. Although the impact of coral diseases, climate change and other factors is acknowledged, major herbivore loss through disease and overfishing is often assigned a primary role. However, direct evidence for the link between herbivore abundance, macroalgal and coral cover is sparse, particularly over broad spatial scales. In this study we use a database of coral reef surveys performed at 85 sites along the Mesoamerican Reef of Mexico, Belize, Guatemala and Honduras, to examine potential ecological links by tracking site trajectories over the period 2005–2014. Despite the long-term reduction of herbivory capacity reported across the Caribbean, the Mesoamerican Reef region displayed relatively low macroalgal cover at the onset of the study. Subsequently, increasing fleshy macroalgal cover was pervasive. Herbivorous fish populations were not responsible for this trend as fleshy macroalgal cover change was not correlated with initial herbivorous fish biomass or change, and the majority of sites experienced increases in macroalgae browser biomass. This contrasts the coral reef top-down herbivore control paradigm and suggests the role of external factors in making environmental conditions more favourable for algae. Increasing macroalgal cover typically suppresses ecosystem services and leads to degraded reef systems. Consequently, policy makers and local coral reef managers should reassess the focus on herbivorous fish protection and consider complementary measures such as watershed management in order to arrest this trend.

  16. Generalist genes and learning disabilities.

    Science.gov (United States)

    Plomin, Robert; Kovas, Yulia

    2005-07-01

    The authors reviewed recent quantitative genetic research on learning disabilities that led to the conclusion that genetic diagnoses differ from traditional diagnoses in that the effects of relevant genes are largely general rather than specific. This research suggests that most genes associated with common learning disabilities--language impairment, reading disability, and mathematics disability--are generalists in 3 ways. First, genes that affect common learning disabilities are largely the same genes responsible for normal variation in learning abilities. Second, genes that affect any aspect of a learning disability affect other aspects of the disability. Third, genes that affect one learning disability are also likely to affect other learning disabilities. These quantitative genetic findings have far-reaching implications for molecular genetics and neuroscience as well as psychology. Copyright 2005 APA, all rights reserved.

  17. Core fecal microbiota of domesticated herbivorous ruminant, hindgut fermenters, and monogastric animals.

    Science.gov (United States)

    O' Donnell, Michelle M; Harris, Hugh M B; Ross, R Paul; O'Toole, Paul W

    2017-10-01

    In this pilot study, we determined the core fecal microbiota composition and overall microbiota diversity of domesticated herbivorous animals of three digestion types: hindgut fermenters, ruminants, and monogastrics. The 42 animals representing 10 animal species were housed on a single farm in Ireland and all the large herbivores consumed similar feed, harmonizing two of the environmental factors that influence the microbiota. Similar to other mammals, the fecal microbiota of all these animals was dominated by the Firmicutes and Bacteroidetes phyla. The fecal microbiota spanning all digestion types comprised 42% of the genera identified. Host phylogeny and, to a lesser extent, digestion type determined the microbiota diversity in these domesticated herbivores. This pilot study forms a platform for future studies into the microbiota of nonbovine and nonequine domesticated herbivorous animals. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  18. Large herbivores that strive mightily but eat and drink as friends.

    Science.gov (United States)

    de Boer, W F; Prins, H H T

    1990-02-01

    Grazing in patches of Cynodon dactylon and of Sporobolus spicatus by four large herbivores, and the interaction between these sedentary herbivores was studied in Lake Manyara National Park, northern Tanzania. The herbivores were the African buffalo, Syncerus caffer; the African elephan, Loxodonta africana; the Burchell's zebra, Equus burchelli; and the wildebeest, Connochaetus taurinus. Four different hypotheses of the interactions between the herbivores were tested, viz., increased predator detection/protection through association of species, facilitation of the food intake through the influence of other species, use by other species of the food manipulation strategy of buffalo, and interspecific competition for food. On the level of a single day, zebra and wildebeest were symbiotic, which could have been caused by an increased chance of predator detection. A similar association between buffalo and wildebeest or zebra was also detected on C. dactylon grasslands. There was no indication of facilitation between any of the herbivores. Buffalo had a despotic relationship with elephant, that is the elephant's consumption was lowered when buffalo had visited a patch prior to their arrival. When elephant and buffalo arrived at the same time there appeared to be scramble competition between them.Habitat overlap was calculated for four pairs of species. In conjunction with the analyses of the patch visits, it was concluded that a small overlap was associated with interspecific competition and a large habitat overlap was associated with symbiosis.

  19. Sex-specific developmental plasticity of generalist and specialist predatory mites (Acari: Phytoseiidae) in response to food stress.

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2011-03-01

    We studied developmental plasticity under food stress in three female-biased size dimorphic predatory mite species, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni. All three species prey on two-spotted spider mites but differ in the degree of adaptation to this prey. Phytoseiulus persimilis is a specialized spider mite predator, N. californicus is a generalist with a preference for spider mites, and A. andersoni is a broad generalist. Immature predators were offered prey patches of varying density and their survival chances, dispersal tendencies, age and size at maturity measured. Amblyseius andersoni dispersed earlier from and had lower survival chances in low density prey patches than N. californicus and P. persimilis. Age at maturity was not affected by prey density in the generalist A. andersoni, whereas both the specialist P. persimilis and the generalist N. californicus accelerated development at low prey densities. Species-specific plasticity in age at maturity reflects opposite survival strategies when confronted with limited prey: to prematurely leave and search for other food (A. andersoni) or to stay and accelerate development (P. persimilis, N. californicus). In all species, size at maturity was more plastic in females than males, indicating that males incur higher fitness costs from deviations from optimal body size.

  20. Spurious and functional correlates of the isotopic composition of a generalist across a tropical rainforest landscape

    Directory of Open Access Journals (Sweden)

    Poirson Evan K

    2009-11-01

    Full Text Available Abstract Background The isotopic composition of generalist consumers may be expected to vary in space as a consequence of spatial heterogeneity in isotope ratios, the abundance of resources, and competition. We aim to account for the spatial variation in the carbon and nitrogen isotopic composition of a generalized predatory species across a 500 ha. tropical rain forest landscape. We test competing models to account for relative influence of resources and competitors to the carbon and nitrogen isotopic enrichment of gypsy ants (Aphaenogaster araneoides, taking into account site-specific differences in baseline isotope ratios. Results We found that 75% of the variance in the fraction of 15N in the tissue of A. araneoides was accounted by one environmental parameter, the concentration of soil phosphorus. After taking into account landscape-scale variation in baseline resources, the most parsimonious model indicated that colony growth and leaf litter biomass accounted for nearly all of the variance in the δ15N discrimination factor, whereas the δ13C discrimination factor was most parsimoniously associated with colony size and the rate of leaf litter decomposition. There was no indication that competitor density or diversity accounted for spatial differences in the isotopic composition of gypsy ants. Conclusion Across a 500 ha. landscape, soil phosphorus accounted for spatial variation in baseline nitrogen isotope ratios. The δ15N discrimination factor of a higher order consumer in this food web was structured by bottom-up influences - the quantity and decomposition rate of leaf litter. Stable isotope studies on the trophic biology of consumers may benefit from explicit spatial design to account for edaphic properties that alter the baseline at fine spatial grains.

  1. A qualitative study of barriers to the implementation of a rheumatoid arthritis guideline among generalist and specialist physical therapists.

    Science.gov (United States)

    van Bodegom-Vos, Leti; Verhoef, John; Dickmann, Margot; Kleijn, Marjon; van Vliet, Ingrid; Hurkmans, Emalie; van der Wees, Philip; Vliet Vlieland, Thea

    2012-10-01

    Although the increasing complexity and expansion of the body of knowledge in physical therapy have led to specialized practice areas to provide better patient care, the impact of specialization on guideline implementation has been scarcely studied. Objectives The objective of this study was to identify the similarities and differences in barriers to the implementation of a Dutch rheumatoid arthritis (RA) guideline by generalist and specialist physical therapists. Design This observational study consisted of 4 focus group interviews in which 24 physical therapists (13 generalist and 11 specialist physical therapists) participated. Physical therapists were asked to discuss barriers to the implementation of the RA guideline. Data were analyzed qualitatively using a directed approach to content analysis. Both the interviews and the interview analysis were informed by a previously developed conceptual framework. Besides a number of similarities (eg, lack of time), the present study showed important, although subtle, differences in barriers to the implementation of the RA guideline between generalist physical therapists and specialist physical therapists. Generalist physical therapists more frequently reported difficulties in interpreting the guideline (cognitive barriers) and had less favorable opinions about the guideline (affective barriers) than specialist physical therapists. Specialist physical therapists were hampered by external barriers that are outside the scope of generalist physical therapists, such as a lack of agreement about the roles and responsibilities of medical professionals involved in the care of the same patient. The identified differences in barriers to the implementation of the RA guideline indicated that the effectiveness of implementation strategies could be improved by tailoring them to the level of specialization of physical therapists. However, it is expected that tailoring implementation strategies to barriers that hamper both generalist

  2. Climate alters response of an endemic island plant to removal of invasive herbivores

    Science.gov (United States)

    Kathryn, Mceachern A.; Thomson, D.M.; Chess, K.A.

    2009-01-01

    Islands experience higher rates of species extinction than mainland ecosystems, with biological invasions among the leading causes; they also serve as important model systems for testing ideas in basic and applied ecology. Invasive removal programs on islands are conservation efforts that can also be viewed as powerful manipulative experiments, but few data are available to evaluate their effects. We collected demographic and herbivore damage data for Castilleja mollis Pennell, an endangered plant endemic to Santa Rosa Island, California, over a 12-year period before, during, and after the implementation of control for introduced cattle, deer, and elk. We used these long-term data to explore mechanisms underlying herbivore effects, assess the results of herbivore reduction at the scales of both individual plants and populations, and determine how temporal variability in herbivory and plant demography influenced responses to herbivore removals. For individual plants, herbivore effects mediated by disturbance were greater than those of grazing. Deer and elk scraping of the ground substantially increased plant mortality and dormancy and reduced flowering and growth. Stem damage from browsing did not affect survivorship but significantly reduced plant growth and flower production. Herbivore control successfully lowered damage rates, which declined steeply between 1997 and 2000 and have remained relatively low. Castilleja mollis abundances rose sharply after 1997, suggesting a positive effect of herbivore control, but then began to decline steadily again after 2003. The recent decline appears to be driven by higher mean growing season temperatures; interestingly, not only reductions in scraping damage but a period of cooler conditions were significant in explaining increases in C. mollis populations between 1997 and 2002. Our results demonstrate strong effects of introduced herbivores on both plant demography and population dynamics and show that climate

  3. Climate alters response of an endemic island plant to removal of invasive herbivores.

    Science.gov (United States)

    McEachern, A Kathryn; Thomson, Diane M; Chess, Katherine A

    2009-09-01

    Islands experience higher rates of species extinction than mainland ecosystems, with biological invasions among the leading causes; they also serve as important model systems for testing ideas in basic and applied ecology. Invasive removal programs on islands are conservation efforts that can also be viewed as powerful manipulative experiments, but few data are available to evaluate their effects. We collected demographic and herbivore damage data for Castilleja mollis Pennell, an endangered plant endemic to Santa Rosa Island, California, over a 12-year period before, during, and after the implementation of control for introduced cattle, deer, and elk. We used these long-term data to explore mechanisms underlying herbivore effects, assess the results of herbivore reduction at the scales of both individual plants and populations, and determine how temporal variability in herbivory and plant demography influenced responses to herbivore removals. For individual plants, herbivore effects mediated by disturbance were greater than those of grazing. Deer and elk scraping of the ground substantially increased plant mortality and dormancy and reduced flowering and growth. Stem damage from browsing did not affect survivorship but significantly reduced plant growth and flower production. Herbivore control successfully lowered damage rates, which declined steeply between 1997 and 2000 and have remained relatively low. Castilleja mollis abundances rose sharply after 1997, suggesting a positive effect of herbivore control, but then began to decline steadily again after 2003. The recent decline appears to be driven by higher mean growing season temperatures; interestingly, not only reductions in scraping damage but a period of cooler conditions were significant in explaining increases in C. mollis populations between 1997 and 2002. Our results demonstrate strong effects of introduced herbivores on both plant demography and population dynamics and show that climate

  4. What lies beneath? : Linking litter and canopy food webs to protect ornamental crops

    NARCIS (Netherlands)

    Muñoz Cárdenas, K.A.

    2017-01-01

    The main research question of this thesis was how interactions between above-ground and below-ground food webs affect biological control. Arthropod food webs associated with plants are commonly composed of several species of herbivores, the detritivore community, specialist and generalist predators

  5. Fitness costs of chemical defense in Plantago lanceolata L.: effects of nutrient and competition stress

    NARCIS (Netherlands)

    Marak, H.B.; Biere, A.; Van Damme, J.M.M.

    2003-01-01

    Fitness costs of defense are often invoked to explain the maintenance of genetic variation in levels of chemical defense compounds in natural plant populations. We investigated fitness costs of iridoid glycosides (IGs), terpenoid compounds that strongly deter generalist insect herbivores, in ribwort

  6. Intra- and interspecific differences in diet quality and composition in a large herbivore community.

    Directory of Open Access Journals (Sweden)

    Claire Redjadj

    Full Text Available Species diversity in large herbivore communities is often explained by niche segregation allowed by differences in body mass and digestive morphophysiological features. Based on large number of gut samples in fall and winter, we analysed the temporal dynamics of diet composition, quality and interspecific overlap of 4 coexisting mountain herbivores. We tested whether the relative consumption of grass and browse differed among species of different rumen types (moose-type and intermediate-type, whether diet was of lower quality for the largest species, whether we could identify plant species which determined diet quality, and whether these plants, which could be "key-food-resources" were similar for all herbivores. Our analyses revealed that (1 body mass and rumen types were overall poor predictors of diet composition and quality, although the roe deer, a species with a moose-type rumen was confirmed as an "obligatory non grazer", while red deer, the largest species, had the most lignified diet; (2 diet overlap among herbivores was well predicted by rumen type (high among species of intermediate types only, when measured over broad plant groups, (3 the relationship between diet composition and quality differed among herbivore species, and the actual plant species used during winter which determined the diet quality, was herbivore species-specific. Even if diets overlapped to a great extent, the species-specific relationships between diet composition and quality suggest that herbivores may select different plant species within similar plant group types, or different plant parts and that this, along with other behavioural mechanisms of ecological niche segregation, may contribute to the coexistence of large herbivores of relatively similar body mass, as observed in mountain ecosystems.

  7. Piper kelleyi, a hotspot of ecological interactions and a new species from Ecuador and Peru

    Directory of Open Access Journals (Sweden)

    Eric Tepe

    2014-02-01

    Full Text Available We describe Piper kelleyi sp. nov., a new species from the eastern Andes of Ecuador and Peru, named in honor of Dr. Walter Almond Kelley. Piper kelleyi is a member of the Macrostachys clade of the genus Piper and supports a rich community of generalist and specialist herbivores, their predators and parasitoids, as well as commensalistic earwigs, and mutualistic ants. This new species was recognized as part of an ecological study of phytochemically mediated relationships between plants, herbivores, predators, and parasitoids. Compared to over 100 other Piper species surveyed, Piper kelleyi supports the largest community of specialist herbivores and parasitoids observed to date.

  8. Contrasting patterns of herbivore and predator pressure on invasive and native plants

    NARCIS (Netherlands)

    Engelkes, T.; Wouters, B.; Bezemer, T.M.; Harvey, J.A.; Van der Putten, W.H.

    2012-01-01

    Invasive non-nativeplant species often harbor fewer herbivorous insects than related nativeplant species. However, little is known about how herbivorous insects on non-nativeplants are exposed to carnivorous insects, and even less is known on plants that have recently expanded their ranges within

  9. Effect of Drought on Herbivore-Induced Plant Gene Expression: Population Comparison for Range Limit Inferences

    Directory of Open Access Journals (Sweden)

    Gunbharpur Singh Gill

    2016-03-01

    Full Text Available Low elevation “trailing edge” range margin populations typically face increases in both abiotic and biotic stressors that may contribute to range limit development. We hypothesize that selection may act on ABA and JA signaling pathways for more stable expression needed for range expansion, but that antagonistic crosstalk prevents their simultaneous co-option. To test this hypothesis, we compared high and low elevation populations of Boechera stricta that have diverged with respect to constitutive levels of glucosinolate defenses and root:shoot ratios; neither population has high levels of both traits. If constraints imposed by antagonistic signaling underlie this divergence, one would predict that high constitutive levels of traits would coincide with lower plasticity. To test this prediction, we compared the genetically diverged populations in a double challenge drought-herbivory growth chamber experiment. Although a glucosinolate defense response to the generalist insect herbivore Spodoptera exigua was attenuated under drought conditions, the plastic defense response did not differ significantly between populations. Similarly, although several potential drought tolerance traits were measured, only stomatal aperture behavior, as measured by carbon isotope ratios, was less plastic as predicted in the high elevation population. However, RNAseq results on a small subset of plants indicated differential expression of relevant genes between populations as predicted. We suggest that the ambiguity in our results stems from a weaker link between the pathways and the functional traits compared to transcripts.

  10. Indirect effects of predators control herbivore richness and abundance in a benthic eelgrass (Zostera marina) mesograzer community.

    Science.gov (United States)

    Amundrud, Sarah L; Srivastava, Diane S; O'Connor, Mary I

    2015-07-01

    Herbivore communities can be sensitive to changes in predator pressure (top-down effects) and resource availability (bottom-up effects) in a wide range of systems. However, it remains unclear whether such top-down and bottom-up effects reflect direct impacts of predators and/or resources on herbivores, or are indirect, reflecting altered interactions among herbivore species. We quantified direct and indirect effects of bottom-up and top-down processes on an eelgrass (Zostera marina) herbivore assemblage. In a field experiment, we factorially manipulated water column nutrients (with Osmocote(™) slow-release fertilizer) and predation pressure (with predator exclusion cages) and measured the effects on herbivore abundance, richness and beta diversity. We examined likely mechanisms of community responses by statistically exploring the response of individual herbivore species to trophic manipulations. Predators increased herbivore richness and total abundance, in both cases through indirect shifts in community composition. Increases in richness occurred through predator suppression of common gammarid amphipod species (Monocorophium acherusicum and Photis brevipes), permitting the inclusion of rarer gammarid species (Aoroides columbiae and Pontogeneia rostrata). Increased total herbivore abundance reflected increased abundance of a caprellid amphipod species (Caprella sp.), concurrent with declines in the abundance of other common species. Furthermore, predators decreased beta diversity by decreasing variability in Caprella sp. abundance among habitat patches. Osmocote(™) fertilization increased nutrient concentrations locally, but nutrients dissipated to background levels within 3 m of the fertilizer. Nutrient addition weakly affected the herbivore assemblage, not affecting richness and increasing total abundance by increasing one herbivore species (Caprella sp.). Nutrient addition did not affect beta diversity. We demonstrated that assemblage-level effects of

  11. Seasonal grazing and food preference of herbivores in a Posidonia oceanica meadow

    Directory of Open Access Journals (Sweden)

    Andrea Peirano

    2001-12-01

    Full Text Available Seasonal grazing of the fish Sarpa salpa (L., the urchin Paracentrotus lividus Lamarck and the isopods Idotea spp. was compared with the C/N ratio of adult and intermediate leaves and epiphytes of Posidonia oceanica (L. Delile, collected at three different depths. Despite seasonal differences in grazing, herbivores showed preferences throughout the year for adult leaves with more epiphyte and higher N contents. The maximum grazing on adult and intermediate leaves was observed in September and in June for fish and in March for urchins, whereas it was irregular for isopods. Grazing by the three herbivores was not related to their preference for leaves or epiphytes, notwithstanding the seasonal differences in their C and N contents. We concluded that herbivores show no preference for food type throughout the year and that seasonal consumption of P. oceanica is related mainly to herbivore behaviour.

  12. Fungal Endophytes: Beyond Herbivore Management

    Directory of Open Access Journals (Sweden)

    Bamisope S. Bamisile

    2018-03-01

    Full Text Available The incorporation of entomopathogenic fungi as biocontrol agents into Integrated Pest Management (IPM programs without doubt, has been highly effective. The ability of these fungal pathogens such as Beauveria bassiana and Metarhizium anisopliae to exist as endophytes in plants and protect their colonized host plants against the primary herbivore pests has widely been reported. Aside this sole role of pest management that has been traditionally ascribed to fungal endophytes, recent findings provided evidence of other possible functions as plant yield promoter, soil nutrient distributor, abiotic stress and drought tolerance enhancer in plants. However, reports on these additional important effects of fungal endophytes on the colonized plants remain scanty. In this review, we discussed the various beneficial effects of endophytic fungi on the host plants and their primary herbivore pests; as well as some negative effects that are relatively unknown. We also highlighted the prospects of our findings in further increasing the acceptance of fungal endophytes as an integral part of pest management programs for optimized crop production.

  13. Herbivore effects on productivity vary by guild: cattle increase mean productivity while wildlife reduce variability.

    Science.gov (United States)

    Charles, Grace K; Porensky, Lauren M; Riginos, Corinna; Veblen, Kari E; Young, Truman P

    2017-01-01

    Wild herbivores and livestock share the majority of rangelands worldwide, yet few controlled experiments have addressed their individual, additive, and interactive impacts on ecosystem function. While ungulate herbivores generally reduce standing biomass, their effects on aboveground net primary production (ANPP) can vary by spatial and temporal context, intensity of herbivory, and herbivore identity and species richness. Some evidence indicates that moderate levels of herbivory can stimulate aboveground productivity, but few studies have explicitly tested the relationships among herbivore identity, grazing intensity, and ANPP. We used a long-term exclosure experiment to examine the effects of three groups of wild and domestic ungulate herbivores (megaherbivores, mesoherbivore wildlife, and cattle) on herbaceous productivity in an African savanna. Using both field measurements (productivity cages) and satellite imagery, we measured the effects of different herbivore guilds, separately and in different combinations, on herbaceous productivity across both space and time. Results from both productivity cage measurements and satellite normalized difference vegetation index (NDVI) demonstrated a positive relationship between mean productivity and total ungulate herbivore pressure, driven in particular by the presence of cattle. In contrast, we found that variation in herbaceous productivity across space and time was driven by the presence of wild herbivores (primarily mesoherbivore wildlife), which significantly reduced heterogeneity in ANPP and NDVI across both space and time. Our results indicate that replacing wildlife with cattle (at moderate densities) could lead to similarly productive but more heterogeneous herbaceous plant communities in rangelands. © 2016 by the Ecological Society of America.

  14. Mammalian herbivores confer resilience of Arctic shrub-dominated ecosystems to changing climate.

    Science.gov (United States)

    Kaarlejärvi, Elina; Hoset, Katrine S; Olofsson, Johan

    2015-09-01

    Climate change is resulting in a rapid expansion of shrubs in the Arctic. This expansion has been shown to be reinforced by positive feedbacks, and it could thus set the ecosystem on a trajectory toward an alternate, more productive regime. Herbivores, on the other hand, are known to counteract the effects of simultaneous climate warming on shrub biomass. However, little is known about the impact of herbivores on resilience of these ecosystems, that is, the capacity of a system to absorb disturbance and still remain in the same regime, retaining the same function, structure, and feedbacks. Here, we investigated how herbivores affect resilience of shrub-dominated systems to warming by studying the change of shrub biomass after a cessation of long-term experimental warming in a forest-tundra ecotone. As predicted, warming increased the biomass of shrubs, and in the absence of herbivores, shrub biomass in tundra continued to increase 4 years after cessation of the artificial warming, indicating that positive effects of warming on plant growth may persist even over a subsequent colder period. Herbivores contributed to the resilience of these systems by returning them back to the original low-biomass regime in both forest and tundra habitats. These results support the prediction that higher shrub biomass triggers positive feedbacks on soil processes and microclimate, which enable maintaining the rapid shrub growth even in colder climates. Furthermore, the results show that in our system, herbivores facilitate the resilience of shrub-dominated ecosystems to climate warming. © 2015 John Wiley & Sons Ltd.

  15. Challenges in the nutrition and management of herbivores in the temperate zone

    NARCIS (Netherlands)

    Vuuren, van A.M.; Chilibroste, P.

    2013-01-01

    The expected higher global demand for animal proteins and the competition for starch and sugars between food, fuel and feed seem to favour herbivores that convert solar energy captured in fibrous plants into animal products. However, the required higher production level of herbivores questions the

  16. Adaptive evolution of threonine deaminase in plant defense against insect herbivores

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales-Vigil, Eliana; Bianchetti, Christopher M.; Phillips, Jr., George N.; Howe, Gregg A. (MSU); (UW)

    2011-11-07

    Gene duplication is a major source of plant chemical diversity that mediates plant-herbivore interactions. There is little direct evidence, however, that novel chemical traits arising from gene duplication reduce herbivory. Higher plants use threonine deaminase (TD) to catalyze the dehydration of threonine (Thr) to {alpha}-ketobutyrate and ammonia as the committed step in the biosynthesis of isoleucine (Ile). Cultivated tomato and related Solanum species contain a duplicated TD paralog (TD2) that is coexpressed with a suite of genes involved in herbivore resistance. Analysis of TD2-deficient tomato lines showed that TD2 has a defensive function related to Thr catabolism in the gut of lepidopteran herbivores. During herbivory, the regulatory domain of TD2 is removed by proteolysis to generate a truncated protein (pTD2) that efficiently degrades Thr without being inhibited by Ile. We show that this proteolytic activation step occurs in the gut of lepidopteran but not coleopteran herbivores, and is catalyzed by a chymotrypsin-like protease of insect origin. Analysis of purified recombinant enzymes showed that TD2 is remarkably more resistant to proteolysis and high temperature than the ancestral TD1 isoform. The crystal structure of pTD2 provided evidence that electrostatic interactions constitute a stabilizing feature associated with adaptation of TD2 to the extreme environment of the lepidopteran gut. These findings demonstrate a role for gene duplication in the evolution of a plant defense that targets and co-opts herbivore digestive physiology.

  17. Does plant trait diversity reduce the ability of herbivores to defend against predators? The plant variability-gut acclimation hypothesis.

    Science.gov (United States)

    Wetzel, William C; Thaler, Jennifer S

    2016-04-01

    Variability in plant chemistry has long been believed to suppress populations of insect herbivores by constraining herbivore resource selection behavior in ways that make herbivores more vulnerable to predation. The focus on behavior, however, overlooks the pervasive physiological effects of plant variability on herbivores. Here we propose the plant variability-gut acclimation hypothesis, which posits that plant chemical variability constrains herbivore anti-predator defenses by frequently requiring herbivores to acclimate their guts to changing plant defenses and nutrients. Gut acclimation, including changes to morphology and detoxification enzymes, requires time and nutrients, and we argue these costs will constrain how and when herbivores can mount anti-predator defenses. A consequence of this hypothesis is stronger top-down control of herbivores in heterogeneous plant populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Evolutionary dynamics of interactions between plants and their enemies: comparison of herbivorous insects and pathogens.

    Science.gov (United States)

    Wininger, Kerry; Rank, Nathan

    2017-11-01

    Plants colonized land over 400 million years ago. Shortly thereafter, organisms began to consume terrestrial plant tissue as a nutritional resource. Most plant enemies are plant pathogens or herbivores, and they impose natural selection for plants to evolve defenses. These traits generate selection pressures on enemies. Coevolution between terrestrial plants and their enemies is an important element of the evolutionary history of both groups. However, coevolutionary studies of plant-pathogen interactions have tended to focus on different research topics than plant-herbivore interactions. Specifically, studies of plant-pathogen interactions often adopt a "gene-for-gene" conceptual framework. In contrast, studies of plants and herbivores often investigate escalation or elaboration of plant defense and herbivore adaptations to overcome it. The main exceptions to the general pattern are studies that focus on small, sessile herbivores that share many features with plant pathogens, studies that incorporate both herbivores and pathogens into a single investigation, and studies that test aspects of Thompson's geographic mosaic theory for coevolution. We discuss the implications of these findings for future research. © 2017 New York Academy of Sciences.

  19. Contrasting patterns of herbivore and predator pressure on invasive and native plants

    NARCIS (Netherlands)

    Engelkes, T.; Wouters, B.; Bezemer, T.M.; Harvey, J.A.; Putten, van der W.H.

    2012-01-01

    Invasive non-native plant species often harbor fewer herbivorous insects than related native plant species. However, little is known about how herbivorous insects on non-native plants are exposed to carnivorous insects, and even less is known on plants that have recently expanded their ranges within

  20. Plant-herbivore interactions along elevational gradient: Comparison of field and common garden data

    Czech Academy of Sciences Publication Activity Database

    Rokaya, Maan Bahadur; Dostálek, T.; Münzbergová, Z.

    2016-01-01

    Roč. 77, nov (2016), s. 168-175 ISSN 1146-609X Institutional support: RVO:67179843 Keywords : Anti-herbivore defence * Altitude * Herbivore damage * Himalayan region * Lamiaceae Subject RIV: EF - Botanics Impact factor: 1.652, year: 2016

  1. A linear programming model of diet choice of free-living beavers

    NARCIS (Netherlands)

    Nolet, BA; VanderVeer, PJ; Evers, EGJ; Ottenheim, MM

    1995-01-01

    Linear programming has been remarkably successful in predicting the diet choice of generalist herbivores. We used this technique to test the diet choice of free-living beavers (Castor fiber) in the Biesbosch (The Netherlands) under different Foraging goals, i.e. maximization of intake of energy,

  2. Genetic architecture of pollination syndrome transition between hummingbird-specialist and generalist species in the genus Rhytidophyllum (Gesneriaceae

    Directory of Open Access Journals (Sweden)

    Hermine Alexandre

    2015-06-01

    Full Text Available Adaptation to pollinators is a key factor of diversification in angiosperms. The Caribbean sister genera Rhytidophyllum and Gesneria present an important diversification of floral characters. Most of their species can be divided in two major pollination syndromes. Large-open flowers with pale colours and great amount of nectar represent the generalist syndrome, while the hummingbird-specialist syndrome corresponds to red tubular flowers with a less important nectar volume. Repeated convergent evolution toward the generalist syndrome in this group suggests that such transitions rely on few genes of moderate to large effect. To test this hypothesis, we built a linkage map and performed a QTL detection for divergent pollination syndrome traits by crossing one specimen of the generalist species Rhytidophyllum auriculatum with one specimen of the hummingbird pollinated R. rupincola. Using geometric morphometrics and univariate traits measurements, we found that floral shape among the second-generation hybrids is correlated with morphological variation observed between generalist and hummingbird-specialist species at the genus level. The QTL analysis showed that colour and nectar volume variation between syndromes involve each one major QTL while floral shape has a more complex genetic basis and rely on few genes of moderate effect. Finally, we did not detect any genetic linkage between the QTLs underlying those traits. This genetic independence of traits could have facilitated evolution toward optimal syndromes.

  3. Induced and constitutive responses of digestive enzymes to plant toxins in an herbivorous mammal.

    Science.gov (United States)

    Kohl, Kevin D; Dearing, M Denise

    2011-12-15

    Many plants produce plant secondary compounds (PSCs) that bind and inhibit the digestive enzymes of herbivores, thus limiting digestibility for the herbivore. Herbivorous insects employ several physiological responses to overcome the anti-nutritive effects of PSCs. However, studies in vertebrates have not shown such responses, perhaps stemming from the fact that previously studied vertebrates were not herbivorous. The responses of the digestive system to dietary PSCs in populations of Bryant's woodrat (Neotoma bryanti) that vary in their ecological and evolutionary experience with the PSCs in creosote bush (Larrea tridentata) were compared. Individuals from naïve and experienced populations were fed diets with and without added creosote resin. Animals fed diets with creosote resin had higher activities of pancreatic amylase, as well as luminal amylase and chymotrypsin, regardless of prior experience with creosote. The experienced population showed constitutively higher activities of intestinal maltase and sucrase. Additionally, the naïve population produced an aminopeptidase-N enzyme that was less inhibited by creosote resin when feeding on the creosote resin diet, whereas the experienced population constitutively expressed this form of aminopeptidase-N. Thus, the digestive system of an herbivorous vertebrate responds significantly to dietary PSCs, which may be important for allowing herbivorous vertebrates to feed on PSC-rich diets.

  4. Parasite specialization in a unique habitat: hummingbirds as reservoirs of generalist blood parasites of Andean birds.

    Science.gov (United States)

    Moens, Michaël A J; Valkiūnas, Gediminas; Paca, Anahi; Bonaccorso, Elisa; Aguirre, Nikolay; Pérez-Tris, Javier

    2016-09-01

    Understanding how parasites fill their ecological niches requires information on the processes involved in the colonization and exploitation of unique host species. Switching to hosts with atypical attributes may favour generalists broadening their niches or may promote specialization and parasite diversification as the consequence. We analysed which blood parasites have successfully colonized hummingbirds, and how they have evolved to exploit such a unique habitat. We specifically asked (i) whether the assemblage of Haemoproteus parasites of hummingbirds is the result of single or multiple colonization events, (ii) to what extent these parasites are specialized in hummingbirds or shared with other birds and (iii) how hummingbirds contribute to sustain the populations of these parasites, in terms of both prevalence and infection intensity. We sampled 169 hummingbirds of 19 species along an elevation gradient in Southern Ecuador to analyse the host specificity, diversity and infection intensity of Haemoproteus by molecular and microscopy techniques. In addition, 736 birds of 112 species were analysed to explore whether hummingbird parasites are shared with other birds. Hummingbirds hosted a phylogenetically diverse assemblage of generalist Haemoproteus lineages shared with other host orders. Among these parasites, Haemoproteus witti stood out as the most generalized. Interestingly, we found that infection intensities of this parasite were extremely low in passerines (with no detectable gametocytes), but very high in hummingbirds, with many gametocytes seen. Moreover, infection intensities of H. witti were positively correlated with the prevalence across host species. Our results show that hummingbirds have been colonized by generalist Haemoproteus lineages on multiple occasions. However, one of these generalist parasites (H. witti) seems to be highly dependent on hummingbirds, which arise as the most relevant reservoirs in terms of both prevalence and

  5. Specialist-generalist model of body temperature regulation can be applied at the intraspecific level.

    Science.gov (United States)

    Przybylska, Anna S; Boratyński, Jan S; Wojciechowski, Michał S; Jefimow, Małgorzata

    2017-07-01

    According to theoretical predictions, endothermic homeotherms can be classified as either thermal specialists or thermal generalists. In high cost environments, thermal specialists are supposed to be more prone to using facultative heterothermy than generalists. We tested this hypothesis at the intraspecific level using male laboratory mice (C57BL/cmdb) fasted under different thermal conditions (20 and 10°C) and for different time periods (12-48 h). We predicted that variability of body temperature ( T b ) and time spent with T b below normothermy would increase with the increase of environmental demands (duration of fasting and cold). To verify the above prediction, we measured T b and energy expenditure of fasted mice. We did not record torpor bouts but we found that variations in T b and time spent in hypothermia increased with environmental demands. In response to fasting, mice also decreased their energy expenditure. Moreover, animals that showed more precise thermoregulation when fed had more variable T b when fasted. We postulate that the prediction of the thermoregulatory generalist-specialist trade-off can be applied at the intraspecific level, offering a valid tool for identifying mechanistic explanations of the differences in animal responses to variations in energy supply. © 2017. Published by The Company of Biologists Ltd.

  6. Density-dependent reduction and induction of milkweed cardenolides by a sucking insect herbivore.

    Science.gov (United States)

    Martel, John W; Malcolm, Stephen B

    2004-03-01

    The effect of aphid population size on host-plant chemical defense expression and the effect of plant defense on aphid population dynamics were investigated in a milkweed-specialist herbivore system. Density effects of the aposematic oleander aphid, Aphis nerii, on cardenolide expression were measured in two milkweed species, Asclepias curassavica and A. incarnata. These plants vary in constitutive chemical investment with high mean cardenolide concentration in A. curassavica and low to zero in A. incarnata. The second objective was to determine whether cardenolide expression in these two host plants impacts mean A. nerii colony biomass (mg) and density. Cardenolide concentration (microgram/g) of A. curassavica in both aphid-treated leaves and opposite, herbivore-free leaves decreased initially in comparison with aphid-free controls, and then increased significantly with A. nerii density. Thus, A. curassavica responds to aphid herbivory initially with density-dependent phytochemical reduction, followed by induction of cardenolides to concentrations above aphid-free controls. In addition, mean cardenolide concentration of aphid-treated leaves was significantly higher than that of opposite, herbivore-free leaves. Therefore, A. curassavica induction is strongest in herbivore-damage tissue. Conversely, A. incarnata exhibited no such chemical response to aphid herbivory. Furthermore, neither host plant responded chemically to herbivore feeding duration time (days) or to the interaction between herbivore initial density and feeding duration time. There were also no significant differences in mean colony biomass or population density of A. nerii reared on high cardenolide (A. curassavica) and low cardenolide (A. incarnata) hosts.

  7. Mycorrhizae Alter Toxin Sequestration and Performance of Two Specialist Herbivores

    Directory of Open Access Journals (Sweden)

    Amanda R. Meier

    2018-04-01

    Full Text Available Multitrophic species interactions are shaped by both top-down and bottom-up factors. Belowground symbionts of plants, such as arbuscular mycorrhizal fungi (AMF, can alter the strength of these forces by altering plant phenotype. For example, AMF-mediated changes in foliar toxin and nutrient concentrations may influence herbivore growth and fecundity. In addition, many specialist herbivores sequester toxins from their host plants to resist natural enemies, and the extent of sequestration varies with host plant secondary chemistry. Therefore, by altering plant phenotype, AMF may affect both herbivore performance and their resistance to natural enemies. We examined how inoculation of plants with AMF influences toxin sequestration and performance of two specialist herbivores feeding upon four milkweed species (Asclepias incarnata, A. curassavica, A. latifolia, A. syriaca. We raised aphids (Aphis nerii and caterpillars (Danaus plexippus on plants for 6 days in a fully factorial manipulation of milkweed species and level of AMF inoculation (zero, medium, and high. We then assessed aphid and caterpillar sequestration of toxins (cardenolides and performance, and measured defensive and nutritive traits of control plants. Aphids and caterpillars sequestered higher concentrations of cardenolides from plants inoculated with AMF across all milkweed species. Aphid per capita growth rates and aphid body mass varied non-linearly with increasing AMF inoculum availability; across all milkweed species, aphids had the lowest performance under medium levels of AMF availability and highest performance under high AMF availability. In contrast, caterpillar survival varied strongly with AMF availability in a plant species-specific manner, and caterpillar growth was unaffected by AMF. Inoculation with AMF increased foliar cardenolide concentrations consistently among milkweed species, but altered aboveground biomasses and foliar phosphorous concentrations in a plant

  8. Host phenology and geography as drivers of differentiation in generalist fungal mycoparasites.

    Directory of Open Access Journals (Sweden)

    Alexandra Pintye

    Full Text Available The question as to why parasites remain generalist or become specialist is a key unresolved question in evolutionary biology. Ampelomyces spp., intracellular mycoparasites of powdery mildew fungi, which are themselves plant pathogens, are a useful model for studies of this issue. Ampelomyces is used for the biological control of mildew. Differences in mycohost phenology promote temporal isolation between sympatric Ampelomyces mycoparasites. Apple powdery mildew (APM causes spring epidemics, whereas other powdery mildew species on plants other than apple cause epidemics later in the season. This has resulted in genetic differentiation between APM and non-APM strains. It is unclear whether there is genetic differentiation between non-APM Ampelomyces lineages due to their specialization on different mycohosts. We used microsatellites to address this question and found no significant differentiation between non-APM Ampelomyces strains from different mycohosts or host plants, but strong differentiation between APM and non-APM strains. A geographical structure was revealed in both groups, with differences between European countries, demonstrating restricted dispersal at the continent scale and a high resolution for our markers. We found footprints of recombination in both groups, possibly more frequent in the APM cluster. Overall, Ampelomyces thus appears to be one of the rare genuine generalist pathogenic fungi able to parasitize multiple hosts in natural populations. It is therefore an excellent model for studying the evolution of pathogens towards a generalist rather than host-specific strategy, particularly in light of the tritrophic interaction between Ampelomyces mycoparasites, their powdery mildew fungal hosts and the mildew host plants.

  9. ASSESSING OF HERBIVOROUS AND BENEFICIAL INSECTS ON SWITCHGRASS IN UKRAINE.

    Science.gov (United States)

    Stefanovska, T; Kucherovska, S; Pisdlisnyuk, V

    2014-01-01

    A perennial switchgrass, (Panicum virgatum L.), (C4) that is native to North America has good potential for biomass production because of its wide geographic distribution and adaptability to diverse environmental conditions. Insects can significantly impact the yield and quality of biofuel crops. If switchgrass are to be grown on marginally arable land or in monoculture, it are likely to be plagued with herbivore pests and plant diseases at a rate that exceeds what would be expected if the plants were not stressed in this manner. This biofuel crop has been under evaluation for commercial growing in Ukraine for eight years. However, insect diversity and the potential impact of pests on biomass production of this feedstock have not been accessed yet. The objective of our study, started in 2011, is a survey of switch grass insects by trophic groups and determine species that have pest status at two sites in the Central part of Ukraine (Kiev and Poltava regions). In Poltava site we investigated the effect of nine varieties of switchgrass (lowland and upland) to insects' diversity. We assessed changes over time in the densities of major insects' trophic groups, identifying potential pests and natural enemies. Obtained results indicates that different life stages of herbivorous insects from Hymenoptera, Homoptera, Diptera and Coleoptera orders were present on switchgrass during the growing season. Our study results suggests that choice of variety has an impact on trophic groups' structure and number of insects from different orders on swicthgrass. Herbivores and beneficial insects were the only groups that showed significant differences across sampling dates. The highest population of herbivores insects we recorded on 'Alamo' variety for studied years, although herbivore diversity tended to increase on 'Shelter', 'Alamo' and 'Cave-in-Rock' during 2012 and 2013. 'Dacotah', 'Nebraska', 'Sunburst', 'Forestburg' and 'Carthage' showed the highest level of beneficial insects

  10. Root jasmonic acid synthesis and perception regulate folivore-induced shoot metabolites and increase Nicotiana attenuata resistance.

    Science.gov (United States)

    Fragoso, Variluska; Rothe, Eva; Baldwin, Ian T; Kim, Sang-Gyu

    2014-06-01

    While jasmonic acid (JA) signaling is widely accepted as mediating plant resistance to herbivores, and the importance of the roots in plant defenses is recently being recognized, the role of root JA in the defense of above-ground parts remains unstudied. To restrict JA impairment to the roots, we micrografted wildtype Nicotiana attenuata shoots to the roots of transgenic plants impaired in JA signaling and evaluated ecologically relevant traits in the glasshouse and in nature. Root JA synthesis and perception are involved in regulating nicotine production in roots. Strikingly, systemic root JA regulated local leaf JA and abscisic acid (ABA) concentrations, which were associated with differences in nicotine transport from roots to leaves via the transpiration stream. Root JA signaling also regulated the accumulation of other shoot metabolites; together these account for differences in resistance against a generalist, Spodoptera littoralis, and a specialist herbivore, Manduca sexta. In N. attenuata's native habitat, silencing root JA synthesis increased the shoot damage inflicted by Empoasca leafhoppers, which are able to select natural jasmonate mutants. Silencing JA perception in roots also increased damage by Tupiocoris notatus. We conclude that attack from above-ground herbivores recruits root JA signaling to launch the full complement of plant defense responses. © 2014 Max Planck Society. New Phytologist © 2014 New Phytologist Trust.

  11. Applying research to practice: generalist and specialist (visual ergonomics) consultancy.

    Science.gov (United States)

    Long, Jennifer; Long, Airdrie

    2012-01-01

    Ergonomics is a holistic discipline encompassing a wide range of special interest groups. The role of an ergonomics consultant is to provide integrated solutions to improve comfort, safety and productivity. In Australia, there are two types of consultants--generalists and specialists. Both have training in ergonomics but specialist knowledge may be the result of previous education or work experience. This paper presents three projects illustrating generalist and specialist (visual ergonomics) consultancy: development of a vision screening protocol, solving visual discomfort in an office environment and solving postural discomfort in heavy industry. These case studies demonstrate how multiple ergonomics consultants may work together to solve ergonomics problems. It also describes some of the challenges for consultants, for those engaging their services and for the ergonomics profession, e.g. recognizing the boundaries of expertise, sharing information with business competitors, the costs-benefits of engaging multiple consultants and the risk of fragmentation of ergonomics knowledge and solutions. Since ergonomics problems are often multifaceted, ergonomics consultants should have a solid grounding in all domains of ergonomics, even if they ultimately only practice in one specialty or domain. This will benefit the profession and ensure that ergonomics remains a holistic discipline.

  12. Herbivores modify selection on plant functional traits in a temperate rainforest understory.

    Science.gov (United States)

    Salgado-Luarte, Cristian; Gianoli, Ernesto

    2012-08-01

    There is limited evidence regarding the adaptive value of plant functional traits in contrasting light environments. It has been suggested that changes in these traits in response to light availability can increase herbivore susceptibility. We tested the adaptive value of plant functional traits linked with carbon gain in contrasting light environments and also evaluated whether herbivores can modify selection on these traits in each light environment. In a temperate rainforest, we examined phenotypic selection on functional traits in seedlings of the pioneer tree Aristotelia chilensis growing in sun (canopy gap) and shade (forest understory) and subjected to either natural herbivory or herbivore exclusion. We found differential selection on functional traits depending on light environment. In sun, there was positive directional selection on photosynthetic rate and relative growth rate (RGR), indicating that selection favors competitive ability in a high-resource environment. Seedlings with high specific leaf area (SLA) and intermediate RGR were selected in shade, suggesting that light capture and conservative resource use are favored in the understory. Herbivores reduced the strength of positive directional selection acting on SLA in shade. We provide the first demonstration that natural herbivory rates can change the strength of selection on plant ecophysiological traits, that is, attributes whose main function is resource uptake. Research addressing the evolution of shade tolerance should incorporate the selective role of herbivores.

  13. Landscape-scale analyses suggest both nutrient and antipredator advantages to Serengeti herbivore hotspots

    NARCIS (Netherlands)

    Anderson, T. Michael; Hopcraft, J. Grant C.; Eby, Stephanie; Ritchie, Mark; Grace, James B.; Olff, Han; Young, T.P.

    Mechanistic explanations of herbivore spatial distribution have focused largely on either resource-related (bottom-up) or predation-related (top-down) factors. We studied direct and indirect influences on the spatial distributions of Serengeti herbivore hotspots, defined as temporally stable areas

  14. Assessing the consequences of global change for forest disturbance from herbivores and pathogens.

    Science.gov (United States)

    Ayres, M P; Lombardero, M J

    2000-11-15

    Herbivores and pathogens impact the species composition, ecosystem function, and socioeconomic value of forests. Herbivores and pathogens are an integral part of forests, but sometimes produce undesirable effects and a degradation of forest resources. In the United States, a few species of forest pests routinely have significant impacts on up to 20 million ha of forest with economic costs that probably exceed $1 billion/year. Climatic change could alter patterns of disturbance from herbivores and pathogens through: (1) direct effects on the development and survival of herbivores and pathogens; (2) physiological changes in tree defenses; and (3) indirect effects from changes in the abundance of natural enemies (e.g. parasitoids of insect herbivores), mutualists (e.g. insect vectors of tree pathogens), and competitors. Because of their short life cycles, mobility, reproductive potential, and physiological sensitivity to temperature, even modest climate change will have rapid impacts on the distribution and abundance of many forest insects and pathogens. We identify 32 syndromes of biotic disturbance in North American forests that should be carefully evaluated for their responses to climate change: 15 insect herbivores, browsing mammals; 12 pathogens; 1 plant parasite; and 3 undiagnosed patterns of forest decline. It is probable that climatic effects on some herbivores and pathogens will impact on biodiversity, recreation, property value, forest industry, and even water quality. Some scenarios are beneficial (e.g. decreased snow cover may increase winter mortality of some insect pests), but many are detrimental (e.g. warming tends to accelerate insect development rate and facilitate range expansions of pests and climate change tends to produce a mismatch between mature trees and their environment, which can increase vulnerability to herbivores and pathogens). Changes in forest disturbance can produce feedback to climate through affects on water and carbon flux in

  15. Effect of woodlots on thrips density in leek fields: a landscape analysis

    NARCIS (Netherlands)

    Belder, den E.; Elderson, J.; Brink, van den W.J.; Schelling, G.C.

    2002-01-01

    The effect of woodlots, natural areas and agricultural land in the landscape on a generalist herbivore insect species in cropland was investigated. The abundance of onion thrips (Thrips tabaci) was compared in leek (Allium porrum) fields in 43 agricultural landscape plots of different sizes in The

  16. Trophic shifts of a generalist consumer in response to resource pulses.

    Directory of Open Access Journals (Sweden)

    Pei-Jen L Shaner

    2011-03-01

    Full Text Available Trophic shifts of generalist consumers can have broad food-web and biodiversity consequences through altered trophic flows and vertical diversity. Previous studies have used trophic shifts as indicators of food-web responses to perturbations, such as species invasion, and spatial or temporal subsidies. Resource pulses, as a form of temporal subsidies, have been found to be quite common among various ecosystems, affecting organisms at multiple trophic levels. Although diet switching of generalist consumers in response to resource pulses is well documented, few studies have examined if the switch involves trophic shifts, and if so, the directions and magnitudes of the shifts. In this study, we used stable carbon and nitrogen isotopes with a Bayesian multi-source mixing model to estimate proportional contributions of three trophic groups (i.e. producer, consumer, and fungus-detritivore to the diets of the White-footed mouse (Peromyscus leucopus receiving an artificial seed pulse or a naturally-occurring cicadas pulse. Our results demonstrated that resource pulses can drive trophic shifts in the mice. Specifically, the producer contribution to the mouse diets was increased by 32% with the seed pulse at both sites examined. The consumer contribution to the mouse diets was also increased by 29% with the cicadas pulse in one of the two grids examined. However, the pattern was reversed in the second grid, with a 13% decrease in the consumer contribution with the cicadas pulse. These findings suggest that generalist consumers may play different functional roles in food webs under perturbations of resource pulses. This study provides one of the few highly quantitative descriptions on dietary and trophic shifts of a key consumer in forest food webs, which may help future studies to form specific predictions on changes in trophic interactions following resource pulses.

  17. Invertebrate herbivory on floating-leaf macrophytes at the northeast of Argentina: should the damage be taken into account in estimations of plant biomass?

    Science.gov (United States)

    Martínez, Fedra S; Franceschini, Celeste

    2018-01-01

    We assessed the damage produced by invertebrate herbivores per leaf lamina and per m2 of populations floating-leaf macrophytes of Neotropical wetlands in the growth and decay periods, and assessed if the damage produced by the herbivores should be taken into account in the estimations of plant biomass of these macrophytes or not. The biomass removed per lamina and per m2 was higher during the growth period than in decay period in Nymphoides indica and Hydrocleys nymphoides, while Nymphaea prolifera had low values of herbivory in growth period. During decay period this plant is only present as vegetative propagules. According to the values of biomass removed per m2 of N. indica, underestimation up to 17.69% should be produced in cases that herbivory do not should be taking account to evaluate these plant parameters on this macrophyte. Therefore, for the study of biomass and productivity in the study area, we suggest the use of corrected lamina biomass after estimating the biomass removed by herbivores on N. indica. The values of damage in N. indica emphasize the importance of this macrophyte as a food resource for invertebrate herbivores in the trophic networks of the Neotropical wetlands.

  18. An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Suen, Garret; Barry, Kerrie; Goodwin, Lynne; Scott, Jarrod; Aylward, Frank; Adams, Sandra; Pinto-Tomas, Adrian; Foster, Clifton; Pauly, Markus; Weimer, Paul; Bouffard, Pascal; Li, Lewyn; Osterberger, Jolene; Harkins, Timothy; Slater, Steven; Donohue, Timothy; Currie, Cameron; Tringe, Susannah G.

    2010-09-23

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome?s predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  19. An insect herbivore microbiome with high plant biomass-degrading capacity.

    Directory of Open Access Journals (Sweden)

    Garret Suen

    2010-09-01

    Full Text Available Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini, which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  20. Salicylic acid, a plant defense hormone, is specifically secreted by a molluscan herbivore.

    Science.gov (United States)

    Kästner, Julia; von Knorre, Dietrich; Himanshu, Himanshu; Erb, Matthias; Baldwin, Ian T; Meldau, Stefan

    2014-01-01

    Slugs and snails are important herbivores in many ecosystems. They differ from other herbivores by their characteristic mucus trail. As the mucus is secreted at the interface between the plants and the herbivores, its chemical composition may play an essential role in plant responses to slug and snail attack. Based on our current knowledge about host-manipulation strategies employed by pathogens and insects, we hypothesized that mollusks may excrete phytohormone-like substances into their mucus. We therefore screened locomotion mucus from thirteen molluscan herbivores for the presence of the plant defense hormones jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA). We found that the locomotion mucus of one slug, Deroceras reticulatum, contained significant amounts of SA, a plant hormone that is known to induce resistance to pathogens and to suppress plant immunity against herbivores. None of the other slugs and snails contained SA or any other hormone in their locomotion mucus. When the mucus of D. reticulatum was applied to wounded leaves of A. thaliana, the promotor of the SA-responsive gene pathogenesis related 1 (PR1) was activated, demonstrating the potential of the mucus to regulate plant defenses. We discuss the potential ecological, agricultural and medical implications of this finding.

  1. Salicylic acid, a plant defense hormone, is specifically secreted by a molluscan herbivore.

    Directory of Open Access Journals (Sweden)

    Julia Kästner

    Full Text Available Slugs and snails are important herbivores in many ecosystems. They differ from other herbivores by their characteristic mucus trail. As the mucus is secreted at the interface between the plants and the herbivores, its chemical composition may play an essential role in plant responses to slug and snail attack. Based on our current knowledge about host-manipulation strategies employed by pathogens and insects, we hypothesized that mollusks may excrete phytohormone-like substances into their mucus. We therefore screened locomotion mucus from thirteen molluscan herbivores for the presence of the plant defense hormones jasmonic acid (JA, salicylic acid (SA and abscisic acid (ABA. We found that the locomotion mucus of one slug, Deroceras reticulatum, contained significant amounts of SA, a plant hormone that is known to induce resistance to pathogens and to suppress plant immunity against herbivores. None of the other slugs and snails contained SA or any other hormone in their locomotion mucus. When the mucus of D. reticulatum was applied to wounded leaves of A. thaliana, the promotor of the SA-responsive gene pathogenesis related 1 (PR1 was activated, demonstrating the potential of the mucus to regulate plant defenses. We discuss the potential ecological, agricultural and medical implications of this finding.

  2. Herbivore grazing—or trampling? Trampling effects by a large ungulate in cold high- latitude ecosystems

    OpenAIRE

    Heggenes, Jan; Odland, Arvid; Chevalier, Tomas; Ahlberg, Jörgen; Berg, Amanda; Larsson, Håkan; Bjerketvedt, Dag Kjartan

    2017-01-01

    Mammalian herbivores have important top-down effects on ecological processes and landscapes by generating vegetation changes through grazing and trampling. For free-ranging herbivores on large landscapes, trampling is an important ecological factor. However, whereas grazing is widely studied, low-intensity trampling is rarely studied and quantified. The cold-adapted northern tundra reindeer (Rangifer tarandus) is a wide-ranging keystone herbivore in large open alpine and Arctic ecosystems. Re...

  3. Herbivore grazing?or trampling? Trampling effects by a large ungulate in cold high?latitude ecosystems

    OpenAIRE

    Heggenes, Jan; Odland, Arvid; Chevalier, Tomas; Ahlberg, J?rgen; Berg, Amanda; Larsson, H?kan; Bjerketvedt, Dag K.

    2017-01-01

    Mammalian herbivores have important top-down effects on ecological processes and landscapes by generating vegetation changes through grazing and trampling. For free-ranging herbivores on large landscapes, trampling is an important ecological factor. However, whereas grazing is widely studied, low-intensity trampling is rarely studied and quantified. The cold-adapted northern tundra reindeer (Rangifer tarandus) is a wide-ranging keystone herbivore in large open alpine and Arctic ecosystems. Re...

  4. Leaf Colour as a Signal of Chemical Defence to Insect Herbivores in Wild Cabbage (Brassica oleracea.

    Directory of Open Access Journals (Sweden)

    Jonathan P Green

    Full Text Available Leaf colour has been proposed to signal levels of host defence to insect herbivores, but we lack data on herbivory, leaf colour and levels of defence for wild host populations necessary to test this hypothesis. Such a test requires measurements of leaf spectra as they would be sensed by herbivore visual systems, as well as simultaneous measurements of chemical defences and herbivore responses to leaf colour in natural host-herbivore populations. In a large-scale field survey of wild cabbage (Brassica oleracea populations, we show that variation in leaf colour and brightness, measured according to herbivore spectral sensitivities, predicts both levels of chemical defences (glucosinolates and abundance of specialist lepidopteran (Pieris rapae and hemipteran (Brevicoryne brassicae herbivores. In subsequent experiments, P. rapae larvae achieved faster growth and greater pupal mass when feeding on plants with bluer leaves, which contained lower levels of aliphatic glucosinolates. Glucosinolate-mediated effects on larval performance may thus contribute to the association between P. rapae herbivory and leaf colour observed in the field. However, preference tests found no evidence that adult butterflies selected host plants based on leaf coloration. In the field, B. brassicae abundance varied with leaf brightness but greenhouse experiments were unable to identify any effects of brightness on aphid preference or performance. Our findings suggest that although leaf colour reflects both levels of host defences and herbivore abundance in the field, the ability of herbivores to respond to colour signals may be limited, even in species where performance is correlated with leaf colour.

  5. Generalist solutions to complex problems: generating practice-based evidence--the example of managing multi-morbidity.

    Science.gov (United States)

    Reeve, Joanne; Blakeman, Tom; Freeman, George K; Green, Larry A; James, Paul A; Lucassen, Peter; Martin, Carmel M; Sturmberg, Joachim P; van Weel, Chris

    2013-08-07

    A growing proportion of people are living with long term conditions. The majority have more than one. Dealing with multi-morbidity is a complex problem for health systems: for those designing and implementing healthcare as well as for those providing the evidence informing practice. Yet the concept of multi-morbidity (the presence of >2 diseases) is a product of the design of health care systems which define health care need on the basis of disease status. So does the solution lie in an alternative model of healthcare? Strengthening generalist practice has been proposed as part of the solution to tackling multi-morbidity. Generalism is a professional philosophy of practice, deeply known to many practitioners, and described as expertise in whole person medicine. But generalism lacks the evidence base needed by policy makers and planners to support service redesign. The challenge is to fill this practice-research gap in order to critically explore if and when generalist care offers a robust alternative to management of this complex problem. We need practice-based evidence to fill this gap. By recognising generalist practice as a 'complex intervention' (intervening in a complex system), we outline an approach to evaluate impact using action-research principles. We highlight the implications for those who both commission and undertake research in order to tackle this problem. Answers to the complex problem of multi-morbidity won't come from doing more of the same. We need to change systems of care, and so the systems for generating evidence to support that care. This paper contributes to that work through outlining a process for generating practice-based evidence of generalist solutions to the complex problem of person-centred care for people with multi-morbidity.

  6. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities

    NARCIS (Netherlands)

    Kant, M.R.; Jonckheere, W.; Knegt, B.; Lemos, F.; Liu, J.; Schimmel, B.C.J.; Villarroel, C.A.; Ataide, L.M.S.; Dermauw, W.; Glas, J.J.; Egas, M.; Janssen, A.; Van Leeuwen, T.; Schuurink, R.C.; Sabelis, M.W.; Alba, J.M.

    2015-01-01

    BACKGROUND: Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their

  7. Plant reproductive allocation predicts herbivore dynamics across spatial and temporal scales.

    Science.gov (United States)

    Miller, Tom E X; Tyre, Andrew J; Louda, Svata M

    2006-11-01

    Life-history theory suggests that iteroparous plants should be flexible in their allocation of resources toward growth and reproduction. Such plasticity could have consequences for herbivores that prefer or specialize on vegetative versus reproductive structures. To test this prediction, we studied the response of the cactus bug (Narnia pallidicornis) to meristem allocation by tree cholla cactus (Opuntia imbricata). We evaluated the explanatory power of demographic models that incorporated variation in cactus relative reproductive effort (RRE; the proportion of meristems allocated toward reproduction). Field data provided strong support for a single model that defined herbivore fecundity as a time-varying, increasing function of host RRE. High-RRE plants were predicted to support larger insect populations, and this effect was strongest late in the season. Independent field data provided strong support for these qualitative predictions and suggested that plant allocation effects extend across temporal and spatial scales. Specifically, late-season insect abundance was positively associated with interannual changes in cactus RRE over 3 years. Spatial variation in insect abundance was correlated with variation in RRE among five cactus populations across New Mexico. We conclude that plant allocation can be a critical component of resource quality for insect herbivores and, thus, an important mechanism underlying variation in herbivore abundance across time and space.

  8. A Generalist Protist Predator Enables Coexistence in Multitrophic Predator-Prey Systems Containing a Phage and the Bacterial Predator Bdellovibrio

    Directory of Open Access Journals (Sweden)

    Julia Johnke

    2017-10-01

    Full Text Available Complex ecosystems harbor multiple predators and prey species whose direct and indirect interactions are under study. In particular, the combined effects of predator diversity and resource preference on prey removal are not known. To understand the effect of interspecies interactions, combinations of micro-predators—i.e., protists (generalists, predatory bacteria (semi-specialists, and phages (specialists—and bacterial prey were tracked over a 72-h period in miniature membrane bioreactors. While specialist predators alone drove their preferred prey to extinction, the inclusion of a generalist resulted in uniform losses among prey species. Most importantly, presence of a generalist predator enabled coexistence of all predators and prey. As the generalist predator also negatively affected the other predators, we suggest that resource partitioning between predators and the constant availability of resources for bacterial growth due to protist predation stabilizes the system and keeps its diversity high. The appearance of resistant prey strains and subsequent evolution of specialist predators unable to infect the ancestral prey implies that multitrophic communities are able to persist and stabilize themselves. Interestingly, the appearance of BALOs and phages unable to infect their prey was only observed for the BALO or phage in the absence of additional predators or prey species indicating that competition between predators might influence coevolutionary dynamics.

  9. Individual specialization to non-optimal hosts in a polyphagous marine invertebrate herbivore.

    Directory of Open Access Journals (Sweden)

    Finn A Baumgartner

    Full Text Available Factors determining the degree of dietary generalism versus specialism are central in ecology. Species that are generalists at the population level may in fact be composed of specialized individuals. The optimal diet theory assumes that individuals choose diets that maximize fitness, and individual specialization may occur if individuals' ability to locate, recognize, and handle different food types differ. We investigate if individuals of the marine herbivorous slug Elysia viridis, which co-occur at different densities on several green macroalgal species in the field, are specialized to different algal hosts. Individual slugs were collected from three original algal host species (Cladophora sericea, Cladophora rupestris and Codium fragile in the field, and short-term habitat choice and consumption, as well as long-term growth (proxy for fitness, on four algal diet species (the original algal host species and Chaetomorpha melagonium were studied in laboratory experiments. Nutritional (protein, nitrogen, and carbon content and morphological (dry weight, and cell/utricle volume algal traits were also measured to investigate if they correlated with the growth value of the different algal diets. E. viridis individuals tended to choose and consume algal species that were similar to their original algal host. Long-term growth of E. viridis, however, was mostly independent of original algal host, as all individuals reached a larger size on the non-host C. melagonium. E. viridis growth was positively correlated to algal cell/utricle volume but not to any of the other measured algal traits. Because E. viridis feeds by piercing individual algal cells, the results indicate that slugs may receive more cytoplasm, and thus more energy per unit time, on algal species with large cells/utricles. We conclude that E. viridis individuals are specialized on different hosts, but host choice in natural E. viridis populations is not determined by the energetic value of

  10. Experimental effects of herbivore density on above-ground plant biomass in an alpine grassland ecosystem

    OpenAIRE

    Austrheim, Gunnar; Speed, James David Mervyn; Martinsen, Vegard; Mulder, Jan; Mysterud, Atle

    2014-01-01

    Herbivores may increase or decrease aboveground plant productivity depending on factors such as herbivore density and habitat productivity. The grazing optimization hypothesis predicts a peak in plant production at intermediate herbivore densities, but has rarely been tested experimentally in an alpine field setting. In an experimental design with three densities of sheep (high, low, and no sheep), we harvested aboveground plant biomass in alpine grasslands prior to treatment and after five y...

  11. Aboveground vertebrate and invertebrate herbivore impacts on net N mineralization in subalpine grasslands

    Science.gov (United States)

    Anita C. Risch; Martin Schutz; Martijn L. Vandegehuchte; Wim H. van der Putten; Henk Duyts; Ursina Raschein; Dariusz J. Gwiazdowicz; Matt D. Busse; Deborah S. Page-Dumroese; Stephan Zimmerman

    2015-01-01

    Aboveground herbivores have strong effects on grassland nitrogen (N) cycling. They can accelerate or slow down soil net N mineralization depending on ecosystem productivity and grazing intensity. Yet, most studies only consider either ungulates or invertebrate herbivores, but not the combined effect of several functionally different vertebrate and invertebrate...

  12. Trophic Interactions during Primary Succession: Herbivores Slow a Plant Reinvasion at Mount St. Helens.

    Science.gov (United States)

    Fagan, William F; Bishop, John G

    2000-02-01

    Lupines (Lupinus lepidus var. lobbii), the earliest plant colonists of primary successional habitats at Mount St. Helens, were expected to strongly affect successional trajectories through facilitative effects. However, their effects remain localized because initially high rates of reinvasive spread were short lived, despite widespread habitat availability. We experimentally tested whether insect herbivores, by reducing plant growth and fecundity at the edge of the expanding lupine population, could curtail the rate of reinvasion and whether those herbivores had comparable impacts in the older, more successionally advanced core region. We found that removing insect herbivores increased both the areal growth of individual lupine plants and the production of new plants in the edge region, thereby accelerating the lupine's intrinsic rate of increase at the front of the lupine reinvasion. We found no such impacts of herbivory in the core region, where low plant quality or a complex of recently arrived natural enemies may hold herbivores in check. In the context of invasion theory, herbivore-mediated decreases in lupine population growth rate in the edge region translate into decreased rates of lupine spread, which we quantify here using diffusion models. In the Mount St. Helens system, decreased rate of lupine reinvasion will result in reductions in rates of soil formation, nitrogen input, and entrapment of seeds and detritus that are likely to postpone or alter trajectories of primary succession. If the type of spatial subtleties in herbivore effects we found here are common, with herbivory focused on the edge of an expanding plant population and suppressed or ineffective in the larger, denser central region (where the plants might be more readily noticed and studied), then insect herbivores may have stronger impacts on the dynamics of primary succession and plant invasions than previously recognized.

  13. Mechanisms and ecological implications of plant-mediated interactions between belowground and aboveground insect herbivores

    NARCIS (Netherlands)

    Papadopoulou, G.V.; Dam, N.M. van

    2017-01-01

    Plant-mediated interactions between belowground (BG) and aboveground (AG) herbivores have received increasing interest recently. However, the molecular mechanisms underlying ecological consequences of BG–AG interactions are not fully clear yet. Herbivore-induced plant defenses are complex and

  14. Information needs of generalists and specialists using online best-practice algorithms to answer clinical questions.

    Science.gov (United States)

    Cook, David A; Sorensen, Kristi J; Linderbaum, Jane A; Pencille, Laurie J; Rhodes, Deborah J

    2017-07-01

    To better understand clinician information needs and learning opportunities by exploring the use of best-practice algorithms across different training levels and specialties. We developed interactive online algorithms (care process models [CPMs]) that integrate current guidelines, recent evidence, and local expertise to represent cross-disciplinary best practices for managing clinical problems. We reviewed CPM usage logs from January 2014 to June 2015 and compared usage across specialty and provider type. During the study period, 4009 clinicians (2014 physicians in practice, 1117 resident physicians, and 878 nurse practitioners/physician assistants [NP/PAs]) viewed 140 CPMs a total of 81 764 times. Usage varied from 1 to 809 views per person, and from 9 to 4615 views per CPM. Residents and NP/PAs viewed CPMs more often than practicing physicians. Among 2742 users with known specialties, generalists ( N  = 1397) used CPMs more often (mean 31.8, median 7 views) than specialists ( N  = 1345; mean 6.8, median 2; P  < .0001). The topics used by specialists largely aligned with topics within their specialties. The top 20% of available CPMs (28/140) collectively accounted for 61% of uses. In all, 2106 clinicians (52%) returned to the same CPM more than once (average 7.8 views per topic; median 4, maximum 195). Generalists revisited topics more often than specialists (mean 8.8 vs 5.1 views per topic; P  < .0001). CPM usage varied widely across topics, specialties, and individual clinicians. Frequently viewed and recurrently viewed topics might warrant special attention. Specialists usually view topics within their specialty and may have unique information needs. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. Plant protein and secondary metabolites influence diet selection in a mammalian specialist herbivore

    Science.gov (United States)

    Amy C. Ulappa; Rick G. Kelsey; Graham G. Frye; Janet L. Rachlow; LIsa A. Shipley; Laura Bond; Xinzhu Pu; Jennifer Sorensen. Forbey

    2014-01-01

    For herbivores, nutrient intake is limited by the relatively low nutritional quality of plants and high concentrations of potentially toxic defensive compounds (plant secondary metabolites [PSMs]) produced by many plants. In response to phytochemical challenges, some herbivores selectively forage on plants with higher nutrient and lower PSM concentrations relative to...

  16. Termites, vertebrate herbivores, and the fruiting success of Acacia drepanolobium.

    Science.gov (United States)

    Brody, Alison K; Palmer, Todd M; Fox-Dobbs, Kena; Doak, Dan F

    2010-02-01

    In African savannas, vertebrate herbivores are often identified as key determinants of plant growth, survivorship, and reproduction. However, plant reproduction is likely to be the product of responses to a suite of abiotic and biotic factors, including nutrient availability and interactions with antagonists and mutualists. In a relatively simple system, we examined the role of termites (which act as ecosystem engineers--modifying physical habitat and creating islands of high soil fertility), vertebrate herbivores, and symbiotic ants, on the fruiting success of a dominant plant, Acacia drepanolobium, in East African savannas. Using observational data, large-scale experimental manipulations, and analysis of foliar N, we found that Acacia drepanolobium trees growing at the edge of termite mounds were more likely to reproduce than those growing farther away, in off-mound soils. Although vertebrate herbivores preferentially used termite mounds as demonstrated by dung deposits, long-term exclusion of mammalian grazers did not significantly reduce A. drepanolobium fruit production. Leaf N was significantly greater in trees growing next to mounds than in those growing farther away, and this pattern was unaffected by exclusion of vertebrates. Thus, soil enrichment by termites, rather than through dung and urine deposition by large herbivores, is of primary importance to fruit production near mounds. Across all mound-herbivore treatment combinations, trees that harbored Crematogaster sjostedti were more likely to fruit than those that harbored one of the other three ant species. Although C. sjostedti is less aggressive than the other ants, it tends to inhabit large, old trees near termite mounds which are more likely to fruit than smaller ones. Termites play a key role in generating patches of nutrient-rich habitat important to the reproductive success of A. drepanolobium in East African savannas. Enhanced nutrient acquisition from termite mounds appears to allow plants to

  17. Information use by the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae), a specialised natural enemy of herbivorous spider mites

    NARCIS (Netherlands)

    Boer, de J.G.; Dicke, M.

    2005-01-01

    Plants can respond to infestation by herbivores with the emission of specific herbivore-induced plant volatiles. Many carnivorous arthropods that feed on herbivorous prey use these volatiles to locate their prey. Despite the growing amount of research papers on the interactions in tritrophic

  18. The balance between generalists and specialists in the Medialogy education

    Directory of Open Access Journals (Sweden)

    Rolf Nordahl

    2012-10-01

    Full Text Available In this paper we discuss the tradeoff between educating specialists and generalists in the Medialogy Master education at Aalborg University in Copenhagen. The Medialogy education was established in 2002 with the goal to combine technology and creativity in designing, implementing and evaluating media technology applications. The curriculum of the education has been through several revisions, the last of which, discussed in this paper, was performed during the Spring 2011.

  19. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore

    OpenAIRE

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-01-01

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affe...

  20. A below-ground herbivore shapes root defensive chemistry in natural plant populations

    OpenAIRE

    Huber, Meret; Bont, Zoe; Fricke, Julia; Brillatz, Th?o; Aziz, Zohra; Gershenzon, Jonathan; Erb, Matthias

    2016-01-01

    Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root ...

  1. Elevated CO{sub 2} levels and herbivore damage alter host plant preferences

    Energy Technology Data Exchange (ETDEWEB)

    Agrell, J. [Lund Univ., Dept. of Animal Ecology, Lund (Sweden); Anderson, Peter, Swedish Univ. of Agricultural Sciences, Dept. of Crop Sciences, Alnarp (SE)); Oleszek, W.; Stochmal, Anna [Inst. of Soil Science and Plant Cultivation, Dept. of Biochemistry, Pulawy (Poland); Agrell, Cecilia [Lund Univ., Dept. of Chemical Ecology and Ecotoxicology, Lund (Sweden)

    2006-01-01

    Interactions between the moth Spodoptera littoralis and two of its host plants, alfalfa (Medicago sativa) and cotton (Gossypium hirsutum) were examined, using plants grown under ambient (350 ppm) and elevated (700 ppm) CO{sub 2} conditions. To determine strength and effects of herbivore-induced responses assays were performed with both undamaged (control) and herbivore damaged plants. CO{sub 2} and damage effects on larval host plant preferences were determined through dual-choice bioassays. In addition, larvae were reared from hatching to pupation on experimental foliage to examine effects on larval growth and development. When undamaged plants were used S. littoralis larvae in consumed more cotton than alfalfa, and CO{sub 2} enrichment caused a reduction in the preference for cotton. With damaged plants larvae consumed equal amounts of the two plant species (ambient CO{sub 2} conditions), but CO{sub 2} enrichment strongly shifted preferences towards cotton, which was then consumed three times more than alfalfa. Complementary assays showed that elevated CO{sub 2} levels had no effect on the herbivore-induced responses of cotton, whereas those of alfalfa were significantly increased. Larval growth was highest for larvae fed undamaged cotton irrespectively of CO{sub 2} level, and lowest for larvae on damaged alfalfa from the high CO{sub 2} treatment. Development time increased on damaged cotton irrespectively of CO{sub 2} treatment, and on damaged alfalfa in the elevated CO{sub 2} treatment. (au) These results demonstrate that elevated CO2 levels can cause insect herbivores to alter host plant preferences, and that effects on herbivore-induced responses may be a key mechanism behind these processes. Furthermore, since the insects were shown to avoid foliage that reduced their physiological performance, our data suggest that behavioural host plant shifts result in partial escape from negative consequences of feeding on high CO2 foliage. Thus, CO2 enrichment can alter

  2. Temporal patterns in the abundance and species composition of spiders on host plants of the invasive moth Epiphyas postvittana

    Science.gov (United States)

    Generalist predators such as spiders may help mitigate the spread and impact of exotic herbivores. The lack of prey specificity and long generation times of spiders may allow them to persist when pests are scarce, and to limit the growth of pest populations before they reach damaging levels. We exam...

  3. Within-population isotopic niche variability in savanna mammals: disparity between carnivores and herbivores

    Directory of Open Access Journals (Sweden)

    Daryl eCodron

    2016-02-01

    Full Text Available Large mammal ecosystems have relatively simple food webs, usually comprising three – and sometimes only two – trophic links. Since many syntopic species from the same trophic level therefore share resources, dietary niche partitioning features prominently within these systems. In African and other subtropical savannas, stable carbon isotopes readily distinguish between herbivore species for which foliage and other parts of dicot plants (13C-depleted C3 vegetation are the primary resource (browsers and those for which grasses (13C-enriched C4 vegetation are staples (grazers. Similarly, carbon isotopes distinguish between carnivore diets that may be richer in either browser, grazer, or intermediate-feeding prey. Here, we investigate levels of carbon and nitrogen isotopic niche variation and niche partitioning within populations (or species of carnivores and herbivores from South African savannas. We emphasize predictable differences in within-population trends across trophic levels: we expect that herbivore populations, which require more foraging effort due to higher intake requirements, are far less likely to display within-population resource partitioning than carnivore populations. Our results reveal generally narrower isotopic niche breadths in herbivore than carnivore populations, but more importantly we find lower levels of isotopic differentiation across individuals within herbivore species. While these results offer some support for our general hypothesis, the current paucity of isotopic data for African carnivores limits our ability to test the complete set of predictions arising from our hypothesis. Nevertheless, given the different ecological and ecophysiological constraints to foraging behaviour within each trophic level, comparisons across carnivores and herbivores, which are possible within such simplified foodwebs, make these systems ideal for developing a process-based understanding of conditions underlying the evolution of

  4. Responses of tree and insect herbivores to elevated nitrogen inputs: A meta-analysis

    Science.gov (United States)

    Li, Furong; Dudley, Tom L.; Chen, Baoming; Chang, Xiaoyu; Liang, Liyin; Peng, Shaolin

    2016-11-01

    Increasing atmospheric nitrogen (N) inputs have the potential to alter terrestrial ecosystem function through impacts on plant-herbivore interactions. The goal of our study is to search for a general pattern in responses of tree characteristics important for herbivores and insect herbivorous performance to elevated N inputs. We conducted a meta-analysis based on 109 papers describing impacts of nitrogen inputs on tree characteristics and 16 papers on insect performance. The differences in plant characteristics and insect performance between broadleaves and conifers were also explored. Tree aboveground biomass, leaf biomass and leaf N concentration significantly increased under elevated N inputs. Elevated N inputs had no significantly overall effect on concentrations of phenolic compounds and lignin but adversely affected tannin, as defensive chemicals for insect herbivores. Additionally, the overall effect of insect herbivore performance (including development time, insect biomass, relative growth rate, and so on) was significantly increased by elevated N inputs. According to the inconsistent responses between broadleaves and conifers, broadleaves would be more likely to increase growth by light interception and photosynthesis rather than producing more defensive chemicals to elevated N inputs by comparison with conifers. Moreover, the overall carbohydrate concentration was significantly reduced by 13.12% in broadleaves while increased slightly in conifers. The overall tannin concentration decreased significantly by 39.21% in broadleaves but a 5.8% decrease in conifers was not significant. The results of the analysis indicated that elevated N inputs would provide more food sources and ameliorate tree palatability for insects, while the resistance of trees against their insect herbivores was weakened, especially for broadleaves. Thus, global forest insect pest problems would be aggravated by elevated N inputs. As N inputs continue to rise in the future, forest

  5. Migratory herbivorous waterfowl track satellite-derived green wave index.

    Directory of Open Access Journals (Sweden)

    Mitra Shariatinajafabadi

    Full Text Available Many migrating herbivores rely on plant biomass to fuel their life cycles and have adapted to following changes in plant quality through time. The green wave hypothesis predicts that herbivorous waterfowl will follow the wave of food availability and quality during their spring migration. However, testing this hypothesis is hampered by the large geographical range these birds cover. The satellite-derived normalized difference vegetation index (NDVI time series is an ideal proxy indicator for the development of plant biomass and quality across a broad spatial area. A derived index, the green wave index (GWI, has been successfully used to link altitudinal and latitudinal migration of mammals to spatio-temporal variations in food quality and quantity. To date, this index has not been used to test the green wave hypothesis for individual avian herbivores. Here, we use the satellite-derived GWI to examine the green wave hypothesis with respect to GPS-tracked individual barnacle geese from three flyway populations (Russian n = 12, Svalbard n = 8, and Greenland n = 7. Data were collected over three years (2008-2010. Our results showed that the Russian and Svalbard barnacle geese followed the middle stage of the green wave (GWI 40-60%, while the Greenland geese followed an earlier stage (GWI 20-40%. Despite these differences among geese populations, the phase of vegetation greenness encountered by the GPS-tracked geese was close to the 50% GWI (i.e. the assumed date of peak nitrogen concentration, thereby implying that barnacle geese track high quality food during their spring migration. To our knowledge, this is the first time that the migration of individual avian herbivores has been successfully studied with respect to vegetation phenology using the satellite-derived GWI. Our results offer further support for the green wave hypothesis applying to long-distance migrants on a larger scale.

  6. The importance of herbivore interactions for the dynamics of African savanna woodlands : an hypothesis

    NARCIS (Netherlands)

    Van de Koppel, J; Prins, HHT

    Current hypotheses to explain dynamic transitions between savanna grasslands and woodlands in Africa focus on grazing by elephant or the influence of fire. Using a simple mathematical model, this paper argues that interactions between small herbivores such as impala or buffalo and large herbivores

  7. Nitrogen Supply Influences Herbivore-Induced Direct and Indirect Defenses and Transcriptional Responses in Nicotiana attenuata[w

    Science.gov (United States)

    Lou, Yonggen; Baldwin, Ian T.

    2004-01-01

    Although nitrogen (N) availability is known to alter constitutive resistance against herbivores, its influence on herbivore-induced responses, including signaling pathways, transcriptional signatures, and the subsequently elicited chemical defenses is poorly understood. We used the native tobacco, Nicotiana attenuata, which germinates in the postfire environment and copes with large changes in soil N during postfire succession, to compare a suite of Manduca sexta- and elicitor-induced responses in plants grown under high- and low-N (LN) supply rates. LN supply decreased relative growth rates and biomass by 35% at 40 d compared to high-N plants; furthermore, it also attenuated (by 39 and 60%) the elicitor-induced jasmonate and salicylate bursts, two N-intensive direct defenses (nicotine and trypsin proteinase inhibitors, albeit by different mechanisms), and carbon-containing nonvolatile defenses (rutin, chlorogenic acid, and diterpene glycosides), but did not affect the induced release of volatiles (cis-α-bergamotene and germacrene A), which function as indirect defenses. M. sexta and methyl jasmonate-induced transcriptional responses measured with a microarray enriched in herbivore-induced genes were also substantially reduced in plants grown under LN supply rates. In M. sexta-attacked LN plants, only 36 (45%) up-regulated and 46 (58%) down-regulated genes showed the same regulation as those in attacked high-N plants. However, transcriptional responses frequently directly countered the observed metabolic changes. Changes in a leaf's sensitivity to elicitation, an attacked leaf's waning ability to export oxylipin wound signals, and/or resource limitations in LN plants can account for the observed results, underscoring the conclusion that defense activation is a resource-intensive response. PMID:15133153

  8. Sequestration of plant secondary metabolites by insect herbivores: molecular mechanisms and ecological consequences.

    Science.gov (United States)

    Erb, Matthias; Robert, Christelle Am

    2016-04-01

    Numerous insect herbivores can take up and store plant toxins as self-defense against their own natural enemies. Plant toxin sequestration is tightly linked with tolerance strategies that keep the toxins functional. Specific transporters have been identified that likely allow the herbivore to control the spatiotemporal dynamics of toxin accumulation. Certain herbivores furthermore possess specific enzymes to boost the bioactivity of the sequestered toxins. Ecologists have studied plant toxin sequestration for decades. The recently uncovered molecular mechanisms in combination with transient, non-transgenic systems to manipulate insect gene expression will help to understand the importance of toxin sequestration for food-web dynamics in nature. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Lateral diffusion of nutrients by mammalian herbivores in terrestrial ecosystems.

    Directory of Open Access Journals (Sweden)

    Adam Wolf

    Full Text Available Animals translocate nutrients by consuming nutrients at one point and excreting them or dying at another location. Such lateral fluxes may be an important mechanism of nutrient supply in many ecosystems, but lack quantification and a systematic theoretical framework for their evaluation. This paper presents a mathematical framework for quantifying such fluxes in the context of mammalian herbivores. We develop an expression for lateral diffusion of a nutrient, where the diffusivity is a biologically determined parameter depending on the characteristics of mammals occupying the domain, including size-dependent phenomena such as day range, metabolic demand, food passage time, and population size. Three findings stand out: (a Scaling law-derived estimates of diffusion parameters are comparable to estimates calculated from estimates of each coefficient gathered from primary literature. (b The diffusion term due to transport of nutrients in dung is orders of magnitude large than the coefficient representing nutrients in bodymass. (c The scaling coefficients show that large herbivores make a disproportionate contribution to lateral nutrient transfer. We apply the diffusion equation to a case study of Kruger National Park to estimate the conditions under which mammal-driven nutrient transport is comparable in magnitude to other (abiotic nutrient fluxes (inputs and losses. Finally, a global analysis of mammalian herbivore transport is presented, using a comprehensive database of contemporary animal distributions. We show that continents vary greatly in terms of the importance of animal-driven nutrient fluxes, and also that perturbations to nutrient cycles are potentially quite large if threatened large herbivores are driven to extinction.

  10. Herbivores rescue diversity in warming tundra by modulating trait-dependent species losses and gains.

    Science.gov (United States)

    Kaarlejärvi, Elina; Eskelinen, Anu; Olofsson, Johan

    2017-09-04

    Climate warming is altering the diversity of plant communities but it remains unknown which species will be lost or gained under warming, especially considering interactions with other factors such as herbivory and nutrient availability. Here, we experimentally test effects of warming, mammalian herbivory and fertilization on tundra species richness and investigate how plant functional traits affect losses and gains. We show that herbivory reverses the impact of warming on diversity: in the presence of herbivores warming increases species richness through higher species gains and lower losses, while in the absence of herbivores warming causes higher species losses and thus decreases species richness. Herbivores promote gains of short-statured species under warming, while herbivore removal and fertilization increase losses of short-statured and resource-conservative species through light limitation. Our results demonstrate that both rarity and traits forecast species losses and gains, and mammalian herbivores are essential for preventing trait-dependent extinctions and mitigate diversity loss under warming and eutrophication.Warming can reduce plant diversity but it is unclear which species will be lost or gained under interacting global changes. Kaarlejärvi et al. manipulate temperature, herbivory and nutrients in a tundra system and find that herbivory maintains diversity under warming by reducing species losses and promoting gains.

  11. Aboveground vertebrate and invertebrate herbivore impact on net N mineralization in subalpine grasslands.

    Science.gov (United States)

    Risch, Anita C; Schotz, Martin; Vandegehuchte, Martijn L; Van Der Putten, Wim H; Duyts, Henk; Raschein, Ursina; Gwiazdowicz, Dariusz J; Busse, Matt D; Page-dumroese, Deborah S; Zimmermann, Stephan

    2015-12-01

    Aboveground herbivores have strong effects on grassland nitrogen (N) cycling. They can accelerate or slow down soil net N mineralization depending on ecosystem productivity and grazing intensity. Yet, most studies only consider either ungulates or invertebrate herbivores, but not the combined effect of several functionally different vertebrate and invertebrate herbivore species or guilds. We assessed how a diverse herbivore community affects net N mineralization in subalpine grasslands. By using size-selective fences, we progressively excluded large, medium, and small mammals, as well as invertebrates from two vegetation types, and assessed how the exclosure types (ET) affected net N mineralization. The two vegetation types differed in long-term management (centuries), forage quality, and grazing history and intensity. To gain a more mechanistic understanding of how herbivores affect net N mineralization, we linked mineralization to soil abiotic (temperature; moisture; NO3-, NH4+, and total inorganic N concentrations/pools; C, N, P concentrations; pH; bulk density), soil biotic (microbial biomass; abundance of collembolans, mites, and nematodes) and plant (shoot and root biomass; consumption; plant C, N, and fiber content; plant N pool) properties. Net N mineralization differed between ET, but not between vegetation types. Thus, short-term changes in herbivore community composition and, therefore, in grazing intensity had a stronger effect on net N mineralization than long-term management and grazing history. We found highest N mineralization values when only invertebrates were present, suggesting that mammals had a negative effect on net N mineralization. Of the variables included in our analyses, only mite abundance and aboveground plant biomass explained variation in net N mineralization among ET. Abundances of both mites and leaf-sucking invertebrates were positively correlated with aboveground plant biomass, and biomass increased with progressive exclusion

  12. assimilation efficiency in two herbivores, oreochromis niloticus and ...

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: The abilities of two herbivorous animals (Oreochromis niloticus and the larva ... improved lyses of algal cells. ... Thus, more studies to understand how these and other factors affect ... as plant cells are surrounded by cell wall, and.

  13. Combined effects of patch size and plant nutritional quality on local densities of insect herbivores

    NARCIS (Netherlands)

    Bukovinszky, T.; Gols, R.; Kamp, A.; De Oliveira-Domingues, F.; Hambäck, P.A.; Jongema, Y.; Bezemer, T.M.; Dicke, M.; Van Dam, N.M.; Harvey, J.A.

    2010-01-01

    Plant–insect interactions occur in spatially heterogeneous habitats. Understanding how such interactions shape density distributions of herbivores requires knowledge on how variation in plant traits (e.g. nutritional quality) affects herbivore abundance through, for example, affecting movement rates

  14. Elevational gradient in the cyclicity of a forest-defoliating insect

    Science.gov (United States)

    Kyle J. Haynes; Andrew M. Liebhold; Derek M. Johnson

    2012-01-01

    Observed changes in the cyclicity of herbivore populations along latitudinal gradients and the hypothesis that shifts in the importance of generalist versus specialist predators explain such gradients has long been a matter of intense interest. In contrast, elevational gradients in population cyclicity are largely unexplored. We quantified the cyclicity of gypsy moth...

  15. Plants are not sitting ducks waiting for herbivores to eat them.

    Science.gov (United States)

    Lev-Yadun, Simcha

    2016-05-03

    There is a common attitude toward plants, accordingly, plants are waiting around to be found and eaten by herbivores. This common approach toward plants is a great underestimation of the huge and variable arsenal of defensive plant strategies. Plants do everything evolution has allowed them to do in order not to be eaten. Therefore, plants are not sitting ducks and many plants outsmart and even exploit many invertebrate and vertebrate herbivores and carnivores for pollination and for seed dispersal, and even carnivores and parasitoids for defense.

  16. High-Arctic Plant-Herbivore Interactions under Climate Influence

    DEFF Research Database (Denmark)

    Berg, Thomas B.; Schmidt, Niels M.; Høye, Toke Thomas

    production upon which the herbivores depend, and snow may be the most important climatic factor affecting the different trophic levels and the interactions between them. Hence, the spatio-temporal distribution of snow, as well as thawing events during winter, may have considerable effects on the herbivores...... by both the timing of onset and the duration of winter snow-cover. Musk oxen significantly reduced the productivity of arctic willow, while high densities of collared lemmings during winter reduced the production of mountain averts flowers in the following summer. Under a deep snow-layer scenario, climate...... and the previous year's density of musk oxen had a negative effect on the present year's production of arctic willow. Previous year's primary production of arctic willow, in turn, significantly affected the present year's density of musk oxen positively. Climatic factors that affect primary production of plants...

  17. Fish, Benthic and Urchin Survey Data from Kahekili Herbivore Fisheries Management Area (HFMA), Maui since 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2009, the state of Hawaii established the Kahekili Herbivore Fisheries Management Area (KHFMA) in West Maui. Fishing for herbivores (parrotfishes, surgeonfishes,...

  18. Stochastic spatio-temporal model of coral cover as a function of herbivorous grazers, water quality, and coral demographics

    Science.gov (United States)

    Neuhausler, R.; Robinson, M.; Bruna, M.

    2017-12-01

    Over the last 60 years we have seen an increased amount of ecological regime shifts in tropical coastal zones, from coral reefs to macroalgae dominated states, as a result of natural and anthropogenic stresses. However, these shifts are not always immediate- macroalgae are generally present in coral reefs, with their distribution regulated by herbivorous fish. This is especially true in Moorea, French Polynesia, where macroalgae are shown to flourish in spaces that provide refuge from roaming herbivores. While there are currently modeling efforts in projecting ecological regime shifts in Moorea, temporal deterministic models have been utilized, which fail to capture metastability between multiple steady states and can have issues when dealing with very small populations. To address these concerns, we build on these models to account for spatial variations and individual organisms, as well as stochasticity. Our model can project the percent cover of coral, macroalgae, and algae turf as a function of herbivorous grazers, water quality, and coral demographics. Grazers, included as individual fish (particles), evolve according to a kinetic model and interact with neighbouring benthic assemblages, represented as nodes. Water quality and coral demographics are input parameters that can vary over time, allowing our model to be run for temporally changing scenarios and to be adjusted for different reefs. We plan to engage with previous Moorea Reef Resilience Models through a comparative analysis of our models' outcomes and existing Moorea data. Coupling projective models with available data is useful for informing environmental policy and advancing the modeling field.

  19. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack.

    Directory of Open Access Journals (Sweden)

    Meret Huber

    2016-01-01

    Full Text Available Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg. decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha, and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground.

  20. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack.

    Science.gov (United States)

    Huber, Meret; Epping, Janina; Schulze Gronover, Christian; Fricke, Julia; Aziz, Zohra; Brillatz, Théo; Swyers, Michael; Köllner, Tobias G; Vogel, Heiko; Hammerbacher, Almuth; Triebwasser-Freese, Daniella; Robert, Christelle A M; Verhoeven, Koen; Preite, Veronica; Gershenzon, Jonathan; Erb, Matthias

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha), and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground.

  1. Herbivores sculpt leaf traits differently in grasslands depending on life form and land-use histories.

    Science.gov (United States)

    Firn, Jennifer; Schütz, Martin; Nguyen, Huong; Risch, Anita C

    2017-01-01

    Vertebrate and invertebrate herbivores alter plant communities directly by selectively consuming plant species; and indirectly by inducing morphological and physiological changes to plant traits that provide competitive or survivorship advantages to some life forms over others. Progressively excluding aboveground herbivore communities (ungulates, medium and small sized mammals, invertebrates) over five growing seasons, we explored how leaf morphology (specific leaf area or SLA) and nutrition (nitrogen, carbon, phosphorous, potassium, sodium, and calcium) of different plant life forms (forbs, legumes, grasses, sedges) correlated with their dominance. We experimented in two subalpine grassland types with different land-use histories: (1) heavily grazed, nutrient-rich, short-grass vegetation and (2) lightly grazed, lower nutrient tall-grass vegetation. We found differences in leaf traits between treatments where either all herbivores were excluded or all herbivores were present, showing the importance of considering the impacts of both vertebrates and invertebrates on the leaf traits of plant species. Life forms responses to the progressive exclusion of herbivores were captured by six possible combinations: (1) increased leaf size and resource use efficiency (leaf area/nutrients) where lower nutrient levels are invested in leaf construction, but a reduction in the number of leaves, for example, forbs in both vegetation types, (2) increased leaf size and resource use efficiency, for example, legumes in short grass, (3) increased leaf size but a reduction in the number of leaves, for example, legumes in the tall grass, (4) increased number of leaves produced and increased resource use efficiency, for example, grasses in the short grass, (5) increased resource use efficiency of leaves only, for example, grasses and sedges in the tall grass, and (6) no response in terms of leaf construction or dominance, for example, sedges in the short grass. Although we found multiple

  2. Effects of phylogeny, leaf traits, and the altitudinal distribution of host plants on herbivore assemblages on congeneric Acer species.

    Science.gov (United States)

    Nakadai, Ryosuke; Murakami, Masashi; Hirao, Toshihide

    2014-08-01

    Historical, niche-based, and stochastic processes have been proposed as the mechanisms that drive community assembly. In plant-herbivore systems, these processes can correspond to phylogeny, leaf traits, and the distribution of host plants, respectively. Although patterns of herbivore assemblages among plant species have been repeatedly examined, the effects of these factors among co-occurring congeneric host plant species have rarely been studied. Our aim was to reveal the process of community assembly for herbivores by investigating the effects of phylogeny, leaf traits, and the altitudinal distribution of closely related host plants of the genus Acer. We sampled leaf functional traits for 30 Acer species in Japan. Using a newly constructed phylogeny, we determined that three of the six measured leaf traits (leaf thickness, C/N ratio, and condensed tannin content) showed a phylogenetic signal. In a field study, we sampled herbivore communities on 14 Acer species within an elevation gradient and examined relationships between herbivore assemblages and host plants. We found that herbivore assemblages were significantly correlated with phylogeny, leaf traits, phylogenetic signals, and the altitudinal distribution of host plants. Our results indicate that the interaction between historical and current ecological processes shapes herbivore community assemblages.

  3. Direct and indirect plant defenses are not suppressed by endosymbionts of a specialist root herbivore

    Science.gov (United States)

    Insect endosymbionts influence many important metabolic and developmental processes of their host. It has been speculated that they may also help to manipulate and suppress plant defenses to the benefit of herbivores. Recently, endosymbionts of the root herbivore Diabrotica virgifera virgifera have ...

  4. The effect of fire on habitat selection of mammalian herbivores: the role of body size and vegetation characteristics.

    Science.gov (United States)

    Eby, Stephanie L; Anderson, T Michael; Mayemba, Emilian P; Ritchie, Mark E

    2014-09-01

    Given the role of fire in shaping ecosystems, especially grasslands and savannas, it is important to understand its broader impact on these systems. Post-fire stimulation of plant nutrients is thought to benefit grazing mammals and explain their preference for burned areas. However, fire also reduces vegetation height and increases visibility, thereby potentially reducing predation risk. Consequently, fire may be more beneficial to smaller herbivores, with higher nutritional needs and greater risks of predation. We tested the impacts of burning on different sized herbivores' habitat preference in Serengeti National Park, as mediated by burning's effects on vegetation height, live : dead biomass ratio and leaf nutrients. Burning caused a less than 4 month increase in leaf nitrogen (N), and leaf non-N nutrients [copper (Cu), potassium (K), and magnesium (Mg)] and a decrease in vegetation height and live : dead biomass. During this period, total herbivore counts were higher on burned areas. Generally, smaller herbivores preferred burned areas more strongly than larger herbivores. Unfortunately, it was not possible to determine the vegetation characteristics that explained burned area preference for each of the herbivore species observed. However, total herbivore abundance and impala (Aepyceros melampus) preference for burned areas was due to the increases in non-N nutrients caused by burning. These findings suggest that burned area attractiveness to herbivores is mainly driven by changes to forage quality and not potential decreases in predation risk caused by reductions in vegetation height. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  5. Plant Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators across 21 Brassicaceae Species.

    Directory of Open Access Journals (Sweden)

    Hella Schlinkert

    Full Text Available Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground, the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness. We found a lower R2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their

  6. Termites and large herbivores influence seed removal rates in an African savanna.

    Science.gov (United States)

    Acanakwo, Erik Francis; Sheil, Douglas; Moe, Stein R

    2017-12-01

    Seed removal can influence plant community dynamics, composition, and resulting vegetation characteristics. In the African savanna, termites and large herbivores influence vegetation in various ways, likely including indirect effects on seed predators and secondary dispersers. However, the intensity and variation of seed removal rates in African savannas has seldom been studied. We experimentally investigated whether termites and large herbivores were important factors in the mechanisms contributing to observed patterns in tree species composition on and off mounds, in Lake Mburo National Park, Uganda. Within fenced (excluding large herbivores) and unfenced termite mound and adjacent savanna plots, we placed seeds of nine native tree species within small open "cages," accessed by all animals, roofed cages that only allowed access to small vertebrates and invertebrates, and closed cages that permitted access by smaller invertebrates only (5 mm wire mesh). We found that mean seed removal rate was high (up to 87.3% per 3 d). Mound habitats experienced significantly higher removal rates than off-mound habitats. The mean removal rate of native seeds from closed cages was 11.1% per 3 d compared with 19.4% and 23.3% removed per 3 d in the roofed and open cages, respectively. Smaller seeds experienced higher removal rates than larger seeds. Large herbivore exclusion on mounds reduced native seed removal rates by a mean of 8.8% in the open cages, but increased removal rates by 1.7% in the open cages when off-mound habitats were fenced. While removal rates from open cages were higher on active mounds (30.9%) than on inactive mounds (26.7%), the removal rates from closed cages were lower on active vs. inactive mounds (6.1% vs. 11.6%, respectively). Thus, we conclude that large herbivores and Macrotermes mounds influence seed removal rates, though these effects appear indirect. © 2017 by the Ecological Society of America.

  7. Pest species diversity enhances control of spider mites and whiteflies by a generalist phytoseiid predator

    NARCIS (Netherlands)

    Messelink, G.J.; Maanen, van R.; Holstein-Saj, van R.; Sabelis, M.W.; Janssen, A.

    2010-01-01

    To test the hypothesis that pest species diversity enhances biological pest control with generalist predators, we studied the dynamics of three major pest species on greenhouse cucumber: Western flower thrips, Frankliniella occidentalis (Pergande), greenhouse whitefly, Trialeurodes vaporariorum

  8. Herbivore-induced resistance against microbial pathogens in Arabidopsis

    NARCIS (Netherlands)

    Vos, de M.; Zaanen, van W.; Koornneef, A.; Korzelius, J.P.; Dicke, M.; Loon, van L.C.; Pieterse, C.M.J.

    2006-01-01

    Caterpillars of the herbivore Pieris rapae stimulate the production of jasmonic acid (JA) and ethylene (ET) in Arabidopsis (Arabidopsis thaliana) and trigger a defense response that affects insect performance on systemic tissues. To investigate the spectrum of effectiveness of P. rapae-induced

  9. Herbivore-induced resistance against microbial pathogens in Arabidopsis

    NARCIS (Netherlands)

    Vos, M. de; Zaanen, W. van; Koornneef, A.; Korzelius, J.P.; Dicke, M.; Loon, L.C. van; Pieterse, C.M.J.

    2006-01-01

    Caterpillars of the herbivore Pieris rapae stimulate the production of jasmonic acid (JA) and ethylene (ET) in Arabidopsis (Arabidopsis thaliana) and trigger a defense response that affects insect performance on systemic tissues. To investigate the sspectrum of effectiveness of P. rapae-induced

  10. Generalist bees pollinate red-flowered Penstemon eatonii: Duality in the hummingbird pollination syndrome

    Science.gov (United States)

    James H. Cane; Rick. Dunne

    2014-01-01

    The red tubular flowers of Penstemon eatonii (Plantaginaceae) typify the classic pollination syndrome for hummingbirds. Bees are thought to diminish its seed siring potential, but we found that foraging female generalist bees (Apis, Anthophora) deposited substantial amounts of conspecific pollen on P. eatonii stigmas. In the absence of hummingbirds, bee pollination of...

  11. Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores

    Science.gov (United States)

    Li, Ran; Zhang, Jin; Li, Jiancai; Zhou, Guoxin; Wang, Qi; Bian, Wenbo; Erb, Matthias; Lou, Yonggen

    2015-01-01

    Plants generally respond to herbivore attack by increasing resistance and decreasing growth. This prioritization is achieved through the regulation of phytohormonal signaling networks. However, it remains unknown how this prioritization affects resistance against non-target herbivores. In this study, we identify WRKY70 as a specific herbivore-induced, mitogen-activated protein kinase-regulated rice transcription factor that physically interacts with W-box motifs and prioritizes defence over growth by positively regulating jasmonic acid (JA) and negatively regulating gibberellin (GA) biosynthesis upon attack by the chewing herbivore Chilo suppressalis. WRKY70-dependent JA biosynthesis is required for proteinase inhibitor activation and resistance against C. suppressalis. In contrast, WRKY70 induction increases plant susceptibility against the rice brown planthopper Nilaparvata lugens. Experiments with GA-deficient rice lines identify WRKY70-dependent GA signaling as the causal factor in N. lugens susceptibility. Our study shows that prioritizing defence over growth leads to a significant resistance trade-off with important implications for the evolution and agricultural exploitation of plant immunity. DOI: http://dx.doi.org/10.7554/eLife.04805.001 PMID:26083713

  12. OsWRKY53, a versatile switch in regulating herbivore-induced defense responses in rice

    Science.gov (United States)

    Hu, Lingfei; Ye, Meng; Li, Ran; Lou, Yonggen

    2016-01-01

    ABSTRACT WRKY proteins, which belong to a large family of plant-specific transcription factors, play important roles in plant defenses against pathogens and herbivores by regulating defense-related signaling pathways. Recently, a rice WRKY transcription factor OsWRKY53 has been reported to function as a negative feedback modulator of OsMPK3/OsMPK6 and thereby to control the size of the investment a rice plant makes to defend against a chewing herbivore, the striped stem borer Chilo suppressalis. We investigated the performance of a piecing-sucking herbivore, the brown planthopper (BPH) Nilaparvata lugens, on transgenic plants that silence or overexpress OsWRKY53, and found that OsWRKY53 activates rice defenses against BPH by activating an H2O2 burst and suppressing ethylene biosynthesis. These findings suggest that OsWRKY53 functions not only as a regulator of plants' investment in specific defenses, but also as a switch to initiate new defenses against other stresses, highlighting the versatility and importance of OsWRKY53 in herbivore-induced plant defenses. PMID:27031005

  13. Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite

    NARCIS (Netherlands)

    Boer, de J.G.; Posthumus, M.A.; Dicke, M.

    2004-01-01

    Carnivorous arthropods can use herbivore-induced plant volatiles to locate their herbivorous prey. In the field, carnivores are confronted with information from plants infested with herbivores that may differ in their suitability as prey. Discrimination by the predatory mite Phytoseiulus persimilis

  14. Comparisons among three types of generalist physicians: Personal characteristics, medical school experiences, financial aid, and other factors influencing career choice.

    Science.gov (United States)

    Xu, G; Veloski, J J; Barzansky, B; Hojat, M; Diamond, J; Silenzio, V M

    1996-01-01

    A national survey of family physicians, general internists, and general pediatricians was conducted in the US to examine differences among the three groups of generalists physicians, with particular regard to the factors influencing their choice of generalist career. Family physicians were more likely to have made their career decision before medical school, and were more likely to have come from inner-city or rural areas. Personal values and early role models play a very important role in influencing their career choice. In comparison, a higher proportion of general internists had financial aid service obligations and their choice of the specialty was least influenced by personal values. General pediatricians had more clinical experiences either in primary care or with underserved populations, and they regarded medical school experiences as more important in influencing their specialty choice than did the other two groups. Admission committees may use these specialty-related factors to develop strategies to attract students into each type of generalist career.

  15. Plant defenses against parasitic plants show similarities to those induced by herbivores and pathogens

    Science.gov (United States)

    Justin B. Runyon; Mark C. Mescher; Consuelo M. De Moraes

    2010-01-01

    Herbivores and pathogens come quickly to mind when one thinks of the biotic challenges faced by plants. Important but less appreciated enemies are parasitic plants, which can have important consequences for the fitness and survival of their hosts. Our knowledge of plant perception, signaling and response to herbivores and pathogens has expanded rapidly in recent years...

  16. Trophic Interactions between Generalist Predators and the Two Spotted Spide Mite, Tetranychus urticae in, Strawberry

    DEFF Research Database (Denmark)

    Jacobsen, Stine Kramer

    The two spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is a major cause of pest damage worldwide. Its host range includes among many the strawberry crop, a high value crop in Denmark as well as in many other temperate and subtropical regions. Chemical control of T. urticae...... occurrence and diversity of predatory insects and predatory mites in Danish strawberry fields and surrounding vegetation is lacking, as is the knowledge of the potential of generalist insect predators to control T. urticae. The overall objective of this PhD thesis was to investigate the trophic interactions...... between natural enemies, in particular generalist predators and the two spotted spider mite, T. urticae, in strawberry. This was done by investigating interactions of T. urticae and its natural enemies as influenced by cropping practice and the surrounding vegetation (Manuscript I) as well as more...

  17. The relation between herbivore density and relative resource ...

    African Journals Online (AJOL)

    The relation between kudu density and the relative density of habitat patches in each landscape was significant, with exponential models producing more significant statistics than linear models. Regressions of resource density against animal density are useful to understand 'carrying capacity' for wild herbivores, and ...

  18. The Case for the Generalist in Rural Development. Peace Corps Faculty Paper No. 4.

    Science.gov (United States)

    Lodge, George C.

    Veraguas province, Panama, is an example of the need to have generalists, not specialists, deal with the interrelated aspects of rural areas in developing nations. Intricate connections between living standards, agricultural production, market and credit structures, land tenure, the political system, the social structure, education, health,…

  19. Utility of stable isotope analysis in studying foraging ecology of herbivores: Examples from moose and caribou

    Science.gov (United States)

    Ben-David, Merav; Shochat, Einav; Adams, Layne G.

    2001-01-01

    Recently, researchers emphasized that patterns of stable isotope ratios observed at the individual level are a result of an interaction between ecological, physiological, and biochemical processes. Isotopic models for herbivores provide additional complications because those mammals consume foods that have high variability in nitrogen concentrations. In addition, distribution of amino acids in plants may differ greatly from that required by a herbivore. At northern latitudes, where the growing season of vegetation is short, isotope ratios in herbivore tissues are expected to differ between seasons. Summer ratios likely reflect diet composition, whereas winter ratios would reflect diet and nutrient recycling by the animals. We tested this hypothesis using data collected from blood samples of caribou (Rangifer tarandus) and moose (Alces alces) in Denali National Park and Preserve, Alaska, USA. Stable isotope ratios of moose and caribou were significantly different from each other in late summer-autumn and winter. Also, late summer-autumn and winter ratios differed significantly between seasons in both species. Nonetheless, we were unable to evaluate whether differences in seasonal isotopic ratios were a result of diet selection or a response to nutrient recycling. We believe that additional studies on plant isotopic ratios as related to ecological factors in conjunction with investigations of diet selection by the herbivores will enhance our understanding of those interactions. Also, controlled studies investigating the relation between diet and physiological responses in herbivores will increase the utility of isotopic analysis in studying foraging ecology of herbivores.

  20. Generalist versus specialist pollination systems in 26 Oenothera (Onagraceae

    Directory of Open Access Journals (Sweden)

    Kyra Neipp Krakos

    2014-09-01

    Full Text Available Although generalized and specialized plants are often discussed as alternative states, the biological reality may better be viewed as a continuum. However, estimations of pollinator specificity have been confounded in some studies by the assumption that all floral visitors are pollinators. Failure to account for pollen load can lead to inaccurate conclusions regarding the number of pollinators with which a species actually interacts. The aim of this study was to clarify the distribution of pollination-system specialization within one clade, using a more rigorous assessment of pollen flow. The genus Oenothera has long been used as a model system for studying reproductive biology, and it provides a diversity of pollination systems and a wealth of historical data. Both floral visitation rate and pollen-load analysis of sampled pollinators, combined into a metric of pollen flow, were used to quantify the pollination systems of 26 Oenothera taxa. Metric of pollinator specialization were calculated as functions of both total pollinator taxa, and as pollinator functional groups. We found that for Oenothera, the number of floral visitors highly overestimates the number of pollinators, and is inadequate for determining or predicting pollination system specialization. We found that that pollination systems were distributed on a gradient from generalized to specialized, with more pollinator-specialized plant taxa, especially when estimated using pollinator functional groups. These results are in conflict with previous studies that depict most plant species as generalists, and this finding may be related to how prior studies have estimated specialization.

  1. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore.

    Science.gov (United States)

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-09-02

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affected the calling behavior (pheromone emission) of adult females, and the orientation responses of adult males to sex pheromone were also significantly inhibited by these terpenoids in a wind tunnel and in the field. We suggest that disruption of both pheromone emission and orientation to sex pheromone may explain, at least in part, an observed reduction in herbivore attack in polyculture compared with monoculture plantings. We also propose that mating disruption of both male and female moths with non-host plant volatiles may be a promising alternative pest management strategy.

  2. Non-Host Plant Volatiles Disrupt Sex Pheromone Communication in a Specialist Herbivore

    Science.gov (United States)

    Wang, Fumin; Deng, Jianyu; Schal, Coby; Lou, Yonggen; Zhou, Guoxin; Ye, Bingbing; Yin, Xiaohui; Xu, Zhihong; Shen, Lize

    2016-01-01

    The ecological effects of plant volatiles on herbivores are manifold. Little is known, however, about the impacts of non-host plant volatiles on intersexual pheromonal communication in specialist herbivores. We tested the effects of several prominent constitutive terpenoids released by conifers and Eucalyptus trees on electrophysiological and behavioral responses of an oligophagous species, Plutella xylostella, which feeds on Brassicaceae. The non-host plant volatile terpenoids adversely affected the calling behavior (pheromone emission) of adult females, and the orientation responses of adult males to sex pheromone were also significantly inhibited by these terpenoids in a wind tunnel and in the field. We suggest that disruption of both pheromone emission and orientation to sex pheromone may explain, at least in part, an observed reduction in herbivore attack in polyculture compared with monoculture plantings. We also propose that mating disruption of both male and female moths with non-host plant volatiles may be a promising alternative pest management strategy. PMID:27585907

  3. Herbaceous forage and selection patterns by ungulates across varying herbivore assemblages in a South African savanna

    NARCIS (Netherlands)

    Treydte, A.C.; Baumgartner, S.; Heitkonig, I.M.A.; Grant, C.C.; Getz, W.M.

    2013-01-01

    Herbivores generally have strong structural and compositional effects on vegetation, which in turn determines the plant forage species available. We investigated how selected large mammalian herbivore assemblages use and alter herbaceous vegetation structure and composition in a southern African

  4. Contrasting effects of land use intensity and exotic host plants on the specialization of interactions in plant-herbivore networks.

    Science.gov (United States)

    de Araújo, Walter Santos; Vieira, Marcos Costa; Lewinsohn, Thomas M; Almeida-Neto, Mário

    2015-01-01

    Human land use tends to decrease the diversity of native plant species and facilitate the invasion and establishment of exotic ones. Such changes in land use and plant community composition usually have negative impacts on the assemblages of native herbivorous insects. Highly specialized herbivores are expected to be especially sensitive to land use intensification and the presence of exotic plant species because they are neither capable of consuming alternative plant species of the native flora nor exotic plant species. Therefore, higher levels of land use intensity might reduce the proportion of highly specialized herbivores, which ultimately would lead to changes in the specialization of interactions in plant-herbivore networks. This study investigates the community-wide effects of land use intensity on the degree of specialization of 72 plant-herbivore networks, including effects mediated by the increase in the proportion of exotic plant species. Contrary to our expectation, the net effect of land use intensity on network specialization was positive. However, this positive effect of land use intensity was partially canceled by an opposite effect of the proportion of exotic plant species on network specialization. When we analyzed networks composed exclusively of endophagous herbivores separately from those composed exclusively of exophagous herbivores, we found that only endophages showed a consistent change in network specialization at higher land use levels. Altogether, these results indicate that land use intensity is an important ecological driver of network specialization, by way of reducing the local host range of herbivore guilds with highly specialized feeding habits. However, because the effect of land use intensity is offset by an opposite effect owing to the proportion of exotic host species, the net effect of land use in a given herbivore assemblage will likely depend on the extent of the replacement of native host species with exotic ones.

  5. Effects of herbivore exclusion and nutrient enrichment on coral reef macroalgae and cyanobacteria

    Science.gov (United States)

    Thacker, R.; Ginsburg, D.; Paul, V.

    2001-05-01

    Although phase shifts on coral reefs from coral-dominated to algal-dominated communities have been attributed to the effects of increased nutrient availability due to eutrophication and reduced herbivore abundance due to overfishing and disease, these factors have rarely been manipulated simultaneously. In addition, few studies have considered the effects of these factors on benthic, filamentous cyanobacteria (blue-green algae) as well as macroalgae. We used a combination of herbivore-exclusion cages and nutrient enrichment to manipulate herbivore abundance and nutrient availability, and measured the impacts of these treatments on macroalgal and cyanobacterial community structure. In the absence of cages, surface cover of the cyanobacterium Tolypothrix sp. decreased, while surface cover of the cyanobacteria Oscillatoria spp. increased. Cyanobacterial cover decreased in partial cages, and Tolypothrix sp. cover decreased further in full cages. Lower cyanobacterial cover and biomass were correlated with higher macroalgal cover and biomass. Dictyota bartayresiana dominated the partial cages, while Padina tenuis and Tolypiocladia glomerulata recruited into the full cages. Palatability assays demonstrated that herbivore-exclusion shifted macroalgal species composition from relatively unpalatable to relatively palatable species. Nutrient enrichment interacted with herbivore exclusion to increase the change in cover of D. bartayresiana in the uncaged and fully caged plots, but did not affect the final biomass of D. bartayresiana among treatments. Nutrient enrichment did not significantly affect the cover or biomass of any other taxa. These results stress the critical role of herbivory in determining coral reef community structure and suggest that the relative palatabilities of dominant algae, as well as algal growth responses to nutrient enrichment, will determine the potential for phase shifts to algal-dominated communities.

  6. Understanding plant defence responses against herbivore attacks: an essential first step towards the development of sustainable resistance against pests.

    Science.gov (United States)

    Santamaria, M Estrella; Martínez, Manuel; Cambra, Inés; Grbic, Vojislava; Diaz, Isabel

    2013-08-01

    Plant-herbivore relationships are complex interactions encompassing elaborate networks of molecules, signals and strategies used to overcome defences developed by each other. Herbivores use multiple feeding strategies to obtain nutrients from host plants. In turn, plants respond by triggering defence mechanisms to inhibit, block or modify the metabolism of the pest. As part of these defences, herbivore-challenged plants emit volatiles to attract natural enemies and warn neighbouring plants of the imminent threat. In response, herbivores develop a variety of strategies to suppress plant-induced protection. Our understanding of the plant-herbivore interphase is limited, although recent molecular approaches have revealed the participation of a battery of genes, proteins and volatile metabolites in attack-defence processes. This review describes the intricate and dynamic defence systems governing plant-herbivore interactions by examining the diverse strategies plants employ to deny phytophagous arthropods the ability to breach newly developed mechanisms of plant resistance. A cornerstone of this understanding is the use of transgenic tools to unravel the complex networks that control these interactions.

  7. Intrinsic and extrinsic factors influencing large African herbivore movements

    NARCIS (Netherlands)

    Venter, J.A.; Prins, H.H.T.; Mashanova, A.; Boer, de W.F.; Slotow, R.

    2015-01-01

    Understanding environmental as well as anthropogenic factors that influence large herbivore ecological patterns and processes should underpin their conservation and management. We assessed the influence of intrinsic, extrinsic environmental and extrinsic anthropogenic factors on movement behaviour

  8. No evidence for larger leaf trait plasticity in ecological generalists compared to specialists

    Czech Academy of Sciences Publication Activity Database

    Dostál, Petr; Fischer, M.; Chytrý, M.; Prati, D.

    2017-01-01

    Roč. 44, č. 3 (2017), s. 511-521 ISSN 0305-0270 R&D Projects: GA ČR GA15-09119S; GA ČR GB14-36079G Institutional support: RVO:67985939 Keywords : ecological generalists and specialists * phenotypic plasticity * multispecies experiments Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 4.248, year: 2016

  9. Postfire Burnt-Wood Management Affects Plant Damage by Ungulate Herbivores

    Directory of Open Access Journals (Sweden)

    Jorge Castro

    2013-01-01

    Full Text Available I analyze the effect of post-fire burnt wood management on herbivore attack on a woody plant species (Ulex parviflorus. Two experimental plots of ca. 20 hectares were established at two elevations in a burnt area in a Mediterranean mountain (Sierra Nevada, Spain. Three replicates of three treatments differing in post-fire burnt wood management were established per plot: “no intervention” (NI, all trees remained standing, “partial cut plus lopping” (PCL, felling the trees, cutting the main branches, and leaving all the biomass in situ, and “salvage logging” (SL; removal of logs and elimination of woody debris. Risk of herbivory and damage intensity were monitored for two years. The pattern of attack by ungulate herbivores varied among treatments and years. In any case, there was an overall reduction in the risk of herbivory in the PCL treatment, presumably because the highest habitat complexity in this treatment hampered ungulate movement and foraging. As a result, the burnt logs and branches spread over the ground acted as a physical barrier that protected seedlings from herbivores. This protection may be used for the regeneration of shrubs and trees, and it is of interest for the regeneration of burnt sites either naturally or by reforestation.

  10. Suppression of Plant Defenses by Herbivorous Mites Is Not Associated with Adaptation to Host Plants

    Directory of Open Access Journals (Sweden)

    Jéssica T. Paulo

    2018-06-01

    Full Text Available Some herbivores suppress plant defenses, which may be viewed as a result of the coevolutionary arms race between plants and herbivores. However, this ability is usually studied in a one-herbivore-one-plant system, which hampers comparative studies that could corroborate this hypothesis. Here, we extend this paradigm and ask whether the herbivorous spider-mite Tetranychus evansi, which suppresses the jasmonic-acid pathway in tomato plants, is also able to suppress defenses in other host plants at different phylogenetic distances from tomatoes. We test this using different plants from the Solanales order, namely tomato, jimsonweed, tobacco, and morning glory (three Solanaceae and one Convolvulaceae, and bean plants (Fabales. First, we compare the performance of T. evansi to that of the other two most-commonly found species of the same genus, T. urticae and T. ludeni, on several plants. We found that the performance of T. evansi is higher than that of the other species only on tomato plants. We then showed, by measuring trypsin inhibitor activity and life history traits of conspecific mites on either clean or pre-infested plants, that T. evansi can suppress plant defenses on all plants except tobacco. This study suggests that the suppression of plant defenses may occur on host plants other than those to which herbivores are adapted.

  11. Host-pathogen interactions and genome evolution in two generalist and specialist microsporidian pathogens of mosquitoes

    Science.gov (United States)

    The adaptation of two distantly related microsporidia to their mosquito hosts was investigated. Edhazardia aedis is a specialist pathogen that infects Aedes aegypti, the main vector of dengue and yellow fever arboviruses. Vavraia culicis is a generalist pathogen of several insects including Anophele...

  12. Can genetically based clines in plant defence explain greater herbivory at higher latitudes?

    Science.gov (United States)

    Anstett, Daniel N; Ahern, Jeffrey R; Glinos, Julia; Nawar, Nabanita; Salminen, Juha-Pekka; Johnson, Marc T J

    2015-12-01

    Greater plant defence is predicted to evolve at lower latitudes in response to increased herbivore pressure. However, recent studies question the generality of this pattern. In this study, we tested for genetically based latitudinal clines in resistance to herbivores and underlying defence traits of Oenothera biennis. We grew plants from 137 populations from across the entire native range of O. biennis. Populations from lower latitudes showed greater resistance to multiple specialist and generalist herbivores. These patterns were associated with an increase in total phenolics at lower latitudes. A significant proportion of the phenolics were driven by the concentrations of two major ellagitannins, which exhibited opposing latitudinal clines. Our analyses suggest that these findings are unlikely to be explained by local adaptation of herbivore populations or genetic variation in phenology. Rather greater herbivory at high latitudes can be explained by latitudinal clines in the evolution of plant defences. © 2015 John Wiley & Sons Ltd/CNRS.

  13. Aboveground and belowground mammalian herbivores regulate the demography of deciduous woody species in conifer forests

    Science.gov (United States)

    Bryan A. Endress; Bridgett J. Naylor; Burak K. Pekin; Michael J. Wisdom

    2016-01-01

    Mammalian herbivory can have profound impacts on plant population and community dynamics. However, our understanding of specific herbivore effects remains limited, even in regions with high densities of domestic and wild herbivores, such as the semiarid conifer forests of western North America. We conducted a seven-year manipulative experiment to evaluate the effects...

  14. Herbivorous ecomorphology and specialization patterns in theropod dinosaur evolution.

    Science.gov (United States)

    Zanno, Lindsay E; Makovicky, Peter J

    2011-01-04

    Interpreting key ecological parameters, such as diet, of extinct organisms without the benefit of direct observation or explicit fossil evidence poses a formidable challenge for paleobiological studies. To date, dietary categorizations of extinct taxa are largely generated by means of modern analogs; however, for many species the method is subject to considerable ambiguity. Here we present a refined approach for assessing trophic habits in fossil taxa and apply the method to coelurosaurian dinosaurs--a clade for which diet is particularly controversial. Our findings detect 21 morphological features that exhibit statistically significant correlations with extrinsic fossil evidence of coelurosaurian herbivory, such as stomach contents and a gastric mill. These traits represent quantitative, extrinsically founded proxies for identifying herbivorous ecomorphology in fossils and are robust despite uncertainty in phylogenetic relationships among major coelurosaurian subclades. The distribution of these features suggests that herbivory was widespread among coelurosaurians, with six major subclades displaying morphological evidence of the diet, and that contrary to previous thought, hypercarnivory was relatively rare and potentially secondarily derived. Given the potential for repeated, independent evolution of herbivory in Coelurosauria, we also test for repetitive patterns in the appearance of herbivorous traits within sublineages using rank concordance analysis. We find evidence for a common succession of increasing specialization to herbivory in the subclades Ornithomimosauria and Oviraptorosauria, perhaps underlain by intrinsic functional and/or developmental constraints, as well as evidence indicating that the early evolution of a beak in coelurosaurians correlates with an herbivorous diet.

  15. Diet and habitat-niche relationships within an assemblage of large herbivores in a seasonal tropical forest

    NARCIS (Netherlands)

    Ahrestani, F.S.; Heitkonig, I.M.A.; Prins, H.H.T.

    2012-01-01

    There is little understanding of how large mammalian herbivores in Asia partition habitat and forage resources, and vary their diet and habitat selection seasonally in order to coexist. We studied an assemblage of four large herbivores, chital (Axis axis), sambar (Cervus unicolor), gaur (Bos gaurus)

  16. Phytophagous insect fauna tracks host plant responses to exotic grass invasion.

    Science.gov (United States)

    Almeida-Neto, Mário; Prado, Paulo I; Lewinsohn, Thomas M

    2011-04-01

    The high dependence of herbivorous insects on their host plants implies that plant invaders can affect these insects directly, by not providing a suitable habitat, or indirectly, by altering host plant availability. In this study, we sampled Asteraceae flower heads in cerrado remnants with varying levels of exotic grass invasion to evaluate whether invasive grasses have a direct effect on herbivore richness independent of the current disturbance level and host plant richness. By classifying herbivores according to the degree of host plant specialization, we also investigated whether invasive grasses reduce the uniqueness of the herbivorous assemblages. Herbivorous insect richness showed a unimodal relationship with invasive grass cover that was significantly explained only by way of the variation in host plant richness. The same result was found for polyphagous and oligophagous insects, but monophages showed a significant negative response to the intensity of the grass invasion that was independent of host plant richness. Our findings lend support to the hypothesis that the aggregate effect of invasive plants on herbivores tends to mirror the effects of invasive plants on host plants. In addition, exotic plants affect specialist insects differently from generalist insects; thus exotic plants affect not only the size but also the structural profile of herbivorous insect assemblages.

  17. Allylglucosinolate and herbivorous caterpillars: a contrast in toxicity and tolerance.

    Science.gov (United States)

    Blau, P A; Feeny, P; Contardo, L; Robson, D S

    1978-06-16

    Allylglucosinolate, found in many cruciferous plants, is acutely toxic to Papilio polyxenes larvae, which do not normally attack crucifers. By contrast, larval growth of Pieris rapae, a crucifer specialist, is not affected even by artificially high concentrations of allylglucosinolate. Larval growth of Spodoptera eridania, a generalist feeder, is inhibited by high but not by low concentrations of the compound.

  18. Parasitism by Cuscuta pentagona attenuates host plant defenses against insect herbivores.

    Science.gov (United States)

    Runyon, Justin B; Mescher, Mark C; De Moraes, Consuelo M

    2008-03-01

    Considerable research has examined plant responses to concurrent attack by herbivores and pathogens, but the effects of attack by parasitic plants, another important class of plant-feeding organisms, on plant defenses against other enemies has not been explored. We investigated how attack by the parasitic plant Cuscuta pentagona impacted tomato (Solanum lycopersicum) defenses against the chewing insect beet armyworm (Spodoptera exigua; BAW). In response to insect feeding, C. pentagona-infested (parasitized) tomato plants produced only one-third of the antiherbivore phytohormone jasmonic acid (JA) produced by unparasitized plants. Similarly, parasitized tomato, in contrast to unparasitized plants, failed to emit herbivore-induced volatiles after 3 d of BAW feeding. Although parasitism impaired antiherbivore defenses, BAW growth was slower on parasitized tomato leaves. Vines of C. pentagona did not translocate JA from BAW-infested plants: amounts of JA in parasite vines grown on caterpillar-fed and control plants were similar. Parasitized plants generally contained more salicylic acid (SA), which can inhibit JA in some systems. Parasitized mutant (NahG) tomato plants deficient in SA produced more JA in response to insect feeding than parasitized wild-type plants, further suggesting cross talk between the SA and JA defense signaling pathways. However, JA induction by BAW was still reduced in parasitized compared to unparasitized NahG, implying that other factors must be involved. We found that parasitized plants were capable of producing induced volatiles when experimentally treated with JA, indicating that resource depletion by the parasite does not fully explain the observed attenuation of volatile response to herbivore feeding. Collectively, these findings show that parasitic plants can have important consequences for host plant defense against herbivores.

  19. Intensive land use drives small-scale homogenization of plant- and leafhopper communities and promotes generalists.

    Science.gov (United States)

    Chisté, Melanie N; Mody, Karsten; Kunz, Gernot; Gunczy, Johanna; Blüthgen, Nico

    2018-02-01

    The current biodiversity decline through anthropogenic land-use not only involves local species losses, but also homogenization of communities, with a few generalist species benefitting most from human activities. Most studies assessed community heterogeneity (β-diversity) on larger scales by comparing different sites, but little is known about impacts on β-diversity within each site, which is relevant for understanding variation in the level of α-diversity, the small-scale distribution of species and associated habitat heterogeneity. To obtain our dataset with 36,899 individuals out of 117 different plant- and leafhopper (Auchenorrhyncha) species, we sampled communities of 140 managed grassland sites across Germany by quantitative vacuum suction of five 1 m 2 plots on each site. Sites differed in land-use intensity as characterized by intensity of fertilization, mowing and grazing. Our results demonstrate a significant within-site homogenization of plant- and leafhopper communities with increasing land-use intensity. Correspondingly, density (- 78%) and γ-diversity (- 35%) declined, particularly with fertilization and mowing intensity. More than 34% of plant- and leafhopper species were significant losers and only 6% were winners of high land-use intensity, with abundant and widespread species being less affected. Increasing land-use intensity adversely affected dietary specialists and promoted generalist species. Our study emphasizes considerable, multifaceted effects of land-use intensification on species loss, with a few dominant generalists winning, and an emerging trend towards more homogenized assemblages. By demonstrating homogenization for the first time within sites, our study highlights that anthropogenic influences on biodiversity even occur on small scales.

  20. Impact of herbivore identity on algal succession and coral growth on a Caribbean reef.

    Directory of Open Access Journals (Sweden)

    Deron E Burkepile

    2010-01-01

    Full Text Available Herbivory is an important top-down force on coral reefs that regulates macroalgal abundance, mediates competitive interactions between macroalgae and corals, and provides resilience following disturbances such as hurricanes and coral bleaching. However, reductions in herbivore diversity and abundance via disease or over-fishing may harm corals directly and may indirectly increase coral susceptibility to other disturbances.In two experiments over two years, we enclosed equivalent densities and masses of either single-species or mixed-species of herbivorous fishes in replicate, 4 m(2 cages at a depth of 17 m on a reef in the Florida Keys, USA to evaluate the effects of herbivore identity and species richness on colonization and development of macroalgal communities and the cascading effects of algae on coral growth. In Year 1, we used the redband parrotfish (Sparisoma aurofrenatum and the ocean surgeonfish (Acanthurus bahianus; in Year 2, we used the redband parrotfish and the princess parrotfish (Scarus taeniopterus. On new substrates, rapid grazing by ocean surgeonfish and princess parrotfish kept communities in an early successional stage dominated by short, filamentous algae and crustose coralline algae that did not suppress coral growth. In contrast, feeding by redband parrotfish allowed an accumulation of tall filaments and later successional macroalgae that suppressed coral growth. These patterns contrast with patterns from established communities not undergoing primary succession; on established substrates redband parrotfish significantly reduced upright macroalgal cover while ocean surgeonfish and princess parrotfish allowed significant increases in late successional macroalgae.This study further highlights the importance of biodiversity in affecting ecosystem function in that different species of herbivorous fishes had very different impacts on reef communities depending on the developmental stage of the community. The species

  1. Specificity of induced defenses, growth, and reproduction in lima bean (Phaseolus lunatus) in response to multispecies herbivory.

    Science.gov (United States)

    Moreira, Xoaquín; Abdala-Roberts, Luis; Hernández-Cumplido, Johnattan; Cuny, Maximilien A C; Glauser, Gaetan; Benrey, Betty

    2015-08-01

    • Following herbivore attack, plants can either reduce damage by inducing defenses or mitigate herbivory effects through compensatory growth and reproduction. It is increasingly recognized that such induced defenses in plants are herbivore-specific, but less is known about the specificity of compensatory responses. Damage by multiple herbivores may also lead to synergistic effects on induction and plant fitness that differ from those caused by a single herbivore species. Although largely unstudied, the order of arrival and damage by different herbivore species might also play an important role in the impacts of herbivory on plants.• We investigated the specificity of defense induction (phenolics) and effects on growth (number of stems and leaves) and reproduction (number of seeds, seed mass, and germination rate) from feeding by two generalist leaf-chewing herbivores (Spodoptera eridania and Diabrotica balteata) on Phaseolus lunatus plants and evaluated whether simultaneous attack by both herbivores and their order of arrival influenced such dynamics.• Herbivory increased levels of leaf phenolics, but such effects were not herbivore-specific. In contrast, herbivory enhanced seed germination in an herbivore-specific manner. For all variables measured, the combined effects of both herbivore species did not differ from their individual effects. Finally, the order of herbivore arrival did not influence defense induction, plant growth, or seed number but did influence seed mass and germination.• Overall, this study highlights novel aspects of the specificity of plant responses induced by damage from multiple species of herbivores and uniquely associates such effects with plant lifetime fitness. © 2015 Botanical Society of America, Inc.

  2. Tritrophic Interactions Mediated by Herbivore-Induced Plant Volatiles: Mechanisms, Ecological Relevance, and Application Potential.

    Science.gov (United States)

    Turlings, Ted C J; Erb, Matthias

    2018-01-07

    Tritrophic interactions between plants, herbivores, and their natural enemies are an integral part of all terrestrial ecosystems. Herbivore-induced plant volatiles (HIPVs) play a key role in these interactions, as they can attract predators and parasitoids to herbivore-attacked plants. Thirty years after this discovery, the ecological importance of the phenomena is widely recognized. However, the primary function of HIPVs is still subject to much debate, as is the possibility of using these plant-produced cues in crop protection. In this review, we summarize the current knowledge on the role of HIPVs in tritrophic interactions from an ecological as well as a mechanistic perspective. This overview focuses on the main gaps in our knowledge of tritrophic interactions, and we argue that filling these gaps will greatly facilitate efforts to exploit HIPVs for pest control.

  3. Phytohormone mediation of interactions between herbivores and plant pathogens

    NARCIS (Netherlands)

    Lazebnik, J.; Frago, E.; Dicke, M.; Loon, van J.J.A.

    2014-01-01

    Induced plant defenses against either pathogens or herbivore attackers are regulated by phytohormones. These phytohormones are increasingly recognized as important mediators of interactions between organisms associated with plants. In this review, we discuss the role of plant defense hormones in

  4. Specificity of herbivore-induced hormonal signaling and defensive traits in five closely related milkweeds (Asclepias spp.).

    Science.gov (United States)

    Agrawal, Anurag A; Hastings, Amy P; Patrick, Eamonn T; Knight, Anna C

    2014-07-01

    Despite the recognition that phytohormonal signaling mediates induced responses to herbivory, we still have little understanding of how such signaling varies among closely related species and may generate herbivore-specific induced responses. We studied closely related milkweeds (Asclepias) to link: 1) plant damage by two specialist chewing herbivores (milkweed leaf beetles Labidomera clivicolis and monarch caterpillars Danaus plexippus); 2) production of the phytohormones jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA); 3) induction of defensive cardenolides and latex; and 4) impacts on Danaus caterpillars. We first show that A. syriaca exhibits induced resistance following monarch herbivory (i.e., reduced monarch growth on previously damaged plants), while the defensively dissimilar A. tuberosa does not. We next worked with a broader group of five Asclepias, including these two species, that are highly divergent in defensive traits yet from the same clade. Three of the five species showed herbivore-induced changes in cardenolides, while induced latex was found in four species. Among the phytohormones, JA and ABA showed specific responses (although they generally increased) to insect species and among the plant species. In contrast, SA responses were consistent among plant and herbivore species, showing a decline following herbivore attack. Jasmonic acid showed a positive quantitative relationship only with latex, and this was strongest in plants damaged by D. plexippus. Although phytohormones showed qualitative tradeoffs (i.e., treatments that enhanced JA reduced SA), the few significant individual plant-level correlations among hormones were positive, and these were strongest between JA and ABA in monarch damaged plants. We conclude that: 1) latex exudation is positively associated with endogenous JA levels, even among low-latex species; 2) correlations among milkweed hormones are generally positive, although herbivore damage induces a

  5. Large herbivore population performance and climate in a South African semi-arid savanna

    Directory of Open Access Journals (Sweden)

    Armin H. Seydack

    2012-02-01

    Interpretation according to a climate–vegetation response model suggested that acclimation of forage plants to increasing temperature had resulted in temperature-enhanced plant productivity, initially increasing food availability and supporting transient synchronous increases in population abundance of both blue wildebeest and zebra, and selective grazers. As acclimation of plants to concurrently rising minimum (nocturnal temperature (Tmin took effect, adjustments in metabolic functionality occurred involving accelerated growth activity at the cost of storage-based metabolism. Growth-linked nitrogen dilution and reduced carbon-nutrient quality of forage then resulted in phases of subsequently declining herbivore populations. Over the long term (1910–2010, progressive plant functionality shifts towards accelerated metabolic growth rather than storage priority occurred in response to Tmin rising faster than maximum temperature (Tmax, thereby cumulatively compromising the carbon-nutrient quality of forage, a key resource for selective grazers. The results of analyses thus revealed consistency between herbivore population trends and levels of forage quantity and quality congruent with expected plant metabolic responses to climate effects. Thus, according to the climate-vegetation response model, climate effects were implicated as the ultimate cause of large herbivore population performance in space and over time. Conservation implications: In its broadest sense, the objective of this study was to contribute towards the enhanced understanding of landscape-scale functioning of savanna systems with regard to the interplay between climate, vegetation and herbivore population dynamics.

  6. Bottom-up vs. top-down effects on terrestrial insect herbivores: a meta-analysis.

    Science.gov (United States)

    Vidal, Mayra C; Murphy, Shannon M

    2018-01-01

    Primary consumers are under strong selection from resource ('bottom-up') and consumer ('top-down') controls, but the relative importance of these selective forces is unknown. We performed a meta-analysis to compare the strength of top-down and bottom-up forces on consumer fitness, considering multiple predictors that can modulate these effects: diet breadth, feeding guild, habitat/environment, type of bottom-up effects, type of top-down effects and how consumer fitness effects are measured. We focused our analyses on the most diverse group of primary consumers, herbivorous insects, and found that in general top-down forces were stronger than bottom-up forces. Notably, chewing, sucking and gall-making herbivores were more affected by top-down than bottom-up forces, top-down forces were stronger than bottom-up in both natural and controlled (cultivated) environments, and parasitoids and predators had equally strong top-down effects on insect herbivores. Future studies should broaden the scope of focal consumers, particularly in understudied terrestrial systems, guilds, taxonomic groups and top-down controls (e.g. pathogens), and test for more complex indirect community interactions. Our results demonstrate the surprising strength of forces exerted by natural enemies on herbivorous insects, and thus the necessity of using a tri-trophic approach when studying insect-plant interactions. © 2017 John Wiley & Sons Ltd/CNRS.

  7. Impact of conservation areas on trophic interactions between apex predators and herbivores on coral reefs.

    Science.gov (United States)

    Rizzari, Justin R; Bergseth, Brock J; Frisch, Ashley J

    2015-04-01

    Apex predators are declining at alarming rates due to exploitation by humans, but we have yet to fully discern the impacts of apex predator loss on ecosystem function. In a management context, it is critically important to clarify the role apex predators play in structuring populations of lower trophic levels. Thus, we examined the top-down influence of reef sharks (an apex predator on coral reefs) and mesopredators on large-bodied herbivores. We measured the abundance, size structure, and biomass of apex predators, mesopredators, and herbivores across fished, no-take, and no-entry management zones in the Great Barrier Reef Marine Park, Australia. Shark abundance and mesopredator size and biomass were higher in no-entry zones than in fished and no-take zones, which indicates the viability of strictly enforced human exclusion areas as tools for the conservation of predator communities. Changes in predator populations due to protection in no-entry zones did not have a discernible influence on the density, size, or biomass of different functional groups of herbivorous fishes. The lack of a relationship between predators and herbivores suggests that top-down forces may not play a strong role in regulating large-bodied herbivorous coral reef fish populations. Given this inconsistency with traditional ecological theories of trophic cascades, trophic structures on coral reefs may need to be reassessed to enable the establishment of appropriate and effective management regimes. © 2014 Society for Conservation Biology.

  8. Feeding behaviour of generalist pests on Brassica juncea: implication for manipulation of glucosinolate biosynthesis pathway for enhanced resistance.

    Science.gov (United States)

    Kumar, Pawan; Augustine, Rehna; Singh, Amarjeet Kumar; Bisht, Naveen C

    2017-10-01

    Differential accumulation of plant defence metabolites has been suggested to have important ecological consequence in the context of plant-insect interactions. Feeding of generalist pests on Brassica juncea showed a distinct pattern with selective exclusion of leaf margins which are high in glucosinolates. Molecular basis of this differential accumulation of glucosinolates could be explained based on differential expression profile of BjuMYB28 homologues, the major biosynthetic regulators of aliphatic glucosinolates, as evident from quantitative real-time PCR and promoter:GUS fusion studies in allotetraploid B. juncea. Constitutive overexpression of selected BjuMYB28 homologues enhanced accumulation of aliphatic glucosinolates in B. juncea. Performance of two generalist pests, Helicoverpa armigera and Spodoptera litura larvae, on transgenic B. juncea plants were poor compared to wild-type plants in a no-choice experiment. Correlation coefficient analysis suggested that weight gain of H. armigera larvae was negatively correlated with gluconapin (GNA) and glucobrassicanapin (GBN), whereas that of S. litura larvae was negatively correlated with GNA, GBN and sinigrin (SIN). Our study explains the significance and possible molecular basis of differential distribution of glucosinolates in B. juncea leaves and shows the potential of overexpressing BjuMYB28 for enhanced resistance of Brassica crops against the tested generalist pests. © 2017 John Wiley & Sons Ltd.

  9. Perspectives on key principles of generalist medical practice in public service in sub-saharan africa: a qualitative study

    Directory of Open Access Journals (Sweden)

    Downing Raymond V

    2011-07-01

    Full Text Available Abstract Background The principles and practice of Family Medicine that arose in developed Western countries have been imported and adopted in African countries without adequate consideration of their relevance and appropriateness to the African context. In this study we attempted to elicit a priori principles of generalist medical practice from the experience of long-serving medical officers in a variety of African counties, through which we explored emergent principles of Family Medicine in our own context. Methods A descriptive study design was utilized, using qualitative methods. 16 respondents who were clinically active medical practitioners, working as generalists in the public services or non-profit sector for at least 5 years, and who had had no previous formal training or involvement in academic Family Medicine, were purposively selected in 8 different countries in southern, western and east Africa, and interviewed. Results The respondents highlighted a number of key issues with respect to the external environment within which they work, their collective roles, activities and behaviours, as well as the personal values and beliefs that motivate their behaviour. The context is characterized by resource constraints, high workload, traditional health beliefs, and the difficulty of referring patients to the next level of care. Generalist clinicians in sub-Saharan Africa need to be competent across a wide range of clinical disciplines and procedural skills at the level of the district hospital and clinic, in both chronic and emergency care. They need to understand the patient's perspective and context, empowering the patient and building an effective doctor-patient relationship. They are also managers, focused on coordinating and improving the quality of clinical care through teamwork, training and mentoring other health workers in the generalist setting, while being life-long learners themselves. However, their role in the community, was

  10. Aquatic herbivores facilitate the emission of methane from wetlands

    NARCIS (Netherlands)

    Dingemans, B.J.J.; Bakker, E.S.; Bodelier, P.L.E.

    2011-01-01

    Wetlands are significant sources of atmospheric methane. Methane produced by microbes enters roots and escapes to the atmosphere through the shoots of emergent wetland plants. Herbivorous birds graze on helophytes, but their effect on methane emission remains unknown. We hypothesized that grazing on

  11. Antagonistic pleiotropy and fitness trade-offs reveal specialist and generalist traits in strains of canine distemper virus.

    Directory of Open Access Journals (Sweden)

    Veljko M Nikolin

    Full Text Available Theoretically, homogeneous environments favor the evolution of specialists whereas heterogeneous environments favor generalists. Canine distemper is a multi-host carnivore disease caused by canine distemper virus (CDV. The described cell receptor of CDV is SLAM (CD150. Attachment of CDV hemagglutinin protein (CDV-H to this receptor facilitates fusion and virus entry in cooperation with the fusion protein (CDV-F. We investigated whether CDV strains co-evolved in the large, homogeneous domestic dog population exhibited specialist traits, and strains adapted to the heterogeneous environment of smaller populations of different carnivores exhibited generalist traits. Comparison of amino acid sequences of the SLAM binding region revealed higher similarity between sequences from Canidae species than to sequences from other carnivore families. Using an in vitro assay, we quantified syncytia formation mediated by CDV-H proteins from dog and non-dog CDV strains in cells expressing dog, lion or cat SLAM. CDV-H proteins from dog strains produced significantly higher values with cells expressing dog SLAM than with cells expressing lion or cat SLAM. CDV-H proteins from strains of non-dog species produced similar values in all three cell types, but lower values in cells expressing dog SLAM than the values obtained for CDV-H proteins from dog strains. By experimentally changing one amino acid (Y549H in the CDV-H protein of one dog strain we decreased expression of specialist traits and increased expression of generalist traits, thereby confirming its functional importance. A virus titer assay demonstrated that dog strains produced higher titers in cells expressing dog SLAM than cells expressing SLAM of non-dog hosts, which suggested possible fitness benefits of specialization post-cell entry. We provide in vitro evidence for the expression of specialist and generalist traits by CDV strains, and fitness trade-offs across carnivore host environments caused by

  12. Antagonistic Pleiotropy and Fitness Trade-Offs Reveal Specialist and Generalist Traits in Strains of Canine Distemper Virus

    Science.gov (United States)

    Nikolin, Veljko M.; Osterrieder, Klaus; von Messling, Veronika; Hofer, Heribert; Anderson, Danielle; Dubovi, Edward; Brunner, Edgar; East, Marion L.

    2012-01-01

    Theoretically, homogeneous environments favor the evolution of specialists whereas heterogeneous environments favor generalists. Canine distemper is a multi-host carnivore disease caused by canine distemper virus (CDV). The described cell receptor of CDV is SLAM (CD150). Attachment of CDV hemagglutinin protein (CDV-H) to this receptor facilitates fusion and virus entry in cooperation with the fusion protein (CDV-F). We investigated whether CDV strains co-evolved in the large, homogeneous domestic dog population exhibited specialist traits, and strains adapted to the heterogeneous environment of smaller populations of different carnivores exhibited generalist traits. Comparison of amino acid sequences of the SLAM binding region revealed higher similarity between sequences from Canidae species than to sequences from other carnivore families. Using an in vitro assay, we quantified syncytia formation mediated by CDV-H proteins from dog and non-dog CDV strains in cells expressing dog, lion or cat SLAM. CDV-H proteins from dog strains produced significantly higher values with cells expressing dog SLAM than with cells expressing lion or cat SLAM. CDV-H proteins from strains of non-dog species produced similar values in all three cell types, but lower values in cells expressing dog SLAM than the values obtained for CDV-H proteins from dog strains. By experimentally changing one amino acid (Y549H) in the CDV-H protein of one dog strain we decreased expression of specialist traits and increased expression of generalist traits, thereby confirming its functional importance. A virus titer assay demonstrated that dog strains produced higher titers in cells expressing dog SLAM than cells expressing SLAM of non-dog hosts, which suggested possible fitness benefits of specialization post-cell entry. We provide in vitro evidence for the expression of specialist and generalist traits by CDV strains, and fitness trade-offs across carnivore host environments caused by antagonistic

  13. Monoterpenes as inhibitors of digestive enzymes and counter-adaptations in a specialist avian herbivore.

    Science.gov (United States)

    Kohl, Kevin D; Pitman, Elizabeth; Robb, Brecken C; Connelly, John W; Dearing, M Denise; Forbey, Jennifer Sorensen

    2015-05-01

    Many plants produce plant secondary metabolites (PSM) that inhibit digestive enzymes of herbivores, thus limiting nutrient availability. In response, some specialist herbivores have evolved digestive enzymes that are resistant to inhibition. Monoterpenes, a class of PSMs, have not been investigated with respect to the interference of specific digestive enzymes, nor have such interactions been studied in avian herbivores. We investigated this interaction in the Greater Sage-Grouse (Phasianidae: Centrocercus urophasianus), which specializes on monoterpene-rich sagebrush species (Artemisia spp.). We first measured the monoterpene concentrations in gut contents of free-ranging sage-grouse. Next, we compared the ability of seven individual monoterpenes present in sagebrush to inhibit a protein-digesting enzyme, aminopeptidase-N. We also measured the inhibitory effects of PSM extracts from two sagebrush species. Inhibition of aminopeptidase-N in sage-grouse was compared to inhibition in chickens (Gallus gallus). We predicted that sage-grouse enzymes would retain higher activity when incubated with isolated monoterpenes or sagebrush extracts than chicken enzymes. We detected unchanged monoterpenes in the gut contents of free-ranging sage-grouse. We found that three isolated oxygenated monoterpenes (borneol, camphor, and 1,8-cineole) inhibited digestive enzymes of both bird species. Camphor and 1,8-cineole inhibited enzymes from chickens more than from sage-grouse. Extracts from both species of sagebrush had similar inhibition of chicken enzymes, but did not inhibit sage-grouse enzymes. These results suggest that specific monoterpenes may limit the protein digestibility of plant material by avian herbivores. Further, this work presents additional evidence that adaptations of digestive enzymes to plant defensive compounds may be a trait of specialist herbivores.

  14. Plant defenses against parasitic plants show similarities to those induced by herbivores and pathogens

    Science.gov (United States)

    Runyon, Justin B; Mescher, Mark C

    2010-01-01

    Herbivores and pathogens come quickly to mind when one thinks of the biotic challenges faced by plants. Important but less appreciated enemies are parasitic plants, which can have important consequences for the fitness and survival of their hosts. Our knowledge of plant perception, signaling and response to herbivores and pathogens has expanded rapidly in recent years, but information is generally lacking for parasitic species. In a recent paper we reported that some of the same defense responses induced by herbivores and pathogens—notably increases in jasmonic acid (JA), salicylic acid (SA), and a hypersensitive-like response (HLR)—also occur in tomato plants upon attack by the parasitic plant Cuscuta pentagona (field dodder). Parasitism induced a distinct pattern of JA and SA accumulation, and growth trials using genetically-altered tomato hosts suggested that both JA and SA govern effective defenses against the parasite, though the extent of the response varied with host plant age. Here we discuss similarities between the induced responses we observed in response to Cuscuta parasitism to those previously described for herbivores and pathogens and present new data showing that trichomes should be added to the list of plant defenses that act against multiple enemies and across kingdoms. PMID:20495380

  15. Herbivore-mediated ecological costs of reproduction shape the life history of an iteroparous plant.

    Science.gov (United States)

    Miller, Tom E X; Tenhumberg, Brigitte; Louda, Svata M

    2008-02-01

    Plant reproduction yields immediate fitness benefits but can be costly in terms of survival, growth, and future fecundity. Life-history theory posits that reproductive strategies are shaped by trade-offs between current and future fitness that result from these direct costs of reproduction. Plant reproduction may also incur indirect ecological costs if it increases susceptibility to herbivores. Yet ecological costs of reproduction have received little empirical attention and remain poorly integrated into life-history theory. Here, we provide evidence for herbivore-mediated ecological costs of reproduction, and we develop theory to examine how these costs influence plant life-history strategies. Field experiments with an iteroparous cactus (Opuntia imbricata) indicated that greater reproductive effort (proportion of meristems allocated to reproduction) led to greater attack by a cactus-feeding insect (Narnia pallidicornis) and that damage by this herbivore reduced reproductive success. A dynamic programming model predicted strongly divergent optimal reproductive strategies when ecological costs were included, compared with when these costs were ignored. Meristem allocation by cacti in the field matched the optimal strategy expected under ecological costs of reproduction. The results indicate that plant reproductive allocation can strongly influence the intensity of interactions with herbivores and that associated ecological costs can play an important selective role in the evolution of plant life histories.

  16. Effect of Nitrogen Fertilizer on Herbivores and Its Stimulation to Major Insect Pests in Rice

    Directory of Open Access Journals (Sweden)

    Zhong-xian LU

    2007-03-01

    Full Text Available Nitrogen is one of the most important factors in development of herbivore populations. The application of nitrogen fertilizer in plants can normally increase herbivore feeding preference, food consumption, survival, growth, reproduction, and population density, except few examples that nitrogen fertilizer reduces the herbivore performances. In most of the rice growing areas in Asia, the great increases in populations of major insect pests of rice, including planthoppers (Nilaparvata lugens and Sogatella furcifera, leaffolder (Cnaphalocrocis medinalis, and stem borers (Scirpophaga incertulas, Chilo suppressalis, S. innotata, C. polychrysus and Sesamia inferens were closely related to the long-term excessive application of nitrogen fertilizers. The optimal regime of nitrogen fertilizer in irrigated paddy fields is proposed to improve the fertilizer-nitrogen use efficiency and reduce the environmental pollution.

  17. Effect of Phytoplankton Richness on Phytoplankton Biomass Is Weak Where the Distribution of Herbivores is Patchy.

    Science.gov (United States)

    Weis, Jerome J

    2016-01-01

    Positive effects of competitor species richness on competitor productivity can be more pronounced at a scale that includes heterogeneity in 'bottom-up' environmental factors, such as the supply of limiting nutrients. The effect of species richness is not well understood in landscapes where variation in 'top-down' factors, such as the abundance of predators or herbivores, has a strong influence competitor communities. I asked how phytoplankton species richness directly influenced standing phytoplankton biomass in replicate microcosm regions where one patch had a population of herbivores (Daphnia pulicaria) and one patch did not have herbivores. The effect of phytoplankton richness on standing phytoplankton biomass was positive but weak and not statistically significant at this regional scale. Among no-Daphnia patches, there was a significant positive effect of phytoplankton richness that resulted from positive selection effects for two dominant and productive species in polycultures. Among with-Daphnia patches there was not a significant effect of phytoplankton richness. The same two species dominated species-rich polycultures in no- and with-Daphnia patches but both species were relatively vulnerable to consumption by Daphnia. Consistent with previous studies, this experiment shows a measurable positive influence of primary producer richness on biomass when herbivores were absent. It also shows that given the patchy distribution of herbivores at a regional scale, a regional positive effect was not detected.

  18. Biomass and Abundance of Herbivorous Fishes on Coral Reefs off ...

    African Journals Online (AJOL)

    effects of fishing intensity, reef geomorphology and benthic cover. Distance from the .... on herbivorous fish communities relevant to the proposed ... fragments, nearshore coastal fringing reefs ..... Over-fishing and coral bleaching pose the most ...

  19. Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores

    OpenAIRE

    Li, Ran; Zhang, Jin; Li, Jiancai; Zhou, Guoxin; Wang, Qi; Bian, Wenbo; Erb, Matthias; Lou, Yonggen

    2015-01-01

    eLife digest Many different animals feed on plants, including almost half of all known insect species. Some herbivores?like caterpillars for example?feed by chewing. Others, such as aphids and planthoppers, use syringe-like mouthparts to pierce plants and then feed on the fluids within. To minimize the damage caused by these herbivores, plants activate specific defenses upon attack, including proteins that can inhibit the insect's digestive enzymes. The inhibitors are effective against chewin...

  20. A specialist-generalist classification of the arable flora and its response to changes in agricultural practices

    Science.gov (United States)

    2010-01-01

    Background Theory in ecology points out the potential link between the degree of specialisation of organisms and their responses to disturbances and suggests that this could be a key element for understanding the assembly of communities. We evaluated this question for the arable weed flora as this group has scarcely been the focus of ecological studies so far and because weeds are restricted to habitats characterised by very high degrees of disturbance. As such, weeds offer a case study to ask how specialization relates to abundance and distribution of species in relation to the varying disturbance regimes occurring in arable crops. Results We used data derived from an extensive national monitoring network of approximately 700 arable fields scattered across France to quantify the degree of specialisation of 152 weed species using six different ecological methods. We then explored the impact of the level of disturbance occurring in arable fields by comparing the degree of specialisation of weed communities in contrasting field situations. The classification of species as specialist or generalist was consistent between different ecological indices. When applied on a large-scale data set across France, this classification highlighted that monoculture harbour significantly more specialists than crop rotations, suggesting that crop rotation increases abundance of generalist species rather than sets of species that are each specialised to the individual crop types grown in the rotation. Applied to a diachronic dataset, the classification also shows that the proportion of specialist weed species has significantly decreased in cultivated fields over the last 30 years which suggests a biotic homogenization of agricultural landscapes. Conclusions This study shows that the concept of generalist/specialist species is particularly relevant to understand the effect of anthropogenic disturbances on the evolution of plant community composition and that ecological theories

  1. Benefits conferred by "timid" ants: active anti-herbivore protection of the rainforest tree Leonardoxa africana by the minute ant Petalomyrmex phylax.

    Science.gov (United States)

    Gaume, Laurence; McKey, Doyle; Anstett, Marie-Charlotte

    1997-10-01

    In this study, we demonstrate that an important benefit provided by the small host-specific ant Petalomyrmex phylax to its host plant Leonardoxa africana is efficient protection against herbivores. We estimate that in the absence of ants, insect herbivory would reduce the leaf area by about one-third. This contributes considerably to the fitness of the plant. Our estimates take into account not only direct damage, such as removal of leaf surface by chewing insects, but also the effects of sucking insects on leaf growth and expansion. Sucking insects are numerically predominant in this system, and the hitherto cryptic effects of ant protection against the growth-reducing effects of sucking insects accounted for half of the total estimated benefit of ant protection. We propose that the small size of workers confers a distinct advantage in this system. Assuming that resource limitation implies a trade off between size and number of ants, and given the small size of phytophagous insects that attack Leonardoxa, we conclude that fine-grained patrolling by a large number of small workers maximises protection of young leaves of this plant. Since herbivores are small and must complete their development on the young leaves of Leonardoxa, and since a high patrolling density is required for a fine-grained search for these enemies, numerous small ants should provide the most effective protection of young leaves of Leonardoxa. We also discuss other factors that may have influenced worker size in this ant.

  2. The functional roles of herbivores in the rocky intertidal systems in Chile: A review of food preferences and consumptive effects Los roles funcionales de los herbívoros en sistemas intermareales rocosos en Chile: Una revisión de las preferencias alimenticias y efectos de consumo

    Directory of Open Access Journals (Sweden)

    MOISÉS A AGUILERA

    2011-06-01

    Full Text Available This paper reviews recent knowledge about the functional roles that herbivores have in intertidal communities in Chile. Specifically, I review field and laboratory studies dealing with the food preferences of herbivores, the responses of algae to herbivore attacks and reports of negative and positive functional effects of herbivores on algal populations and communities. Most herbivores studied are characterized as generalist species. Green ephemeral and a few corticated algae dominate diets, while all species considered ingest larvae and post-metamorphic stages of invertebrates challenging classical characterizations of the herbivore guild. Functional redundancy and complementarity within the herbivore guild is discussed in relation to both quantitative and qualitative evidence. The magnitude of consumptive per capita effects of herbivores on algae can be related, although not entirely, to body size. Feeding mode can determine differential species participation in different phases and stages of community succession. Positive effects of herbivores on algae via spore dispersion, and also compensatory potential after consumption, appear to match the classical model of the "grazing optimization hypothesis". Only one species that form "gardens" is reported, suggesting a lack of information regarding behavioural aspects of abundant taxa from intertidal habitats in Chile. According to variation in oceanographic conditions and thermal regimes along the coast of Chile, geographical variation in functional effects of herbivores and thereby shifts in the herbivore-algae balance is expected. Future studies should consider the functional relationship within the herbivore guild at different temporal and spatial scales, and compensatory potential after species loss. Whether herbivore species have either redundant or complementary roles in intertidal communities can help us to understand the intensity and direction of human impacts in both community structure

  3. Early herbivore alert matters: plant-mediated effects of egg deposition on higher trophic levels benefit plant fitness

    NARCIS (Netherlands)

    Pashalidou, F.G.; Frago, E.; Griese, E.; Poelman, E.H.; Loon, van J.J.A.; Dicke, M.; Fatouros, N.E.

    2015-01-01

    Induction of plant defences, specifically in response to herbivore attack, can save costs that would otherwise be needed to maintain defences even in the absence of herbivores. However, plants may suffer considerable damage during the time required to mount these defences against an attacker. This

  4. Satellite- versus temperature-derived green wave indices for predicting the timing of spring migration of avian herbivores

    NARCIS (Netherlands)

    Shariati Najafabadi, M.; Najafabadi, M.S.; Darvishzadeh, R.; Skidmore, A.K.; Kölzsch, Andrea; Vrieling, A.; Nolet, Bart A.; Exo, Klaus-Michael; Meratnia, Nirvana; Havinga, Paul J.M.; Stahl, Julia; Toxopeus, A.G.

    2015-01-01

    According to the green wave hypothesis, herbivores follow the flush of spring growth of forage plants during their spring migration to northern breeding grounds. In this study we compared two green wave indices for predicting the timing of the spring migration of avian herbivores: the

  5. Task dynamics in self-organising task groups : expertise, motivational, and performance differences of specialists and generalists

    NARCIS (Netherlands)

    Zoethout, Kees; Jager, Wander; Molleman, Eric

    Multi-agent simulation is applied to explore how different types of task variety cause workgroups to change their task allocation accordingly. We studied two groups, generalists and specialists. We hypothesised that the performance of the specialists would decrease when task variety increases. The

  6. Feeding the enemy: loss of nectar and nectaries to herbivores reduces tepal damage and increases pollinator attraction in Iris bulleyana.

    Science.gov (United States)

    Zhu, Ya-Ru; Yang, Min; Vamosi, Jana C; Armbruster, W Scott; Wan, Tao; Gong, Yan-Bing

    2017-08-01

    Floral nectar usually functions as a pollinator reward, yet it may also attract herbivores. However, the effects of herbivore consumption of nectar or nectaries on pollination have rarely been tested. We investigated Iris bulleyana , an alpine plant that has showy tepals and abundant nectar, in the Hengduan Mountains of SW China. In this region, flowers are visited mainly by pollen-collecting pollinators and nectarivorous herbivores. We tested the hypothesis that, in I. bulleyana , sacrificing nectar and nectaries to herbivores protects tepals and thus enhances pollinator attraction. We compared rates of pollination and herbivory on different floral tissues in plants with flowers protected from nectar and nectary consumption with rates in unprotected control plants. We found that nectar and nectaries suffered more herbivore damage than did tepals in natural conditions. However, the amount of tepal damage was significantly greater in the flowers with protected nectaries than in the controls; this resulted in significant differences in pollinator visitation rates. These results provide the first evidence that floral nectar and nectaries may be 'sacrificed' to herbivores, leading to reduced damage to other floral tissues that are more important for reproduction. © 2017 The Author(s).

  7. The fungal cultivar of leaf-cutter ants produces specific enzymes in response to different plant substrates

    Energy Technology Data Exchange (ETDEWEB)

    Khadempour, Lily [Department of Bacteriology, University of Wisconsin-Madison, Madison WI 53706 USA; Department of Zoology, University of Wisconsin-Madison, Madison WI 53706 USA; Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53706 USA; Burnum-Johnson, Kristin E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Baker, Erin S. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Nicora, Carrie D. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Webb-Robertson, Bobbie-Jo M. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; White, Richard A. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Monroe, Matthew E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Huang, Eric L. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Smith, Richard D. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Currie, Cameron R. [Department of Bacteriology, University of Wisconsin-Madison, Madison WI 53706 USA; Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53706 USA

    2016-10-26

    Herbivores use symbiotic microbes to help gain access to energy and nutrients from plant material. Leaf-cutter ants are a paradigmatic example, having tremendous impact on their ecosystems as dominant generalist herbivores through cultivation of a fungus, Leucoagaricus gongylophorous. Here we examine how this mutualism could facilitate the flexible substrate incorporation of the ants by providing leaf-cutter ant subcolonies four substrate types: leaves, flowers, oats, and a mixture of all three. Through metaproteomic analysis of the fungus gardens, we were able to identify and quantify 1766 different fungal proteins, including 161 biomass-degrading enzymes. This analysis revealed that fungal protein profiles were significantly different between subcolonies fed different substrates with the highest abundance of cellulolytic enzymes observed in the leaf and flower treatments. When the fungus garden is provided with leaves and flowers, which contain the majority of their energy in recalcitrant material, it increases its production of proteins that break down cellulose: endoglucanases, exoglucanase and β-glucosidase. Further, the complete metaproteomes for the leaves and flowers treatments were very similar, the mixed treatment closely resembled the treatment with oats alone. This suggests that when provided a mixture of substrates, the fungus garden preferentially produces enzymes necessary for breakdown of simpler, more digestible substrates. This flexible, substrate-specific response of the fungal cultivar allows the leaf-cutter ants to derive energy from a wide range of substrates, which may contribute to their ability to be dominant generalist herbivores.

  8. Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, Terhi; Nerg, Anne-Marja; Holopainen, Jarmo K

    2004-09-01

    We evaluated the similarities between ozone-induced and mite-induced emission of volatile organic compounds (VOCs) from lima beans, and tested the response of the natural enemies of herbivores to these emissions using trophic system of two-spotted spider mites and predatory mites. The acute ozone-exposure and spider mite-infestation induced the emission of two homoterpenes, (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, and (Z)-3-hexenyl acetate. Only plants with spider mite-infestation emitted the monoterpene (E)-{beta}-ocimene. Predatory mites were equally attracted to ozone-exposed and unexposed plants, but discriminated between spider mite-infested and uninfested plants, when both were exposed to ozone. The similarities between ozone and herbivore-induced VOCs suggest that plant defence against phytotoxic ozone and the production of VOCs for attraction of the natural enemies of herbivores may have adaptive coevolution. However, the expected elevated ozone concentrations in future may not disturb tritrophic signalling, unless herbivore-induced VOCs are lost in the process of aerosol formation.

  9. Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling

    International Nuclear Information System (INIS)

    Vuorinen, Terhi; Nerg, Anne-Marja; Holopainen, Jarmo K.

    2004-01-01

    We evaluated the similarities between ozone-induced and mite-induced emission of volatile organic compounds (VOCs) from lima beans, and tested the response of the natural enemies of herbivores to these emissions using trophic system of two-spotted spider mites and predatory mites. The acute ozone-exposure and spider mite-infestation induced the emission of two homoterpenes, (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, and (Z)-3-hexenyl acetate. Only plants with spider mite-infestation emitted the monoterpene (E)-β-ocimene. Predatory mites were equally attracted to ozone-exposed and unexposed plants, but discriminated between spider mite-infested and uninfested plants, when both were exposed to ozone. The similarities between ozone and herbivore-induced VOCs suggest that plant defence against phytotoxic ozone and the production of VOCs for attraction of the natural enemies of herbivores may have adaptive coevolution. However, the expected elevated ozone concentrations in future may not disturb tritrophic signalling, unless herbivore-induced VOCs are lost in the process of aerosol formation

  10. Differing Experiences with Pre-Exposure Prophylaxis in Boston Among Lesbian, Gay, Bisexual, and Transgender Specialists and Generalists in Primary Care: Implications for Scale-Up.

    Science.gov (United States)

    Krakower, Douglas S; Ware, Norma C; Maloney, Kevin M; Wilson, Ira B; Wong, John B; Mayer, Kenneth H

    2017-07-01

    The Centers for Disease Control and Prevention estimates that one in four sexually active men who have sex with men (MSM) could decrease their HIV risk by using HIV pre-exposure prophylaxis (PrEP). Because many MSM access healthcare from primary care providers (PCPs), these clinicians could play an important role in providing access to PrEP. Semistructured qualitative interviews were conducted with 31 PCPs in Boston, MA, to explore how they approach decisions about prescribing PrEP to MSM and their experiences with PrEP provision. Purposive sampling included 12 PCPs from an urban community health center specializing in the care of lesbian, gay, bisexual, and transgender persons ("LGBT specialists") and 19 PCPs from a general academic medical center ("generalists"). Analyses utilized an inductive approach to identify emergent themes. Both groups of PCPs approached prescribing decisions about PrEP as a process of informed decision-making with patients. Providers would defer to patients' preferences if they were unsure about the appropriateness of PrEP. LGBT specialists and generalists were at vastly different stages of adopting PrEP into practice. For LGBT specialists, PrEP was a disruptive innovation that rapidly became normative in practice. Generalists had limited experience with PrEP; however, they desired succinct decision-support tools to help them achieve proficiency, because they considered preventive medicine to be central to their professional role. As generalists vastly outnumber LGBT specialists in the United States, interventions to support PrEP provision by generalists could accelerate the scale-up of PrEP for MSM nationally, which could in turn decrease HIV incidence for this priority population.

  11. Assessing the role of large herbivores in the structuring and functioning of freshwater and marine angiosperm ecosystems

    NARCIS (Netherlands)

    Bakker, Elisabeth S.; Pagès, Jordi F.; Arthur, Rohan; Alcoverro, Teresa

    2016-01-01

    While large herbivores can have strong impacts on terrestrial ecosystems, much less is known of their role in aquatic systems. We reviewed the literature to determine: (1) which large herbivores (>10 kg) have a (semi-)aquatic lifestyle and are important consumers of submerged vascular plants, (2)

  12. Global climate change and above- belowground insect herbivore interactions.

    Directory of Open Access Journals (Sweden)

    Scott Wesley McKenzie

    2013-10-01

    Full Text Available Predicted changes to the Earth’s climate are likely to affect above-belowground interactions. Our understanding is limited, however, by past focus on two-species aboveground interactions mostly ignoring belowground influences. Despite their importance to ecosystem processes, there remains a dearth of empirical evidence showing how climate change will affect above-belowground interactions. The responses of above- and belowground organisms to climate change are likely to differ given the fundamentally different niches they inhabit. Yet there are few studies that address the biological and ecological reactions of belowground herbivores to environmental conditions in current and future climates. Even fewer studies investigate the consequences of climate change for above-belowground interactions between herbivores and other organisms; those that do provide no evidence of a directed response. This paper highlights the importance of considering the belowground fauna when making predictions on the effects of climate change on plant-mediated interspecific interactions.

  13. Parasitism by Cuscuta pentagona Attenuates Host Plant Defenses against Insect Herbivores1

    Science.gov (United States)

    Runyon, Justin B.; Mescher, Mark C.; De Moraes, Consuelo M.

    2008-01-01

    Considerable research has examined plant responses to concurrent attack by herbivores and pathogens, but the effects of attack by parasitic plants, another important class of plant-feeding organisms, on plant defenses against other enemies has not been explored. We investigated how attack by the parasitic plant Cuscuta pentagona impacted tomato (Solanum lycopersicum) defenses against the chewing insect beet armyworm (Spodoptera exigua; BAW). In response to insect feeding, C. pentagona-infested (parasitized) tomato plants produced only one-third of the antiherbivore phytohormone jasmonic acid (JA) produced by unparasitized plants. Similarly, parasitized tomato, in contrast to unparasitized plants, failed to emit herbivore-induced volatiles after 3 d of BAW feeding. Although parasitism impaired antiherbivore defenses, BAW growth was slower on parasitized tomato leaves. Vines of C. pentagona did not translocate JA from BAW-infested plants: amounts of JA in parasite vines grown on caterpillar-fed and control plants were similar. Parasitized plants generally contained more salicylic acid (SA), which can inhibit JA in some systems. Parasitized mutant (NahG) tomato plants deficient in SA produced more JA in response to insect feeding than parasitized wild-type plants, further suggesting cross talk between the SA and JA defense signaling pathways. However, JA induction by BAW was still reduced in parasitized compared to unparasitized NahG, implying that other factors must be involved. We found that parasitized plants were capable of producing induced volatiles when experimentally treated with JA, indicating that resource depletion by the parasite does not fully explain the observed attenuation of volatile response to herbivore feeding. Collectively, these findings show that parasitic plants can have important consequences for host plant defense against herbivores. PMID:18165323

  14. New parasitoid-predator associations: female parasitoids do not avoid competition with generalist predators when sharing invasive prey

    Science.gov (United States)

    Chailleux, Anaïs; Wajnberg, Eric; Zhou, Yuxiang; Amiens-Desneux, Edwige; Desneux, Nicolas

    2014-12-01

    Optimal habitat selection is essential for species survival in ecosystems, and interspecific competition is a key ecological mechanism for many observed species association patterns. Specialized animal species are commonly affected by resource and interference competition with generalist and/or omnivorous competitors, so avoidance behavior could be expected. We hypothesize that specialist species may exploit broad range cues from such potential resource competitors (i.e., cues possibly common to various generalist and/or omnivorous predators) to avoid costly competition regarding food or reproduction, even in new species associations. We tested this hypothesis by studying short-term interactions between a native larval parasitoid and a native generalist omnivorous predator recently sharing the same invasive host/prey, the leaf miner Tuta absoluta. We observed a strong negative effect of kleptoparasitism (food resource stealing) instead of classical intraguild predation on immature parasitoids. There was no evidence that parasitoid females avoided the omnivorous predator when searching for oviposition sites, although we studied both long- and short-range known detection mechanisms. Therefore, we conclude that broad range cue avoidance may not exist in our biological system, probably because it would lead to too much oviposition site avoidance which would not be an efficient and, thus, beneficial strategy. If confirmed in other parasitoids or specialist predators, our findings may have implications for population dynamics, especially in the current context of increasing invasive species and the resulting creation of many new species associations.

  15. Herbivore Impact on Tundra Plant Community Dynamics Using Long-term Remote Sensing Observation

    Science.gov (United States)

    Yu, Q.; Engstrom, R.; Shiklomanov, N. I.

    2014-12-01

    Arctic tundra biome is now experiencing dramatic environmental changes accentuated by summer sea-ice decline, permafrost thaw, and shrub expansion. Multi-decadal time-series of the Normalized Difference Vegetation Index (NDVI, a spectral metric of vegetation productivity) shows an overall "greening" trend across the Arctic tundra biome. Regional trends in climate plausibly explain large-scale patterns of increasing plant productivity, as diminished summer sea-ice extent warms the adjacent land causing tundra vegetation to respond positively (increased photosynthetic aboveground biomass). However, at more local scales, there is a great deal of spatial variability in NDVI trends that likely reflects differences in hydrology and soil conditions, disturbance history, and use by wildlife and humans. Particularly, habitat use by large herbivores, such as reindeer and caribou, has large impacts on vegetation dynamics at local and regional scales, but the role of herbivores in modulating the response of vegetation to warming climate has received little attention. This study investigates regional tundra plant community dynamics within inhabits of different sizes of wild caribou/reindeer herds across the Arctic using GIMMS NDVI (Normalized Difference Vegetation Index) 3g data product. The Taimyr herd in Russia is one of the largest herds in the world with a population increase from 450,000 in 1975 to about 1 million animals in 2000. The population of the porcupine caribou herd has fluctuated in the past three decades between 100,000 and 180,000. Time-series of the maximum NDVI within the inhabit area of the Taimyr herd has increased about 2% per decade over the past three decades, while within the inhabit area of the Porcupine herd the maximum NDVI has increased about 5% per decade. Our results indicate that the impact of large herbivores can be detected from space and further analyses on seasonal dynamics of vegetation indices and herbivore behavior may provide more

  16. Impact of Quaternary climatic changes and interspecific competition on the demographic history of a highly mobile generalist carnivore, the coyote.

    Science.gov (United States)

    Koblmüller, Stephan; Wayne, Robert K; Leonard, Jennifer A

    2012-08-23

    Recurrent cycles of climatic change during the Quaternary period have dramatically affected the population genetic structure of many species. We reconstruct the recent demographic history of the coyote (Canis latrans) through the use of Bayesian techniques to examine the effects of Late Quaternary climatic perturbations on the genetic structure of a highly mobile generalist species. Our analysis reveals a lack of phylogeographic structure throughout the range but past population size changes correlated with climatic changes. We conclude that even generalist carnivorous species are very susceptible to environmental changes associated with climatic perturbations. This effect may be enhanced in coyotes by interspecific competition with larger carnivores.

  17. Status of babesiosis among domestic herbivores in Iran: a systematic review and meta-analysis.

    Science.gov (United States)

    Haghi, Mousa Motavalli; Etemadifar, Fariborz; Fakhar, Mahdi; Teshnizi, Saeed Hosseini; Soosaraei, Masoud; Shokri, Azar; Hajihasani, Atta; Mashhadi, Hamed

    2017-04-01

    Babesiosis is a protozoal disease caused by Babesia spp. in mammals and humans worldwide. It is one of the most important tick-borne diseases, which affects livestock productions, reproductions, and accordingly failing economy. In this, systematic review and meta-analysis, study, the prevalence of babesiosis among domestic herbivores in Iran, between 1998 and 2015, was methodically reviewed. Nine databases including five English and four Persian databases were explored. A total of 49 articles, as regards the examination of 13,547 sheep, 1920 goats, 7167 cattle, and 940 horses, corresponding to prevalence of babesiosis from different regions of Iran were gathered for our qualifying criteria. The overall prevalence of babesiosis was expected to be 14% (95% CI 12%, 16%) in domestic herbivores. Our results showed the highest prevalence in Khorasan Razavi (18.6%) and West Azarbaijan (15.2%) and the lowest in Mazandaran (8.8%) and Isfahan provinces (9.6%), respectively. The high prevalence of Babesia infection in herbivores (mostly sheep and goats) confirms the established enzootic situation of babesiosis in Iran, particularly in western and northeastern regions of the country. Our data offered important and updated information on the epidemiology of babesiosis, for the first time, in domestic herbivores in Iran, and will likely be contributing to the expansion of the screening and control strategies to reduce health and economic impacts among farm animals.

  18. Specific polyphenols and tannins are associated with defense against insect herbivores in the tropical oak Quercus oleoides.

    Science.gov (United States)

    Moctezuma, Coral; Hammerbacher, Almuth; Heil, Martin; Gershenzon, Jonathan; Méndez-Alonzo, Rodrigo; Oyama, Ken

    2014-05-01

    The role of plant polyphenols as defenses against insect herbivores is controversial. We combined correlative field studies across three geographic regions (Northern Mexico, Southern Mexico, and Costa Rica) with induction experiments under controlled conditions to search for candidate compounds that might play a defensive role in the foliage of the tropical oak, Quercus oleoides. We quantified leaf damage caused by four herbivore guilds (chewers, skeletonizers, leaf miners, and gall forming insects) and analyzed the content of 18 polyphenols (including hydrolyzable tannins, flavan-3-ols, and flavonol glycosides) in the same set of leaves using high performance liquid chromatography and mass spectrometry. Foliar damage ranged from two to eight percent per region, and nearly 90% of all the damage was caused by chewing herbivores. Damage due to chewing herbivores was positively correlated with acutissimin B, catechin, and catechin dimer, and damage by mining herbivores was positively correlated with mongolinin A. By contrast, gall presence was negatively correlated with vescalagin and acutissimin B. By using redundancy analysis, we searched for the combinations of polyphenols that were associated to natural herbivory: the combination of mongolinin A and acutissimin B had the highest association to herbivory. In a common garden experiment with oak saplings, artificial damage increased the content of acutissimin B, mongolinin A, and vescalagin, whereas the content of catechin decreased. Specific polyphenols, either individually or in combination, rather than total polyphenols, were associated with standing leaf damage in this tropical oak. Future studies aimed at understanding the ecological role of polyphenols can use similar correlative studies to identify candidate compounds that could be used individually and in biologically meaningful combinations in tests with herbivores and pathogens.

  19. Plant diversification promotes biocontrol services in peach orchards by shaping the ecological niches of insect herbivores and their natural enemies

    DEFF Research Database (Denmark)

    Wan, Nian Feng; Ji, Xiang Yun; Deng, Jian Yu

    2018-01-01

    Ecological niche indicators have been scarcely adopted to assess the biological control of insect herbivores by their natural enemies. We hypothesize that plant diversification promotes the biocontrol services by narrowing the niches of herbivores and broadening the niches of natural enemies....... Our study reveals that plant diversification promotes the biocontrol services by shaping the niche of herbivores and natural enemies, and provides a new assessment method to understand the biodiversity-niche-ecosystem management interactions........ In a large-scale experiment, we found that the abundance of natural enemies was increased by 38.1%, and the abundance of insect herbivores was decreased by 16.9% in peach orchards with plant diversification (treatment) compared to ones with monoculture (control). Stratified sampling indicated...

  20. Plant toxicity, adaptive herbivory, and plant community dynamics

    Science.gov (United States)

    Feng, Z.; Liu, R.; DeAngelis, D.L.; Bryant, J.P.; Kielland, K.; Stuart, Chapin F.; Swihart, R.K.

    2009-01-01

    We model effects of interspecific plant competition, herbivory, and a plant's toxic defenses against herbivores on vegetation dynamics. The model predicts that, when a generalist herbivore feeds in the absence of plant toxins, adaptive foraging generally increases the probability of coexistence of plant species populations, because the herbivore switches more of its effort to whichever plant species is more common and accessible. In contrast, toxin-determined selective herbivory can drive plant succession toward dominance by the more toxic species, as previously documented in boreal forests and prairies. When the toxin concentrations in different plant species are similar, but species have different toxins with nonadditive effects, herbivores tend to diversify foraging efforts to avoid high intakes of any one toxin. This diversification leads the herbivore to focus more feeding on the less common plant species. Thus, uncommon plants may experience depensatory mortality from herbivory, reducing local species diversity. The depensatory effect of herbivory may inhibit the invasion of other plant species that are more palatable or have different toxins. These predictions were tested and confirmed in the Alaskan boreal forest. ?? 2009 Springer Science+Business Media, LLC.

  1. OsWRKY53, a versatile switch in regulating herbivore-induced defense responses in rice

    OpenAIRE

    Hu, Lingfei; Ye, Meng; Li, Ran; Lou, Yonggen

    2016-01-01

    ABSTRACT WRKY proteins, which belong to a large family of plant-specific transcription factors, play important roles in plant defenses against pathogens and herbivores by regulating defense-related signaling pathways. Recently, a rice WRKY transcription factor OsWRKY53 has been reported to function as a negative feedback modulator of OsMPK3/OsMPK6 and thereby to control the size of the investment a rice plant makes to defend against a chewing herbivore, the striped stem borer Chilo suppressal...

  2. Experience with methyl salicylate affects behavioural responses of a predatory mite to blends of herbivore-induced plant volatiles

    NARCIS (Netherlands)

    Boer, de J.G.; Dicke, M.

    2004-01-01

    Many natural enemies of herbivorous arthropods use herbivore-induced plant volatiles to locate their prey. These foraging cues consist of mixtures of compounds that show a considerable variation within and among plantherbivore combinations, a situation that favours a flexible approach in the

  3. The sensory substrate of multimodal communication in brown-headed cowbirds: are females sensory 'specialists' or 'generalists'?

    Science.gov (United States)

    Ronald, Kelly L; Sesterhenn, Timothy M; Fernandez-Juricic, Esteban; Lucas, Jeffrey R

    2017-11-01

    Many animals communicate with multimodal signals. While we have an understanding of multimodal signal production, we know relatively less about receiver filtering of multimodal signals and whether filtering capacity in one modality influences filtering in a second modality. Most multimodal signals contain a temporal element, such as change in frequency over time or a dynamic visual display. We examined the relationship in temporal resolution across two modalities to test whether females are (1) sensory 'specialists', where a trade-off exists between the sensory modalities, (2) sensory 'generalists', where a positive relationship exists between the modalities, or (3) whether no relationship exists between modalities. We used female brown-headed cowbirds (Molothrus ater) to investigate this question as males court females with an audiovisual display. We found a significant positive relationship between female visual and auditory temporal resolution, suggesting that females are sensory 'generalists'. Females appear to resolve information well across multiple modalities, which may select for males that signal their quality similarly across modalities.

  4. Resource partitioning between large herbivores in Hustai National Park, Mongolia

    NARCIS (Netherlands)

    Sietses, D.J.; Faupin, G.; Boer, de W.F.; Jong, de C.B.; Henkens, R.J.H.G.; Usukhjargal, D.; Batbaatar, T.

    2009-01-01

    Re-introduced Przewalski horses in Hustai National Park, Mongolia could suffer from food competition with other herbivore species through food resource depletion. Diet composition of the Przewalski horse (Equus ferus przewalskii), red deer (Cervus elaphus) and four livestock species (sheep, goat,

  5. Asymmetric impacts of two herbivore ecotypes on similar host plants

    Science.gov (United States)

    Ecotypes may arise following allopatric separation from source populations. The simultaneous transfer of an exotic plant to a novel environment, along with its stenophagous herbivore, may complicate more traditional patterns of divergence from the plant and insect source populations. We evaluated ...

  6. A genetically-based latitudinal cline in the emission of herbivore-induced plant volatile organic compounds.

    Science.gov (United States)

    Wason, Elizabeth L; Agrawal, Anurag A; Hunter, Mark D

    2013-08-01

    The existence of predictable latitudinal variation in plant defense against herbivores remains controversial. A prevailing view holds that higher levels of plant defense evolve at low latitudes compared to high latitudes as an adaptive plant response to higher herbivore pressure on low-latitude plants. To date, this prediction has not been examined with respect to volatile organic compounds (VOCs) that many plants emit, often thus attracting the natural enemies of herbivores. Here, we compared genetically-based constitutive and herbivore-induced aboveground vegetative VOC emissions from plants originating across a gradient of more than 10° of latitude (>1,500 km). We collected headspace VOCs from Asclepias syriaca (common milkweed) originating from 20 populations across its natural range and grown in a common garden near the range center. Feeding by specialist Danaus plexippus (monarch) larvae induced VOCs, and field environmental conditions (temperature, light, and humidity) also influenced emissions. Monarch damage increased plant VOC concentrations and altered VOC blends. We found that genetically-based induced VOC emissions varied with the latitude of plant population origin, although the pattern followed the reverse of that predicted-induced VOC concentration increased with increasing latitude. This pattern appeared to be driven by a greater induction of sesquiterpenoids at higher latitudes. In contrast, constitutive VOC emission did not vary systematically with latitude, and the induction of green leafy volatiles declined with latitude. Our results do not support the prevailing view that plant defense is greater at lower than at higher latitudes. That the pattern holds only for herbivore-induced VOC emission, and not constitutive emission, suggests that latitudinal variation in VOCs is not a simple adaptive response to climatic factors.

  7. Remote Sensing Forage Quality for Browsing Herbivores: A Case Study of Cutting Edge Koala Conservation

    Science.gov (United States)

    Youngentob, K. N.; Au, J.; Held, A. A.; Foley, W. J.; Possingham, H. P.

    2014-12-01

    Managing landscapes for conservation requires a capacity to measure habitat quality. Although multiple factors are often responsible for the distribution and abundance of herbivores, spatial variations in the quality and quantity of plant forage are known to be important for many species. While we cannot see the chemical complexity of landscapes with our naked-eye, advances in imaging spectroscopy are making it possible to assess the quality of forage on a landscape-scale. Much research in this area has focused on the ability to estimate foliar nitrogen (N), because N is believed to be a limiting nutrient for many leaf eating animals. However, the total quantity of foliar N does not necessarily reflect the amount of N that can be utilized by herbivores. Available nitrogen (AvailN) is an invitro measure of forage quality that integrates the influence of tannins and fibre on the amount of foliar N that is available for digestion by herbivores. This may be a more meaningful measure of forage quality than total N for the many herbivorous species that are sensitive to the effects of tannins. Our previous research has demonstrated that it is possible to estimate this integrated measure of foliar nutritional quality at an individual tree crown level across multiple tree species using imaging spectroscopy (HyMap). Here we present a case study of how this remote sensing data is being used to help inform landscape management and conservation decisions for an iconic Australian species, the koala (Phascolarctos cinereus). We review the methods involved in developing maps of integrated measures of foliar nutritional quality for browsing herbivores with airborne imaging spectroscopy data and discuss their applications for wildlife management.

  8. Behavioral adjustments of African herbivores to predation risk by lions: spatiotemporal variations influence habitat use.

    Science.gov (United States)

    Valeix, M; Loveridge, A J; Chamaillé-Jammes, S; Davidson, Z; Murindagomo, F; Fritz, H; Macdonald, D W

    2009-01-01

    Predators may influence their prey populations not only through direct lethal effects, but also through indirect behavioral changes. Here, we combined spatiotemporal fine-scale data from GPS radio collars on lions with habitat use information on 11 African herbivores in Hwange National Park (Zimbabwe) to test whether the risk of predation by lions influenced the distribution of herbivores in the landscape. Effects of long-term risk of predation (likelihood of lion presence calculated over four months) and short-term risk of predation (actual presence of lions in the vicinity in the preceding 24 hours) were contrasted. The long-term risk of predation by lions appeared to influence the distributions of all browsers across the landscape, but not of grazers. This result strongly suggests that browsers and grazers, which face different ecological constraints, are influenced at different spatial and temporal scales in the variation of the risk of predation by lions. The results also show that all herbivores tend to use more open habitats preferentially when lions are in their vicinity, probably an effective anti-predator behavior against such an ambush predator. Behaviorally induced effects of lions may therefore contribute significantly to structuring African herbivore communities, and hence possibly their effects on savanna ecosystems.

  9. Mammalian Herbivores in the Boreal Forests: Their Numerical Fluctuations and Use by Man

    Directory of Open Access Journals (Sweden)

    Kjell Danell

    1998-12-01

    Full Text Available Within the boreal zone, there are about 50 native mammalian herbivore species that belong to the orders Artiodactyla, Rodentia, and Lagomorpha. Of these species, 31 occur in the Nearctic and 24 in the Palaearctic. Only six species occur in both regions. Species of the family Cervidae have probably been, and still are, the most important group for man, as they provide both meat and hides. Pelts from squirrels, muskrats, and hares were commercially harvested at the beginning of the century, but have less value today. The semi-domestic reindeer in the Palaearctic produces meat and hides on a commercial basis. It is also used for milking, to a limited extent, as is the semi-domestic moose in Russia. The Siberian musk deer is used for its musk and is raised in captivity in China. All species heavier than 1 kg are utilized by man, those with a body mass in the range 1 kg - 1 hg are sometimes used, and species lighter than 1 hg are rarely used. Here, we review the numerical fluctuations in terms of periodicity and amplitude, based on an extensive data set found in the literature, especially from the former Soviet Union. Current understanding of the underlying factors behind the population fluctuations is briefly reviewed. Management and conservation aspects of the mammalian herbivores in the boreal zone are also discussed. We conclude that there is a challenge to manage the forests for the mammalian herbivores, but there is also a challenge to manage the populations of mammalian herbivores for the forests.

  10. Mining the plant-herbivore interface with a leafmining Drosophila of Arabidopsis

    Science.gov (United States)

    Whiteman, Noah K.; Groen, Simon C.; Chevasco, Daniela; Bear, Ashley; Beckwith, Noor; Gregory, T. Ryan; Denoux, Carine; Mammarella, Nicole; Ausubel, Frederick M.; Pierce, Naomi E.

    2010-01-01

    Experimental infections of Arabidopsis thaliana (Arabidopsis) with genomically characterized plant pathogens such as Pseudomonas syringae have facilitated dissection of canonical eukaryotic defense pathways and parasite virulence factors. Plants are also attacked by herbivorous insects, and the development of an ecologically relevant genetic model herbivore that feeds on Arabidopsis will enable the parallel dissection of host defense and reciprocal resistance pathways such as those involved in xenobiotic metabolism. An ideal candidate is Scaptomyza flava, a drosophilid fly whose leafmining larvae are true herbivores that can be found in nature feeding on Arabidopsis and other crucifers. Here we describe the eukaryotic life cycle of S. flava on Arabidopsis, and use multiple approaches to characterize the response of Arabidopsis to S. flava attack. Oviposition choice tests and growth performance assays on different Arabidopsis ecotypes, defense-related mutants, and hormone and chitin-treated plants revealed significant differences in host preference and variation in larval performance across Arabidopsis accessions. The jasmonate (JA) and glucosinolate pathways in Arabidopsis are important in mediating quantitative resistance against S. flava, and priming with JA or chitin resulted in increased resistance. Expression of xenobiotic detoxification genes was reduced in S. flava larvae reared on Arabidopsis JA signaling mutants, and increased in plants pre-treated with chitin. These results and future research directions are discussed in the context of developing a genetic model system to analyze insect/plant interactions. PMID:21073583

  11. The Effect of Host-Plant Phylogenetic Isolation on Species Richness, Composition and Specialization of Insect Herbivores: A Comparison between Native and Exotic Hosts.

    Directory of Open Access Journals (Sweden)

    Julio Miguel Grandez-Rios

    Full Text Available Understanding the drivers of plant-insect interactions is still a key issue in terrestrial ecology. Here, we used 30 well-defined plant-herbivore assemblages to assess the effects of host plant phylogenetic isolation and origin (native vs. exotic on the species richness, composition and specialization of the insect herbivore fauna on co-occurring plant species. We also tested for differences in such effects between assemblages composed exclusively of exophagous and endophagous herbivores. We found a consistent negative effect of the phylogenetic isolation of host plants on the richness, similarity and specialization of their insect herbivore faunas. Notably, except for Jaccard dissimilarity, the effect of phylogenetic isolation on the insect herbivore faunas did not vary between native and exotic plants. Our findings show that the phylogenetic isolation of host plants is a key factor that influences the richness, composition and specialization of their local herbivore faunas, regardless of the host plant origin.

  12. The Active Jasmonate JA-Ile Regulates a Specific Subset of Plant Jasmonate-Mediated Resistance to Herbivores in Nature

    Directory of Open Access Journals (Sweden)

    Meredith C. Schuman

    2018-06-01

    Full Text Available The jasmonate hormones are essential regulators of plant defense against herbivores and include several dozen derivatives of the oxylipin jasmonic acid (JA. Among these, the conjugate jasmonoyl isoleucine (JA-Ile has been shown to interact directly with the jasmonate co-receptor complex to regulate responses to jasmonate signaling. However, functional studies indicate that some aspects of jasmonate-mediated defense are not regulated by JA-Ile. Thus, it is not clear whether JA-Ile is best characterized as the master jasmonate regulator of defense, or if it regulates more specific aspects. We investigated possible functions of JA-Ile in anti-herbivore resistance of the wild tobacco Nicotiana attenuata, a model system for plant-herbivore interactions. We first analyzed the soluble and volatile secondary metabolomes of irJAR4xirJAR6, asLOX3, and WT plants, as well as an RNAi line targeting the jasmonate co-receptor CORONATINE INSENSITIVE 1 (irCOI1, following a standardized herbivory treatment. irJAR4xirJAR6 were the most similar to WT plants, having a ca. 60% overlap in differentially regulated metabolites with either asLOX3 or irCOI1. In contrast, while at least 25 volatiles differed between irCOI1 or asLOX3 and WT plants, there were few or no differences in herbivore-induced volatile emission between irJAR4xirJAR6 and WT plants, in glasshouse- or field-collected samples. We then measured the susceptibility of jasmonate-deficient vs. JA-Ile-deficient plants in nature, in comparison to wild-type (WT controls, and found that JA-Ile-deficient plants (irJAR4xirJAR6 are much better defended even than a mildly jasmonate-deficient line (asLOX3. The differences among lines could be attributed to differences in damage from specific herbivores, which appeared to prefer either one or the other jasmonate-deficient phenotype. We further investigated the elicitation of one herbivore-induced volatile known to be jasmonate-regulated and to mediate resistance to

  13. Parrots Eat Nutritious Foods despite Toxins

    Science.gov (United States)

    Gilardi, James D.

    2012-01-01

    Background Generalist herbivores are challenged not only by the low nitrogen and high indigestibility of their plant foods, but also by physical and chemical defenses of plants. This study investigated the foods of wild parrots in the Peruvian Amazon and asked whether these foods contain dietary components that are limiting for generalist herbivores (protein, lipids, minerals) and in what quantity; whether parrots chose foods based on nutrient content; and whether parrots avoid plants that are chemically defended. Methodology/Principal Findings We made 224 field observations of free-ranging parrots of 17 species in 8 genera foraging on 102 species of trees in an undisturbed tropical rainforest, in two dry seasons (July-August 1992–1993) and one wet season (January-February1994). We performed laboratory analyses of parts of plants eaten and not eaten by parrots and brine shrimp assays of toxicity as a proxy for vertebrates. Parrots ate seeds, fruits, flowers, leaves, bark, and insect larvae, but up to 70% of their diet comprised seeds of many species of tropical trees, in various stages of ripeness. Plant parts eaten by parrots were rich in protein, lipid, and essential minerals, as well as potentially toxic chemicals. Seeds were higher than other plant materials in protein and lipid and lower in fiber. Large macaws of three species ate foods higher in protein and lipids and lower in fiber compared to plant parts available but not eaten. Macaws ate foods that were lower in phenolic compounds than foods they avoided. Nevertheless, foods eaten by macaws contained measurable levels of toxicity. Macaws did not appear to make dietary selections based on mineral content. Conclusions/Significance Parrots represent a remarkable example of a generalist herbivore that consumes seeds destructively despite plant chemical defenses. With the ability to eat toxic foods, rainforest-dwelling parrots exploited a diversity of nutritious foods, even in the dry season when food was

  14. Parrots eat nutritious foods despite toxins.

    Directory of Open Access Journals (Sweden)

    James D Gilardi

    Full Text Available Generalist herbivores are challenged not only by the low nitrogen and high indigestibility of their plant foods, but also by physical and chemical defenses of plants. This study investigated the foods of wild parrots in the Peruvian Amazon and asked whether these foods contain dietary components that are limiting for generalist herbivores (protein, lipids, minerals and in what quantity; whether parrots chose foods based on nutrient content; and whether parrots avoid plants that are chemically defended.We made 224 field observations of free-ranging parrots of 17 species in 8 genera foraging on 102 species of trees in an undisturbed tropical rainforest, in two dry seasons (July-August 1992-1993 and one wet season (January-February1994. We performed laboratory analyses of parts of plants eaten and not eaten by parrots and brine shrimp assays of toxicity as a proxy for vertebrates. Parrots ate seeds, fruits, flowers, leaves, bark, and insect larvae, but up to 70% of their diet comprised seeds of many species of tropical trees, in various stages of ripeness. Plant parts eaten by parrots were rich in protein, lipid, and essential minerals, as well as potentially toxic chemicals. Seeds were higher than other plant materials in protein and lipid and lower in fiber. Large macaws of three species ate foods higher in protein and lipids and lower in fiber compared to plant parts available but not eaten. Macaws ate foods that were lower in phenolic compounds than foods they avoided. Nevertheless, foods eaten by macaws contained measurable levels of toxicity. Macaws did not appear to make dietary selections based on mineral content.Parrots represent a remarkable example of a generalist herbivore that consumes seeds destructively despite plant chemical defenses. With the ability to eat toxic foods, rainforest-dwelling parrots exploited a diversity of nutritious foods, even in the dry season when food was scarce for other frugivores and granivores.

  15. Does herbivorous fish protection really improve coral reef resilience? A case study from new caledonia (South Pacific).

    Science.gov (United States)

    Carassou, Laure; Léopold, Marc; Guillemot, Nicolas; Wantiez, Laurent; Kulbicki, Michel

    2013-01-01

    Parts of coral reefs from New Caledonia (South Pacific) were registered at the UNESCO World Heritage list in 2008. Management strategies aiming at preserving the exceptional ecological value of these reefs in the context of climate change are currently being considered. This study evaluates the appropriateness of an exclusive fishing ban of herbivorous fish as a strategy to enhance coral reef resilience to hurricanes and bleaching in the UNESCO-registered areas of New Caledonia. A two-phase approach was developed: 1) coral, macroalgal, and herbivorous fish communities were examined in four biotopes from 14 reefs submitted to different fishing pressures in New Caledonia, and 2) results from these analyses were challenged in the context of a global synthesis of the relationship between herbivorous fish protection, coral recovery and relative macroalgal development after hurricanes and bleaching. Analyses of New Caledonia data indicated that 1) current fishing pressure only slightly affected herbivorous fish communities in the country, and 2) coral and macroalgal covers remained unrelated, and macroalgal cover was not related to the biomass, density or diversity of macroalgae feeders, whatever the biotope or level of fishing pressure considered. At a global scale, we found no relationship between reef protection status, coral recovery and relative macroalgal development after major climatic events. These results suggest that an exclusive protection of herbivorous fish in New Caledonia is unlikely to improve coral reef resilience to large-scale climatic disturbances, especially in the lightly fished UNESCO-registered areas. More efforts towards the survey and regulation of major chronic stress factors such as mining are rather recommended. In the most heavily fished areas of the country, carnivorous fish and large targeted herbivores may however be monitored as part of a precautionary approach.

  16. Family matters: effect of host plant variation in chemical and mechanical defenses on a sequestering specialist herbivore.

    Science.gov (United States)

    Dimarco, Romina D; Nice, Chris C; Fordyce, James A

    2012-11-01

    Insect herbivores contend with various plant traits that are presumed to function as feeding deterrents. Paradoxically, some specialist insect herbivores might benefit from some of these plant traits, for example by sequestering plant chemical defenses that herbivores then use as their own defense against natural enemies. Larvae of the butterfly species Battus philenor (L.) (Papilionidae) sequester toxic alkaloids (aristolochic acids) from their Aristolochia host plants, rendering larvae and adults unpalatable to a broad range of predators. We studied the importance of two putative defensive traits in Aristolochia erecta: leaf toughness and aristolochic acid content, and we examined the effect of intra- and interplant chemical variation on the chemical phenotype of B. philenor larvae. It has been proposed that genetic variation for sequestration ability is "invisible to natural selection" because intra- and interindividual variation in host-plant chemistry will largely eliminate a role for herbivore genetic variation in determining an herbivore's chemical phenotype. We found substantial intra- and interplant variation in leaf toughness and in the aristolochic acid chemistry in A. erecta. Based on field observations and laboratory experiments, we showed that first-instar larvae preferentially fed on less tough, younger leaves and avoided tougher, older leaves, and we found no evidence that aristolochic acid content influenced first-instar larval foraging. We found that the majority of variation in the amount of aristolochic acid sequestered by larvae was explained by larval family, not by host-plant aristolochic acid content. Heritable variation for sequestration is the predominant determinant of larval, and likely adult, chemical phenotype. This study shows that for these highly specialized herbivores that sequester chemical defenses, traits that offer mechanical resistance, such as leaf toughness, might be more important determinants of early-instar larval

  17. Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism.

    Science.gov (United States)

    Clauss, Marcus; Steuer, Patrick; Müller, Dennis W H; Codron, Daryl; Hummel, Jürgen

    2013-01-01

    Digestive physiology has played a prominent role in explanations for terrestrial herbivore body size evolution and size-driven diversification and niche differentiation. This is based on the association of increasing body mass (BM) with diets of lower quality, and with putative mechanisms by which a higher BM could translate into a higher digestive efficiency. Such concepts, however, often do not match empirical data. Here, we review concepts and data on terrestrial herbivore BM, diet quality, digestive physiology and metabolism, and in doing so give examples for problems in using allometric analyses and extrapolations. A digestive advantage of larger BM is not corroborated by conceptual or empirical approaches. We suggest that explanatory models should shift from physiological to ecological scenarios based on the association of forage quality and biomass availability, and the association between BM and feeding selectivity. These associations mostly (but not exclusively) allow large herbivores to use low quality forage only, whereas they allow small herbivores the use of any forage they can physically manage. Examples of small herbivores able to subsist on lower quality diets are rare but exist. We speculate that this could be explained by evolutionary adaptations to the ecological opportunity of selective feeding in smaller animals, rather than by a physiologic or metabolic necessity linked to BM. For gigantic herbivores such as sauropod dinosaurs, other factors than digestive physiology appear more promising candidates to explain evolutionary drives towards extreme BM.

  18. Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism.

    Directory of Open Access Journals (Sweden)

    Marcus Clauss

    Full Text Available Digestive physiology has played a prominent role in explanations for terrestrial herbivore body size evolution and size-driven diversification and niche differentiation. This is based on the association of increasing body mass (BM with diets of lower quality, and with putative mechanisms by which a higher BM could translate into a higher digestive efficiency. Such concepts, however, often do not match empirical data. Here, we review concepts and data on terrestrial herbivore BM, diet quality, digestive physiology and metabolism, and in doing so give examples for problems in using allometric analyses and extrapolations. A digestive advantage of larger BM is not corroborated by conceptual or empirical approaches. We suggest that explanatory models should shift from physiological to ecological scenarios based on the association of forage quality and biomass availability, and the association between BM and feeding selectivity. These associations mostly (but not exclusively allow large herbivores to use low quality forage only, whereas they allow small herbivores the use of any forage they can physically manage. Examples of small herbivores able to subsist on lower quality diets are rare but exist. We speculate that this could be explained by evolutionary adaptations to the ecological opportunity of selective feeding in smaller animals, rather than by a physiologic or metabolic necessity linked to BM. For gigantic herbivores such as sauropod dinosaurs, other factors than digestive physiology appear more promising candidates to explain evolutionary drives towards extreme BM.

  19. Coral Reef Ecosystem Data from the 2010-2011 Kahekili Herbivore Fisheries Management Area, West Maui, Herbivore Enhancement as a Tool for Reef Restoration Project (NODC Accession 0082869)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This research targets the Hawaii Coral Reef Initiative (HCRI) Priority Area A: Kahekili, Maui: Herbivore Fisheries Management Area (KHFMA). The project goal was to...

  20. Getting prepared for future attack : induction of plant defences by herbivore egg deposition and consequences for the insect community

    NARCIS (Netherlands)

    Pashalidou, F.G.

    2015-01-01

    Plants have evolved intriguing defences against insect herbivores. Compared to constitutive Plants have evolved intriguing defences against insect herbivores. Compared to constitutive defences that are always present, plants can respond with inducible defences when they are attacked. Insect

  1. Aspects of a two-pasture — herbivore model

    Directory of Open Access Journals (Sweden)

    Jan Åge Riseth

    2004-04-01

    Full Text Available Pastures for reindeer can be divided into green pastures (mainly herbs and grasses of summer time and more or less snow-covered lichen pastures of winter. Fall and spring pastures have a composition in-between these extremes, but for model purposes bisection is sufficient. For the animals the green-pasture season is an anabolic phase with a physiological building-up of protein reserves, while winter is a catabolic phase where food-intake is reduced and the animals to a considerable extent survive on the accumulated reserves from summer. While protein reserves are stored from summer to winter, lichen pastures are stored from year to year. Grasses and herbs not being grazed are wilting by the end of the growing season, while lichens not grazed can live for many years. This corresponds with fundamental differences in both growth pattern and resilience. The implications of the different features, and their interconnections, are not easy to survey without formal modeling. The point of departure is a simple pasture-herbivore model, well known from the literature building on a set of differential equations. A new two-pasture-herbivore model is developed. The model includes as basic elements the Klein (1968 hypothesis and that a residual lichen biomass is kept ungrazed due to snow-cover protection. Further the annual cycle is divided into four stylized seasons with herd rates of winter survival, spring calving, summer physiological growth and fall slaughtering. Isoclines are derived for summer pasture, winter pasture and herbivores. Stability properties are discussed in relation to various situations of seasonal pasture balance. Empirical examples, particularly that of changes in pasture balance and vegetation cover in Western Finnmark, Norway, are discussed. The article finds that the two-pasture model provides important features of reality, such as the stability aspects of pasture balance, which cannot be displayed by a one-pasture model. It is

  2. Omnivore-herbivore interactions: thrips and whiteflies compete via the shared host plant.

    Science.gov (United States)

    Pappas, Maria L; Tavlaki, Georgia; Triantafyllou, Anneta; Broufas, George

    2018-03-05

    Phytophagy is a common feature among pure herbivorous insects and omnivores that utilise both plant and prey as food resources; nevertheless, experimental evidence for factors affecting their interactions is restricted to intraguild predation and predator-mediated competition. We herein focused on plant-mediated effects that could result from plant defence activation or quality alteration and compared the performance of an omnivore, the western flower thrips Frankliniella occidentalis, and a pure herbivore, the greenhouse whitefly Trialeurodes vaporariorum, on cucumber plants previously infested with either species. Furthermore, we recorded their behavioural responses when given a choice among infested and clean plants. Whiteflies laid less eggs on plants previously exposed to thrips but more on whitefly-infested plants. Thrips survival was negatively affected on whitefly-infested than on thrips-infested or clean plants. Notably, whiteflies developed significantly faster on plants infested with conspecifics. In accordance, whiteflies avoided thrips-infested plants and preferred whitefly-infested over clean plants. Thrips showed no preference for either infested or clean plants. Our study is a first report on the role of plant-mediated effects in shaping omnivore-herbivore interactions. Considering the factors driving such interactions we will likely better understand the ecology of the more complex relationships among plants and pest organisms.

  3. Urban land use decouples plant-herbivore-parasitoid interactions at multiple spatial scales.

    Directory of Open Access Journals (Sweden)

    Amanda E Nelson

    Full Text Available Intense urban and agricultural development alters habitats, increases fragmentation, and may decouple trophic interactions if plants or animals cannot disperse to needed resources. Specialist insects represent a substantial proportion of global biodiversity and their fidelity to discrete microhabitats provides a powerful framework for investigating organismal responses to human land use. We sampled site occupancy and densities for two plant-herbivore-parasitoid systems from 250 sites across a 360 km2 urban/agricultural landscape to ask whether and how human development decouples interactions between trophic levels. We compared patterns of site occupancy, host plant density, herbivory and parasitism rates of insects at two trophic levels with respect to landcover at multiple spatial scales. Geospatial analyses were used to identify landcover characters predictive of insect distributions. We found that herbivorous insect densities were decoupled from host tree densities in urban landcover types at several spatial scales. This effect was amplified for the third trophic level in one of the two insect systems: despite being abundant regionally, a parasitoid species was absent from all urban/suburban landcover even where its herbivore host was common. Our results indicate that human land use patterns limit distributions of specialist insects. Dispersal constraints associated with urban built development are specifically implicated as a limiting factor.

  4. The distribution of large herbivore hotspots in relation to environmental and anthropogenic correlates in the Mara region of Kenya

    NARCIS (Netherlands)

    Bhola, Nina; Ogutu, Joseph O.; Said, Mohamed Y.; Piepho, Hans-Peter; Olff, Han; Fryxell, John

    2012-01-01

    1. The distributions of large herbivores in protected areas and their surroundings are becoming increasingly restricted by changing land use, with adverse consequences for wildlife populations. 2. We analyse changes in distributions of herbivore hotspots to understand their environmental and

  5. Ecology of Arabidopsis thaliana : local adaptation and interaction with herbivores

    NARCIS (Netherlands)

    Mosleh Arany, A.

    2006-01-01

    As first step the impact of herbivory and abiotic factors on population dynamics of Arabidopsis thaliana were studied. Ceutorhynchus atomus and C. contractus were identified as the major insect herbivores on A. thaliana population, reducing seed production by more than 40%. Mortality from February

  6. Comparative Genomics of the Herbivore Gut Symbiont Lactobacillus reuteri Reveals Genetic Diversity and Lifestyle Adaptation

    Directory of Open Access Journals (Sweden)

    Jie Yu

    2018-06-01

    Full Text Available Lactobacillus reuteri is a catalase-negative, Gram-positive, non-motile, obligately heterofermentative bacterial species that has been used as a model to describe the ecology and evolution of vertebrate gut symbionts. However, the genetic features and evolutionary strategies of L. reuteri from the gastrointestinal tract of herbivores remain unknown. Therefore, 16 L. reuteri strains isolated from goat, sheep, cow, and horse in Inner Mongolia, China were sequenced in this study. A comparative genomic approach was used to assess genetic diversity and gain insight into the distinguishing features related to the different hosts based on 21 published genomic sequences. Genome size, G + C content, and average nucleotide identity values of the L. reuteri strains from different hosts indicated that the strains have broad genetic diversity. The pan-genome of 37 L. reuteri strains contained 8,680 gene families, and the core genome contained 726 gene families. A total of 92,270 nucleotide mutation sites were discovered among 37 L. reuteri strains, and all core genes displayed a Ka/Ks ratio much lower than 1, suggesting strong purifying selective pressure (negative selection. A highly robust maximum likelihood tree based on the core genes shown in the herbivore isolates were divided into three clades; clades A and B contained most of the herbivore isolates and were more closely related to human isolates and vastly distinct from clade C. Some functional genes may be attributable to host-specific of the herbivore, omnivore, and sourdough groups. Moreover, the numbers of genes encoding cell surface proteins and active carbohydrate enzymes were host-specific. This study provides new insight into the adaptation of L. reuteri to the intestinal habitat of herbivores, suggesting that the genomic diversity of L. reuteri from different ecological origins is closely associated with their living environment.

  7. Host-Plant Specialization Mediates the Influence of Plant Abundance on Host Use by Flower Head-Feeding Insects.

    Science.gov (United States)

    Nobre, Paola A F; Bergamini, Leonardo L; Lewinsohn, Thomas M; Jorge, Leonardo R; Almeida-Neto, Mário

    2016-02-01

    Among-population variation in host use is a common phenomenon in herbivorous insects. The simplest and most trivial explanation for such variation in host use is the among-site variation in plant species composition. Another aspect that can influence spatial variation in host use is the relative abundance of each host-plant species compared to all available hosts. Here, we used endophagous insects that develop in flower heads of Asteraceae species as a study system to investigate how plant abundance influences the pattern of host-plant use by herbivorous insects with distinct levels of host-range specialization. Only herbivores recorded on three or more host species were included in this study. In particular, we tested two related hypotheses: 1) plant abundance has a positive effect on the host-plant preference of herbivorous insects, and 2) the relative importance of plant abundance to host-plant preference is greater for herbivorous species that use a wider range of host-plant species. We analyzed 11 herbivore species in 20 remnants of Cerrado in Southeastern Brazil. For 8 out of 11 herbivore species, plant abundance had a positive influence on host use. In contrast to our expectation, both the most specialized and the most generalist herbivores showed a stronger positive effect of plant species abundance in host use. Thus, we found evidence that although the abundance of plant species is a major factor determining the preferential use of host plants, its relative importance is mediated by the host-range specialization of herbivores.

  8. Effects of herbivore exclosures on variation in quality and quantity of ...

    African Journals Online (AJOL)

    Effects of herbivore exclosures on variation in quality and quantity of plants among ... commercial and game) and among habitat types (open savanna, rocky and pan) in a semiarid savanna in South Africa. ... AJOL African Journals Online.

  9. Introduction: on the role of a generalist journal

    Directory of Open Access Journals (Sweden)

    Alessandro Roncaglia

    2013-03-01

    Full Text Available Economists commonly specialize in some limited parts of the general field. This is a necessity, due to the complexity of the different issues, the amount of literature available on each of them and the possibility of recourse to different analytical or statistical tools. However, specialization has its drawbacks. Quite often, specialists in the fields of, for instance, labour economics or industrial organization, utilize tools such as the aggregate production function or Marshallian U-shaped cost curves for the firm and the industry; tools which any specialist in abstract theory knows to have been proved faulty. Again, quite often econometric exercises rely on implicit, forgotten assumptions which if duly recognized would deprive the results of any meaning with regard to the interpretation of real world events. The risks of field specialization are commonly countered by the existence of generalist journals, such as the present one.

  10. Generalist predator, cyclic voles and cavity nests: testing the alternative prey hypothesis.

    Science.gov (United States)

    Pöysä, Hannu; Jalava, Kaisa; Paasivaara, Antti

    2016-12-01

    The alternative prey hypothesis (APH) states that when the density of the main prey declines, generalist predators switch to alternative prey and vice versa, meaning that predation pressure on the alternative prey should be negatively correlated with the density of the main prey. We tested the APH in a system comprising one generalist predator (pine marten, Martes martes), cyclic main prey (microtine voles, Microtus agrestis and Myodes glareolus) and alternative prey (cavity nests of common goldeneye, Bucephala clangula); pine marten is an important predator of both voles and common goldeneye nests. Specifically, we studied whether annual predation rate of real common goldeneye nests and experimental nests is negatively associated with fluctuation in the density of voles in four study areas in southern Finland in 2000-2011. Both vole density and nest predation rate varied considerably between years in all study areas. However, we did not find support for the hypothesis that vole dynamics indirectly affects predation rate of cavity nests in the way predicted by the APH. On the contrary, the probability of predation increased with vole spring abundance for both real and experimental nests. Furthermore, a crash in vole abundance from previous autumn to spring did not increase the probability of predation of real nests, although it increased that of experimental nests. We suggest that learned predation by pine marten individuals, coupled with efficient search image for cavities, overrides possible indirect positive effects of high vole density on the alternative prey in our study system.

  11. Quantification of population sizes of large herbivores and their long-term functional role in ecosystems using dung fungal spores

    NARCIS (Netherlands)

    Baker, Ambroise G.; Cornelissen, Perry; Bhagwat, Shonil A.; Vera, Frans M.W.; Willis, Katherine J.

    2016-01-01

    The relationship between large herbivore numbers and landscape cover over time is poorly understood. There are two schools of thought: one views large herbivores as relatively passive elements upon the landscape and the other as ecosystem engineers driving vegetation succession. The latter

  12. Diversity and impact of herbivorous insects on Brazilian peppertree in Florida prior to release of exotic biological control agents

    Science.gov (United States)

    The impact of insect herbivores on the performance of Brazilian peppertree, Schinus terebinthifolia Raddi (Anacardiaceae), was evaluated at two locations in Florida using an insecticide exclusion method. Although several species of insect herbivores were collected on the invasive tree, there was no...

  13. Genetic differentiation across North America in the generalist moth Heliothis virescens and the specialist H. subflexa

    NARCIS (Netherlands)

    Groot, A.T.; Classen, A.; Inglis, O.; Blanco, C.A.; López Jr., J.; Vargas, A.T.; Schal, C.; Heckel, D.G.; Schöfl, G.

    2011-01-01

    The two moth species Heliothis virescens (Hv) and H. subflexa (Hs) are closely related, but have vastly different feeding habits. Hv is a generalist and an important pest in many crops in the USA, while Hs is a specialist feeding only on plants in the genus Physalis. In this study, we conducted a

  14. Varying Herbivore Population Structure Correlates with Lack of Local Adaptation in a Geographic Variable Plant-Herbivore Interaction

    Science.gov (United States)

    Cogni, Rodrigo; Trigo, José R.; Futuyma, Douglas J.

    2011-01-01

    Local adaptation of parasites to their hosts due to coevolution is a central prediction of many theories in evolutionary biology. However, empirical studies looking for parasite local adaptation show great variation in outcomes, and the reasons for such variation are largely unknown. In a previous study, we showed adaptive differentiation in the arctiid moth Utetheisa ornatrix to its host plant, the pyrrolizidine alkaloid-bearing legume Crotalaria pallida, at the continental scale, but found no differentiation at the regional scale. In the present study, we sampled the same sites to investigate factors that may contribute to the lack of differentiation at the regional scale. We performed field observations that show that specialist and non-specialist polyphagous herbivore incidence varies among populations at both scales. With a series of common-garden experiments we show that some plant traits that may affect herbivory (pyrrolizidine alkaloids and extrafloral nectaries) vary at the regional scale, while other traits (trichomes and nitrogen content) just vary at the continental scale. These results, combined with our previous evidence for plant population differentiation based on larval performance on fresh fruits, suggest that U. ornatrix is subjected to divergent selection even at the regional scale. Finally, with a microsatellite study we investigated population structure of U. ornatrix. We found that population structure is not stable over time: we found population differentiation at the regional scale in the first year of sampling, but not in the second year. Unstable population structure of the herbivore is the most likely cause of the lack of regional adaptation. PMID:22220208

  15. Varying herbivore population structure correlates with lack of local adaptation in a geographic variable plant-herbivore interaction.

    Directory of Open Access Journals (Sweden)

    Rodrigo Cogni

    Full Text Available Local adaptation of parasites to their hosts due to coevolution is a central prediction of many theories in evolutionary biology. However, empirical studies looking for parasite local adaptation show great variation in outcomes, and the reasons for such variation are largely unknown. In a previous study, we showed adaptive differentiation in the arctiid moth Utetheisa ornatrix to its host plant, the pyrrolizidine alkaloid-bearing legume Crotalaria pallida, at the continental scale, but found no differentiation at the regional scale. In the present study, we sampled the same sites to investigate factors that may contribute to the lack of differentiation at the regional scale. We performed field observations that show that specialist and non-specialist polyphagous herbivore incidence varies among populations at both scales. With a series of common-garden experiments we show that some plant traits that may affect herbivory (pyrrolizidine alkaloids and extrafloral nectaries vary at the regional scale, while other traits (trichomes and nitrogen content just vary at the continental scale. These results, combined with our previous evidence for plant population differentiation based on larval performance on fresh fruits, suggest that U. ornatrix is subjected to divergent selection even at the regional scale. Finally, with a microsatellite study we investigated population structure of U. ornatrix. We found that population structure is not stable over time: we found population differentiation at the regional scale in the first year of sampling, but not in the second year. Unstable population structure of the herbivore is the most likely cause of the lack of regional adaptation.

  16. The Generalist Model: Where do the Micro and Macro Converge?

    Directory of Open Access Journals (Sweden)

    Shari E. Miller

    2008-12-01

    Full Text Available Although macro issues are integral to social work, students continue to struggle with the acquisition of knowledge and skills pertaining to larger systems. Educators have developed innovative methods to integrate learning across systems of various sizes however it appears an imbalance persists. This challenge is supported by baccalaureate student responses to a social work program evaluation. Four years of data from 295 undergraduate students revealed that they felt less prepared to practice with larger, macro systems. Changes in curriculum to reflect collaboration and holism, and more research are needed to adequately provide macro learning and macro practice opportunities within the generalist model and in the context of the current socio-economic-political environment.

  17. Distribution of herbivorous fish is frozen by low temperature

    Czech Academy of Sciences Publication Activity Database

    Vejříková, Ivana; Vejřík, Lukáš; Syväranta, J.; Kiljunen, M.; Čech, Martin; Blabolil, Petr; Vašek, Mojmír; Sajdlová, Zuzana; Chung, S.H.T.; Šmejkal, Marek; Frouzová, Jaroslava; Peterka, Jiří

    2016-01-01

    Roč. 6, December (2016), č. článku 39600. ISSN 2045-2322 R&D Projects: GA MŠk(CZ) EE2.3.20.0204; GA MŠk(CZ) 7F14316 Institutional support: RVO:60077344 Keywords : herbivorous ectotherms * latitudinal gradient * macrophytes * Scardinius erythrophthalmus * global warming Subject RIV: EG - Zoology Impact factor: 4.259, year: 2016

  18. Macroevolutionary chemical escalation in an ancient plant-herbivore arms race.

    Science.gov (United States)

    Becerra, Judith X; Noge, Koji; Venable, D Lawrence

    2009-10-27

    A central paradigm in the field of plant-herbivore interactions is that the diversity and complexity of secondary compounds in plants have intensified over evolutionary time, resulting in the great variety of secondary products that currently exists. Unfortunately, testing of this proposal has been very limited. We analyzed the volatile chemistry of 70 species of the tropical plant genus Bursera and used a molecular phylogeny to test whether the species' chemical diversity or complexity have escalated. The results confirm that as new species diverged over time they tended to be armed not only with more compounds/species, but also with compounds that could potentially be more difficult for herbivores to adapt to because they belong to an increasing variety of chemical pathways. Overall chemical diversity in the genus also increased, but not as fast as species diversity, possibly because of allopatric species gaining improved defense with compounds that are new locally, but already in existence elsewhere.

  19. Evolutionary Ecology of Multitrophic Interactions between Plants, Insect Herbivores and Entomopathogens.

    Science.gov (United States)

    Shikano, Ikkei

    2017-06-01

    Plants play an important role in the interactions between insect herbivores and their pathogens. Since the seminal review by Cory and Hoover (2006) on plant-mediated effects on insect-pathogen interactions, considerable progress has been made in understanding the complexity of these tritrophic interactions. Increasing interest in the areas of nutritional and ecological immunology over the last decade have revealed that plant primary and secondary metabolites can influence the outcomes of insect-pathogen interactions by altering insect immune functioning and physical barriers to pathogen entry. Some insects use plant secondary chemicals and nutrients to prevent infections (prophylactic medication) and medicate to limit the severity of infections (therapeutic medication). Recent findings suggest that there may be selectable plant traits that enhance entomopathogen efficacy, suggesting that entomopathogens could potentially impose selection pressure on plant traits that improve both pathogen and plant fitness. Moreover, plants in nature are inhabited by diverse communities of microbes, in addition to entomopathogens, some of which can trigger immune responses in insect herbivores. Plants are also shared by numerous other herbivorous arthropods with different modes of feeding that can trigger different defensive responses in plants. Some insect symbionts and gut microbes can degrade ingested defensive phytochemicals and be orally secreted onto wounded plant tissue during herbivory to alter plant defenses. Since non-entomopathogenic microbes and other arthropods are likely to influence the outcomes of plant-insect-entomopathogen interactions, I discuss a need to consider these multitrophic interactions within the greater web of species interactions.

  20. Insect herbivores drive real-time ecological and evolutionary change in plant populations.

    Science.gov (United States)

    Agrawal, Anurag A; Hastings, Amy P; Johnson, Marc T J; Maron, John L; Salminen, Juha-Pekka

    2012-10-05

    Insect herbivores are hypothesized to be major factors affecting the ecology and evolution of plants. We tested this prediction by suppressing insects in replicated field populations of a native plant, Oenothera biennis, which reduced seed predation, altered interspecific competitive dynamics, and resulted in rapid evolutionary divergence. Comparative genotyping and phenotyping of nearly 12,000 O. biennis individuals revealed that in plots protected from insects, resistance to herbivores declined through time owing to changes in flowering time and lower defensive ellagitannins in fruits, whereas plant competitive ability increased. This independent real-time evolution of plant resistance and competitive ability in the field resulted from the relaxation of direct selective effects of insects on plant defense and through indirect effects due to reduced herbivory on plant competitors.

  1. The draft genome of blunt snout bream (Megalobrama amblycephala) reveals the development of intermuscular bone and adaptation to herbivorous diet

    Science.gov (United States)

    Liu, Han; Chen, Chunhai; Gao, Zexia; Min, Jiumeng; Gu, Yongming; Jian, Jianbo; Jiang, Xiewu; Cai, Huimin; Ebersberger, Ingo; Xu, Meng; Zhang, Xinhui; Chen, Jianwei; Luo, Wei; Chen, Boxiang; Chen, Junhui; Liu, Hong; Li, Jiang; Lai, Ruifang; Bai, Mingzhou; Wei, Jin; Yi, Shaokui; Wang, Huanling; Cao, Xiaojuan; Zhou, Xiaoyun; Zhao, Yuhua; Wei, Kaijian; Yang, Ruibin; Liu, Bingnan; Zhao, Shancen; Fang, Xiaodong

    2017-01-01

    Abstract The blunt snout bream Megalobrama amblycephala is the economically most important cyprinid fish species. As an herbivore, it can be grown by eco-friendly and resource-conserving aquaculture. However, the large number of intermuscular bones in the trunk musculature is adverse to fish meat processing and consumption. As a first towards optimizing this aquatic livestock, we present a 1.116-Gb draft genome of M. amblycephala, with 779.54 Mb anchored on 24 linkage groups. Integrating spatiotemporal transcriptome analyses, we show that intermuscular bone is formed in the more basal teleosts by intramembranous ossification and may be involved in muscle contractibility and coordinating cellular events. Comparative analysis revealed that olfactory receptor genes, especially of the beta type, underwent an extensive expansion in herbivorous cyprinids, whereas the gene for the umami receptor T1R1 was specifically lost in M. amblycephala. The composition of gut microflora, which contributes to the herbivorous adaptation of M. amblycephala, was found to be similar to that of other herbivores. As a valuable resource for the improvement of M. amblycephala livestock, the draft genome sequence offers new insights into the development of intermuscular bone and herbivorous adaptation. PMID:28535200

  2. The abundance of herbivorous fish on an inshore Red Sea reef following a mass coral bleaching event

    KAUST Repository

    Khalil, Maha T.

    2013-01-08

    A healthy herbivore community is critical for the ability of a reef to resist and recover from severe disturbances and to regain lost coral cover (i.e., resilience). The densities of the two major herbivorous fish groups (the family Acanthuridae and scarine labrids) were comparatively studied for an inshore reef that was severely impacted by a mass coral bleaching event in 2010 and an unaffected reef within the same region. Densities were found to be significantly higher on the affected reef, most likely due to the high algal densities on that reef. However, densities of herbivores on both reefs were found to be on average about 1-2 orders of magnitude lower than previously published reports from some Pacific reefs and from Red Sea reefs in the Gulf of Aqaba and only slightly higher than Caribbean reefs. Thus, it is predicted that recovery for this reef and similarly affected reefs may be very slow. The protection of herbivores from overfishing and the introduction of other management strategies that maximize reef resilience in Saudi Arabian waters are highly recommended. © 2013 Springer Science+Business Media Dordrecht.

  3. Limited dietary overlap amongst resident Arctic herbivores in winter: complementary insights from complementary methods.

    Science.gov (United States)

    Schmidt, Niels M; Mosbacher, Jesper B; Vesterinen, Eero J; Roslin, Tomas; Michelsen, Anders

    2018-04-26

    Snow may prevent Arctic herbivores from accessing their forage in winter, forcing them to aggregate in the few patches with limited snow. In High Arctic Greenland, Arctic hare and rock ptarmigan often forage in muskox feeding craters. We therefore hypothesized that due to limited availability of forage, the dietary niches of these resident herbivores overlap considerably, and that the overlap increases as winter progresses. To test this, we analyzed fecal samples collected in early and late winter. We used molecular analysis to identify the plant taxa consumed, and stable isotope ratios of carbon and nitrogen to quantify the dietary niche breadth and dietary overlap. The plant taxa found indicated only limited dietary differentiation between the herbivores. As expected, dietary niches exhibited a strong contraction from early to late winter, especially for rock ptarmigan. This may indicate increasing reliance on particular plant resources as winter progresses. In early winter, the diet of rock ptarmigan overlapped slightly with that of muskox and Arctic hare. Contrary to our expectations, no inter-specific dietary niche overlap was observed in late winter. This overall pattern was specifically revealed by combined analysis of molecular data and stable isotope contents. Hence, despite foraging in the same areas and generally feeding on the same plant taxa, the quantitative dietary overlap between the three herbivores was limited. This may be attributable to species-specific consumption rates of plant taxa. Yet, Arctic hare and rock ptarmigan may benefit from muskox opening up the snow pack, thereby allowing them to access the plants.

  4. Technology and Early Science Education: Examining Generalist Primary School Teachers' Views on Tacit Knowledge Assessment Tools

    Science.gov (United States)

    Hast, Michael

    2017-01-01

    For some time a central issue has occupied early science education discussions--primary student classroom experiences and the resulting attitudes towards science. This has in part been linked to generalist teachers' own knowledge of science topics and pedagogical confidence. Recent research in cognitive development has examined the role of…

  5. Suppression of soil decomposers and promotion of long-lived, root herbivorous nematodes by climate change

    DEFF Research Database (Denmark)

    Stevnbak, Karen; Maraldo, Kristine; Georgieva, Slavka

    2012-01-01

    to climate change predictions for the coming decades. Removing precipitation for two summer months reduced all decomposer organisms assessed, i.e., microbial biomass, protozoa, bacteri- and fungivorous nematodes and enchytraeids, probably with negative effects on soil decomposition. Increasing temperature...... by about 1 °C reduced all nematodes including the dominant trophic group, the root herbivores, by almost 50% in the upper layer. The remaining assemblage of root herbivorous nematodes, however, shifted towards species with longer generation times, possibly because of an earlier start of plant growth...

  6. Interaction between a fungal endophyte and root herbivores of Ammophila arenaria

    NARCIS (Netherlands)

    Hol, W.H.G.; de la Peña, E.; Moens, M.; Cook, R.

    2007-01-01

    The effect of an endophytic fungus (Acremonium strictum) on plant-growth related parameters of marram grass (Ammophila arenaria), and its potential as a protective agent against root herbivores (Pratylenchus dunensis and Pratylenchus penetrans, root-lesion nematodes) was investigated in two

  7. Rates and modes of body size evolution in early carnivores and herbivores: a case study from Captorhinidae

    Directory of Open Access Journals (Sweden)

    Neil Brocklehurst

    2016-01-01

    Full Text Available Body size is an extremely important characteristic, impacting on a variety of ecological and life-history traits. It is therefore important to understand the factors which may affect its evolution, and diet has attracted much interest in this context. A recent study which examined the evolution of the earliest terrestrial herbivores in the Late Carboniferous and Early Permian concluded that in the four herbivorous clades examined there was a trend towards increased body size, and that this increase was more substantial than that observed in closely related carnivorous clades. However, this hypothesis was not based on quantitative examination, and phylogenetic comparative methods provide a more robust means of testing such hypotheses. Here, the evolution of body size within different dietary regimes is examined in Captorhinidae, the most diverse and longest lived of these earliest high fibre herbivores. Evolutionary models were fit to their phylogeny to test for variation in rate and mode of evolution between the carnivorous and herbivorous members of this clade, and an analysis of rate variation throughout the tree was carried out. Estimates of ancestral body sizes were calculated in order to compare the rates and direction of evolution of lineages with different dietary regimes. Support for the idea that the high fibre herbivores within captorhinids are being drawn to a higher adaptive peak in body size than the carnivorous members of this clade is weak. A shift in rates of body size evolution is identified, but this does not coincide with the evolution of high-fibre herbivory, instead occurring earlier in time and at a more basal node. Herbivorous lineages which show an increase in size are not found to evolve at a faster rate than those which show a decrease; in fact, it is those which experience a size decrease which evolve at higher rates. It is possible the shift in rates of evolution is related to the improved food processing ability of

  8. Complex Odor from Plants under Attack: Herbivore's Enemies React to the Whole, Not Its Parts

    Science.gov (United States)

    van Wijk, Michiel; de Bruijn, Paulien J. A.; Sabelis, Maurice W.

    2011-01-01

    Background Insect herbivory induces plant odors that attract herbivores' natural enemies. Assuming this attraction emerges from individual compounds, genetic control over odor emission of crops may provide a rationale for manipulating the distribution of predators used for pest control. However, studies on odor perception in vertebrates and invertebrates suggest that olfactory information processing of mixtures results in odor percepts that are a synthetic whole and not a set of components that could function as recognizable individual attractants. Here, we ask if predators respond to herbivore-induced attractants in odor mixtures or to odor mixture as a whole. Methodology/Principal Findings We studied a system consisting of Lima bean, the herbivorous mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. We found that four herbivore-induced bean volatiles are not attractive in pure form while a fifth, methyl salicylate (MeSA), is. Several reduced mixtures deficient in one component compared to the full spider-mite induced blend were not attractive despite the presence of MeSA indicating that the predators cannot detect this component in these odor mixtures. A mixture of all five HIPV is most attractive, when offered together with the non-induced odor of Lima bean. Odors that elicit no response in their pure form were essential components of the attractive mixture. Conclusions/Significance We conclude that the predatory mites perceive odors as a synthetic whole and that the hypothesis that predatory mites recognize attractive HIPV in odor mixtures is unsupported. PMID:21765908

  9. Complex odor from plants under attack: herbivore's enemies react to the whole, not its parts.

    Directory of Open Access Journals (Sweden)

    Michiel van Wijk

    Full Text Available Insect herbivory induces plant odors that attract herbivores' natural enemies. Assuming this attraction emerges from individual compounds, genetic control over odor emission of crops may provide a rationale for manipulating the distribution of predators used for pest control. However, studies on odor perception in vertebrates and invertebrates suggest that olfactory information processing of mixtures results in odor percepts that are a synthetic whole and not a set of components that could function as recognizable individual attractants. Here, we ask if predators respond to herbivore-induced attractants in odor mixtures or to odor mixture as a whole.We studied a system consisting of Lima bean, the herbivorous mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. We found that four herbivore-induced bean volatiles are not attractive in pure form while a fifth, methyl salicylate (MeSA, is. Several reduced mixtures deficient in one component compared to the full spider-mite induced blend were not attractive despite the presence of MeSA indicating that the predators cannot detect this component in these odor mixtures. A mixture of all five HIPV is most attractive, when offered together with the non-induced odor of Lima bean. Odors that elicit no response in their pure form were essential components of the attractive mixture.We conclude that the predatory mites perceive odors as a synthetic whole and that the hypothesis that predatory mites recognize attractive HIPV in odor mixtures is unsupported.

  10. High-latitude steppe vegetation and the mineral nutrition of Pleistocene herbivores

    Science.gov (United States)

    Davydov, S. P.; Davydova, A.; Makarevich, R.; Loranty, M. M.; Boeskorov, G.

    2014-12-01

    High-latitude steppes were widespread and zonal in the Late Pleistocene and formed a landscape basis for the Mammoth Biome. Now the patches of these steppes survived on steep slopes under southern aspects. These steppes serve as unique information sources about the Late Pleistocene "Mammoth" steppe. Numerous data obtained by palynological, carpological, and DNA analysis of plant remains from feces and stomach contents of Pleistocene herbivore mummies, as well as from buried soils and enclosing deposits show that they are similar to modern steppe plant assemblage in taxa composition. Plant's nutrient concentrations are of fundamental importance across Pleistocene grass-rich ecosystems because of their role in the support of large herbivores. The average weight of an adult mammoth skeleton (about 0.5 tons) and of a woolly rhinoceros (about 0.2 tons) clearly suggests this. Detailed studies on fossil bone remains showed mineral deficiency in large Pleistocene herbivores. A three-year study of ash and mineral contents of two types of relict steppe vegetation at the Kolyma Lowland, Arctic Siberia has been carried out. Nowadays refugia of similar vegetation are located not far (1 - 15km) from the Yedoma permafrost outcrops were abundant fossil remains are found. Dominant species of the steppe vegetation were sampled. Preliminary studies indicate that the ash-content varied 1.5-2 times in speceies of steppe herbs. The Ca, P, Mg, K element contents was higher for most steppe species than in the local herbaceous vegetation, especially in Ca and P. One of the most important elements of the mineral nutrition, the phosphorus, was always found in higher concentrations in the steppe vegetation than in plants of recently dominant landscapes of the study area. It should be noted that the mineral nutrient content of the modern steppe vegetation of Siberian Arctic is comparable to that of the recent zonal steppe of Transbaikal Region. This study supports the hypothesis that

  11. A specialist root herbivore reduces plant resistance and uses an induced plant volatile to aggregate in a density dependent manner

    Science.gov (United States)

    1. Leaf-herbivore attack often triggers induced resistance in plants. However, certain specialist herbivores can also take advantage of the induced metabolic changes. In some cases, they even manipulate plant resistance, leading to a phenomenon called induced susceptibility. Compared to above-ground...

  12. Organismal responses to habitat change: herbivore performance, climate and leaf traits in regenerating tropical dry forests.

    Science.gov (United States)

    Agosta, Salvatore J; Hulshof, Catherine M; Staats, Ethan G

    2017-05-01

    The ecological effects of large-scale climate change have received much attention, but the effects of the more acute form of climate change that results from local habitat alteration have been less explored. When forest is fragmented, cut, thinned, cleared or otherwise altered in structure, local climates and microclimates change. Such changes can affect herbivores both directly (e.g. through changes in body temperature) and indirectly (e.g. through changes in host plant traits). We advance an eco-physiological framework to understand the effects of changing forests on herbivorous insects. We hypothesize that if tropical forest caterpillars are climate and resource specialists, then they should have reduced performance outside of mature forest conditions. We tested this hypothesis with a field experiment contrasting the performance of Rothschildia lebeau (Saturniidae) caterpillars feeding on the host plant Casearia nitida (Salicaceae) in two different aged and structured tropical dry forests in Area de Conservación Guanacaste, Costa Rica. Compared to more mature closed-canopy forest, in younger secondary forest we found that: (1) ambient conditions were hotter, drier and more variable; (2) caterpillar growth and development were reduced; and (3) leaves were tougher, thicker and drier. Furthermore, caterpillar growth and survival were negatively correlated with these leaf traits, suggesting indirect host-mediated effects of climate on herbivores. Based on the available evidence, and relative to mature forest, we conclude that reduced herbivore performance in young secondary forest could have been driven by changes in climate, leaf traits (which were likely climate induced) or both. However, additional studies will be needed to provide more direct evidence of cause-and-effect and to disentangle the relative influence of these factors on herbivore performance in this system. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  13. Evidence for a common toolbox based on necrotrophy in a fungal lineage spanning necrotrophs, biotrophs, endophytes, host generalists and specialists.

    Directory of Open Access Journals (Sweden)

    Marion Andrew

    Full Text Available The Sclerotiniaceae (Ascomycotina, Leotiomycetes is a relatively recently evolved lineage of necrotrophic host generalists, and necrotrophic or biotrophic host specialists, some latent or symptomless. We hypothesized that they inherited a basic toolbox of genes for plant symbiosis from their common ancestor. Maintenance and evolutionary diversification of symbiosis could require selection on toolbox genes or on timing and magnitude of gene expression. The genes studied were chosen because their products have been previously investigated as pathogenicity factors in the Sclerotiniaceae. They encode proteins associated with cell wall degradation: acid protease 1 (acp1, aspartyl protease (asps, and polygalacturonases (pg1, pg3, pg5, pg6, and the oxalic acid (OA pathway: a zinc finger transcription factor (pac1, and oxaloacetate acetylhydrolase (oah, catalyst in OA production, essential for full symptom production in Sclerotinia sclerotiorum. Site-specific likelihood analyses provided evidence for purifying selection in all 8 pathogenicity-related genes. Consistent with an evolutionary arms race model, positive selection was detected in 5 of 8 genes. Only generalists produced large, proliferating disease lesions on excised Arabidopsis thaliana leaves and oxalic acid by 72 hours in vitro. In planta expression of oah was 10-300 times greater among the necrotrophic host generalists than necrotrophic and biotrophic host specialists; pac1 was not differentially expressed. Ability to amplify 6/8 pathogenicity related genes and produce oxalic acid in all genera are consistent with the common toolbox hypothesis for this gene sample. That our data did not distinguish biotrophs from necrotrophs is consistent with 1 a common toolbox based on necrotrophy and 2 the most conservative interpretation of the 3-locus housekeeping gene phylogeny--a baseline of necrotrophy from which forms of biotrophy emerged at least twice. Early oah overexpression likely expands the

  14. Herbivore removal reduces influence of arbuscular mycorrhizal fungi on plant growth and tolerance in an East African savanna.

    Science.gov (United States)

    González, Jonathan B; Petipas, Renee H; Franken, Oscar; Kiers, E Toby; Veblen, Kari E; Brody, Alison K

    2018-05-01

    The functional relationship between arbuscular mycorrhizal fungi (AMF) and their hosts is variable on small spatial scales. Here, we hypothesized that herbivore exclusion changes the AMF community and alters the ability of AMF to enhance plant tolerance to grazing. We grew the perennial bunchgrass, Themeda triandra Forssk in inoculum from soils collected in the Kenya Long-term Exclosure Experiment where treatments representing different levels of herbivory have been in place since 1995. We assessed AMF diversity in the field, using terminal restriction fragment length polymorphism and compared fungal diversity among treatments. We conducted clipping experiments in the greenhouse and field and assessed regrowth. Plants inoculated with AMF from areas accessed by wild herbivores and cattle had greater biomass than non-inoculated controls, while plants inoculated with AMF from where large herbivores were excluded did not benefit from AMF in terms of biomass production. However, only the inoculation with AMF from areas with wild herbivores and no cattle had a positive effect on regrowth, relative to clipped plants grown without AMF. Similarly, in the field, regrowth of plants after clipping in areas with only native herbivores was higher than other treatments. Functional differences in AMF were evident despite little difference in AMF species richness or community composition. Our findings suggest that differences in large herbivore communities over nearly two decades has resulted in localized, functional changes in AMF communities. Our results add to the accumulating evidence that mycorrhizae are locally adapted and that functional differences can evolve within small geographical areas.

  15. Herbivorous insect response to group selection cutting in a southeastern bottomland hardwood forest.

    Energy Technology Data Exchange (ETDEWEB)

    Michael D. Ulyshen; James L. Hanula; Scott Horn; Christopher E. Moorman.

    2005-04-01

    ABSTRACT Malaise and pitfall traps were used to sample herbivorous insects in canopy gaps created by group-selection cutting in a bottomland hardwood forest in South Carolina. The traps were placed at the centers, edges, and in the forest adjacent to gaps of different sizes (0.13, 0.26, and 0.50 ha) and ages (1 and 7 yr old) during four sampling periods in 2001. Overall, the abundance and species richness of insect herbivores were greater at the centers of young gaps than at the edge of young gaps or in the forest surrounding young gaps. There were no differences in abundance or species richness among old gap locations (i.e., centers, edges, and forest), and we collected significantly more insects in young gaps than old gaps. The insect communities in old gaps were more similar to the forests surrounding them than young gap communities were to their respective forest locations, but the insect communities in the two forests locations (surrounding young and old gaps) had the highest percent similarity of all. Although both abundance and richness increased in the centers of young gaps with increasing gap size, these differences were not significant.Weattribute the increased numbers of herbivorous insects to the greater abundance of herbaceous plants available in young gaps.

  16. Differential effects of land use on ant and herbivore insect communities associated with Caryocar brasiliense (Caryocaraceae

    Directory of Open Access Journals (Sweden)

    Frederico S. Neves

    2012-09-01

    Full Text Available Simplification of natural habitats leads to a modification of the community associated with a host plant. Pequi trees (Caryocar brasiliense are common to find in central Brazil, especially in the middle of monocultures, such as soy, corn, pasturelands or Eucalyptus plantations. On this scenario we hypothesized that habitat modification differentially affects the diversity of ants and herbivore insects associated with this species. The aim of the work was to test if C. brasiliense trees located in human modified habitats, support a lower species richness and abundance of ants, and a greater species richness and abundance of insect herbivores, compared to preserved cerrado habitats. The study was conducted in a Cerrado area located in Northern Minas Gerais State, Brazil. Ants and herbivore insects were collected monthly during 2005 using beating technique. The results showed that ant species richness was higher in pequi trees located in preserved Cerrado, followed by trees in pastureland and Eucalyptus plantation, respectively. The ant abundance was lower in the Eucalyptus plantation but no difference in ant abundance was observed between trees in pastureland and the preserved Cerrado. Moreover, herbivore insects exhibited lower number of species and individuals in trees located in the preserved Cerrado than in the pastureland and Eucalyptus plantation. We concluded that habitats simplified by human activities may result in diversity loss and may change species interactions.

  17. Effects of dietary nicotine on the development of an insect herbivore, its parasitoid and secondary hyperparasitoid over four trophic levels

    NARCIS (Netherlands)

    Harvey, J.A.; Dam, van N.M.; Witjes, L.M.A.; Soler, R.; Gols, R.

    2007-01-01

    1. Allelochemicals in herbivore diet are known to affect the development of higher trophic levels, such as parasitoids and predators. 2. This study examines how differing levels of nicotine affects the development of a herbivore, its parasitoid and secondary hyperparasitoid over four trophic levels.

  18. A fungal root symbiont modifies plant resistance to an insect herbivore.

    Science.gov (United States)

    Borowicz, Victoria A

    1997-11-01

    Vesicular-arbuscular mycorrhizal (VAM) fungi are common root-colonizing symbionts that affect nutrient uptake by plants and can alter plant susceptibility to herbivores. I conducted a factorial experiment to test the hypotheses that colonization by VAM fungi (1) improves soybean (Glycine max) tolerance to grazing by folivorous Mexican bean beetle (Epilachna varivestis), and (2) indirectly affects herbivores by increasing host resistance. Soybean seedlings were inoculated with the VAM fungus Glomus etunicatum or VAM-free filtrate and fertilized with high-[P] or low-[P] fertilizer. After plants had grown for 7 weeks first-instar beetle larvae were placed on bagged leaves. Growth of soybean was little affected by grazing larvae, and no effects of treatments on tolerance of soybeans to herbivores were evident. Colonization by VAM fungus doubled the size of phosphorus-stressed plants but these plants were still half the size of plants given adequate phosphorus. High-[P] fertilizer increased levels of phosphorus and soluble carbohydrates, and decreased levels of soluble proteins in leaves of grazed plants. Colonization of grazed plants by VAM fungus had no significant effect on plant soluble carbohydrates, but increased concentration of phosphorus and decreased levels of proteins in phosphorus-stressed plants to concentrations similar to those of plants given adequate phosphorus. Mexican bean beetle mass at pupation, pupation rate, and survival to eclosion were greatest for beetles reared on phosphorus-stressed, VAM-colonized plants, refuting the hypothesis that VAM colonization improves host plant resistance. VAM colonization indirectly affected performance of Mexician bean beetle larvae by improving growth and nutrition of the host plant.

  19. Physiological Mechanisms in Herbivores for Retention and Utilization of Nitrogenous Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sperber, I. [Department of Animal Physiology, Agricultural College of Sweden, Uppsala 7 (Sweden)

    1968-07-01

    A short review is given of some aspects of nitrogen metabolism in herbivorous mammals. In the rumen the passage of urea into the rumen and of ammonia out of the rumen are of considerable importance. As yet no facts have been disclosed which definitely prove the existence of special mechanisms influencing these processes in a way favouring the use of endogenous urea in the rumen. The excretion of urea by the kidneys on the other hand is regulated in a manner which appears to be adapted for improved utilization of nitrogen when the nitrogen supply is low. It is further pointed out that efficient retention of microbial protein produced in the caecum must be of considerable importance to herbivores with a large caecum. Some preliminary results are given concerning the physiology of the colon in rabbits and the anatomy and physiology of the colon in lemmings. In the rabbit it appears probable that the passage of fluid and fine particles through the colon is considerably delayed compared with the passage of larger particles. In the lemming an anatomically complicated proximal part of the colon effects a very efficient separation of the microorganisms from the indigestible food residues when caecal contents pass through the colon. The microorganisms appear to be returned to the most proximal part of the colon or into the caecum. Mechanisms of this type seem to be of considerable value to herbivores, enabling them to utilize food with a low digestibility and a low protein content. (author)

  20. Evolution of resistance to a multiple-herbivore community: genetic correlations, diffuse coevolution, and constraints on the plant's response to selection.

    Science.gov (United States)

    Wise, Michael J; Rausher, Mark D

    2013-06-01

    Although plants are generally attacked by a community of several species of herbivores, relatively little is known about the strength of natural selection for resistance in multiple-herbivore communities-particularly how the strength of selection differs among herbivores that feed on different plant organs or how strongly genetic correlations in resistance affect the evolutionary responses of the plant. Here, we report on a field study measuring natural selection for resistance in a diverse community of herbivores of Solanum carolinense. Using linear phenotypic-selection analyses, we found that directional selection acted to increase resistance to seven species. Selection was strongest to increase resistance to fruit feeders, followed by flower feeders, then leaf feeders. Selection favored a decrease in resistance to a stem borer. Bootstrapping analyses showed that the plant population contained significant genetic variation for each of 14 measured resistance traits and significant covariances in one-third of the pairwise combinations of resistance traits. These genetic covariances reduced the plant's overall predicted evolutionary response for resistance against the herbivore community by about 60%. Diffuse (co)evolution was widespread in this community, and the diffuse interactions had an overwhelmingly constraining (rather than facilitative) effect on the plant's evolution of resistance. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  1. Availability and temporal heterogeneity of water supply affect the vertical distribution and mortality of a belowground herbivore and consequently plant growth.

    Science.gov (United States)

    Tsunoda, Tomonori; Kachi, Naoki; Suzuki, Jun-Ichirou

    2014-01-01

    We examined how the volume and temporal heterogeneity of water supply changed the vertical distribution and mortality of a belowground herbivore, and consequently affected plant biomass. Plantago lanceolata (Plantaginaceae) seedlings were grown at one per pot under different combinations of water volume (large or small volume) and heterogeneity (homogeneous water conditions, watered every day; heterogeneous conditions, watered every 4 days) in the presence or absence of a larva of the belowground herbivorous insect, Anomala cuprea (Coleoptera: Scarabaeidae). The larva was confined in different vertical distributions to top feeding zone (top treatment), middle feeding zone (middle treatment), or bottom feeding zone (bottom treatment); alternatively no larva was introduced (control treatment) or larval movement was not confined (free treatment). Three-way interaction between water volume, heterogeneity, and the herbivore significantly affected plant biomass. With a large water volume, plant biomass was lower in free treatment than in control treatment regardless of heterogeneity. Plant biomass in free treatment was as low as in top treatment. With a small water volume and in free treatment, plant biomass was low (similar to that under top treatment) under homogeneous water conditions but high under heterogeneous ones (similar to that under middle or bottom treatment). Therefore, there was little effect of belowground herbivory on plant growth under heterogeneous water conditions. In other watering regimes, herbivores would be distributed in the shallow soil and reduced root biomass. Herbivore mortality was high with homogeneous application of a large volume or heterogeneous application of a small water volume. Under the large water volume, plant biomass was high in pots in which the herbivore had died. Thus, the combinations of water volume and heterogeneity affected plant growth via the change of a belowground herbivore.

  2. Effects of herbivore grazing on the physiognomy of the coralline alga ...

    African Journals Online (AJOL)

    Effects of herbivore grazing on the physiognomy of the coralline alga Spongites yendoi and on associated competitive interactions. ... overlapping distributions between strongly interacting species along a broad geographical gradient is not just a significant feature of the ecology of terrestrial, but also of marine ecosystems.

  3. Agriculture sows pests: how crop domestication, host shifts, and agricultural intensification can create insect pests from herbivores.

    Science.gov (United States)

    Bernal, Julio S; Medina, Raul F

    2018-04-01

    We argue that agriculture as practiced creates pests. We use three examples (Corn leafhopper, Dalbulus maidis; Western corn rootworm, Diabrotica virgifera virgifera; Cotton fleahopper, Pseudatomoscelis seriatus) to illustrate: firstly, how since its origins, agriculture has proven conducive to transforming selected herbivores into pests, particularly through crop domestication and spread, and agricultural intensification, and; secondly, that the herbivores that became pests were among those hosted by crop wild relatives or associates, and were pre-adapted either as whole species or component subpopulations. Two of our examples, Corn leafhopper and Western corn rootworm, illustrate how following a host shift to a domesticated host, emergent pests 'hopped' onto crops and rode expansion waves to spread far beyond the geographic ranges of their wild hosts. Western corn rootworm exemplifies how an herbivore-tolerant crop was left vulnerable when it was bred for yield and protected with insecticides. Cotton fleahopper illustrates how removing preferred wild host plants from landscapes and replacing them with crops, allows herbivores with flexible host preferences to reach pest-level populations. We conclude by arguing that in the new geological epoch we face, the Anthropocene, we can improve agriculture by looking to our past to identify and avoid missteps of early and recent farmers. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Variation in plant defense against invasive herbivores: evidence for a hypersensitive response in eastern hemlocks (Tsuga canadensis).

    Science.gov (United States)

    Radville, Laura; Chaves, Arielle; Preisser, Evan L

    2011-06-01

    Herbivores can trigger a wide array of morphological and chemical changes in their host plants. Feeding by some insects induces a defensive hypersensitive response, a defense mechanism consisting of elevated H(2)O(2) levels and tissue death at the site of herbivore feeding. The invasive hemlock woolly adelgid Adelges tsugae ('HWA') and elongate hemlock scale Fiorinia externa ('EHS') feed on eastern hemlocks; although both are sessile sap feeders, HWA causes more damage than EHS. The rapid rate of tree death following HWA infestation has led to the suggestion that feeding induces a hypersensitive response in hemlock trees. We assessed the potential for an herbivore-induced hypersensitive response in eastern hemlocks by measuring H(2)O(2) levels in foliage from HWA-infested, EHS-infested, and uninfested trees. Needles with settled HWA or EHS had higher H(2)O(2) levels than control needles, suggesting a localized hypersensitive plant response. Needles with no direct contact to settled HWA also had high H(2)O(2) levels, suggesting that HWA infestation may induce a systemic defense response in eastern hemlocks. There was no similar systemic defensive response in the EHS treatment. Our results showed that two herbivores in the same feeding guild had dramatically different outcomes on the health of their shared host.

  5. First-Year Vitality of Reforestation Plantings in Response to Herbivore Exclusion on Reclaimed Appalachian Surface-Mined Land

    Directory of Open Access Journals (Sweden)

    Zachary J. Hackworth

    2018-04-01

    Full Text Available Conventional Appalachian surface-mine reclamation techniques repress natural forest regeneration, and tree plantings are often necessary for reforestation. Reclaimed Appalachian surface mines harbor a suite of mammal herbivores that forage on recently planted seedlings. Anecdotal reports across Appalachia have implicated herbivory in the hindrance and failure of reforestation efforts, yet empirical evaluation of herbivory impacts on planted seedling vitality in this region remains relatively uninitiated. First growing-season survival, height growth, and mammal herbivory damage of black locust (Robinia pseudoacacia L., shortleaf pine (Pinus echinata Mill., and white oak (Quercus alba L. are presented in response to varying intensities of herbivore exclusion. Seedling survival was generally high, and height growth was positive for all species. The highest herbivory incidence of all tree species was observed in treatments offering no herbivore exclusion. While seedling protectors lowered herbivory incidence compared with no exclusion, full exclusion treatments resulted in the greatest reduction of herbivore damage. Although herbivory from rabbits, small mammals, and domestic animals was observed, cervids (deer and elk were responsible for 95.8% of all damaged seedlings. This study indicates that cervids forage heavily on planted seedlings during the first growing-season, but exclusion is effective at reducing herbivory.

  6. Complex effects of fertilization on plant and herbivore performance in the presence of a plant competitor and activated carbon.

    Science.gov (United States)

    Mahdavi-Arab, Nafiseh; Meyer, Sebastian T; Mehrparvar, Mohsen; Weisser, Wolfgang W

    2014-01-01

    Plant-herbivore interactions are influenced by host plant quality which in turn is affected by plant growth conditions. Competition is the major biotic and nutrient availability a major abiotic component of a plant's growth environment. Yet, surprisingly few studies have investigated impacts of competition and nutrient availability on herbivore performance and reciprocal herbivore effects on plants. We studied growth of the specialist aphid, Macrosiphoniella tanacetaria, and its host plant tansy, Tanacetum vulgare, under experimental addition of inorganic and organic fertilizer crossed with competition by goldenrod, Solidago canadensis. Because of evidence that competition by goldenrod is mediated by allelopathic compounds, we also added a treatment with activated carbon. Results showed that fertilization increased, and competition with goldenrod decreased, plant biomass, but this was likely mediated by resource competition. There was no evidence from the activated carbon treatment that allelopathy played a role which instead had a fertilizing effect. Aphid performance increased with higher plant biomass and depended on plant growth conditions, with fertilization and AC increasing, and plant competition decreasing aphid numbers. Feedbacks of aphids on plant performance interacted with plant growth conditions in complex ways depending on the relative magnitude of the effects on plant biomass and aphid numbers. In the basic fertilization treatment, tansy plants profited from increased nutrient availability by accumulating more biomass than they lost due to an increased number of aphids under fertilization. When adding additional fertilizer, aphid numbers increased so high that tansy plants suffered and showed reduced biomass compared with controls without aphids. Thus, the ecological cost of an infestation with aphids depends on the balance of effects of growth conditions on plant and herbivore performance. These results emphasize the importance to investigate both

  7. Complex effects of fertilization on plant and herbivore performance in the presence of a plant competitor and activated carbon.

    Directory of Open Access Journals (Sweden)

    Nafiseh Mahdavi-Arab

    Full Text Available Plant-herbivore interactions are influenced by host plant quality which in turn is affected by plant growth conditions. Competition is the major biotic and nutrient availability a major abiotic component of a plant's growth environment. Yet, surprisingly few studies have investigated impacts of competition and nutrient availability on herbivore performance and reciprocal herbivore effects on plants. We studied growth of the specialist aphid, Macrosiphoniella tanacetaria, and its host plant tansy, Tanacetum vulgare, under experimental addition of inorganic and organic fertilizer crossed with competition by goldenrod, Solidago canadensis. Because of evidence that competition by goldenrod is mediated by allelopathic compounds, we also added a treatment with activated carbon. Results showed that fertilization increased, and competition with goldenrod decreased, plant biomass, but this was likely mediated by resource competition. There was no evidence from the activated carbon treatment that allelopathy played a role which instead had a fertilizing effect. Aphid performance increased with higher plant biomass and depended on plant growth conditions, with fertilization and AC increasing, and plant competition decreasing aphid numbers. Feedbacks of aphids on plant performance interacted with plant growth conditions in complex ways depending on the relative magnitude of the effects on plant biomass and aphid numbers. In the basic fertilization treatment, tansy plants profited from increased nutrient availability by accumulating more biomass than they lost due to an increased number of aphids under fertilization. When adding additional fertilizer, aphid numbers increased so high that tansy plants suffered and showed reduced biomass compared with controls without aphids. Thus, the ecological cost of an infestation with aphids depends on the balance of effects of growth conditions on plant and herbivore performance. These results emphasize the importance

  8. The effect of nitrogen additions on oak foliage and herbivore communities at sites with high and low atmospheric pollution

    International Nuclear Information System (INIS)

    Eatough Jones, Michele; Paine, Timothy D.; Fenn, Mark E.

    2008-01-01

    To evaluate plant and herbivore responses to nitrogen we conducted a fertilization study at a low and high pollution site in the mixed conifer forests surrounding Los Angeles, California. Contrary to expectations, discriminant function analysis of oak herbivore communities showed significant response to N fertilization when atmospheric deposition was high, but not when atmospheric deposition was low. We hypothesize that longer-term fertilization treatments are needed at the low pollution site before foliar N nutrition increases sufficiently to affect herbivore communities. At the high pollution site, fertilization was also associated with increased catkin production and higher densities of a byturid beetle that feeds on the catkins of oak. Leaf nitrogen and nitrate were significantly higher at the high pollution site compared to the low pollution site. Foliar nitrate concentrations were positively correlated with abundance of sucking insects, leafrollers and plutellids in all three years of the study. - Nitrogen additions at sites impacted by air pollution were associated with altered foliar herbivore communities and increased densities of a catkin-feeding beetle on Quercus kellogii

  9. Isotopic and anatomical evidence of an herbivorous diet in the Early Tertiary giant bird Gastornis. Implications for the structure of Paleocene terrestrial ecosystems

    Science.gov (United States)

    Angst, D.; Lécuyer, C.; Amiot, R.; Buffetaut, E.; Fourel, F.; Martineau, F.; Legendre, S.; Abourachid, A.; Herrel, A.

    2014-04-01

    The mode of life of the early Tertiary giant bird Gastornis has long been a matter of controversy. Although it has often been reconstructed as an apex predator feeding on small mammals, according to other interpretations, it was in fact a large herbivore. To determine the diet of this bird, we analyze here the carbon isotope composition of the bone apatite from Gastornis and contemporaneous herbivorous mammals. Based on 13C-enrichment measured between carbonate and diet of carnivorous and herbivorous modern birds, the carbonate δ13C values of Gastornis bone remains, recovered from four Paleocene and Eocene French localities, indicate that this bird fed on plants. This is confirmed by a morphofunctional study showing that the reconstructed jaw musculature of Gastornis was similar to that of living herbivorous birds and unlike that of carnivorous forms. The herbivorous Gastornis was the largest terrestrial tetrapod in the Paleocene biota of Europe, unlike the situation in North America and Asia, where Gastornis is first recorded in the early Eocene, and the largest Paleocene animals were herbivorous mammals. The structure of the Paleocene terrestrial ecosystems of Europe may have been similar to that of some large islands, notably Madagascar, prior to the arrival of humans.

  10. Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis

    NARCIS (Netherlands)

    Poecke, R.M.P.; Posthumus, M.A.; Dicke, M.

    2001-01-01

    Many plant species defend themselves against herbivorous insects indirectly by producing volatiles in response to herbivory. These volatiles attract carnivorous enemies of the herbivores. Research on the model plant Arabidopsis thaliana (L.) Heynh. has contributed considerably to the unraveling of

  11. The response of soil CO2 fluxes to progressively excluding vertebrate and invertebrate herbivores depends on ecosystem type

    Science.gov (United States)

    Anita C. Risch; Alan G. Haynes; Matt D. Busse; Flurin Filli; Martin Schütz

    2013-01-01

    Grasslands support large populations of herbivores and store up to 30% of the world’s soil carbon (C). Thus, herbivores likely play an important role in the global C cycle. However, most studies on how herbivory impacts the largest source of C released from grassland soils—soil carbon dioxide (CO2) emissions—only considered the role of large...

  12. Induction of Systemic Resistance against Insect Herbivores in Plants by Beneficial Soil Microbes

    Directory of Open Access Journals (Sweden)

    Md. Harun-Or Rashid

    2017-10-01

    Full Text Available Soil microorganisms with growth-promoting activities in plants, including rhizobacteria and rhizofungi, can improve plant health in a variety of different ways. These beneficial microbes may confer broad-spectrum resistance to insect herbivores. Here, we provide evidence that beneficial microbes modulate plant defenses against insect herbivores. Beneficial soil microorganisms can regulate hormone signaling including the jasmonic acid, ethylene and salicylic acid pathways, thereby leading to gene expression, biosynthesis of secondary metabolites, plant defensive proteins and different enzymes and volatile compounds, that may induce defenses against leaf-chewing as well as phloem-feeding insects. In this review, we discuss how beneficial microbes trigger induced systemic resistance against insects by promoting plant growth and highlight changes in plant molecular mechanisms and biochemical profiles.

  13. Jasmonic acid protects etiolated seedlings of Arabidopsis thaliana against herbivorous arthropods.

    Science.gov (United States)

    Boex-Fontvieille, Edouard; Rustgi, Sachin; Von Wettstein, Diter; Pollmann, Stephan; Reinbothe, Steffen; Reinbothe, Christiane

    2016-08-02

    Seed predators can cause mass ingestion of larger seed populations. As well, herbivorous arthropods attempt to attack etiolated seedlings and chose the apical hook for ingestion, aimed at dropping the cotyledons for later consumption. Etiolated seedlings, as we show here, have established an efficient mechanism of protecting their Achilles' heel against these predators, however. Evidence is provided for a role of jasmonic acid (JA) in this largely uncharacterized plant-herbivore interaction during skotomorphogenesis and that this comprises the temporally and spatially tightly controlled synthesis of a cysteine protease inhibitors of the Kunitz family. Interestingly, the same Kunitz protease inhibitor was found to be expressed in flowers of Arabidopsis where endogenous JA levels are high for fertility. Because both the apical hook and inflorescences were preferred isopod targets in JA-deficient plants that could be rescued by exogenously administered JA, our data identify a JA-dependent mechanism of plant arthropod deterrence that is recalled in different organs and at quite different times of plant development.

  14. The effects of large herbivores on the landscape dynamics of a perennial herb

    Czech Academy of Sciences Publication Activity Database

    Hemrová, Lucie; Červenková, Z.; Münzbergová, Zuzana

    2012-01-01

    Roč. 110, č. 7 (2012), s. 1411-1421 ISSN 0305-7364 Institutional support: RVO:67985939 Keywords : herbivores * Scorzonera hispanica * landscape Subject RIV: EF - Botanics Impact factor: 3.449, year: 2012

  15. Forage patch use by grazing herbivores in a South African grazing ecosystem

    NARCIS (Netherlands)

    Venter, J.A.; Nabe-Nielsen, J.; Prins, H.H.T.; Slotow, R.

    2014-01-01

    Understanding how different herbivores make forage patch use choices explains how they maintain an adequate nutritional status, which is important for effective conservation management of grazing ecosystems. Using telemetry data, we investigated nonruminant zebra (Equus burchelli) and ruminant red

  16. Weather conditions drive dynamic habitat selection in a generalist predator

    DEFF Research Database (Denmark)

    Sunde, Peter; Thorup, Kasper; Jacobsen, Lars B.

    2014-01-01

    Despite the dynamic nature of habitat selection, temporal variation as arising from factors such as weather are rarely quantified in species-habitat relationships. We analysed habitat use and selection (use/availability) of foraging, radio-tagged little owls (Athene noctua), a nocturnal, year...... and quadratic effects of temperature. Even when controlling for the temporal context, both land cover types were used more evenly than predicted from variation in availability (functional response in habitat selection). Use of two other land cover categories (pastures and moist areas) increased linearly...... with temperature and was proportional to their availability. The study shows that habitat selection by generalist foragers may be highly dependent on temporal variables such as weather, probably because such foragers switch between weather dependent feeding opportunities offered by different land cover types...

  17. Niche partitioning of feeding microhabitats produces a unique function for herbivorous rabbitfishes (Perciformes, Siganidae) on coral reefs

    Science.gov (United States)

    Fox, R. J.; Bellwood, D. R.

    2013-03-01

    Niche theory predicts that coexisting species minimise competition by evolving morphological or behavioural specialisations that allow them to spread out along resource axes such as space, diet and temporal activity. These specialisations define how a species interacts with its environment and, by extension, determine its functional role. Here, we examine the feeding niche of three species of coral reef-dwelling rabbitfishes (Siganidae, Siganus). By comparing aspects of their feeding behaviour (bite location, bite rate, foraging distance) with that of representative species from two other abundant herbivorous fish families, the parrotfishes (Labridae, Scarus) and surgeonfishes (Acanthuridae, Acanthurus), we examine whether rabbitfishes have a feeding niche distinct from other members of the herbivore guild. Measurements of the penetration of the fishes' snouts and bodies into reef concavities when feeding revealed that rabbitfish fed to a greater degree from reef crevices and interstices than other herbivores. There was just a 40 % overlap in the penetration-depth niche between rabbitfish and surgeonfish and a 45 % overlap between rabbitfish and parrotfish, compared with the almost complete niche overlap (95 %) recorded for parrotfish and surgeonfish along this spatial niche axis. Aspects of the morphology of rabbitfish which may contribute to this niche segregation include a comparatively longer, narrower snout and narrower head. Our results suggest that sympatric coexistence of rabbitfish and other reef herbivores is facilitated by segregation along a spatial (and potentially dietary) axis. This segregation results in a unique functional role for rabbitfishes among roving herbivores that of "crevice-browser": a group that specifically feeds on crevice-dwelling algal or benthic organisms. This functional trait may have implications for reef ecosystem processes in terms of controlling the successional development of crevice-based algal communities, reducing their

  18. Habitats as complex odour environments: how does plant diversity affect herbivore and parasitoid orientation?

    Directory of Open Access Journals (Sweden)

    Nicole Wäschke

    Full Text Available Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weeviĺs capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weeviĺs foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts.

  19. The Effect of Communication Skills Training for Generalist Palliative Care Providers on Patient-Reported Outcomes and Clinician Behaviors: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Selman, Lucy Ellen; Brighton, Lisa J; Hawkins, Amy; McDonald, Christine; O'Brien, Suzanne; Robinson, Vicky; Khan, Shaheen A; George, Rob; Ramsenthaler, Christine; Higginson, Irene J; Koffman, Jonathan

    2017-09-01

    As most end-of-life care is provided by health care providers who are generalists rather than specialists in palliative care, effective communication skills training for generalists is essential. To determine the effect of communication training interventions for generalist palliative care providers on patient-reported outcomes and trainee behaviors. Systematic review from searches of 10 databases to December 2015 (MEDLINE, EMBASE, PsycINFO, ERIC, CINAHL, CENTRAL, Web of Science, ICTRP, CORDIS, and OpenGrey) plus hand searching. Randomized controlled trials of training interventions intended to enhance generalists' communication skills in end-of-life care were included. Two authors independently assessed eligibility after screening, extracted data, and graded quality. Data were pooled for meta-analysis using a random-effects model. PRISMA guidelines were followed. Nineteen of 11,441 articles were eligible, representing 14 trials. Eleven were included in meta-analyses (patients n = 3144, trainees n = 791). Meta-analysis showed no effect on patient outcomes (standardized mean difference [SMD] = 0.10, 95% CI -0.05 to 0.24) and high levels of heterogeneity (chi-square = 21.32, degrees of freedom [df] = 7, P = 0.003; I 2  = 67%). The effect on trainee behaviors in simulated interactions (SMD = 0.50, 95% CI 0.19-0.81) was greater than in real patient interactions (SMD = 0.21, 95% CI -0.01 to 0.43) with moderate heterogeneity (chi-square = 8.90, df = 5, P = 0.11; I 2  = 44%; chi-square = 5.96, df = 3, P = 0.11; I 2  = 50%, respectively). Two interventions with medium effects on showing empathy in real patient interactions included personalized feedback on recorded interactions. The effect of communication skills training for generalists on patient-reported outcomes remains unclear. Training can improve clinicians' ability to show empathy and discuss emotions, at least in simulated consultations. Personalized feedback on recorded patient

  20. Individual and species-specific traits explain niche size and functional role in spiders as generalist predators.

    Science.gov (United States)

    Sanders, Dirk; Vogel, Esther; Knop, Eva

    2015-01-01

    The function of a predator within a community is greatly based on its trophic niche, that is the number and the strength of feeding links. In generalist predators, which feed on a wide range of prey, the size and position of the trophic niche is likely determined by traits such as hunting mode, the stratum they occur in, their body size and age. We used stable isotope analyses ((13)C and (15)N) to measure the trophic niche size of nine spider species within a forest hedge community and tested for species traits and individual traits that influence stable isotope enrichment, niche size and resource use. The spiders Enoplognatha, Philodromus, Floronia, and Heliophanus had large isotopic niches, which correspond to a more generalistic feeding behaviour. In contrast, Araneus, Metellina and Agelena, as top predators in the system, had rather narrow niches. We found a negative correlation between trophic position and niche size. Differences in trophic position in spiders were explained by body size, hunting modes and stratum, while niche size was influenced by hunting mode. In Philodromus, the size of the trophic niche increased significantly with age. Fitting spiders to functional groups according to their mean body size, hunting mode and their habitat domain resulted in largely separated niches, which indicates that these traits are meaningful for separating functional entities in spiders. Functional groups based on habitat domain (stratum) caught the essential functional differences between the species with species higher up in the vegetation feeding on flying insects and herb and ground species also preying on forest floor decomposers. Interestingly, we found a gradient from large species using a higher habitat domain and having a smaller niche to smaller species foraging closer to the ground and having a larger niche. This shows that even within generalist predators, such as spiders, there is a gradient of specialism that can be predicted by functional traits.

  1. Arctic herbivore diet can be inferred from stable carbon and nitrogen isotopes in C3 plants, faeces and wool

    DEFF Research Database (Denmark)

    Kristensen, Ditte; Kristensen, Erik; Forchhammer, Mads C.

    2011-01-01

    The use of stable isotopes in diet analysis usually relies on the different photosynthetic pathways of C3 and C4 plants, and the resulting difference in carbon isotope signature. In the Arctic, however, plant species are exclusively C3, and carbon isotopes alone are therefore not suitable......% graminoids and up to 20% willows. In conclusion, the diet composition of an arctic herbivore can indeed be inferred from stable isotopes in arctic areas, despite the lack of C4 plants...... for studying arctic herbivore diets. In this study, we examined the potential of both stable carbon and nitrogen isotopes to reconstruct the diet of an arctic herbivore, here the muskox (Ovibos moschatus (Zimmermann, 1780)), in northeast Greenland. The isotope composition of plant communities and functional...

  2. Evidence for functional convergence in genes upregulated by herbivores ingesting plant secondary compounds

    Science.gov (United States)

    2014-01-01

    Background Nearly 40 years ago, Freeland and Janzen predicted that liver biotransformation enzymes dictated diet selection by herbivores. Despite decades of research on model species and humans, little is known about the biotransformation mechanisms used by mammalian herbivores to metabolize plant secondary compounds (PSCs). We investigated the independent evolution of PSC biotransformation mechanisms by capitalizing on a dramatic diet change event—the dietary inclusion of creosote bush (Larrea tridentata)—that occurred in the recent evolutionary history of two species of woodrats (Neotoma lepida and N. bryanti). Results By comparing gene expression profiles of two populations of woodrats with evolutionary experience to creosote and one population naïve to creosote, we identified genes either induced by a diet containing creosote PSCs or constitutively higher in populations with evolutionary experience of creosote. Although only one detoxification gene (an aldo-keto reductase) was induced by both experienced populations, these populations converged upon functionally equivalent strategies to biotransform the PSCs of creosote bush by constitutively expressing aldehyde and alcohol dehydrogenases, Cytochromes P450s, methyltransferases, glutathione S-transferases and sulfotransferases. The response of the naïve woodrat population to creosote bush was indicative of extreme physiological stress. Conclusions The hepatic detoxification system of mammals is notoriously complex, with hundreds of known biotransformation enzymes. The comparison herein of woodrat taxa that differ in evolutionary and ecological experience with toxins in creosote bush reveals convergence in the overall strategies used by independent species after a historical shift in diet. In addition, remarkably few genes seemed to be important in this dietary shift. The research lays the requisite groundwork for future studies of specific biotransformation pathways used by woodrats to metabolize the

  3. OsMPK3 positively regulates the JA signaling pathway and plant resistance to a chewing herbivore in rice.

    Science.gov (United States)

    Wang, Qi; Li, Jiancai; Hu, Lingfei; Zhang, Tongfang; Zhang, Guren; Lou, Yonggen

    2013-07-01

    KEY MESSAGE : Silencing OsMPK3 decreased elicited JA levels, which subsequently reduced levels of herbivore-induced trypsin protease inhibitors (TrypPIs) and improved the performance of SSB larvae, but did not influence BPH. Mitogen-activated protein kinases (MPKs) are known to play an important role in plant defense by transferring biotic and abiotic signals into programmed cellular responses. However, their functions in the herbivore-induced defense response in rice remain largely unknown. Here, we identified a MPK3 gene from rice, OsMPK3, and found that its expression levels were up-regulated in response to infestation by the larvae of the striped stem borer (SSB) (Chilo suppressalis), to mechanical wounding and to treatment with jasmonic acid (JA), but not to infestation by the brown planthopper (BPH) Nilaparvata lugens or to treatment with salicylic acid. Moreover, mechanical wounding and SSB infestation induced the expression of OsMPK3 strongly and quickly, whereas JA treatment induced the gene more weakly and slowly. Silencing OsMPK3 (ir-mpk3) reduced the expression of the gene by 50-70 %, decreased elicited levels of JA and diminished the expression of a lipoxygenase gene OsHI-LOX and an allene oxide synthase gene OsAOS1. The reduced JA signaling in ir-mpk3 plants decreased the levels of herbivore-induced trypsin protease inhibitors (TrypPIs) and improved the performance of SSB larvae, but did not influence BPH. Our findings suggest that the gene OsMPK3 responds early in herbivore-induced defense and can be regulated by rice plants to activate a specific and appropriate defense response to different herbivores.

  4. Recruitment dynamics mediated by ungulate herbivory can affect species coexistence for tree seedling assemblages

    Directory of Open Access Journals (Sweden)

    Chi-Yu Weng

    2017-08-01

    Full Text Available The best-known mechanism that herbivory affects species coexistence of tree seedlings is negative density-dependency driven by specialist natural enemies. However, in a forest with intense herbivory by non-specialists, what causes a diversifying seedling bank if rare species do not benefit from negative density-dependency in dominant species? We hypothesize that generalist herbivores can cause unevenly distributed species-specific mortality, which mediates recruitment dynamics and therefore affects species coexistence. To answer this question, we conducted a fence-control experiment in a montane cloud forest, Taiwan, and found that herbivorous damages were mainly caused by ungulates, which are generalists. We explored ungulate herbivory effects on recruitment dynamics by censusing tree seedling dynamics for three years. We found that herbivorous damages by ungulates significantly cause seedling death, mostly at their early stage of establishment. The percentage of death caused by herbivory varied among species. In particular, nurse plants and seedling initial height help shade-tolerant species to persist under such intense herbivory. Whereas, deaths caused by other factors occurred more often in older seedlings, with a consistent low percentage among species. We then tested species coexistence maintenance by dynamic modelling under different scenarios of ungulate herbivory. Raising percentages of death by herbivory changes relative species abundances by suppressing light-demanding species and increasing shade-tolerant species. Density-dependent mortality immediately after bursts of recruitments can suppress dominance of abundant species. With ungulate herbivory, fluctuating recruitment further prevent rare species from apparent competition induced by abundant species. Such bio-processes can interact with ungulate herbivory so that long-term coexistence can be facilitated.

  5. Nectar and pollen feeding by insect herbivores and implications for multitrophic interactions

    NARCIS (Netherlands)

    Wäckers, F.L.; Romeis, J.; van Rijn, P.

    2007-01-01

    Among herbivorous insects with a complete metamorphosis the larval and adult stages usually differ considerably in their nutritional requirements and food ecology. Often, feeding on plant structural tissue is restricted to the larval stage, whereas the adult stage feeds primarily or exclusively on

  6. Incorporation of an invasive plant into a native insect herbivore food web

    NARCIS (Netherlands)

    Schilthuizen, Menno; Santos Pimenta, Lúcia P; Lammers, Youri; Steenbergen, Peter J; Flohil, Marco; Beveridge, Nils G P; van Duijn, Pieter T; Meulblok, Marjolein M; Sosef, Nils; van de Ven, Robin; Werring, Ralf; Beentjes, Kevin K; Meijer, Kim; Vos, Rutger A; Vrieling, Klaas; Gravendeel, Barbara; Choi, Young; Verpoorte, Robert; Smit, Chris; Beukeboom, Leo W

    2016-01-01

    The integration of invasive species into native food webs represent multifarious dynamics of ecological and evolutionary processes. We document incorporation of Prunus serotina (black cherry) into native insect food webs. We find that P. serotina harbours a herbivore community less dense but more

  7. The problem of maintaining large herbivores in small conservation areas: deterioration of the grassveld in the Addo Elephant National Park

    Directory of Open Access Journals (Sweden)

    P. Novellie

    1991-09-01

    Full Text Available Changes in vegetation cover and species composition in a grassland community during a six year period are reported. The grass Themeda triandra and the dwarf shrub Helichrysum rosum decreased in abundance, whereas the grass Eragrostis obtusa increased. Comparison of grazed plots with fenced plots revealed large herbivores were responsible for the increase in abundance ofE. obtusa. The abundance of T. triandra was influenced by large herbivores, but rainfall fluctuations apparently also played a role. The decline in relative abundance of/7. rosum was evidently not caused by large herbivores. Grass cover was closely determined by rainfall. A drought-induced decline in forage abundance evidently caused the buffalo population to crash.

  8. An efficacy trial of brief lifestyle intervention delivered by generalist community nurses (CN SNAP trial

    Directory of Open Access Journals (Sweden)

    Fanaian Mahnaz

    2010-02-01

    Full Text Available Abstract Background Lifestyle risk factors, in particular smoking, nutrition, alcohol consumption and physical inactivity (SNAP are the main behavioural risk factors for chronic disease. Primary health care (PHC has been shown to be an effective setting to address lifestyle risk factors at the individual level. However much of the focus of research to date has been in general practice. Relatively little attention has been paid to the role of nurses working in the PHC setting. Community health nurses are well placed to provide lifestyle intervention as they often see clients in their own homes over an extended period of time, providing the opportunity to offer intervention and enhance motivation through repeated contacts. The overall aim of this study is to evaluate the impact of a brief lifestyle intervention delivered by community nurses in routine practice on changes in clients' SNAP risk factors. Methods/Design The trial uses a quasi-experimental design involving four generalist community nursing services in NSW Australia. Services have been randomly allocated to an 'early intervention' group or 'late intervention' (comparison group. 'Early intervention' sites are provided with training and support for nurses in identifying and offering brief lifestyle intervention for clients during routine consultations. 'Late intervention site' provide usual care and will be offered the study intervention following the final data collection point. A total of 720 generalist community nursing clients will be recruited at the time of referral from participating sites. Data collection consists of 1 telephone surveys with clients at baseline, three months and six months to examine change in SNAP risk factors and readiness to change 2 nurse survey at baseline, six and 12 months to examine changes in nurse confidence, attitudes and practices in the assessment and management of SNAP risk factors 3 semi-structured interviews/focus with nurses, managers and clients

  9. Quality indicators for prostate radiotherapy: are patients disadvantaged by receiving treatment in a 'generalist' centre?

    Science.gov (United States)

    Freeman, Amanda R; Roos, Daniel E; Kim, Laurence

    2015-04-01

    The purpose of this retrospective review was to evaluate concordance with evidence-based quality indicator guidelines for prostate cancer patients treated radically in a 'generalist' (as distinct from 'sub-specialist') centre. We were concerned that the quality of treatment may be lower in a generalist centre. If so, the findings could have relevance for many radiotherapy departments that treat prostate cancer. Two hundred fifteen consecutive patients received external beam radiotherapy (EBRT) and/or brachytherapy between 1.10.11 and 30.9.12. Treatment was deemed to be in line with evidence-based guidelines if the dose was: (i) 73.8-81 Gy at 1.8-2.0 Gy/fraction for EBRT alone (eviQ guidelines); (ii) 40-50 Gy (EBRT) for EBRT plus high-dose rate (HDR) brachytherapy boost (National Comprehensive Cancer Network (NCCN) guidelines); and (iii) 145 Gy for low dose rate (LDR) I-125 monotherapy (NCCN). Additionally, EBRT beam energy should be ≥6 MV using three-dimensional conformal RT (3D-CRT) or intensity-modulated RT (IMRT), and high-risk patients should receive neo-adjuvant androgen-deprivation therapy (ADT) (eviQ/NCCN). Treatment of pelvic nodes was also assessed. One hundred four high-risk, 84 intermediate-risk and 27 low-risk patients (NCCN criteria) were managed by eight of nine radiation oncologists. Concordance with guideline doses was confirmed in: (i) 125 of 136 patients (92%) treated with EBRT alone; (ii) 32 of 34 patients (94%) treated with EBRT + HDR BRT boost; and (iii) 45 of 45 patients (100%) treated with LDR BRT alone. All EBRT patients were treated with ≥6 MV beams using 3D-CRT (78%) or IMRT (22%). 84%, 21% and 0% of high-risk, intermediate-risk and low-risk patients received ADT, respectively. Overall treatment modality choice (including ADT use and duration where assessable) was concordant with guidelines for 176/207 (85%) of patients. The vast majority of patients were treated concordant with evidence-based guidelines suggesting that

  10. The effect of nitrogen additions on bracken fern and its insect herbivores at sites with high and low atmospheric pollution

    Science.gov (United States)

    M.E. Jones; M.E. Fenn; T.D. Paine

    2011-01-01

    The impact of atmospheric pollution, including nitrogen deposition, on bracken fern herbivores has never been studied. Bracken fern is globally distributed and has a high potential to accumulate nitrogen in plant tissue. We examined the response of bracken fern and its herbivores to N fertilization at a high and low pollution site in forests downwind of Los Angeles,...

  11. Evolution of resistance and tolerance to herbivores: testing the trade-off hypothesis

    Directory of Open Access Journals (Sweden)

    Eunice Kariñho-Betancourt

    2015-03-01

    Full Text Available Background. To cope with their natural enemies, plants rely on resistance and tolerance as defensive strategies. Evolution of these strategies among natural population can be constrained by the absence of genetic variation or because of the antagonistic genetic correlation (trade-off between them. Also, since plant defenses are integrated by several traits, it has been suggested that trade-offs might occur between specific defense traits.Methodology/Principal Findings. We experimentally assessed (1 the presence of genetic variance in tolerance, total resistance, and leaf trichome density as specific defense trait, (2 the extent of natural selection acting on plant defenses, and (3 the relationship between total resistance and leaf trichome density with tolerance to herbivory in the annual herb Datura stramonium. Full-sib families of D. stramonium were either exposed to natural herbivores (control or protected from them by a systemic insecticide. We detected genetic variance for leaf trichome density, and directional selection acting on this character. However, we did not detect a negative significant correlation between tolerance and total resistance, or between tolerance and leaf trichome density. We argue that low levels of leaf damage by herbivores precluded the detection of a negative genetic correlation between plant defense strategies.Conclusions/Significance. This study provides empirical evidence of the independent evolution of plant defense strategies, and a defensive role of leaf trichomes. The pattern of selection should favor individuals with high trichomes density. Also, because leaf trichome density reduces damage by herbivores and possess genetic variance in the studied population, its evolution is not constrained.

  12. Best of Both Worlds: A Conceptual Model for Integrating an Aging Specialization within an Advanced Generalist MSW Program

    Science.gov (United States)

    Dakin, Emily K.; Quijano, Louise M.; Bishop, Pamela S.; Sheafor, Bradford W.

    2015-01-01

    Must a master's of social work (MSW) program's orientation be either advanced generalist or some form of specialist? Or is there the possibility of a hybrid curriculum that provides enough breadth to prepare MSW graduates for a wide range of social work jobs, but that also addresses students' and community agencies' demands for student…

  13. Endozoochory by free-ranging, large herbivores : Ecological correlates and perspectives for restoration

    NARCIS (Netherlands)

    Mouissie, Albert; Vos, P; Verhagen, HMC; Bakker, JP

    2005-01-01

    Seed dispersal via ingestion and defecation by large herbivores provides a possible aid for ecological restoration of plant communities, by connecting source communities of target species with habitat restoration sites. It is also a possible threat due to invasion of weeds, grasses or exotic

  14. The effect of generalist and specialist care on quality of life in asthma patients with and without allergic rhinitis

    DEFF Research Database (Denmark)

    Harmsen, Lotte; Nolte, Hendrik; Backer, Vibeke

    2010-01-01

    Treatment of asthma and rhinitis patients is often provided by both generalists (GPs) and specialists (SPs). Studies have shown differences in clinical outcomes of treatment between these settings. The aim of this study was to evaluate the effect of GP and SP care on health-related quality of life...

  15. Interaction intimacy of pathogens and herbivores with their host plants influences the topological structure of ecological networks in different ways.

    Science.gov (United States)

    Benítez-Malvido, Julieta; Dáttilo, Wesley

    2015-04-01

    • Over the past two decades an interest in the role that plant-animal mutualistic networks play in the organization and dynamic of biodiversity has steadily risen. Despite the ecological, evolutionary, and economic importance of plant-herbivore and plant-pathogen antagonistic relationships, however, few studies have examined these interactions in an ecological network framework.• We describe for the first time the topological structure of multitrophic networks involving congeneric tropical plant species of the genus Heliconia (Heliconiaceae, Zingiberales) and their herbivores and pathogens in the state of Pernambuco, Brazil. We based our study on the available literature describing the organisms (e.g., insects, mites, fungi, and bacteria) that attack 24 different species, hybrids, and cultivated varieties of Heliconia.• In general, pathogen- and herbivore-Heliconia networks differed in their topological structure (more modular vs. more nested, respectively): pathogen-Heliconia networks were more specialized and compartmentalized than herbivore-Heliconia networks. High modularity was likely due to the high intimacy that pathogens have with their host plants as compared with the more generalized feeding modes and behavior of herbivores. Some clusters clearly reflected the clustering of closely related cultivated varieties of Heliconia sharing the same pathogens.• From a commercial standpoint, different varieties of the same Heliconia species may be more susceptible to being attacked by the same species of pathogens. In summary, our study highlights the importance of interaction intimacy in structuring trophic relationships between plants and pathogens in the tropics. © 2015 Botanical Society of America, Inc.

  16. Silencing of a Germin-Like Gene in Nicotiana attenuata Improves Performance of Native Herbivores1[W

    Science.gov (United States)

    Lou, Yonggen; Baldwin, Ian T.

    2006-01-01

    Germins and germin-like proteins (GLPs) are known to function in pathogen resistance, but their involvement in defense against insect herbivores is poorly understood. In the native tobacco Nicotiana attenuata, attack from the specialist herbivore Manduca sexta or elicitation by adding larval oral secretions (OS) to wounds up-regulates transcripts of a GLP. To understand the function of this gene, which occurs as a single copy, we cloned the full-length NaGLP and silenced its expression in N. attenuata by expressing a 250-bp fragment in an antisense orientation with an Agrobacterium-based transformation system and by virus-induced gene silencing (VIGS). Homozygous lines harboring a single insert and VIGS plants had significantly reduced constitutive (measured in roots) and elicited NaGLP transcript levels (in leaves). Silencing NaGLP improved M. sexta larval performance and Tupiocoris notatus preference, two native herbivores of N. attenuata. Silencing NaGLP also attenuated the OS-induced hydrogen peroxide (H2O2), diterpene glycosides, and trypsin proteinase inhibitor responses, which may explain the observed susceptibility of antisense or VIGS plants to herbivore attack and increased nicotine contents, but did not influence the OS-elicited jasmonate and salicylate bursts, or the release of the volatile organic compounds (limonene, cis-α-bergamotene, and germacrene-A) that function as an indirect defense. This suggests that NaGLP is involved in H2O2 production and might also be related to ethylene production and/or perception, which in turn influences the defense responses of N. attenuata via H2O2 and ethylene-signaling pathways. PMID:16461381

  17. Infestation of transgenic powdery mildew-resistant wheat by naturally occurring insect herbivores under different environmental conditions.

    Directory of Open Access Journals (Sweden)

    Fernando Álvarez-Alfageme

    Full Text Available A concern associated with the growing of genetically modified (GM crops is that they could adversely affect non-target organisms. We assessed the impact of several transgenic powdery mildew-resistant spring wheat lines on insect herbivores. The GM lines carried either the Pm3b gene from hexaploid wheat, which confers race-specific resistance to powdery mildew, or the less specific anti-fungal barley seed chitinase and β-1,3-glucanase. In addition to the non-transformed control lines, several conventional spring wheat varieties and barley and triticale were included for comparison. During two consecutive growing seasons, powdery mildew infection and the abundance of and damage by naturally occurring herbivores were estimated under semi-field conditions in a convertible glasshouse and in the field. Mildew was reduced on the Pm3b-transgenic lines but not on the chitinase/glucanase-expressing lines. Abundance of aphids was negatively correlated with powdery mildew in the convertible glasshouse, with Pm3b wheat plants hosting significantly more aphids than their mildew-susceptible controls. In contrast, aphid densities did not differ between GM plants and their non-transformed controls in the field, probably because of low mildew and aphid pressure at this location. Likewise, the GM wheat lines did not affect the abundance of or damage by the herbivores Oulema melanopus (L. and Chlorops pumilionis Bjerk. Although a previous study has revealed that some of the GM wheat lines show pleiotropic effects under field conditions, their effect on herbivorous insects appears to be low.

  18. A novel statistical method for classifying habitat generalists and specialists

    DEFF Research Database (Denmark)

    Chazdon, Robin L; Chao, Anne; Colwell, Robert K

    2011-01-01

    in second-growth (SG) and old-growth (OG) rain forests in the Caribbean lowlands of northeastern Costa Rica. We evaluate the multinomial model in detail for the tree data set. Our results for birds were highly concordant with a previous nonstatistical classification, but our method classified a higher......: (1) generalist; (2) habitat A specialist; (3) habitat B specialist; and (4) too rare to classify with confidence. We illustrate our multinomial classification method using two contrasting data sets: (1) bird abundance in woodland and heath habitats in southeastern Australia and (2) tree abundance...... fraction (57.7%) of bird species with statistical confidence. Based on a conservative specialization threshold and adjustment for multiple comparisons, 64.4% of tree species in the full sample were too rare to classify with confidence. Among the species classified, OG specialists constituted the largest...

  19. A Systematic Review of End-of-Life Care Communication Skills Training for Generalist Palliative Care Providers: Research Quality and Reporting Guidance.

    Science.gov (United States)

    Brighton, Lisa Jane; Koffman, Jonathan; Hawkins, Amy; McDonald, Christine; O'Brien, Suzanne; Robinson, Vicky; Khan, Shaheen A; George, Rob; Higginson, Irene J; Selman, Lucy Ellen

    2017-09-01

    End-of-life care (EoLC) communication skills training for generalist palliative care providers is recommended in policy guidance globally. Although many training programs now exist, there has been no comprehensive evidence synthesis to inform future training delivery and evaluation. To identify and appraise how EoLC communication skills training interventions for generalist palliative care providers are developed, delivered, evaluated, and reported. Systematic review. Ten electronic databases (inception to December 2015) and five relevant journals (January 2004 to December 2015) were searched. Studies testing the effectiveness of EoLC communication skills training for generalists were included. Two independent authors assessed study quality. Descriptive statistics and narrative synthesis are used to summarize the findings. From 11,441 unique records, 170 reports were identified (157 published, 13 unpublished), representing 160 evaluation studies of 153 training interventions. Of published papers, eight were of low quality, 108 medium, and 41 high. Few interventions were developed with service user involvement (n = 7), and most were taught using a mixture of didactics (n = 123), reflection and discussion (n = 105), and role play (n = 86). Evaluation designs were weak: communication skills training interventions in the literature, evidence is limited by poor reporting and weak methodology. Based on our findings, we present a CONSORT statement supplement to improve future reporting and encourage more rigorous testing. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Combined influence of Bt rice and rice dwarf virus on biological parameters of a non-target herbivore, Nephotettix cincticeps (Uhler) (Hemiptera: Cicadellidae)

    Science.gov (United States)

    The advent of genetically modified (GM) Bt rice creates the possibility of interactions among Bt crops, crop pathogens and non-target herbivores. In particular, information on how pathogen-infected Bt-expressing plants will influence non-target herbivores is necessary to predict the sustainability o...

  1. Exposure of Lima bean leaves to volatiles from herbivore-induced conspecific plants results in emission of carnivore attractants: active or passive process?

    NARCIS (Netherlands)

    Choh, Y.; Shimoda, T.; Ozawa, R.; Dicke, M.; Takabayashi, J.

    2004-01-01

    There is increasing evidence that volatiles emitted by herbivore-damaged plants can cause responses in downwind undamaged neighboring plants, such as the attraction of carnivorous enemies of herbivores. One of the open questions is whether this involves an active (production of volatiles) or passive

  2. Management intensity at field and landscape levels affects the structure of generalist predator communities.

    Science.gov (United States)

    Rusch, Adrien; Birkhofer, Klaus; Bommarco, Riccardo; Smith, Henrik G; Ekbom, Barbara

    2014-07-01

    Agricultural intensification is recognised as a major driver of biodiversity loss in human-modified landscapes. Several agro-environmental measures at different spatial scales have been suggested to mitigate the negative impact of intensification on biodiversity and ecosystem services. The effect of these measures on the functional structure of service-providing communities remains, however, largely unexplored. Using two distinct landscape designs, we examined how the management options of organic farming at the field scale and crop diversification at the landscape level affect the taxonomic and functional structure of generalist predator communities and how these effects vary along a landscape complexity gradient. Organic farming as well as landscapes with longer and more diversified crop rotations enhanced the activity-density of spiders and rove beetles, but not the species richness or evenness. Our results indicate that the two management options affected the functional composition of communities, as they primarily enhanced the activity-density of functionally similar species. The two management options increased the functional similarity between spider species in regards to hunting mode and habitat preference. Organic farming enhanced the functional similarity of rove beetles. Management options at field and landscape levels were generally more important predictors of community structure when compared to landscape complexity. Our study highlights the importance of considering the functional composition of generalist predators in order to understand how agro-environmental measures at various scales shape community assemblages and ecosystem functioning in agricultural landscapes.

  3. Direct and indirect effects of light pollution on the performance of an herbivorous insect.

    Science.gov (United States)

    Grenis, Kylee; Murphy, Shannon M

    2018-02-09

    Light pollution is a global disturbance with resounding impacts on a wide variety of organisms, but our understanding of these impacts is restricted to relatively few higher vertebrate species. We tested the direct effects of light pollution on herbivore performance as well as indirect effects mediated by host plant quality. We found that artificial light from streetlights alters plant toughness. Additionally, we found evidence of both direct and indirect effects of light pollution on the performance of an herbivorous insect, which indicates that streetlights can have cascading impacts on multiple trophic levels. Our novel findings suggest that light pollution can alter plant-insect interactions and thus may have important community-wide consequences. © 2018 Institute of Zoology, Chinese Academy of Sciences.

  4. Effects of root herbivory by nematodes on the performance and preference of a leaf-infesting generalist aphid depend on nitrate fertilization.

    Science.gov (United States)

    Kutyniok, Magdalene; Persicke, Marcus; Müller, Caroline

    2014-02-01

    The performance and behavior of herbivores is strongly affected by the quality of their host plants, which is determined by various environmental conditions. We investigated the performance and preference of the polyphagous shoot-infesting aphid Myzus persicae on the host-plant Arabidopsis thaliana in a two-factorial design in which nitrate fertilization was varied by 33 %, and the root-infesting cyst-nematode Heterodera schachtii was present or absent. Aphid performance was influenced by these abiotic and biotic factors in an interactive way. Nematode presence decreased aphid performance when nitrate levels were low, whereas nematode infestation did not influence aphid performance under higher nitrate fertilization. Aphids followed the "mother knows best" principle when given a choice, settling preferentially on those plants on which they performed best. Hence, they preferred nematode-free over nematode-infested plants in the low fertilization treatment but host choice was not affected by nematodes under higher nitrate fertilization. The amino acid composition of the phloem exudates was significantly influenced by fertilization but also by the interaction of the two treatments. Various glucosinolates in the leaves, which provide an estimate of phloem glucosinolates, were not affected by the individual treatments but by the combination of fertilization and herbivory. These changes in primary and secondary metabolites may be decisive for the herbivore responses. Our data demonstrate that abiotic and biotic factors can interactively affect herbivores, adding a layer of complexity to plant-mediated herbivore interactions.

  5. Laboratory experiments examining inducible defense show variable responses of temperate brown and red macroalgae Experimentos de laboratorio para examinar las defensas inducibles muestran respuestas variables en macroalgas pardas y rojas de ambientes templados

    Directory of Open Access Journals (Sweden)

    EVA ROTHÄUSLER

    2005-12-01

    Full Text Available Macroalgae can defend themselves against generalist and specialist herbivores via morphological and/or chemical traits. Herein we examined the defensive responses (via relative palatability of two brown (Lessonia nigrescens, Glossophora kunthii and two red algae (Grateloupia doryphora, Chondracanthus chamissoi from the northern-central coast of Chile against selected generalist meso-herbivores. Two laboratory experiments were conducted to investigate whether (i algae can respond generally to grazing pressure of meso-herbivores (amphipods, isopods and juvenile sea urchins and whether (ii these algal responses were inducible. In order to examine palatability and thus effectiveness of responses, feeding assays were run after each experiment using fresh algal pieces and artificial agar-based food. Lessonia nigrescens responded to amphipods but not to sea urchins, and G. kunthii showed inducible response against one species of amphipods. Grateloupia doryphora did not respond against any of the tested grazers, whereas C. chamissoi responded against one species of amphipods and the tested isopod. Our results indicate variable responses of macroalgae against selected generalist meso-herbivores and evidence of an inducible defense in the brown alga G. kunthii.Muchas macroalgas poseen la capacidad de defenderse contra herbívoros generalistas y especialistas utilizando defensas químicas y/o morfológicas. En este trabajo se examinó la respuesta de la palatabilidad ante meso-herbívoros generalistas de dos algas pardas (Lessonia nigrescens, Glossophora kunthii y dos algas rojas (Grateloupia doryphora, Chondracanthus chamissoi de la costa Norte de Chile. Se realizaron dos experimentos de laboratorio para investigar si: (i las algas pueden responder al pastoreo realizado por meso-herbivoros generalistas (anfípodos, isópodos y erizos juveniles y (ii si la respuesta de estas algas es inducible. Para examinar la palatabilidad y de esta forma la efectividad

  6. Chytrid fungus acts as a generalist pathogen infecting species-rich amphibian families in Brazilian rainforests.

    Science.gov (United States)

    Valencia-Aguilar, Anyelet; Ruano-Fajardo, Gustavo; Lambertini, Carolina; da Silva Leite, Domingos; Toledo, Luís Felipe; Mott, Tamí

    2015-05-11

    The fungus Batrachochytrium dendrobatidis (Bd) is among the main causes of declines in amphibian populations. This fungus is considered a generalist pathogen because it infects several species and spreads rapidly in the wild. To date, Bd has been detected in more than 100 anuran species in Brazil, mostly in the southern portion of the Atlantic forest. Here, we report survey data from some poorly explored regions; these data considerably extend current information on the distribution of Bd in the northern Atlantic forest region. In addition, we tested the hypothesis that Bd is a generalist pathogen in this biome. We also report the first positive record for Bd in an anuran caught in the wild in Amazonia. In total, we screened 90 individuals (from 27 species), of which 39 individuals (from 22 species) were Bd-positive. All samples collected in Bahia (2 individuals), Pernambuco (3 individuals), Pará (1 individual), and Minas Gerais (1 individual) showed positive results for Bd. We found a positive correlation between anuran richness per family and the number of infected species in the Atlantic forest, supporting previous observations that Bd lacks strong host specificity; of 38% of the anuran species in the Atlantic forest that were tested for Bd infection, 25% showed positive results. The results of our study exemplify the pandemic and widespread nature of Bd infection in amphibians.

  7. The adaptation of generalist predators' diet in a multi-prey context: insights from new functional responses.

    Science.gov (United States)

    Baudrot, Virgile; Perasso, Antoine; Fritsch, Clémentine; Giraudoux, Patrick; Raoul, Francis

    2016-07-01

    The ability for a generalist consumer to adapt its foraging strategy (the multi-species functional response, MSFR) is a milestone in ecology as it contributes to the structure of food webs. The trophic interaction between a generalist predator, as the red fox or the barn owl, and its prey community, mainly composed of small mammals, has been empirically and theoretically widely studied. However, the extent to which these predators adapt their diet according to both multi-annual changes in multiple prey species availability (frequency dependence) and the variation of the total prey density (density dependence) is unexplored.We provide a new general model of MSFR disentangling changes in prey preference according to variation of prey frequency (switching) and of total prey density (we propose the new concept of "rank switching"). We apply these models to two large data sets of red fox and barn owl foraging. We show that both frequency-dependent and density-dependent switching are critical properties of these two systems, suggesting that barn owl and red fox have an accurate image of the prey community in terms of frequency and absolute density. Moreover, we show that negative switching, which can lead to prey instability, is a strong property of the two systems. © 2016 by the Ecological Society of America.

  8. Turnover of plant lineages shapes herbivore phylogenetic beta diversity along ecological gradients.

    Science.gov (United States)

    Pellissier, Loïc; Ndiribe, Charlotte; Dubuis, Anne; Pradervand, Jean-Nicolas; Salamin, Nicolas; Guisan, Antoine; Rasmann, Sergio

    2013-05-01

    Understanding drivers of biodiversity patterns is of prime importance in this era of severe environmental crisis. More diverse plant communities have been postulated to represent a larger functional trait-space, more likely to sustain a diverse assembly of herbivore species. Here, we expand this hypothesis to integrate environmental, functional and phylogenetic variation of plant communities as factors explaining the diversity of lepidopteran assemblages along elevation gradients in the Swiss Western Alps. According to expectations, we found that the association between butterflies and their host plants is highly phylogenetically structured. Multiple regression analyses showed the combined effect of climate, functional traits and phylogenetic diversity in structuring butterfly communities. Furthermore, we provide the first evidence that plant phylogenetic beta diversity is the major driver explaining butterfly phylogenetic beta diversity. Along ecological gradients, the bottom up control of herbivore diversity is thus driven by phylogenetically structured turnover of plant traits as well as environmental variables. © 2013 Blackwell Publishing Ltd/CNRS.

  9. A below-ground herbivore shapes root defensive chemistry in natural plant populations.

    Science.gov (United States)

    Huber, Meret; Bont, Zoe; Fricke, Julia; Brillatz, Théo; Aziz, Zohra; Gershenzon, Jonathan; Erb, Matthias

    2016-03-30

    Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root latex secondary metabolites across 21 central European T. officinale field populations. By cultivating offspring of these populations, we show that both heritable variation and phenotypic plasticity contribute to the observed differences. Furthermore, we demonstrate that the production of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) is costly in the absence, but beneficial in the presence of M. melolontha, resulting in divergent selection of TA-G. Our results highlight the role of soil-dwelling insects for the evolution of plant defences in nature. © 2016 The Author(s).

  10. Assessing the functional diversity of herbivorous reef fishes using a compound-specific stable isotope approach

    KAUST Repository

    Tietbohl, Matthew

    2016-12-01

    Herbivorous coral reef fishes play an important role in helping to structure their environment directly by consuming algae and indirectly by promoting coral health and growth. These fishes are generally separated into three broad groups: browsers, grazers, and excavators/scrapers, with these groupings often thought to have a fixed general function and all fishes within a group thought to have similar ecological roles. This categorization assumes a high level of functional redundancy within herbivorous fishes. However, recent evidence questions the use of this broad classification scheme, and posits that there may actually be more resource partitioning within these functional groupings. Here, I use a compound-specific stable isotope approach (CSIA) to show there appears to be a greater diversity of functional roles than previously assumed within broad functional groups. The δ13C signatures from essential amino acids of reef end-members (coral, macroalgae, detritus, and phytoplankton) and fish muscle were analyzed to investigate differences in resource use between fishes. Most end-members displayed clear isotopic differences, and most fishes within functional groups were dissimilar in their isotopic signature, implying differences in the resources they target. No grazers closely resembled each other isotopically, implying a much lower level of functional redundancy within this group; scraping parrotfish were also distinct from excavating parrotfish and to a lesser degree distinct between scrapers. This study highlights the potential of CSIA to help distinguish fine-scale ecological differences within other groups of reef organisms as well. These results question the utility of lumping nominally herbivorous fishes into broad groups with assumed similar roles. Given the apparent functional differences between nominally herbivorous reef fishes, it is important for managers to incorporate the diversity of functional roles these fish play.

  11. Assessing the functional diversity of herbivorous reef fishes using a compound-specific stable isotope approach

    KAUST Repository

    Tietbohl, Matthew

    2016-01-01

    Herbivorous coral reef fishes play an important role in helping to structure their environment directly by consuming algae and indirectly by promoting coral health and growth. These fishes are generally separated into three broad groups: browsers, grazers, and excavators/scrapers, with these groupings often thought to have a fixed general function and all fishes within a group thought to have similar ecological roles. This categorization assumes a high level of functional redundancy within herbivorous fishes. However, recent evidence questions the use of this broad classification scheme, and posits that there may actually be more resource partitioning within these functional groupings. Here, I use a compound-specific stable isotope approach (CSIA) to show there appears to be a greater diversity of functional roles than previously assumed within broad functional groups. The δ13C signatures from essential amino acids of reef end-members (coral, macroalgae, detritus, and phytoplankton) and fish muscle were analyzed to investigate differences in resource use between fishes. Most end-members displayed clear isotopic differences, and most fishes within functional groups were dissimilar in their isotopic signature, implying differences in the resources they target. No grazers closely resembled each other isotopically, implying a much lower level of functional redundancy within this group; scraping parrotfish were also distinct from excavating parrotfish and to a lesser degree distinct between scrapers. This study highlights the potential of CSIA to help distinguish fine-scale ecological differences within other groups of reef organisms as well. These results question the utility of lumping nominally herbivorous fishes into broad groups with assumed similar roles. Given the apparent functional differences between nominally herbivorous reef fishes, it is important for managers to incorporate the diversity of functional roles these fish play.

  12. Fatal attraction: vegetation responses to nutrient inputs attract herbivores to infectious anthrax carcass sites.

    Science.gov (United States)

    Turner, Wendy C; Kausrud, Kyrre L; Krishnappa, Yathin S; Cromsigt, Joris P G M; Ganz, Holly H; Mapaure, Isaac; Cloete, Claudine C; Havarua, Zepee; Küsters, Martina; Getz, Wayne M; Stenseth, Nils Chr

    2014-11-22

    Parasites can shape the foraging behaviour of their hosts through cues indicating risk of infection. When cues for risk co-occur with desired traits such as forage quality, individuals face a trade-off between nutrient acquisition and parasite exposure. We evaluated how this trade-off may influence disease transmission in a 3-year experimental study of anthrax in a guild of mammalian herbivores in Etosha National Park, Namibia. At plains zebra (Equus quagga) carcass sites we assessed (i) carcass nutrient effects on soils and grasses, (ii) concentrations of Bacillus anthracis (BA) on grasses and in soils, and (iii) herbivore grazing behaviour, compared with control sites, using motion-sensing camera traps. We found that carcass-mediated nutrient pulses improved soil and vegetation, and that BA is found on grasses up to 2 years after death. Host foraging responses to carcass sites shifted from avoidance to attraction, and ultimately to no preference, with the strength and duration of these behavioural responses varying among herbivore species. Our results demonstrate that animal carcasses alter the environment and attract grazing hosts to parasite aggregations. This attraction may enhance transmission rates, suggesting that hosts are limited in their ability to trade off nutrient intake with parasite avoidance when relying on indirect cues. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Adaptive divergence in resistance to herbivores in Datura stramonium

    Directory of Open Access Journals (Sweden)

    Guillermo Castillo

    2015-11-01

    Full Text Available Defensive traits exhibited by plants vary widely across populations. Heritable phenotypic differentiation is likely to be produced by genetic drift and spatially restricted gene flow between populations. However, spatially variable selection exerted by herbivores may also give rise to differences among populations. To explore to what extent these factors promote the among-population differentiation of plant resistance of 13 populations of Datura stramonium, we compared the degree of phenotypic differentiation (PST of leaf resistance traits (trichome density, atropine and scopolamine concentration against neutral genetic differentiation (FST at microsatellite loci. Results showed that phenotypic differentiation in defensive traits among-population is not consistent with divergence promoted by genetic drift and restricted gene flow alone. Phenotypic differentiation in scopolamine concentration was significantly higher than FST across the range of trait heritability values. In contrast, genetic differentiation in trichome density was different from FST only when heritability was very low. On the other hand, differentiation in atropine concentration differed from the neutral expectation when heritability was less than or equal to 0.3. In addition, we did not find a significant correlation between pair-wise neutral genetic distances and distances of phenotypic resistance traits. Our findings reinforce previous evidence that divergent natural selection exerted by herbivores has promoted the among-population phenotypic differentiation of defensive traits in D. stramonium.

  14. [How many generalists and how many specialists does orthopedics and traumatology need?].

    Science.gov (United States)

    Achatz, G; Perl, M; Stange, R; Mutschler, M; Jarvers, J S; Münzberg, M

    2013-01-01

    The training in orthopedic and trauma surgery has changed significantly with the introduction of the new residency program. The contents taught have already been reduced in breadth and the current developments in the outpatient and particularly in the clinical landscape also contribute to increasing specialization. This trend favors structures in which comprehensive medical care for the population in Germany in orthopedic and trauma surgery appears to be endangered and in which the future efforts for e.g. polytraumatised patients need to be questioned. The Young Forum of the German Society for Orthopedics and Traumatology actively accompanies a discussion about the necessity and value of generalists to ensure the level of care in Germany in addition to the specialists.

  15. Plant-Mediated Systemic Interactions Between Pathogens, Parasitic Nematodes, and Herbivores Above- and Belowground

    NARCIS (Netherlands)

    Biere, A.; Goverse, A.

    2016-01-01

    Plants are important mediators of interactions between aboveground (AG) and belowground (BG) pathogens, arthropod herbivores, and nematodes (phytophages). We highlight recent progress in our understanding of within- and cross-compartment plant responses to these groups of phytophages in terms of

  16. Plant-mediated systemic interactions between pathogens, parasitic nematodes, and herbivores above- and belowground

    NARCIS (Netherlands)

    Biere, A.; Goverse, Aska

    2016-01-01

    Plants are important mediators of interactions between aboveground (AG) and belowground (BG) pathogens, arthropod herbivores, and nematodes (phytophages). We highlight recent progress in our understanding of within and cross-compartment plant responses to these groups of phytophages in terms of

  17. Satisfying giant appetites : mechanisms of small scale foraging by large African herbivores

    NARCIS (Netherlands)

    Pretorius, Y.

    2009-01-01

    Variation in body mass allows for resource partitioning and co-existence of different species. Body mass is also seen as the main factor governing nutrient requirements in herbivores as metabolic rate and requirements have often been found to scale to ¾ power of body mass. Although the consequences

  18. Herbivore-plant interactions: mixed-function oxidases and secondary plant substances.

    Science.gov (United States)

    Brattsten, L B; Wilkinson, C F; Eisner, T

    1977-06-17

    The mixed-function oxidases of a polyphagous insect larva (the southern armyworm, Spodoptera eridania) were found to be induced by a diversity of secondary plant substances. The induction proceeds rapidly and in response to a small quantity of secondary substance. Following induction, the larva is less susceptible to dietary poisoning. It is argued that mixed-function oxidases play a major role in protecting herbivores against chemical stress from secondary plant substances.

  19. A latex metabolite benefits plant fitness under root herbivore attack

    OpenAIRE

    Huber, M.; Epping, J.; Gronover, C.S.; Fricke, J.; Aziz, Z.; Brillatz, T.; Swyers, M.; Köllner, T.G.; Vogel, H.; Hammerbacher, A.; Triebwasser-Freese, D.; Robert, C.A.M.; Verhoeven, K.; Preite, V.; Gershenzon, J.

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major n...

  20. Bird communities of the arctic shrub tundra of Yamal: habitat specialists and generalists.

    Directory of Open Access Journals (Sweden)

    Vasiliy Sokolov

    Full Text Available BACKGROUND: The ratio of habitat generalists to specialists in birds has been suggested as a good indicator of ecosystem changes due to e.g. climate change and other anthropogenic perturbations. Most studies focusing on this functional component of biodiversity originate, however, from temperate regions. The Eurasian Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by domestic reindeer and growing human activity. METHODOLOGY/PRINCIPAL FINDINGS: Here we monitored bird communities in a tundra landscape harbouring shrub and open habitats in order to analyse bird habitat relationships and quantify habitat specialization. We used ordination methods to analyse habitat associations and estimated the proportions of specialists in each of the main habitats. Correspondence Analysis identified three main bird communities, inhabiting upland, lowland and dense willow shrubs. We documented a stable structure of communities despite large multiannual variations of bird density (from 90 to 175 pairs/km(2. Willow shrub thickets were a hotspot for bird density, but not for species richness. The thickets hosted many specialized species whose main distribution area was south of the tundra. CONCLUSION/SIGNIFICANCE: If current arctic changes result in a shrubification of the landscape as many studies suggested, we would expect an increase in the overall bird abundance together with an increase of local specialists, since they are associated with willow thickets. The majority of these species have a southern origin and their increase in abundance would represent a strengthening of the boreal component in the southern tundra, perhaps at the expense of species typical of the subarctic zone, which appear to be generalists within this zone.

  1. Temperature and diet effects on omnivorous fish performance: Implications for the latitudinal diversity gradient in herbivorous fishes

    Science.gov (United States)

    Behrens, M.D.; Lafferty, K.D.

    2007-01-01

    Herbivorous fishes show a clear latitudinal diversity gradient, making up a larger proportion of the fish species in a community in tropical waters than in temperate waters. One proposed mechanism that could drive this gradient is a physiological constraint due to temperature. One prediction based on this mechanism is that if herbivorous fishes could shift their diet to animal material, they would be better able to grow, survive, and reproduce in cold waters. We tested this prediction on the omnivore Girella nigricans under different temperature and diet regimes using RNA-DNA ratios as an indicator of performance. Fish had increased performance (100%) at low temperatures (12??C) when their diet was supplemented with animal material. In contrast, at higher temperatures (17, 22, and 27??C) fish showed no differences between diets. This indicates that omnivorous fishes could increase their performance at low temperatures by consuming more animal matter. This study supports the hypothesis that a relative increase in the nutritional value of plant material at warmer temperatures could drive the latitudinal diversity gradient in herbivorous fishes. ?? 2007 NRC.

  2. Time-scale effects in the interaction between a large and a small herbivore

    NARCIS (Netherlands)

    Kuijper, D. P. J.; Beek, P.; van Wieren, S.E.; Bakker, J. P.

    2008-01-01

    In the short term, grazing will mainly affect plant biomass and forage quality. However, grazing can affect plant species composition by accelerating or retarding succession at longer time-scales. Few studies concerning interactions among herbivores have taken the change in plant species composition

  3. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales.

    Science.gov (United States)

    Aartsma, Yavanna; Bianchi, Felix J J A; van der Werf, Wopke; Poelman, Erik H; Dicke, Marcel

    2017-12-01

    Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger spatial scales. The spatial matrix of volatiles ('volatile mosaic') within which parasitoids locate their hosts is dynamic and heterogeneous. It is shaped by the spatial pattern of HIPV-emitting plants, the concentration, chemical composition and breakdown of the emitted HIPV blends, and by environmental factors such as wind, turbulence and vegetation that affect transport and mixing of odour plumes. The volatile mosaic may be exploited differentially by different parasitoid species, in relation to species traits such as sensory ability to perceive volatiles and the physical ability to move towards the source. Understanding how HIPVs influence parasitoids at larger spatial scales is crucial for our understanding of tritrophic interactions and sustainable pest management in agriculture. However, there is a large gap in our knowledge on how volatiles influence the process of host location by parasitoids at the landscape scale. Future studies should bridge the gap between the chemical and behavioural ecology of tritrophic interactions and landscape ecology. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  4. How insects overcome two-component plant chemical defence: plant β-glucosidases as the main target for herbivore adaptation.

    Science.gov (United States)

    Pentzold, Stefan; Zagrobelny, Mika; Rook, Fred; Bak, Søren

    2014-08-01

    Insect herbivory is often restricted by glucosylated plant chemical defence compounds that are activated by plant β-glucosidases to release toxic aglucones upon plant tissue damage. Such two-component plant defences are widespread in the plant kingdom and examples of these classes of compounds are alkaloid, benzoxazinoid, cyanogenic and iridoid glucosides as well as glucosinolates and salicinoids. Conversely, many insects have evolved a diversity of counteradaptations to overcome this type of constitutive chemical defence. Here we discuss that such counter-adaptations occur at different time points, before and during feeding as well as during digestion, and at several levels such as the insects’ feeding behaviour, physiology and metabolism. Insect adaptations frequently circumvent or counteract the activity of the plant β-glucosidases, bioactivating enzymes that are a key element in the plant’s two-component chemical defence. These adaptations include host plant choice, non-disruptive feeding guilds and various physiological adaptations as well as metabolic enzymatic strategies of the insect’s digestive system. Furthermore, insect adaptations often act in combination, may exist in both generalists and specialists, and can act on different classes of defence compounds. We discuss how generalist and specialist insects appear to differ in their ability to use these different types of adaptations: in generalists, adaptations are often inducible, whereas in specialists they are often constitutive. Future studies are suggested to investigate in detail how insect adaptations act in combination to overcome plant chemical defences and to allow ecologically relevant conclusions.

  5. Comparison of carnivore, omnivore, and herbivore mammalian genomes with a new leopard assembly.

    Science.gov (United States)

    Kim, Soonok; Cho, Yun Sung; Kim, Hak-Min; Chung, Oksung; Kim, Hyunho; Jho, Sungwoong; Seomun, Hong; Kim, Jeongho; Bang, Woo Young; Kim, Changmu; An, Junghwa; Bae, Chang Hwan; Bhak, Youngjune; Jeon, Sungwon; Yoon, Hyejun; Kim, Yumi; Jun, JeHoon; Lee, HyeJin; Cho, Suan; Uphyrkina, Olga; Kostyria, Aleksey; Goodrich, John; Miquelle, Dale; Roelke, Melody; Lewis, John; Yurchenko, Andrey; Bankevich, Anton; Cho, Juok; Lee, Semin; Edwards, Jeremy S; Weber, Jessica A; Cook, Jo; Kim, Sangsoo; Lee, Hang; Manica, Andrea; Lee, Ilbeum; O'Brien, Stephen J; Bhak, Jong; Yeo, Joo-Hong

    2016-10-11

    There are three main dietary groups in mammals: carnivores, omnivores, and herbivores. Currently, there is limited comparative genomics insight into the evolution of dietary specializations in mammals. Due to recent advances in sequencing technologies, we were able to perform in-depth whole genome analyses of representatives of these three dietary groups. We investigated the evolution of carnivory by comparing 18 representative genomes from across Mammalia with carnivorous, omnivorous, and herbivorous dietary specializations, focusing on Felidae (domestic cat, tiger, lion, cheetah, and leopard), Hominidae, and Bovidae genomes. We generated a new high-quality leopard genome assembly, as well as two wild Amur leopard whole genomes. In addition to a clear contraction in gene families for starch and sucrose metabolism, the carnivore genomes showed evidence of shared evolutionary adaptations in genes associated with diet, muscle strength, agility, and other traits responsible for successful hunting and meat consumption. Additionally, an analysis of highly conserved regions at the family level revealed molecular signatures of dietary adaptation in each of Felidae, Hominidae, and Bovidae. However, unlike carnivores, omnivores and herbivores showed fewer shared adaptive signatures, indicating that carnivores are under strong selective pressure related to diet. Finally, felids showed recent reductions in genetic diversity associated with decreased population sizes, which may be due to the inflexible nature of their strict diet, highlighting their vulnerability and critical conservation status. Our study provides a large-scale family level comparative genomic analysis to address genomic changes associated with dietary specialization. Our genomic analyses also provide useful resources for diet-related genetic and health research.

  6. Host generalists and specialists emerging side by side: an analysis of evolutionary patterns in the cosmopolitan chewing louse genus Menacanthus

    Czech Academy of Sciences Publication Activity Database

    Martinů, Jana; Sychra, O.; Literák, I.; Čapek, Miroslav; Gustafsson, D. L.; Štefka, Jan

    2015-01-01

    Roč. 45, č. 1 (2015), s. 63-73 ISSN 0020-7519 R&D Projects: GA AV ČR IAA601690901 Institutional support: RVO:60077344 ; RVO:68081766 Keywords : Host specificity * Specialist * Generalist * Population structure * Geographic distribution * Menacanthus Subject RIV: EG - Zoology; EG - Zoology (UBO-W) Impact factor: 4.242, year: 2015

  7. Ozone impedes the ability of a herbivore to find its host

    Science.gov (United States)

    Fuentes, Jose D.; Roulston, T.'ai H.; Zenker, John

    2013-03-01

    Plant-emitted hydrocarbons mediate several key interactions between plants and insects. They enhance the ability of pollinators and herbivores to locate suitable host plants, and parasitoids to locate herbivores. While plant volatiles provide strong chemical signals, these signals are potentially degraded by exposure to pollutants such as ozone, which has increased in the troposphere and is projected to continue to increase over the coming decades. Despite the potential broad ecological significance of reduced plant signaling effectiveness, few studies have examined behavioral responses of insects to their hosts in polluted environments. Here, we use a laboratory study to test the effect of ozone concentration gradients on the ability of the striped cucumber beetle (Acalymma vittatum) to locate flowers of its host plant, Cucurbita foetidissima. Y-tube experiments showed that ozone mixing ratios below 80 parts per billion (ppb) resulted in beetles moving toward their host plant, but levels above 80 ppb resulted in beetles moving randomly with respect to host location. There was no evidence that beetles avoided polluted air directly. The results show that ozone pollution has great potential to perniciously alter key interactions between plants and animals.

  8. Ozone impedes the ability of a herbivore to find its host

    International Nuclear Information System (INIS)

    Fuentes, Jose D; Zenker, John; Roulston, T’ai H

    2013-01-01

    Plant-emitted hydrocarbons mediate several key interactions between plants and insects. They enhance the ability of pollinators and herbivores to locate suitable host plants, and parasitoids to locate herbivores. While plant volatiles provide strong chemical signals, these signals are potentially degraded by exposure to pollutants such as ozone, which has increased in the troposphere and is projected to continue to increase over the coming decades. Despite the potential broad ecological significance of reduced plant signaling effectiveness, few studies have examined behavioral responses of insects to their hosts in polluted environments. Here, we use a laboratory study to test the effect of ozone concentration gradients on the ability of the striped cucumber beetle (Acalymma vittatum) to locate flowers of its host plant, Cucurbita foetidissima. Y-tube experiments showed that ozone mixing ratios below 80 parts per billion (ppb) resulted in beetles moving toward their host plant, but levels above 80 ppb resulted in beetles moving randomly with respect to host location. There was no evidence that beetles avoided polluted air directly. The results show that ozone pollution has great potential to perniciously alter key interactions between plants and animals. (letter)

  9. Conservation challenge: human-herbivore conflict in Chebera Churchura National Park, Ethiopia.

    Science.gov (United States)

    Datiko, Demeke; Bekele, Afework

    2013-12-01

    An investigation on human-herbivore conflict was carried out in CCNP between 2011 and 2012 in seven randomly selected villages (Chebera, Serri, Yora, Shita, Delba, Chuchra, Chewda) around the Park. A total of 312 household samples were identified for interview. Group discussion and field observation were also carried out. Among the respondents, the majority (83.9%) faced crop damage. African elephant (Loxodonta africana), Hippopotamus (Hippopotamus amphibious), African buffalo (Syncerus caffer), Desert warthog (Phacochoerus aethiopicus), Wild pig (Sus scrofa), Porcupine (Hystrix cristata), Vervet monkey (Cercopithecus aethiops) and Anubis baboon (Papio anubis) were identified as the most problematic animals in the area. However, buffalo, monkey and warthog were considered as the notorious pest. Crop damage and threats to human safety were the major problems encountered resulting in conflict between human and wildlife. Most respondents had a negative attitude towards the problem-posing animals. This will lead to a change in public attitude from one that supports wildlife conservation to sees wild herbivores as a threat and a potential negative consequence for wildlife conservation. Active measures have to be implemented to solve the problems and safeguard the future of the wildlife management in the park.

  10. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists.

    Science.gov (United States)

    Kortsch, Susanne; Primicerio, Raul; Fossheim, Maria; Dolgov, Andrey V; Aschan, Michaela

    2015-09-07

    Climate-driven poleward shifts, leading to changes in species composition and relative abundances, have been recently documented in the Arctic. Among the fastest moving species are boreal generalist fish which are expected to affect arctic marine food web structure and ecosystem functioning substantially. Here, we address structural changes at the food web level induced by poleward shifts via topological network analysis of highly resolved boreal and arctic food webs of the Barents Sea. We detected considerable differences in structural properties and link configuration between the boreal and the arctic food webs, the latter being more modular and less connected. We found that a main characteristic of the boreal fish moving poleward into the arctic region of the Barents Sea is high generalism, a property that increases connectance and reduces modularity in the arctic marine food web. Our results reveal that habitats form natural boundaries for food web modules, and that generalists play an important functional role in coupling pelagic and benthic modules. We posit that these habitat couplers have the potential to promote the transfer of energy and matter between habitats, but also the spread of pertubations, thereby changing arctic marine food web structure considerably with implications for ecosystem dynamics and functioning. © 2015 The Authors.

  11. Effects of large herbivores on wood pasture dynamics in a European wetland system

    NARCIS (Netherlands)

    Cornelissen, P.; Bokdam, J.; Sykora, K.V.; Berendse, F.

    2014-01-01

    Whether self-regulating large herbivores play a key role in the development of wood-pasture landscapes remains a crucial unanswered question for both ecological theory and nature conservation. We describe and analyse how a ‘partly self-regulating’ population of cattle, horses and red deer affected

  12. Diets of giants: the nutritional value of herbivorous dinosaur diet during the Mesozoic

    Science.gov (United States)

    Gill, Fiona; Hummel, Juergen; Sharifi, Reza; Lee, Alexandra; Lomax, Barry

    2017-04-01

    A major uncertainty in estimating energy budgets and population densities of extinct animals is the carrying capacity of their ecosystems, constrained by net primary productivity (NPP) and digestible energy content of that NPP. The hypothesis that increases in NPP of land plants due to elevated atmospheric CO2 contributed to the unparalleled size of the sauropods, the largest ever land animals, has recently been rejected, based on modern studies on herbivorous insects. However, the nutritional value of plants grown under elevated CO2 levels might be very different for vertebrate megaherbivores with more complex digestive systems and different protein:energy requirements than insects. Here we show that the metabolisable energy (ME) value of five species of potential dinosaur food plants does not decline consistently with increasing CO2 growth concentrations, with maxima observed at 1200 ppm CO2. Our data potentially rebut the hypothesis of constraints on herbivore diet quality in the Mesozoic due to CO2 levels.

  13. The impact of herbivores on nitrogen mineralization rate: consequences for salt-marsh succession.

    Science.gov (United States)

    van Wijnen, Harm J; van der Wal, René; Bakker, Jan P

    1999-02-01

    Soil net N-mineralization rate was measured along a successional gradient in salt-marsh sites that were grazed by vertebrate herbivores, and in 5-year-old exclosures from which the animals were excluded. Mineralization rate was significantly higher at ungrazed than at grazed sites. In the absence of grazing, mineralization rate increased over the course of succession, whereas it remained relatively low when sites were grazed. The largest differences in mineralization rate between grazed and ungrazed sites were found at late successional stages where grazing pressure was lowest. The amount of plant litter was significantly lower at grazed sites. In addition, the amount of litter and potential litter (non-woody, live shoots) was linearly related to net N-mineralization rate. This implies that herbivores reduced mineralization rate by preventing litter accumulation. Bulk density was higher at grazed salt-marsh sites than at ungrazed sites. This factor may also have contributed to the differences in net N-mineralization rate between grazed and ungrazed sites.

  14. A test of the herbivore optimization hypothesis using muskoxen and a graminoid meadow plant community

    Directory of Open Access Journals (Sweden)

    David L. Smith

    1996-01-01

    Full Text Available A prediction from the herbivore optimization hypothesis is that grazing by herbivores at moderate intensities will increase net above-ground primary productivity more than at lower or higher intensities. I tested this hypothesis in an area of high muskox {Ovibos moschatus density on north-central Banks Island, Northwest Territories, Canada (73°50'N, 119°53'W. Plots (1 m2 in graminoid meadows dominated by cottongrass (Eriophorum triste were either clipped, exposed to muskoxen, protected for part of one growing season, or permanently protected. This resulted in the removal of 22-44%, 10-39%, 0-39% or 0%, respectively, of shoot tissue during each growing season. Contrary to the predictions of the herbivore optimization hypothesis, productivity did not increase across this range of tissue removal. Productivity of plants clipped at 1.5 cm above ground once or twice per growing season, declined by 60+/-5% in 64% of the tests. The productivity of plants grazed by muskoxen declined by 56+/-7% in 25% of the tests. No significant change in productivity was observed in 36% and 75% of the tests in clipped and grazed treatments, respecrively. Clipping and grazing reduced below-ground standing crop except where removals were small. Grazing and clipping did not stimulate productivity of north-central Banks Island graminoid meadows.

  15. Review - Host specificity of insect herbivores in tropical forests

    Czech Academy of Sciences Publication Activity Database

    Novotný, Vojtěch; Basset, Y.

    2005-01-01

    Roč. 272, č. 1568 (2005), s. 1083-1090 ISSN 0962-8452 R&D Projects: GA AV ČR(CZ) IAA6007106; GA ČR(CZ) GD206/03/H034; GA ČR(CZ) GA206/04/0725; GA MŠk(CZ) ME 646 Grant - others:US Nationals Science Foundation(US) DEB-02-11591; Darwin Initiative for the Survival of Species(US) 162/10/030 Institutional research plan: CEZ:AV0Z50070508 Keywords : food web * herbivore guild * host plant range Subject RIV: EH - Ecology, Behaviour Impact factor: 3.510, year: 2005

  16. Landscape and host plant effects on reproduction by a mobile, polyphagous, multivoltine arthropod herbivore

    Science.gov (United States)

    Landscape factors can significantly influence arthropod natural enemy and herbivore pest populations. The economically important brown stink bug, Euschistus servus, is a native mobile, polyphagous and multivoltine pest of many crops in southeastern USA and understanding the relative influence of loc...

  17. Is the Performance of a Specialist Herbivore Affected by Female Choices and the Adaptability of the Offspring?

    Directory of Open Access Journals (Sweden)

    Tarcísio Visintin da Silva Galdino

    Full Text Available The performance of herbivorous insects is related to the locations of defenses and nutrients found in the different plant organs on which they feed. In this context, the females of herbivorous insect species select certain parts of the plant where their offspring can develop well. In addition, their offspring can adapt to plant defenses. A system where these ecological relationships can be studied occurs in the specialist herbivore, Tuta absoluta, on tomato plants. In our experiments we evaluated: (i the performance of the herbivore T. absoluta in relation to the tomato plant parts on which their offspring had fed, (ii the spatial distribution of the insect stages on the plant canopy and (iii the larval resistance to starvation and their walking speed at different instar stages. We found that the T. absoluta females preferred to lay their eggs in the tomato plant parts where their offspring had greater chances of success. We verified that the T. absoluta females laid their eggs on both sides of the leaves to better exploit resources. We also observed that the older larvae (3rd and 4th instars moved to the most nutritious parts of the plant, thus increasing their performance. The T. absoluta females and offspring (larvae were capable of identifying plant sites where their chances of better performance were higher. Additionally, their offspring (larvae spread across the plant to better exploit the available plant nutrients. These behavioral strategies of T. absoluta facilitate improvement in their performance after acquiring better resources, which help reduce their mortality by preventing the stimulation of plant defense compounds and the action of natural enemies.

  18. The Herbivore-Induced Plant Volatiles Methyl Salicylate and Menthol Positively affect Growth and Pathogenicity of Entomopathogenic Fungi

    Science.gov (United States)

    Lin, Yongwen; Qasim, Muhammad; Hussain, Mubasher; Akutse, Komivi Senyo; Avery, Pasco Bruce; Dash, Chandra Kanta; Wang, Liande

    2017-01-01

    Some herbivore-induced-plant volatiles (HIPVs) compounds are vital for the functioning of an ecosystem, by triggering multi-trophic interactions for natural enemies, plants and herbivores. However, the effect of these chemicals, which play a crucial role in regulating the multi-trophic interactions between plant-herbivore-entomopathogenic fungi, is still unknown. To fill this scientific gap, we therefore investigated how these chemicals influence the entomopathogenic fungi growth and efficacy. In this study, Lipaphis erysimi induced Arabidopsis thaliana HIPVs were collected using headspace system and detected with GC-MS, and then analyzed the effects of these HIPVs chemicals on Lecanicillium lecanii strain V3450. We found that the HIPVs menthol and methyl salicylate at 1 and 10 nmol·ml-1 improved many performance aspects of the fungus, such as germination, sporulation, appressorial formation as well as its pathogenicity and virulence. These findings are not only important for understanding the multi-trophic interactions in an ecosystem, but also would contribute for developing new and easier procedures for conidial mass production as well as improve the pathogenicity and virulence of entomopathogenic fungi in biological pest management strategies.

  19. The impact of herbivores on nitrogen mineralization rate : consequences for salt-marsh succession

    NARCIS (Netherlands)

    van Wijnen, HJ; van der Wal, R; Bakker, JP

    Soil net N-mineralization rate was measured along a successional gradient in salt-marsh sites that were grazed by vertebrate herbivores, and in 5-year-old exclosures from which the animals were excluded. Mineralization rate was significantly higher at ungrazed than at grazed sites. In the absence of

  20. Potential Use of Native and Naturalized Insect Herbivores and Fungal Pathogens of Aquatic and Wetland Plants

    National Research Council Canada - National Science Library

    Freedman, Jan E; Grodowitz, Michael J; Swindle, Robin; Nachtrieb, Julie G

    2007-01-01

    ...) scientists to identify naturalized and/or native herbivores of aquatic plants in an effort to develop alternative management strategies through an understanding of the agents' biology and ecology...