WorldWideScience

Sample records for general physiologists muscle

  1. Physical activity coaching by Australian Exercise Physiologists is cost effective for patients referred from general practice.

    Science.gov (United States)

    Ewald, Ben; Stacey, Fiona; Johnson, Natalie; Plotnikoff, Ronald C; Holliday, Elizabeth; Brown, Wendy; James, Erica L

    2018-02-01

    Interventions to promote physical activity for sedentary patients seen in general practice may be a way to reduce the burden of chronic disease. Coaching by an exercise physiologist is publicly funded in Australia, but cost effectiveness has not been documented. In a three-arm randomised controlled trial, face-to-face coaching and telephone coaching over 12 weeks were compared with a control group using the outcome of step count for one week at baseline, three months and twelve months. Program costs and time-based costs were considered. Quality of life was measured as a secondary outcome. At 12 months, the intervention groups were more active than controls by 1,002 steps per day (95%CI 244, 1,759). This was achieved at a cost of AUD$245 per person. There was no change in reported quality of life or utility values. Coaching achieved a modest increase in activity equivalent to 10 minutes walking per day, at a cost of AUD$245 per person. Face-to-face and telephone counselling were both effective. Implication for public health: Persistence of increases nine months after the end of coaching suggests it creates long-term change and is a good value health intervention. © 2017 The Authors.

  2. [History of physiology physiologists Evgeniy Borisovich Babski (1902-1973)].

    Science.gov (United States)

    Reutov, V P

    2012-01-01

    The paper analyzes works of eminent physiologists of the twentieth century the Academician of Ukraine SSR, professor Eugene Borisovich Babskii. During 50 years of research in Moscow and Kiev E.B. Babskii published more than 400 works. His main research devoted to investigation of the motility of the digestive tract, general physiology of the nervous system, chemical factors of excitation, mechanisms of muscle contraction, medical electronics and cybernetics and history of human and animal physiology. However, the most significant contribution of Babskii E.B. is his analysis of circulation physiology--the investigation of miocard energy, the physiological effects of electrical stimulation of the heart in the experiment, neural regulation, the ionic mechanisms of automaticity of the heart and myocardial metabolism in different phases of the cardiac cycle. Babskii E.B. and his colleagues firstly created the original method of study of cardiac activity--dinamocardiografy. Academician Babskii E.B. is considered the progenitor of heart electrical stimulation method of Russian Physiology and Medicine. These and many other ideas of Babskii E.B. has been further developed by his students, colleagues and followers.

  3. Clinical diseases of the rumen: a physiologist's view.

    Science.gov (United States)

    Leek, B F

    1983-07-02

    An interpretation of many of the classical signs of ruminal dysfunction is possible by extrapolation from the results of research in rumen physiology. Correlation of motility and ruminal fluid characteristics will often provide a means of establishing the degree, the duration and the differential diagnosis of the dysfunction detected. In the case of disorders of ruminal motility, general anaesthesia and diseases at any sites which produce pain or fever can inhibit the hindbrain reflex centres responsible for evoking primary and secondary cycle contractions of the reticulorumen. Simple indigestion/rumen impaction, vagus indigestion and hypocalcaemic milk fever cause ruminal stasis, probably because they relax the reticuloruminal smooth muscle and hence decrease the reflexly excitable sensory inputs from tension receptors. Grain engorgement/ruminal acidosis and extreme bloat are likely to excite other sensory receptors (epithelial receptors), which reflexly inhibit cyclical motility. Bloat occurs when eructation is inadequate either because the oesophagus is obstructed or because cardiac opening is reflexly inhibited by the presence of ruminal fluid rather than gas at the cardia in conditions of subnormal motility or of leguminous frothing.

  4. Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures.

    Science.gov (United States)

    Sohn, M Hongchul; Ting, Lena H

    2016-01-01

    conclude that generalization of function across postures does not arise from limb biomechanics or a single optimality criterion. Muscle synergies may reflect acquired motor solutions globally tuned for generalizability across biomechanical contexts, facilitating rapid motor adaptation.

  5. Effect of generalized joint hypermobility on knee function and muscle activation in children and adults

    DEFF Research Database (Denmark)

    Jensen, Bente Rona; Olesen, Annesofie T.; Pedersen, Mogens Theisen

    2013-01-01

    Introduction: We investigated muscle activation strategy and performance of knee extensor and flexor muscles in children and adults with generalized joint hypermobility (GJH) and compared them with controls. Methods: Muscle activation, torque steadiness, electromechanical delay, and muscle strength...... were evaluated in 39 children and 36 adults during isometric knee extension and flexion. Subjects performed isometric maximum contractions, submaximal contractions at 25% maximum voluntary contraction (MVC), and explosive contractions. Results: Agonist activation was reduced, and coactivation ratio...... was greater in GJH during knee flexion compared with controls. Torque steadiness was impaired in adults with GJH during knee flexion. No effect of GJH was found on muscle strength or electromechanical delay. Correlation analysis revealed an association between GJH severity and function in adults. Conclusions...

  6. Magnetic resonance imaging in dissociated strabismus complex demonstrates generalized hypertrophy of rectus extraocular muscles.

    Science.gov (United States)

    Rajab, Ghada Z; Suh, Soh Youn; Demer, Joseph L

    2017-06-01

    Dissociated strabismus complex (DSC) is an enigmatic form of strabismus that includes dissociated vertical deviation (DVD) and dissociated horizontal deviation (DHD). We employed magnetic resonance imaging (MRI) to evaluate the extraocular muscles in DSC. We studied 5 patients with DSC and mean age of 25 years (range, 12-42 years), and 15 age-matched, orthotropic control subjects. All patients had DVD; 4 also had DHD. We employed high-resolution, surface coil MRI with thin, 2 mm slices and central target fixation. Volumes of the rectus and superior oblique muscles in the region 12 mm posterior to 4 mm anterior to the globe-optic nerve junction were measured in quasi-coronal planes in central gaze. Patients with DSC had no structural abnormalities of rectus muscles or rectus pulleys or the superior oblique muscle but exhibited modest, statistically significant increased volume of all rectus muscles ranging from 20% for medial rectus to 9% for lateral rectus (P muscles. DSC is associated with generalized rectus extraocular muscle hypertrophy in the absence of other orbital abnormalities. Copyright © 2017 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  7. Soleus muscle H-reflex monitoring in endoscopic surgery under general anesthesia percutaneous interlaminar approach.

    Science.gov (United States)

    Wang, Huixue; Gao, Yingji; Ji, Lixin; Bai, Wanshan

    2018-05-01

    The clinical value of soleus muscle H-reflex monitoring in general anesthesia percutaneous interlaminar approach was investigated. A total of 80 cases with unilateral L5-S1 disc herniation between January 2015 and October 2016 were randomly divided into control group (without soleus muscle H-reflex monitoring, n=40) and observation group (with soleus muscle H-reflex monitoring, n=40). Results showed that the operation time of the observation group was shorter than that of the control group (Ph after operation, the amplitude of H-reflex in diseased side soleus muscle was significantly lower than that in healthy side (Ph postoperatively, the latency of H-reflex in diseased side soleus muscle was shorter than that of healthy side (PH-reflex latency in soleus muscle were significantly lower (PH-reflex monitoring can effectively reduce the damage to the nerve roots under percutaneous endoscopic intervertebral endoscopic surgery under general anesthesia, improve the accuracy of surgery, reduce the complications, shorten the operation time and reduce the surgical bleeding, which is more beneficial to patients smooth recovery.

  8. Exercise physiologists: essential players in interdisciplinary teams for noncommunicable chronic disease management

    Directory of Open Access Journals (Sweden)

    Soan EJ

    2014-01-01

    Full Text Available Esme J Soan,1–3 Steven J Street,1,2 Sharon M Brownie,3,4 Andrew P Hills1–31Mater Mothers' Hospital, South Brisbane, 2Mater Research Institute – University of Queensland, South Brisbane, 3Griffith Health Institute, Griffith University, Gold Coast, QLD, Australia; 4Green Templeton College, Oxford University, Oxford, UKAbstract: Noncommunicable diseases (NCDs, such as obesity and type 2 diabetes mellitus, are a growing public health challenge in Australia, accounting for a significant and increasing cost to the health care system. Management of these chronic conditions is aided by interprofessional practice, but models of care require updating to incorporate the latest evidence-based practice. Increasing research evidence reports the benefits of physical activity and exercise on health status and the risk of inactivity to chronic disease development, yet physical activity advice is often the least comprehensive component of care. An essential but as yet underutilized player in NCD prevention and management is the "accredited exercise physiologist," a specialist in the delivery of clinical exercise prescriptions for the prevention or management of chronic and complex conditions. In this article, the existing role of accredited exercise physiologists in interprofessional practice is examined, and an extension of their role proposed in primary health care settings.Keywords: interdisciplinary team, obesity, type 2 diabetes mellitus, exercise physiology, accredited exercise physiologist

  9. Generalized smooth muscle hamartoma with multiple congenital anomalies without the "Michelin tire baby" phenotype.

    Science.gov (United States)

    Janicke, Elise C; Nazareth, Michael R; Rothman, Ilene L

    2014-01-01

    We report a patient with generalized smooth muscle hamartoma who presented with many of the variety of congenital anomalies that have been reported in babies with multiple symmetric circumferential rings of folded skin known as Michelin tire baby (MTB) syndrome, but our patient did not show the MTB phenotype. This constellation of findings in the absence of the MTB phenotype has not been previously reported. © 2014 Wiley Periodicals, Inc.

  10. Girls with generalized joint hypermobility display changed muscle activity and postural sway during static balance tasks

    DEFF Research Database (Denmark)

    Juul-Kristensen, B; Johansen, Kl; Hendriksen, P

    2016-01-01

    OBJECTIVES: To study knee muscle activity and static postural sway in girls with generalized joint hypermobility (GJH). METHOD: Sixteen girls with GJH and 11 girls with non-GJH (NGJH) aged 14 years, randomly recruited among schoolchildren, participated in this study. GJH inclusion criteria were......: Beighton score minimum 6/9 and one hypermobile knee; for NGJH: Beighton score maximum 5/9 and no knees with hypermobility. The participants performed a static two-legged balance test with eyes open (2EO) and eyes closed (2EC) and a one-legged stance test with eyes open (1EO). Postural sway (centre......) of Q, H, and G muscle activity was calculated. Knee function was self-reported using the Knee Injury and Osteoarthritis Outcome Score for children (KOOS-Child). RESULTS: GJH had a significantly lower lateral HQ CCI and a higher medial/lateral HQ CCI ratio in all balance tasks. Group mean EMG varied...

  11. A short commentary on Aristotle's scientific legacy and his definition of the physiologist.

    Science.gov (United States)

    Zarros, Apostolos

    2014-06-01

    The roots of physiology - on the basis of a systematic study of the human body's functions and their correlation to anatomy - date back to the works of Aristotle. The pupil of Plato and the tutor of Alexander the Great was a one-man university, and his contributions to the medical sciences have been immense. His surviving works highlight the first serious approach towards the rejection of metaphysical and mythological thought, and have: (i) demonstrated a deep appreciation for a systematic, non-metaphysical study of the natural world, (ii) set the foundations of comparative and human anatomy, (iii) established the first (indirect) definition of the "physiologist", and (iv) exercised a dominant influence upon the subsequent history of Hellenistic, European and Arabic Medicine. The current letter provides a short commentary on the historical account of Physiology as a scientific field and underlines the unique legacy that Aristotle has provided us with.

  12. The Generalized Hill Model: A Kinematic Approach Towards Active Muscle Contraction

    Science.gov (United States)

    Menzel, Andreas; Kuhl, Ellen

    2014-01-01

    Excitation-contraction coupling is the physiological process of converting an electrical stimulus into a mechanical response. In muscle, the electrical stimulus is an action potential and the mechanical response is active contraction. The classical Hill model characterizes muscle contraction though one contractile element, activated by electrical excitation, and two non-linear springs, one in series and one in parallel. This rheology translates into an additive decomposition of the total stress into a passive and an active part. Here we supplement this additive decomposition of the stress by a multiplicative decomposition of the deformation gradient into a passive and an active part. We generalize the one-dimensional Hill model to the three-dimensional setting and constitutively define the passive stress as a function of the total deformation gradient and the active stress as a function of both the total deformation gradient and its active part. We show that this novel approach combines the features of both the classical stress-based Hill model and the recent active-strain models. While the notion of active stress is rather phenomenological in nature, active strain is micro-structurally motivated, physically measurable, and straightforward to calibrate. We demonstrate that our model is capable of simulating excitation-contraction coupling in cardiac muscle with its characteristic features of wall thickening, apical lift, and ventricular torsion. PMID:25221354

  13. The correlation between sports results in swimming and general and special muscle strength

    Directory of Open Access Journals (Sweden)

    Wioletta Lubkowska

    2017-12-01

    Full Text Available Introduction. Swimming as a sport encompasses various styles and distances (from 50 up to 1,500 meters. The correlation between sports results and general/special muscle strength seems unquestionable. Aim. The purpose of this paper is to answer the question related to maintaining the proportion between muscle strength development (which depends mainly on land-based trainings and endurance trainings in water. Material and methods. The study covered 14 leading swimmers from MKP Szczecin who specialized mainly in short and medium distances; they were members of the national senior and junior teams in the 2013/14 training year. The general strength tests were conducted at the beginning and at the end of the winter and summer preparatory periods. The following tests were performed: bench-pressing, pull-ups and bar dips. At the end of the main research period, a thrust test was conducted on land (on a swim bench, as well as a thrust test in the water. Results. All participants demonstrated progress in results between the summer season and the winter season. The range of training loads was higher in the summer due to the length of preparation (by about 100%. The individual progress was, however, very varied. Conclusions. The level of sports progress achieved by individual swimmers was greatly diversified. The relatively high level of general and special strength in the tested swimmers was linked to their need to display these motor skills while swimming. Subjects who showed the greatest progress in the general and special strength trials, displayed the biggest improvement in their swimming performance during the competition season. Swimmers with a fairly high level of strength, but a moderate sports level should analyze and improve their swimming technique. Subjects whose progress in general and special strength tests was the least significant, should try and achieve progress by developing other technical and coordination skills.

  14. Joyce After Flaubert: the cuckold as imperfect physician, the writer as physiologist.

    Science.gov (United States)

    Bénéjam, Valérie

    2008-01-01

    Although Joyce was not as familiar with the practice and theory of medicine as was Gustave Flaubert, this article argues that, through Flaubert's legacy, Joyce's writing was influenced by the French school of medical thought. Several aspects of Flaubert's style and narration-what has been dubbed his "medical realism"-were taken up by Joyce: the artist's impersonal perspective, the precision of descriptions, and the materialist attack against Romanticism, as well as the irony built into the narrative voice through free indirect discourse. While the cuckold in Madame Bovary is an incompetent surgeon serving as foil to the precise description of sentiments offered by the narrator, Joyce's cuckold in Ulysses is an amateur physiologist, both perspicacious and sympathetic to human suffering. Bloom's interest in internal bodily processes opens up new dimensions for a modernist aesthetics as he relates physiology and psychology, in accordance with the theories of Xavier Bichat, Etienne Bonnot de Condillac, and Pierre Jean Georges Cabanis. In keeping with such focus, Joyce's physiological version of stream-of-consciousness stems from Flaubert's clinical description of characters, but he directs matters even further inward.

  15. Implementation in action: how Australian Exercise Physiologists approach exercise prescription for people with mental illness.

    Science.gov (United States)

    Stanton, Robert; Rosenbaum, Simon; Lederman, Oscar; Happell, Brenda

    2018-04-01

    Accredited Exercise Physiologists (AEPs) are trained to deliver exercise and physical activity interventions for people with chronic and complex health conditions including those with mental illness. However, their views on exercise for mental illness, their exercise prescription practices, and need for further training are unknown. To examine the way in which Australian AEPs prescribe exercise for people with mental illness. Eighty-one AEPs (33.3 ± 10.4 years) completed an online version of the Exercise in Mental Illness Questionnaire. Findings are reported using descriptive statistics. AEPs report a high level of knowledge and confidence in prescribing exercise for people with mental illness. AEPs rate exercise to be at least of equal value to many established treatments for mental illness, and frequently prescribe exercise based on current best-practice principles. A need for additional training was identified. The response rate was low (2.4%) making generalisations from the findings difficult. Exercise prescription practices utilised by AEPs are consistent with current best-practice guidelines and there is frequent consultation with consumers to individualise exercise based on their preferences and available resources. Further training is deemed important.

  16. Palpebral portion of the orbicularis oculi muscle to repetitive nerve stimulation testing: A potential assessment indicator in patients with generalized myasthenia gravis.

    Science.gov (United States)

    Yan, Chong; Song, Jie; Pang, Song; Yi, Fangfang; Xi, Jianying; Zhou, Lei; Ding, Ding; Wang, Weifeng; Qiao, Kai; Zhao, Chongbo

    2018-02-01

    Repetitive nerve stimulation (RNS) is a valuable diagnostic method for myasthenia gravis (MG). However, its association with clinical severity was scarcely studied. We reviewed medical records and retrospectively enrolled 121 generalized MG patients. Sensitivity of different muscles to RNS and clinical scoring systems was evaluated. RNS testing revealed facial muscles have the highest positive rate, followed by proximal muscles and distal muscles, with the palpebral portion of the orbicularis oculi muscle most sensitive. Amplitude decrement of compound muscle action potential (CMAP) in the palpebral portion of the orbicularis oculi muscle is related to quantitative myasthenia gravis (QMG) scores, MG-specific manual muscle testing (MMT) scores and myasthenia gravis-related activities of daily living (MG-ADL) scores. We suggest that RNS testing of the palpebral portion of the orbicularis oculi muscle is a potential assessment indicator in patients with generalized MG. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Patterns of Hamstring Muscle Tears in the General Population: A Systematic Review.

    Science.gov (United States)

    Kuske, Barbara; Hamilton, David F; Pattle, Sam B; Simpson, A Hamish R W

    2016-01-01

    Hamstring tears are well recognised in the sporting population. Little is known about these injuries in the general population. Evaluating the rates, patterns and risk factors of non-sporting hamstring tears, compared to sporting related hamstring tears. MEDLINE, EMBASE, CINAHL, and the Cochrane Central Register of Controlled Trials (1989-2015). Studies reporting patients with a grade 2 or 3 hamstring muscle tear, identified clinically, confirmed by MRI imaging or direct visualisation during surgical exploration. 144 sets of linked data were extracted for analysis. Most injuries were in males (81.3%), where mean age at injury was lower (30.2, 95% CI 29.1-31.3) than in females (35.4, 95% CI 32.4-38.4) p = 0.06. Key differences were found in the proportion of non-sporting injuries in patients under and over the age 40 (p = 0.001). The proportion of non-sporting injuries was significantly higher in females compared to males (25.9% female non-sporting injuries, versus 8.5% male; p = 0.02). Avulsions were more frequently reported in non-sporting activities (70.5%). The proportion of such injuries was notably higher in females, though this failed to meet significance (p = 0.124). Grouped by age category a bimodal distribution was noted, with the proportion of avulsions greater in younger (age 40) (p = 0.008). 86.8% of patients returned to pre-injury activity levels with a similar frequency across all study variables; age, activity (sporting vs non-sporting) and injury type (avulsion vs tear). This review highlights a proportion of adults suffering grade 2 or 3 hamstring injuries from activities other than the classic sports trauma. The majority of these non-sporting injuries were avulsion injuries that clustered in older female and skeletally immature patients suggesting a potential link to bone mineral density.

  18. Patterns of Hamstring Muscle Tears in the General Population: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Barbara Kuske

    Full Text Available Hamstring tears are well recognised in the sporting population. Little is known about these injuries in the general population.Evaluating the rates, patterns and risk factors of non-sporting hamstring tears, compared to sporting related hamstring tears.MEDLINE, EMBASE, CINAHL, and the Cochrane Central Register of Controlled Trials (1989-2015.Studies reporting patients with a grade 2 or 3 hamstring muscle tear, identified clinically, confirmed by MRI imaging or direct visualisation during surgical exploration.144 sets of linked data were extracted for analysis. Most injuries were in males (81.3%, where mean age at injury was lower (30.2, 95% CI 29.1-31.3 than in females (35.4, 95% CI 32.4-38.4 p = 0.06. Key differences were found in the proportion of non-sporting injuries in patients under and over the age 40 (p = 0.001. The proportion of non-sporting injuries was significantly higher in females compared to males (25.9% female non-sporting injuries, versus 8.5% male; p = 0.02. Avulsions were more frequently reported in non-sporting activities (70.5%. The proportion of such injuries was notably higher in females, though this failed to meet significance (p = 0.124. Grouped by age category a bimodal distribution was noted, with the proportion of avulsions greater in younger (age 40 (p = 0.008. 86.8% of patients returned to pre-injury activity levels with a similar frequency across all study variables; age, activity (sporting vs non-sporting and injury type (avulsion vs tear.This review highlights a proportion of adults suffering grade 2 or 3 hamstring injuries from activities other than the classic sports trauma. The majority of these non-sporting injuries were avulsion injuries that clustered in older female and skeletally immature patients suggesting a potential link to bone mineral density.

  19. Selective reversal of muscle relaxation in general anesthesia: focus on sugammadex

    Directory of Open Access Journals (Sweden)

    Sorin J Brull

    2009-04-01

    Full Text Available Sorin J Brull1, Mohamed Naguib21Department of Anesthesiology, Mayo Clinic College of Medicine, Mayo Clinic Hospital, Jacksonville, FL, USA; 2Department of Anesthesiology and Pain Medicine, The University of Texas M D Anderson Cancer Center,  Houston, TX, USAAbstract: Despite the significant improvements in the pharmacology of muscle relaxants in the past six decades, the search for the ideal muscle relaxant continues, mainly because of the incomplete efficacy and persistent side effects associated with their antagonism. Clinical concerns remain about the residual paralysis and hemodynamic side effects associated with the classic pharmacologic reversal agents, the acetylcholinesterase inhibitors. Although the development of the “ideal muscle relaxant” remains illusory, pharmacologic advancements hold promise for improved clinical care and patient safety. Recent clinical advances include the development of short-acting nondepolarizing muscle relaxant agents that have fast onset and a very rapid metabolism that allows reliable and complete recovery; and the development of selective, “designer” reversal agents that are specific for a single drug or class of drugs. This article reviews recent developments in the pharmacology of these selective reversal agents: plasma cholinesterases, cysteine, and sugammadex. Although each of the selective reversal agents is specific in its substrate, the clinical use of the combination of muscle relaxant with its specific reversal agent will allow much greater intraoperative titrating ability, decreased side effect profile, and may result in a decreased incidence of postoperative residual paralysis and improved patient safety.Keywords: selective reversal agents, cysteine, plasma cholinesterases, sugammadex

  20. The Idea of Science of Brazilian Physiologist Miguel Ozório de Almeida (1890-1953

    Directory of Open Access Journals (Sweden)

    Letícia Pumar

    2017-12-01

    Full Text Available Epistemological considerations of philosophers and scientists from the late nineteenth century to the mid-twentieth century guided Brazilian physiologist Miguel Ozório de Almeida (1890-1953 in formulating his researches and participating in national and international scientific debates. With his siblings, Álvaro Ozório de Almeida and Branca de Almeida Fialho, he participated in debates on Brazilian educational and scientific system’s reform and in international organizations. The family’s residence in Rio de Janeiro housed a laboratory that became a reference in experimental physiology researches in Brazil. This article aims to present Miguel Ozório de Almeida’s conception of science, constructed mainly within the private laboratory’s sociability, providing new aspects of scientific work production in Brazil in the early twentieth century. I argue that Ozório de Almeida’s stand as an internationalist physiologist in national and international contexts was related to his reading of texts by Ernest Mach, Pierre Duhem, Henri Poincaré and William James.

  1. Patterns of muscle activation during generalized tonic and tonic–clonic epileptic seizures

    DEFF Research Database (Denmark)

    Conradsen, Isa; Wolf, Peter; Sams, Thomas

    2011-01-01

    Purpose: Tonic seizures and the tonic phase of tonic–clonic epileptic seizures are defined as “sustained tonic” muscle contraction lasting a few seconds to minutes. Visual inspection of the surface electromyogram (EMG) during seizures contributed considerably to a better understanding and accurat...

  2. Postpartum Women’s Perspectives of Engaging with a Dietitian and Exercise Physiologist via Video Consultations for Weight Management: A Qualitative Evaluation

    Directory of Open Access Journals (Sweden)

    Lisa Vincze

    2018-01-01

    Full Text Available Optimising weight status after childbirth is important. Video consultations are an unexplored opportunity to deliver real-time support to postpartum women to improve lifestyle behaviours. This study aims to provide insight into postpartum women’s perspectives of engaging with a dietitian and exercise physiologist through video consultations for tailored nutrition and exercise care. A qualitative study using individual telephone interviews (13–36 min was undertaken. 21 women (body mass index (BMI: 28.1 ± 3.8 kg/m2; age: 32.3 ± 3.0 years; parity: 1.6 ± 0.9 children who had completed the 8 week “Video-coaching to assist lifestyle (VITAL change for mums” intervention participation included up to five video consultations with a dietitian and exercise physiologist. The interviews were audiorecorded and transcribed. Thematic data analysis was conducted by an independent researcher using NVIVO11. Themes relating to the video consultation experience included feeling that they did not differ from other consultations, they were convenient, and the length of time and flexible options were appropriate; however there was a desire for increased contact frequency. The dietitian and exercise physiologist were perceived to increase the participants’ knowledge and confidence to improve health behaviours. The approach to setting realistic and tailored goals was well received. Tailored advice from a dietitian and exercise physiologist received via video consultations is acceptable for postpartum women and offers a viable alternative to in-person care.

  3. Vaginismus, a component of a general defensive reaction. an investigation of pelvic floor muscle activity during exposure to emotion-inducing film excerpts in women with and without vaginismus

    NARCIS (Netherlands)

    van der Velde, J.; Laan, E.; Everaerd, W.

    2001-01-01

    This study investigates the mechanism underlying vaginismus, which may be part of a general defense mechanism. Exposure to a threatening situation will evoke an increase in muscle activity. This muscle reaction will not be restricted to the pelvic floor but will also occur in postural muscles, such

  4. Homer Wheelon, M.D., physiologist, artist, and poet: origins of the tailpieces in journals of the American Physiological Society.

    Science.gov (United States)

    Schramm, Lawrence P; Schramm, Diana C; Jackson, F Wilson

    2006-12-01

    Since 1953, illustrations have been inserted as "tailpieces" at the ends of articles in The American Journal of Physiology and The Journal of Applied Physiology. The drawings were made by Homer Wheelon, a member of the American Physiological Society from 1919 until his death in 1960. Forty-five years after his death, Wheelon is unknown, but he contributed 32 publications to the medical literature and trained J. Earl Thomas, an important 20th century gastrointestinal physiologist. Wheelon was born into poverty in 1883 to itinerant Methodist preachers, circumstances that guided his education and career choices. Throughout his life, Wheelon exhibited a fondness and talent for art and photography and an unusual breadth of intellectual interests and knowledge. Wheelon received a bachelor's degree from the University of Washington, then studied at the University of Oregon, Northwestern University, and St. Louis University. Earning his M.D. from St. Louis University and assuming a faculty position there, Wheelon and his graduate student, Thomas, conducted widely recognized gastrointestinal research. Returning to Seattle in 1921, Wheelon became a highly respected physician and hospital administrator, but he also found time to indulge his interest in visual art and poetry. In 1933, inspired by observing a rabbit being used in a pregnancy test, Wheelon began to write and illustrate an epic, 322-page poem, Rabbit No. 202, illustrations from which became the journals' tailpieces. The present study traces Wheelon's personal life and scientific career in an attempt to understand this complex man and the origins of his unusual poem and its drawings.

  5. A General Mathematical Algorithm for Predicting the Course of Unfused Tetanic Contractions of Motor Units in Rat Muscle.

    Directory of Open Access Journals (Sweden)

    Rositsa Raikova

    Full Text Available An unfused tetanus of a motor unit (MU evoked by a train of pulses at variable interpulse intervals is the sum of non-equal twitch-like responses to these stimuli. A tool for a precise prediction of these successive contractions for MUs of different physiological types with different contractile properties is crucial for modeling the whole muscle behavior during various types of activity. The aim of this paper is to develop such a general mathematical algorithm for the MUs of the medial gastrocnemius muscle of rats. For this purpose, tetanic curves recorded for 30 MUs (10 slow, 10 fast fatigue-resistant and 10 fast fatigable were mathematically decomposed into twitch-like contractions. Each contraction was modeled by the previously proposed 6-parameter analytical function, and the analysis of these six parameters allowed us to develop a prediction algorithm based on the following input data: parameters of the initial twitch, the maximum force of a MU and the series of pulses. Linear relationship was found between the normalized amplitudes of the successive contractions and the remainder between the actual force levels at which the contraction started and the maximum tetanic force. The normalization was made according to the amplitude of the first decomposed twitch. However, the respective approximation lines had different specific angles with respect to the ordinate. These angles had different and non-overlapping ranges for slow and fast MUs. A sensitivity analysis concerning this slope was performed and the dependence between the angles and the maximal fused tetanic force normalized to the amplitude of the first contraction was approximated by a power function. The normalized MU contraction and half-relaxation times were approximated by linear functions depending on the normalized actual force levels at which each contraction starts. The normalization was made according to the contraction time of the first contraction. The actual force levels

  6. Physiologist as a professional

    African Journals Online (AJOL)

    2014-01-31

    Jan 31, 2014 ... The problems associated with training undergraduate human physiology students is not inherent in the discipline physiology, but in the curriculum design, implementation, and actual training. It is definitely unheard of to see a trainer who does not define for sure, the direction and functional application of the ...

  7. Diospyros rhodocalyx (Tako-Na), a Thai folk medicine, associated with hypokalemia and generalized muscle weakness: a case series.

    Science.gov (United States)

    Othong, Rittirak; Trakulsrichai, Satariya; Wananukul, Winai

    2017-11-01

    Diospyros rhodocalyx (Tako-Na) is a Thai folk medicine purported to promote longevity, treat impotence, etc. We present patients with hypokalemia, weakness and hypertension after consuming Tako-Na tea. Case 1: A 61-year-old man was brought in nine hours after drinking 400-500 mL of Tako-Na tea. One handful of Tako-Na bark was boiled in water to make tea. He had vomiting and watery diarrhea six hours after drinking it. He took no medications and had no history of hypertension. The only remarkable vital sign was BP 167/90 mmHg. Physical examination revealed generalized muscle weakness. Laboratory findings were potassium 2.7 mmol/L, bicarbonate 24 mmol/L, and transtubular potassium gradient (TTKG) 5.6. He was discharged the next day with a BP 140/90 mmHg and potassium 4.2 mmol/L. Case 2: A 78-year-old man, a friend of case 1, also drank Tako-Na tea from the same pot at the same time as case 1. He also had vomiting and diarrhea six hours later. He took no medications despite past history of hypertension (baseline SBP 140-160). Initial BP was 230/70 mmHg. He also had muscle weakness. Laboratory findings were potassium 3.3 mmol/L, bicarbonate 24 mmol/L, TTKG 7.37 and normal thyroid function. He was also discharged the next day with a BP 148/70 mmHg and potassium 4.2 mmol/L. Case 3-7: These were patients reported to a poison center and their potassium concentrations were 1.4, 1.4, 3.3, 1.3 and 1.2 mmol/L, respectively. Three of them were intubated and case 3 died. Tako-Na contains betulin, betulinic acid, taraxerone, lupeol, and lupenone. Their structures are similar to glycyrrhetic acid, the active metabolite of glycyrrhizic acid found in licorice which is well known to cause pseudoaldosteronism. Glycyrrhetic acid is potent in inhibiting 11-beta-hydroxysteroid dehydrogenase, and causes pseudoaldosteronism. We hypothesize that the compounds in Tako-Na act in the same way as glycyrrhetic acid in producing pseudoaldosteronism.

  8. Unilateral hindlimb casting induced a delayed generalized muscle atrophy during rehabilitation that is prevented by a whey or a high protein diet but not a free leucine-enriched diet.

    Directory of Open Access Journals (Sweden)

    Hugues Magne

    Full Text Available Sarcopenia is the general muscle mass and strength loss associated with ageing. Muscle atrophy could be made worse by exposure to acute periods of immobilization, because muscle disuse by itself is a stimulus for atrophy. Using a model of unilateral hindlimb casting in old adult rats, we have already demonstrated that the primary effect of immobilization was atrophy in the casted leg, but was also surprisingly associated with a retarded atrophy in the non-casted leg during rehabilitation. In search of mechanisms involved in this generalized atrophy, we demonstrated in the present study that contrary to pair-fed non-immobilized control animals, muscle protein synthesis in the non-immobilized limb was unable to adapt and to respond positively to food intake. Because pair-fed control rats did not lose muscle mass, this defect in muscle protein synthesis may represent one of the explanation for the muscle mass loss observed in the non-immobilized rats. Nevertheless, in order to stimulate protein turn over and generate a positive nitrogen balance required to maintain the whole muscle mass in immobilized rats, we tested a dietary free leucine supplementation (an amino acid known for its stimulatory effect on protein metabolism during the rehabilitation period. Leucine supplementation was able to overcome the anabolic resistance in the non-immobilized limb. A greater muscle protein synthesis up-regulation associated with a stimulation of the mTOR signalling pathway was indeed recorded but it remained inefficient to prevent the loss of muscle in the non-immobilized limb. By contrast, we demonstrated here that whey protein or high protein diets were able to prevent the muscle mass loss of the non-immobilized limb by sustaining muscle protein synthesis during the entire rehabilitation period.

  9. Abstracts of Papers Presented at the Annual Meeting of the Society of General Physiologists (40th) Held in Woods Hole, Massachusetts on 4-7 September 1986,

    Science.gov (United States)

    1986-01-01

    and Receptor-mediated Calcium-mobilizing Agonists on Cai and pHi in Rat Parotid Cells S.P. SOLTOFF, M. K. McMILLIAN,* L. C. CANTLEY, and B. R. TALAMO ...98 Stoddard, J. S., 119 Putkey, J. A., 18 Strautman, A. F., 120 Putnam, R. W., 99 Sulakhe, P. V., 76 Qiu, T. H., 115 Talamo , B. R., 114 68a THE

  10. Abstracts of Papers Presented at the Annual Meeting of the Society of General Physiologists (38th) Held at Woods Hole, Massachusetts on 6-9 September 1984.

    Science.gov (United States)

    1984-09-09

    71. Na*-K Cotransport in Human Red Cells: Reversible Inactivation by Metabolic Depletion N. C. ADRAGNA , C. M. PERKINS,* and P. K. LAUF, Department...Rb*) influx. In 1971, Beauge and Adragna (/. Gem. PhruiL, 57:577) showed that the latter was inhibited by iodoecet- amide and hence inferred its...A., 75 Foskett, K., 44 Adragna , N. C., 71 Freedman, J. C., 41 Alderton, J., 32 Gainer, H., 7, 46 Allen, R. D., I Garcia-Diaz, J. F., 61,66 Alles, W

  11. Abstracts of Papers Presented at the Annual Meeting of the Society of General Physiologists Held at Woods Hole, Massachusetts on 10-13 September 1992.

    Science.gov (United States)

    1992-09-13

    Qualitative Alteration of K-Cl Cotransport in Red Blood Cells with Hemoglobin S NORMA C. ADRAGNA and PETER K. LAUF, Departments of Pharmacology & Toxicology and...Adair, B. D.. 2 Brant. S. R.. 107. 122, 138 Adragna . N. C.. 139 Breituieser. (G. E., 150 Agre, P.. 127 Brot-Liroche. E., 147 Aitnizo. M.. 43 Browning, K

  12. Fatal cardiac arrhythmia and long-QT syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (CGL4 due to PTRF-CAVIN mutations.

    Directory of Open Access Journals (Sweden)

    Anna Rajab

    2010-03-01

    Full Text Available We investigated eight families with a novel subtype of congenital generalized lipodystrophy (CGL4 of whom five members had died from sudden cardiac death during their teenage years. ECG studies revealed features of long-QT syndrome, bradycardia, as well as supraventricular and ventricular tachycardias. Further symptoms comprised myopathy with muscle rippling, skeletal as well as smooth-muscle hypertrophy, leading to impaired gastrointestinal motility and hypertrophic pyloric stenosis in some children. Additionally, we found impaired bone formation with osteopenia, osteoporosis, and atlanto-axial instability. Homozygosity mapping located the gene within 2 Mbp on chromosome 17. Prioritization of 74 candidate genes with GeneDistiller for high expression in muscle and adipocytes suggested PTRF-CAVIN (Polymerase I and transcript release factor/Cavin as the most probable candidate leading to the detection of homozygous mutations (c.160delG, c.362dupT. PTRF-CAVIN is essential for caveolae biogenesis. These cholesterol-rich plasmalemmal vesicles are involved in signal-transduction and vesicular trafficking and reside primarily on adipocytes, myocytes, and osteoblasts. Absence of PTRF-CAVIN did not influence abundance of its binding partner caveolin-1 and caveolin-3. In patient fibroblasts, however, caveolin-1 failed to localize toward the cell surface and electron microscopy revealed reduction of caveolae to less than 3%. Transfection of full-length PTRF-CAVIN reestablished the presence of caveolae. The loss of caveolae was confirmed by Atomic Force Microscopy (AFM in combination with fluorescent imaging. PTRF-CAVIN deficiency thus presents the phenotypic spectrum caused by a quintessential lack of functional caveolae.

  13. Exercise physiologists emerge as allied healthcare professionals in the era of non-communicable disease pandemics: a report from Australia, 2006-2012.

    Science.gov (United States)

    Cheema, Birinder S; Robergs, Robert A; Askew, Christopher D

    2014-07-01

    Exercise can be prescribed to prevent, manage, and treat many leading non-communicable diseases (NCDs) and underlying risk factors. However, surprisingly, Australia is one of only a few countries where allied healthcare professionals with specialized university education and training in exercise prescription and delivery provide services within a government-run healthcare system (Medicare). This article presents data on Medicare-funded services provided by accredited exercise physiologists (AEPs) from the inclusion of the profession in the allied healthcare model (January, 2006) to the end of 2012. We conceptualize these data in relation to current NCD trends, and outline recommendations that can potentially help curtail the current chronic disease burden through the further integration of exercise professionals into the healthcare system in Australia, and internationally. From 2006 to 2012, the number of AEPs in Australia has increased 563 %. This rise in AEPs has been paralleled by increased delivery of services for eligible patients with a chronic medical condition (+614 %), type 2 diabetes mellitus (+211 to 230 %), and of Aboriginal and Torres Strait Islander descent (+343 %). These trends, which were developed through the "early years" of the profession, are encouraging and suggest that AEPs have taken up a vital position within the healthcare system. However, the total number of services provided by AEPs currently remains very low in relation to the prevalence of overweight-obesity and type 2 diabetes in Australia. Furthermore, services for Aboriginal Australians are very low considering the extreme burden of chronic diseases in these vulnerable populations. We provide some recommendations that may help the exercise physiology profession play a greater role in tackling the NCD burden and shift the healthcare model in a direction that is more proactive and focused on disease prevention and health, including the early identification and treatment of major

  14. Muscle Deoxygenation Causes Muscle Fatigue

    Science.gov (United States)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  15. Muscle Cramps

    Science.gov (United States)

    ... Talk to your provider about the risks and benefits of medicines. How can I prevent muscle cramps? To prevent muscle cramps, you can Stretch your muscles, especially before exercising. If you often get leg cramps at night, ...

  16. A Physiologist's View of Homeostasis

    Science.gov (United States)

    Modell, Harold; Cliff, William; Michael, Joel; McFarland, Jenny; Wenderoth, Mary Pat; Wright, Ann

    2015-01-01

    Homeostasis is a core concept necessary for understanding the many regulatory mechanisms in physiology. Claude Bernard originally proposed the concept of the constancy of the "milieu interieur," but his discussion was rather abstract. Walter Cannon introduced the term "homeostasis" and expanded Bernard's notion of…

  17. Muscle Contraction.

    Science.gov (United States)

    Sweeney, H Lee; Hammers, David W

    2018-02-01

    SUMMARYMuscle cells are designed to generate force and movement. There are three types of mammalian muscles-skeletal, cardiac, and smooth. Skeletal muscles are attached to bones and move them relative to each other. Cardiac muscle comprises the heart, which pumps blood through the vasculature. Skeletal and cardiac muscles are known as striated muscles, because the filaments of actin and myosin that power their contraction are organized into repeating arrays, called sarcomeres, that have a striated microscopic appearance. Smooth muscle does not contain sarcomeres but uses the contraction of filaments of actin and myosin to constrict blood vessels and move the contents of hollow organs in the body. Here, we review the principal molecular organization of the three types of muscle and their contractile regulation through signaling mechanisms and discuss their major structural and functional similarities that hint at the possible evolutionary relationships between the cell types. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  18. An optimized histochemical method to assess skeletal muscle glycogen and lipid stores reveals two metabolically distinct populations of type I muscle fibers

    DEFF Research Database (Denmark)

    Prats Gavalda, Clara; Gomez-Cabello, Alba; Nordby, Pernille

    2013-01-01

    Skeletal muscle energy metabolism has been a research focus of physiologists for more than a century. Yet, how the use of intramuscular carbohydrate and lipid energy stores are coordinated during different types of exercise remains a subject of debate. Controversy arises from contradicting data...... preservation of muscle energy stores, air drying cryosections or cycles of freezing-thawing need to be avoided. Furthermore, optimization of the imaging settings in order to specifically image intracellular lipid droplets stained with oil red O or Bodipy-493/503 is shown. When co-staining lipid droplets...... distinct myosin heavy chain I expressing fibers: I-1 fibers have a smaller crossectional area, a higher density of lipid droplets, and a tendency to lower glycogen content compared to I-2 fibers. Type I-2 fibers have similar lipid content than IIA. Exhaustive exercise lead to glycogen depletion in type IIA...

  19. Concentration of elements in whole-body fish, fish fillets, fish muscle plugs, and fish eggs from the 2008 Missouri Department of Conservation General Contaminant Monitoring Program

    Science.gov (United States)

    May, Thomas W.; Walther, Michael J.; Brumbaugh, William G.; McKee, Michael J.

    2009-01-01

    This report presents the results of a contaminant monitoring survey conducted annually by the Missouri Department of Conservation to examine the levels of selected elemental contaminants in whole-body fish, fish fillets, fish muscle plugs, and fish eggs. Whole-body, fillet, or egg samples of catfish (Ictalurus punctatus, Ictalurus furcatus, Pylodictis olivaris), largemouth bass (Micropterus salmoides), walleye (Sander vitreus), crappie (Pomoxis annularis, Pomoxis nigromaculatus), shovelnose sturgeon (Scaphirhynchus platorynchus), northern hog sucker (Hypentelium nigricans), and Missouri saddled darter (Etheostoma tetrazonum) were collected from 23 sites as part of the Missouri Department of Conservation's Fish Contaminant Monitoring Program. Fish dorsal muscle plugs also were collected from walleye (Sander vitreus) at one of the sites.

  20. Concentrations of elements in fish fillets, fish muscle plugs, and crayfish from the 2007 Missouri Department of Conservation General Contaminant Monitoring Program

    Science.gov (United States)

    May, Thomas W.; Walther, Michael J.; Brumbaugh, William G.; McKee, Michael J.

    2009-01-01

    This report presents the results of a contaminant monitoring survey conducted annually by the Missouri Department of Conservation to examine the levels of selected elemental contaminants in fish fillets, fish muscle plugs, and crayfish. Fillets of channel catfish (Ictalurus punctatus), bass (Micropterus salmoides, Micropterus dolomieu, Morone chrysops), walleye (Sander vitreus), common carp (Cyprinus carpio), lake sturgeon (Acipenser fulvescens), northern hog sucker (Hypentelium nigricans), and rainbow trout (Oncorhynchus mykiss) were collected from 21 sites as part of the Department's Fish Contaminant Monitoring Program. Long-pincered crayfish (Orconectes longidigitus) were collected from one site to assess trophic transfer of metals to fish. Fish muscle plugs were collected from smallmouth bass (Micropterus dolomieu) at two different locations from one site.

  1. Concentrations of elements in fish fillets, fish muscle plugs, and crayfish from the 2011 Missouri Department of Conservation general contaminant monitoring program

    Science.gov (United States)

    May, Thomas W.; Walther, Michael J.; Brumbaugh, William G.; McKee, Michael J.

    2013-01-01

    This report presents the results of a contaminant monitoring survey conducted annually by the Missouri Department of Conservation to examine the levels of selected elemental contaminants in fish fillets, fish muscle plugs, and crayfish. Fillet samples of yellow bullhead (Ameiurus natalis), golden redhorse (Moxostoma erythrurum), longear sunfish (Lepomis megalotis), and channel catfish (Ictalurus punctatus) were collected from six sites as part of the Missouri Department of Conservation’s Fish Contaminant Monitoring Program. Fish dorsal muscle plugs were collected from largemouth bass (Micropterus salmoides) at eight of the sites, and crayfish from two sites. Following preparation and analysis of the samples, highlights of the data were as follows: cadmium and lead residues were most elevated in crayfish tissue samples from the Big River at Cherokee Landing, with 1 to 8 micrograms per gram dry weight and 22 to 45 micrograms per gram dry weight, respectively. Some dorsal muscle plugs from largemouth bass collected from Clearwater Lake, Lake St. Louis, Noblett Lake, Hazel Creek Lake, and Harrison County Lake contained mercury residues (1.7 to 4.7 micrograms per gram dry weight) that exceeded the U.S. Environmental Protection Agency Water Quality Criterion of 1.5 micrograms per gram dry weight of fish tissue (equivalent to 0.30 micrograms per gram wet weight).

  2. Your Muscles

    Science.gov (United States)

    ... and you need to throw up. The muscles push the food back out of the stomach so it comes up ... body the power it needs to lift and push things. Muscles in your neck and the top part of your back aren't as large, but they are capable ...

  3. Muscle cramps

    Science.gov (United States)

    ... the lower leg/calf Back of the thigh (hamstrings) Front of the thigh (quadriceps) Cramps in the ... Names Cramps - muscle Images Chest stretch Groin stretch Hamstring stretch Hip stretch Thigh stretch Triceps stretch References ...

  4. Muscle atrophy

    Science.gov (United States)

    ... People who cannot actively move one or more joints can do exercises using braces or splints . When ... A.M. Editorial team. Muscle Disorders Read more Neuromuscular Disorders Read more NIH MedlinePlus Magazine Read more ...

  5. Nuclear Positioning in Muscle Development and Disease

    Directory of Open Access Journals (Sweden)

    Eric eFolker

    2013-12-01

    Full Text Available Muscle disease as a group is characterized by muscle weakness, muscle loss, and impaired muscle function. Although the phenotype is the same, the underlying cellular pathologies, and the molecular causes of these pathologies, are diverse. One common feature of many muscle disorders is the mispositioning of myonuclei. In unaffected individuals myonuclei are spaced throughout the periphery of the muscle fiber such that the distance between nuclei is maximized. However, in diseased muscles, the nuclei are often clustered within the center of the muscle cell. Although this phenotype has been acknowledged for several decades, it is often ignored as a contributor to muscle weakness. Rather, these nuclei are taken only as a sign of muscle repair. Here we review the evidence that mispositioned myonuclei are not merely a symptom of muscle disease but also a cause. Additionally, we review the working models for how myonuclei move from two different perspectives, from that of the nucleus and from that of the cytoskeleton. We further compare and contrast these mechanisms with the mechanisms of nuclear movement in other cell types both to draw general themes for nuclear movement and to identify muscle-specific considerations. Finally, we focus on factors that can be linked to muscle disease and find that genes that regulate myonuclear movement and positioning have been linked to muscular dystrophy. Although the cause-effect relationship is largely speculative, recent data indicate that the position of nuclei should no longer be considered only a means to diagnose muscle disease.

  6. Ecological and phylogenetic variability in the spinalis muscle of snakes.

    Science.gov (United States)

    Tingle, J L; Gartner, G E A; Jayne, B C; Garland, T

    2017-11-01

    Understanding the origin and maintenance of functionally important subordinate traits is a major goal of evolutionary physiologists and ecomorphologists. Within the confines of a limbless body plan, snakes are diverse in terms of body size and ecology, but we know little about the functional traits that underlie this diversity. We used a phylogenetically diverse group of 131 snake species to examine associations between habitat use, sidewinding locomotion and constriction behaviour with the number of body vertebrae spanned by a single segment of the spinalis muscle, with total numbers of body vertebrae used as a covariate in statistical analyses. We compared models with combinations of these predictors to determine which best fit the data among all species and for the advanced snakes only (N = 114). We used both ordinary least-squares models and phylogenetic models in which the residuals were modelled as evolving by the Ornstein-Uhlenbeck process. Snakes with greater numbers of vertebrae tended to have spinalis muscles that spanned more vertebrae. Habitat effects dominated models for analyses of all species and advanced snakes only, with the spinalis length spanning more vertebrae in arboreal species and fewer vertebrae in aquatic and burrowing species. Sidewinding specialists had shorter muscle lengths than nonspecialists. The relationship between prey constriction and spinalis length was less clear. Differences among clades were also strong when considering all species, but not for advanced snakes alone. Overall, these results suggest that muscle morphology may have played a key role in the adaptive radiation of snakes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  7. Relationship between decreased lower extremity muscle mass and knee pain severity in both the general population and patients with knee osteoarthritis: Findings from the KNHANES V 1-2.

    Directory of Open Access Journals (Sweden)

    Yun-Hong Cheon

    Full Text Available To identify the prevalence of and risk factors for knee pain and radiographic knee osteoarthritis (RKOA and to investigate the relationship between decreased lower extremity muscle mass (DLEM and knee pain severity.Using data from the Korea National Health and Nutrition Examination Survey, 3,278 participants who were ≥50 years old and who underwent dual x-ray absorptiometry, plain knee radiographs and completed a knee pain questionnaire were enrolled. Lower extremity muscle mass (LEM was defined as the sum of the fat-free soft tissue mass of the legs, and lower extremity muscle mass index (LMI was calculated as LEM/body weight (%. DLEM was defined as an LMI more than two standard deviations below the mean of a gender-matched young reference group. Categorical variables were presented as numbers (weighted %.The prevalence of knee pain and RKOA were 22% (n = 721 and 34.7% (n = 1,234, respectively. Multivariate logistic regression analysis showed being female (OR 2.15, 95% CI 1.67-2.79, older (OR 1.03, 95% CI 1.01-1.04, less educated (OR 1.72, 95% CI 1.09-2.71, stiffness (OR 16.15, 95% CI 12.04-21.66, bed rest (OR 2.49, 95% CI 1.81-3.43, RKOA (OR 2.20, 95% CI 1.78-2.74 and DLEM (OR 1.54, 95% CI 1.09-2.17 were associated with knee pain. Participants with simultaneous RKOA and DLEM complained of more severe pain (pain score 7.18 ± 2.48 than those with knee pain without RKOA or DLEM (5.02 ± 2.44, those with only RKOA (6.29 ± 2.50, or those with only DLEM (6.78 ± 2.18 (P<0.001. These results remained after multivariate analyses of variance (MANOVAs.The prevalence of knee pain and RKOA were 22% and 34.7%, respectively, in the general Korean population. DLEM was an independent risk factor for knee pain and it was associated with increased pain severity, regardless of RKOA.

  8. Skeletal muscle weakness in osteogenesis imperfecta mice.

    Science.gov (United States)

    Gentry, Bettina A; Ferreira, J Andries; McCambridge, Amanda J; Brown, Marybeth; Phillips, Charlotte L

    2010-09-01

    Exercise intolerance, muscle fatigue and weakness are often-reported, little-investigated concerns of patients with osteogenesis imperfecta (OI). OI is a heritable connective tissue disorder hallmarked by bone fragility resulting primarily from dominant mutations in the proα1(I) or proα2(I) collagen genes and the recently discovered recessive mutations in post-translational modifying proteins of type I collagen. In this study we examined the soleus (S), plantaris (P), gastrocnemius (G), tibialis anterior (TA) and quadriceps (Q) muscles of mice expressing mild (+/oim) and moderately severe (oim/oim) OI for evidence of inherent muscle pathology. In particular, muscle weight, fiber cross-sectional area (CSA), fiber type, fiber histomorphology, fibrillar collagen content, absolute, relative and specific peak tetanic force (P(o), P(o)/mg and P(o)/CSA respectively) of individual muscles were evaluated. Oim/oim mouse muscles were generally smaller, contained less fibrillar collagen, had decreased P(o) and an inability to sustain P(o) for the 300-ms testing duration for specific muscles; +/oim mice had a similar but milder skeletal muscle phenotype. +/oim mice had mild weakness of specific muscles but were less affected than their oim/oim counterparts which demonstrated readily apparent skeletal muscle pathology. Therefore muscle weakness in oim mice reflects inherent skeletal muscle pathology. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Molecular Biology and Functions of Carrier Proteins. Annual Symposium (46th) of the Society of General Physiologists held in Woods Hole, Massachusetts on September 10-13, 1992. Volume 48

    Science.gov (United States)

    1993-09-13

    resistance in the enteric protozoan Entamoeba histolytica has been found associated with the overexpression of at least three mdr-related mRNA species...mutants of " Entamoeba histolytica overexpress mRNAs for multidrug resistance. Molecular and Biochemi- cal Parasitology. 38:281-290. Schinkel, A. H., M. E...incubated in 100 Ri of a solution containing 50 l.M NaI25 ( sp act 100 mCi/mmol), 10 mM HEPES (pH 7.5), 1 mM MgCl2. and 2 mM KCI with either 101 mM NaCI

  10. Cell Calcium and the Control of Membrane Transport. Annual Symposium of the Society of General Physiologists (40th) Held in Woods Hole, Massachusetts on September 3-7, 1986.

    Science.gov (United States)

    1986-01-01

    plasma membranes. Purification. reconstitution, and properties. BB. I Revie.s in Biocnergetics. 683:279-301. Enedi. A.. B. Sarkadi, 1. Szasz , G. Bot...Journal. 237:675- 683. Connolly, T. M.. W. J1. Lawing . Jr., and P. W. Majerus. 1986. Protein kinaseC phosphorylates human platelet inositol trisphosphate 5...in kinetics. selecti% it , and pharmacology. .Journal of (ism’ra/ I’lili vs/o~ 86:1-30. Bross n. A. L. 1 970. [The African C" law ~ed load .\\’nopuA

  11. Weaning - a challenge to gut physiologists

    NARCIS (Netherlands)

    Lalles, J.P.; Bosi, P.; Smidt, H.; Stokes, C.R.

    2007-01-01

    The aim of this paper is to review the most relevant findings obtained over the last four years on the physiology, microbiology and immunology of the gastrointestinal tract of pigs as influenced by weaning and nutrition in the post-weaning period through the action of feed components or alternative

  12. Paul D. Sturkie: Avian cardiac physiologist.

    Science.gov (United States)

    Bello, Nicholas T; Cohick, Wendie S; McKeever, Kenneth H; Malinowski, Karyn

    2018-06-01

    Sturkie's Avian Physiology is a highly regarded textbook for the study of comparative poultry physiology. Less well known, however, is the contribution of Paul D. Sturkie (1909-2002) as a pioneer in the experimental physiology of avian species. His seminal research on the cardiovascular and hemodynamic controls of chickens and egg-laying hens had a notable impact on the poultry industry and breeding practices of farmers. The purpose of this article is to highlight the contributions and practical insights of Paul D. Sturkie to the field of poultry science.

  13. Bone Marrow Stromal Cells Generate Muscle Cells and Repair Muscle Degeneration

    Science.gov (United States)

    Dezawa, Mari; Ishikawa, Hiroto; Itokazu, Yutaka; Yoshihara, Tomoyuki; Hoshino, Mikio; Takeda, Shin-ichi; Ide, Chizuka; Nabeshima, Yo-ichi

    2005-07-01

    Bone marrow stromal cells (MSCs) have great potential as therapeutic agents. We report a method for inducing skeletal muscle lineage cells from human and rat general adherent MSCs with an efficiency of 89%. Induced cells differentiated into muscle fibers upon transplantation into degenerated muscles of rats and mdx-nude mice. The induced population contained Pax7-positive cells that contributed to subsequent regeneration of muscle upon repetitive damage without additional transplantation of cells. These MSCs represent a more ready supply of myogenic cells than do the rare myogenic stem cells normally found in muscle and bone marrow.

  14. Extraocular muscle function testing

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003397.htm Extraocular muscle function testing To use the sharing features on this page, please enable JavaScript. Extraocular muscle function testing examines the function of the eye muscles. ...

  15. Lactate and force production in skeletal muscle

    DEFF Research Database (Denmark)

    Kristensen, Michael; Albertsen, Janni; Rentsch, Maria

    2005-01-01

    Lactic acid accumulation is generally believed to be involved in muscle fatigue. However, one study reported that in rat soleus muscle (in vitro), with force depressed by high external K+ concentrations a subsequent incubation with lactic acid restores force and thereby protects against fatigue...

  16. Effects of strength training on muscle fiber types and size; consequences for athletes training for high-intensity sport

    DEFF Research Database (Denmark)

    Andersen, J L; Aagaard, P

    2010-01-01

    Training toward improving performance in sports involving high intense exercise can and is done in many different ways based on a mixture of tradition in the specific sport, coaches' experience and scientific recommendations. Strength training is a form of training that now-a-days have found its...... way into almost all sports in which high intense work is conducted. In this review we will focus on a few selected aspects and consequences of strength training; namely what effects do strength training have of muscle fiber type composition, and how may these effects change the contractile properties...... functional training advises can be made. Thus, more than a review in the traditional context this review should be viewed upon as an attempt to bring sports-physiologists and coaches or others working directly with the athletes together for a mutual discussion on how recently acquired physiological knowledge...

  17. Effects of strength training on muscle fiber types and size; consequences for athletes training for high-intensity sport

    DEFF Research Database (Denmark)

    Andersen, J L; Aagaard, P

    2010-01-01

    way into almost all sports in which high intense work is conducted. In this review we will focus on a few selected aspects and consequences of strength training; namely what effects do strength training have of muscle fiber type composition, and how may these effects change the contractile properties......Training toward improving performance in sports involving high intense exercise can and is done in many different ways based on a mixture of tradition in the specific sport, coaches' experience and scientific recommendations. Strength training is a form of training that now-a-days have found its...... functional training advises can be made. Thus, more than a review in the traditional context this review should be viewed upon as an attempt to bring sports-physiologists and coaches or others working directly with the athletes together for a mutual discussion on how recently acquired physiological knowledge...

  18. Observational Study on the Occurrence of Muscle Spindles in Human Digastric and Mylohyoideus Muscles

    Directory of Open Access Journals (Sweden)

    Daniele Saverino

    2014-01-01

    Full Text Available Although the occurrence of muscle spindles (MS is quite high in most skeletal muscles of humans, few MS, or even absence, have been reported in digastric and mylohyoideus muscles. Even if this condition is generally accepted and quoted in many papers and books, observational studies are scarce and based on histological sections of a low number of specimens. The aim of the present study is to confirm previous data, assessing MS number in a sample of digastric and mylohyoideus muscles. We investigated 11 digastric and 6 mylohyoideus muscles from 13 donors. Muscle samples were embedded in paraffin wax, cross-sectioned in a rostrocaudal direction, and stained using haematoxylin-eosin. A mean of 5.1 ± 1.1 (range 3–7 MS was found in digastric muscles and mean of 0.5 ± 0.8 (range 0–2 in mylohyoideus muscles. A significant difference (P<0.001 was found with the control sample, confirming the correctness of the histological procedure. Our results support general belief that the absolute number of spindles is sparse in digastric and mylohyoideus muscles. External forces, such as food resistance during chewing or gravity, do not counteract jaw-opening muscles. It is conceivable that this condition gives them a limited proprioceptive importance and a reduced need for having specific receptors as MS.

  19. Genetics of muscle and meat quality in chicken

    OpenAIRE

    Zahoor, Imran

    2013-01-01

    Skeletal muscles in broilers are generally characterised by pathological muscle damage, indicated by greater plasma creatine kinase (CK) activity, higher incidence of haemorrhages, lighter and less coloured breast muscles, compared with layers and traditional breeds of chicken. Muscle damage is further exacerbated by exposure to stressful conditions such as high ambient temperatures which results in a further decrease in the quality of broiler meat and leads to the production o...

  20. Vitamin D and muscle function.

    Science.gov (United States)

    Dawson-Hughes, Bess

    2017-10-01

    Muscle weakness is a hallmark of severe vitamin D deficiency, but the effect of milder vitamin D deficiency or insufficiency on muscle mass and performance and risk of falling is uncertain. In this presentation, I review the evidence that vitamin D influences muscle mass and performance, balance, and risk of falling in older adults. Special consideration is given to the impact of both the starting 25-hydroxyvitamin D [25(OH)D] level and the dose administered on the clinical response to supplemental vitamin D in older men and women. Based on available evidence, older adults with serum 25(OH)D levels vitamin D dose range of 800-1000 IU per day has been effective in many studies; lower doses have generally been ineffective and several doses above this range have increased the risk of falls. In conclusion, older adults with serum 25(OH)D levels vitamin D. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. [Asymmetric hypertrophy of the masticatory muscles].

    Science.gov (United States)

    Arzul, L; Corre, P; Khonsari, R H; Mercier, J-M; Piot, B

    2012-06-01

    Hypertrophy of the masticatory muscles most commonly affects the masseter. Less common cases of isolated or associated temporalis hypertrophy are also reported. Parafunctional habits, and more precisely bruxism, can favor the onset of the hypertrophy. This condition is generally idiopathic and can require both medical and/or surgical management. A 29-year-old patient was referred to our department for an asymmetric swelling of the masticatory muscles. Physical examination revealed a bilateral hypertrophy of the masticatory muscles, predominantly affecting the right temporalis and the left masseter. Major bruxism was assessed by premature dental wearing. The additional examinations confirmed the isolated muscle hypertrophy. Benign asymmetric hypertrophy of the masticatory muscles promoted by bruxism was diagnosed. Treatment with injections of type A botulinum toxin was conducted in association with a splint and relaxation. Its effectiveness has been observed at six months. Few cases of unilateral or bilateral temporalis hypertrophy have been reported, added to the more common isolated masseter muscles hypertrophy. The diagnosis requires to rule out secondary hypertrophies and tumors using Magnetic Resonance Imaging. The condition is thought to be favoured by parafunctional habits such as bruxism. The conservative treatment consists in reducing the volume of the masticatory muscles using intramuscular injections of type A botulinum toxin. Other potential conservative treatments are wearing splints and muscle relaxant drugs. Surgical procedures aiming to reduce the muscle volume and/or the bone volume (mandibular gonioplasty) can be proposed. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  2. Laser therapy of muscle injuries.

    Science.gov (United States)

    Dawood, Munqith S; Al-Salihi, Anam Rasheed; Qasim, Amenah Wala'a

    2013-05-01

    Low-level lasers are used in general therapy and healing process due to their good photo-bio-stimulation effects. In this paper, the effects of diode laser and Nd:YAG laser on the healing process of practically managed skeletal muscle trauma has been successfully studied. Standard impact trauma was induced by using a specially designed mechanical device. The impacted muscle was left for 3 days for complete development of blunt trauma. After that it was irradiated by five laser sessions for 5 days. Two types of lasers were used; 785-nm diode laser and 1.064-nm Nd:YAG laser, both in continuous and pulsed modes. A special electronic circuit was designed and implemented to modulate the diode laser for this purpose. Tissue samples of crushed skeletal muscle have been dissected from the injured irradiated muscle then bio-chemically analyzed for the regeneration of contractile and collagenous proteins using Lowry assay for protein determination and Reddy and Enwemeka assay for hydroxyproline determination. The results showed that both lasers stimulate the regeneration capability of traumatized skeletal muscle. The diode laser in CW and pulsed modes showed better results than the Nd:YAG in accelerating the preservation of the normal tissue content of collagenous and contractile proteins beside controlling the regeneration of non-functional fibrous tissue. This study proved that the healing achieved by the laser treatment was faster than the control group by 15-20 days.

  3. Healthy Muscles Matter

    Science.gov (United States)

    ... or lying down, and faster when you’re running or playing sports and your skeletal muscles need more blood to help them do their work. What can go wrong? Injuries Almost everyone has had sore muscles after exercising ...

  4. Oxidative metabolism in muscle.

    OpenAIRE

    Ferrari, M; Binzoni, T; Quaresima, V

    1997-01-01

    Oxidative metabolism is the dominant source of energy for skeletal muscle. Near-infrared spectroscopy allows the non-invasive measurement of local oxygenation, blood flow and oxygen consumption. Although several muscle studies have been made using various near-infrared optical techniques, it is still difficult to interpret the local muscle metabolism properly. The main findings of near-infrared spectroscopy muscle studies in human physiology and clinical medicine are summarized. The advantage...

  5. Skeletal muscle and fetal alcohol spectrum disorder.

    Science.gov (United States)

    Myrie, Semone B; Pinder, Mark A

    2018-04-01

    Skeletal muscle is critical for mobility and many metabolic functions integral to survival and long-term health. Alcohol can affect skeletal muscle physiology and metabolism, which will have immediate and long-term consequences on health. While skeletal muscle abnormalities, including morphological, biochemical, and functional impairments, are well-documented in adults that excessively consume alcohol, there is a scarcity of information about the skeletal muscle in the offspring prenatally exposed to alcohol ("prenatal alcohol exposure"; PAE). This minireview examines the available studies addressing skeletal muscle abnormalities due to PAE. Growth restriction, fetal alcohol myopathy, and abnormalities in the neuromuscular system, which contribute to deficits in locomotion, are some direct, immediate consequences of PAE on skeletal muscle morphology and function. Long-term health consequences of PAE-related skeletal abnormalities include impaired glucose metabolism in the skeletal muscle, resulting in glucose intolerance and insulin resistance, leading to an increased risk of type 2 diabetes. In general, there is limited information on the morphological, biochemical, and functional features of skeletal abnormalities in PAE offspring. There is a need to understand how PAE affects muscle growth and function at the cellular level during early development to improve the immediate and long-term health of offspring suffering from PAE.

  6. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    Science.gov (United States)

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  7. Proteomics of Skeletal Muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul

    2016-01-01

    , of altered protein expressions profiles and/or their posttranslational modifications (PTMs). Mass spectrometry (MS)-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle......Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability...... of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence...

  8. Muscles, exercise and obesity

    DEFF Research Database (Denmark)

    Pedersen, Bente K; Febbraio, Mark A

    2012-01-01

    During the past decade, skeletal muscle has been identified as a secretory organ. Accordingly, we have suggested that cytokines and other peptides that are produced, expressed and released by muscle fibres and exert either autocrine, paracrine or endocrine effects should be classified as myokines....... The finding that the muscle secretome consists of several hundred secreted peptides provides a conceptual basis and a whole new paradigm for understanding how muscles communicate with other organs, such as adipose tissue, liver, pancreas, bones and brain. However, some myokines exert their effects within...... the muscle itself. Thus, myostatin, LIF, IL-6 and IL-7 are involved in muscle hypertrophy and myogenesis, whereas BDNF and IL-6 are involved in AMPK-mediated fat oxidation. IL-6 also appears to have systemic effects on the liver, adipose tissue and the immune system, and mediates crosstalk between intestinal...

  9. Skeletal muscle aging: stem cell function and tissue homeostasis

    OpenAIRE

    Victor, Pedro Sousa

    2012-01-01

    Muscle aging, in particular, is characterized by the reduction of tissue mass and function, which are particularly prominent in geriatric individuals undergoing sarcopenia. The age-associated muscle wasting is also associated with a decline in regenerative ability and a reduction in resident muscle stem cell (satellite cell) number and function. Although sarcopenia is one of the major contributors to the general loss of physiological function, the mechanisms involved in age-related loss of mu...

  10. Accessory piriformis muscle

    Directory of Open Access Journals (Sweden)

    Sedat Develi

    2017-03-01

    Full Text Available Piriformis muscle originates from facies pelvica of sacrum and inserts on the trochanter major. It is one of the lateral rotator muscles of the hip and a landmark point in the gluteal region since n. ischiadicus descends to the thigh by passing close to the muscle. This contiguity may be associated with the irritation of the nerve which is known as piriformis syndrome. A rare anatomic variation of the muscle which observed on 74 years old male cadaver is discussed in this case report. [Cukurova Med J 2017; 42(1.000: 182-183

  11. Generalized Superconductivity. Generalized Levitation

    International Nuclear Information System (INIS)

    Ciobanu, B.; Agop, M.

    2004-01-01

    In the recent papers, the gravitational superconductivity is described. We introduce the concept of generalized superconductivity observing that any nongeodesic motion and, in particular, the motion in an electromagnetic field, can be transformed in a geodesic motion by a suitable choice of the connection. In the present paper, the gravitoelectromagnetic London equations have been obtained from the generalized Helmholtz vortex theorem using the generalized local equivalence principle. In this context, the gravitoelectromagnetic Meissner effect and, implicitly, the gravitoelectromagnetic levitation are given. (authors)

  12. Myopathy in Childhood Muscle-Specific Kinase Myasthenia Gravis.

    Science.gov (United States)

    Kirzinger, Lukas; Khomenko, Andrei; Schulte-Mattler, Wilhelm; Backhaus, Roland; Platen, Sabine; Schalke, Berthold

    2016-12-01

    Adult and pediatric patients suffering from MuSK (muscle-specific kinase) -antibody positive myasthenia gravis exhibit similar features to individuals with acetylcholine receptor (AChR) antibodies, but they differ in several characteristics such as a predominant bulbar, respiratory and neck weakness, a generally worse disease severity and a tendency to develop muscle atrophy. Muscle atrophy is a rare phenomenon that is usually restricted to the facial muscles. We describe a girl with MuSK-antibody positive myasthenia gravis who developed a myopathy with severe generalized muscular weakness, muscle atrophy, and myopathic changes on electromyography. This is the first published example of a generalized myopathic syndrome in myasthenia gravis. We review the relevant literature and discuss the hypothesis of a mitochondrial myopathy as a pathogenic mechanism in MuSK-antibody positive myasthenia gravis. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Muscle phosphorylase kinase deficiency

    DEFF Research Database (Denmark)

    Preisler, N; Orngreen, M C; Echaniz-Laguna, A

    2012-01-01

    To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD).......To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD)....

  14. the sternalis muscle

    African Journals Online (AJOL)

    2009-08-17

    Aug 17, 2009 ... CASE REPORT. CASE. 72. SA JOURNAL OF RADIOLOGY • August 2009. CASE R. Introduction ... tion is being given to imaging the medial breast, and the sternalis muscle will be revealed with increasing ... The origin of this muscle is uncertain, with pectoralis major, rectus abdominus and sternomastoid ...

  15. The hamstring muscle complex

    NARCIS (Netherlands)

    van der Made, A. D.; Wieldraaijer, T.; Kerkhoffs, G. M.; Kleipool, R. P.; Engebretsen, L.; van Dijk, C. N.; Golanó, P.

    2015-01-01

    The anatomical appearance of the hamstring muscle complex was studied to provide hypotheses for the hamstring injury pattern and to provide reference values of origin dimensions, muscle length, tendon length, musculotendinous junction (MTJ) length as well as width and length of a tendinous

  16. Muscle as a secretory organ

    DEFF Research Database (Denmark)

    Pedersen, Bente K

    2013-01-01

    Skeletal muscle is the largest organ in the body. Skeletal muscles are primarily characterized by their mechanical activity required for posture, movement, and breathing, which depends on muscle fiber contractions. However, skeletal muscle is not just a component in our locomotor system. Recent e...... proteins produced by skeletal muscle are dependent upon contraction. Therefore, it is likely that myokines may contribute in the mediation of the health benefits of exercise.......Skeletal muscle is the largest organ in the body. Skeletal muscles are primarily characterized by their mechanical activity required for posture, movement, and breathing, which depends on muscle fiber contractions. However, skeletal muscle is not just a component in our locomotor system. Recent...... evidence has identified skeletal muscle as a secretory organ. We have suggested that cytokines and other peptides that are produced, expressed, and released by muscle fibers and exert either autocrine, paracrine, or endocrine effects should be classified as "myokines." The muscle secretome consists...

  17. Muscle autoantibodies in myasthenia gravis: beyond diagnosis?

    Science.gov (United States)

    Meriggioli, Matthew N; Sanders, Donald B

    2012-01-01

    Myasthenia gravis is an autoimmune disorder of the neuromuscular junction. A number of molecules, including ion channels and other proteins at the neuromuscular junction, may be targeted by autoantibodies leading to abnormal neuromuscular transmission. In approximately 85% of patients, autoantibodies, directed against the postsynaptic nicotinic acetylcholine receptor can be detected in the serum and confirm the diagnosis, but in general, do not precisely predict the degree of weakness or response to therapy. Antibodies to the muscle-specific tyrosine kinase are detected in approximately 50% of generalized myasthenia gravis patients who are seronegative for anti-acetylcholine receptor antibodies, and levels of anti-muscle-specific tyrosine kinase antibodies do appear to correlate with disease severity and treatment response. Antibodies to other muscle antigens may be found in the subsets of myasthenia gravis patients, potentially providing clinically useful diagnostic information, but their utility as relevant biomarkers (measures of disease state or response to treatment) is currently unclear. PMID:22882218

  18. Electrophoretic study on intraspecific variations and interspecific relationships of marine catfishes (Siluriformes, Ariidae of Cananéia (São Paulo, Brazil: 1. General proteins of eye-lens and skeletic muscle

    Directory of Open Access Journals (Sweden)

    Hana Suzuki

    1990-06-01

    Full Text Available Cellulose acetate electrophoresis of eye-lens proteins and Polyacrylamide flat gel electrophoresis of skeletic muscle proteins of six species of marine catfishes were carried out. Genetic polymorphism only occured at one locus of the electropherograms of eye-lens of Cathorops spixii. Ontogenetic variations in the relative concentration of bands were found in the electropherograms of eye-lens and skeletic muscle proteins. The six species of catfishes can be identified by means of quantitative and qualitative differences in the electropherograms. Coefficients of similarity were determined by the band-counting method and UPGMA dendrograms were constructed to illustrate the interspecific relationships among the species.Eletroforeses de proteínas gerais de cristalinos e de músculo esquelético de seis espécies de bagres marinhos foram realizadas, respectivamente, em membranas de acetato de celulose e em géis de poliacrilamida. Polimorfismo genético ocorreu apenas em um locus de eletroferogramas do cristalino de Cathorops spixii. Variações ontogenéticas nas concentrações relativas das bandas foram observadas nos eletroferogramas do cristalino e do músculo esquelético. As seis espécies de bagres marinhos podem ser identificadas através das diferenças quantitativas e qualitativas nos eletroferogramas. Coeficientes de similaridade foram determinadas pelo método de contagem de bandas e dendrogramas UPGMA foram construídos para ilustrar as relações interespecíficas entre as espécies.

  19. Immune-mediated rippling muscle disease and myasthenia gravis.

    Science.gov (United States)

    Bettini, Mariela; Gonorazky, Hernan; Chaves, Marcelo; Fulgenzi, Ernesto; Figueredo, Alejandra; Christiansen, Silvia; Cristiano, Edgardo; Bertini, Enrico S; Rugiero, Marcelo

    2016-10-15

    Cases of acquired rippling muscle disease in association with myasthenia gravis have been reported. We present three patients with iRMD (immune-mediated rippling muscle disease) and AChR-antibody positive myasthenia gravis. None of them had thymus pathology. They presented exercise-induced muscle rippling combined with generalized myasthenia gravis. One of them had muscle biopsy showing a myopathic pattern and a patchy immunostaining with caveolin antibodies. They were successfully treated steroids and azathioprine. The immune nature of this association is supported by the response to immunotherapies and the positivity of AChR-antibodies. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A muscle model for hybrid muscle activation

    Directory of Open Access Journals (Sweden)

    Klauer Christian

    2015-09-01

    Full Text Available To develop model-based control strategies for Functional Electrical Stimulation (FES in order to support weak voluntary muscle contractions, a hybrid model for describing joint motions induced by concurrent voluntary-and FES induced muscle activation is proposed. It is based on a Hammerstein model – as commonly used in feedback controlled FES – and exemplarily applied to describe the shoulder abduction joint angle. Main component of a Hammerstein muscle model is usually a static input nonlinearity depending on the stimulation intensity. To additionally incorporate voluntary contributions, we extended the static non-linearity by a second input describing the intensity of the voluntary contribution that is estimated by electromyography (EMG measurements – even during active FES. An Artificial Neural Network (ANN is used to describe the static input non-linearity. The output of the ANN drives a second-order linear dynamical system that describes the combined muscle activation and joint angle dynamics. The tunable parameters are adapted to the individual subject by a system identification approach using previously recorded I/O-data. The model has been validated in two healthy subjects yielding RMS values for the joint angle error of 3.56° and 3.44°, respectively.

  1. Exercise in muscle glycogen storage diseases.

    Science.gov (United States)

    Preisler, Nicolai; Haller, Ronald G; Vissing, John

    2015-05-01

    Glycogen storage diseases (GSD) are inborn errors of glycogen or glucose metabolism. In the GSDs that affect muscle, the consequence of a block in skeletal muscle glycogen breakdown or glucose use, is an impairment of muscular performance and exercise intolerance, owing to 1) an increase in glycogen storage that disrupts contractile function and/or 2) a reduced substrate turnover below the block, which inhibits skeletal muscle ATP production. Immobility is associated with metabolic alterations in muscle leading to an increased dependence on glycogen use and a reduced capacity for fatty acid oxidation. Such changes may be detrimental for persons with GSD from a metabolic perspective. However, exercise may alter skeletal muscle substrate metabolism in ways that are beneficial for patients with GSD, such as improving exercise tolerance and increasing fatty acid oxidation. In addition, a regular exercise program has the potential to improve general health and fitness and improve quality of life, if executed properly. In this review, we describe skeletal muscle substrate use during exercise in GSDs, and how blocks in metabolic pathways affect exercise tolerance in GSDs. We review the studies that have examined the effect of regular exercise training in different types of GSD. Finally, we consider how oral substrate supplementation can improve exercise tolerance and we discuss the precautions that apply to persons with GSD that engage in exercise.

  2. General general game AI

    OpenAIRE

    Togelius, Julian; Yannakakis, Georgios N.; 2016 IEEE Conference on Computational Intelligence and Games (CIG)

    2016-01-01

    Arguably the grand goal of artificial intelligence research is to produce machines with general intelligence: the capacity to solve multiple problems, not just one. Artificial intelligence (AI) has investigated the general intelligence capacity of machines within the domain of games more than any other domain given the ideal properties of games for that purpose: controlled yet interesting and computationally hard problems. This line of research, however, has so far focuse...

  3. Masticatory muscle pain: Causes, consequences, and diagnosis

    NARCIS (Netherlands)

    Koutris, M.

    2013-01-01

    Masticatory muscle pain is known as myogenous temporomandibular disorder (TMD) pain. It has a prevalence of approximately 10% in the general population and affects women more than men. It is usually characterized by a dull, aching pain, which aggravates on function. The etiology of TMD pain is still

  4. Swimming and muscle structure in fish

    NARCIS (Netherlands)

    Spierts, I.L.Y.

    1999-01-01

    In this series of studies the relations between swimming behaviour of fish in general and extreme swimming responses in particular (called fast starts or escape responses) and the structure and ontogeny of the muscle system was investigated. Special attention was paid to relate functional

  5. Muscles and their myokines.

    Science.gov (United States)

    Pedersen, Bente Klarlund

    2011-01-15

    In the past, the role of physical activity as a life-style modulating factor has been considered as that of a tool to balance energy intake. Although it is important to avoid obesity, physical inactivity should be discussed in a much broader context. There is accumulating epidemiological evidence that a physically active life plays an independent role in the protection against type 2 diabetes, cardiovascular diseases, cancer, dementia and even depression. For most of the last century, researchers sought a link between muscle contraction and humoral changes in the form of an 'exercise factor', which could be released from skeletal muscle during contraction and mediate some of the exercise-induced metabolic changes in other organs such as the liver and the adipose tissue. We have suggested that cytokines or other peptides that are produced, expressed and released by muscle fibres and exert autocrine, paracrine or endocrine effects should be classified as 'myokines'. Given that skeletal muscle is the largest organ in the human body, our discovery that contracting skeletal muscle secretes proteins sets a novel paradigm: skeletal muscle is an endocrine organ producing and releasing myokines, which work in a hormone-like fashion, exerting specific endocrine effects on other organs. Other myokines work via paracrine mechanisms, exerting local effects on signalling pathways involved in muscle metabolism. It has been suggested that myokines may contribute to exercise-induced protection against several chronic diseases.

  6. Muscle Bioenergetic Considerations for Intrinsic Laryngeal Skeletal Muscle Physiology

    Science.gov (United States)

    Sandage, Mary J.; Smith, Audrey G.

    2017-01-01

    Purpose: Intrinsic laryngeal skeletal muscle bioenergetics, the means by which muscles produce fuel for muscle metabolism, is an understudied aspect of laryngeal physiology with direct implications for voice habilitation and rehabilitation. The purpose of this review is to describe bioenergetic pathways identified in limb skeletal muscle and…

  7. Muscle contraction and force

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline; Risbo, Jens; Pierzynowski, Stefan G.

    2008-01-01

    Muscle contraction studies often focus solely on myofibres and the proteins known to be involved in the processes of sarcomere shortening and cross-bridge cycling, but skeletal muscle also comprises a very elaborate ancillary network of capillaries, which not only play a vital role in terms...... of nutrient delivery and waste product removal, but are also tethered to surrounding fibres by collagen "wires". This paper therefore addresses aspects of the ancillary network of skeletal muscle at both a microscopic and functional level in order to better understand its role holistically as a considerable...

  8. Painful unilateral temporalis muscle enlargement: reactive masticatory muscle hypertrophy.

    Science.gov (United States)

    Katsetos, Christos D; Bianchi, Michael A; Jaffery, Fizza; Koutzaki, Sirma; Zarella, Mark; Slater, Robert

    2014-06-01

    An instance of isolated unilateral temporalis muscle hypertrophy (reactive masticatory muscle hypertrophy with fiber type 1 predominance) confirmed by muscle biopsy with histochemical fiber typing and image analysis in a 62 year-old man is reported. The patient presented with bruxism and a painful swelling of the temple. Absence of asymmetry or other abnormalities of the craniofacial skeleton was confirmed by magnetic resonance imaging and cephalometric analyses. The patient achieved symptomatic improvement only after undergoing botulinum toxin injections. Muscle biopsy is key in the diagnosis of reactive masticatory muscle hypertrophy and its distinction from masticatory muscle myopathy (hypertrophic branchial myopathy) and other non-reactive causes of painful asymmetric temporalis muscle enlargement.

  9. A new approach for the validation of skeletal muscle modelling using MRI data

    Science.gov (United States)

    Böl, Markus; Sturmat, Maike; Weichert, Christine; Kober, Cornelia

    2011-05-01

    Active and passive experiments on skeletal muscles are in general arranged on isolated muscles or by consideration of the whole muscle packages, such as the arm or the leg. Both methods exhibit advantages and disadvantages. By applying experiments on isolated muscles it turns out that no information about the surrounding tissues are considered what leads to insufficient specifications of the isolated muscle. Especially, the muscle shape and the fibre directions of an embedded muscle are completely different to that of the same isolated muscle. An explicit advantage, in contrast, is the possibility to study the mechanical characteristics in an unique, isolated way. On the other hand, by applying experiments on muscle packages the aforementioned pros and cons reverse. In such situation, the whole surrounding tissue is considered in the mechanical characteristics of the muscle which are much more difficult to identify. However, an embedded muscle reflects a much more realistic situation as in isolated condition. Thus, in the proposed work to our knowledge, we, for the first time, suggest a technique that allows to study characteristics of single skeletal muscles inside a muscle package without any computation of the tissue around the muscle of interest. In doing so, we use magnetic resonance imaging data of an upper arm during contraction. By applying a three-dimensional continuum constitutive muscle model we are able to study the biceps brachii inside the upper arm and validate the modelling approach by optical experiments.

  10. Muscles and their myokines

    DEFF Research Database (Denmark)

    Pedersen, Bente Klarlund

    2011-01-01

    In the past, the role of physical activity as a life-style modulating factor has been considered as that of a tool to balance energy intake. Although it is important to avoid obesity, physical inactivity should be discussed in a much broader context. There is accumulating epidemiological evidence...... or endocrine effects should be classified as 'myokines'. Given that skeletal muscle is the largest organ in the human body, our discovery that contracting skeletal muscle secretes proteins sets a novel paradigm: skeletal muscle is an endocrine organ producing and releasing myokines, which work in a hormone......-like fashion, exerting specific endocrine effects on other organs. Other myokines work via paracrine mechanisms, exerting local effects on signalling pathways involved in muscle metabolism. It has been suggested that myokines may contribute to exercise-induced protection against several chronic diseases....

  11. Pneumatic Muscle Actuator Control

    National Research Council Canada - National Science Library

    Lilly, John

    2000-01-01

    This research is relevant to the Air Fore mission because pneumatic muscle actuation devices arc advantageous for certain types of robotics as well as for strength and/or mobility assistance for humans...

  12. Brain–muscle interface

    Indian Academy of Sciences (India)

    2011-05-16

    May 16, 2011 ... Clipboard: Brain–muscle interface: The next-generation BMI. Radhika Rajan Neeraj Jain ... Keywords. Assistive devices; brain–machine interface; motor cortex; paralysis; spinal cord injury ... Journal of Biosciences | News ...

  13. Muscle glycogenolysis during exercise

    DEFF Research Database (Denmark)

    Richter, Erik; Ruderman, N B; Gavras, H

    1982-01-01

    glycogenolysis during exercise: contractions principally stimulate glycogenolysis early in exercise, and a direct effect of epinephrine on muscle is needed for continued glycogenolysis. In addition, epinephrine increased oxygen consumption and glucose uptake in both resting and electrically stimulated...

  14. Water and Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Enrico Grazi

    2008-08-01

    Full Text Available The interaction between water and the protein of the contractile machinery as well as the tendency of these proteins to form geometrically ordered structures provide a link between water and muscle contraction. Protein osmotic pressure is strictly related to the chemical potential of the contractile proteins, to the stiffness of muscle structures and to the viscosity of the sliding of the thin over the thick filaments. Muscle power output and the steady rate of contraction are linked by modulating a single parameter, a viscosity coefficient. Muscle operation is characterized by working strokes of much shorter length and much quicker than in the classical model. As a consequence the force delivered and the stiffness attained by attached cross-bridges is much larger than usually believed.

  15. Muscle function loss

    Science.gov (United States)

    ... or head are damaged, you may have difficulty chewing and swallowing or closing your eyes. In these ... Medical Professional Muscle paralysis always requires immediate medical attention. If you notice gradual weakening or problems with ...

  16. Changes in power and force generation during coupled eccentric-concentric versus concentric muscle contraction with training and aging

    DEFF Research Database (Denmark)

    Caserotti, Paolo; Aagaard, Per; Puggaard, Lis

    2008-01-01

    Age-related decline in maximal concentric muscle power is associated with frailty and functional impairments in the elderly. Compared to concentric contraction, mechanical muscle output is generally enhanced when muscles are rapidly pre-stretched (eccentric contraction), albeit less pronounced...... with increasing age. Exercise has been recommended to prevent loss of muscle power and function and recent guidelines indicate training program for increasing muscle power highly relevant for elderly subjects. This study examined the differences in muscle power, force and movement pattern during concentric......) and JH increased in training group (P age-related decline in muscle power and functional performance observed in the control subjects, while substantial gains...

  17. Exercise in muscle glycogen storage diseases

    DEFF Research Database (Denmark)

    Preisler, Nicolai Rasmus; Haller, Ronald G; Vissing, John

    2015-01-01

    exercise program has the potential to improve general health and fitness and improve quality of life, if executed properly. In this review, we describe skeletal muscle substrate use during exercise in GSDs, and how blocks in metabolic pathways affect exercise tolerance in GSDs. We review the studies...... that have examined the effect of regular exercise training in different types of GSD. Finally, we consider how oral substrate supplementation can improve exercise tolerance and we discuss the precautions that apply to persons with GSD that engage in exercise.......Glycogen storage diseases (GSD) are inborn errors of glycogen or glucose metabolism. In the GSDs that affect muscle, the consequence of a block in skeletal muscle glycogen breakdown or glucose use, is an impairment of muscular performance and exercise intolerance, owing to 1) an increase...

  18. Fiberoptic laryngoscopy under general anesthesia in neonates

    NARCIS (Netherlands)

    L.J. Hoeve (Hans); R.H.M. van Poppelen

    1990-01-01

    textabstractAbstract In the Sophia Children's Hospital we perform fiberoptic laryngoscopy in neonates under general anesthesia without the use of muscle relaxants in the diagnostics of functional laryngeal disorders. The necessary diagnostic and anesthetic equipment is described. Special attention

  19. Borderlines between sarcopenia and mild late-onset muscle disease

    Directory of Open Access Journals (Sweden)

    Johanna ePalmio

    2014-09-01

    Full Text Available Numerous natural or disease-related alterations occur in different tissues of the body with advancing age. Sarcopenia is defined as age-related decrease of muscle mass and strength beginning in mid-adulthood and accelerating in people older than 60 years. Pathophysiology of sarcopenia involves both neural and muscle dependent mechanisms and is enhanced by multiple factors. Aged muscles show loss in fiber number, fiber atrophy and gradual increase in the number of ragged red fibers and cytochrome c oxidase-negative fibers. Generalized loss of muscle tissue and increased amount of intramuscular fat is seen on muscle imaging. However, the degree of these changes vary greatly between individuals and the distinction between normal age-related weakening of muscle strength and clinically significant muscle disease is not always obvious. Because some of the genetic myopathies can present at a very late age and be mild in severity, the correct diagnosis is easily missed. We highlight this difficult borderline zone between sarcopenia and muscle disease by two examples: LGMD1D and myotonic dystrophy type 2. Muscle MRI is a useful tool to help differentiate myopathies from sarcopenia and to reach the correct diagnosis also in the elderly.

  20. Unique expression of cytoskeletal proteins in human soft palate muscles.

    Science.gov (United States)

    Shah, Farhan; Berggren, Diana; Holmlund, Thorbjörn; Levring Jäghagen, Eva; Stål, Per

    2016-03-01

    The human oropharyngeal muscles have a unique anatomy with diverse and intricate functions. To investigate if this specialization is also reflected in the cytoarchitecture of muscle fibers, intermediate filament proteins and the dystrophin-associated protein complex have been analyzed in two human palate muscles, musculus uvula (UV) and musculus palatopharyngeus (PP), with immunohistochenmical and morphological techniques. Human limb muscles were used as reference. The findings show that the soft palate muscle fibers have a cytoskeletal architecture that differs from the limb muscles. While all limb muscles showed immunoreaction for a panel of antibodies directed against different domains of cytoskeletal proteins desmin and dystrophin, a subpopulation of palate muscle fibers lacked or had a faint immunoreaction for desmin (UV 11.7% and PP 9.8%) and the C-terminal of the dystrophin molecule (UV 4.2% and PP 6.4%). The vast majority of these fibers expressed slow contractile protein myosin heavy chain I. Furthermore, an unusual staining pattern was also observed in these fibers for β-dystroglycan, caveolin-3 and neuronal nitric oxide synthase nNOS, which are all membrane-linking proteins associated with the dystrophin C-terminus. While the immunoreaction for nNOS was generally weak or absent, β-dystroglycan and caveolin-3 showed a stronger immunostaining. The absence or a low expression of cytoskeletal proteins otherwise considered ubiquitous and important for integration and contraction of muscle cells indicate a unique cytoarchitecture designed to meet the intricate demands of the upper airway muscles. It can be concluded that a subgroup of muscle fibers in the human soft palate appears to have special biomechanical properties, and their unique cytoarchitecture must be taken into account while assessing function and pathology in oropharyngeal muscles. © 2015 Anatomical Society.

  1. in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Espen E. Spangenburg

    2011-01-01

    Full Text Available Triglyceride storage is altered across various chronic health conditions necessitating various techniques to visualize and quantify lipid droplets (LDs. Here, we describe the utilization of the BODIPY (493/503 dye in skeletal muscle as a means to analyze LDs. We found that the dye was a convenient and simple approach to visualize LDs in both sectioned skeletal muscle and cultured adult single fibers. Furthermore, the dye was effective in both fixed and nonfixed cells, and the staining seemed unaffected by permeabilization. We believe that the use of the BODIPY (493/503 dye is an acceptable alternative and, under certain conditions, a simpler method for visualizing LDs stored within skeletal muscle.

  2. Hydraulically actuated artificial muscles

    Science.gov (United States)

    Meller, M. A.; Tiwari, R.; Wajcs, K. B.; Moses, C.; Reveles, I.; Garcia, E.

    2012-04-01

    Hydraulic Artificial Muscles (HAMs) consisting of a polymer tube constrained by a nylon mesh are presented in this paper. Despite the actuation mechanism being similar to its popular counterpart, which are pneumatically actuated (PAM), HAMs have not been studied in depth. HAMs offer the advantage of compliance, large force to weight ratio, low maintenance, and low cost over traditional hydraulic cylinders. Muscle characterization for isometric and isobaric tests are discussed and compared to PAMs. A model incorporating the effect of mesh angle and friction have also been developed. In addition, differential swelling of the muscle on actuation has also been included in the model. An application of lab fabricated HAMs for a meso-scale robotic system is also presented.

  3. Foot muscles strengthener

    Directory of Open Access Journals (Sweden)

    Boris T. Glavač

    2012-04-01

    Full Text Available Previous experience in the correction of flat feet consisted of the use of insoles for shoes and exercises with toys, balls, rollers, inclined planes, etc. A device for strengthening foot muscles is designed for the correction of flat feet in children and, as its name suggests, for strengthening foot muscles in adults. The device is made of wood and metal, with a mechanism and technical solutions, enabling the implementation of specific exercises to activate muscles responsible for the formation of the foot arch. It is suitable for home use with controlled load quantities since it has calibrated springs. The device is patented with the Intellectual Property Office, Republic of Serbia, as a petty patent.

  4. Rectus abdominis muscle endometriosis

    International Nuclear Information System (INIS)

    Goker, A.

    2014-01-01

    Endometriosis is characterized by an abnormal existence of functional endometrial tissue outside the uterine cavity, typically occuring within the pelvis of women in reproductive age. We report two cases with endometriosis of the abdominal wall; the first one in the rectus abdominis muscle and the second one in the surgical scar of previous caesarean incision along with the rectus abdominis muscle. Pre-operative evaluation included magnetic resonance imaging. The masses were dissected free from the surrounding tissue and excised with clear margins. Diagnosis of the excised lesions were verified by histopathology. (author)

  5. Skeletal muscle connective tissue

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline

    in the structure of fibrous collagen and myofibers at high-resolution. The results demonstrate that the collagen composition in the extra cellular matrix of Gadus morhua fish muscle is much more complex than previously anticipated, as it contains type III, IV, V  and VI collagen in addition to type I. The vascular....... Consequently, functional structures, ensuring "tissue maintenance" must form a major role of connective tissue, in addition that is to the force transmitting structures one typically finds in muscle. Vascular structures have also been shown to change their mechanical properties with age and it has been shown...

  6. Muscle force depends on the amount of transversal muscle loading.

    Science.gov (United States)

    Siebert, Tobias; Till, Olaf; Stutzig, Norman; Günther, Michael; Blickhan, Reinhard

    2014-06-03

    Skeletal muscles are embedded in an environment of other muscles, connective tissue, and bones, which may transfer transversal forces to the muscle tissue, thereby compressing it. In a recent study we demonstrated that transversal loading of a muscle with 1.3Ncm(-2) reduces maximum isometric force (Fim) and rate of force development by approximately 5% and 25%, respectively. The aim of the present study was to examine the influence of increasing transversal muscle loading on contraction dynamics. Therefore, we performed isometric experiments on rat M. gastrocnemius medialis (n=9) without and with five different transversal loads corresponding to increasing pressures of 1.3Ncm(-2) to 5.3Ncm(-2) at the contact area between muscle and load. Muscle loading was induced by a custom-made plunger which was able to move in transversal direction. Increasing transversal muscle loading resulted in an almost linear decrease in muscle force from 4.8±1.8% to 12.8±2% Fim. Compared to an unloaded isometric contraction, rate of force development decreased from 20.2±4.0% at 1.3Ncm(-2) muscle loading to 34.6±5.7% at 5.3Ncm(-2). Experimental observation of the impact of transversal muscle loading on contraction dynamics may help to better understand muscle tissue properties. Moreover, applying transversal loads to muscles opens a window to analyze three-dimensional muscle force generation. Data presented in this study may be important to develop and validate muscle models which enable simulation of muscle contractions under compression and enlighten the mechanisms behind. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Effects of oblique muscle surgery on the rectus muscle pulley

    International Nuclear Information System (INIS)

    Okanobu, Hirotaka; Kono, Reika; Ohtsuki, Hiroshi

    2011-01-01

    The purpose of this study was to determine the position of rectus muscle pulleys in Japanese eyes and to evaluate the effect of oblique muscle surgery on rectus muscle pulleys. Quasi-coronal plane MRI was used to determine area centroids of the 4 rectus muscles. The area centroids of the rectus muscles were transformed to 2-dimensional coordinates to represent pulley positions. The effects of oblique muscle surgery on the rectus muscle pulley positions in the coronal plane were evaluated in 10 subjects with cyclovertical strabismus and, as a control, pulley locations in 7 normal Japanese subjects were calculated. The mean positions of the rectus muscle pulleys in the coronal plane did not significantly differ from previous reports on normal populations, including Caucasians. There were significant positional shifts of the individual horizontal and vertical rectus muscle pulleys in 3 (100%) patients with inferior oblique advancement, but not in eyes with inferior oblique recession and superior oblique tendon advancement surgery. The surgical cyclorotatory effect was significantly correlated with the change in the angle of inclination formed by the line connecting the vertical rectus muscles (p=0.0234), but weakly correlated with that of the horizontal rectus muscles. The most important factor that affects the pulley position is the amount of ocular torsion, not the difference in surgical procedure induced by oblique muscle surgery. (author)

  8. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    Science.gov (United States)

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Force encoding in muscle spindles during stretch of passive muscle.

    Directory of Open Access Journals (Sweden)

    Kyle P Blum

    2017-09-01

    Full Text Available Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle

  10. Force encoding in muscle spindles during stretch of passive muscle.

    Science.gov (United States)

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  11. MRI appearance of muscle denervation

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, S. [University Hospital of Wales, Department of Radiology, Cardiff (United Kingdom); Venkatanarasimha, N.; Walsh, M.A.; Hughes, P.M. [Derriford Hospital, Department of Radiology, Plymouth (United Kingdom)

    2008-05-15

    Muscle denervation results from a variety of causes including trauma, neoplasia, neuropathies, infections, autoimmune processes and vasculitis. Traditionally, the diagnosis of muscle denervation was based on clinical examination and electromyography. Magnetic resonance imaging (MRI) offers a distinct advantage over electromyography, not only in diagnosing muscle denervation, but also in determining its aetiology. MRI demonstrates characteristic signal intensity patterns depending on the stage of muscle denervation. The acute and subacutely denervated muscle shows a high signal intensity pattern on fluid sensitive sequences and normal signal intensity on T1-weighted MRI images. In chronic denervation, muscle atrophy and fatty infiltration demonstrate high signal changes on T1-weighted sequences in association with volume loss. The purpose of this review is to summarise the MRI appearance of denervated muscle, with special emphasis on the signal intensity patterns in acute and subacute muscle denervation. (orig.)

  12. Anti-smooth muscle antibody

    Science.gov (United States)

    ... gov/ency/article/003531.htm Anti-smooth muscle antibody To use the sharing features on this page, please enable JavaScript. Anti-smooth muscle antibody is a blood test that detects the presence ...

  13. Molecular Signals and Skeletal Muscle Adaptation to Exercise

    Directory of Open Access Journals (Sweden)

    Mark Wilson

    2013-09-01

    Full Text Available The phenotypic plasticity of skeletal muscle affords a considerable degree of adaptability not seen in other bodily tissues. The mechanical properties of skeletal muscle are highly dependent on loading conditions. The extent of skeletal muscle plasticity is distinctly highlighted by a loss of muscle mass, or atrophy, after a period of reduced weight-bearing activity, for example during periods of extended bed rest, space flight and in spinal cord injury. On the other hand, increased mechanical loading, or resistance training, induces muscle growth, or hypertrophy. Endurance exercise performance is also dependent on the adaptability of skeletal muscle, especially muscles that contribute to posture, locomotion and the mechanics of breathing.  However, the molecular pathways governing skeletal muscle adaptations are yet to be satisfactorily delineated and require further investigation. Researchers in the areas of exercise physiology, physiotherapy and sports medicine are endeavoring to translate experimental knowledge into effective, innovative treatments and regimens in order to improve physical performance and health in both elite athletes and the general community. The efficacy of the translation of molecular biological paradigms in experimental exercise physiology has long been underappreciated. Indeed, molecular biology tools can now be used to answer questions regarding skeletal muscle adaptation in response to exercise and provide new frameworks to improve physical performance. Furthermore, transgenic animal models, knockout animal models and in vivo studies provide tools to test questions concerned with how exercise initiates adaptive changes in gene expression. In light of these perceived deficiencies, an attempt is made here to elucidate the molecular mechanisms of skeletal muscle adaptation to exercise. An examination will be made of the functional capacity of skeletal muscle to respond to a variety of exercise conditions, namely

  14. Molecular Signals and Skeletal Muscle Adaptation to Exercise

    Directory of Open Access Journals (Sweden)

    Mark Wilson

    2013-08-01

    Full Text Available The phenotypic plasticity of skeletal muscle affords a considerable degree of adaptability not seen in other bodily tissues. The mechanical properties of skeletal muscle are highly dependent on loading conditions. The extent of skeletal muscle plasticity is distinctly highlighted by a loss of muscle mass, or atrophy, after a period of reduced weight-bearing activity, for example during periods of extended bed rest, space flight and in spinal cord injury. On the other hand, increased mechanical loading, or resistance training, induces muscle growth, or hypertrophy. Endurance exercise performance is also dependent on the adaptability of skeletal muscle, especially muscles that contribute to posture, locomotion and the mechanics of breathing. However, the molecular pathways governing skeletal muscle adaptations are yet to be satisfactorily delineated and require further investigation. Researchers in the areas of exercise physiology, physiotherapy and sports medicine are endeavoring to translate experimental knowledge into effective, innovative treatments and regimens in order to improve physical performance and health in both elite athletes and the general community. The efficacy of the translation of molecular biological paradigms in experimental exercise physiology has long been underappreciated. Indeed, molecular biology tools can now be used to answer questions regarding skeletal muscle adaptation in response to exercise and provide new frameworks to improve physical performance. Furthermore, transgenic animal models, knockout animal models and in vivo studies provide tools to test questions concerned with how exercise initiates adaptive changes in gene expression. In light of these perceived deficiencies, an attempt is made here to elucidate the molecular mechanisms of skeletal muscle adaptation to exercise. An examination will be made of the functional capacity of skeletal muscle to respond to a variety of exercise conditions, namely

  15. EFNS review on the role of muscle biopsy in the investigation of myalgia

    DEFF Research Database (Denmark)

    Kyriakides, T; Angelini, Cinzia; Schaefer, J

    2013-01-01

    Myalgia, defined as any pain perceived in muscle, is very common in the general population and a frequent cause for referral to neurologists, rheumatologists and internists in general. It is however only rarely due to primary muscle disease and often referred from ligaments, joints, bones...

  16. Lipolysis in Skeletal Muscle

    DEFF Research Database (Denmark)

    Serup, Annette Karen Lundbeck

    chemical structure of DAG. We took advantage of the fact that insulin sensitivity is increased after exercise, and that mice knocked out (KO) of HSL accumulate DAG after exercise, and measured insulin stimulated glucose uptake after treadmill running in skeletal muscle from HSL KO mice and wildtype control...

  17. Metabolic Diseases of Muscle

    Science.gov (United States)

    ... here and still get the great care and treatment I received in Michigan.” MDA Is Here to Help You T he Muscular Dystrophy Association offers a vast array of services to help you and your family deal with metabolic diseases of muscle. The staff at your local MDA office is ...

  18. Human muscle proteins: analysis by two-dimensional electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Giometti, C.S.; Danon, M.J.; Anderson, N.G.

    1983-09-01

    Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.

  19. Lactate Accumulation in Muscle and Blood during Submaximal Exercise

    Science.gov (United States)

    1981-09-21

    exercise, fast and slow twitch fibers Short title: Lactate in muscle and blood P.A. Tesch, W.L. Daniels and D.S. Sharp Exercise Physiology Division, U.S...KIRBY, R.L. & BELCASTRO, A.N. 1978. Relationship between slow - twitch muscle fibres and lactic acid removal. Can J Appl Sports Sci 3:160-162. BRODAL, P...oxygen uptake (Karlsson 1971, Knuttgen & Saltin 1972). It is generally agreed that the main muscle fiber type to be recruited below this level is the slow

  20. Muscle growth and poultry meat quality issues.

    Science.gov (United States)

    Petracci, Massimiliano; Cavani, Claudio

    2012-01-01

    Over the past 50 years the worldwide growing demand of poultry meat has resulted in pressure on breeders, nutritionists and growers to increase the growth rate of birds, feed efficiency, size of breast muscle and reduction in abdominal fatness. Moreover, the shift toward further processed products has emphasized the necessity for higher standards in poultry meat to improve sensory characteristics and functional properties. It is believed that genetic progress has put more stress on the growing bird and it has resulted in histological and biochemical modifications of the muscle tissue by impairing some meat quality traits. The most current poultry meat quality concerns are associated with deep pectoral muscle disease and white striping which impair product appearance, and increased occurrence of problems related with the meat's poor ability to hold water during processing and storage (PSE-like condition) as well as poor toughness and cohesiveness related to immaturity of intramuscular connective tissue. This paper is aimed at making a general statement of recent studies focusing on the relationship between muscle growth and meat quality issues in poultry.

  1. Muscle Growth and Poultry Meat Quality Issues

    Directory of Open Access Journals (Sweden)

    Massimiliano Petracci

    2011-12-01

    Full Text Available Over the past 50 years the worldwide growing demand of poultry meat has resulted in pressure on breeders, nutritionists and growers to increase the growth rate of birds, feed efficiency, size of breast muscle and reduction in abdominal fatness. Moreover, the shift toward further processed products has emphasized the necessity for higher standards in poultry meat to improve sensory characteristics and functional properties. It is believed that genetic progress has put more stress on the growing bird and it has resulted in histological and biochemical modifications of the muscle tissue by impairing some meat quality traits. The most current poultry meat quality concerns are associated with deep pectoral muscle disease and white striping which impair product appearance, and increased occurrence of problems related with the meat’s poor ability to hold water during processing and storage (PSE-like condition as well as poor toughness and cohesiveness related to immaturity of intramuscular connective tissue. This paper is aimed at making a general statement of recent studies focusing on the relationship between muscle growth and meat quality issues in poultry.

  2. Manual muscle testing: a method of measuring extremity muscle strength applied to critically ill patients.

    Science.gov (United States)

    Ciesla, Nancy; Dinglas, Victor; Fan, Eddy; Kho, Michelle; Kuramoto, Jill; Needham, Dale

    2011-04-12

    Survivors of acute respiratory distress syndrome (ARDS) and other causes of critical illness often have generalized weakness, reduced exercise tolerance, and persistent nerve and muscle impairments after hospital discharge. Using an explicit protocol with a structured approach to training and quality assurance of research staff, manual muscle testing (MMT) is a highly reliable method for assessing strength, using a standardized clinical examination, for patients following ARDS, and can be completed with mechanically ventilated patients who can tolerate sitting upright in bed and are able to follow two-step commands. (7, 8) This video demonstrates a protocol for MMT, which has been taught to ≥ 43 research staff who have performed >800 assessments on >280 ARDS survivors. Modifications for the bedridden patient are included. Each muscle is tested with specific techniques for positioning, stabilization, resistance, and palpation for each score of the 6-point ordinal Medical Research Council scale. Three upper and three lower extremity muscles are graded in this protocol: shoulder abduction, elbow flexion, wrist extension, hip flexion, knee extension, and ankle dorsiflexion. These muscles were chosen based on the standard approach for evaluating patients for ICU-acquired weakness used in prior publications. (1,2).

  3. Strength training increases the size of the satellite cell pool in type I and II fibres of chronically painful trapezius muscle in females

    DEFF Research Database (Denmark)

    Mackey, Abigail; Andersen, Lars L; Frandsen, Ulrik

    2011-01-01

    ) and general fitness training (GFT, n = 16) to augment the satellite cell (SC) and macrophage pools in the trapezius muscles of women diagnosed with trapezius myalgia. A group receiving general health information (REF, n = 8) served as a control. Muscle biopsies were collected from the trapezius muscles...

  4. Muscle cooling delays activation of the muscle metaboreflex in humans.

    Science.gov (United States)

    Ray, C A; Hume, K M; Gracey, K H; Mahoney, E T

    1997-11-01

    Elevation of muscle temperature has been shown to increase muscle sympathetic nerve activity (MSNA) during isometric exercise in humans. The purpose of the present study was to evaluate the effect of muscle cooling on MSNA responses during exercise. Eight subjects performed ischemic isometric handgrip at 30% of maximal voluntary contraction to fatigue followed by 2 min of postexercise muscle ischemia (PEMI), with and without local cooling of the forearm. Local cooling of the forearm decreased forearm muscle temperature from 31.8 +/- 0.4 to 23.1 +/- 0.8 degrees C (P = 0.001). Time to fatigue was not different during the control and cold trials (156 +/- 11 and 154 +/- 5 s, respectively). Arterial pressures and heart rate were not significantly affected by muscle cooling during exercise, although heart rate tended to be higher during the second minute of exercise (P = 0.053) during muscle cooling. Exercise-induced increases in MSNA were delayed during handgrip with local cooling compared with control. However, MSNA responses at fatigue and PEMI were not different between the two conditions. These findings suggest that muscle cooling delayed the activation of the muscle metaboreflex during ischemic isometric exercise but did not prevent its full expression during fatiguing contraction. These results support the concept that muscle temperature can play a role in the regulation of MSNA during exercise.

  5. Muscle dysmorphia: current insights

    OpenAIRE

    Tod, David; Edwards, Christian; Cranswick, Ieuan

    2016-01-01

    David Tod1 Christian Edwards2 Ieuan Cranswick1 1School of Sport and Exercise Science, Faculty of Science, Liverpool John Moores University, Liverpool, Merseyside, 2Institute of Sport and Exercise Science, University of Worcester, Worcester, Worcestershire, UK Abstract: Since 1997, there has been increasing research focusing on muscle dysmorphia, a condition underpinned by people’s beliefs that they have insufficient muscularity, in both the Western and non-Western medical and scient...

  6. Predictors of muscle protein synthesis after severe pediatric burns.

    Science.gov (United States)

    Diaz, Eva C; Herndon, David N; Lee, Jinhyung; Porter, Craig; Cotter, Matthew; Suman, Oscar E; Sidossis, Labros S; Børsheim, Elisabet

    2015-04-01

    Following a major burn, skeletal muscle protein synthesis rate increases but is often insufficient to compensate for massively elevated muscle protein breakdown rates. Given the long-term nature of the pathophysiologic response to burn injury, we hypothesized that muscle protein synthesis rate would be chronically elevated in severely burned children. The objectives of this study were to characterize muscle protein synthesis rate of burned children over a period of 24 months after injury and to identify predictors that influence this response. A total of 87 children with 40% or greater total body surface area (TBSA) burned were included. Patients participated in stable isotope infusion studies at 1, 2, and approximately 4 weeks after burn and at 6, 12, and 24 months after injury to determine skeletal muscle protein fractional synthesis rate. Generalized estimating equations with log link normal distribution were applied to account for clustering of patients and control for patient characteristics. Patients (8 ± 6 years) had large (62, 51-72% TBSA) and deep (47% ± 21% TBSA third degree) burns. Muscle protein fractional synthesis rate was elevated throughout the first 12 months after burn compared with established values from healthy young adults. Muscle protein fractional synthesis rate was lower in boys, in children older than 3 years, and when burns were greater than 80% TBSA. Muscle protein synthesis is elevated for at least 1 year after injury, suggesting that greater muscle protein turnover is a component of the long-term pathophysiologic response to burn trauma. Muscle protein synthesis is highly affected by sex, age, and burn size in severely burned children. These findings may explain the divergence in net protein balance and lean body mass in different populations of burn patients. Prognostic study, level III.

  7. Comparative anatomy of the extraocular muscles in four Myliobatoidei rays (Batoidea, Myliobatiformes).

    Science.gov (United States)

    Cunha, Carlo M; Oliveira, Luciano E; Kfoury, José R

    2016-05-01

    Extraocular muscles are classically grouped as four rectus and two oblique muscles. However, their description and potential associations with species behavior are limited. The objective was to characterize extraocular muscles in four Myliobatoidei rays from diverse habitats with divergent behaviors. Heads (10 per species) of Dasyatis hypostigma, Gymnura altavela, Mobula thurstoni and Pteroplatytrygon violacea were decalcified and dissected to characterize and describe extraocular muscles. Principal component analysis (PCA) was used to evaluate relationships between muscle length and species; for P. violacea, D. hypostigma and G. altavela, these were qualitatively and quantitatively consistent with the general pattern of extraocular muscles in vertebrates. In contrast, for M. thurstoni, the two oblique muscles were completely fused and there was a seventh extraocular muscle, named m. lateral rectus β (both were apparently novel findings in this species). There were also significant differences in eye disposition in the chondrocranium. The PCA axis 1 (rectus muscles) and PCA axis 2 (oblique muscles) accounted for 98.47% of data variability. Extraocular muscles had significant differences in length and important anatomical differences among sampled species that facilitated grouping species according to their life history. In conclusion, extraocular muscles are not uniform in all vertebrate species, thereby providing another basis for comparative studies. © 2016 Anatomical Society.

  8. MUSCLE TENSION DYSPHONIA

    Directory of Open Access Journals (Sweden)

    Irena Hočevar Boltežar

    2004-07-01

    Full Text Available Background. Muscle tension dysphonia (MTD is the cause of hoarseness in almost one half of the patients with voice disorders. The otorhinolaryngologic examination discovers no evident organic lesions in the larynx at least in the beginning of the voice problems. The reason for the hoarse voice is a disordered and maladjusted activity of the muscles taking part in phonation and/or articulation. In some patients, the irregular function of the larynx results in mucosal lesions on vocal folds. The factors participating in the development of MTD, directly or indirectly influence the quality of laryngeal mucosa, the activity of the phonatory muscles and/or increase of the vocal load. In the diagnostics and treatment of the MTD a phoniatrician, a speech and language therapist and a psychologist closely cooperate with the patient who must take an active role. The treatment is a long-lasting one but resulted in a high percentage of clinical success.Conclusions. Most likely, MTD is not a special disease but only a reflection of any disorder in the complicated system of regulation and realization of phonation. The prognosis of treatment is good when all unfavourable factors participating in development of MTD are eliminated and a proper professional voice- and psychotherapy started.

  9. Dismorfia muscular Muscle dysmorphia

    Directory of Open Access Journals (Sweden)

    Sheila Seleri Marques Assunção

    2002-12-01

    Full Text Available Preocupações mórbidas com a imagem corporal eram tidas até recentemente como problemas eminentemente femininos. Atualmente estas preocupações também têm sido encontradas no sexo masculino. A dismorfia muscular é um subtipo do transtorno dismórfico corporal que ocorre principalmente em homens que, apesar da grande hipertrofia muscular, consideram-se pequenos e fracos. Além de estar associada a prejuízos sociais, ocupacionais, recreativos e em outras áreas do funcionamento do indivíduo, a dismorfia muscular é também um fator de risco para o abuso de esteróides anabolizantes. Este artigo aborda aspectos epidemiológicos, etiológicos e padrões clínicos da dismorfia muscular, além de tecer comentários sobre estratégias de tratamento para este transtorno.Morbid concern over body image was considered, until recently, a female issue. Nowadays, it has been viewed as a common male disorder. Muscle dysmorphia, a subtype of a body dysmorphic disorder, affects men who, despite having clear muscular hypertroph,y see themselves as frail and small. Besides being associated to major social, leisure and occupational dysfunction, muscle dysmorphia is also a risk factor for the abuse of steroids. This article describes epidemiological, etiological and clinical characteristics of muscle dysmorphia and comments on its treatment strategy.

  10. Systems Analysis in Hypertension: Complementary Role of Physiologists and Geneticists

    Czech Academy of Sciences Publication Activity Database

    Zicha, Josef; Vaněčková, Ivana; Kuneš, Jaroslav

    2010-01-01

    Roč. 59, č. 6 (2010), s. 837-839 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA305/08/0139; GA MŠk(CZ) 1M0510; GA AV ČR(CZ) IAA500110902 Institutional research plan: CEZ:AV0Z50110509 Keywords : physiology * genetics * hypertension Subject RIV: ED - Physiology Impact factor: 1.646, year: 2010

  11. Robert Hooke: early respiratory physiologist, polymath, and mechanical genius.

    Science.gov (United States)

    West, John B

    2014-07-01

    Robert Hooke (1635-1703) was a polymath who made important contributions to respiratory physiology and many other scientific areas. With Robert Boyle, he constructed the first air pump that allowed measurements on small animals at a reduced atmospheric pressure, and this started the discipline of high-altitude physiology. He also built the first human low-pressure chamber and described his experiences when the pressure was reduced to the equivalent of an altitude of ∼2,400 m. Using artificial ventilation in an animal preparation, he demonstrated that movement of the lung was not essential for life. His book Micrographia describing early studies with a microscope remains a classic. He produced an exquisite drawing of the head of a fly, showing the elaborate compound eye. There is also a detailed drawing of a flea, and Hooke noted how the long, many-jointed legs enable the insect to jump so high. For 40 years, he was the curator of experiments for the newly founded Royal Society in London and contributed greatly to its intellectual ferment. His mechanical inventions covered an enormous range, including the watch spring, the wheel barometer, and the universal joint. Following the Great Fire of London in 1666, he designed many of the new buildings in conjunction with Christopher Wren. Unfortunately, Hooke had an abrasive personality, which was partly responsible for a lack of recognition of his work for many years. However, during the last 25 years, there has been renewed interest, and he is now recognized as a brilliant scientist and innovator. ©2014 Int. Union Physiol. Sci./Am. Physiol. Soc.

  12. The Role of Physiologists in Health Care Delivery Through Exercise ...

    African Journals Online (AJOL)

    olayemitoyin

    more in a day than others in a month; stay younger and longer than others ... during long hours (2 to 3 hours) of sitting down, eg., .... while it happens in a flash, the memory sometimes ... are richer for its benefits; equally, it creates happiness.

  13. The Role of Physiologists in Health Care Delivery Through Exercise ...

    African Journals Online (AJOL)

    Nigerian Journal of Physiological Sciences. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 30, No 1-2 (2015) >. Log in or Register to get access to full text downloads.

  14. Respiratory muscle involvement in sarcoidosis.

    Science.gov (United States)

    Schreiber, Tina; Windisch, Wolfram

    2018-07-01

    In sarcoidosis, muscle involvement is common, but mostly asymptomatic. Currently, little is known about respiratory muscle and diaphragm involvement and function in patients with sarcoidosis. Reduced inspiratory muscle strength and/or a reduced diaphragm function may contribute to exertional dyspnea, fatigue and reduced health-related quality of life. Previous studies using volitional and non-volitional tests demonstrated a reduced inspiratory muscle strength in sarcoidosis compared to control subjects, and also showed that respiratory muscle function may even be significantly impaired in a subset of patients. Areas covered: This review examines the evidence on respiratory muscle involvement and its implications in sarcoidosis with emphasis on pathogenesis, diagnosis and treatment of respiratory muscle dysfunction. The presented evidence was identified by a literature search performed in PubMed and Medline for articles about respiratory and skeletal muscle function in sarcoidosis through to January 2018. Expert commentary: Respiratory muscle involvement in sarcoidosis is an underdiagnosed condition, which may have an important impact on dyspnea and health-related quality of life. Further studies are needed to understand the etiology, pathogenesis and extent of respiratory muscle involvement in sarcoidosis.

  15. Vitamin D and muscle trophicity.

    Science.gov (United States)

    Domingues-Faria, Carla; Boirie, Yves; Walrand, Stéphane

    2017-05-01

    We review recent findings on the involvement of vitamin D in skeletal muscle trophicity. Vitamin D deficiencies are associated with reduced muscle mass and strength, and its supplementation seems effective to improve these parameters in vitamin D-deficient study participants. Latest investigations have also evidenced that vitamin D is essential in muscle development and repair. In particular, it modulates skeletal muscle cell proliferation and differentiation. However, discrepancies still exist about an enhancement or a decrease of muscle proliferation and differentiation by the vitamin D. Recently, it has been demonstrated that vitamin D influences skeletal muscle cell metabolism as it seems to regulate protein synthesis and mitochondrial function. Finally, apart from its genomic and nongenomic effects, recent investigations have demonstrated a genetic contribution of vitamin D to muscle functioning. Recent studies support the importance of vitamin D in muscle health, and the impact of its deficiency in regard to muscle mass and function. These 'trophic' properties are of particular importance for some specific populations such as elderly persons and athletes, and in situations of loss of muscle mass or function, particularly in the context of chronic diseases.

  16. Generalized functions

    CERN Document Server

    Gelfand, I M; Graev, M I; Vilenkin, N Y; Pyatetskii-Shapiro, I I

    Volume 1 is devoted to basics of the theory of generalized functions. The first chapter contains main definitions and most important properties of generalized functions as functional on the space of smooth functions with compact support. The second chapter talks about the Fourier transform of generalized functions. In Chapter 3, definitions and properties of some important classes of generalized functions are discussed; in particular, generalized functions supported on submanifolds of lower dimension, generalized functions associated with quadratic forms, and homogeneous generalized functions are studied in detail. Many simple basic examples make this book an excellent place for a novice to get acquainted with the theory of generalized functions. A long appendix presents basics of generalized functions of complex variables.

  17. The callipyge mutation and other genes that affect muscle hypertrophy in sheep

    Directory of Open Access Journals (Sweden)

    Cockett Noelle E

    2005-12-01

    Full Text Available Abstract Genetic strategies to improve the profitability of sheep operations have generally focused on traits for reproduction. However, natural mutations exist in sheep that affect muscle growth and development, and the exploitation of these mutations in breeding strategies has the potential to significantly improve lamb-meat quality. The best-documented mutation for muscle development in sheep is callipyge (CLPG, which causes a postnatal muscle hypertrophy that is localized to the pelvic limbs and loin. Enhanced skeletal muscle growth is also observed in animals with the Carwell (or rib-eye muscling mutation, and a double-muscling phenotype has been documented for animals of the Texel sheep breed. However, the actual mutations responsible for these muscular hypertrophy phenotypes in sheep have yet to be identified, and further characterization of the genetic basis for these phenotypes will provide insight into the biological control of muscle growth and body composition.

  18. Acquired muscle contractures in the dog and cat. A review of the literature and case report.

    Science.gov (United States)

    Taylor, J; Tangner, C H

    2007-01-01

    Canine and feline muscle contracture is reported to affect several different muscles, is associated with a number of predisposing factors, and a varying prognosis depending upon which muscle is affected. Most patients suffer some form of trauma weeks to months before the contracture is present. The clinical signs include: lameness, pain, weakness, decreased range of motion, a firmness noted throughout the entire muscle, and usually a characteristic gait. Pre-disposing factors for muscle contracture include: compartment syndrome, infection, trauma, repetitive strains, fractures, infectious diseases, immune-mediated diseases, neoplasia, and ischaemia. There does appear to be some breed and age predilection, however, the sex of the animal does not have an appreciable influence. In general, muscle contractures of the forelimb respond better to treatment and carry a better prognosis than muscle contractures of the hindlimb.

  19. Nuclear Positioning in Muscle Development and Disease

    OpenAIRE

    Eric eFolker; Mary eBaylies

    2013-01-01

    Muscle disease as a group is characterized by muscle weakness, muscle loss, and impaired muscle function. Although the phenotype is the same, the underlying cellular pathologies, and the molecular causes of these pathologies, are diverse. One common feature of many muscle disorders is the mispositioning of myonuclei. In unaffected individuals myonuclei are spaced throughout the periphery of the muscle fiber such that the distance between nuclei is maximized. However, in diseased muscles, th...

  20. Changes in skeletal muscle gene expression following clenbuterol administration

    Directory of Open Access Journals (Sweden)

    McIntyre Lauren M

    2006-12-01

    Full Text Available Abstract Background Beta-adrenergic receptor agonists (BA induce skeletal muscle hypertrophy, yet specific mechanisms that lead to this effect are not well understood. The objective of this research was to identify novel genes and physiological pathways that potentially facilitate BA induced skeletal muscle growth. The Affymetrix platform was utilized to identify gene expression changes in mouse skeletal muscle 24 hours and 10 days after administration of the BA clenbuterol. Results Administration of clenbuterol stimulated anabolic activity, as indicated by decreased blood urea nitrogen (BUN; P P Conclusion Global evaluation of gene expression after administration of clenbuterol identified changes in gene expression and overrepresented functional categories of genes that may regulate BA-induced muscle hypertrophy. Changes in mRNA abundance of multiple genes associated with myogenic differentiation may indicate an important effect of BA on proliferation, differentiation, and/or recruitment of satellite cells into muscle fibers to promote muscle hypertrophy. Increased mRNA abundance of genes involved in the initiation of translation suggests that increased levels of protein synthesis often associated with BA administration may result from a general up-regulation of translational initiators. Additionally, numerous other genes and physiological pathways were identified that will be important targets for further investigations of the hypertrophic effect of BA on skeletal muscle.

  1. Pneumatic Artificial Muscles Based on Biomechanical Characteristics of Human Muscles

    Directory of Open Access Journals (Sweden)

    N. Saga

    2006-01-01

    Full Text Available This article reports the pneumatic artificial muscles based on biomechanical characteristics of human muscles. A wearable device and a rehabilitation robot that assist a human muscle should have characteristics similar to those of human muscle. In addition, since the wearable device and the rehabilitation robot should be light, an actuator with a high power to weight ratio is needed. At present, the McKibben type is widely used as an artificial muscle, but in fact its physical model is highly nonlinear. Therefore, an artificial muscle actuator has been developed in which high-strength carbon fibres have been built into the silicone tube. However, its contraction rate is smaller than the actual biological muscles. On the other hand, if an artificial muscle that contracts axially is installed in a robot as compactly as the robot hand, big installing space is required. Therefore, an artificial muscle with a high contraction rate and a tendon-driven system as a compact actuator were developed, respectively. In this study, we report on the basic structure and basic characteristics of two types of actuators.

  2. Muscle-specific integrins in masseter muscle fibers of chimpanzees: an immunohistochemical study.

    Directory of Open Access Journals (Sweden)

    Gianluigi Vaccarino

    2010-05-01

    Full Text Available Most notably, recent comparative genomic analyses strongly indicate that the marked differences between modern human and chimpanzees are likely due more to changes in gene regulation than to modifications of the genes. The most peculiar aspect of hominoid karyotypes is that human have 46 chromosomes whereas gorillas and chimpanzees have 48. Interestingly, human and chimpanzees do share identical inversions on chromosome 7 and 9 that are not evident in the gorilla karyotype. Thus, the general phylogeny suggests that humans and chimpanzees are sister taxa; based on this, it seems that human-chimpanzee sequence similarity is an astonishing 99%. At this purpose, of particular interest is the inactivation of the myosin heavy chain 16 (MYH16 gene, most prominently expressed in the masticatory muscle of mammals. It has been showed that the loss of this gene in humans may have resulted in smaller masticatory muscle and consequential changes to cranio-facial morphology and expansion of the human brain case. Powerful masticatory muscles are found in most primates; contrarily, in both modern and fossil member Homo, these muscles are considerably smaller. The evolving hominid masticatory apparatus shifted towards a pattern of gracilization nearly simultaneously with accelerated encephalization in early Homo. To better comprehend the real role of the MYH16 gene, we studied the primary proteins present in the muscle fibers of humans and non-humans, in order to understand if they really can be influenced by MYH16 gene. At this aim we examined the muscle-specific integrins, alpha 7B and beta 1D-integrins, and their relative fetal isoforms, alpha 7A and beta 1A-integrins, analyzing, by immunohistochemistry, muscle biopsies of two components of a chimpanzee's group in captivity, an alpha male and a non-alpha male subjects; all these integrins participate in vital biological processes such as maintenance of tissue integrity, embryonic development, cell

  3. Effect of two contrasting types of physical exercise on chronic neck muscle pain

    DEFF Research Database (Denmark)

    Andersen, Lars L; Kjaer, Michael; Søgaard, Karen

    2008-01-01

    trial and recruited subjects from 7 workplaces characterized by monotonous jobs (e.g., computer-intensive work). Forty-eight employed women with chronic neck muscle pain (defined as a clinical diagnosis of trapezius myalgia) were randomly assigned to 10 weeks of specific strength training locally......OBJECTIVE: The prevalence of neck muscle pain has steadily increased and especially pain from the descending part of the trapezius muscle has been associated with monotonous work tasks such as computer work. Physical exercise is generally recommended as treatment, but it is unclear which type...... of training is most effective. Our objective was to determine the effectiveness of specific strength training of the painful muscle versus general fitness training without direct involvement of the painful muscle (leg bicycling) on work-related neck muscle pain. METHODS: We conducted a randomized controlled...

  4. Effect of two contrasting types of physical exercise on chronic neck muscle pain

    DEFF Research Database (Denmark)

    Andersen, L.L.; Kjær, Michael; Søgaard, Kirsten

    2008-01-01

    trial and recruited subjects from 7 workplaces characterized by monotonous jobs (e.g., computer-intensive work). Forty-eight employed women with chronic neck muscle pain (defined as a clinical diagnosis of trapezius myalgia) were randomly assigned to 10 weeks of specific strength training locally......Objective. The prevalence of neck muscle pain has steadily increased and especially pain from the descending part of the trapezius muscle has been associated with monotonous work tasks such as computer work. Physical exercise is generally recommended as treatment, but it is unclear which type...... of training is most effective. Our objective was to determine the effectiveness of specific strength training of the painful muscle versus general fitness training without direct involvement of the painful muscle (leg bicycling) on work-related neck muscle pain. Methods. We conducted a randomized controlled...

  5. Biothermal sensing of a torsional artificial muscle.

    Science.gov (United States)

    Lee, Sung-Ho; Kim, Tae Hyeob; Lima, Márcio D; Baughman, Ray H; Kim, Seon Jeong

    2016-02-14

    Biomolecule responsive materials have been studied intensively for use in biomedical applications as smart systems because of their unique property of responding to specific biomolecules under mild conditions. However, these materials have some challenging drawbacks that limit further practical application, including their speed of response and mechanical properties, because most are based on hydrogels. Here, we present a fast, mechanically robust biscrolled twist-spun carbon nanotube yarn as a torsional artificial muscle through entrapping an enzyme linked to a thermally sensitive hydrogel, poly(N-isopropylacrylamide), utilizing the exothermic catalytic reaction of the enzyme. The induced rotation reached an equilibrated angle in less than 2 min under mild temperature conditions (25-37 °C) while maintaining the mechanical properties originating from the carbon nanotubes. This biothermal sensing of a torsional artificial muscle offers a versatile platform for the recognition of various types of biomolecules by replacing the enzyme, because an exothermic reaction is a general property accompanying a biochemical transformation.

  6. Mimicking muscle activity with electrical stimulation

    Science.gov (United States)

    Johnson, Lise A.; Fuglevand, Andrew J.

    2011-02-01

    Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.

  7. Ultrasound of skeletal muscle injury.

    Science.gov (United States)

    Koh, Eamon Su Chun; McNally, Eugene G

    2007-06-01

    The professional and recreational demands of modern society make the treatment of muscle injury an increasingly important clinical problem, particularly in the athletic population. In the elite athlete, significant financial and professional pressures may also exist that emphasize the need for accurate diagnosis and treatment. With new advances in ultrasound technology, images of exquisite detail allow diagnosis of muscle injury that matches the accuracy of magnetic resonance imaging (MRI). Furthermore, the benefits of real-time and Doppler imaging, ability to perform interventional procedures, and relative cost benefits compared with MRI place ultrasound at the forefront for investigation for these injuries in many circumstances. Muscle injury may be divided into acute and chronic pathology, with muscle strain injury the most common clinical problem presenting to sports physicians. This article reviews the spectrum of acute and chronic muscle injuries, with particular attention to clinical features and some common or important muscle strain injuries.

  8. General Editorial

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. General Editorial. Articles in Resonance – Journal of Science Education. Volume 19 Issue 1 January 2014 pp 1-2 General Editorial. General Editorial on Publication Ethics · R Ramaswamy · More Details Fulltext PDF. Volume 19 Issue 1 January 2014 pp 3-3 ...

  9. Molecular aging and rejuvenation of human muscle stem cells

    DEFF Research Database (Denmark)

    Carlson, Morgan E; Suetta, Charlotte; Conboy, Michael J

    2009-01-01

    . Our findings establish key evolutionarily conserved mechanisms of human stem cell aging. We find that satellite cells are maintained in aged human skeletal muscle, but fail to activate in response to muscle attrition, due to diminished activation of Notch compounded by elevated transforming growth...... factor beta (TGF-beta)/phospho Smad3 (pSmad3). Furthermore, this work reveals that mitogen-activated protein kinase (MAPK)/phosphate extracellular signal-regulated kinase (pERK) signalling declines in human muscle with age, and is important for activating Notch in human muscle stem cells. This molecular......Very little remains known about the regulation of human organ stem cells (in general, and during the aging process), and most previous data were collected in short-lived rodents. We examined whether stem cell aging in rodents could be extrapolated to genetically and environmentally variable humans...

  10. Relationship between Human Aging Muscle and Oxidative System Pathway

    Directory of Open Access Journals (Sweden)

    Enrico Doria

    2012-01-01

    Full Text Available Ageing is a complex process that in muscle is usually associated with a decrease in mass, strength, and velocity of contraction. One of the most striking effects of ageing on muscle is known as sarcopenia. This inevitable biological process is characterized by a general decline in the physiological and biochemical functions of the major systems. At the cellular level, aging is caused by a progressive decline in mitochondrial function that results in the accumulation of reactive oxygen species (ROS generated by the addition of a single electron to the oxygen molecule. The aging process is characterized by an imbalance between an increase in the production of reactive oxygen species in the organism and the antioxidant defences as a whole. The goal of this review is to examine the results of existing studies on oxidative stress in aging human skeletal muscles, taking into account different physiological factors (sex, fibre composition, muscle type, and function.

  11. Insights into skeletal muscle development and applications in regenerative medicine.

    Science.gov (United States)

    Tran, T; Andersen, R; Sherman, S P; Pyle, A D

    2013-01-01

    Embryonic and postnatal development of skeletal muscle entails highly regulated processes whose complexity continues to be deconstructed. One key stage of development is the satellite cell, whose niche is composed of multiple cell types that eventually contribute to terminally differentiated myotubes. Understanding these developmental processes will ultimately facilitate treatments of myopathies such as Duchenne muscular dystrophy (DMD), a disease characterized by compromised cell membrane structure, resulting in severe muscle wasting. One theoretical approach is to use pluripotent stem cells in a therapeutic setting to help replace degenerated muscle tissue. This chapter discusses key myogenic developmental stages and their regulatory pathways; artificial myogenic induction in pluripotent stem cells; advantages and disadvantages of DMD animal models; and therapeutic approaches targeting DMD. Furthermore, skeletal muscle serves as an excellent paradigm for understanding general cell fate decisions throughout development. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Muscle necrosis - computer tomography aspects

    International Nuclear Information System (INIS)

    Franze, I.; Goebel, N.; Stuckmann, G.

    1985-01-01

    In four patients muscle necroses were observed. In two patients these were caused by intraoperative positioning, in one by having worked with a pneumatic hammer and in one possibly by alcohol. CT showed hypodense areas in the affected muscles which were - in the state of subacute necroses - surrounded by hyperaemic borders. The diagnosis was confirmed by puncture or biopsy. After six months hypodense areas were still perceptible in the atrophic muscles of two patients. (orig.) [de

  13. Muscle dysmorphia: current insights

    Directory of Open Access Journals (Sweden)

    Tod D

    2016-08-01

    Full Text Available David Tod1 Christian Edwards2 Ieuan Cranswick1 1School of Sport and Exercise Science, Faculty of Science, Liverpool John Moores University, Liverpool, Merseyside, 2Institute of Sport and Exercise Science, University of Worcester, Worcester, Worcestershire, UK Abstract: Since 1997, there has been increasing research focusing on muscle dysmorphia, a condition underpinned by people’s beliefs that they have insufficient muscularity, in both the Western and non-Western medical and scientific communities. Much of this empirical interest has surveyed nonclinical samples, and there is limited understanding of people with the condition beyond knowledge about their characteristics. Much of the existing knowledge about people with the condition is unsurprising and inherent in the definition of the disorder, such as dissatisfaction with muscularity and adherence to muscle-building activities. Only recently have investigators started to explore questions beyond these limited tautological findings that may give rise to substantial knowledge advances, such as the examination of masculine and feminine norms. There is limited understanding of additional topics such as etiology, prevalence, nosology, prognosis, and treatment. Further, the evidence is largely based on a small number of unstandardized case reports and descriptive studies (involving small samples, which are largely confined to Western (North American, British, and Australian males. Although much research has been undertaken since the term “muscle dysmorphia” entered the psychiatric lexicon in 1997, there remains tremendous scope for knowledge advancement. A primary task in the short term is for investigators to examine the extent to which the condition exists among well-defined populations to help determine the justification for research funding relative to other public health issues. A greater variety of research questions and designs may contribute to a broader and more robust knowledge base

  14. Muscle dysmorphia: current insights.

    Science.gov (United States)

    Tod, David; Edwards, Christian; Cranswick, Ieuan

    2016-01-01

    Since 1997, there has been increasing research focusing on muscle dysmorphia, a condition underpinned by people's beliefs that they have insufficient muscularity, in both the Western and non-Western medical and scientific communities. Much of this empirical interest has surveyed nonclinical samples, and there is limited understanding of people with the condition beyond knowledge about their characteristics. Much of the existing knowledge about people with the condition is unsurprising and inherent in the definition of the disorder, such as dissatisfaction with muscularity and adherence to muscle-building activities. Only recently have investigators started to explore questions beyond these limited tautological findings that may give rise to substantial knowledge advances, such as the examination of masculine and feminine norms. There is limited understanding of additional topics such as etiology, prevalence, nosology, prognosis, and treatment. Further, the evidence is largely based on a small number of unstandardized case reports and descriptive studies (involving small samples), which are largely confined to Western (North American, British, and Australian) males. Although much research has been undertaken since the term "muscle dysmorphia" entered the psychiatric lexicon in 1997, there remains tremendous scope for knowledge advancement. A primary task in the short term is for investigators to examine the extent to which the condition exists among well-defined populations to help determine the justification for research funding relative to other public health issues. A greater variety of research questions and designs may contribute to a broader and more robust knowledge base than currently exists. Future work will help clinicians assist a group of people whose quality of life and health are placed at risk by their muscular preoccupation.

  15. Experimental knee joint pain during strength training and muscle strength gain in healthy subjects

    DEFF Research Database (Denmark)

    Sørensen, T J; Langberg, Henning; Hodges, P W

    2012-01-01

    Knee joint pain and reduced quadriceps strength are cardinal symptoms in many knee pathologies. In people with painful knee pathologies, quadriceps exercise reduces pain, improves physical function, and increases muscle strength. A general assumption is that pain compromises muscle function...... and thus may prevent effective rehabilitation. This study evaluated the effects of experimental knee joint pain during quadriceps strength training on muscle strength gain in healthy individuals....

  16. The Effect of Renal Transplantation on Respiratory Muscle Strength in Patients with End Stage Renal Disease

    OpenAIRE

    Tavana, Sasan; Mirzaei, Samaneh

    2016-01-01

    Background: There is evidence of musculoskeletal and respiratory involvement in patients with chronic kidney disease (CKD). This is attributed to protein calorie imbalance that is caused by the disease process, and hemodialysis and is generally referred to as uremic myopathy. This results in calcification of respiratory muscles such as diaphragm and intercostal muscles. There are limited data about respiratory muscle strength in patients with CKD. We intended to evaluate the effect of kidney ...

  17. Lipoxygenase in chicken muscle

    International Nuclear Information System (INIS)

    Grossman, S.; Bergman, M.; Sklan, D.

    1988-01-01

    The presence of lipoxygenase-type enzymes was demonstrated in chick muscles. Examination of the oxidation products of [ 14 C]arachidonic acid revealed the presence of 15-lipoxygenase. The enzyme was partially purified by affinity chromatography on linoleoyl-aminoethyl-Sepharose. The enzyme was stable on frozen storage, and activity was almost completely preserved after 12-month storage at -20 degree C. During this period the content of cis,cis-1,4-pentadiene fatty acids decreased slightly. It is suggested that lipoxygenase may be responsible for some of the oxidative changes occurring in fatty acids on frozen storage of chicken meat

  18. Coding in Muscle Disease.

    Science.gov (United States)

    Jones, Lyell K; Ney, John P

    2016-12-01

    Accurate coding is critically important for clinical practice and research. Ongoing changes to diagnostic and billing codes require the clinician to stay abreast of coding updates. Payment for health care services, data sets for health services research, and reporting for medical quality improvement all require accurate administrative coding. This article provides an overview of administrative coding for patients with muscle disease and includes a case-based review of diagnostic and Evaluation and Management (E/M) coding principles in patients with myopathy. Procedural coding for electrodiagnostic studies and neuromuscular ultrasound is also reviewed.

  19. Idiopathic masseter muscle hypertrophy.

    Science.gov (United States)

    Kebede, Biruktawit; Megersa, Shimalis

    2011-11-01

    Benign Masseteric Hypertrophy is a relatively uncommon condition that can occur unilaterally or bilaterally. Pain may be a symptom, but most frequently a clinician is consulted for cosmetic reasons. In some cases prominent Exostoses at the angle of the mandible are noted. Although it is tempting to point to Malocclusion, Bruxism, clenching, or Temporomandibular joint disorders, the etiology in the majority of cases is unclear. Diagnosis is based on awareness of the condition, clinical and radiographic findings, and exclusion of more serious Pathology such as Benign and Malignant Parotid Disease, Rhabdomyoma, and Lymphangioma. Treatment usually involves resection of a portion of the Masseter muscle with or without the underlying bone.

  20. Contractures and muscle disease.

    Science.gov (United States)

    Walters, R Jon

    2016-08-01

    Contractures are one of a handful of signs in muscle disease, besides weakness and its distribution, whose presence can help guide us diagnostically, a welcome star on the horizon. Contractures are associated with several myopathies, some with important cardiac manifestations, and consequently are important to recognise; their presence may also provide us with a potential satisfying 'penny dropping' diagnostic moment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. New twist on artificial muscles.

    Science.gov (United States)

    Haines, Carter S; Li, Na; Spinks, Geoffrey M; Aliev, Ali E; Di, Jiangtao; Baughman, Ray H

    2016-10-18

    Lightweight artificial muscle fibers that can match the large tensile stroke of natural muscles have been elusive. In particular, low stroke, limited cycle life, and inefficient energy conversion have combined with high cost and hysteretic performance to restrict practical use. In recent years, a new class of artificial muscles, based on highly twisted fibers, has emerged that can deliver more than 2,000 J/kg of specific work during muscle contraction, compared with just 40 J/kg for natural muscle. Thermally actuated muscles made from ordinary polymer fibers can deliver long-life, hysteresis-free tensile strokes of more than 30% and torsional actuation capable of spinning a paddle at speeds of more than 100,000 rpm. In this perspective, we explore the mechanisms and potential applications of present twisted fiber muscles and the future opportunities and challenges for developing twisted muscles having improved cycle rates, efficiencies, and functionality. We also demonstrate artificial muscle sewing threads and textiles and coiled structures that exhibit nearly unlimited actuation strokes. In addition to robotics and prosthetics, future applications include smart textiles that change breathability in response to temperature and moisture and window shutters that automatically open and close to conserve energy.

  2. Muscle regeneration in mitochondrial myopathies

    DEFF Research Database (Denmark)

    Krag, T O; Hauerslev, S; Jeppesen, T D

    2013-01-01

    Mitochondrial myopathies cover a diverse group of disorders in which ragged red and COX-negative fibers are common findings on muscle morphology. In contrast, muscle degeneration and regeneration, typically found in muscular dystrophies, are not considered characteristic features of mitochondrial...... myopathies. We investigated regeneration in muscle biopsies from 61 genetically well-defined patients affected by mitochondrial myopathy. Our results show that the perturbed energy metabolism in mitochondrial myopathies causes ongoing muscle regeneration in a majority of patients, and some were even affected...

  3. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L.; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence...

  4. Nutritional interventions to preserve skeletal muscle mass

    NARCIS (Netherlands)

    Backx, Evelien M.P.

    2016-01-01

    Muscle mass is the main predictor for muscle strength and physical function. The amount of muscle mass can decline rapidly during periods of reduced physical activity or during periods of energy intake restriction. For athletes, it is important to maintain muscle mass, since the loss of muscle is

  5. Muscle-bone Interactions During Fracture Healing

    Science.gov (United States)

    2015-03-01

    muscle resection, isotopic or heterotopic minced muscle implants were placed immediately adjacent to the periosteum. Their control groups consisted of...interacting with surrounding muscle. Addition- ally, Utvag et al. showed that significant muscle injury and ab- sence of muscle by resection, or by traumatic

  6. Molecular and cellular mechanisms of muscle aging and sarcopenia and effects of electrical stimulation in seniors

    Directory of Open Access Journals (Sweden)

    Laura Barberi

    2015-08-01

    Full Text Available The prolongation of skeletal muscle strength in aging and neuromuscular disease has been the objective of numerous studies employing a variety of approaches. It is generally accepted that cumulative failure to repair damage related to an overall decrease in anabolic processes is a primary cause of functional impairment in muscle. The functional performance of skeletal muscle tissues declines during post- natal life and it is compromised in different diseases, due to an alteration in muscle fiber composition and an overall decrease in muscle integrity as fibrotic invasions replace functional contractile tissue. Characteristics of skeletal muscle aging and diseases include a conspicuous reduction in myofiber plasticity (due to the progressive loss of muscle mass and in particular of the most powerful fast fibers, alteration in muscle-specific transcriptional mechanisms, and muscle atrophy. An early decrease in protein synthetic rates is followed by a later increase in protein degradation, to affect biochemical, physiological, and morphological parameters of muscle fibers during the aging process. Alterations in regenerative pathways also compromise the functionality of muscle tissues. In this review we will give an overview of the work on molecular and cellular mechanisms of aging and sarcopenia and the effects of electrical stimulation in seniors.

  7. A Mathematical Model of Oxygen Transport in Skeletal Muscle During Hindlimb Unloading

    Science.gov (United States)

    Causey, Laura; Lewandowski, Beth E.; Weinbaum, Sheldon

    2014-01-01

    During hindlimb unloading (HU) dramatic fluid shifts occur within minutes of the suspension, leading to a less precise matching of blood flow to O2 demands of skeletal muscle. Vascular resistance directs blood away from certain muscles, such as the soleus (SOL). The muscle volume gradually reduces in these muscles so that eventually the relative blood flow returns to normal. It is generally believed that muscle volume change is not due to O2 depletion, but a consequence of disuse. However, the volume of the unloaded rat muscle declines over the course of weeks, whereas the redistribution of blood flow occurs immediately. Using a Krogh Cylinder Model, the distribution of O2 was predicted in two skeletal muscles: SOL and gastrocnemius (GAS). Effects of the muscle blood flow, volume, capillary density, and O2 uptake, are included to calculate the pO2 at rest and after 10 min and 15 days of unloading. The model predicts that 32 percent of the SOL muscle tissue has a pO2 1.25 mm Hg within 10 min, whereas the GAS maintains normal O2 levels, and that equilibrium is reached only as the SOL muscle cells degenerate. The results provide evidence that there is an inadequate O2 supply to the mitochondria in the SOL muscle after 10 min HU.

  8. The influence of altered working-side occlusal guidance on masticatory muscles and related jaw movement.

    Science.gov (United States)

    Belser, U C; Hannam, A G

    1985-03-01

    The effect of four different occlusal situations (group function, canine guidance, working side occlusal interference, and hyperbalancing occlusal interference) on EMG activity in jaw elevator muscles and related mandibular movement was investigated on 12 subjects. With a computer-based system, EMG and displacement signals were collected simultaneously during specific functional (unilateral chewing) and parafunctional tasks (mandibular gliding movements and various tooth clenching efforts) and analyzed quantitatively. When a naturally acquired group function was temporarily and artificially changed into a dominant canine guidance, a significant general reduction of elevator muscle activity was observed when subjects exerted full isometric tooth-clenching efforts in a lateral mandibular position. The original muscular coordination pattern (relative contraction from muscle to muscle) remained unaltered during this test. With respect to unilateral chewing, no significant alterations in the activity or coordination of the muscles occurred when an artificial canine guidance was introduced. Introduction of a hyperbalancing occlusal contact caused significant alterations in muscle activity and coordination during maximal tooth clenching in a lateral mandibular position. A marked shift of temporal muscle EMG activity toward the side of the interference and unchanged bilateral activity of the two masseter muscles were observed. The results suggest that canine-protected occlusions do not significantly alter muscle activity during mastication but significantly reduce muscle activity during parafunctional clenching. They also suggest that non-working side contacts dramatically alter the distribution of muscle activity during parafunctional clenching, and that this redistribution may affect the nature of reaction forces at the temporomandibular joints.

  9. The magnitude of muscle strain does not influence serial sarcomere number adaptations following eccentric exercise.

    Science.gov (United States)

    Butterfield, Timothy A; Herzog, Walter

    2006-02-01

    It is generally accepted that eccentric exercise, when performed by a muscle that is unaccustomed to that type of contraction, results in a delayed onset of muscle soreness (DOMS). A prolonged exposure to eccentric exercise leads to the disappearance of the signs and symptoms associated with DOMS, which has been referred to as the repeated bout effect (RBE). Although the mechanisms underlying the RBE remain unclear, several mechanisms have been proposed, including the serial sarcomere number addition following exercise induced muscle damage. In the traditional DOMS and RBE protocols, muscle injury has been treated as a global parameter, with muscle force and strain assumed to be uniform throughout the muscle. To assess the effects of muscle-tendon unit strain, fiber strain, torque and injury on serial sarcomere number adaptations, three groups of New Zealand White (NZW) rabbits were subjected to chronic repetitive eccentric exercise bouts of the ankle dorsiflexors for 6 weeks. These eccentric exercise protocols consisted of identical muscle tendon unit (MTU) strain, but other mechanical factors were systematically altered. Following chronic eccentric exercise, serial sarcomere number adaptations were not identical between the three eccentric exercise protocols, and serial sarcomere number adaptations were not uniform across all regions of the muscle. Peak torque and relaxation fiber strain were the best predictors of serial sarcomere number across all three protocols. Therefore, MTU strain does not appear to be the primary cause for sarcomerogenesis, and differential adaptations within the muscle may be explained by the nonuniform architecture of the muscle, resulting in differential local fiber strains.

  10. A neuro-mechanical model of a single leg joint highlighting the basic physiological role of fast and slow muscle fibres of an insect muscle system.

    Directory of Open Access Journals (Sweden)

    Tibor Istvan Toth

    Full Text Available In legged animals, the muscle system has a dual function: to produce forces and torques necessary to move the limbs in a systematic way, and to maintain the body in a static position. These two functions are performed by the contribution of specialized motor units, i.e. motoneurons driving sets of specialized muscle fibres. With reference to their overall contraction and metabolic properties they are called fast and slow muscle fibres and can be found ubiquitously in skeletal muscles. Both fibre types are active during stepping, but only the slow ones maintain the posture of the body. From these findings, the general hypothesis on a functional segregation between both fibre types and their neuronal control has arisen. Earlier muscle models did not fully take this aspect into account. They either focused on certain aspects of muscular function or were developed to describe specific behaviours only. By contrast, our neuro-mechanical model is more general as it allows functionally to differentiate between static and dynamic aspects of movement control. It does so by including both muscle fibre types and separate motoneuron drives. Our model helps to gain a deeper insight into how the nervous system might combine neuronal control of locomotion and posture. It predicts that (1 positioning the leg at a specific retraction angle in steady state is most likely due to the extent of recruitment of slow muscle fibres and not to the force developed in the individual fibres of the antagonistic muscles; (2 the fast muscle fibres of antagonistic muscles contract alternately during stepping, while co-contraction of the slow muscle fibres takes place during steady state; (3 there are several possible ways of transition between movement and steady state of the leg achieved by varying the time course of recruitment of the fibres in the participating muscles.

  11. Muscle and Limb Mechanics.

    Science.gov (United States)

    Tsianos, George A; Loeb, Gerald E

    2017-03-16

    Understanding of the musculoskeletal system has evolved from the collection of individual phenomena in highly selected experimental preparations under highly controlled and often unphysiological conditions. At the systems level, it is now possible to construct complete and reasonably accurate models of the kinetics and energetics of realistic muscles and to combine them to understand the dynamics of complete musculoskeletal systems performing natural behaviors. At the reductionist level, it is possible to relate most of the individual phenomena to the anatomical structures and biochemical processes that account for them. Two large challenges remain. At a systems level, neuroscience must now account for how the nervous system learns to exploit the many complex features that evolution has incorporated into muscle and limb mechanics. At a reductionist level, medicine must now account for the many forms of pathology and disability that arise from the many diseases and injuries to which this highly evolved system is inevitably prone. © 2017 American Physiological Society. Compr Physiol 7:429-462, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  12. [Statins and muscle pain].

    Science.gov (United States)

    Yosef, Yoni; Schurr, Daniel; Constantini, Naama

    2014-07-01

    Statins are used for the prevention and treatment of cardiovascular disease. The treatment is quite safe but not free of side effects, particularly muscle pain. Fear of pain may prevent patients from carrying out exercise or diminish their motivation to return and engage in it, even though both the statins and the exercise have a proven benefit in both treatment and prevention, and a synergistic effect enhances this benefit. Prevalence of muscular pain ranges from 1-30%. Pain usually appears at the beginning of treatment, but can occur even after months and under any of the existing agents. The creatine phosphokinase (CPK) enzyme level may rise, but not necessarily. Increases to exceptional values (10 times the upper normal level) are relatively rare and rhabdomyolysis is extremely rare. The risk increases with age, co-morbidities and especially when taken concurrently with drugs that are metabolized in a similar pathway. Pain usually passes within a month after discontinuing treatment, but may persist for six months or more. Studies have examined the effect of statin therapy on the ability to perform physical activity, but results are inconsistent. The increased rise of CPK was observed under statin therapy, a tendency that increased with age. However, it was not accompanied by an increased incidence of muscle pain or rhabdomyolysis. Considering the above we recommend encouraging patients to exercise. However, patients should be instructed to report new or worsening muscular pains. Discontinuation, lowering dose or replacement should be considered when pain is suspected to be related with treatment.

  13. Generalized product

    OpenAIRE

    Greco, Salvatore; Mesiar, Radko; Rindone, Fabio

    2014-01-01

    Aggregation functions on [0,1] with annihilator 0 can be seen as a generalized product on [0,1]. We study the generalized product on the bipolar scale [–1,1], stressing the axiomatic point of view. Based on newly introduced bipolar properties, such as the bipolar increasingness, bipolar unit element, bipolar idempotent element, several kinds of generalized bipolar product are introduced and studied. A special stress is put on bipolar semicopulas, bipolar quasi-copulas and bipolar copulas.

  14. FDG-PET/CT assessment of differential chemotherapy effects upon skeletal muscle metabolism in patients with melanoma

    International Nuclear Information System (INIS)

    Goncalves, M.D.; Alavi, A.; Torigian, D.A.

    2014-01-01

    To quantify the differential effects of chemotherapy on the metabolic activity of skeletal muscle in vivo using molecular imaging with [18F]-fluorodeoxy-glucose (FDG)-positron emission tomography/computed tomography (PET/CT). In this retrospective study, 21 subjects with stage IV melanoma who underwent pre- and post-chemotherapy whole-body FDG-PET/CT imaging were included. The mean standardized uptake value (SUV mean ) of 8 different skeletal muscles was measured per subject. Pre- and post-treatment measurements were then averaged across all subjects for each muscle and compared for statistically significant differences between the muscles and following different chemotherapy regimens including dacarbazine (DTIC) and temozolomide (TMZ). Analysis of FDG-PET/CT images reliably detected changes in skeletal muscle metabolic activity based on muscle location. The percent change in metabolic activity of each skeletal muscle in each subject following chemotherapy was observed to be related to the type of chemotherapy received. Subjects receiving DTIC generally had a decrease in metabolic activity of all muscle groups, whereas subjects receiving TMZ generally had an increase in muscle activity of all muscle groups. FDG-PET/CT can reveal baseline metabolic differences between different muscles of the body. Different chemotherapies are associated with differential changes in the metabolic activity of skeletal muscle, which can be detected and quantified with FDG-PET/CT. (author)

  15. Calcium regulation and muscle disease.

    NARCIS (Netherlands)

    Gommans, I.M.P.; Vlak, M.; Haan, A. de; Engelen, B.G.M. van

    2002-01-01

    Changes in intracellular Ca2+-concentration play an important role in the excitation-contraction-relaxation cycle of skeletal muscle. In this review we describe various inheritable muscle diseases to highlight the role of Ca2+-regulatory mechanisms. Upon excitation the ryanodine receptor releases

  16. Skeletal muscle regeneration is modulated by inflammation

    Directory of Open Access Journals (Sweden)

    Wenjun Yang

    2018-04-01

    Full Text Available Skeletal muscle regeneration is a complex process orchestrated by multiple steps. Recent findings indicate that inflammatory responses could play central roles in bridging initial muscle injury responses and timely muscle injury reparation. The various types of immune cells and cytokines have crucial roles in muscle regeneration process. In this review, we briefly summarise the functions of acute inflammation in muscle regeneration. The translational potential of this article: Immune system is closely relevant to the muscle regeneration. Understanding the mechanisms of inflammation in muscle regeneration is therefore critical for the development of effective regenerative, and therapeutic strategies in muscular disorders. This review provides information for muscle regeneration research regarding the effects of inflammation on muscle regeneration. Keywords: Chronic muscle disorders, Cytokines, Immune cells, Inflammation, Muscle regeneration, Muscle stem cells

  17. Repetitive muscle compression reduces vascular mechano-sensitivity and the hyperemic response to muscle contraction.

    Science.gov (United States)

    Messere, A; Turturici, M; Millo, G; Roatta, S

    2017-06-01

    Animal studies have shown that the rapid hyperemic response to external muscle compression undergoes inactivation upon repetitive stimulation, but this phenomenon has never been observed in humans. The aim of the present study was to determine whether 1) the vascular mechano-sensitivity underlying muscle compression-induced hyperemia is inactivated in an inter-stimulus interval (ISI)-dependent fashion upon repetitive stimulation, as suggested by animal studies, and 2) whether such inactivation also attenuates contraction-induced hyperemia. Brachial artery blood flow was measured by echo Doppler sonography in 13 healthy adults in response to 1) single and repetitive cuff muscle compression (CMC) of the forearm (20 CMCs, 1 s ISI); 2) a sequence of CMC delivered at decreasing ISI from 120 to 2 s; and 3) electrically-stimulated contraction of the forearm muscles before and after repetitive CMC. The peak amplitude of hyperemia in response to CMC normalized to baseline decreased from 2.2 ± 0.6 to 1.4 ± 0.4 after repetitive CMC and, in general, was decreased at ISI < 240 s. The peak amplitude of contraction-induced hyperemia was attenuated after as compared to before repeated CMC (1.7 ± 0.4 and 2.6 ± 0.6, respectively). Mechano-sensitivity of the vascular network can be conditioned by previous mechanical stimulation, and such preconditioning may substantially decrease contraction-induced hyperemia.

  18. Effect of Gender, Disease Duration and Treatment on Muscle Strength in Myasthenia Gravis

    DEFF Research Database (Denmark)

    Citirak, Gülsenay; Cejvanovic, Sanja; Andersen, Henning

    2016-01-01

    INTRODUCTION: The aim of this observational, cross-sectional study was to quantify the potential presence of muscle weakness among patients with generalized myasthenia gravis (gMG). The influence of gender, treatment intensity and disease duration on muscle strength and disease progression was also...

  19. Reference values for isometric muscle force among workers for the Netherlands: a comparison of reference values

    NARCIS (Netherlands)

    Michiel Reneman; W.P. Krijnen; Dr. C.P. van der Schans; K.W. Douma; Remko Soer

    2014-01-01

    Background: Muscle force is important for daily life and sports and can be measured with a handheld dynamometer. Reference values are employed to quantify a subject’s muscle force. It is not unambiguous whether reference values can be generalized to other populations. Objectives in this study were;

  20. Skeletal Muscle Insulin Resistance in Endocrine Disease

    Directory of Open Access Journals (Sweden)

    Melpomeni Peppa

    2010-01-01

    Full Text Available We summarize the existing literature data concerning the involvement of skeletal muscle (SM in whole body glucose homeostasis and the contribution of SM insulin resistance (IR to the metabolic derangements observed in several endocrine disorders, including polycystic ovary syndrome (PCOS, adrenal disorders and thyroid function abnormalities. IR in PCOS is associated with a unique postbinding defect in insulin receptor signaling in general and in SM in particular, due to a complex interaction between genetic and environmental factors. Adrenal hormone excess is also associated with disrupted insulin action in peripheral tissues, such as SM. Furthermore, both hyper- and hypothyroidism are thought to be insulin resistant states, due to insulin receptor and postreceptor defects. Further studies are definitely needed in order to unravel the underlying pathogenetic mechanisms. In summary, the principal mechanisms involved in muscle IR in the endocrine diseases reviewed herein include abnormal phosphorylation of insulin signaling proteins, altered muscle fiber composition, reduced transcapillary insulin delivery, decreased glycogen synthesis, and impaired mitochondrial oxidative metabolism.

  1. MR imaging of muscle diseases

    International Nuclear Information System (INIS)

    Kaiser, W.A.; Zeitler, E.; Schalke, B.C.G.

    1986-01-01

    Because of high soft-tissue contrast, MR imaging is especially suitable for the investigation of muscle diseases. Between March 1984 and March 1986, 76 patients with different types of muscle diseases were examined using a 1-T superconductive magnet (Siemens Magnetom). Studied were 14 patients with progressive muscular dystrophy (including carriers), 32 patients with myositis, four patients with myotonic dystrophy, six patients with spinal muscular atrophy, and 20 patients with other muscle diseases, including metabolic disorders. MR imaging showed typical signal patterns in affected muscle groups. These patterns can be used in the differential diagnosis, in biopsy planning, or in evaluation of response to therapy. The T1/T2 ratio especially seems to indicate very early stages of muscle disease

  2. Leiomyoma of the sternothyroid muscle.

    Science.gov (United States)

    Rowe, Meghan E; Khorsandi, Azita S; Guerrero, Dominick R; Brett, Elise M; Sarlin, Jonathan; Urken, Mark L

    2016-01-01

    Leiomyomas are benign cutaneous tumors of smooth muscle origin. Only a small percentage of leiomyomas arise in the head and neck region. We present the first case of leiomyoma arising in the sternothyroid muscle of the neck. We analyze the clinical presentation, pathology, and histology for a single case study. The histologic findings of the tumor located in the sternothyroid muscle support the diagnosis of leiomyoma. This is the first case of leiomyoma arising in the sternothyroid muscle, and only the second reported case of leiomyoma in the strap muscles of the neck. Leiomyoma should be included in the differential diagnosis of soft tissue tumors in the head and neck region. A histological analysis is essential in determining both tumor type and subtype, which will inform the proper course of treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Exercising with blocked muscle glycogenolysis

    DEFF Research Database (Denmark)

    Nielsen, Tue L; Pinós, Tomàs; Brull, Astrid

    2018-01-01

    BACKGROUND: McArdle disease (glycogen storage disease type V) is an inborn error of skeletal muscle metabolism, which affects glycogen phosphorylase (myophosphorylase) activity leading to an inability to break down glycogen. Patients with McArdle disease are exercise intolerant, as muscle glycogen......-derived glucose is unavailable during exercise. Metabolic adaptation to blocked muscle glycogenolysis occurs at rest in the McArdle mouse model, but only in highly glycolytic muscle. However, it is unknown what compensatory metabolic adaptations occur during exercise in McArdle disease. METHODS: In this study, 8......-week old McArdle and wild-type mice were exercised on a treadmill until exhausted. Dissected muscles were compared with non-exercised, age-matched McArdle and wild-type mice for histology and activation and expression of proteins involved in glucose uptake and glycogenolysis. RESULTS: Investigation...

  4. Muscle dysfunction in cancer patients

    DEFF Research Database (Denmark)

    Christensen, Jesper Frank; Jones, L W; Andersen, J L

    2014-01-01

    dysfunction in cancer patients lies in the correlation to vital clinical end points such as cancer-specific and all-cause mortality, therapy complications and quality of life (QoL). Such associations strongly emphasize the need for effective therapeutic countermeasures to be developed and implemented...... implications of muscle dysfunction in cancer patients. The efficacy of exercise training to prevent and/or mitigate cancer-related muscle dysfunction is also discussed. DESIGN: We identified 194 studies examining muscular outcomes in cancer patients by searching PubMed and EMBASE databases. RESULTS: Muscle...... dysfunction is evident across all stages of the cancer trajectory. The causes of cancer-related muscle dysfunction are complex, but may involve a wide range of tumor-, therapy- and/or lifestyle-related factors, depending on the clinical setting of the individual patient. The main importance of muscle...

  5. Dynamic cardiomyoplasty using artificial muscle.

    Science.gov (United States)

    Suzuki, Yasuyuki; Daitoku, Kazuyuki; Minakawa, Masahito; Fukui, Kozo; Fukuda, Ikuo

    2008-01-01

    Dynamic cardiomyoplasty using latissimus dorsi muscle was previously used to compensate for congestive heart failure. Now, however, this method is not acceptable because the long-term result was not as expected owing to fatigue of the skeletal muscle. BioMetal fiber developed by Toki Corporation is one of the artificial muscles activated by electric current. The behavior of this fiber is similar to that of organic muscle. We made an artificial muscle like the latissimus dorsi using BioMetal fiber and tested whether we could use this new muscle as a cardiac supporting device. Testing one Biometal fiber showed the following performance: practical use maximal generative force was 30 g, exercise variation was 50%, and the standard driving current was 220 mA. We created a 4 x 12-cm tabular artificial muscle using 8 BioMetal fibers as a cardiac support device. We also made a simulation circuit composed of a 6 x 8-cm soft bag with unidirectional valves, reservoir, and connecting tube. The simulation circuit was filled with water and the soft bag was wrapped with the artificial muscle device. After powering the device electrically at 9 V with a current of 220 mA for each fiber, we measured the inside pressure and observed the movement of the artificial device. The artificial muscle contracted in 0.5 s for peak time and squeezed the soft bag. The peak pressure inside the soft bag was measured as 10 mmHg. Although further work will be needed to enhance the speed of deformability and movement simulating contraction, we conclude that artificial muscle may be potentially useful as a cardiac assistance device that can be developed for dynamic cardiomyoplasty.

  6. Metabolic characteristics of skeletal muscle from lean and obese Zucker rats

    International Nuclear Information System (INIS)

    Campion, D.R.; Shapira, J.F.; Allen, C.E.; Hausman, G.J.; Martin, R.J.

    1987-01-01

    The purpose of this study was to determine if the metabolic response to obesity and to pair feeding of obese Zucker rats to lean Zucker rats was similar across skeletal muscles. Oxidation of glucose, palmitate and isoleucine was studied in muscle strips in vitro using appropriate 14- carbon substrates as tracers. The plantaris muscle was subjected to histochemical analyses using an alkaline actomyosin ATPase, NADH-tetrazolium reductase and an oil red 0 stain. Soleus muscles from both ad libitum and pair fed obese rats oxidized less glucose to CO 2 , but released similar amounts of lactate when compared to the soleus muscles of lean rats. Oxidation of glucose was similar in the extensor digitorum longus (EDL) muscle of ad libitum fed obese rats, but lower when pair fed to the intake of lean rats. No differences were apparent in palmitate oxidation to CO 2 or in incorporation into lipid, except in the EDL muscle of pair-fed obese rats which exhibited a higher rate for palmitate metabolism when compared with lean rats. Isoleucine oxidation to CO 2 was higher in the EDL and plantaris muscles, but similar in the soleus muscle of ad libitum-fed obese rats when compared with lean rats. The magnitude of the difference in isoleucine oxidation was similar when the obese rats were pair fed. No differences in the percentage of plantaris muscle fibers sensitive to alkaline ATPase staining were observed. The plantaris muscle of obese rats, contained a higher proportion of oxidative fibers. These results indicate the great risk in generalizing about metabolic activity of the whole skeletal muscle mass based on observations made on one, or even two, distinct muscles in this animal model. Also, pair feeding of obese to lean Zucker rats did not result in uniform change sin metabolism between muscles of the obese rats

  7. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    International Nuclear Information System (INIS)

    Crew, Jennifer R.; Falzari, Kanakeshwari; DiMario, Joseph X.

    2010-01-01

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed to differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-γ co-activator-1 (PGC-1α) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.

  8. Muscling out malaria

    DEFF Research Database (Denmark)

    Hughes, David Peter; Boomsma, Jacobus Jan

    2006-01-01

    ) [2] highlighted the back-to-back articles in Science 3 and 4 that demonstrated the potential biocontrol of malaria by targeting mosquitoes with entomopathogenic fungi (Metarhizium and Beauveria spp.). The wide impact of the original articles and the need to find alternatives to pesticidal control...... where malaria is endemic, humanity cannot afford shortcuts, because any failures owing to poor management or premature implementation will reduce local governmental support rather than enhance it (Andrew Read, pers. commun.). Therefore, if we are to ‘muscle out malaria', well...... of key importance, and the new focus on fungal biocontrol of malaria should therefore act as a catalyst for further research on the basic biology of fungal pathogens. Understanding morphological, biochemical or immune system-based resistance to insect pathogenic fungi will be easier if we know...

  9. Bulk muscles, loose cables.

    Science.gov (United States)

    Liyanage, Chamari R D G; Kodali, Venkata

    2014-10-17

    The accessibility and usage of body building supplements is on the rise with stronger internet marketing strategies by the industry. The dangers posed by the ingredients in them are underestimated. A healthy young man came to the emergency room with palpitations and feeling unwell. Initial history and clinical examination were non-contributory to find the cause. ECG showed atrial fibrillation. A detailed history for any over the counter or herbal medicine use confirmed that he was taking supplements to bulk muscle. One of the components in these supplements is yohimbine; the onset of symptoms coincided with the ingestion of this product and the patient is symptom free after stopping it. This report highlights the dangers to the public of consuming over the counter products with unknown ingredients and the consequential detrimental impact on health. 2014 BMJ Publishing Group Ltd.

  10. Muscle power is an important measure to detect deficits in muscle function in hip osteoarthritis

    DEFF Research Database (Denmark)

    Bieler, Theresa; Magnusson, Stig Peter; Christensen, Helle Elisabeth

    2017-01-01

    that exercise interventions focusing on improving leg extensor power of the symptomatic lower extremity and reducing asymmetry may be beneficial for patients with hip osteoarthritis. Implications for Rehabilitation Even in patients with mild symptoms not awaiting hip replacement a generalized muscle weakening......: The symptomatic extremity in patients was significantly (p asymmetry in knee extensor strength (6%, p ... in patients, but had no asymmetry in leg extensor power. CONCLUSIONS: Patients had generalized weakening of the affected lower extremity and numerically the largest asymmetry was evident for leg extensor power. In contrast, healthy peers had no asymmetry in leg extensor power. These results indicate...

  11. Muscle spindle autogenetic inhibition in the extraocular muscles of lamb.

    Science.gov (United States)

    Pettorossi, V E; Filippi, G M

    1981-09-01

    The role of extraocular muscle (EOM) proprioceptors on eye motility has been investigated in lambs on "encéphale isolé", by evaluating the tension of EOMs at various lengths and velocities of stretch before and after proprioceptive blocks. The EOM tension, in the absence of proprioceptive input, was higher than in normal conditions. Such an effect occurred at lengthening values greater than 3 mm of stretch from resting muscle length, corresponding to 18 degrees of eye deviation and was dependent on the velocity of the stretch, being more effective at high velocity. The muscle receptors responsible for this effect was determined by comparing the sensitivity to vibratory stimulation of spindles and tendon organs to the amount of inhibition provoked by the same stimulation on an EOM electromyographic activity. The tension inhibition appeared to be correlated to muscle spindle activation. Thus, the presence of muscle spindles can determine a reduction of the tension within the stretched muscles. This result suggests that the EOM length and velocity signals operate moment to moment reduction on the stiffness of the muscle which antagonizes eye displacement, thus facilitating the ocular movements.

  12. Aerobic metabolism on muscle contraction in porcine gastric smooth muscle.

    Science.gov (United States)

    Kanda, Hidenori; Kaneda, Takeharu; Nagai, Yuta; Urakawa, Norimoto; Shimizu, Kazumasa

    2018-05-18

    Exposure to chronic hypoxic conditions causes various gastric diseases, including gastric ulcers. It has been suggested that gastric smooth muscle contraction is associated with aerobic metabolism. However, there are no reports on the association between gastric smooth muscle contraction and aerobic metabolism, and we have investigated this association in the present study. High K + - and carbachol (CCh)-induced muscle contractions involved increasing O 2 consumption. Aeration with N 2 (hypoxia) and NaCN significantly decreased high K + - and CCh-induced muscle contraction and O 2 consumption. In addition, hypoxia and NaCN significantly decreased creatine phosphate (PCr) contents in the presence of high K + . Moreover, decrease in CCh-induced contraction and O 2 consumption was greater than that of high K + . Our results suggest that hypoxia and NaCN inhibit high K + - and CCh-induced contractions in gastric fundus smooth muscles by decreasing O 2 consumption and intracellular PCr content. However, the inhibition of CCh-induced muscle contraction was greater than that of high K + -induced muscle contraction.

  13. Physics of muscle contraction

    Science.gov (United States)

    Caruel, M.; Truskinovsky, L.

    2018-03-01

    In this paper we report, clarify and broaden various recent efforts to complement the chemistry-centered models of force generation in (skeletal) muscles by mechanics-centered models. The physical mechanisms of interest can be grouped into two classes: passive and active. The main passive effect is the fast force recovery which does not require the detachment of myosin cross-bridges from actin filaments and can operate without a specialized supply of metabolic fuel (ATP). In mechanical terms, it can be viewed as a collective folding-unfolding phenomenon in the system of interacting bi-stable units and modeled by near equilibrium Langevin dynamics. The active force generation mechanism operates at slow time scales, requires detachment and is crucially dependent on ATP hydrolysis. The underlying mechanical processes take place far from equilibrium and are represented by stochastic models with broken time reversal symmetry implying non-potentiality, correlated noise or multiple reservoirs. The modeling approaches reviewed in this paper deal with both active and passive processes and support from the mechanical perspective the biological point of view that phenomena involved in slow (active) and fast (passive) force generation are tightly intertwined. They reveal, however, that biochemical studies in solution, macroscopic physiological measurements and structural analysis do not provide by themselves all the necessary insights into the functioning of the organized contractile system. In particular, the reviewed body of work emphasizes the important role of long-range interactions and criticality in securing the targeted mechanical response in the physiological regime of isometric contractions. The importance of the purely mechanical micro-scale modeling is accentuated at the end of the paper where we address the puzzling issue of the stability of muscle response on the so called ‘descending limb’ of the isometric tetanus.

  14. Physics of muscle contraction.

    Science.gov (United States)

    Caruel, M; Truskinovsky, L

    2018-03-01

    In this paper we report, clarify and broaden various recent efforts to complement the chemistry-centered models of force generation in (skeletal) muscles by mechanics-centered models. The physical mechanisms of interest can be grouped into two classes: passive and active. The main passive effect is the fast force recovery which does not require the detachment of myosin cross-bridges from actin filaments and can operate without a specialized supply of metabolic fuel (ATP). In mechanical terms, it can be viewed as a collective folding-unfolding phenomenon in the system of interacting bi-stable units and modeled by near equilibrium Langevin dynamics. The active force generation mechanism operates at slow time scales, requires detachment and is crucially dependent on ATP hydrolysis. The underlying mechanical processes take place far from equilibrium and are represented by stochastic models with broken time reversal symmetry implying non-potentiality, correlated noise or multiple reservoirs. The modeling approaches reviewed in this paper deal with both active and passive processes and support from the mechanical perspective the biological point of view that phenomena involved in slow (active) and fast (passive) force generation are tightly intertwined. They reveal, however, that biochemical studies in solution, macroscopic physiological measurements and structural analysis do not provide by themselves all the necessary insights into the functioning of the organized contractile system. In particular, the reviewed body of work emphasizes the important role of long-range interactions and criticality in securing the targeted mechanical response in the physiological regime of isometric contractions. The importance of the purely mechanical micro-scale modeling is accentuated at the end of the paper where we address the puzzling issue of the stability of muscle response on the so called 'descending limb' of the isometric tetanus.

  15. Identification of new dystroglycan complexes in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Eric K Johnson

    Full Text Available The dystroglycan complex contains the transmembrane protein β-dystroglycan and its interacting extracellular mucin-like protein α-dystroglycan. In skeletal muscle fibers, the dystroglycan complex plays an important structural role by linking the cytoskeletal protein dystrophin to laminin in the extracellular matrix. Mutations that affect any of the proteins involved in this structural axis lead to myofiber degeneration and are associated with muscular dystrophies and congenital myopathies. Because loss of dystrophin in Duchenne muscular dystrophy (DMD leads to an almost complete loss of dystroglycan complexes at the myofiber membrane, it is generally assumed that the vast majority of dystroglycan complexes within skeletal muscle fibers interact with dystrophin. The residual dystroglycan present in dystrophin-deficient muscle is thought to be preserved by utrophin, a structural homolog of dystrophin that is up-regulated in dystrophic muscles. However, we found that dystroglycan complexes are still present at the myofiber membrane in the absence of both dystrophin and utrophin. Our data show that only a minority of dystroglycan complexes associate with dystrophin in wild type muscle. Furthermore, we provide evidence for at least three separate pools of dystroglycan complexes within myofibers that differ in composition and are differentially affected by loss of dystrophin. Our findings indicate a more complex role of dystroglycan in muscle than currently recognized and may help explain differences in disease pathology and severity among myopathies linked to mutations in DAPC members.

  16. Muscle synergies during bench press are reliable across days.

    Science.gov (United States)

    Kristiansen, Mathias; Samani, Afshin; Madeleine, Pascal; Hansen, Ernst Albin

    2016-10-01

    Muscle synergies have been investigated during different types of human movement using nonnegative matrix factorization. However, there are not any reports available on the reliability of the method. To evaluate between-day reliability, 21 subjects performed bench press, in two test sessions separated by approximately 7days. The movement consisted of 3 sets of 8 repetitions at 60% of the three repetition maximum in bench press. Muscle synergies were extracted from electromyography data of 13 muscles, using nonnegative matrix factorization. To evaluate between-day reliability, we performed a cross-correlation analysis and a cross-validation analysis, in which the synergy components extracted in the first test session were recomputed, using the fixed synergy components from the second test session. Two muscle synergies accounted for >90% of the total variance, and reflected the concentric and eccentric phase, respectively. The cross-correlation values were strong to very strong (r-values between 0.58 and 0.89), while the cross-validation values ranged from substantial to almost perfect (ICC3, 1 values between 0.70 and 0.95). The present findings revealed that the same general structure of the muscle synergies was present across days and the extraction of muscle synergies is thus deemed reliable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Persistent orofacial muscle pain: Its synonymous terminology and presentation.

    Science.gov (United States)

    Spierings, Egilius L H; Mulder, Maxim J H L

    2017-09-01

    The purpose of the present paper is to describe the presentation of persistent orofacial muscle pain, also commonly referred to as myofascial temporomandibular disorder. In this practice survey, the authors reviewed the demographic and clinical features of 34 patients who were evaluated and diagnosed personally. The majority of the 34 patients were women (82.4%), and their age at consultation averaged 44.6 ± 12.6 (SD) years. The median pain duration was 4.0 years (range: 0.2-34 years). In 97.1% of patients, the pain occurred daily and continuously, and in 51.9% it was unilateral. Chewing or eating made the pain worse in 50% of the patients, and talking in 29.4%. On examination, tightness of the masseter muscle(s) was present in 58.8%, and tenderness in 58.8%. Persistent orofacial muscle pain mostly affects women, generally occurs daily and continuously, and is equally often unilateral and bilateral. Chewing, eating, and talking are the most common aggravating factors, and tightness or tenderness of the masseter muscle(s) is often found on examination.

  18. Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis.

    Directory of Open Access Journals (Sweden)

    Alexander M Zöllner

    Full Text Available Skeletal muscle responds to passive overstretch through sarcomerogenesis, the creation and serial deposition of new sarcomere units. Sarcomerogenesis is critical to muscle function: It gradually re-positions the muscle back into its optimal operating regime. Animal models of immobilization, limb lengthening, and tendon transfer have provided significant insight into muscle adaptation in vivo. Yet, to date, there is no mathematical model that allows us to predict how skeletal muscle adapts to mechanical stretch in silico. Here we propose a novel mechanistic model for chronic longitudinal muscle growth in response to passive mechanical stretch. We characterize growth through a single scalar-valued internal variable, the serial sarcomere number. Sarcomerogenesis, the evolution of this variable, is driven by the elastic mechanical stretch. To analyze realistic three-dimensional muscle geometries, we embed our model into a nonlinear finite element framework. In a chronic limb lengthening study with a muscle stretch of 1.14, the model predicts an acute sarcomere lengthening from 3.09[Formula: see text]m to 3.51[Formula: see text]m, and a chronic gradual return to the initial sarcomere length within two weeks. Compared to the experiment, the acute model error was 0.00% by design of the model; the chronic model error was 2.13%, which lies within the rage of the experimental standard deviation. Our model explains, from a mechanistic point of view, why gradual multi-step muscle lengthening is less invasive than single-step lengthening. It also explains regional variations in sarcomere length, shorter close to and longer away from the muscle-tendon interface. Once calibrated with a richer data set, our model may help surgeons to prevent muscle overstretch and make informed decisions about optimal stretch increments, stretch timing, and stretch amplitudes. We anticipate our study to open new avenues in orthopedic and reconstructive surgery and enhance

  19. General relativity

    International Nuclear Information System (INIS)

    Kenyon, I.R.

    1990-01-01

    General relativity is discussed in this book at a level appropriate to undergraduate students of physics and astronomy. It describes concepts and experimental results, and provides a succinct account of the formalism. A brief review of special relativity is followed by a discussion of the equivalence principle and its implications. Other topics covered include the concepts of curvature and the Schwarzschild metric, test of the general theory, black holes and their properties, gravitational radiation and methods for its detection, the impact of general relativity on cosmology, and the continuing search for a quantum theory of gravity. (author)

  20. Prioritization of skeletal muscle growth for emergence from hibernation.

    Science.gov (United States)

    Hindle, Allyson G; Otis, Jessica P; Epperson, L Elaine; Hornberger, Troy A; Goodman, Craig A; Carey, Hannah V; Martin, Sandra L

    2015-01-15

    Mammalian hibernators provide an extreme example of naturally occurring challenges to muscle homeostasis. The annual hibernation cycle is characterized by shifts between summer euthermy with tissue anabolism and accumulation of body fat reserves, and winter heterothermy with fasting and tissue catabolism. The circannual patterns of skeletal muscle remodelling must accommodate extended inactivity during winter torpor, the motor requirements of transient winter active periods, and sustained activity following spring emergence. Muscle volume in thirteen-lined ground squirrels (Ictidomys tridecemlineatus) calculated from MRI upper hindlimb images (n=6 squirrels, n=10 serial scans) declined from hibernation onset, reaching a nadir in early February. Paradoxically, mean muscle volume rose sharply after February despite ongoing hibernation, and continued total body mass decline until April. Correspondingly, the ratio of muscle volume to body mass was steady during winter atrophy (October-February) but increased (+70%) from February to May, which significantly outpaced changes in liver or kidney examined by the same method. Generally stable myocyte cross-sectional area and density indicated that muscle remodelling is well regulated in this hibernator, despite vastly altered seasonal fuel and activity levels. Body composition analysis by echo MRI showed lean tissue preservation throughout hibernation amid declining fat mass by the end of winter. Muscle protein synthesis was 66% depressed in early but not late winter compared with a summer fasted baseline, while no significant changes were observed in the heart, liver or intestine, providing evidence that could support a transition in skeletal muscle regulation between early and late winter, prior to spring emergence and re-feeding. © 2015. Published by The Company of Biologists Ltd.

  1. Muscle Dysmorphia: A New Form of Eating Disorder?

    Science.gov (United States)

    Goodale, Kimberly R.; Watkins, Patti Lou; Cardinal, Bradley J.

    2001-01-01

    Examined symptoms of muscle dysmorphia (MD), a variation of the eating disorders anorexia nervosa and bulimia, among college students. Surveys indicated that MD symptomatology appears in the general population and among both sexes. MD significantly related to eating disorder pathology and depression, and to some degree to impaired social support.…

  2. Solutions to muscle fiber equations and their long time behaviour

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Sainte-Marie, J.; Sorine, M.; Urquiza, J.M.

    2006-01-01

    Roč. 7, č. 4 (2006), s. 535-558 ISSN 1468-1218 Institutional research plan: CEZ:AV0Z10190503 Keywords : existence * uniqueness * muscle and cardiac mechanics Subject RIV: BA - General Mathematics Impact factor: 1.194, year: 2006 http://www.sciencedirect.com/science/article/pii/S1468121805000507

  3. Quantification of dynamic property of pneumatic muscle actuator for design of therapeutic robot control.

    Science.gov (United States)

    Balasubramanian, Sivakumar; Huang, He; He, Jiping

    2006-01-01

    Robot-assisted therapy has shown potential in neuromotor rehabilitation. A therapeutic robot driven by pneumatic muscle actuators has been developed in our research group. However, the design of fine and real-time feedback robot control is a challenge. One of the difficulties is the lack of a general dynamic model of the pneumatic muscle actuator. In this study, a phenomenological model has been developed to quantify the dynamic behavior of pneumatic muscle actuator by fitting the experimental length response of the pneumatic muscle, to a step pressure input. In addition, comparison of the dynamic responses of two pneumatic muscles of different dimensions has also been studied. Several control strategies for the pneumatic muscle actuator are discussed based on the results from this study.

  4. The homeobox gene Msx in development and transdifferentiation of jellyfish striated muscle.

    Science.gov (United States)

    Galle, Sabina; Yanze, Nathalie; Seipel, Katja

    2005-01-01

    Bilaterian Msx homeobox genes are generally expressed in areas of cell proliferation and in association with multipotent progenitor cells. Likewise, jellyfish Msx is expressed in progenitor cells of the developing entocodon, a cell layer giving rise to the striated and smooth muscles of the medusa. However, in contrast to the bilaterian homologs, Msx gene expression is maintained at high levels in the differentiated striated muscle of the medusa in vivo and in vitro. This tissue exhibits reprogramming competence. Upon induction, the Msx gene is immediately switched off in the isolated striated muscle undergoing transdifferentiation, to be upregulated again in the emerging smooth muscle cells which, in a stem cell like manner, undergo quantal cell divisions producing two cell types, a proliferating smooth muscle cell and a differentiating nerve cell. This study indicates that the Msx protein may be a key component of the reprogramming machinery responsible for the extraordinary transdifferentation and regeneration potential of striated muscle in the hydrozoan jellyfish.

  5. Age-Associated Loss of OPA1 in Muscle Impacts Muscle Mass, Metabolic Homeostasis, Systemic Inflammation, and Epithelial Senescence.

    Science.gov (United States)

    Tezze, Caterina; Romanello, Vanina; Desbats, Maria Andrea; Fadini, Gian Paolo; Albiero, Mattia; Favaro, Giulia; Ciciliot, Stefano; Soriano, Maria Eugenia; Morbidoni, Valeria; Cerqua, Cristina; Loefler, Stefan; Kern, Helmut; Franceschi, Claudio; Salvioli, Stefano; Conte, Maria; Blaauw, Bert; Zampieri, Sandra; Salviati, Leonardo; Scorrano, Luca; Sandri, Marco

    2017-06-06

    Mitochondrial dysfunction occurs during aging, but its impact on tissue senescence is unknown. Here, we find that sedentary but not active humans display an age-related decline in the mitochondrial protein, optic atrophy 1 (OPA1), that is associated with muscle loss. In adult mice, acute, muscle-specific deletion of Opa1 induces a precocious senescence phenotype and premature death. Conditional and inducible Opa1 deletion alters mitochondrial morphology and function but not DNA content. Mechanistically, the ablation of Opa1 leads to ER stress, which signals via the unfolded protein response (UPR) and FoxOs, inducing a catabolic program of muscle loss and systemic aging. Pharmacological inhibition of ER stress or muscle-specific deletion of FGF21 compensates for the loss of Opa1, restoring a normal metabolic state and preventing muscle atrophy and premature death. Thus, mitochondrial dysfunction in the muscle can trigger a cascade of signaling initiated at the ER that systemically affects general metabolism and aging. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Muscle performance after the menopause.

    Science.gov (United States)

    Sirola, Joonas; Rikkonen, Toni

    2005-06-01

    The timing of the menopause transition has remained fairly constant throughout history. It represents a milestone in female health and, after passing through it, women experience increased musculoskeletal and cardiovascular morbidity. Muscle performance is an important determinant of functional capacity and quality of life among the elderly and is also involved in the maintenance of balance. Therefore, good muscle strength can prevent fragility fractures and lessen the burden of osteoporosis. Muscle strength begins to decline during the perimenopausal years and this phenomenon seems to be partly estrogen dependent. Randomized controlled trials have indicated that hormone replacement therapy may prevent a decline in muscle performance, although the exact mechanism of estrogen-dependent sarcopenia remains to be clarified. Exercises have been shown to improve postmenopausal muscle performance and hormone replacement therapy may also potentiate these beneficial effects. Improvement or maintenance of muscle strength alone, however, may not be considered as a primary indication for long-term hormone replacement therapy in view of current knowledge of its risks and benefits. Work history and educational background may be associated with postmenopausal muscle performance, which itself has unique associations with skeletal and cardiovascular diseases.

  7. Overview of the Muscle Cytoskeleton

    Science.gov (United States)

    Henderson, Christine A.; Gomez, Christopher G.; Novak, Stefanie M.; Mi-Mi, Lei; Gregorio, Carol C.

    2018-01-01

    Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. PMID:28640448

  8. Muscle channelopathies and electrophysiological approach

    Directory of Open Access Journals (Sweden)

    Cherian Ajith

    2008-01-01

    Full Text Available Myotonic syndromes and periodic paralyses are rare disorders of skeletal muscle characterized mainly by muscle stiffness or episodic attacks of weakness. Familial forms are caused by mutation in genes coding for skeletal muscle voltage ionic channels. Familial periodic paralysis and nondystrophic myotonias are disorders of skeletal muscle excitability caused by mutations in genes coding for voltage-gated ion channels. These diseases are characterized by episodic failure of motor activity due to muscle weakness (paralysis or stiffness (myotonia. Clinical studies have identified two forms of periodic paralyses: hypokalemic periodic paralysis (hypoKPP and hyperkalemic periodic paralysis (hyperKPP, based on changes in serum potassium levels during the attacks, and three distinct forms of myotonias: paramyotonia congenita (PC, potassium-aggravated myotonia (PAM, and myotonia congenita (MC. PC and PAM have been linked to missense mutations in the SCN4A gene, which encodes α subunit of the voltage-gated sodium channel, whereas MC is caused by mutations in the chloride channel gene (CLCN1. Exercise is known to trigger, aggravate, or relieve symptoms. Therefore, exercise can be used as a functional test in electromyography to improve the diagnosis of these muscle disorders. Abnormal changes in the compound muscle action potential can be disclosed using different exercise tests. Five electromyographic (EMG patterns (I-V that may be used in clinical practice as guides for molecular diagnosis are discussed.

  9. Immunology Guides Skeletal Muscle Regeneration

    Directory of Open Access Journals (Sweden)

    F. Andrea Sass

    2018-03-01

    Full Text Available Soft tissue trauma of skeletal muscle is one of the most common side effects in surgery. Muscle injuries are not only caused by accident-related injuries but can also be of an iatrogenic nature as they occur during surgical interventions when the anatomical region of interest is exposed. If the extent of trauma surpasses the intrinsic regenerative capacities, signs of fatty degeneration and formation of fibrotic scar tissue can occur, and, consequentially, muscle function deteriorates or is diminished. Despite research efforts to investigate the physiological healing cascade following trauma, our understanding of the early onset of healing and how it potentially determines success or failure is still only fragmentary. This review focuses on the initial physiological pathways following skeletal muscle trauma in comparison to bone and tendon trauma and what conclusions can be drawn from new scientific insights for the development of novel therapeutic strategies. Strategies to support regeneration of muscle tissue after injury are scarce, even though muscle trauma has a high incidence. Based on tissue specific differences, possible clinical treatment options such as local immune-modulatory and cell therapeutic approaches are suggested that aim to support the endogenous regenerative potential of injured muscle tissues.

  10. Experiment K-7-29: Connective Tissue Studies. Part 3; Rodent Tissue Repair: Skeletal Muscle

    Science.gov (United States)

    Stauber, W.; Fritz, V. K.; Burkovskaya, T. E.; Ilyina-Kakueva, E. I.

    1994-01-01

    Myofiber injury-repair was studied in the rat gastrocnemius following a crush injury to the lower leg prior to flight in order to understand if the regenerative responses of muscles are altered by the lack of gravitational forces during Cosmos 2044 flight. After 14 days of flight, the gastrocnemius muscle was removed from the 5 injured flight rodents and various Earth-based treatment groups for comparison. The Earth-based animals consisted of three groups of five rats with injured muscles from a simulated, tail-suspended, and vivarium as well as an uninjured basal group. The gastrocnemius muscle from each was evaluated by histochemical and immunohistochemical techniques to document myofiber, vascular, and connective tissue alterations following injury. In general the repair process was somewhat similar in all injured muscle samples with regard to extracellular matrix organization and myofiber regeneration. Small and large myofibers were present with a newly organized extracellular matrix indicative of myogenesis and muscle regeneration. In the tail-suspended animals, a more complete repair was observed with no enlarged area of non-muscle cells or matrix material visible. In contrast, the muscle samples from the flight animals were less well differentiated with more macrophages and blood vessels in the repair region but small myofibers and proteoglycans, nevertheless, were in their usual configuration. Thus, myofiber repair did vary in muscles from the different groups, but for the most part, resulted in functional muscle tissue.

  11. Estimating Co-Contraction Activation of Trunk Muscles Using a Novel Musculoskeletal Model for Pregnant Women

    Directory of Open Access Journals (Sweden)

    Saori Morino

    2017-10-01

    Full Text Available Weight gain and stretched abdominal muscles from an enlarged gravid uterus are remarkable features during pregnancy. These changes elicit postural instability and place strain on body segments, contributing to lower back pain. In general, the agonist and antagonist muscles act simultaneously to increase joint stabilization; however, this can cause additional muscle stress during movement. Furthermore, this activation can be observed in pregnant women because of their unstable body joints. Hence, physical modalities based on assessments of muscle activation are useful for managing low back pain during pregnancy. Musculoskeletal models are common when investigating muscle load. However, it is difficult to apply such models to pregnant women and estimate the co-contraction of muscles using musculoskeletal models. Therefore, the purpose of this study is to construct a musculoskeletal model for pregnant women that estimates the co-contraction of trunk muscles. First, motion analysis was conducted on a pregnant woman and the muscle activations of the rectus abdominis and erector spinae were measured. Then, the musculoskeletal model was specifically modified for pregnant women. Finally, the co-contraction was estimated from the results of the musculoskeletal model and electromyography data using a genetic algorithm. With the proposed methods, weakened abdominal muscle torque and the co-contraction activation of trunk muscles were estimated successfully.

  12. General problems

    International Nuclear Information System (INIS)

    2005-01-01

    This article presents the general problems as natural disasters, consequences of global climate change, public health, the danger of criminal actions, the availability to information about problems of environment

  13. Generalized Recovery

    DEFF Research Database (Denmark)

    Jensen, Christian Skov; Lando, David; Pedersen, Lasse Heje

    We characterize when physical probabilities, marginal utilities, and the discount rate can be recovered from observed state prices for several future time periods. Our characterization makes no assumptions of the probability distribution, thus generalizing the time-homogeneous stationary model...

  14. General Conformity

    Science.gov (United States)

    The General Conformity requirements ensure that the actions taken by federal agencies in nonattainment and maintenance areas do not interfere with a state’s plans to meet national standards for air quality.

  15. Skeletal muscle performance and ageing.

    Science.gov (United States)

    Tieland, Michael; Trouwborst, Inez; Clark, Brian C

    2018-02-01

    The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co-morbidity, and premature death. An important cause of physical limitations is the age-related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation-contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  16. Bigorexia: bodybuilding and muscle dysmorphia.

    Science.gov (United States)

    Mosley, Philip E

    2009-05-01

    Muscle dysmorphia is an emerging condition that primarily affects male bodybuilders. Such individuals obsess about being inadequately muscular. Compulsions include spending hours in the gym, squandering excessive amounts of money on ineffectual sports supplements, abnormal eating patterns or even substance abuse. In this essay, I illustrate the features of muscle dysmorphia by employing the first-person account of a male bodybuilder afflicted by this condition. I briefly outline the history of bodybuilding and examine whether the growth of this sport is linked to a growing concern with body image amongst males. I suggest that muscle dysmorphia may be a new expression of a common pathology shared with the eating disorders.

  17. Diabetic muscle infarction: radiologic evaluation

    International Nuclear Information System (INIS)

    Chason, D.P.; Fleckenstein, J.L.; Burns, D.K.; Rojas, G.

    1996-01-01

    Four patients with severe diabetes mellitus presenting with acute thigh pain, tenderness, and swelling were evaluated by imaging techniques and biopsy. Edema in the affected muscles was seen in two patients with MRI studies. Femoral artery calcification and mild muscle swelling was present in one patient who underwent CT. Decreased echogenicity was seen in the involved muscle in a patient studied with ultrasound. Serum enzymes were normal or mildly elevated in three patients (not reported in one). Biopsy demonstrated necrosis and regenerative change in all cases. MRI, although nonspecific, is the best imaging technique to suggest the diagnosis of DMI in the appropriate clinical setting, thereby obviating biopsy. (orig./MG)

  18. Skeletal Muscle Na+ Channel Disorders

    Directory of Open Access Journals (Sweden)

    Dina eSimkin

    2011-10-01

    Full Text Available Five inherited human disorders affecting skeletal muscle contraction have been traced to mutations in the gene encoding the voltage-gated sodium channel Nav1.4. The main symptoms of these disorders are myotonia or periodic paralysis caused by changes in skeletal muscle fiber excitability. Symptoms of these disorders vary from mild or latent disease to incapacitating or even death in severe cases. As new human sodium channel mutations corresponding to disease states become discovered, the importance of understanding the role of the sodium channel in skeletal muscle function and disease state grows.

  19. Activation of respiratory muscles during respiratory muscle training.

    Science.gov (United States)

    Walterspacher, Stephan; Pietsch, Fabian; Walker, David Johannes; Röcker, Kai; Kabitz, Hans-Joachim

    2018-01-01

    It is unknown which respiratory muscles are mainly activated by respiratory muscle training. This study evaluated Inspiratory Pressure Threshold Loading (IPTL), Inspiratory Flow Resistive Loading (IFRL) and Voluntary Isocapnic Hyperpnea (VIH) with regard to electromyographic (EMG) activation of the sternocleidomastoid muscle (SCM), parasternal muscles (PARA) and the diaphragm (DIA) in randomized order. Surface EMG were analyzed at the end of each training session and normalized using the peak EMG recorded during maximum inspiratory maneuvers (Sniff nasal pressure: SnPna, maximal inspiratory mouth occlusion pressure: PImax). 41 healthy participants were included. Maximal activation was achieved for SCM by SnPna; the PImax activated predominantly PARA and DIA. Activations of SCM and PARA were higher in IPTL and VIH than for IFRL (p<0.05). DIA was higher applying IPTL compared to IFRL or VIH (p<0.05). IPTL, IFRL and VIH differ in activation of inspiratory respiratory muscles. Whereas all methods mainly stimulate accessory respiratory muscles, diaphragm activation was predominant in IPTL. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Eccentric muscle challenge shows osteopontin polymorphism modulation of muscle damage.

    Science.gov (United States)

    Barfield, Whitney L; Uaesoontrachoon, Kitipong; Wu, Chung-Sheih; Lin, Stephen; Chen, Yue; Wang, Paul C; Kanaan, Yasmine; Bond, Vernon; Hoffman, Eric P

    2014-08-01

    A promoter polymorphism of the osteopontin (OPN) gene (rs28357094) has been associated with multiple inflammatory states, severity of Duchenne muscular dystrophy (DMD) and muscle size in healthy young adults. We sought to define the mechanism of action of the polymorphism, using allele-specific in vitro reporter assays in muscle cells, and a genotype-stratified intervention in healthy controls. In vitro reporter constructs showed the G allele to respond to estrogen treatment, whereas the T allele showed no transcriptional response. Young adult volunteers (n = 187) were enrolled into a baseline study, and subjects with specific rs28357094 genotypes enrolled into an eccentric muscle challenge intervention [n = 3 TT; n = 3 GG/GT (dominant inheritance model)]. Female volunteers carrying the G allele showed significantly greater inflammation and increased muscle volume change as determined by magnetic resonance imaging T1- and T2-weighted images after eccentric challenge, as well as greater decrement in biceps muscle force. Our data suggest a model where the G allele enables enhanced activities of upstream enhancer elements due to loss of Sp1 binding at the polymorphic site. This results in significantly greater expression of the pro-inflammatory OPN cytokine during tissue remodeling in response to challenge in G allele carriers, promoting muscle hypertrophy in normal females, but increased damage in DMD patients. © The Author 2014. Published by Oxford University Press.

  1. Generalized polygons

    CERN Document Server

    Van Maldeghem, Hendrik

    1998-01-01

    Generalized Polygons is the first book to cover, in a coherent manner, the theory of polygons from scratch. In particular, it fills elementary gaps in the literature and gives an up-to-date account of current research in this area, including most proofs, which are often unified and streamlined in comparison to the versions generally known. Generalized Polygons will be welcomed both by the student seeking an introduction to the subject as well as the researcher who will value the work as a reference. In particular, it will be of great value for specialists working in the field of generalized polygons (which are, incidentally, the rank 2 Tits-buildings) or in fields directly related to Tits-buildings, incidence geometry and finite geometry. The approach taken in the book is of geometric nature, but algebraic results are included and proven (in a geometric way!). A noteworthy feature is that the book unifies and generalizes notions, definitions and results that exist for quadrangles, hexagons, octagons - in the ...

  2. Ethanol Exposure Causes Muscle Degeneration in Zebrafish

    Directory of Open Access Journals (Sweden)

    Elizabeth C. Coffey

    2018-03-01

    Full Text Available Alcoholic myopathies are characterized by neuromusculoskeletal symptoms such as compromised movement and weakness. Although these symptoms have been attributed to neurological damage, EtOH may also target skeletal muscle. EtOH exposure during zebrafish primary muscle development or adulthood results in smaller muscle fibers. However, the effects of EtOH exposure on skeletal muscle during the growth period that follows primary muscle development are not well understood. We determined the effects of EtOH exposure on muscle during this phase of development. Strikingly, muscle fibers at this stage are acutely sensitive to EtOH treatment: EtOH induces muscle degeneration. The severity of EtOH-induced muscle damage varies but muscle becomes more refractory to EtOH as muscle develops. NF-kB induction in muscle indicates that EtOH triggers a pro-inflammatory response. EtOH-induced muscle damage is p53-independent. Uptake of Evans blue dye shows that EtOH treatment causes sarcolemmal instability before muscle fiber detachment. Dystrophin-null sapje mutant zebrafish also exhibit sarcolemmal instability. We tested whether Trichostatin A (TSA, which reduces muscle degeneration in sapje mutants, would affect EtOH-treated zebrafish. We found that TSA and EtOH are a lethal combination. EtOH does, however, exacerbate muscle degeneration in sapje mutants. EtOH also disrupts adhesion of muscle fibers to their extracellular matrix at the myotendinous junction: some detached muscle fibers retain beta-Dystroglycan indicating failure of muscle end attachments. Overexpression of Paxillin, which reduces muscle degeneration in zebrafish deficient for beta-Dystroglycan, is not sufficient to rescue degeneration. Taken together, our results suggest that EtOH exposure has pleiotropic deleterious effects on skeletal muscle.

  3. Knitting and weaving artificial muscles.

    Science.gov (United States)

    Maziz, Ali; Concas, Alessandro; Khaldi, Alexandre; Stålhand, Jonas; Persson, Nils-Krister; Jager, Edwin W H

    2017-01-01

    A need exists for artificial muscles that are silent, soft, and compliant, with performance characteristics similar to those of skeletal muscle, enabling natural interaction of assistive devices with humans. By combining one of humankind's oldest technologies, textile processing, with electroactive polymers, we demonstrate here the feasibility of wearable, soft artificial muscles made by weaving and knitting, with tunable force and strain. These textile actuators were produced from cellulose yarns assembled into fabrics and coated with conducting polymers using a metal-free deposition. To increase the output force, we assembled yarns in parallel by weaving. The force scaled linearly with the number of yarns in the woven fabric. To amplify the strain, we knitted a stretchable fabric, exhibiting a 53-fold increase in strain. In addition, the textile construction added mechanical stability to the actuators. Textile processing permits scalable and rational production of wearable artificial muscles, and enables novel ways to design assistive devices.

  4. Simvastatin effects on skeletal muscle

    DEFF Research Database (Denmark)

    Larsen, Steen; Stride, Nis; Hey-Mogensen, Martin

    2013-01-01

    Glucose tolerance and skeletal muscle coenzyme Q(10) (Q(10)) content, mitochondrial density, and mitochondrial oxidative phosphorylation (OXPHOS) capacity were measured in simvastatin-treated patients (n = 10) and in well-matched control subjects (n = 9)....

  5. Muscle glycogen stores and fatigue

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Westerblad, Håkan; Nielsen, Joachim

    2013-01-01

      Studies performed at the beginning of the last century revealed the importance of carbohydrate as a fuel during exercise, and the importance of muscle glycogen on performance has subsequently been confirmed in numerous studies. However, the link between glycogen depletion and impaired muscle...... function during fatigue is not well understood and a direct cause-and-effect relationship between glycogen and muscle function remains to be established. The use of electron microscopy has revealed that glycogen is not homogeneously distributed in skeletal muscle fibres, but rather localized in distinct...... pools. Furthermore, each glycogen granule has its own metabolic machinery with glycolytic enzymes and regulating proteins. One pool of such glycogenolytic complexes is localized within the myofibrils in close contact with key proteins involved in the excitation-contraction coupling and Ca2+ release from...

  6. Exercise-induced muscle modifications

    International Nuclear Information System (INIS)

    Kerviler, E. de; Willig, A.L.; Jehenson, P.; Duboc, D.; Syrota, A.

    1990-01-01

    This paper compares changes in muscle proton T2 after exercise in normal subjects and in patients with muscular glycogenoses. Four patients suffering from muscular glycogenosis and eight normal volunteers were studied. Muscle T2s were measured in forearm muscles at rest and after exercise, with a 0.5-T imager. The exercise was performed with handgrips and was evaluated by P-31 spectroscopy (end-exercise decrease in pH and phosphocreatine) performed with a 2-T magnet. In normal subjects, a relative T2 increase, ranging from 14% to 44%, was observed in the exercised muscles. In the patients, who cannot produce lactate during exercise, weak pH variation occurred, and only a slight T2 increase (7% - 9%) was observed

  7. Compensatory Hypertrophy of Skeletal Muscle: Contractile Characteristics

    Science.gov (United States)

    Ianuzzo, C. D.; Chen, V.

    1977-01-01

    Describes an experiment using rats that demonstrates contractile characteristics of normal and hypertrophied muscle. Compensatory hypertrophy of the plantaris muscle is induced by surgical removal of the synergistic gastrocnemium muscle. Includes methods for determination of contractile properties of normal and hypertrophied muscle and…

  8. Skeletal muscle lymphoma: observations at MR imaging

    International Nuclear Information System (INIS)

    Eustace, S.; Winalski, C.S.; McGowen, A.; Lan, H.; Dorfman, D.

    1996-01-01

    We present the MR appearances of three patients with biopsy-proven primary lymphoma of skeletal muscle. In each case lymphoma resulted in bulky expansion of the involved muscle, homogeneously isointense to skeletal muscle on T1-weighted images, homogeneously hyperintense to skeletal muscle on T2-weighted images and diffusely enhancing following intravenous administration of gadopentate dimeglumine. (orig.)

  9. Quantitative muscle ultrasonography in amyotrophic lateral sclerosis.

    NARCIS (Netherlands)

    Arts, I.M.P.; Rooij, F.G. van; Overeem, S.; Pillen, S.; Janssen, H.M.; Schelhaas, H.J.; Zwarts, M.J.

    2008-01-01

    In this study, we examined whether quantitative muscle ultrasonography can detect structural muscle changes in early-stage amyotrophic lateral sclerosis (ALS). Bilateral transverse scans were made of five muscles or muscle groups (sternocleidomastoid, biceps brachii/brachialis, forearm flexor group,

  10. Diabetic muscle infarction: atypical MR appearance

    International Nuclear Information System (INIS)

    Sharma, P.; Mangwana, S.; Kapoor, R.K.

    2000-01-01

    We describe a case of diabetic muscle infarction which had atypical features of hyperintensity of the affected muscle on T1-weighted images. Biopsy was performed which revealed diffuse extensive hemorrhage within the infarcted muscle. We believe increased signal intensity on T1-weighted images should suggest hemorrhage within the infarcted muscle. (orig.)

  11. Electrically controllable artificial PAN muscles

    Science.gov (United States)

    Salehpoor, Karim; Shahinpoor, Mohsen; Mojarrad, Mehran

    1996-02-01

    Artificial muscles made with polyacrylonitrile (PAN) fibers are traditionally activated in electrolytic solution by changing the pH of the solution by the addition of acids and/or bases. This usually consumes a considerable amount of weak acids or bases. Furthermore, the synthetic muscle (PAN) itself has to be impregnated with an acid or a base and must have an appropriate enclosure or provision for waste collection after actuation. This work introduces a method by which the PAN muscle may be elongated or contracted in an electric field. We believe this is the first time that this has been achieved with PAN fibers as artificial muscles. In this new development the PAN muscle is first put in close contact with one of the two platinum wires (electrodes) immersed in an aqueous solution of sodium chloride. Applying an electric voltage between the two wires changes the local acidity of the solution in the regions close to the platinum wires. This is because of the ionization of sodium chloride molecules and the accumulation of Na+ and Cl- ions at the negative and positive electrode sites, respectively. This ion accumulation, in turn, is accompanied by a sharp increase and decrease of the local acidity in regions close to either of the platinum wires, respectively. An artificial muscle, in close contact with the platinum wire, because of the change in the local acidity will contract or expand depending on the polarity of the electric field. This scheme allows the experimenter to use a fixed flexible container of an electrolytic solution whose local pH can be modulated by an imposed electric field while the produced ions are basically trapped to stay in the neighborhood of a given electrode. This method of artificial muscle activation has several advantages. First, the need to use a large quantity of acidic or alkaline solutions is eliminated. Second, the use of a compact PAN muscular system is facilitated for applications in active musculoskeletal structures. Third, the

  12. General conclusions

    International Nuclear Information System (INIS)

    Tubiana, M.

    1993-01-01

    In conclusion, a general consensus of a number of points which the author endeavours to summarize in this article: -doctors are an excellent channel for passing on information to the public -doctors feel that they do not know enough about the subject and a training on radiobiology and radiation protection is a necessity for them -communication between doctors and the general public is poor in this field -research should be encouraged in numerous areas such as: carcinogenic effect of low doses of radiation, pedagogy and risk perception

  13. Evaluation of muscle hyperactivity of the grimacing muscles by unilateral tight eyelid closure and stapedius muscle tone.

    Science.gov (United States)

    Shiba, Masato; Matsuo, Kiyoshi; Ban, Ryokuya; Nagai, Fumio

    2012-10-01

    Muscle hyperactivity of grimacing muscles, including the orbicularis oculi and corrugator supercilii muscles that cause crow's feet and a glabellar frown line with ageing, cannot be accurately evaluated by surface observation. In 71 subjects, this study investigated the extent to which grimacing muscles are innervated by the bilateral motor cortices, whether the corticofacial projection to the grimacing muscles affects the facially innervated stapedius muscle tone by measuring static compliance of the tympanic membrane, and whether unilateral tight eyelid closure with contraction of the grimacing muscles changes static compliance. Unilateral tight eyelid closure and its subsequent change in the contralateral vertical medial eyebrow position revealed that motor neurons of the orbicularis oculi and corrugator supercilii muscles were innervated by the bilateral motor cortices with weak-to-strong contralateral dominance. The orbicularis oculi, corrugator supercilii, and stapedius muscles innervated by the bilateral motor cortices had increased muscle hyperactivity, which lowered the vertical medial eyebrow position and decreased the static compliance of the tympanic membrane more than those innervated by the unilateral motor cortex. Unilateral enhanced tight eyelid closure with contraction of the grimacing muscles in certain subjects ipsilaterally decreased the static compliance with increased contraction of the stapedius muscle, which probably occurs to immobilise the tympanic membrane and protect the inner ear from loud sound. Evaluation of unilateral tight eyelid closure and the subsequent change in the contralateral vertical medial eyebrow position as well as a measurement of the static compliance for the stapedius muscle tone has revealed muscle hyperactivity of grimacing muscles.

  14. Effect of contrasting physical exercise interventions on rapid force capacity of chronically painful muscles

    DEFF Research Database (Denmark)

    Andersen, Lars L; Andersen, Jesper L; Suetta, Charlotte

    2009-01-01

    as neural and muscular adaptations in women with chronic neck muscle pain. A group of employed women (n = 42) with a clinical diagnosis of trapezius myalgia participated in a 10-wk randomized controlled trial; specific strength training of the neck/shoulder muscles, general fitness training performed as leg...... to rehabilitation with specific strength training. The underlying mechanisms were related to both pain reduction and general neuromuscular adaptations to strength training. Potentially, the present method can be a useful clinical screening tool of muscle function in rehabilitation settings....

  15. Artificial muscle: facts and fiction.

    Science.gov (United States)

    Schaub, Marcus C

    2011-12-19

    Mechanical devices are sought to support insufficient or paralysed striated muscles including the failing heart. Nickel-titanium alloys (nitinol) present the following two properties: (i) super-elasticity, and (ii) the potential to assume different crystal structures depending on temperature and/or stress. Starting from the martensite state nitinol is able to resume the austenite form (state of low potential energy and high entropy) even against an external resistance. This one-way shape change is deployed in self-expanding vascular stents. Heating induces the force generating transformation from martensite to the austenite state while cooling induces relaxation back to the martensite state. This two-way shape change oscillating between the two states may be used in cyclically contracting support devices of silicon-coated nitinol wires. Such a contractile device sutured to the right atrium has been tested in vitro in a bench model and in vivo in sheep. The contraction properties of natural muscles, specifically of the myocardium, and the tight correlation with ATP production by oxidative phosphorylation in the mitochondria is briefly outlined. Force development by the nitinol device cannot be smoothly regulated as in natural muscle. Its mechanical impact is forced onto the natural muscle regardless of the actual condition with regard to metabolism and Ca2+-homeostasis. The development of artificial muscle on the basis of nitinol wires is still in its infancy. The nitinol artificial muscle will have to prove its viability in the various clinical settings.

  16. Muscle histochemistry in chronic alcoholism

    Directory of Open Access Journals (Sweden)

    M. L. Ferraz

    1989-06-01

    Full Text Available Twenty-two chronic acoholic patients were assessed by neurologic examination and muscle biopsy. The patients manifested proximal muscular weakness to a variable extent. One case presented as an acute bout of myopathy, according to the Manual Muscle Test, MMT. The most prominent histologic feature observed was muscle atrophy (95.3% better evidenced through the ATPase stain with the predominance of type II A fibers (71.4%. Lack of the mosaic pattern (type grouping seen in 76% of the cases and an important mitochondrial proliferation with intrasarcoplasmatic lipid accumulation in 63% of the patients. In case of acute presentation of muscle weakness the. pathological substrate is quite different, i.e. presence of myositis mainly interstitial characterized by lymphoplasmocytic infiltrate and several spots of necrosis like Zencker degeneration. Based on histologic criteria, our data suggest that: the main determinant of muscle weakness seen in chronic alcoholic patients is neurogenic in origin (alcoholic polineuropathy; the direct toxic action of ethanol under the skeletal muscle is closely related to the mitochondrial metabolism; the so-called acute alcoholic myopathy has probably viral etiology.

  17. Variability of femoral muscle attachments.

    Science.gov (United States)

    Duda, G N; Brand, D; Freitag, S; Lierse, W; Schneider, E

    1996-09-01

    Analytical and experimental models of the musculoskeletal system often assume single values rather than ranges for anatomical input parameters. The hypothesis of the present study was that anatomical variability significantly influences the results of biomechanical analyses, specifically regarding the moment arms of the various thigh muscles. Insertions and origins of muscles crossing or attaching to the femur were digitized in six specimens. Muscle volumes were measured; muscle attachment area and centroid location were computed. To demonstrate the influence of inter-individual anatomic variability on a mechanical modeling parameter, the corresponding range of muscle moment arms were calculated. Standard deviations, as a percentage of the mean, were about 70% for attachment area and 80% for muscle volume and attachment centroid location. The resulting moment arms of the m. gluteus maximus and m. rectus femoris were especially sensitive to anatomical variations (SD 65%). The results indicate that sensitivity to anatomical variations should be analyzed in any investigation simulating musculoskeletal interactions. To avoid misinterpretations, investigators should consider using several anatomical configurations rather than relying on a mean data set.

  18. Influence of muscle geometry on shortening speed of fibre, aponeurosis and muscle

    NARCIS (Netherlands)

    Zuurbier, C. J.; Huijing, P. A.

    1992-01-01

    The influence of muscle geometry on muscle shortening of the gastrocnemius medialis muscle (GM) of the rat was studied. Using cinematography, GM geometry was studied during isokinetic concentric activity at muscle lengths ranging from 85 to 105% of the optimum muscle length. The shortening speed of

  19. Assessment of muscle fatigue using electromygraphm sensing

    Science.gov (United States)

    Helmi, Muhammad Hazimin Bin; Ping, Chew Sue; Ishak, Nur Elliza Binti; Saad, Mohd Alimi Bin Mohd; Mokhtar, Anis Shahida Niza Binti

    2017-08-01

    Muscle fatigue is condition of muscle decline in ability after undergoing any physical activity. Observation of the muscle condition of an athlete during training is crucial to prevent or minimize injury and able to achieve optimum performance in actual competition. The aim of this project is to develop a muscle monitoring system to detect muscle fatigue in swimming athlete. This device is capable to measure muscle stress level of the swimmer and at the same time provide indication of muscle fatigue level to trainer. Electromyography signal was recorded from the muscle movement while practicing the front crawl stroke repetitively. The time domain data was processed to frequency spectra in order to study the effect of muscle fatigue. The results show that the recorded EMG signal is able to sense muscle fatigue.

  20. GENERAL Iarticle

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 2. Supersymmetry. Akshay Kulkarni P Ramadevi. General Article Volume 8 Issue 2 February 2003 pp 28-41 ... Author Affiliations. Akshay Kulkarni1 P Ramadevi1. Physics Department, Indian Institute of Technology, Mumbai 400 076, India.

  1. General indicators

    International Nuclear Information System (INIS)

    2003-01-01

    This document summarizes the main 2002 energy indicators for France. A first table lists the evolution of general indicators between 1973 and 2002: energy bill, price of imported crude oil, energy independence, primary and final energy consumption. The main 2002 results are detailed separately for natural gas, petroleum and coal (consumption, imports, exports, production, stocks, prices). (J.S.)

  2. Generalized Recovery

    DEFF Research Database (Denmark)

    Jensen, Christian Skov; Lando, David; Pedersen, Lasse Heje

    We characterize when physical probabilities, marginal utilities, and the discount rate can be recovered from observed state prices for several future time periods. We make no assumptions of the probability distribution, thus generalizing the time-homogeneous stationary model of Ross (2015). Recov...

  3. GENERAL SURGERY

    African Journals Online (AJOL)

    Department of Surgery, University of Cape Town Health Sciences Faculty, Groote Schuur Hospital, Observatory, Cape Town,. South Africa ... included all district, regional and tertiary hospitals in the nine provinces. Clinics and so-called ..... large contingency of senior general surgeons from countries such as Cuba, who have ...

  4. GENERAL SURGERY

    African Journals Online (AJOL)

    effect of fatigue on patient safety, and owing to increasing emphasis on lifestyle issues .... increasing emphasis on an appropriate work-life balance in professional life.10 ... experience, were the most negative about the EWTD in general.3,13 ...

  5. GENERAL SURGERY

    African Journals Online (AJOL)

    in the endoscopy room. GENERAL SURGERY. T du Toit, O C Buchel, S J A Smit. Department of Surgery, University of the Free State, Bloemfontein, ... The lack of video instrumentation in developing countries: Redundant fibre-optic instruments (the old. “eye scope”) are still being used. This instrument brings endoscopists ...

  6. General Assembly

    CERN Multimedia

    Staff Association

    2016-01-01

    5th April, 2016 – Ordinary General Assembly of the Staff Association! In the first semester of each year, the Staff Association (SA) invites its members to attend and participate in the Ordinary General Assembly (OGA). This year the OGA will be held on Tuesday, April 5th 2016 from 11:00 to 12:00 in BE Auditorium, Meyrin (6-2-024). During the Ordinary General Assembly, the activity and financial reports of the SA are presented and submitted for approval to the members. This is the occasion to get a global view on the activities of the SA, its financial management, and an opportunity to express one’s opinion, including taking part in the votes. Other points are listed on the agenda, as proposed by the Staff Council. Who can vote? Only “ordinary” members (MPE) of the SA can vote. Associated members (MPA) of the SA and/or affiliated pensioners have a right to vote on those topics that are of direct interest to them. Who can give his/her opinion? The Ordinary General Asse...

  7. GENERAL SURGERY

    African Journals Online (AJOL)

    could cripple the global economy. Greater attention ... Africa and 5.7 general surgeons per 100 000 in the US.12 One of the key ... 100 000 insured population working in the private sector, which is comparable with the United States (US).

  8. Necklaces: Generalizations

    Indian Academy of Sciences (India)

    IAS Admin

    . A q-ary necklace of length n is an equivalence class of q-coloured strings of length n under rota- tion. In this article, we study various generaliza- tions and derive analytical expressions to count the number of these generalized necklaces.

  9. Generalized Recovery

    DEFF Research Database (Denmark)

    Lando, David; Pedersen, Lasse Heje; Jensen, Christian Skov

    We characterize when physical probabilities, marginal utilities, and the discount rate can be recovered from observed state prices for several future time periods. We make no assumptions of the probability distribution, thus generalizing the time-homogeneous stationary model of Ross (2015...... our model empirically, testing the predictive power of the recovered expected return and other recovered statistics....

  10. General Relativity

    CERN Document Server

    Straumann, Norbert

    2013-01-01

    This book provides a completely revised and expanded version of the previous classic edition ‘General Relativity and Relativistic Astrophysics’. In Part I the foundations of general relativity are thoroughly developed, while Part II is devoted to tests of general relativity and many of its applications. Binary pulsars – our best laboratories for general relativity – are studied in considerable detail. An introduction to gravitational lensing theory is included as well, so as to make the current literature on the subject accessible to readers. Considerable attention is devoted to the study of compact objects, especially to black holes. This includes a detailed derivation of the Kerr solution, Israel’s proof of his uniqueness theorem, and a derivation of the basic laws of black hole physics. Part II ends with Witten’s proof of the positive energy theorem, which is presented in detail, together with the required tools on spin structures and spinor analysis. In Part III, all of the differential geomet...

  11. Diseases and disorders of muscle.

    Science.gov (United States)

    Pearson, A M; Young, R B

    1993-01-01

    Muscle may suffer from a number of diseases or disorders, some being fatal to humans and animals. Their management or treatment depends on correct diagnosis. Although no single method may be used to identify all diseases, recognition depends on the following diagnostic procedures: (1) history and clinical examination, (2) blood biochemistry, (3) electromyography, (4) muscle biopsy, (5) nuclear magnetic resonance, (6) measurement of muscle cross-sectional area, (7) tests of muscle function, (8) provocation tests, and (9) studies on protein turnover. One or all of these procedures may prove helpful in diagnosis, but even then identification of the disorder may not be possible. Nevertheless, each of these procedures can provide useful information. Among the most common diseases in muscle are the muscular dystrophies, in which the newly identified muscle protein dystrophin is either absent or present at less than normal amounts in both Duchenne and Becker's muscular dystrophy. Although the identification of dystrophin represents a major breakthrough, treatment has not progressed to the experimental stage. Other major diseases of muscle include the inflammatory myopathies and neuropathies. Atrophy and hypertrophy of muscle and the relationship of aging, exercise, and fatigue all add to our understanding of the behavior of normal and abnormal muscle. Some other interesting related diseases and disorders of muscle include myasthenia gravis, muscular dysgenesis, and myclonus. Disorders of energy metabolism include those caused by abnormal glycolysis (Von Gierke's, Pompe's, Cori-Forbes, Andersen's, McArdle's, Hers', and Tauri's diseases) and by the acquired diseases of glycolysis (disorders of mitochondrial oxidation). Still other diseases associated with abnormal energy metabolism include lipid-related disorders (carnitine and carnitine palmitoyl-transferase deficiencies) and myotonic syndromes (myotonia congenita, paramyotonia congenita, hypokalemic and hyperkalemic

  12. Unexpected radionuclide uptake due to calcification in muscles

    International Nuclear Information System (INIS)

    Khier, A.

    1999-01-01

    Full text: A male patient aged 27 years was injected with 1000 MBq of 99 Tc m -MDP. The patient was an active man indulging in contact sport. He presented with lower back and pelvic pain. Spot pictures were made of the pelvis, lumbar spine and femurs. Unexpected active radionuclide uptake in the muscles was seen. In the delayed static images, there was focal accumulation of tracer uptake in the muscles overlying the mid-shaft of the left femur consistent with myositis ossificans. Myositis ossificans is a benign ossifying process that is generally solitary and well circumscribed. It is most commonly found in the muscles but it may occur in other connective tissues, especially tendons and subcutaneous fat. This was presumably associated with chronic muscular injuries contracted during sports activity

  13. Heterogeneity among muscle precursor cells in adult skeletal muscles with differing regenerative capacities.

    Science.gov (United States)

    Pavlath, G K; Thaloor, D; Rando, T A; Cheong, M; English, A W; Zheng, B

    1998-08-01

    Skeletal muscle has a remarkable capacity to regenerate after injury, although studies of muscle regeneration have heretofore been limited almost exclusively to limb musculature. Muscle precursor cells in skeletal muscle are responsible for the repair of damaged muscle. Heterogeneity exists in the growth and differentiation properties of muscle precursor cell (myoblast) populations throughout limb development but whether the muscle precursor cells differ among adult skeletal muscles is unknown. Such heterogeneity among myoblasts in the adult may give rise to skeletal muscles with different regenerative capacities. Here we compare the regenerative response of a masticatory muscle, the masseter, to that of limb muscles. After exogenous trauma (freeze or crush injuries), masseter muscle regenerated much less effectively than limb muscle. In limb muscle, normal architecture was restored 12 days after injury, whereas in masseter muscle, minimal regeneration occurred during the same time period. Indeed, at late time points, masseter muscles exhibited increased fibrous connective tissue in the region of damage, evidence of ineffective muscle regeneration. Similarly, in response to endogenous muscle injury due to a muscular dystrophy, widespread evidence of impaired regeneration was present in masseter muscle but not in limb muscle. To explore the cellular basis of these different regenerative capacities, we analyzed the myoblast populations of limb and masseter muscles both in vivo and in vitro. From in vivo analyses, the number of myoblasts in regenerating muscle was less in masseter compared with limb muscle. Assessment of population growth in vitro indicated that masseter myoblasts grow more slowly than limb myoblasts under identical conditions. We conclude that the impaired regeneration in masseter muscles is due to differences in the intrinsic myoblast populations compared to limb muscles.

  14. Generalizing entanglement

    Science.gov (United States)

    Jia, Ding

    2017-12-01

    The expected indefinite causal structure in quantum gravity poses a challenge to the notion of entanglement: If two parties are in an indefinite causal relation of being causally connected and not, can they still be entangled? If so, how does one measure the amount of entanglement? We propose to generalize the notions of entanglement and entanglement measure to address these questions. Importantly, the generalization opens the path to study quantum entanglement of states, channels, networks, and processes with definite or indefinite causal structure in a unified fashion, e.g., we show that the entanglement distillation capacity of a state, the quantum communication capacity of a channel, and the entanglement generation capacity of a network or a process are different manifestations of one and the same entanglement measure.

  15. An artificial neural network approach and sensitivity analysis in predicting skeletal muscle forces.

    Science.gov (United States)

    Vilimek, Miloslav

    2014-01-01

    This paper presents the use of an artificial neural network (NN) approach for predicting the muscle forces around the elbow joint. The main goal was to create an artificial NN which could predict the musculotendon forces for any general muscle without significant errors. The input parameters for the network were morphological and anatomical musculotendon parameters, plus an activation level experimentally measured during a flexion/extension movement in the elbow. The muscle forces calculated by the 'Virtual Muscle System' provide the output. The cross-correlation coefficient expressing the ability of an artificial NN to predict the "true" force was in the range 0.97-0.98. A sensitivity analysis was used to eliminate the less sensitive inputs, and the final number of inputs for a sufficient prediction was nine. A variant of an artificial NN for a single specific muscle was also studied. The artificial NN for one specific muscle gives better results than a network for general muscles. This method is a good alternative to other approaches to calculation of muscle force.

  16. The adequate rocuronium dose required for complete block of the adductor muscles of the thigh.

    Science.gov (United States)

    Fujimoto, M; Kawano, K; Yamamoto, T

    2018-03-01

    Rocuronium can prevent the obturator jerk during transurethral resection of bladder tumors. We investigated the adequate rocuronium dose required for complete block of the thigh adductor muscles, and its correlation with individual responses of the adductor pollicis muscle to rocuronium. Eleven patients scheduled for transurethral resection of bladder tumors under general anesthesia were investigated. After general anesthesia induction, neuromuscular monitoring of the adductor pollicis muscle and ultrasonography-guided stimulation of the obturator nerve was commenced. Rocuronium, 0.15 mg/kg, was repeatedly administered intravenously. The adequate rocuronium dose required for complete block of the thigh muscles, defined as the cumulative dose of rocuronium administered until that time, and its correlation with the first twitch response of the adductor pollicis muscle on train-of-four stimulation after initial rocuronium administration was analyzed. The rocuronium dose found adequate for complete block of the thigh muscles was 0.30 mg/kg in seven patients and 0.45 mg/kg in the remaining four patients, which did not correlate with the first twitch response. At the time of complete block of the thigh muscles, the neuromuscular blockade level of the adductor pollicis muscle varied greatly, although the level was never more profound than a post-tetanic count of 1. Although the response of the adductor pollicis muscle to rocuronium cannot be used to determine the adequate rocuronium dose required for complete block of the thigh muscles, intense blockade, with maintenance of post-tetanic count at ≤ 1 in the adductor pollicis muscle is essential to prevent the obturator jerk. © 2017 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  17. General topology

    CERN Document Server

    Willard, Stephen

    2004-01-01

    Among the best available reference introductions to general topology, this volume is appropriate for advanced undergraduate and beginning graduate students. Its treatment encompasses two broad areas of topology: ""continuous topology,"" represented by sections on convergence, compactness, metrization and complete metric spaces, uniform spaces, and function spaces; and ""geometric topology,"" covered by nine sections on connectivity properties, topological characterization theorems, and homotopy theory. Many standard spaces are introduced in the related problems that accompany each section (340

  18. Enhancement of contractile force generation of artificial skeletal muscle tissues by mild and transient heat treatment.

    Science.gov (United States)

    Sato, Masanori; Ikeda, Kazushi; Kanno, Shota; Ito, Akira; Kawabe, Yoshinori; Kamihira, Masamichi

    2014-01-01

    Artificial skeletal muscle tissues composed of cells are expected to be used for applications of regenerative medicine and drug screening. Generally, however, the physical forces generated by tissue-engineered skeletal muscle are lower than those of skeletal muscle tissues found in the body. Local hyperthermia is used for many diseases including muscle injuries. It was recently reported that mild heat treatment improved skeletal muscle functions. In this study, we investigated the effects of mild heat treatment on the tissue-engineered skeletal muscle tissues in vitro. We used magnetite cationic liposomes to label C2C12 myoblast cells magnetically, and constructed densely packed artificial skeletal muscle tissues by using magnetic force. Cell culture at 39°C promoted the differentiation of myoblast cells into myotubes. Moreover, the mild and transient heat treatment improved the contractile properties of artificial skeletal muscle tissue constructs. These findings indicate that the culture method using heat treatment is a useful approach to enhance functions of artificial skeletal muscle tissue.

  19. Effects of hypothyroidism on the skeletal muscle blood flow response to contractions.

    Science.gov (United States)

    Bausch, L; McAllister, R M

    2003-04-01

    Hypothyroidism is associated with impaired blood flow to skeletal muscle under whole body exercise conditions. It is unclear whether poor cardiac and/or vascular function account for blunted muscle blood flow. Our experiment isolated a small group of hindlimb muscles and simulated exercise via tetanic contractions. We hypothesized that muscle blood flow would be attenuated in hypothyroid rats (HYPO) compared with euthyroid rats (EUT). Rats were made hypothyroid by mixing propylthiouracil in their drinking water (2.35 x 10-3 mol/l). Treatment efficacy was evidenced by lower serum T3 concentrations and resting heart rates in HYPO (both Pmuscles at a rate of 30 tetani/min were induced via sciatic nerve stimulation. Regional blood flows were determined by the radiolabelled microsphere method at three time points: rest, 2 min of contractions and 10 min of contractions. Muscle blood flow generally increased from rest ( approximately 5-10 ml/min per 100 g) through contractions for both groups. Further, blood flow during contractions did not differ between groups for any muscle (eg. red section of gastrocnemius muscle; EUT, 59.9 +/- 14.1; HYPO, 61.1 +/- 15.0; NS between groups). These findings indicate that hypothyroidism does not significantly impair skeletal muscle blood flow when only a small muscle mass is contracting. Our findings suggest that impaired blood flow under whole body exercise is accounted for by inadequate cardiac function rather than abnormal vascular function.

  20. Bilateral responses of upper limb muscles to transcranial magnetic stimulation in human subjects.

    Science.gov (United States)

    Bawa, P; Hamm, J D; Dhillon, P; Gross, P A

    2004-10-01

    Anatomical and behavioural work on primates has shown bilateral innervation of axial and proximal limb muscles, and contralateral control of distal limb muscles. The following study examined if a clear boundary exists between the distal and proximal upper limb muscles that are controlled contralaterally or bilaterally. The right motor cortical area representing the upper limb was stimulated, while surface EMG was recorded bilaterally from various upper limb muscles during rest and phasic voluntary contractions. Peak-to-peak amplitude of motor evoked potential (MEP) was measured for each muscle on both sides. The ratio R = (ipsilateral MEP: contralateral MEP) was calculated for seven pairs of muscles. For each of the seven pairs, R was less than 1.0, implying that for each muscle and subject, the contralateral control is stronger. The boundary where R changed from almost zero to a clearly measurable magnitude depended on the subject. Ipsilateral MEPs from trapezius and pectoralis could be recorded with a small background contraction from almost all subjects; on the other hand, in deltoid and biceps brachii, ipsilateral MEPs were observed only with bimanual phasic contractions. The forearm and hand muscles, in general, did not show any ipsilateral MEPs. Major differences between subjects lay in the presence or the absence of ipsilateral MEPs in biceps brachii and deltoid, without defining a sharp boundary between proximal and distal muscles.

  1. Changes in Quadriceps Muscle Activity During Sustained Recreational Alpine Skiing

    Science.gov (United States)

    Kröll, Josef; Müller, Erich; Seifert, John G.; Wakeling, James M.

    2011-01-01

    During a day of skiing thousands of repeated contractions take place. Previous research on prolonged recreational alpine skiing show that physiological changes occur and hence some level of fatigue is inevitable. In the present paper the effect of prolonged skiing on the recruitment and coordination of the muscle activity was investigated. Six subjects performed 24 standardized runs. Muscle activity during the first two (PREskiing) and the last two (POSTskiing) runs was measured from the vastus lateralis (VL) and rectus femoris (RF) using EMG and quantified using wavelet and principal component analysis. The frequency content of the EMG signal shifted in seven out of eight cases significantly towards lower frequencies with highest effects observed for RF on outside leg. A significant pronounced outside leg loading occurred during POSTskiing and the timing of muscle activity peaks occurred more towards turn completion. Specific EMG frequency changes were observed at certain time points throughout the time windows and not over the whole double turn. It is suggested that general muscular fatigue, where additional specific muscle fibers have to be recruited due to the reduced power output of other fibers did not occur. The EMG frequency decrease and intensity changes for RF and VL are caused by altered timing (coordination) within the turn towards a most likely more uncontrolled skiing technique. Hence, these data provide evidence to suggest recreational skiers alter their skiing technique before a potential change in muscle fiber recruitment occurs. Key points The frequency content of the EMG signal shifted in seven out of eight cases significantly towards lower frequencies with highest effects observed for RF. General muscular fatigue, where additional specific fibers have to be recruited due to the reduced power output of other fibers, did not occur. A modified skiing style towards a less functional and hence more uncontrolled skiing technique seems to be a key

  2. Generalized polygons

    CERN Document Server

    Maldeghem, Hendrik

    1998-01-01

    This book is intended to be an introduction to the fascinating theory ofgeneralized polygons for both the graduate student and the specialized researcher in the field. It gathers together a lot of basic properties (some of which are usually referred to in research papers as belonging to folklore) and very recent and sometimes deep results. I have chosen a fairly strict geometrical approach, which requires some knowledge of basic projective geometry. Yet, it enables one to prove some typically group-theoretical results such as the determination of the automorphism groups of certain Moufang polygons. As such, some basic group-theoretical knowledge is required of the reader. The notion of a generalized polygon is a relatively recent one. But it is one of the most important concepts in incidence geometry. Generalized polygons are the building bricks of Tits buildings. They are the prototypes and precursors of more general geometries such as partial geometries, partial quadrangles, semi-partial ge­ ometries, near...

  3. Muscle strength rather than muscle mass is associated with osteoporosis in older Chinese adults

    Directory of Open Access Journals (Sweden)

    Yixuan Ma

    2018-02-01

    Conclusion: Based on our study, muscle strength rather than muscle mass is negatively associated with OS in older people; thus, we should pay more attention to muscle strength training in the early stage of the OS.

  4. Effect of transcutaneous electrical muscle stimulation on muscle volume in patients with septic shock

    DEFF Research Database (Denmark)

    Poulsen, Jesper Brøndum; Møller, Kirsten; Jensen, Claus V

    2011-01-01

    Objective: Intensive care unit admission is associated with muscle wasting and impaired physical function. We investigated the effect of early transcutaneous electrical muscle stimulation on quadriceps muscle volume in patients with septic shock. Design: Randomized interventional study using...

  5. Muscle sonography in six patients with hereditary inclusion body myopathy

    International Nuclear Information System (INIS)

    Adler, Ronald S.; Garolfalo, Giovanna; Paget, Stephen; Kagen, Lawrence

    2008-01-01

    To evaluate the morphological changes of muscle with sonography in six patients affected by hereditary inclusion body myopathy (HIBM). We studied a group of six Persian Jews diagnosed with HIBM. All were homozygous for the GNE mutation M712T. Ultrasonographic examinations of the quadriceps femoris and hamstring muscle groups were performed. A follow-up ultrasound examination was performed, after an interval of 3 years, in four of these patients. Muscles were assessed subjectively as to echogenicity, determined by gray-scale assessment, and loss of normal muscle morphology. Power Doppler sonography (PDS) was used to assess vascularity. A sonographic finding of central atrophy and peripheral sparing resulting in a target-like appearance was noted in the hamstring compartment of all six patients. The quadriceps compartment also showed involvement of the rectus femoris of all patients, which, in some cases, was the only muscle involved in the quadriceps. Vascularity was markedly reduced in the affected areas, with blood flow demonstrated in the peripherally spared areas. The severity of atrophy increased with disease duration. In this case series, we describe a new sonographic finding as well as document progression of HIBM disease, which has generally been described as quadriceps sparing. The myopathic target lesion, as well as isolated rectus femoris atrophy, may provide a useful adjunct to disease diagnosis. (orig.)

  6. CHANGES IN QUADRICEPS MUSCLE ACTIVITY DURING SUSTAINED RECREATIONAL ALPINE SKIING

    Directory of Open Access Journals (Sweden)

    Josef Kröll

    2011-03-01

    Full Text Available During a day of skiing thousands of repeated contractions take place. Previous research on prolonged recreational alpine skiing show that physiological changes occur and hence some level of fatigue is inevitable. In the present paper the effect of prolonged skiing on the recruitment and coordination of the muscle activity was investigated. Six subjects performed 24 standardized runs. Muscle activity during the first two (PREskiing and the last two (POSTskiing runs was measured from the vastus lateralis (VL and rectus femoris (RF using EMG and quantified using wavelet and principal component analysis. The frequency content of the EMG signal shifted in seven out of eight cases significantly towards lower frequencies with highest effects observed for RF on outside leg. A significant pronounced outside leg loading occurred during POSTskiing and the timing of muscle activity peaks occurred more towards turn completion. Specific EMG frequency changes were observed at certain time points throughout the time windows and not over the whole double turn. It is suggested that general muscular fatigue, where additional specific muscle fibers have to be recruited due to the reduced power output of other fibers did not occur. The EMG frequency decrease and intensity changes for RF and VL are caused by altered timing (coordination within the turn towards a most likely more uncontrolled skiing technique. Hence, these data provide evidence to suggest recreational skiers alter their skiing technique before a potential change in muscle fiber recruitment occurs

  7. Altered fibre types in gastrocnemius muscle of high wheel-running selected mice with mini-muscle phenotypes.

    Science.gov (United States)

    Guderley, Helga; Joanisse, Denis R; Mokas, Sophie; Bilodeau, Geneviève M; Garland, Theodore

    2008-03-01

    Selective breeding of mice for high voluntary wheel running has favoured characteristics that facilitate sustained, aerobically supported activity, including a "mini-muscle" phenotype with markedly reduced hind limb muscle mass, increased mass-specific activities of oxidative enzymes, decreased % myosin heavy chain IIb, and, in the medial gastrocnemius, reduced twitch speed, reduced mass-specific isotonic power, and increased fatigue resistance. To evaluate whether selection has altered fibre type expression in mice with either "mini" or normal muscle phenotypes, we examined fibre types of red and white gastrocnemius. In both the medial and lateral gastrocnemius, the mini-phenotype increased activities of oxidative enzymes and decreased activities of glycolytic enzymes. In red muscle samples, the mini-phenotype markedly changed fibre types, with the % type I and type IIA fibres and the surface area of type IIA fibres increasing; in addition, mice from selected lines in general had an increased % type IIA fibres and larger type I fibres as compared with mice from control lines. White muscle samples from mini-mice showed dramatic structural alterations, with an atypical distribution of extremely small, unidentifiable fibres surrounded by larger, more oxidative fibres than normally present in white muscle. The increased proportion of oxidative fibres and these atypical small fibres together may explain the reduced mass and increased mitochondrial enzyme activities in mini-muscles. These and previous results demonstrate that extension of selective breeding beyond the time when the response of the selected trait (i.e. distance run) has levelled off can still modify the mechanistic underpinnings of this behaviour.

  8. Cervical muscle dysfunction in chronic whiplash-associated disorder grade 2: the relevance of the trauma.

    Science.gov (United States)

    Nederhand, Marc J; Hermens, Hermie J; IJzerman, Maarten J; Turk, Dennis C; Zilvold, Gerrit

    2002-05-15

    Surface electromyography measurements of the upper trapezius muscles were performed in patients with a chronic whiplash-associated disorder Grade 2 and those with nonspecific neck pain. To determine the etiologic relation between acceleration-deceleration trauma and the presence of cervical muscle dysfunction in the chronic stage of whiplash-associated disorder. From a biopsychosocial perspective, the acceleration-deceleration trauma in patients with whiplash-associated disorder is not regarded as a cause of chronicity of neck pain, but rather as a risk factor triggering response systems that contribute to the maintenance of neck pain. One of the contributing factors is dysfunction of the cervical muscles. Considering the limited etiologic significance of the trauma, it is hypothesized that in patients with neck pain, there are no differences in muscle activation patterns between those with and those without a history of an acceleration-deceleration trauma. Muscle activation patterns, expressed in normalized smooth rectified electromyography levels of the upper trapezius muscles, in patients with whiplash-associated disorder Grade 2 were compared with those of patients with nonspecific neck pain. The outcome parameters were the mean level of muscle activity before and after a physical exercise, the muscle reactivity in response to the exercise, and the time-dependent behavior of muscle activity after the exercise. There were no statistical significant differences in any of the outcome parameters between patients with whiplash-associated disorder Grade 2 and those with nonspecific neck pain. There was only a tendency of higher muscle reactivity in patients with whiplash-associated disorder Grade 2. It appears that the cervical muscle dysfunction in patients with chronic whiplash-associated disorder Grade 2 is not related to the specific trauma mechanism. Rather, cervical muscle dysfunction appears to be a general sign in diverse chronic neck pain syndromes.

  9. Striated Muscle Function, Regeneration, and Repair

    Science.gov (United States)

    Shadrin, I.Y.; Khodabukus, A.; Bursac, N.

    2016-01-01

    As the only striated muscle tissues in the body, skeletal and cardiac muscle share numerous structural and functional characteristics, while exhibiting vastly different size and regenerative potential. Healthy skeletal muscle harbors a robust regenerative response that becomes inadequate after large muscle loss or in degenerative pathologies and aging. In contrast, the mammalian heart loses its regenerative capacity shortly after birth, leaving it susceptible to permanent damage by acute injury or chronic disease. In this review, we compare and contrast the physiology and regenerative potential of native skeletal and cardiac muscles, mechanisms underlying striated muscle dysfunction, and bioengineering strategies to treat muscle disorders. We focus on different sources for cellular therapy, biomaterials to augment the endogenous regenerative response, and progress in engineering and application of mature striated muscle tissues in vitro and in vivo. Finally, we discuss the challenges and perspectives in translating muscle bioengineering strategies to clinical practice. PMID:27271751

  10. Protonmotive force in muscle mitochondria

    International Nuclear Information System (INIS)

    Stumpf, D.A.; Haas, R.; Eguren, L.A.; Parks, J.K.; Eilert, R.E.

    1982-01-01

    The protonmotive force (delta p) of muscle mitochondria was measured by estimating the distribution of 14C-labeled TPMP (trimethylphenylphosphonium iodide) and 14C-labeled acetate across the inner membrane of muscle mitochondria. The matrix volume was simultaneously determined using 3H-labeled H2O and 3H-labeled mannitol and repeated drying to distinguish the label in these 2 compounds. Rapid separation of mitochondria from the incubation medium by centrifugation through silicone oil avoids the problems of potential anaerobic conditions associated with conventional centrifugation and large volumes of trapped media associated with filtration. The value for delta p (mean +/- SD) was 192+/- 26 mV in 30 determinations with rat muscle mitochondria during state 4. Measurement of oxygen consumption allowed calculation of membrane conductance (Cm,H+) which was 0.49 +/- 0.18 nmol of H+/min/mg protein/mV. The values for delta p and Cm,H+ are reported for a variety of experimental conditions and are consistent with Mitchell's chemiosmotic theory. Biopsy specimens obtained from human muscle gave state-4 delta p values of 197+/- 30 mV (n .5) and Cm,H+ values of 0.52 +/- 0.12 nmol of H+/min/mg/mV (n . 4). This delta p assay is the first described for coupled mammalian muscle mitochondria and will be useful in assessing membrane function

  11. The Skeletal Muscle Satellite Cell

    Science.gov (United States)

    2011-01-01

    The skeletal muscle satellite cell was first described and named based on its anatomic location between the myofiber plasma and basement membranes. In 1961, two independent studies by Alexander Mauro and Bernard Katz provided the first electron microscopic descriptions of satellite cells in frog and rat muscles. These cells were soon detected in other vertebrates and acquired candidacy as the source of myogenic cells needed for myofiber growth and repair throughout life. Cultures of isolated myofibers and, subsequently, transplantation of single myofibers demonstrated that satellite cells were myogenic progenitors. More recently, satellite cells were redefined as myogenic stem cells given their ability to self-renew in addition to producing differentiated progeny. Identification of distinctively expressed molecular markers, in particular Pax7, has facilitated detection of satellite cells using light microscopy. Notwithstanding the remarkable progress made since the discovery of satellite cells, researchers have looked for alternative cells with myogenic capacity that can potentially be used for whole body cell-based therapy of skeletal muscle. Yet, new studies show that inducible ablation of satellite cells in adult muscle impairs myofiber regeneration. Thus, on the 50th anniversary since its discovery, the satellite cell’s indispensable role in muscle repair has been reaffirmed. PMID:22147605

  12. Muscle power is an important measure to detect deficits in muscle function in hip osteoarthritis: a cross-sectional study.

    Science.gov (United States)

    Bieler, Theresa; Magnusson, Stig Peter; Christensen, Helle Elisabeth; Kjaer, Michael; Beyer, Nina

    2017-07-01

    To investigate between-leg differences in hip and thigh muscle strength and leg extensor power in patients with unilateral hip osteoarthritis. Further, to compare between-leg differences in knee extensor strength and leg extensor power between patients and healthy peers. Seventy-two patients (60-87 years) with radiographic and symptomatic hip osteoarthritis not awaiting hip replacement and 35 healthy peers (63-82 years) were included. Hip and thigh muscle strength and leg extensor power were measured in patients and knee extensor strength and leg extensor power in healthy. The symptomatic extremity in patients was significantly (p hip muscles (8-17%), knee extensors (11%) and leg extensor power (19%). Healthy older adults had asymmetry in knee extensor strength (6%, p hip osteoarthritis. Implications for Rehabilitation Even in patients with mild symptoms not awaiting hip replacement a generalized muscle weakening of the symptomatic lower extremity seems to be present. Between-leg differences in leg extensor power (force × velocity) appears to be relatively large (19%) in patients with unilateral hip osteoarthritis in contrast to healthy peers who show no asymmetry. Compared to muscle strength the relationship between functional performance and leg extensor power seems to be stronger, and more strongly related to power of the symptomatic lower extremity. Our results indicate that exercise interventions focusing on improving leg extensor power of the symptomatic lower extremity and reducing asymmetry may be beneficial for patients with mild symptoms not awaiting hip replacement.

  13. Structure-function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    Science.gov (United States)

    Gao, Yingxin; Zhang, Chi

    2015-03-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure-function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure-function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure-function relationship of skeletal muscle into the design of artificial muscle.

  14. Structure–function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    International Nuclear Information System (INIS)

    Gao, Yingxin; Zhang, Chi

    2015-01-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure–function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure–function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure–function relationship of skeletal muscle into the design of artificial muscle. (topical review)

  15. General chemistry

    International Nuclear Information System (INIS)

    Kwon, Yeong Sik; Lee, Dong Seop; Ryu, Haung Ryong; Jang, Cheol Hyeon; Choi, Bong Jong; Choi, Sang Won

    1993-07-01

    The book concentrates on the latest general chemistry, which is divided int twenty-three chapters. It deals with basic conception and stoichiometry, nature of gas, structure of atoms, quantum mechanics, symbol and structure of an electron of ion and molecule, chemical thermodynamics, nature of solid, change of state and liquid, properties of solution, chemical equilibrium, solution and acid-base, equilibrium of aqueous solution, electrochemistry, chemical reaction speed, molecule spectroscopy, hydrogen, oxygen and water, metallic atom; 1A, IIA, IIIA, carbon and atom IVA, nonmetal atom and an inert gas, transition metals, lanthanons, and actinoids, nuclear properties and radioactivity, biochemistry and environment chemistry.

  16. General relativity

    International Nuclear Information System (INIS)

    Gourgoulhon, Eric

    2013-01-01

    The author proposes a course on general relativity. He first presents a geometrical framework by addressing, presenting and discussion the following notions: the relativistic space-time, the metric tensor, Universe lines, observers, principle of equivalence and geodesics. In the next part, he addresses gravitational fields with spherical symmetry: presentation of the Schwarzschild metrics, radial light geodesics, gravitational spectral shift (Einstein effect), orbitals of material objects, photon trajectories. The next parts address the Einstein equation, black holes, gravitational waves, and cosmological solutions. Appendices propose a discussion of the relationship between relativity and GPS, some problems and their solutions, and Sage codes

  17. Self-plied and twist-stable carbon nanotube yarn artificial muscles driven by organic solvent adsorption.

    Science.gov (United States)

    Jin, Kaiyun; Zhang, Silan; Zhou, Susheng; Qiao, Jian; Song, Yanhui; Di, Jiangtao; Zhang, Dengsong; Li, Qingwen

    2018-05-03

    Artificial yarn/fiber muscles have recently attracted considerable interest for various applications. These muscles can provide large-stroke tensile and torsional actuations, resulting from inserted twists. However, tensional tethering of twisted muscles is generally needed to avoid muscle snarling and untwisting. In this paper a carbon nanotube (CNT) yarn muscle that is tethering-free and twist-stable is reported. The yarn muscle is prepared by allowing the self-plying of a coiled CNT yarn. When driven by acetone adsorption, this muscle shows decoupled actuations, which provide fast and reversible ∼13.3% contraction strain against a constant stress corresponding to ∼38 000 times the muscle weight but almost zero torsional strokes. The cycling test shows that the self-plied muscle has very good structural stability and actuation reversibility. Applied joule heating can help increase the desorption of acetone and increase the operation frequency of the self-plied muscle. Furthermore, by controlling the coupling between the joule heating and acetone adsorption/desorption, tensile actuations from negative to positive have been achieved. This twist-stable feature could considerably facilitate the practical applications of such muscle.

  18. CORRELATIONS BETWEEN MUSCLE MASS, MUSCLE STRENGTH, PHYSICAL PERFORMANCE, AND MUSCLE FATIGUE RESISTANCE IN COMMUNITY-DWELLING ELDERLY SUBJECTS

    Directory of Open Access Journals (Sweden)

    Elizabeth

    2016-03-01

    Full Text Available Objective: To determine the correlations between muscle mass, muscle strength, physical performance, and muscle fatigue resistance in community-dwelling elderly people in order to elucidate factors which contribute to elderly’s performance of daily activities. Methods: A cross-sectional study was conducted on community-dwelling elderly in Bandung from September to December 2014. One hundred and thirty elderly, 60 years old or above, were evaluated using bioelectrical impedance analysis to measure muscle mass; grip strength to measure muscle strength and muscle fatigue resistance; habitual gait speed to measure physical performance; and Global Physical Activity Questionnaire (GPAQ to assess physical activity. Results: There were significant positive correlations between muscle mass (r=0,27, p=0,0019, muscle strength (r=0,26, p=0,0024, and physical performance (r=0,32, p=0,0002 with muscle fatigue resistance. Physical performance has the highest correlation based on multiple regression test (p=0,0025. In association with muscle mass, the physical activity showed a significant positive correlation (r=0,42, p=0,0000. Sarcopenia was identified in 19 (14.61% of 130 subjects. Conclusions: It is suggested that muscle mass, muscle strength, and physical performance influence muscle fatigue resistance.

  19. Associations of passive muscle stiffness, muscle stretch tolerance, and muscle slack angle with range of motion: individual and sex differences.

    Science.gov (United States)

    Miyamoto, Naokazu; Hirata, Kosuke; Miyamoto-Mikami, Eri; Yasuda, Osamu; Kanehisa, Hiroaki

    2018-05-29

    Joint range of motion (ROM) is an important parameter for athletic performance and muscular injury risk. Nonetheless, a complete description of muscular factors influencing ROM among individuals and between men and women is lacking. We examined whether passive muscle stiffness (evaluated by angle-specific muscle shear modulus), tolerance to muscle stretch (evaluated by muscle shear modulus at end-ROM), and muscle slack angle of the triceps surae are associated with the individual variability and sex difference in dorsiflexion ROM, using ultrasound shear wave elastography. For men, ROM was negatively correlated to passive muscle stiffness of the medial and lateral gastrocnemius in a tensioned state and positively to tolerance to muscle stretch in the medial gastrocnemius. For women, ROM was only positively correlated to tolerance to muscle stretch in all muscles but not correlated to passive muscle stiffness. Muscle slack angle was not correlated to ROM in men and women. Significant sex differences were observed only for dorsiflexion ROM and passive muscle stiffness in a tensioned state. These findings suggest that muscular factors associated with ROM are different between men and women. Furthermore, the sex difference in dorsiflexion ROM might be attributed partly to that in passive muscle stiffness of plantar flexors.

  20. Partial muscle carnitine palmitoyltransferase-A deficiency

    International Nuclear Information System (INIS)

    Ross, N.S.; Hoppel, C.L.

    1987-01-01

    After initiation of ibuprofen therapy, a 45-year-old woman developed muscle weakness and tenderness with rhabdomyolysis, culminating in respiratory failure. A muscle biopsy specimen showed a vacuolar myopathy, and markedly decreased muscle carnitine content and carnitine palmitoyltransferase activity. Following recovery, muscle carnitine content was normal but carnitine palmitoyltransferase activity was still abnormally low. The ratio of palmitoyl-coenzyme A plus carnitine to palmitoylcarnitine oxidation by muscle mitochondria isolated from the patient was markedly decreased. The authors conclude that transiently decreased muscle carnitine content interacted with partial deficiency of carnitine palmitoyltransferase-A to produce rhabdomyolysis and respiratory failure and that ibuprofen may have precipitated the clinical event

  1. Partial muscle carnitine palmitoyltransferase-A deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Ross, N.S.; Hoppel, C.L.

    1987-01-02

    After initiation of ibuprofen therapy, a 45-year-old woman developed muscle weakness and tenderness with rhabdomyolysis, culminating in respiratory failure. A muscle biopsy specimen showed a vacuolar myopathy, and markedly decreased muscle carnitine content and carnitine palmitoyltransferase activity. Following recovery, muscle carnitine content was normal but carnitine palmitoyltransferase activity was still abnormally low. The ratio of palmitoyl-coenzyme A plus carnitine to palmitoylcarnitine oxidation by muscle mitochondria isolated from the patient was markedly decreased. The authors conclude that transiently decreased muscle carnitine content interacted with partial deficiency of carnitine palmitoyltransferase-A to produce rhabdomyolysis and respiratory failure and that ibuprofen may have precipitated the clinical event.

  2. Torsional carbon nanotube artificial muscles.

    Science.gov (United States)

    Foroughi, Javad; Spinks, Geoffrey M; Wallace, Gordon G; Oh, Jiyoung; Kozlov, Mikhail E; Fang, Shaoli; Mirfakhrai, Tissaphern; Madden, John D W; Shin, Min Kyoon; Kim, Seon Jeong; Baughman, Ray H

    2011-10-28

    Rotary motors of conventional design can be rather complex and are therefore difficult to miniaturize; previous carbon nanotube artificial muscles provide contraction and bending, but not rotation. We show that an electrolyte-filled twist-spun carbon nanotube yarn, much thinner than a human hair, functions as a torsional artificial muscle in a simple three-electrode electrochemical system, providing a reversible 15,000° rotation and 590 revolutions per minute. A hydrostatic actuation mechanism, as seen in muscular hydrostats in nature, explains the simultaneous occurrence of lengthwise contraction and torsional rotation during the yarn volume increase caused by electrochemical double-layer charge injection. The use of a torsional yarn muscle as a mixer for a fluidic chip is demonstrated.

  3. Muscle after spinal cord injury

    DEFF Research Database (Denmark)

    Biering-Sørensen, Bo; Kristensen, Ida Bruun; Kjaer, Michael

    2009-01-01

    years after the injury. There is a progressive drop in the proportion of slow myosin heavy chain (MHC) isoform fibers and a rise in the proportion of fibers that coexpress both the fast and slow MHC isoforms. The oxidative enzymatic activity starts to decline after the first few months post-SCI. Muscles......The morphological and contractile changes of muscles below the level of the lesion after spinal cord injury (SCI) are dramatic. In humans with SCI, a fiber-type transformation away from type I begins 4-7 months post-SCI and reaches a new steady state with predominantly fast glycolytic IIX fibers...... from individuals with chronic SCI show less resistance to fatigue, and the speed-related contractile properties change, becoming faster. These findings are also present in animals. Future studies should longitudinally examine changes in muscles from early SCI until steady state is reached in order...

  4. Muscle Strength and Poststroke Hemiplegia

    DEFF Research Database (Denmark)

    Kristensen, Otto H; Stenager, Egon; Dalgas, Ulrik

    2017-01-01

    undergone peer review; and (4) were available in English or Danish. DATA EXTRACTION: The psychometric properties of isokinetic dynamometry were reviewed with respect to reliability, validity, and responsiveness. Furthermore, comparisons of strength between paretic, nonparetic, and comparable healthy muscles...... isokinetic dynamometry. DATA SOURCES: A systematic literature search of 7 databases was performed. STUDY SELECTION: Included studies (1) enrolled participants with definite poststroke hemiplegia according to defined criteria; (2) assessed muscle strength or power by criterion isokinetic dynamometry; (3) had...... were reviewed. DATA SYNTHESIS: Twenty studies covering 316 PPSH were included. High intraclass correlation coefficient (ICC) inter- and intrasession reliability was reported for isokinetic dynamometry, which was independent of the tested muscle group, contraction mode, and contraction velocity...

  5. Regular exercisers have stronger pelvic floor muscles than nonregular exercisers at midpregnancy.

    Science.gov (United States)

    Bø, Kari; Ellstrøm Engh, Marie; Hilde, Gunvor

    2018-04-01

    Today all healthy pregnant women are encouraged to be physically active throughout pregnancy, with recommendations to participate in at least 30 minutes of aerobic activity on most days of the week in addition to performing strength training of the major muscle groups 2-3 days per week and also pelvic floor muscle training. There is, however, an ongoing debate whether general physical activity enhances or declines pelvic floor muscle function. The objectives of the study were to compare vaginal resting pressure, pelvic floor muscle strength, and endurance in regular exercisers (exercise ≥30 minutes 3 or more times per week) and nonexercisers at midpregnancy. Furthermore, another objective was to assess whether regular general exercise or pelvic floor muscle strength was associated with urinary incontinence. This was a cross-sectional study at mean gestational week 20.9 (±1.4) including 218 nulliparous pregnant women, with a mean age of 28.6 years (range, 19-40 years) and prepregnancy body mass index of 23.9 kg/m 2 (SD, 4.0). Vaginal resting pressure, pelvic floor muscle strength, and pelvic floor muscle endurance were measured by a high-precision pressure transducer connected to a vaginal balloon. The International Consultation on Incontinence Questionnaire Urinary Incontinence Short Form was used to assess urinary incontinence. Differences between groups were analyzed using an independent-sample Student t test. Linear regression analysis was conducted to adjust for prepregnancy body mass index, age, smoking during pregnancy, and regular pelvic floor muscle training during pregnancy. The significance value was set to P ≤ .05. Regular exercisers had statistically significant stronger (mean 6.4 cm H 2 O [95% confidence interval, 1.7-11.2]) and more enduring (mean 39.9 cm H 2 Osec [95% confidence interval, 42.2-75.7]) pelvic floor muscles. Only pelvic floor muscle strength remained statistically significant, when adjusting for possible confounders. Pelvic floor

  6. Muscle GLUT4 in cirrhosis

    DEFF Research Database (Denmark)

    Holland-Fischer, Peter; Andersen, Per Heden; Lund, Sten

    2007-01-01

    test and later a muscle biopsy. Levels of GLUT4 total protein and mRNA content were determined in muscle biopsies by polyclonal antibody labelling and RT-PCR, respectively. RESULTS: GLUT4 protein content in the cirrhosis group was not different from that of the controls, but at variance......: In cirrhosis GLUT4 protein content was quantitatively intact, while limiting glucose tolerance. This indicates loss of redundancy of the major glucose transport system, possibly related to the markedly decreased expression of its gene. Hyper-insulinemia may be a primary event. Our findings implicate...

  7. Muscle assembly: a titanic achievement?

    Science.gov (United States)

    Gregorio, C C; Granzier, H; Sorimachi, H; Labeit, S

    1999-02-01

    The formation of perfectly aligned myofibrils in striated muscle represents a dramatic example of supramolecular assembly in eukaryotic cells. Recently, considerable progress has been made in deciphering the roles that titin, the third most abundant protein in muscle, has in this process. An increasing number of sarcomeric proteins (ligands) are being identified that bind to specific titin domains. Titin may serve as a molecular blueprint for sarcomere assembly and turnover by specifying the precise position of its ligands within each half-sarcomere in addition to functioning as a molecular spring that maintains the structural integrity of the contracting myofibrils.

  8. Radiological diagnostics of muscle diseases

    International Nuclear Information System (INIS)

    Weber, M.A.; Essig, M.; Kauczor, H.U.

    2007-01-01

    Muscular diseases are a heterogeneous group of diseases with difficult differential diagnosis. This article reviews morphological and functional radiological techniques for assessment of muscular diseases. Morphological techniques can describe edema-like changes, lipomatous and atrophic changes of muscular tissue. However, these imaging signs are often not disease-specific. As a result, clinicians assign radiology a secondary role in the management of muscular diseases. Meanwhile, functional radiological techniques allow the assessment of muscle fiber architecture, skeletal muscle perfusion, myocellular sodium-homoeostasis, lipid- and energy-phosphate metabolism, etc. By detecting and spatially localizing pathophysiological phenomena, these new techniques can increase the role of radiology in muscular diseases. (orig.)

  9. Muscle phosphoglycerate mutase deficiency revisited

    DEFF Research Database (Denmark)

    Naini, Ali; Toscano, Antonio; Musumeci, Olimpia

    2009-01-01

    storage disease type X and novel mutations in the gene encoding the muscle subunit of PGAM (PGAM2). DESIGN: Clinical, pathological, biochemical, and molecular analyses. SETTING: Tertiary care university hospitals and academic institutions. Patients A 37-year-old Danish man of Pakistani origin who had...... PGAM deficiency, and molecular studies revealed 2 novel homozygous mutations, a nonsense mutation and a single nucleotide deletion. Pathological studies of muscle showed mild glycogen accumulation but prominent tubular aggregates in both patients. CONCLUSIONS: We found that glycogen storage disease...

  10. The arrangement of muscle fibers and tendons in two muscles used for growth studies.

    Science.gov (United States)

    Stickland, N C

    1983-01-01

    The arrangement of muscle fibres and tendons was examined in the soleus muscle of rats from 6 to 175 days post partum. The muscle was seen to change from a simple structure, with mean fibre length of approximately 90% of complete muscle length, to a unipennate structure, with mean fibre length of only about 60% of muscle length. The dog pectineus muscle was also investigated and found to have a bipennate structure throughout postnatal growth. The arrangement of muscle fibres in both these muscles is such that it might be difficult (particularly in the older animals) to cut a transverse section through all the fibres contained in the muscle; some fibres might not enter the plane of section. Results on muscle fibre number in these muscles at different ages may therefore be misleading.

  11. Radiation-induced increase in the release of amino acids by isolated, perfused skeletal muscle

    International Nuclear Information System (INIS)

    Schwenen, M.

    1989-01-01

    Local exposure of the hindquarter of the rat to 15Gy of gamma-radiation resulted, 4-6h after irradiation, in increased release of amino acids by the isolated, perfused hindquarter preparation, 70% of which is skeletal muscle. This increase in release involves not only alanine and glutamine, but also those amino acids not metabolized by muscle and, therefore, released in proportion to their occurrence in muscle proteins. Because metabolic parameters and content of energy-rich phosphate compounds in muscle remain unchanged, it is unlikely that general cellular damage is the underlying cause of the radiation-induced increase in amino acid release. The findings strongly favour the hypothesis that increased availability of amino acids results from enhanced protein break-down in skeletal muscle which has its onset shortly after irradiation. This radiation-induced disturbance in protein metabolism might be one of the pathogenetic factors in the aetiology of radiation myopathy. (author)

  12. Effects of Lifestyle on Muscle Strength in a Healthy Danish Population

    DEFF Research Database (Denmark)

    Bartels, Else Marie; Robertson, Samuel; Danneskiold-Samsøe, Bente

    2018-01-01

    The Copenhagen City Heart Study (CCHS) and measurements of Isokinetic muscle strength from a sub-study of randomly selected healthy participants from CCHS. Methods: 126 women and 63 men were studied. All participants completed a questionnaire regarding their lifestyle, including physical activity, alcohol intake...... in the lower extremities (p = 0.03) for women, and lower extremities (p = 0.03) and trunk (p = 0.007) for men. Alcohol Intake was in general not correlated to muscle strength. No clear effect of smoking was seen on muscle strength. Conclusion: Our results show that physical activity during leisure...... and smoking habits. Isokinetic muscle strength was measured over the upper extremities (UE), trunk, and lower extremities (LE). Multivariate analyses including all of the variables were carried out. Results: The level of daily physical activity during leisure was positively correlated to muscle strength...

  13. Effects of Lifestyle on Muscle Strength in a Healthy Danish Population

    DEFF Research Database (Denmark)

    Bartels, Else Marie; Robertson, Samuel; Danneskiold-Samsøe, Bente

    2018-01-01

    The Copenhagen City Heart Study (CCHS) and measurements of Isokinetic muscle strength from a sub-study of randomly selected healthy participants from CCHS. Methods: 126 women and 63 men were studied. All participants completed a questionnaire regarding their lifestyle, including physical activity, alcohol intake...... in the lower extremities (p = 0.03) for women, and lower extremities (p = 0.03) and trunk (p = 0.007) for men. Alcohol Intake was in general not correlated to muscle strength. No clear effect of smoking was seen on muscle strength. Conclusions: Our results show that physical activity during leisure...... and smoking habits. Isokinetic muscle strength was measured over the upper extremities (UE), trunk, and lower extremities (LE). Multivariate analyses including all of the variables were carried out. Results: The level of daily physical activity during leisure was positively correlated to muscle strength...

  14. Neck and shoulder muscle strength in patients with tension-type headache

    DEFF Research Database (Denmark)

    Madsen, Bjarne K; Søgaard, Karen; Andersen, Lars L.

    2016-01-01

    in TTH patients and healthy controls by examining maximal voluntary isometric contraction (MVC) during shoulder abduction, neck flexion and extension as well as the extension/flexion strength ratio of the neck. METHODS: Sixty TTH patients and 30 sex- and age-matched healthy controls were included......INTRODUCTION: Tension-type headache (TTH) is highly prevalent in the general population, and it is characterized by increased muscle tenderness with increasing headache frequency and intensity. AIM: The aim of this case-control study was to compare muscle strength in neck and shoulder muscles....... Patients were included if they had TTH ≥8 days per month. The MVC neck extensor and flexor muscles were tested with the participant seated upright. MVC shoulder abduction was tested with the individual lying supine. RESULTS: Compared to controls TTH patients had significantly weaker muscle strength in neck...

  15. A comparison of hamstring muscle activity during different screening tests for non-contact ACL injury

    DEFF Research Database (Denmark)

    Husted, Rasmus S; Bencke, Jesper; Andersen, Lars Louis

    2016-01-01

    phenomenon and thereby observable independently of the type of clinical screening tests used is not known. This cross sectional study investigated the rank correlation of knee joint neuromuscular activity between three different ACL injury risk screening tests. METHODS: Sixty-two adolescent female elite......BACKGROUND: Reduced ability to activate the medial hamstring muscles during a sports-specific sidecutting movement has been found to be a potential risk factor for non-contact ACL injury. However, whether a reduced ability to activate the medial hamstring muscle is a general neuromuscular...... football and handball players (16.7±1.3years) participated in the study. Using surface electromyography (EMG) assessment, the neuromuscular activity of medial hamstring muscle (semitendinosus, ST), lateral hamstring muscle (biceps femoris, BF) and quadriceps muscle (vastus lateralis, VL) were monitored...

  16. Generalizing quasinormality

    Directory of Open Access Journals (Sweden)

    John Cossey

    2015-03-01

    Full Text Available Quasinormal subgroups have been studied for nearly 80 years. In finite groups, questions concerning them invariably reduce to p-groups, and here they have the added interest of being invariant under projectivities, unlike normal subgroups. However, it has been shown recently that certain groups, constructed by Berger and Gross in 1982, of an important universal nature with regard to the existence of core-free quasinormal subgroups gener- ally, have remarkably few such subgroups. Therefore in order to overcome this misfortune, a generalization of the concept of quasi- normality will be defined. It could be the beginning of a lengthy undertaking. But some of the initial findings are encouraging, in particular the fact that this larger class of subgroups also remains invariant under projectivities of finite p-groups, thus connecting group and subgroup lattice structures.

  17. Novel biomarkers of changes in muscle mass or muscle pathology

    DEFF Research Database (Denmark)

    Arvanitidis, Athanasios

    healthy individuals and patients with different myopathy diseases, describe the underlying mechanisms of muscle conditions and possibly putative response to an intervention. There were three different studies where biomarkers were applied in this thesis. Study I involved 51 myositis patients (28...

  18. Physical Rehabilitation Improves Muscle Function Following Volumetric Muscle Loss Injury

    Science.gov (United States)

    2014-12-19

    synergistic effect of treadmill running on stem -cell transplantation to heal injured skeletal muscle. Tissue Eng Part A 2010, 16(3):839–849. 20. Brutsaert...U:::-’ 0:: 0 Uninjured Injured Figure 7 c E 14 w cu12 • SED * (/) Cll < 10 ~ ~ 8 c 6 Cll Cl 4 z ..!!! ::> 0 2 0::: u 0 Uninjured Injured

  19. General report

    International Nuclear Information System (INIS)

    Nicklisch, F.

    1984-01-01

    Growing complexity of technical matter has meant that technical expertise is called upon in more and more legal proceedings. The technical expert is, in general terms, the mediator between technology and the law, he is also entrusted with the task of pointing up the differences in approach and in the nature of authority in these two areas and thus paving the way for mutual understanding. The evaluation of the technical expert's opinion is one of the cardinal problems bound up with the role of the expert in legal procedure. After the presentation of the expert's opinion, the judge is supposed to possess so much specialised knowledge that he can assess the opinion itself in scientific and technical respects and put his finger on any errors the expert may have made. This problem can only be solved via an assessment opinion. First of all, the opinion can be assessed indirectly via evaluation of the credentials and the neutrality and independence of the expert. In direct terms, the opinion can be subjected to a certain - albeit restricted - scrutiny, whether it is generally convincing, as far as the layman is competent to judge. This interpretation alone makes it possible to classify and integrate legally the technical standards and regulations represent expert statements on the scientific and technical theorems based on the knowledge and experience gained in a given area. They are designed to reflect prevailing opinion among leading representatives of the profession and can thus themselves be regarded as expert opinions. As a rule, these opinions will have such weight that - other than in exceptional cases - they will not be invalidated in procedure by deviating opinions from individual experts. (orig./HSCH) [de

  20. PLASTICITY OF SKELETAL MUSCLE STUDIED BY STEREOLOGY

    Directory of Open Access Journals (Sweden)

    Ida Eržen

    2011-05-01

    Full Text Available The present contribution provides an overview of stereological methods applied in the skeletal muscle research at the Institute of Anatomy of the Medical Faculty in Ljubljana. Interested in skeletal muscle plasticity we studied three different topics: (i expression of myosin heavy chain isoforms in slow and fast muscles under experimental conditions, (ii frequency of satellite cells in young and old human and rat muscles and (iii capillary supply of rat fast and slow muscles. We analysed the expression of myosin heavy chain isoforms within slow rat soleus and fast extensor digitorum longus muscles after (i homotopic and heterotopic transplantation of both muscles, (ii low frequency electrical stimulation of the fast muscle and (iii transposition of the fast nerve to the slow muscle. The models applied were able to turn the fast muscle into a completely slow muscle, but not vice versa. One of the indicators for the regenerative potential of skeletal muscles is its satellite cell pool. The estimated parameters, number of satellite cells per unit fibre length, corrected to the reference sarcomere length (Nsc/Lfib and number of satellite cells per number of nuclei (myonuclei and satellite cell nuclei (Nsc/Nnucl indicated that the frequency of M-cadherin stained satellite cells declines in healthy old human and rat muscles compared to young muscles. To access differences in capillary densities among slow and fast muscles and slow and fast muscle fibres, we have introduced Slicer and Fakir methods, and tested them on predominantly slow and fast rat muscles. Discussing three different topics that require different approach, the present paper reflects the three decades of the development of stereological methods: 2D analysis by simple point counting in the 70's, the disector in the 80's and virtual spatial probes in the 90's. In all methods the interactive computer assisted approach was utilised.

  1. Biceps brachii muscle oxygenation in electrical muscle stimulation.

    Science.gov (United States)

    Muthalib, Makii; Jubeau, Marc; Millet, Guillaume Y; Maffiuletti, Nicola A; Ferrari, Marco; Nosaka, Kazunori

    2010-09-01

    The purpose of this study was to compare between electrical muscle stimulation (EMS) and maximal voluntary (VOL) isometric contractions of the elbow flexors for changes in biceps brachii muscle oxygenation (tissue oxygenation index, TOI) and haemodynamics (total haemoglobin volume, tHb = oxygenated-Hb + deoxygenated-Hb) determined by near-infrared spectroscopy (NIRS). The biceps brachii muscle of 10 healthy men (23-39 years) was electrically stimulated at high frequency (75 Hz) via surface electrodes to evoke 50 intermittent (4-s contraction, 15-s relaxation) isometric contractions at maximum tolerated current level (EMS session). The contralateral arm performed 50 intermittent (4-s contraction, 15-s relaxation) maximal voluntary isometric contractions (VOL session) in a counterbalanced order separated by 2-3 weeks. Results indicated that although the torque produced during EMS was approximately 50% of VOL (P<0.05), there was no significant difference in the changes in TOI amplitude or TOI slope between EMS and VOL over the 50 contractions. However, the TOI amplitude divided by peak torque was approximately 50% lower for EMS than VOL (P<0.05), which indicates EMS was less efficient than VOL. This seems likely because of the difference in the muscles involved in the force production between conditions. Mean decrease in tHb amplitude during the contraction phases was significantly (P<0.05) greater for EMS than VOL from the 10th contraction onwards, suggesting that the muscle blood volume was lower in EMS than VOL. It is concluded that local oxygen demand of the biceps brachii sampled by NIRS is similar between VOL and EMS.

  2. Developmental changes in the activation properties and ultrastructure of fast- and slow-twitch muscles from fetal sheep.

    Science.gov (United States)

    West, J M; Barclay, C J; Luff, A R; Walker, D W

    1999-04-01

    At early stages of muscle development, skeletal muscles contract and relax slowly, regardless of whether they are destined to become fast- or slow-twitch. In this study, we have characterised the activation profiles of developing fast- and slow-twitch muscles from a precocial species, the sheep, to determine if the activation profiles of the muscles are characteristically slow when both the fast- and slow-twitch muscles have slow isometric contraction profiles. Single skinned muscle fibres from the fast-twitch flexor digitorum longus (FDL) and slow-twitch soleus muscles from fetal (gestational ages 70, 90, 120 and 140 days; term 147 days) and neonatal (8 weeks old) sheep were used to determine the isometric force-pCa (pCa = -log10[Ca2+]) and force-pSr relations during development. Fast-twitch mammalian muscles generally have a greatly different sensitivity to Ca2+ and Sr2+ whereas slow-twitch muscles have a similar sensitivity to these divalent cations. At all ages studied, the force-pCa and force-pSr relations of the FDL muscle were widely separated. The mean separation of the mid-point of the curves (pCa50-pSr50) was approximately 1.1. This is typical of adult fast-twitch muscle. The force-pCa and force-pSr curves for soleus muscle were also widely separated at 70 and 90 days gestation (pCa50-pSr50 approximately 0.75); between 90 days and 140 days this separation decreased significantly to approximately 0.2. This leads to a paradoxical situation whereby at early stages of muscle development the fast muscles have contraction dynamics of slow muscles but the slow muscles have activation profiles more characteristic of fast muscles. The time course for development of the FDL and soleus is different, based on sarcomere structure with the soleus muscle developing clearly defined sarcomere structure earlier in gestation than the FDL. At 70 days gestation the FDL muscle had no clearly defined sarcomeres. Force (N cm-2) increased almost linearly between 70 and 140 days

  3. Intraoperative length and tension curves of human eye muscles. Including stiffness in passive horizontal eye movement in awake volunteers

    NARCIS (Netherlands)

    H.J. Simonsz (Huib); G.H. Kolling (Gerold); H. Kaufmann (Herbert); B. van Dijk (Bob)

    1986-01-01

    textabstractIntraoperative continuous-registration length and tension curves of attached and detached eye muscles were made in 18 strabismic patients under general anesthesia. For relaxed eye muscles, we found an exponential relation between length and tension. An increased stiffness was quantified

  4. Attenuated increase in maximal force of rat medial gastrocnemius muscle after concurrent peak power and endurance training

    NARCIS (Netherlands)

    Furrer, R.; Jaspers, R.T.; Baggerman, H.L.; Bravenboer, N.; Lips, P.; de Haan, A.

    2013-01-01

    Improvement of muscle peak power and oxidative capacity are generally presumed to be mutually exclusive. However, this may not be valid by using fibre type-specific recruitment. Since rat medial gastrocnemius muscle (GM) is composed of high and low oxidative compartments which are recruited task

  5. Low field magnetic resonance imaging of the lumbar spine: Reliability of qualitative evaluation of disc and muscle parameters

    DEFF Research Database (Denmark)

    Sørensen, Joan Solgaard; Kjaer, Per; Jensen, Tue Secher

    2006-01-01

    PURPOSE: To determine the intra- and interobserver reliability in grading disc and muscle parameters using low-field magnetic resonance imaging (MRI). MATERIAL AND METHODS: MRI scans of 100 subjects representative of the general population were evaluated blindly by two radiologists. Criteria......: Convincing reliability was found in the evaluation of disc- and muscle-related MRI variables....

  6. Lower Extremity Muscle Activation and Kinematics of Catchers When Throwing Using Various Squatting and Throwing Postures

    Directory of Open Access Journals (Sweden)

    Yi-Chien Peng, Kuo-Cheng Lo, Lin-Hwa Wang

    2015-09-01

    Full Text Available This study investigated the differences in joint motions and muscle activities of the lower extremities involved in various squatting postures. The motion capture system with thirty-one reflective markers attached on participants was used for motion data collection. The electromyography system was applied over the quadriceps, biceps femoris, tibialis anterior, and gastrocnemius muscles of the pivot and stride leg. The joint extension and flexion in wide squatting are greater than in general squatting (p = 0.005. Knee joint extension and flexion in general squatting are significantly greater than in wide squatting (p = 0.001. The adduction and abduction of the hip joint in stride passing are significantly greater than in step squatting (p = 0.000. Furthermore, the adduction and abduction of the knee joint in stride passing are also significantly greater than in step squatting (p = 0.000. When stride passing is performed, the muscle activation of the hamstring of the pivot foot in general squatting is significantly greater than in wide squatting (p < 0.05, and this difference continues to the stride period. Most catchers use a general or wide squatting width, exclusive of a narrow one. Therefore, the training design for strengthening the lower extremity muscles should consider the appropriateness of the common squat width to enhance squat-up performance. For lower limb muscle activation, wide squatting requires more active gastrocnemius and tibialis anterior muscles. Baseball players should extend the knee angle of the pivot foot before catching the ball.

  7. The characteristics of a pneumatic muscle

    Directory of Open Access Journals (Sweden)

    Pietrala Dawid

    2017-01-01

    Full Text Available The article presents static and dynamic characteristics of pneumatic muscles. It presents the structure of the laboratory stand used to test pneumatic muscles. It discusses the methodology for determination of static and dynamic characteristics. The paper also illustrates characteristics showing the relationship of pneumatic muscles length and operating pressure, at a constant loading force (isotonic characteristics. It presents characteristics showing the relationship of pneumatic muscles shortening and values of loading forces, at a constant operational pressure (isobaric characteristics. It also shows the dependence of force generated by the muscle on the operating pressure, at a constant value of pneumatic muscles shortening (isometric characteristics. The paper also presents dynamic characteristics of a pneumatic muscle showing the response of an object to a gradual change in the operating pressure, at a constant loading force acting on the pneumatic muscle.

  8. The characteristics of a pneumatic muscle

    Science.gov (United States)

    Pietrala, Dawid

    The article presents static and dynamic characteristics of pneumatic muscles. It presents the structure of the laboratory stand used to test pneumatic muscles. It discusses the methodology for determination of static and dynamic characteristics. The paper also illustrates characteristics showing the relationship of pneumatic muscles length and operating pressure, at a constant loading force (isotonic characteristics). It presents characteristics showing the relationship of pneumatic muscles shortening and values of loading forces, at a constant operational pressure (isobaric characteristics). It also shows the dependence of force generated by the muscle on the operating pressure, at a constant value of pneumatic muscles shortening (isometric characteristics). The paper also presents dynamic characteristics of a pneumatic muscle showing the response of an object to a gradual change in the operating pressure, at a constant loading force acting on the pneumatic muscle.

  9. Bones, Muscles, and Joints: The Musculoskeletal System

    Science.gov (United States)

    ... Skeletal muscles are called striated (pronounced: STRY-ay-ted) because they are made up of fibers that ... blood through your body. When we smile and talk, muscles are helping us communicate, and when we ...

  10. Trichinella spiralis in human muscle (image)

    Science.gov (United States)

    This is the parasite Trichinella spiralis in human muscle tissue. The parasite is transmitted by eating undercooked meats, especially pork. The cysts hatch in the intestines and produce large numbers of larvae that migrate into muscle tissue. The cysts ...

  11. Magnetic resonance imaging of facial muscles

    Energy Technology Data Exchange (ETDEWEB)

    Farrugia, M.E. [Department of Clinical Neurology, University of Oxford, Radcliffe Infirmary, Oxford (United Kingdom)], E-mail: m.e.farrugia@doctors.org.uk; Bydder, G.M. [Department of Radiology, University of California, San Diego, CA 92103-8226 (United States); Francis, J.M.; Robson, M.D. [OCMR, Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford (United Kingdom)

    2007-11-15

    Facial and tongue muscles are commonly involved in patients with neuromuscular disorders. However, these muscles are not as easily accessible for biopsy and pathological examination as limb muscles. We have previously investigated myasthenia gravis patients with MuSK antibodies for facial and tongue muscle atrophy using different magnetic resonance imaging sequences, including ultrashort echo time techniques and image analysis tools that allowed us to obtain quantitative assessments of facial muscles. This imaging study had shown that facial muscle measurement is possible and that useful information can be obtained using a quantitative approach. In this paper we aim to review in detail the methods that we applied to our study, to enable clinicians to study these muscles within the domain of neuromuscular disease, oncological or head and neck specialties. Quantitative assessment of the facial musculature may be of value in improving the understanding of pathological processes occurring within facial muscles in certain neuromuscular disorders.

  12. Magnetic resonance imaging of facial muscles

    International Nuclear Information System (INIS)

    Farrugia, M.E.; Bydder, G.M.; Francis, J.M.; Robson, M.D.

    2007-01-01

    Facial and tongue muscles are commonly involved in patients with neuromuscular disorders. However, these muscles are not as easily accessible for biopsy and pathological examination as limb muscles. We have previously investigated myasthenia gravis patients with MuSK antibodies for facial and tongue muscle atrophy using different magnetic resonance imaging sequences, including ultrashort echo time techniques and image analysis tools that allowed us to obtain quantitative assessments of facial muscles. This imaging study had shown that facial muscle measurement is possible and that useful information can be obtained using a quantitative approach. In this paper we aim to review in detail the methods that we applied to our study, to enable clinicians to study these muscles within the domain of neuromuscular disease, oncological or head and neck specialties. Quantitative assessment of the facial musculature may be of value in improving the understanding of pathological processes occurring within facial muscles in certain neuromuscular disorders

  13. Multidirectional Artificial Muscles from Nylon.

    Science.gov (United States)

    Mirvakili, Seyed M; Hunter, Ian W

    2017-01-01

    Multidirectional artificial muscles are made from highly oriented nylon filaments. Thanks to the low thermal conductivity of nylon and its anisotropic thermal expansion, bending occurs when a nylon beam is differentially heated. This heat can be generated via a Joule heating mechanism or high power laser pulses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Muscle strength in myasthenia gravis

    DEFF Research Database (Denmark)

    Cejvanovic, S; Vissing, J

    2014-01-01

    OBJECTIVE: Myasthenia gravis (MG) is characterized by fatigue and fluctuating muscle weakness as a result of impaired neuromuscular transmission (NMT). Although MG is a prototypic fatiguing disorder, little is known about how the condition affects fixed weakness, and if present, whether weakness...

  15. Metabolic Adaptation to Muscle Ischemia

    Science.gov (United States)

    Cabrera, Marco E.; Coon, Jennifer E.; Kalhan, Satish C.; Radhakrishnan, Krishnan; Saidel, Gerald M.; Stanley, William C.

    2000-01-01

    Although all tissues in the body can adapt to varying physiological/pathological conditions, muscle is the most adaptable. To understand the significance of cellular events and their role in controlling metabolic adaptations in complex physiological systems, it is necessary to link cellular and system levels by means of mechanistic computational models. The main objective of this work is to improve understanding of the regulation of energy metabolism during skeletal/cardiac muscle ischemia by combining in vivo experiments and quantitative models of metabolism. Our main focus is to investigate factors affecting lactate metabolism (e.g., NADH/NAD) and the inter-regulation between carbohydrate and fatty acid metabolism during a reduction in regional blood flow. A mechanistic mathematical model of energy metabolism has been developed to link cellular metabolic processes and their control mechanisms to tissue (skeletal muscle) and organ (heart) physiological responses. We applied this model to simulate the relationship between tissue oxygenation, redox state, and lactate metabolism in skeletal muscle. The model was validated using human data from published occlusion studies. Currently, we are investigating the difference in the responses to sudden vs. gradual onset ischemia in swine by combining in vivo experimental studies with computational models of myocardial energy metabolism during normal and ischemic conditions.

  16. Muscle mechanics and neuromuscular control

    NARCIS (Netherlands)

    Hof, AL

    The purpose of this paper is to demonstrate that the properties of the mechanical system, especially muscle elasticity and limb mass, to a large degree determine force output and movement. This makes the control demands of the central nervous system simpler and more robust. In human triceps surae, a

  17. No Muscle Is an Island

    DEFF Research Database (Denmark)

    Kent, Jane A; Ørtenblad, Niels; Hogan, Michael C

    2016-01-01

    Muscle fatigue has been studied with a variety approaches, tools and technologies. The foci of these studies have ranged tremendously, from molecules to the entire organism. Single cell and animal models have been used to gain mechanistic insight into the fatigue process. The theme of this review...

  18. The characteristics of a pneumatic muscle

    OpenAIRE

    Pietrala Dawid

    2017-01-01

    The article presents static and dynamic characteristics of pneumatic muscles. It presents the structure of the laboratory stand used to test pneumatic muscles. It discusses the methodology for determination of static and dynamic characteristics. The paper also illustrates characteristics showing the relationship of pneumatic muscles length and operating pressure, at a constant loading force (isotonic characteristics). It presents characteristics showing the relationship of pneumatic muscles s...

  19. Exercise Promotes Healthy Aging of Skeletal Muscle

    DEFF Research Database (Denmark)

    Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M

    2016-01-01

    caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial...... respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle....

  20. Integrated expression analysis of muscle hypertrophy identifies Asb2 as a negative regulator of muscle mass

    Science.gov (United States)

    Davey, Jonathan R.; Watt, Kevin I.; Parker, Benjamin L.; Chaudhuri, Rima; Ryall, James G.; Cunningham, Louise; Qian, Hongwei; Sartorelli, Vittorio; Chamberlain, Jeffrey; James, David E.

    2016-01-01

    The transforming growth factor-β (TGF-β) signaling network is a critical regulator of skeletal muscle mass and function and, thus, is an attractive therapeutic target for combating muscle disease, but the underlying mechanisms of action remain undetermined. We report that follistatin-based interventions (which modulate TGF-β network activity) can promote muscle hypertrophy that ameliorates aging-associated muscle wasting. However, the muscles of old sarcopenic mice demonstrate reduced response to follistatin compared with healthy young-adult musculature. Quantitative proteomic and transcriptomic analyses of young-adult muscles identified a transcription/translation signature elicited by follistatin exposure, which included repression of ankyrin repeat and SOCS box protein 2 (Asb2). Increasing expression of ASB2 reduced muscle mass, thereby demonstrating that Asb2 is a TGF-β network–responsive negative regulator of muscle mass. In contrast to young-adult muscles, sarcopenic muscles do not exhibit reduced ASB2 abundance with follistatin exposure. Moreover, preventing repression of ASB2 in young-adult muscles diminished follistatin-induced muscle hypertrophy. These findings provide insight into the program of transcription and translation events governing follistatin-mediated adaptation of skeletal muscle attributes and identify Asb2 as a regulator of muscle mass implicated in the potential mechanistic dysfunction between follistatin-mediated muscle growth in young and old muscles. PMID:27182554

  1. Muscle fatigue in fibromyalgia is in the brain, not in the muscles

    DEFF Research Database (Denmark)

    Bandak, Elisabeth; Amris, Kirstine; Bliddal, Henning

    2013-01-01

    To investigate relationships between perceived and objectively measured muscle fatigue during exhausting muscle contractions in women with fibromyalgia (FM) compared with healthy controls (HC).......To investigate relationships between perceived and objectively measured muscle fatigue during exhausting muscle contractions in women with fibromyalgia (FM) compared with healthy controls (HC)....

  2. Effect of altering starting length and activation timing of muscle on fiber strain and muscle damage.

    Science.gov (United States)

    Butterfield, Timothy A; Herzog, Walter

    2006-05-01

    Muscle strain injuries are some of the most frequent injuries in sports and command a great deal of attention in an effort to understand their etiology. These injuries may be the culmination of a series of subcellular events accumulated through repetitive lengthening (eccentric) contractions during exercise, and they may be influenced by a variety of variables including fiber strain magnitude, peak joint torque, and starting muscle length. To assess the influence of these variables on muscle injury magnitude in vivo, we measured fiber dynamics and joint torque production during repeated stretch-shortening cycles in the rabbit tibialis anterior muscle, at short and long muscle lengths, while varying the timing of activation before muscle stretch. We found that a muscle subjected to repeated stretch-shortening cycles of constant muscle-tendon unit excursion exhibits significantly different joint torque and fiber strains when the timing of activation or starting muscle length is changed. In particular, measures of fiber strain and muscle injury were significantly increased by altering activation timing and increasing the starting length of the muscle. However, we observed differential effects on peak joint torque during the cyclic stretch-shortening exercise, as increasing the starting length of the muscle did not increase torque production. We conclude that altering activation timing and muscle length before stretch may influence muscle injury by significantly increasing fiber strain magnitude and that fiber dynamics is a more important variable than muscle-tendon unit dynamics and torque production in influencing the magnitude of muscle injury.

  3. Effects of extracts of denervated muscles on the morphology of cultured muscle cells

    NARCIS (Netherlands)

    Hooisma, J.; Krijger, J.de; Groot, D.M.G. de

    1981-01-01

    Previously tropic effects of extracts from whole chick embryos and from innervated muscles on cultured muscle cells were described. The present study demonstrated similar effects of extracts from 10-days denervated chick muscles. Extracts from innervated as well as from denervated muscles

  4. Muscle synergies in neuroscience and robotics: from input-space to task-space perspectives

    Directory of Open Access Journals (Sweden)

    Cristiano eAlessandro

    2013-04-01

    Full Text Available In this paper we review the works related to muscle synergies that have been carried-out in neuroscience and control engineering. In particular, we refer to the hypothesis that the central nervous system (CNS generates desired muscle contractions by combining a small number of predefined modules, called muscle synergies. We provide an overview of the methods that have been employed to test the validity of this scheme, and we show how the concept of muscle synergy has been generalized for the control of artificial agents. The comparison between these two lines of research, in particular their different goals and approaches, is instrumental to explain the computational implications of the hypothesized modular organization. Moreover, it clarifies the importance of assessing the functional role of muscle synergies: although these basic modules are defined at the level of muscle activations (input-space, they should result in the effective accomplishment of the desired task. This requirement is not always explicitly considered in experimental neuroscience, as muscle synergies are often estimated solely by analyzing recorded muscle activities. We suggest that synergy extraction methods should explicitly take into account task execution variables, thus moving from a perspective purely based on input-space to one grounded on task-space as well.

  5. Volume measurement of the horizontal extraocular muscles using magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Yasuhiro; Hayashi, Osamu; Nishida, Eri; Murata, Toyotaka; Aoki, Yoshiko; Inatomi, Akihiro; Kani, Kazutaka (Shiga Univ. of Medical Science, Otsu (Japan)); Mabuchi, Norihisa; Furutani, Yoshiaki

    1993-07-01

    The volume of the horizontal extraocular muscles of 11 normal adults and three patients with ophthalmoplegia was measured using magnetic resonance imaging (MRI). The MRI examinations were carried out with a Signa Advantage, 1.5 tesla superconductive magnetic system manufactured by General Electric. This method employs the spin echo technique with a 3.0 mm gapless slice, a 350 ms. repetition time, and a 17.0 ms. echo time. The MRI films were projected and magnified on Kent paper using an overhead projector. Then the shapes of the horizontal extraocular muscles were traced. The volume of the muscles was measured as the total weight of Kent papers which were cut out from muscle shapes in all the slices. The average volume of the normal medial and lateral rectus muscles was 690[+-]87 mm[sup 3] and 734[+-]77 mm[sup 3], respectively. Two cases of peripheral nerve palsy showed typical atrophy of the paretic muscles. A case of orbital myositis showed typical hypertrophy of the inflamed muscles. This measurement may prove useful in the analysis and evaluation of extraocular muscles, especially in ophthalmoplesia.(author).

  6. [Muscle-wasting in end stage renal disease in dialysis treatment: a review].

    Science.gov (United States)

    Battaglia, Yuri; Galeano, Dario; Cojocaru, Elena; Fiorini, Fulvio; Forcellini, Silvia; Zanoli, Luca; Storari, Alda; Granata, Antonio

    2016-01-01

    Progressive and generalized loss of muscle mass (muscle wasting) is a frequent complication in dialysis patients. Common uremic signs and symptoms such as insulin-resistance, increase in glucocorticoid activity, metabolic acidosis, malnutrition, inflammation and dialysis per se contribute to muscle wasting by modulating proteolytic intracellular mechanisms (ubiquitin-proteasome system, activation of caspase-3 and IGF-1/PI3K/Akt pathway). Since muscle wasting is associated with an increase in mortality, bone fractures and worsening in life quality, a prompt and personalised diagnostic and therapeutic approach seems to be essential in dialysis patients. At present, nuclear magnetic resonance (NMR), computed tomography (CT), dual-energy x-ray absorptiometry (DXA), impedance analysis, bioelectric impedance analysis (BIA) and anthropometric measurements are the main tools used to assess skeletal muscle mass. Aerobic and anaerobic training programmes and treatment of uremic complications reduce muscle wasting and increase muscle strength in uremic patients. The present review analyses the most recent data about the physiopathology, diagnosis, therapy and future perspectives of treatment of muscle wasting in dialysis patients.

  7. Functional Segregation within the Muscles of Aquatic Propulsion in the Asiatic Water Monitor (Varanus salvator

    Directory of Open Access Journals (Sweden)

    Bruce Arthur Young

    2016-09-01

    Full Text Available Water monitor lizards (Varanus salvator swim using sinusoidal oscillations generated at the base of their long (50% of total body length tail. In an effort to determine which level of the structural/organizational hierarchy of muscle is associated with functional segregation between the muscles of the tail base, an array of muscle features — myosin heavy chain profiles, enzymatic fiber types, twitch and tetanic force production, rates of fatigue, muscle compliance, and electrical activity patterns — were quantitated. The two examined axial muscles, longissimus and iliocaudalis, were generally similar at the molecular, biochemical, and physiological levels, but differed at the biomechanics level and in their activation pattern. The appendicular muscle examined, caudofemoralis, differed from the axial muscles particularly at the molecular and physiological levels, and it exhibited a unique compliance profile and pattern of electrical activation. There were some apparent contradictions between the different structural/organizational levels examined. These contradictions, coupled with a unique myosin heavy chain profile, lead to the hypothesis that there are previously un-described molecular/biochemical specializations within varanid skeletal muscles.

  8. Use of muscle synergies and wavelet transforms to identify fatigue during squatting.

    Science.gov (United States)

    Smale, Kenneth B; Shourijeh, Mohammad S; Benoit, Daniel L

    2016-06-01

    The objective of this study was to supplement continuous wavelet transforms with muscle synergies in a fatigue analysis to better describe the combination of decreased firing frequency and altered activation profiles during dynamic muscle contractions. Nine healthy young individuals completed the dynamic tasks before and after they squatted with a standard Olympic bar until complete exhaustion. Electromyography (EMG) profiles were analyzed with a novel concatenated non-negative matrix factorization method that decomposed EMG signals into muscle synergies. Muscle synergy analysis provides the activation pattern of the muscles while continuous wavelet transforms output the temporal frequency content of the EMG signals. Synergy analysis revealed subtle changes in two-legged squatting after fatigue while differences in one-legged squatting were more pronounced and included the shift from a general co-activation of muscles in the pre-fatigue state to a knee extensor dominant weighting post-fatigue. Continuous wavelet transforms showed major frequency content decreases in two-legged squatting after fatigue while very few frequency changes occurred in one-legged squatting. It was observed that the combination of methods is an effective way of describing muscle fatigue and that muscle activation patterns play a very important role in maintaining the overall joint kinetics after fatigue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Selenium deficiency-induced alterations in ion profiles in chicken muscle.

    Directory of Open Access Journals (Sweden)

    Haidong Yao

    Full Text Available Ion homeostasis plays important roles in development of metabolic diseases. In the present study, we examined the contents and distributions of 25 ions in chicken muscles following treatment with selenium (Se deficiency for 25 days. The results revealed that in chicken muscles, the top ranked microelements were silicon (Si, iron (Fe, zinc (Zn, aluminum (Al, copper (Cu and boron (B, showing low contents that varied from 292.89 ppb to 100.27 ppm. After Se deficiency treatment, essential microelements [Cu, chromium (Cr, vanadium (V and manganese (Mn], and toxic microelements [cadmium (Cd and mercury (Hg] became more concentrated (P < 0.05. Elements distribution images showed generalized accumulation of barium (Ba, cobalt (Co, Cu, Fe and V, while Cr, Mn, and Zn showed pin point accumulations in muscle sections. Thus, the ion profiles were generally influenced by Se deficiency, which suggested a possible role of Se deficiency in muscle dysfunctions caused by these altered ion profiles.

  10. Buckling Pneumatic Linear Actuators Inspired by Muscle

    OpenAIRE

    Yang, Dian; Verma, Mohit Singh; So, Ju-Hee; Mosadegh, Bobak; Keplinger, Christoph; Lee, Benjamin; Khashai, Fatemeh; Lossner, Elton Garret; Suo, Zhigang; Whitesides, George McClelland

    2016-01-01

    The mechanical features of biological muscles are difficult to reproduce completely in synthetic systems. A new class of soft pneumatic structures (vacuum-actuated muscle-inspired pneumatic structures) is described that combines actuation by negative pressure (vacuum), with cooperative buckling of beams fabricated in a slab of elastomer, to achieve motion and demonstrate many features that are similar to that of mammalian muscle.

  11. How Insect Flight Steering Muscles Work

    OpenAIRE

    Walker, Simon M.; Schwyn, Daniel A.; Mokso, Rajmund; Wicklein, Martina; Müller, Tonya; Doube, Michael; Stampanoni, Marco; Krapp, Holger G.; Taylor, Graham K.

    2014-01-01

    Dipteran flies are amongst the smallest and most agile of flying animals. Their wings are driven indirectly by large power muscles, which cause cyclical deformations of the thorax that are amplified through the intricate wing hinge. Asymmetric flight manoeuvres are controlled by 13 pairs of steering muscles acting directly on the wing articulations. Collectively the steering muscles account for

  12. 38 CFR 4.78 - Muscle function.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Muscle function. 4.78... DISABILITIES Disability Ratings The Organs of Special Sense § 4.78 Muscle function. (a) Examination of muscle function. The examiner must use a Goldmann perimeter chart that identifies the four major quadrants (upward...

  13. Mechanical modeling of skeletal muscle functioning

    NARCIS (Netherlands)

    van der Linden, B.J.J.J.

    1998-01-01

    For movement of body or body segments is combined effort needed of the central nervous system and the muscular-skeletal system. This thesis deals with the mechanical functioning of skeletal muscle. That muscles come in a large variety of geometries, suggest the existence of a relation between muscle

  14. Calcium dynamics in vascular smooth muscle

    OpenAIRE

    Amberg, Gregory C.; Navedo, Manuel F.

    2013-01-01

    Smooth muscle cells are ultimately responsible for determining vascular luminal diameter and blood flow. Dynamic changes in intracellular calcium are a critical mechanism regulating vascular smooth muscle contractility. Processes influencing intracellular calcium are therefore important regulators of vascular function with physiological and pathophysiological consequences. In this review we discuss the major dynamic calcium signals identified and characterized in vascular smooth muscle cells....

  15. Exporting vector muscles for facial animation

    NARCIS (Netherlands)

    Bui, T.D.; Butz, Andreas; Kruger, Antonio; Heylen, Dirk K.J.; Olivier, Patrick; Nijholt, Antinus; Poel, Mannes

    2003-01-01

    In this paper we introduce a method of exporting vector muscles from one 3D face to another for facial animation. Starting from a 3D face with an extended version of Waters’ linear muscle system, we transfer the linear muscles to a target 3D face.We also transfer the region division, which is used

  16. Muscle MRI findings in facioscapulohumeral muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Gerevini, Simonetta; Caliendo, Giandomenico; Falini, Andrea [IRCCS San Raffaele Scientific Institute, Neuroradiology Unit, Head and Neck Department, Milan (Italy); Scarlato, Marina; Previtali, Stefano Carlo [IRCCS San Raffaele Scientific Institute, Department of Neurology, INSPE and Division of Neuroscience, Milan (Italy); Maggi, Lorenzo; Pasanisi, Barbara; Morandi, Lucia [Fondazione IRCCS Istituto Neurologico ' ' Carlo Besta' ' , Neuromuscular Diseases and Neuroimmunology Unit, Milan (Italy); Cava, Mariangela [IRCCS San Raffaele Scientific Institute, Department of Radiology and Center for Experimental Imaging, Milan (Italy)

    2016-03-15

    Facioscapulohumeral muscular dystrophy (FSHD) is characterized by extremely variable degrees of facial, scapular and lower limb muscle involvement. Clinical and genetic determination can be difficult, as molecular analysis is not always definitive, and other similar muscle disorders may have overlapping clinical manifestations. Whole-body muscle MRI examination for fat infiltration, atrophy and oedema was performed to identify specific patterns of muscle involvement in FSHD patients (30 subjects), and compared to a group of control patients (23) affected by other myopathies (NFSHD). In FSHD patients, we detected a specific pattern of muscle fatty replacement and atrophy, particularly in upper girdle muscles. The most frequently affected muscles, including paucisymptomatic and severely affected FSHD patients, were trapezius, teres major and serratus anterior. Moreover, asymmetric muscle involvement was significantly higher in FSHD as compared to NFSHD patients. In conclusion, muscle MRI is very sensitive for identifying a specific pattern of involvement in FSHD patients and in detecting selective muscle involvement of non-clinically testable muscles. Muscle MRI constitutes a reliable tool for differentiating FSHD from other muscular dystrophies to direct diagnostic molecular analysis, as well as to investigate FSHD natural history and follow-up of the disease. (orig.)

  17. Redox Control of Skeletal Muscle Regeneration.

    Science.gov (United States)

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane; Chazaud, Bénédicte; Mounier, Rémi

    2017-08-10

    Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.

  18. The arrangement of muscle fibers and tendons in two muscles used for growth studies.

    OpenAIRE

    Stickland, N C

    1983-01-01

    The arrangement of muscle fibres and tendons was examined in the soleus muscle of rats from 6 to 175 days post partum. The muscle was seen to change from a simple structure, with mean fibre length of approximately 90% of complete muscle length, to a unipennate structure, with mean fibre length of only about 60% of muscle length. The dog pectineus muscle was also investigated and found to have a bipennate structure throughout postnatal growth. The arrangement of muscle fibres in both these mus...

  19. Isolated Rupture of the Teres Major Muscle When Water Skiing: A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Julien Cousin

    2018-01-01

    Full Text Available Isolated lesions to the teres major muscle are rare. They generally occur in patients participating in sports such as baseball, tennis, or boxing. We report the case of a sports patient who suffered an isolated injury to the teres major while water skiing. The clinical presentation was confirmed by MRI. Conservative treatment was chosen and consisted of brief analgesic immobilization, followed by rehabilitative treatment. The rapid recovery of this patient with normal isokinetic strength evaluation at 6 months was interesting for objectifying full muscle recovery. Our results and the data from the literature suggest that functional rather than surgical treatment is preferable in isolated lesions to the teres major muscle.

  20. Hoff Mann′s syndrome with unusually long duration: Report on clinical, laboratory and muscle imaging findings in two cases

    Directory of Open Access Journals (Sweden)

    Atchayaram Nalini

    2014-01-01

    Full Text Available Two adult men presented with the rare Hoffmann′s syndrome (HS. Case 1: A 35-year-old male patient had progressive stiffness of lower limbs of 13 years and generalized muscle hypertrophy and myalgia of 3 years duration. Had periorbital edema, dry skin, generalized muscle hypertrophy and spastic dysarthria with hoarseness. Muscle power was normal. Jaw jerk and deep tendon reflexes were exaggerated. Case 2: A 24-year-old male patient presented with muscle hypertrophy from childhood, slowness in motor activities and hearing impairment. For 6 months, he had severe muscle pains, cramps and further increase in hypertrophy. He had yellow tinged, dry skin, hoarseness of voice, gross muscle hypertrophy and minimal weakness. Both had markedly elevated serum creatine kinase (CK levels and high thyroid stimulating hormone, low free triiodothyronine and free thyroxine levels. Levothyroxine treatment demonstrated remarkable reduction in muscle bulk at 2 months in both and no symptoms at 6 months. Magnetic resonance imaging of lower limbs in both cases revealed almost identical features with involvement of the muscles of posterior and adductor compartment of thighs and posterior and lateral compartments of the legs. Differential diagnosis of long duration muscle pseudohypertrophy and elevated CK levels should include HS.

  1. In cirrhotic patients reduced muscle strength is unrelated to muscle capacity for ATP turnover suggesting a central limitation

    DEFF Research Database (Denmark)

    Gam, Christiane Marie Bourgin; Nielsen, H B; Secher, Niels H.

    2011-01-01

      We investigated whether in patients with liver cirrhosis reduced muscle strength is related to dysfunction of muscle mitochondria.......  We investigated whether in patients with liver cirrhosis reduced muscle strength is related to dysfunction of muscle mitochondria....

  2. The relationship between exercise-induced muscle fatigue, arterial blood flow and muscle perfusion after 56 days local muscle unloading.

    Science.gov (United States)

    Weber, Tobias; Ducos, Michel; Mulder, Edwin; Beijer, Åsa; Herrera, Frankyn; Zange, Jochen; Degens, Hans; Bloch, Wilhelm; Rittweger, Jörn

    2014-05-01

    In the light of the dynamic nature of habitual plantar flexor activity, we utilized an incremental isokinetic exercise test (IIET) to assess the work-related power deficit (WoRPD) as a measure for exercise-induced muscle fatigue before and after prolonged calf muscle unloading and in relation to arterial blood flow and muscle perfusion. Eleven male subjects (31 ± 6 years) wore the HEPHAISTOS unloading orthosis unilaterally for 56 days. It allows habitual ambulation while greatly reducing plantar flexor activity and torque production. Endpoint measurements encompassed arterial blood flow, measured in the femoral artery using Doppler ultrasound, oxygenation of the soleus muscle assessed by near-infrared spectroscopy, lactate concentrations determined in capillary blood and muscle activity using soleus muscle surface electromyography. Furthermore, soleus muscle biopsies were taken to investigate morphological muscle changes. After the intervention, maximal isokinetic torque was reduced by 23·4 ± 8·2% (Pflow, tissue oxygenation, lactate concentrations and EMG median frequency kinematics during the exercise test were comparable before and after the intervention, whereas the increase of RMS in response to IIET was less following the intervention (P = 0·03). In conclusion, following submaximal isokinetic muscle work exercise-induced muscle fatigue is unaffected after prolonged local muscle unloading. The observation that arterial blood flow was maintained may underlie the unchanged fatigability. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  3. How the condition of occlusal support affects the back muscle force and masticatory muscle activity?

    OpenAIRE

    石岡, 克; 河野, 正司; Ishioka, Masaru; Kohno, Shoji

    2002-01-01

    This study was conducted to determine how the condition of occlusal support affects the back muscle force and masticatory muscle activity. Two groups of subjects were enlisted: sport-trained group and normal group. While electrodes of the electromyography (EMG) were attached to the surface of the masticatory muscles, each subject's back muscle force was recorded during upper body stretching using a back muscle force-measuring device. The task was performed under four different occlusal suppor...

  4. Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways.

    Science.gov (United States)

    Zanou, Nadège; Gailly, Philippe

    2013-11-01

    Adult skeletal muscle can regenerate in response to muscle damage. This ability is conferred by the presence of myogenic stem cells called satellite cells. In response to stimuli such as injury or exercise, these cells become activated and express myogenic regulatory factors (MRFs), i.e., transcription factors of the myogenic lineage including Myf5, MyoD, myogenin, and Mrf4 to proliferate and differentiate into myofibers. The MRF family of proteins controls the transcription of important muscle-specific proteins such as myosin heavy chain and muscle creatine kinase. Different growth factors are secreted during muscle repair among which insulin-like growth factors (IGFs) are the only ones that promote both muscle cell proliferation and differentiation and that play a key role in muscle regeneration and hypertrophy. Different isoforms of IGFs are expressed during muscle repair: IGF-IEa, IGF-IEb, or IGF-IEc (also known as mechano growth factor, MGF) and IGF-II. MGF is expressed first and is observed in satellite cells and in proliferating myoblasts whereas IGF-Ia and IGF-II expression occurs at the state of muscle fiber formation. Interestingly, several studies report the induction of MRFs in response to IGFs stimulation. Inversely, IGFs expression may also be regulated by MRFs. Various mechanisms are proposed to support these interactions. In this review, we describe the general process of muscle hypertrophy and regeneration and decipher the interactions between the two groups of factors involved in the process.

  5. Bone marrow mesenchymal cells improve muscle function in a skeletal muscle re-injury model.

    Directory of Open Access Journals (Sweden)

    Bruno M Andrade

    Full Text Available Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm2, p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm2, p<0.05 respectively. Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model.

  6. Human skeletal muscle releases leptin in vivo

    DEFF Research Database (Denmark)

    Wolsk, Emil; Grøndahl, Thomas Sahl; Pedersen, Bente Klarlund

    2012-01-01

    Leptin is considered an adipokine, however, cultured myocytes have also been found to release leptin. Therefore, as proof-of-concept we investigated if human skeletal muscle synthesized leptin by measuring leptin in skeletal muscle biopsies. Following this, we quantified human skeletal muscle...... was unaltered. During saline infusion the adipose tissue release averaged 0.8 ± 0.3 ng min(-1) 100g tissue(-1) whereas skeletal muscle release was 0.5 ± 0.1 ng min(-1) 100g tissue(-1). In young healthy humans, skeletal muscle contribution to whole body leptin production could be substantial given the greater...

  7. Pathophysiology of muscle contractures in cerebral palsy.

    Science.gov (United States)

    Mathewson, Margie A; Lieber, Richard L

    2015-02-01

    Patients with cerebral palsy present with a variety of adaptations to muscle structure and function. These pathophysiologic symptoms include functional deficits such as decreased force production and range of motion, in addition to changes in muscle structure such as decreased muscle belly size, increased sarcomere length, and altered extracellular matrix structure and composition. On a cellular level, patients with cerebral palsy have fewer muscle stem cells, termed satellite cells, and altered gene expression. Understanding the nature of these changes may present opportunities for the development of new muscle treatment therapies. Published by Elsevier Inc.

  8. Cytokines: muscle protein and amino acid metabolism

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2012-01-01

    raises TNF-α and IL-6 to moderate levels, has only identified IL-6 as a potent cytokine, decreasing systemic amino acid levels and muscle protein metabolism. The marked decrease in circulatory and muscle amino acid concentrations was observed with a concomitant reduction in both the rates of muscle...... of IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. SUMMARY: Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However...

  9. Proteomic profiling of white muscle from freshwater catfish Rita rita.

    Science.gov (United States)

    Mohanty, Bimal Prasanna; Mitra, Tandrima; Banerjee, Sudeshna; Bhattacharjee, Soma; Mahanty, Arabinda; Ganguly, Satabdi; Purohit, Gopal Krishna; Karunakaran, Dhanasekar; Mohanty, Sasmita

    2015-06-01

    Muscle tissues contribute 34-48 % of the total body mass in fish. Proteomic analysis enables better understanding of the skeletal muscle physiology and metabolism. A proteome map reflects the general fingerprinting of the fish species and has the potential to identify novel proteins which could serve as biomarkers for many aspects of aquaculture including fish physiology and growth, flesh quality, food safety and aquatic environmental monitoring. The freshwater catfish Rita rita of the family Bagridae inhabiting the tropical rivers and estuaries is an important food fish with high nutritive value and is also considered a species of choice in riverine pollution monitoring. Omics information that could enhance utility of this species in molecular research is meager. Therefore, in the present study, proteomic analysis of Rita rita muscle has been carried out and functional genomics data have been generated. A reference muscle proteome has been developed, and 23 protein spots, representing 18 proteins, have been identified by MALDI-TOF/TOF-MS and LC-MS/MS. Besides, transcript information on a battery of heat shock proteins (Hsps) has been generated. The functional genomics information generated could act as the baseline data for further molecular research on this species.

  10. Multivariable Dynamic Ankle Mechanical Impedance With Active Muscles

    Science.gov (United States)

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2015-01-01

    Multivariable dynamic ankle mechanical impedance in two coupled degrees-of-freedom (DOFs) was quantified when muscles were active. Measurements were performed at five different target activation levels of tibialis anterior and soleus, from 10% to 30% of maximum voluntary contraction (MVC) with increments of 5% MVC. Interestingly, several ankle behaviors characterized in our previous study of the relaxed ankle were observed with muscles active: ankle mechanical impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness; stiffness was greater in the sagittal plane than in the frontal plane at all activation conditions for all subjects; and the coupling between dorsiflexion–plantarflexion and inversion–eversion was small—the two DOF measurements were well explained by a strictly diagonal impedance matrix. In general, ankle stiffness increased linearly with muscle activation in all directions in the 2-D space formed by the sagittal and frontal planes, but more in the sagittal than in the frontal plane, resulting in an accentuated “peanut shape.” This characterization of young healthy subjects’ ankle mechanical impedance with active muscles will serve as a baseline to investigate pathophysiological ankle behaviors of biomechanically and/or neurologically impaired patients. PMID:25203497

  11. Prevalence of clinically relevant muscle weakness and its association with vitamin D status among older adults in Ecuador.

    Science.gov (United States)

    Orces, Carlos H

    2017-10-01

    Muscle weakness and 25-hydroxyvitamin D (25(OH)D) deficiency have been associated with adverse outcomes among older adults. However, little is known about the relationship between clinically relevant muscle weakness and 25(OH)D levels in Ecuador. To examine the prevalence of muscle weakness and its association with 25(OH)D status among subjects aged 60 years and older in Ecuador. The present study was based on data from 2205 participants in the first National Survey of Health, Wellbeing, and Aging. The Foundation for the National Institute of Health Sarcopenia Project criteria was used to examine muscle weakness prevalence rates. Gender-specific general linear and logistic regression models adjusted for potential confounders were created to compare mean 25(OH)D concentrations and 25(OH)D deficiency across muscle strength categories, respectively. An estimated 32.2% of women and 33.4% of men had evidence of clinically relevant muscle weakness in Ecuador. In general, increased muscle weakness prevalence rates were present among Indigenous, residents in the rural Andes Mountains, underweight subjects, and those with a sedentary lifestyle. Muscle strength was significantly and directly correlated with mean 25(OH)D levels. After controlling for potential confounders, 25(OH)D deficiency prevalence rates were 31 and 43% higher among men and women with muscle weakness than those with normal strength, respectively. One-third of older adults nationwide had evidence of muscle weakness. While the present study found a significant correlation between muscle strength and 25(OH)D concentrations, further research is needed to examine whether optimizing 25(OH)D levels may improve muscle weakness among older adults.

  12. [Nosological classification and assessment of muscle dysmorphia].

    Science.gov (United States)

    Babusa, Bernadett; Túry, Ferenc

    2011-01-01

    Muscle dysmorphia is a recently described psychiatric disorder, characterized by a pathological preoccupation with muscle size. In spite of their huge muscles, muscle dysmorphia sufferers believe that they are insufficiently large and muscular therefore would like to be bigger and more muscular. Male bodybuilders are at high-risk for the disorder. The nosological classification of muscle dysmorphia has been changed over the years. However, consensus has not emerged so far. Most of the ongoing debate has conceptualized muscle dysmorphia as an eating disorder, obsessive-compulsive disorder and body dysmorphic disorder. There are a number of arguments for and againts. In the present study the authors do not take a position on the diagnostic classification of muscle dysmorphia. The purpose of the study is to review the present approaches relating to the diagnostic classification of muscle dysmporphia. Many different questionnaires were developed for the assessment of muscle dysmorphia. Currently, there is a lack of assessment methods measuring muscle dysmorphia symptoms in Hungary. As a secondary purpose the study also presents the Hungarian version of the Muscle Appearance Satisfaction Scale (Mayville et al., 2002).

  13. Architectural differences between the hamstring muscles.

    Science.gov (United States)

    Kellis, Eleftherios; Galanis, Nikiforos; Kapetanos, George; Natsis, Konstantinos

    2012-08-01

    The purpose of this study was to understand the detailed architectural properties of the human hamstring muscles. The long (BFlh) and short (BFsh) head of biceps femoris, semimembranosus (SM) and semitendinosus (ST) muscles were dissected and removed from their origins in eight cadaveric specimens (age 67.8±4.3 years). Mean fiber length, sarcomere length, physiological cross-section area and pennation angle were measured. These data were then used to calculate a similarity index (δ) between pairs of muscles. The results indicated moderate similarity between BFlh and BFsh (δ=0.54) and between BFlh and SM (δ=0.35). In contrast, similarity was low between SM and ST (δ=0.98) and between BFlh and SM (δ=1.17). The fascicle length/muscle length ratio was higher for the ST (0.58) and BFsh (0.50) compared with the BFlh (0.27) and SM (0.22). There were, however, high inter-correlations between individual muscle architecture values, especially for muscle thickness and fascicle length data sets. Prediction of the whole hamstring architecture was achieved by combining data from all four muscles. These data show different designs of the hamstring muscles, especially between the SM and ST (medial) and BFlh and BFsh (lateral) muscles. Modeling the hamstrings as one muscle group by assuming uniform inter-muscular architecture yields less accurate representation of human hamstring muscle function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Measurement and Treatment of Passive Muscle Stiffness

    DEFF Research Database (Denmark)

    Kirk, Henrik

    , which aimed to investigate: 1) The development of a clinical method to evaluate and distinguish neural (reflex mediated stiffness) and non-neural (passive muscle stiffness) components of muscle stiffness in adults with CP by objective and reliable measurements. 2) The association between increased...... and reliability of the method, and argue for the use of the method in the clinical practice. The device is able to distinguish between passive muscle stiffness and reflex-mediated stiffness in subjects with CP. It shows good high intrarater and interrater reliability in evaluation of passive muscle stiffness...... to measure muscle stiffness, and distinguish between passive muscle stiffness and reflex-mediated stiffness. Furthermore, it is a reliable device to measure changes in passive ROM. Treatment of passive muscle stiffness should be directed towards intense training, comprising many repetitions with a functional...

  15. Satellite cells in human skeletal muscle plasticity.

    Science.gov (United States)

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  16. Cranial muscle development in the model organism ambystoma mexicanum: implications for tetrapod and vertebrate comparative and evolutionary morphology and notes on ontogeny and phylogeny.

    Science.gov (United States)

    Ziermann, Janine M; Diogo, Rui

    2013-07-01

    There is still confusion about the homology of several cranial muscles in salamanders with those of other vertebrates. This is true, in part, because of the fact that many muscles present in early ontogeny of amphibians disappear during development and specifically during metamorphosis. Resolving this confusion is important for the understanding of the comparative and evolutionary morphology of vertebrates and tetrapods because amphibians are the phylogenetically most plesiomorphic tetrapods, concerning for example their myology, and include two often used model organisms, Xenopus laevis (anuran) and Ambystoma mexicanum (urodele). Here we provide the first detailed report of the cranial muscle development in axolotl from early ontogenetic stages to the adult stage. We describe different and complementary types of general muscle morphogenetic gradients in the head: from anterior to posterior, from lateral to medial, and from origin to insertion. Furthermore, even during the development of neotenic salamanders such as axolotls, various larval muscles become indistinct, contradicting the commonly accepted view that during ontogeny the tendency is mostly toward the differentiation of muscles. We provide an updated comparison between these muscles and the muscles of other vertebrates, a discussion of the homologies and evolution, and show that the order in which the muscles appear during axolotl ontogeny is in general similar to their appearance in phylogeny (e.g. differentiation of adductor mandibulae muscles from one anlage to four muscles), with only a few remarkable exceptions, as for example the dilatator laryngis that appears evolutionary later but in the development before the intermandibularis. Copyright © 2013 Wiley Periodicals, Inc.

  17. Update on new muscle glycogenosis

    DEFF Research Database (Denmark)

    Laforêt, Pascal; Malfatti, Edoardo; Vissing, John

    2017-01-01

    PURPOSE OF REVIEW: The field of muscle glycogenoses has progressed in recent years by the identification of new disorders, and by reaching a better understanding of pathophysiology of the disorders and the physiology of glycogen metabolism. RECENT FINDINGS: In this review, we describe the clinical...... and pathological features of the three most recently described muscle glycogenoses caused by recessive mutations in GYG1, RBCK1 and PGM1. The three involved enzymes play different roles in glycogen metabolism. Glycogenin-1 (GYG1) is involved in the initial steps of glycogen synthesis, whereas phosphoglucomutase...... with abnormal storage material in the heart, but most cases present with a polyglucosan body myopathy without cardiac involvement. SUMMARY: The recent identification of new glycogenosis not only allows to improve the knowledge of glycogen metabolism, but also builds bridges with protein glycosylation and immune...

  18. [Comparison of pelvic floor muscle strength in competition-level athletes and untrained women].

    Science.gov (United States)

    Ludviksdottir, Ingunn; Hardardottir, Hildur; Sigurdardottir, Thorgerdur; Ulfarsson, Gudmundur F

    2018-01-01

    Exercise can stress the pelvic floor muscles. Numerous women experience urinary incontinence while exercising or competing in sports. This study investigated pelvic floor muscle strength, urinary incontinence, and knowledge in contracting pelvic floor muscles among female athletes and untrained women. This was a prospective case-control study measuring pelvic floor muscle strength using vaginal pressure meas-urement. Participants answered questions regarding general health, urinary incontinence, and knowledge on pelvic floor muscles. Partici-pants were healthy nulliparous women aged 18-30 years, athletes and untrained women. The athletes had competed in their sport for at least three years; including handball, soccer, gymnastics, badminton, BootCamp and CrossFit. The women were comparable in age and height. The athletes (n=18) had a body mass index (BMI) of 22.8 kg/m² vs. 25 kg/m² for the untrained (n=16); p<0.05. The athletes trained on average 11.4 hours/week while the untrained women participated in some activity on average for 1.3 hours/week; p< 0.05. Mean pelvic floor strength was 45±2 hPa in the athletes vs. 43±4 hPa in the untrained; p=0.36 for whether the athletes were stronger. Of the athletes, 61.1% experienced urinary incontinence (n=11) compared with 12.5% of the untrained women (n=2); p<0.05. Incontinence usually occurred during high intensity exercise. The athletes were more knowledgeable about the pelvic floor muscles; p<0.05. There was not a significant difference in the strength of pelvic floor muscles of athletes and untrained women. This suggests that pelvic floor muscles are not strengthened during general training but require specific exercises. This holds especially for football, handball and sports with high physical intensity. Coaches need to pay special attention to training and strengthening women's pelvic floor muscles to reduce the occurrence of urinary incontinence.

  19. Radiation injury to skeletal muscle

    International Nuclear Information System (INIS)

    Persons, C.C.M.; Wondergem, J.; Leer, J.W.H.

    1997-01-01

    Radiotherapy of neoplasia has increased the mean life expectancy of cancer patients. On the other hand, more reports are published on morbidity of the treatment with regard to normal tissue. Studies on skeletal muscle injury specifically are scarce, but many clinical long term follow-up studies make note of side effects as muscle atrophy, fibrosis and limited function. Furthermore it is suggested that skeletal muscles of children are more prone to radiation injury than those of adult subjects. Effects of radiation on skeletal muscle were studied in rats. On hind limb of young (100 g) and adult (350 g) rats was irradiated with single doses (15-30 Gy), while the other served as control. Follow-up was up to 12 months post treatment. Muscular function in young rats was decreased significantly at 6 months post irradiation, but did not further decrease in the following 6 months. The amount of collagen, on the other hand, was not increased at 6 months, but became highly elevated at 12 months past treatment. This suggests that at 6 months, impaired muscular function may not be explained by increased fibrotic tissues. This is an agreement with results obtained in adult rats, where function was also impaired, without concomitant increase in collagen. In an earlier study, mitochondrial oxygen consumption was dose dependently decreased after irradiation, at 12 months, but not at 6 months post treatment. Furthermore, myosin-actin interaction was measured in skinned fibers. The first results of this study indicate changes in the interaction of contraction proteins, as early as 6 months post treatment. (authors)

  20. [Antisynthetase syndrome without muscle involvement].

    Science.gov (United States)

    Júdez Navarro, Enrique; Martínez Carretero, Myriam; Martínez Jiménez, Gonzalo Fidel

    2007-11-01

    Antisynthetase syndrome is a well defined syndrome characterized by the presence of interstitial lung disease in association with arthritis, miositis, mechanic's hands and Ruynaud's phenomenon in the presence of antisynthetase antibodies, especially Ac anti-Jo1. We described the case of a 68-year-old man with this syndrome in the absence of inflammatory muscle disease. Copyright © 2007 Elsevier España S.L Barcelona. Published by Elsevier Espana. All rights reserved.

  1. Tropomyosin 4 defines novel filaments in skeletal muscle associated with muscle remodelling/regeneration in normal and diseased muscle.

    Science.gov (United States)

    Vlahovich, Nicole; Schevzov, Galina; Nair-Shaliker, Visalini; Ilkovski, Biljana; Artap, Stanley T; Joya, Josephine E; Kee, Anthony J; North, Kathryn N; Gunning, Peter W; Hardeman, Edna C

    2008-01-01

    The organisation of structural proteins in muscle into highly ordered sarcomeres occurs during development, regeneration and focal repair of skeletal muscle fibers. The involvement of cytoskeletal proteins in this process has been documented, with nonmuscle gamma-actin found to play a role in sarcomere assembly during muscle differentiation and also shown to be up-regulated in dystrophic muscles which undergo regeneration and repair [Lloyd et al.,2004; Hanft et al.,2006]. Here, we show that a cytoskeletal tropomyosin (Tm), Tm4, defines actin filaments in two novel compartments in muscle fibers: a Z-line associated cytoskeleton (Z-LAC), similar to a structure we have reported previously [Kee et al.,2004], and longitudinal filaments that are orientated parallel to the sarcomeric apparatus, present during myofiber growth and repair/regeneration. Tm4 is upregulated in paradigms of muscle repair including induced regeneration and focal repair and in muscle diseases with repair/regeneration features, muscular dystrophy and nemaline myopathy. Longitudinal Tm4-defined filaments also are present in diseased muscle. Transition of the Tm4-defined filaments from a longitudinal to a Z-LAC orientation is observed during the course of muscle regeneration. This Tm4-defined cytoskeleton is a marker of growth and repair/regeneration in response to injury, disease state and stress in skeletal muscle.

  2. Neck movement and muscle activity characteristics in female office workers with neck pain.

    Science.gov (United States)

    Johnston, V; Jull, G; Souvlis, T; Jimmieson, N L

    2008-03-01

    Cross-sectional study. To explore aspects of cervical musculoskeletal function in female office workers with neck pain. Evidence of physical characteristics that differentiate computer workers with and without neck pain is sparse. Patients with chronic neck pain demonstrate reduced motion and altered patterns of muscle control in the cervical flexor and upper trapezius (UT) muscles during specific tasks. Understanding cervical musculoskeletal function in office workers will better direct intervention and prevention strategies. Measures included neck range of motion; superficial neck flexor muscle activity during a clinical test, the craniocervical flexion test; and a motor task, a unilateral muscle coordination task, to assess the activity of both the anterior and posterior neck muscles. Office workers with and without neck pain were formed into 3 groups based on their scores on the Neck Disability Index. Nonworking women without neck pain formed the control group. Surface electromyographic activity was recorded bilaterally from the sternocleidomastoid, anterior scalene (AS), cervical extensor (CE) and UT muscles. Workers with neck pain had reduced rotation range and increased activity of the superficial cervical flexors during the craniocervical flexion test. During the coordination task, workers with pain demonstrated greater activity in the CE muscles bilaterally. On completion of the task, the UT and dominant CE and AS muscles demonstrated an inability to relax in workers with pain. In general, there was a linear relationship between the workers' self-reported levels of pain and disability and the movement and muscle changes. These results are consistent with those found in other cervical musculoskeletal disorders and may represent an altered muscle recruitment strategy to stabilize the head and neck. An exercise program including motor reeducation may assist in the management of neck pain in office workers.

  3. Postinjection Muscle Fibrosis from Lupron

    Directory of Open Access Journals (Sweden)

    Erica Everest

    2015-01-01

    Full Text Available We describe the case of a 6.5-year-old girl with central precocious puberty (CPP, which signifies the onset of secondary sexual characteristics before the age of eight in females and the age of nine in males as a result of stimulation of the hypothalamic-pituitary-gonadal axis. Her case is likely related to her adoption, as children who are adopted internationally have much higher rates of CPP. She had left breast development at Tanner Stage 2, adult body odor, and mildly advanced bone age. In order to halt puberty and maximize adult height, she was prescribed a gonadotropin releasing hormone analog, the first line treatment for CPP. She was administered Lupron (leuprolide acetate Depot-Ped (3 months intramuscularly. After her second injection, she developed swelling and muscle pain at the injection site on her right thigh. She also reported an impaired ability to walk. She was diagnosed with muscle fibrosis. This is the first reported case of muscle fibrosis resulting from Lupron injection.

  4. Effect of transcutaneous electrical muscle stimulation on postoperative muscle mass and protein synthesis

    DEFF Research Database (Denmark)

    Vinge, O; Edvardsen, L; Jensen, F

    1996-01-01

    In an experimental study, 13 patients undergoing major elective abdominal surgery were given postoperative transcutaneous electrical muscle stimulation (TEMS) to the quadriceps femoris muscle on one leg; the opposite leg served as control. Changes in cross-sectional area (CSA) and muscle protein ...... protein synthesis and muscle mass after abdominal surgery and should be evaluated in other catabolic states with muscle wasting.......In an experimental study, 13 patients undergoing major elective abdominal surgery were given postoperative transcutaneous electrical muscle stimulation (TEMS) to the quadriceps femoris muscle on one leg; the opposite leg served as control. Changes in cross-sectional area (CSA) and muscle protein...... synthesis were assessed by computed tomography and ribosome analysis of percutaneous muscle biopsies before surgery and on the sixth postoperative day. The percentage of polyribosomes in the ribosome suspension decreased significantly (P

  5. Semimembranosus muscle herniation: a rare case with emphasis on muscle biomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Naffaa, Lena [American University of Beirut, Department of Diagnostic Radiology, P.O. Box 11-0236, Riad El-Solh, Beirut (Lebanon); Moukaddam, Hicham [Saint Rita Medical Center, Lima, OH (United States); Samim, Mohammad [New York University, Department of Radiology, Hospital for Joint Disease, New York, NY (United States); Lemieux, Aaron [University of California, San Diego School of Medicine, La Jolla, CA (United States); Smitaman, Edward [University of California, San Diego, Teleradiology and Education Center, San Diego, CA (United States)

    2017-03-15

    Muscle herniations are rare and most reported cases involve muscles of the lower leg. We use a case of muscle herniation involving the semimembranosus muscle, presenting as a painful mass in an adolescent male after an unspecified American football injury, to highlight a simple concept of muscle biomechanics as it pertains to muscle hernia(s): decreased traction upon muscle fibers can increase conspicuity of muscle herniation(s) - this allows a better understanding of the apt provocative maneuvers to employ, during dynamic ultrasound or magnetic resonance imaging, in order to maximize diagnostic yield and, thereby, limit patient morbidity related to any muscle herniation. Our patient subsequently underwent successful decompressive fasciotomy and has since returned to his normal daily activities. (orig.)

  6. Semimembranosus muscle herniation: a rare case with emphasis on muscle biomechanics

    International Nuclear Information System (INIS)

    Naffaa, Lena; Moukaddam, Hicham; Samim, Mohammad; Lemieux, Aaron; Smitaman, Edward

    2017-01-01

    Muscle herniations are rare and most reported cases involve muscles of the lower leg. We use a case of muscle herniation involving the semimembranosus muscle, presenting as a painful mass in an adolescent male after an unspecified American football injury, to highlight a simple concept of muscle biomechanics as it pertains to muscle hernia(s): decreased traction upon muscle fibers can increase conspicuity of muscle herniation(s) - this allows a better understanding of the apt provocative maneuvers to employ, during dynamic ultrasound or magnetic resonance imaging, in order to maximize diagnostic yield and, thereby, limit patient morbidity related to any muscle herniation. Our patient subsequently underwent successful decompressive fasciotomy and has since returned to his normal daily activities. (orig.)

  7. Muscle enzyme release does not predict muscle function impairment after triathlon.

    Science.gov (United States)

    Margaritis, I; Tessier, F; Verdera, F; Bermon, S; Marconnet, P

    1999-06-01

    We sought to determine the effects of a long distance triathlon (4 km swim, 120 km bike-ride, and 30 km run) on the four-day kinetics of the biochemical markers of muscle damage, and whether they were quantitatively linked with muscle function impairment and soreness. Data were collected from 2 days before until 4 days after the completion of the race. Twelve triathletes performed the triathlon and five did not. Maximal voluntary contraction (MVC), muscle soreness (DOMS) and total serum CK, CK-MB, LDH, AST and ALT activities were assessed. Significant changes after triathlon completion were found for all muscle damage indirect markers over time (p triathlon. Long distance triathlon race caused muscle damage, but extent, as well as muscle recovery cannot be evaluated by the magnitude of changes in serum enzyme activities. Muscle enzyme release cannot be used to predict the magnitude of the muscle function impairment caused by muscle damage.

  8. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross......-talk during physiological and pathological muscle remodelling. ABSTRACT: Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration......, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle...

  9. Quality of life in patients with muscle invasive and non-muscle invasive bladder cancer.

    Science.gov (United States)

    Singer, S; Ziegler, C; Schwalenberg, T; Hinz, A; Götze, H; Schulte, T

    2013-05-01

    Compared to the literature on other malignancies, data on quality of life (QoL) in bladder cancer are sparse. This study sought answers to the following questions: In what QoL domains do patients with bladder cancer differ from the general population? Do patients with radical cystectomy differ in QoL compared to those who received conservative treatment? Do patients with neobladder generally have better QoL compared to patients with other diversion methods? At the beginning of inpatient rehabilitation, N = 823 patients with bladder cancer were assessed. Data of a representative community sample (N = 2037) were used for comparison. The questionnaire EORTC QLQ-C30 was used to measure QoL. Multivariate linear regression models were computed to investigate differences between groups. Patients with both non-muscle invasive and muscle invasive bladder cancer reported significantly more problems and worse functioning than the general population. Radiotherapy is associated with clinically relevant more pain, dyspnoea, constipation, appetite loss and decreased social functioning while chemotherapy is associated more with dyspnoea. Cystectomy patients reported more fatigue, appetite loss and decreased role functioning. Male patients ≥70 years with conduit experienced more sleep and emotional problems. These effects of urinary diversion were not observed in women and younger patients. Patients with bladder cancer experience various QoL concerns at the beginning of inpatient rehabilitation. These problems can partly be explained by the type of treatment the patients receive. Type of urinary diversion is relevant for QoL in subgroups of patients.

  10. Muscle oxygenation and fascicle length during passive muscle stretching in ballet-trained subjects.

    Science.gov (United States)

    Otsuki, A; Fujita, E; Ikegawa, S; Kuno-Mizumura, M

    2011-07-01

    Muscle stretching transiently decreases muscle-blood flow corresponding to a muscle extension. It may disturb a balance between muscular oxygen demand and oxygen supply to muscles and reduce muscle oxygenation. However, muscle-stretching training may improve blood circulatory condition, resulting in the maintained muscle oxygenation during muscle stretching. The aim of this study was to investigate changes in muscle-blood volume (tHb) and tissue oxygenation index (TOI) during muscle stretching determined by using near-infrared spectroscopy (NIRS) in ballet-trained (BT) and untrained (C) subjects. 11 BT women who regularly perform muscle stretching and 11 C women participated in this study. Fascicle lengths, tHb and TOI in the tibialis anterior muscle were measured during passive plantar flexion from ankle joint angles of 120° (baseline) to 140°, 160°, the maximal comfortable position without pain (CP), and the maximal position (MP). At 160°, the % fascicle-length change from baseline was significantly lower in the BT than the C group, however, for the changes in tHb and TOI the significant interaction effect between the 2 groups was not detected. On the other hand, although the increases in the fascicle length from baseline to CP and MP were greater in BT than C, the tHb and TOI reductions were comparable between groups. We concluded that it appears that BT can extend their muscles without excessive reduction in muscle-blood volume and muscle oxygenation at relatively same but absolutely greater muscle-stretching levels than C. The attenuation in these indices during high-level muscle stretching may be associated with the repetitive muscle stretching of long-term ballet training. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Extraocular muscle architecture in hawks and owls.

    Science.gov (United States)

    Plochocki, Jeffrey H; Segev, Tamar; Grow, Wade; Hall, Margaret I

    2018-02-06

    A complete and accurate understanding of extraocular muscle function is important to the veterinary care of the avian eye. This is especially true for birds of prey, which rely heavily on vision for survival and yet are prone to ocular injury and disease. To better understand the function of extraocular muscles in birds of prey, we studied extraocular muscle architecture grossly and histologically. This sample was composed of two each of the following species: red-tailed hawk (Buteo jamaicensis), Harris's hawk (Parabuteo unicinctus), great horned owl (Bubo virginianus), and barn owl (Tyto alba). All extraocular muscles were dissected and weighed. To analyze muscle fiber architecture, the superior oblique and quadratus muscles were dissected, weighed, and sectioned at 5 μm thickness in the transverse plane. We calculated the physiologic cross-sectional area and the ratio of muscle mass to predicted effective maximum tetanic tension. Hawk and owl extraocular muscles exhibit significant physiological differences that play roles in ocular movements and closure of the nictitating membrane. Owls, which do not exhibit extraocular movement, have muscle architecture suited to stabilize the position of a massive, tubular eye that protrudes significantly from the orbit. Hawks, which have a more globose eye that is largely contained within the orbit, do not require as much muscular stability and instead have muscle architecture that facilitates rapid eye movement. © 2018 American College of Veterinary Ophthalmologists.

  12. Muscle activity characterization by laser Doppler Myography

    Science.gov (United States)

    Scalise, Lorenzo; Casaccia, Sara; Marchionni, Paolo; Ercoli, Ilaria; Primo Tomasini, Enrico

    2013-09-01

    Electromiography (EMG) is the gold-standard technique used for the evaluation of muscle activity. This technique is used in biomechanics, sport medicine, neurology and rehabilitation therapy and it provides the electrical activity produced by skeletal muscles. Among the parameters measured with EMG, two very important quantities are: signal amplitude and duration of muscle contraction, muscle fatigue and maximum muscle power. Recently, a new measurement procedure, named Laser Doppler Myography (LDMi), for the non contact assessment of muscle activity has been proposed to measure the vibro-mechanical behaviour of the muscle. The aim of this study is to present the LDMi technique and to evaluate its capacity to measure some characteristic features proper of the muscle. In this paper LDMi is compared with standard superficial EMG (sEMG) requiring the application of sensors on the skin of each patient. sEMG and LDMi signals have been simultaneously acquired and processed to test correlations. Three parameters has been analyzed to compare these techniques: Muscle activation timing, signal amplitude and muscle fatigue. LDMi appears to be a reliable and promising measurement technique allowing the measurements without contact with the patient skin.

  13. Muscle activity characterization by laser Doppler Myography

    International Nuclear Information System (INIS)

    Scalise, Lorenzo; Casaccia, Sara; Marchionni, Paolo; Ercoli, Ilaria; Tomasini, Enrico Primo

    2013-01-01

    Electromiography (EMG) is the gold-standard technique used for the evaluation of muscle activity. This technique is used in biomechanics, sport medicine, neurology and rehabilitation therapy and it provides the electrical activity produced by skeletal muscles. Among the parameters measured with EMG, two very important quantities are: signal amplitude and duration of muscle contraction, muscle fatigue and maximum muscle power. Recently, a new measurement procedure, named Laser Doppler Myography (LDMi), for the non contact assessment of muscle activity has been proposed to measure the vibro-mechanical behaviour of the muscle. The aim of this study is to present the LDMi technique and to evaluate its capacity to measure some characteristic features proper of the muscle. In this paper LDMi is compared with standard superficial EMG (sEMG) requiring the application of sensors on the skin of each patient. sEMG and LDMi signals have been simultaneously acquired and processed to test correlations. Three parameters has been analyzed to compare these techniques: Muscle activation timing, signal amplitude and muscle fatigue. LDMi appears to be a reliable and promising measurement technique allowing the measurements without contact with the patient skin

  14. Preserving Healthy Muscle during Weight Loss123

    Science.gov (United States)

    Cava, Edda; Yeat, Nai Chien; Mittendorfer, Bettina

    2017-01-01

    Weight loss is the cornerstone of therapy for people with obesity because it can ameliorate or completely resolve the metabolic risk factors for diabetes, coronary artery disease, and obesity-associated cancers. The potential health benefits of diet-induced weight loss are thought to be compromised by the weight-loss–associated loss of lean body mass, which could increase the risk of sarcopenia (low muscle mass and impaired muscle function). The objective of this review is to provide an overview of what is known about weight-loss–induced muscle loss and its implications for overall physical function (e.g., ability to lift items, walk, and climb stairs). The currently available data in the literature show the following: 1) compared with persons with normal weight, those with obesity have more muscle mass but poor muscle quality; 2) diet-induced weight loss reduces muscle mass without adversely affecting muscle strength; 3) weight loss improves global physical function, most likely because of reduced fat mass; 4) high protein intake helps preserve lean body and muscle mass during weight loss but does not improve muscle strength and could have adverse effects on metabolic function; 5) both endurance- and resistance-type exercise help preserve muscle mass during weight loss, and resistance-type exercise also improves muscle strength. We therefore conclude that weight-loss therapy, including a hypocaloric diet with adequate (but not excessive) protein intake and increased physical activity (particularly resistance-type exercise), should be promoted to maintain muscle mass and improve muscle strength and physical function in persons with obesity. PMID:28507015

  15. Synchronous monitoring of muscle dynamics and electromyogram

    Science.gov (United States)

    Zakir Hossain, M.; Grill, Wolfgang

    2011-04-01

    A non-intrusive novel detection scheme has been implemented to detect the lateral muscle extension, force of the skeletal muscle and the motor action potential (EMG) synchronously. This allows the comparison of muscle dynamics and EMG signals as a basis for modeling and further studies to determine which architectural parameters are most sensitive to changes in muscle activity. For this purpose the transmission time for ultrasonic chirp signal in the frequency range of 100 kHz to 2.5 MHz passing through the muscle under observation and respective motor action potentials are recorded synchronously to monitor and quantify biomechanical parameters related to muscle performance. Additionally an ultrasonic force sensor has been employed for monitoring. Ultrasonic traducers are placed on the skin to monitor muscle expansion. Surface electrodes are placed suitably to pick up the potential for activation of the monitored muscle. Isometric contraction of the monitored muscle is ensured by restricting the joint motion with the ultrasonic force sensor. Synchronous monitoring was initiated by a software activated audio beep starting at zero time of the subsequent data acquisition interval. Computer controlled electronics are used to generate and detect the ultrasonic signals and monitor the EMG signals. Custom developed software and data analysis is employed to analyze and quantify the monitored data. Reaction time, nerve conduction speed, latent period between the on-set of EMG signals and muscle response, degree of muscle activation and muscle fatigue development, rate of energy expenditure and motor neuron recruitment rate in isometric contraction, and other relevant parameters relating to muscle performance have been quantified with high spatial and temporal resolution.

  16. Spanish Consensus Statement: The Treatment of Muscle Tears in Sport.

    Science.gov (United States)

    Fernandez-Jaén, Tomas F; Rey, Guillermo Álvarez; Cuesta, Jordi Ardevol; Loureda, Rafael Arriaza; España, Fernando Ávila; Matas, Ramón Balius; Pazos, Fernando Baró; de Dios Beas Jiménez, Juan; Rosell, Jorge Candel; Fernandez, César Cobián; Ros, Francisco Esparza; Colmenero, Josefina Espejo; de Prado, Jorge Fernández; Cota, Juan José García; González, Jose Ignacio Garrido; Santander, Manuela González; Munilla, Miguel Ángel Herrador; Ruiz, Francisco Ivorra; Díaz, Fernando Jiménez; Marqueta, Pedro Manonelles; Fernandez, Antonio Maestro; Benito, Juan José Muñoz; Vilás, Ramón Olivé; Teres, Xavier Peirau; Amaro, José Peña; Roque, Juan Pérez San; Parenteu, Christophe Ramírez; Serna, Juan Ribas; Álvarez, Mikel Sánchez; Marchori, Carlos Sanchez; Soto, Miguel Del Valle; Alonso, José María Villalón; García, Pedro Guillen; de la Iglesia, Nicolas Hugo; Alcorocho, Juan Manuel Lopez

    2015-12-01

    On the 21st of March, 2015, experts met at Clínica CEMTRO in Madrid, Spain, under the patronage of The Spanish Society for Sports Traumatology (SETRADE), The Spanish Federation of Sports Medicine (FEMEDE), The Spanish Association of Medical Services for Football Clubs (AEMEF), and The Spanish Association of Medical Services for Basketball Clubs (AEMB) with the aim of establishing a round table that would allow specialists to consider the most appropriate current general actions to be taken when treating muscle tears in sport, based on proven scientific data described in the medical literature. Each expert received a questionnaire prior to the aforementioned meeting comprising a set of questions concerning therapeutic indications generally applied in the different stages present during muscle repair. The present Consensus Document is the result of the answers to the questionnaire and resulting discussion and consensus over which are the best current indications in the treatment of muscle tears in sport. Avoiding immobilization, not taking nonsteroidal anti-inflammatory drugs (NSAIDs) randomly, fostering early mobilization, increasing vascularization of injured, site and regulating inflammatory mechanisms-without inhibiting these from the early stages of the recovery period-all stood out as main points of the Consensus Document. Additionally, there is controversy concerning cell stimulation techniques and the use of growth factors or cell inhibitors. The decision concerning discharge was unanimous, as was the criteria considered when it came to performing sport techniques without pain.

  17. [Muscle injuries in professional football : Treatment and rehabilitation].

    Science.gov (United States)

    Riepenhof, H; Del Vescovo, R; Droste, J-N; McAleer, S; Pietsch, A

    2018-06-01

    Muscle injuries are common in professional sports, especially in football. Recent epidemiological studies showed that muscle injuries account for more than 30% of professional football injuries (1.8-2.2/1000 h exposure); however, even though there are significant differences within a European comparison, a single professional football team diagnosed on average 12 muscle injuries per season, corresponding to more than 300 availability days lost. The aim of this work is to present the diagnosis, general treatment and comprehensive management of muscle injuries in professional football. The present work is based on current scientific findings, experiences of the authors and examples from routine practice in the management of muscle injuries in a professional sports environment. The authors present a model of gradual progression for the treatment of muscular injuries and their rehabilitation. Due to the time-pressured nature of the professional sports environment, often promoted by coaches and media, this model could help lead players to recover as quickly as possible and return to competitive sports without relapse or sequel injury. This model integrates the player into the treatment plan. The progression sequences in the rehabilitation should be made clear to players and other parties involved, which are crucial for optimal healing. Even if absolute certainty cannot be achieved, i.e. the occurrence of re-injury or secondary injury, this model attempts to minimize the level of risk involved for the returning athlete. Since it is hardly possible to act strictly in line with more conservative guidelines due to the particular circumstances of the professional sport environment, the experiences of the authors are presented in the sense of best practice in order to support future decision-making processes.

  18. Anatomy and adaptations of the chewing muscles in Daubentonia (Lemuriformes).

    Science.gov (United States)

    Perry, Jonathan M G; Macneill, Kristen E; Heckler, Amanda L; Rakotoarisoa, Gilbert; Hartstone-Rose, Adam

    2014-02-01

    The extractive foraging behavior in aye-ayes (Daubentonia madagascariensis) is unique among primates and likely has led to selection for a specialized jaw adductor musculature. Although this musculature has previously been examined in a subadult, until now, no one has reported the fascicle length, weight, and physiological cross-sectional area (PCSA) for these muscles in an adult aye-aye specimen. For the present study, we dissected an adult wild-born aye-aye from the Tsimbazaza Botanical and Zoological Park, Antananarivo, Madagascar. The aye-aye follows the general strepsirrhine pattern in its overall jaw adductor muscle anatomy, but has very large muscles and PCSA relative to body size. Fascicle length is also relatively great, but not nearly as much as in the juvenile aye-aye previously dissected. Perhaps chewing muscle fascicles begin relatively long, but shorten through use and growth as connective tissue sheets expand and allow for pinnation and increased PCSA. Alternately, it may be that aye-ayes develop fascicular adaptation to wide gapes early in ontogeny, only to increase PCSA through later development into adulthood. The functional demands related to their distinctive manner of extractive foraging are likely responsible for the great PCSA in the jaw adductor muscles of the adult aye-aye. It may be that great jaw adductor PCSA in the adult, as compared to the juvenile, is a means of increasing foraging efficiency in the absence of parental assistance. Anat Rec, 297:308-316, 2014. © 2013 Wiley Periodicals, Inc. Copyright © 2013 Wiley Periodicals, Inc.

  19. Charge movements and transverse tubular ultrastructure in organ cultured skeletal muscle.

    Science.gov (United States)

    Cullen, M J; Hollingworth, S; Marshall, M W; Robson, E

    1990-04-01

    A study was made of charge movements and the transverse tubular systems in rat EDL and soleus muscle fibres maintained for up to five days in organ culture. In the cultured EDL muscle the maximum amount of charge moved was about one third of that in innervated muscle. Charge movements in innervated soleus fibres are small, less than 10 nC/microF, and difficult to resolve. They remain small following organ culturing. The ultrastructural study examined the concentration of junctional feet because of their proposed key role in excitation-contraction coupling. The general architecture of the triads and the spacing of the feet in both muscle types was largely unchanged by culturing. In cultured EDL muscles the small changes in feet concentration did not parallel the large fall in charge movement. The results reported here support a previous conclusion that, in mammalian muscle, there is not a simple relation between charge and feet. The stimulation of cultured soleus muscles with a fast twitch pattern of electrical activity produced no observable changes in morphology.

  20. Transcriptional profiling of rat skeletal muscle hypertrophy under restriction of blood flow.

    Science.gov (United States)

    Xu, Shouyu; Liu, Xueyun; Chen, Zhenhuang; Li, Gaoquan; Chen, Qin; Zhou, Guoqing; Ma, Ruijie; Yao, Xinmiao; Huang, Xiao

    2016-12-15

    Blood flow restriction (BFR) under low-intensity resistance training (LIRT) can produce similar effects upon muscles to that of high-intensity resistance training (HIRT) while overcoming many of the restrictions to HIRT that occurs in a clinical setting. However, the potential molecular mechanisms of BFR induced muscle hypertrophy remain largely unknown. Here, using a BFR rat model, we aim to better elucidate the mechanisms regulating muscle hypertrophy as induced by BFR and reveal possible clinical therapeutic targets for atrophy cases. We performed genome wide screening with microarray analysis to identify unique differentially expressed genes during rat muscle hypertrophy. We then successfully separated the differentially expressed genes from BRF treated soleus samples by comparing the Affymetrix rat Genome U34 2.0 array with the control. Using qRT-PCR and immunohistochemistry (IHC) we also analyzed other related differentially expressed genes. Results suggested that muscle hypertrophy induced by BFR is essentially regulated by the rate of protein turnover. Specifically, PI3K/AKT and MAPK pathways act as positive regulators in controlling protein synthesis where ubiquitin-proteasome acts as a negative regulator. This represents the first general genome wide level investigation of the gene expression profile in the rat soleus after BFR treatment. This may aid our understanding of the molecular mechanisms regulating and controlling muscle hypertrophy and provide support to the BFR strategies aiming to prevent muscle atrophy in a clinical setting. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Androgen effects on skeletal muscle: implications for the development and management of frailty

    Directory of Open Access Journals (Sweden)

    Matthew DL O'Connell

    2014-04-01

    Full Text Available Androgens have potent anabolic effects on skeletal muscle and decline with age in parallel to losses in muscle mass and strength. This loss of muscle mass and function, known as sarcopenia, is the central event in development of frailty, the vulnerable health status that presages adverse outcomes and rapid functional decline in older adults. The potential role of falling androgen levels in the development of frailty and their utility as function promoting therapies in older men has therefore attracted considerable attention. This review summarizes current concepts and definitions in muscle ageing, sarcopenia and frailty, and evaluates recent developments in the study of androgens and frailty. Current evidence from observational and interventional studies strongly supports an effect of androgens on muscle mass in ageing men, but effects on muscle strength and particularly physical function have been less clear. Androgen treatment has been generally well-tolerated in studies of older men, but concerns remain over higher dose treatments and use in populations with high cardiovascular risk. The first trials of selective androgen receptor modulators (SARMs suggest similar effects on muscle mass and function to traditional androgen therapies in older adults. Important future directions include the use of these agents in combination with exercise training to promote functional ability across different populations of older adults, as well as more focus on the relationships between concurrent changes in hormone levels, body composition and physical function in observational studies.

  2. Skeletal-muscle CT, with special reference to polymyositis and myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Higashi, Yasuto; Ono, Shimato; Yasuda, Takeshi; Morimoto, Kenji; Terao, Akira; Shirabe, Teruo; Yokobayashi, Tsuneo (Kawasaki Medical School, Kurashiki, Okayama (Japan))

    1984-10-01

    We here report on skeletal-muscle CT at the thigh level as studied using a whole-body CT scanner, with special reference to polymyositis (PM) and myasthenia gravis (MG). Early diseased muscles appeared homogenous and were likely to be almost normal. The first sign of muscular atrophy was the appearance of small, patchy or linear, low-density tissues in several muscles. These low-density tissues gradually increased in number until finally the diseased muscles were totally replaced by low-density tissue. These pathological findings were more severe in PM than in MG. There was a maldistribution of low-density tissue in several cases of PM. According to these findings, skeletal-muscle CT was thought to be of great help for the recognition of the general condition of muscles and for the follow-up on the patients. We think skeletal-muscle CT has a very practical application for the better selection of suitable muscular biopsy and EMG sites and for the better clinical interpretation of these findings.

  3. Skeletal-muscle CT, with special reference to polymyositis and myasthenia gravis

    International Nuclear Information System (INIS)

    Higashi, Yasuto; Ono, Shimato; Yasuda, Takeshi; Morimoto, Kenji; Terao, Akira; Shirabe, Teruo; Yokobayashi, Tsuneo

    1984-01-01

    We here report on skeletal-muscle CT at the thigh level as studied using a whole-body CT scanner, with special reference to polymyositis (PM) and myasthenia gravis (MG). Early diseased muscles appeared homogenous and were likely to be almost normal. The first sign of muscular atrophy was the apperance of small, patchy or linear, low-density tissues in several muscles. These low-density tissues gradually increased in number until finally the diseased muscles were totally replaced by low-density tissue. These pathological findings were more severe in PM than in MG. There was a maldistribution of low-density tissue in several cases of PM. According to these findings, skeletal-muscle CT was thought to be of great help for the recognition of the general condition of muscles and for the follow-up on the patients. We think skeletal-muscle CT has a very practical application for the better selection of suitable muscular biopsy and EMG sites and for the better clinical interpretation of these findings. (author)

  4. Static respiratory muscle work during immersion with positive and negative respiratory loading.

    Science.gov (United States)

    Taylor, N A; Morrison, J B

    1999-10-01

    Upright immersion imposes a pressure imbalance across the thorax. This study examined the effects of air-delivery pressure on inspiratory muscle work during upright immersion. Eight subjects performed respiratory pressure-volume relaxation maneuvers while seated in air (control) and during immersion. Hydrostatic, respiratory elastic (lung and chest wall), and resultant static respiratory muscle work components were computed. During immersion, the effects of four air-delivery pressures were evaluated: mouth pressure (uncompensated); the pressure at the lung centroid (PL,c); and at PL,c +/-0.98 kPa. When breathing at pressures less than the PL,c, subjects generally defended an expiratory reserve volume (ERV) greater than the immersed relaxation volume, minus residual volume, resulting in additional inspiratory muscle work. The resultant static inspiratory muscle work, computed over a 1-liter tidal volume above the ERV, increased from 0.23 J. l(-1), when subjects were breathing at PL,c, to 0.83 J. l(-1) at PL,c -0.98 kPa (P work was minimal. When breathing at PL,c +0.98 kPa, subjects adopted an ERV less than the immersed relaxation volume, minus residual volume, resulting in 0.36 J. l(-1) of expiratory muscle work. Thus static inspiratory muscle work varied with respiratory loading, whereas PL,c air supply minimized this work during upright immersion, restoring lung-tissue, chest-wall, and static muscle work to levels obtained in the control state.

  5. Polar-phase indices of perioral muscle reciprocity during syllable production in Parkinson's disease.

    Science.gov (United States)

    Chu, Shin Ying; Barlow, Steven M; Lee, Jaehoon; Wang, Jingyan

    2017-12-01

    This research characterised perioral muscle reciprocity and amplitude ratio in lower lip during bilabial syllable production [pa] at three rates to understand the neuromotor dynamics and scaling of motor speech patterns in individuals with Parkinson's disease (PD). Electromyographic (EMG) signals of the orbicularis oris superior [OOS], orbicularis oris inferior [OOI] and depressor labii inferioris [DLI] were recorded during syllable production and expressed as polar-phase notations. PD participants exhibited the general features of reciprocity between OOS, OOI and DLI muscles as reflected in the EMG during syllable production. The control group showed significantly higher integrated EMG amplitude ratio in the DLI:OOS muscle pairs than PD participants. No speech rate effects were found in EMG muscle reciprocity and amplitude magnitude across all muscle pairs. Similar patterns of muscle reciprocity in PD and controls suggest that corticomotoneuronal output to the facial nucleus and respective perioral muscles is relatively well-preserved in our cohort of mild idiopathic PD participants. Reduction of EMG amplitude ratio among PD participants is consistent with the putative reduction in the thalamocortical activation characteristic of this disease which limits motor cortex drive from generating appropriate commands which contributes to bradykinesia and hypokinesia of the orofacial mechanism.

  6. Muscle Strength and Muscle Mass in Older Patients during Hospitalization: The EMPOWER Study

    Science.gov (United States)

    Van Ancum, Jeanine M.; Scheerman, Kira; Pierik, Vincent D.; Numans, Siger T.; Verlaan, Sjors; Smeenk, Hanne E.; Slee-Valentijn, Monique; Kruizinga, Roeliene C.; Meskers, Carel G.M.; Maier, Andrea B.

    2017-01-01

    Background Low muscle strength and muscle mass are associated with an increased length of hospital stay and higher mortality rate in inpatients. To what extent hospitalization affects muscle strength and muscle mass is unclear. Objective We aimed to assess muscle strength and muscle mass at admission and during hospitalization in older patients and its relation with being at risk of geriatric conditions. Methods The EMPOWER study included patients aged 70 years and older, admitted to 4 wards of the VU University Medical Center in the Netherlands between April and December 2015. At admission, patients were screened for being at risk of 4 geriatric conditions: delirium, falls, malnutrition, and functional disability. At admission and at discharge, muscle strength and muscle mass were assessed. Results A total of 373 patients (mean age, standard deviation [SD]: 79.6, 6.38 years) were included at admission, and 224 patients (mean age, SD: 80.1, 6.32 years) at discharge. At admission, lower muscle strength in both female and male patients and low muscle mass in male patients were associated with being at risk of a higher cumulative number of geriatric conditions. Muscle strength increased during hospitalization, but no change in muscle mass was observed. Changes in muscle measures were not associated with being at risk of geriatric conditions. Discussion Older patients with lower muscle strength and muscle mass at admission were at risk of a higher cumulative number of geriatric conditions. However, being at risk of geriatric conditions did not forecast further decrease in muscle strength and muscle mass during hospitalization PMID:28817825

  7. Comparative anatomy, evolution, and homologies of tetrapod hindlimb muscles, comparison with forelimb muscles, and deconstruction of the forelimb-hindlimb serial homology hypothesis.

    Science.gov (United States)

    Diogo, Rui; Molnar, Julia

    2014-06-01

    For more than two centuries, the idea that the forelimb and hindlimb are serially homologous structures has been accepted without serious question. This study presents the first detailed analysis of the evolution and homologies of all hindlimb muscles in representatives of each major tetrapod group and proposes a unifying nomenclature for these muscles. These data are compared with information obtained previously about the forelimb muscles of tetrapods and the muscles of other gnathostomes in order to address one of the most central and enigmatic questions in evolutionary and comparative anatomy: why are the pelvic and pectoral appendages of gnathostomes generally so similar to each other? An integrative analysis of the new myological data, combined with a review of recent paleontological, developmental, and genetic works and of older studies, does not support serial homology between the structures of these appendages. For instance, many of the strikingly similar forelimb and hindlimb muscles found in each major extant tetrapod taxon were acquired at different geological times and/or have different embryonic origins. These similar muscles are not serial homologues, but the result of evolutionary parallelism/convergence due to a complex interplay of ontogenetic, functional, topological, and phylogenetic constraints/factors. Copyright © 2014 Wiley Periodicals, Inc.

  8. Presence of muscle dysmorphia symptomology among male weightlifters.

    Science.gov (United States)

    Hildebrandt, Tom; Schlundt, David; Langenbucher, James; Chung, Tammy

    2006-01-01

    Limited research exists on muscle dysmorphia (MD) in men and in nonclinical populations. The current study evaluated types of body image disturbance among 237 male weightlifters. Latent class analysis of 8 measures of body image disturbance revealed 5 independent types of respondents: Dysmorphic, Muscle Concerned, Fat Concerned, Normal Behavioral, and Normal. One-way analysis of variance of independent measures of body image disturbance and associated psychopathology confirmed significant differences between groups. The Dysmorphic group reported a pattern of body image disturbance consistent with MD by displaying a high overall level of body image disturbance, symptoms of associated psychopathology, steroid use, and appearance-controlling behavior. Findings generally supported classifying MD as a subtype of body dysmorphic disorder and an obsessive-compulsive spectrum disorder. Implications for studying body image disturbance in male weightlifters, and further evaluation of the MD diagnostic criteria are discussed.

  9. Isokinetic imbalance of adductor-abductor hip muscles in professional soccer players with chronic adductor-related groin pain.

    Science.gov (United States)

    Belhaj, K; Meftah, S; Mahir, L; Lmidmani, F; Elfatimi, A

    2016-11-01

    This study aims to compare the isokinetic profile of hip abductor and adductor muscle groups between soccer players suffering from chronic adductor-related groin pain (ARGP), soccer players without ARGP and healthy volunteers from general population. Study included 36 male professional soccer players, who were randomly selected and followed-up over two years. Of the 21 soccer players eligible to participate in the study, 9 players went on to develop chronic ARGP and 12 players did not. Ten healthy male volunteers were randomly selected from the general population as a control group. Comparison between the abductor and adductor muscle peak torques for players with and without chronic ARGP found a statistically significant difference on the dominant and non-dominant sides (p muscle significantly stronger than the adductor muscle. In the group of healthy volunteers, the adductor muscle groups were significantly stronger than the abductor muscle groups on both dominant and non-dominant sides (p muscle strength was also significantly decreased on the affected side. This imbalance appears to be a risk factor for adductor-related groin injury. Therefore, restoring the correct relationship between these two agonist and antagonist hip muscles may be an important preventative measure that should be a primary concern of training and rehabilitation programmes.

  10. Can Measured Synergy Excitations Accurately Construct Unmeasured Muscle Excitations?

    Science.gov (United States)

    Bianco, Nicholas A; Patten, Carolynn; Fregly, Benjamin J

    2018-01-01

    Accurate prediction of muscle and joint contact forces during human movement could improve treatment planning for disorders such as osteoarthritis, stroke, Parkinson's disease, and cerebral palsy. Recent studies suggest that muscle synergies, a low-dimensional representation of a large set of muscle electromyographic (EMG) signals (henceforth called "muscle excitations"), may reduce the redundancy of muscle excitation solutions predicted by optimization methods. This study explores the feasibility of using muscle synergy information extracted from eight muscle EMG signals (henceforth called "included" muscle excitations) to accurately construct muscle excitations from up to 16 additional EMG signals (henceforth called "excluded" muscle excitations). Using treadmill walking data collected at multiple speeds from two subjects (one healthy, one poststroke), we performed muscle synergy analysis on all possible subsets of eight included muscle excitations and evaluated how well the calculated time-varying synergy excitations could construct the remaining excluded muscle excitations (henceforth called "synergy extrapolation"). We found that some, but not all, eight-muscle subsets yielded synergy excitations that achieved >90% extrapolation variance accounted for (VAF). Using the top 10% of subsets, we developed muscle selection heuristics to identify included muscle combinations whose synergy excitations achieved high extrapolation accuracy. For 3, 4, and 5 synergies, these heuristics yielded extrapolation VAF values approximately 5% lower than corresponding reconstruction VAF values for each associated eight-muscle subset. These results suggest that synergy excitations obtained from experimentally measured muscle excitations can accurately construct unmeasured muscle excitations, which could help limit muscle excitations predicted by muscle force optimizations.

  11. The superficial temporal fat pad and its ramifications for temporalis muscle construction in facial approximation.

    Science.gov (United States)

    Stephan, Carl N; Devine, Matthew

    2009-10-30

    The construction of the facial muscles (particularly those of mastication) is generally thought to enhance the accuracy of facial approximation methods because they increase attention paid to face anatomy. However, the lack of consideration for non-muscular structures of the face when using these "anatomical" methods ironically forces one of the two large masticatory muscles to be exaggerated beyond reality. To demonstrate and resolve this issue the temporal region of nineteen caucasoid human cadavers (10 females, 9 males; mean age=84 years, s=9 years, range=58-97 years) were investigated. Soft tissue depths were measured at regular intervals across the temporal fossa in 10 cadavers, and the thickness of the muscle and fat components quantified in nine other cadavers. The measurements indicated that the temporalis muscle generally accounts for construction of the STFP and the temporalis muscle for future facial approximation casework. This study warrants further investigations of the temporalis muscle and the STFP in younger age groups and demonstrates that untested facial approximation guidelines, including those propounded to be anatomical, should be cautiously regarded.

  12. [Molecular mechanisms of skeletal muscle hypertrophy].

    Science.gov (United States)

    Astratenkova, I V; Rogozkin, V A

    2014-06-01

    Enzymes Akt, AMPK, mTOR, S6K and PGC-1a coactivator take part in skeletal muscles in the regulation of synthesis of proteins. The expression of these proteins is regulated by growth factors, hormones, nutrients, mechanical loading and leads to an increase in muscle mass and skeletal muscle hypertrophy. The review presents the results of studies published in the past four years, which expand knowledge on the effects of various factors on protein synthesis in skeletal muscle. The attention is focused on the achievements that reveal and clarify the signaling pathways involved in the regulation of protein synthesis in skeletal muscle. The central place is taken by mTOR enzyme which controls and regulates the main stages of the cascade of reactions of muscle proteins providing synthesis in the conditions of human life. coactivator PGC-1a.

  13. Exercise Promotes Healthy Aging of Skeletal Muscle.

    Science.gov (United States)

    Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M; Zierath, Juleen R

    2016-06-14

    Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. AMPK in skeletal muscle function and metabolism

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus; Hingst, Janne Rasmuss; Fentz, Joachim

    2018-01-01

    Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK's role as an energy sensor is particularly critical in tissues displaying...... highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism (e.g., substrate uptake, oxidation......, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives...

  15. The exercised skeletal muscle: a review

    Directory of Open Access Journals (Sweden)

    Marina Marini

    2010-09-01

    Full Text Available The skeletal muscle is the second more plastic tissue of the body - second to the nervous tissue only. In fact, both physical activity and inactivity contribute to modify the skeletal muscle, by continuous signaling through nerve impulses, mechanical stimuli and humoral clues. In turn, the skeletal muscle sends signals to the body, thus contributing to its homeostasis. We'll review here the contribute of physical exercise to the shaping of skeletal muscle, to the adaptation of its mass and function to the different needs imposed by different physical activities and to the attainment of the health benefits associated with active skeletal muscles. Focus will primarily be on the molecular pathways and on gene regulation that result in skeletal muscle adaptation to exercise.

  16. Experimental knee pain reduces muscle strength

    DEFF Research Database (Denmark)

    Henriksen, Marius; Mortensen, Sara Rosager; Aaboe, Jens

    2011-01-01

    Pain is the principal symptom in knee pathologies and reduced muscle strength is a common observation among knee patients. However, the relationship between knee joint pain and muscle strength remains to be clarified. This study aimed at investigating the changes in knee muscle strength following...... experimental knee pain in healthy volunteers, and if these changes were associated with the pain intensities. In a crossover study, 18 healthy subjects were tested on 2 different days. Using an isokinetic dynamometer, maximal muscle strength in knee extension and flexion was measured at angular velocities 0....... Knee pain reduced the muscle strength by 5 to 15% compared to the control conditions (P knee extension and flexion at all angular velocities. The reduction in muscle strength was positively correlated to the pain intensity. Experimental knee pain significantly reduced knee extension...

  17. Making muscles "stronger": exercise, nutrition, drugs.

    Science.gov (United States)

    Aagaard, P

    2004-06-01

    As described in this review, maximal muscle strength is strongly influenced by resistive-types of exercise, which induce adaptive changes in both neuromuscular function and muscle morphology. Further, timed intake of protein in conjunction with resistance training elicit greater strength and muscle size gains than resistance training alone. Creatine supplementation amplifies the hypertrophic response to resistance training, although some individuals may not respond positively. Locally produced muscle growth factors are upregulated during creatine supplementation, which contributes to increase the responsiveness of muscle cells to intensive training stimuli. Usage of anabolic steroids boosts muscle hypertrophy beyond inherent genetical limits, not only by increasing the DNA transcription rate for myofibrillar proteins but also by increasing the nucleus-to-cytoplasm ratio due to accelerated activation of myogenic satellite cells. However, severe tissue damaging effects exist with anabolic steroids, some of which are irreversible.

  18. Modelling of pneumatic muscle actuator using Hill's model with different approximations of static characteristics of artificial muscle

    OpenAIRE

    Piteľ Ján; Tóthová Mária

    2016-01-01

    For modelling and simulation of pneumatic muscle actuators the mathematical dependence of the muscle force on the muscle contraction at different pressures in the muscles is necessary to know. For this purpose the static characteristics of the pneumatic artificial muscle type FESTO MAS-20-250N used in the experiments were approximated. In the paper there are shown some simulation results of the pneumatic muscle actuator dynamics using modified Hill's muscle model, in which four different appr...

  19. Ectopic expression of DLK1 protein in skeletal muscle of padumnal heterozygotes causes the callipyge phenotype

    DEFF Research Database (Denmark)

    Davis, Erica; Jensen, Charlotte Harken; Farnir, Frédéric

    2004-01-01

    profile causes the callipyge muscular hypertrophy has remained unclear. Herein, we demonstrate that the callipyge phenotype is perfectly correlated with ectopic expression of DLK1 protein in hypertrophied muscle of +(MAT)/CLPG(PAT) sheep. We demonstrate the causality of this association by inducing...... a generalized muscular hypertrophy in transgenic mice that express DLK1 in skeletal muscle. The absence of DLK1 protein in skeletal muscle of CLPG/CLPG animals, despite the presence of DLK1 mRNA, supports a trans inhibition mediated by noncoding RNAs expressed from the maternal allele.......The callipyge (CLPG) phenotype is an inherited skeletal muscle hypertrophy described in sheep. It is characterized by an unusual mode of inheritance ("polar overdominance") in which only heterozygous individuals having received the CLPG mutation from their father (+(MAT)/CLPG(PAT)) express...

  20. Subacute sarcoid myositis with ocular muscle involvement; a case report and review of the literature.

    Science.gov (United States)

    Hayashi, Y; Ishii, Yoshiki; Nagasawa, J; Arai, S; Okada, H; Ohmi, F; Umetsu, T; Machida, Y; Kurasawa, K; Takemasa, A; Suzuki, S; Senoh, T; Sada, T; Hirata, K

    2016-10-07

    Sarcoidosis is a chronic granulomatous disease that can affect multiple organs. The lungs, eyes, and skin are known to be highly affected organs in sarcoidosis. There have been reports based on random muscle biopsy that 32-80% of systemic sarcoidosis comprises noncaseating granulomas; however, muscle involvement in sarcoidosis is generally asymptomatic and has an unknown frequency. We describe a case of acute to subacute sarcoid myositis of the skeletal and extraocular muscles. Typical ophthalmic involvement (manifested by infiltration of the ocular adnexa, intraocular inflammation, or infiltration of the retrobulbar visual pathways) and extraocular sarcoid myositis (as with the present case) is infrequently reported. It is important to keep in mind the rare yet perhaps underestimated entity of sarcoid myositis, and to utilize muscle biopsy and imaging tests for appropriate diagnosis and management of patients with sarcoidosis.

  1. Thick filament mechano-sensing is a calcium-independent regulatory mechanism in skeletal muscle.

    Science.gov (United States)

    Fusi, L; Brunello, E; Yan, Z; Irving, M

    2016-10-31

    Recent X-ray diffraction studies on actively contracting fibres from skeletal muscle showed that the number of myosin motors available to interact with actin-containing thin filaments is controlled by the stress in the myosin-containing thick filaments. Those results suggested that thick filament mechano-sensing might constitute a novel regulatory mechanism in striated muscles that acts independently of the well-known thin filament-mediated calcium signalling pathway. Here we test that hypothesis using probes attached to the myosin regulatory light chain in demembranated muscle fibres. We show that both the extent and kinetics of thick filament activation depend on thick filament stress but are independent of intracellular calcium concentration in the physiological range. These results establish direct control of myosin motors by thick filament mechano-sensing as a general regulatory mechanism in skeletal muscle that is independent of the canonical calcium signalling pathway.

  2. Clinical Report of Oriental Medicine Treatment with Bee Venom Therapy of Progressive muscle atrophy 1 Patient

    Directory of Open Access Journals (Sweden)

    Kim Young-Ho

    2000-07-01

    Full Text Available The authors reports in order to study the effect of Bee Venom therapy of progressive muscle atrophy. The authors investigated 1 patient who is treated at Woosuk University Oriental Medical Hospital. The patient diagnosed by MRI EMG Hematology Muscle biopsy as progressive muscle atrophy is administered by Bee Venom therapy for 4 months. Bee Venom therapy is operated by 2 times per a week(every 3 days, 0.1cc per one operation, 0.05cc per one acupuncture point. The authors checked changes of this patient's chief symptoms by comparing before and after Bee Venom therapy is operated at 30 times. After Bee Venom therapy, the patient increased motor power & ROM, decreased general cooling sense & swallowing disorder. As above, the authors conclude that better results can be obtained Oriental Medical Treatment with Bee Venom therapy in progressive muscle atrophy

  3. Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle

    DEFF Research Database (Denmark)

    Hütter, Eveline; Skovbro, Mette; Lener, Barbara

    2007-01-01

    According to the free radical theory of aging, reactive oxygen species (ROS) act as a driving force of the aging process, and it is generally believed that mitochondrial dysfunction is a major source of increased oxidative stress in tissues with high content of mitochondria, such as muscle or brain....... However, recent experiments in mouse models of premature aging have questioned the role of mitochondrial ROS production in premature aging. To address the role of mitochondrial impairment and ROS production for aging in human muscles, we have analyzed mitochondrial properties in muscle fibres isolated...... from the vastus lateralis of young and elderly donors. Mitochondrial respiratory functions were addressed by high-resolution respirometry, and ROS production was analyzed by in situ staining with the redox-sensitive dye dihydroethidium. We found that aged human skeletal muscles contain fully functional...

  4. Vitamin D, muscle and bone: Integrating effects in development, aging and injury.

    Science.gov (United States)

    Girgis, Christian M; Baldock, Paul A; Downes, Michael

    2015-07-15

    Beyond the established effects of muscle loading on bone, a complex network of hormones and growth factors integrates these adjacent tissues. One such hormone, vitamin D, exerts broad-ranging effects in muscle and bone calcium handling, differentiation and development. Vitamin D also modulates muscle and bone-derived hormones, potentially facilitating cross-talk between these tissues. In the clinical setting, vitamin D deficiency or mutations of the vitamin D receptor result in generalized atrophy of muscle and bone, suggesting coordinated effects of vitamin D at these sites. In this review, we discuss emerging evidence that vitamin D exerts specific effects throughout the life of the musculoskeletal system - in development, aging and injury. From this holistic viewpoint, we offer new insights into an old debate: whether vitamin D's effects in the musculoskeletal system are direct via local VDR signals or indirect via its systemic effects in calcium and phosphate homeostasis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Calpain 3 is important for muscle regeneration

    DEFF Research Database (Denmark)

    Hauerslev, Simon; Sveen, Marie-Louise; Duno, Morten

    2012-01-01

    Limb girdle muscular dystrophy (LGMD) type 2A is caused by mutations in the CAPN3 gene and complete lack of functional calpain 3 leads to the most severe muscle wasting. Calpain 3 is suggested to be involved in maturation of contractile elements after muscle degeneration. The aim of this study...... was to investigate how mutations in the four functional domains of calpain 3 affect muscle regeneration....

  6. Muscle Synergy-Driven Robust Motion Control.

    Science.gov (United States)

    Min, Kyuengbo; Iwamoto, Masami; Kakei, Shinji; Kimpara, Hideyuki

    2018-04-01

    Humans are able to robustly maintain desired motion and posture under dynamically changing circumstances, including novel conditions. To accomplish this, the brain needs to optimize the synergistic control between muscles against external dynamic factors. However, previous related studies have usually simplified the control of multiple muscles using two opposing muscles, which are minimum actuators to simulate linear feedback control. As a result, they have been unable to analyze how muscle synergy contributes to motion control robustness in a biological system. To address this issue, we considered a new muscle synergy concept used to optimize the synergy between muscle units against external dynamic conditions, including novel conditions. We propose that two main muscle control policies synergistically control muscle units to maintain the desired motion against external dynamic conditions. Our assumption is based on biological evidence regarding the control of multiple muscles via the corticospinal tract. One of the policies is the group control policy (GCP), which is used to control muscle group units classified based on functional similarities in joint control. This policy is used to effectively resist external dynamic circumstances, such as disturbances. The individual control policy (ICP) assists the GCP in precisely controlling motion by controlling individual muscle units. To validate this hypothesis, we simulated the reinforcement of the synergistic actions of the two control policies during the reinforcement learning of feedback motion control. Using this learning paradigm, the two control policies were synergistically combined to result in robust feedback control under novel transient and sustained disturbances that did not involve learning. Further, by comparing our data to experimental data generated by human subjects under the same conditions as those of the simulation, we showed that the proposed synergy concept may be used to analyze muscle synergy

  7. Insulin binding to individual rat skeletal muscles

    International Nuclear Information System (INIS)

    Koerker, D.J.; Sweet, I.R.; Baskin, D.G.

    1990-01-01

    Studies of insulin binding to skeletal muscle, performed using sarcolemmal membrane preparations or whole muscle incubations of mixed muscle or typical red (soleus, psoas) or white [extensor digitorum longus (EDL), gastrocnemius] muscle, have suggested that red muscle binds more insulin than white muscle. We have evaluated this hypothesis using cryostat sections of unfixed tissue to measure insulin binding in a broad range of skeletal muscles; many were of similar fiber-type profiles. Insulin binding per square millimeter of skeletal muscle slice was measured by autoradiography and computer-assisted densitometry. We found a 4.5-fold range in specific insulin tracer binding, with heart and predominantly slow-twitch oxidative muscles (SO) at the high end and the predominantly fast-twitch glycolytic (FG) muscles at the low end of the range. This pattern reflects insulin sensitivity. Evaluation of displacement curves for insulin binding yielded linear Scatchard plots. The dissociation constants varied over a ninefold range (0.26-2.06 nM). Binding capacity varied from 12.2 to 82.7 fmol/mm2. Neither binding parameter was correlated with fiber type or insulin sensitivity; e.g., among three muscles of similar fiber-type profile, the EDL had high numbers of low-affinity binding sites, whereas the quadriceps had low numbers of high-affinity sites. In summary, considerable heterogeneity in insulin binding was found among hindlimb muscles of the rat, which can be attributed to heterogeneity in binding affinities and the numbers of binding sites. It can be concluded that a given fiber type is not uniquely associated with a set of insulin binding parameters that result in high or low binding

  8. Role of Smooth Muscle in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Stephen M Collins

    1996-01-01

    Full Text Available The notion that smooth muscle function is altered in inflammation is prompted by clinical observations of altered motility in patients with inflammatory bowel disease (IBD. While altered motility may reflect inflammation-induced changes in intrinsic or extrinsic nerves to the gut, changes in gut hormone release and changes in muscle function, recent studies have provided in vitro evidence of altered muscle contractility in muscle resected from patients with ulcerative colitis or Crohn’s disease. In addition, the observation that smooth muscle cells are more numerous and prominent in the strictured bowel of IBD patients compared with controls suggests that inflammation may alter the growth of intestinal smooth muscle. Thus, inflammation is associated with changes in smooth muscle growth and contractility that, in turn, contribute to important symptoms of IBD including diarrhea (from altered motility and pain (via either altered motility or stricture formation. The involvement of smooth muscle in this context may be as an innocent bystander, where cells and products of the inflammatory process induce alterations in muscle contractility and growth. However, it is likely that intestinal muscle cells play a more active role in the inflammatory process via the elaboration of mediators and trophic factors, including cytokines, and via the production of collagen. The concept of muscle cells as active participants in the intestinal inflammatory process is a new concept that is under intense study. This report summarizes current knowledge as it relates to these two aspects of altered muscle function (growth and contractility in the inflamed intestine, and will focus on mechanisms underlying these changes, based on data obtained from animal models of intestinal inflammation.

  9. Magnetic resonance imaging of muscle tears

    International Nuclear Information System (INIS)

    De Smet, A.A.; Fisher, D.R.; Heiner, J.P.; Keene, J.S.

    1990-01-01

    Magnetic resonance scans were obtained on 17 patients with acute, subacute, or chronic muscle tears. These patients presented with complaints of persistent pain or a palpable mass. Magnetic resonance findings were characterized according to alterations in muscle shape and the presence of abnormal high signal within the injured muscle. These areas of high signal were noted on both T1-weighted and T2-weighted scans and were presumed to represent areas of intramuscular hemorrhage. (orig.)

  10. Traumatic avulsion of extraocular muscles: case reports

    Directory of Open Access Journals (Sweden)

    Nilza Minguini

    2013-04-01

    Full Text Available We described the clinical, surgical details and results (motor and sensory of the retrieving procedure of traumatically avulsed muscles in three patients with no previous history of strabismus or diplopia seen in the Department of Ophthalmology, State University of Campinas, Brazil. The slipped muscle portion was reinserted at the original insertion and under the remaining stump, which was sutured over the reinserted muscle. For all three cases there was recovery of single binocular vision and stereopsis.

  11. Regulation of mitochondrial respiration by inorganic phosphate; comparing permeabilized muscle fibers and isolated mitochondria prepared from type-1 and type-2 rat skeletal muscle

    DEFF Research Database (Denmark)

    Scheibye-Knudsen, Morten; Quistorff, Bjørn

    2008-01-01

    ADP is generally accepted as a key regulator of oxygen consumption both in isolated mitochondria and in permeabilized fibers from skeletal muscle. The present study explored inorganic phosphate in a similar regulatory role. Saponin permeabilized fibers and isolated mitochondria from type-I and type...

  12. Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy.

    Science.gov (United States)

    Magown, Philippe; Shettar, Basavaraj; Zhang, Ying; Rafuse, Victor F

    2015-10-13

    Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice. This expression pattern allows for optical control of muscle contraction with comparable forces to nerve stimulation. Force can be controlled by varying light pulse intensity, duration or frequency. Light-stimulated muscle fibres depolarize proportionally to light intensity and duration. Denervated triceps surae muscles transcutaneously stimulated optically on a daily basis for 10 days show a significant attenuation in atrophy resulting in significantly greater contractile forces compared with chronically denervated muscles. Together, this study shows that channelrhodopsin-2/H134R can be used to restore function to permanently denervated muscles and reduce pathophysiological changes associated with denervation pathologies.

  13. Onset of rigor mortis is earlier in red muscle than in white muscle.

    Science.gov (United States)

    Kobayashi, M; Takatori, T; Nakajima, M; Sakurada, K; Hatanaka, K; Ikegaya, H; Matsuda, Y; Iwase, H

    2000-01-01

    Rigor mortis is thought to be related to falling ATP levels in muscles postmortem. We measured rigor mortis as tension determined isometrically in three rat leg muscles in liquid paraffin kept at 37 degrees C or 25 degrees C--two red muscles, red gastrocnemius (RG) and soleus (SO) and one white muscle, white gastrocnemius (WG). Onset, half and full rigor mortis occurred earlier in RG and SO than in WG both at 37 degrees C and at 25 degrees C even though RG and WG were portions of the same muscle. This suggests that rigor mortis directly reflects the postmortem intramuscular ATP level, which decreases more rapidly in red muscle than in white muscle after death. Rigor mortis was more retarded at 25 degrees C than at 37 degrees C in each type of muscle.

  14. Impaired muscle glycogen resynthesis after a marathon is not caused by decreased muscle GLUT-4 content

    DEFF Research Database (Denmark)

    Asp, S; Rohde, T; Richter, Erik

    1997-01-01

    Our purpose was to investigate whether the slow rate of muscle glycogen resynthesis after a competitive marathon is associated with a decrease in the total muscle content of the muscle glucose transporter (GLUT-4). Seven well-trained marathon runners participated in the study, and muscle biopsies...... were obtained from the lateral head of the gastrocnemius muscle before, immediately after, and 1, 2, and 7 days after the marathon, as were venous blood samples. Muscle GLUT-4 content was unaltered over the experimental period. Muscle glycogen concentration was 758 +/- 53 mmol/kg dry weight before...... the marathon and decreased to 148 +/- 39 mmol/kg dry weight immediately afterward. Despite a carbohydrate-rich diet (containing at least 7 g carbohydrate.kg body mass-1.day-1), the muscle glycogen concentration remained 30% lower than before-race values 2 days after the race, whereas it had returned to before...

  15. Heterotopic Ossification of Brachialis Muscle

    Directory of Open Access Journals (Sweden)

    Jacob George

    2005-01-01

    Full Text Available A 13-year-old girl with seizure disorder presented with 90º fixed flexion deformity of right elbow. She had history of encephalitis, 2 years ago, from which she recovered completely except for the deformity of the elbow. Plain X-ray revealed extensive ossification of the brachialis muscle from its origin at the lower anterior aspect of the humerus to its insertion at the coronoid process of the ulna. The alkaline phosphatase value was 500 IU. The middle segment of the ossified mass was surgically excised. The mobility of the elbow was restored and she achieved a range of movement between 45–120º.

  16. Markov process of muscle motors

    International Nuclear Information System (INIS)

    Kondratiev, Yu; Pechersky, E; Pirogov, S

    2008-01-01

    We study a Markov random process describing muscle molecular motor behaviour. Every motor is either bound up with a thin filament or unbound. In the bound state the motor creates a force proportional to its displacement from the neutral position. In both states the motor spends an exponential time depending on the state. The thin filament moves at a velocity proportional to the average of all displacements of all motors. We assume that the time which a motor stays in the bound state does not depend on its displacement. Then one can find an exact solution of a nonlinear equation appearing in the limit of an infinite number of motors

  17. Artificial Muscle Kits for the Classroom

    Science.gov (United States)

    2004-01-01

    Commonly referred to as "artificial muscles," electroactive polymer (EAP) materials are lightweight strips of highly flexible plastic that bend or stretch when subjected to electric voltage. EAP materials may prove to be a substitution for conventional actuation components such as motors and gears. Since the materials behave similarly to biological muscles, this emerging technology has the potential to develop improved prosthetics and biologically-inspired robots, and may even one day replace damaged human muscles. The practical application of artificial muscles provides a challenge, however, since the material requires improved effectiveness and durability before it can fulfill its potential.

  18. Engineered Muscle Actuators: Cells and Tissues

    National Research Council Canada - National Science Library

    Dennis, Robert G; Herr, Hugh; Parker, Kevin K; Larkin, Lisa; Arruda, Ellen; Baar, Keith

    2007-01-01

    .... Our primary objectives were to engineer living skeletal muscle actuators in culture using integrated bioreactors to guide tissue development and to maintain tissue contractility, to achieve 50...

  19. Protein oxidation in muscle foods: A review

    DEFF Research Database (Denmark)

    Lund, Marianne; Heinonen, Marina; Baron, Caroline P.

    2011-01-01

    insight into the reactions involved in the oxidative modifications undergone by muscle proteins. Moreover, a variety of products derived from oxidized muscle proteins, including cross-links and carbonyls, have been identified. The impact of oxidation on protein functionality and on specific meat quality...... and consequences of Pox in muscle foods. The efficiency of different anti-oxidant strategies against the oxidation of muscle proteins is also reported.......Protein oxidation in living tissues is known to play an essential role in the pathogenesis of relevant degenerative diseases, whereas the occurrence and impact of protein oxidation (Pox) in food systems have been ignored for decades. Currently, the increasing interest among food scientists...

  20. Cellular and molecular mechanisms of muscle atrophy

    Directory of Open Access Journals (Sweden)

    Paolo Bonaldo

    2013-01-01

    Full Text Available Skeletal muscle is a plastic organ that is maintained by multiple pathways regulating cell and protein turnover. During muscle atrophy, proteolytic systems are activated, and contractile proteins and organelles are removed, resulting in the shrinkage of muscle fibers. Excessive loss of muscle mass is associated with poor prognosis in several diseases, including myopathies and muscular dystrophies, as well as in systemic disorders such as cancer, diabetes, sepsis and heart failure. Muscle loss also occurs during aging. In this paper, we review the key mechanisms that regulate the turnover of contractile proteins and organelles in muscle tissue, and discuss how impairments in these mechanisms can contribute to muscle atrophy. We also discuss how protein synthesis and degradation are coordinately regulated by signaling pathways that are influenced by mechanical stress, physical activity, and the availability of nutrients and growth factors. Understanding how these pathways regulate muscle mass will provide new therapeutic targets for the prevention and treatment of muscle atrophy in metabolic and neuromuscular diseases.

  1. Conduction velocity of antigravity muscle action potentials.

    Science.gov (United States)

    Christova, L; Kosarov, D; Christova, P

    1992-01-01

    The conduction velocity of the impulses along the muscle fibers is one of the parameters of the extraterritorial potentials of the motor units allowing for the evaluation of the functional state of the muscles. There are no data about the conduction velocities of antigravity muscleaction potentials. In this paper we offer a method for measuring conduction velocity of potentials of single MUs and the averaged potentials of the interference electromiogram (IEMG) lead-off by surface electrodes from mm. sternocleidomastoideus, trapezius, deltoideus (caput laterale) and vastus medialis. The measured mean values of the conduction velocity of antigravity muscles potentials can be used for testing the functional state of the muscles.

  2. Mechanisms of exertional fatigue in muscle glycogenoses

    DEFF Research Database (Denmark)

    Vissing, John; Haller, Ronald G

    2012-01-01

    , which may be important for maintaining muscle membrane excitability by decreasing chloride permeability, (2) loss of the osmotic effect related to lactate accumulation, which may account for absence of the normal increase in water content of exercised muscle, and thus promote higher than normal...... concentrations of extracellular potassium in exercising muscle and (3) exaggerated accumulation of ADP during exercise that may inhibit sodium-potassium and calcium-ATPases. Disorders of muscle glycogenolysis and glycolysis reveal the crucial role of these metabolic processes for supplying both anaerobic...

  3. Muscle organizers in Drosophila: the role of persistent larval fibers in adult flight muscle development

    Science.gov (United States)

    Farrell, E. R.; Fernandes, J.; Keshishian, H.

    1996-01-01

    In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.

  4. The number and choice of muscles impact the results of muscle synergy analyses

    Directory of Open Access Journals (Sweden)

    Katherine Muterspaugh Steele

    2013-08-01

    Full Text Available One theory for how humans control movement is that muscles are activated in weighted groups or synergies. Studies have shown that electromyography (EMG from a variety of tasks can be described by a low-dimensional space thought to reflect synergies. These studies use algorithms, such as nonnegative matrix factorization, to identify synergies from EMG. Due to experimental constraints, EMG can rarely be taken from all muscles involved in a task. However, it is unclear if the choice of muscles included in the analysis impacts estimated synergies. The aim of our study was to evaluate the impact of the number and choice of muscles on synergy analyses. We used a musculoskeletal model to calculate muscle activations required to perform an isometric upper-extremity task. Synergies calculated from the activations from the musculoskeletal model were similar to a prior experimental study. To evaluate the impact of the number of muscles included in the analysis, we randomly selected subsets of between 5 and 29 muscles and compared the similarity of the synergies calculated from each subset to a master set of synergies calculated from all muscles. We determined that the structure of synergies is dependent upon the number and choice of muscles included in the analysis. When five muscles were included in the analysis, the similarity of the synergies to the master set was only 0.57 ± 0.54; however, the similarity improved to over 0.8 with more than ten muscles. We identified two methods, selecting dominant muscles from the master set or selecting muscles with the largest maximum isometric force, which significantly improved similarity to the master set and can help guide future experimental design. Analyses that included a small subset of muscles also over-estimated the variance accounted for (VAF by the synergies compared to an analysis with all muscles. Thus, researchers should use caution using VAF to evaluate synergies when EMG is measured from a small

  5. Inhibition of muscle spindle afferent activity during masseter muscle fatigue in the rat.

    Science.gov (United States)

    Brunetti, Orazio; Della Torre, Giovannella; Lucchi, Maria Luisa; Chiocchetti, Roberto; Bortolami, Ruggero; Pettorossi, Vito Enrico

    2003-09-01

    The influence of muscle fatigue on the jaw-closing muscle spindle activity has been investigated by analyzing: (1) the field potentials evoked in the trigeminal motor nucleus (Vmot) by trigeminal mesencephalic nucleus (Vmes) stimulation, (2) the orthodromic and antidromic responses evoked in the Vmes by stimulation of the peripheral and central axons of the muscle proprioceptive afferents, and (3) the extracellular unitary discharge of masseter muscle spindles recorded in the Vmes. The masseter muscle was fatigued by prolonged tetanic masseter nerve electrical stimulation. Pre- and postsynaptic components of the potentials evoked in the Vmot showed a significant reduction in amplitude following muscle fatigue. Orthodromic and antidromic potentials recorded in the Vmes also showed a similar amplitude decrease. Furthermore, muscle fatigue caused a decrease of the discharge frequency of masseter muscle spindle afferents in most of the examined units. The inhibition of the potential amplitude and discharge frequency was strictly correlated with the extent of muscle fatigue and was mediated by the group III and IV afferent muscle fibers activated by fatigue. In fact, the inhibitory effect was abolished by capsaicin injection in the masseter muscle that provokes selective degeneration of small afferent muscle fibers containing neurokinins. We concluded that fatigue signals originating from the muscle and traveling through capsaicin-sensitive fibers are able to diminish the proprioceptive input by a central presynaptic influence. In the second part of the study, we examined the central projection of the masseter small afferents sensitive to capsaicin at the electron-microscopic level. Fiber degeneration was induced by injecting capsaicin into the masseter muscle. Degenerating terminals were found on the soma and stem process in Vmes and on the dendritic tree of neurons in Vmot. This suggests that small muscle afferents may influence the muscle spindle activity through

  6. Statin Use and Self-Reported Hindering Muscle Complaints in Older Persons: A Population Based Study.

    Directory of Open Access Journals (Sweden)

    Milly A van der Ploeg

    Full Text Available Statins are widely used by older persons in primary and secondary prevention of cardiovascular disease. Although serious adverse events are rare, many statin users report mild muscle pain and/or muscle weakness. It's unclear what impact statins exert on a patient's daily life. Research on statin related side effects in older persons is relatively scarce. We therefore investigated the relation between statin use and self-reported hindering muscle complaints in older persons in the general population.The present research was performed within the Integrated Systematic Care for Older Persons (ISCOPE study in the Netherlands (Netherlands trial register, NTR1946. All registered adults aged ≥ 75 years from 59 participating practices (n = 12,066 were targeted. Information about the medical history and statin use at baseline and after 9 months was available for 4355 participants from the Electronic Patient Records of the general practitioners. In the screening questionnaire at baseline we asked participants: 'At the moment, which health complaints limit you the most in your day-to-day life?' Answers indicating muscle or musculoskeletal complaints were coded as such. No specific questions about muscle complaints were asked.The participants had a median age of 80.3 (IQR 77.6-84.4 years, 60.8% were female and 28.5% had a history of CVD. At baseline 29% used a statin. At follow-up, no difference was found in the prevalence of self-reported hindering muscle complaints in statin users compared to non-statin users (3.3% vs. 2.5%, OR 1.39, 95% CI 0.94-2.05; P = 0.98. Discontinuation of statin use during follow-up was independent of self-reported hindering muscle complaints.Based on the present findings, prevalent statin use in this community-dwelling older population is not associated with self-reported hindering muscle complaints; however, the results might be different for incident users.

  7. Statin Use and Self-Reported Hindering Muscle Complaints in Older Persons: A Population Based Study.

    Science.gov (United States)

    van der Ploeg, Milly A; Poortvliet, Rosalinde K E; van Blijswijk, Sophie C E; den Elzen, Wendy P J; van Peet, Petra G; de Ruijter, Wouter; Blom, Jeanet W; Gussekloo, Jacobijn

    2016-01-01

    Statins are widely used by older persons in primary and secondary prevention of cardiovascular disease. Although serious adverse events are rare, many statin users report mild muscle pain and/or muscle weakness. It's unclear what impact statins exert on a patient's daily life. Research on statin related side effects in older persons is relatively scarce. We therefore investigated the relation between statin use and self-reported hindering muscle complaints in older persons in the general population. The present research was performed within the Integrated Systematic Care for Older Persons (ISCOPE) study in the Netherlands (Netherlands trial register, NTR1946). All registered adults aged ≥ 75 years from 59 participating practices (n = 12,066) were targeted. Information about the medical history and statin use at baseline and after 9 months was available for 4355 participants from the Electronic Patient Records of the general practitioners. In the screening questionnaire at baseline we asked participants: 'At the moment, which health complaints limit you the most in your day-to-day life?' Answers indicating muscle or musculoskeletal complaints were coded as such. No specific questions about muscle complaints were asked. The participants had a median age of 80.3 (IQR 77.6-84.4) years, 60.8% were female and 28.5% had a history of CVD. At baseline 29% used a statin. At follow-up, no difference was found in the prevalence of self-reported hindering muscle complaints in statin users compared to non-statin users (3.3% vs. 2.5%, OR 1.39, 95% CI 0.94-2.05; P = 0.98). Discontinuation of statin use during follow-up was independent of self-reported hindering muscle complaints. Based on the present findings, prevalent statin use in this community-dwelling older population is not associated with self-reported hindering muscle complaints; however, the results might be different for incident users.

  8. Deep RNA sequencing of the skeletal muscle transcriptome in swimming fish.

    Directory of Open Access Journals (Sweden)

    Arjan P Palstra

    Full Text Available Deep RNA sequencing (RNA-seq was performed to provide an in-depth view of the transcriptome of red and white skeletal muscle of exercised and non-exercised rainbow trout (Oncorhynchus mykiss with the specific objective to identify expressed genes and quantify the transcriptomic effects of swimming-induced exercise. Pubertal autumn-spawning seawater-raised female rainbow trout were rested (n = 10 or swum (n = 10 for 1176 km at 0.75 body-lengths per second in a 6,000-L swim-flume under reproductive conditions for 40 days. Red and white muscle RNA of exercised and non-exercised fish (4 lanes was sequenced and resulted in 15-17 million reads per lane that, after de novo assembly, yielded 149,159 red and 118,572 white muscle contigs. Most contigs were annotated using an iterative homology search strategy against salmonid ESTs, the zebrafish Danio rerio genome and general Metazoan genes. When selecting for large contigs (>500 nucleotides, a number of novel rainbow trout gene sequences were identified in this study: 1,085 and 1,228 novel gene sequences for red and white muscle, respectively, which included a number of important molecules for skeletal muscle function. Transcriptomic analysis revealed that sustained swimming increased transcriptional activity in skeletal muscle and specifically an up-regulation of genes involved in muscle growth and developmental processes in white muscle. The unique collection of transcripts will contribute to our understanding of red and white muscle physiology, specifically during the long-term reproductive migration of salmonids.

  9. The Correlation of Skeletal and Cardiac Muscle Dysfunction in Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Posner, Andrew D; Soslow, Jonathan H; Burnette, W Bryan; Bian, Aihua; Shintani, Ayumi; Sawyer, Douglas B; Markham, Larry W

    2016-01-01

    Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle and cardiac dysfunction. While skeletal muscle dysfunction precedes cardiomyopathy, the relationship between the progressive decline in skeletal and cardiac muscle function is unclear. This relationship is especially important given that the myocardial effects of many developing DMD therapies are largely unknown. Our objective was to assess the relationship between progression of skeletal muscle weakness and onset of cardiac dysfunction in DMD. A total of 77 DMD subjects treated at a single referral center were included. Demographic information, quantitative muscle testing (QMT), subjective muscle strength, cardiac function, and current and retrospective medications were collected. A Spearman rank correlation was used to evaluate for an association between subjective strength and fractional shortening. The effects of total QMT and arm QMT on fractional shortening were examined in generalized least square with and without adjustments for age, ambulatory status, and duration of corticosteroids and cardiac specific medications. We found a significant correlation between maintained subjective skeletal muscle arm and leg strength and maintained cardiac function as defined by fractional shortening (rho=0.47, p=0.004 and rho=0.48, p=0.003, respectively). We also found a significant association between QMT and fractional shortening among non-ambulatory DMD subjects (p=0.03), while this association was not significant in ambulatory subjects. Our findings allow us to conclude that in this population, there exists a significant relationship between skeletal muscle and cardiac function in non-ambulatory DMD patients. While this does not imply a causal relationship, a possible association between skeletal and cardiac muscle function suggests that researchers should carefully monitor cardiac function, even when the primary outcome measures are not cardiac in nature.

  10. POST-EXERCISE MUSCLE GLYCOGEN REPLETION IN THE EXTREME: EFFECT OF FOOD ABSENCE AND ACTIVE RECOVERY

    Directory of Open Access Journals (Sweden)

    Paul A. Fournier

    2004-09-01

    Full Text Available Glycogen plays a major role in supporting the energy demands of skeletal muscles during high intensity exercise. Despite its importance, the amount of glycogen stored in skeletal muscles is so small that a large fraction of it can be depleted in response to a single bout of high intensity exercise. For this reason, it is generally recommended to ingest food after exercise to replenish rapidly muscle glycogen stores, otherwise one's ability to engage in high intensity activity might be compromised. But what if food is not available? It is now well established that, even in the absence of food intake, skeletal muscles have the capacity to replenish some of their glycogen at the expense of endogenous carbon sources such as lactate. This is facilitated, in part, by the transient dephosphorylation-mediated activation of glycogen synthase and inhibition of glycogen phosphorylase. There is also evidence that muscle glycogen synthesis occurs even under conditions conducive to an increased oxidation of lactate post-exercise, such as during active recovery from high intensity exercise. Indeed, although during active recovery glycogen resynthesis is impaired in skeletal muscle as a whole because of increased lactate oxidation, muscle glycogen stores are replenished in Type IIa and IIb fibers while being broken down in Type I fibers of active muscles. This unique ability of Type II fibers to replenish their glycogen stores during exercise should not come as a surprise given the advantages in maintaining adequate muscle glycogen stores in those fibers that play a major role in fight or flight responses

  11. Significant positive relationship between serum magnesium and muscle quality in maintenance hemodialysis patients.

    Science.gov (United States)

    Okazaki, Hisanori; Ishimura, Eiji; Okuno, Senji; Norimine, Kyoko; Yamakawa, Kenjiro; Yamakawa, Tomoyuki; Shoji, Shigeichi; Nishizawa, Yoshiki; Inaba, Masaaki

    2013-01-01

    Serum magnesium (Mg) levels have been associated with muscle performance in the general population. We hypothesized that serum Mg would be associated with muscle quality in hemodialysis patients. A total of 310 patients were examined (age: 58 ± 12 years, hemodialysis duration: 6.4 ± 6.0 years, 60.6% men, and 36.1% diabetics). Arm lean mass was measured by dual energy X-ray absorptiometry (DXA) on the dominant side. Arm muscle quality was defined as the ratio of the handgrip strength to the arm lean mass of the same side (kg/kg). Serum Mg was 1.15 ± 0.16 mmol/L (2.8 ± 0.4 mg/dL), being higher than the reference range of normal subjects. There was a significant negative correlation between muscle quality and age (r = -0.326, p<0.0001) and duration of hemodialysis (r = -0.253, p<0.0001). The muscle quality of the diabetics was significantly lower than that of the non-diabetics (p<0.001). There was a significant, positive correlation between muscle quality and serum Mg (r = 0.118, p<0.05), but not serum calcium or phosphate. In multiple regression analysis, age, gender, hemodialysis duration, diabetes, and serum Mg (β = 0.129, p<0.05) were significantly and independently associated with muscle quality (R(2) = 0.298, p<0.0001). These results demonstrated that a lower serum Mg concentration was significantly associated with poor muscle quality in hemodialysis patients. Further studies are needed to explore the mechanism by which lower serum Mg affects muscle quality.

  12. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres.

    Science.gov (United States)

    Trinh, Huong H; Lamb, Graham D

    2006-07-01

    1. The twitch characteristics (fast-twitch or slow-twitch) of skeletal muscle fibres are determined not only by the contractile apparatus properties of the fibre, but also by the time-course of Ca2+ release and re-uptake by the sarcoplasmic reticulum (SR). The present study examined, in individual fibres from non-transforming muscle of the rat, whether particular SR properties are matched to the contractile apparatus properties of the fibre, in particular in the case of fibres with fast-twitch contractile apparatus located in a slow-twitch muscle, namely the soleus. 2. Force was recorded in single, mechanically skinned fibres from extensor digitorum longus (EDL), gastrocnemius, peroneus longus and soleus muscles. Using repeated cycles in which the SR was emptied of all releasable Ca2+ and then reloaded, it was possible to determine the relative amount of Ca2+ present in the SR endogenously, the maximum SR capacity and the rate of Ca2+ loading. The sensitivity of the contractile apparatus to Ca2+ and Sr2+ was used to classify the fibres as fast-twitch (FT), slow-twitch (ST) or mixed (fibres examined) and thereby identify the likely troponin C and myosin heavy chain types present. 3. There was no significant difference in SR properties between the groups of FT fibres obtained from the four different muscles, including soleus. Despite some overlap in the SR properties of individual fibres between the FT and ST groups, the properties of the FT fibres in all four muscles studied were significantly different from those of the ST and mixed fibres. 4. In general, in FT fibres the SR had a larger capacity and the endogenous Ca2+ content was a relatively lower percentage of maximum compared with ST fibres. Importantly, in terms of their SR properties, FT fibres from soleus muscle more closely resembled FT fibres from other muscles than they did ST fibres from soleus muscle.

  13. The Influence of Ambulatory Aid on Lower-Extremity Muscle Activation During Gait.

    Science.gov (United States)

    Sanders, Michael; Bowden, Anton E; Baker, Spencer; Jensen, Ryan; Nichols, McKenzie; Seeley, Matthew K

    2018-05-10

    Foot and ankle injuries are common and often require a nonweight-bearing period of immobilization for the involved leg. This nonweight-bearing period usually results in muscle atrophy for the involved leg. There is a dearth of objective data describing muscle activation for different ambulatory aids that are used during the aforementioned nonweight-bearing period. To compare activation amplitudes for 4 leg muscles during (1) able-bodied gait and (2) ambulation involving 3 different ambulatory aids that can be used during the acute phase of foot and ankle injury care. Within-subject, repeated measures. University biomechanics laboratory. Sixteen able-bodied individuals (7 females and 9 males). Each participant performed able-bodied gait and ambulation using 3 different ambulatory aids (traditional axillary crutches, knee scooter, and a novel lower-leg prosthesis). Muscle activation amplitude quantified via mean surface electromyography amplitude throughout the stance phase of ambulation. Numerous statistical differences (P < .05) existed for muscle activation amplitude between the 4 observed muscles, 3 ambulatory aids, and able-bodied gait. For the involved leg, comparing the 3 ambulatory aids: (1) knee scooter ambulation resulted in the greatest vastus lateralis activation, (2) ambulation using the novel prosthesis and traditional crutches resulted in greater biceps femoris activation than knee scooter ambulation, and (3) ambulation using the novel prosthesis resulted in the greatest gastrocnemius activation (P < .05). Generally speaking, muscle activation amplitudes were most similar to able-bodied gait when subjects were ambulating using the knee scooter or novel prosthesis. Type of ambulatory aid influences muscle activation amplitude. Traditional axillary crutches appear to be less likely to mitigate muscle atrophy during the nonweighting, immobilization period that often follows foot or ankle injuries. Researchers and clinicians should consider

  14. Surgical results of the slipped medial rectus muscle after hang back recession surgery

    Directory of Open Access Journals (Sweden)

    Yasar Duranoglu

    2014-12-01

    Full Text Available AIM:To analyze the surgical results of a slipped medial rectus muscle (MRM after hang back recession surgery for esotropia.METHODS:Twenty-one patients who underwent re-exploration for diagnosed slipped muscle after hang back recession surgery were included in this retrospective study. Dynamic magnetic resonance imaging was performed to identify the location of the slipped muscle. Ocular motility was evaluated with assessment with prism and cover test in gaze at cardinal positions. The operations were performed by the same consultant. Intraoperative forced duction test was performed under general anesthesia. The empty sheath of the slipped MRM was resected and the muscle was advanced to the original insertion site in all patients.RESULTS:The average age of 21 patients who hadconsecutive exotropia with a slipped MRM at the time of presentation was 17.4±5.4y (5-50y. The average duration between the first operation and the diagnosis of the slipped muscle was 25mo (12 to 36mo. The mean follow up after the corrective surgery was 28mo. The mean preoperative adduction limitation in the field of action of the slipped muscle was -2.26 (ranging from -1 to -4. All patients had full adduction postoperatively.CONCLUSION:The diagnosis of the slipped muscle should be confirmed during the strabismus surgery. The slipped muscle may be caused due to insufficient suture and excessive rubbing of the eye. When divergent strabismus is observed after the recession of the MRM, a slipped muscle should be considered in the differential diagnosis.

  15. Ontogeny of the Alligator Cartilago Transiliens and Its Significance for Sauropsid Jaw Muscle Evolution

    Science.gov (United States)

    Tsai, Henry P.; Holliday, Casey M.

    2011-01-01

    The cartilago transiliens is a fibrocartilaginous structure within the jaw muscles of crocodylians. The cartilago transiliens slides between the pterygoid buttress and coronoid region of the lower jaw and connects two muscles historically identified as m. pseudotemporalis superficialis and m. intramandibularis. However, the position of cartilago transiliens, and its anatomical similarities to tendon organs suggest the structure may be a sesamoid linking a single muscle. Incompressible sesamoids often form inside tendons that wrap around bone. However, such structures rarely ossify in reptiles and have thus far received scant attention. We tested the hypothesis that the cartilago transiliens is a sesamoid developed within in one muscle by investigating its structure in an ontogenetic series of Alligator mississippiensis using dissection, 3D imaging, and polarizing and standard light microscopy. In all animals studied, the cartilago transiliens receives collagen fibers and tendon insertions from its two main muscular attachments. However, whereas collagen fibers were continuous within the cartilaginous nodule of younger animals, such continuity decreased in older animals, where the fibrocartilaginous core grew to displace the fibrous region. Whereas several neighboring muscles attached to the fibrous capsule in older individuals, only two muscles had significant contributions to the structure in young animals. Our results indicate that the cartilago transiliens is likely a sesamoid formed within a single muscle (i.e., m. pseudotemporalis superficialis) as it wraps around the pterygoid buttress. This tendon organ is ubiquitous among fossil crocodyliforms indicating it is a relatively ancient, conserved structure associated with the development of the large pterygoid flanges in this clade. Finally, these findings indicate that similar tendon organs exist among potentially homologous muscle groups in birds and turtles, thus impacting inferences of jaw muscle homology

  16. Chronic Stimulation-Induced Changes in the Rodent Thyroarytenoid Muscle

    Science.gov (United States)

    McMullen, Colleen A.; Butterfield, Timothy A.; Dietrich, Maria; Andreatta, Richard D.; Andrade, Francisco H.; Fry, Lisa; Stemple, Joseph C.

    2011-01-01

    Purpose: Therapies for certain voice disorders purport principles of skeletal muscle rehabilitation to increase muscle mass, strength, and endurance. However, applicability of limb muscle rehabilitation to the laryngeal muscles has not been tested. In this study, the authors examined the feasibility of the rat thyroarytenoid muscle to remodel as a…

  17. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock

    DEFF Research Database (Denmark)

    Dyar, Kenneth A.; Ciciliot, Stefano; Wright, Lauren E.

    2014-01-01

    Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-s...

  18. The optimal stimulation pattern for skeletal muscle is dependent on muscle length

    NARCIS (Netherlands)

    Mela, P.; Veltink, Petrus H.; Huijing, P.A.J.B.M.; Salmons, S.; Jarvis, J.C.

    2002-01-01

    elicited muscle contraction. Such patterns, providing the desired force output with the minimum number of pulses, may reduce muscle fatigue, which has been shown to correlate to the number of pulses delivered. Applications of electrical stimulation to use muscle as a controllable biological actuator

  19. Changes in muscle strength and morphology after muscle unloading in Special Forces missions

    DEFF Research Database (Denmark)

    Thorlund, J B; Jakobsen, O; Madsen, T

    2011-01-01

    The purpose of the present study was to determine the changes in maximal muscle strength, rapid force capacity, jumping performance and muscle morphology following a Special Forces military operation involving 8 days of muscle unloading. Nine male Special Forces soldiers were tested before (pre) ...

  20. Glycogen synthesis in human gastrocnemius muscle is not representative of whole-body muscle glycogen synthesis.

    NARCIS (Netherlands)

    Serlie, M.J.; Haan, J.H.A. de; Tack, C.J.J.; Verberne, H.J.; Ackermans, M.T.; Heerschap, A.; Sauerwein, H.P.

    2005-01-01

    The introduction of 13C magnetic resonance spectroscopy (MRS) has enabled noninvasive measurement of muscle glycogen synthesis in humans. Conclusions based on measurements by the MRS technique assume that glucose metabolism in gastrocnemius muscle is representative for all skeletal muscles and thus

  1. Glycogen synthesis in human gastrocnemius muscle is not representative of whole-body muscle glycogen synthesis

    NARCIS (Netherlands)

    Serlie, Mireille J. M.; de Haan, Jacco H.; Tack, Cees J.; Verberne, Hein J.; Ackermans, Mariette T.; Heerschap, Arend; Sauerwein, Hans P.

    2005-01-01

    The introduction of C-13 magnetic resonance spectroscopy (MRS) has enabled noninvasive measurement of muscle glycogen synthesis in humans. Conclusions based on measurements by the MRS technique assume that glucose metabolism in gastrocnemius muscle is representative for all skeletal muscles and thus

  2. Muscle cocontraction following dynamics learning.

    Science.gov (United States)

    Darainy, Mohammad; Ostry, David J

    2008-09-01

    Coactivation of antagonist muscles is readily observed early in motor learning, in interactions with unstable mechanical environments and in motor system pathologies. Here we present evidence that the nervous system uses coactivation control far more extensively and that patterns of cocontraction during movement are closely tied to the specific requirements of the task. We have examined the changes in cocontraction that follow dynamics learning in tasks that are thought to involve finely sculpted feedforward adjustments to motor commands. We find that, even following substantial training, cocontraction varies in a systematic way that depends on both movement direction and the strength of the external load. The proportion of total activity that is due to cocontraction nevertheless remains remarkably constant. Moreover, long after indices of motor learning and electromyographic measures have reached asymptotic levels, cocontraction still accounts for a significant proportion of total muscle activity in all phases of movement and in all load conditions. These results show that even following dynamics learning in predictable and stable environments, cocontraction forms a central part of the means by which the nervous system regulates movement.

  3. Calcium signaling in smooth muscle.

    Science.gov (United States)

    Hill-Eubanks, David C; Werner, Matthias E; Heppner, Thomas J; Nelson, Mark T

    2011-09-01

    Changes in intracellular Ca(2+) are central to the function of smooth muscle, which lines the walls of all hollow organs. These changes take a variety of forms, from sustained, cell-wide increases to temporally varying, localized changes. The nature of the Ca(2+) signal is a reflection of the source of Ca(2+) (extracellular or intracellular) and the molecular entity responsible for generating it. Depending on the specific channel involved and the detection technology employed, extracellular Ca(2+) entry may be detected optically as graded elevations in intracellular Ca(2+), junctional Ca(2+) transients, Ca(2+) flashes, or Ca(2+) sparklets, whereas release of Ca(2+) from intracellular stores may manifest as Ca(2+) sparks, Ca(2+) puffs, or Ca(2+) waves. These diverse Ca(2+) signals collectively regulate a variety of functions. Some functions, such as contractility, are unique to smooth muscle; others are common to other excitable cells (e.g., modulation of membrane potential) and nonexcitable cells (e.g., regulation of gene expression).

  4. In Graves' disease, increased muscle tension and reduced elasticity of affected muscles is primarily caused by active muscle contraction

    NARCIS (Netherlands)

    H.J. Simonsz (Huib); G. Kommerell (Guntram)

    1989-01-01

    textabstractIn three patients with Graves' disease of recent onset, length-tension diagrams were made during surgery for squint under eyedrop anesthesia, while the other eye looked ahead, into the field of action, or out of the field of action of the muscle that was measured. The affected muscles

  5. Muscle glycogen synthesis before and after exercise.

    Science.gov (United States)

    Ivy, J L

    1991-01-01

    The importance of carbohydrates as a fuel source during endurance exercise has been known for 60 years. With the advent of the muscle biopsy needle in the 1960s, it was determined that the major source of carbohydrate during exercise was the muscle glycogen stores. It was demonstrated that the capacity to exercise at intensities between 65 to 75% VO2max was related to the pre-exercise level of muscle glycogen, i.e. the greater the muscle glycogen stores, the longer the exercise time to exhaustion. Because of the paramount importance of muscle glycogen during prolonged, intense exercise, a considerable amount of research has been conducted in an attempt to design the best regimen to elevate the muscle's glycogen stores prior to competition and to determine the most effective means of rapidly replenishing the muscle glycogen stores after exercise. The rate-limiting step in glycogen synthesis is the transfer of glucose from uridine diphosphate-glucose to an amylose chain. This reaction is catalysed by the enzyme glycogen synthase which can exist in a glucose-6-phosphate-dependent, inactive form (D-form) and a glucose-6-phosphate-independent, active form (I-form). The conversion of glycogen synthase from one form to the other is controlled by phosphorylation-dephosphorylation reactions. The muscle glycogen concentration can vary greatly depending on training status, exercise routines and diet. The pattern of muscle glycogen resynthesis following exercise-induced depletion is biphasic. Following the cessation of exercise and with adequate carbohydrate consumption, muscle glycogen is rapidly resynthesised to near pre-exercise levels within 24 hours. Muscle glycogen then increases very gradually to above-normal levels over the next few days. Contributing to the rapid phase of glycogen resynthesis is an increase in the percentage of glycogen synthase I, an increase in the muscle cell membrane permeability to glucose, and an increase in the muscle's sensitivity to insulin

  6. Assessment of muscle fatigue during biking.

    Science.gov (United States)

    Knaflitz, Marco; Molinari, Filippo

    2003-03-01

    The analysis of the surface myoelectric signal recorded while a muscle is performing a sustained contraction is a valuable tool for assessing the progression of localized fatigue. It is well known that the modifications of the spectral content of the myoelectric signal are mainly related to changes in the interstitial fluid pH, which, in turn, affect the membrane excitability of the active muscle fibers. This paper describes the effects of muscle fatigue on the surface myoelectric signal recorded from three thigh and leg muscles during biking, on a population consisting of 22 young healthy volunteers. The purpose of this study was to obtain normative data relative to an exercise protocol mild enough to be applicable, in the future, to pathological subjects as well. Each subject was asked to exercise 30 min on a cycloergometer at a constant velocity and against a constant torque. While subjects were biking, the surface myoelectric signal was recorded from the rectus femoris, the biceps femoris, and the gastrocnemius muscles. In this study, we considered two different aspects of muscle fatigue: first, the localized muscle fatigue as shown by the decrement of the instantaneous frequency of the myoelectric signal during the exercise; second, the modifications of the muscle ON-OFF timing, which could be explained as a strategy for increasing endurance by modifying the role of different muscles during the exercise. The first aspect was studied by obtaining the spectral characteristics of the signals by means of bilinear time-frequency transforms and by applying an original estimator of the instantaneous frequency of stochastic processes based on cross time-frequency transforms. Our results demonstrated that none of the subjects showed significant signs of localized muscle fatigue, since the decrement of the instantaneous frequency during the exercise was always lower than 5% of its initial value. Muscle ON-OFF timing was obtained by applying to the raw myoelectric signal

  7. Regenerated rat skeletal muscle after periodic contusions

    Directory of Open Access Journals (Sweden)

    V.B. Minamoto

    2001-11-01

    Full Text Available In the present study we evaluated the morphological aspect and changes in the area and incidence of muscle fiber types of long-term regenerated rat tibialis anterior (TA muscle previously submitted to periodic contusions. Animals received eight consecutive traumas: one trauma per week, for eight weeks, and were evaluated one (N = 8 and four (N = 9 months after the last contusion. Serial cross-sections were evaluated by toluidine blue staining, acid phosphatase and myosin ATPase reactions. The weight of injured muscles was decreased compared to the contralateral intact one (one month: 0.77 ± 0.15 vs 0.91 ± 0.09 g, P = 0.03; four months: 0.79 ± 0.14 vs 1.02 ± 0.07 g, P = 0.0007, respectively and showed abundant presence of split fibers and fibers with centralized nuclei, mainly in the deep portion. Damaged muscles presented a higher incidence of undifferentiated fibers when compared to the intact one (one month: 3.4 ± 2.1 vs 0.5 ± 0.3%, P = 0.006; four months: 2.3 ± 1.6 vs 0.3 ± 0.3%, P = 0.007, respectively. Injured TA evaluated one month later showed a decreased area of muscle fibers when compared to the intact one (P = 0.003. Thus, we conclude that: a muscle fibers were damaged mainly in the deep portion, probably because they were compressed against the tibia; b periodic contusions in the TA muscle did not change the percentage of type I and II muscle fibers; c periodically injured TA muscles took four months to reach a muscle fiber area similar to that of the intact muscle.

  8. Gender differences in MR muscle tractography

    International Nuclear Information System (INIS)

    Okamoto, Yoshikazu; Minami, Manabu; Kunimatsu, Akira; Kono, Tatsuo; Sonobe, Jyunichi; Kujiraoka, Yuka

    2010-01-01

    Tractography of skeletal muscle can clearly reveal the 3-dimensional course of muscle fibers, and the procedure has great potential and could open new fields for diagnostic imaging. Studying this technique for clinical application, we noticed differences in the number of visualized tracts among volunteers and among muscles in the same volunteer. To comprehend why the number of visualized tracts varied so that we could acquire consistently high quality tractography of muscle fiber, we started to examine whether differences in individual parameters affected tractography visualization. The purpose of this study was to determine whether there are gender- and age-specific differences that differentiate the muscles by gender and age in MR tractography of skeletal muscle fiber. We divided 33 healthy volunteers by gender and age among 3 groups, A (13 younger men, aged 20 to 36 years), B (11 younger women, 25 to 39 years), and C (9 older men, 50 to 69), and we obtained from each volunteer tractographs of 8 fibers, including the bilateral gastrocnemius medialis (GCM), gastrocnemius lateralis (GCL), soleus (SOL), and anterior tibialis (AT) muscles. We classified the fibers into 5 grades depending on the extent of visualized tracts and used Mann-Whitney U-test to compare scores by gender (Group A versus B) and age (Group A versus C). Muscle tracts were significantly better visualized in women than men (median total visual score, 34 versus 24, P<0.05). In particular, the SOL muscles showed better visualization in the right (4.0 in women, 1.0 in men, P<0.05) and left (3.0 in women, 1.0 in men, P<0.05). Difference by age was not significant. The GCL was the highest scored muscle in all groups. Our results suggest that group differences, especially by gender, affected visualization of tractography of muscle fiber of the calf. (author)

  9. Regulatory T cells and skeletal muscle regeneration.

    Science.gov (United States)

    Schiaffino, Stefano; Pereira, Marcelo G; Ciciliot, Stefano; Rovere-Querini, Patrizia

    2017-02-01

    Skeletal muscle regeneration results from the activation and differentiation of myogenic stem cells, called satellite cells, located beneath the basal lamina of the muscle fibers. Inflammatory and immune cells have a crucial role in the regeneration process. Acute muscle injury causes an immediate transient wave of neutrophils followed by a more persistent infiltration of M1 (proinflammatory) and M2 (anti-inflammatory/proregenerative) macrophages. New studies show that injured muscle is also infiltrated by a specialized population of regulatory T (Treg) cells, which control both the inflammatory response, by promoting the M1-to-M2 switch, and the activation of satellite cells. Treg cells accumulate in injured muscle in response to specific cytokines, such as IL-33, and promote muscle growth by releasing growth factors, such as amphiregulin. Muscle repair during aging is impaired due to reduced number of Treg cells and can be enhanced by IL-33 supplementation. Migration of Treg cells could also contribute to explain the effect of heterochronic parabiosis, whereby muscle regeneration of aged mice can be improved by a parabiotically linked young partners. In mdx dystrophin-deficient mice, a model of human Duchenne muscular dystrophy, muscle injury, and inflammation is mitigated by expansion of the Treg-cell population but exacerbated by Treg-cell depletion. These findings support the notion that immunological mechanisms are not only essential in the response to pathogenic microbes and tumor cells but also have a wider homeostatic role in tissue repair, and open new perspectives for boosting muscle growth in chronic muscle disease and during aging. © 2016 Federation of European Biochemical Societies.

  10. Muscle type-specific responses to NAD+ salvage biosynthesis promote muscle function in Caenorhabditis elegans.

    Science.gov (United States)

    Vrablik, Tracy L; Wang, Wenqing; Upadhyay, Awani; Hanna-Rose, Wendy

    2011-01-15

    Salvage biosynthesis of nicotinamide adenine dinucleotide (NAD(+)) from nicotinamide (NAM) lowers NAM levels and replenishes the critical molecule NAD(+) after it is hydrolyzed. This pathway is emerging as a regulator of multiple biological processes. Here we probe the contribution of the NAM-NAD(+) salvage pathway to muscle development and function using Caenorhabditis elegans. C. elegans males with mutations in the nicotinamidase pnc-1, which catalyzes the first step of this NAD(+) salvage pathway, cannot mate due to a spicule muscle defect. Multiple muscle types are impaired in the hermaphrodites, including body wall muscles, pharyngeal muscles and vulval muscles. An active NAD(+) salvage pathway is required for optimal function of each muscle cell type. However, we found surprising muscle-cell-type specificity in terms of both the timing and relative sensitivity to perturbation of NAD(+) production or NAM levels. Active NAD(+) biosynthesis during development is critical for function of the male spicule protractor muscles during adulthood, but these muscles can surprisingly do without salvage biosynthesis in adulthood under the conditions examined. The body wall muscles require ongoing NAD(+) salvage biosynthesis both during development and adulthood for maximum function. The vulval muscles do not function in the presence of elevated NAM concentrations, but NAM supplementation is only slightly deleterious to body wall muscles during development or upon acute application in adults. Thus, the pathway plays distinct roles in different tissues. As NAM-NAD(+) biosynthesis also impacts muscle differentiation in vertebrates, we propose that similar complexities may be found among vertebrate muscle cell types. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. The mRNA expression profile of metabolic genes relative to MHC isoform pattern in human skeletal muscles

    DEFF Research Database (Denmark)

    Plomgaard, Peter; Penkowa, Milena; Leick, Lotte

    2006-01-01

    The metabolic profile of rodent muscle is generally reflected in the myosin heavy chain (MHC) fiber-type composition. The present study was conducted to test the hypothesis that metabolic gene expression is not tightly coupled with MHC fiber-type composition for all genes in human skeletal muscle....... Triceps brachii, vastus lateralis quadriceps, and soleus muscle biopsies were obtained from normally physically active, healthy, young male volunteers, because these muscles are characterized by different fiber-type compositions. As expected, citrate synthase and 3-hydroxyacyl dehydrogenase activity...... of a broad range of metabolic genes. The triceps muscle had two- to fivefold higher MHC IIa, phosphofructokinase, and LDH A mRNA content and two- to fourfold lower MHC I, lipoprotein lipase, CD36, hormone-sensitive lipase, and LDH B and hexokinase II mRNA than vastus lateralis or soleus. Interestingly...

  12. Aerobic exercise training induces skeletal muscle hypertrophy and age-dependent adaptations in myofiber function in young and older men

    Science.gov (United States)

    Konopka, Adam R.; Undem, Miranda K.; Hinkley, James M.; Minchev, Kiril; Kaminsky, Leonard A.; Trappe, Todd A.; Trappe, Scott

    2012-01-01

    To examine potential age-specific adaptations in skeletal muscle size and myofiber contractile physiology in response to aerobic exercise, seven young (YM; 20 ± 1 yr) and six older men (OM; 74 ± 3 yr) performed 12 wk of cycle ergometer training. Muscle biopsies were obtained from the vastus lateralis to determine size and contractile properties of isolated slow [myosin heavy chain (MHC) I] and fast (MHC IIa) myofibers, MHC composition, and muscle protein concentration. Aerobic capacity was higher (P 0.05) with training. Training reduced (P aerobic capacity are similar between YM and OM, while adaptations in myofiber contractile function showed a general improvement in OM. Training-related increases in MHC I and MHC IIa peak power reveal that skeletal muscle of OM is responsive to aerobic exercise training and further support the use of aerobic exercise for improving cardiovascular and skeletal muscle health in older individuals. PMID:22984247

  13. Bilateral Tensor Fasciae Suralis Muscles in a Cadaver with Unilateral Accessory Flexor Digitorum Longus Muscle

    Directory of Open Access Journals (Sweden)

    Logan S. W. Bale

    2017-01-01

    Full Text Available Muscle variants are routinely encountered in the dissection laboratory and in clinical practice and therefore anatomists and clinicians need to be aware of their existence. Here we describe two different accessory muscles identified while performing educational dissection of a 51-year-old male cadaver. Tensor fasciae suralis, a rare muscle variant, was identified bilaterally and accessory flexor digitorum longus, a more common muscle variant, was present unilaterally. Tensor fasciae suralis and accessory flexor digitorum longus are clinically relevant muscle variants. To our knowledge, the coexistence of tensor fasciae suralis and accessory flexor digitorum longus in the same individual has not been reported in either cadaveric or imaging studies.

  14. Low Muscle Mass and Breast Cancer Survival

    Science.gov (United States)

    In a new study, researchers compared the risk of death for women with breast cancer who had low skeletal muscle mass, or sarcopenia, at diagnosis and women who had adequate muscle mass. Learn what they found and what it might mean for patients in this Cancer Currents blog post.

  15. Respiratory muscle training in Duchenne muscular dystrophy.

    OpenAIRE

    Rodillo, E; Noble-Jamieson, C M; Aber, V; Heckmatt, J Z; Muntoni, F; Dubowitz, V

    1989-01-01

    Twenty two boys with Duchenne muscular dystrophy were entered into a randomised double blind crossover trial to compare respiratory muscle training with a Triflow II inspirometer and 'placebo' training with a mini peak flow meter. Supine posture was associated with significantly impaired lung function, but respiratory muscle training showed no benefit.

  16. Interleukin-6 myokine signaling in skeletal muscle

    DEFF Research Database (Denmark)

    Muñoz-Cánoves, Pura; Scheele, Camilla; Pedersen, Bente K

    2013-01-01

    Interleukin (IL)-6 is a cytokine with pleiotropic functions in different tissues and organs. Skeletal muscle produces and releases significant levels of IL-6 after prolonged exercise and is therefore considered as a myokine. Muscle is also an important target of the cytokine. IL-6 signaling has b...

  17. Cryotherapy induces an increase in muscle stiffness.

    Science.gov (United States)

    Point, M; Guilhem, G; Hug, F; Nordez, A; Frey, A; Lacourpaille, L

    2018-01-01

    Although cold application (ie, cryotherapy) may be useful to treat sports injuries and to prevent muscle damage, it is unclear whether it has adverse effects on muscle mechanical properties. This study aimed to determine the effect of air-pulsed cryotherapy on muscle stiffness estimated using ultrasound shear wave elastography. Myoelectrical activity, ankle passive torque, shear modulus (an index of stiffness), and muscle temperature of the gastrocnemius medialis were measured before, during an air-pulsed cryotherapy (-30°C) treatment of four sets of 4 minutes with 1-minute recovery in between and during a 40 minutes postcryotherapy period. Muscle temperature significantly decreased after the second set of treatment (10 minutes: 32.3±2.5°C; Pcryotherapy induces an increase in muscle stiffness. This acute change in muscle mechanical properties may lower the amount of stretch that the muscle tissue is able to sustain without subsequent injury. This should be considered when using cryotherapy in athletic practice. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Muscle activation patterns in posttraumatic neck pain

    NARCIS (Netherlands)

    Nederhand, Marcus Johannes

    2003-01-01

    As an important consequence of our research, we question the relevance of the criteria of the WAD injury severity classification system. We showed that the musculoskeletal signs in WAD grade II are not characterized by muscle spasm, (i.e. increase of muscle activity), but rather by a decrease in

  19. Addison's disease presenting with muscle spasm.

    Science.gov (United States)

    Bhattacharjee, Rana; Sharma, A; Rays, A; Thakur, I; Sarkar, D; Mandal, B; Mookerjee, S K; Chatterjee, S K; Chowdhury, Pradip Roy

    2013-09-01

    Primary hypoadrenalism has various causes and protean manifestation. We report a young female patient who presented with severe muscle spasm as her primary complaint. On evaluation she was found to be a case of Addison's disease secondary to adrenal tuberculosis. Her muscle spasm disappeared rapidly with replacement dose of glucocorticoid.

  20. Single muscle fiber adaptations with marathon training.

    Science.gov (United States)

    Trappe, Scott; Harber, Matthew; Creer, Andrew; Gallagher, Philip; Slivka, Dustin; Minchev, Kiril; Whitsett, David

    2006-09-01

    The purpose of this investigation was to characterize the effects of marathon training on single muscle fiber contractile function in a group of recreational runners. Muscle biopsies were obtained from the gastrocnemius muscle of seven individuals (22 +/- 1 yr, 177 +/- 3 cm, and 68 +/- 2 kg) before, after 13 wk of run training, and after 3 wk of taper. Slow-twitch myosin heavy chain [(MHC) I] and fast-twitch (MHC IIa) muscle fibers were analyzed for size, strength (P(o)), speed (V(o)), and power. The run training program led to the successful completion of a marathon (range 3 h 56 min to 5 h 35 min). Oxygen uptake during submaximal running and citrate synthase activity were improved (P training program. Muscle fiber size declined (P training. P(o) was maintained in both fiber types with training and increased (P 60% increase (P training and was unchanged in MHC IIa fibers. Peak power increased (P training with a further increase (P marathon training decreased slow-twitch and fast-twitch muscle fiber size but that it maintained or improved the functional profile of these fibers. A taper period before the marathon further improved the functional profile of the muscle, which was targeted to the fast-twitch muscle fibers.

  1. Bio-inspired Hybrid Carbon Nanotube Muscles

    Science.gov (United States)

    Kim, Tae Hyeob; Kwon, Cheong Hoon; Lee, Changsun; An, Jieun; Phuong, Tam Thi Thanh; Park, Sun Hwa; Lima, Márcio D.; Baughman, Ray H.; Kang, Tong Mook; Kim, Seon Jeong

    2016-05-01

    There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with poly(3,4-ethylenedioxythiophene) (PEDOT) to achieve biomimetic actuation. This hydrophilic hybrid muscle is physically durable in solution and responds to electric field stimulation with flexible movement. Furthermore, the biomimetic actuation when controlled by electric field stimulation results in movement similar to that of the hornworm by patterned cell culture method. The contraction and relaxation behavior of the PEDOT/MWCNT-based hybrid muscle is similar to that of the single myotube movement, but has faster relaxation kinetics because of the shape-maintenance properties of the freestanding PEDOT/MWCNT sheets in solution. Our development provides the potential possibility for substantial innovation in the next generation of cell-based biohybrid microsystems.

  2. The Human Skeletal Muscle Proteome Project

    DEFF Research Database (Denmark)

    Gonzalez-Freire, Marta; Semba, Richard D.; Ubaida-Mohien, Ceereena

    2017-01-01

    Skeletal muscle is a large organ that accounts for up to half the total mass of the human body. A progressive decline in muscle mass and strength occurs with ageing and in some individuals configures the syndrome of ‘sarcopenia’, a condition that impairs mobility, challenges autonomy, and is a ri...

  3. Effect of statins on skeletal muscle function.

    Science.gov (United States)

    Parker, Beth A; Capizzi, Jeffrey A; Grimaldi, Adam S; Clarkson, Priscilla M; Cole, Stephanie M; Keadle, Justin; Chipkin, Stuart; Pescatello, Linda S; Simpson, Kathleen; White, C Michael; Thompson, Paul D

    2013-01-01

    Many clinicians believe that statins cause muscle pain, but this has not been observed in clinical trials, and the effect of statins on muscle performance has not been carefully studied. The Effect of Statins on Skeletal Muscle Function and Performance (STOMP) study assessed symptoms and measured creatine kinase, exercise capacity, and muscle strength before and after atorvastatin 80 mg or placebo was administered for 6 months to 420 healthy, statin-naive subjects. No individual creatine kinase value exceeded 10 times normal, but average creatine kinase increased 20.8±141.1 U/L (Pmuscle strength or exercise capacity with atorvastatin, but more atorvastatin than placebo subjects developed myalgia (19 versus 10; P=0.05). Myalgic subjects on atorvastatin or placebo had decreased muscle strength in 5 of 14 and 4 of 14 variables, respectively (P=0.69). These results indicate that high-dose atorvastatin for 6 months does not decrease average muscle strength or exercise performance in healthy, previously untreated subjects. Nevertheless, this blinded, controlled trial confirms the undocumented impression that statins increase muscle complaints. Atorvastatin also increased average creatine kinase, suggesting that statins produce mild muscle injury even among asymptomatic subjects. This increase in creatine kinase should prompt studies examining the effects of more prolonged, high-dose statin treatment on muscular performance. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00609063.

  4. Proficiency test for paracitides in salmon muscle

    NARCIS (Netherlands)

    Elbers, I.J.W.

    2012-01-01

    The aim of this proficiency study was to give laboratories the possibility to evaluate or demonstrate their competence for the analysis of parasiticides in salmon muscle. This study also provided an evaluation of the methods applied for the quantitative analysis of parasiticides in salmon muscle.

  5. Asymmetry of Muscle Strength in Elite Athletes

    Science.gov (United States)

    Drid, Patrik; Drapsin, Miodrag; Trivic, Tatjana; Lukac, Damir; Obadov, Slavko; Milosevic, Zoran

    2009-01-01

    "Study aim": To determine muscle strength variables in elite judoists and wrestlers since thigh muscle strength and bilaterally balanced flexor-to-extensor ratio minimise injury risk and are desirable for achieving sport successes. "Material and methods": Judoists, wrestlers and untrained subjects, 10 each, were subjected to isokinetic strength…

  6. Jaw muscles in older overdenture patients.

    Science.gov (United States)

    Newton, James P; McManus, Frank C; Menhenick, Stephen

    2004-03-01

    To determine, using computer tomography (CT), whether the retention of a small number of teeth in the older adult used to support overdentures could affect the cross-sectional area (CSA) and X-ray density of two jaw closing muscles. Cross-sectional study of a group of older patients subdivided into dentate, edentulous and those wearing overdentures supported by two to five teeth. The sample consisted of 24 subjects aged 55-68 years. CSA and X-ray density of two jaw closing muscles, masseter and medial pterygoid were measured and evaluated using CT. There were no significant differences between left and right jaw muscles, but the CSA of the masseter muscles were significantly larger than the medial pterygoid muscles. The CSA of the masseter and medial pterygoid muscles was significantly smaller in edentulous subjects compared with dentate subjects but no significant difference was observed between subjects wearing overdentures and those with a natural dentition. No significant differences were observed with the X-ray density between different muscles or dental states. The retention of a small number of teeth in the older adult used to support overdentures appears to sustain the CSA of two jaw closing muscles and therefore could enhance these patients' masticatory ability compared with those who were edentulous.

  7. A rare variation of the digastric muscle

    Science.gov (United States)

    KALNIEV, MANOL; KRASTEV, DIMO; KRASTEV, NIKOLAY; VIDINOV, KALIN; VELTCHEV, LUDMIL; APOSTOLOV, ALEXANDER; MILEVA, MILKA

    2013-01-01

    The digastric muscle is composed by two muscle bellies: an anterior and a posterior, joined by an intermediate tendon. This muscle is situated in the anterior region of the neck. The region between the hyoid bone and the mandible is divided by an anterior belly into two triangles: the submandibular situated laterally and the submental triangle which is located medially. We found that the anatomical variations described in the literature relate mainly to the anterior belly and consist of differences in shape and attachment of the muscle. During routine dissection in February 2013 in the section hall of the Department of Anatomy and Histology in Medical University – Sofia we came across a very interesting variation of the digastric muscle. The digastric muscles that presented anatomical variations were photographed using a Sony Cyber-shot DSC-T1 camera, with a Carl Zeiss Vario-Tessar lens. We found out bilateral variation of the digastric muscle in one cadaver. The anterior bellies were very thin and insert to the hyoid bone. Two anterior bellies connect each other and thus they formed a loop. The anatomical variations observed of our study related only to the anterior belly, as previously described by other authors. It is very important to consider the occurrence of the above mentioned variations in the digastric muscle when surgical procedures are performed on the anterior region of the neck. PMID:26527971

  8. Function of the epaxial muscles during trotting.

    Science.gov (United States)

    Schilling, Nadja; Carrier, David R

    2009-04-01

    In mammals, the epaxial muscles are believed to stabilize the trunk during walking and trotting because the timing of their activity is not appropriate to produce bending of the trunk. To test whether this is indeed the case, we recorded the activity of the m. multifidus lumborum and the m. longissimus thoracis et lumborum at three different sites along the trunk (T13, L3, L6) as we manipulated the moments acting on the trunk and the pelvis in dogs trotting on a treadmill. Confirming results of previous studies, both muscles exhibited a biphasic and bilateral activity. The higher burst was associated with the second half of ipsilateral hindlimb stance phase, the smaller burst occurred during the second half of ipsilateral hindlimb swing phase. The asymmetry was noticeably larger in the m. longissimus thoracis et lumborum than in the m. multifidus lumborum. Although our manipulations of the inertia of the trunk produced results that are consistent with previous studies indicating that the epaxial muscles stabilize the trunk against accelerations in the sagittal plane, the responses of the epaxial muscles to manipulations of trunk inertia were small compared with their responses when moments produced by the extrinsic muscles of the hindlimb were manipulated. Our results indicate that the multifidus and longissimus muscles primarily stabilize the pelvis against (1) vertical components of hindlimb retractor muscles and (2) horizontal components of the hindlimb protractor and retractor muscles. Consistent with this, stronger effects of the manipulations were observed in the posterior sampling sites.

  9. Genetics Home Reference: myostatin-related muscle hypertrophy

    Science.gov (United States)

    ... Twitter Home Health Conditions Myostatin-related muscle hypertrophy Myostatin-related muscle hypertrophy Printable PDF Open All Close ... Javascript to view the expand/collapse boxes. Description Myostatin-related muscle hypertrophy is a rare condition characterized ...

  10. The cell nuclei of skeletal muscle cells are transcriptionally active in hibernating edible dormice

    Directory of Open Access Journals (Sweden)

    Muller Sylviane

    2009-03-01

    Full Text Available Abstract Background Skeletal muscle is able to react in a rapid, dynamic way to metabolic and mechanical stimuli. In particular, exposure to either prolonged starvation or disuse results in muscle atrophy. At variance, in hibernating animals muscle atrophy may be scarce or absent after bouts of hibernation i.e., periods of prolonged (months inactivity and food deprivation, and muscle function is fully preserved at arousal. In this study, myocytes from the quadriceps muscle of euthermic and hibernating edible dormice were investigated by a combination of morphological, morphometrical and immunocytochemical analyses at the light and electron microscopy level. The focus was on cell nuclei and mitochondria, which are highly sensitive markers of changing metabolic rate. Results Findings presented herein demonstrate that: 1 the general histology of the muscle, inclusive of muscle fibre shape and size, and the ratio of fast and slow fibre types are not affected by hibernation; 2 the fine structure of cytoplasmic and nuclear constituents is similar in euthermia and hibernation but for lipid droplets, which accumulate during lethargy; 3 during hibernation, mitochondria are larger in size with longer cristae, and 4 myonuclei maintain the same amount and distribution of transcripts and transcription factors as in euthermia. Conclusion In this study we demonstrate that skeletal muscle cells of the hibernating edible dormouse maintain their structural and functional integrity in full, even after months in the nest. A twofold explanation for that is envisaged: 1 the maintenance, during hibernation, of low-rate nuclear and mitochondrial activity counterbalancing myofibre wasting, 2 the intensive muscle stimulation (shivering during periodic arousals in the nest, which would mimic physical exercise. These two factors would prevent muscle atrophy usually occurring in mammals after prolonged starvation and/or inactivity as a consequence of prevailing catabolism

  11. Redox responses are preserved across muscle fibres with differential susceptibility to aging.

    Science.gov (United States)

    Smith, Neil T; Soriano-Arroquia, Ana; Goljanek-Whysall, Katarzyna; Jackson, Malcolm J; McDonagh, Brian

    2018-04-15

    Age-related loss of muscle mass and function is associated with increased frailty and loss of independence. The mechanisms underlying the susceptibility of different muscle types to age-related atrophy are not fully understood. Reactive oxygen species (ROS) are recognised as important signalling molecules in healthy muscle and redox sensitive proteins can respond to intracellular changes in ROS concentrations modifying reactive thiol groups on Cysteine (Cys) residues. Conserved Cys residues tend to occur in functionally important locations and can have a direct impact on protein function through modifications at the active site or determining protein conformation. The aim of this work was to determine age-related changes in the redox proteome of two metabolically distinct murine skeletal muscles, the quadriceps a predominantly glycolytic muscle and the soleus which contains a higher proportion of mitochondria. To examine the effects of aging on the global proteome and the oxidation state of individual redox sensitive Cys residues, we employed a label free proteomics approach including a differential labelling of reduced and reversibly oxidised Cys residues. Our results indicate the proteomic response to aging is dependent on muscle type but redox changes that occur primarily in metabolic and cytoskeletal proteins are generally preserved between metabolically distinct tissues. Skeletal muscle containing fast twitch glycolytic fibres are more susceptible to age related atrophy compared to muscles with higher proportions of oxidative slow twitch fibres. Contracting skeletal muscle generates reactive oxygen species that are required for correct signalling and adaptation to exercise and it is also known that the intracellular redox environment changes with age. To identify potential mechanisms for the distinct response to age, this article combines a global proteomic approach and a differential labelling of reduced and reversibly oxidised Cysteine residues in two

  12. Effect of brief daily resistance training on rapid force development in painful neck and shoulder muscles

    DEFF Research Database (Denmark)

    Jay, Kenneth; Schraefel, Mc; Andersen, Christoffer H

    2013-01-01

    OBJECTIVE: To determine the effect of small daily amounts of progressive resistance training on rapid force development of painful neck/shoulder muscles. METHODS: 198 generally healthy adults with frequent neck/shoulder muscle pain (mean: age 43.1 years, computer use 93% of work time, 88% women......, duration of pain 186 day during the previous year) were randomly allocated to 2- or 12 min of daily progressive resistance training with elastic tubing or to a control group receiving weekly information on general health. A blinded assessor took measures at baseline and at 10-week follow-up; participants.......05) for both training groups. Maximal muscle strength increased only ~5-6% [mean and 95% confidence interval for 2- and 12-min groups to control, respectively: 2.5 Nm (0.05-0.73) and 2.2 Nm (0.01-0.70)]. No significant differences between the 2- and 12-min groups were evident. A weak but significant...

  13. Could a functional artificial skeletal muscle be useful in muscle wasting?

    Science.gov (United States)

    Fuoco, Claudia; Cannata, Stefano; Gargioli, Cesare

    2016-05-01

    Regardless of the underlying cause, skeletal muscle wasting is detrimental for a person's life quality, leading to impaired strength, locomotion, and physiological activity. Here, we propose a series of studies presenting tissue engineering-based approaches to reconstruct artificial muscle in vitro and in vivo. Skeletal muscle tissue engineering is attracting more and more attention from scientists, clinicians, patients, and media, thanks to the promising results obtained in the last decade with animal models of muscle wasting. The use of novel and refined biomimetic scaffolds mimicking three-dimensional muscle environment, thus supporting cell survival and differentiation, in combination with well characterized myogenic stem/progenitor cells, revealed the noteworthy potential of these technologies for creating artificial skeletal muscle tissue. In vitro, the production of three-dimensional muscle structures offer the possibility to generate a drug-screening platform for patient-specific pharmacological treatment, opening new frontiers in the development of new compounds with specific therapeutic actions. In vivo, three-dimensional artificial muscle biomimetic constructs offer the possibility to replace, in part or entirely, wasted muscle by means of straight reconstruction and/or by enhancing endogenous regeneration. Reports of tissue engineering approaches for artificial muscle building appeared in large numbers in the specialized press lately, advocating the suitability of this technology for human application upon scaling up and a near future applicability for medical care of muscle wasting. http://links.lww.com/COCN/A9

  14. Action of Obestatin in Skeletal Muscle Repair: Stem Cell Expansion, Muscle Growth, and Microenvironment Remodeling

    Science.gov (United States)

    Gurriarán-Rodríguez, Uxía; Santos-Zas, Icía; González-Sánchez, Jessica; Beiroa, Daniel; Moresi, Viviana; Mosteiro, Carlos S; Lin, Wei; Viñuela, Juan E; Señarís, José; García-Caballero, Tomás; Casanueva, Felipe F; Nogueiras, Rubén; Gallego, Rosalía; Renaud, Jean-Marc; Adamo, Sergio; Pazos, Yolanda; Camiña, Jesús P

    2015-01-01

    The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Overall, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration. PMID:25762009

  15. Regulation of skeletal muscle oxidative capacity and muscle mass by SIRT3.

    Directory of Open Access Journals (Sweden)

    Ligen Lin

    Full Text Available We have previously reported that the expression of mitochondrial deacetylase SIRT3 is high in the slow oxidative muscle and that the expression of muscle SIRT3 level is increased by dietary restriction or exercise training. To explore the function of SIRT3 in skeletal muscle, we report here the establishment of a transgenic mouse model with muscle-specific expression of the murine SIRT3 short isoform (SIRT3M3. Calorimetry study revealed that the transgenic mice had increased energy expenditure and lower respiratory exchange rate (RER, indicating a shift towards lipid oxidation for fuel usage, compared to control mice. The transgenic mice exhibited better exercise performance on treadmills, running 45% further than control animals. Moreover, the transgenic mice displayed higher proportion of slow oxidative muscle fibers, with increased muscle AMPK activation and PPARδ expression, both of which are known regulators promoting type I muscle fiber specification. Surprisingly, transgenic expression of SIRT3M3 reduced muscle mass up to 30%, likely through an up-regulation of FOXO1 transcription factor and its downstream atrophy gene MuRF-1. In summary, these results suggest that SIRT3 regulates the formation of oxidative muscle fiber, improves muscle metabolic function, and reduces muscle mass, changes that mimic the effects of caloric restriction.

  16. Muscle fiber population and biochemical properties of whole body muscles in Thoroughbred horses.

    Science.gov (United States)

    Kawai, Minako; Minami, Yoshio; Sayama, Yukiko; Kuwano, Atsutoshi; Hiraga, Atsushi; Miyata, Hirofumi

    2009-10-01

    We examine the muscle fiber population and metabolic properties of skeletal muscles from the whole body in Thoroughbred horses. Postmortem samples were taken from 46 sites in six Thoroughbred horses aged between 3 and 6 years. Fiber type population was determined on muscle fibers stained with monoclonal antibody to each myosin heavy chain isoform and metabolic enzyme activities were determined spectrophotometrically. Histochemical analysis demonstrated that most of the muscles had a high percentage of Type IIa fibers. In terms of the muscle characteristic in several parts of the horse body, the forelimb muscles had a higher percentage of Type IIa fiber and a significantly lower percentage of Type IIx fiber than the hindlimb muscles. The muscle fiber type populations in the thoracic and trunk portion were similar to those in the hindlimb portion. Biochemical analysis indicated high succinate dehydrogenase activity in respiratory-related muscle and high phosphofructokinase activity in hindlimbs. We suggested that the higher percentage of Type IIa fibers in Thoroughbred racehorses is attributed to training effects. To consider further the physiological significance of each part of the body, data for the recruitment pattern of each muscle fiber type during exercise are needed. The muscle fiber properties in this study combined with the recruitment data would provide fundamental information for physiological and pathological studies in Thoroughbred horses.

  17. Low intensity exercise training improves skeletal muscle regeneration potential

    Directory of Open Access Journals (Sweden)

    Tiziana ePietrangelo

    2015-12-01

    Full Text Available Purpose: The aim of this study was to determine whether 12 days of low-to-moderate exercise training at low altitude (598 m a.s.l. improves skeletal muscle regeneration in sedentary adult women.Methods: Satellite cells were obtained from the vastus lateralis skeletal muscle of seven women before and after this exercise training at low altitude. They were investigated for differentiation aspects, superoxide anion production, antioxidant enzymes, mitochondrial potential variation after a depolarizing insult, intracellular Ca2+ concentrations, and micro (miRNA expression (miR-1, miR-133, miR-206.Results: In these myogenic populations of adult stem cells, those obtained after exercise training, showed increased Fusion Index and intracellular Ca2+ concentrations. This exercise training also generally reduced superoxide anion production in cells (by 12% to 67%, although not in two women, where there was an increase of ~15% along with a reduced superoxide dismutase activity. miRNA expression showed an exercise-induced epigenetic transcription profile that was specific according to the reduced or increased superoxide anion production of the cells. Conclusions: The present study shows that low-to-moderate exercise training at low altitude improves the regenerative capacity of skeletal muscle in adult women. The differentiation of cells was favored by increased intracellular calcium concentration and increased the fusion index. This low-to-moderate training at low altitude also depicted the epigenetic signature of cells.

  18. An electromyographic study of muscle relaxants in man.

    Science.gov (United States)

    Suzuki, H; Kanayama, T; Nakagawa, H; Yazaki, S; Shiratsuchi, T

    1975-05-01

    Supramaximal paired stimuli were applied to the ulnar nerve, and the amplitude of the muscle action potential evoked in the abductor digiti minimi by the second member of the stimulus pair (test response) was compared with that evoked by the first component (conditioning response). The interval between the two components of the stimulus pair (the pair interval) was increased stepwise from 7 to 100 msec and a curve (recovery curve) was obtained by relating the changes in pair interval to the difference in amplitude of the test and conditioning responses. Alterations of the recovery curve (RC) during partial paralysis by muscle relaxants were investigated in healthy adult patients under the lightest plane of general anaesthesia. The control curve obtained in 32 subjects before the administration of a muscle relaxant drug was characterized by slight depressions at very short intervals of paired stimuli, followed by a slight potentiation at 20-100 msec. With non-depolarizing relaxants, RC altered to the characteristic pattern of potentiation at very short intervals of stimuli, followed by a notable depression at longer intervals. In depolarizing blocks with small doses of suxamethonium, the depression of RC at short intervals in the control was enhanced and the pattern of RC was different from that of non-depolarizing agents. When desensitization blocks were instigated by the i.v. administration of suxamethonium, the RC patterns were similar to those of competitive agents.

  19. Atypical hydatid cyst with psoas muscle location: Case report

    Directory of Open Access Journals (Sweden)

    Kazim Duman

    2017-06-01

    Full Text Available Atypical hydatid cysts are detected incidentally. They generally comprise 1–5% of all hydatid cysts. In particular, the peripheral muscles are involved. The literature states that it is seen in many parts of the body, including the iliac crest, psoas muscle, palm, and interdigital spaces. The clinical signs vary according to the involved locations, but wherever there is involvement, the lungs and liver, which are the most commonly involved sites, should be primarily investigated and diagnosed. Diagnosis should also be verified by serological and imaging methods, and it should be determined whether there is other organ involvement. Multidisciplinary management should be used for treatment of this disease. The key element of treatment is surgical. Cases of hydatid cyst with only right psoas muscle involvement are rare. We present this case report so that physicians may keep the definitive diagnosis in mind, as it is most frequently seen in the countryside in our country and it diminishes the workforce. [Arch Clin Exp Surg 2017; 6(2.000: 108-111

  20. Muscle dysmorphia: a South African sample.

    Science.gov (United States)

    Hitzeroth, V; Wessels, C; Zungu-Dirwayi, N; Oosthuizen, P; Stein, D J

    2001-10-01

    It has recently been suggested that muscle dysmorphia, a pathological preoccupation with muscularity, is a subtype of body dysmorphic disorder (BDD). There are, however, few studies of the phenomenology of this putative entity. Twenty-eight amateur competitive body builders in the Western Cape, South Africa, were studied using a structured diagnostic interview that incorporated demographic data, body-building activities and clinical questions focusing on muscle dysmorphia and BDD. There was a high rate of muscle dysmorphia in the sample (53.6%). Those with muscle dysmorphia were significantly more likely to have comorbid BDD based on preoccupations other than muscularity (33%). Use of the proposed diagnostic criteria for muscle dysmorphia indicated that this is a common and relevant entity. Its conceptualization as a subtype of BDD seems valid. The disorder deserves additional attention from both clinicians and researchers.

  1. Intraurethral Injection of Autologous Minced Skeletal Muscle

    DEFF Research Database (Denmark)

    Gräs, Søren; Klarskov, Niels; Lose, Gunnar

    2014-01-01

    noted. CONCLUSIONS: Intraurethral injection of minced autologous muscle tissue is a simple surgical procedure that appears safe and moderately effective in women with uncomplicated stress urinary incontinence. It compares well to a more complicated regenerative strategy using in vitro expanded muscle......PURPOSE: Intraurethral injection of in vitro expanded autologous skeletal muscle derived cells is a new regenerative therapy for stress urinary incontinence. We examined the efficacy and safety of a simpler alternative strategy using freshly harvested, minced autologous skeletal muscle tissue...... with its inherent content of regenerative cells. MATERIALS AND METHODS: A total of 20 and 15 women with uncomplicated and complicated stress urinary incontinence, respectively, received intraurethral injections of minced autologous skeletal muscle tissue and were followed for 1 year. Efficacy was assessed...

  2. Regulation of skeletal muscle glycogenolysis during exercise

    DEFF Research Database (Denmark)

    Hargreaves, M; Richter, Erik

    1988-01-01

    Muscle-glycogen breakdown during exercise is influenced by both local and systemic factors. Contractions per se increase glycogenolysis via a calcium-induced, transient increase in the activity of phosphorylase a, and probably also via increased concentrations of Pi. In fast-twitch muscle...... in contracting muscle by increasing the phosphorylase a activity via increased cyclic AMP production. The availability of blood-borne substrates may also influence muscle glycogenolysis and, therefore, exercise performance......., increases in the AMP and IMP levels may increase phosphorylase activity. The rate of muscle-glycogen breakdown during exercise depends on the pre-exercise glycogen concentration and is also influenced by hormones. Insulin may inhibit glycogen breakdown, whereas epinephrine enhances the rate of glycogen use...

  3. Increased muscle glucose uptake during contractions

    DEFF Research Database (Denmark)

    Ploug, Thorkil; Galbo, Henrik; Richter, Erik

    1984-01-01

    We reinvestigated the prevailing concept that muscle contractions only elicit increased muscle glucose uptake in the presence of a so-called "permissive" concentration of insulin (Berger et al., Biochem. J. 146: 231-238, 1975; Vranic and Berger, Diabetes 28: 147-163, 1979). Hindquarters from rats...... in severe ketoacidosis were perfused with a perfusate containing insulin antiserum. After 60 min perfusion, electrical stimulation increased glucose uptake of the contracting muscles fivefold. Also, subsequent contractions increased glucose uptake in hindquarters from nondiabetic rats perfused for 1.5 h......-methylglucose uptake increased during contractions and glucose uptake was negative at rest and zero during contractions. An increase in muscle transport and uptake of glucose during contractions does not require the presence of insulin. Furthermore, glucose transport in contracting muscle may only increase if glycogen...

  4. Mediators on human airway smooth muscle.

    Science.gov (United States)

    Armour, C; Johnson, P; Anticevich, S; Ammit, A; McKay, K; Hughes, M; Black, J

    1997-01-01

    1. Bronchial hyperresponsiveness in asthma may be due to several abnormalities, but must include alterations in the airway smooth muscle responsiveness and/or volume. 2. Increased responsiveness of airway smooth muscle in vitro can be induced by certain inflammatory cell products and by induction of sensitization (atopy). 3. Increased airway smooth muscle growth can also be induced by inflammatory cell products and atopic serum. 4. Mast cell numbers are increased in the airways of asthmatics and, in our studies, in airway smooth muscle that is sensitized and hyperresponsive. 5. We propose that there is a relationship between mast cells and airway smooth muscle cells which, once an allergic process has been initiated, results in the development of critical features in the lungs in asthma.

  5. Muscle activation during selected strength exercises in women with chronic neck muscle pain

    DEFF Research Database (Denmark)

    Andersen, Lars L; Kjaer, Michael; Andersen, Christoffer H

    2008-01-01

    selected strengthening exercises in women undergoing rehabilitation for chronic neck muscle pain (defined as a clinical diagnosis of trapezius myalgia). SUBJECTS: The subjects were 12 female workers (age=30-60 years) with a clinical diagnosis of trapezius myalgia and a mean baseline pain intensity of 5......BACKGROUND AND PURPOSE: Muscle-specific strength training has previously been shown to be effective in the rehabilitation of chronic neck muscle pain in women. The aim of this study was to determine the level of activation of the neck and shoulder muscles using surface electromyography (EMG) during...... muscle pain. Several of the strength exercises had high activation of neck and shoulder muscles in women with chronic neck pain. These exercises can be used equally in the attempt to achieve a beneficial treatment effect on chronic neck muscle pain....

  6. Catechins activate muscle stem cells by Myf5 induction and stimulate muscle regeneration.

    Science.gov (United States)

    Kim, A Rum; Kim, Kyung Min; Byun, Mi Ran; Hwang, Jun-Ha; Park, Jung Il; Oh, Ho Taek; Kim, Hyo Kyeong; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho

    2017-07-22

    Muscle weakness is one of the most common symptoms in aged individuals and increases risk of mortality. Thus, maintenance of muscle mass is important for inhibiting aging. In this study, we investigated the effect of catechins, polyphenol compounds in green tea, on muscle regeneration. We found that (-)-epicatechin gallate (ECG) and (-)-epigallocatechin-3-gallate (EGCG) activate satellite cells by induction of Myf5 transcription factors. For satellite cell activation, Akt kinase was significantly induced after ECG treatment and ECG-induced satellite cell activation was blocked in the presence of Akt inhibitor. ECG also promotes myogenic differentiation through the induction of myogenic markers, including Myogenin and Muscle creatine kinase (MCK), in satellite and C2C12 myoblast cells. Finally, EGCG administration to mice significantly increased muscle fiber size for regeneration. Taken together, the results suggest that catechins stimulate muscle stem cell activation and differentiation for muscle regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Normal and pathologically altered oculomotoric muscles in CT picture

    Energy Technology Data Exchange (ETDEWEB)

    Kvicala, V.; Balakova, H. (Karlova Univ., Prague (Czechoslovakia). Fakulta Vseobecneho Lekarstvi)

    1984-03-01

    Computerized tomography reliably visualizes oculomotoric muscles, particularly in coronary projection. 21 patients were examined where computerized tomography of the orbit showed disorders of oculomotoric muscles. Thyreoprivic ophthalmopathy (8 patients) was manifest by non-symmetric irregular thickening of muscles, whose density was unhomogeneously higher. In acromegaly (3 patients) the thickening of the muscles was less, affecting all muscles to a similar degree. Inflammatory and tumorous processes always affected only one oculomotoric muscle.

  8. Dual dimensionality reduction reveals independent encoding of motor features in a muscle synergy for insect flight control.

    Science.gov (United States)

    Sponberg, Simon; Daniel, Thomas L; Fairhall, Adrienne L

    2015-04-01

    What are the features of movement encoded by changing motor commands? Do motor commands encode movement independently or can they be represented in a reduced set of signals (i.e. synergies)? Motor encoding poses a computational and practical challenge because many muscles typically drive movement, and simultaneous electrophysiology recordings of all motor commands are typically not available. Moreover, during a single locomotor period (a stride or wingstroke) the variation in movement may have high dimensionality, even if only a few discrete signals activate the muscles. Here, we apply the method of partial least squares (PLS) to extract the encoded features of movement based on the cross-covariance of motor signals and movement. PLS simultaneously decomposes both datasets and identifies only the variation in movement that relates to the specific muscles of interest. We use this approach to explore how the main downstroke flight muscles of an insect, the hawkmoth Manduca sexta, encode torque during yaw turns. We simultaneously record muscle activity and turning torque in tethered flying moths experiencing wide-field visual stimuli. We ask whether this pair of muscles acts as a muscle synergy (a single linear combination of activity) consistent with their hypothesized function of producing a left-right power differential. Alternatively, each muscle might individually encode variation in movement. We show that PLS feature analysis produces an efficient reduction of dimensionality in torque variation within a wingstroke. At first, the two muscles appear to behave as a synergy when we consider only their wingstroke-averaged torque. However, when we consider the PLS features, the muscles reveal independent encoding of torque. Using these features we can predictably reconstruct the variation in torque corresponding to changes in muscle activation. PLS-based feature analysis provides a general two-sided dimensionality reduction that reveals encoding in high dimensional

  9. Dual dimensionality reduction reveals independent encoding of motor features in a muscle synergy for insect flight control.

    Directory of Open Access Journals (Sweden)

    Simon Sponberg

    2015-04-01

    Full Text Available What are the features of movement encoded by changing motor commands? Do motor commands encode movement independently or can they be represented in a reduced set of signals (i.e. synergies? Motor encoding poses a computational and practical challenge because many muscles typically drive movement, and simultaneous electrophysiology recordings of all motor commands are typically not available. Moreover, during a single locomotor period (a stride or wingstroke the variation in movement may have high dimensionality, even if only a few discrete signals activate the muscles. Here, we apply the method of partial least squares (PLS to extract the encoded features of movement based on the cross-covariance of motor signals and movement. PLS simultaneously decomposes both datasets and identifies only the variation in movement that relates to the specific muscles of interest. We use this approach to explore how the main downstroke flight muscles of an insect, the hawkmoth Manduca sexta, encode torque during yaw turns. We simultaneously record muscle activity and turning torque in tethered flying moths experiencing wide-field visual stimuli. We ask whether this pair of muscles acts as a muscle synergy (a single linear combination of activity consistent with their hypothesized function of producing a left-right power differential. Alternatively, each muscle might individually encode variation in movement. We show that PLS feature analysis produces an efficient reduction of dimensionality in torque variation within a wingstroke. At first, the two muscles appear to behave as a synergy when we consider only their wingstroke-averaged torque. However, when we consider the PLS features, the muscles reveal independent encoding of torque. Using these features we can predictably reconstruct the variation in torque corresponding to changes in muscle activation. PLS-based feature analysis provides a general two-sided dimensionality reduction that reveals encoding in

  10. Examination of contraction-induced muscle pain as a behavioral correlate of physical activity in women with and without fibromyalgia.

    Science.gov (United States)

    Umeda, Masataka; Corbin, Lisa W; Maluf, Katrina S

    2015-01-01

    This study aimed to compare muscle pain intensity during a sustained isometric contraction in women with and without fibromyalgia (FM), and examine the association between muscle pain and self-reported levels of physical activity. Fourteen women with FM and 14 healthy women completed the study, where muscle pain ratings (MPRs) were obtained every 30 s during a 3 min isometric handgrip task at 25% maximal strength, and self-reported physical activity was quantified using the Baecke Physical Activity Questionnaire. Women with FM were less physically active than healthy controls. During the isometric contraction, MPR progressively increased in both groups at a comparable rate, but women with FM generally reported a greater intensity of muscle pain than healthy controls. Among all women, average MPR scores were inversely associated with self-reported physical activity levels. Women with FM exhibit augmented muscle pain during isometric contractions and reduced physical activity than healthy controls. Furthermore, contraction-induced muscle pain is inversely associated with physical activity levels. These observations suggest that augmented muscle pain may serve as a behavioral correlate of reduced physical activity in women with FM. Implications for Rehabilitation Women with fibromyalgia experience a greater intensity of localized muscle pain in a contracting muscle compared to healthy women. The intensity of pain during muscle contraction is inversely associated with the amount of physical activity in women with and without fibromyalgia. Future studies should determine whether exercise adherence can be improved by considering the relationship between contraction-induced muscle pain and participation in routine physical activity.

  11. Dual Dimensionality Reduction Reveals Independent Encoding of Motor Features in a Muscle Synergy for Insect Flight Control

    Science.gov (United States)

    Sponberg, Simon; Daniel, Thomas L.; Fairhall, Adrienne L.

    2015-01-01

    What are the features of movement encoded by changing motor commands? Do motor commands encode movement independently or can they be represented in a reduced set of signals (i.e. synergies)? Motor encoding poses a computational and practical challenge because many muscles typically drive movement, and simultaneous electrophysiology recordings of all motor commands are typically not available. Moreover, during a single locomotor period (a stride or wingstroke) the variation in movement may have high dimensionality, even if only a few discrete signals activate the muscles. Here, we apply the method of partial least squares (PLS) to extract the encoded features of movement based on the cross-covariance of motor signals and movement. PLS simultaneously decomposes both datasets and identifies only the variation in movement that relates to the specific muscles of interest. We use this approach to explore how the main downstroke flight muscles of an insect, the hawkmoth Manduca sexta, encode torque during yaw turns. We simultaneously record muscle activity and turning torque in tethered flying moths experiencing wide-field visual stimuli. We ask whether this pair of muscles acts as a muscle synergy (a single linear combination of activity) consistent with their hypothesized function of producing a left-right power differential. Alternatively, each muscle might individually encode variation in movement. We show that PLS feature analysis produces an efficient reduction of dimensionality in torque variation within a wingstroke. At first, the two muscles appear to behave as a synergy when we consider only their wingstroke-averaged torque. However, when we consider the PLS features, the muscles reveal independent encoding of torque. Using these features we can predictably reconstruct the variation in torque corresponding to changes in muscle activation. PLS-based feature analysis provides a general two-sided dimensionality reduction that reveals encoding in high dimensional

  12. Triglyceride metabolism in exercising muscle.

    Science.gov (United States)

    Watt, Matthew J; Cheng, Yunsheng

    2017-10-01

    Triglycerides are stored within lipid droplets in skeletal muscle and can be hydrolyzed to produce fatty acids for energy production through β-oxidation and oxidative phosphorylation. While there was some controversy regarding the quantitative importance of intramyocellular triglyceride (IMTG) as a metabolic substrate, recent advances in proton magnetic resonance spectroscopy and confocal microscopy support earlier tracer and biopsy studies demonstrating a substantial contribution of IMTG to energy production, particularly during moderate-intensity endurance exercise. This review provides an update on the understanding of IMTG utilization during exercise, with a focus on describing the key regulatory proteins that control IMTG breakdown and how these proteins respond to acute exercise and in the adaptation to exercise training. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effect of repeated forearm muscle cooling on the adaptation of skeletal muscle metabolism in humans

    Science.gov (United States)

    Wakabayashi, Hitoshi; Nishimura, Takayuki; Wijayanto, Titis; Watanuki, Shigeki; Tochihara, Yutaka

    2017-07-01

    This study aimed to investigate the effect of repeated cooling of forearm muscle on adaptation in skeletal muscle metabolism. It is hypothesized that repeated decreases of muscle temperature would increase the oxygen consumption in hypothermic skeletal muscle. Sixteen healthy males participated in this study. Their right forearm muscles were locally cooled to 25 °C by cooling pads attached to the skin. This local cooling was repeated eight times on separate days for eight participants (experimental group), whereas eight controls received no cold exposure. To evaluate adaptation in skeletal muscle metabolism, a local cooling test was conducted before and after the repeated cooling period. Change in oxy-hemoglobin content in the flexor digitorum at rest and during a 25-s isometric handgrip (10% maximal voluntary construction) was measured using near-infrared spectroscopy at every 2 °C reduction in forearm muscle temperature. The arterial blood flow was occluded for 15 s by upper arm cuff inflation at rest and during the isometric handgrip. The oxygen consumption in the flexor digitorum muscle was evaluated by a slope of the oxy-hemoglobin change during the arterial occlusion. In the experimental group, resting oxygen consumption in skeletal muscle did not show any difference between pre- and post-intervention, whereas muscle oxygen consumption during the isometric handgrip was significantly higher in post-intervention than in pre-test from thermoneutral baseline to 31 °C muscle temperature ( P cooling might facilitate oxidative metabolism in the skeletal muscle. In summary, skeletal muscle metabolism during submaximal isometric handgrip was facilitated after repeated local muscle cooling.

  14. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy.

    Science.gov (United States)

    Mendias, Christopher L; Schwartz, Andrew J; Grekin, Jeremy A; Gumucio, Jonathan P; Sugg, Kristoffer B

    2017-03-01

    Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sF o ), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic

  15. Muscle satellite cells are functionally impaired in myasthenia gravis: consequences on muscle regeneration.

    Science.gov (United States)

    Attia, Mohamed; Maurer, Marie; Robinet, Marieke; Le Grand, Fabien; Fadel, Elie; Le Panse, Rozen; Butler-Browne, Gillian; Berrih-Aknin, Sonia

    2017-12-01

    Myasthenia gravis (MG) is a neuromuscular disease caused in most cases by anti-acetyl-choline receptor (AChR) autoantibodies that impair neuromuscular signal transmission and affect skeletal muscle homeostasis. Myogenesis is carried out by muscle stem cells called satellite cells (SCs). However, myogenesis in MG had never been explored. The aim of this study was to characterise the functional properties of myasthenic SCs as well as their abilities in muscle regeneration. SCs were isolated from muscle biopsies of MG patients and age-matched controls. We first showed that the number of Pax7+ SCs was increased in muscle sections from MG and its experimental autoimmune myasthenia gravis (EAMG) mouse model. Myoblasts isolated from MG muscles proliferate and differentiate more actively than myoblasts from control muscles. MyoD and MyoG were expressed at a higher level in MG myoblasts as well as in MG muscle biopsies compared to controls. We found that treatment of control myoblasts with MG sera or monoclonal anti-AChR antibodies increased the differentiation and MyoG mRNA expression compared to control sera. To investigate the functional ability of SCs from MG muscle to regenerate, we induced muscle regeneration using acute cardiotoxin injury in the EAMG mouse model. We observed a delay in maturation evidenced by a decrease in fibre size and MyoG mRNA expression as well as an increase in fibre number and embryonic myosin heavy-chain mRNA expression. These findings demonstrate for the first time the altered function of SCs from MG compared to control muscles. These alterations could be due to the anti-AChR antibodies via the modulation of myogenic markers resulting in muscle regeneration impairment. In conclusion, the autoimmune attack in MG appears to have unsuspected pathogenic effects on SCs and muscle regeneration, with potential consequences on myogenic signalling pathways, and subsequently on clinical outcome, especially in the case of muscle stress.

  16. Role of AMPK in Regulating Muscle Insulin Sensitivity

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus

    The ability of insulin to stimulate skeletal muscle glucose uptake is instrumental for controlling whole-body glucose homeostasis. Decreased peripheral sensitivity to insulin increases the risk of developing type 2 diabetes. Insulin sensitivity can be defined as the concentration of insulin that ...... prevail in healthy lean subjects. In the present thesis, experimental results from the three studies as well as unpublished observations are placed in the context of existing literature in order to provide a general overview of the current understandings within this field of research....

  17. Evaluating Swallowing Muscles Essential for Hyolaryngeal Elevation by Using Muscle Functional Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Pearson, William G.; Hindson, David F.; Langmore, Susan E.; Zumwalt, Ann C.

    2013-01-01

    Purpose: Reduced hyolaryngeal elevation, a critical event in swallowing, is associated with radiation therapy. Two muscle groups that suspend the hyoid, larynx, and pharynx have been proposed to elevate the hyolaryngeal complex: the suprahyoid and longitudinal pharyngeal muscles. Thought to assist both groups is the thyrohyoid, a muscle intrinsic to the hyolaryngeal complex. Intensity modulated radiation therapy guidelines designed to preserve structures important to swallowing currently exclude the suprahyoid and thyrohyoid muscles. This study used muscle functional magnetic resonance imaging (mfMRI) in normal healthy adults to determine whether both muscle groups are active in swallowing and to test therapeutic exercises thought to be specific to hyolaryngeal elevation. Methods and Materials: mfMRI data were acquired from 11 healthy subjects before and after normal swallowing and after swallowing exercise regimens (the Mendelsohn maneuver and effortful pitch glide). Whole-muscle transverse relaxation time (T2 signal, measured in milliseconds) profiles of 7 test muscles were used to evaluate the physiologic response of each muscle to each condition. Changes in effect size (using the Cohen d measure) of whole-muscle T2 profiles were used to determine which muscles underlie swallowing and swallowing exercises. Results: Post-swallowing effect size changes (where a d value of >0.20 indicates significant activity during swallowing) for the T2 signal profile of the thyrohyoid was a d value of 0.09; a d value of 0.40 for the mylohyoid, 0.80 for the geniohyoid, 0.04 for the anterior digastric, and 0.25 for the posterior digastric-stylohyoid in the suprahyoid muscle group; and d values of 0.47 for the palatopharyngeus and 0.28 for the stylopharyngeus muscles in the longitudinal pharyngeal muscle group. The Mendelsohn maneuver and effortful pitch glide swallowing exercises showed significant effect size changes for all muscles tested, except for the thyrohyoid. Conclusions

  18. Evaluating Swallowing Muscles Essential for Hyolaryngeal Elevation by Using Muscle Functional Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, William G., E-mail: bp1@bu.edu [Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts (United States); Hindson, David F. [Department of Radiology, Boston Medical Center, Boston, Massachusetts (United States); Langmore, Susan E. [Department of Otolaryngology, Boston Medical Center, Boston, Massachusetts (United States); Speech and Hearing Sciences, Boston University, Boston, Massachusetts (United States); Zumwalt, Ann C. [Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts (United States)

    2013-03-01

    Purpose: Reduced hyolaryngeal elevation, a critical event in swallowing, is associated with radiation therapy. Two muscle groups that suspend the hyoid, larynx, and pharynx have been proposed to elevate the hyolaryngeal complex: the suprahyoid and longitudinal pharyngeal muscles. Thought to assist both groups is the thyrohyoid, a muscle intrinsic to the hyolaryngeal complex. Intensity modulated radiation therapy guidelines designed to preserve structures important to swallowing currently exclude the suprahyoid and thyrohyoid muscles. This study used muscle functional magnetic resonance imaging (mfMRI) in normal healthy adults to determine whether both muscle groups are active in swallowing and to test therapeutic exercises thought to be specific to hyolaryngeal elevation. Methods and Materials: mfMRI data were acquired from 11 healthy subjects before and after normal swallowing and after swallowing exercise regimens (the Mendelsohn maneuver and effortful pitch glide). Whole-muscle transverse relaxation time (T2 signal, measured in milliseconds) profiles of 7 test muscles were used to evaluate the physiologic response of each muscle to each condition. Changes in effect size (using the Cohen d measure) of whole-muscle T2 profiles were used to determine which muscles underlie swallowing and swallowing exercises. Results: Post-swallowing effect size changes (where a d value of >0.20 indicates significant activity during swallowing) for the T2 signal profile of the thyrohyoid was a d value of 0.09; a d value of 0.40 for the mylohyoid, 0.80 for the geniohyoid, 0.04 for the anterior digastric, and 0.25 for the posterior digastric-stylohyoid in the suprahyoid muscle group; and d values of 0.47 for the palatopharyngeus and 0.28 for the stylopharyngeus muscles in the longitudinal pharyngeal muscle group. The Mendelsohn maneuver and effortful pitch glide swallowing exercises showed significant effect size changes for all muscles tested, except for the thyrohyoid. Conclusions

  19. The origin of activity in the biceps brachii muscle during voluntary contractions of the contralateral elbow flexor muscles

    NARCIS (Netherlands)

    Zijdewind, Inge; Butler, Jane E.; Gandevia, Simon C.; Taylor, Janet L.

    During strong voluntary contractions, activity is not restricted to the target muscles. Other muscles, including contralateral muscles, often contract. We used transcranial magnetic stimulation (TMS) to analyse the origin of these unintended contralateral contractions (termed "associated"

  20. Human skeletal muscle mitochondrial capacity.

    Science.gov (United States)

    Rasmussen, U F; Rasmussen, H N

    2000-04-01

    Under aerobic work, the oxygen consumption and major ATP production occur in the mitochondria and it is therefore a relevant question whether the in vivo rates can be accounted for by mitochondrial capacities measured in vitro. Mitochondria were isolated from human quadriceps muscle biopsies in yields of approximately 45%. The tissue content of total creatine, mitochondrial protein and different cytochromes was estimated. A number of activities were measured in functional assays of the mitochondria: pyruvate, ketoglutarate, glutamate and succinate dehydrogenases, palmitoyl-carnitine respiration, cytochrome oxidase, the respiratory chain and the ATP synthesis. The activities involved in carbohydrate oxidation could account for in vivo oxygen uptakes of 15-16 mmol O2 min-1 kg-1 or slightly above the value measured at maximal work rates in the knee-extensor model of Saltin and co-workers, i.e. without limitation from the cardiac output. This probably indicates that the maximal oxygen consumption of the muscle is limited by the mitochondrial capacities. The in vitro activities of fatty acid oxidation corresponded to only 39% of those of carbohydrate oxidation. The maximal rate of free energy production from aerobic metabolism of glycogen was calculated from the mitochondrial activities and estimates of the DeltaG or ATP hydrolysis and the efficiency of the actin-myosin reaction. The resultant value was 20 W kg-1 or approximately 70% of the maximal in vivo work rates of which 10-20% probably are sustained by the anaerobic ATP production. The lack of aerobic in vitro ATP synthesis might reflect termination of some critical interplay between cytoplasm and mitochondria.